Preserve selected thread in all-stop w/ background execution
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
c906108c
SS
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "gdbthread.h"
32#include "annotate.h"
1adeb98a 33#include "symfile.h"
7a292a7a 34#include "top.h"
2acceee2 35#include "inf-loop.h"
4e052eda 36#include "regcache.h"
fd0407d6 37#include "value.h"
76727919 38#include "observable.h"
f636b87d 39#include "language.h"
a77053c2 40#include "solib.h"
f17517ea 41#include "main.h"
186c406b 42#include "block.h"
034dad6f 43#include "mi/mi-common.h"
4f8d22e3 44#include "event-top.h"
96429cc8 45#include "record.h"
d02ed0bb 46#include "record-full.h"
edb3359d 47#include "inline-frame.h"
4efc6507 48#include "jit.h"
06cd862c 49#include "tracepoint.h"
1bfeeb0f 50#include "skip.h"
28106bc2
SDJ
51#include "probe.h"
52#include "objfiles.h"
de0bea00 53#include "completer.h"
9107fc8d 54#include "target-descriptions.h"
f15cb84a 55#include "target-dcache.h"
d83ad864 56#include "terminal.h"
ff862be4 57#include "solist.h"
372316f1 58#include "event-loop.h"
243a9253 59#include "thread-fsm.h"
268a13a5 60#include "gdbsupport/enum-flags.h"
5ed8105e 61#include "progspace-and-thread.h"
268a13a5 62#include "gdbsupport/gdb_optional.h"
46a62268 63#include "arch-utils.h"
268a13a5
TT
64#include "gdbsupport/scope-exit.h"
65#include "gdbsupport/forward-scope-exit.h"
c906108c
SS
66
67/* Prototypes for local functions */
68
2ea28649 69static void sig_print_info (enum gdb_signal);
c906108c 70
96baa820 71static void sig_print_header (void);
c906108c 72
4ef3f3be 73static int follow_fork (void);
96baa820 74
d83ad864
DB
75static int follow_fork_inferior (int follow_child, int detach_fork);
76
77static void follow_inferior_reset_breakpoints (void);
78
a289b8f6
JK
79static int currently_stepping (struct thread_info *tp);
80
e58b0e63
PA
81void nullify_last_target_wait_ptid (void);
82
2c03e5be 83static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
84
85static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
86
2484c66b
UW
87static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
88
8550d3b3
YQ
89static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
90
aff4e175
AB
91static void resume (gdb_signal sig);
92
372316f1
PA
93/* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95static struct async_event_handler *infrun_async_inferior_event_token;
96
97/* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99static int infrun_is_async = -1;
100
101/* See infrun.h. */
102
103void
104infrun_async (int enable)
105{
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120}
121
0b333c5e
PA
122/* See infrun.h. */
123
124void
125mark_infrun_async_event_handler (void)
126{
127 mark_async_event_handler (infrun_async_inferior_event_token);
128}
129
5fbbeb29
CF
130/* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
491144b5 133bool step_stop_if_no_debug = false;
920d2a44
AC
134static void
135show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139}
5fbbeb29 140
b9f437de
PA
141/* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
96baa820 144
39f77062 145static ptid_t previous_inferior_ptid;
7a292a7a 146
07107ca6
LM
147/* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
491144b5 152static bool detach_fork = true;
6c95b8df 153
491144b5 154bool debug_displaced = false;
237fc4c9
PA
155static void
156show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160}
161
ccce17b0 162unsigned int debug_infrun = 0;
920d2a44
AC
163static void
164show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168}
527159b7 169
03583c20
UW
170
171/* Support for disabling address space randomization. */
172
491144b5 173bool disable_randomization = true;
03583c20
UW
174
175static void
176show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188}
189
190static void
eb4c3f4a 191set_disable_randomization (const char *args, int from_tty,
03583c20
UW
192 struct cmd_list_element *c)
193{
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198}
199
d32dc48e
PA
200/* User interface for non-stop mode. */
201
491144b5
CB
202bool non_stop = false;
203static bool non_stop_1 = false;
d32dc48e
PA
204
205static void
eb4c3f4a 206set_non_stop (const char *args, int from_tty,
d32dc48e
PA
207 struct cmd_list_element *c)
208{
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216}
217
218static void
219show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221{
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225}
226
d914c394
SS
227/* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
491144b5
CB
231bool observer_mode = false;
232static bool observer_mode_1 = false;
d914c394
SS
233
234static void
eb4c3f4a 235set_observer_mode (const char *args, int from_tty,
d914c394
SS
236 struct cmd_list_element *c)
237{
d914c394
SS
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
491144b5 253 may_insert_fast_tracepoints = true;
d914c394
SS
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
d914c394 261 pagination_enabled = 0;
491144b5 262 non_stop = non_stop_1 = true;
d914c394
SS
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268}
269
270static void
271show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273{
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275}
276
277/* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283void
284update_observer_mode (void)
285{
491144b5
CB
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
d914c394
SS
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298}
c2c6d25f 299
c906108c
SS
300/* Tables of how to react to signals; the user sets them. */
301
adc6a863
PA
302static unsigned char signal_stop[GDB_SIGNAL_LAST];
303static unsigned char signal_print[GDB_SIGNAL_LAST];
304static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 305
ab04a2af
TT
306/* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
308 signal" command. */
309static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 310
2455069d
UW
311/* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
adc6a863 314static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 315
c906108c
SS
316#define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324#define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
9b224c5e
PA
332/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335void
336update_signals_program_target (void)
337{
adc6a863 338 target_program_signals (signal_program);
9b224c5e
PA
339}
340
1777feb0 341/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 342
edb3359d 343#define RESUME_ALL minus_one_ptid
c906108c
SS
344
345/* Command list pointer for the "stop" placeholder. */
346
347static struct cmd_list_element *stop_command;
348
c906108c
SS
349/* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
628fe4e4 351int stop_on_solib_events;
f9e14852
GB
352
353/* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356static void
eb4c3f4a
TT
357set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
f9e14852
GB
359{
360 update_solib_breakpoints ();
361}
362
920d2a44
AC
363static void
364show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366{
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369}
c906108c 370
c906108c
SS
371/* Nonzero after stop if current stack frame should be printed. */
372
373static int stop_print_frame;
374
e02bc4cc 375/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
376 returned by target_wait()/deprecated_target_wait_hook(). This
377 information is returned by get_last_target_status(). */
39f77062 378static ptid_t target_last_wait_ptid;
e02bc4cc
DS
379static struct target_waitstatus target_last_waitstatus;
380
4e1c45ea 381void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 382
53904c9e
AC
383static const char follow_fork_mode_child[] = "child";
384static const char follow_fork_mode_parent[] = "parent";
385
40478521 386static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
387 follow_fork_mode_child,
388 follow_fork_mode_parent,
389 NULL
ef346e04 390};
c906108c 391
53904c9e 392static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
393static void
394show_follow_fork_mode_string (struct ui_file *file, int from_tty,
395 struct cmd_list_element *c, const char *value)
396{
3e43a32a
MS
397 fprintf_filtered (file,
398 _("Debugger response to a program "
399 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
400 value);
401}
c906108c
SS
402\f
403
d83ad864
DB
404/* Handle changes to the inferior list based on the type of fork,
405 which process is being followed, and whether the other process
406 should be detached. On entry inferior_ptid must be the ptid of
407 the fork parent. At return inferior_ptid is the ptid of the
408 followed inferior. */
409
410static int
411follow_fork_inferior (int follow_child, int detach_fork)
412{
413 int has_vforked;
79639e11 414 ptid_t parent_ptid, child_ptid;
d83ad864
DB
415
416 has_vforked = (inferior_thread ()->pending_follow.kind
417 == TARGET_WAITKIND_VFORKED);
79639e11
PA
418 parent_ptid = inferior_ptid;
419 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 423 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432Can not resume the parent process over vfork in the foreground while\n\
433holding the child stopped. Try \"set detach-on-fork\" or \
434\"set schedule-multiple\".\n"));
d83ad864
DB
435 return 1;
436 }
437
438 if (!follow_child)
439 {
440 /* Detach new forked process? */
441 if (detach_fork)
442 {
d83ad864
DB
443 /* Before detaching from the child, remove all breakpoints
444 from it. If we forked, then this has already been taken
445 care of by infrun.c. If we vforked however, any
446 breakpoint inserted in the parent is visible in the
447 child, even those added while stopped in a vfork
448 catchpoint. This will remove the breakpoints from the
449 parent also, but they'll be reinserted below. */
450 if (has_vforked)
451 {
452 /* Keep breakpoints list in sync. */
00431a78 453 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
454 }
455
f67c0c91 456 if (print_inferior_events)
d83ad864 457 {
8dd06f7a 458 /* Ensure that we have a process ptid. */
e99b03dc 459 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 460
223ffa71 461 target_terminal::ours_for_output ();
d83ad864 462 fprintf_filtered (gdb_stdlog,
f67c0c91 463 _("[Detaching after %s from child %s]\n"),
6f259a23 464 has_vforked ? "vfork" : "fork",
a068643d 465 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
466 }
467 }
468 else
469 {
470 struct inferior *parent_inf, *child_inf;
d83ad864
DB
471
472 /* Add process to GDB's tables. */
e99b03dc 473 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
474
475 parent_inf = current_inferior ();
476 child_inf->attach_flag = parent_inf->attach_flag;
477 copy_terminal_info (child_inf, parent_inf);
478 child_inf->gdbarch = parent_inf->gdbarch;
479 copy_inferior_target_desc_info (child_inf, parent_inf);
480
5ed8105e 481 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 482
79639e11 483 inferior_ptid = child_ptid;
f67c0c91 484 add_thread_silent (inferior_ptid);
2a00d7ce 485 set_current_inferior (child_inf);
d83ad864
DB
486 child_inf->symfile_flags = SYMFILE_NO_READ;
487
488 /* If this is a vfork child, then the address-space is
489 shared with the parent. */
490 if (has_vforked)
491 {
492 child_inf->pspace = parent_inf->pspace;
493 child_inf->aspace = parent_inf->aspace;
494
495 /* The parent will be frozen until the child is done
496 with the shared region. Keep track of the
497 parent. */
498 child_inf->vfork_parent = parent_inf;
499 child_inf->pending_detach = 0;
500 parent_inf->vfork_child = child_inf;
501 parent_inf->pending_detach = 0;
502 }
503 else
504 {
505 child_inf->aspace = new_address_space ();
564b1e3f 506 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
507 child_inf->removable = 1;
508 set_current_program_space (child_inf->pspace);
509 clone_program_space (child_inf->pspace, parent_inf->pspace);
510
511 /* Let the shared library layer (e.g., solib-svr4) learn
512 about this new process, relocate the cloned exec, pull
513 in shared libraries, and install the solib event
514 breakpoint. If a "cloned-VM" event was propagated
515 better throughout the core, this wouldn't be
516 required. */
517 solib_create_inferior_hook (0);
518 }
d83ad864
DB
519 }
520
521 if (has_vforked)
522 {
523 struct inferior *parent_inf;
524
525 parent_inf = current_inferior ();
526
527 /* If we detached from the child, then we have to be careful
528 to not insert breakpoints in the parent until the child
529 is done with the shared memory region. However, if we're
530 staying attached to the child, then we can and should
531 insert breakpoints, so that we can debug it. A
532 subsequent child exec or exit is enough to know when does
533 the child stops using the parent's address space. */
534 parent_inf->waiting_for_vfork_done = detach_fork;
535 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
536 }
537 }
538 else
539 {
540 /* Follow the child. */
541 struct inferior *parent_inf, *child_inf;
542 struct program_space *parent_pspace;
543
f67c0c91 544 if (print_inferior_events)
d83ad864 545 {
f67c0c91
SDJ
546 std::string parent_pid = target_pid_to_str (parent_ptid);
547 std::string child_pid = target_pid_to_str (child_ptid);
548
223ffa71 549 target_terminal::ours_for_output ();
6f259a23 550 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
551 _("[Attaching after %s %s to child %s]\n"),
552 parent_pid.c_str (),
6f259a23 553 has_vforked ? "vfork" : "fork",
f67c0c91 554 child_pid.c_str ());
d83ad864
DB
555 }
556
557 /* Add the new inferior first, so that the target_detach below
558 doesn't unpush the target. */
559
e99b03dc 560 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
561
562 parent_inf = current_inferior ();
563 child_inf->attach_flag = parent_inf->attach_flag;
564 copy_terminal_info (child_inf, parent_inf);
565 child_inf->gdbarch = parent_inf->gdbarch;
566 copy_inferior_target_desc_info (child_inf, parent_inf);
567
568 parent_pspace = parent_inf->pspace;
569
570 /* If we're vforking, we want to hold on to the parent until the
571 child exits or execs. At child exec or exit time we can
572 remove the old breakpoints from the parent and detach or
573 resume debugging it. Otherwise, detach the parent now; we'll
574 want to reuse it's program/address spaces, but we can't set
575 them to the child before removing breakpoints from the
576 parent, otherwise, the breakpoints module could decide to
577 remove breakpoints from the wrong process (since they'd be
578 assigned to the same address space). */
579
580 if (has_vforked)
581 {
582 gdb_assert (child_inf->vfork_parent == NULL);
583 gdb_assert (parent_inf->vfork_child == NULL);
584 child_inf->vfork_parent = parent_inf;
585 child_inf->pending_detach = 0;
586 parent_inf->vfork_child = child_inf;
587 parent_inf->pending_detach = detach_fork;
588 parent_inf->waiting_for_vfork_done = 0;
589 }
590 else if (detach_fork)
6f259a23 591 {
f67c0c91 592 if (print_inferior_events)
6f259a23 593 {
8dd06f7a 594 /* Ensure that we have a process ptid. */
e99b03dc 595 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 596
223ffa71 597 target_terminal::ours_for_output ();
6f259a23 598 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
599 _("[Detaching after fork from "
600 "parent %s]\n"),
a068643d 601 target_pid_to_str (process_ptid).c_str ());
6f259a23
DB
602 }
603
6e1e1966 604 target_detach (parent_inf, 0);
6f259a23 605 }
d83ad864
DB
606
607 /* Note that the detach above makes PARENT_INF dangling. */
608
609 /* Add the child thread to the appropriate lists, and switch to
610 this new thread, before cloning the program space, and
611 informing the solib layer about this new process. */
612
79639e11 613 inferior_ptid = child_ptid;
f67c0c91 614 add_thread_silent (inferior_ptid);
2a00d7ce 615 set_current_inferior (child_inf);
d83ad864
DB
616
617 /* If this is a vfork child, then the address-space is shared
618 with the parent. If we detached from the parent, then we can
619 reuse the parent's program/address spaces. */
620 if (has_vforked || detach_fork)
621 {
622 child_inf->pspace = parent_pspace;
623 child_inf->aspace = child_inf->pspace->aspace;
624 }
625 else
626 {
627 child_inf->aspace = new_address_space ();
564b1e3f 628 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
629 child_inf->removable = 1;
630 child_inf->symfile_flags = SYMFILE_NO_READ;
631 set_current_program_space (child_inf->pspace);
632 clone_program_space (child_inf->pspace, parent_pspace);
633
634 /* Let the shared library layer (e.g., solib-svr4) learn
635 about this new process, relocate the cloned exec, pull in
636 shared libraries, and install the solib event breakpoint.
637 If a "cloned-VM" event was propagated better throughout
638 the core, this wouldn't be required. */
639 solib_create_inferior_hook (0);
640 }
641 }
642
643 return target_follow_fork (follow_child, detach_fork);
644}
645
e58b0e63
PA
646/* Tell the target to follow the fork we're stopped at. Returns true
647 if the inferior should be resumed; false, if the target for some
648 reason decided it's best not to resume. */
649
6604731b 650static int
4ef3f3be 651follow_fork (void)
c906108c 652{
ea1dd7bc 653 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
654 int should_resume = 1;
655 struct thread_info *tp;
656
657 /* Copy user stepping state to the new inferior thread. FIXME: the
658 followed fork child thread should have a copy of most of the
4e3990f4
DE
659 parent thread structure's run control related fields, not just these.
660 Initialized to avoid "may be used uninitialized" warnings from gcc. */
661 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 662 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
663 CORE_ADDR step_range_start = 0;
664 CORE_ADDR step_range_end = 0;
665 struct frame_id step_frame_id = { 0 };
8980e177 666 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
667
668 if (!non_stop)
669 {
670 ptid_t wait_ptid;
671 struct target_waitstatus wait_status;
672
673 /* Get the last target status returned by target_wait(). */
674 get_last_target_status (&wait_ptid, &wait_status);
675
676 /* If not stopped at a fork event, then there's nothing else to
677 do. */
678 if (wait_status.kind != TARGET_WAITKIND_FORKED
679 && wait_status.kind != TARGET_WAITKIND_VFORKED)
680 return 1;
681
682 /* Check if we switched over from WAIT_PTID, since the event was
683 reported. */
00431a78
PA
684 if (wait_ptid != minus_one_ptid
685 && inferior_ptid != wait_ptid)
e58b0e63
PA
686 {
687 /* We did. Switch back to WAIT_PTID thread, to tell the
688 target to follow it (in either direction). We'll
689 afterwards refuse to resume, and inform the user what
690 happened. */
00431a78
PA
691 thread_info *wait_thread
692 = find_thread_ptid (wait_ptid);
693 switch_to_thread (wait_thread);
e58b0e63
PA
694 should_resume = 0;
695 }
696 }
697
698 tp = inferior_thread ();
699
700 /* If there were any forks/vforks that were caught and are now to be
701 followed, then do so now. */
702 switch (tp->pending_follow.kind)
703 {
704 case TARGET_WAITKIND_FORKED:
705 case TARGET_WAITKIND_VFORKED:
706 {
707 ptid_t parent, child;
708
709 /* If the user did a next/step, etc, over a fork call,
710 preserve the stepping state in the fork child. */
711 if (follow_child && should_resume)
712 {
8358c15c
JK
713 step_resume_breakpoint = clone_momentary_breakpoint
714 (tp->control.step_resume_breakpoint);
16c381f0
JK
715 step_range_start = tp->control.step_range_start;
716 step_range_end = tp->control.step_range_end;
717 step_frame_id = tp->control.step_frame_id;
186c406b
TT
718 exception_resume_breakpoint
719 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 720 thread_fsm = tp->thread_fsm;
e58b0e63
PA
721
722 /* For now, delete the parent's sr breakpoint, otherwise,
723 parent/child sr breakpoints are considered duplicates,
724 and the child version will not be installed. Remove
725 this when the breakpoints module becomes aware of
726 inferiors and address spaces. */
727 delete_step_resume_breakpoint (tp);
16c381f0
JK
728 tp->control.step_range_start = 0;
729 tp->control.step_range_end = 0;
730 tp->control.step_frame_id = null_frame_id;
186c406b 731 delete_exception_resume_breakpoint (tp);
8980e177 732 tp->thread_fsm = NULL;
e58b0e63
PA
733 }
734
735 parent = inferior_ptid;
736 child = tp->pending_follow.value.related_pid;
737
d83ad864
DB
738 /* Set up inferior(s) as specified by the caller, and tell the
739 target to do whatever is necessary to follow either parent
740 or child. */
741 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
742 {
743 /* Target refused to follow, or there's some other reason
744 we shouldn't resume. */
745 should_resume = 0;
746 }
747 else
748 {
749 /* This pending follow fork event is now handled, one way
750 or another. The previous selected thread may be gone
751 from the lists by now, but if it is still around, need
752 to clear the pending follow request. */
e09875d4 753 tp = find_thread_ptid (parent);
e58b0e63
PA
754 if (tp)
755 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
756
757 /* This makes sure we don't try to apply the "Switched
758 over from WAIT_PID" logic above. */
759 nullify_last_target_wait_ptid ();
760
1777feb0 761 /* If we followed the child, switch to it... */
e58b0e63
PA
762 if (follow_child)
763 {
00431a78
PA
764 thread_info *child_thr = find_thread_ptid (child);
765 switch_to_thread (child_thr);
e58b0e63
PA
766
767 /* ... and preserve the stepping state, in case the
768 user was stepping over the fork call. */
769 if (should_resume)
770 {
771 tp = inferior_thread ();
8358c15c
JK
772 tp->control.step_resume_breakpoint
773 = step_resume_breakpoint;
16c381f0
JK
774 tp->control.step_range_start = step_range_start;
775 tp->control.step_range_end = step_range_end;
776 tp->control.step_frame_id = step_frame_id;
186c406b
TT
777 tp->control.exception_resume_breakpoint
778 = exception_resume_breakpoint;
8980e177 779 tp->thread_fsm = thread_fsm;
e58b0e63
PA
780 }
781 else
782 {
783 /* If we get here, it was because we're trying to
784 resume from a fork catchpoint, but, the user
785 has switched threads away from the thread that
786 forked. In that case, the resume command
787 issued is most likely not applicable to the
788 child, so just warn, and refuse to resume. */
3e43a32a 789 warning (_("Not resuming: switched threads "
fd7dcb94 790 "before following fork child."));
e58b0e63
PA
791 }
792
793 /* Reset breakpoints in the child as appropriate. */
794 follow_inferior_reset_breakpoints ();
795 }
e58b0e63
PA
796 }
797 }
798 break;
799 case TARGET_WAITKIND_SPURIOUS:
800 /* Nothing to follow. */
801 break;
802 default:
803 internal_error (__FILE__, __LINE__,
804 "Unexpected pending_follow.kind %d\n",
805 tp->pending_follow.kind);
806 break;
807 }
c906108c 808
e58b0e63 809 return should_resume;
c906108c
SS
810}
811
d83ad864 812static void
6604731b 813follow_inferior_reset_breakpoints (void)
c906108c 814{
4e1c45ea
PA
815 struct thread_info *tp = inferior_thread ();
816
6604731b
DJ
817 /* Was there a step_resume breakpoint? (There was if the user
818 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
819 thread number. Cloned step_resume breakpoints are disabled on
820 creation, so enable it here now that it is associated with the
821 correct thread.
6604731b
DJ
822
823 step_resumes are a form of bp that are made to be per-thread.
824 Since we created the step_resume bp when the parent process
825 was being debugged, and now are switching to the child process,
826 from the breakpoint package's viewpoint, that's a switch of
827 "threads". We must update the bp's notion of which thread
828 it is for, or it'll be ignored when it triggers. */
829
8358c15c 830 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
831 {
832 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
833 tp->control.step_resume_breakpoint->loc->enabled = 1;
834 }
6604731b 835
a1aa2221 836 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 837 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
838 {
839 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
840 tp->control.exception_resume_breakpoint->loc->enabled = 1;
841 }
186c406b 842
6604731b
DJ
843 /* Reinsert all breakpoints in the child. The user may have set
844 breakpoints after catching the fork, in which case those
845 were never set in the child, but only in the parent. This makes
846 sure the inserted breakpoints match the breakpoint list. */
847
848 breakpoint_re_set ();
849 insert_breakpoints ();
c906108c 850}
c906108c 851
6c95b8df
PA
852/* The child has exited or execed: resume threads of the parent the
853 user wanted to be executing. */
854
855static int
856proceed_after_vfork_done (struct thread_info *thread,
857 void *arg)
858{
859 int pid = * (int *) arg;
860
00431a78
PA
861 if (thread->ptid.pid () == pid
862 && thread->state == THREAD_RUNNING
863 && !thread->executing
6c95b8df 864 && !thread->stop_requested
a493e3e2 865 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
866 {
867 if (debug_infrun)
868 fprintf_unfiltered (gdb_stdlog,
869 "infrun: resuming vfork parent thread %s\n",
a068643d 870 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 871
00431a78 872 switch_to_thread (thread);
70509625 873 clear_proceed_status (0);
64ce06e4 874 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
875 }
876
877 return 0;
878}
879
5ed8105e
PA
880/* Save/restore inferior_ptid, current program space and current
881 inferior. Only use this if the current context points at an exited
882 inferior (and therefore there's no current thread to save). */
883class scoped_restore_exited_inferior
884{
885public:
886 scoped_restore_exited_inferior ()
887 : m_saved_ptid (&inferior_ptid)
888 {}
889
890private:
891 scoped_restore_tmpl<ptid_t> m_saved_ptid;
892 scoped_restore_current_program_space m_pspace;
893 scoped_restore_current_inferior m_inferior;
894};
895
6c95b8df
PA
896/* Called whenever we notice an exec or exit event, to handle
897 detaching or resuming a vfork parent. */
898
899static void
900handle_vfork_child_exec_or_exit (int exec)
901{
902 struct inferior *inf = current_inferior ();
903
904 if (inf->vfork_parent)
905 {
906 int resume_parent = -1;
907
908 /* This exec or exit marks the end of the shared memory region
b73715df
TV
909 between the parent and the child. Break the bonds. */
910 inferior *vfork_parent = inf->vfork_parent;
911 inf->vfork_parent->vfork_child = NULL;
912 inf->vfork_parent = NULL;
6c95b8df 913
b73715df
TV
914 /* If the user wanted to detach from the parent, now is the
915 time. */
916 if (vfork_parent->pending_detach)
6c95b8df
PA
917 {
918 struct thread_info *tp;
6c95b8df
PA
919 struct program_space *pspace;
920 struct address_space *aspace;
921
1777feb0 922 /* follow-fork child, detach-on-fork on. */
6c95b8df 923
b73715df 924 vfork_parent->pending_detach = 0;
68c9da30 925
5ed8105e
PA
926 gdb::optional<scoped_restore_exited_inferior>
927 maybe_restore_inferior;
928 gdb::optional<scoped_restore_current_pspace_and_thread>
929 maybe_restore_thread;
930
931 /* If we're handling a child exit, then inferior_ptid points
932 at the inferior's pid, not to a thread. */
f50f4e56 933 if (!exec)
5ed8105e 934 maybe_restore_inferior.emplace ();
f50f4e56 935 else
5ed8105e 936 maybe_restore_thread.emplace ();
6c95b8df
PA
937
938 /* We're letting loose of the parent. */
b73715df 939 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 940 switch_to_thread (tp);
6c95b8df
PA
941
942 /* We're about to detach from the parent, which implicitly
943 removes breakpoints from its address space. There's a
944 catch here: we want to reuse the spaces for the child,
945 but, parent/child are still sharing the pspace at this
946 point, although the exec in reality makes the kernel give
947 the child a fresh set of new pages. The problem here is
948 that the breakpoints module being unaware of this, would
949 likely chose the child process to write to the parent
950 address space. Swapping the child temporarily away from
951 the spaces has the desired effect. Yes, this is "sort
952 of" a hack. */
953
954 pspace = inf->pspace;
955 aspace = inf->aspace;
956 inf->aspace = NULL;
957 inf->pspace = NULL;
958
f67c0c91 959 if (print_inferior_events)
6c95b8df 960 {
a068643d 961 std::string pidstr
b73715df 962 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 963
223ffa71 964 target_terminal::ours_for_output ();
6c95b8df
PA
965
966 if (exec)
6f259a23
DB
967 {
968 fprintf_filtered (gdb_stdlog,
f67c0c91 969 _("[Detaching vfork parent %s "
a068643d 970 "after child exec]\n"), pidstr.c_str ());
6f259a23 971 }
6c95b8df 972 else
6f259a23
DB
973 {
974 fprintf_filtered (gdb_stdlog,
f67c0c91 975 _("[Detaching vfork parent %s "
a068643d 976 "after child exit]\n"), pidstr.c_str ());
6f259a23 977 }
6c95b8df
PA
978 }
979
b73715df 980 target_detach (vfork_parent, 0);
6c95b8df
PA
981
982 /* Put it back. */
983 inf->pspace = pspace;
984 inf->aspace = aspace;
6c95b8df
PA
985 }
986 else if (exec)
987 {
988 /* We're staying attached to the parent, so, really give the
989 child a new address space. */
564b1e3f 990 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
991 inf->aspace = inf->pspace->aspace;
992 inf->removable = 1;
993 set_current_program_space (inf->pspace);
994
b73715df 995 resume_parent = vfork_parent->pid;
6c95b8df
PA
996 }
997 else
998 {
6c95b8df
PA
999 struct program_space *pspace;
1000
1001 /* If this is a vfork child exiting, then the pspace and
1002 aspaces were shared with the parent. Since we're
1003 reporting the process exit, we'll be mourning all that is
1004 found in the address space, and switching to null_ptid,
1005 preparing to start a new inferior. But, since we don't
1006 want to clobber the parent's address/program spaces, we
1007 go ahead and create a new one for this exiting
1008 inferior. */
1009
5ed8105e
PA
1010 /* Switch to null_ptid while running clone_program_space, so
1011 that clone_program_space doesn't want to read the
1012 selected frame of a dead process. */
1013 scoped_restore restore_ptid
1014 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1015
1016 /* This inferior is dead, so avoid giving the breakpoints
1017 module the option to write through to it (cloning a
1018 program space resets breakpoints). */
1019 inf->aspace = NULL;
1020 inf->pspace = NULL;
564b1e3f 1021 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1022 set_current_program_space (pspace);
1023 inf->removable = 1;
7dcd53a0 1024 inf->symfile_flags = SYMFILE_NO_READ;
b73715df 1025 clone_program_space (pspace, vfork_parent->pspace);
6c95b8df
PA
1026 inf->pspace = pspace;
1027 inf->aspace = pspace->aspace;
1028
b73715df 1029 resume_parent = vfork_parent->pid;
6c95b8df
PA
1030 }
1031
6c95b8df
PA
1032 gdb_assert (current_program_space == inf->pspace);
1033
1034 if (non_stop && resume_parent != -1)
1035 {
1036 /* If the user wanted the parent to be running, let it go
1037 free now. */
5ed8105e 1038 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1039
1040 if (debug_infrun)
3e43a32a
MS
1041 fprintf_unfiltered (gdb_stdlog,
1042 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1043 resume_parent);
1044
1045 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1046 }
1047 }
1048}
1049
eb6c553b 1050/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1051
1052static const char follow_exec_mode_new[] = "new";
1053static const char follow_exec_mode_same[] = "same";
40478521 1054static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1055{
1056 follow_exec_mode_new,
1057 follow_exec_mode_same,
1058 NULL,
1059};
1060
1061static const char *follow_exec_mode_string = follow_exec_mode_same;
1062static void
1063show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1064 struct cmd_list_element *c, const char *value)
1065{
1066 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1067}
1068
ecf45d2c 1069/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1070
c906108c 1071static void
4ca51187 1072follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1073{
6c95b8df 1074 struct inferior *inf = current_inferior ();
e99b03dc 1075 int pid = ptid.pid ();
94585166 1076 ptid_t process_ptid;
7a292a7a 1077
65d2b333
PW
1078 /* Switch terminal for any messages produced e.g. by
1079 breakpoint_re_set. */
1080 target_terminal::ours_for_output ();
1081
c906108c
SS
1082 /* This is an exec event that we actually wish to pay attention to.
