Check all inline frames if they are marked for skip
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
42a4f53d 4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
c906108c
SS
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "gdbthread.h"
32#include "annotate.h"
1adeb98a 33#include "symfile.h"
7a292a7a 34#include "top.h"
2acceee2 35#include "inf-loop.h"
4e052eda 36#include "regcache.h"
fd0407d6 37#include "value.h"
76727919 38#include "observable.h"
f636b87d 39#include "language.h"
a77053c2 40#include "solib.h"
f17517ea 41#include "main.h"
186c406b 42#include "block.h"
034dad6f 43#include "mi/mi-common.h"
4f8d22e3 44#include "event-top.h"
96429cc8 45#include "record.h"
d02ed0bb 46#include "record-full.h"
edb3359d 47#include "inline-frame.h"
4efc6507 48#include "jit.h"
06cd862c 49#include "tracepoint.h"
1bfeeb0f 50#include "skip.h"
28106bc2
SDJ
51#include "probe.h"
52#include "objfiles.h"
de0bea00 53#include "completer.h"
9107fc8d 54#include "target-descriptions.h"
f15cb84a 55#include "target-dcache.h"
d83ad864 56#include "terminal.h"
ff862be4 57#include "solist.h"
372316f1 58#include "event-loop.h"
243a9253 59#include "thread-fsm.h"
268a13a5 60#include "gdbsupport/enum-flags.h"
5ed8105e 61#include "progspace-and-thread.h"
268a13a5 62#include "gdbsupport/gdb_optional.h"
46a62268 63#include "arch-utils.h"
268a13a5
TT
64#include "gdbsupport/scope-exit.h"
65#include "gdbsupport/forward-scope-exit.h"
c906108c
SS
66
67/* Prototypes for local functions */
68
2ea28649 69static void sig_print_info (enum gdb_signal);
c906108c 70
96baa820 71static void sig_print_header (void);
c906108c 72
4ef3f3be 73static int follow_fork (void);
96baa820 74
d83ad864
DB
75static int follow_fork_inferior (int follow_child, int detach_fork);
76
77static void follow_inferior_reset_breakpoints (void);
78
a289b8f6
JK
79static int currently_stepping (struct thread_info *tp);
80
e58b0e63
PA
81void nullify_last_target_wait_ptid (void);
82
2c03e5be 83static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
84
85static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
86
2484c66b
UW
87static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
88
8550d3b3
YQ
89static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
90
aff4e175
AB
91static void resume (gdb_signal sig);
92
372316f1
PA
93/* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95static struct async_event_handler *infrun_async_inferior_event_token;
96
97/* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99static int infrun_is_async = -1;
100
101/* See infrun.h. */
102
103void
104infrun_async (int enable)
105{
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120}
121
0b333c5e
PA
122/* See infrun.h. */
123
124void
125mark_infrun_async_event_handler (void)
126{
127 mark_async_event_handler (infrun_async_inferior_event_token);
128}
129
5fbbeb29
CF
130/* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
491144b5 133bool step_stop_if_no_debug = false;
920d2a44
AC
134static void
135show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139}
5fbbeb29 140
b9f437de
PA
141/* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
96baa820 144
39f77062 145static ptid_t previous_inferior_ptid;
7a292a7a 146
07107ca6
LM
147/* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
491144b5 152static bool detach_fork = true;
6c95b8df 153
491144b5 154bool debug_displaced = false;
237fc4c9
PA
155static void
156show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160}
161
ccce17b0 162unsigned int debug_infrun = 0;
920d2a44
AC
163static void
164show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168}
527159b7 169
03583c20
UW
170
171/* Support for disabling address space randomization. */
172
491144b5 173bool disable_randomization = true;
03583c20
UW
174
175static void
176show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188}
189
190static void
eb4c3f4a 191set_disable_randomization (const char *args, int from_tty,
03583c20
UW
192 struct cmd_list_element *c)
193{
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198}
199
d32dc48e
PA
200/* User interface for non-stop mode. */
201
491144b5
CB
202bool non_stop = false;
203static bool non_stop_1 = false;
d32dc48e
PA
204
205static void
eb4c3f4a 206set_non_stop (const char *args, int from_tty,
d32dc48e
PA
207 struct cmd_list_element *c)
208{
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216}
217
218static void
219show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221{
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225}
226
d914c394
SS
227/* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
491144b5
CB
231bool observer_mode = false;
232static bool observer_mode_1 = false;
d914c394
SS
233
234static void
eb4c3f4a 235set_observer_mode (const char *args, int from_tty,
d914c394
SS
236 struct cmd_list_element *c)
237{
d914c394
SS
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
491144b5 253 may_insert_fast_tracepoints = true;
d914c394
SS
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
d914c394 261 pagination_enabled = 0;
491144b5 262 non_stop = non_stop_1 = true;
d914c394
SS
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268}
269
270static void
271show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273{
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275}
276
277/* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283void
284update_observer_mode (void)
285{
491144b5
CB
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
d914c394
SS
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298}
c2c6d25f 299
c906108c
SS
300/* Tables of how to react to signals; the user sets them. */
301
adc6a863
PA
302static unsigned char signal_stop[GDB_SIGNAL_LAST];
303static unsigned char signal_print[GDB_SIGNAL_LAST];
304static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 305
ab04a2af
TT
306/* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
308 signal" command. */
309static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 310
2455069d
UW
311/* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
adc6a863 314static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 315
c906108c
SS
316#define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324#define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
9b224c5e
PA
332/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335void
336update_signals_program_target (void)
337{
adc6a863 338 target_program_signals (signal_program);
9b224c5e
PA
339}
340
1777feb0 341/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 342
edb3359d 343#define RESUME_ALL minus_one_ptid
c906108c
SS
344
345/* Command list pointer for the "stop" placeholder. */
346
347static struct cmd_list_element *stop_command;
348
c906108c
SS
349/* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
628fe4e4 351int stop_on_solib_events;
f9e14852
GB
352
353/* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356static void
eb4c3f4a
TT
357set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
f9e14852
GB
359{
360 update_solib_breakpoints ();
361}
362
920d2a44
AC
363static void
364show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366{
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369}
c906108c 370
c906108c
SS
371/* Nonzero after stop if current stack frame should be printed. */
372
373static int stop_print_frame;
374
e02bc4cc 375/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
376 returned by target_wait()/deprecated_target_wait_hook(). This
377 information is returned by get_last_target_status(). */
39f77062 378static ptid_t target_last_wait_ptid;
e02bc4cc
DS
379static struct target_waitstatus target_last_waitstatus;
380
4e1c45ea 381void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 382
53904c9e
AC
383static const char follow_fork_mode_child[] = "child";
384static const char follow_fork_mode_parent[] = "parent";
385
40478521 386static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
387 follow_fork_mode_child,
388 follow_fork_mode_parent,
389 NULL
ef346e04 390};
c906108c 391
53904c9e 392static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
393static void
394show_follow_fork_mode_string (struct ui_file *file, int from_tty,
395 struct cmd_list_element *c, const char *value)
396{
3e43a32a
MS
397 fprintf_filtered (file,
398 _("Debugger response to a program "
399 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
400 value);
401}
c906108c
SS
402\f
403
d83ad864
DB
404/* Handle changes to the inferior list based on the type of fork,
405 which process is being followed, and whether the other process
406 should be detached. On entry inferior_ptid must be the ptid of
407 the fork parent. At return inferior_ptid is the ptid of the
408 followed inferior. */
409
410static int
411follow_fork_inferior (int follow_child, int detach_fork)
412{
413 int has_vforked;
79639e11 414 ptid_t parent_ptid, child_ptid;
d83ad864
DB
415
416 has_vforked = (inferior_thread ()->pending_follow.kind
417 == TARGET_WAITKIND_VFORKED);
79639e11
PA
418 parent_ptid = inferior_ptid;
419 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 423 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432Can not resume the parent process over vfork in the foreground while\n\
433holding the child stopped. Try \"set detach-on-fork\" or \
434\"set schedule-multiple\".\n"));
d83ad864
DB
435 return 1;
436 }
437
438 if (!follow_child)
439 {
440 /* Detach new forked process? */
441 if (detach_fork)
442 {
d83ad864
DB
443 /* Before detaching from the child, remove all breakpoints
444 from it. If we forked, then this has already been taken
445 care of by infrun.c. If we vforked however, any
446 breakpoint inserted in the parent is visible in the
447 child, even those added while stopped in a vfork
448 catchpoint. This will remove the breakpoints from the
449 parent also, but they'll be reinserted below. */
450 if (has_vforked)
451 {
452 /* Keep breakpoints list in sync. */
00431a78 453 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
454 }
455
f67c0c91 456 if (print_inferior_events)
d83ad864 457 {
8dd06f7a 458 /* Ensure that we have a process ptid. */
e99b03dc 459 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 460
223ffa71 461 target_terminal::ours_for_output ();
d83ad864 462 fprintf_filtered (gdb_stdlog,
f67c0c91 463 _("[Detaching after %s from child %s]\n"),
6f259a23 464 has_vforked ? "vfork" : "fork",
a068643d 465 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
466 }
467 }
468 else
469 {
470 struct inferior *parent_inf, *child_inf;
d83ad864
DB
471
472 /* Add process to GDB's tables. */
e99b03dc 473 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
474
475 parent_inf = current_inferior ();
476 child_inf->attach_flag = parent_inf->attach_flag;
477 copy_terminal_info (child_inf, parent_inf);
478 child_inf->gdbarch = parent_inf->gdbarch;
479 copy_inferior_target_desc_info (child_inf, parent_inf);
480
5ed8105e 481 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 482
79639e11 483 inferior_ptid = child_ptid;
f67c0c91 484 add_thread_silent (inferior_ptid);
2a00d7ce 485 set_current_inferior (child_inf);
d83ad864
DB
486 child_inf->symfile_flags = SYMFILE_NO_READ;
487
488 /* If this is a vfork child, then the address-space is
489 shared with the parent. */
490 if (has_vforked)
491 {
492 child_inf->pspace = parent_inf->pspace;
493 child_inf->aspace = parent_inf->aspace;
494
495 /* The parent will be frozen until the child is done
496 with the shared region. Keep track of the
497 parent. */
498 child_inf->vfork_parent = parent_inf;
499 child_inf->pending_detach = 0;
500 parent_inf->vfork_child = child_inf;
501 parent_inf->pending_detach = 0;
502 }
503 else
504 {
505 child_inf->aspace = new_address_space ();
564b1e3f 506 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
507 child_inf->removable = 1;
508 set_current_program_space (child_inf->pspace);
509 clone_program_space (child_inf->pspace, parent_inf->pspace);
510
511 /* Let the shared library layer (e.g., solib-svr4) learn
512 about this new process, relocate the cloned exec, pull
513 in shared libraries, and install the solib event
514 breakpoint. If a "cloned-VM" event was propagated
515 better throughout the core, this wouldn't be
516 required. */
517 solib_create_inferior_hook (0);
518 }
d83ad864
DB
519 }
520
521 if (has_vforked)
522 {
523 struct inferior *parent_inf;
524
525 parent_inf = current_inferior ();
526
527 /* If we detached from the child, then we have to be careful
528 to not insert breakpoints in the parent until the child
529 is done with the shared memory region. However, if we're
530 staying attached to the child, then we can and should
531 insert breakpoints, so that we can debug it. A
532 subsequent child exec or exit is enough to know when does
533 the child stops using the parent's address space. */
534 parent_inf->waiting_for_vfork_done = detach_fork;
535 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
536 }
537 }
538 else
539 {
540 /* Follow the child. */
541 struct inferior *parent_inf, *child_inf;
542 struct program_space *parent_pspace;
543
f67c0c91 544 if (print_inferior_events)
d83ad864 545 {
f67c0c91
SDJ
546 std::string parent_pid = target_pid_to_str (parent_ptid);
547 std::string child_pid = target_pid_to_str (child_ptid);
548
223ffa71 549 target_terminal::ours_for_output ();
6f259a23 550 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
551 _("[Attaching after %s %s to child %s]\n"),
552 parent_pid.c_str (),
6f259a23 553 has_vforked ? "vfork" : "fork",
f67c0c91 554 child_pid.c_str ());
d83ad864
DB
555 }
556
557 /* Add the new inferior first, so that the target_detach below
558 doesn't unpush the target. */
559
e99b03dc 560 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
561
562 parent_inf = current_inferior ();
563 child_inf->attach_flag = parent_inf->attach_flag;
564 copy_terminal_info (child_inf, parent_inf);
565 child_inf->gdbarch = parent_inf->gdbarch;
566 copy_inferior_target_desc_info (child_inf, parent_inf);
567
568 parent_pspace = parent_inf->pspace;
569
570 /* If we're vforking, we want to hold on to the parent until the
571 child exits or execs. At child exec or exit time we can
572 remove the old breakpoints from the parent and detach or
573 resume debugging it. Otherwise, detach the parent now; we'll
574 want to reuse it's program/address spaces, but we can't set
575 them to the child before removing breakpoints from the
576 parent, otherwise, the breakpoints module could decide to
577 remove breakpoints from the wrong process (since they'd be
578 assigned to the same address space). */
579
580 if (has_vforked)
581 {
582 gdb_assert (child_inf->vfork_parent == NULL);
583 gdb_assert (parent_inf->vfork_child == NULL);
584 child_inf->vfork_parent = parent_inf;
585 child_inf->pending_detach = 0;
586 parent_inf->vfork_child = child_inf;
587 parent_inf->pending_detach = detach_fork;
588 parent_inf->waiting_for_vfork_done = 0;
589 }
590 else if (detach_fork)
6f259a23 591 {
f67c0c91 592 if (print_inferior_events)
6f259a23 593 {
8dd06f7a 594 /* Ensure that we have a process ptid. */
e99b03dc 595 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 596
223ffa71 597 target_terminal::ours_for_output ();
6f259a23 598 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
599 _("[Detaching after fork from "
600 "parent %s]\n"),
a068643d 601 target_pid_to_str (process_ptid).c_str ());
6f259a23
DB
602 }
603
6e1e1966 604 target_detach (parent_inf, 0);
6f259a23 605 }
d83ad864
DB
606
607 /* Note that the detach above makes PARENT_INF dangling. */
608
609 /* Add the child thread to the appropriate lists, and switch to
610 this new thread, before cloning the program space, and
611 informing the solib layer about this new process. */
612
79639e11 613 inferior_ptid = child_ptid;
f67c0c91 614 add_thread_silent (inferior_ptid);
2a00d7ce 615 set_current_inferior (child_inf);
d83ad864
DB
616
617 /* If this is a vfork child, then the address-space is shared
618 with the parent. If we detached from the parent, then we can
619 reuse the parent's program/address spaces. */
620 if (has_vforked || detach_fork)
621 {
622 child_inf->pspace = parent_pspace;
623 child_inf->aspace = child_inf->pspace->aspace;
624 }
625 else
626 {
627 child_inf->aspace = new_address_space ();
564b1e3f 628 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
629 child_inf->removable = 1;
630 child_inf->symfile_flags = SYMFILE_NO_READ;
631 set_current_program_space (child_inf->pspace);
632 clone_program_space (child_inf->pspace, parent_pspace);
633
634 /* Let the shared library layer (e.g., solib-svr4) learn
635 about this new process, relocate the cloned exec, pull in
636 shared libraries, and install the solib event breakpoint.
637 If a "cloned-VM" event was propagated better throughout
638 the core, this wouldn't be required. */
639 solib_create_inferior_hook (0);
640 }
641 }
642
643 return target_follow_fork (follow_child, detach_fork);
644}
645
e58b0e63
PA
646/* Tell the target to follow the fork we're stopped at. Returns true
647 if the inferior should be resumed; false, if the target for some
648 reason decided it's best not to resume. */
649
6604731b 650static int
4ef3f3be 651follow_fork (void)
c906108c 652{
ea1dd7bc 653 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
654 int should_resume = 1;
655 struct thread_info *tp;
656
657 /* Copy user stepping state to the new inferior thread. FIXME: the
658 followed fork child thread should have a copy of most of the
4e3990f4
DE
659 parent thread structure's run control related fields, not just these.
660 Initialized to avoid "may be used uninitialized" warnings from gcc. */
661 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 662 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
663 CORE_ADDR step_range_start = 0;
664 CORE_ADDR step_range_end = 0;
665 struct frame_id step_frame_id = { 0 };
8980e177 666 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
667
668 if (!non_stop)
669 {
670 ptid_t wait_ptid;
671 struct target_waitstatus wait_status;
672
673 /* Get the last target status returned by target_wait(). */
674 get_last_target_status (&wait_ptid, &wait_status);
675
676 /* If not stopped at a fork event, then there's nothing else to
677 do. */
678 if (wait_status.kind != TARGET_WAITKIND_FORKED
679 && wait_status.kind != TARGET_WAITKIND_VFORKED)
680 return 1;
681
682 /* Check if we switched over from WAIT_PTID, since the event was
683 reported. */
00431a78
PA
684 if (wait_ptid != minus_one_ptid
685 && inferior_ptid != wait_ptid)
e58b0e63
PA
686 {
687 /* We did. Switch back to WAIT_PTID thread, to tell the
688 target to follow it (in either direction). We'll
689 afterwards refuse to resume, and inform the user what
690 happened. */
00431a78
PA
691 thread_info *wait_thread
692 = find_thread_ptid (wait_ptid);
693 switch_to_thread (wait_thread);
e58b0e63
PA
694 should_resume = 0;
695 }
696 }
697
698 tp = inferior_thread ();
699
700 /* If there were any forks/vforks that were caught and are now to be
701 followed, then do so now. */
702 switch (tp->pending_follow.kind)
703 {
704 case TARGET_WAITKIND_FORKED:
705 case TARGET_WAITKIND_VFORKED:
706 {
707 ptid_t parent, child;
708
709 /* If the user did a next/step, etc, over a fork call,
710 preserve the stepping state in the fork child. */
711 if (follow_child && should_resume)
712 {
8358c15c
JK
713 step_resume_breakpoint = clone_momentary_breakpoint
714 (tp->control.step_resume_breakpoint);
16c381f0
JK
715 step_range_start = tp->control.step_range_start;
716 step_range_end = tp->control.step_range_end;
717 step_frame_id = tp->control.step_frame_id;
186c406b
TT
718 exception_resume_breakpoint
719 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 720 thread_fsm = tp->thread_fsm;
e58b0e63
PA
721
722 /* For now, delete the parent's sr breakpoint, otherwise,
723 parent/child sr breakpoints are considered duplicates,
724 and the child version will not be installed. Remove
725 this when the breakpoints module becomes aware of
726 inferiors and address spaces. */
727 delete_step_resume_breakpoint (tp);
16c381f0
JK
728 tp->control.step_range_start = 0;
729 tp->control.step_range_end = 0;
730 tp->control.step_frame_id = null_frame_id;
186c406b 731 delete_exception_resume_breakpoint (tp);
8980e177 732 tp->thread_fsm = NULL;
e58b0e63
PA
733 }
734
735 parent = inferior_ptid;
736 child = tp->pending_follow.value.related_pid;
737
d83ad864
DB
738 /* Set up inferior(s) as specified by the caller, and tell the
739 target to do whatever is necessary to follow either parent
740 or child. */
741 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
742 {
743 /* Target refused to follow, or there's some other reason
744 we shouldn't resume. */
745 should_resume = 0;
746 }
747 else
748 {
749 /* This pending follow fork event is now handled, one way
750 or another. The previous selected thread may be gone
751 from the lists by now, but if it is still around, need
752 to clear the pending follow request. */
e09875d4 753 tp = find_thread_ptid (parent);
e58b0e63
PA
754 if (tp)
755 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
756
757 /* This makes sure we don't try to apply the "Switched
758 over from WAIT_PID" logic above. */
759 nullify_last_target_wait_ptid ();
760
1777feb0 761 /* If we followed the child, switch to it... */
e58b0e63
PA
762 if (follow_child)
763 {
00431a78
PA
764 thread_info *child_thr = find_thread_ptid (child);
765 switch_to_thread (child_thr);
e58b0e63
PA
766
767 /* ... and preserve the stepping state, in case the
768 user was stepping over the fork call. */
769 if (should_resume)
770 {
771 tp = inferior_thread ();
8358c15c
JK
772 tp->control.step_resume_breakpoint
773 = step_resume_breakpoint;
16c381f0
JK
774 tp->control.step_range_start = step_range_start;
775 tp->control.step_range_end = step_range_end;
776 tp->control.step_frame_id = step_frame_id;
186c406b
TT
777 tp->control.exception_resume_breakpoint
778 = exception_resume_breakpoint;
8980e177 779 tp->thread_fsm = thread_fsm;
e58b0e63
PA
780 }
781 else
782 {
783 /* If we get here, it was because we're trying to
784 resume from a fork catchpoint, but, the user
785 has switched threads away from the thread that
786 forked. In that case, the resume command
787 issued is most likely not applicable to the
788 child, so just warn, and refuse to resume. */
3e43a32a 789 warning (_("Not resuming: switched threads "
fd7dcb94 790 "before following fork child."));
e58b0e63
PA
791 }
792
793 /* Reset breakpoints in the child as appropriate. */
794 follow_inferior_reset_breakpoints ();
795 }
e58b0e63
PA
796 }
797 }
798 break;
799 case TARGET_WAITKIND_SPURIOUS:
800 /* Nothing to follow. */
801 break;
802 default:
803 internal_error (__FILE__, __LINE__,
804 "Unexpected pending_follow.kind %d\n",
805 tp->pending_follow.kind);
806 break;
807 }
c906108c 808
e58b0e63 809 return should_resume;
c906108c
SS
810}
811
d83ad864 812static void
6604731b 813follow_inferior_reset_breakpoints (void)
c906108c 814{
4e1c45ea
PA
815 struct thread_info *tp = inferior_thread ();
816
6604731b
DJ
817 /* Was there a step_resume breakpoint? (There was if the user
818 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
819 thread number. Cloned step_resume breakpoints are disabled on
820 creation, so enable it here now that it is associated with the
821 correct thread.
6604731b
DJ
822
823 step_resumes are a form of bp that are made to be per-thread.
824 Since we created the step_resume bp when the parent process
825 was being debugged, and now are switching to the child process,
826 from the breakpoint package's viewpoint, that's a switch of
827 "threads". We must update the bp's notion of which thread
828 it is for, or it'll be ignored when it triggers. */
829
8358c15c 830 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
831 {
832 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
833 tp->control.step_resume_breakpoint->loc->enabled = 1;
834 }
6604731b 835
a1aa2221 836 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 837 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
838 {
839 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
840 tp->control.exception_resume_breakpoint->loc->enabled = 1;
841 }
186c406b 842
6604731b
DJ
843 /* Reinsert all breakpoints in the child. The user may have set
844 breakpoints after catching the fork, in which case those
845 were never set in the child, but only in the parent. This makes
846 sure the inserted breakpoints match the breakpoint list. */
847
848 breakpoint_re_set ();
849 insert_breakpoints ();
c906108c 850}
c906108c 851
6c95b8df
PA
852/* The child has exited or execed: resume threads of the parent the
853 user wanted to be executing. */
854
855static int
856proceed_after_vfork_done (struct thread_info *thread,
857 void *arg)
858{
859 int pid = * (int *) arg;
860
00431a78
PA
861 if (thread->ptid.pid () == pid
862 && thread->state == THREAD_RUNNING
863 && !thread->executing
6c95b8df 864 && !thread->stop_requested
a493e3e2 865 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
866 {
867 if (debug_infrun)
868 fprintf_unfiltered (gdb_stdlog,
869 "infrun: resuming vfork parent thread %s\n",
a068643d 870 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 871
00431a78 872 switch_to_thread (thread);
70509625 873 clear_proceed_status (0);
64ce06e4 874 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
875 }
876
877 return 0;
878}
879
5ed8105e
PA
880/* Save/restore inferior_ptid, current program space and current
881 inferior. Only use this if the current context points at an exited
882 inferior (and therefore there's no current thread to save). */
883class scoped_restore_exited_inferior
884{
885public:
886 scoped_restore_exited_inferior ()
887 : m_saved_ptid (&inferior_ptid)
888 {}
889
890private:
891 scoped_restore_tmpl<ptid_t> m_saved_ptid;
892 scoped_restore_current_program_space m_pspace;
893 scoped_restore_current_inferior m_inferior;
894};
895
6c95b8df
PA
896/* Called whenever we notice an exec or exit event, to handle
897 detaching or resuming a vfork parent. */
898
899static void
900handle_vfork_child_exec_or_exit (int exec)
901{
902 struct inferior *inf = current_inferior ();
903
904 if (inf->vfork_parent)
905 {
906 int resume_parent = -1;
907
908 /* This exec or exit marks the end of the shared memory region
b73715df
TV
909 between the parent and the child. Break the bonds. */
910 inferior *vfork_parent = inf->vfork_parent;
911 inf->vfork_parent->vfork_child = NULL;
912 inf->vfork_parent = NULL;
6c95b8df 913
b73715df
TV
914 /* If the user wanted to detach from the parent, now is the
915 time. */
916 if (vfork_parent->pending_detach)
6c95b8df
PA
917 {
918 struct thread_info *tp;
6c95b8df
PA
919 struct program_space *pspace;
920 struct address_space *aspace;
921
1777feb0 922 /* follow-fork child, detach-on-fork on. */
6c95b8df 923
b73715df 924 vfork_parent->pending_detach = 0;
68c9da30 925
5ed8105e
PA
926 gdb::optional<scoped_restore_exited_inferior>
927 maybe_restore_inferior;
928 gdb::optional<scoped_restore_current_pspace_and_thread>
929 maybe_restore_thread;
930
931 /* If we're handling a child exit, then inferior_ptid points
932 at the inferior's pid, not to a thread. */
f50f4e56 933 if (!exec)
5ed8105e 934 maybe_restore_inferior.emplace ();
f50f4e56 935 else
5ed8105e 936 maybe_restore_thread.emplace ();
6c95b8df
PA
937
938 /* We're letting loose of the parent. */
b73715df 939 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 940 switch_to_thread (tp);
6c95b8df
PA
941
942 /* We're about to detach from the parent, which implicitly
943 removes breakpoints from its address space. There's a
944 catch here: we want to reuse the spaces for the child,
945 but, parent/child are still sharing the pspace at this
946 point, although the exec in reality makes the kernel give
947 the child a fresh set of new pages. The problem here is
948 that the breakpoints module being unaware of this, would
949 likely chose the child process to write to the parent
950 address space. Swapping the child temporarily away from
951 the spaces has the desired effect. Yes, this is "sort
952 of" a hack. */
953
954 pspace = inf->pspace;
955 aspace = inf->aspace;
956 inf->aspace = NULL;
957 inf->pspace = NULL;
958
f67c0c91 959 if (print_inferior_events)
6c95b8df 960 {
a068643d 961 std::string pidstr
b73715df 962 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 963
223ffa71 964 target_terminal::ours_for_output ();
6c95b8df
PA
965
966 if (exec)
6f259a23
DB
967 {
968 fprintf_filtered (gdb_stdlog,
f67c0c91 969 _("[Detaching vfork parent %s "
a068643d 970 "after child exec]\n"), pidstr.c_str ());
6f259a23 971 }
6c95b8df 972 else
6f259a23
DB
973 {
974 fprintf_filtered (gdb_stdlog,
f67c0c91 975 _("[Detaching vfork parent %s "
a068643d 976 "after child exit]\n"), pidstr.c_str ());
6f259a23 977 }
6c95b8df
PA
978 }
979
b73715df 980 target_detach (vfork_parent, 0);
6c95b8df
PA
981
982 /* Put it back. */
983 inf->pspace = pspace;
984 inf->aspace = aspace;
6c95b8df
PA
985 }
986 else if (exec)
987 {
988 /* We're staying attached to the parent, so, really give the
989 child a new address space. */
564b1e3f 990 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
991 inf->aspace = inf->pspace->aspace;
992 inf->removable = 1;
993 set_current_program_space (inf->pspace);
994
b73715df 995 resume_parent = vfork_parent->pid;
6c95b8df
PA
996 }
997 else
998 {
6c95b8df
PA
999 struct program_space *pspace;
1000
1001 /* If this is a vfork child exiting, then the pspace and
1002 aspaces were shared with the parent. Since we're
1003 reporting the process exit, we'll be mourning all that is
1004 found in the address space, and switching to null_ptid,
1005 preparing to start a new inferior. But, since we don't
1006 want to clobber the parent's address/program spaces, we
1007 go ahead and create a new one for this exiting
1008 inferior. */
1009
5ed8105e
PA
1010 /* Switch to null_ptid while running clone_program_space, so
1011 that clone_program_space doesn't want to read the
1012 selected frame of a dead process. */
1013 scoped_restore restore_ptid
1014 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1015
1016 /* This inferior is dead, so avoid giving the breakpoints
1017 module the option to write through to it (cloning a
1018 program space resets breakpoints). */
1019 inf->aspace = NULL;
1020 inf->pspace = NULL;
564b1e3f 1021 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1022 set_current_program_space (pspace);
1023 inf->removable = 1;
7dcd53a0 1024 inf->symfile_flags = SYMFILE_NO_READ;
b73715df 1025 clone_program_space (pspace, vfork_parent->pspace);
6c95b8df
PA
1026 inf->pspace = pspace;
1027 inf->aspace = pspace->aspace;
1028
b73715df 1029 resume_parent = vfork_parent->pid;
6c95b8df
PA
1030 }
1031
6c95b8df
PA
1032 gdb_assert (current_program_space == inf->pspace);
1033
1034 if (non_stop && resume_parent != -1)
1035 {
1036 /* If the user wanted the parent to be running, let it go
1037 free now. */
5ed8105e 1038 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1039
1040 if (debug_infrun)
3e43a32a
MS
1041 fprintf_unfiltered (gdb_stdlog,
1042 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1043 resume_parent);
1044
1045 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1046 }
1047 }
1048}
1049
eb6c553b 1050/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1051
1052static const char follow_exec_mode_new[] = "new";
1053static const char follow_exec_mode_same[] = "same";
40478521 1054static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1055{
1056 follow_exec_mode_new,
1057 follow_exec_mode_same,
1058 NULL,
1059};
1060
1061static const char *follow_exec_mode_string = follow_exec_mode_same;
1062static void
1063show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1064 struct cmd_list_element *c, const char *value)
1065{
1066 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1067}
1068
ecf45d2c 1069/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1070
c906108c 1071static void
4ca51187 1072follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1073{
6c95b8df 1074 struct inferior *inf = current_inferior ();
e99b03dc 1075 int pid = ptid.pid ();
94585166 1076 ptid_t process_ptid;
7a292a7a 1077
65d2b333
PW
1078 /* Switch terminal for any messages produced e.g. by
1079 breakpoint_re_set. */
1080 target_terminal::ours_for_output ();
1081
c906108c
SS
1082 /* This is an exec event that we actually wish to pay attention to.
1083 Refresh our symbol table to the newly exec'd program, remove any
1084 momentary bp's, etc.
1085
1086 If there are breakpoints, they aren't really inserted now,
1087 since the exec() transformed our inferior into a fresh set
1088 of instructions.
1089
1090 We want to preserve symbolic breakpoints on the list, since
1091 we have hopes that they can be reset after the new a.out's
1092 symbol table is read.
1093
1094 However, any "raw" breakpoints must be removed from the list
1095 (e.g., the solib bp's), since their address is probably invalid
1096 now.
1097
1098 And, we DON'T want to call delete_breakpoints() here, since
1099 that may write the bp's "shadow contents" (the instruction
85102364 1100 value that was overwritten with a TRAP instruction). Since
1777feb0 1101 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1102
1103 mark_breakpoints_out ();
1104
95e50b27
PA
1105 /* The target reports the exec event to the main thread, even if
1106 some other thread does the exec, and even if the main thread was
1107 stopped or already gone. We may still have non-leader threads of
1108 the process on our list. E.g., on targets that don't have thread
1109 exit events (like remote); or on native Linux in non-stop mode if
1110 there were only two threads in the inferior and the non-leader
1111 one is the one that execs (and nothing forces an update of the
1112 thread list up to here). When debugging remotely, it's best to
1113 avoid extra traffic, when possible, so avoid syncing the thread
1114 list with the target, and instead go ahead and delete all threads
1115 of the process but one that reported the event. Note this must
1116 be done before calling update_breakpoints_after_exec, as
1117 otherwise clearing the threads' resources would reference stale
1118 thread breakpoints -- it may have been one of these threads that
1119 stepped across the exec. We could just clear their stepping
1120 states, but as long as we're iterating, might as well delete
1121 them. Deleting them now rather than at the next user-visible
1122 stop provides a nicer sequence of events for user and MI
1123 notifications. */
08036331 1124 for (thread_info *th : all_threads_safe ())
d7e15655 1125 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1126 delete_thread (th);
95e50b27
PA
1127
1128 /* We also need to clear any left over stale state for the
1129 leader/event thread. E.g., if there was any step-resume
1130 breakpoint or similar, it's gone now. We cannot truly
1131 step-to-next statement through an exec(). */
08036331 1132 thread_info *th = inferior_thread ();
8358c15c 1133 th->control.step_resume_breakpoint = NULL;
186c406b 1134 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1135 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1136 th->control.step_range_start = 0;
1137 th->control.step_range_end = 0;
c906108c 1138
95e50b27
PA
1139 /* The user may have had the main thread held stopped in the
1140 previous image (e.g., schedlock on, or non-stop). Release
1141 it now. */
a75724bc
PA
1142 th->stop_requested = 0;
1143
95e50b27
PA
1144 update_breakpoints_after_exec ();
1145
1777feb0 1146 /* What is this a.out's name? */
f2907e49 1147 process_ptid = ptid_t (pid);
6c95b8df 1148 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1149 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1150 exec_file_target);
c906108c
SS
1151
1152 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1153 inferior has essentially been killed & reborn. */
7a292a7a 1154
6ca15a4b 1155 breakpoint_init_inferior (inf_execd);
e85a822c 1156
797bc1cb
TT
1157 gdb::unique_xmalloc_ptr<char> exec_file_host
1158 = exec_file_find (exec_file_target, NULL);
ff862be4 1159
ecf45d2c
SL
1160 /* If we were unable to map the executable target pathname onto a host
1161 pathname, tell the user that. Otherwise GDB's subsequent behavior
1162 is confusing. Maybe it would even be better to stop at this point
1163 so that the user can specify a file manually before continuing. */
1164 if (exec_file_host == NULL)
1165 warning (_("Could not load symbols for executable %s.\n"
1166 "Do you need \"set sysroot\"?"),
1167 exec_file_target);
c906108c 1168
cce9b6bf
PA
1169 /* Reset the shared library package. This ensures that we get a
1170 shlib event when the child reaches "_start", at which point the
1171 dld will have had a chance to initialize the child. */
1172 /* Also, loading a symbol file below may trigger symbol lookups, and
1173 we don't want those to be satisfied by the libraries of the
1174 previous incarnation of this process. */
1175 no_shared_libraries (NULL, 0);
1176
6c95b8df
PA
1177 if (follow_exec_mode_string == follow_exec_mode_new)
1178 {
6c95b8df
PA
1179 /* The user wants to keep the old inferior and program spaces
1180 around. Create a new fresh one, and switch to it. */
1181
35ed81d4
SM
1182 /* Do exit processing for the original inferior before setting the new
1183 inferior's pid. Having two inferiors with the same pid would confuse
1184 find_inferior_p(t)id. Transfer the terminal state and info from the
1185 old to the new inferior. */
1186 inf = add_inferior_with_spaces ();
1187 swap_terminal_info (inf, current_inferior ());
057302ce 1188 exit_inferior_silent (current_inferior ());
17d8546e 1189
94585166 1190 inf->pid = pid;
ecf45d2c 1191 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1192
1193 set_current_inferior (inf);
94585166 1194 set_current_program_space (inf->pspace);
c4c17fb0 1195 add_thread (ptid);
6c95b8df 1196 }
9107fc8d
PA
1197 else
1198 {
1199 /* The old description may no longer be fit for the new image.
1200 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1201 old description; we'll read a new one below. No need to do
1202 this on "follow-exec-mode new", as the old inferior stays
1203 around (its description is later cleared/refetched on
1204 restart). */
1205 target_clear_description ();
1206 }
6c95b8df
PA
1207
1208 gdb_assert (current_program_space == inf->pspace);
1209
ecf45d2c
SL
1210 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1211 because the proper displacement for a PIE (Position Independent
1212 Executable) main symbol file will only be computed by
1213 solib_create_inferior_hook below. breakpoint_re_set would fail
1214 to insert the breakpoints with the zero displacement. */
797bc1cb 1215 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1216
9107fc8d
PA
1217 /* If the target can specify a description, read it. Must do this
1218 after flipping to the new executable (because the target supplied
1219 description must be compatible with the executable's
1220 architecture, and the old executable may e.g., be 32-bit, while
1221 the new one 64-bit), and before anything involving memory or
1222 registers. */
1223 target_find_description ();
1224
268a4a75 1225 solib_create_inferior_hook (0);
c906108c 1226
4efc6507
DE
1227 jit_inferior_created_hook ();
1228
c1e56572
JK
1229 breakpoint_re_set ();
1230
c906108c
SS
1231 /* Reinsert all breakpoints. (Those which were symbolic have
1232 been reset to the proper address in the new a.out, thanks
1777feb0 1233 to symbol_file_command...). */
c906108c
SS
1234 insert_breakpoints ();
1235
1236 /* The next resume of this inferior should bring it to the shlib
1237 startup breakpoints. (If the user had also set bp's on
1238 "main" from the old (parent) process, then they'll auto-
1777feb0 1239 matically get reset there in the new process.). */
c906108c
SS
1240}
1241
c2829269
PA
1242/* The queue of threads that need to do a step-over operation to get
1243 past e.g., a breakpoint. What technique is used to step over the
1244 breakpoint/watchpoint does not matter -- all threads end up in the
1245 same queue, to maintain rough temporal order of execution, in order
1246 to avoid starvation, otherwise, we could e.g., find ourselves
1247 constantly stepping the same couple threads past their breakpoints
1248 over and over, if the single-step finish fast enough. */
1249struct thread_info *step_over_queue_head;
1250
6c4cfb24
PA
1251/* Bit flags indicating what the thread needs to step over. */
1252
8d297bbf 1253enum step_over_what_flag
6c4cfb24
PA
1254 {
1255 /* Step over a breakpoint. */
1256 STEP_OVER_BREAKPOINT = 1,
1257
1258 /* Step past a non-continuable watchpoint, in order to let the
1259 instruction execute so we can evaluate the watchpoint
1260 expression. */
1261 STEP_OVER_WATCHPOINT = 2
1262 };
8d297bbf 1263DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1264
963f9c80 1265/* Info about an instruction that is being stepped over. */
31e77af2
PA
1266
1267struct step_over_info
1268{
963f9c80
PA
1269 /* If we're stepping past a breakpoint, this is the address space
1270 and address of the instruction the breakpoint is set at. We'll
1271 skip inserting all breakpoints here. Valid iff ASPACE is
1272 non-NULL. */
8b86c959 1273 const address_space *aspace;
31e77af2 1274 CORE_ADDR address;
963f9c80
PA
1275
1276 /* The instruction being stepped over triggers a nonsteppable
1277 watchpoint. If true, we'll skip inserting watchpoints. */
1278 int nonsteppable_watchpoint_p;
21edc42f
YQ
1279
1280 /* The thread's global number. */
1281 int thread;
31e77af2
PA
1282};
1283
1284/* The step-over info of the location that is being stepped over.