1083 Refresh our symbol table to the newly exec'd program, remove any
1084 momentary bp's, etc.
1085
1086 If there are breakpoints, they aren't really inserted now,
1087 since the exec() transformed our inferior into a fresh set
1088 of instructions.
1089
1090 We want to preserve symbolic breakpoints on the list, since
1091 we have hopes that they can be reset after the new a.out's
1092 symbol table is read.
1093
1094 However, any "raw" breakpoints must be removed from the list
1095 (e.g., the solib bp's), since their address is probably invalid
1096 now.
1097
1098 And, we DON'T want to call delete_breakpoints() here, since
1099 that may write the bp's "shadow contents" (the instruction
85102364 1100 value that was overwritten with a TRAP instruction). Since
1777feb0 1101 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1102
1103 mark_breakpoints_out ();
1104
95e50b27
PA
1105 /* The target reports the exec event to the main thread, even if
1106 some other thread does the exec, and even if the main thread was
1107 stopped or already gone. We may still have non-leader threads of
1108 the process on our list. E.g., on targets that don't have thread
1109 exit events (like remote); or on native Linux in non-stop mode if
1110 there were only two threads in the inferior and the non-leader
1111 one is the one that execs (and nothing forces an update of the
1112 thread list up to here). When debugging remotely, it's best to
1113 avoid extra traffic, when possible, so avoid syncing the thread
1114 list with the target, and instead go ahead and delete all threads
1115 of the process but one that reported the event. Note this must
1116 be done before calling update_breakpoints_after_exec, as
1117 otherwise clearing the threads' resources would reference stale
1118 thread breakpoints -- it may have been one of these threads that
1119 stepped across the exec. We could just clear their stepping
1120 states, but as long as we're iterating, might as well delete
1121 them. Deleting them now rather than at the next user-visible
1122 stop provides a nicer sequence of events for user and MI
1123 notifications. */
08036331 1124 for (thread_info *th : all_threads_safe ())
d7e15655 1125 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1126 delete_thread (th);
95e50b27
PA
1127
1128 /* We also need to clear any left over stale state for the
1129 leader/event thread. E.g., if there was any step-resume
1130 breakpoint or similar, it's gone now. We cannot truly
1131 step-to-next statement through an exec(). */
08036331 1132 thread_info *th = inferior_thread ();
8358c15c 1133 th->control.step_resume_breakpoint = NULL;
186c406b 1134 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1135 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1136 th->control.step_range_start = 0;
1137 th->control.step_range_end = 0;
c906108c 1138
95e50b27
PA
1139 /* The user may have had the main thread held stopped in the
1140 previous image (e.g., schedlock on, or non-stop). Release
1141 it now. */
a75724bc
PA
1142 th->stop_requested = 0;
1143
95e50b27
PA
1144 update_breakpoints_after_exec ();
1145
1777feb0 1146 /* What is this a.out's name? */
f2907e49 1147 process_ptid = ptid_t (pid);
6c95b8df 1148 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1149 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1150 exec_file_target);
c906108c
SS
1151
1152 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1153 inferior has essentially been killed & reborn. */
7a292a7a 1154
6ca15a4b 1155 breakpoint_init_inferior (inf_execd);
e85a822c 1156
797bc1cb
TT
1157 gdb::unique_xmalloc_ptr<char> exec_file_host
1158 = exec_file_find (exec_file_target, NULL);
ff862be4 1159
ecf45d2c
SL
1160 /* If we were unable to map the executable target pathname onto a host
1161 pathname, tell the user that. Otherwise GDB's subsequent behavior
1162 is confusing. Maybe it would even be better to stop at this point
1163 so that the user can specify a file manually before continuing. */
1164 if (exec_file_host == NULL)
1165 warning (_("Could not load symbols for executable %s.\n"
1166 "Do you need \"set sysroot\"?"),
1167 exec_file_target);
c906108c 1168
cce9b6bf
PA
1169 /* Reset the shared library package. This ensures that we get a
1170 shlib event when the child reaches "_start", at which point the
1171 dld will have had a chance to initialize the child. */
1172 /* Also, loading a symbol file below may trigger symbol lookups, and
1173 we don't want those to be satisfied by the libraries of the
1174 previous incarnation of this process. */
1175 no_shared_libraries (NULL, 0);
1176
6c95b8df
PA
1177 if (follow_exec_mode_string == follow_exec_mode_new)
1178 {
6c95b8df
PA
1179 /* The user wants to keep the old inferior and program spaces
1180 around. Create a new fresh one, and switch to it. */
1181
35ed81d4
SM
1182 /* Do exit processing for the original inferior before setting the new
1183 inferior's pid. Having two inferiors with the same pid would confuse
1184 find_inferior_p(t)id. Transfer the terminal state and info from the
1185 old to the new inferior. */
1186 inf = add_inferior_with_spaces ();
1187 swap_terminal_info (inf, current_inferior ());
057302ce 1188 exit_inferior_silent (current_inferior ());
17d8546e 1189
94585166 1190 inf->pid = pid;
ecf45d2c 1191 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1192
1193 set_current_inferior (inf);
94585166 1194 set_current_program_space (inf->pspace);
c4c17fb0 1195 add_thread (ptid);
6c95b8df 1196 }
9107fc8d
PA
1197 else
1198 {
1199 /* The old description may no longer be fit for the new image.
1200 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1201 old description; we'll read a new one below. No need to do
1202 this on "follow-exec-mode new", as the old inferior stays
1203 around (its description is later cleared/refetched on
1204 restart). */
1205 target_clear_description ();
1206 }
6c95b8df
PA
1207
1208 gdb_assert (current_program_space == inf->pspace);
1209
ecf45d2c
SL
1210 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1211 because the proper displacement for a PIE (Position Independent
1212 Executable) main symbol file will only be computed by
1213 solib_create_inferior_hook below. breakpoint_re_set would fail
1214 to insert the breakpoints with the zero displacement. */
797bc1cb 1215 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1216
9107fc8d
PA
1217 /* If the target can specify a description, read it. Must do this
1218 after flipping to the new executable (because the target supplied
1219 description must be compatible with the executable's
1220 architecture, and the old executable may e.g., be 32-bit, while
1221 the new one 64-bit), and before anything involving memory or
1222 registers. */
1223 target_find_description ();
1224
268a4a75 1225 solib_create_inferior_hook (0);
c906108c 1226
4efc6507
DE
1227 jit_inferior_created_hook ();
1228
c1e56572
JK
1229 breakpoint_re_set ();
1230
c906108c
SS
1231 /* Reinsert all breakpoints. (Those which were symbolic have
1232 been reset to the proper address in the new a.out, thanks
1777feb0 1233 to symbol_file_command...). */
c906108c
SS
1234 insert_breakpoints ();
1235
1236 /* The next resume of this inferior should bring it to the shlib
1237 startup breakpoints. (If the user had also set bp's on
1238 "main" from the old (parent) process, then they'll auto-
1777feb0 1239 matically get reset there in the new process.). */
c906108c
SS
1240}
1241
c2829269
PA
1242/* The queue of threads that need to do a step-over operation to get
1243 past e.g., a breakpoint. What technique is used to step over the
1244 breakpoint/watchpoint does not matter -- all threads end up in the
1245 same queue, to maintain rough temporal order of execution, in order
1246 to avoid starvation, otherwise, we could e.g., find ourselves
1247 constantly stepping the same couple threads past their breakpoints
1248 over and over, if the single-step finish fast enough. */
1249struct thread_info *step_over_queue_head;
1250
6c4cfb24
PA
1251/* Bit flags indicating what the thread needs to step over. */
1252
8d297bbf 1253enum step_over_what_flag
6c4cfb24
PA
1254 {
1255 /* Step over a breakpoint. */
1256 STEP_OVER_BREAKPOINT = 1,
1257
1258 /* Step past a non-continuable watchpoint, in order to let the
1259 instruction execute so we can evaluate the watchpoint
1260 expression. */
1261 STEP_OVER_WATCHPOINT = 2
1262 };
8d297bbf 1263DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1264
963f9c80 1265/* Info about an instruction that is being stepped over. */
31e77af2
PA
1266
1267struct step_over_info
1268{
963f9c80
PA
1269 /* If we're stepping past a breakpoint, this is the address space
1270 and address of the instruction the breakpoint is set at. We'll
1271 skip inserting all breakpoints here. Valid iff ASPACE is
1272 non-NULL. */
8b86c959 1273 const address_space *aspace;
31e77af2 1274 CORE_ADDR address;
963f9c80
PA
1275
1276 /* The instruction being stepped over triggers a nonsteppable
1277 watchpoint. If true, we'll skip inserting watchpoints. */
1278 int nonsteppable_watchpoint_p;
21edc42f
YQ
1279
1280 /* The thread's global number. */
1281 int thread;
31e77af2
PA
1282};
1283
1284/* The step-over info of the location that is being stepped over.
1285
1286 Note that with async/breakpoint always-inserted mode, a user might
1287 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1288 being stepped over. As setting a new breakpoint inserts all
1289 breakpoints, we need to make sure the breakpoint being stepped over
1290 isn't inserted then. We do that by only clearing the step-over
1291 info when the step-over is actually finished (or aborted).
1292
1293 Presently GDB can only step over one breakpoint at any given time.
1294 Given threads that can't run code in the same address space as the
1295 breakpoint's can't really miss the breakpoint, GDB could be taught
1296 to step-over at most one breakpoint per address space (so this info
1297 could move to the address space object if/when GDB is extended).
1298 The set of breakpoints being stepped over will normally be much
1299 smaller than the set of all breakpoints, so a flag in the
1300 breakpoint location structure would be wasteful. A separate list
1301 also saves complexity and run-time, as otherwise we'd have to go
1302 through all breakpoint locations clearing their flag whenever we
1303 start a new sequence. Similar considerations weigh against storing
1304 this info in the thread object. Plus, not all step overs actually
1305 have breakpoint locations -- e.g., stepping past a single-step
1306 breakpoint, or stepping to complete a non-continuable
1307 watchpoint. */
1308static struct step_over_info step_over_info;
1309
1310/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1311 stepping over.
1312 N.B. We record the aspace and address now, instead of say just the thread,
1313 because when we need the info later the thread may be running. */
31e77af2
PA
1314
1315static void
8b86c959 1316set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1317 int nonsteppable_watchpoint_p,
1318 int thread)
31e77af2
PA
1319{
1320 step_over_info.aspace = aspace;
1321 step_over_info.address = address;
963f9c80 1322 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1323 step_over_info.thread = thread;
31e77af2
PA
1324}
1325
1326/* Called when we're not longer stepping over a breakpoint / an
1327 instruction, so all breakpoints are free to be (re)inserted. */
1328
1329static void
1330clear_step_over_info (void)
1331{
372316f1
PA
1332 if (debug_infrun)
1333 fprintf_unfiltered (gdb_stdlog,
1334 "infrun: clear_step_over_info\n");
31e77af2
PA
1335 step_over_info.aspace = NULL;
1336 step_over_info.address = 0;
963f9c80 1337 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1338 step_over_info.thread = -1;
31e77af2
PA
1339}
1340
7f89fd65 1341/* See infrun.h. */
31e77af2
PA
1342
1343int
1344stepping_past_instruction_at (struct address_space *aspace,
1345 CORE_ADDR address)
1346{
1347 return (step_over_info.aspace != NULL
1348 && breakpoint_address_match (aspace, address,
1349 step_over_info.aspace,
1350 step_over_info.address));
1351}
1352
963f9c80
PA
1353/* See infrun.h. */
1354
21edc42f
YQ
1355int
1356thread_is_stepping_over_breakpoint (int thread)
1357{
1358 return (step_over_info.thread != -1
1359 && thread == step_over_info.thread);
1360}
1361
1362/* See infrun.h. */
1363
963f9c80
PA
1364int
1365stepping_past_nonsteppable_watchpoint (void)
1366{
1367 return step_over_info.nonsteppable_watchpoint_p;
1368}
1369
6cc83d2a
PA
1370/* Returns true if step-over info is valid. */
1371
1372static int
1373step_over_info_valid_p (void)
1374{
963f9c80
PA
1375 return (step_over_info.aspace != NULL
1376 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1377}
1378
c906108c 1379\f
237fc4c9
PA
1380/* Displaced stepping. */
1381
1382/* In non-stop debugging mode, we must take special care to manage
1383 breakpoints properly; in particular, the traditional strategy for
1384 stepping a thread past a breakpoint it has hit is unsuitable.
1385 'Displaced stepping' is a tactic for stepping one thread past a
1386 breakpoint it has hit while ensuring that other threads running
1387 concurrently will hit the breakpoint as they should.
1388
1389 The traditional way to step a thread T off a breakpoint in a
1390 multi-threaded program in all-stop mode is as follows:
1391
1392 a0) Initially, all threads are stopped, and breakpoints are not
1393 inserted.
1394 a1) We single-step T, leaving breakpoints uninserted.
1395 a2) We insert breakpoints, and resume all threads.
1396
1397 In non-stop debugging, however, this strategy is unsuitable: we
1398 don't want to have to stop all threads in the system in order to
1399 continue or step T past a breakpoint. Instead, we use displaced
1400 stepping:
1401
1402 n0) Initially, T is stopped, other threads are running, and
1403 breakpoints are inserted.
1404 n1) We copy the instruction "under" the breakpoint to a separate
1405 location, outside the main code stream, making any adjustments
1406 to the instruction, register, and memory state as directed by
1407 T's architecture.
1408 n2) We single-step T over the instruction at its new location.
1409 n3) We adjust the resulting register and memory state as directed
1410 by T's architecture. This includes resetting T's PC to point
1411 back into the main instruction stream.
1412 n4) We resume T.
1413
1414 This approach depends on the following gdbarch methods:
1415
1416 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1417 indicate where to copy the instruction, and how much space must
1418 be reserved there. We use these in step n1.
1419
1420 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1421 address, and makes any necessary adjustments to the instruction,
1422 register contents, and memory. We use this in step n1.
1423
1424 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1425 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1426 same effect the instruction would have had if we had executed it
1427 at its original address. We use this in step n3.
1428
237fc4c9
PA
1429 The gdbarch_displaced_step_copy_insn and
1430 gdbarch_displaced_step_fixup functions must be written so that
1431 copying an instruction with gdbarch_displaced_step_copy_insn,
1432 single-stepping across the copied instruction, and then applying
1433 gdbarch_displaced_insn_fixup should have the same effects on the
1434 thread's memory and registers as stepping the instruction in place
1435 would have. Exactly which responsibilities fall to the copy and
1436 which fall to the fixup is up to the author of those functions.
1437
1438 See the comments in gdbarch.sh for details.
1439
1440 Note that displaced stepping and software single-step cannot
1441 currently be used in combination, although with some care I think
1442 they could be made to. Software single-step works by placing
1443 breakpoints on all possible subsequent instructions; if the
1444 displaced instruction is a PC-relative jump, those breakpoints
1445 could fall in very strange places --- on pages that aren't
1446 executable, or at addresses that are not proper instruction
1447 boundaries. (We do generally let other threads run while we wait
1448 to hit the software single-step breakpoint, and they might
1449 encounter such a corrupted instruction.) One way to work around
1450 this would be to have gdbarch_displaced_step_copy_insn fully
1451 simulate the effect of PC-relative instructions (and return NULL)
1452 on architectures that use software single-stepping.
1453
1454 In non-stop mode, we can have independent and simultaneous step
1455 requests, so more than one thread may need to simultaneously step
1456 over a breakpoint. The current implementation assumes there is
1457 only one scratch space per process. In this case, we have to
1458 serialize access to the scratch space. If thread A wants to step
1459 over a breakpoint, but we are currently waiting for some other
1460 thread to complete a displaced step, we leave thread A stopped and
1461 place it in the displaced_step_request_queue. Whenever a displaced
1462 step finishes, we pick the next thread in the queue and start a new
1463 displaced step operation on it. See displaced_step_prepare and
1464 displaced_step_fixup for details. */
1465
cfba9872
SM
1466/* Default destructor for displaced_step_closure. */
1467
1468displaced_step_closure::~displaced_step_closure () = default;
1469
fc1cf338
PA
1470/* Get the displaced stepping state of process PID. */
1471
39a36629 1472static displaced_step_inferior_state *
00431a78 1473get_displaced_stepping_state (inferior *inf)
fc1cf338 1474{
d20172fc 1475 return &inf->displaced_step_state;
fc1cf338
PA
1476}
1477
372316f1
PA
1478/* Returns true if any inferior has a thread doing a displaced
1479 step. */
1480
39a36629
SM
1481static bool
1482displaced_step_in_progress_any_inferior ()
372316f1 1483{
d20172fc 1484 for (inferior *i : all_inferiors ())
39a36629 1485 {
d20172fc 1486 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1487 return true;
1488 }
372316f1 1489
39a36629 1490 return false;
372316f1
PA
1491}
1492
c0987663
YQ
1493/* Return true if thread represented by PTID is doing a displaced
1494 step. */
1495
1496static int
00431a78 1497displaced_step_in_progress_thread (thread_info *thread)
c0987663 1498{
00431a78 1499 gdb_assert (thread != NULL);
c0987663 1500
d20172fc 1501 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1502}
1503
8f572e5c
PA
1504/* Return true if process PID has a thread doing a displaced step. */
1505
1506static int
00431a78 1507displaced_step_in_progress (inferior *inf)
8f572e5c 1508{
d20172fc 1509 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1510}
1511
a42244db
YQ
1512/* If inferior is in displaced stepping, and ADDR equals to starting address
1513 of copy area, return corresponding displaced_step_closure. Otherwise,
1514 return NULL. */
1515
1516struct displaced_step_closure*
1517get_displaced_step_closure_by_addr (CORE_ADDR addr)
1518{
d20172fc 1519 displaced_step_inferior_state *displaced
00431a78 1520 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1521
1522 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1523 if (displaced->step_thread != nullptr
00431a78 1524 && displaced->step_copy == addr)
a42244db
YQ
1525 return displaced->step_closure;
1526
1527 return NULL;
1528}
1529
fc1cf338
PA
1530static void
1531infrun_inferior_exit (struct inferior *inf)
1532{
d20172fc 1533 inf->displaced_step_state.reset ();
fc1cf338 1534}
237fc4c9 1535
fff08868
HZ
1536/* If ON, and the architecture supports it, GDB will use displaced
1537 stepping to step over breakpoints. If OFF, or if the architecture
1538 doesn't support it, GDB will instead use the traditional
1539 hold-and-step approach. If AUTO (which is the default), GDB will
1540 decide which technique to use to step over breakpoints depending on
1541 which of all-stop or non-stop mode is active --- displaced stepping
1542 in non-stop mode; hold-and-step in all-stop mode. */
1543
72d0e2c5 1544static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1545
237fc4c9
PA
1546static void
1547show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1548 struct cmd_list_element *c,
1549 const char *value)
1550{
72d0e2c5 1551 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1552 fprintf_filtered (file,
1553 _("Debugger's willingness to use displaced stepping "
1554 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1555 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1556 else
3e43a32a
MS
1557 fprintf_filtered (file,
1558 _("Debugger's willingness to use displaced stepping "
1559 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1560}
1561
fff08868 1562/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1563 over breakpoints of thread TP. */
fff08868 1564
237fc4c9 1565static int
3fc8eb30 1566use_displaced_stepping (struct thread_info *tp)
237fc4c9 1567{
00431a78 1568 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1569 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1570 displaced_step_inferior_state *displaced_state
1571 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1572
fbea99ea
PA
1573 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1574 && target_is_non_stop_p ())
72d0e2c5 1575 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1576 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1577 && find_record_target () == NULL
d20172fc 1578 && !displaced_state->failed_before);
237fc4c9
PA
1579}
1580
1581/* Clean out any stray displaced stepping state. */
1582static void
fc1cf338 1583displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1584{
1585 /* Indicate that there is no cleanup pending. */
00431a78 1586 displaced->step_thread = nullptr;
237fc4c9 1587
cfba9872 1588 delete displaced->step_closure;
6d45d4b4 1589 displaced->step_closure = NULL;
237fc4c9
PA
1590}
1591
9799571e
TT
1592/* A cleanup that wraps displaced_step_clear. */
1593using displaced_step_clear_cleanup
1594 = FORWARD_SCOPE_EXIT (displaced_step_clear);
237fc4c9
PA
1595
1596/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1597void
1598displaced_step_dump_bytes (struct ui_file *file,
1599 const gdb_byte *buf,
1600 size_t len)
1601{
1602 int i;
1603
1604 for (i = 0; i < len; i++)
1605 fprintf_unfiltered (file, "%02x ", buf[i]);
1606 fputs_unfiltered ("\n", file);
1607}
1608
1609/* Prepare to single-step, using displaced stepping.
1610
1611 Note that we cannot use displaced stepping when we have a signal to
1612 deliver. If we have a signal to deliver and an instruction to step
1613 over, then after the step, there will be no indication from the
1614 target whether the thread entered a signal handler or ignored the
1615 signal and stepped over the instruction successfully --- both cases
1616 result in a simple SIGTRAP. In the first case we mustn't do a
1617 fixup, and in the second case we must --- but we can't tell which.
1618 Comments in the code for 'random signals' in handle_inferior_event
1619 explain how we handle this case instead.
1620
1621 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1622 stepped now; 0 if displaced stepping this thread got queued; or -1
1623 if this instruction can't be displaced stepped. */
1624
237fc4c9 1625static int
00431a78 1626displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1627{
00431a78 1628 regcache *regcache = get_thread_regcache (tp);
ac7936df 1629 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1630 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1631 CORE_ADDR original, copy;
1632 ULONGEST len;
1633 struct displaced_step_closure *closure;
9e529e1d 1634 int status;
237fc4c9
PA
1635
1636 /* We should never reach this function if the architecture does not
1637 support displaced stepping. */
1638 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1639
c2829269
PA
1640 /* Nor if the thread isn't meant to step over a breakpoint. */
1641 gdb_assert (tp->control.trap_expected);
1642
c1e36e3e
PA
1643 /* Disable range stepping while executing in the scratch pad. We
1644 want a single-step even if executing the displaced instruction in
1645 the scratch buffer lands within the stepping range (e.g., a
1646 jump/branch). */
1647 tp->control.may_range_step = 0;
1648
fc1cf338
PA
1649 /* We have to displaced step one thread at a time, as we only have
1650 access to a single scratch space per inferior. */
237fc4c9 1651
d20172fc
SM
1652 displaced_step_inferior_state *displaced
1653 = get_displaced_stepping_state (tp->inf);
fc1cf338 1654
00431a78 1655 if (displaced->step_thread != nullptr)
237fc4c9
PA
1656 {
1657 /* Already waiting for a displaced step to finish. Defer this
1658 request and place in queue. */
237fc4c9
PA
1659
1660 if (debug_displaced)
1661 fprintf_unfiltered (gdb_stdlog,
c2829269 1662 "displaced: deferring step of %s\n",
a068643d 1663 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1664
c2829269 1665 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1666 return 0;
1667 }
1668 else
1669 {
1670 if (debug_displaced)
1671 fprintf_unfiltered (gdb_stdlog,
1672 "displaced: stepping %s now\n",
a068643d 1673 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1674 }
1675
fc1cf338 1676 displaced_step_clear (displaced);
237fc4c9 1677
00431a78
PA
1678 scoped_restore_current_thread restore_thread;
1679
1680 switch_to_thread (tp);
ad53cd71 1681
515630c5 1682 original = regcache_read_pc (regcache);
237fc4c9
PA
1683
1684 copy = gdbarch_displaced_step_location (gdbarch);
1685 len = gdbarch_max_insn_length (gdbarch);
1686
d35ae833
PA
1687 if (breakpoint_in_range_p (aspace, copy, len))
1688 {
1689 /* There's a breakpoint set in the scratch pad location range
1690 (which is usually around the entry point). We'd either
1691 install it before resuming, which would overwrite/corrupt the
1692 scratch pad, or if it was already inserted, this displaced
1693 step would overwrite it. The latter is OK in the sense that
1694 we already assume that no thread is going to execute the code
1695 in the scratch pad range (after initial startup) anyway, but
1696 the former is unacceptable. Simply punt and fallback to
1697 stepping over this breakpoint in-line. */
1698 if (debug_displaced)
1699 {
1700 fprintf_unfiltered (gdb_stdlog,
1701 "displaced: breakpoint set in scratch pad. "
1702 "Stepping over breakpoint in-line instead.\n");
1703 }
1704
d35ae833
PA
1705 return -1;
1706 }
1707
237fc4c9 1708 /* Save the original contents of the copy area. */
d20172fc
SM
1709 displaced->step_saved_copy.resize (len);
1710 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1711 if (status != 0)
1712 throw_error (MEMORY_ERROR,
1713 _("Error accessing memory address %s (%s) for "
1714 "displaced-stepping scratch space."),
1715 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1716 if (debug_displaced)
1717 {
5af949e3
UW
1718 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1719 paddress (gdbarch, copy));
fc1cf338 1720 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1721 displaced->step_saved_copy.data (),
fc1cf338 1722 len);
237fc4c9
PA
1723 };
1724
1725 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1726 original, copy, regcache);
7f03bd92
PA
1727 if (closure == NULL)
1728 {
1729 /* The architecture doesn't know how or want to displaced step
1730 this instruction or instruction sequence. Fallback to
1731 stepping over the breakpoint in-line. */
7f03bd92
PA
1732 return -1;
1733 }
237fc4c9 1734
9f5a595d
UW
1735 /* Save the information we need to fix things up if the step
1736 succeeds. */
00431a78 1737 displaced->step_thread = tp;
fc1cf338
PA
1738 displaced->step_gdbarch = gdbarch;
1739 displaced->step_closure = closure;
1740 displaced->step_original = original;
1741 displaced->step_copy = copy;
9f5a595d 1742
9799571e
TT
1743 {
1744 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1745
9799571e
TT
1746 /* Resume execution at the copy. */
1747 regcache_write_pc (regcache, copy);
237fc4c9 1748
9799571e
TT
1749 cleanup.release ();
1750 }
ad53cd71 1751
237fc4c9 1752 if (debug_displaced)
5af949e3
UW
1753 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1754 paddress (gdbarch, copy));
237fc4c9 1755
237fc4c9
PA
1756 return 1;
1757}
1758
3fc8eb30
PA
1759/* Wrapper for displaced_step_prepare_throw that disabled further
1760 attempts at displaced stepping if we get a memory error. */
1761
1762static int
00431a78 1763displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1764{
1765 int prepared = -1;
1766
a70b8144 1767 try
3fc8eb30 1768 {
00431a78 1769 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1770 }
230d2906 1771 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1772 {
1773 struct displaced_step_inferior_state *displaced_state;
1774
16b41842
PA
1775 if (ex.error != MEMORY_ERROR
1776 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1777 throw;
3fc8eb30
PA
1778
1779 if (debug_infrun)
1780 {
1781 fprintf_unfiltered (gdb_stdlog,
1782 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1783 ex.what ());
3fc8eb30
PA
1784 }
1785
1786 /* Be verbose if "set displaced-stepping" is "on", silent if
1787 "auto". */
1788 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1789 {
fd7dcb94 1790 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1791 ex.what ());
3fc8eb30
PA
1792 }
1793
1794 /* Disable further displaced stepping attempts. */
1795 displaced_state
00431a78 1796 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1797 displaced_state->failed_before = 1;
1798 }
3fc8eb30
PA
1799
1800 return prepared;
1801}
1802
237fc4c9 1803static void
3e43a32a
MS
1804write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1805 const gdb_byte *myaddr, int len)
237fc4c9 1806{
2989a365 1807 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1808
237fc4c9
PA
1809 inferior_ptid = ptid;
1810 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1811}
1812
e2d96639
YQ
1813/* Restore the contents of the copy area for thread PTID. */
1814
1815static void
1816displaced_step_restore (struct displaced_step_inferior_state *displaced,
1817 ptid_t ptid)
1818{
1819 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1820
1821 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1822 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1823 if (debug_displaced)
1824 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1825 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1826 paddress (displaced->step_gdbarch,
1827 displaced->step_copy));
1828}
1829
372316f1
PA
1830/* If we displaced stepped an instruction successfully, adjust
1831 registers and memory to yield the same effect the instruction would
1832 have had if we had executed it at its original address, and return
1833 1. If the instruction didn't complete, relocate the PC and return
1834 -1. If the thread wasn't displaced stepping, return 0. */
1835
1836static int
00431a78 1837displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1838{
fc1cf338 1839 struct displaced_step_inferior_state *displaced
00431a78 1840 = get_displaced_stepping_state (event_thread->inf);
372316f1 1841 int ret;
fc1cf338 1842
00431a78
PA
1843 /* Was this event for the thread we displaced? */
1844 if (displaced->step_thread != event_thread)
372316f1 1845 return 0;
237fc4c9 1846
9799571e 1847 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1848
00431a78 1849 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1850
cb71640d
PA
1851 /* Fixup may need to read memory/registers. Switch to the thread
1852 that we're fixing up. Also, target_stopped_by_watchpoint checks
1853 the current thread. */
00431a78 1854 switch_to_thread (event_thread);
cb71640d 1855
237fc4c9 1856 /* Did the instruction complete successfully? */
cb71640d
PA
1857 if (signal == GDB_SIGNAL_TRAP
1858 && !(target_stopped_by_watchpoint ()
1859 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1860 || target_have_steppable_watchpoint)))
237fc4c9
PA
1861 {
1862 /* Fix up the resulting state. */
fc1cf338
PA
1863 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1864 displaced->step_closure,
1865 displaced->step_original,
1866 displaced->step_copy,
00431a78 1867 get_thread_regcache (displaced->step_thread));
372316f1 1868 ret = 1;
237fc4c9
PA
1869 }
1870 else
1871 {
1872 /* Since the instruction didn't complete, all we can do is
1873 relocate the PC. */
00431a78 1874 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1875 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1876
fc1cf338 1877 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1878 regcache_write_pc (regcache, pc);
372316f1 1879 ret = -1;
237fc4c9
PA
1880 }
1881
372316f1 1882 return ret;
c2829269 1883}
1c5cfe86 1884
4d9d9d04
PA
1885/* Data to be passed around while handling an event. This data is
1886 discarded between events. */
1887struct execution_control_state
1888{
1889 ptid_t ptid;
1890 /* The thread that got the event, if this was a thread event; NULL
1891 otherwise. */
1892 struct thread_info *event_thread;
1893
1894 struct target_waitstatus ws;
1895 int stop_func_filled_in;
1896 CORE_ADDR stop_func_start;
1897 CORE_ADDR stop_func_end;
1898 const char *stop_func_name;
1899 int wait_some_more;
1900
1901 /* True if the event thread hit the single-step breakpoint of
1902 another thread. Thus the event doesn't cause a stop, the thread
1903 needs to be single-stepped past the single-step breakpoint before
1904 we can switch back to the original stepping thread. */
1905 int hit_singlestep_breakpoint;
1906};
1907
1908/* Clear ECS and set it to point at TP. */
c2829269
PA
1909
1910static void
4d9d9d04
PA
1911reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1912{
1913 memset (ecs, 0, sizeof (*ecs));
1914 ecs->event_thread = tp;
1915 ecs->ptid = tp->ptid;
1916}
1917
1918static void keep_going_pass_signal (struct execution_control_state *ecs);
1919static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1920static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1921static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1922
1923/* Are there any pending step-over requests? If so, run all we can
1924 now and return true. Otherwise, return false. */
1925
1926static int
c2829269
PA
1927start_step_over (void)
1928{
1929 struct thread_info *tp, *next;
1930
372316f1
PA
1931 /* Don't start a new step-over if we already have an in-line
1932 step-over operation ongoing. */
1933 if (step_over_info_valid_p ())
1934 return 0;
1935
c2829269 1936 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1937 {
4d9d9d04
PA
1938 struct execution_control_state ecss;
1939 struct execution_control_state *ecs = &ecss;
8d297bbf 1940 step_over_what step_what;
372316f1 1941 int must_be_in_line;
c2829269 1942
c65d6b55
PA
1943 gdb_assert (!tp->stop_requested);
1944
c2829269 1945 next = thread_step_over_chain_next (tp);
237fc4c9 1946
c2829269
PA
1947 /* If this inferior already has a displaced step in process,
1948 don't start a new one. */
00431a78 1949 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1950 continue;
1951
372316f1
PA
1952 step_what = thread_still_needs_step_over (tp);
1953 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1954 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1955 && !use_displaced_stepping (tp)));
372316f1
PA
1956
1957 /* We currently stop all threads of all processes to step-over
1958 in-line. If we need to start a new in-line step-over, let
1959 any pending displaced steps finish first. */
1960 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1961 return 0;
1962
c2829269
PA
1963 thread_step_over_chain_remove (tp);
1964
1965 if (step_over_queue_head == NULL)
1966 {
1967 if (debug_infrun)
1968 fprintf_unfiltered (gdb_stdlog,
1969 "infrun: step-over queue now empty\n");
1970 }
1971
372316f1
PA
1972 if (tp->control.trap_expected
1973 || tp->resumed
1974 || tp->executing)
ad53cd71 1975 {
4d9d9d04
PA
1976 internal_error (__FILE__, __LINE__,
1977 "[%s] has inconsistent state: "
372316f1 1978 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1979 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1980 tp->control.trap_expected,
372316f1 1981 tp->resumed,
4d9d9d04 1982 tp->executing);
ad53cd71 1983 }
1c5cfe86 1984
4d9d9d04
PA
1985 if (debug_infrun)
1986 fprintf_unfiltered (gdb_stdlog,
1987 "infrun: resuming [%s] for step-over\n",
a068643d 1988 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1989
1990 /* keep_going_pass_signal skips the step-over if the breakpoint
1991 is no longer inserted. In all-stop, we want to keep looking
1992 for a thread that needs a step-over instead of resuming TP,
1993 because we wouldn't be able to resume anything else until the
1994 target stops again. In non-stop, the resume always resumes
1995 only TP, so it's OK to let the thread resume freely. */
fbea99ea 1996 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 1997 continue;
8550d3b3 1998
00431a78 1999 switch_to_thread (tp);
4d9d9d04
PA
2000 reset_ecs (ecs, tp);
2001 keep_going_pass_signal (ecs);
1c5cfe86 2002
4d9d9d04
PA
2003 if (!ecs->wait_some_more)
2004 error (_("Command aborted."));
1c5cfe86 2005
372316f1
PA
2006 gdb_assert (tp->resumed);
2007
2008 /* If we started a new in-line step-over, we're done. */
2009 if (step_over_info_valid_p ())
2010 {
2011 gdb_assert (tp->control.trap_expected);
2012 return 1;
2013 }
2014
fbea99ea 2015 if (!target_is_non_stop_p ())
4d9d9d04
PA
2016 {
2017 /* On all-stop, shouldn't have resumed unless we needed a
2018 step over. */
2019 gdb_assert (tp->control.trap_expected
2020 || tp->step_after_step_resume_breakpoint);
2021
2022 /* With remote targets (at least), in all-stop, we can't
2023 issue any further remote commands until the program stops
2024 again. */
2025 return 1;
1c5cfe86 2026 }
c2829269 2027
4d9d9d04
PA
2028 /* Either the thread no longer needed a step-over, or a new
2029 displaced stepping sequence started. Even in the latter
2030 case, continue looking. Maybe we can also start another
2031 displaced step on a thread of other process. */
237fc4c9 2032 }
4d9d9d04
PA
2033
2034 return 0;
237fc4c9
PA
2035}
2036
5231c1fd
PA
2037/* Update global variables holding ptids to hold NEW_PTID if they were
2038 holding OLD_PTID. */
2039static void
2040infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2041{
d7e15655 2042 if (inferior_ptid == old_ptid)
5231c1fd 2043 inferior_ptid = new_ptid;
5231c1fd
PA
2044}
2045
237fc4c9 2046\f
c906108c 2047
53904c9e
AC
2048static const char schedlock_off[] = "off";
2049static const char schedlock_on[] = "on";
2050static const char schedlock_step[] = "step";
f2665db5 2051static const char schedlock_replay[] = "replay";
40478521 2052static const char *const scheduler_enums[] = {
ef346e04
AC
2053 schedlock_off,
2054 schedlock_on,
2055 schedlock_step,
f2665db5 2056 schedlock_replay,
ef346e04
AC
2057 NULL
2058};
f2665db5 2059static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2060static void
2061show_scheduler_mode (struct ui_file *file, int from_tty,
2062 struct cmd_list_element *c, const char *value)
2063{
3e43a32a
MS
2064 fprintf_filtered (file,
2065 _("Mode for locking scheduler "
2066 "during execution is \"%s\".\n"),
920d2a44
AC
2067 value);
2068}
c906108c
SS
2069
2070static void
eb4c3f4a 2071set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2072{
eefe576e
AC
2073 if (!target_can_lock_scheduler)
2074 {
2075 scheduler_mode = schedlock_off;
2076 error (_("Target '%s' cannot support this command."), target_shortname);
2077 }
c906108c
SS
2078}
2079
d4db2f36
PA
2080/* True if execution commands resume all threads of all processes by
2081 default; otherwise, resume only threads of the current inferior
2082 process. */
491144b5 2083bool sched_multi = false;
d4db2f36 2084
2facfe5c
DD
2085/* Try to setup for software single stepping over the specified location.
2086 Return 1 if target_resume() should use hardware single step.
2087
2088 GDBARCH the current gdbarch.
2089 PC the location to step over. */
2090
2091static int
2092maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2093{
2094 int hw_step = 1;
2095
f02253f1 2096 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2097 && gdbarch_software_single_step_p (gdbarch))
2098 hw_step = !insert_single_step_breakpoints (gdbarch);
2099
2facfe5c
DD
2100 return hw_step;
2101}
c906108c 2102
f3263aa4
PA
2103/* See infrun.h. */
2104
09cee04b
PA
2105ptid_t
2106user_visible_resume_ptid (int step)
2107{
f3263aa4 2108 ptid_t resume_ptid;
09cee04b 2109
09cee04b
PA
2110 if (non_stop)
2111 {
2112 /* With non-stop mode on, threads are always handled
2113 individually. */
2114 resume_ptid = inferior_ptid;
2115 }
2116 else if ((scheduler_mode == schedlock_on)
03d46957 2117 || (scheduler_mode == schedlock_step && step))
09cee04b 2118 {
f3263aa4
PA
2119 /* User-settable 'scheduler' mode requires solo thread
2120 resume. */
09cee04b
PA
2121 resume_ptid = inferior_ptid;
2122 }
f2665db5
MM
2123 else if ((scheduler_mode == schedlock_replay)
2124 && target_record_will_replay (minus_one_ptid, execution_direction))
2125 {
2126 /* User-settable 'scheduler' mode requires solo thread resume in replay
2127 mode. */
2128 resume_ptid = inferior_ptid;
2129 }
f3263aa4
PA
2130 else if (!sched_multi && target_supports_multi_process ())
2131 {
2132 /* Resume all threads of the current process (and none of other
2133 processes). */
e99b03dc 2134 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2135 }
2136 else
2137 {
2138 /* Resume all threads of all processes. */
2139 resume_ptid = RESUME_ALL;
2140 }
09cee04b
PA
2141
2142 return resume_ptid;
2143}
2144
fbea99ea
PA
2145/* Return a ptid representing the set of threads that we will resume,
2146 in the perspective of the target, assuming run control handling
2147 does not require leaving some threads stopped (e.g., stepping past
2148 breakpoint). USER_STEP indicates whether we're about to start the
2149 target for a stepping command. */
2150
2151static ptid_t
2152internal_resume_ptid (int user_step)
2153{
2154 /* In non-stop, we always control threads individually. Note that
2155 the target may always work in non-stop mode even with "set
2156 non-stop off", in which case user_visible_resume_ptid could
2157 return a wildcard ptid. */
2158 if (target_is_non_stop_p ())
2159 return inferior_ptid;
2160 else
2161 return user_visible_resume_ptid (user_step);
2162}
2163
64ce06e4
PA
2164/* Wrapper for target_resume, that handles infrun-specific
2165 bookkeeping. */
2166
2167static void
2168do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2169{
2170 struct thread_info *tp = inferior_thread ();
2171
c65d6b55
PA
2172 gdb_assert (!tp->stop_requested);
2173
64ce06e4 2174 /* Install inferior's terminal modes. */
223ffa71 2175 target_terminal::inferior ();
64ce06e4
PA
2176
2177 /* Avoid confusing the next resume, if the next stop/resume
2178 happens to apply to another thread. */
2179 tp->suspend.stop_signal = GDB_SIGNAL_0;
2180
8f572e5c
PA
2181 /* Advise target which signals may be handled silently.
2182
2183 If we have removed breakpoints because we are stepping over one
2184 in-line (in any thread), we need to receive all signals to avoid
2185 accidentally skipping a breakpoint during execution of a signal
2186 handler.
2187
2188 Likewise if we're displaced stepping, otherwise a trap for a
2189 breakpoint in a signal handler might be confused with the
2190 displaced step finishing. We don't make the displaced_step_fixup
2191 step distinguish the cases instead, because:
2192
2193 - a backtrace while stopped in the signal handler would show the
2194 scratch pad as frame older than the signal handler, instead of
2195 the real mainline code.
2196
2197 - when the thread is later resumed, the signal handler would
2198 return to the scratch pad area, which would no longer be
2199 valid. */
2200 if (step_over_info_valid_p ()
00431a78 2201 || displaced_step_in_progress (tp->inf))
adc6a863 2202 target_pass_signals ({});
64ce06e4 2203 else
adc6a863 2204 target_pass_signals (signal_pass);
64ce06e4
PA
2205
2206 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2207
2208 target_commit_resume ();
64ce06e4
PA
2209}
2210
d930703d 2211/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2212 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2213 call 'resume', which handles exceptions. */
c906108c 2214
71d378ae
PA
2215static void
2216resume_1 (enum gdb_signal sig)
c906108c 2217{
515630c5 2218 struct regcache *regcache = get_current_regcache ();
ac7936df 2219 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2220 struct thread_info *tp = inferior_thread ();
515630c5 2221 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2222 const address_space *aspace = regcache->aspace ();
b0f16a3e 2223 ptid_t resume_ptid;
856e7dd6
PA
2224 /* This represents the user's step vs continue request. When
2225 deciding whether "set scheduler-locking step" applies, it's the
2226 user's intention that counts. */
2227 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2228 /* This represents what we'll actually request the target to do.
2229 This can decay from a step to a continue, if e.g., we need to
2230 implement single-stepping with breakpoints (software
2231 single-step). */
6b403daa 2232 int step;
c7e8a53c 2233
c65d6b55 2234 gdb_assert (!tp->stop_requested);
c2829269
PA
2235 gdb_assert (!thread_is_in_step_over_chain (tp));
2236
372316f1
PA
2237 if (tp->suspend.waitstatus_pending_p)
2238 {
2239 if (debug_infrun)
2240 {
23fdd69e
SM
2241 std::string statstr
2242 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2243
372316f1 2244 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2245 "infrun: resume: thread %s has pending wait "
2246 "status %s (currently_stepping=%d).\n",
a068643d
TT
2247 target_pid_to_str (tp->ptid).c_str (),
2248 statstr.c_str (),
372316f1 2249 currently_stepping (tp));
372316f1
PA
2250 }
2251
2252 tp->resumed = 1;
2253
2254 /* FIXME: What should we do if we are supposed to resume this
2255 thread with a signal? Maybe we should maintain a queue of
2256 pending signals to deliver. */
2257 if (sig != GDB_SIGNAL_0)
2258 {
fd7dcb94 2259 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2260 gdb_signal_to_name (sig),
2261 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2262 }
2263
2264 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2265
2266 if (target_can_async_p ())
9516f85a
AB
2267 {
2268 target_async (1);
2269 /* Tell the event loop we have an event to process. */
2270 mark_async_event_handler (infrun_async_inferior_event_token);
2271 }
372316f1
PA
2272 return;
2273 }
2274
2275 tp->stepped_breakpoint = 0;
2276
6b403daa
PA
2277 /* Depends on stepped_breakpoint. */
2278 step = currently_stepping (tp);
2279
74609e71
YQ
2280 if (current_inferior ()->waiting_for_vfork_done)
2281 {
48f9886d
PA
2282 /* Don't try to single-step a vfork parent that is waiting for
2283 the child to get out of the shared memory region (by exec'ing
2284 or exiting). This is particularly important on software
2285 single-step archs, as the child process would trip on the
2286 software single step breakpoint inserted for the parent
2287 process. Since the parent will not actually execute any
2288 instruction until the child is out of the shared region (such
2289 are vfork's semantics), it is safe to simply continue it.
2290 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2291 the parent, and tell it to `keep_going', which automatically
2292 re-sets it stepping. */
74609e71
YQ
2293 if (debug_infrun)
2294 fprintf_unfiltered (gdb_stdlog,
2295 "infrun: resume : clear step\n");
a09dd441 2296 step = 0;
74609e71
YQ
2297 }
2298
527159b7 2299 if (debug_infrun)
237fc4c9 2300 fprintf_unfiltered (gdb_stdlog,
c9737c08 2301 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2302 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2303 step, gdb_signal_to_symbol_string (sig),
2304 tp->control.trap_expected,
a068643d 2305 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2306 paddress (gdbarch, pc));
c906108c 2307
c2c6d25f
JM
2308 /* Normally, by the time we reach `resume', the breakpoints are either
2309 removed or inserted, as appropriate. The exception is if we're sitting
2310 at a permanent breakpoint; we need to step over it, but permanent
2311 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2312 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2313 {
af48d08f
PA
2314 if (sig != GDB_SIGNAL_0)
2315 {
2316 /* We have a signal to pass to the inferior. The resume
2317 may, or may not take us to the signal handler. If this
2318 is a step, we'll need to stop in the signal handler, if
2319 there's one, (if the target supports stepping into
2320 handlers), or in the next mainline instruction, if
2321 there's no handler. If this is a continue, we need to be
2322 sure to run the handler with all breakpoints inserted.
2323 In all cases, set a breakpoint at the current address
2324 (where the handler returns to), and once that breakpoint
2325 is hit, resume skipping the permanent breakpoint. If
2326 that breakpoint isn't hit, then we've stepped into the
2327 signal handler (or hit some other event). We'll delete
2328 the step-resume breakpoint then. */
2329
2330 if (debug_infrun)
2331 fprintf_unfiltered (gdb_stdlog,
2332 "infrun: resume: skipping permanent breakpoint, "
2333 "deliver signal first\n");
2334
2335 clear_step_over_info ();
2336 tp->control.trap_expected = 0;
2337
2338 if (tp->control.step_resume_breakpoint == NULL)
2339 {
2340 /* Set a "high-priority" step-resume, as we don't want
2341 user breakpoints at PC to trigger (again) when this
2342 hits. */
2343 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2344 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2345
2346 tp->step_after_step_resume_breakpoint = step;
2347 }
2348
2349 insert_breakpoints ();
2350 }
2351 else
2352 {
2353 /* There's no signal to pass, we can go ahead and skip the
2354 permanent breakpoint manually. */
2355 if (debug_infrun)
2356 fprintf_unfiltered (gdb_stdlog,
2357 "infrun: resume: skipping permanent breakpoint\n");
2358 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2359 /* Update pc to reflect the new address from which we will
2360 execute instructions. */
2361 pc = regcache_read_pc (regcache);
2362
2363 if (step)
2364 {
2365 /* We've already advanced the PC, so the stepping part
2366 is done. Now we need to arrange for a trap to be
2367 reported to handle_inferior_event. Set a breakpoint
2368 at the current PC, and run to it. Don't update
2369 prev_pc, because if we end in
44a1ee51
PA
2370 switch_back_to_stepped_thread, we want the "expected
2371 thread advanced also" branch to be taken. IOW, we
2372 don't want this thread to step further from PC
af48d08f 2373 (overstep). */
1ac806b8 2374 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2375 insert_single_step_breakpoint (gdbarch, aspace, pc);
2376 insert_breakpoints ();
2377
fbea99ea 2378 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2379 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2380 tp->resumed = 1;
af48d08f
PA
2381 return;
2382 }
2383 }
6d350bb5 2384 }
c2c6d25f 2385
c1e36e3e
PA
2386 /* If we have a breakpoint to step over, make sure to do a single
2387 step only. Same if we have software watchpoints. */
2388 if (tp->control.trap_expected || bpstat_should_step ())
2389 tp->control.may_range_step = 0;
2390
237fc4c9
PA
2391 /* If enabled, step over breakpoints by executing a copy of the
2392 instruction at a different address.
2393
2394 We can't use displaced stepping when we have a signal to deliver;
2395 the comments for displaced_step_prepare explain why. The
2396 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2397 signals' explain what we do instead.
2398
2399 We can't use displaced stepping when we are waiting for vfork_done
2400 event, displaced stepping breaks the vfork child similarly as single
2401 step software breakpoint. */
3fc8eb30
PA
2402 if (tp->control.trap_expected
2403 && use_displaced_stepping (tp)
cb71640d 2404 && !step_over_info_valid_p ()
a493e3e2 2405 && sig == GDB_SIGNAL_0
74609e71 2406 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2407 {
00431a78 2408 int prepared = displaced_step_prepare (tp);
fc1cf338 2409
3fc8eb30 2410 if (prepared == 0)
d56b7306 2411 {
4d9d9d04
PA
2412 if (debug_infrun)
2413 fprintf_unfiltered (gdb_stdlog,
2414 "Got placed in step-over queue\n");
2415
2416 tp->control.trap_expected = 0;
d56b7306
VP
2417 return;
2418 }
3fc8eb30
PA
2419 else if (prepared < 0)
2420 {
2421 /* Fallback to stepping over the breakpoint in-line. */
2422
2423 if (target_is_non_stop_p ())
2424 stop_all_threads ();
2425
a01bda52 2426 set_step_over_info (regcache->aspace (),
21edc42f 2427 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2428
2429 step = maybe_software_singlestep (gdbarch, pc);
2430
2431 insert_breakpoints ();
2432 }
2433 else if (prepared > 0)
2434 {
2435 struct displaced_step_inferior_state *displaced;
99e40580 2436
3fc8eb30
PA
2437 /* Update pc to reflect the new address from which we will
2438 execute instructions due to displaced stepping. */
00431a78 2439 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2440
00431a78 2441 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2442 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2443 displaced->step_closure);
2444 }
237fc4c9
PA
2445 }
2446
2facfe5c 2447 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2448 else if (step)
2facfe5c 2449 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2450
30852783
UW
2451 /* Currently, our software single-step implementation leads to different
2452 results than hardware single-stepping in one situation: when stepping
2453 into delivering a signal which has an associated signal handler,
2454 hardware single-step will stop at the first instruction of the handler,
2455 while software single-step will simply skip execution of the handler.
2456
2457 For now, this difference in behavior is accepted since there is no
2458 easy way to actually implement single-stepping into a signal handler
2459 without kernel support.
2460
2461 However, there is one scenario where this difference leads to follow-on
2462 problems: if we're stepping off a breakpoint by removing all breakpoints
2463 and then single-stepping. In this case, the software single-step
2464 behavior means that even if there is a *breakpoint* in the signal
2465 handler, GDB still would not stop.
2466
2467 Fortunately, we can at least fix this particular issue. We detect
2468 here the case where we are about to deliver a signal while software
2469 single-stepping with breakpoints removed. In this situation, we
2470 revert the decisions to remove all breakpoints and insert single-
2471 step breakpoints, and instead we install a step-resume breakpoint
2472 at the current address, deliver the signal without stepping, and
2473 once we arrive back at the step-resume breakpoint, actually step
2474 over the breakpoint we originally wanted to step over. */
34b7e8a6 2475 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2476 && sig != GDB_SIGNAL_0
2477 && step_over_info_valid_p ())
30852783
UW
2478 {
2479 /* If we have nested signals or a pending signal is delivered
2480 immediately after a handler returns, might might already have
2481 a step-resume breakpoint set on the earlier handler. We cannot
2482 set another step-resume breakpoint; just continue on until the
2483 original breakpoint is hit. */
2484 if (tp->control.step_resume_breakpoint == NULL)
2485 {
2c03e5be 2486 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2487 tp->step_after_step_resume_breakpoint = 1;
2488 }
2489
34b7e8a6 2490 delete_single_step_breakpoints (tp);
30852783 2491
31e77af2 2492 clear_step_over_info ();
30852783 2493 tp->control.trap_expected = 0;
31e77af2
PA
2494
2495 insert_breakpoints ();
30852783
UW
2496 }
2497
b0f16a3e
SM
2498 /* If STEP is set, it's a request to use hardware stepping
2499 facilities. But in that case, we should never
2500 use singlestep breakpoint. */
34b7e8a6 2501 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2502
fbea99ea 2503 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2504 if (tp->control.trap_expected)
b0f16a3e
SM
2505 {
2506 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2507 hit, either by single-stepping the thread with the breakpoint
2508 removed, or by displaced stepping, with the breakpoint inserted.
2509 In the former case, we need to single-step only this thread,
2510 and keep others stopped, as they can miss this breakpoint if
2511 allowed to run. That's not really a problem for displaced
2512 stepping, but, we still keep other threads stopped, in case
2513 another thread is also stopped for a breakpoint waiting for
2514 its turn in the displaced stepping queue. */
b0f16a3e
SM
2515 resume_ptid = inferior_ptid;
2516 }
fbea99ea
PA
2517 else
2518 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2519
7f5ef605
PA
2520 if (execution_direction != EXEC_REVERSE
2521 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2522 {
372316f1
PA
2523 /* There are two cases where we currently need to step a
2524 breakpoint instruction when we have a signal to deliver:
2525
2526 - See handle_signal_stop where we handle random signals that
2527 could take out us out of the stepping range. Normally, in
2528 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2529 signal handler with a breakpoint at PC, but there are cases
2530 where we should _always_ single-step, even if we have a
2531 step-resume breakpoint, like when a software watchpoint is
2532 set. Assuming single-stepping and delivering a signal at the
2533 same time would takes us to the signal handler, then we could
2534 have removed the breakpoint at PC to step over it. However,
2535 some hardware step targets (like e.g., Mac OS) can't step
2536 into signal handlers, and for those, we need to leave the
2537 breakpoint at PC inserted, as otherwise if the handler
2538 recurses and executes PC again, it'll miss the breakpoint.
2539 So we leave the breakpoint inserted anyway, but we need to
2540 record that we tried to step a breakpoint instruction, so
372316f1
PA
2541 that adjust_pc_after_break doesn't end up confused.