1285
1286 Note that with async/breakpoint always-inserted mode, a user might
1287 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1288 being stepped over. As setting a new breakpoint inserts all
1289 breakpoints, we need to make sure the breakpoint being stepped over
1290 isn't inserted then. We do that by only clearing the step-over
1291 info when the step-over is actually finished (or aborted).
1292
1293 Presently GDB can only step over one breakpoint at any given time.
1294 Given threads that can't run code in the same address space as the
1295 breakpoint's can't really miss the breakpoint, GDB could be taught
1296 to step-over at most one breakpoint per address space (so this info
1297 could move to the address space object if/when GDB is extended).
1298 The set of breakpoints being stepped over will normally be much
1299 smaller than the set of all breakpoints, so a flag in the
1300 breakpoint location structure would be wasteful. A separate list
1301 also saves complexity and run-time, as otherwise we'd have to go
1302 through all breakpoint locations clearing their flag whenever we
1303 start a new sequence. Similar considerations weigh against storing
1304 this info in the thread object. Plus, not all step overs actually
1305 have breakpoint locations -- e.g., stepping past a single-step
1306 breakpoint, or stepping to complete a non-continuable
1307 watchpoint. */
1308static struct step_over_info step_over_info;
1309
1310/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1311 stepping over.
1312 N.B. We record the aspace and address now, instead of say just the thread,
1313 because when we need the info later the thread may be running. */
31e77af2
PA
1314
1315static void
8b86c959 1316set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1317 int nonsteppable_watchpoint_p,
1318 int thread)
31e77af2
PA
1319{
1320 step_over_info.aspace = aspace;
1321 step_over_info.address = address;
963f9c80 1322 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1323 step_over_info.thread = thread;
31e77af2
PA
1324}
1325
1326/* Called when we're not longer stepping over a breakpoint / an
1327 instruction, so all breakpoints are free to be (re)inserted. */
1328
1329static void
1330clear_step_over_info (void)
1331{
372316f1
PA
1332 if (debug_infrun)
1333 fprintf_unfiltered (gdb_stdlog,
1334 "infrun: clear_step_over_info\n");
31e77af2
PA
1335 step_over_info.aspace = NULL;
1336 step_over_info.address = 0;
963f9c80 1337 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1338 step_over_info.thread = -1;
31e77af2
PA
1339}
1340
7f89fd65 1341/* See infrun.h. */
31e77af2
PA
1342
1343int
1344stepping_past_instruction_at (struct address_space *aspace,
1345 CORE_ADDR address)
1346{
1347 return (step_over_info.aspace != NULL
1348 && breakpoint_address_match (aspace, address,
1349 step_over_info.aspace,
1350 step_over_info.address));
1351}
1352
963f9c80
PA
1353/* See infrun.h. */
1354
21edc42f
YQ
1355int
1356thread_is_stepping_over_breakpoint (int thread)
1357{
1358 return (step_over_info.thread != -1
1359 && thread == step_over_info.thread);
1360}
1361
1362/* See infrun.h. */
1363
963f9c80
PA
1364int
1365stepping_past_nonsteppable_watchpoint (void)
1366{
1367 return step_over_info.nonsteppable_watchpoint_p;
1368}
1369
6cc83d2a
PA
1370/* Returns true if step-over info is valid. */
1371
1372static int
1373step_over_info_valid_p (void)
1374{
963f9c80
PA
1375 return (step_over_info.aspace != NULL
1376 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1377}
1378
c906108c 1379\f
237fc4c9
PA
1380/* Displaced stepping. */
1381
1382/* In non-stop debugging mode, we must take special care to manage
1383 breakpoints properly; in particular, the traditional strategy for
1384 stepping a thread past a breakpoint it has hit is unsuitable.
1385 'Displaced stepping' is a tactic for stepping one thread past a
1386 breakpoint it has hit while ensuring that other threads running
1387 concurrently will hit the breakpoint as they should.
1388
1389 The traditional way to step a thread T off a breakpoint in a
1390 multi-threaded program in all-stop mode is as follows:
1391
1392 a0) Initially, all threads are stopped, and breakpoints are not
1393 inserted.
1394 a1) We single-step T, leaving breakpoints uninserted.
1395 a2) We insert breakpoints, and resume all threads.
1396
1397 In non-stop debugging, however, this strategy is unsuitable: we
1398 don't want to have to stop all threads in the system in order to
1399 continue or step T past a breakpoint. Instead, we use displaced
1400 stepping:
1401
1402 n0) Initially, T is stopped, other threads are running, and
1403 breakpoints are inserted.
1404 n1) We copy the instruction "under" the breakpoint to a separate
1405 location, outside the main code stream, making any adjustments
1406 to the instruction, register, and memory state as directed by
1407 T's architecture.
1408 n2) We single-step T over the instruction at its new location.
1409 n3) We adjust the resulting register and memory state as directed
1410 by T's architecture. This includes resetting T's PC to point
1411 back into the main instruction stream.
1412 n4) We resume T.
1413
1414 This approach depends on the following gdbarch methods:
1415
1416 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1417 indicate where to copy the instruction, and how much space must
1418 be reserved there. We use these in step n1.
1419
1420 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1421 address, and makes any necessary adjustments to the instruction,
1422 register contents, and memory. We use this in step n1.
1423
1424 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1425 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1426 same effect the instruction would have had if we had executed it
1427 at its original address. We use this in step n3.
1428
237fc4c9
PA
1429 The gdbarch_displaced_step_copy_insn and
1430 gdbarch_displaced_step_fixup functions must be written so that
1431 copying an instruction with gdbarch_displaced_step_copy_insn,
1432 single-stepping across the copied instruction, and then applying
1433 gdbarch_displaced_insn_fixup should have the same effects on the
1434 thread's memory and registers as stepping the instruction in place
1435 would have. Exactly which responsibilities fall to the copy and
1436 which fall to the fixup is up to the author of those functions.
1437
1438 See the comments in gdbarch.sh for details.
1439
1440 Note that displaced stepping and software single-step cannot
1441 currently be used in combination, although with some care I think
1442 they could be made to. Software single-step works by placing
1443 breakpoints on all possible subsequent instructions; if the
1444 displaced instruction is a PC-relative jump, those breakpoints
1445 could fall in very strange places --- on pages that aren't
1446 executable, or at addresses that are not proper instruction
1447 boundaries. (We do generally let other threads run while we wait
1448 to hit the software single-step breakpoint, and they might
1449 encounter such a corrupted instruction.) One way to work around
1450 this would be to have gdbarch_displaced_step_copy_insn fully
1451 simulate the effect of PC-relative instructions (and return NULL)
1452 on architectures that use software single-stepping.
1453
1454 In non-stop mode, we can have independent and simultaneous step
1455 requests, so more than one thread may need to simultaneously step
1456 over a breakpoint. The current implementation assumes there is
1457 only one scratch space per process. In this case, we have to
1458 serialize access to the scratch space. If thread A wants to step
1459 over a breakpoint, but we are currently waiting for some other
1460 thread to complete a displaced step, we leave thread A stopped and
1461 place it in the displaced_step_request_queue. Whenever a displaced
1462 step finishes, we pick the next thread in the queue and start a new
1463 displaced step operation on it. See displaced_step_prepare and
1464 displaced_step_fixup for details. */
1465
cfba9872
SM
1466/* Default destructor for displaced_step_closure. */
1467
1468displaced_step_closure::~displaced_step_closure () = default;
1469
fc1cf338
PA
1470/* Get the displaced stepping state of process PID. */
1471
39a36629 1472static displaced_step_inferior_state *
00431a78 1473get_displaced_stepping_state (inferior *inf)
fc1cf338 1474{
d20172fc 1475 return &inf->displaced_step_state;
fc1cf338
PA
1476}
1477
372316f1
PA
1478/* Returns true if any inferior has a thread doing a displaced
1479 step. */
1480
39a36629
SM
1481static bool
1482displaced_step_in_progress_any_inferior ()
372316f1 1483{
d20172fc 1484 for (inferior *i : all_inferiors ())
39a36629 1485 {
d20172fc 1486 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1487 return true;
1488 }
372316f1 1489
39a36629 1490 return false;
372316f1
PA
1491}
1492
c0987663
YQ
1493/* Return true if thread represented by PTID is doing a displaced
1494 step. */
1495
1496static int
00431a78 1497displaced_step_in_progress_thread (thread_info *thread)
c0987663 1498{
00431a78 1499 gdb_assert (thread != NULL);
c0987663 1500
d20172fc 1501 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1502}
1503
8f572e5c
PA
1504/* Return true if process PID has a thread doing a displaced step. */
1505
1506static int
00431a78 1507displaced_step_in_progress (inferior *inf)
8f572e5c 1508{
d20172fc 1509 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1510}
1511
a42244db
YQ
1512/* If inferior is in displaced stepping, and ADDR equals to starting address
1513 of copy area, return corresponding displaced_step_closure. Otherwise,
1514 return NULL. */
1515
1516struct displaced_step_closure*
1517get_displaced_step_closure_by_addr (CORE_ADDR addr)
1518{
d20172fc 1519 displaced_step_inferior_state *displaced
00431a78 1520 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1521
1522 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1523 if (displaced->step_thread != nullptr
00431a78 1524 && displaced->step_copy == addr)
a42244db
YQ
1525 return displaced->step_closure;
1526
1527 return NULL;
1528}
1529
fc1cf338
PA
1530static void
1531infrun_inferior_exit (struct inferior *inf)
1532{
d20172fc 1533 inf->displaced_step_state.reset ();
fc1cf338 1534}
237fc4c9 1535
fff08868
HZ
1536/* If ON, and the architecture supports it, GDB will use displaced
1537 stepping to step over breakpoints. If OFF, or if the architecture
1538 doesn't support it, GDB will instead use the traditional
1539 hold-and-step approach. If AUTO (which is the default), GDB will
1540 decide which technique to use to step over breakpoints depending on
1541 which of all-stop or non-stop mode is active --- displaced stepping
1542 in non-stop mode; hold-and-step in all-stop mode. */
1543
72d0e2c5 1544static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1545
237fc4c9
PA
1546static void
1547show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1548 struct cmd_list_element *c,
1549 const char *value)
1550{
72d0e2c5 1551 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1552 fprintf_filtered (file,
1553 _("Debugger's willingness to use displaced stepping "
1554 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1555 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1556 else
3e43a32a
MS
1557 fprintf_filtered (file,
1558 _("Debugger's willingness to use displaced stepping "
1559 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1560}
1561
fff08868 1562/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1563 over breakpoints of thread TP. */
fff08868 1564
237fc4c9 1565static int
3fc8eb30 1566use_displaced_stepping (struct thread_info *tp)
237fc4c9 1567{
00431a78 1568 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1569 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1570 displaced_step_inferior_state *displaced_state
1571 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1572
fbea99ea
PA
1573 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1574 && target_is_non_stop_p ())
72d0e2c5 1575 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1576 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1577 && find_record_target () == NULL
d20172fc 1578 && !displaced_state->failed_before);
237fc4c9
PA
1579}
1580
1581/* Clean out any stray displaced stepping state. */
1582static void
fc1cf338 1583displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1584{
1585 /* Indicate that there is no cleanup pending. */
00431a78 1586 displaced->step_thread = nullptr;
237fc4c9 1587
cfba9872 1588 delete displaced->step_closure;
6d45d4b4 1589 displaced->step_closure = NULL;
237fc4c9
PA
1590}
1591
9799571e
TT
1592/* A cleanup that wraps displaced_step_clear. */
1593using displaced_step_clear_cleanup
1594 = FORWARD_SCOPE_EXIT (displaced_step_clear);
237fc4c9
PA
1595
1596/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1597void
1598displaced_step_dump_bytes (struct ui_file *file,
1599 const gdb_byte *buf,
1600 size_t len)
1601{
1602 int i;
1603
1604 for (i = 0; i < len; i++)
1605 fprintf_unfiltered (file, "%02x ", buf[i]);
1606 fputs_unfiltered ("\n", file);
1607}
1608
1609/* Prepare to single-step, using displaced stepping.
1610
1611 Note that we cannot use displaced stepping when we have a signal to
1612 deliver. If we have a signal to deliver and an instruction to step
1613 over, then after the step, there will be no indication from the
1614 target whether the thread entered a signal handler or ignored the
1615 signal and stepped over the instruction successfully --- both cases
1616 result in a simple SIGTRAP. In the first case we mustn't do a
1617 fixup, and in the second case we must --- but we can't tell which.
1618 Comments in the code for 'random signals' in handle_inferior_event
1619 explain how we handle this case instead.
1620
1621 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1622 stepped now; 0 if displaced stepping this thread got queued; or -1
1623 if this instruction can't be displaced stepped. */
1624
237fc4c9 1625static int
00431a78 1626displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1627{
00431a78 1628 regcache *regcache = get_thread_regcache (tp);
ac7936df 1629 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1630 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1631 CORE_ADDR original, copy;
1632 ULONGEST len;
1633 struct displaced_step_closure *closure;
9e529e1d 1634 int status;
237fc4c9
PA
1635
1636 /* We should never reach this function if the architecture does not
1637 support displaced stepping. */
1638 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1639
c2829269
PA
1640 /* Nor if the thread isn't meant to step over a breakpoint. */
1641 gdb_assert (tp->control.trap_expected);
1642
c1e36e3e
PA
1643 /* Disable range stepping while executing in the scratch pad. We
1644 want a single-step even if executing the displaced instruction in
1645 the scratch buffer lands within the stepping range (e.g., a
1646 jump/branch). */
1647 tp->control.may_range_step = 0;
1648
fc1cf338
PA
1649 /* We have to displaced step one thread at a time, as we only have
1650 access to a single scratch space per inferior. */
237fc4c9 1651
d20172fc
SM
1652 displaced_step_inferior_state *displaced
1653 = get_displaced_stepping_state (tp->inf);
fc1cf338 1654
00431a78 1655 if (displaced->step_thread != nullptr)
237fc4c9
PA
1656 {
1657 /* Already waiting for a displaced step to finish. Defer this
1658 request and place in queue. */
237fc4c9
PA
1659
1660 if (debug_displaced)
1661 fprintf_unfiltered (gdb_stdlog,
c2829269 1662 "displaced: deferring step of %s\n",
a068643d 1663 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1664
c2829269 1665 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1666 return 0;
1667 }
1668 else
1669 {
1670 if (debug_displaced)
1671 fprintf_unfiltered (gdb_stdlog,
1672 "displaced: stepping %s now\n",
a068643d 1673 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1674 }
1675
fc1cf338 1676 displaced_step_clear (displaced);
237fc4c9 1677
00431a78
PA
1678 scoped_restore_current_thread restore_thread;
1679
1680 switch_to_thread (tp);
ad53cd71 1681
515630c5 1682 original = regcache_read_pc (regcache);
237fc4c9
PA
1683
1684 copy = gdbarch_displaced_step_location (gdbarch);
1685 len = gdbarch_max_insn_length (gdbarch);
1686
d35ae833
PA
1687 if (breakpoint_in_range_p (aspace, copy, len))
1688 {
1689 /* There's a breakpoint set in the scratch pad location range
1690 (which is usually around the entry point). We'd either
1691 install it before resuming, which would overwrite/corrupt the
1692 scratch pad, or if it was already inserted, this displaced
1693 step would overwrite it. The latter is OK in the sense that
1694 we already assume that no thread is going to execute the code
1695 in the scratch pad range (after initial startup) anyway, but
1696 the former is unacceptable. Simply punt and fallback to
1697 stepping over this breakpoint in-line. */
1698 if (debug_displaced)
1699 {
1700 fprintf_unfiltered (gdb_stdlog,
1701 "displaced: breakpoint set in scratch pad. "
1702 "Stepping over breakpoint in-line instead.\n");
1703 }
1704
d35ae833
PA
1705 return -1;
1706 }
1707
237fc4c9 1708 /* Save the original contents of the copy area. */
d20172fc
SM
1709 displaced->step_saved_copy.resize (len);
1710 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1711 if (status != 0)
1712 throw_error (MEMORY_ERROR,
1713 _("Error accessing memory address %s (%s) for "
1714 "displaced-stepping scratch space."),
1715 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1716 if (debug_displaced)
1717 {
5af949e3
UW
1718 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1719 paddress (gdbarch, copy));
fc1cf338 1720 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1721 displaced->step_saved_copy.data (),
fc1cf338 1722 len);
237fc4c9
PA
1723 };
1724
1725 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1726 original, copy, regcache);
7f03bd92
PA
1727 if (closure == NULL)
1728 {
1729 /* The architecture doesn't know how or want to displaced step
1730 this instruction or instruction sequence. Fallback to
1731 stepping over the breakpoint in-line. */
7f03bd92
PA
1732 return -1;
1733 }
237fc4c9 1734
9f5a595d
UW
1735 /* Save the information we need to fix things up if the step
1736 succeeds. */
00431a78 1737 displaced->step_thread = tp;
fc1cf338
PA
1738 displaced->step_gdbarch = gdbarch;
1739 displaced->step_closure = closure;
1740 displaced->step_original = original;
1741 displaced->step_copy = copy;
9f5a595d 1742
9799571e
TT
1743 {
1744 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1745
9799571e
TT
1746 /* Resume execution at the copy. */
1747 regcache_write_pc (regcache, copy);
237fc4c9 1748
9799571e
TT
1749 cleanup.release ();
1750 }
ad53cd71 1751
237fc4c9 1752 if (debug_displaced)
5af949e3
UW
1753 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1754 paddress (gdbarch, copy));
237fc4c9 1755
237fc4c9
PA
1756 return 1;
1757}
1758
3fc8eb30
PA
1759/* Wrapper for displaced_step_prepare_throw that disabled further
1760 attempts at displaced stepping if we get a memory error. */
1761
1762static int
00431a78 1763displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1764{
1765 int prepared = -1;
1766
a70b8144 1767 try
3fc8eb30 1768 {
00431a78 1769 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1770 }
230d2906 1771 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1772 {
1773 struct displaced_step_inferior_state *displaced_state;
1774
16b41842
PA
1775 if (ex.error != MEMORY_ERROR
1776 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1777 throw;
3fc8eb30
PA
1778
1779 if (debug_infrun)
1780 {
1781 fprintf_unfiltered (gdb_stdlog,
1782 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1783 ex.what ());
3fc8eb30
PA
1784 }
1785
1786 /* Be verbose if "set displaced-stepping" is "on", silent if
1787 "auto". */
1788 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1789 {
fd7dcb94 1790 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1791 ex.what ());
3fc8eb30
PA
1792 }
1793
1794 /* Disable further displaced stepping attempts. */
1795 displaced_state
00431a78 1796 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1797 displaced_state->failed_before = 1;
1798 }
3fc8eb30
PA
1799
1800 return prepared;
1801}
1802
237fc4c9 1803static void
3e43a32a
MS
1804write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1805 const gdb_byte *myaddr, int len)
237fc4c9 1806{
2989a365 1807 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1808
237fc4c9
PA
1809 inferior_ptid = ptid;
1810 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1811}
1812
e2d96639
YQ
1813/* Restore the contents of the copy area for thread PTID. */
1814
1815static void
1816displaced_step_restore (struct displaced_step_inferior_state *displaced,
1817 ptid_t ptid)
1818{
1819 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1820
1821 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1822 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1823 if (debug_displaced)
1824 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1825 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1826 paddress (displaced->step_gdbarch,
1827 displaced->step_copy));
1828}
1829
372316f1
PA
1830/* If we displaced stepped an instruction successfully, adjust
1831 registers and memory to yield the same effect the instruction would
1832 have had if we had executed it at its original address, and return
1833 1. If the instruction didn't complete, relocate the PC and return
1834 -1. If the thread wasn't displaced stepping, return 0. */
1835
1836static int
00431a78 1837displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1838{
fc1cf338 1839 struct displaced_step_inferior_state *displaced
00431a78 1840 = get_displaced_stepping_state (event_thread->inf);
372316f1 1841 int ret;
fc1cf338 1842
00431a78
PA
1843 /* Was this event for the thread we displaced? */
1844 if (displaced->step_thread != event_thread)
372316f1 1845 return 0;
237fc4c9 1846
9799571e 1847 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1848
00431a78 1849 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1850
cb71640d
PA
1851 /* Fixup may need to read memory/registers. Switch to the thread
1852 that we're fixing up. Also, target_stopped_by_watchpoint checks
1853 the current thread. */
00431a78 1854 switch_to_thread (event_thread);
cb71640d 1855
237fc4c9 1856 /* Did the instruction complete successfully? */
cb71640d
PA
1857 if (signal == GDB_SIGNAL_TRAP
1858 && !(target_stopped_by_watchpoint ()
1859 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1860 || target_have_steppable_watchpoint)))
237fc4c9
PA
1861 {
1862 /* Fix up the resulting state. */
fc1cf338
PA
1863 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1864 displaced->step_closure,
1865 displaced->step_original,
1866 displaced->step_copy,
00431a78 1867 get_thread_regcache (displaced->step_thread));
372316f1 1868 ret = 1;
237fc4c9
PA
1869 }
1870 else
1871 {
1872 /* Since the instruction didn't complete, all we can do is
1873 relocate the PC. */
00431a78 1874 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1875 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1876
fc1cf338 1877 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1878 regcache_write_pc (regcache, pc);
372316f1 1879 ret = -1;
237fc4c9
PA
1880 }
1881
372316f1 1882 return ret;
c2829269 1883}
1c5cfe86 1884
4d9d9d04
PA
1885/* Data to be passed around while handling an event. This data is
1886 discarded between events. */
1887struct execution_control_state
1888{
1889 ptid_t ptid;
1890 /* The thread that got the event, if this was a thread event; NULL
1891 otherwise. */
1892 struct thread_info *event_thread;
1893
1894 struct target_waitstatus ws;
1895 int stop_func_filled_in;
1896 CORE_ADDR stop_func_start;
1897 CORE_ADDR stop_func_end;
1898 const char *stop_func_name;
1899 int wait_some_more;
1900
1901 /* True if the event thread hit the single-step breakpoint of
1902 another thread. Thus the event doesn't cause a stop, the thread
1903 needs to be single-stepped past the single-step breakpoint before
1904 we can switch back to the original stepping thread. */
1905 int hit_singlestep_breakpoint;
1906};
1907
1908/* Clear ECS and set it to point at TP. */
c2829269
PA
1909
1910static void
4d9d9d04
PA
1911reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1912{
1913 memset (ecs, 0, sizeof (*ecs));
1914 ecs->event_thread = tp;
1915 ecs->ptid = tp->ptid;
1916}
1917
1918static void keep_going_pass_signal (struct execution_control_state *ecs);
1919static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1920static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1921static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1922
1923/* Are there any pending step-over requests? If so, run all we can
1924 now and return true. Otherwise, return false. */
1925
1926static int
c2829269
PA
1927start_step_over (void)
1928{
1929 struct thread_info *tp, *next;
1930
372316f1
PA
1931 /* Don't start a new step-over if we already have an in-line
1932 step-over operation ongoing. */
1933 if (step_over_info_valid_p ())
1934 return 0;
1935
c2829269 1936 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1937 {
4d9d9d04
PA
1938 struct execution_control_state ecss;
1939 struct execution_control_state *ecs = &ecss;
8d297bbf 1940 step_over_what step_what;
372316f1 1941 int must_be_in_line;
c2829269 1942
c65d6b55
PA
1943 gdb_assert (!tp->stop_requested);
1944
c2829269 1945 next = thread_step_over_chain_next (tp);
237fc4c9 1946
c2829269
PA
1947 /* If this inferior already has a displaced step in process,
1948 don't start a new one. */
00431a78 1949 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1950 continue;
1951
372316f1
PA
1952 step_what = thread_still_needs_step_over (tp);
1953 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1954 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1955 && !use_displaced_stepping (tp)));
372316f1
PA
1956
1957 /* We currently stop all threads of all processes to step-over
1958 in-line. If we need to start a new in-line step-over, let
1959 any pending displaced steps finish first. */
1960 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1961 return 0;
1962
c2829269
PA
1963 thread_step_over_chain_remove (tp);
1964
1965 if (step_over_queue_head == NULL)
1966 {
1967 if (debug_infrun)
1968 fprintf_unfiltered (gdb_stdlog,
1969 "infrun: step-over queue now empty\n");
1970 }
1971
372316f1
PA
1972 if (tp->control.trap_expected
1973 || tp->resumed
1974 || tp->executing)
ad53cd71 1975 {
4d9d9d04
PA
1976 internal_error (__FILE__, __LINE__,
1977 "[%s] has inconsistent state: "
372316f1 1978 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1979 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1980 tp->control.trap_expected,
372316f1 1981 tp->resumed,
4d9d9d04 1982 tp->executing);
ad53cd71 1983 }
1c5cfe86 1984
4d9d9d04
PA
1985 if (debug_infrun)
1986 fprintf_unfiltered (gdb_stdlog,
1987 "infrun: resuming [%s] for step-over\n",
a068643d 1988 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1989
1990 /* keep_going_pass_signal skips the step-over if the breakpoint
1991 is no longer inserted. In all-stop, we want to keep looking
1992 for a thread that needs a step-over instead of resuming TP,
1993 because we wouldn't be able to resume anything else until the
1994 target stops again. In non-stop, the resume always resumes
1995 only TP, so it's OK to let the thread resume freely. */
fbea99ea 1996 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 1997 continue;
8550d3b3 1998
00431a78 1999 switch_to_thread (tp);
4d9d9d04
PA
2000 reset_ecs (ecs, tp);
2001 keep_going_pass_signal (ecs);
1c5cfe86 2002
4d9d9d04
PA
2003 if (!ecs->wait_some_more)
2004 error (_("Command aborted."));
1c5cfe86 2005
372316f1
PA
2006 gdb_assert (tp->resumed);
2007
2008 /* If we started a new in-line step-over, we're done. */
2009 if (step_over_info_valid_p ())
2010 {
2011 gdb_assert (tp->control.trap_expected);
2012 return 1;
2013 }
2014
fbea99ea 2015 if (!target_is_non_stop_p ())
4d9d9d04
PA
2016 {
2017 /* On all-stop, shouldn't have resumed unless we needed a
2018 step over. */
2019 gdb_assert (tp->control.trap_expected
2020 || tp->step_after_step_resume_breakpoint);
2021
2022 /* With remote targets (at least), in all-stop, we can't
2023 issue any further remote commands until the program stops
2024 again. */
2025 return 1;
1c5cfe86 2026 }
c2829269 2027
4d9d9d04
PA
2028 /* Either the thread no longer needed a step-over, or a new
2029 displaced stepping sequence started. Even in the latter
2030 case, continue looking. Maybe we can also start another
2031 displaced step on a thread of other process. */
237fc4c9 2032 }
4d9d9d04
PA
2033
2034 return 0;
237fc4c9
PA
2035}
2036
5231c1fd
PA
2037/* Update global variables holding ptids to hold NEW_PTID if they were
2038 holding OLD_PTID. */
2039static void
2040infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2041{
d7e15655 2042 if (inferior_ptid == old_ptid)
5231c1fd 2043 inferior_ptid = new_ptid;
5231c1fd
PA
2044}
2045
237fc4c9 2046\f
c906108c 2047
53904c9e
AC
2048static const char schedlock_off[] = "off";
2049static const char schedlock_on[] = "on";
2050static const char schedlock_step[] = "step";
f2665db5 2051static const char schedlock_replay[] = "replay";
40478521 2052static const char *const scheduler_enums[] = {
ef346e04
AC
2053 schedlock_off,
2054 schedlock_on,
2055 schedlock_step,
f2665db5 2056 schedlock_replay,
ef346e04
AC
2057 NULL
2058};
f2665db5 2059static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2060static void
2061show_scheduler_mode (struct ui_file *file, int from_tty,
2062 struct cmd_list_element *c, const char *value)
2063{
3e43a32a
MS
2064 fprintf_filtered (file,
2065 _("Mode for locking scheduler "
2066 "during execution is \"%s\".\n"),
920d2a44
AC
2067 value);
2068}
c906108c
SS
2069
2070static void
eb4c3f4a 2071set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2072{
eefe576e
AC
2073 if (!target_can_lock_scheduler)
2074 {
2075 scheduler_mode = schedlock_off;
2076 error (_("Target '%s' cannot support this command."), target_shortname);
2077 }
c906108c
SS
2078}
2079
d4db2f36
PA
2080/* True if execution commands resume all threads of all processes by
2081 default; otherwise, resume only threads of the current inferior
2082 process. */
491144b5 2083bool sched_multi = false;
d4db2f36 2084
2facfe5c
DD
2085/* Try to setup for software single stepping over the specified location.
2086 Return 1 if target_resume() should use hardware single step.
2087
2088 GDBARCH the current gdbarch.
2089 PC the location to step over. */
2090
2091static int
2092maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2093{
2094 int hw_step = 1;
2095
f02253f1 2096 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2097 && gdbarch_software_single_step_p (gdbarch))
2098 hw_step = !insert_single_step_breakpoints (gdbarch);
2099
2facfe5c
DD
2100 return hw_step;
2101}
c906108c 2102
f3263aa4
PA
2103/* See infrun.h. */
2104
09cee04b
PA
2105ptid_t
2106user_visible_resume_ptid (int step)
2107{
f3263aa4 2108 ptid_t resume_ptid;
09cee04b 2109
09cee04b
PA
2110 if (non_stop)
2111 {
2112 /* With non-stop mode on, threads are always handled
2113 individually. */
2114 resume_ptid = inferior_ptid;
2115 }
2116 else if ((scheduler_mode == schedlock_on)
03d46957 2117 || (scheduler_mode == schedlock_step && step))
09cee04b 2118 {
f3263aa4
PA
2119 /* User-settable 'scheduler' mode requires solo thread
2120 resume. */
09cee04b
PA
2121 resume_ptid = inferior_ptid;
2122 }
f2665db5
MM
2123 else if ((scheduler_mode == schedlock_replay)
2124 && target_record_will_replay (minus_one_ptid, execution_direction))
2125 {
2126 /* User-settable 'scheduler' mode requires solo thread resume in replay
2127 mode. */
2128 resume_ptid = inferior_ptid;
2129 }
f3263aa4
PA
2130 else if (!sched_multi && target_supports_multi_process ())
2131 {
2132 /* Resume all threads of the current process (and none of other
2133 processes). */
e99b03dc 2134 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2135 }
2136 else
2137 {
2138 /* Resume all threads of all processes. */
2139 resume_ptid = RESUME_ALL;
2140 }
09cee04b
PA
2141
2142 return resume_ptid;
2143}
2144
fbea99ea
PA
2145/* Return a ptid representing the set of threads that we will resume,
2146 in the perspective of the target, assuming run control handling
2147 does not require leaving some threads stopped (e.g., stepping past
2148 breakpoint). USER_STEP indicates whether we're about to start the
2149 target for a stepping command. */
2150
2151static ptid_t
2152internal_resume_ptid (int user_step)
2153{
2154 /* In non-stop, we always control threads individually. Note that
2155 the target may always work in non-stop mode even with "set
2156 non-stop off", in which case user_visible_resume_ptid could
2157 return a wildcard ptid. */
2158 if (target_is_non_stop_p ())
2159 return inferior_ptid;
2160 else
2161 return user_visible_resume_ptid (user_step);
2162}
2163
64ce06e4
PA
2164/* Wrapper for target_resume, that handles infrun-specific
2165 bookkeeping. */
2166
2167static void
2168do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2169{
2170 struct thread_info *tp = inferior_thread ();
2171
c65d6b55
PA
2172 gdb_assert (!tp->stop_requested);
2173
64ce06e4 2174 /* Install inferior's terminal modes. */
223ffa71 2175 target_terminal::inferior ();
64ce06e4
PA
2176
2177 /* Avoid confusing the next resume, if the next stop/resume
2178 happens to apply to another thread. */
2179 tp->suspend.stop_signal = GDB_SIGNAL_0;
2180
8f572e5c
PA
2181 /* Advise target which signals may be handled silently.
2182
2183 If we have removed breakpoints because we are stepping over one
2184 in-line (in any thread), we need to receive all signals to avoid
2185 accidentally skipping a breakpoint during execution of a signal
2186 handler.
2187
2188 Likewise if we're displaced stepping, otherwise a trap for a
2189 breakpoint in a signal handler might be confused with the
2190 displaced step finishing. We don't make the displaced_step_fixup
2191 step distinguish the cases instead, because:
2192
2193 - a backtrace while stopped in the signal handler would show the
2194 scratch pad as frame older than the signal handler, instead of
2195 the real mainline code.
2196
2197 - when the thread is later resumed, the signal handler would
2198 return to the scratch pad area, which would no longer be
2199 valid. */
2200 if (step_over_info_valid_p ()
00431a78 2201 || displaced_step_in_progress (tp->inf))
adc6a863 2202 target_pass_signals ({});
64ce06e4 2203 else
adc6a863 2204 target_pass_signals (signal_pass);
64ce06e4
PA
2205
2206 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2207
2208 target_commit_resume ();
64ce06e4
PA
2209}
2210
d930703d 2211/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2212 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2213 call 'resume', which handles exceptions. */
c906108c 2214
71d378ae
PA
2215static void
2216resume_1 (enum gdb_signal sig)
c906108c 2217{
515630c5 2218 struct regcache *regcache = get_current_regcache ();
ac7936df 2219 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2220 struct thread_info *tp = inferior_thread ();
515630c5 2221 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2222 const address_space *aspace = regcache->aspace ();
b0f16a3e 2223 ptid_t resume_ptid;
856e7dd6
PA
2224 /* This represents the user's step vs continue request. When
2225 deciding whether "set scheduler-locking step" applies, it's the
2226 user's intention that counts. */
2227 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2228 /* This represents what we'll actually request the target to do.
2229 This can decay from a step to a continue, if e.g., we need to
2230 implement single-stepping with breakpoints (software
2231 single-step). */
6b403daa 2232 int step;
c7e8a53c 2233
c65d6b55 2234 gdb_assert (!tp->stop_requested);
c2829269
PA
2235 gdb_assert (!thread_is_in_step_over_chain (tp));
2236
372316f1
PA
2237 if (tp->suspend.waitstatus_pending_p)
2238 {
2239 if (debug_infrun)
2240 {
23fdd69e
SM
2241 std::string statstr
2242 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2243
372316f1 2244 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2245 "infrun: resume: thread %s has pending wait "
2246 "status %s (currently_stepping=%d).\n",
a068643d
TT
2247 target_pid_to_str (tp->ptid).c_str (),
2248 statstr.c_str (),
372316f1 2249 currently_stepping (tp));
372316f1
PA
2250 }
2251
2252 tp->resumed = 1;
2253
2254 /* FIXME: What should we do if we are supposed to resume this
2255 thread with a signal? Maybe we should maintain a queue of
2256 pending signals to deliver. */
2257 if (sig != GDB_SIGNAL_0)
2258 {
fd7dcb94 2259 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2260 gdb_signal_to_name (sig),
2261 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2262 }
2263
2264 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2265
2266 if (target_can_async_p ())
9516f85a
AB
2267 {
2268 target_async (1);
2269 /* Tell the event loop we have an event to process. */
2270 mark_async_event_handler (infrun_async_inferior_event_token);
2271 }
372316f1
PA
2272 return;
2273 }
2274
2275 tp->stepped_breakpoint = 0;
2276
6b403daa
PA
2277 /* Depends on stepped_breakpoint. */
2278 step = currently_stepping (tp);
2279
74609e71
YQ
2280 if (current_inferior ()->waiting_for_vfork_done)
2281 {
48f9886d
PA
2282 /* Don't try to single-step a vfork parent that is waiting for
2283 the child to get out of the shared memory region (by exec'ing
2284 or exiting). This is particularly important on software
2285 single-step archs, as the child process would trip on the
2286 software single step breakpoint inserted for the parent
2287 process. Since the parent will not actually execute any
2288 instruction until the child is out of the shared region (such
2289 are vfork's semantics), it is safe to simply continue it.
2290 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2291 the parent, and tell it to `keep_going', which automatically
2292 re-sets it stepping. */
74609e71
YQ
2293 if (debug_infrun)
2294 fprintf_unfiltered (gdb_stdlog,
2295 "infrun: resume : clear step\n");
a09dd441 2296 step = 0;
74609e71
YQ
2297 }
2298
527159b7 2299 if (debug_infrun)
237fc4c9 2300 fprintf_unfiltered (gdb_stdlog,
c9737c08 2301 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2302 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2303 step, gdb_signal_to_symbol_string (sig),
2304 tp->control.trap_expected,
a068643d 2305 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2306 paddress (gdbarch, pc));
c906108c 2307
c2c6d25f
JM
2308 /* Normally, by the time we reach `resume', the breakpoints are either
2309 removed or inserted, as appropriate. The exception is if we're sitting
2310 at a permanent breakpoint; we need to step over it, but permanent
2311 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2312 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2313 {
af48d08f
PA
2314 if (sig != GDB_SIGNAL_0)
2315 {
2316 /* We have a signal to pass to the inferior. The resume
2317 may, or may not take us to the signal handler. If this
2318 is a step, we'll need to stop in the signal handler, if
2319 there's one, (if the target supports stepping into
2320 handlers), or in the next mainline instruction, if
2321 there's no handler. If this is a continue, we need to be
2322 sure to run the handler with all breakpoints inserted.
2323 In all cases, set a breakpoint at the current address
2324 (where the handler returns to), and once that breakpoint
2325 is hit, resume skipping the permanent breakpoint. If
2326 that breakpoint isn't hit, then we've stepped into the
2327 signal handler (or hit some other event). We'll delete
2328 the step-resume breakpoint then. */
2329
2330 if (debug_infrun)
2331 fprintf_unfiltered (gdb_stdlog,
2332 "infrun: resume: skipping permanent breakpoint, "
2333 "deliver signal first\n");
2334
2335 clear_step_over_info ();
2336 tp->control.trap_expected = 0;
2337
2338 if (tp->control.step_resume_breakpoint == NULL)
2339 {
2340 /* Set a "high-priority" step-resume, as we don't want
2341 user breakpoints at PC to trigger (again) when this
2342 hits. */
2343 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2344 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2345
2346 tp->step_after_step_resume_breakpoint = step;
2347 }
2348
2349 insert_breakpoints ();
2350 }
2351 else
2352 {
2353 /* There's no signal to pass, we can go ahead and skip the
2354 permanent breakpoint manually. */
2355 if (debug_infrun)
2356 fprintf_unfiltered (gdb_stdlog,
2357 "infrun: resume: skipping permanent breakpoint\n");
2358 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2359 /* Update pc to reflect the new address from which we will
2360 execute instructions. */
2361 pc = regcache_read_pc (regcache);
2362
2363 if (step)
2364 {
2365 /* We've already advanced the PC, so the stepping part
2366 is done. Now we need to arrange for a trap to be
2367 reported to handle_inferior_event. Set a breakpoint
2368 at the current PC, and run to it. Don't update
2369 prev_pc, because if we end in
44a1ee51
PA
2370 switch_back_to_stepped_thread, we want the "expected
2371 thread advanced also" branch to be taken. IOW, we
2372 don't want this thread to step further from PC
af48d08f 2373 (overstep). */
1ac806b8 2374 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2375 insert_single_step_breakpoint (gdbarch, aspace, pc);
2376 insert_breakpoints ();
2377
fbea99ea 2378 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2379 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2380 tp->resumed = 1;
af48d08f
PA
2381 return;
2382 }
2383 }
6d350bb5 2384 }
c2c6d25f 2385
c1e36e3e
PA
2386 /* If we have a breakpoint to step over, make sure to do a single
2387 step only. Same if we have software watchpoints. */
2388 if (tp->control.trap_expected || bpstat_should_step ())
2389 tp->control.may_range_step = 0;
2390
237fc4c9
PA
2391 /* If enabled, step over breakpoints by executing a copy of the
2392 instruction at a different address.
2393
2394 We can't use displaced stepping when we have a signal to deliver;
2395 the comments for displaced_step_prepare explain why. The
2396 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2397 signals' explain what we do instead.
2398
2399 We can't use displaced stepping when we are waiting for vfork_done
2400 event, displaced stepping breaks the vfork child similarly as single
2401 step software breakpoint. */
3fc8eb30
PA
2402 if (tp->control.trap_expected
2403 && use_displaced_stepping (tp)
cb71640d 2404 && !step_over_info_valid_p ()
a493e3e2 2405 && sig == GDB_SIGNAL_0
74609e71 2406 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2407 {
00431a78 2408 int prepared = displaced_step_prepare (tp);
fc1cf338 2409
3fc8eb30 2410 if (prepared == 0)
d56b7306 2411 {
4d9d9d04
PA
2412 if (debug_infrun)
2413 fprintf_unfiltered (gdb_stdlog,
2414 "Got placed in step-over queue\n");
2415
2416 tp->control.trap_expected = 0;
d56b7306
VP
2417 return;
2418 }
3fc8eb30
PA
2419 else if (prepared < 0)
2420 {
2421 /* Fallback to stepping over the breakpoint in-line. */
2422
2423 if (target_is_non_stop_p ())
2424 stop_all_threads ();
2425
a01bda52 2426 set_step_over_info (regcache->aspace (),
21edc42f 2427 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2428
2429 step = maybe_software_singlestep (gdbarch, pc);
2430
2431 insert_breakpoints ();
2432 }
2433 else if (prepared > 0)
2434 {
2435 struct displaced_step_inferior_state *displaced;
99e40580 2436
3fc8eb30
PA
2437 /* Update pc to reflect the new address from which we will
2438 execute instructions due to displaced stepping. */
00431a78 2439 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2440
00431a78 2441 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2442 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2443 displaced->step_closure);
2444 }
237fc4c9
PA
2445 }
2446
2facfe5c 2447 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2448 else if (step)
2facfe5c 2449 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2450
30852783
UW
2451 /* Currently, our software single-step implementation leads to different
2452 results than hardware single-stepping in one situation: when stepping
2453 into delivering a signal which has an associated signal handler,
2454 hardware single-step will stop at the first instruction of the handler,
2455 while software single-step will simply skip execution of the handler.
2456
2457 For now, this difference in behavior is accepted since there is no
2458 easy way to actually implement single-stepping into a signal handler
2459 without kernel support.
2460
2461 However, there is one scenario where this difference leads to follow-on
2462 problems: if we're stepping off a breakpoint by removing all breakpoints
2463 and then single-stepping. In this case, the software single-step
2464 behavior means that even if there is a *breakpoint* in the signal
2465 handler, GDB still would not stop.
2466
2467 Fortunately, we can at least fix this particular issue. We detect
2468 here the case where we are about to deliver a signal while software
2469 single-stepping with breakpoints removed. In this situation, we
2470 revert the decisions to remove all breakpoints and insert single-
2471 step breakpoints, and instead we install a step-resume breakpoint
2472 at the current address, deliver the signal without stepping, and
2473 once we arrive back at the step-resume breakpoint, actually step
2474 over the breakpoint we originally wanted to step over. */
34b7e8a6 2475 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2476 && sig != GDB_SIGNAL_0
2477 && step_over_info_valid_p ())
30852783
UW
2478 {
2479 /* If we have nested signals or a pending signal is delivered
2480 immediately after a handler returns, might might already have
2481 a step-resume breakpoint set on the earlier handler. We cannot
2482 set another step-resume breakpoint; just continue on until the
2483 original breakpoint is hit. */
2484 if (tp->control.step_resume_breakpoint == NULL)
2485 {
2c03e5be 2486 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2487 tp->step_after_step_resume_breakpoint = 1;
2488 }
2489
34b7e8a6 2490 delete_single_step_breakpoints (tp);
30852783 2491
31e77af2 2492 clear_step_over_info ();
30852783 2493 tp->control.trap_expected = 0;
31e77af2
PA
2494
2495 insert_breakpoints ();
30852783
UW
2496 }
2497
b0f16a3e
SM
2498 /* If STEP is set, it's a request to use hardware stepping
2499 facilities. But in that case, we should never
2500 use singlestep breakpoint. */
34b7e8a6 2501 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2502
fbea99ea 2503 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2504 if (tp->control.trap_expected)
b0f16a3e
SM
2505 {
2506 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2507 hit, either by single-stepping the thread with the breakpoint
2508 removed, or by displaced stepping, with the breakpoint inserted.
2509 In the former case, we need to single-step only this thread,
2510 and keep others stopped, as they can miss this breakpoint if
2511 allowed to run. That's not really a problem for displaced
2512 stepping, but, we still keep other threads stopped, in case
2513 another thread is also stopped for a breakpoint waiting for
2514 its turn in the displaced stepping queue. */
b0f16a3e
SM
2515 resume_ptid = inferior_ptid;
2516 }
fbea99ea
PA
2517 else
2518 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2519
7f5ef605
PA
2520 if (execution_direction != EXEC_REVERSE
2521 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2522 {
372316f1
PA
2523 /* There are two cases where we currently need to step a
2524 breakpoint instruction when we have a signal to deliver:
2525
2526 - See handle_signal_stop where we handle random signals that
2527 could take out us out of the stepping range. Normally, in
2528 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2529 signal handler with a breakpoint at PC, but there are cases
2530 where we should _always_ single-step, even if we have a
2531 step-resume breakpoint, like when a software watchpoint is
2532 set. Assuming single-stepping and delivering a signal at the
2533 same time would takes us to the signal handler, then we could
2534 have removed the breakpoint at PC to step over it. However,
2535 some hardware step targets (like e.g., Mac OS) can't step
2536 into signal handlers, and for those, we need to leave the
2537 breakpoint at PC inserted, as otherwise if the handler
2538 recurses and executes PC again, it'll miss the breakpoint.
2539 So we leave the breakpoint inserted anyway, but we need to
2540 record that we tried to step a breakpoint instruction, so
372316f1
PA
2541 that adjust_pc_after_break doesn't end up confused.
2542
2543 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2544 in one thread after another thread that was stepping had been
2545 momentarily paused for a step-over. When we re-resume the
2546 stepping thread, it may be resumed from that address with a
2547 breakpoint that hasn't trapped yet. Seen with
2548 gdb.threads/non-stop-fair-events.exp, on targets that don't
2549 do displaced stepping. */
2550
2551 if (debug_infrun)
2552 fprintf_unfiltered (gdb_stdlog,
2553 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2554 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2555
2556 tp->stepped_breakpoint = 1;
2557
b0f16a3e
SM
2558 /* Most targets can step a breakpoint instruction, thus
2559 executing it normally. But if this one cannot, just
2560 continue and we will hit it anyway. */
7f5ef605 2561 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2562 step = 0;
2563 }
ef5cf84e 2564
b0f16a3e 2565 if (debug_displaced
cb71640d 2566 && tp->control.trap_expected
3fc8eb30 2567 && use_displaced_stepping (tp)
cb71640d 2568 && !step_over_info_valid_p ())
b0f16a3e 2569 {
00431a78 2570 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2571 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2572 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2573 gdb_byte buf[4];
2574
2575 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2576 paddress (resume_gdbarch, actual_pc));
2577 read_memory (actual_pc, buf, sizeof (buf));
2578 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2579 }
237fc4c9 2580
b0f16a3e
SM
2581 if (tp->control.may_range_step)
2582 {
2583 /* If we're resuming a thread with the PC out of the step
2584 range, then we're doing some nested/finer run control
2585 operation, like stepping the thread out of the dynamic
2586 linker or the displaced stepping scratch pad. We
2587 shouldn't have allowed a range step then. */
2588 gdb_assert (pc_in_thread_step_range (pc, tp));
2589 }
c1e36e3e 2590
64ce06e4 2591 do_target_resume (resume_ptid, step, sig);
372316f1 2592 tp->resumed = 1;
c906108c 2593}
71d378ae
PA
2594
2595/* Resume the inferior. SIG is the signal to give the inferior
2596 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2597 rolls back state on error. */
2598
aff4e175 2599static void
71d378ae
PA
2600resume (gdb_signal sig)
2601{
a70b8144 2602 try
71d378ae
PA
2603 {
2604 resume_1 (sig);
2605 }
230d2906 2606 catch (const gdb_exception &ex)
71d378ae
PA
2607 {
2608 /* If resuming is being aborted for any reason, delete any
2609 single-step breakpoint resume_1 may have created, to avoid
2610 confusing the following resumption, and to avoid leaving
2611 single-step breakpoints perturbing other threads, in case
2612 we're running in non-stop mode. */
2613 if (inferior_ptid != null_ptid)
2614 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2615 throw;
71d378ae 2616 }
71d378ae
PA
2617}
2618
c906108c 2619\f
237fc4c9 2620/* Proceeding. */
c906108c 2621
4c2f2a79
PA
2622/* See infrun.h. */
2623
2624/* Counter that tracks number of user visible stops. This can be used
2625 to tell whether a command has proceeded the inferior past the
2626 current location. This allows e.g., inferior function calls in
2627 breakpoint commands to not interrupt the command list. When the
2628 call finishes successfully, the inferior is standing at the same
2629 breakpoint as if nothing happened (and so we don't call
2630 normal_stop). */
2631static ULONGEST current_stop_id;
2632
2633/* See infrun.h. */
2634
2635ULONGEST
2636get_stop_id (void)
2637{
2638 return current_stop_id;
2639}
2640
2641/* Called when we report a user visible stop. */
2642
2643static void
2644new_stop_id (void)
2645{
2646 current_stop_id++;
2647}
2648
c906108c
SS
2649/* Clear out all variables saying what to do when inferior is continued.
2650 First do this, then set the ones you want, then call `proceed'. */
2651
a7212384
UW
2652static void
2653clear_proceed_status_thread (struct thread_info *tp)
c906108c 2654{
a7212384
UW
2655 if (debug_infrun)
2656 fprintf_unfiltered (gdb_stdlog,
2657 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2658 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2659
372316f1
PA
2660 /* If we're starting a new sequence, then the previous finished
2661 single-step is no longer relevant. */
2662 if (tp->suspend.waitstatus_pending_p)
2663 {
2664 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2665 {
2666 if (debug_infrun)
2667 fprintf_unfiltered (gdb_stdlog,
2668 "infrun: clear_proceed_status: pending "
2669 "event of %s was a finished step. "
2670 "Discarding.\n",
a068643d 2671 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2672
2673 tp->suspend.waitstatus_pending_p = 0;
2674 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2675 }
2676 else if (debug_infrun)
2677 {
23fdd69e
SM
2678 std::string statstr
2679 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2680
372316f1
PA
2681 fprintf_unfiltered (gdb_stdlog,
2682 "infrun: clear_proceed_status_thread: thread %s "
2683 "has pending wait status %s "
2684 "(currently_stepping=%d).\n",
a068643d
TT
2685 target_pid_to_str (tp->ptid).c_str (),
2686 statstr.c_str (),
372316f1 2687 currently_stepping (tp));
372316f1
PA
2688 }
2689 }
2690
70509625
PA
2691 /* If this signal should not be seen by program, give it zero.
2692 Used for debugging signals. */
2693 if (!signal_pass_state (tp->suspend.stop_signal))
2694 tp->suspend.stop_signal = GDB_SIGNAL_0;
2695
46e3ed7f 2696 delete tp->thread_fsm;
243a9253
PA
2697 tp->thread_fsm = NULL;
2698
16c381f0
JK
2699 tp->control.trap_expected = 0;
2700 tp->control.step_range_start = 0;
2701 tp->control.step_range_end = 0;
c1e36e3e 2702 tp->control.may_range_step = 0;
16c381f0
JK
2703 tp->control.step_frame_id = null_frame_id;
2704 tp->control.step_stack_frame_id = null_frame_id;
2705 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2706 tp->control.step_start_function = NULL;
a7212384 2707 tp->stop_requested = 0;
4e1c45ea 2708
16c381f0 2709 tp->control.stop_step = 0;
32400beb 2710
16c381f0 2711 tp->control.proceed_to_finish = 0;
414c69f7 2712
856e7dd6 2713 tp->control.stepping_command = 0;
17b2616c 2714
a7212384 2715 /* Discard any remaining commands or status from previous stop. */
16c381f0 2716 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2717}
32400beb 2718
a7212384 2719void
70509625 2720clear_proceed_status (int step)
a7212384 2721{
f2665db5
MM
2722 /* With scheduler-locking replay, stop replaying other threads if we're
2723 not replaying the user-visible resume ptid.
2724
2725 This is a convenience feature to not require the user to explicitly
2726 stop replaying the other threads. We're assuming that the user's
2727 intent is to resume tracing the recorded process. */
2728 if (!non_stop && scheduler_mode == schedlock_replay
2729 && target_record_is_replaying (minus_one_ptid)
2730 && !target_record_will_replay (user_visible_resume_ptid (step),
2731 execution_direction))
2732 target_record_stop_replaying ();
2733
08036331 2734 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2735 {
08036331 2736 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2737
2738 /* In all-stop mode, delete the per-thread status of all threads
2739 we're about to resume, implicitly and explicitly. */
08036331
PA
2740 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2741 clear_proceed_status_thread (tp);
6c95b8df
PA
2742 }
2743
d7e15655 2744 if (inferior_ptid != null_ptid)
a7212384
UW
2745 {
2746 struct inferior *inferior;
2747
2748 if (non_stop)
2749 {
6c95b8df
PA
2750 /* If in non-stop mode, only delete the per-thread status of
2751 the current thread. */
a7212384
UW
2752 clear_proceed_status_thread (inferior_thread ());
2753 }
6c95b8df 2754
d6b48e9c 2755 inferior = current_inferior ();
16c381f0 2756 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2757 }
2758
76727919 2759 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2760}
2761
99619bea
PA
2762/* Returns true if TP is still stopped at a breakpoint that needs
2763 stepping-over in order to make progress. If the breakpoint is gone
2764 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2765
2766static int
6c4cfb24 2767thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2768{
2769 if (tp->stepping_over_breakpoint)
2770 {
00431a78 2771 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2772
a01bda52 2773 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2774 regcache_read_pc (regcache))
2775 == ordinary_breakpoint_here)
99619bea
PA
2776 return 1;
2777
2778 tp->stepping_over_breakpoint = 0;
2779 }
2780
2781 return 0;
2782}
2783
6c4cfb24
PA
2784/* Check whether thread TP still needs to start a step-over in order
2785 to make progress when resumed. Returns an bitwise or of enum
2786 step_over_what bits, indicating what needs to be stepped over. */
2787
8d297bbf 2788static step_over_what
6c4cfb24
PA
2789thread_still_needs_step_over (struct thread_info *tp)
2790{
8d297bbf 2791 step_over_what what = 0;
6c4cfb24
PA
2792
2793 if (thread_still_needs_step_over_bp (tp))
2794 what |= STEP_OVER_BREAKPOINT;
2795
2796 if (tp->stepping_over_watchpoint
2797 && !target_have_steppable_watchpoint)
2798 what |= STEP_OVER_WATCHPOINT;
2799
2800 return what;
2801}
2802
483805cf
PA
2803/* Returns true if scheduler locking applies. STEP indicates whether
2804 we're about to do a step/next-like command to a thread. */
2805
2806static int
856e7dd6 2807schedlock_applies (struct thread_info *tp)
483805cf
PA
2808{
2809 return (scheduler_mode == schedlock_on
2810 || (scheduler_mode == schedlock_step
f2665db5
MM
2811 && tp->control.stepping_command)
2812 || (scheduler_mode == schedlock_replay
2813 && target_record_will_replay (minus_one_ptid,
2814 execution_direction)));
483805cf
PA
2815}
2816
c906108c
SS
2817/* Basic routine for continuing the program in various fashions.
2818
2819 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2820 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2821 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2822
2823 You should call clear_proceed_status before calling proceed. */
2824
2825void
64ce06e4 2826proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2827{
e58b0e63
PA
2828 struct regcache *regcache;
2829 struct gdbarch *gdbarch;
e58b0e63 2830 CORE_ADDR pc;
4d9d9d04
PA
2831 ptid_t resume_ptid;
2832 struct execution_control_state ecss;
2833 struct execution_control_state *ecs = &ecss;
4d9d9d04 2834 int started;
c906108c 2835
e58b0e63
PA
2836 /* If we're stopped at a fork/vfork, follow the branch set by the
2837 "set follow-fork-mode" command; otherwise, we'll just proceed
2838 resuming the current thread. */
2839 if (!follow_fork ())
2840 {
2841 /* The target for some reason decided not to resume. */
2842 normal_stop ();
f148b27e
PA
2843 if (target_can_async_p ())
2844 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2845 return;
2846 }
2847
842951eb
PA
2848 /* We'll update this if & when we switch to a new thread. */
2849 previous_inferior_ptid = inferior_ptid;
2850
e58b0e63 2851 regcache = get_current_regcache ();
ac7936df 2852 gdbarch = regcache->arch ();
8b86c959
YQ
2853 const address_space *aspace = regcache->aspace ();
2854
e58b0e63 2855 pc = regcache_read_pc (regcache);
08036331 2856 thread_info *cur_thr = inferior_thread ();
e58b0e63 2857
99619bea 2858 /* Fill in with reasonable starting values. */
08036331 2859 init_thread_stepping_state (cur_thr);
99619bea 2860
08036331 2861 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2862
2acceee2 2863 if (addr == (CORE_ADDR) -1)
c906108c 2864 {
08036331 2865 if (pc == cur_thr->suspend.stop_pc
af48d08f 2866 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2867 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2868 /* There is a breakpoint at the address we will resume at,
2869 step one instruction before inserting breakpoints so that
2870 we do not stop right away (and report a second hit at this
b2175913
MS
2871 breakpoint).
2872
2873 Note, we don't do this in reverse, because we won't
2874 actually be executing the breakpoint insn anyway.
2875 We'll be (un-)executing the previous instruction. */
08036331 2876 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2877 else if (gdbarch_single_step_through_delay_p (gdbarch)
2878 && gdbarch_single_step_through_delay (gdbarch,
2879 get_current_frame ()))
3352ef37
AC
2880 /* We stepped onto an instruction that needs to be stepped
2881 again before re-inserting the breakpoint, do so. */
08036331 2882 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2883 }
2884 else
2885 {
515630c5 2886 regcache_write_pc (regcache, addr);
c906108c
SS
2887 }
2888
70509625 2889 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2890 cur_thr->suspend.stop_signal = siggnal;
70509625 2891
08036331 2892 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2893
2894 /* If an exception is thrown from this point on, make sure to
2895 propagate GDB's knowledge of the executing state to the
2896 frontend/user running state. */
731f534f 2897 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2898
2899 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2900 threads (e.g., we might need to set threads stepping over
2901 breakpoints first), from the user/frontend's point of view, all
2902 threads in RESUME_PTID are now running. Unless we're calling an
2903 inferior function, as in that case we pretend the inferior
2904 doesn't run at all. */
08036331 2905 if (!cur_thr->control.in_infcall)
4d9d9d04 2906 set_running (resume_ptid, 1);
17b2616c 2907
527159b7 2908 if (debug_infrun)
8a9de0e4 2909 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2910 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2911 paddress (gdbarch, addr),
64ce06e4 2912 gdb_signal_to_symbol_string (siggnal));
527159b7 2913
4d9d9d04
PA
2914 annotate_starting ();
2915
2916 /* Make sure that output from GDB appears before output from the
2917 inferior. */
2918 gdb_flush (gdb_stdout);
2919
d930703d
PA
2920 /* Since we've marked the inferior running, give it the terminal. A
2921 QUIT/Ctrl-C from here on is forwarded to the target (which can
2922 still detect attempts to unblock a stuck connection with repeated
2923 Ctrl-C from within target_pass_ctrlc). */
2924 target_terminal::inferior ();
2925
4d9d9d04
PA
2926 /* In a multi-threaded task we may select another thread and
2927 then continue or step.
2928
2929 But if a thread that we're resuming had stopped at a breakpoint,
2930 it will immediately cause another breakpoint stop without any
2931 execution (i.e. it will report a breakpoint hit incorrectly). So
2932 we must step over it first.
2933
2934 Look for threads other than the current (TP) that reported a
2935 breakpoint hit and haven't been resumed yet since. */
2936
2937 /* If scheduler locking applies, we can avoid iterating over all
2938 threads. */
08036331 2939 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2940 {
08036331
PA
2941 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2942 {
4d9d9d04
PA
2943 /* Ignore the current thread here. It's handled
2944 afterwards. */
08036331 2945 if (tp == cur_thr)
4d9d9d04 2946 continue;
c906108c 2947
4d9d9d04
PA
2948 if (!thread_still_needs_step_over (tp))
2949 continue;
2950
2951 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2952
99619bea
PA
2953 if (debug_infrun)
2954 fprintf_unfiltered (gdb_stdlog,
2955 "infrun: need to step-over [%s] first\n",
a068643d 2956 target_pid_to_str (tp->ptid).c_str ());
99619bea 2957
4d9d9d04 2958 thread_step_over_chain_enqueue (tp);
2adfaa28 2959 }
30852783
UW
2960 }
2961
4d9d9d04
PA
2962 /* Enqueue the current thread last, so that we move all other
2963 threads over their breakpoints first. */
08036331
PA
2964 if (cur_thr->stepping_over_breakpoint)
2965 thread_step_over_chain_enqueue (cur_thr);
30852783 2966
4d9d9d04
PA
2967 /* If the thread isn't started, we'll still need to set its prev_pc,
2968 so that switch_back_to_stepped_thread knows the thread hasn't
2969 advanced. Must do this before resuming any thread, as in
2970 all-stop/remote, once we resume we can't send any other packet
2971 until the target stops again. */
08036331 2972 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2973
a9bc57b9
TT
2974 {
2975 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 2976
a9bc57b9 2977 started = start_step_over ();
c906108c 2978
a9bc57b9
TT
2979 if (step_over_info_valid_p ())
2980 {
2981 /* Either this thread started a new in-line step over, or some
2982 other thread was already doing one. In either case, don't
2983 resume anything else until the step-over is finished. */
2984 }
2985 else if (started && !target_is_non_stop_p ())
2986 {
2987 /* A new displaced stepping sequence was started. In all-stop,
2988 we can't talk to the target anymore until it next stops. */
2989 }
2990 else if (!non_stop && target_is_non_stop_p ())
2991 {
2992 /* In all-stop, but the target is always in non-stop mode.
2993 Start all other threads that are implicitly resumed too. */
08036331 2994 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 2995 {
fbea99ea
PA
2996 if (tp->resumed)
2997 {
2998 if (debug_infrun)
2999 fprintf_unfiltered (gdb_stdlog,
3000 "infrun: proceed: [%s] resumed\n",
a068643d 3001 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3002 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3003 continue;
3004 }
3005
3006 if (thread_is_in_step_over_chain (tp))
3007 {
3008 if (debug_infrun)
3009 fprintf_unfiltered (gdb_stdlog,
3010 "infrun: proceed: [%s] needs step-over\n",
a068643d 3011 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3012 continue;
3013 }
3014
3015 if (debug_infrun)
3016 fprintf_unfiltered (gdb_stdlog,
3017 "infrun: proceed: resuming %s\n",
a068643d 3018 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3019
3020 reset_ecs (ecs, tp);
00431a78 3021 switch_to_thread (tp);
fbea99ea
PA
3022 keep_going_pass_signal (ecs);
3023 if (!ecs->wait_some_more)
fd7dcb94 3024 error (_("Command aborted."));
fbea99ea 3025 }
a9bc57b9 3026 }
08036331 3027 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3028 {
3029 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3030 reset_ecs (ecs, cur_thr);
3031 switch_to_thread (cur_thr);
a9bc57b9
TT
3032 keep_going_pass_signal (ecs);
3033 if (!ecs->wait_some_more)
3034 error (_("Command aborted."));
3035 }
3036 }
c906108c 3037
85ad3aaf
PA
3038 target_commit_resume ();
3039
731f534f 3040 finish_state.release ();
c906108c 3041
0b333c5e
PA
3042 /* Tell the event loop to wait for it to stop. If the target
3043 supports asynchronous execution, it'll do this from within
3044 target_resume. */
362646f5 3045 if (!target_can_async_p ())
0b333c5e 3046 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3047}
c906108c
SS
3048\f
3049
3050/* Start remote-debugging of a machine over a serial link. */
96baa820 3051
c906108c 3052void
8621d6a9 3053start_remote (int from_tty)
c906108c 3054{
d6b48e9c 3055 struct inferior *inferior;
d6b48e9c
PA
3056
3057 inferior = current_inferior ();
16c381f0 3058 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3059
1777feb0 3060 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3061 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3062 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3063 nothing is returned (instead of just blocking). Because of this,
3064 targets expecting an immediate response need to, internally, set
3065 things up so that the target_wait() is forced to eventually
1777feb0 3066 timeout. */
6426a772
JM
3067 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3068 differentiate to its caller what the state of the target is after
3069 the initial open has been performed. Here we're assuming that
3070 the target has stopped. It should be possible to eventually have
3071 target_open() return to the caller an indication that the target
3072 is currently running and GDB state should be set to the same as
1777feb0 3073 for an async run. */
e4c8541f 3074 wait_for_inferior ();
8621d6a9
DJ
3075
3076 /* Now that the inferior has stopped, do any bookkeeping like
3077 loading shared libraries. We want to do this before normal_stop,
3078 so that the displayed frame is up to date. */
8b88a78e 3079 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3080
6426a772 3081 normal_stop ();
c906108c
SS
3082}
3083
3084/* Initialize static vars when a new inferior begins. */
3085
3086void
96baa820 3087init_wait_for_inferior (void)
c906108c
SS
3088{
3089 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3090
c906108c
SS
3091 breakpoint_init_inferior (inf_starting);
3092
70509625 3093 clear_proceed_status (0);
9f976b41 3094
ca005067 3095 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3096
842951eb 3097 previous_inferior_ptid = inferior_ptid;
c906108c 3098}
237fc4c9 3099
c906108c 3100\f
488f131b 3101
ec9499be 3102static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3103
568d6575
UW
3104static void handle_step_into_function (struct gdbarch *gdbarch,
3105 struct execution_control_state *ecs);
3106static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3107 struct execution_control_state *ecs);
4f5d7f63 3108static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3109static void check_exception_resume (struct execution_control_state *,
28106bc2 3110 struct frame_info *);
611c83ae 3111
bdc36728 3112static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3113static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3114static void keep_going (struct execution_control_state *ecs);
94c57d6a 3115static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3116static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3117
252fbfc8
PA
3118/* This function is attached as a "thread_stop_requested" observer.
3119 Cleanup local state that assumed the PTID was to be resumed, and
3120 report the stop to the frontend. */
3121
2c0b251b 3122static void
252fbfc8
PA
3123infrun_thread_stop_requested (ptid_t ptid)
3124{
c65d6b55
PA
3125 /* PTID was requested to stop. If the thread was already stopped,
3126 but the user/frontend doesn't know about that yet (e.g., the
3127 thread had been temporarily paused for some step-over), set up
3128 for reporting the stop now. */
08036331
PA
3129 for (thread_info *tp : all_threads (ptid))
3130 {
3131 if (tp->state != THREAD_RUNNING)
3132 continue;
3133 if (tp->executing)
3134 continue;
c65d6b55 3135
08036331
PA
3136 /* Remove matching threads from the step-over queue, so
3137 start_step_over doesn't try to resume them
3138 automatically. */
3139 if (thread_is_in_step_over_chain (tp))
3140 thread_step_over_chain_remove (tp);
c65d6b55 3141
08036331
PA
3142 /* If the thread is stopped, but the user/frontend doesn't
3143 know about that yet, queue a pending event, as if the
3144 thread had just stopped now. Unless the thread already had
3145 a pending event. */
3146 if (!tp->suspend.waitstatus_pending_p)
3147 {
3148 tp->suspend.waitstatus_pending_p = 1;
3149 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3150 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3151 }
c65d6b55 3152
08036331
PA
3153 /* Clear the inline-frame state, since we're re-processing the
3154 stop. */
3155 clear_inline_frame_state (tp->ptid);
c65d6b55 3156
08036331
PA
3157 /* If this thread was paused because some other thread was
3158 doing an inline-step over, let that finish first. Once
3159 that happens, we'll restart all threads and consume pending
3160 stop events then. */
3161 if (step_over_info_valid_p ())
3162 continue;
3163
3164 /* Otherwise we can process the (new) pending event now. Set
3165 it so this pending event is considered by
3166 do_target_wait. */
3167 tp->resumed = 1;
3168 }
252fbfc8
PA
3169}
3170
a07daef3
PA
3171static void
3172infrun_thread_thread_exit (struct thread_info *tp, int silent)
3173{
d7e15655 3174 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3175 nullify_last_target_wait_ptid ();
3176}
3177
0cbcdb96
PA
3178/* Delete the step resume, single-step and longjmp/exception resume
3179 breakpoints of TP. */
4e1c45ea 3180
0cbcdb96
PA
3181static void
3182delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3183{
0cbcdb96
PA
3184 delete_step_resume_breakpoint (tp);
3185 delete_exception_resume_breakpoint (tp);
34b7e8a6 3186 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3187}
3188
0cbcdb96
PA
3189/* If the target still has execution, call FUNC for each thread that
3190 just stopped. In all-stop, that's all the non-exited threads; in
3191 non-stop, that's the current thread, only. */
3192
3193typedef void (*for_each_just_stopped_thread_callback_func)
3194 (struct thread_info *tp);
4e1c45ea
PA
3195
3196static void
0cbcdb96 3197for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3198{
d7e15655 3199 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3200 return;
3201
fbea99ea 3202 if (target_is_non_stop_p ())
4e1c45ea 3203 {
0cbcdb96
PA
3204 /* If in non-stop mode, only the current thread stopped. */
3205 func (inferior_thread ());
4e1c45ea
PA
3206 }
3207 else
0cbcdb96 3208 {
0cbcdb96 3209 /* In all-stop mode, all threads have stopped. */
08036331
PA
3210 for (thread_info *tp : all_non_exited_threads ())
3211 func (tp);
0cbcdb96
PA
3212 }
3213}
3214
3215/* Delete the step resume and longjmp/exception resume breakpoints of
3216 the threads that just stopped. */
3217
3218static void
3219delete_just_stopped_threads_infrun_breakpoints (void)
3220{
3221 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3222}
3223
3224/* Delete the single-step breakpoints of the threads that just
3225 stopped. */
7c16b83e 3226
34b7e8a6
PA
3227static void
3228delete_just_stopped_threads_single_step_breakpoints (void)
3229{
3230 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3231}
3232
221e1a37 3233/* See infrun.h. */
223698f8 3234
221e1a37 3235void
223698f8
DE
3236print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3237 const struct target_waitstatus *ws)
3238{
23fdd69e 3239 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3240 string_file stb;
223698f8
DE
3241
3242 /* The text is split over several lines because it was getting too long.
3243 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3244 output as a unit; we want only one timestamp printed if debug_timestamp
3245 is set. */
3246
d7e74731 3247 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3248 waiton_ptid.pid (),
e38504b3 3249 waiton_ptid.lwp (),
cc6bcb54 3250 waiton_ptid.tid ());
e99b03dc 3251 if (waiton_ptid.pid () != -1)
a068643d 3252 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3253 stb.printf (", status) =\n");
3254 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3255 result_ptid.pid (),
e38504b3 3256 result_ptid.lwp (),
cc6bcb54 3257 result_ptid.tid (),
a068643d 3258 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3259 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3260
3261 /* This uses %s in part to handle %'s in the text, but also to avoid
3262 a gcc error: the format attribute requires a string literal. */
d7e74731 3263 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3264}
3265
372316f1
PA
3266/* Select a thread at random, out of those which are resumed and have
3267 had events. */
3268
3269static struct thread_info *
3270random_pending_event_thread (ptid_t waiton_ptid)
3271{
372316f1 3272 int num_events = 0;
08036331
PA
3273
3274 auto has_event = [] (thread_info *tp)
3275 {
3276 return (tp->resumed
3277 && tp->suspend.waitstatus_pending_p);
3278 };
372316f1
PA
3279
3280 /* First see how many events we have. Count only resumed threads
3281 that have an event pending. */
08036331
PA
3282 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3283 if (has_event (tp))
372316f1
PA
3284 num_events++;
3285
3286 if (num_events == 0)
3287 return NULL;
3288
3289 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3290 int random_selector = (int) ((num_events * (double) rand ())
3291 / (RAND_MAX + 1.0));
372316f1
PA
3292
3293 if (debug_infrun && num_events > 1)
3294 fprintf_unfiltered (gdb_stdlog,
3295 "infrun: Found %d events, selecting #%d\n",
3296 num_events, random_selector);
3297
3298 /* Select the Nth thread that has had an event. */
08036331
PA
3299 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3300 if (has_event (tp))
372316f1 3301 if (random_selector-- == 0)
08036331 3302 return tp;
372316f1 3303
08036331 3304 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3305}
3306
3307/* Wrapper for target_wait that first checks whether threads have
3308 pending statuses to report before actually asking the target for
3309 more events. */
3310
3311static ptid_t
3312do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3313{
3314 ptid_t event_ptid;
3315 struct thread_info *tp;
3316
3317 /* First check if there is a resumed thread with a wait status
3318 pending. */
d7e15655 3319 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3320 {
3321 tp = random_pending_event_thread (ptid);
3322 }
3323 else
3324 {
3325 if (debug_infrun)
3326 fprintf_unfiltered (gdb_stdlog,
3327 "infrun: Waiting for specific thread %s.\n",
a068643d 3328 target_pid_to_str (ptid).c_str ());
372316f1
PA
3329
3330 /* We have a specific thread to check. */
3331 tp = find_thread_ptid (ptid);
3332 gdb_assert (tp != NULL);
3333 if (!tp->suspend.waitstatus_pending_p)
3334 tp = NULL;
3335 }
3336
3337 if (tp != NULL
3338 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3339 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3340 {
00431a78 3341 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3342 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3343 CORE_ADDR pc;
3344 int discard = 0;
3345
3346 pc = regcache_read_pc (regcache);
3347
3348 if (pc != tp->suspend.stop_pc)
3349 {
3350 if (debug_infrun)
3351 fprintf_unfiltered (gdb_stdlog,
3352 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3353 target_pid_to_str (tp->ptid).c_str (),
defd2172 3354 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3355 paddress (gdbarch, pc));
3356 discard = 1;
3357 }
a01bda52 3358 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3359 {
3360 if (debug_infrun)
3361 fprintf_unfiltered (gdb_stdlog,
3362 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3363 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3364 paddress (gdbarch, pc));
3365
3366 discard = 1;
3367 }
3368
3369 if (discard)
3370 {
3371 if (debug_infrun)
3372 fprintf_unfiltered (gdb_stdlog,
3373 "infrun: pending event of %s cancelled.\n",
a068643d 3374 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3375
3376 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3377 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3378 }
3379 }
3380
3381 if (tp != NULL)
3382 {
3383 if (debug_infrun)
3384 {
23fdd69e
SM
3385 std::string statstr
3386 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3387
372316f1
PA
3388 fprintf_unfiltered (gdb_stdlog,
3389 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3390 statstr.c_str (),
a068643d 3391 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3392 }
3393
3394 /* Now that we've selected our final event LWP, un-adjust its PC
3395 if it was a software breakpoint (and the target doesn't
3396 always adjust the PC itself). */
3397 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3398 && !target_supports_stopped_by_sw_breakpoint ())
3399 {
3400 struct regcache *regcache;
3401 struct gdbarch *gdbarch;
3402 int decr_pc;
3403
00431a78 3404 regcache = get_thread_regcache (tp);
ac7936df 3405 gdbarch = regcache->arch ();
372316f1
PA
3406
3407 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3408 if (decr_pc != 0)
3409 {
3410 CORE_ADDR pc;
3411
3412 pc = regcache_read_pc (regcache);
3413 regcache_write_pc (regcache, pc + decr_pc);
3414 }
3415 }
3416
3417 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3418 *status = tp->suspend.waitstatus;
3419 tp->suspend.waitstatus_pending_p = 0;
3420
3421 /* Wake up the event loop again, until all pending events are
3422 processed. */
3423 if (target_is_async_p ())
3424 mark_async_event_handler (infrun_async_inferior_event_token);
3425 return tp->ptid;
3426 }
3427
3428 /* But if we don't find one, we'll have to wait. */
3429
3430 if (deprecated_target_wait_hook)
3431 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3432 else
3433 event_ptid = target_wait (ptid, status, options);
3434
3435 return event_ptid;
3436}
3437
24291992
PA
3438/* Prepare and stabilize the inferior for detaching it. E.g.,
3439 detaching while a thread is displaced stepping is a recipe for
3440 crashing it, as nothing would readjust the PC out of the scratch
3441 pad. */
3442
3443void
3444prepare_for_detach (void)
3445{
3446 struct inferior *inf = current_inferior ();
f2907e49 3447 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3448
00431a78 3449 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3450
3451 /* Is any thread of this process displaced stepping? If not,
3452 there's nothing else to do. */
d20172fc 3453 if (displaced->step_thread == nullptr)
24291992
PA
3454 return;
3455
3456 if (debug_infrun)
3457 fprintf_unfiltered (gdb_stdlog,
3458 "displaced-stepping in-process while detaching");
3459
9bcb1f16 3460 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3461
00431a78 3462 while (displaced->step_thread != nullptr)
24291992 3463 {
24291992
PA
3464 struct execution_control_state ecss;
3465 struct execution_control_state *ecs;
3466
3467 ecs = &ecss;
3468 memset (ecs, 0, sizeof (*ecs));
3469
3470 overlay_cache_invalid = 1;
f15cb84a
YQ
3471 /* Flush target cache before starting to handle each event.
3472 Target was running and cache could be stale. This is just a
3473 heuristic. Running threads may modify target memory, but we
3474 don't get any event. */
3475 target_dcache_invalidate ();
24291992 3476
372316f1 3477 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3478
3479 if (debug_infrun)
3480 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3481
3482 /* If an error happens while handling the event, propagate GDB's
3483 knowledge of the executing state to the frontend/user running
3484 state. */
731f534f 3485 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3486
3487 /* Now figure out what to do with the result of the result. */
3488 handle_inferior_event (ecs);
3489
3490 /* No error, don't finish the state yet. */
731f534f 3491 finish_state.release ();
24291992
PA
3492
3493 /* Breakpoints and watchpoints are not installed on the target
3494 at this point, and signals are passed directly to the
3495 inferior, so this must mean the process is gone. */
3496 if (!ecs->wait_some_more)
3497 {
9bcb1f16 3498 restore_detaching.release ();
24291992
PA
3499 error (_("Program exited while detaching"));
3500 }
3501 }
3502
9bcb1f16 3503 restore_detaching.release ();
24291992
PA
3504}
3505
cd0fc7c3 3506/* Wait for control to return from inferior to debugger.
ae123ec6 3507
cd0fc7c3
SS
3508 If inferior gets a signal, we may decide to start it up again
3509 instead of returning. That is why there is a loop in this function.