2542
2543 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2544 in one thread after another thread that was stepping had been
2545 momentarily paused for a step-over. When we re-resume the
2546 stepping thread, it may be resumed from that address with a
2547 breakpoint that hasn't trapped yet. Seen with
2548 gdb.threads/non-stop-fair-events.exp, on targets that don't
2549 do displaced stepping. */
2550
2551 if (debug_infrun)
2552 fprintf_unfiltered (gdb_stdlog,
2553 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2554 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2555
2556 tp->stepped_breakpoint = 1;
2557
b0f16a3e
SM
2558 /* Most targets can step a breakpoint instruction, thus
2559 executing it normally. But if this one cannot, just
2560 continue and we will hit it anyway. */
7f5ef605 2561 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2562 step = 0;
2563 }
ef5cf84e 2564
b0f16a3e 2565 if (debug_displaced
cb71640d 2566 && tp->control.trap_expected
3fc8eb30 2567 && use_displaced_stepping (tp)
cb71640d 2568 && !step_over_info_valid_p ())
b0f16a3e 2569 {
00431a78 2570 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2571 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2572 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2573 gdb_byte buf[4];
2574
2575 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2576 paddress (resume_gdbarch, actual_pc));
2577 read_memory (actual_pc, buf, sizeof (buf));
2578 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2579 }
237fc4c9 2580
b0f16a3e
SM
2581 if (tp->control.may_range_step)
2582 {
2583 /* If we're resuming a thread with the PC out of the step
2584 range, then we're doing some nested/finer run control
2585 operation, like stepping the thread out of the dynamic
2586 linker or the displaced stepping scratch pad. We
2587 shouldn't have allowed a range step then. */
2588 gdb_assert (pc_in_thread_step_range (pc, tp));
2589 }
c1e36e3e 2590
64ce06e4 2591 do_target_resume (resume_ptid, step, sig);
372316f1 2592 tp->resumed = 1;
c906108c 2593}
71d378ae
PA
2594
2595/* Resume the inferior. SIG is the signal to give the inferior
2596 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2597 rolls back state on error. */
2598
aff4e175 2599static void
71d378ae
PA
2600resume (gdb_signal sig)
2601{
a70b8144 2602 try
71d378ae
PA
2603 {
2604 resume_1 (sig);
2605 }
230d2906 2606 catch (const gdb_exception &ex)
71d378ae
PA
2607 {
2608 /* If resuming is being aborted for any reason, delete any
2609 single-step breakpoint resume_1 may have created, to avoid
2610 confusing the following resumption, and to avoid leaving
2611 single-step breakpoints perturbing other threads, in case
2612 we're running in non-stop mode. */
2613 if (inferior_ptid != null_ptid)
2614 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2615 throw;
71d378ae 2616 }
71d378ae
PA
2617}
2618
c906108c 2619\f
237fc4c9 2620/* Proceeding. */
c906108c 2621
4c2f2a79
PA
2622/* See infrun.h. */
2623
2624/* Counter that tracks number of user visible stops. This can be used
2625 to tell whether a command has proceeded the inferior past the
2626 current location. This allows e.g., inferior function calls in
2627 breakpoint commands to not interrupt the command list. When the
2628 call finishes successfully, the inferior is standing at the same
2629 breakpoint as if nothing happened (and so we don't call
2630 normal_stop). */
2631static ULONGEST current_stop_id;
2632
2633/* See infrun.h. */
2634
2635ULONGEST
2636get_stop_id (void)
2637{
2638 return current_stop_id;
2639}
2640
2641/* Called when we report a user visible stop. */
2642
2643static void
2644new_stop_id (void)
2645{
2646 current_stop_id++;
2647}
2648
c906108c
SS
2649/* Clear out all variables saying what to do when inferior is continued.
2650 First do this, then set the ones you want, then call `proceed'. */
2651
a7212384
UW
2652static void
2653clear_proceed_status_thread (struct thread_info *tp)
c906108c 2654{
a7212384
UW
2655 if (debug_infrun)
2656 fprintf_unfiltered (gdb_stdlog,
2657 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2658 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2659
372316f1
PA
2660 /* If we're starting a new sequence, then the previous finished
2661 single-step is no longer relevant. */
2662 if (tp->suspend.waitstatus_pending_p)
2663 {
2664 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2665 {
2666 if (debug_infrun)
2667 fprintf_unfiltered (gdb_stdlog,
2668 "infrun: clear_proceed_status: pending "
2669 "event of %s was a finished step. "
2670 "Discarding.\n",
a068643d 2671 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2672
2673 tp->suspend.waitstatus_pending_p = 0;
2674 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2675 }
2676 else if (debug_infrun)
2677 {
23fdd69e
SM
2678 std::string statstr
2679 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2680
372316f1
PA
2681 fprintf_unfiltered (gdb_stdlog,
2682 "infrun: clear_proceed_status_thread: thread %s "
2683 "has pending wait status %s "
2684 "(currently_stepping=%d).\n",
a068643d
TT
2685 target_pid_to_str (tp->ptid).c_str (),
2686 statstr.c_str (),
372316f1 2687 currently_stepping (tp));
372316f1
PA
2688 }
2689 }
2690
70509625
PA
2691 /* If this signal should not be seen by program, give it zero.
2692 Used for debugging signals. */
2693 if (!signal_pass_state (tp->suspend.stop_signal))
2694 tp->suspend.stop_signal = GDB_SIGNAL_0;
2695
46e3ed7f 2696 delete tp->thread_fsm;
243a9253
PA
2697 tp->thread_fsm = NULL;
2698
16c381f0
JK
2699 tp->control.trap_expected = 0;
2700 tp->control.step_range_start = 0;
2701 tp->control.step_range_end = 0;
c1e36e3e 2702 tp->control.may_range_step = 0;
16c381f0
JK
2703 tp->control.step_frame_id = null_frame_id;
2704 tp->control.step_stack_frame_id = null_frame_id;
2705 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2706 tp->control.step_start_function = NULL;
a7212384 2707 tp->stop_requested = 0;
4e1c45ea 2708
16c381f0 2709 tp->control.stop_step = 0;
32400beb 2710
16c381f0 2711 tp->control.proceed_to_finish = 0;
414c69f7 2712
856e7dd6 2713 tp->control.stepping_command = 0;
17b2616c 2714
a7212384 2715 /* Discard any remaining commands or status from previous stop. */
16c381f0 2716 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2717}
32400beb 2718
a7212384 2719void
70509625 2720clear_proceed_status (int step)
a7212384 2721{
f2665db5
MM
2722 /* With scheduler-locking replay, stop replaying other threads if we're
2723 not replaying the user-visible resume ptid.
2724
2725 This is a convenience feature to not require the user to explicitly
2726 stop replaying the other threads. We're assuming that the user's
2727 intent is to resume tracing the recorded process. */
2728 if (!non_stop && scheduler_mode == schedlock_replay
2729 && target_record_is_replaying (minus_one_ptid)
2730 && !target_record_will_replay (user_visible_resume_ptid (step),
2731 execution_direction))
2732 target_record_stop_replaying ();
2733
08036331 2734 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2735 {
08036331 2736 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2737
2738 /* In all-stop mode, delete the per-thread status of all threads
2739 we're about to resume, implicitly and explicitly. */
08036331
PA
2740 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2741 clear_proceed_status_thread (tp);
6c95b8df
PA
2742 }
2743
d7e15655 2744 if (inferior_ptid != null_ptid)
a7212384
UW
2745 {
2746 struct inferior *inferior;
2747
2748 if (non_stop)
2749 {
6c95b8df
PA
2750 /* If in non-stop mode, only delete the per-thread status of
2751 the current thread. */
a7212384
UW
2752 clear_proceed_status_thread (inferior_thread ());
2753 }
6c95b8df 2754
d6b48e9c 2755 inferior = current_inferior ();
16c381f0 2756 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2757 }
2758
76727919 2759 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2760}
2761
99619bea
PA
2762/* Returns true if TP is still stopped at a breakpoint that needs
2763 stepping-over in order to make progress. If the breakpoint is gone
2764 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2765
2766static int
6c4cfb24 2767thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2768{
2769 if (tp->stepping_over_breakpoint)
2770 {
00431a78 2771 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2772
a01bda52 2773 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2774 regcache_read_pc (regcache))
2775 == ordinary_breakpoint_here)
99619bea
PA
2776 return 1;
2777
2778 tp->stepping_over_breakpoint = 0;
2779 }
2780
2781 return 0;
2782}
2783
6c4cfb24
PA
2784/* Check whether thread TP still needs to start a step-over in order
2785 to make progress when resumed. Returns an bitwise or of enum
2786 step_over_what bits, indicating what needs to be stepped over. */
2787
8d297bbf 2788static step_over_what
6c4cfb24
PA
2789thread_still_needs_step_over (struct thread_info *tp)
2790{
8d297bbf 2791 step_over_what what = 0;
6c4cfb24
PA
2792
2793 if (thread_still_needs_step_over_bp (tp))
2794 what |= STEP_OVER_BREAKPOINT;
2795
2796 if (tp->stepping_over_watchpoint
2797 && !target_have_steppable_watchpoint)
2798 what |= STEP_OVER_WATCHPOINT;
2799
2800 return what;
2801}
2802
483805cf
PA
2803/* Returns true if scheduler locking applies. STEP indicates whether
2804 we're about to do a step/next-like command to a thread. */
2805
2806static int
856e7dd6 2807schedlock_applies (struct thread_info *tp)
483805cf
PA
2808{
2809 return (scheduler_mode == schedlock_on
2810 || (scheduler_mode == schedlock_step
f2665db5
MM
2811 && tp->control.stepping_command)
2812 || (scheduler_mode == schedlock_replay
2813 && target_record_will_replay (minus_one_ptid,
2814 execution_direction)));
483805cf
PA
2815}
2816
c906108c
SS
2817/* Basic routine for continuing the program in various fashions.
2818
2819 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2820 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2821 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2822
2823 You should call clear_proceed_status before calling proceed. */
2824
2825void
64ce06e4 2826proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2827{
e58b0e63
PA
2828 struct regcache *regcache;
2829 struct gdbarch *gdbarch;
e58b0e63 2830 CORE_ADDR pc;
4d9d9d04
PA
2831 ptid_t resume_ptid;
2832 struct execution_control_state ecss;
2833 struct execution_control_state *ecs = &ecss;
4d9d9d04 2834 int started;
c906108c 2835
e58b0e63
PA
2836 /* If we're stopped at a fork/vfork, follow the branch set by the
2837 "set follow-fork-mode" command; otherwise, we'll just proceed
2838 resuming the current thread. */
2839 if (!follow_fork ())
2840 {
2841 /* The target for some reason decided not to resume. */
2842 normal_stop ();
f148b27e
PA
2843 if (target_can_async_p ())
2844 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2845 return;
2846 }
2847
842951eb
PA
2848 /* We'll update this if & when we switch to a new thread. */
2849 previous_inferior_ptid = inferior_ptid;
2850
e58b0e63 2851 regcache = get_current_regcache ();
ac7936df 2852 gdbarch = regcache->arch ();
8b86c959
YQ
2853 const address_space *aspace = regcache->aspace ();
2854
e58b0e63 2855 pc = regcache_read_pc (regcache);
08036331 2856 thread_info *cur_thr = inferior_thread ();
e58b0e63 2857
99619bea 2858 /* Fill in with reasonable starting values. */
08036331 2859 init_thread_stepping_state (cur_thr);
99619bea 2860
08036331 2861 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2862
2acceee2 2863 if (addr == (CORE_ADDR) -1)
c906108c 2864 {
08036331 2865 if (pc == cur_thr->suspend.stop_pc
af48d08f 2866 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2867 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2868 /* There is a breakpoint at the address we will resume at,
2869 step one instruction before inserting breakpoints so that
2870 we do not stop right away (and report a second hit at this
b2175913
MS
2871 breakpoint).
2872
2873 Note, we don't do this in reverse, because we won't
2874 actually be executing the breakpoint insn anyway.
2875 We'll be (un-)executing the previous instruction. */
08036331 2876 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2877 else if (gdbarch_single_step_through_delay_p (gdbarch)
2878 && gdbarch_single_step_through_delay (gdbarch,
2879 get_current_frame ()))
3352ef37
AC
2880 /* We stepped onto an instruction that needs to be stepped
2881 again before re-inserting the breakpoint, do so. */
08036331 2882 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2883 }
2884 else
2885 {
515630c5 2886 regcache_write_pc (regcache, addr);
c906108c
SS
2887 }
2888
70509625 2889 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2890 cur_thr->suspend.stop_signal = siggnal;
70509625 2891
08036331 2892 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2893
2894 /* If an exception is thrown from this point on, make sure to
2895 propagate GDB's knowledge of the executing state to the
2896 frontend/user running state. */
731f534f 2897 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2898
2899 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2900 threads (e.g., we might need to set threads stepping over
2901 breakpoints first), from the user/frontend's point of view, all
2902 threads in RESUME_PTID are now running. Unless we're calling an
2903 inferior function, as in that case we pretend the inferior
2904 doesn't run at all. */
08036331 2905 if (!cur_thr->control.in_infcall)
4d9d9d04 2906 set_running (resume_ptid, 1);
17b2616c 2907
527159b7 2908 if (debug_infrun)
8a9de0e4 2909 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2910 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2911 paddress (gdbarch, addr),
64ce06e4 2912 gdb_signal_to_symbol_string (siggnal));
527159b7 2913
4d9d9d04
PA
2914 annotate_starting ();
2915
2916 /* Make sure that output from GDB appears before output from the
2917 inferior. */
2918 gdb_flush (gdb_stdout);
2919
d930703d
PA
2920 /* Since we've marked the inferior running, give it the terminal. A
2921 QUIT/Ctrl-C from here on is forwarded to the target (which can
2922 still detect attempts to unblock a stuck connection with repeated
2923 Ctrl-C from within target_pass_ctrlc). */
2924 target_terminal::inferior ();
2925
4d9d9d04
PA
2926 /* In a multi-threaded task we may select another thread and
2927 then continue or step.
2928
2929 But if a thread that we're resuming had stopped at a breakpoint,
2930 it will immediately cause another breakpoint stop without any
2931 execution (i.e. it will report a breakpoint hit incorrectly). So
2932 we must step over it first.
2933
2934 Look for threads other than the current (TP) that reported a
2935 breakpoint hit and haven't been resumed yet since. */
2936
2937 /* If scheduler locking applies, we can avoid iterating over all
2938 threads. */
08036331 2939 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2940 {
08036331
PA
2941 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2942 {
4d9d9d04
PA
2943 /* Ignore the current thread here. It's handled
2944 afterwards. */
08036331 2945 if (tp == cur_thr)
4d9d9d04 2946 continue;
c906108c 2947
4d9d9d04
PA
2948 if (!thread_still_needs_step_over (tp))
2949 continue;
2950
2951 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2952
99619bea
PA
2953 if (debug_infrun)
2954 fprintf_unfiltered (gdb_stdlog,
2955 "infrun: need to step-over [%s] first\n",
a068643d 2956 target_pid_to_str (tp->ptid).c_str ());
99619bea 2957
4d9d9d04 2958 thread_step_over_chain_enqueue (tp);
2adfaa28 2959 }
30852783
UW
2960 }
2961
4d9d9d04
PA
2962 /* Enqueue the current thread last, so that we move all other
2963 threads over their breakpoints first. */
08036331
PA
2964 if (cur_thr->stepping_over_breakpoint)
2965 thread_step_over_chain_enqueue (cur_thr);
30852783 2966
4d9d9d04
PA
2967 /* If the thread isn't started, we'll still need to set its prev_pc,
2968 so that switch_back_to_stepped_thread knows the thread hasn't
2969 advanced. Must do this before resuming any thread, as in
2970 all-stop/remote, once we resume we can't send any other packet
2971 until the target stops again. */
08036331 2972 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2973
a9bc57b9
TT
2974 {
2975 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 2976
a9bc57b9 2977 started = start_step_over ();
c906108c 2978
a9bc57b9
TT
2979 if (step_over_info_valid_p ())
2980 {
2981 /* Either this thread started a new in-line step over, or some
2982 other thread was already doing one. In either case, don't
2983 resume anything else until the step-over is finished. */
2984 }
2985 else if (started && !target_is_non_stop_p ())
2986 {
2987 /* A new displaced stepping sequence was started. In all-stop,
2988 we can't talk to the target anymore until it next stops. */
2989 }
2990 else if (!non_stop && target_is_non_stop_p ())
2991 {
2992 /* In all-stop, but the target is always in non-stop mode.
2993 Start all other threads that are implicitly resumed too. */
08036331 2994 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 2995 {
fbea99ea
PA
2996 if (tp->resumed)
2997 {
2998 if (debug_infrun)
2999 fprintf_unfiltered (gdb_stdlog,
3000 "infrun: proceed: [%s] resumed\n",
a068643d 3001 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3002 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3003 continue;
3004 }
3005
3006 if (thread_is_in_step_over_chain (tp))
3007 {
3008 if (debug_infrun)
3009 fprintf_unfiltered (gdb_stdlog,
3010 "infrun: proceed: [%s] needs step-over\n",
a068643d 3011 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3012 continue;
3013 }
3014
3015 if (debug_infrun)
3016 fprintf_unfiltered (gdb_stdlog,
3017 "infrun: proceed: resuming %s\n",
a068643d 3018 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3019
3020 reset_ecs (ecs, tp);
00431a78 3021 switch_to_thread (tp);
fbea99ea
PA
3022 keep_going_pass_signal (ecs);
3023 if (!ecs->wait_some_more)
fd7dcb94 3024 error (_("Command aborted."));
fbea99ea 3025 }
a9bc57b9 3026 }
08036331 3027 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3028 {
3029 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3030 reset_ecs (ecs, cur_thr);
3031 switch_to_thread (cur_thr);
a9bc57b9
TT
3032 keep_going_pass_signal (ecs);
3033 if (!ecs->wait_some_more)
3034 error (_("Command aborted."));
3035 }
3036 }
c906108c 3037
85ad3aaf
PA
3038 target_commit_resume ();
3039
731f534f 3040 finish_state.release ();
c906108c 3041
873657b9
PA
3042 /* If we've switched threads above, switch back to the previously
3043 current thread. We don't want the user to see a different
3044 selected thread. */
3045 switch_to_thread (cur_thr);
3046
0b333c5e
PA
3047 /* Tell the event loop to wait for it to stop. If the target
3048 supports asynchronous execution, it'll do this from within
3049 target_resume. */
362646f5 3050 if (!target_can_async_p ())
0b333c5e 3051 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3052}
c906108c
SS
3053\f
3054
3055/* Start remote-debugging of a machine over a serial link. */
96baa820 3056
c906108c 3057void
8621d6a9 3058start_remote (int from_tty)
c906108c 3059{
d6b48e9c 3060 struct inferior *inferior;
d6b48e9c
PA
3061
3062 inferior = current_inferior ();
16c381f0 3063 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3064
1777feb0 3065 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3066 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3067 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3068 nothing is returned (instead of just blocking). Because of this,
3069 targets expecting an immediate response need to, internally, set
3070 things up so that the target_wait() is forced to eventually
1777feb0 3071 timeout. */
6426a772
JM
3072 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3073 differentiate to its caller what the state of the target is after
3074 the initial open has been performed. Here we're assuming that
3075 the target has stopped. It should be possible to eventually have
3076 target_open() return to the caller an indication that the target
3077 is currently running and GDB state should be set to the same as
1777feb0 3078 for an async run. */
e4c8541f 3079 wait_for_inferior ();
8621d6a9
DJ
3080
3081 /* Now that the inferior has stopped, do any bookkeeping like
3082 loading shared libraries. We want to do this before normal_stop,
3083 so that the displayed frame is up to date. */
8b88a78e 3084 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3085
6426a772 3086 normal_stop ();
c906108c
SS
3087}
3088
3089/* Initialize static vars when a new inferior begins. */
3090
3091void
96baa820 3092init_wait_for_inferior (void)
c906108c
SS
3093{
3094 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3095
c906108c
SS
3096 breakpoint_init_inferior (inf_starting);
3097
70509625 3098 clear_proceed_status (0);
9f976b41 3099
ca005067 3100 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3101
842951eb 3102 previous_inferior_ptid = inferior_ptid;
c906108c 3103}
237fc4c9 3104
c906108c 3105\f
488f131b 3106
ec9499be 3107static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3108
568d6575
UW
3109static void handle_step_into_function (struct gdbarch *gdbarch,
3110 struct execution_control_state *ecs);
3111static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3112 struct execution_control_state *ecs);
4f5d7f63 3113static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3114static void check_exception_resume (struct execution_control_state *,
28106bc2 3115 struct frame_info *);
611c83ae 3116
bdc36728 3117static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3118static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3119static void keep_going (struct execution_control_state *ecs);
94c57d6a 3120static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3121static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3122
252fbfc8
PA
3123/* This function is attached as a "thread_stop_requested" observer.
3124 Cleanup local state that assumed the PTID was to be resumed, and
3125 report the stop to the frontend. */
3126
2c0b251b 3127static void
252fbfc8
PA
3128infrun_thread_stop_requested (ptid_t ptid)
3129{
c65d6b55
PA
3130 /* PTID was requested to stop. If the thread was already stopped,
3131 but the user/frontend doesn't know about that yet (e.g., the
3132 thread had been temporarily paused for some step-over), set up
3133 for reporting the stop now. */
08036331
PA
3134 for (thread_info *tp : all_threads (ptid))
3135 {
3136 if (tp->state != THREAD_RUNNING)
3137 continue;
3138 if (tp->executing)
3139 continue;
c65d6b55 3140
08036331
PA
3141 /* Remove matching threads from the step-over queue, so
3142 start_step_over doesn't try to resume them
3143 automatically. */
3144 if (thread_is_in_step_over_chain (tp))
3145 thread_step_over_chain_remove (tp);
c65d6b55 3146
08036331
PA
3147 /* If the thread is stopped, but the user/frontend doesn't
3148 know about that yet, queue a pending event, as if the
3149 thread had just stopped now. Unless the thread already had
3150 a pending event. */
3151 if (!tp->suspend.waitstatus_pending_p)
3152 {
3153 tp->suspend.waitstatus_pending_p = 1;
3154 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3155 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3156 }
c65d6b55 3157
08036331
PA
3158 /* Clear the inline-frame state, since we're re-processing the
3159 stop. */
3160 clear_inline_frame_state (tp->ptid);
c65d6b55 3161
08036331
PA
3162 /* If this thread was paused because some other thread was
3163 doing an inline-step over, let that finish first. Once
3164 that happens, we'll restart all threads and consume pending
3165 stop events then. */
3166 if (step_over_info_valid_p ())
3167 continue;
3168
3169 /* Otherwise we can process the (new) pending event now. Set
3170 it so this pending event is considered by
3171 do_target_wait. */
3172 tp->resumed = 1;
3173 }
252fbfc8
PA
3174}
3175
a07daef3
PA
3176static void
3177infrun_thread_thread_exit (struct thread_info *tp, int silent)
3178{
d7e15655 3179 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3180 nullify_last_target_wait_ptid ();
3181}
3182
0cbcdb96
PA
3183/* Delete the step resume, single-step and longjmp/exception resume
3184 breakpoints of TP. */
4e1c45ea 3185
0cbcdb96
PA
3186static void
3187delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3188{
0cbcdb96
PA
3189 delete_step_resume_breakpoint (tp);
3190 delete_exception_resume_breakpoint (tp);
34b7e8a6 3191 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3192}
3193
0cbcdb96
PA
3194/* If the target still has execution, call FUNC for each thread that
3195 just stopped. In all-stop, that's all the non-exited threads; in
3196 non-stop, that's the current thread, only. */
3197
3198typedef void (*for_each_just_stopped_thread_callback_func)
3199 (struct thread_info *tp);
4e1c45ea
PA
3200
3201static void
0cbcdb96 3202for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3203{
d7e15655 3204 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3205 return;
3206
fbea99ea 3207 if (target_is_non_stop_p ())
4e1c45ea 3208 {
0cbcdb96
PA
3209 /* If in non-stop mode, only the current thread stopped. */
3210 func (inferior_thread ());
4e1c45ea
PA
3211 }
3212 else
0cbcdb96 3213 {
0cbcdb96 3214 /* In all-stop mode, all threads have stopped. */
08036331
PA
3215 for (thread_info *tp : all_non_exited_threads ())
3216 func (tp);
0cbcdb96
PA
3217 }
3218}
3219
3220/* Delete the step resume and longjmp/exception resume breakpoints of
3221 the threads that just stopped. */
3222
3223static void
3224delete_just_stopped_threads_infrun_breakpoints (void)
3225{
3226 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3227}
3228
3229/* Delete the single-step breakpoints of the threads that just
3230 stopped. */
7c16b83e 3231
34b7e8a6
PA
3232static void
3233delete_just_stopped_threads_single_step_breakpoints (void)
3234{
3235 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3236}
3237
221e1a37 3238/* See infrun.h. */
223698f8 3239
221e1a37 3240void
223698f8
DE
3241print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3242 const struct target_waitstatus *ws)
3243{
23fdd69e 3244 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3245 string_file stb;
223698f8
DE
3246
3247 /* The text is split over several lines because it was getting too long.
3248 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3249 output as a unit; we want only one timestamp printed if debug_timestamp
3250 is set. */
3251
d7e74731 3252 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3253 waiton_ptid.pid (),
e38504b3 3254 waiton_ptid.lwp (),
cc6bcb54 3255 waiton_ptid.tid ());
e99b03dc 3256 if (waiton_ptid.pid () != -1)
a068643d 3257 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3258 stb.printf (", status) =\n");
3259 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3260 result_ptid.pid (),
e38504b3 3261 result_ptid.lwp (),
cc6bcb54 3262 result_ptid.tid (),
a068643d 3263 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3264 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3265
3266 /* This uses %s in part to handle %'s in the text, but also to avoid
3267 a gcc error: the format attribute requires a string literal. */
d7e74731 3268 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3269}
3270
372316f1
PA
3271/* Select a thread at random, out of those which are resumed and have
3272 had events. */
3273
3274static struct thread_info *
3275random_pending_event_thread (ptid_t waiton_ptid)
3276{
372316f1 3277 int num_events = 0;
08036331
PA
3278
3279 auto has_event = [] (thread_info *tp)
3280 {
3281 return (tp->resumed
3282 && tp->suspend.waitstatus_pending_p);
3283 };
372316f1
PA
3284
3285 /* First see how many events we have. Count only resumed threads
3286 that have an event pending. */
08036331
PA
3287 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3288 if (has_event (tp))
372316f1
PA
3289 num_events++;
3290
3291 if (num_events == 0)
3292 return NULL;
3293
3294 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3295 int random_selector = (int) ((num_events * (double) rand ())
3296 / (RAND_MAX + 1.0));
372316f1
PA
3297
3298 if (debug_infrun && num_events > 1)
3299 fprintf_unfiltered (gdb_stdlog,
3300 "infrun: Found %d events, selecting #%d\n",
3301 num_events, random_selector);
3302
3303 /* Select the Nth thread that has had an event. */
08036331
PA
3304 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3305 if (has_event (tp))
372316f1 3306 if (random_selector-- == 0)
08036331 3307 return tp;
372316f1 3308
08036331 3309 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3310}
3311
3312/* Wrapper for target_wait that first checks whether threads have
3313 pending statuses to report before actually asking the target for
3314 more events. */
3315
3316static ptid_t
3317do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3318{
3319 ptid_t event_ptid;
3320 struct thread_info *tp;
3321
3322 /* First check if there is a resumed thread with a wait status
3323 pending. */
d7e15655 3324 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3325 {
3326 tp = random_pending_event_thread (ptid);
3327 }
3328 else
3329 {
3330 if (debug_infrun)
3331 fprintf_unfiltered (gdb_stdlog,
3332 "infrun: Waiting for specific thread %s.\n",
a068643d 3333 target_pid_to_str (ptid).c_str ());
372316f1
PA
3334
3335 /* We have a specific thread to check. */
3336 tp = find_thread_ptid (ptid);
3337 gdb_assert (tp != NULL);
3338 if (!tp->suspend.waitstatus_pending_p)
3339 tp = NULL;
3340 }
3341
3342 if (tp != NULL
3343 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3344 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3345 {
00431a78 3346 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3347 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3348 CORE_ADDR pc;
3349 int discard = 0;
3350
3351 pc = regcache_read_pc (regcache);
3352
3353 if (pc != tp->suspend.stop_pc)
3354 {
3355 if (debug_infrun)
3356 fprintf_unfiltered (gdb_stdlog,
3357 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3358 target_pid_to_str (tp->ptid).c_str (),
defd2172 3359 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3360 paddress (gdbarch, pc));
3361 discard = 1;
3362 }
a01bda52 3363 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3364 {
3365 if (debug_infrun)
3366 fprintf_unfiltered (gdb_stdlog,
3367 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3368 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3369 paddress (gdbarch, pc));
3370
3371 discard = 1;
3372 }
3373
3374 if (discard)
3375 {
3376 if (debug_infrun)
3377 fprintf_unfiltered (gdb_stdlog,
3378 "infrun: pending event of %s cancelled.\n",
a068643d 3379 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3380
3381 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3382 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3383 }
3384 }
3385
3386 if (tp != NULL)
3387 {
3388 if (debug_infrun)
3389 {
23fdd69e
SM
3390 std::string statstr
3391 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3392
372316f1
PA
3393 fprintf_unfiltered (gdb_stdlog,
3394 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3395 statstr.c_str (),
a068643d 3396 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3397 }
3398
3399 /* Now that we've selected our final event LWP, un-adjust its PC
3400 if it was a software breakpoint (and the target doesn't
3401 always adjust the PC itself). */
3402 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3403 && !target_supports_stopped_by_sw_breakpoint ())
3404 {
3405 struct regcache *regcache;
3406 struct gdbarch *gdbarch;
3407 int decr_pc;
3408
00431a78 3409 regcache = get_thread_regcache (tp);
ac7936df 3410 gdbarch = regcache->arch ();
372316f1
PA
3411
3412 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3413 if (decr_pc != 0)
3414 {
3415 CORE_ADDR pc;
3416
3417 pc = regcache_read_pc (regcache);
3418 regcache_write_pc (regcache, pc + decr_pc);
3419 }
3420 }
3421
3422 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3423 *status = tp->suspend.waitstatus;
3424 tp->suspend.waitstatus_pending_p = 0;
3425
3426 /* Wake up the event loop again, until all pending events are
3427 processed. */
3428 if (target_is_async_p ())
3429 mark_async_event_handler (infrun_async_inferior_event_token);
3430 return tp->ptid;
3431 }
3432
3433 /* But if we don't find one, we'll have to wait. */
3434
3435 if (deprecated_target_wait_hook)
3436 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3437 else
3438 event_ptid = target_wait (ptid, status, options);
3439
3440 return event_ptid;
3441}
3442
24291992
PA
3443/* Prepare and stabilize the inferior for detaching it. E.g.,
3444 detaching while a thread is displaced stepping is a recipe for
3445 crashing it, as nothing would readjust the PC out of the scratch
3446 pad. */
3447
3448void
3449prepare_for_detach (void)
3450{
3451 struct inferior *inf = current_inferior ();
f2907e49 3452 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3453
00431a78 3454 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3455
3456 /* Is any thread of this process displaced stepping? If not,
3457 there's nothing else to do. */
d20172fc 3458 if (displaced->step_thread == nullptr)
24291992
PA
3459 return;
3460
3461 if (debug_infrun)
3462 fprintf_unfiltered (gdb_stdlog,
3463 "displaced-stepping in-process while detaching");
3464
9bcb1f16 3465 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3466
00431a78 3467 while (displaced->step_thread != nullptr)
24291992 3468 {
24291992
PA
3469 struct execution_control_state ecss;
3470 struct execution_control_state *ecs;
3471
3472 ecs = &ecss;
3473 memset (ecs, 0, sizeof (*ecs));
3474
3475 overlay_cache_invalid = 1;
f15cb84a
YQ
3476 /* Flush target cache before starting to handle each event.