3510 When this function actually returns it means the inferior
3511 should be left stopped and GDB should read more commands. */
3512
3513void
e4c8541f 3514wait_for_inferior (void)
cd0fc7c3 3515{
527159b7 3516 if (debug_infrun)
ae123ec6 3517 fprintf_unfiltered
e4c8541f 3518 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3519
4c41382a 3520 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3521
e6f5c25b
PA
3522 /* If an error happens while handling the event, propagate GDB's
3523 knowledge of the executing state to the frontend/user running
3524 state. */
731f534f 3525 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3526
c906108c
SS
3527 while (1)
3528 {
ae25568b
PA
3529 struct execution_control_state ecss;
3530 struct execution_control_state *ecs = &ecss;
963f9c80 3531 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3532
ae25568b
PA
3533 memset (ecs, 0, sizeof (*ecs));
3534
ec9499be 3535 overlay_cache_invalid = 1;
ec9499be 3536
f15cb84a
YQ
3537 /* Flush target cache before starting to handle each event.
3538 Target was running and cache could be stale. This is just a
3539 heuristic. Running threads may modify target memory, but we
3540 don't get any event. */
3541 target_dcache_invalidate ();
3542
372316f1 3543 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3544
f00150c9 3545 if (debug_infrun)
223698f8 3546 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3547
cd0fc7c3
SS
3548 /* Now figure out what to do with the result of the result. */
3549 handle_inferior_event (ecs);
c906108c 3550
cd0fc7c3
SS
3551 if (!ecs->wait_some_more)
3552 break;
3553 }
4e1c45ea 3554
e6f5c25b 3555 /* No error, don't finish the state yet. */
731f534f 3556 finish_state.release ();
cd0fc7c3 3557}
c906108c 3558
d3d4baed
PA
3559/* Cleanup that reinstalls the readline callback handler, if the
3560 target is running in the background. If while handling the target
3561 event something triggered a secondary prompt, like e.g., a
3562 pagination prompt, we'll have removed the callback handler (see
3563 gdb_readline_wrapper_line). Need to do this as we go back to the
3564 event loop, ready to process further input. Note this has no
3565 effect if the handler hasn't actually been removed, because calling
3566 rl_callback_handler_install resets the line buffer, thus losing
3567 input. */
3568
3569static void
d238133d 3570reinstall_readline_callback_handler_cleanup ()
d3d4baed 3571{
3b12939d
PA
3572 struct ui *ui = current_ui;
3573
3574 if (!ui->async)
6c400b59
PA
3575 {
3576 /* We're not going back to the top level event loop yet. Don't
3577 install the readline callback, as it'd prep the terminal,
3578 readline-style (raw, noecho) (e.g., --batch). We'll install
3579 it the next time the prompt is displayed, when we're ready
3580 for input. */
3581 return;
3582 }
3583
3b12939d 3584 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3585 gdb_rl_callback_handler_reinstall ();
3586}
3587
243a9253
PA
3588/* Clean up the FSMs of threads that are now stopped. In non-stop,
3589 that's just the event thread. In all-stop, that's all threads. */
3590
3591static void
3592clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3593{
08036331
PA
3594 if (ecs->event_thread != NULL
3595 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3596 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3597
3598 if (!non_stop)
3599 {
08036331 3600 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3601 {
3602 if (thr->thread_fsm == NULL)
3603 continue;
3604 if (thr == ecs->event_thread)
3605 continue;
3606
00431a78 3607 switch_to_thread (thr);
46e3ed7f 3608 thr->thread_fsm->clean_up (thr);
243a9253
PA
3609 }
3610
3611 if (ecs->event_thread != NULL)
00431a78 3612 switch_to_thread (ecs->event_thread);
243a9253
PA
3613 }
3614}
3615
3b12939d
PA
3616/* Helper for all_uis_check_sync_execution_done that works on the
3617 current UI. */
3618
3619static void
3620check_curr_ui_sync_execution_done (void)
3621{
3622 struct ui *ui = current_ui;
3623
3624 if (ui->prompt_state == PROMPT_NEEDED
3625 && ui->async
3626 && !gdb_in_secondary_prompt_p (ui))
3627 {
223ffa71 3628 target_terminal::ours ();
76727919 3629 gdb::observers::sync_execution_done.notify ();
3eb7562a 3630 ui_register_input_event_handler (ui);
3b12939d
PA
3631 }
3632}
3633
3634/* See infrun.h. */
3635
3636void
3637all_uis_check_sync_execution_done (void)
3638{
0e454242 3639 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3640 {
3641 check_curr_ui_sync_execution_done ();
3642 }
3643}
3644
a8836c93
PA
3645/* See infrun.h. */
3646
3647void
3648all_uis_on_sync_execution_starting (void)
3649{
0e454242 3650 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3651 {
3652 if (current_ui->prompt_state == PROMPT_NEEDED)
3653 async_disable_stdin ();
3654 }
3655}
3656
1777feb0 3657/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3658 event loop whenever a change of state is detected on the file
1777feb0
MS
3659 descriptor corresponding to the target. It can be called more than
3660 once to complete a single execution command. In such cases we need
3661 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3662 that this function is called for a single execution command, then
3663 report to the user that the inferior has stopped, and do the
1777feb0 3664 necessary cleanups. */
43ff13b4
JM
3665
3666void
fba45db2 3667fetch_inferior_event (void *client_data)
43ff13b4 3668{
0d1e5fa7 3669 struct execution_control_state ecss;
a474d7c2 3670 struct execution_control_state *ecs = &ecss;
0f641c01 3671 int cmd_done = 0;
963f9c80 3672 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3673
0d1e5fa7
PA
3674 memset (ecs, 0, sizeof (*ecs));
3675
c61db772
PA
3676 /* Events are always processed with the main UI as current UI. This
3677 way, warnings, debug output, etc. are always consistently sent to
3678 the main console. */
4b6749b9 3679 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3680
d3d4baed 3681 /* End up with readline processing input, if necessary. */
d238133d
TT
3682 {
3683 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3684
3685 /* We're handling a live event, so make sure we're doing live
3686 debugging. If we're looking at traceframes while the target is
3687 running, we're going to need to get back to that mode after
3688 handling the event. */
3689 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3690 if (non_stop)
3691 {
3692 maybe_restore_traceframe.emplace ();
3693 set_current_traceframe (-1);
3694 }
43ff13b4 3695
d238133d
TT
3696 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3697
3698 if (non_stop)
3699 /* In non-stop mode, the user/frontend should not notice a thread
3700 switch due to internal events. Make sure we reverse to the
3701 user selected thread and frame after handling the event and
3702 running any breakpoint commands. */
3703 maybe_restore_thread.emplace ();
3704
3705 overlay_cache_invalid = 1;
3706 /* Flush target cache before starting to handle each event. Target
3707 was running and cache could be stale. This is just a heuristic.
3708 Running threads may modify target memory, but we don't get any
3709 event. */
3710 target_dcache_invalidate ();
3711
3712 scoped_restore save_exec_dir
3713 = make_scoped_restore (&execution_direction,
3714 target_execution_direction ());
3715
3716 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3717 target_can_async_p () ? TARGET_WNOHANG : 0);
3718
3719 if (debug_infrun)
3720 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3721
3722 /* If an error happens while handling the event, propagate GDB's
3723 knowledge of the executing state to the frontend/user running
3724 state. */
3725 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3726 scoped_finish_thread_state finish_state (finish_ptid);
3727
979a0d13 3728 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3729 still for the thread which has thrown the exception. */
3730 auto defer_bpstat_clear
3731 = make_scope_exit (bpstat_clear_actions);
3732 auto defer_delete_threads
3733 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3734
3735 /* Now figure out what to do with the result of the result. */
3736 handle_inferior_event (ecs);
3737
3738 if (!ecs->wait_some_more)
3739 {
3740 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3741 int should_stop = 1;
3742 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3743
d238133d 3744 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3745
d238133d
TT
3746 if (thr != NULL)
3747 {
3748 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3749
d238133d 3750 if (thread_fsm != NULL)
46e3ed7f 3751 should_stop = thread_fsm->should_stop (thr);
d238133d 3752 }
243a9253 3753
d238133d
TT
3754 if (!should_stop)
3755 {
3756 keep_going (ecs);
3757 }
3758 else
3759 {
46e3ed7f 3760 bool should_notify_stop = true;
d238133d 3761 int proceeded = 0;
1840d81a 3762
d238133d 3763 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3764
d238133d 3765 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3766 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3767
d238133d
TT
3768 if (should_notify_stop)
3769 {
3770 /* We may not find an inferior if this was a process exit. */
3771 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3772 proceeded = normal_stop ();
3773 }
243a9253 3774
d238133d
TT
3775 if (!proceeded)
3776 {
3777 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3778 cmd_done = 1;
3779 }
3780 }
3781 }
4f8d22e3 3782
d238133d
TT
3783 defer_delete_threads.release ();
3784 defer_bpstat_clear.release ();
29f49a6a 3785
d238133d
TT
3786 /* No error, don't finish the thread states yet. */
3787 finish_state.release ();
731f534f 3788
d238133d
TT
3789 /* This scope is used to ensure that readline callbacks are
3790 reinstalled here. */
3791 }
4f8d22e3 3792
3b12939d
PA
3793 /* If a UI was in sync execution mode, and now isn't, restore its
3794 prompt (a synchronous execution command has finished, and we're
3795 ready for input). */
3796 all_uis_check_sync_execution_done ();
0f641c01
PA
3797
3798 if (cmd_done
0f641c01 3799 && exec_done_display_p
00431a78
PA
3800 && (inferior_ptid == null_ptid
3801 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3802 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3803}
3804
edb3359d
DJ
3805/* Record the frame and location we're currently stepping through. */
3806void
3807set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3808{
3809 struct thread_info *tp = inferior_thread ();
3810
16c381f0
JK
3811 tp->control.step_frame_id = get_frame_id (frame);
3812 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3813
3814 tp->current_symtab = sal.symtab;
3815 tp->current_line = sal.line;
3816}
3817
0d1e5fa7
PA
3818/* Clear context switchable stepping state. */
3819
3820void
4e1c45ea 3821init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3822{
7f5ef605 3823 tss->stepped_breakpoint = 0;
0d1e5fa7 3824 tss->stepping_over_breakpoint = 0;
963f9c80 3825 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3826 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3827}
3828
c32c64b7
DE
3829/* Set the cached copy of the last ptid/waitstatus. */
3830
6efcd9a8 3831void
c32c64b7
DE
3832set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3833{
3834 target_last_wait_ptid = ptid;
3835 target_last_waitstatus = status;
3836}
3837
e02bc4cc 3838/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3839 target_wait()/deprecated_target_wait_hook(). The data is actually
3840 cached by handle_inferior_event(), which gets called immediately
3841 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3842
3843void
488f131b 3844get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3845{
39f77062 3846 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3847 *status = target_last_waitstatus;
3848}
3849
ac264b3b
MS
3850void
3851nullify_last_target_wait_ptid (void)
3852{
3853 target_last_wait_ptid = minus_one_ptid;
3854}
3855
dcf4fbde 3856/* Switch thread contexts. */
dd80620e
MS
3857
3858static void
00431a78 3859context_switch (execution_control_state *ecs)
dd80620e 3860{
00431a78
PA
3861 if (debug_infrun
3862 && ecs->ptid != inferior_ptid
3863 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3864 {
3865 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 3866 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 3867 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 3868 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
3869 }
3870
00431a78 3871 switch_to_thread (ecs->event_thread);
dd80620e
MS
3872}
3873
d8dd4d5f
PA
3874/* If the target can't tell whether we've hit breakpoints
3875 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3876 check whether that could have been caused by a breakpoint. If so,
3877 adjust the PC, per gdbarch_decr_pc_after_break. */
3878
4fa8626c 3879static void
d8dd4d5f
PA
3880adjust_pc_after_break (struct thread_info *thread,
3881 struct target_waitstatus *ws)
4fa8626c 3882{
24a73cce
UW
3883 struct regcache *regcache;
3884 struct gdbarch *gdbarch;
118e6252 3885 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3886
4fa8626c
DJ
3887 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3888 we aren't, just return.
9709f61c
DJ
3889
3890 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3891 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3892 implemented by software breakpoints should be handled through the normal
3893 breakpoint layer.
8fb3e588 3894
4fa8626c
DJ
3895 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3896 different signals (SIGILL or SIGEMT for instance), but it is less
3897 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3898 gdbarch_decr_pc_after_break. I don't know any specific target that
3899 generates these signals at breakpoints (the code has been in GDB since at
3900 least 1992) so I can not guess how to handle them here.
8fb3e588 3901
e6cf7916
UW
3902 In earlier versions of GDB, a target with
3903 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3904 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3905 target with both of these set in GDB history, and it seems unlikely to be
3906 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3907
d8dd4d5f 3908 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3909 return;
3910
d8dd4d5f 3911 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3912 return;
3913
4058b839
PA
3914 /* In reverse execution, when a breakpoint is hit, the instruction
3915 under it has already been de-executed. The reported PC always
3916 points at the breakpoint address, so adjusting it further would
3917 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3918 architecture:
3919
3920 B1 0x08000000 : INSN1
3921 B2 0x08000001 : INSN2
3922 0x08000002 : INSN3
3923 PC -> 0x08000003 : INSN4
3924
3925 Say you're stopped at 0x08000003 as above. Reverse continuing
3926 from that point should hit B2 as below. Reading the PC when the
3927 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3928 been de-executed already.
3929
3930 B1 0x08000000 : INSN1
3931 B2 PC -> 0x08000001 : INSN2
3932 0x08000002 : INSN3
3933 0x08000003 : INSN4
3934
3935 We can't apply the same logic as for forward execution, because
3936 we would wrongly adjust the PC to 0x08000000, since there's a
3937 breakpoint at PC - 1. We'd then report a hit on B1, although
3938 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3939 behaviour. */
3940 if (execution_direction == EXEC_REVERSE)
3941 return;
3942
1cf4d951
PA
3943 /* If the target can tell whether the thread hit a SW breakpoint,
3944 trust it. Targets that can tell also adjust the PC
3945 themselves. */
3946 if (target_supports_stopped_by_sw_breakpoint ())
3947 return;
3948
3949 /* Note that relying on whether a breakpoint is planted in memory to
3950 determine this can fail. E.g,. the breakpoint could have been
3951 removed since. Or the thread could have been told to step an
3952 instruction the size of a breakpoint instruction, and only
3953 _after_ was a breakpoint inserted at its address. */
3954
24a73cce
UW
3955 /* If this target does not decrement the PC after breakpoints, then
3956 we have nothing to do. */
00431a78 3957 regcache = get_thread_regcache (thread);
ac7936df 3958 gdbarch = regcache->arch ();
118e6252 3959
527a273a 3960 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3961 if (decr_pc == 0)
24a73cce
UW
3962 return;
3963
8b86c959 3964 const address_space *aspace = regcache->aspace ();
6c95b8df 3965
8aad930b
AC
3966 /* Find the location where (if we've hit a breakpoint) the
3967 breakpoint would be. */
118e6252 3968 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3969
1cf4d951
PA
3970 /* If the target can't tell whether a software breakpoint triggered,
3971 fallback to figuring it out based on breakpoints we think were
3972 inserted in the target, and on whether the thread was stepped or
3973 continued. */
3974
1c5cfe86
PA
3975 /* Check whether there actually is a software breakpoint inserted at
3976 that location.
3977
3978 If in non-stop mode, a race condition is possible where we've
3979 removed a breakpoint, but stop events for that breakpoint were
3980 already queued and arrive later. To suppress those spurious
3981 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
3982 and retire them after a number of stop events are reported. Note
3983 this is an heuristic and can thus get confused. The real fix is
3984 to get the "stopped by SW BP and needs adjustment" info out of
3985 the target/kernel (and thus never reach here; see above). */
6c95b8df 3986 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
3987 || (target_is_non_stop_p ()
3988 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3989 {
07036511 3990 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 3991
8213266a 3992 if (record_full_is_used ())
07036511
TT
3993 restore_operation_disable.emplace
3994 (record_full_gdb_operation_disable_set ());
96429cc8 3995
1c0fdd0e
UW
3996 /* When using hardware single-step, a SIGTRAP is reported for both
3997 a completed single-step and a software breakpoint. Need to
3998 differentiate between the two, as the latter needs adjusting
3999 but the former does not.
4000
4001 The SIGTRAP can be due to a completed hardware single-step only if
4002 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4003 - this thread is currently being stepped
4004
4005 If any of these events did not occur, we must have stopped due
4006 to hitting a software breakpoint, and have to back up to the
4007 breakpoint address.
4008
4009 As a special case, we could have hardware single-stepped a
4010 software breakpoint. In this case (prev_pc == breakpoint_pc),
4011 we also need to back up to the breakpoint address. */
4012
d8dd4d5f
PA
4013 if (thread_has_single_step_breakpoints_set (thread)
4014 || !currently_stepping (thread)
4015 || (thread->stepped_breakpoint
4016 && thread->prev_pc == breakpoint_pc))
515630c5 4017 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4018 }
4fa8626c
DJ
4019}
4020
edb3359d
DJ
4021static int
4022stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4023{
4024 for (frame = get_prev_frame (frame);
4025 frame != NULL;
4026 frame = get_prev_frame (frame))
4027 {
4028 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4029 return 1;
4030 if (get_frame_type (frame) != INLINE_FRAME)
4031 break;
4032 }
4033
4034 return 0;
4035}
4036
4a4c04f1
BE
4037/* Look for an inline frame that is marked for skip.
4038 If PREV_FRAME is TRUE start at the previous frame,
4039 otherwise start at the current frame. Stop at the
4040 first non-inline frame, or at the frame where the
4041 step started. */
4042
4043static bool
4044inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4045{
4046 struct frame_info *frame = get_current_frame ();
4047
4048 if (prev_frame)
4049 frame = get_prev_frame (frame);
4050
4051 for (; frame != NULL; frame = get_prev_frame (frame))
4052 {
4053 const char *fn = NULL;
4054 symtab_and_line sal;
4055 struct symbol *sym;
4056
4057 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4058 break;
4059 if (get_frame_type (frame) != INLINE_FRAME)
4060 break;
4061
4062 sal = find_frame_sal (frame);
4063 sym = get_frame_function (frame);
4064
4065 if (sym != NULL)
4066 fn = sym->print_name ();
4067
4068 if (sal.line != 0
4069 && function_name_is_marked_for_skip (fn, sal))
4070 return true;
4071 }
4072
4073 return false;
4074}
4075
c65d6b55
PA
4076/* If the event thread has the stop requested flag set, pretend it
4077 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4078 target_stop). */
4079
4080static bool
4081handle_stop_requested (struct execution_control_state *ecs)
4082{
4083 if (ecs->event_thread->stop_requested)
4084 {
4085 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4086 ecs->ws.value.sig = GDB_SIGNAL_0;
4087 handle_signal_stop (ecs);
4088 return true;
4089 }
4090 return false;
4091}
4092
a96d9b2e
SDJ
4093/* Auxiliary function that handles syscall entry/return events.
4094 It returns 1 if the inferior should keep going (and GDB
4095 should ignore the event), or 0 if the event deserves to be
4096 processed. */
ca2163eb 4097
a96d9b2e 4098static int
ca2163eb 4099handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4100{
ca2163eb 4101 struct regcache *regcache;
ca2163eb
PA
4102 int syscall_number;
4103
00431a78 4104 context_switch (ecs);
ca2163eb 4105
00431a78 4106 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4107 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4108 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4109
a96d9b2e
SDJ
4110 if (catch_syscall_enabled () > 0
4111 && catching_syscall_number (syscall_number) > 0)
4112 {
4113 if (debug_infrun)
4114 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4115 syscall_number);
a96d9b2e 4116
16c381f0 4117 ecs->event_thread->control.stop_bpstat
a01bda52 4118 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4119 ecs->event_thread->suspend.stop_pc,
4120 ecs->event_thread, &ecs->ws);
ab04a2af 4121
c65d6b55
PA
4122 if (handle_stop_requested (ecs))
4123 return 0;
4124
ce12b012 4125 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4126 {
4127 /* Catchpoint hit. */
ca2163eb
PA
4128 return 0;
4129 }
a96d9b2e 4130 }
ca2163eb 4131
c65d6b55
PA
4132 if (handle_stop_requested (ecs))
4133 return 0;
4134
ca2163eb 4135 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4136 keep_going (ecs);
4137 return 1;
a96d9b2e
SDJ
4138}
4139
7e324e48
GB
4140/* Lazily fill in the execution_control_state's stop_func_* fields. */
4141
4142static void
4143fill_in_stop_func (struct gdbarch *gdbarch,
4144 struct execution_control_state *ecs)
4145{
4146 if (!ecs->stop_func_filled_in)
4147 {
98a617f8
KB
4148 const block *block;
4149
7e324e48
GB
4150 /* Don't care about return value; stop_func_start and stop_func_name
4151 will both be 0 if it doesn't work. */
98a617f8
KB
4152 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4153 &ecs->stop_func_name,
4154 &ecs->stop_func_start,
4155 &ecs->stop_func_end,
4156 &block);
4157
4158 /* The call to find_pc_partial_function, above, will set
4159 stop_func_start and stop_func_end to the start and end
4160 of the range containing the stop pc. If this range
4161 contains the entry pc for the block (which is always the
4162 case for contiguous blocks), advance stop_func_start past
4163 the function's start offset and entrypoint. Note that
4164 stop_func_start is NOT advanced when in a range of a
4165 non-contiguous block that does not contain the entry pc. */
4166 if (block != nullptr
4167 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4168 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4169 {
4170 ecs->stop_func_start
4171 += gdbarch_deprecated_function_start_offset (gdbarch);
4172
4173 if (gdbarch_skip_entrypoint_p (gdbarch))
4174 ecs->stop_func_start
4175 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4176 }
591a12a1 4177
7e324e48
GB
4178 ecs->stop_func_filled_in = 1;
4179 }
4180}
4181
4f5d7f63 4182
00431a78 4183/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4184
4185static enum stop_kind
00431a78 4186get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4187{
00431a78 4188 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4189
4190 gdb_assert (inf != NULL);
4191 return inf->control.stop_soon;
4192}
4193
372316f1
PA
4194/* Wait for one event. Store the resulting waitstatus in WS, and
4195 return the event ptid. */
4196
4197static ptid_t
4198wait_one (struct target_waitstatus *ws)
4199{
4200 ptid_t event_ptid;
4201 ptid_t wait_ptid = minus_one_ptid;
4202
4203 overlay_cache_invalid = 1;
4204
4205 /* Flush target cache before starting to handle each event.
4206 Target was running and cache could be stale. This is just a
4207 heuristic. Running threads may modify target memory, but we
4208 don't get any event. */
4209 target_dcache_invalidate ();
4210
4211 if (deprecated_target_wait_hook)
4212 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4213 else
4214 event_ptid = target_wait (wait_ptid, ws, 0);
4215
4216 if (debug_infrun)
4217 print_target_wait_results (wait_ptid, event_ptid, ws);
4218
4219 return event_ptid;
4220}
4221
4222/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4223 instead of the current thread. */
4224#define THREAD_STOPPED_BY(REASON) \
4225static int \
4226thread_stopped_by_ ## REASON (ptid_t ptid) \
4227{ \
2989a365 4228 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4229 inferior_ptid = ptid; \
4230 \
2989a365 4231 return target_stopped_by_ ## REASON (); \
372316f1
PA
4232}
4233
4234/* Generate thread_stopped_by_watchpoint. */
4235THREAD_STOPPED_BY (watchpoint)
4236/* Generate thread_stopped_by_sw_breakpoint. */
4237THREAD_STOPPED_BY (sw_breakpoint)
4238/* Generate thread_stopped_by_hw_breakpoint. */
4239THREAD_STOPPED_BY (hw_breakpoint)
4240
372316f1
PA
4241/* Save the thread's event and stop reason to process it later. */
4242
4243static void
4244save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4245{
372316f1
PA
4246 if (debug_infrun)
4247 {
23fdd69e 4248 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4249
372316f1
PA
4250 fprintf_unfiltered (gdb_stdlog,
4251 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4252 statstr.c_str (),
e99b03dc 4253 tp->ptid.pid (),
e38504b3 4254 tp->ptid.lwp (),
cc6bcb54 4255 tp->ptid.tid ());
372316f1
PA
4256 }
4257
4258 /* Record for later. */
4259 tp->suspend.waitstatus = *ws;
4260 tp->suspend.waitstatus_pending_p = 1;
4261
00431a78 4262 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4263 const address_space *aspace = regcache->aspace ();
372316f1
PA
4264
4265 if (ws->kind == TARGET_WAITKIND_STOPPED
4266 && ws->value.sig == GDB_SIGNAL_TRAP)
4267 {
4268 CORE_ADDR pc = regcache_read_pc (regcache);
4269
4270 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4271
4272 if (thread_stopped_by_watchpoint (tp->ptid))
4273 {
4274 tp->suspend.stop_reason
4275 = TARGET_STOPPED_BY_WATCHPOINT;
4276 }
4277 else if (target_supports_stopped_by_sw_breakpoint ()
4278 && thread_stopped_by_sw_breakpoint (tp->ptid))
4279 {
4280 tp->suspend.stop_reason
4281 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4282 }
4283 else if (target_supports_stopped_by_hw_breakpoint ()
4284 && thread_stopped_by_hw_breakpoint (tp->ptid))
4285 {
4286 tp->suspend.stop_reason
4287 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4288 }
4289 else if (!target_supports_stopped_by_hw_breakpoint ()
4290 && hardware_breakpoint_inserted_here_p (aspace,
4291 pc))
4292 {
4293 tp->suspend.stop_reason
4294 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4295 }
4296 else if (!target_supports_stopped_by_sw_breakpoint ()
4297 && software_breakpoint_inserted_here_p (aspace,
4298 pc))
4299 {
4300 tp->suspend.stop_reason
4301 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4302 }
4303 else if (!thread_has_single_step_breakpoints_set (tp)
4304 && currently_stepping (tp))
4305 {
4306 tp->suspend.stop_reason
4307 = TARGET_STOPPED_BY_SINGLE_STEP;
4308 }
4309 }
4310}
4311
6efcd9a8 4312/* See infrun.h. */
372316f1 4313
6efcd9a8 4314void
372316f1
PA
4315stop_all_threads (void)
4316{
4317 /* We may need multiple passes to discover all threads. */
4318 int pass;
4319 int iterations = 0;
372316f1 4320
fbea99ea 4321 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4322
4323 if (debug_infrun)
4324 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4325
00431a78 4326 scoped_restore_current_thread restore_thread;
372316f1 4327
65706a29 4328 target_thread_events (1);
9885e6bb 4329 SCOPE_EXIT { target_thread_events (0); };
65706a29 4330
372316f1
PA
4331 /* Request threads to stop, and then wait for the stops. Because
4332 threads we already know about can spawn more threads while we're
4333 trying to stop them, and we only learn about new threads when we
4334 update the thread list, do this in a loop, and keep iterating
4335 until two passes find no threads that need to be stopped. */
4336 for (pass = 0; pass < 2; pass++, iterations++)
4337 {
4338 if (debug_infrun)
4339 fprintf_unfiltered (gdb_stdlog,
4340 "infrun: stop_all_threads, pass=%d, "
4341 "iterations=%d\n", pass, iterations);
4342 while (1)
4343 {
4344 ptid_t event_ptid;
4345 struct target_waitstatus ws;
4346 int need_wait = 0;
372316f1
PA
4347
4348 update_thread_list ();
4349
4350 /* Go through all threads looking for threads that we need
4351 to tell the target to stop. */
08036331 4352 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4353 {
4354 if (t->executing)
4355 {
4356 /* If already stopping, don't request a stop again.
4357 We just haven't seen the notification yet. */
4358 if (!t->stop_requested)
4359 {
4360 if (debug_infrun)
4361 fprintf_unfiltered (gdb_stdlog,
4362 "infrun: %s executing, "
4363 "need stop\n",
a068643d 4364 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4365 target_stop (t->ptid);
4366 t->stop_requested = 1;
4367 }
4368 else
4369 {
4370 if (debug_infrun)
4371 fprintf_unfiltered (gdb_stdlog,
4372 "infrun: %s executing, "
4373 "already stopping\n",
a068643d 4374 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4375 }
4376
4377 if (t->stop_requested)
4378 need_wait = 1;
4379 }
4380 else
4381 {
4382 if (debug_infrun)
4383 fprintf_unfiltered (gdb_stdlog,
4384 "infrun: %s not executing\n",
a068643d 4385 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4386
4387 /* The thread may be not executing, but still be
4388 resumed with a pending status to process. */
4389 t->resumed = 0;
4390 }
4391 }
4392
4393 if (!need_wait)
4394 break;
4395
4396 /* If we find new threads on the second iteration, restart
4397 over. We want to see two iterations in a row with all
4398 threads stopped. */
4399 if (pass > 0)
4400 pass = -1;
4401
4402 event_ptid = wait_one (&ws);
c29705b7 4403 if (debug_infrun)
372316f1 4404 {
c29705b7
PW
4405 fprintf_unfiltered (gdb_stdlog,
4406 "infrun: stop_all_threads %s %s\n",
4407 target_waitstatus_to_string (&ws).c_str (),
4408 target_pid_to_str (event_ptid).c_str ());
372316f1 4409 }
372316f1 4410
c29705b7
PW
4411 if (ws.kind == TARGET_WAITKIND_NO_RESUMED
4412 || ws.kind == TARGET_WAITKIND_THREAD_EXITED
4413 || ws.kind == TARGET_WAITKIND_EXITED
4414 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4415 {
4416 /* All resumed threads exited
4417 or one thread/process exited/signalled. */
372316f1
PA
4418 }
4419 else
4420 {
08036331 4421 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4422 if (t == NULL)
4423 t = add_thread (event_ptid);
4424
4425 t->stop_requested = 0;
4426 t->executing = 0;
4427 t->resumed = 0;
4428 t->control.may_range_step = 0;
4429
6efcd9a8
PA
4430 /* This may be the first time we see the inferior report
4431 a stop. */
08036331 4432 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4433 if (inf->needs_setup)
4434 {
4435 switch_to_thread_no_regs (t);
4436 setup_inferior (0);
4437 }
4438
372316f1
PA
4439 if (ws.kind == TARGET_WAITKIND_STOPPED
4440 && ws.value.sig == GDB_SIGNAL_0)
4441 {
4442 /* We caught the event that we intended to catch, so
4443 there's no event pending. */
4444 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4445 t->suspend.waitstatus_pending_p = 0;
4446
00431a78 4447 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4448 {
4449 /* Add it back to the step-over queue. */
4450 if (debug_infrun)
4451 {
4452 fprintf_unfiltered (gdb_stdlog,
4453 "infrun: displaced-step of %s "
4454 "canceled: adding back to the "
4455 "step-over queue\n",
a068643d 4456 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4457 }
4458 t->control.trap_expected = 0;
4459 thread_step_over_chain_enqueue (t);
4460 }
4461 }
4462 else
4463 {
4464 enum gdb_signal sig;
4465 struct regcache *regcache;
372316f1
PA
4466
4467 if (debug_infrun)
4468 {
23fdd69e 4469 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4470
372316f1
PA
4471 fprintf_unfiltered (gdb_stdlog,
4472 "infrun: target_wait %s, saving "
4473 "status for %d.%ld.%ld\n",
23fdd69e 4474 statstr.c_str (),
e99b03dc 4475 t->ptid.pid (),
e38504b3 4476 t->ptid.lwp (),
cc6bcb54 4477 t->ptid.tid ());
372316f1
PA
4478 }
4479
4480 /* Record for later. */
4481 save_waitstatus (t, &ws);
4482
4483 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4484 ? ws.value.sig : GDB_SIGNAL_0);
4485
00431a78 4486 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4487 {
4488 /* Add it back to the step-over queue. */
4489 t->control.trap_expected = 0;
4490 thread_step_over_chain_enqueue (t);
4491 }
4492
00431a78 4493 regcache = get_thread_regcache (t);
372316f1
PA
4494 t->suspend.stop_pc = regcache_read_pc (regcache);
4495
4496 if (debug_infrun)
4497 {
4498 fprintf_unfiltered (gdb_stdlog,
4499 "infrun: saved stop_pc=%s for %s "
4500 "(currently_stepping=%d)\n",
4501 paddress (target_gdbarch (),
4502 t->suspend.stop_pc),
a068643d 4503 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4504 currently_stepping (t));
4505 }
4506 }
4507 }
4508 }
4509 }
4510
372316f1
PA
4511 if (debug_infrun)
4512 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4513}
4514
f4836ba9
PA
4515/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4516
4517static int
4518handle_no_resumed (struct execution_control_state *ecs)
4519{
3b12939d 4520 if (target_can_async_p ())
f4836ba9 4521 {
3b12939d
PA
4522 struct ui *ui;
4523 int any_sync = 0;
f4836ba9 4524
3b12939d
PA
4525 ALL_UIS (ui)
4526 {
4527 if (ui->prompt_state == PROMPT_BLOCKED)
4528 {
4529 any_sync = 1;
4530 break;
4531 }
4532 }
4533 if (!any_sync)
4534 {
4535 /* There were no unwaited-for children left in the target, but,
4536 we're not synchronously waiting for events either. Just
4537 ignore. */
4538
4539 if (debug_infrun)
4540 fprintf_unfiltered (gdb_stdlog,
4541 "infrun: TARGET_WAITKIND_NO_RESUMED "
4542 "(ignoring: bg)\n");
4543 prepare_to_wait (ecs);
4544 return 1;
4545 }
f4836ba9
PA
4546 }
4547
4548 /* Otherwise, if we were running a synchronous execution command, we
4549 may need to cancel it and give the user back the terminal.
4550
4551 In non-stop mode, the target can't tell whether we've already
4552 consumed previous stop events, so it can end up sending us a
4553 no-resumed event like so:
4554
4555 #0 - thread 1 is left stopped
4556
4557 #1 - thread 2 is resumed and hits breakpoint
4558 -> TARGET_WAITKIND_STOPPED
4559
4560 #2 - thread 3 is resumed and exits
4561 this is the last resumed thread, so
4562 -> TARGET_WAITKIND_NO_RESUMED
4563
4564 #3 - gdb processes stop for thread 2 and decides to re-resume
4565 it.
4566
4567 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4568 thread 2 is now resumed, so the event should be ignored.
4569
4570 IOW, if the stop for thread 2 doesn't end a foreground command,
4571 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4572 event. But it could be that the event meant that thread 2 itself
4573 (or whatever other thread was the last resumed thread) exited.
4574
4575 To address this we refresh the thread list and check whether we
4576 have resumed threads _now_. In the example above, this removes
4577 thread 3 from the thread list. If thread 2 was re-resumed, we
4578 ignore this event. If we find no thread resumed, then we cancel
4579 the synchronous command show "no unwaited-for " to the user. */
4580 update_thread_list ();
4581
08036331 4582 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4583 {
4584 if (thread->executing
4585 || thread->suspend.waitstatus_pending_p)
4586 {
4587 /* There were no unwaited-for children left in the target at
4588 some point, but there are now. Just ignore. */
4589 if (debug_infrun)
4590 fprintf_unfiltered (gdb_stdlog,
4591 "infrun: TARGET_WAITKIND_NO_RESUMED "
4592 "(ignoring: found resumed)\n");
4593 prepare_to_wait (ecs);
4594 return 1;
4595 }
4596 }
4597
4598 /* Note however that we may find no resumed thread because the whole
4599 process exited meanwhile (thus updating the thread list results
4600 in an empty thread list). In this case we know we'll be getting
4601 a process exit event shortly. */
08036331 4602 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4603 {
4604 if (inf->pid == 0)
4605 continue;
4606
08036331 4607 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4608 if (thread == NULL)
4609 {
4610 if (debug_infrun)
4611 fprintf_unfiltered (gdb_stdlog,
4612 "infrun: TARGET_WAITKIND_NO_RESUMED "
4613 "(expect process exit)\n");
4614 prepare_to_wait (ecs);
4615 return 1;
4616 }
4617 }
4618
4619 /* Go ahead and report the event. */
4620 return 0;
4621}
4622
05ba8510
PA
4623/* Given an execution control state that has been freshly filled in by
4624 an event from the inferior, figure out what it means and take
4625 appropriate action.
4626
4627 The alternatives are:
4628
22bcd14b 4629 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4630 debugger.
4631
4632 2) keep_going and return; to wait for the next event (set
4633 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4634 once). */
c906108c 4635
ec9499be 4636static void
595915c1 4637handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 4638{
595915c1
TT
4639 /* Make sure that all temporary struct value objects that were
4640 created during the handling of the event get deleted at the
4641 end. */
4642 scoped_value_mark free_values;
4643
d6b48e9c
PA
4644 enum stop_kind stop_soon;
4645
c29705b7
PW
4646 if (debug_infrun)
4647 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4648 target_waitstatus_to_string (&ecs->ws).c_str ());
4649
28736962
PA
4650 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4651 {
4652 /* We had an event in the inferior, but we are not interested in
4653 handling it at this level. The lower layers have already
4654 done what needs to be done, if anything.
4655
4656 One of the possible circumstances for this is when the
4657 inferior produces output for the console. The inferior has
4658 not stopped, and we are ignoring the event. Another possible
4659 circumstance is any event which the lower level knows will be
4660 reported multiple times without an intervening resume. */
28736962
PA
4661 prepare_to_wait (ecs);
4662 return;
4663 }
4664
65706a29
PA
4665 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4666 {
65706a29
PA
4667 prepare_to_wait (ecs);
4668 return;
4669 }
4670
0e5bf2a8 4671 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4672 && handle_no_resumed (ecs))
4673 return;
0e5bf2a8 4674
1777feb0 4675 /* Cache the last pid/waitstatus. */
c32c64b7 4676 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4677
ca005067 4678 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4679 stop_stack_dummy = STOP_NONE;
ca005067 4680
0e5bf2a8
PA
4681 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4682 {
4683 /* No unwaited-for children left. IOW, all resumed children
4684 have exited. */
0e5bf2a8 4685 stop_print_frame = 0;
22bcd14b 4686 stop_waiting (ecs);
0e5bf2a8
PA
4687 return;
4688 }
4689
8c90c137 4690 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4691 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4692 {
4693 ecs->event_thread = find_thread_ptid (ecs->ptid);
4694 /* If it's a new thread, add it to the thread database. */
4695 if (ecs->event_thread == NULL)
4696 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4697
4698 /* Disable range stepping. If the next step request could use a
4699 range, this will be end up re-enabled then. */
4700 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4701 }
88ed393a
JK
4702
4703 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4704 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4705
4706 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4707 reinit_frame_cache ();
4708
28736962
PA
4709 breakpoint_retire_moribund ();
4710
2b009048
DJ
4711 /* First, distinguish signals caused by the debugger from signals
4712 that have to do with the program's own actions. Note that
4713 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4714 on the operating system version. Here we detect when a SIGILL or
4715 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4716 something similar for SIGSEGV, since a SIGSEGV will be generated
4717 when we're trying to execute a breakpoint instruction on a
4718 non-executable stack. This happens for call dummy breakpoints
4719 for architectures like SPARC that place call dummies on the
4720 stack. */
2b009048 4721 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4722 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4723 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4724 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4725 {
00431a78 4726 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4727
a01bda52 4728 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4729 regcache_read_pc (regcache)))
4730 {
4731 if (debug_infrun)
4732 fprintf_unfiltered (gdb_stdlog,
4733 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4734 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4735 }
2b009048
DJ
4736 }
4737
28736962
PA
4738 /* Mark the non-executing threads accordingly. In all-stop, all
4739 threads of all processes are stopped when we get any event
e1316e60 4740 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4741 {
4742 ptid_t mark_ptid;
4743
fbea99ea 4744 if (!target_is_non_stop_p ())
372316f1
PA
4745 mark_ptid = minus_one_ptid;
4746 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4747 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4748 {
4749 /* If we're handling a process exit in non-stop mode, even
4750 though threads haven't been deleted yet, one would think
4751 that there is nothing to do, as threads of the dead process
4752 will be soon deleted, and threads of any other process were
4753 left running. However, on some targets, threads survive a
4754 process exit event. E.g., for the "checkpoint" command,
4755 when the current checkpoint/fork exits, linux-fork.c
4756 automatically switches to another fork from within
4757 target_mourn_inferior, by associating the same
4758 inferior/thread to another fork. We haven't mourned yet at
4759 this point, but we must mark any threads left in the
4760 process as not-executing so that finish_thread_state marks
4761 them stopped (in the user's perspective) if/when we present
4762 the stop to the user. */
e99b03dc 4763 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4764 }
4765 else
4766 mark_ptid = ecs->ptid;
4767
4768 set_executing (mark_ptid, 0);
4769
4770 /* Likewise the resumed flag. */
4771 set_resumed (mark_ptid, 0);
4772 }
8c90c137 4773
488f131b
JB
4774 switch (ecs->ws.kind)
4775 {
4776 case TARGET_WAITKIND_LOADED:
00431a78 4777 context_switch (ecs);
b0f4b84b
DJ
4778 /* Ignore gracefully during startup of the inferior, as it might
4779 be the shell which has just loaded some objects, otherwise
4780 add the symbols for the newly loaded objects. Also ignore at
4781 the beginning of an attach or remote session; we will query
4782 the full list of libraries once the connection is
4783 established. */
4f5d7f63 4784
00431a78 4785 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4786 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4787 {
edcc5120
TT
4788 struct regcache *regcache;
4789
00431a78 4790 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4791
4792 handle_solib_event ();
4793
4794 ecs->event_thread->control.stop_bpstat
a01bda52 4795 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4796 ecs->event_thread->suspend.stop_pc,
4797 ecs->event_thread, &ecs->ws);
ab04a2af 4798
c65d6b55
PA
4799 if (handle_stop_requested (ecs))
4800 return;
4801
ce12b012 4802 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4803 {
4804 /* A catchpoint triggered. */
94c57d6a
PA
4805 process_event_stop_test (ecs);
4806 return;
edcc5120 4807 }
488f131b 4808
b0f4b84b
DJ
4809 /* If requested, stop when the dynamic linker notifies
4810 gdb of events. This allows the user to get control
4811 and place breakpoints in initializer routines for
4812 dynamically loaded objects (among other things). */
a493e3e2 4813 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4814 if (stop_on_solib_events)
4815 {
55409f9d
DJ
4816 /* Make sure we print "Stopped due to solib-event" in
4817 normal_stop. */
4818 stop_print_frame = 1;
4819
22bcd14b 4820 stop_waiting (ecs);
b0f4b84b
DJ
4821 return;
4822 }
488f131b 4823 }
b0f4b84b
DJ
4824
4825 /* If we are skipping through a shell, or through shared library
4826 loading that we aren't interested in, resume the program. If
5c09a2c5 4827 we're running the program normally, also resume. */
b0f4b84b
DJ
4828 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4829 {
74960c60
VP
4830 /* Loading of shared libraries might have changed breakpoint
4831 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4832 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4833 insert_breakpoints ();
64ce06e4 4834 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4835 prepare_to_wait (ecs);
4836 return;
4837 }
4838
5c09a2c5
PA
4839 /* But stop if we're attaching or setting up a remote
4840 connection. */
4841 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4842 || stop_soon == STOP_QUIETLY_REMOTE)
4843 {
4844 if (debug_infrun)
4845 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4846 stop_waiting (ecs);
5c09a2c5
PA
4847 return;
4848 }
4849
4850 internal_error (__FILE__, __LINE__,
4851 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4852
488f131b 4853 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
4854 if (handle_stop_requested (ecs))
4855 return;
00431a78 4856 context_switch (ecs);
64ce06e4 4857 resume (GDB_SIGNAL_0);
488f131b
JB
4858 prepare_to_wait (ecs);
4859 return;
c5aa993b 4860
65706a29 4861 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
4862 if (handle_stop_requested (ecs))
4863 return;
00431a78 4864 context_switch (ecs);
65706a29
PA
4865 if (!switch_back_to_stepped_thread (ecs))
4866 keep_going (ecs);
4867 return;
4868
488f131b 4869 case TARGET_WAITKIND_EXITED:
940c3c06 4870 case TARGET_WAITKIND_SIGNALLED:
fb66883a 4871 inferior_ptid = ecs->ptid;
c9657e70 4872 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4873 set_current_program_space (current_inferior ()->pspace);
4874 handle_vfork_child_exec_or_exit (0);
223ffa71 4875 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4876
0c557179
SDJ
4877 /* Clearing any previous state of convenience variables. */
4878 clear_exit_convenience_vars ();
4879
940c3c06
PA
4880 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4881 {
4882 /* Record the exit code in the convenience variable $_exitcode, so
4883 that the user can inspect this again later. */
4884 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4885 (LONGEST) ecs->ws.value.integer);
4886
4887 /* Also record this in the inferior itself. */
4888 current_inferior ()->has_exit_code = 1;
4889 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4890
98eb56a4
PA
4891 /* Support the --return-child-result option. */
4892 return_child_result_value = ecs->ws.value.integer;
4893
76727919 4894 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4895 }
4896 else
0c557179 4897 {
00431a78 4898 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4899
4900 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4901 {
4902 /* Set the value of the internal variable $_exitsignal,
4903 which holds the signal uncaught by the inferior. */
4904 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4905 gdbarch_gdb_signal_to_target (gdbarch,
4906 ecs->ws.value.sig));
4907 }
4908 else
4909 {
4910 /* We don't have access to the target's method used for
4911 converting between signal numbers (GDB's internal
4912 representation <-> target's representation).
4913 Therefore, we cannot do a good job at displaying this
4914 information to the user. It's better to just warn
4915 her about it (if infrun debugging is enabled), and
4916 give up. */
4917 if (debug_infrun)
4918 fprintf_filtered (gdb_stdlog, _("\
4919Cannot fill $_exitsignal with the correct signal number.\n"));
4920 }
4921
76727919 4922 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4923 }
8cf64490 4924
488f131b 4925 gdb_flush (gdb_stdout);
bc1e6c81 4926 target_mourn_inferior (inferior_ptid);
488f131b 4927 stop_print_frame = 0;
22bcd14b 4928 stop_waiting (ecs);
488f131b 4929 return;
c5aa993b 4930
488f131b 4931 /* The following are the only cases in which we keep going;
1777feb0 4932 the above cases end in a continue or goto. */
488f131b 4933 case TARGET_WAITKIND_FORKED:
deb3b17b 4934 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
4935 /* Check whether the inferior is displaced stepping. */
4936 {
00431a78 4937 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4938 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4939
4940 /* If checking displaced stepping is supported, and thread
4941 ecs->ptid is displaced stepping. */
00431a78 4942 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4943 {
4944 struct inferior *parent_inf
c9657e70 4945 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4946 struct regcache *child_regcache;
4947 CORE_ADDR parent_pc;
4948
4949 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4950 indicating that the displaced stepping of syscall instruction
4951 has been done. Perform cleanup for parent process here. Note
4952 that this operation also cleans up the child process for vfork,
4953 because their pages are shared. */
00431a78 4954 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4955 /* Start a new step-over in another thread if there's one
4956 that needs it. */
4957 start_step_over ();
e2d96639
YQ
4958
4959 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4960 {
c0987663 4961 struct displaced_step_inferior_state *displaced
00431a78 4962 = get_displaced_stepping_state (parent_inf);
c0987663 4963
e2d96639
YQ
4964 /* Restore scratch pad for child process. */
4965 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4966 }
4967
4968 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4969 the child's PC is also within the scratchpad. Set the child's PC
4970 to the parent's PC value, which has already been fixed up.
4971 FIXME: we use the parent's aspace here, although we're touching
4972 the child, because the child hasn't been added to the inferior
4973 list yet at this point. */
4974
4975 child_regcache
4976 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4977 gdbarch,
4978 parent_inf->aspace);
4979 /* Read PC value of parent process. */
4980 parent_pc = regcache_read_pc (regcache);
4981
4982 if (debug_displaced)
4983 fprintf_unfiltered (gdb_stdlog,
4984 "displaced: write child pc from %s to %s\n",
4985 paddress (gdbarch,
4986 regcache_read_pc (child_regcache)),
4987 paddress (gdbarch, parent_pc));
4988
4989 regcache_write_pc (child_regcache, parent_pc);
4990 }
4991 }
4992
00431a78 4993 context_switch (ecs);
5a2901d9 4994
b242c3c2
PA
4995 /* Immediately detach breakpoints from the child before there's
4996 any chance of letting the user delete breakpoints from the
4997 breakpoint lists. If we don't do this early, it's easy to
4998 leave left over traps in the child, vis: "break foo; catch
4999 fork; c; <fork>; del; c; <child calls foo>". We only follow
5000 the fork on the last `continue', and by that time the
5001 breakpoint at "foo" is long gone from the breakpoint table.
5002 If we vforked, then we don't need to unpatch here, since both
5003 parent and child are sharing the same memory pages; we'll
5004 need to unpatch at follow/detach time instead to be certain
5005 that new breakpoints added between catchpoint hit time and
5006 vfork follow are detached. */
5007 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5008 {
b242c3c2
PA
5009 /* This won't actually modify the breakpoint list, but will
5010 physically remove the breakpoints from the child. */
d80ee84f 5011 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5012 }
5013
34b7e8a6 5014 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5015
e58b0e63
PA
5016 /* In case the event is caught by a catchpoint, remember that
5017 the event is to be followed at the next resume of the thread,
5018 and not immediately. */
5019 ecs->event_thread->pending_follow = ecs->ws;
5020
f2ffa92b
PA
5021 ecs->event_thread->suspend.stop_pc
5022 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5023
16c381f0 5024 ecs->event_thread->control.stop_bpstat
a01bda52 5025 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5026 ecs->event_thread->suspend.stop_pc,
5027 ecs->event_thread, &ecs->ws);
675bf4cb 5028
c65d6b55
PA
5029 if (handle_stop_requested (ecs))
5030 return;
5031
ce12b012
PA
5032 /* If no catchpoint triggered for this, then keep going. Note
5033 that we're interested in knowing the bpstat actually causes a
5034 stop, not just if it may explain the signal. Software
5035 watchpoints, for example, always appear in the bpstat. */
5036 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5037 {
e58b0e63 5038 int should_resume;
3e43a32a
MS
5039 int follow_child
5040 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5041
a493e3e2 5042 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5043
5044 should_resume = follow_fork ();
5045
00431a78
PA
5046 thread_info *parent = ecs->event_thread;
5047 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5048
a2077e25
PA
5049 /* At this point, the parent is marked running, and the
5050 child is marked stopped. */
5051
5052 /* If not resuming the parent, mark it stopped. */
5053 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5054 parent->set_running (false);
a2077e25
PA
5055
5056 /* If resuming the child, mark it running. */
5057 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5058 child->set_running (true);
a2077e25 5059
6c95b8df 5060 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5061 if (!detach_fork && (non_stop
5062 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5063 {
5064 if (follow_child)
5065 switch_to_thread (parent);
5066 else
5067 switch_to_thread (child);
5068
5069 ecs->event_thread = inferior_thread ();
5070 ecs->ptid = inferior_ptid;
5071 keep_going (ecs);
5072 }
5073
5074 if (follow_child)
5075 switch_to_thread (child);
5076 else
5077 switch_to_thread (parent);
5078
e58b0e63
PA
5079 ecs->event_thread = inferior_thread ();
5080 ecs->ptid = inferior_ptid;
5081
5082 if (should_resume)
5083 keep_going (ecs);
5084 else
22bcd14b 5085 stop_waiting (ecs);
04e68871
DJ
5086 return;
5087 }
94c57d6a
PA
5088 process_event_stop_test (ecs);
5089 return;
488f131b 5090
6c95b8df
PA
5091 case TARGET_WAITKIND_VFORK_DONE:
5092 /* Done with the shared memory region. Re-insert breakpoints in
5093 the parent, and keep going. */
5094
00431a78 5095 context_switch (ecs);
6c95b8df
PA
5096
5097 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5098 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5099
5100 if (handle_stop_requested (ecs))
5101 return;
5102
6c95b8df
PA
5103 /* This also takes care of reinserting breakpoints in the
5104 previously locked inferior. */
5105 keep_going (ecs);
5106 return;
5107
488f131b 5108 case TARGET_WAITKIND_EXECD:
488f131b 5109
cbd2b4e3
PA
5110 /* Note we can't read registers yet (the stop_pc), because we
5111 don't yet know the inferior's post-exec architecture.
5112 'stop_pc' is explicitly read below instead. */
00431a78 5113 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5114
6c95b8df
PA
5115 /* Do whatever is necessary to the parent branch of the vfork. */
5116 handle_vfork_child_exec_or_exit (1);
5117
795e548f
PA
5118 /* This causes the eventpoints and symbol table to be reset.
5119 Must do this now, before trying to determine whether to
5120 stop. */
71b43ef8 5121 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5122
17d8546e
DB
5123 /* In follow_exec we may have deleted the original thread and
5124 created a new one. Make sure that the event thread is the
5125 execd thread for that case (this is a nop otherwise). */
5126 ecs->event_thread = inferior_thread ();
5127
f2ffa92b
PA
5128 ecs->event_thread->suspend.stop_pc
5129 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5130
16c381f0 5131 ecs->event_thread->control.stop_bpstat
a01bda52 5132 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5133 ecs->event_thread->suspend.stop_pc,
5134 ecs->event_thread, &ecs->ws);
795e548f 5135
71b43ef8
PA
5136 /* Note that this may be referenced from inside
5137 bpstat_stop_status above, through inferior_has_execd. */
5138 xfree (ecs->ws.value.execd_pathname);
5139 ecs->ws.value.execd_pathname = NULL;
5140
c65d6b55
PA
5141 if (handle_stop_requested (ecs))
5142 return;
5143
04e68871 5144 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5145 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5146 {
a493e3e2 5147 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5148 keep_going (ecs);
5149 return;
5150 }
94c57d6a
PA
5151 process_event_stop_test (ecs);
5152 return;
488f131b 5153
b4dc5ffa
MK
5154 /* Be careful not to try to gather much state about a thread
5155 that's in a syscall. It's frequently a losing proposition. */
488f131b 5156 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5157 /* Getting the current syscall number. */
94c57d6a
PA
5158 if (handle_syscall_event (ecs) == 0)
5159 process_event_stop_test (ecs);
5160 return;
c906108c 5161
488f131b
JB
5162 /* Before examining the threads further, step this thread to
5163 get it entirely out of the syscall. (We get notice of the
5164 event when the thread is just on the verge of exiting a
5165 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5166 into user code.) */
488f131b 5167 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5168 if (handle_syscall_event (ecs) == 0)
5169 process_event_stop_test (ecs);
5170 return;
c906108c 5171
488f131b 5172 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5173 handle_signal_stop (ecs);
5174 return;
c906108c 5175
b2175913
MS
5176 case TARGET_WAITKIND_NO_HISTORY:
5177 /* Reverse execution: target ran out of history info. */
eab402df 5178
d1988021 5179 /* Switch to the stopped thread. */
00431a78 5180 context_switch (ecs);
d1988021
MM
5181 if (debug_infrun)
5182 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5183
34b7e8a6 5184 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5185 ecs->event_thread->suspend.stop_pc
5186 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5187
5188 if (handle_stop_requested (ecs))
5189 return;
5190
76727919 5191 gdb::observers::no_history.notify ();
22bcd14b 5192 stop_waiting (ecs);
b2175913 5193 return;
488f131b 5194 }
4f5d7f63
PA
5195}
5196
372316f1
PA
5197/* Restart threads back to what they were trying to do back when we
5198 paused them for an in-line step-over. The EVENT_THREAD thread is
5199 ignored. */
4d9d9d04
PA
5200
5201static void
372316f1
PA
5202restart_threads (struct thread_info *event_thread)
5203{
372316f1
PA
5204 /* In case the instruction just stepped spawned a new thread. */
5205 update_thread_list ();
5206
08036331 5207 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5208 {
5209 if (tp == event_thread)
5210 {
5211 if (debug_infrun)
5212 fprintf_unfiltered (gdb_stdlog,
5213 "infrun: restart threads: "
5214 "[%s] is event thread\n",
a068643d 5215 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5216 continue;
5217 }
5218
5219 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5220 {
5221 if (debug_infrun)
5222 fprintf_unfiltered (gdb_stdlog,
5223 "infrun: restart threads: "
5224 "[%s] not meant to be running\n",
a068643d 5225 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5226 continue;
5227 }
5228
5229 if (tp->resumed)
5230 {
5231 if (debug_infrun)
5232 fprintf_unfiltered (gdb_stdlog,
5233 "infrun: restart threads: [%s] resumed\n",
a068643d 5234 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5235 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5236 continue;
5237 }
5238
5239 if (thread_is_in_step_over_chain (tp))
5240 {
5241 if (debug_infrun)
5242 fprintf_unfiltered (gdb_stdlog,
5243 "infrun: restart threads: "
5244 "[%s] needs step-over\n",
a068643d 5245 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5246 gdb_assert (!tp->resumed);
5247 continue;
5248 }
5249
5250
5251 if (tp->suspend.waitstatus_pending_p)
5252 {
5253 if (debug_infrun)
5254 fprintf_unfiltered (gdb_stdlog,
5255 "infrun: restart threads: "
5256 "[%s] has pending status\n",
a068643d 5257 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5258 tp->resumed = 1;
5259 continue;
5260 }
5261
c65d6b55
PA
5262 gdb_assert (!tp->stop_requested);
5263
372316f1
PA
5264 /* If some thread needs to start a step-over at this point, it
5265 should still be in the step-over queue, and thus skipped
5266 above. */
5267 if (thread_still_needs_step_over (tp))
5268 {
5269 internal_error (__FILE__, __LINE__,
5270 "thread [%s] needs a step-over, but not in "
5271 "step-over queue\n",
a068643d 5272 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5273 }
5274
5275 if (currently_stepping (tp))
5276 {
5277 if (debug_infrun)
5278 fprintf_unfiltered (gdb_stdlog,
5279 "infrun: restart threads: [%s] was stepping\n",
a068643d 5280 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5281 keep_going_stepped_thread (tp);
5282 }
5283 else
5284 {
5285 struct execution_control_state ecss;
5286 struct execution_control_state *ecs = &ecss;
5287
5288 if (debug_infrun)
5289 fprintf_unfiltered (gdb_stdlog,
5290 "infrun: restart threads: [%s] continuing\n",
a068643d 5291 target_pid_to_str (tp->ptid).c_str ());
372316f1 5292 reset_ecs (ecs, tp);
00431a78 5293 switch_to_thread (tp);
372316f1
PA
5294 keep_going_pass_signal (ecs);
5295 }
5296 }
5297}
5298
5299/* Callback for iterate_over_threads. Find a resumed thread that has
5300 a pending waitstatus. */
5301
5302static int
5303resumed_thread_with_pending_status (struct thread_info *tp,
5304 void *arg)
5305{
5306 return (tp->resumed
5307 && tp->suspend.waitstatus_pending_p);
5308}
5309
5310/* Called when we get an event that may finish an in-line or
5311 out-of-line (displaced stepping) step-over started previously.
5312 Return true if the event is processed and we should go back to the
5313 event loop; false if the caller should continue processing the
5314 event. */
5315
5316static int
4d9d9d04
PA
5317finish_step_over (struct execution_control_state *ecs)
5318{
372316f1
PA
5319 int had_step_over_info;
5320
00431a78 5321 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5322 ecs->event_thread->suspend.stop_signal);
5323
372316f1
PA
5324 had_step_over_info = step_over_info_valid_p ();
5325
5326 if (had_step_over_info)
4d9d9d04
PA
5327 {
5328 /* If we're stepping over a breakpoint with all threads locked,
5329 then only the thread that was stepped should be reporting
5330 back an event. */
5331 gdb_assert (ecs->event_thread->control.trap_expected);
5332
c65d6b55 5333 clear_step_over_info ();
4d9d9d04
PA
5334 }
5335
fbea99ea 5336 if (!target_is_non_stop_p ())
372316f1 5337 return 0;
4d9d9d04
PA
5338
5339 /* Start a new step-over in another thread if there's one that
5340 needs it. */
5341 start_step_over ();
372316f1
PA
5342
5343 /* If we were stepping over a breakpoint before, and haven't started
5344 a new in-line step-over sequence, then restart all other threads
5345 (except the event thread). We can't do this in all-stop, as then
5346 e.g., we wouldn't be able to issue any other remote packet until
5347 these other threads stop. */
5348 if (had_step_over_info && !step_over_info_valid_p ())
5349 {
5350 struct thread_info *pending;
5351
5352 /* If we only have threads with pending statuses, the restart
5353 below won't restart any thread and so nothing re-inserts the
5354 breakpoint we just stepped over. But we need it inserted
5355 when we later process the pending events, otherwise if
5356 another thread has a pending event for this breakpoint too,
5357 we'd discard its event (because the breakpoint that
5358 originally caused the event was no longer inserted). */
00431a78 5359 context_switch (ecs);
372316f1
PA
5360 insert_breakpoints ();
5361
5362 restart_threads (ecs->event_thread);
5363
5364 /* If we have events pending, go through handle_inferior_event
5365 again, picking up a pending event at random. This avoids
5366 thread starvation. */
5367
5368 /* But not if we just stepped over a watchpoint in order to let
5369 the instruction execute so we can evaluate its expression.
5370 The set of watchpoints that triggered is recorded in the
5371 breakpoint objects themselves (see bp->watchpoint_triggered).
5372 If we processed another event first, that other event could
5373 clobber this info. */
5374 if (ecs->event_thread->stepping_over_watchpoint)
5375 return 0;
5376
5377 pending = iterate_over_threads (resumed_thread_with_pending_status,
5378 NULL);
5379 if (pending != NULL)
5380 {
5381 struct thread_info *tp = ecs->event_thread;
5382 struct regcache *regcache;
5383
5384 if (debug_infrun)
5385 {
5386 fprintf_unfiltered (gdb_stdlog,
5387 "infrun: found resumed threads with "
5388 "pending events, saving status\n");
5389 }
5390
5391 gdb_assert (pending != tp);
5392
5393 /* Record the event thread's event for later. */
5394 save_waitstatus (tp, &ecs->ws);
5395 /* This was cleared early, by handle_inferior_event. Set it
5396 so this pending event is considered by
5397 do_target_wait. */
5398 tp->resumed = 1;
5399
5400 gdb_assert (!tp->executing);
5401
00431a78 5402 regcache = get_thread_regcache (tp);
372316f1
PA
5403 tp->suspend.stop_pc = regcache_read_pc (regcache);
5404
5405 if (debug_infrun)
5406 {
5407 fprintf_unfiltered (gdb_stdlog,
5408 "infrun: saved stop_pc=%s for %s "
5409 "(currently_stepping=%d)\n",
5410 paddress (target_gdbarch (),
5411 tp->suspend.stop_pc),
a068643d 5412 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5413 currently_stepping (tp));
5414 }
5415
5416 /* This in-line step-over finished; clear this so we won't
5417 start a new one. This is what handle_signal_stop would
5418 do, if we returned false. */
5419 tp->stepping_over_breakpoint = 0;
5420
5421 /* Wake up the event loop again. */
5422 mark_async_event_handler (infrun_async_inferior_event_token);
5423
5424 prepare_to_wait (ecs);
5425 return 1;
5426 }
5427 }
5428
5429 return 0;
4d9d9d04
PA
5430}
5431
4f5d7f63
PA
5432/* Come here when the program has stopped with a signal. */
5433
5434static void
5435handle_signal_stop (struct execution_control_state *ecs)
5436{
5437 struct frame_info *frame;
5438 struct gdbarch *gdbarch;
5439 int stopped_by_watchpoint;
5440 enum stop_kind stop_soon;
5441 int random_signal;
c906108c 5442
f0407826
DE
5443 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5444
c65d6b55
PA
5445 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5446
f0407826
DE
5447 /* Do we need to clean up the state of a thread that has
5448 completed a displaced single-step? (Doing so usually affects
5449 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5450 if (finish_step_over (ecs))
5451 return;
f0407826
DE
5452
5453 /* If we either finished a single-step or hit a breakpoint, but
5454 the user wanted this thread to be stopped, pretend we got a
5455 SIG0 (generic unsignaled stop). */
5456 if (ecs->event_thread->stop_requested
5457 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5458 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5459
f2ffa92b
PA
5460 ecs->event_thread->suspend.stop_pc
5461 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5462
527159b7 5463 if (debug_infrun)
237fc4c9 5464 {
00431a78 5465 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5466 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5467 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5468
5469 inferior_ptid = ecs->ptid;
5af949e3
UW
5470
5471 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5472 paddress (reg_gdbarch,
f2ffa92b 5473 ecs->event_thread->suspend.stop_pc));
d92524f1 5474 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5475 {
5476 CORE_ADDR addr;
abbb1732 5477
237fc4c9
PA
5478 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5479
8b88a78e 5480 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5481 fprintf_unfiltered (gdb_stdlog,
5af949e3 5482 "infrun: stopped data address = %s\n",
b926417a 5483 paddress (reg_gdbarch, addr));
237fc4c9
PA
5484 else
5485 fprintf_unfiltered (gdb_stdlog,
5486 "infrun: (no data address available)\n");
5487 }
5488 }
527159b7 5489
36fa8042
PA
5490 /* This is originated from start_remote(), start_inferior() and
5491 shared libraries hook functions. */
00431a78 5492 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5493 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5494 {
00431a78 5495 context_switch (ecs);
36fa8042
PA
5496 if (debug_infrun)
5497 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5498 stop_print_frame = 1;
22bcd14b 5499 stop_waiting (ecs);
36fa8042
PA
5500 return;
5501 }
5502
36fa8042
PA
5503 /* This originates from attach_command(). We need to overwrite
5504 the stop_signal here, because some kernels don't ignore a
5505 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5506 See more comments in inferior.h. On the other hand, if we
5507 get a non-SIGSTOP, report it to the user - assume the backend
5508 will handle the SIGSTOP if it should show up later.
5509
5510 Also consider that the attach is complete when we see a
5511 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5512 target extended-remote report it instead of a SIGSTOP
5513 (e.g. gdbserver). We already rely on SIGTRAP being our
5514 signal, so this is no exception.
5515
5516 Also consider that the attach is complete when we see a
5517 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5518 the target to stop all threads of the inferior, in case the
5519 low level attach operation doesn't stop them implicitly. If
5520 they weren't stopped implicitly, then the stub will report a
5521 GDB_SIGNAL_0, meaning: stopped for no particular reason
5522 other than GDB's request. */
5523 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5524 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5525 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5526 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5527 {
5528 stop_print_frame = 1;
22bcd14b 5529 stop_waiting (ecs);
36fa8042
PA
5530 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5531 return;
5532 }
5533
488f131b 5534 /* See if something interesting happened to the non-current thread. If
b40c7d58 5535 so, then switch to that thread. */
d7e15655 5536 if (ecs->ptid != inferior_ptid)
488f131b 5537 {
527159b7 5538 if (debug_infrun)
8a9de0e4 5539 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5540
00431a78 5541 context_switch (ecs);
c5aa993b 5542
9a4105ab 5543 if (deprecated_context_hook)
00431a78 5544 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5545 }
c906108c 5546
568d6575
UW
5547 /* At this point, get hold of the now-current thread's frame. */
5548 frame = get_current_frame ();
5549 gdbarch = get_frame_arch (frame);
5550
2adfaa28 5551 /* Pull the single step breakpoints out of the target. */
af48d08f 5552 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5553 {
af48d08f 5554 struct regcache *regcache;
af48d08f 5555 CORE_ADDR pc;
2adfaa28 5556
00431a78 5557 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5558 const address_space *aspace = regcache->aspace ();
5559
af48d08f 5560 pc = regcache_read_pc (regcache);
34b7e8a6 5561
af48d08f
PA
5562 /* However, before doing so, if this single-step breakpoint was
5563 actually for another thread, set this thread up for moving
5564 past it. */
5565 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5566 aspace, pc))
5567 {
5568 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5569 {
5570 if (debug_infrun)
5571 {
5572 fprintf_unfiltered (gdb_stdlog,
af48d08f 5573 "infrun: [%s] hit another thread's "
34b7e8a6 5574 "single-step breakpoint\n",
a068643d 5575 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5576 }
af48d08f
PA
5577 ecs->hit_singlestep_breakpoint = 1;
5578 }
5579 }
5580 else
5581 {
5582 if (debug_infrun)
5583 {
5584 fprintf_unfiltered (gdb_stdlog,
5585 "infrun: [%s] hit its "
5586 "single-step breakpoint\n",
a068643d 5587 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5588 }
5589 }
488f131b 5590 }
af48d08f 5591 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5592
963f9c80
PA
5593 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5594 && ecs->event_thread->control.trap_expected
5595 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5596 stopped_by_watchpoint = 0;
5597 else
5598 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5599
5600 /* If necessary, step over this watchpoint. We'll be back to display
5601 it in a moment. */
5602 if (stopped_by_watchpoint
d92524f1 5603 && (target_have_steppable_watchpoint
568d6575 5604 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5605 {
488f131b
JB
5606 /* At this point, we are stopped at an instruction which has
5607 attempted to write to a piece of memory under control of
5608 a watchpoint. The instruction hasn't actually executed
5609 yet. If we were to evaluate the watchpoint expression
5610 now, we would get the old value, and therefore no change
5611 would seem to have occurred.
5612
5613 In order to make watchpoints work `right', we really need
5614 to complete the memory write, and then evaluate the
d983da9c
DJ
5615 watchpoint expression. We do this by single-stepping the
5616 target.
5617
7f89fd65 5618 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5619 it. For example, the PA can (with some kernel cooperation)
5620 single step over a watchpoint without disabling the watchpoint.
5621
5622 It is far more common to need to disable a watchpoint to step
5623 the inferior over it. If we have non-steppable watchpoints,
5624 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5625 disable all watchpoints.
5626
5627 Any breakpoint at PC must also be stepped over -- if there's
5628 one, it will have already triggered before the watchpoint
5629 triggered, and we either already reported it to the user, or
5630 it didn't cause a stop and we called keep_going. In either
5631 case, if there was a breakpoint at PC, we must be trying to
5632 step past it. */
5633 ecs->event_thread->stepping_over_watchpoint = 1;
5634 keep_going (ecs);
488f131b
JB
5635 return;
5636 }
5637
4e1c45ea 5638 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5639 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5640 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5641 ecs->event_thread->control.stop_step = 0;
488f131b 5642 stop_print_frame = 1;
488f131b 5643 stopped_by_random_signal = 0;
ddfe970e 5644 bpstat stop_chain = NULL;
488f131b 5645
edb3359d
DJ
5646 /* Hide inlined functions starting here, unless we just performed stepi or
5647 nexti. After stepi and nexti, always show the innermost frame (not any
5648 inline function call sites). */
16c381f0 5649 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5650 {
00431a78
PA
5651 const address_space *aspace
5652 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5653
5654 /* skip_inline_frames is expensive, so we avoid it if we can
5655 determine that the address is one where functions cannot have
5656 been inlined. This improves performance with inferiors that
5657 load a lot of shared libraries, because the solib event
5658 breakpoint is defined as the address of a function (i.e. not
5659 inline). Note that we have to check the previous PC as well
5660 as the current one to catch cases when we have just
5661 single-stepped off a breakpoint prior to reinstating it.
5662 Note that we're assuming that the code we single-step to is
5663 not inline, but that's not definitive: there's nothing
5664 preventing the event breakpoint function from containing
5665 inlined code, and the single-step ending up there. If the
5666 user had set a breakpoint on that inlined code, the missing
5667 skip_inline_frames call would break things. Fortunately
5668 that's an extremely unlikely scenario. */
f2ffa92b
PA
5669 if (!pc_at_non_inline_function (aspace,
5670 ecs->event_thread->suspend.stop_pc,
5671 &ecs->ws)
a210c238
MR
5672 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5673 && ecs->event_thread->control.trap_expected
5674 && pc_at_non_inline_function (aspace,
5675 ecs->event_thread->prev_pc,
09ac7c10 5676 &ecs->ws)))
1c5a993e 5677 {
f2ffa92b
PA
5678 stop_chain = build_bpstat_chain (aspace,
5679 ecs->event_thread->suspend.stop_pc,
5680 &ecs->ws);
00431a78 5681 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5682
5683 /* Re-fetch current thread's frame in case that invalidated
5684 the frame cache. */
5685 frame = get_current_frame ();
5686 gdbarch = get_frame_arch (frame);
5687 }
0574c78f 5688 }
edb3359d 5689
a493e3e2 5690 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5691 && ecs->event_thread->control.trap_expected
568d6575 5692 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5693 && currently_stepping (ecs->event_thread))
3352ef37 5694 {
b50d7442 5695 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5696 also on an instruction that needs to be stepped multiple
1777feb0 5697 times before it's been fully executing. E.g., architectures
3352ef37
AC
5698 with a delay slot. It needs to be stepped twice, once for
5699 the instruction and once for the delay slot. */
5700 int step_through_delay
568d6575 5701 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5702
527159b7 5703 if (debug_infrun && step_through_delay)
8a9de0e4 5704 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5705 if (ecs->event_thread->control.step_range_end == 0
5706 && step_through_delay)
3352ef37
AC
5707 {
5708 /* The user issued a continue when stopped at a breakpoint.
5709 Set up for another trap and get out of here. */
4e1c45ea 5710 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5711 keep_going (ecs);
5712 return;
5713 }
5714 else if (step_through_delay)
5715 {
5716 /* The user issued a step when stopped at a breakpoint.
5717 Maybe we should stop, maybe we should not - the delay
5718 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5719 case, don't decide that here, just set
5720 ecs->stepping_over_breakpoint, making sure we
5721 single-step again before breakpoints are re-inserted. */
4e1c45ea 5722 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5723 }
5724 }
5725
ab04a2af
TT
5726 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5727 handles this event. */
5728 ecs->event_thread->control.stop_bpstat
a01bda52 5729 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5730 ecs->event_thread->suspend.stop_pc,
5731 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5732
ab04a2af
TT
5733 /* Following in case break condition called a
5734 function. */
5735 stop_print_frame = 1;
73dd234f 5736
ab04a2af
TT
5737 /* This is where we handle "moribund" watchpoints. Unlike
5738 software breakpoints traps, hardware watchpoint traps are
5739 always distinguishable from random traps. If no high-level
5740 watchpoint is associated with the reported stop data address
5741 anymore, then the bpstat does not explain the signal ---
5742 simply make sure to ignore it if `stopped_by_watchpoint' is
5743 set. */
5744
5745 if (debug_infrun
5746 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5747 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5748 GDB_SIGNAL_TRAP)
ab04a2af
TT
5749 && stopped_by_watchpoint)
5750 fprintf_unfiltered (gdb_stdlog,
5751 "infrun: no user watchpoint explains "
5752 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5753
bac7d97b 5754 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5755 at one stage in the past included checks for an inferior
5756 function call's call dummy's return breakpoint. The original
5757 comment, that went with the test, read:
03cebad2 5758
ab04a2af
TT
5759 ``End of a stack dummy. Some systems (e.g. Sony news) give
5760 another signal besides SIGTRAP, so check here as well as
5761 above.''
73dd234f 5762
ab04a2af
TT
5763 If someone ever tries to get call dummys on a
5764 non-executable stack to work (where the target would stop
5765 with something like a SIGSEGV), then those tests might need
5766 to be re-instated. Given, however, that the tests were only
5767 enabled when momentary breakpoints were not being used, I
5768 suspect that it won't be the case.