3477 Target was running and cache could be stale. This is just a
3478 heuristic. Running threads may modify target memory, but we
3479 don't get any event. */
3480 target_dcache_invalidate ();
24291992 3481
372316f1 3482 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3483
3484 if (debug_infrun)
3485 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3486
3487 /* If an error happens while handling the event, propagate GDB's
3488 knowledge of the executing state to the frontend/user running
3489 state. */
731f534f 3490 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3491
3492 /* Now figure out what to do with the result of the result. */
3493 handle_inferior_event (ecs);
3494
3495 /* No error, don't finish the state yet. */
731f534f 3496 finish_state.release ();
24291992
PA
3497
3498 /* Breakpoints and watchpoints are not installed on the target
3499 at this point, and signals are passed directly to the
3500 inferior, so this must mean the process is gone. */
3501 if (!ecs->wait_some_more)
3502 {
9bcb1f16 3503 restore_detaching.release ();
24291992
PA
3504 error (_("Program exited while detaching"));
3505 }
3506 }
3507
9bcb1f16 3508 restore_detaching.release ();
24291992
PA
3509}
3510
cd0fc7c3 3511/* Wait for control to return from inferior to debugger.
ae123ec6 3512
cd0fc7c3
SS
3513 If inferior gets a signal, we may decide to start it up again
3514 instead of returning. That is why there is a loop in this function.
3515 When this function actually returns it means the inferior
3516 should be left stopped and GDB should read more commands. */
3517
3518void
e4c8541f 3519wait_for_inferior (void)
cd0fc7c3 3520{
527159b7 3521 if (debug_infrun)
ae123ec6 3522 fprintf_unfiltered
e4c8541f 3523 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3524
4c41382a 3525 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3526
e6f5c25b
PA
3527 /* If an error happens while handling the event, propagate GDB's
3528 knowledge of the executing state to the frontend/user running
3529 state. */
731f534f 3530 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3531
c906108c
SS
3532 while (1)
3533 {
ae25568b
PA
3534 struct execution_control_state ecss;
3535 struct execution_control_state *ecs = &ecss;
963f9c80 3536 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3537
ae25568b
PA
3538 memset (ecs, 0, sizeof (*ecs));
3539
ec9499be 3540 overlay_cache_invalid = 1;
ec9499be 3541
f15cb84a
YQ
3542 /* Flush target cache before starting to handle each event.
3543 Target was running and cache could be stale. This is just a
3544 heuristic. Running threads may modify target memory, but we
3545 don't get any event. */
3546 target_dcache_invalidate ();
3547
372316f1 3548 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3549
f00150c9 3550 if (debug_infrun)
223698f8 3551 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3552
cd0fc7c3
SS
3553 /* Now figure out what to do with the result of the result. */
3554 handle_inferior_event (ecs);
c906108c 3555
cd0fc7c3
SS
3556 if (!ecs->wait_some_more)
3557 break;
3558 }
4e1c45ea 3559
e6f5c25b 3560 /* No error, don't finish the state yet. */
731f534f 3561 finish_state.release ();
cd0fc7c3 3562}
c906108c 3563
d3d4baed
PA
3564/* Cleanup that reinstalls the readline callback handler, if the
3565 target is running in the background. If while handling the target
3566 event something triggered a secondary prompt, like e.g., a
3567 pagination prompt, we'll have removed the callback handler (see
3568 gdb_readline_wrapper_line). Need to do this as we go back to the
3569 event loop, ready to process further input. Note this has no
3570 effect if the handler hasn't actually been removed, because calling
3571 rl_callback_handler_install resets the line buffer, thus losing
3572 input. */
3573
3574static void
d238133d 3575reinstall_readline_callback_handler_cleanup ()
d3d4baed 3576{
3b12939d
PA
3577 struct ui *ui = current_ui;
3578
3579 if (!ui->async)
6c400b59
PA
3580 {
3581 /* We're not going back to the top level event loop yet. Don't
3582 install the readline callback, as it'd prep the terminal,
3583 readline-style (raw, noecho) (e.g., --batch). We'll install
3584 it the next time the prompt is displayed, when we're ready
3585 for input. */
3586 return;
3587 }
3588
3b12939d 3589 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3590 gdb_rl_callback_handler_reinstall ();
3591}
3592
243a9253
PA
3593/* Clean up the FSMs of threads that are now stopped. In non-stop,
3594 that's just the event thread. In all-stop, that's all threads. */
3595
3596static void
3597clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3598{
08036331
PA
3599 if (ecs->event_thread != NULL
3600 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3601 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3602
3603 if (!non_stop)
3604 {
08036331 3605 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3606 {
3607 if (thr->thread_fsm == NULL)
3608 continue;
3609 if (thr == ecs->event_thread)
3610 continue;
3611
00431a78 3612 switch_to_thread (thr);
46e3ed7f 3613 thr->thread_fsm->clean_up (thr);
243a9253
PA
3614 }
3615
3616 if (ecs->event_thread != NULL)
00431a78 3617 switch_to_thread (ecs->event_thread);
243a9253
PA
3618 }
3619}
3620
3b12939d
PA
3621/* Helper for all_uis_check_sync_execution_done that works on the
3622 current UI. */
3623
3624static void
3625check_curr_ui_sync_execution_done (void)
3626{
3627 struct ui *ui = current_ui;
3628
3629 if (ui->prompt_state == PROMPT_NEEDED
3630 && ui->async
3631 && !gdb_in_secondary_prompt_p (ui))
3632 {
223ffa71 3633 target_terminal::ours ();
76727919 3634 gdb::observers::sync_execution_done.notify ();
3eb7562a 3635 ui_register_input_event_handler (ui);
3b12939d
PA
3636 }
3637}
3638
3639/* See infrun.h. */
3640
3641void
3642all_uis_check_sync_execution_done (void)
3643{
0e454242 3644 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3645 {
3646 check_curr_ui_sync_execution_done ();
3647 }
3648}
3649
a8836c93
PA
3650/* See infrun.h. */
3651
3652void
3653all_uis_on_sync_execution_starting (void)
3654{
0e454242 3655 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3656 {
3657 if (current_ui->prompt_state == PROMPT_NEEDED)
3658 async_disable_stdin ();
3659 }
3660}
3661
1777feb0 3662/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3663 event loop whenever a change of state is detected on the file
1777feb0
MS
3664 descriptor corresponding to the target. It can be called more than
3665 once to complete a single execution command. In such cases we need
3666 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3667 that this function is called for a single execution command, then
3668 report to the user that the inferior has stopped, and do the
1777feb0 3669 necessary cleanups. */
43ff13b4
JM
3670
3671void
fba45db2 3672fetch_inferior_event (void *client_data)
43ff13b4 3673{
0d1e5fa7 3674 struct execution_control_state ecss;
a474d7c2 3675 struct execution_control_state *ecs = &ecss;
0f641c01 3676 int cmd_done = 0;
963f9c80 3677 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3678
0d1e5fa7
PA
3679 memset (ecs, 0, sizeof (*ecs));
3680
c61db772
PA
3681 /* Events are always processed with the main UI as current UI. This
3682 way, warnings, debug output, etc. are always consistently sent to
3683 the main console. */
4b6749b9 3684 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3685
d3d4baed 3686 /* End up with readline processing input, if necessary. */
d238133d
TT
3687 {
3688 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3689
3690 /* We're handling a live event, so make sure we're doing live
3691 debugging. If we're looking at traceframes while the target is
3692 running, we're going to need to get back to that mode after
3693 handling the event. */
3694 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3695 if (non_stop)
3696 {
3697 maybe_restore_traceframe.emplace ();
3698 set_current_traceframe (-1);
3699 }
43ff13b4 3700
873657b9
PA
3701 /* The user/frontend should not notice a thread switch due to
3702 internal events. Make sure we revert to the user selected
3703 thread and frame after handling the event and running any
3704 breakpoint commands. */
3705 scoped_restore_current_thread restore_thread;
d238133d
TT
3706
3707 overlay_cache_invalid = 1;
3708 /* Flush target cache before starting to handle each event. Target
3709 was running and cache could be stale. This is just a heuristic.
3710 Running threads may modify target memory, but we don't get any
3711 event. */
3712 target_dcache_invalidate ();
3713
3714 scoped_restore save_exec_dir
3715 = make_scoped_restore (&execution_direction,
3716 target_execution_direction ());
3717
3718 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3719 target_can_async_p () ? TARGET_WNOHANG : 0);
3720
3721 if (debug_infrun)
3722 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3723
3724 /* If an error happens while handling the event, propagate GDB's
3725 knowledge of the executing state to the frontend/user running
3726 state. */
3727 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3728 scoped_finish_thread_state finish_state (finish_ptid);
3729
979a0d13 3730 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3731 still for the thread which has thrown the exception. */
3732 auto defer_bpstat_clear
3733 = make_scope_exit (bpstat_clear_actions);
3734 auto defer_delete_threads
3735 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3736
3737 /* Now figure out what to do with the result of the result. */
3738 handle_inferior_event (ecs);
3739
3740 if (!ecs->wait_some_more)
3741 {
3742 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3743 int should_stop = 1;
3744 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3745
d238133d 3746 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3747
d238133d
TT
3748 if (thr != NULL)
3749 {
3750 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3751
d238133d 3752 if (thread_fsm != NULL)
46e3ed7f 3753 should_stop = thread_fsm->should_stop (thr);
d238133d 3754 }
243a9253 3755
d238133d
TT
3756 if (!should_stop)
3757 {
3758 keep_going (ecs);
3759 }
3760 else
3761 {
46e3ed7f 3762 bool should_notify_stop = true;
d238133d 3763 int proceeded = 0;
1840d81a 3764
d238133d 3765 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3766
d238133d 3767 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3768 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3769
d238133d
TT
3770 if (should_notify_stop)
3771 {
3772 /* We may not find an inferior if this was a process exit. */
3773 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3774 proceeded = normal_stop ();
3775 }
243a9253 3776
d238133d
TT
3777 if (!proceeded)
3778 {
3779 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3780 cmd_done = 1;
3781 }
873657b9
PA
3782
3783 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3784 previously selected thread is gone. We have two
3785 choices - switch to no thread selected, or restore the
3786 previously selected thread (now exited). We chose the
3787 later, just because that's what GDB used to do. After
3788 this, "info threads" says "The current thread <Thread
3789 ID 2> has terminated." instead of "No thread
3790 selected.". */
3791 if (!non_stop
3792 && cmd_done
3793 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3794 restore_thread.dont_restore ();
d238133d
TT
3795 }
3796 }
4f8d22e3 3797
d238133d
TT
3798 defer_delete_threads.release ();
3799 defer_bpstat_clear.release ();
29f49a6a 3800
d238133d
TT
3801 /* No error, don't finish the thread states yet. */
3802 finish_state.release ();
731f534f 3803
d238133d
TT
3804 /* This scope is used to ensure that readline callbacks are
3805 reinstalled here. */
3806 }
4f8d22e3 3807
3b12939d
PA
3808 /* If a UI was in sync execution mode, and now isn't, restore its
3809 prompt (a synchronous execution command has finished, and we're
3810 ready for input). */
3811 all_uis_check_sync_execution_done ();
0f641c01
PA
3812
3813 if (cmd_done
0f641c01 3814 && exec_done_display_p
00431a78
PA
3815 && (inferior_ptid == null_ptid
3816 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3817 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3818}
3819
edb3359d
DJ
3820/* Record the frame and location we're currently stepping through. */
3821void
3822set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3823{
3824 struct thread_info *tp = inferior_thread ();
3825
16c381f0
JK
3826 tp->control.step_frame_id = get_frame_id (frame);
3827 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3828
3829 tp->current_symtab = sal.symtab;
3830 tp->current_line = sal.line;
3831}
3832
0d1e5fa7
PA
3833/* Clear context switchable stepping state. */
3834
3835void
4e1c45ea 3836init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3837{
7f5ef605 3838 tss->stepped_breakpoint = 0;
0d1e5fa7 3839 tss->stepping_over_breakpoint = 0;
963f9c80 3840 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3841 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3842}
3843
c32c64b7
DE
3844/* Set the cached copy of the last ptid/waitstatus. */
3845
6efcd9a8 3846void
c32c64b7
DE
3847set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3848{
3849 target_last_wait_ptid = ptid;
3850 target_last_waitstatus = status;
3851}
3852
e02bc4cc 3853/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3854 target_wait()/deprecated_target_wait_hook(). The data is actually
3855 cached by handle_inferior_event(), which gets called immediately
3856 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3857
3858void
488f131b 3859get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3860{
39f77062 3861 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3862 *status = target_last_waitstatus;
3863}
3864
ac264b3b
MS
3865void
3866nullify_last_target_wait_ptid (void)
3867{
3868 target_last_wait_ptid = minus_one_ptid;
3869}
3870
dcf4fbde 3871/* Switch thread contexts. */
dd80620e
MS
3872
3873static void
00431a78 3874context_switch (execution_control_state *ecs)
dd80620e 3875{
00431a78
PA
3876 if (debug_infrun
3877 && ecs->ptid != inferior_ptid
3878 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3879 {
3880 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 3881 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 3882 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 3883 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
3884 }
3885
00431a78 3886 switch_to_thread (ecs->event_thread);
dd80620e
MS
3887}
3888
d8dd4d5f
PA
3889/* If the target can't tell whether we've hit breakpoints
3890 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3891 check whether that could have been caused by a breakpoint. If so,
3892 adjust the PC, per gdbarch_decr_pc_after_break. */
3893
4fa8626c 3894static void
d8dd4d5f
PA
3895adjust_pc_after_break (struct thread_info *thread,
3896 struct target_waitstatus *ws)
4fa8626c 3897{
24a73cce
UW
3898 struct regcache *regcache;
3899 struct gdbarch *gdbarch;
118e6252 3900 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3901
4fa8626c
DJ
3902 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3903 we aren't, just return.
9709f61c
DJ
3904
3905 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3906 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3907 implemented by software breakpoints should be handled through the normal
3908 breakpoint layer.
8fb3e588 3909
4fa8626c
DJ
3910 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3911 different signals (SIGILL or SIGEMT for instance), but it is less
3912 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3913 gdbarch_decr_pc_after_break. I don't know any specific target that
3914 generates these signals at breakpoints (the code has been in GDB since at
3915 least 1992) so I can not guess how to handle them here.
8fb3e588 3916
e6cf7916
UW
3917 In earlier versions of GDB, a target with
3918 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3919 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3920 target with both of these set in GDB history, and it seems unlikely to be
3921 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3922
d8dd4d5f 3923 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3924 return;
3925
d8dd4d5f 3926 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3927 return;
3928
4058b839
PA
3929 /* In reverse execution, when a breakpoint is hit, the instruction
3930 under it has already been de-executed. The reported PC always
3931 points at the breakpoint address, so adjusting it further would
3932 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3933 architecture:
3934
3935 B1 0x08000000 : INSN1
3936 B2 0x08000001 : INSN2
3937 0x08000002 : INSN3
3938 PC -> 0x08000003 : INSN4
3939
3940 Say you're stopped at 0x08000003 as above. Reverse continuing
3941 from that point should hit B2 as below. Reading the PC when the
3942 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3943 been de-executed already.
3944
3945 B1 0x08000000 : INSN1
3946 B2 PC -> 0x08000001 : INSN2
3947 0x08000002 : INSN3
3948 0x08000003 : INSN4
3949
3950 We can't apply the same logic as for forward execution, because
3951 we would wrongly adjust the PC to 0x08000000, since there's a
3952 breakpoint at PC - 1. We'd then report a hit on B1, although
3953 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3954 behaviour. */
3955 if (execution_direction == EXEC_REVERSE)
3956 return;
3957
1cf4d951
PA
3958 /* If the target can tell whether the thread hit a SW breakpoint,
3959 trust it. Targets that can tell also adjust the PC
3960 themselves. */
3961 if (target_supports_stopped_by_sw_breakpoint ())
3962 return;
3963
3964 /* Note that relying on whether a breakpoint is planted in memory to
3965 determine this can fail. E.g,. the breakpoint could have been
3966 removed since. Or the thread could have been told to step an
3967 instruction the size of a breakpoint instruction, and only
3968 _after_ was a breakpoint inserted at its address. */
3969
24a73cce
UW
3970 /* If this target does not decrement the PC after breakpoints, then
3971 we have nothing to do. */
00431a78 3972 regcache = get_thread_regcache (thread);
ac7936df 3973 gdbarch = regcache->arch ();
118e6252 3974
527a273a 3975 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3976 if (decr_pc == 0)
24a73cce
UW
3977 return;
3978
8b86c959 3979 const address_space *aspace = regcache->aspace ();
6c95b8df 3980
8aad930b
AC
3981 /* Find the location where (if we've hit a breakpoint) the
3982 breakpoint would be. */
118e6252 3983 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3984
1cf4d951
PA
3985 /* If the target can't tell whether a software breakpoint triggered,
3986 fallback to figuring it out based on breakpoints we think were
3987 inserted in the target, and on whether the thread was stepped or
3988 continued. */
3989
1c5cfe86
PA
3990 /* Check whether there actually is a software breakpoint inserted at
3991 that location.
3992
3993 If in non-stop mode, a race condition is possible where we've
3994 removed a breakpoint, but stop events for that breakpoint were
3995 already queued and arrive later. To suppress those spurious
3996 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
3997 and retire them after a number of stop events are reported. Note
3998 this is an heuristic and can thus get confused. The real fix is
3999 to get the "stopped by SW BP and needs adjustment" info out of
4000 the target/kernel (and thus never reach here; see above). */
6c95b8df 4001 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4002 || (target_is_non_stop_p ()
4003 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4004 {
07036511 4005 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4006
8213266a 4007 if (record_full_is_used ())
07036511
TT
4008 restore_operation_disable.emplace
4009 (record_full_gdb_operation_disable_set ());
96429cc8 4010
1c0fdd0e
UW
4011 /* When using hardware single-step, a SIGTRAP is reported for both
4012 a completed single-step and a software breakpoint. Need to
4013 differentiate between the two, as the latter needs adjusting
4014 but the former does not.
4015
4016 The SIGTRAP can be due to a completed hardware single-step only if
4017 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4018 - this thread is currently being stepped
4019
4020 If any of these events did not occur, we must have stopped due
4021 to hitting a software breakpoint, and have to back up to the
4022 breakpoint address.
4023
4024 As a special case, we could have hardware single-stepped a
4025 software breakpoint. In this case (prev_pc == breakpoint_pc),
4026 we also need to back up to the breakpoint address. */
4027
d8dd4d5f
PA
4028 if (thread_has_single_step_breakpoints_set (thread)
4029 || !currently_stepping (thread)
4030 || (thread->stepped_breakpoint
4031 && thread->prev_pc == breakpoint_pc))
515630c5 4032 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4033 }
4fa8626c
DJ
4034}
4035
edb3359d
DJ
4036static int
4037stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4038{
4039 for (frame = get_prev_frame (frame);
4040 frame != NULL;
4041 frame = get_prev_frame (frame))
4042 {
4043 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4044 return 1;
4045 if (get_frame_type (frame) != INLINE_FRAME)
4046 break;
4047 }
4048
4049 return 0;
4050}
4051
4a4c04f1
BE
4052/* Look for an inline frame that is marked for skip.
4053 If PREV_FRAME is TRUE start at the previous frame,
4054 otherwise start at the current frame. Stop at the
4055 first non-inline frame, or at the frame where the
4056 step started. */
4057
4058static bool
4059inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4060{
4061 struct frame_info *frame = get_current_frame ();
4062
4063 if (prev_frame)
4064 frame = get_prev_frame (frame);
4065
4066 for (; frame != NULL; frame = get_prev_frame (frame))
4067 {
4068 const char *fn = NULL;
4069 symtab_and_line sal;
4070 struct symbol *sym;
4071
4072 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4073 break;
4074 if (get_frame_type (frame) != INLINE_FRAME)
4075 break;
4076
4077 sal = find_frame_sal (frame);
4078 sym = get_frame_function (frame);
4079
4080 if (sym != NULL)
4081 fn = sym->print_name ();
4082
4083 if (sal.line != 0
4084 && function_name_is_marked_for_skip (fn, sal))
4085 return true;
4086 }
4087
4088 return false;
4089}
4090
c65d6b55
PA
4091/* If the event thread has the stop requested flag set, pretend it
4092 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4093 target_stop). */
4094
4095static bool
4096handle_stop_requested (struct execution_control_state *ecs)
4097{
4098 if (ecs->event_thread->stop_requested)
4099 {
4100 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4101 ecs->ws.value.sig = GDB_SIGNAL_0;
4102 handle_signal_stop (ecs);
4103 return true;
4104 }
4105 return false;
4106}
4107
a96d9b2e
SDJ
4108/* Auxiliary function that handles syscall entry/return events.
4109 It returns 1 if the inferior should keep going (and GDB
4110 should ignore the event), or 0 if the event deserves to be
4111 processed. */
ca2163eb 4112
a96d9b2e 4113static int
ca2163eb 4114handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4115{
ca2163eb 4116 struct regcache *regcache;
ca2163eb
PA
4117 int syscall_number;
4118
00431a78 4119 context_switch (ecs);
ca2163eb 4120
00431a78 4121 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4122 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4123 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4124
a96d9b2e
SDJ
4125 if (catch_syscall_enabled () > 0
4126 && catching_syscall_number (syscall_number) > 0)
4127 {
4128 if (debug_infrun)
4129 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4130 syscall_number);
a96d9b2e 4131
16c381f0 4132 ecs->event_thread->control.stop_bpstat
a01bda52 4133 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4134 ecs->event_thread->suspend.stop_pc,
4135 ecs->event_thread, &ecs->ws);
ab04a2af 4136
c65d6b55
PA
4137 if (handle_stop_requested (ecs))
4138 return 0;
4139
ce12b012 4140 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4141 {
4142 /* Catchpoint hit. */
ca2163eb
PA
4143 return 0;
4144 }
a96d9b2e 4145 }
ca2163eb 4146
c65d6b55
PA
4147 if (handle_stop_requested (ecs))
4148 return 0;
4149
ca2163eb 4150 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4151 keep_going (ecs);
4152 return 1;
a96d9b2e
SDJ
4153}
4154
7e324e48
GB
4155/* Lazily fill in the execution_control_state's stop_func_* fields. */
4156
4157static void
4158fill_in_stop_func (struct gdbarch *gdbarch,
4159 struct execution_control_state *ecs)
4160{
4161 if (!ecs->stop_func_filled_in)
4162 {
98a617f8
KB
4163 const block *block;
4164
7e324e48
GB
4165 /* Don't care about return value; stop_func_start and stop_func_name
4166 will both be 0 if it doesn't work. */
98a617f8
KB
4167 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4168 &ecs->stop_func_name,
4169 &ecs->stop_func_start,
4170 &ecs->stop_func_end,
4171 &block);
4172
4173 /* The call to find_pc_partial_function, above, will set
4174 stop_func_start and stop_func_end to the start and end
4175 of the range containing the stop pc. If this range
4176 contains the entry pc for the block (which is always the
4177 case for contiguous blocks), advance stop_func_start past
4178 the function's start offset and entrypoint. Note that
4179 stop_func_start is NOT advanced when in a range of a
4180 non-contiguous block that does not contain the entry pc. */
4181 if (block != nullptr
4182 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4183 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4184 {
4185 ecs->stop_func_start
4186 += gdbarch_deprecated_function_start_offset (gdbarch);
4187
4188 if (gdbarch_skip_entrypoint_p (gdbarch))
4189 ecs->stop_func_start
4190 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4191 }
591a12a1 4192
7e324e48
GB
4193 ecs->stop_func_filled_in = 1;
4194 }
4195}
4196
4f5d7f63 4197
00431a78 4198/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4199
4200static enum stop_kind
00431a78 4201get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4202{
00431a78 4203 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4204
4205 gdb_assert (inf != NULL);
4206 return inf->control.stop_soon;
4207}
4208
372316f1
PA
4209/* Wait for one event. Store the resulting waitstatus in WS, and
4210 return the event ptid. */
4211
4212static ptid_t
4213wait_one (struct target_waitstatus *ws)
4214{
4215 ptid_t event_ptid;
4216 ptid_t wait_ptid = minus_one_ptid;
4217
4218 overlay_cache_invalid = 1;
4219
4220 /* Flush target cache before starting to handle each event.