488f131b 5769
ab04a2af
TT
5770 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5771 be necessary for call dummies on a non-executable stack on
5772 SPARC. */
488f131b 5773
bac7d97b 5774 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5775 random_signal
5776 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5777 ecs->event_thread->suspend.stop_signal);
bac7d97b 5778
1cf4d951
PA
5779 /* Maybe this was a trap for a software breakpoint that has since
5780 been removed. */
5781 if (random_signal && target_stopped_by_sw_breakpoint ())
5782 {
f2ffa92b
PA
5783 if (program_breakpoint_here_p (gdbarch,
5784 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5785 {
5786 struct regcache *regcache;
5787 int decr_pc;
5788
5789 /* Re-adjust PC to what the program would see if GDB was not
5790 debugging it. */
00431a78 5791 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5792 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5793 if (decr_pc != 0)
5794 {
07036511
TT
5795 gdb::optional<scoped_restore_tmpl<int>>
5796 restore_operation_disable;
1cf4d951
PA
5797
5798 if (record_full_is_used ())
07036511
TT
5799 restore_operation_disable.emplace
5800 (record_full_gdb_operation_disable_set ());
1cf4d951 5801
f2ffa92b
PA
5802 regcache_write_pc (regcache,
5803 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5804 }
5805 }
5806 else
5807 {
5808 /* A delayed software breakpoint event. Ignore the trap. */
5809 if (debug_infrun)
5810 fprintf_unfiltered (gdb_stdlog,
5811 "infrun: delayed software breakpoint "
5812 "trap, ignoring\n");
5813 random_signal = 0;
5814 }
5815 }
5816
5817 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5818 has since been removed. */
5819 if (random_signal && target_stopped_by_hw_breakpoint ())
5820 {
5821 /* A delayed hardware breakpoint event. Ignore the trap. */
5822 if (debug_infrun)
5823 fprintf_unfiltered (gdb_stdlog,
5824 "infrun: delayed hardware breakpoint/watchpoint "
5825 "trap, ignoring\n");
5826 random_signal = 0;
5827 }
5828
bac7d97b
PA
5829 /* If not, perhaps stepping/nexting can. */
5830 if (random_signal)
5831 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5832 && currently_stepping (ecs->event_thread));
ab04a2af 5833
2adfaa28
PA
5834 /* Perhaps the thread hit a single-step breakpoint of _another_
5835 thread. Single-step breakpoints are transparent to the
5836 breakpoints module. */
5837 if (random_signal)
5838 random_signal = !ecs->hit_singlestep_breakpoint;
5839
bac7d97b
PA
5840 /* No? Perhaps we got a moribund watchpoint. */
5841 if (random_signal)
5842 random_signal = !stopped_by_watchpoint;
ab04a2af 5843
c65d6b55
PA
5844 /* Always stop if the user explicitly requested this thread to
5845 remain stopped. */
5846 if (ecs->event_thread->stop_requested)
5847 {
5848 random_signal = 1;
5849 if (debug_infrun)
5850 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5851 }
5852
488f131b
JB
5853 /* For the program's own signals, act according to
5854 the signal handling tables. */
5855
ce12b012 5856 if (random_signal)
488f131b
JB
5857 {
5858 /* Signal not for debugging purposes. */
c9657e70 5859 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5860 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5861
527159b7 5862 if (debug_infrun)
c9737c08
PA
5863 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5864 gdb_signal_to_symbol_string (stop_signal));
527159b7 5865
488f131b
JB
5866 stopped_by_random_signal = 1;
5867
252fbfc8
PA
5868 /* Always stop on signals if we're either just gaining control
5869 of the program, or the user explicitly requested this thread
5870 to remain stopped. */
d6b48e9c 5871 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5872 || ecs->event_thread->stop_requested
24291992 5873 || (!inf->detaching
16c381f0 5874 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5875 {
22bcd14b 5876 stop_waiting (ecs);
488f131b
JB
5877 return;
5878 }
b57bacec
PA
5879
5880 /* Notify observers the signal has "handle print" set. Note we
5881 returned early above if stopping; normal_stop handles the
5882 printing in that case. */
5883 if (signal_print[ecs->event_thread->suspend.stop_signal])
5884 {
5885 /* The signal table tells us to print about this signal. */
223ffa71 5886 target_terminal::ours_for_output ();
76727919 5887 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5888 target_terminal::inferior ();
b57bacec 5889 }
488f131b
JB
5890
5891 /* Clear the signal if it should not be passed. */
16c381f0 5892 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5893 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5894
f2ffa92b 5895 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5896 && ecs->event_thread->control.trap_expected
8358c15c 5897 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5898 {
5899 /* We were just starting a new sequence, attempting to
5900 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5901 Instead this signal arrives. This signal will take us out
68f53502
AC
5902 of the stepping range so GDB needs to remember to, when
5903 the signal handler returns, resume stepping off that
5904 breakpoint. */
5905 /* To simplify things, "continue" is forced to use the same
5906 code paths as single-step - set a breakpoint at the
5907 signal return address and then, once hit, step off that
5908 breakpoint. */
237fc4c9
PA
5909 if (debug_infrun)
5910 fprintf_unfiltered (gdb_stdlog,
5911 "infrun: signal arrived while stepping over "
5912 "breakpoint\n");
d3169d93 5913
2c03e5be 5914 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5915 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5916 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5917 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5918
5919 /* If we were nexting/stepping some other thread, switch to
5920 it, so that we don't continue it, losing control. */
5921 if (!switch_back_to_stepped_thread (ecs))
5922 keep_going (ecs);
9d799f85 5923 return;
68f53502 5924 }
9d799f85 5925
e5f8a7cc 5926 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5927 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5928 ecs->event_thread)
e5f8a7cc 5929 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5930 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5931 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5932 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5933 {
5934 /* The inferior is about to take a signal that will take it
5935 out of the single step range. Set a breakpoint at the
5936 current PC (which is presumably where the signal handler
5937 will eventually return) and then allow the inferior to
5938 run free.
5939
5940 Note that this is only needed for a signal delivered
5941 while in the single-step range. Nested signals aren't a
5942 problem as they eventually all return. */
237fc4c9
PA
5943 if (debug_infrun)
5944 fprintf_unfiltered (gdb_stdlog,
5945 "infrun: signal may take us out of "
5946 "single-step range\n");
5947
372316f1 5948 clear_step_over_info ();
2c03e5be 5949 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5950 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5951 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5952 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5953 keep_going (ecs);
5954 return;
d303a6c7 5955 }
9d799f85 5956
85102364 5957 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
5958 when either there's a nested signal, or when there's a
5959 pending signal enabled just as the signal handler returns
5960 (leaving the inferior at the step-resume-breakpoint without
5961 actually executing it). Either way continue until the
5962 breakpoint is really hit. */
c447ac0b
PA
5963
5964 if (!switch_back_to_stepped_thread (ecs))
5965 {
5966 if (debug_infrun)
5967 fprintf_unfiltered (gdb_stdlog,
5968 "infrun: random signal, keep going\n");
5969
5970 keep_going (ecs);
5971 }
5972 return;
488f131b 5973 }
94c57d6a
PA
5974
5975 process_event_stop_test (ecs);
5976}
5977
5978/* Come here when we've got some debug event / signal we can explain
5979 (IOW, not a random signal), and test whether it should cause a
5980 stop, or whether we should resume the inferior (transparently).
5981 E.g., could be a breakpoint whose condition evaluates false; we
5982 could be still stepping within the line; etc. */
5983
5984static void
5985process_event_stop_test (struct execution_control_state *ecs)
5986{
5987 struct symtab_and_line stop_pc_sal;
5988 struct frame_info *frame;
5989 struct gdbarch *gdbarch;
cdaa5b73
PA
5990 CORE_ADDR jmp_buf_pc;
5991 struct bpstat_what what;
94c57d6a 5992
cdaa5b73 5993 /* Handle cases caused by hitting a breakpoint. */
611c83ae 5994
cdaa5b73
PA
5995 frame = get_current_frame ();
5996 gdbarch = get_frame_arch (frame);
fcf3daef 5997
cdaa5b73 5998 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 5999
cdaa5b73
PA
6000 if (what.call_dummy)
6001 {
6002 stop_stack_dummy = what.call_dummy;
6003 }
186c406b 6004
243a9253
PA
6005 /* A few breakpoint types have callbacks associated (e.g.,
6006 bp_jit_event). Run them now. */
6007 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6008
cdaa5b73
PA
6009 /* If we hit an internal event that triggers symbol changes, the
6010 current frame will be invalidated within bpstat_what (e.g., if we
6011 hit an internal solib event). Re-fetch it. */
6012 frame = get_current_frame ();
6013 gdbarch = get_frame_arch (frame);
e2e4d78b 6014
cdaa5b73
PA
6015 switch (what.main_action)
6016 {
6017 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6018 /* If we hit the breakpoint at longjmp while stepping, we
6019 install a momentary breakpoint at the target of the
6020 jmp_buf. */
186c406b 6021
cdaa5b73
PA
6022 if (debug_infrun)
6023 fprintf_unfiltered (gdb_stdlog,
6024 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6025
cdaa5b73 6026 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6027
cdaa5b73
PA
6028 if (what.is_longjmp)
6029 {
6030 struct value *arg_value;
6031
6032 /* If we set the longjmp breakpoint via a SystemTap probe,
6033 then use it to extract the arguments. The destination PC
6034 is the third argument to the probe. */
6035 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6036 if (arg_value)
8fa0c4f8
AA
6037 {
6038 jmp_buf_pc = value_as_address (arg_value);
6039 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6040 }
cdaa5b73
PA
6041 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6042 || !gdbarch_get_longjmp_target (gdbarch,
6043 frame, &jmp_buf_pc))
e2e4d78b 6044 {
cdaa5b73
PA
6045 if (debug_infrun)
6046 fprintf_unfiltered (gdb_stdlog,
6047 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6048 "(!gdbarch_get_longjmp_target)\n");
6049 keep_going (ecs);
6050 return;
e2e4d78b 6051 }
e2e4d78b 6052
cdaa5b73
PA
6053 /* Insert a breakpoint at resume address. */
6054 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6055 }
6056 else
6057 check_exception_resume (ecs, frame);
6058 keep_going (ecs);
6059 return;
e81a37f7 6060
cdaa5b73
PA
6061 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6062 {
6063 struct frame_info *init_frame;
e81a37f7 6064
cdaa5b73 6065 /* There are several cases to consider.
c906108c 6066
cdaa5b73
PA
6067 1. The initiating frame no longer exists. In this case we
6068 must stop, because the exception or longjmp has gone too
6069 far.
2c03e5be 6070
cdaa5b73
PA
6071 2. The initiating frame exists, and is the same as the
6072 current frame. We stop, because the exception or longjmp
6073 has been caught.
2c03e5be 6074
cdaa5b73
PA
6075 3. The initiating frame exists and is different from the
6076 current frame. This means the exception or longjmp has
6077 been caught beneath the initiating frame, so keep going.
c906108c 6078
cdaa5b73
PA
6079 4. longjmp breakpoint has been placed just to protect
6080 against stale dummy frames and user is not interested in
6081 stopping around longjmps. */
c5aa993b 6082
cdaa5b73
PA
6083 if (debug_infrun)
6084 fprintf_unfiltered (gdb_stdlog,
6085 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6086
cdaa5b73
PA
6087 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6088 != NULL);
6089 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6090
cdaa5b73
PA
6091 if (what.is_longjmp)
6092 {
b67a2c6f 6093 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6094
cdaa5b73 6095 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6096 {
cdaa5b73
PA
6097 /* Case 4. */
6098 keep_going (ecs);
6099 return;
e5ef252a 6100 }
cdaa5b73 6101 }
c5aa993b 6102
cdaa5b73 6103 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6104
cdaa5b73
PA
6105 if (init_frame)
6106 {
6107 struct frame_id current_id
6108 = get_frame_id (get_current_frame ());
6109 if (frame_id_eq (current_id,
6110 ecs->event_thread->initiating_frame))
6111 {
6112 /* Case 2. Fall through. */
6113 }
6114 else
6115 {
6116 /* Case 3. */
6117 keep_going (ecs);
6118 return;
6119 }
68f53502 6120 }
488f131b 6121
cdaa5b73
PA
6122 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6123 exists. */
6124 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6125
bdc36728 6126 end_stepping_range (ecs);
cdaa5b73
PA
6127 }
6128 return;
e5ef252a 6129
cdaa5b73
PA
6130 case BPSTAT_WHAT_SINGLE:
6131 if (debug_infrun)
6132 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6133 ecs->event_thread->stepping_over_breakpoint = 1;
6134 /* Still need to check other stuff, at least the case where we
6135 are stepping and step out of the right range. */
6136 break;
e5ef252a 6137
cdaa5b73
PA
6138 case BPSTAT_WHAT_STEP_RESUME:
6139 if (debug_infrun)
6140 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6141
cdaa5b73
PA
6142 delete_step_resume_breakpoint (ecs->event_thread);
6143 if (ecs->event_thread->control.proceed_to_finish
6144 && execution_direction == EXEC_REVERSE)
6145 {
6146 struct thread_info *tp = ecs->event_thread;
6147
6148 /* We are finishing a function in reverse, and just hit the
6149 step-resume breakpoint at the start address of the
6150 function, and we're almost there -- just need to back up
6151 by one more single-step, which should take us back to the
6152 function call. */
6153 tp->control.step_range_start = tp->control.step_range_end = 1;
6154 keep_going (ecs);
e5ef252a 6155 return;
cdaa5b73
PA
6156 }
6157 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6158 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6159 && execution_direction == EXEC_REVERSE)
6160 {
6161 /* We are stepping over a function call in reverse, and just
6162 hit the step-resume breakpoint at the start address of
6163 the function. Go back to single-stepping, which should
6164 take us back to the function call. */
6165 ecs->event_thread->stepping_over_breakpoint = 1;
6166 keep_going (ecs);
6167 return;
6168 }
6169 break;
e5ef252a 6170
cdaa5b73
PA
6171 case BPSTAT_WHAT_STOP_NOISY:
6172 if (debug_infrun)
6173 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6174 stop_print_frame = 1;
e5ef252a 6175
99619bea
PA
6176 /* Assume the thread stopped for a breapoint. We'll still check
6177 whether a/the breakpoint is there when the thread is next
6178 resumed. */
6179 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6180
22bcd14b 6181 stop_waiting (ecs);
cdaa5b73 6182 return;
e5ef252a 6183
cdaa5b73
PA
6184 case BPSTAT_WHAT_STOP_SILENT:
6185 if (debug_infrun)
6186 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6187 stop_print_frame = 0;
e5ef252a 6188
99619bea
PA
6189 /* Assume the thread stopped for a breapoint. We'll still check
6190 whether a/the breakpoint is there when the thread is next
6191 resumed. */
6192 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6193 stop_waiting (ecs);
cdaa5b73
PA
6194 return;
6195
6196 case BPSTAT_WHAT_HP_STEP_RESUME:
6197 if (debug_infrun)
6198 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6199
6200 delete_step_resume_breakpoint (ecs->event_thread);
6201 if (ecs->event_thread->step_after_step_resume_breakpoint)
6202 {
6203 /* Back when the step-resume breakpoint was inserted, we
6204 were trying to single-step off a breakpoint. Go back to
6205 doing that. */
6206 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6207 ecs->event_thread->stepping_over_breakpoint = 1;
6208 keep_going (ecs);
6209 return;
e5ef252a 6210 }
cdaa5b73
PA
6211 break;
6212
6213 case BPSTAT_WHAT_KEEP_CHECKING:
6214 break;
e5ef252a 6215 }
c906108c 6216
af48d08f
PA
6217 /* If we stepped a permanent breakpoint and we had a high priority
6218 step-resume breakpoint for the address we stepped, but we didn't
6219 hit it, then we must have stepped into the signal handler. The
6220 step-resume was only necessary to catch the case of _not_
6221 stepping into the handler, so delete it, and fall through to
6222 checking whether the step finished. */
6223 if (ecs->event_thread->stepped_breakpoint)
6224 {
6225 struct breakpoint *sr_bp
6226 = ecs->event_thread->control.step_resume_breakpoint;
6227
8d707a12
PA
6228 if (sr_bp != NULL
6229 && sr_bp->loc->permanent
af48d08f
PA
6230 && sr_bp->type == bp_hp_step_resume
6231 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6232 {
6233 if (debug_infrun)
6234 fprintf_unfiltered (gdb_stdlog,
6235 "infrun: stepped permanent breakpoint, stopped in "
6236 "handler\n");
6237 delete_step_resume_breakpoint (ecs->event_thread);
6238 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6239 }
6240 }
6241
cdaa5b73
PA
6242 /* We come here if we hit a breakpoint but should not stop for it.
6243 Possibly we also were stepping and should stop for that. So fall
6244 through and test for stepping. But, if not stepping, do not
6245 stop. */
c906108c 6246
a7212384
UW
6247 /* In all-stop mode, if we're currently stepping but have stopped in
6248 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6249 if (switch_back_to_stepped_thread (ecs))
6250 return;
776f04fa 6251
8358c15c 6252 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6253 {
527159b7 6254 if (debug_infrun)
d3169d93
DJ
6255 fprintf_unfiltered (gdb_stdlog,
6256 "infrun: step-resume breakpoint is inserted\n");
527159b7 6257
488f131b
JB
6258 /* Having a step-resume breakpoint overrides anything
6259 else having to do with stepping commands until
6260 that breakpoint is reached. */
488f131b
JB
6261 keep_going (ecs);
6262 return;
6263 }
c5aa993b 6264
16c381f0 6265 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6266 {
527159b7 6267 if (debug_infrun)
8a9de0e4 6268 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6269 /* Likewise if we aren't even stepping. */
488f131b
JB
6270 keep_going (ecs);
6271 return;
6272 }
c5aa993b 6273
4b7703ad
JB
6274 /* Re-fetch current thread's frame in case the code above caused
6275 the frame cache to be re-initialized, making our FRAME variable
6276 a dangling pointer. */
6277 frame = get_current_frame ();
628fe4e4 6278 gdbarch = get_frame_arch (frame);
7e324e48 6279 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6280
488f131b 6281 /* If stepping through a line, keep going if still within it.
c906108c 6282
488f131b
JB
6283 Note that step_range_end is the address of the first instruction
6284 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6285 within it!
6286
6287 Note also that during reverse execution, we may be stepping
6288 through a function epilogue and therefore must detect when
6289 the current-frame changes in the middle of a line. */
6290
f2ffa92b
PA
6291 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6292 ecs->event_thread)
31410e84 6293 && (execution_direction != EXEC_REVERSE
388a8562 6294 || frame_id_eq (get_frame_id (frame),
16c381f0 6295 ecs->event_thread->control.step_frame_id)))
488f131b 6296 {
527159b7 6297 if (debug_infrun)
5af949e3
UW
6298 fprintf_unfiltered
6299 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6300 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6301 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6302
c1e36e3e
PA
6303 /* Tentatively re-enable range stepping; `resume' disables it if
6304 necessary (e.g., if we're stepping over a breakpoint or we
6305 have software watchpoints). */
6306 ecs->event_thread->control.may_range_step = 1;
6307
b2175913
MS
6308 /* When stepping backward, stop at beginning of line range
6309 (unless it's the function entry point, in which case
6310 keep going back to the call point). */
f2ffa92b 6311 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6312 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6313 && stop_pc != ecs->stop_func_start
6314 && execution_direction == EXEC_REVERSE)
bdc36728 6315 end_stepping_range (ecs);
b2175913
MS
6316 else
6317 keep_going (ecs);
6318
488f131b
JB
6319 return;
6320 }
c5aa993b 6321
488f131b 6322 /* We stepped out of the stepping range. */
c906108c 6323
488f131b 6324 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6325 loader dynamic symbol resolution code...
6326
6327 EXEC_FORWARD: we keep on single stepping until we exit the run
6328 time loader code and reach the callee's address.
6329
6330 EXEC_REVERSE: we've already executed the callee (backward), and
6331 the runtime loader code is handled just like any other
6332 undebuggable function call. Now we need only keep stepping
6333 backward through the trampoline code, and that's handled further
6334 down, so there is nothing for us to do here. */
6335
6336 if (execution_direction != EXEC_REVERSE
16c381f0 6337 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6338 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6339 {
4c8c40e6 6340 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6341 gdbarch_skip_solib_resolver (gdbarch,
6342 ecs->event_thread->suspend.stop_pc);
c906108c 6343
527159b7 6344 if (debug_infrun)
3e43a32a
MS
6345 fprintf_unfiltered (gdb_stdlog,
6346 "infrun: stepped into dynsym resolve code\n");
527159b7 6347
488f131b
JB
6348 if (pc_after_resolver)
6349 {
6350 /* Set up a step-resume breakpoint at the address
6351 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6352 symtab_and_line sr_sal;
488f131b 6353 sr_sal.pc = pc_after_resolver;
6c95b8df 6354 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6355
a6d9a66e
UW
6356 insert_step_resume_breakpoint_at_sal (gdbarch,
6357 sr_sal, null_frame_id);
c5aa993b 6358 }
c906108c 6359
488f131b
JB
6360 keep_going (ecs);
6361 return;
6362 }
c906108c 6363
1d509aa6
MM
6364 /* Step through an indirect branch thunk. */
6365 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6366 && gdbarch_in_indirect_branch_thunk (gdbarch,
6367 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6368 {
6369 if (debug_infrun)
6370 fprintf_unfiltered (gdb_stdlog,
6371 "infrun: stepped into indirect branch thunk\n");
6372 keep_going (ecs);
6373 return;
6374 }
6375
16c381f0
JK
6376 if (ecs->event_thread->control.step_range_end != 1
6377 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6378 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6379 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6380 {
527159b7 6381 if (debug_infrun)
3e43a32a
MS
6382 fprintf_unfiltered (gdb_stdlog,
6383 "infrun: stepped into signal trampoline\n");
42edda50 6384 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6385 a signal trampoline (either by a signal being delivered or by
6386 the signal handler returning). Just single-step until the
6387 inferior leaves the trampoline (either by calling the handler
6388 or returning). */
488f131b
JB
6389 keep_going (ecs);
6390 return;
6391 }
c906108c 6392
14132e89
MR
6393 /* If we're in the return path from a shared library trampoline,
6394 we want to proceed through the trampoline when stepping. */
6395 /* macro/2012-04-25: This needs to come before the subroutine
6396 call check below as on some targets return trampolines look
6397 like subroutine calls (MIPS16 return thunks). */
6398 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6399 ecs->event_thread->suspend.stop_pc,
6400 ecs->stop_func_name)
14132e89
MR
6401 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6402 {
6403 /* Determine where this trampoline returns. */
f2ffa92b
PA
6404 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6405 CORE_ADDR real_stop_pc
6406 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6407
6408 if (debug_infrun)
6409 fprintf_unfiltered (gdb_stdlog,
6410 "infrun: stepped into solib return tramp\n");
6411
6412 /* Only proceed through if we know where it's going. */
6413 if (real_stop_pc)
6414 {
6415 /* And put the step-breakpoint there and go until there. */
51abb421 6416 symtab_and_line sr_sal;
14132e89
MR
6417 sr_sal.pc = real_stop_pc;
6418 sr_sal.section = find_pc_overlay (sr_sal.pc);
6419 sr_sal.pspace = get_frame_program_space (frame);
6420
6421 /* Do not specify what the fp should be when we stop since
6422 on some machines the prologue is where the new fp value
6423 is established. */
6424 insert_step_resume_breakpoint_at_sal (gdbarch,
6425 sr_sal, null_frame_id);
6426
6427 /* Restart without fiddling with the step ranges or
6428 other state. */
6429 keep_going (ecs);
6430 return;
6431 }
6432 }
6433
c17eaafe
DJ
6434 /* Check for subroutine calls. The check for the current frame
6435 equalling the step ID is not necessary - the check of the
6436 previous frame's ID is sufficient - but it is a common case and
6437 cheaper than checking the previous frame's ID.
14e60db5
DJ
6438
6439 NOTE: frame_id_eq will never report two invalid frame IDs as
6440 being equal, so to get into this block, both the current and
6441 previous frame must have valid frame IDs. */
005ca36a
JB
6442 /* The outer_frame_id check is a heuristic to detect stepping
6443 through startup code. If we step over an instruction which
6444 sets the stack pointer from an invalid value to a valid value,
6445 we may detect that as a subroutine call from the mythical
6446 "outermost" function. This could be fixed by marking
6447 outermost frames as !stack_p,code_p,special_p. Then the
6448 initial outermost frame, before sp was valid, would
ce6cca6d 6449 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6450 for more. */
edb3359d 6451 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6452 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6453 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6454 ecs->event_thread->control.step_stack_frame_id)
6455 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6456 outer_frame_id)
885eeb5b 6457 || (ecs->event_thread->control.step_start_function
f2ffa92b 6458 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6459 {
f2ffa92b 6460 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6461 CORE_ADDR real_stop_pc;
8fb3e588 6462
527159b7 6463 if (debug_infrun)
8a9de0e4 6464 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6465
b7a084be 6466 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6467 {
6468 /* I presume that step_over_calls is only 0 when we're
6469 supposed to be stepping at the assembly language level
6470 ("stepi"). Just stop. */
388a8562 6471 /* And this works the same backward as frontward. MVS */
bdc36728 6472 end_stepping_range (ecs);
95918acb
AC
6473 return;
6474 }
8fb3e588 6475
388a8562
MS
6476 /* Reverse stepping through solib trampolines. */
6477
6478 if (execution_direction == EXEC_REVERSE
16c381f0 6479 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6480 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6481 || (ecs->stop_func_start == 0
6482 && in_solib_dynsym_resolve_code (stop_pc))))
6483 {
6484 /* Any solib trampoline code can be handled in reverse
6485 by simply continuing to single-step. We have already
6486 executed the solib function (backwards), and a few
6487 steps will take us back through the trampoline to the
6488 caller. */
6489 keep_going (ecs);
6490 return;
6491 }
6492
16c381f0 6493 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6494 {
b2175913
MS
6495 /* We're doing a "next".
6496
6497 Normal (forward) execution: set a breakpoint at the
6498 callee's return address (the address at which the caller
6499 will resume).
6500
6501 Reverse (backward) execution. set the step-resume
6502 breakpoint at the start of the function that we just
6503 stepped into (backwards), and continue to there. When we
6130d0b7 6504 get there, we'll need to single-step back to the caller. */
b2175913
MS
6505
6506 if (execution_direction == EXEC_REVERSE)
6507 {
acf9414f
JK
6508 /* If we're already at the start of the function, we've either
6509 just stepped backward into a single instruction function,
6510 or stepped back out of a signal handler to the first instruction
6511 of the function. Just keep going, which will single-step back
6512 to the caller. */
58c48e72 6513 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6514 {
acf9414f 6515 /* Normal function call return (static or dynamic). */
51abb421 6516 symtab_and_line sr_sal;
acf9414f
JK
6517 sr_sal.pc = ecs->stop_func_start;
6518 sr_sal.pspace = get_frame_program_space (frame);
6519 insert_step_resume_breakpoint_at_sal (gdbarch,
6520 sr_sal, null_frame_id);
6521 }
b2175913
MS
6522 }
6523 else
568d6575 6524 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6525
8567c30f
AC
6526 keep_going (ecs);
6527 return;
6528 }
a53c66de 6529
95918acb 6530 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6531 calling routine and the real function), locate the real
6532 function. That's what tells us (a) whether we want to step
6533 into it at all, and (b) what prologue we want to run to the
6534 end of, if we do step into it. */
568d6575 6535 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6536 if (real_stop_pc == 0)
568d6575 6537 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6538 if (real_stop_pc != 0)
6539 ecs->stop_func_start = real_stop_pc;
8fb3e588 6540
db5f024e 6541 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6542 {
51abb421 6543 symtab_and_line sr_sal;
1b2bfbb9 6544 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6545 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6546
a6d9a66e
UW
6547 insert_step_resume_breakpoint_at_sal (gdbarch,
6548 sr_sal, null_frame_id);
8fb3e588
AC
6549 keep_going (ecs);
6550 return;
1b2bfbb9
RC
6551 }
6552
95918acb 6553 /* If we have line number information for the function we are
1bfeeb0f
JL
6554 thinking of stepping into and the function isn't on the skip
6555 list, step into it.
95918acb 6556
8fb3e588
AC
6557 If there are several symtabs at that PC (e.g. with include
6558 files), just want to know whether *any* of them have line
6559 numbers. find_pc_line handles this. */
95918acb
AC
6560 {
6561 struct symtab_and_line tmp_sal;
8fb3e588 6562
95918acb 6563 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6564 if (tmp_sal.line != 0
85817405 6565 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6566 tmp_sal)
6567 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6568 {
b2175913 6569 if (execution_direction == EXEC_REVERSE)
568d6575 6570 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6571 else
568d6575 6572 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6573 return;
6574 }
6575 }
6576
6577 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6578 set, we stop the step so that the user has a chance to switch
6579 in assembly mode. */
16c381f0 6580 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6581 && step_stop_if_no_debug)
95918acb 6582 {
bdc36728 6583 end_stepping_range (ecs);
95918acb
AC
6584 return;
6585 }
6586
b2175913
MS
6587 if (execution_direction == EXEC_REVERSE)
6588 {
acf9414f
JK
6589 /* If we're already at the start of the function, we've either just
6590 stepped backward into a single instruction function without line
6591 number info, or stepped back out of a signal handler to the first
6592 instruction of the function without line number info. Just keep
6593 going, which will single-step back to the caller. */
6594 if (ecs->stop_func_start != stop_pc)
6595 {
6596 /* Set a breakpoint at callee's start address.
6597 From there we can step once and be back in the caller. */
51abb421 6598 symtab_and_line sr_sal;
acf9414f
JK
6599 sr_sal.pc = ecs->stop_func_start;
6600 sr_sal.pspace = get_frame_program_space (frame);
6601 insert_step_resume_breakpoint_at_sal (gdbarch,
6602 sr_sal, null_frame_id);
6603 }
b2175913
MS
6604 }
6605 else
6606 /* Set a breakpoint at callee's return address (the address
6607 at which the caller will resume). */
568d6575 6608 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6609
95918acb 6610 keep_going (ecs);
488f131b 6611 return;
488f131b 6612 }
c906108c 6613
fdd654f3
MS
6614 /* Reverse stepping through solib trampolines. */
6615
6616 if (execution_direction == EXEC_REVERSE
16c381f0 6617 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6618 {
f2ffa92b
PA
6619 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6620
fdd654f3
MS
6621 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6622 || (ecs->stop_func_start == 0
6623 && in_solib_dynsym_resolve_code (stop_pc)))
6624 {
6625 /* Any solib trampoline code can be handled in reverse
6626 by simply continuing to single-step. We have already
6627 executed the solib function (backwards), and a few
6628 steps will take us back through the trampoline to the
6629 caller. */
6630 keep_going (ecs);
6631 return;
6632 }
6633 else if (in_solib_dynsym_resolve_code (stop_pc))
6634 {
6635 /* Stepped backward into the solib dynsym resolver.
6636 Set a breakpoint at its start and continue, then
6637 one more step will take us out. */
51abb421 6638 symtab_and_line sr_sal;
fdd654f3 6639 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6640 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6641 insert_step_resume_breakpoint_at_sal (gdbarch,
6642 sr_sal, null_frame_id);
6643 keep_going (ecs);
6644 return;
6645 }
6646 }
6647
f2ffa92b 6648 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6649
1b2bfbb9
RC
6650 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6651 the trampoline processing logic, however, there are some trampolines
6652 that have no names, so we should do trampoline handling first. */
16c381f0 6653 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6654 && ecs->stop_func_name == NULL
2afb61aa 6655 && stop_pc_sal.line == 0)
1b2bfbb9 6656 {
527159b7 6657 if (debug_infrun)
3e43a32a
MS
6658 fprintf_unfiltered (gdb_stdlog,
6659 "infrun: stepped into undebuggable function\n");
527159b7 6660
1b2bfbb9 6661 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6662 undebuggable function (where there is no debugging information
6663 and no line number corresponding to the address where the
1b2bfbb9
RC
6664 inferior stopped). Since we want to skip this kind of code,
6665 we keep going until the inferior returns from this
14e60db5
DJ
6666 function - unless the user has asked us not to (via
6667 set step-mode) or we no longer know how to get back
6668 to the call site. */
6669 if (step_stop_if_no_debug
c7ce8faa 6670 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6671 {
6672 /* If we have no line number and the step-stop-if-no-debug
6673 is set, we stop the step so that the user has a chance to
6674 switch in assembly mode. */
bdc36728 6675 end_stepping_range (ecs);
1b2bfbb9
RC
6676 return;
6677 }
6678 else
6679 {
6680 /* Set a breakpoint at callee's return address (the address
6681 at which the caller will resume). */
568d6575 6682 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6683 keep_going (ecs);
6684 return;
6685 }
6686 }
6687
16c381f0 6688 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6689 {
6690 /* It is stepi or nexti. We always want to stop stepping after
6691 one instruction. */
527159b7 6692 if (debug_infrun)
8a9de0e4 6693 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6694 end_stepping_range (ecs);
1b2bfbb9
RC
6695 return;
6696 }
6697
2afb61aa 6698 if (stop_pc_sal.line == 0)
488f131b
JB
6699 {
6700 /* We have no line number information. That means to stop
6701 stepping (does this always happen right after one instruction,
6702 when we do "s" in a function with no line numbers,
6703 or can this happen as a result of a return or longjmp?). */
527159b7 6704 if (debug_infrun)
8a9de0e4 6705 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6706 end_stepping_range (ecs);
488f131b
JB
6707 return;
6708 }
c906108c 6709
edb3359d
DJ
6710 /* Look for "calls" to inlined functions, part one. If the inline
6711 frame machinery detected some skipped call sites, we have entered
6712 a new inline function. */
6713
6714 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6715 ecs->event_thread->control.step_frame_id)
00431a78 6716 && inline_skipped_frames (ecs->event_thread))
edb3359d 6717 {
edb3359d
DJ
6718 if (debug_infrun)
6719 fprintf_unfiltered (gdb_stdlog,
6720 "infrun: stepped into inlined function\n");
6721
51abb421 6722 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6723
16c381f0 6724 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6725 {
6726 /* For "step", we're going to stop. But if the call site
6727 for this inlined function is on the same source line as
6728 we were previously stepping, go down into the function
6729 first. Otherwise stop at the call site. */
6730
6731 if (call_sal.line == ecs->event_thread->current_line
6732 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
6733 {
6734 step_into_inline_frame (ecs->event_thread);
6735 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
6736 {
6737 keep_going (ecs);
6738 return;
6739 }
6740 }
edb3359d 6741
bdc36728 6742 end_stepping_range (ecs);
edb3359d
DJ
6743 return;
6744 }
6745 else
6746 {
6747 /* For "next", we should stop at the call site if it is on a
6748 different source line. Otherwise continue through the
6749 inlined function. */
6750 if (call_sal.line == ecs->event_thread->current_line
6751 && call_sal.symtab == ecs->event_thread->current_symtab)
6752 keep_going (ecs);
6753 else
bdc36728 6754 end_stepping_range (ecs);
edb3359d
DJ
6755 return;
6756 }
6757 }
6758
6759 /* Look for "calls" to inlined functions, part two. If we are still
6760 in the same real function we were stepping through, but we have
6761 to go further up to find the exact frame ID, we are stepping
6762 through a more inlined call beyond its call site. */
6763
6764 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6765 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6766 ecs->event_thread->control.step_frame_id)
edb3359d 6767 && stepped_in_from (get_current_frame (),
16c381f0 6768 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6769 {
6770 if (debug_infrun)
6771 fprintf_unfiltered (gdb_stdlog,
6772 "infrun: stepping through inlined function\n");
6773
4a4c04f1
BE
6774 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
6775 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
6776 keep_going (ecs);
6777 else
bdc36728 6778 end_stepping_range (ecs);
edb3359d
DJ
6779 return;
6780 }
6781
f2ffa92b 6782 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6783 && (ecs->event_thread->current_line != stop_pc_sal.line
6784 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6785 {
6786 /* We are at the start of a different line. So stop. Note that
6787 we don't stop if we step into the middle of a different line.
6788 That is said to make things like for (;;) statements work
6789 better. */
527159b7 6790 if (debug_infrun)
3e43a32a
MS
6791 fprintf_unfiltered (gdb_stdlog,
6792 "infrun: stepped to a different line\n");
bdc36728 6793 end_stepping_range (ecs);
488f131b
JB
6794 return;
6795 }
c906108c 6796
488f131b 6797 /* We aren't done stepping.
c906108c 6798
488f131b
JB
6799 Optimize by setting the stepping range to the line.
6800 (We might not be in the original line, but if we entered a
6801 new line in mid-statement, we continue stepping. This makes
6802 things like for(;;) statements work better.) */
c906108c 6803
16c381f0
JK
6804 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6805 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6806 ecs->event_thread->control.may_range_step = 1;
edb3359d 6807 set_step_info (frame, stop_pc_sal);
488f131b 6808
527159b7 6809 if (debug_infrun)
8a9de0e4 6810 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6811 keep_going (ecs);
104c1213
JM
6812}
6813
c447ac0b
PA
6814/* In all-stop mode, if we're currently stepping but have stopped in
6815 some other thread, we may need to switch back to the stepped
6816 thread. Returns true we set the inferior running, false if we left
6817 it stopped (and the event needs further processing). */
6818
6819static int
6820switch_back_to_stepped_thread (struct execution_control_state *ecs)
6821{
fbea99ea 6822 if (!target_is_non_stop_p ())
c447ac0b 6823 {
99619bea
PA
6824 struct thread_info *stepping_thread;
6825
6826 /* If any thread is blocked on some internal breakpoint, and we
6827 simply need to step over that breakpoint to get it going
6828 again, do that first. */
6829
6830 /* However, if we see an event for the stepping thread, then we
6831 know all other threads have been moved past their breakpoints
6832 already. Let the caller check whether the step is finished,
6833 etc., before deciding to move it past a breakpoint. */
6834 if (ecs->event_thread->control.step_range_end != 0)
6835 return 0;
6836
6837 /* Check if the current thread is blocked on an incomplete
6838 step-over, interrupted by a random signal. */
6839 if (ecs->event_thread->control.trap_expected
6840 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6841 {
99619bea
PA
6842 if (debug_infrun)
6843 {
6844 fprintf_unfiltered (gdb_stdlog,
6845 "infrun: need to finish step-over of [%s]\n",
a068643d 6846 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
6847 }
6848 keep_going (ecs);
6849 return 1;
6850 }
2adfaa28 6851
99619bea
PA
6852 /* Check if the current thread is blocked by a single-step
6853 breakpoint of another thread. */
6854 if (ecs->hit_singlestep_breakpoint)
6855 {
6856 if (debug_infrun)
6857 {
6858 fprintf_unfiltered (gdb_stdlog,
6859 "infrun: need to step [%s] over single-step "
6860 "breakpoint\n",
a068643d 6861 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
6862 }
6863 keep_going (ecs);
6864 return 1;
6865 }
6866
4d9d9d04
PA
6867 /* If this thread needs yet another step-over (e.g., stepping
6868 through a delay slot), do it first before moving on to
6869 another thread. */
6870 if (thread_still_needs_step_over (ecs->event_thread))
6871 {
6872 if (debug_infrun)
6873 {
6874 fprintf_unfiltered (gdb_stdlog,
6875 "infrun: thread [%s] still needs step-over\n",
a068643d 6876 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
6877 }
6878 keep_going (ecs);
6879 return 1;
6880 }
70509625 6881
483805cf
PA
6882 /* If scheduler locking applies even if not stepping, there's no
6883 need to walk over threads. Above we've checked whether the
6884 current thread is stepping. If some other thread not the
6885 event thread is stepping, then it must be that scheduler
6886 locking is not in effect. */
856e7dd6 6887 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6888 return 0;
6889
4d9d9d04
PA
6890 /* Otherwise, we no longer expect a trap in the current thread.
6891 Clear the trap_expected flag before switching back -- this is
6892 what keep_going does as well, if we call it. */
6893 ecs->event_thread->control.trap_expected = 0;
6894
6895 /* Likewise, clear the signal if it should not be passed. */
6896 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6897 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6898
6899 /* Do all pending step-overs before actually proceeding with
483805cf 6900 step/next/etc. */
4d9d9d04
PA
6901 if (start_step_over ())
6902 {
6903 prepare_to_wait (ecs);
6904 return 1;
6905 }
6906
6907 /* Look for the stepping/nexting thread. */
483805cf 6908 stepping_thread = NULL;
4d9d9d04 6909
08036331 6910 for (thread_info *tp : all_non_exited_threads ())
483805cf 6911 {
fbea99ea
PA
6912 /* Ignore threads of processes the caller is not
6913 resuming. */
483805cf 6914 if (!sched_multi
e99b03dc 6915 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6916 continue;
6917
6918 /* When stepping over a breakpoint, we lock all threads
6919 except the one that needs to move past the breakpoint.