4221 Target was running and cache could be stale. This is just a
4222 heuristic. Running threads may modify target memory, but we
4223 don't get any event. */
4224 target_dcache_invalidate ();
4225
4226 if (deprecated_target_wait_hook)
4227 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4228 else
4229 event_ptid = target_wait (wait_ptid, ws, 0);
4230
4231 if (debug_infrun)
4232 print_target_wait_results (wait_ptid, event_ptid, ws);
4233
4234 return event_ptid;
4235}
4236
4237/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4238 instead of the current thread. */
4239#define THREAD_STOPPED_BY(REASON) \
4240static int \
4241thread_stopped_by_ ## REASON (ptid_t ptid) \
4242{ \
2989a365 4243 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4244 inferior_ptid = ptid; \
4245 \
2989a365 4246 return target_stopped_by_ ## REASON (); \
372316f1
PA
4247}
4248
4249/* Generate thread_stopped_by_watchpoint. */
4250THREAD_STOPPED_BY (watchpoint)
4251/* Generate thread_stopped_by_sw_breakpoint. */
4252THREAD_STOPPED_BY (sw_breakpoint)
4253/* Generate thread_stopped_by_hw_breakpoint. */
4254THREAD_STOPPED_BY (hw_breakpoint)
4255
372316f1
PA
4256/* Save the thread's event and stop reason to process it later. */
4257
4258static void
4259save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4260{
372316f1
PA
4261 if (debug_infrun)
4262 {
23fdd69e 4263 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4264
372316f1
PA
4265 fprintf_unfiltered (gdb_stdlog,
4266 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4267 statstr.c_str (),
e99b03dc 4268 tp->ptid.pid (),
e38504b3 4269 tp->ptid.lwp (),
cc6bcb54 4270 tp->ptid.tid ());
372316f1
PA
4271 }
4272
4273 /* Record for later. */
4274 tp->suspend.waitstatus = *ws;
4275 tp->suspend.waitstatus_pending_p = 1;
4276
00431a78 4277 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4278 const address_space *aspace = regcache->aspace ();
372316f1
PA
4279
4280 if (ws->kind == TARGET_WAITKIND_STOPPED
4281 && ws->value.sig == GDB_SIGNAL_TRAP)
4282 {
4283 CORE_ADDR pc = regcache_read_pc (regcache);
4284
4285 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4286
4287 if (thread_stopped_by_watchpoint (tp->ptid))
4288 {
4289 tp->suspend.stop_reason
4290 = TARGET_STOPPED_BY_WATCHPOINT;
4291 }
4292 else if (target_supports_stopped_by_sw_breakpoint ()
4293 && thread_stopped_by_sw_breakpoint (tp->ptid))
4294 {
4295 tp->suspend.stop_reason
4296 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4297 }
4298 else if (target_supports_stopped_by_hw_breakpoint ()
4299 && thread_stopped_by_hw_breakpoint (tp->ptid))
4300 {
4301 tp->suspend.stop_reason
4302 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4303 }
4304 else if (!target_supports_stopped_by_hw_breakpoint ()
4305 && hardware_breakpoint_inserted_here_p (aspace,
4306 pc))
4307 {
4308 tp->suspend.stop_reason
4309 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4310 }
4311 else if (!target_supports_stopped_by_sw_breakpoint ()
4312 && software_breakpoint_inserted_here_p (aspace,
4313 pc))
4314 {
4315 tp->suspend.stop_reason
4316 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4317 }
4318 else if (!thread_has_single_step_breakpoints_set (tp)
4319 && currently_stepping (tp))
4320 {
4321 tp->suspend.stop_reason
4322 = TARGET_STOPPED_BY_SINGLE_STEP;
4323 }
4324 }
4325}
4326
6efcd9a8 4327/* See infrun.h. */
372316f1 4328
6efcd9a8 4329void
372316f1
PA
4330stop_all_threads (void)
4331{
4332 /* We may need multiple passes to discover all threads. */
4333 int pass;
4334 int iterations = 0;
372316f1 4335
fbea99ea 4336 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4337
4338 if (debug_infrun)
4339 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4340
00431a78 4341 scoped_restore_current_thread restore_thread;
372316f1 4342
65706a29 4343 target_thread_events (1);
9885e6bb 4344 SCOPE_EXIT { target_thread_events (0); };
65706a29 4345
372316f1
PA
4346 /* Request threads to stop, and then wait for the stops. Because
4347 threads we already know about can spawn more threads while we're
4348 trying to stop them, and we only learn about new threads when we
4349 update the thread list, do this in a loop, and keep iterating
4350 until two passes find no threads that need to be stopped. */
4351 for (pass = 0; pass < 2; pass++, iterations++)
4352 {
4353 if (debug_infrun)
4354 fprintf_unfiltered (gdb_stdlog,
4355 "infrun: stop_all_threads, pass=%d, "
4356 "iterations=%d\n", pass, iterations);
4357 while (1)
4358 {
4359 ptid_t event_ptid;
4360 struct target_waitstatus ws;
4361 int need_wait = 0;
372316f1
PA
4362
4363 update_thread_list ();
4364
4365 /* Go through all threads looking for threads that we need
4366 to tell the target to stop. */
08036331 4367 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4368 {
4369 if (t->executing)
4370 {
4371 /* If already stopping, don't request a stop again.
4372 We just haven't seen the notification yet. */
4373 if (!t->stop_requested)
4374 {
4375 if (debug_infrun)
4376 fprintf_unfiltered (gdb_stdlog,
4377 "infrun: %s executing, "
4378 "need stop\n",
a068643d 4379 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4380 target_stop (t->ptid);
4381 t->stop_requested = 1;
4382 }
4383 else
4384 {
4385 if (debug_infrun)
4386 fprintf_unfiltered (gdb_stdlog,
4387 "infrun: %s executing, "
4388 "already stopping\n",
a068643d 4389 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4390 }
4391
4392 if (t->stop_requested)
4393 need_wait = 1;
4394 }
4395 else
4396 {
4397 if (debug_infrun)
4398 fprintf_unfiltered (gdb_stdlog,
4399 "infrun: %s not executing\n",
a068643d 4400 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4401
4402 /* The thread may be not executing, but still be
4403 resumed with a pending status to process. */
4404 t->resumed = 0;
4405 }
4406 }
4407
4408 if (!need_wait)
4409 break;
4410
4411 /* If we find new threads on the second iteration, restart
4412 over. We want to see two iterations in a row with all
4413 threads stopped. */
4414 if (pass > 0)
4415 pass = -1;
4416
4417 event_ptid = wait_one (&ws);
c29705b7 4418 if (debug_infrun)
372316f1 4419 {
c29705b7
PW
4420 fprintf_unfiltered (gdb_stdlog,
4421 "infrun: stop_all_threads %s %s\n",
4422 target_waitstatus_to_string (&ws).c_str (),
4423 target_pid_to_str (event_ptid).c_str ());
372316f1 4424 }
372316f1 4425
c29705b7
PW
4426 if (ws.kind == TARGET_WAITKIND_NO_RESUMED
4427 || ws.kind == TARGET_WAITKIND_THREAD_EXITED
4428 || ws.kind == TARGET_WAITKIND_EXITED
4429 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4430 {
4431 /* All resumed threads exited
4432 or one thread/process exited/signalled. */
372316f1
PA
4433 }
4434 else
4435 {
08036331 4436 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4437 if (t == NULL)
4438 t = add_thread (event_ptid);
4439
4440 t->stop_requested = 0;
4441 t->executing = 0;
4442 t->resumed = 0;
4443 t->control.may_range_step = 0;
4444
6efcd9a8
PA
4445 /* This may be the first time we see the inferior report
4446 a stop. */
08036331 4447 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4448 if (inf->needs_setup)
4449 {
4450 switch_to_thread_no_regs (t);
4451 setup_inferior (0);
4452 }
4453
372316f1
PA
4454 if (ws.kind == TARGET_WAITKIND_STOPPED
4455 && ws.value.sig == GDB_SIGNAL_0)
4456 {
4457 /* We caught the event that we intended to catch, so
4458 there's no event pending. */
4459 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4460 t->suspend.waitstatus_pending_p = 0;
4461
00431a78 4462 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4463 {
4464 /* Add it back to the step-over queue. */
4465 if (debug_infrun)
4466 {
4467 fprintf_unfiltered (gdb_stdlog,
4468 "infrun: displaced-step of %s "
4469 "canceled: adding back to the "
4470 "step-over queue\n",
a068643d 4471 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4472 }
4473 t->control.trap_expected = 0;
4474 thread_step_over_chain_enqueue (t);
4475 }
4476 }
4477 else
4478 {
4479 enum gdb_signal sig;
4480 struct regcache *regcache;
372316f1
PA
4481
4482 if (debug_infrun)
4483 {
23fdd69e 4484 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4485
372316f1
PA
4486 fprintf_unfiltered (gdb_stdlog,
4487 "infrun: target_wait %s, saving "
4488 "status for %d.%ld.%ld\n",
23fdd69e 4489 statstr.c_str (),
e99b03dc 4490 t->ptid.pid (),
e38504b3 4491 t->ptid.lwp (),
cc6bcb54 4492 t->ptid.tid ());
372316f1
PA
4493 }
4494
4495 /* Record for later. */
4496 save_waitstatus (t, &ws);
4497
4498 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4499 ? ws.value.sig : GDB_SIGNAL_0);
4500
00431a78 4501 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4502 {
4503 /* Add it back to the step-over queue. */
4504 t->control.trap_expected = 0;
4505 thread_step_over_chain_enqueue (t);
4506 }
4507
00431a78 4508 regcache = get_thread_regcache (t);
372316f1
PA
4509 t->suspend.stop_pc = regcache_read_pc (regcache);
4510
4511 if (debug_infrun)
4512 {
4513 fprintf_unfiltered (gdb_stdlog,
4514 "infrun: saved stop_pc=%s for %s "
4515 "(currently_stepping=%d)\n",
4516 paddress (target_gdbarch (),
4517 t->suspend.stop_pc),
a068643d 4518 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4519 currently_stepping (t));
4520 }
4521 }
4522 }
4523 }
4524 }
4525
372316f1
PA
4526 if (debug_infrun)
4527 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4528}
4529
f4836ba9
PA
4530/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4531
4532static int
4533handle_no_resumed (struct execution_control_state *ecs)
4534{
3b12939d 4535 if (target_can_async_p ())
f4836ba9 4536 {
3b12939d
PA
4537 struct ui *ui;
4538 int any_sync = 0;
f4836ba9 4539
3b12939d
PA
4540 ALL_UIS (ui)
4541 {
4542 if (ui->prompt_state == PROMPT_BLOCKED)
4543 {
4544 any_sync = 1;
4545 break;
4546 }
4547 }
4548 if (!any_sync)
4549 {
4550 /* There were no unwaited-for children left in the target, but,
4551 we're not synchronously waiting for events either. Just
4552 ignore. */
4553
4554 if (debug_infrun)
4555 fprintf_unfiltered (gdb_stdlog,
4556 "infrun: TARGET_WAITKIND_NO_RESUMED "
4557 "(ignoring: bg)\n");
4558 prepare_to_wait (ecs);
4559 return 1;
4560 }
f4836ba9
PA
4561 }
4562
4563 /* Otherwise, if we were running a synchronous execution command, we
4564 may need to cancel it and give the user back the terminal.
4565
4566 In non-stop mode, the target can't tell whether we've already
4567 consumed previous stop events, so it can end up sending us a
4568 no-resumed event like so:
4569
4570 #0 - thread 1 is left stopped
4571
4572 #1 - thread 2 is resumed and hits breakpoint
4573 -> TARGET_WAITKIND_STOPPED
4574
4575 #2 - thread 3 is resumed and exits
4576 this is the last resumed thread, so
4577 -> TARGET_WAITKIND_NO_RESUMED
4578
4579 #3 - gdb processes stop for thread 2 and decides to re-resume
4580 it.
4581
4582 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4583 thread 2 is now resumed, so the event should be ignored.
4584
4585 IOW, if the stop for thread 2 doesn't end a foreground command,
4586 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4587 event. But it could be that the event meant that thread 2 itself
4588 (or whatever other thread was the last resumed thread) exited.
4589
4590 To address this we refresh the thread list and check whether we
4591 have resumed threads _now_. In the example above, this removes
4592 thread 3 from the thread list. If thread 2 was re-resumed, we
4593 ignore this event. If we find no thread resumed, then we cancel
4594 the synchronous command show "no unwaited-for " to the user. */
4595 update_thread_list ();
4596
08036331 4597 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4598 {
4599 if (thread->executing
4600 || thread->suspend.waitstatus_pending_p)
4601 {
4602 /* There were no unwaited-for children left in the target at
4603 some point, but there are now. Just ignore. */
4604 if (debug_infrun)
4605 fprintf_unfiltered (gdb_stdlog,
4606 "infrun: TARGET_WAITKIND_NO_RESUMED "
4607 "(ignoring: found resumed)\n");
4608 prepare_to_wait (ecs);
4609 return 1;
4610 }
4611 }
4612
4613 /* Note however that we may find no resumed thread because the whole
4614 process exited meanwhile (thus updating the thread list results
4615 in an empty thread list). In this case we know we'll be getting
4616 a process exit event shortly. */
08036331 4617 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4618 {
4619 if (inf->pid == 0)
4620 continue;
4621
08036331 4622 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4623 if (thread == NULL)
4624 {
4625 if (debug_infrun)
4626 fprintf_unfiltered (gdb_stdlog,
4627 "infrun: TARGET_WAITKIND_NO_RESUMED "
4628 "(expect process exit)\n");
4629 prepare_to_wait (ecs);
4630 return 1;
4631 }
4632 }
4633
4634 /* Go ahead and report the event. */
4635 return 0;
4636}
4637
05ba8510
PA
4638/* Given an execution control state that has been freshly filled in by
4639 an event from the inferior, figure out what it means and take
4640 appropriate action.
4641
4642 The alternatives are:
4643
22bcd14b 4644 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4645 debugger.
4646
4647 2) keep_going and return; to wait for the next event (set
4648 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4649 once). */
c906108c 4650
ec9499be 4651static void
595915c1 4652handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 4653{
595915c1
TT
4654 /* Make sure that all temporary struct value objects that were
4655 created during the handling of the event get deleted at the
4656 end. */
4657 scoped_value_mark free_values;
4658
d6b48e9c
PA
4659 enum stop_kind stop_soon;
4660
c29705b7
PW
4661 if (debug_infrun)
4662 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4663 target_waitstatus_to_string (&ecs->ws).c_str ());
4664
28736962
PA
4665 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4666 {
4667 /* We had an event in the inferior, but we are not interested in
4668 handling it at this level. The lower layers have already
4669 done what needs to be done, if anything.
4670
4671 One of the possible circumstances for this is when the
4672 inferior produces output for the console. The inferior has
4673 not stopped, and we are ignoring the event. Another possible
4674 circumstance is any event which the lower level knows will be
4675 reported multiple times without an intervening resume. */
28736962
PA
4676 prepare_to_wait (ecs);
4677 return;
4678 }
4679
65706a29
PA
4680 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4681 {
65706a29
PA
4682 prepare_to_wait (ecs);
4683 return;
4684 }
4685
0e5bf2a8 4686 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4687 && handle_no_resumed (ecs))
4688 return;
0e5bf2a8 4689
1777feb0 4690 /* Cache the last pid/waitstatus. */
c32c64b7 4691 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4692
ca005067 4693 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4694 stop_stack_dummy = STOP_NONE;
ca005067 4695
0e5bf2a8
PA
4696 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4697 {
4698 /* No unwaited-for children left. IOW, all resumed children
4699 have exited. */
0e5bf2a8 4700 stop_print_frame = 0;
22bcd14b 4701 stop_waiting (ecs);
0e5bf2a8
PA
4702 return;
4703 }
4704
8c90c137 4705 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4706 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4707 {
4708 ecs->event_thread = find_thread_ptid (ecs->ptid);
4709 /* If it's a new thread, add it to the thread database. */
4710 if (ecs->event_thread == NULL)
4711 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4712
4713 /* Disable range stepping. If the next step request could use a
4714 range, this will be end up re-enabled then. */
4715 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4716 }
88ed393a
JK
4717
4718 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4719 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4720
4721 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4722 reinit_frame_cache ();
4723
28736962
PA
4724 breakpoint_retire_moribund ();
4725
2b009048
DJ
4726 /* First, distinguish signals caused by the debugger from signals
4727 that have to do with the program's own actions. Note that
4728 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4729 on the operating system version. Here we detect when a SIGILL or
4730 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4731 something similar for SIGSEGV, since a SIGSEGV will be generated
4732 when we're trying to execute a breakpoint instruction on a
4733 non-executable stack. This happens for call dummy breakpoints
4734 for architectures like SPARC that place call dummies on the
4735 stack. */
2b009048 4736 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4737 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4738 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4739 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4740 {
00431a78 4741 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4742
a01bda52 4743 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4744 regcache_read_pc (regcache)))
4745 {
4746 if (debug_infrun)
4747 fprintf_unfiltered (gdb_stdlog,
4748 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4749 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4750 }
2b009048
DJ
4751 }
4752
28736962
PA
4753 /* Mark the non-executing threads accordingly. In all-stop, all
4754 threads of all processes are stopped when we get any event
e1316e60 4755 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4756 {
4757 ptid_t mark_ptid;
4758
fbea99ea 4759 if (!target_is_non_stop_p ())
372316f1
PA
4760 mark_ptid = minus_one_ptid;
4761 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4762 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4763 {
4764 /* If we're handling a process exit in non-stop mode, even
4765 though threads haven't been deleted yet, one would think
4766 that there is nothing to do, as threads of the dead process
4767 will be soon deleted, and threads of any other process were
4768 left running. However, on some targets, threads survive a
4769 process exit event. E.g., for the "checkpoint" command,
4770 when the current checkpoint/fork exits, linux-fork.c
4771 automatically switches to another fork from within
4772 target_mourn_inferior, by associating the same
4773 inferior/thread to another fork. We haven't mourned yet at
4774 this point, but we must mark any threads left in the
4775 process as not-executing so that finish_thread_state marks
4776 them stopped (in the user's perspective) if/when we present
4777 the stop to the user. */
e99b03dc 4778 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4779 }
4780 else
4781 mark_ptid = ecs->ptid;
4782
4783 set_executing (mark_ptid, 0);
4784
4785 /* Likewise the resumed flag. */
4786 set_resumed (mark_ptid, 0);
4787 }
8c90c137 4788
488f131b
JB
4789 switch (ecs->ws.kind)
4790 {
4791 case TARGET_WAITKIND_LOADED:
00431a78 4792 context_switch (ecs);
b0f4b84b
DJ
4793 /* Ignore gracefully during startup of the inferior, as it might
4794 be the shell which has just loaded some objects, otherwise
4795 add the symbols for the newly loaded objects. Also ignore at
4796 the beginning of an attach or remote session; we will query
4797 the full list of libraries once the connection is
4798 established. */
4f5d7f63 4799
00431a78 4800 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4801 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4802 {
edcc5120
TT
4803 struct regcache *regcache;
4804
00431a78 4805 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4806
4807 handle_solib_event ();
4808
4809 ecs->event_thread->control.stop_bpstat
a01bda52 4810 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4811 ecs->event_thread->suspend.stop_pc,
4812 ecs->event_thread, &ecs->ws);
ab04a2af 4813
c65d6b55
PA
4814 if (handle_stop_requested (ecs))
4815 return;
4816
ce12b012 4817 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4818 {
4819 /* A catchpoint triggered. */
94c57d6a
PA
4820 process_event_stop_test (ecs);
4821 return;
edcc5120 4822 }
488f131b 4823
b0f4b84b
DJ
4824 /* If requested, stop when the dynamic linker notifies
4825 gdb of events. This allows the user to get control
4826 and place breakpoints in initializer routines for
4827 dynamically loaded objects (among other things). */
a493e3e2 4828 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4829 if (stop_on_solib_events)
4830 {
55409f9d
DJ
4831 /* Make sure we print "Stopped due to solib-event" in
4832 normal_stop. */
4833 stop_print_frame = 1;
4834
22bcd14b 4835 stop_waiting (ecs);
b0f4b84b
DJ
4836 return;
4837 }
488f131b 4838 }
b0f4b84b
DJ
4839
4840 /* If we are skipping through a shell, or through shared library
4841 loading that we aren't interested in, resume the program. If
5c09a2c5 4842 we're running the program normally, also resume. */
b0f4b84b
DJ
4843 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4844 {
74960c60
VP
4845 /* Loading of shared libraries might have changed breakpoint
4846 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4847 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4848 insert_breakpoints ();
64ce06e4 4849 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4850 prepare_to_wait (ecs);
4851 return;
4852 }
4853
5c09a2c5
PA
4854 /* But stop if we're attaching or setting up a remote
4855 connection. */
4856 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4857 || stop_soon == STOP_QUIETLY_REMOTE)
4858 {
4859 if (debug_infrun)
4860 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4861 stop_waiting (ecs);
5c09a2c5
PA
4862 return;
4863 }
4864
4865 internal_error (__FILE__, __LINE__,
4866 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4867
488f131b 4868 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
4869 if (handle_stop_requested (ecs))
4870 return;
00431a78 4871 context_switch (ecs);
64ce06e4 4872 resume (GDB_SIGNAL_0);
488f131b
JB
4873 prepare_to_wait (ecs);
4874 return;
c5aa993b 4875
65706a29 4876 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
4877 if (handle_stop_requested (ecs))
4878 return;
00431a78 4879 context_switch (ecs);
65706a29
PA
4880 if (!switch_back_to_stepped_thread (ecs))
4881 keep_going (ecs);
4882 return;
4883
488f131b 4884 case TARGET_WAITKIND_EXITED:
940c3c06 4885 case TARGET_WAITKIND_SIGNALLED:
fb66883a 4886 inferior_ptid = ecs->ptid;
c9657e70 4887 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4888 set_current_program_space (current_inferior ()->pspace);
4889 handle_vfork_child_exec_or_exit (0);
223ffa71 4890 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4891
0c557179
SDJ
4892 /* Clearing any previous state of convenience variables. */
4893 clear_exit_convenience_vars ();
4894
940c3c06
PA
4895 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4896 {
4897 /* Record the exit code in the convenience variable $_exitcode, so
4898 that the user can inspect this again later. */
4899 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4900 (LONGEST) ecs->ws.value.integer);
4901
4902 /* Also record this in the inferior itself. */
4903 current_inferior ()->has_exit_code = 1;
4904 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4905
98eb56a4
PA
4906 /* Support the --return-child-result option. */
4907 return_child_result_value = ecs->ws.value.integer;
4908
76727919 4909 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4910 }
4911 else
0c557179 4912 {
00431a78 4913 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4914
4915 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4916 {
4917 /* Set the value of the internal variable $_exitsignal,
4918 which holds the signal uncaught by the inferior. */
4919 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4920 gdbarch_gdb_signal_to_target (gdbarch,
4921 ecs->ws.value.sig));
4922 }
4923 else
4924 {
4925 /* We don't have access to the target's method used for
4926 converting between signal numbers (GDB's internal
4927 representation <-> target's representation).
4928 Therefore, we cannot do a good job at displaying this
4929 information to the user. It's better to just warn
4930 her about it (if infrun debugging is enabled), and
4931 give up. */
4932 if (debug_infrun)
4933 fprintf_filtered (gdb_stdlog, _("\
4934Cannot fill $_exitsignal with the correct signal number.\n"));
4935 }
4936
76727919 4937 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4938 }
8cf64490 4939
488f131b 4940 gdb_flush (gdb_stdout);
bc1e6c81 4941 target_mourn_inferior (inferior_ptid);
488f131b 4942 stop_print_frame = 0;
22bcd14b 4943 stop_waiting (ecs);
488f131b 4944 return;
c5aa993b 4945
488f131b 4946 /* The following are the only cases in which we keep going;
1777feb0 4947 the above cases end in a continue or goto. */
488f131b 4948 case TARGET_WAITKIND_FORKED:
deb3b17b 4949 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
4950 /* Check whether the inferior is displaced stepping. */
4951 {
00431a78 4952 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4953 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4954
4955 /* If checking displaced stepping is supported, and thread
4956 ecs->ptid is displaced stepping. */
00431a78 4957 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4958 {
4959 struct inferior *parent_inf
c9657e70 4960 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4961 struct regcache *child_regcache;
4962 CORE_ADDR parent_pc;
4963
4964 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4965 indicating that the displaced stepping of syscall instruction
4966 has been done. Perform cleanup for parent process here. Note
4967 that this operation also cleans up the child process for vfork,
4968 because their pages are shared. */
00431a78 4969 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4970 /* Start a new step-over in another thread if there's one
4971 that needs it. */
4972 start_step_over ();
e2d96639
YQ
4973
4974 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4975 {
c0987663 4976 struct displaced_step_inferior_state *displaced
00431a78 4977 = get_displaced_stepping_state (parent_inf);
c0987663 4978
e2d96639
YQ
4979 /* Restore scratch pad for child process. */
4980 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4981 }
4982
4983 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4984 the child's PC is also within the scratchpad. Set the child's PC
4985 to the parent's PC value, which has already been fixed up.
4986 FIXME: we use the parent's aspace here, although we're touching
4987 the child, because the child hasn't been added to the inferior
4988 list yet at this point. */
4989
4990 child_regcache
4991 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4992 gdbarch,
4993 parent_inf->aspace);
4994 /* Read PC value of parent process. */
4995 parent_pc = regcache_read_pc (regcache);
4996
4997 if (debug_displaced)
4998 fprintf_unfiltered (gdb_stdlog,
4999 "displaced: write child pc from %s to %s\n",
5000 paddress (gdbarch,
5001 regcache_read_pc (child_regcache)),
5002 paddress (gdbarch, parent_pc));
5003
5004 regcache_write_pc (child_regcache, parent_pc);
5005 }
5006 }
5007
00431a78 5008 context_switch (ecs);
5a2901d9 5009
b242c3c2
PA
5010 /* Immediately detach breakpoints from the child before there's
5011 any chance of letting the user delete breakpoints from the
5012 breakpoint lists. If we don't do this early, it's easy to
5013 leave left over traps in the child, vis: "break foo; catch
5014 fork; c; <fork>; del; c; <child calls foo>". We only follow
5015 the fork on the last `continue', and by that time the
5016 breakpoint at "foo" is long gone from the breakpoint table.
5017 If we vforked, then we don't need to unpatch here, since both
5018 parent and child are sharing the same memory pages; we'll
5019 need to unpatch at follow/detach time instead to be certain
5020 that new breakpoints added between catchpoint hit time and
5021 vfork follow are detached. */
5022 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5023 {
b242c3c2
PA
5024 /* This won't actually modify the breakpoint list, but will
5025 physically remove the breakpoints from the child. */
d80ee84f 5026 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5027 }
5028
34b7e8a6 5029 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5030
e58b0e63
PA
5031 /* In case the event is caught by a catchpoint, remember that
5032 the event is to be followed at the next resume of the thread,
5033 and not immediately. */
5034 ecs->event_thread->pending_follow = ecs->ws;
5035
f2ffa92b
PA
5036 ecs->event_thread->suspend.stop_pc
5037 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5038
16c381f0 5039 ecs->event_thread->control.stop_bpstat
a01bda52 5040 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5041 ecs->event_thread->suspend.stop_pc,
5042 ecs->event_thread, &ecs->ws);
675bf4cb 5043
c65d6b55
PA
5044 if (handle_stop_requested (ecs))
5045 return;
5046
ce12b012
PA
5047 /* If no catchpoint triggered for this, then keep going. Note
5048 that we're interested in knowing the bpstat actually causes a
5049 stop, not just if it may explain the signal. Software
5050 watchpoints, for example, always appear in the bpstat. */
5051 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5052 {
e58b0e63 5053 int should_resume;
3e43a32a
MS
5054 int follow_child
5055 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5056
a493e3e2 5057 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5058
5059 should_resume = follow_fork ();
5060
00431a78
PA
5061 thread_info *parent = ecs->event_thread;
5062 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5063
a2077e25
PA
5064 /* At this point, the parent is marked running, and the
5065 child is marked stopped. */
5066
5067 /* If not resuming the parent, mark it stopped. */
5068 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5069 parent->set_running (false);
a2077e25
PA
5070
5071 /* If resuming the child, mark it running. */
5072 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5073 child->set_running (true);
a2077e25 5074
6c95b8df 5075 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5076 if (!detach_fork && (non_stop
5077 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5078 {
5079 if (follow_child)
5080 switch_to_thread (parent);
5081 else
5082 switch_to_thread (child);
5083
5084 ecs->event_thread = inferior_thread ();
5085 ecs->ptid = inferior_ptid;
5086 keep_going (ecs);
5087 }
5088
5089 if (follow_child)
5090 switch_to_thread (child);
5091 else
5092 switch_to_thread (parent);
5093
e58b0e63
PA
5094 ecs->event_thread = inferior_thread ();
5095 ecs->ptid = inferior_ptid;
5096
5097 if (should_resume)
5098 keep_going (ecs);
5099 else
22bcd14b 5100 stop_waiting (ecs);
04e68871
DJ
5101 return;
5102 }
94c57d6a
PA
5103 process_event_stop_test (ecs);
5104 return;
488f131b 5105
6c95b8df
PA
5106 case TARGET_WAITKIND_VFORK_DONE:
5107 /* Done with the shared memory region. Re-insert breakpoints in
5108 the parent, and keep going. */
5109
00431a78 5110 context_switch (ecs);
6c95b8df
PA
5111
5112 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5113 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5114
5115 if (handle_stop_requested (ecs))
5116 return;
5117
6c95b8df
PA
5118 /* This also takes care of reinserting breakpoints in the
5119 previously locked inferior. */
5120 keep_going (ecs);
5121 return;
5122
488f131b 5123 case TARGET_WAITKIND_EXECD:
488f131b 5124
cbd2b4e3
PA
5125 /* Note we can't read registers yet (the stop_pc), because we
5126 don't yet know the inferior's post-exec architecture.
5127 'stop_pc' is explicitly read below instead. */
00431a78 5128 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5129
6c95b8df
PA
5130 /* Do whatever is necessary to the parent branch of the vfork. */
5131 handle_vfork_child_exec_or_exit (1);
5132
795e548f
PA
5133 /* This causes the eventpoints and symbol table to be reset.