6920 If a non-event thread has this set, the "incomplete
6921 step-over" check above should have caught it earlier. */
372316f1
PA
6922 if (tp->control.trap_expected)
6923 {
6924 internal_error (__FILE__, __LINE__,
6925 "[%s] has inconsistent state: "
6926 "trap_expected=%d\n",
a068643d 6927 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
6928 tp->control.trap_expected);
6929 }
483805cf
PA
6930
6931 /* Did we find the stepping thread? */
6932 if (tp->control.step_range_end)
6933 {
6934 /* Yep. There should only one though. */
6935 gdb_assert (stepping_thread == NULL);
6936
6937 /* The event thread is handled at the top, before we
6938 enter this loop. */
6939 gdb_assert (tp != ecs->event_thread);
6940
6941 /* If some thread other than the event thread is
6942 stepping, then scheduler locking can't be in effect,
6943 otherwise we wouldn't have resumed the current event
6944 thread in the first place. */
856e7dd6 6945 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6946
6947 stepping_thread = tp;
6948 }
99619bea
PA
6949 }
6950
483805cf 6951 if (stepping_thread != NULL)
99619bea 6952 {
c447ac0b
PA
6953 if (debug_infrun)
6954 fprintf_unfiltered (gdb_stdlog,
6955 "infrun: switching back to stepped thread\n");
6956
2ac7589c
PA
6957 if (keep_going_stepped_thread (stepping_thread))
6958 {
6959 prepare_to_wait (ecs);
6960 return 1;
6961 }
6962 }
6963 }
2adfaa28 6964
2ac7589c
PA
6965 return 0;
6966}
2adfaa28 6967
2ac7589c
PA
6968/* Set a previously stepped thread back to stepping. Returns true on
6969 success, false if the resume is not possible (e.g., the thread
6970 vanished). */
6971
6972static int
6973keep_going_stepped_thread (struct thread_info *tp)
6974{
6975 struct frame_info *frame;
2ac7589c
PA
6976 struct execution_control_state ecss;
6977 struct execution_control_state *ecs = &ecss;
2adfaa28 6978
2ac7589c
PA
6979 /* If the stepping thread exited, then don't try to switch back and
6980 resume it, which could fail in several different ways depending
6981 on the target. Instead, just keep going.
2adfaa28 6982
2ac7589c
PA
6983 We can find a stepping dead thread in the thread list in two
6984 cases:
2adfaa28 6985
2ac7589c
PA
6986 - The target supports thread exit events, and when the target
6987 tries to delete the thread from the thread list, inferior_ptid
6988 pointed at the exiting thread. In such case, calling
6989 delete_thread does not really remove the thread from the list;
6990 instead, the thread is left listed, with 'exited' state.
64ce06e4 6991
2ac7589c
PA
6992 - The target's debug interface does not support thread exit
6993 events, and so we have no idea whatsoever if the previously
6994 stepping thread is still alive. For that reason, we need to
6995 synchronously query the target now. */
2adfaa28 6996
00431a78 6997 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
6998 {
6999 if (debug_infrun)
7000 fprintf_unfiltered (gdb_stdlog,
7001 "infrun: not resuming previously "
7002 "stepped thread, it has vanished\n");
7003
00431a78 7004 delete_thread (tp);
2ac7589c 7005 return 0;
c447ac0b 7006 }
2ac7589c
PA
7007
7008 if (debug_infrun)
7009 fprintf_unfiltered (gdb_stdlog,
7010 "infrun: resuming previously stepped thread\n");
7011
7012 reset_ecs (ecs, tp);
00431a78 7013 switch_to_thread (tp);
2ac7589c 7014
f2ffa92b 7015 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7016 frame = get_current_frame ();
2ac7589c
PA
7017
7018 /* If the PC of the thread we were trying to single-step has
7019 changed, then that thread has trapped or been signaled, but the
7020 event has not been reported to GDB yet. Re-poll the target
7021 looking for this particular thread's event (i.e. temporarily
7022 enable schedlock) by:
7023
7024 - setting a break at the current PC
7025 - resuming that particular thread, only (by setting trap
7026 expected)
7027
7028 This prevents us continuously moving the single-step breakpoint
7029 forward, one instruction at a time, overstepping. */
7030
f2ffa92b 7031 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7032 {
7033 ptid_t resume_ptid;
7034
7035 if (debug_infrun)
7036 fprintf_unfiltered (gdb_stdlog,
7037 "infrun: expected thread advanced also (%s -> %s)\n",
7038 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7039 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7040
7041 /* Clear the info of the previous step-over, as it's no longer
7042 valid (if the thread was trying to step over a breakpoint, it
7043 has already succeeded). It's what keep_going would do too,
7044 if we called it. Do this before trying to insert the sss
7045 breakpoint, otherwise if we were previously trying to step
7046 over this exact address in another thread, the breakpoint is
7047 skipped. */
7048 clear_step_over_info ();
7049 tp->control.trap_expected = 0;
7050
7051 insert_single_step_breakpoint (get_frame_arch (frame),
7052 get_frame_address_space (frame),
f2ffa92b 7053 tp->suspend.stop_pc);
2ac7589c 7054
372316f1 7055 tp->resumed = 1;
fbea99ea 7056 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7057 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7058 }
7059 else
7060 {
7061 if (debug_infrun)
7062 fprintf_unfiltered (gdb_stdlog,
7063 "infrun: expected thread still hasn't advanced\n");
7064
7065 keep_going_pass_signal (ecs);
7066 }
7067 return 1;
c447ac0b
PA
7068}
7069
8b061563
PA
7070/* Is thread TP in the middle of (software or hardware)
7071 single-stepping? (Note the result of this function must never be
7072 passed directly as target_resume's STEP parameter.) */
104c1213 7073
a289b8f6 7074static int
b3444185 7075currently_stepping (struct thread_info *tp)
a7212384 7076{
8358c15c
JK
7077 return ((tp->control.step_range_end
7078 && tp->control.step_resume_breakpoint == NULL)
7079 || tp->control.trap_expected
af48d08f 7080 || tp->stepped_breakpoint
8358c15c 7081 || bpstat_should_step ());
a7212384
UW
7082}
7083
b2175913
MS
7084/* Inferior has stepped into a subroutine call with source code that
7085 we should not step over. Do step to the first line of code in
7086 it. */
c2c6d25f
JM
7087
7088static void
568d6575
UW
7089handle_step_into_function (struct gdbarch *gdbarch,
7090 struct execution_control_state *ecs)
c2c6d25f 7091{
7e324e48
GB
7092 fill_in_stop_func (gdbarch, ecs);
7093
f2ffa92b
PA
7094 compunit_symtab *cust
7095 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7096 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7097 ecs->stop_func_start
7098 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7099
51abb421 7100 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7101 /* Use the step_resume_break to step until the end of the prologue,
7102 even if that involves jumps (as it seems to on the vax under
7103 4.2). */
7104 /* If the prologue ends in the middle of a source line, continue to
7105 the end of that source line (if it is still within the function).
7106 Otherwise, just go to end of prologue. */
2afb61aa
PA
7107 if (stop_func_sal.end
7108 && stop_func_sal.pc != ecs->stop_func_start
7109 && stop_func_sal.end < ecs->stop_func_end)
7110 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7111
2dbd5e30
KB
7112 /* Architectures which require breakpoint adjustment might not be able
7113 to place a breakpoint at the computed address. If so, the test
7114 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7115 ecs->stop_func_start to an address at which a breakpoint may be
7116 legitimately placed.
8fb3e588 7117
2dbd5e30
KB
7118 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7119 made, GDB will enter an infinite loop when stepping through
7120 optimized code consisting of VLIW instructions which contain
7121 subinstructions corresponding to different source lines. On
7122 FR-V, it's not permitted to place a breakpoint on any but the
7123 first subinstruction of a VLIW instruction. When a breakpoint is
7124 set, GDB will adjust the breakpoint address to the beginning of
7125 the VLIW instruction. Thus, we need to make the corresponding
7126 adjustment here when computing the stop address. */
8fb3e588 7127
568d6575 7128 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7129 {
7130 ecs->stop_func_start
568d6575 7131 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7132 ecs->stop_func_start);
2dbd5e30
KB
7133 }
7134
f2ffa92b 7135 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7136 {
7137 /* We are already there: stop now. */
bdc36728 7138 end_stepping_range (ecs);
c2c6d25f
JM
7139 return;
7140 }
7141 else
7142 {
7143 /* Put the step-breakpoint there and go until there. */
51abb421 7144 symtab_and_line sr_sal;
c2c6d25f
JM
7145 sr_sal.pc = ecs->stop_func_start;
7146 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7147 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7148
c2c6d25f 7149 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7150 some machines the prologue is where the new fp value is
7151 established. */
a6d9a66e 7152 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7153
7154 /* And make sure stepping stops right away then. */
16c381f0
JK
7155 ecs->event_thread->control.step_range_end
7156 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7157 }
7158 keep_going (ecs);
7159}
d4f3574e 7160
b2175913
MS
7161/* Inferior has stepped backward into a subroutine call with source
7162 code that we should not step over. Do step to the beginning of the
7163 last line of code in it. */
7164
7165static void
568d6575
UW
7166handle_step_into_function_backward (struct gdbarch *gdbarch,
7167 struct execution_control_state *ecs)
b2175913 7168{
43f3e411 7169 struct compunit_symtab *cust;
167e4384 7170 struct symtab_and_line stop_func_sal;
b2175913 7171
7e324e48
GB
7172 fill_in_stop_func (gdbarch, ecs);
7173
f2ffa92b 7174 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7175 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7176 ecs->stop_func_start
7177 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7178
f2ffa92b 7179 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7180
7181 /* OK, we're just going to keep stepping here. */
f2ffa92b 7182 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7183 {
7184 /* We're there already. Just stop stepping now. */
bdc36728 7185 end_stepping_range (ecs);
b2175913
MS
7186 }
7187 else
7188 {
7189 /* Else just reset the step range and keep going.
7190 No step-resume breakpoint, they don't work for
7191 epilogues, which can have multiple entry paths. */
16c381f0
JK
7192 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7193 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7194 keep_going (ecs);
7195 }
7196 return;
7197}
7198
d3169d93 7199/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7200 This is used to both functions and to skip over code. */
7201
7202static void
2c03e5be
PA
7203insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7204 struct symtab_and_line sr_sal,
7205 struct frame_id sr_id,
7206 enum bptype sr_type)
44cbf7b5 7207{
611c83ae
PA
7208 /* There should never be more than one step-resume or longjmp-resume
7209 breakpoint per thread, so we should never be setting a new
44cbf7b5 7210 step_resume_breakpoint when one is already active. */
8358c15c 7211 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7212 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7213
7214 if (debug_infrun)
7215 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7216 "infrun: inserting step-resume breakpoint at %s\n",
7217 paddress (gdbarch, sr_sal.pc));
d3169d93 7218
8358c15c 7219 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7220 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7221}
7222
9da8c2a0 7223void
2c03e5be
PA
7224insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7225 struct symtab_and_line sr_sal,
7226 struct frame_id sr_id)
7227{
7228 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7229 sr_sal, sr_id,
7230 bp_step_resume);
44cbf7b5 7231}
7ce450bd 7232
2c03e5be
PA
7233/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7234 This is used to skip a potential signal handler.
7ce450bd 7235
14e60db5
DJ
7236 This is called with the interrupted function's frame. The signal
7237 handler, when it returns, will resume the interrupted function at
7238 RETURN_FRAME.pc. */
d303a6c7
AC
7239
7240static void
2c03e5be 7241insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7242{
f4c1edd8 7243 gdb_assert (return_frame != NULL);
d303a6c7 7244
51abb421
PA
7245 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7246
7247 symtab_and_line sr_sal;
568d6575 7248 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7249 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7250 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7251
2c03e5be
PA
7252 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7253 get_stack_frame_id (return_frame),
7254 bp_hp_step_resume);
d303a6c7
AC
7255}
7256
2c03e5be
PA
7257/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7258 is used to skip a function after stepping into it (for "next" or if
7259 the called function has no debugging information).
14e60db5
DJ
7260
7261 The current function has almost always been reached by single
7262 stepping a call or return instruction. NEXT_FRAME belongs to the
7263 current function, and the breakpoint will be set at the caller's
7264 resume address.
7265
7266 This is a separate function rather than reusing
2c03e5be 7267 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7268 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7269 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7270
7271static void
7272insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7273{
14e60db5
DJ
7274 /* We shouldn't have gotten here if we don't know where the call site
7275 is. */
c7ce8faa 7276 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7277
51abb421 7278 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7279
51abb421 7280 symtab_and_line sr_sal;
c7ce8faa
DJ
7281 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7282 frame_unwind_caller_pc (next_frame));
14e60db5 7283 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7284 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7285
a6d9a66e 7286 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7287 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7288}
7289
611c83ae
PA
7290/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7291 new breakpoint at the target of a jmp_buf. The handling of
7292 longjmp-resume uses the same mechanisms used for handling
7293 "step-resume" breakpoints. */
7294
7295static void
a6d9a66e 7296insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7297{
e81a37f7
TT
7298 /* There should never be more than one longjmp-resume breakpoint per
7299 thread, so we should never be setting a new
611c83ae 7300 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7301 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7302
7303 if (debug_infrun)
7304 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7305 "infrun: inserting longjmp-resume breakpoint at %s\n",
7306 paddress (gdbarch, pc));
611c83ae 7307
e81a37f7 7308 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7309 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7310}
7311
186c406b
TT
7312/* Insert an exception resume breakpoint. TP is the thread throwing
7313 the exception. The block B is the block of the unwinder debug hook
7314 function. FRAME is the frame corresponding to the call to this
7315 function. SYM is the symbol of the function argument holding the
7316 target PC of the exception. */
7317
7318static void
7319insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7320 const struct block *b,
186c406b
TT
7321 struct frame_info *frame,
7322 struct symbol *sym)
7323{
a70b8144 7324 try
186c406b 7325 {
63e43d3a 7326 struct block_symbol vsym;
186c406b
TT
7327 struct value *value;
7328 CORE_ADDR handler;
7329 struct breakpoint *bp;
7330
987012b8 7331 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7332 b, VAR_DOMAIN);
63e43d3a 7333 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7334 /* If the value was optimized out, revert to the old behavior. */
7335 if (! value_optimized_out (value))
7336 {
7337 handler = value_as_address (value);
7338
7339 if (debug_infrun)
7340 fprintf_unfiltered (gdb_stdlog,
7341 "infrun: exception resume at %lx\n",
7342 (unsigned long) handler);
7343
7344 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7345 handler,
7346 bp_exception_resume).release ();
c70a6932
JK
7347
7348 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7349 frame = NULL;
7350
5d5658a1 7351 bp->thread = tp->global_num;
186c406b
TT
7352 inferior_thread ()->control.exception_resume_breakpoint = bp;
7353 }
7354 }
230d2906 7355 catch (const gdb_exception_error &e)
492d29ea
PA
7356 {
7357 /* We want to ignore errors here. */
7358 }
186c406b
TT
7359}
7360
28106bc2
SDJ
7361/* A helper for check_exception_resume that sets an
7362 exception-breakpoint based on a SystemTap probe. */
7363
7364static void
7365insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7366 const struct bound_probe *probe,
28106bc2
SDJ
7367 struct frame_info *frame)
7368{
7369 struct value *arg_value;
7370 CORE_ADDR handler;
7371 struct breakpoint *bp;
7372
7373 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7374 if (!arg_value)
7375 return;
7376
7377 handler = value_as_address (arg_value);
7378
7379 if (debug_infrun)
7380 fprintf_unfiltered (gdb_stdlog,
7381 "infrun: exception resume at %s\n",
6bac7473 7382 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7383 handler));
7384
7385 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7386 handler, bp_exception_resume).release ();
5d5658a1 7387 bp->thread = tp->global_num;
28106bc2
SDJ
7388 inferior_thread ()->control.exception_resume_breakpoint = bp;
7389}
7390
186c406b
TT
7391/* This is called when an exception has been intercepted. Check to
7392 see whether the exception's destination is of interest, and if so,
7393 set an exception resume breakpoint there. */
7394
7395static void
7396check_exception_resume (struct execution_control_state *ecs,
28106bc2 7397 struct frame_info *frame)
186c406b 7398{
729662a5 7399 struct bound_probe probe;
28106bc2
SDJ
7400 struct symbol *func;
7401
7402 /* First see if this exception unwinding breakpoint was set via a
7403 SystemTap probe point. If so, the probe has two arguments: the
7404 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7405 set a breakpoint there. */
6bac7473 7406 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7407 if (probe.prob)
28106bc2 7408 {
729662a5 7409 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7410 return;
7411 }
7412
7413 func = get_frame_function (frame);
7414 if (!func)
7415 return;
186c406b 7416
a70b8144 7417 try
186c406b 7418 {
3977b71f 7419 const struct block *b;
8157b174 7420 struct block_iterator iter;
186c406b
TT
7421 struct symbol *sym;
7422 int argno = 0;
7423
7424 /* The exception breakpoint is a thread-specific breakpoint on
7425 the unwinder's debug hook, declared as:
7426
7427 void _Unwind_DebugHook (void *cfa, void *handler);
7428
7429 The CFA argument indicates the frame to which control is
7430 about to be transferred. HANDLER is the destination PC.
7431
7432 We ignore the CFA and set a temporary breakpoint at HANDLER.
7433 This is not extremely efficient but it avoids issues in gdb
7434 with computing the DWARF CFA, and it also works even in weird
7435 cases such as throwing an exception from inside a signal
7436 handler. */
7437
7438 b = SYMBOL_BLOCK_VALUE (func);
7439 ALL_BLOCK_SYMBOLS (b, iter, sym)
7440 {
7441 if (!SYMBOL_IS_ARGUMENT (sym))
7442 continue;
7443
7444 if (argno == 0)
7445 ++argno;
7446 else
7447 {
7448 insert_exception_resume_breakpoint (ecs->event_thread,
7449 b, frame, sym);
7450 break;
7451 }
7452 }
7453 }
230d2906 7454 catch (const gdb_exception_error &e)
492d29ea
PA
7455 {
7456 }
186c406b
TT
7457}
7458
104c1213 7459static void
22bcd14b 7460stop_waiting (struct execution_control_state *ecs)
104c1213 7461{
527159b7 7462 if (debug_infrun)
22bcd14b 7463 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7464
cd0fc7c3
SS
7465 /* Let callers know we don't want to wait for the inferior anymore. */
7466 ecs->wait_some_more = 0;
fbea99ea
PA
7467
7468 /* If all-stop, but the target is always in non-stop mode, stop all
7469 threads now that we're presenting the stop to the user. */
7470 if (!non_stop && target_is_non_stop_p ())
7471 stop_all_threads ();
cd0fc7c3
SS
7472}
7473
4d9d9d04
PA
7474/* Like keep_going, but passes the signal to the inferior, even if the
7475 signal is set to nopass. */
d4f3574e
SS
7476
7477static void
4d9d9d04 7478keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7479{
d7e15655 7480 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7481 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7482
d4f3574e 7483 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7484 ecs->event_thread->prev_pc
00431a78 7485 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7486
4d9d9d04 7487 if (ecs->event_thread->control.trap_expected)
d4f3574e 7488 {
4d9d9d04
PA
7489 struct thread_info *tp = ecs->event_thread;
7490
7491 if (debug_infrun)
7492 fprintf_unfiltered (gdb_stdlog,
7493 "infrun: %s has trap_expected set, "
7494 "resuming to collect trap\n",
a068643d 7495 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7496
a9ba6bae
PA
7497 /* We haven't yet gotten our trap, and either: intercepted a
7498 non-signal event (e.g., a fork); or took a signal which we
7499 are supposed to pass through to the inferior. Simply
7500 continue. */
64ce06e4 7501 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7502 }
372316f1
PA
7503 else if (step_over_info_valid_p ())
7504 {
7505 /* Another thread is stepping over a breakpoint in-line. If
7506 this thread needs a step-over too, queue the request. In
7507 either case, this resume must be deferred for later. */
7508 struct thread_info *tp = ecs->event_thread;
7509
7510 if (ecs->hit_singlestep_breakpoint
7511 || thread_still_needs_step_over (tp))
7512 {
7513 if (debug_infrun)
7514 fprintf_unfiltered (gdb_stdlog,
7515 "infrun: step-over already in progress: "
7516 "step-over for %s deferred\n",
a068643d 7517 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7518 thread_step_over_chain_enqueue (tp);
7519 }
7520 else
7521 {
7522 if (debug_infrun)
7523 fprintf_unfiltered (gdb_stdlog,
7524 "infrun: step-over in progress: "
7525 "resume of %s deferred\n",
a068643d 7526 target_pid_to_str (tp->ptid).c_str ());
372316f1 7527 }
372316f1 7528 }
d4f3574e
SS
7529 else
7530 {
31e77af2 7531 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7532 int remove_bp;
7533 int remove_wps;
8d297bbf 7534 step_over_what step_what;
31e77af2 7535
d4f3574e 7536 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7537 anyway (if we got a signal, the user asked it be passed to
7538 the child)
7539 -- or --
7540 We got our expected trap, but decided we should resume from
7541 it.
d4f3574e 7542
a9ba6bae 7543 We're going to run this baby now!
d4f3574e 7544
c36b740a
VP
7545 Note that insert_breakpoints won't try to re-insert
7546 already inserted breakpoints. Therefore, we don't
7547 care if breakpoints were already inserted, or not. */
a9ba6bae 7548
31e77af2
PA
7549 /* If we need to step over a breakpoint, and we're not using
7550 displaced stepping to do so, insert all breakpoints
7551 (watchpoints, etc.) but the one we're stepping over, step one
7552 instruction, and then re-insert the breakpoint when that step
7553 is finished. */
963f9c80 7554
6c4cfb24
PA
7555 step_what = thread_still_needs_step_over (ecs->event_thread);
7556
963f9c80 7557 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7558 || (step_what & STEP_OVER_BREAKPOINT));
7559 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7560
cb71640d
PA
7561 /* We can't use displaced stepping if we need to step past a
7562 watchpoint. The instruction copied to the scratch pad would
7563 still trigger the watchpoint. */
7564 if (remove_bp
3fc8eb30 7565 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7566 {
a01bda52 7567 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7568 regcache_read_pc (regcache), remove_wps,
7569 ecs->event_thread->global_num);
45e8c884 7570 }
963f9c80 7571 else if (remove_wps)
21edc42f 7572 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7573
7574 /* If we now need to do an in-line step-over, we need to stop
7575 all other threads. Note this must be done before
7576 insert_breakpoints below, because that removes the breakpoint
7577 we're about to step over, otherwise other threads could miss
7578 it. */
fbea99ea 7579 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7580 stop_all_threads ();
abbb1732 7581
31e77af2 7582 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7583 try
31e77af2
PA
7584 {
7585 insert_breakpoints ();
7586 }
230d2906 7587 catch (const gdb_exception_error &e)
31e77af2
PA
7588 {
7589 exception_print (gdb_stderr, e);
22bcd14b 7590 stop_waiting (ecs);
bdf2a94a 7591 clear_step_over_info ();
31e77af2 7592 return;
d4f3574e
SS
7593 }
7594
963f9c80 7595 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7596
64ce06e4 7597 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7598 }
7599
488f131b 7600 prepare_to_wait (ecs);
d4f3574e
SS
7601}
7602
4d9d9d04
PA
7603/* Called when we should continue running the inferior, because the
7604 current event doesn't cause a user visible stop. This does the
7605 resuming part; waiting for the next event is done elsewhere. */
7606
7607static void
7608keep_going (struct execution_control_state *ecs)
7609{
7610 if (ecs->event_thread->control.trap_expected
7611 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7612 ecs->event_thread->control.trap_expected = 0;
7613
7614 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7615 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7616 keep_going_pass_signal (ecs);
7617}
7618
104c1213
JM
7619/* This function normally comes after a resume, before
7620 handle_inferior_event exits. It takes care of any last bits of
7621 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7622
104c1213
JM
7623static void
7624prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7625{
527159b7 7626 if (debug_infrun)
8a9de0e4 7627 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7628
104c1213 7629 ecs->wait_some_more = 1;
0b333c5e
PA
7630
7631 if (!target_is_async_p ())
7632 mark_infrun_async_event_handler ();
c906108c 7633}
11cf8741 7634
fd664c91 7635/* We are done with the step range of a step/next/si/ni command.
b57bacec 7636 Called once for each n of a "step n" operation. */
fd664c91
PA
7637
7638static void
bdc36728 7639end_stepping_range (struct execution_control_state *ecs)
fd664c91 7640{
bdc36728 7641 ecs->event_thread->control.stop_step = 1;
bdc36728 7642 stop_waiting (ecs);
fd664c91
PA
7643}
7644
33d62d64
JK
7645/* Several print_*_reason functions to print why the inferior has stopped.
7646 We always print something when the inferior exits, or receives a signal.
7647 The rest of the cases are dealt with later on in normal_stop and
7648 print_it_typical. Ideally there should be a call to one of these
7649 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7650 stop_waiting is called.
33d62d64 7651
fd664c91
PA
7652 Note that we don't call these directly, instead we delegate that to
7653 the interpreters, through observers. Interpreters then call these
7654 with whatever uiout is right. */
33d62d64 7655
fd664c91
PA
7656void
7657print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7658{
fd664c91 7659 /* For CLI-like interpreters, print nothing. */
33d62d64 7660
112e8700 7661 if (uiout->is_mi_like_p ())
fd664c91 7662 {
112e8700 7663 uiout->field_string ("reason",
fd664c91
PA
7664 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7665 }
7666}
33d62d64 7667
fd664c91
PA
7668void
7669print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7670{
33d62d64 7671 annotate_signalled ();
112e8700
SM
7672 if (uiout->is_mi_like_p ())
7673 uiout->field_string
7674 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7675 uiout->text ("\nProgram terminated with signal ");
33d62d64 7676 annotate_signal_name ();
112e8700 7677 uiout->field_string ("signal-name",
2ea28649 7678 gdb_signal_to_name (siggnal));
33d62d64 7679 annotate_signal_name_end ();
112e8700 7680 uiout->text (", ");
33d62d64 7681 annotate_signal_string ();
112e8700 7682 uiout->field_string ("signal-meaning",
2ea28649 7683 gdb_signal_to_string (siggnal));
33d62d64 7684 annotate_signal_string_end ();
112e8700
SM
7685 uiout->text (".\n");
7686 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7687}
7688
fd664c91
PA
7689void
7690print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7691{
fda326dd 7692 struct inferior *inf = current_inferior ();
a068643d 7693 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7694
33d62d64
JK
7695 annotate_exited (exitstatus);
7696 if (exitstatus)
7697 {
112e8700
SM
7698 if (uiout->is_mi_like_p ())
7699 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
7700 std::string exit_code_str
7701 = string_printf ("0%o", (unsigned int) exitstatus);
7702 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7703 plongest (inf->num), pidstr.c_str (),
7704 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
7705 }
7706 else
11cf8741 7707 {
112e8700
SM
7708 if (uiout->is_mi_like_p ())
7709 uiout->field_string
7710 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
7711 uiout->message ("[Inferior %s (%s) exited normally]\n",
7712 plongest (inf->num), pidstr.c_str ());
33d62d64 7713 }
33d62d64
JK
7714}
7715
012b3a21
WT
7716/* Some targets/architectures can do extra processing/display of
7717 segmentation faults. E.g., Intel MPX boundary faults.
7718 Call the architecture dependent function to handle the fault. */
7719
7720static void
7721handle_segmentation_fault (struct ui_out *uiout)
7722{
7723 struct regcache *regcache = get_current_regcache ();
ac7936df 7724 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7725
7726 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7727 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7728}
7729
fd664c91
PA
7730void
7731print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7732{
f303dbd6
PA
7733 struct thread_info *thr = inferior_thread ();
7734
33d62d64
JK
7735 annotate_signal ();
7736
112e8700 7737 if (uiout->is_mi_like_p ())
f303dbd6
PA
7738 ;
7739 else if (show_thread_that_caused_stop ())
33d62d64 7740 {
f303dbd6 7741 const char *name;
33d62d64 7742
112e8700 7743 uiout->text ("\nThread ");
33eca680 7744 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
7745
7746 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7747 if (name != NULL)
7748 {
112e8700 7749 uiout->text (" \"");
33eca680 7750 uiout->field_string ("name", name);
112e8700 7751 uiout->text ("\"");
f303dbd6 7752 }
33d62d64 7753 }
f303dbd6 7754 else
112e8700 7755 uiout->text ("\nProgram");
f303dbd6 7756
112e8700
SM
7757 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7758 uiout->text (" stopped");
33d62d64
JK
7759 else
7760 {
112e8700 7761 uiout->text (" received signal ");
8b93c638 7762 annotate_signal_name ();
112e8700
SM
7763 if (uiout->is_mi_like_p ())
7764 uiout->field_string
7765 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7766 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7767 annotate_signal_name_end ();
112e8700 7768 uiout->text (", ");
8b93c638 7769 annotate_signal_string ();
112e8700 7770 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7771
7772 if (siggnal == GDB_SIGNAL_SEGV)
7773 handle_segmentation_fault (uiout);
7774
8b93c638 7775 annotate_signal_string_end ();
33d62d64 7776 }
112e8700 7777 uiout->text (".\n");
33d62d64 7778}
252fbfc8 7779
fd664c91
PA
7780void
7781print_no_history_reason (struct ui_out *uiout)
33d62d64 7782{
112e8700 7783 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7784}
43ff13b4 7785
0c7e1a46
PA
7786/* Print current location without a level number, if we have changed
7787 functions or hit a breakpoint. Print source line if we have one.
7788 bpstat_print contains the logic deciding in detail what to print,
7789 based on the event(s) that just occurred. */
7790
243a9253
PA
7791static void
7792print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7793{
7794 int bpstat_ret;
f486487f 7795 enum print_what source_flag;
0c7e1a46
PA
7796 int do_frame_printing = 1;
7797 struct thread_info *tp = inferior_thread ();
7798
7799 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7800 switch (bpstat_ret)
7801 {
7802 case PRINT_UNKNOWN:
7803 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7804 should) carry around the function and does (or should) use
7805 that when doing a frame comparison. */
7806 if (tp->control.stop_step
7807 && frame_id_eq (tp->control.step_frame_id,
7808 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7809 && (tp->control.step_start_function
7810 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7811 {
7812 /* Finished step, just print source line. */
7813 source_flag = SRC_LINE;
7814 }
7815 else
7816 {
7817 /* Print location and source line. */
7818 source_flag = SRC_AND_LOC;
7819 }
7820 break;
7821 case PRINT_SRC_AND_LOC:
7822 /* Print location and source line. */
7823 source_flag = SRC_AND_LOC;
7824 break;
7825 case PRINT_SRC_ONLY:
7826 source_flag = SRC_LINE;
7827 break;
7828 case PRINT_NOTHING:
7829 /* Something bogus. */
7830 source_flag = SRC_LINE;
7831 do_frame_printing = 0;
7832 break;
7833 default:
7834 internal_error (__FILE__, __LINE__, _("Unknown value."));
7835 }
7836
7837 /* The behavior of this routine with respect to the source
7838 flag is:
7839 SRC_LINE: Print only source line
7840 LOCATION: Print only location
7841 SRC_AND_LOC: Print location and source line. */
7842 if (do_frame_printing)
7843 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7844}
7845
243a9253
PA
7846/* See infrun.h. */
7847
7848void
4c7d57e7 7849print_stop_event (struct ui_out *uiout, bool displays)
243a9253 7850{
243a9253
PA
7851 struct target_waitstatus last;
7852 ptid_t last_ptid;
7853 struct thread_info *tp;
7854
7855 get_last_target_status (&last_ptid, &last);
7856
67ad9399
TT
7857 {
7858 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7859
67ad9399 7860 print_stop_location (&last);
243a9253 7861
67ad9399 7862 /* Display the auto-display expressions. */
4c7d57e7
TT
7863 if (displays)
7864 do_displays ();
67ad9399 7865 }
243a9253
PA
7866
7867 tp = inferior_thread ();
7868 if (tp->thread_fsm != NULL
46e3ed7f 7869 && tp->thread_fsm->finished_p ())
243a9253
PA
7870 {
7871 struct return_value_info *rv;
7872
46e3ed7f 7873 rv = tp->thread_fsm->return_value ();
243a9253
PA
7874 if (rv != NULL)
7875 print_return_value (uiout, rv);
7876 }
0c7e1a46
PA
7877}
7878
388a7084
PA
7879/* See infrun.h. */
7880
7881void
7882maybe_remove_breakpoints (void)
7883{
7884 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7885 {
7886 if (remove_breakpoints ())
7887 {
223ffa71 7888 target_terminal::ours_for_output ();
388a7084
PA
7889 printf_filtered (_("Cannot remove breakpoints because "
7890 "program is no longer writable.\nFurther "
7891 "execution is probably impossible.\n"));
7892 }
7893 }
7894}
7895
4c2f2a79
PA
7896/* The execution context that just caused a normal stop. */
7897
7898struct stop_context
7899{
2d844eaf
TT
7900 stop_context ();
7901 ~stop_context ();
7902
7903 DISABLE_COPY_AND_ASSIGN (stop_context);
7904
7905 bool changed () const;
7906
4c2f2a79
PA
7907 /* The stop ID. */
7908 ULONGEST stop_id;
c906108c 7909
4c2f2a79 7910 /* The event PTID. */
c906108c 7911
4c2f2a79
PA
7912 ptid_t ptid;
7913
7914 /* If stopp for a thread event, this is the thread that caused the
7915 stop. */
7916 struct thread_info *thread;
7917
7918 /* The inferior that caused the stop. */
7919 int inf_num;
7920};
7921
2d844eaf 7922/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7923 takes a strong reference to the thread. */
7924
2d844eaf 7925stop_context::stop_context ()
4c2f2a79 7926{
2d844eaf
TT
7927 stop_id = get_stop_id ();
7928 ptid = inferior_ptid;
7929 inf_num = current_inferior ()->num;
4c2f2a79 7930
d7e15655 7931 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7932 {
7933 /* Take a strong reference so that the thread can't be deleted
7934 yet. */
2d844eaf
TT
7935 thread = inferior_thread ();
7936 thread->incref ();
4c2f2a79
PA
7937 }
7938 else
2d844eaf 7939 thread = NULL;
4c2f2a79
PA
7940}
7941
7942/* Release a stop context previously created with save_stop_context.
7943 Releases the strong reference to the thread as well. */
7944
2d844eaf 7945stop_context::~stop_context ()
4c2f2a79 7946{
2d844eaf
TT
7947 if (thread != NULL)
7948 thread->decref ();
4c2f2a79
PA
7949}
7950
7951/* Return true if the current context no longer matches the saved stop
7952 context. */
7953
2d844eaf
TT
7954bool
7955stop_context::changed () const
7956{
7957 if (ptid != inferior_ptid)
7958 return true;
7959 if (inf_num != current_inferior ()->num)
7960 return true;
7961 if (thread != NULL && thread->state != THREAD_STOPPED)
7962 return true;
7963 if (get_stop_id () != stop_id)
7964 return true;
7965 return false;
4c2f2a79
PA
7966}
7967
7968/* See infrun.h. */
7969
7970int
96baa820 7971normal_stop (void)
c906108c 7972{
73b65bb0
DJ
7973 struct target_waitstatus last;
7974 ptid_t last_ptid;
7975
7976 get_last_target_status (&last_ptid, &last);
7977
4c2f2a79
PA
7978 new_stop_id ();
7979
29f49a6a
PA
7980 /* If an exception is thrown from this point on, make sure to
7981 propagate GDB's knowledge of the executing state to the
7982 frontend/user running state. A QUIT is an easy exception to see
7983 here, so do this before any filtered output. */
731f534f
PA
7984
7985 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7986
c35b1492 7987 if (!non_stop)
731f534f 7988 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
7989 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7990 || last.kind == TARGET_WAITKIND_EXITED)
7991 {
7992 /* On some targets, we may still have live threads in the
7993 inferior when we get a process exit event. E.g., for
7994 "checkpoint", when the current checkpoint/fork exits,
7995 linux-fork.c automatically switches to another fork from
7996 within target_mourn_inferior. */
731f534f
PA
7997 if (inferior_ptid != null_ptid)
7998 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
7999 }
8000 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8001 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8002
b57bacec
PA
8003 /* As we're presenting a stop, and potentially removing breakpoints,
8004 update the thread list so we can tell whether there are threads
8005 running on the target. With target remote, for example, we can
8006 only learn about new threads when we explicitly update the thread
8007 list. Do this before notifying the interpreters about signal
8008 stops, end of stepping ranges, etc., so that the "new thread"
8009 output is emitted before e.g., "Program received signal FOO",
8010 instead of after. */
8011 update_thread_list ();
8012
8013 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8014 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8015
c906108c
SS
8016 /* As with the notification of thread events, we want to delay
8017 notifying the user that we've switched thread context until
8018 the inferior actually stops.
8019
73b65bb0
DJ
8020 There's no point in saying anything if the inferior has exited.
8021 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8022 "received a signal".
8023
8024 Also skip saying anything in non-stop mode. In that mode, as we
8025 don't want GDB to switch threads behind the user's back, to avoid
8026 races where the user is typing a command to apply to thread x,
8027 but GDB switches to thread y before the user finishes entering
8028 the command, fetch_inferior_event installs a cleanup to restore
8029 the current thread back to the thread the user had selected right
8030 after this event is handled, so we're not really switching, only
8031 informing of a stop. */
4f8d22e3 8032 if (!non_stop
731f534f 8033 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8034 && target_has_execution
8035 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8036 && last.kind != TARGET_WAITKIND_EXITED
8037 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8038 {
0e454242 8039 SWITCH_THRU_ALL_UIS ()
3b12939d 8040 {
223ffa71 8041 target_terminal::ours_for_output ();
3b12939d 8042 printf_filtered (_("[Switching to %s]\n"),
a068643d 8043 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8044 annotate_thread_changed ();
8045 }
39f77062 8046 previous_inferior_ptid = inferior_ptid;
c906108c 8047 }
c906108c 8048
0e5bf2a8
PA
8049 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8050 {
0e454242 8051 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8052 if (current_ui->prompt_state == PROMPT_BLOCKED)
8053 {
223ffa71 8054 target_terminal::ours_for_output ();
3b12939d
PA
8055 printf_filtered (_("No unwaited-for children left.\n"));
8056 }
0e5bf2a8
PA
8057 }
8058
b57bacec 8059 /* Note: this depends on the update_thread_list call above. */
388a7084 8060 maybe_remove_breakpoints ();
c906108c 8061
c906108c
SS
8062 /* If an auto-display called a function and that got a signal,
8063 delete that auto-display to avoid an infinite recursion. */
8064
8065 if (stopped_by_random_signal)
8066 disable_current_display ();
8067
0e454242 8068 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8069 {
8070 async_enable_stdin ();
8071 }
c906108c 8072
388a7084 8073 /* Let the user/frontend see the threads as stopped. */
731f534f 8074 maybe_finish_thread_state.reset ();
388a7084
PA
8075
8076 /* Select innermost stack frame - i.e., current frame is frame 0,
8077 and current location is based on that. Handle the case where the
8078 dummy call is returning after being stopped. E.g. the dummy call
8079 previously hit a breakpoint. (If the dummy call returns
8080 normally, we won't reach here.) Do this before the stop hook is
8081 run, so that it doesn't get to see the temporary dummy frame,
8082 which is not where we'll present the stop. */
8083 if (has_stack_frames ())
8084 {
8085 if (stop_stack_dummy == STOP_STACK_DUMMY)
8086 {
8087 /* Pop the empty frame that contains the stack dummy. This
8088 also restores inferior state prior to the call (struct
8089 infcall_suspend_state). */
8090 struct frame_info *frame = get_current_frame ();
8091
8092 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8093 frame_pop (frame);
8094 /* frame_pop calls reinit_frame_cache as the last thing it
8095 does which means there's now no selected frame. */
8096 }
8097
8098 select_frame (get_current_frame ());
8099
8100 /* Set the current source location. */
8101 set_current_sal_from_frame (get_current_frame ());
8102 }
dd7e2d2b
PA
8103
8104 /* Look up the hook_stop and run it (CLI internally handles problem
8105 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8106 if (stop_command != NULL)
8107 {
2d844eaf 8108 stop_context saved_context;
4c2f2a79 8109
a70b8144 8110 try
bf469271
PA
8111 {
8112 execute_cmd_pre_hook (stop_command);
8113 }
230d2906 8114 catch (const gdb_exception &ex)
bf469271
PA
8115 {
8116 exception_fprintf (gdb_stderr, ex,
8117 "Error while running hook_stop:\n");
8118 }
4c2f2a79
PA
8119
8120 /* If the stop hook resumes the target, then there's no point in
8121 trying to notify about the previous stop; its context is
8122 gone. Likewise if the command switches thread or inferior --
8123 the observers would print a stop for the wrong
8124 thread/inferior. */
2d844eaf
TT
8125 if (saved_context.changed ())
8126 return 1;
4c2f2a79 8127 }
dd7e2d2b 8128
388a7084
PA
8129 /* Notify observers about the stop. This is where the interpreters
8130 print the stop event. */
d7e15655 8131 if (inferior_ptid != null_ptid)
76727919 8132 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8133 stop_print_frame);
8134 else
76727919 8135 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8136
243a9253
PA
8137 annotate_stopped ();
8138
48844aa6
PA
8139 if (target_has_execution)
8140 {
8141 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8142 && last.kind != TARGET_WAITKIND_EXITED
8143 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8144 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8145 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8146 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8147 }
6c95b8df
PA
8148
8149 /* Try to get rid of automatically added inferiors that are no
8150 longer needed. Keeping those around slows down things linearly.
8151 Note that this never removes the current inferior. */
8152 prune_inferiors ();
4c2f2a79
PA
8153
8154 return 0;
c906108c 8155}
c906108c 8156\f
c5aa993b 8157int
96baa820 8158signal_stop_state (int signo)
c906108c 8159{
d6b48e9c 8160 return signal_stop[signo];
c906108c
SS
8161}
8162
c5aa993b 8163int
96baa820 8164signal_print_state (int signo)
c906108c
SS
8165{
8166 return signal_print[signo];
8167}
8168
c5aa993b 8169int
96baa820 8170signal_pass_state (int signo)
c906108c
SS
8171{
8172 return signal_program[signo];
8173}
8174
2455069d
UW
8175static void
8176signal_cache_update (int signo)
8177{
8178 if (signo == -1)
8179 {
a493e3e2 8180 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8181 signal_cache_update (signo);
8182
8183 return;
8184 }
8185
8186 signal_pass[signo] = (signal_stop[signo] == 0
8187 && signal_print[signo] == 0
ab04a2af
TT
8188 && signal_program[signo] == 1
8189 && signal_catch[signo] == 0);
2455069d
UW
8190}
8191
488f131b 8192int
7bda5e4a 8193signal_stop_update (int signo, int state)
d4f3574e
SS
8194{
8195 int ret = signal_stop[signo];
abbb1732 8196
d4f3574e 8197 signal_stop[signo] = state;
2455069d 8198 signal_cache_update (signo);
d4f3574e
SS
8199 return ret;
8200}
8201
488f131b 8202int
7bda5e4a 8203signal_print_update (int signo, int state)
d4f3574e
SS
8204{
8205 int ret = signal_print[signo];
abbb1732 8206
d4f3574e 8207 signal_print[signo] = state;
2455069d 8208 signal_cache_update (signo);
d4f3574e
SS
8209 return ret;
8210}
8211
488f131b 8212int
7bda5e4a 8213signal_pass_update (int signo, int state)
d4f3574e
SS
8214{
8215 int ret = signal_program[signo];
abbb1732 8216
d4f3574e 8217 signal_program[signo] = state;
2455069d 8218 signal_cache_update (signo);
d4f3574e
SS
8219 return ret;
8220}
8221
ab04a2af
TT
8222/* Update the global 'signal_catch' from INFO and notify the
8223 target. */
8224
8225void
8226signal_catch_update (const unsigned int *info)
8227{
8228 int i;
8229
8230 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8231 signal_catch[i] = info[i] > 0;
8232 signal_cache_update (-1);
adc6a863 8233 target_pass_signals (signal_pass);
ab04a2af
TT
8234}
8235
c906108c 8236static void
96baa820 8237sig_print_header (void)
c906108c 8238{
3e43a32a
MS
8239 printf_filtered (_("Signal Stop\tPrint\tPass "
8240 "to program\tDescription\n"));
c906108c
SS
8241}
8242
8243static void
2ea28649 8244sig_print_info (enum gdb_signal oursig)
c906108c 8245{
2ea28649 8246 const char *name = gdb_signal_to_name (oursig);
c906108c 8247 int name_padding = 13 - strlen (name);
96baa820 8248
c906108c
SS
8249 if (name_padding <= 0)
8250 name_padding = 0;
8251
8252 printf_filtered ("%s", name);
488f131b 8253 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8254 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8255 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8256 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8257 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8258}
8259
8260/* Specify how various signals in the inferior should be handled. */
8261
8262static void
0b39b52e 8263handle_command (const char *args, int from_tty)
c906108c 8264{
c906108c 8265 int digits, wordlen;
b926417a 8266 int sigfirst, siglast;
2ea28649 8267 enum gdb_signal oursig;
c906108c 8268 int allsigs;
c906108c
SS
8269
8270 if (args == NULL)
8271 {
e2e0b3e5 8272 error_no_arg (_("signal to handle"));
c906108c
SS
8273 }
8274
1777feb0 8275 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8276
adc6a863
PA
8277 const size_t nsigs = GDB_SIGNAL_LAST;
8278 unsigned char sigs[nsigs] {};
c906108c 8279
1777feb0 8280 /* Break the command line up into args. */
c906108c 8281
773a1edc 8282 gdb_argv built_argv (args);
c906108c
SS
8283
8284 /* Walk through the args, looking for signal oursigs, signal names, and
8285 actions. Signal numbers and signal names may be interspersed with
8286 actions, with the actions being performed for all signals cumulatively
1777feb0 8287 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8288
773a1edc 8289 for (char *arg : built_argv)
c906108c 8290 {
773a1edc
TT
8291 wordlen = strlen (arg);
8292 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8293 {;
8294 }
8295 allsigs = 0;
8296 sigfirst = siglast = -1;
8297
773a1edc 8298 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8299 {
8300 /* Apply action to all signals except those used by the
1777feb0 8301 debugger. Silently skip those. */
c906108c
SS
8302 allsigs = 1;
8303 sigfirst = 0;
8304 siglast = nsigs - 1;
8305 }
773a1edc 8306 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8307 {
8308 SET_SIGS (nsigs, sigs, signal_stop);
8309 SET_SIGS (nsigs, sigs, signal_print);
8310 }
773a1edc 8311 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8312 {
8313 UNSET_SIGS (nsigs, sigs, signal_program);
8314 }
773a1edc 8315 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8316 {
8317 SET_SIGS (nsigs, sigs, signal_print);
8318 }
773a1edc 8319 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8320 {
8321 SET_SIGS (nsigs, sigs, signal_program);
8322 }
773a1edc 8323 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8324 {
8325 UNSET_SIGS (nsigs, sigs, signal_stop);
8326 }
773a1edc 8327 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8328 {
8329 SET_SIGS (nsigs, sigs, signal_program);
8330 }
773a1edc 8331 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8332 {
8333 UNSET_SIGS (nsigs, sigs, signal_print);
8334 UNSET_SIGS (nsigs, sigs, signal_stop);
8335 }
773a1edc 8336 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8337 {
8338 UNSET_SIGS (nsigs, sigs, signal_program);
8339 }
8340 else if (digits > 0)
8341 {
8342 /* It is numeric. The numeric signal refers to our own
8343 internal signal numbering from target.h, not to host/target
8344 signal number. This is a feature; users really should be
8345 using symbolic names anyway, and the common ones like
8346 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8347
8348 sigfirst = siglast = (int)
773a1edc
TT
8349 gdb_signal_from_command (atoi (arg));
8350 if (arg[digits] == '-')
c906108c
SS
8351 {
8352 siglast = (int)
773a1edc 8353 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8354 }
8355 if (sigfirst > siglast)
8356 {
1777feb0 8357 /* Bet he didn't figure we'd think of this case... */
b926417a 8358 std::swap (sigfirst, siglast);
c906108c
SS
8359 }
8360 }
8361 else
8362 {
773a1edc 8363 oursig = gdb_signal_from_name (arg);
a493e3e2 8364 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8365 {
8366 sigfirst = siglast = (int) oursig;
8367 }
8368 else
8369 {
8370 /* Not a number and not a recognized flag word => complain. */
773a1edc 8371 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8372 }
8373 }
8374
8375 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8376 which signals to apply actions to. */
c906108c 8377
b926417a 8378 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8379 {
2ea28649 8380 switch ((enum gdb_signal) signum)
c906108c 8381 {
a493e3e2
PA
8382 case GDB_SIGNAL_TRAP:
8383 case GDB_SIGNAL_INT:
c906108c
SS
8384 if (!allsigs && !sigs[signum])
8385 {
9e2f0ad4 8386 if (query (_("%s is used by the debugger.\n\
3e43a32a 8387Are you sure you want to change it? "),
2ea28649 8388 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8389 {
8390 sigs[signum] = 1;
8391 }
8392 else
c119e040 8393 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8394 }
8395 break;
a493e3e2
PA
8396 case GDB_SIGNAL_0:
8397 case GDB_SIGNAL_DEFAULT:
8398 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8399 /* Make sure that "all" doesn't print these. */
8400 break;
8401 default:
8402 sigs[signum] = 1;
8403 break;
8404 }
8405 }
c906108c
SS
8406 }
8407
b926417a 8408 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8409 if (sigs[signum])
8410 {
2455069d 8411 signal_cache_update (-1);
adc6a863
PA
8412 target_pass_signals (signal_pass);
8413 target_program_signals (signal_program);
c906108c 8414
3a031f65
PA
8415 if (from_tty)
8416 {
8417 /* Show the results. */
8418 sig_print_header ();
8419 for (; signum < nsigs; signum++)
8420 if (sigs[signum])
aead7601 8421 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8422 }
8423
8424 break;
8425 }
c906108c
SS
8426}
8427
de0bea00
MF
8428/* Complete the "handle" command. */
8429
eb3ff9a5 8430static void
de0bea00 8431handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8432 completion_tracker &tracker,
6f937416 8433 const char *text, const char *word)
de0bea00 8434{
de0bea00
MF
8435 static const char * const keywords[] =
8436 {
8437 "all",
8438 "stop",
8439 "ignore",
8440 "print",
8441 "pass",
8442 "nostop",
8443 "noignore",
8444 "noprint",
8445 "nopass",
8446 NULL,
8447 };
8448
eb3ff9a5
PA
8449 signal_completer (ignore, tracker, text, word);
8450 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8451}
8452
2ea28649
PA
8453enum gdb_signal
8454gdb_signal_from_command (int num)
ed01b82c
PA
8455{
8456 if (num >= 1 && num <= 15)
2ea28649 8457 return (enum gdb_signal) num;
ed01b82c
PA
8458 error (_("Only signals 1-15 are valid as numeric signals.\n\
8459Use \"info signals\" for a list of symbolic signals."));
8460}
8461
c906108c
SS
8462/* Print current contents of the tables set by the handle command.
8463 It is possible we should just be printing signals actually used
8464 by the current target (but for things to work right when switching
8465 targets, all signals should be in the signal tables). */
8466
8467static void
1d12d88f 8468info_signals_command (const char *signum_exp, int from_tty)
c906108c 8469{
2ea28649 8470 enum gdb_signal oursig;
abbb1732 8471
c906108c
SS
8472 sig_print_header ();
8473
8474 if (signum_exp)
8475 {
8476 /* First see if this is a symbol name. */
2ea28649 8477 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8478 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8479 {
8480 /* No, try numeric. */
8481 oursig =
2ea28649 8482 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8483 }
8484 sig_print_info (oursig);
8485 return;
8486 }
8487
8488 printf_filtered ("\n");
8489 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8490 for (oursig = GDB_SIGNAL_FIRST;
8491 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8492 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8493 {
8494 QUIT;
8495
a493e3e2
PA
8496 if (oursig != GDB_SIGNAL_UNKNOWN
8497 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8498 sig_print_info (oursig);
8499 }
8500
3e43a32a
MS
8501 printf_filtered (_("\nUse the \"handle\" command "
8502 "to change these tables.\n"));
c906108c 8503}
4aa995e1
PA
8504
8505/* The $_siginfo convenience variable is a bit special. We don't know
8506 for sure the type of the value until we actually have a chance to
7a9dd1b2 8507 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8508 also dependent on which thread you have selected.
8509
8510 1. making $_siginfo be an internalvar that creates a new value on
8511 access.
8512
8513 2. making the value of $_siginfo be an lval_computed value. */
8514
8515/* This function implements the lval_computed support for reading a
8516 $_siginfo value. */
8517
8518static void
8519siginfo_value_read (struct value *v)
8520{
8521 LONGEST transferred;
8522
a911d87a
PA
8523 /* If we can access registers, so can we access $_siginfo. Likewise
8524 vice versa. */
8525 validate_registers_access ();
c709acd1 8526
4aa995e1 8527 transferred =
8b88a78e 8528 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8529 NULL,
8530 value_contents_all_raw (v),
8531 value_offset (v),
8532 TYPE_LENGTH (value_type (v)));
8533
8534 if (transferred != TYPE_LENGTH (value_type (v)))
8535 error (_("Unable to read siginfo"));
8536}
8537
8538/* This function implements the lval_computed support for writing a
8539 $_siginfo value. */
8540
8541static void
8542siginfo_value_write (struct value *v, struct value *fromval)
8543{
8544 LONGEST transferred;
8545
a911d87a
PA
8546 /* If we can access registers, so can we access $_siginfo. Likewise
8547 vice versa. */
8548 validate_registers_access ();
c709acd1 8549
8b88a78e 8550 transferred = target_write (current_top_target (),
4aa995e1
PA
8551 TARGET_OBJECT_SIGNAL_INFO,
8552 NULL,
8553 value_contents_all_raw (fromval),
8554 value_offset (v),
8555 TYPE_LENGTH (value_type (fromval)));
8556
8557 if (transferred != TYPE_LENGTH (value_type (fromval)))
8558 error (_("Unable to write siginfo"));
8559}
8560
c8f2448a 8561static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8562 {
8563 siginfo_value_read,
8564 siginfo_value_write
8565 };
8566
8567/* Return a new value with the correct type for the siginfo object of
78267919
UW
8568 the current thread using architecture GDBARCH. Return a void value
8569 if there's no object available. */
4aa995e1 8570
2c0b251b 8571static struct value *
22d2b532
SDJ
8572siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8573 void *ignore)
4aa995e1 8574{
4aa995e1 8575 if (target_has_stack
d7e15655 8576 && inferior_ptid != null_ptid
78267919 8577 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8578 {
78267919 8579 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8580
78267919 8581 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8582 }
8583
78267919 8584 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8585}
8586
c906108c 8587\f
16c381f0
JK
8588/* infcall_suspend_state contains state about the program itself like its
8589 registers and any signal it received when it last stopped.
8590 This state must be restored regardless of how the inferior function call
8591 ends (either successfully, or after it hits a breakpoint or signal)
8592 if the program is to properly continue where it left off. */
8593
6bf78e29 8594class infcall_suspend_state
7a292a7a 8595{
6bf78e29
AB
8596public:
8597 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8598 once the inferior function call has finished. */
8599 infcall_suspend_state (struct gdbarch *gdbarch,
8600 const struct thread_info *tp,
8601 struct regcache *regcache)
8602 : m_thread_suspend (tp->suspend),
8603 m_registers (new readonly_detached_regcache (*regcache))
8604 {
8605 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8606
8607 if (gdbarch_get_siginfo_type_p (gdbarch))
8608 {
8609 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8610 size_t len = TYPE_LENGTH (type);
8611
8612 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8613
8614 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8615 siginfo_data.get (), 0, len) != len)
8616 {
8617 /* Errors ignored. */
8618 siginfo_data.reset (nullptr);
8619 }
8620 }
8621
8622 if (siginfo_data)
8623 {
8624 m_siginfo_gdbarch = gdbarch;
8625 m_siginfo_data = std::move (siginfo_data);
8626 }
8627 }
8628
8629 /* Return a pointer to the stored register state. */
16c381f0 8630
6bf78e29
AB
8631 readonly_detached_regcache *registers () const
8632 {
8633 return m_registers.get ();
8634 }
8635
8636 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8637
8638 void restore (struct gdbarch *gdbarch,
8639 struct thread_info *tp,
8640 struct regcache *regcache) const
8641 {
8642 tp->suspend = m_thread_suspend;
8643
8644 if (m_siginfo_gdbarch == gdbarch)
8645 {
8646 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8647
8648 /* Errors ignored. */
8649 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8650 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8651 }
8652
8653 /* The inferior can be gone if the user types "print exit(0)"
8654 (and perhaps other times). */
8655 if (target_has_execution)
8656 /* NB: The register write goes through to the target. */
8657 regcache->restore (registers ());
8658 }
8659
8660private:
8661 /* How the current thread stopped before the inferior function call was
8662 executed. */
8663 struct thread_suspend_state m_thread_suspend;
8664
8665 /* The registers before the inferior function call was executed. */
8666 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8667
35515841 8668 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8669 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8670
8671 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8672 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8673 content would be invalid. */
6bf78e29 8674 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8675};
8676
cb524840
TT
8677infcall_suspend_state_up
8678save_infcall_suspend_state ()
b89667eb 8679{
b89667eb 8680 struct thread_info *tp = inferior_thread ();
1736ad11 8681 struct regcache *regcache = get_current_regcache ();
ac7936df 8682 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8683
6bf78e29
AB
8684 infcall_suspend_state_up inf_state
8685 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8686
6bf78e29
AB
8687 /* Having saved the current state, adjust the thread state, discarding
8688 any stop signal information. The stop signal is not useful when
8689 starting an inferior function call, and run_inferior_call will not use
8690 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8691 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8692
b89667eb
DE
8693 return inf_state;
8694}
8695
8696/* Restore inferior session state to INF_STATE. */
8697
8698void
16c381f0 8699restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8700{
8701 struct thread_info *tp = inferior_thread ();
1736ad11 8702 struct regcache *regcache = get_current_regcache ();
ac7936df 8703 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8704
6bf78e29 8705 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8706 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8707}
8708
b89667eb 8709void
16c381f0 8710discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8711{
dd848631 8712 delete inf_state;
b89667eb
DE
8713}
8714
daf6667d 8715readonly_detached_regcache *
16c381f0 8716get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8717{
6bf78e29 8718 return inf_state->registers ();
b89667eb
DE
8719}
8720
16c381f0
JK
8721/* infcall_control_state contains state regarding gdb's control of the
8722 inferior itself like stepping control. It also contains session state like
8723 the user's currently selected frame. */
b89667eb 8724
16c381f0 8725struct infcall_control_state
b89667eb 8726{
16c381f0
JK
8727 struct thread_control_state thread_control;
8728 struct inferior_control_state inferior_control;
d82142e2
JK
8729
8730 /* Other fields: */
ee841dd8
TT
8731 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8732 int stopped_by_random_signal = 0;
7a292a7a 8733
b89667eb 8734 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8735 struct frame_id selected_frame_id {};
7a292a7a
SS
8736};
8737
c906108c 8738/* Save all of the information associated with the inferior<==>gdb
b89667eb 8739 connection. */
c906108c 8740
cb524840
TT
8741infcall_control_state_up
8742save_infcall_control_state ()
c906108c 8743{
cb524840 8744 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8745 struct thread_info *tp = inferior_thread ();
d6b48e9c 8746 struct inferior *inf = current_inferior ();
7a292a7a 8747
16c381f0
JK
8748 inf_status->thread_control = tp->control;
8749 inf_status->inferior_control = inf->control;
d82142e2 8750
8358c15c 8751 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8752 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8753
16c381f0
JK
8754 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8755 chain. If caller's caller is walking the chain, they'll be happier if we
8756 hand them back the original chain when restore_infcall_control_state is
8757 called. */
8758 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8759
8760 /* Other fields: */
8761 inf_status->stop_stack_dummy = stop_stack_dummy;
8762 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8763
206415a3 8764 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8765
7a292a7a 8766 return inf_status;
c906108c
SS
8767}
8768
bf469271
PA
8769static void
8770restore_selected_frame (const frame_id &fid)
c906108c 8771{
bf469271 8772 frame_info *frame = frame_find_by_id (fid);
c906108c 8773
aa0cd9c1
AC
8774 /* If inf_status->selected_frame_id is NULL, there was no previously
8775 selected frame. */
101dcfbe 8776 if (frame == NULL)
c906108c 8777 {
8a3fe4f8 8778 warning (_("Unable to restore previously selected frame."));
bf469271 8779 return;
c906108c
SS
8780 }
8781
0f7d239c 8782 select_frame (frame);
c906108c
SS
8783}
8784
b89667eb
DE
8785/* Restore inferior session state to INF_STATUS. */
8786
c906108c 8787void
16c381f0 8788restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8789{
4e1c45ea 8790 struct thread_info *tp = inferior_thread ();
d6b48e9c 8791 struct inferior *inf = current_inferior ();
4e1c45ea 8792
8358c15c
JK
8793 if (tp->control.step_resume_breakpoint)
8794 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8795
5b79abe7
TT
8796 if (tp->control.exception_resume_breakpoint)
8797 tp->control.exception_resume_breakpoint->disposition
8798 = disp_del_at_next_stop;
8799
d82142e2 8800 /* Handle the bpstat_copy of the chain. */
16c381f0 8801 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8802
16c381f0
JK
8803 tp->control = inf_status->thread_control;
8804 inf->control = inf_status->inferior_control;
d82142e2
JK
8805
8806 /* Other fields: */
8807 stop_stack_dummy = inf_status->stop_stack_dummy;
8808 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8809
b89667eb 8810 if (target_has_stack)
c906108c 8811 {
bf469271 8812 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8813 walking the stack might encounter a garbage pointer and
8814 error() trying to dereference it. */
a70b8144 8815 try
bf469271
PA
8816 {
8817 restore_selected_frame (inf_status->selected_frame_id);
8818 }
230d2906 8819 catch (const gdb_exception_error &ex)
bf469271
PA
8820 {
8821 exception_fprintf (gdb_stderr, ex,
8822 "Unable to restore previously selected frame:\n");
8823 /* Error in restoring the selected frame. Select the
8824 innermost frame. */
8825 select_frame (get_current_frame ());
8826 }
c906108c 8827 }
c906108c 8828
ee841dd8 8829 delete inf_status;
7a292a7a 8830}
c906108c
SS
8831
8832void
16c381f0 8833discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8834{
8358c15c
JK
8835 if (inf_status->thread_control.step_resume_breakpoint)
8836 inf_status->thread_control.step_resume_breakpoint->disposition
8837 = disp_del_at_next_stop;
8838
5b79abe7
TT
8839 if (inf_status->thread_control.exception_resume_breakpoint)
8840 inf_status->thread_control.exception_resume_breakpoint->disposition
8841 = disp_del_at_next_stop;
8842
1777feb0 8843 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8844 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8845
ee841dd8 8846 delete inf_status;
7a292a7a 8847}
b89667eb 8848\f
7f89fd65 8849/* See infrun.h. */
0c557179
SDJ
8850
8851void
8852clear_exit_convenience_vars (void)
8853{
8854 clear_internalvar (lookup_internalvar ("_exitsignal"));
8855 clear_internalvar (lookup_internalvar ("_exitcode"));
8856}
c5aa993b 8857\f
488f131b 8858
b2175913
MS
8859/* User interface for reverse debugging:
8860 Set exec-direction / show exec-direction commands
8861 (returns error unless target implements to_set_exec_direction method). */
8862
170742de 8863enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8864static const char exec_forward[] = "forward";
8865static const char exec_reverse[] = "reverse";
8866static const char *exec_direction = exec_forward;
40478521 8867static const char *const exec_direction_names[] = {
b2175913
MS
8868 exec_forward,
8869 exec_reverse,
8870 NULL
8871};
8872
8873static void
eb4c3f4a 8874set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8875 struct cmd_list_element *cmd)
8876{
8877 if (target_can_execute_reverse)
8878 {
8879 if (!strcmp (exec_direction, exec_forward))
8880 execution_direction = EXEC_FORWARD;
8881 else if (!strcmp (exec_direction, exec_reverse))
8882 execution_direction = EXEC_REVERSE;
8883 }
8bbed405
MS
8884 else
8885 {
8886 exec_direction = exec_forward;
8887 error (_("Target does not support this operation."));
8888 }
b2175913
MS
8889}
8890
8891static void
8892show_exec_direction_func (struct ui_file *out, int from_tty,
8893 struct cmd_list_element *cmd, const char *value)
8894{
8895 switch (execution_direction) {
8896 case EXEC_FORWARD:
8897 fprintf_filtered (out, _("Forward.\n"));
8898 break;
8899 case EXEC_REVERSE:
8900 fprintf_filtered (out, _("Reverse.\n"));
8901 break;
b2175913 8902 default:
d8b34453
PA
8903 internal_error (__FILE__, __LINE__,
8904 _("bogus execution_direction value: %d"),
8905 (int) execution_direction);
b2175913
MS
8906 }
8907}
8908
d4db2f36
PA
8909static void
8910show_schedule_multiple (struct ui_file *file, int from_tty,
8911 struct cmd_list_element *c, const char *value)
8912{
3e43a32a
MS
8913 fprintf_filtered (file, _("Resuming the execution of threads "
8914 "of all processes is %s.\n"), value);
d4db2f36 8915}
ad52ddc6 8916
22d2b532
SDJ
8917/* Implementation of `siginfo' variable. */
8918
8919static const struct internalvar_funcs siginfo_funcs =
8920{
8921 siginfo_make_value,
8922 NULL,
8923 NULL
8924};
8925
372316f1
PA
8926/* Callback for infrun's target events source. This is marked when a
8927 thread has a pending status to process. */
8928
8929static void
8930infrun_async_inferior_event_handler (gdb_client_data data)
8931{
372316f1
PA
8932 inferior_event_handler (INF_REG_EVENT, NULL);
8933}
8934
c906108c 8935void
96baa820 8936_initialize_infrun (void)
c906108c 8937{
de0bea00 8938 struct cmd_list_element *c;
c906108c 8939
372316f1
PA
8940 /* Register extra event sources in the event loop. */
8941 infrun_async_inferior_event_token
8942 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8943
11db9430 8944 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8945What debugger does when program gets various signals.\n\
8946Specify a signal as argument to print info on that signal only."));
c906108c
SS
8947 add_info_alias ("handle", "signals", 0);
8948
de0bea00 8949 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8950Specify how to handle signals.\n\
486c7739 8951Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8952Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8953If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8954will be displayed instead.\n\
8955\n\
c906108c
SS
8956Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8957from 1-15 are allowed for compatibility with old versions of GDB.\n\
8958Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8959The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8960used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8961\n\
1bedd215 8962Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8963\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8964Stop means reenter debugger if this signal happens (implies print).\n\
8965Print means print a message if this signal happens.\n\
8966Pass means let program see this signal; otherwise program doesn't know.\n\
8967Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8968Pass and Stop may be combined.\n\
8969\n\
8970Multiple signals may be specified. Signal numbers and signal names\n\
8971may be interspersed with actions, with the actions being performed for\n\
8972all signals cumulatively specified."));
de0bea00 8973 set_cmd_completer (c, handle_completer);
486c7739 8974
c906108c 8975 if (!dbx_commands)
1a966eab
AC
8976 stop_command = add_cmd ("stop", class_obscure,
8977 not_just_help_class_command, _("\
8978There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 8979This allows you to set a list of commands to be run each time execution\n\
1a966eab 8980of the program stops."), &cmdlist);
c906108c 8981
ccce17b0 8982 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
8983Set inferior debugging."), _("\
8984Show inferior debugging."), _("\
8985When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
8986 NULL,
8987 show_debug_infrun,
8988 &setdebuglist, &showdebuglist);
527159b7 8989
3e43a32a
MS
8990 add_setshow_boolean_cmd ("displaced", class_maintenance,
8991 &debug_displaced, _("\
237fc4c9
PA
8992Set displaced stepping debugging."), _("\
8993Show displaced stepping debugging."), _("\
8994When non-zero, displaced stepping specific debugging is enabled."),
8995 NULL,
8996 show_debug_displaced,
8997 &setdebuglist, &showdebuglist);
8998
ad52ddc6
PA
8999 add_setshow_boolean_cmd ("non-stop", no_class,
9000 &non_stop_1, _("\
9001Set whether gdb controls the inferior in non-stop mode."), _("\
9002Show whether gdb controls the inferior in non-stop mode."), _("\
9003When debugging a multi-threaded program and this setting is\n\
9004off (the default, also called all-stop mode), when one thread stops\n\
9005(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9006all other threads in the program while you interact with the thread of\n\
9007interest. When you continue or step a thread, you can allow the other\n\
9008threads to run, or have them remain stopped, but while you inspect any\n\
9009thread's state, all threads stop.\n\
9010\n\
9011In non-stop mode, when one thread stops, other threads can continue\n\
9012to run freely. You'll be able to step each thread independently,\n\
9013leave it stopped or free to run as needed."),
9014 set_non_stop,
9015 show_non_stop,
9016 &setlist,
9017 &showlist);
9018
adc6a863 9019 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9020 {
9021 signal_stop[i] = 1;
9022 signal_print[i] = 1;
9023 signal_program[i] = 1;
ab04a2af 9024 signal_catch[i] = 0;
c906108c
SS
9025 }
9026
4d9d9d04
PA
9027 /* Signals caused by debugger's own actions should not be given to
9028 the program afterwards.
9029
9030 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9031 explicitly specifies that it should be delivered to the target
9032 program. Typically, that would occur when a user is debugging a
9033 target monitor on a simulator: the target monitor sets a
9034 breakpoint; the simulator encounters this breakpoint and halts
9035 the simulation handing control to GDB; GDB, noting that the stop
9036 address doesn't map to any known breakpoint, returns control back
9037 to the simulator; the simulator then delivers the hardware
9038 equivalent of a GDB_SIGNAL_TRAP to the program being
9039 debugged. */
a493e3e2
PA
9040 signal_program[GDB_SIGNAL_TRAP] = 0;
9041 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9042
9043 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9044 signal_stop[GDB_SIGNAL_ALRM] = 0;
9045 signal_print[GDB_SIGNAL_ALRM] = 0;
9046 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9047 signal_print[GDB_SIGNAL_VTALRM] = 0;
9048 signal_stop[GDB_SIGNAL_PROF] = 0;
9049 signal_print[GDB_SIGNAL_PROF] = 0;
9050 signal_stop[GDB_SIGNAL_CHLD] = 0;
9051 signal_print[GDB_SIGNAL_CHLD] = 0;
9052 signal_stop[GDB_SIGNAL_IO] = 0;
9053 signal_print[GDB_SIGNAL_IO] = 0;
9054 signal_stop[GDB_SIGNAL_POLL] = 0;
9055 signal_print[GDB_SIGNAL_POLL] = 0;
9056 signal_stop[GDB_SIGNAL_URG] = 0;
9057 signal_print[GDB_SIGNAL_URG] = 0;
9058 signal_stop[GDB_SIGNAL_WINCH] = 0;
9059 signal_print[GDB_SIGNAL_WINCH] = 0;
9060 signal_stop[GDB_SIGNAL_PRIO] = 0;
9061 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9062
cd0fc7c3
SS
9063 /* These signals are used internally by user-level thread
9064 implementations. (See signal(5) on Solaris.) Like the above
9065 signals, a healthy program receives and handles them as part of
9066 its normal operation. */
a493e3e2
PA
9067 signal_stop[GDB_SIGNAL_LWP] = 0;
9068 signal_print[GDB_SIGNAL_LWP] = 0;
9069 signal_stop[GDB_SIGNAL_WAITING] = 0;
9070 signal_print[GDB_SIGNAL_WAITING] = 0;
9071 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9072 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9073 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9074 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9075
2455069d
UW
9076 /* Update cached state. */
9077 signal_cache_update (-1);
9078
85c07804
AC
9079 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9080 &stop_on_solib_events, _("\
9081Set stopping for shared library events."), _("\
9082Show stopping for shared library events."), _("\
c906108c
SS
9083If nonzero, gdb will give control to the user when the dynamic linker\n\
9084notifies gdb of shared library events. The most common event of interest\n\
85c07804 9085to the user would be loading/unloading of a new library."),
f9e14852 9086 set_stop_on_solib_events,
920d2a44 9087 show_stop_on_solib_events,
85c07804 9088 &setlist, &showlist);
c906108c 9089
7ab04401
AC
9090 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9091 follow_fork_mode_kind_names,
9092 &follow_fork_mode_string, _("\
9093Set debugger response to a program call of fork or vfork."), _("\
9094Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9095A fork or vfork creates a new process. follow-fork-mode can be:\n\
9096 parent - the original process is debugged after a fork\n\
9097 child - the new process is debugged after a fork\n\
ea1dd7bc 9098The unfollowed process will continue to run.\n\
7ab04401
AC
9099By default, the debugger will follow the parent process."),
9100 NULL,
920d2a44 9101 show_follow_fork_mode_string,
7ab04401
AC
9102 &setlist, &showlist);
9103
6c95b8df
PA
9104 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9105 follow_exec_mode_names,
9106 &follow_exec_mode_string, _("\
9107Set debugger response to a program call of exec."), _("\
9108Show debugger response to a program call of exec."), _("\
9109An exec call replaces the program image of a process.\n\
9110\n\
9111follow-exec-mode can be:\n\
9112\n\
cce7e648 9113 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9114to this new inferior. The program the process was running before\n\
9115the exec call can be restarted afterwards by restarting the original\n\
9116inferior.\n\
9117\n\
9118 same - the debugger keeps the process bound to the same inferior.\n\
9119The new executable image replaces the previous executable loaded in\n\
9120the inferior. Restarting the inferior after the exec call restarts\n\
9121the executable the process was running after the exec call.\n\
9122\n\
9123By default, the debugger will use the same inferior."),
9124 NULL,
9125 show_follow_exec_mode_string,
9126 &setlist, &showlist);
9127
7ab04401
AC
9128 add_setshow_enum_cmd ("scheduler-locking", class_run,
9129 scheduler_enums, &scheduler_mode, _("\
9130Set mode for locking scheduler during execution."), _("\
9131Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9132off == no locking (threads may preempt at any time)\n\
9133on == full locking (no thread except the current thread may run)\n\
9134 This applies to both normal execution and replay mode.\n\
9135step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9136 In this mode, other threads may run during other commands.\n\
9137 This applies to both normal execution and replay mode.\n\
9138replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9139 set_schedlock_func, /* traps on target vector */
920d2a44 9140 show_scheduler_mode,
7ab04401 9141 &setlist, &showlist);
5fbbeb29 9142
d4db2f36
PA
9143 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9144Set mode for resuming threads of all processes."), _("\
9145Show mode for resuming threads of all processes."), _("\
9146When on, execution commands (such as 'continue' or 'next') resume all\n\
9147threads of all processes. When off (which is the default), execution\n\
9148commands only resume the threads of the current process. The set of\n\
9149threads that are resumed is further refined by the scheduler-locking\n\
9150mode (see help set scheduler-locking)."),
9151 NULL,
9152 show_schedule_multiple,
9153 &setlist, &showlist);
9154
5bf193a2
AC
9155 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9156Set mode of the step operation."), _("\
9157Show mode of the step operation."), _("\
9158When set, doing a step over a function without debug line information\n\
9159will stop at the first instruction of that function. Otherwise, the\n\
9160function is skipped and the step command stops at a different source line."),
9161 NULL,
920d2a44 9162 show_step_stop_if_no_debug,
5bf193a2 9163 &setlist, &showlist);
ca6724c1 9164
72d0e2c5
YQ
9165 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9166 &can_use_displaced_stepping, _("\
237fc4c9
PA
9167Set debugger's willingness to use displaced stepping."), _("\
9168Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9169If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9170supported by the target architecture. If off, gdb will not use displaced\n\
9171stepping to step over breakpoints, even if such is supported by the target\n\
9172architecture. If auto (which is the default), gdb will use displaced stepping\n\
9173if the target architecture supports it and non-stop mode is active, but will not\n\
9174use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9175 NULL,
9176 show_can_use_displaced_stepping,
9177 &setlist, &showlist);
237fc4c9 9178
b2175913
MS
9179 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9180 &exec_direction, _("Set direction of execution.\n\
9181Options are 'forward' or 'reverse'."),
9182 _("Show direction of execution (forward/reverse)."),
9183 _("Tells gdb whether to execute forward or backward."),
9184 set_exec_direction_func, show_exec_direction_func,
9185 &setlist, &showlist);
9186
6c95b8df
PA
9187 /* Set/show detach-on-fork: user-settable mode. */
9188
9189 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9190Set whether gdb will detach the child of a fork."), _("\
9191Show whether gdb will detach the child of a fork."), _("\
9192Tells gdb whether to detach the child of a fork."),
9193 NULL, NULL, &setlist, &showlist);
9194
03583c20
UW
9195 /* Set/show disable address space randomization mode. */
9196
9197 add_setshow_boolean_cmd ("disable-randomization", class_support,
9198 &disable_randomization, _("\
9199Set disabling of debuggee's virtual address space randomization."), _("\
9200Show disabling of debuggee's virtual address space randomization."), _("\
9201When this mode is on (which is the default), randomization of the virtual\n\
9202address space is disabled. Standalone programs run with the randomization\n\
9203enabled by default on some platforms."),
9204 &set_disable_randomization,
9205 &show_disable_randomization,
9206 &setlist, &showlist);
9207
ca6724c1 9208 /* ptid initializations */
ca6724c1
KB
9209 inferior_ptid = null_ptid;
9210 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9211
76727919
TT
9212 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9213 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9214 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9215 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9216
9217 /* Explicitly create without lookup, since that tries to create a
9218 value with a void typed value, and when we get here, gdbarch
9219 isn't initialized yet. At this point, we're quite sure there
9220 isn't another convenience variable of the same name. */
22d2b532 9221 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9222
9223 add_setshow_boolean_cmd ("observer", no_class,
9224 &observer_mode_1, _("\
9225Set whether gdb controls the inferior in observer mode."), _("\
9226Show whether gdb controls the inferior in observer mode."), _("\
9227In observer mode, GDB can get data from the inferior, but not\n\
9228affect its execution. Registers and memory may not be changed,\n\
9229breakpoints may not be set, and the program cannot be interrupted\n\
9230or signalled."),
9231 set_observer_mode,
9232 show_observer_mode,
9233 &setlist,
9234 &showlist);
c906108c 9235}
This page took 2.677374 seconds and 4 git commands to generate.