5134 Must do this now, before trying to determine whether to
5135 stop. */
71b43ef8 5136 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5137
17d8546e
DB
5138 /* In follow_exec we may have deleted the original thread and
5139 created a new one. Make sure that the event thread is the
5140 execd thread for that case (this is a nop otherwise). */
5141 ecs->event_thread = inferior_thread ();
5142
f2ffa92b
PA
5143 ecs->event_thread->suspend.stop_pc
5144 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5145
16c381f0 5146 ecs->event_thread->control.stop_bpstat
a01bda52 5147 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5148 ecs->event_thread->suspend.stop_pc,
5149 ecs->event_thread, &ecs->ws);
795e548f 5150
71b43ef8
PA
5151 /* Note that this may be referenced from inside
5152 bpstat_stop_status above, through inferior_has_execd. */
5153 xfree (ecs->ws.value.execd_pathname);
5154 ecs->ws.value.execd_pathname = NULL;
5155
c65d6b55
PA
5156 if (handle_stop_requested (ecs))
5157 return;
5158
04e68871 5159 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5160 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5161 {
a493e3e2 5162 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5163 keep_going (ecs);
5164 return;
5165 }
94c57d6a
PA
5166 process_event_stop_test (ecs);
5167 return;
488f131b 5168
b4dc5ffa
MK
5169 /* Be careful not to try to gather much state about a thread
5170 that's in a syscall. It's frequently a losing proposition. */
488f131b 5171 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5172 /* Getting the current syscall number. */
94c57d6a
PA
5173 if (handle_syscall_event (ecs) == 0)
5174 process_event_stop_test (ecs);
5175 return;
c906108c 5176
488f131b
JB
5177 /* Before examining the threads further, step this thread to
5178 get it entirely out of the syscall. (We get notice of the
5179 event when the thread is just on the verge of exiting a
5180 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5181 into user code.) */
488f131b 5182 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5183 if (handle_syscall_event (ecs) == 0)
5184 process_event_stop_test (ecs);
5185 return;
c906108c 5186
488f131b 5187 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5188 handle_signal_stop (ecs);
5189 return;
c906108c 5190
b2175913
MS
5191 case TARGET_WAITKIND_NO_HISTORY:
5192 /* Reverse execution: target ran out of history info. */
eab402df 5193
d1988021 5194 /* Switch to the stopped thread. */
00431a78 5195 context_switch (ecs);
d1988021
MM
5196 if (debug_infrun)
5197 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5198
34b7e8a6 5199 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5200 ecs->event_thread->suspend.stop_pc
5201 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5202
5203 if (handle_stop_requested (ecs))
5204 return;
5205
76727919 5206 gdb::observers::no_history.notify ();
22bcd14b 5207 stop_waiting (ecs);
b2175913 5208 return;
488f131b 5209 }
4f5d7f63
PA
5210}
5211
372316f1
PA
5212/* Restart threads back to what they were trying to do back when we
5213 paused them for an in-line step-over. The EVENT_THREAD thread is
5214 ignored. */
4d9d9d04
PA
5215
5216static void
372316f1
PA
5217restart_threads (struct thread_info *event_thread)
5218{
372316f1
PA
5219 /* In case the instruction just stepped spawned a new thread. */
5220 update_thread_list ();
5221
08036331 5222 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5223 {
5224 if (tp == event_thread)
5225 {
5226 if (debug_infrun)
5227 fprintf_unfiltered (gdb_stdlog,
5228 "infrun: restart threads: "
5229 "[%s] is event thread\n",
a068643d 5230 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5231 continue;
5232 }
5233
5234 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5235 {
5236 if (debug_infrun)
5237 fprintf_unfiltered (gdb_stdlog,
5238 "infrun: restart threads: "
5239 "[%s] not meant to be running\n",
a068643d 5240 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5241 continue;
5242 }
5243
5244 if (tp->resumed)
5245 {
5246 if (debug_infrun)
5247 fprintf_unfiltered (gdb_stdlog,
5248 "infrun: restart threads: [%s] resumed\n",
a068643d 5249 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5250 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5251 continue;
5252 }
5253
5254 if (thread_is_in_step_over_chain (tp))
5255 {
5256 if (debug_infrun)
5257 fprintf_unfiltered (gdb_stdlog,
5258 "infrun: restart threads: "
5259 "[%s] needs step-over\n",
a068643d 5260 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5261 gdb_assert (!tp->resumed);
5262 continue;
5263 }
5264
5265
5266 if (tp->suspend.waitstatus_pending_p)
5267 {
5268 if (debug_infrun)
5269 fprintf_unfiltered (gdb_stdlog,
5270 "infrun: restart threads: "
5271 "[%s] has pending status\n",
a068643d 5272 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5273 tp->resumed = 1;
5274 continue;
5275 }
5276
c65d6b55
PA
5277 gdb_assert (!tp->stop_requested);
5278
372316f1
PA
5279 /* If some thread needs to start a step-over at this point, it
5280 should still be in the step-over queue, and thus skipped
5281 above. */
5282 if (thread_still_needs_step_over (tp))
5283 {
5284 internal_error (__FILE__, __LINE__,
5285 "thread [%s] needs a step-over, but not in "
5286 "step-over queue\n",
a068643d 5287 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5288 }
5289
5290 if (currently_stepping (tp))
5291 {
5292 if (debug_infrun)
5293 fprintf_unfiltered (gdb_stdlog,
5294 "infrun: restart threads: [%s] was stepping\n",
a068643d 5295 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5296 keep_going_stepped_thread (tp);
5297 }
5298 else
5299 {
5300 struct execution_control_state ecss;
5301 struct execution_control_state *ecs = &ecss;
5302
5303 if (debug_infrun)
5304 fprintf_unfiltered (gdb_stdlog,
5305 "infrun: restart threads: [%s] continuing\n",
a068643d 5306 target_pid_to_str (tp->ptid).c_str ());
372316f1 5307 reset_ecs (ecs, tp);
00431a78 5308 switch_to_thread (tp);
372316f1
PA
5309 keep_going_pass_signal (ecs);
5310 }
5311 }
5312}
5313
5314/* Callback for iterate_over_threads. Find a resumed thread that has
5315 a pending waitstatus. */
5316
5317static int
5318resumed_thread_with_pending_status (struct thread_info *tp,
5319 void *arg)
5320{
5321 return (tp->resumed
5322 && tp->suspend.waitstatus_pending_p);
5323}
5324
5325/* Called when we get an event that may finish an in-line or
5326 out-of-line (displaced stepping) step-over started previously.
5327 Return true if the event is processed and we should go back to the
5328 event loop; false if the caller should continue processing the
5329 event. */
5330
5331static int
4d9d9d04
PA
5332finish_step_over (struct execution_control_state *ecs)
5333{
372316f1
PA
5334 int had_step_over_info;
5335
00431a78 5336 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5337 ecs->event_thread->suspend.stop_signal);
5338
372316f1
PA
5339 had_step_over_info = step_over_info_valid_p ();
5340
5341 if (had_step_over_info)
4d9d9d04
PA
5342 {
5343 /* If we're stepping over a breakpoint with all threads locked,
5344 then only the thread that was stepped should be reporting
5345 back an event. */
5346 gdb_assert (ecs->event_thread->control.trap_expected);
5347
c65d6b55 5348 clear_step_over_info ();
4d9d9d04
PA
5349 }
5350
fbea99ea 5351 if (!target_is_non_stop_p ())
372316f1 5352 return 0;
4d9d9d04
PA
5353
5354 /* Start a new step-over in another thread if there's one that
5355 needs it. */
5356 start_step_over ();
372316f1
PA
5357
5358 /* If we were stepping over a breakpoint before, and haven't started
5359 a new in-line step-over sequence, then restart all other threads
5360 (except the event thread). We can't do this in all-stop, as then
5361 e.g., we wouldn't be able to issue any other remote packet until
5362 these other threads stop. */
5363 if (had_step_over_info && !step_over_info_valid_p ())
5364 {
5365 struct thread_info *pending;
5366
5367 /* If we only have threads with pending statuses, the restart
5368 below won't restart any thread and so nothing re-inserts the
5369 breakpoint we just stepped over. But we need it inserted
5370 when we later process the pending events, otherwise if
5371 another thread has a pending event for this breakpoint too,
5372 we'd discard its event (because the breakpoint that
5373 originally caused the event was no longer inserted). */
00431a78 5374 context_switch (ecs);
372316f1
PA
5375 insert_breakpoints ();
5376
5377 restart_threads (ecs->event_thread);
5378
5379 /* If we have events pending, go through handle_inferior_event
5380 again, picking up a pending event at random. This avoids
5381 thread starvation. */
5382
5383 /* But not if we just stepped over a watchpoint in order to let
5384 the instruction execute so we can evaluate its expression.
5385 The set of watchpoints that triggered is recorded in the
5386 breakpoint objects themselves (see bp->watchpoint_triggered).
5387 If we processed another event first, that other event could
5388 clobber this info. */
5389 if (ecs->event_thread->stepping_over_watchpoint)
5390 return 0;
5391
5392 pending = iterate_over_threads (resumed_thread_with_pending_status,
5393 NULL);
5394 if (pending != NULL)
5395 {
5396 struct thread_info *tp = ecs->event_thread;
5397 struct regcache *regcache;
5398
5399 if (debug_infrun)
5400 {
5401 fprintf_unfiltered (gdb_stdlog,
5402 "infrun: found resumed threads with "
5403 "pending events, saving status\n");
5404 }
5405
5406 gdb_assert (pending != tp);
5407
5408 /* Record the event thread's event for later. */
5409 save_waitstatus (tp, &ecs->ws);
5410 /* This was cleared early, by handle_inferior_event. Set it
5411 so this pending event is considered by
5412 do_target_wait. */
5413 tp->resumed = 1;
5414
5415 gdb_assert (!tp->executing);
5416
00431a78 5417 regcache = get_thread_regcache (tp);
372316f1
PA
5418 tp->suspend.stop_pc = regcache_read_pc (regcache);
5419
5420 if (debug_infrun)
5421 {
5422 fprintf_unfiltered (gdb_stdlog,
5423 "infrun: saved stop_pc=%s for %s "
5424 "(currently_stepping=%d)\n",
5425 paddress (target_gdbarch (),
5426 tp->suspend.stop_pc),
a068643d 5427 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5428 currently_stepping (tp));
5429 }
5430
5431 /* This in-line step-over finished; clear this so we won't
5432 start a new one. This is what handle_signal_stop would
5433 do, if we returned false. */
5434 tp->stepping_over_breakpoint = 0;
5435
5436 /* Wake up the event loop again. */
5437 mark_async_event_handler (infrun_async_inferior_event_token);
5438
5439 prepare_to_wait (ecs);
5440 return 1;
5441 }
5442 }
5443
5444 return 0;
4d9d9d04
PA
5445}
5446
4f5d7f63
PA
5447/* Come here when the program has stopped with a signal. */
5448
5449static void
5450handle_signal_stop (struct execution_control_state *ecs)
5451{
5452 struct frame_info *frame;
5453 struct gdbarch *gdbarch;
5454 int stopped_by_watchpoint;
5455 enum stop_kind stop_soon;
5456 int random_signal;
c906108c 5457
f0407826
DE
5458 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5459
c65d6b55
PA
5460 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5461
f0407826
DE
5462 /* Do we need to clean up the state of a thread that has
5463 completed a displaced single-step? (Doing so usually affects
5464 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5465 if (finish_step_over (ecs))
5466 return;
f0407826
DE
5467
5468 /* If we either finished a single-step or hit a breakpoint, but
5469 the user wanted this thread to be stopped, pretend we got a
5470 SIG0 (generic unsignaled stop). */
5471 if (ecs->event_thread->stop_requested
5472 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5473 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5474
f2ffa92b
PA
5475 ecs->event_thread->suspend.stop_pc
5476 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5477
527159b7 5478 if (debug_infrun)
237fc4c9 5479 {
00431a78 5480 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5481 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5482 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5483
5484 inferior_ptid = ecs->ptid;
5af949e3
UW
5485
5486 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5487 paddress (reg_gdbarch,
f2ffa92b 5488 ecs->event_thread->suspend.stop_pc));
d92524f1 5489 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5490 {
5491 CORE_ADDR addr;
abbb1732 5492
237fc4c9
PA
5493 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5494
8b88a78e 5495 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5496 fprintf_unfiltered (gdb_stdlog,
5af949e3 5497 "infrun: stopped data address = %s\n",
b926417a 5498 paddress (reg_gdbarch, addr));
237fc4c9
PA
5499 else
5500 fprintf_unfiltered (gdb_stdlog,
5501 "infrun: (no data address available)\n");
5502 }
5503 }
527159b7 5504
36fa8042
PA
5505 /* This is originated from start_remote(), start_inferior() and
5506 shared libraries hook functions. */
00431a78 5507 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5508 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5509 {
00431a78 5510 context_switch (ecs);
36fa8042
PA
5511 if (debug_infrun)
5512 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5513 stop_print_frame = 1;
22bcd14b 5514 stop_waiting (ecs);
36fa8042
PA
5515 return;
5516 }
5517
36fa8042
PA
5518 /* This originates from attach_command(). We need to overwrite
5519 the stop_signal here, because some kernels don't ignore a
5520 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5521 See more comments in inferior.h. On the other hand, if we
5522 get a non-SIGSTOP, report it to the user - assume the backend
5523 will handle the SIGSTOP if it should show up later.
5524
5525 Also consider that the attach is complete when we see a
5526 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5527 target extended-remote report it instead of a SIGSTOP
5528 (e.g. gdbserver). We already rely on SIGTRAP being our
5529 signal, so this is no exception.
5530
5531 Also consider that the attach is complete when we see a
5532 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5533 the target to stop all threads of the inferior, in case the
5534 low level attach operation doesn't stop them implicitly. If
5535 they weren't stopped implicitly, then the stub will report a
5536 GDB_SIGNAL_0, meaning: stopped for no particular reason
5537 other than GDB's request. */
5538 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5539 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5540 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5541 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5542 {
5543 stop_print_frame = 1;
22bcd14b 5544 stop_waiting (ecs);
36fa8042
PA
5545 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5546 return;
5547 }
5548
488f131b 5549 /* See if something interesting happened to the non-current thread. If
b40c7d58 5550 so, then switch to that thread. */
d7e15655 5551 if (ecs->ptid != inferior_ptid)
488f131b 5552 {
527159b7 5553 if (debug_infrun)
8a9de0e4 5554 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5555
00431a78 5556 context_switch (ecs);
c5aa993b 5557
9a4105ab 5558 if (deprecated_context_hook)
00431a78 5559 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5560 }
c906108c 5561
568d6575
UW
5562 /* At this point, get hold of the now-current thread's frame. */
5563 frame = get_current_frame ();
5564 gdbarch = get_frame_arch (frame);
5565
2adfaa28 5566 /* Pull the single step breakpoints out of the target. */
af48d08f 5567 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5568 {
af48d08f 5569 struct regcache *regcache;
af48d08f 5570 CORE_ADDR pc;
2adfaa28 5571
00431a78 5572 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5573 const address_space *aspace = regcache->aspace ();
5574
af48d08f 5575 pc = regcache_read_pc (regcache);
34b7e8a6 5576
af48d08f
PA
5577 /* However, before doing so, if this single-step breakpoint was
5578 actually for another thread, set this thread up for moving
5579 past it. */
5580 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5581 aspace, pc))
5582 {
5583 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5584 {
5585 if (debug_infrun)
5586 {
5587 fprintf_unfiltered (gdb_stdlog,
af48d08f 5588 "infrun: [%s] hit another thread's "
34b7e8a6 5589 "single-step breakpoint\n",
a068643d 5590 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5591 }
af48d08f
PA
5592 ecs->hit_singlestep_breakpoint = 1;
5593 }
5594 }
5595 else
5596 {
5597 if (debug_infrun)
5598 {
5599 fprintf_unfiltered (gdb_stdlog,
5600 "infrun: [%s] hit its "
5601 "single-step breakpoint\n",
a068643d 5602 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5603 }
5604 }
488f131b 5605 }
af48d08f 5606 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5607
963f9c80
PA
5608 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5609 && ecs->event_thread->control.trap_expected
5610 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5611 stopped_by_watchpoint = 0;
5612 else
5613 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5614
5615 /* If necessary, step over this watchpoint. We'll be back to display
5616 it in a moment. */
5617 if (stopped_by_watchpoint
d92524f1 5618 && (target_have_steppable_watchpoint
568d6575 5619 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5620 {
488f131b
JB
5621 /* At this point, we are stopped at an instruction which has
5622 attempted to write to a piece of memory under control of
5623 a watchpoint. The instruction hasn't actually executed
5624 yet. If we were to evaluate the watchpoint expression
5625 now, we would get the old value, and therefore no change
5626 would seem to have occurred.
5627
5628 In order to make watchpoints work `right', we really need
5629 to complete the memory write, and then evaluate the
d983da9c
DJ
5630 watchpoint expression. We do this by single-stepping the
5631 target.
5632
7f89fd65 5633 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5634 it. For example, the PA can (with some kernel cooperation)
5635 single step over a watchpoint without disabling the watchpoint.
5636
5637 It is far more common to need to disable a watchpoint to step
5638 the inferior over it. If we have non-steppable watchpoints,
5639 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5640 disable all watchpoints.
5641
5642 Any breakpoint at PC must also be stepped over -- if there's
5643 one, it will have already triggered before the watchpoint
5644 triggered, and we either already reported it to the user, or
5645 it didn't cause a stop and we called keep_going. In either
5646 case, if there was a breakpoint at PC, we must be trying to
5647 step past it. */
5648 ecs->event_thread->stepping_over_watchpoint = 1;
5649 keep_going (ecs);
488f131b
JB
5650 return;
5651 }
5652
4e1c45ea 5653 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5654 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5655 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5656 ecs->event_thread->control.stop_step = 0;
488f131b 5657 stop_print_frame = 1;
488f131b 5658 stopped_by_random_signal = 0;
ddfe970e 5659 bpstat stop_chain = NULL;
488f131b 5660
edb3359d
DJ
5661 /* Hide inlined functions starting here, unless we just performed stepi or
5662 nexti. After stepi and nexti, always show the innermost frame (not any
5663 inline function call sites). */
16c381f0 5664 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5665 {
00431a78
PA
5666 const address_space *aspace
5667 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5668
5669 /* skip_inline_frames is expensive, so we avoid it if we can
5670 determine that the address is one where functions cannot have
5671 been inlined. This improves performance with inferiors that
5672 load a lot of shared libraries, because the solib event
5673 breakpoint is defined as the address of a function (i.e. not
5674 inline). Note that we have to check the previous PC as well
5675 as the current one to catch cases when we have just
5676 single-stepped off a breakpoint prior to reinstating it.
5677 Note that we're assuming that the code we single-step to is
5678 not inline, but that's not definitive: there's nothing
5679 preventing the event breakpoint function from containing
5680 inlined code, and the single-step ending up there. If the
5681 user had set a breakpoint on that inlined code, the missing
5682 skip_inline_frames call would break things. Fortunately
5683 that's an extremely unlikely scenario. */
f2ffa92b
PA
5684 if (!pc_at_non_inline_function (aspace,
5685 ecs->event_thread->suspend.stop_pc,
5686 &ecs->ws)
a210c238
MR
5687 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5688 && ecs->event_thread->control.trap_expected
5689 && pc_at_non_inline_function (aspace,
5690 ecs->event_thread->prev_pc,
09ac7c10 5691 &ecs->ws)))
1c5a993e 5692 {
f2ffa92b
PA
5693 stop_chain = build_bpstat_chain (aspace,
5694 ecs->event_thread->suspend.stop_pc,
5695 &ecs->ws);
00431a78 5696 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5697
5698 /* Re-fetch current thread's frame in case that invalidated
5699 the frame cache. */
5700 frame = get_current_frame ();
5701 gdbarch = get_frame_arch (frame);
5702 }
0574c78f 5703 }
edb3359d 5704
a493e3e2 5705 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5706 && ecs->event_thread->control.trap_expected
568d6575 5707 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5708 && currently_stepping (ecs->event_thread))
3352ef37 5709 {
b50d7442 5710 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5711 also on an instruction that needs to be stepped multiple
1777feb0 5712 times before it's been fully executing. E.g., architectures
3352ef37
AC
5713 with a delay slot. It needs to be stepped twice, once for
5714 the instruction and once for the delay slot. */
5715 int step_through_delay
568d6575 5716 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5717
527159b7 5718 if (debug_infrun && step_through_delay)
8a9de0e4 5719 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5720 if (ecs->event_thread->control.step_range_end == 0
5721 && step_through_delay)
3352ef37
AC
5722 {
5723 /* The user issued a continue when stopped at a breakpoint.
5724 Set up for another trap and get out of here. */
4e1c45ea 5725 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5726 keep_going (ecs);
5727 return;
5728 }
5729 else if (step_through_delay)
5730 {
5731 /* The user issued a step when stopped at a breakpoint.
5732 Maybe we should stop, maybe we should not - the delay
5733 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5734 case, don't decide that here, just set
5735 ecs->stepping_over_breakpoint, making sure we
5736 single-step again before breakpoints are re-inserted. */
4e1c45ea 5737 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5738 }
5739 }
5740
ab04a2af
TT
5741 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5742 handles this event. */
5743 ecs->event_thread->control.stop_bpstat
a01bda52 5744 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5745 ecs->event_thread->suspend.stop_pc,
5746 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5747
ab04a2af
TT
5748 /* Following in case break condition called a
5749 function. */
5750 stop_print_frame = 1;
73dd234f 5751
ab04a2af
TT
5752 /* This is where we handle "moribund" watchpoints. Unlike
5753 software breakpoints traps, hardware watchpoint traps are
5754 always distinguishable from random traps. If no high-level
5755 watchpoint is associated with the reported stop data address
5756 anymore, then the bpstat does not explain the signal ---
5757 simply make sure to ignore it if `stopped_by_watchpoint' is
5758 set. */
5759
5760 if (debug_infrun
5761 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5762 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5763 GDB_SIGNAL_TRAP)
ab04a2af
TT
5764 && stopped_by_watchpoint)
5765 fprintf_unfiltered (gdb_stdlog,
5766 "infrun: no user watchpoint explains "
5767 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5768
bac7d97b 5769 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5770 at one stage in the past included checks for an inferior
5771 function call's call dummy's return breakpoint. The original
5772 comment, that went with the test, read:
03cebad2 5773
ab04a2af
TT
5774 ``End of a stack dummy. Some systems (e.g. Sony news) give
5775 another signal besides SIGTRAP, so check here as well as
5776 above.''
73dd234f 5777
ab04a2af
TT
5778 If someone ever tries to get call dummys on a
5779 non-executable stack to work (where the target would stop
5780 with something like a SIGSEGV), then those tests might need
5781 to be re-instated. Given, however, that the tests were only
5782 enabled when momentary breakpoints were not being used, I
5783 suspect that it won't be the case.
488f131b 5784
ab04a2af
TT
5785 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5786 be necessary for call dummies on a non-executable stack on
5787 SPARC. */
488f131b 5788
bac7d97b 5789 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5790 random_signal
5791 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5792 ecs->event_thread->suspend.stop_signal);
bac7d97b 5793
1cf4d951
PA
5794 /* Maybe this was a trap for a software breakpoint that has since
5795 been removed. */
5796 if (random_signal && target_stopped_by_sw_breakpoint ())
5797 {
f2ffa92b
PA
5798 if (program_breakpoint_here_p (gdbarch,
5799 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5800 {
5801 struct regcache *regcache;
5802 int decr_pc;
5803
5804 /* Re-adjust PC to what the program would see if GDB was not
5805 debugging it. */
00431a78 5806 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5807 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5808 if (decr_pc != 0)
5809 {
07036511
TT
5810 gdb::optional<scoped_restore_tmpl<int>>
5811 restore_operation_disable;
1cf4d951
PA
5812
5813 if (record_full_is_used ())
07036511
TT
5814 restore_operation_disable.emplace
5815 (record_full_gdb_operation_disable_set ());
1cf4d951 5816
f2ffa92b
PA
5817 regcache_write_pc (regcache,
5818 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5819 }
5820 }
5821 else
5822 {
5823 /* A delayed software breakpoint event. Ignore the trap. */
5824 if (debug_infrun)
5825 fprintf_unfiltered (gdb_stdlog,
5826 "infrun: delayed software breakpoint "
5827 "trap, ignoring\n");
5828 random_signal = 0;
5829 }
5830 }
5831
5832 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5833 has since been removed. */
5834 if (random_signal && target_stopped_by_hw_breakpoint ())
5835 {
5836 /* A delayed hardware breakpoint event. Ignore the trap. */
5837 if (debug_infrun)
5838 fprintf_unfiltered (gdb_stdlog,
5839 "infrun: delayed hardware breakpoint/watchpoint "
5840 "trap, ignoring\n");
5841 random_signal = 0;
5842 }
5843
bac7d97b
PA
5844 /* If not, perhaps stepping/nexting can. */
5845 if (random_signal)
5846 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5847 && currently_stepping (ecs->event_thread));
ab04a2af 5848
2adfaa28
PA
5849 /* Perhaps the thread hit a single-step breakpoint of _another_
5850 thread. Single-step breakpoints are transparent to the
5851 breakpoints module. */
5852 if (random_signal)
5853 random_signal = !ecs->hit_singlestep_breakpoint;
5854
bac7d97b
PA
5855 /* No? Perhaps we got a moribund watchpoint. */
5856 if (random_signal)
5857 random_signal = !stopped_by_watchpoint;
ab04a2af 5858
c65d6b55
PA
5859 /* Always stop if the user explicitly requested this thread to
5860 remain stopped. */
5861 if (ecs->event_thread->stop_requested)
5862 {
5863 random_signal = 1;
5864 if (debug_infrun)
5865 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5866 }
5867
488f131b
JB
5868 /* For the program's own signals, act according to
5869 the signal handling tables. */
5870
ce12b012 5871 if (random_signal)
488f131b
JB
5872 {
5873 /* Signal not for debugging purposes. */
c9657e70 5874 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5875 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5876
527159b7 5877 if (debug_infrun)
c9737c08
PA
5878 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5879 gdb_signal_to_symbol_string (stop_signal));
527159b7 5880
488f131b
JB
5881 stopped_by_random_signal = 1;
5882
252fbfc8
PA
5883 /* Always stop on signals if we're either just gaining control
5884 of the program, or the user explicitly requested this thread
5885 to remain stopped. */
d6b48e9c 5886 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5887 || ecs->event_thread->stop_requested
24291992 5888 || (!inf->detaching
16c381f0 5889 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5890 {
22bcd14b 5891 stop_waiting (ecs);
488f131b
JB
5892 return;
5893 }
b57bacec
PA
5894
5895 /* Notify observers the signal has "handle print" set. Note we
5896 returned early above if stopping; normal_stop handles the
5897 printing in that case. */
5898 if (signal_print[ecs->event_thread->suspend.stop_signal])
5899 {
5900 /* The signal table tells us to print about this signal. */
223ffa71 5901 target_terminal::ours_for_output ();
76727919 5902 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5903 target_terminal::inferior ();
b57bacec 5904 }
488f131b
JB
5905
5906 /* Clear the signal if it should not be passed. */
16c381f0 5907 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5908 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5909
f2ffa92b 5910 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5911 && ecs->event_thread->control.trap_expected
8358c15c 5912 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5913 {
5914 /* We were just starting a new sequence, attempting to
5915 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5916 Instead this signal arrives. This signal will take us out
68f53502
AC
5917 of the stepping range so GDB needs to remember to, when
5918 the signal handler returns, resume stepping off that
5919 breakpoint. */
5920 /* To simplify things, "continue" is forced to use the same
5921 code paths as single-step - set a breakpoint at the
5922 signal return address and then, once hit, step off that
5923 breakpoint. */
237fc4c9
PA
5924 if (debug_infrun)
5925 fprintf_unfiltered (gdb_stdlog,
5926 "infrun: signal arrived while stepping over "
5927 "breakpoint\n");
d3169d93 5928
2c03e5be 5929 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5930 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5931 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5932 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5933
5934 /* If we were nexting/stepping some other thread, switch to
5935 it, so that we don't continue it, losing control. */
5936 if (!switch_back_to_stepped_thread (ecs))
5937 keep_going (ecs);
9d799f85 5938 return;
68f53502 5939 }
9d799f85 5940
e5f8a7cc 5941 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5942 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5943 ecs->event_thread)
e5f8a7cc 5944 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5945 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5946 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5947 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5948 {
5949 /* The inferior is about to take a signal that will take it
5950 out of the single step range. Set a breakpoint at the
5951 current PC (which is presumably where the signal handler
5952 will eventually return) and then allow the inferior to
5953 run free.
5954
5955 Note that this is only needed for a signal delivered
5956 while in the single-step range. Nested signals aren't a
5957 problem as they eventually all return. */
237fc4c9
PA
5958 if (debug_infrun)
5959 fprintf_unfiltered (gdb_stdlog,
5960 "infrun: signal may take us out of "
5961 "single-step range\n");
5962
372316f1 5963 clear_step_over_info ();
2c03e5be 5964 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5965 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5966 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5967 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5968 keep_going (ecs);
5969 return;
d303a6c7 5970 }
9d799f85 5971
85102364 5972 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
5973 when either there's a nested signal, or when there's a
5974 pending signal enabled just as the signal handler returns
5975 (leaving the inferior at the step-resume-breakpoint without
5976 actually executing it). Either way continue until the
5977 breakpoint is really hit. */
c447ac0b
PA
5978
5979 if (!switch_back_to_stepped_thread (ecs))
5980 {
5981 if (debug_infrun)
5982 fprintf_unfiltered (gdb_stdlog,
5983 "infrun: random signal, keep going\n");
5984
5985 keep_going (ecs);
5986 }
5987 return;
488f131b 5988 }
94c57d6a
PA
5989
5990 process_event_stop_test (ecs);
5991}
5992
5993/* Come here when we've got some debug event / signal we can explain
5994 (IOW, not a random signal), and test whether it should cause a
5995 stop, or whether we should resume the inferior (transparently).
5996 E.g., could be a breakpoint whose condition evaluates false; we
5997 could be still stepping within the line; etc. */
5998
5999static void
6000process_event_stop_test (struct execution_control_state *ecs)
6001{
6002 struct symtab_and_line stop_pc_sal;
6003 struct frame_info *frame;
6004 struct gdbarch *gdbarch;
cdaa5b73
PA
6005 CORE_ADDR jmp_buf_pc;
6006 struct bpstat_what what;
94c57d6a 6007
cdaa5b73 6008 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6009
cdaa5b73
PA
6010 frame = get_current_frame ();
6011 gdbarch = get_frame_arch (frame);
fcf3daef 6012
cdaa5b73 6013 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6014
cdaa5b73
PA
6015 if (what.call_dummy)
6016 {
6017 stop_stack_dummy = what.call_dummy;
6018 }
186c406b 6019
243a9253
PA
6020 /* A few breakpoint types have callbacks associated (e.g.,
6021 bp_jit_event). Run them now. */
6022 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6023
cdaa5b73
PA
6024 /* If we hit an internal event that triggers symbol changes, the
6025 current frame will be invalidated within bpstat_what (e.g., if we
6026 hit an internal solib event). Re-fetch it. */
6027 frame = get_current_frame ();
6028 gdbarch = get_frame_arch (frame);
e2e4d78b 6029
cdaa5b73
PA
6030 switch (what.main_action)
6031 {
6032 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6033 /* If we hit the breakpoint at longjmp while stepping, we
6034 install a momentary breakpoint at the target of the
6035 jmp_buf. */
186c406b 6036
cdaa5b73
PA
6037 if (debug_infrun)
6038 fprintf_unfiltered (gdb_stdlog,
6039 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6040
cdaa5b73 6041 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6042
cdaa5b73
PA
6043 if (what.is_longjmp)
6044 {
6045 struct value *arg_value;
6046
6047 /* If we set the longjmp breakpoint via a SystemTap probe,
6048 then use it to extract the arguments. The destination PC
6049 is the third argument to the probe. */
6050 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6051 if (arg_value)
8fa0c4f8
AA
6052 {
6053 jmp_buf_pc = value_as_address (arg_value);
6054 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6055 }
cdaa5b73
PA
6056 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6057 || !gdbarch_get_longjmp_target (gdbarch,
6058 frame, &jmp_buf_pc))
e2e4d78b 6059 {
cdaa5b73
PA
6060 if (debug_infrun)
6061 fprintf_unfiltered (gdb_stdlog,
6062 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6063 "(!gdbarch_get_longjmp_target)\n");
6064 keep_going (ecs);
6065 return;
e2e4d78b 6066 }
e2e4d78b 6067
cdaa5b73
PA
6068 /* Insert a breakpoint at resume address. */
6069 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6070 }
6071 else
6072 check_exception_resume (ecs, frame);
6073 keep_going (ecs);
6074 return;
e81a37f7 6075
cdaa5b73
PA
6076 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6077 {
6078 struct frame_info *init_frame;
e81a37f7 6079
cdaa5b73 6080 /* There are several cases to consider.
c906108c 6081
cdaa5b73
PA
6082 1. The initiating frame no longer exists. In this case we
6083 must stop, because the exception or longjmp has gone too
6084 far.
2c03e5be 6085
cdaa5b73
PA
6086 2. The initiating frame exists, and is the same as the
6087 current frame. We stop, because the exception or longjmp
6088 has been caught.
2c03e5be 6089
cdaa5b73
PA
6090 3. The initiating frame exists and is different from the
6091 current frame. This means the exception or longjmp has
6092 been caught beneath the initiating frame, so keep going.
c906108c 6093
cdaa5b73
PA
6094 4. longjmp breakpoint has been placed just to protect
6095 against stale dummy frames and user is not interested in
6096 stopping around longjmps. */
c5aa993b 6097
cdaa5b73
PA
6098 if (debug_infrun)
6099 fprintf_unfiltered (gdb_stdlog,
6100 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6101
cdaa5b73
PA
6102 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6103 != NULL);
6104 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6105
cdaa5b73
PA
6106 if (what.is_longjmp)
6107 {
b67a2c6f 6108 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6109
cdaa5b73 6110 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6111 {
cdaa5b73
PA
6112 /* Case 4. */
6113 keep_going (ecs);
6114 return;
e5ef252a 6115 }
cdaa5b73 6116 }
c5aa993b 6117
cdaa5b73 6118 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6119
cdaa5b73
PA
6120 if (init_frame)
6121 {
6122 struct frame_id current_id
6123 = get_frame_id (get_current_frame ());
6124 if (frame_id_eq (current_id,
6125 ecs->event_thread->initiating_frame))
6126 {
6127 /* Case 2. Fall through. */
6128 }
6129 else
6130 {
6131 /* Case 3. */
6132 keep_going (ecs);
6133 return;
6134 }
68f53502 6135 }
488f131b 6136
cdaa5b73
PA
6137 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6138 exists. */
6139 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6140
bdc36728 6141 end_stepping_range (ecs);
cdaa5b73
PA
6142 }
6143 return;
e5ef252a 6144
cdaa5b73
PA
6145 case BPSTAT_WHAT_SINGLE:
6146 if (debug_infrun)
6147 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6148 ecs->event_thread->stepping_over_breakpoint = 1;
6149 /* Still need to check other stuff, at least the case where we
6150 are stepping and step out of the right range. */
6151 break;
e5ef252a 6152
cdaa5b73
PA
6153 case BPSTAT_WHAT_STEP_RESUME:
6154 if (debug_infrun)
6155 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6156
cdaa5b73
PA
6157 delete_step_resume_breakpoint (ecs->event_thread);
6158 if (ecs->event_thread->control.proceed_to_finish
6159 && execution_direction == EXEC_REVERSE)
6160 {
6161 struct thread_info *tp = ecs->event_thread;
6162
6163 /* We are finishing a function in reverse, and just hit the
6164 step-resume breakpoint at the start address of the
6165 function, and we're almost there -- just need to back up
6166 by one more single-step, which should take us back to the
6167 function call. */
6168 tp->control.step_range_start = tp->control.step_range_end = 1;
6169 keep_going (ecs);
e5ef252a 6170 return;
cdaa5b73
PA
6171 }
6172 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6173 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6174 && execution_direction == EXEC_REVERSE)
6175 {
6176 /* We are stepping over a function call in reverse, and just
6177 hit the step-resume breakpoint at the start address of
6178 the function. Go back to single-stepping, which should
6179 take us back to the function call. */
6180 ecs->event_thread->stepping_over_breakpoint = 1;
6181 keep_going (ecs);
6182 return;
6183 }
6184 break;
e5ef252a 6185
cdaa5b73
PA
6186 case BPSTAT_WHAT_STOP_NOISY:
6187 if (debug_infrun)
6188 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6189 stop_print_frame = 1;
e5ef252a 6190
99619bea
PA
6191 /* Assume the thread stopped for a breapoint. We'll still check
6192 whether a/the breakpoint is there when the thread is next
6193 resumed. */
6194 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6195
22bcd14b 6196 stop_waiting (ecs);
cdaa5b73 6197 return;
e5ef252a 6198
cdaa5b73
PA
6199 case BPSTAT_WHAT_STOP_SILENT:
6200 if (debug_infrun)
6201 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6202 stop_print_frame = 0;
e5ef252a 6203
99619bea
PA
6204 /* Assume the thread stopped for a breapoint. We'll still check
6205 whether a/the breakpoint is there when the thread is next
6206 resumed. */
6207 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6208 stop_waiting (ecs);
cdaa5b73
PA
6209 return;
6210
6211 case BPSTAT_WHAT_HP_STEP_RESUME:
6212 if (debug_infrun)
6213 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6214
6215 delete_step_resume_breakpoint (ecs->event_thread);
6216 if (ecs->event_thread->step_after_step_resume_breakpoint)
6217 {
6218 /* Back when the step-resume breakpoint was inserted, we
6219 were trying to single-step off a breakpoint. Go back to
6220 doing that. */
6221 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6222 ecs->event_thread->stepping_over_breakpoint = 1;
6223 keep_going (ecs);
6224 return;
e5ef252a 6225 }
cdaa5b73
PA
6226 break;
6227
6228 case BPSTAT_WHAT_KEEP_CHECKING:
6229 break;
e5ef252a 6230 }
c906108c 6231
af48d08f
PA
6232 /* If we stepped a permanent breakpoint and we had a high priority
6233 step-resume breakpoint for the address we stepped, but we didn't
6234 hit it, then we must have stepped into the signal handler. The
6235 step-resume was only necessary to catch the case of _not_
6236 stepping into the handler, so delete it, and fall through to
6237 checking whether the step finished. */
6238 if (ecs->event_thread->stepped_breakpoint)
6239 {
6240 struct breakpoint *sr_bp
6241 = ecs->event_thread->control.step_resume_breakpoint;
6242
8d707a12
PA
6243 if (sr_bp != NULL
6244 && sr_bp->loc->permanent
af48d08f
PA
6245 && sr_bp->type == bp_hp_step_resume
6246 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6247 {
6248 if (debug_infrun)
6249 fprintf_unfiltered (gdb_stdlog,
6250 "infrun: stepped permanent breakpoint, stopped in "
6251 "handler\n");
6252 delete_step_resume_breakpoint (ecs->event_thread);
6253 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6254 }
6255 }
6256
cdaa5b73
PA
6257 /* We come here if we hit a breakpoint but should not stop for it.
6258 Possibly we also were stepping and should stop for that. So fall
6259 through and test for stepping. But, if not stepping, do not
6260 stop. */
c906108c 6261
a7212384
UW
6262 /* In all-stop mode, if we're currently stepping but have stopped in
6263 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6264 if (switch_back_to_stepped_thread (ecs))
6265 return;
776f04fa 6266
8358c15c 6267 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6268 {
527159b7 6269 if (debug_infrun)
d3169d93
DJ
6270 fprintf_unfiltered (gdb_stdlog,
6271 "infrun: step-resume breakpoint is inserted\n");
527159b7 6272
488f131b
JB
6273 /* Having a step-resume breakpoint overrides anything
6274 else having to do with stepping commands until
6275 that breakpoint is reached. */
488f131b
JB
6276 keep_going (ecs);
6277 return;
6278 }
c5aa993b 6279
16c381f0 6280 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6281 {
527159b7 6282 if (debug_infrun)
8a9de0e4 6283 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6284 /* Likewise if we aren't even stepping. */
488f131b
JB
6285 keep_going (ecs);
6286 return;
6287 }
c5aa993b 6288
4b7703ad
JB
6289 /* Re-fetch current thread's frame in case the code above caused
6290 the frame cache to be re-initialized, making our FRAME variable
6291 a dangling pointer. */
6292 frame = get_current_frame ();
628fe4e4 6293 gdbarch = get_frame_arch (frame);
7e324e48 6294 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6295
488f131b 6296 /* If stepping through a line, keep going if still within it.
c906108c 6297
488f131b
JB
6298 Note that step_range_end is the address of the first instruction
6299 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6300 within it!
6301
6302 Note also that during reverse execution, we may be stepping
6303 through a function epilogue and therefore must detect when
6304 the current-frame changes in the middle of a line. */
6305
f2ffa92b
PA
6306 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6307 ecs->event_thread)
31410e84 6308 && (execution_direction != EXEC_REVERSE
388a8562 6309 || frame_id_eq (get_frame_id (frame),
16c381f0 6310 ecs->event_thread->control.step_frame_id)))
488f131b 6311 {
527159b7 6312 if (debug_infrun)
5af949e3
UW
6313 fprintf_unfiltered
6314 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6315 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6316 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6317
c1e36e3e
PA
6318 /* Tentatively re-enable range stepping; `resume' disables it if
6319 necessary (e.g., if we're stepping over a breakpoint or we
6320 have software watchpoints). */
6321 ecs->event_thread->control.may_range_step = 1;
6322
b2175913
MS
6323 /* When stepping backward, stop at beginning of line range
6324 (unless it's the function entry point, in which case
6325 keep going back to the call point). */
f2ffa92b 6326 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6327 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6328 && stop_pc != ecs->stop_func_start
6329 && execution_direction == EXEC_REVERSE)
bdc36728 6330 end_stepping_range (ecs);
b2175913
MS
6331 else
6332 keep_going (ecs);
6333
488f131b
JB
6334 return;
6335 }
c5aa993b 6336
488f131b 6337 /* We stepped out of the stepping range. */
c906108c 6338
488f131b 6339 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6340 loader dynamic symbol resolution code...
6341
6342 EXEC_FORWARD: we keep on single stepping until we exit the run
6343 time loader code and reach the callee's address.
6344
6345 EXEC_REVERSE: we've already executed the callee (backward), and
6346 the runtime loader code is handled just like any other
6347 undebuggable function call. Now we need only keep stepping
6348 backward through the trampoline code, and that's handled further
6349 down, so there is nothing for us to do here. */
6350
6351 if (execution_direction != EXEC_REVERSE
16c381f0 6352 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6353 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6354 {
4c8c40e6 6355 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6356 gdbarch_skip_solib_resolver (gdbarch,
6357 ecs->event_thread->suspend.stop_pc);
c906108c 6358
527159b7 6359 if (debug_infrun)
3e43a32a
MS
6360 fprintf_unfiltered (gdb_stdlog,
6361 "infrun: stepped into dynsym resolve code\n");
527159b7 6362
488f131b
JB
6363 if (pc_after_resolver)
6364 {
6365 /* Set up a step-resume breakpoint at the address
6366 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6367 symtab_and_line sr_sal;
488f131b 6368 sr_sal.pc = pc_after_resolver;
6c95b8df 6369 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6370
a6d9a66e
UW
6371 insert_step_resume_breakpoint_at_sal (gdbarch,
6372 sr_sal, null_frame_id);
c5aa993b 6373 }
c906108c 6374
488f131b
JB
6375 keep_going (ecs);
6376 return;
6377 }
c906108c 6378
1d509aa6
MM
6379 /* Step through an indirect branch thunk. */
6380 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6381 && gdbarch_in_indirect_branch_thunk (gdbarch,
6382 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6383 {
6384 if (debug_infrun)
6385 fprintf_unfiltered (gdb_stdlog,
6386 "infrun: stepped into indirect branch thunk\n");
6387 keep_going (ecs);
6388 return;
6389 }
6390
16c381f0
JK
6391 if (ecs->event_thread->control.step_range_end != 1
6392 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6393 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6394 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6395 {
527159b7 6396 if (debug_infrun)
3e43a32a
MS
6397 fprintf_unfiltered (gdb_stdlog,
6398 "infrun: stepped into signal trampoline\n");
42edda50 6399 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6400 a signal trampoline (either by a signal being delivered or by
6401 the signal handler returning). Just single-step until the
6402 inferior leaves the trampoline (either by calling the handler
6403 or returning). */
488f131b
JB
6404 keep_going (ecs);
6405 return;
6406 }
c906108c 6407
14132e89
MR
6408 /* If we're in the return path from a shared library trampoline,
6409 we want to proceed through the trampoline when stepping. */
6410 /* macro/2012-04-25: This needs to come before the subroutine
6411 call check below as on some targets return trampolines look
6412 like subroutine calls (MIPS16 return thunks). */
6413 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6414 ecs->event_thread->suspend.stop_pc,
6415 ecs->stop_func_name)
14132e89
MR
6416 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6417 {
6418 /* Determine where this trampoline returns. */
f2ffa92b
PA
6419 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6420 CORE_ADDR real_stop_pc
6421 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6422
6423 if (debug_infrun)
6424 fprintf_unfiltered (gdb_stdlog,
6425 "infrun: stepped into solib return tramp\n");
6426
6427 /* Only proceed through if we know where it's going. */
6428 if (real_stop_pc)
6429 {
6430 /* And put the step-breakpoint there and go until there. */
51abb421 6431 symtab_and_line sr_sal;
14132e89
MR
6432 sr_sal.pc = real_stop_pc;
6433 sr_sal.section = find_pc_overlay (sr_sal.pc);
6434 sr_sal.pspace = get_frame_program_space (frame);
6435
6436 /* Do not specify what the fp should be when we stop since
6437 on some machines the prologue is where the new fp value
6438 is established. */
6439 insert_step_resume_breakpoint_at_sal (gdbarch,
6440 sr_sal, null_frame_id);
6441
6442 /* Restart without fiddling with the step ranges or
6443 other state. */
6444 keep_going (ecs);
6445 return;
6446 }
6447 }
6448
c17eaafe
DJ
6449 /* Check for subroutine calls. The check for the current frame
6450 equalling the step ID is not necessary - the check of the
6451 previous frame's ID is sufficient - but it is a common case and
6452 cheaper than checking the previous frame's ID.
14e60db5
DJ
6453
6454 NOTE: frame_id_eq will never report two invalid frame IDs as
6455 being equal, so to get into this block, both the current and
6456 previous frame must have valid frame IDs. */
005ca36a
JB
6457 /* The outer_frame_id check is a heuristic to detect stepping
6458 through startup code. If we step over an instruction which
6459 sets the stack pointer from an invalid value to a valid value,
6460 we may detect that as a subroutine call from the mythical
6461 "outermost" function. This could be fixed by marking
6462 outermost frames as !stack_p,code_p,special_p. Then the
6463 initial outermost frame, before sp was valid, would
ce6cca6d 6464 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6465 for more. */
edb3359d 6466 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6467 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6468 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6469 ecs->event_thread->control.step_stack_frame_id)
6470 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6471 outer_frame_id)
885eeb5b 6472 || (ecs->event_thread->control.step_start_function
f2ffa92b 6473 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6474 {
f2ffa92b 6475 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6476 CORE_ADDR real_stop_pc;
8fb3e588 6477
527159b7 6478 if (debug_infrun)
8a9de0e4 6479 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6480
b7a084be 6481 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6482 {
6483 /* I presume that step_over_calls is only 0 when we're
6484 supposed to be stepping at the assembly language level
6485 ("stepi"). Just stop. */
388a8562 6486 /* And this works the same backward as frontward. MVS */
bdc36728 6487 end_stepping_range (ecs);
95918acb
AC
6488 return;
6489 }
8fb3e588 6490
388a8562
MS
6491 /* Reverse stepping through solib trampolines. */
6492
6493 if (execution_direction == EXEC_REVERSE
16c381f0 6494 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6495 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6496 || (ecs->stop_func_start == 0
6497 && in_solib_dynsym_resolve_code (stop_pc))))
6498 {
6499 /* Any solib trampoline code can be handled in reverse
6500 by simply continuing to single-step. We have already
6501 executed the solib function (backwards), and a few
6502 steps will take us back through the trampoline to the
6503 caller. */
6504 keep_going (ecs);
6505 return;
6506 }
6507
16c381f0 6508 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6509 {
b2175913
MS
6510 /* We're doing a "next".
6511
6512 Normal (forward) execution: set a breakpoint at the
6513 callee's return address (the address at which the caller
6514 will resume).
6515
6516 Reverse (backward) execution. set the step-resume
6517 breakpoint at the start of the function that we just
6518 stepped into (backwards), and continue to there. When we
6130d0b7 6519 get there, we'll need to single-step back to the caller. */
b2175913
MS
6520
6521 if (execution_direction == EXEC_REVERSE)
6522 {
acf9414f
JK
6523 /* If we're already at the start of the function, we've either
6524 just stepped backward into a single instruction function,
6525 or stepped back out of a signal handler to the first instruction
6526 of the function. Just keep going, which will single-step back
6527 to the caller. */
58c48e72 6528 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6529 {
acf9414f 6530 /* Normal function call return (static or dynamic). */
51abb421 6531 symtab_and_line sr_sal;
acf9414f
JK
6532 sr_sal.pc = ecs->stop_func_start;
6533 sr_sal.pspace = get_frame_program_space (frame);
6534 insert_step_resume_breakpoint_at_sal (gdbarch,
6535 sr_sal, null_frame_id);
6536 }
b2175913
MS
6537 }
6538 else
568d6575 6539 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6540
8567c30f
AC
6541 keep_going (ecs);
6542 return;
6543 }
a53c66de 6544
95918acb 6545 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6546 calling routine and the real function), locate the real
6547 function. That's what tells us (a) whether we want to step
6548 into it at all, and (b) what prologue we want to run to the
6549 end of, if we do step into it. */
568d6575 6550 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6551 if (real_stop_pc == 0)
568d6575 6552 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6553 if (real_stop_pc != 0)
6554 ecs->stop_func_start = real_stop_pc;
8fb3e588 6555
db5f024e 6556 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6557 {
51abb421 6558 symtab_and_line sr_sal;
1b2bfbb9 6559 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6560 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6561
a6d9a66e
UW
6562 insert_step_resume_breakpoint_at_sal (gdbarch,
6563 sr_sal, null_frame_id);
8fb3e588
AC
6564 keep_going (ecs);
6565 return;
1b2bfbb9
RC
6566 }
6567
95918acb 6568 /* If we have line number information for the function we are
1bfeeb0f
JL
6569 thinking of stepping into and the function isn't on the skip
6570 list, step into it.
95918acb 6571
8fb3e588
AC
6572 If there are several symtabs at that PC (e.g. with include
6573 files), just want to know whether *any* of them have line
6574 numbers. find_pc_line handles this. */
95918acb
AC
6575 {
6576 struct symtab_and_line tmp_sal;
8fb3e588 6577
95918acb 6578 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6579 if (tmp_sal.line != 0
85817405 6580 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6581 tmp_sal)
6582 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6583 {
b2175913 6584 if (execution_direction == EXEC_REVERSE)
568d6575 6585 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6586 else
568d6575 6587 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6588 return;
6589 }
6590 }
6591
6592 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6593 set, we stop the step so that the user has a chance to switch
6594 in assembly mode. */
16c381f0 6595 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6596 && step_stop_if_no_debug)
95918acb 6597 {
bdc36728 6598 end_stepping_range (ecs);
95918acb
AC
6599 return;
6600 }
6601
b2175913
MS
6602 if (execution_direction == EXEC_REVERSE)
6603 {
acf9414f
JK
6604 /* If we're already at the start of the function, we've either just
6605 stepped backward into a single instruction function without line
6606 number info, or stepped back out of a signal handler to the first
6607 instruction of the function without line number info. Just keep
6608 going, which will single-step back to the caller. */
6609 if (ecs->stop_func_start != stop_pc)
6610 {
6611 /* Set a breakpoint at callee's start address.
6612 From there we can step once and be back in the caller. */
51abb421 6613 symtab_and_line sr_sal;
acf9414f
JK
6614 sr_sal.pc = ecs->stop_func_start;
6615 sr_sal.pspace = get_frame_program_space (frame);
6616 insert_step_resume_breakpoint_at_sal (gdbarch,
6617 sr_sal, null_frame_id);
6618 }
b2175913
MS
6619 }
6620 else
6621 /* Set a breakpoint at callee's return address (the address
6622 at which the caller will resume). */
568d6575 6623 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6624
95918acb 6625 keep_going (ecs);
488f131b 6626 return;
488f131b 6627 }
c906108c 6628
fdd654f3
MS
6629 /* Reverse stepping through solib trampolines. */
6630
6631 if (execution_direction == EXEC_REVERSE
16c381f0 6632 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6633 {
f2ffa92b
PA
6634 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6635
fdd654f3
MS
6636 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6637 || (ecs->stop_func_start == 0
6638 && in_solib_dynsym_resolve_code (stop_pc)))
6639 {
6640 /* Any solib trampoline code can be handled in reverse
6641 by simply continuing to single-step. We have already
6642 executed the solib function (backwards), and a few
6643 steps will take us back through the trampoline to the
6644 caller. */
6645 keep_going (ecs);
6646 return;
6647 }
6648 else if (in_solib_dynsym_resolve_code (stop_pc))
6649 {
6650 /* Stepped backward into the solib dynsym resolver.
6651 Set a breakpoint at its start and continue, then
6652 one more step will take us out. */
51abb421 6653 symtab_and_line sr_sal;
fdd654f3 6654 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6655 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6656 insert_step_resume_breakpoint_at_sal (gdbarch,
6657 sr_sal, null_frame_id);
6658 keep_going (ecs);
6659 return;
6660 }
6661 }
6662
f2ffa92b 6663 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6664
1b2bfbb9
RC
6665 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6666 the trampoline processing logic, however, there are some trampolines
6667 that have no names, so we should do trampoline handling first. */
16c381f0 6668 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6669 && ecs->stop_func_name == NULL
2afb61aa 6670 && stop_pc_sal.line == 0)
1b2bfbb9 6671 {
527159b7 6672 if (debug_infrun)
3e43a32a
MS
6673 fprintf_unfiltered (gdb_stdlog,
6674 "infrun: stepped into undebuggable function\n");
527159b7 6675
1b2bfbb9 6676 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6677 undebuggable function (where there is no debugging information
6678 and no line number corresponding to the address where the
1b2bfbb9
RC
6679 inferior stopped). Since we want to skip this kind of code,
6680 we keep going until the inferior returns from this
14e60db5
DJ
6681 function - unless the user has asked us not to (via
6682 set step-mode) or we no longer know how to get back
6683 to the call site. */
6684 if (step_stop_if_no_debug
c7ce8faa 6685 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6686 {
6687 /* If we have no line number and the step-stop-if-no-debug
6688 is set, we stop the step so that the user has a chance to
6689 switch in assembly mode. */
bdc36728 6690 end_stepping_range (ecs);
1b2bfbb9
RC
6691 return;
6692 }
6693 else
6694 {
6695 /* Set a breakpoint at callee's return address (the address
6696 at which the caller will resume). */
568d6575 6697 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6698 keep_going (ecs);
6699 return;
6700 }
6701 }
6702
16c381f0 6703 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6704 {
6705 /* It is stepi or nexti. We always want to stop stepping after
6706 one instruction. */
527159b7 6707 if (debug_infrun)
8a9de0e4 6708 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6709 end_stepping_range (ecs);
1b2bfbb9
RC
6710 return;
6711 }
6712
2afb61aa 6713 if (stop_pc_sal.line == 0)
488f131b
JB
6714 {
6715 /* We have no line number information. That means to stop
6716 stepping (does this always happen right after one instruction,
6717 when we do "s" in a function with no line numbers,
6718 or can this happen as a result of a return or longjmp?). */
527159b7 6719 if (debug_infrun)
8a9de0e4 6720 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6721 end_stepping_range (ecs);
488f131b
JB
6722 return;
6723 }
c906108c 6724
edb3359d
DJ
6725 /* Look for "calls" to inlined functions, part one. If the inline
6726 frame machinery detected some skipped call sites, we have entered
6727 a new inline function. */
6728
6729 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6730 ecs->event_thread->control.step_frame_id)
00431a78 6731 && inline_skipped_frames (ecs->event_thread))
edb3359d 6732 {
edb3359d
DJ
6733 if (debug_infrun)
6734 fprintf_unfiltered (gdb_stdlog,
6735 "infrun: stepped into inlined function\n");
6736
51abb421 6737 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6738
16c381f0 6739 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6740 {
6741 /* For "step", we're going to stop. But if the call site
6742 for this inlined function is on the same source line as
6743 we were previously stepping, go down into the function
6744 first. Otherwise stop at the call site. */
6745
6746 if (call_sal.line == ecs->event_thread->current_line
6747 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
6748 {
6749 step_into_inline_frame (ecs->event_thread);
6750 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
6751 {
6752 keep_going (ecs);
6753 return;
6754 }
6755 }
edb3359d 6756
bdc36728 6757 end_stepping_range (ecs);
edb3359d
DJ
6758 return;
6759 }
6760 else
6761 {
6762 /* For "next", we should stop at the call site if it is on a
6763 different source line. Otherwise continue through the
6764 inlined function. */
6765 if (call_sal.line == ecs->event_thread->current_line
6766 && call_sal.symtab == ecs->event_thread->current_symtab)
6767 keep_going (ecs);
6768 else
bdc36728 6769 end_stepping_range (ecs);
edb3359d
DJ
6770 return;
6771 }
6772 }
6773
6774 /* Look for "calls" to inlined functions, part two. If we are still
6775 in the same real function we were stepping through, but we have
6776 to go further up to find the exact frame ID, we are stepping
6777 through a more inlined call beyond its call site. */
6778
6779 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6780 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6781 ecs->event_thread->control.step_frame_id)
edb3359d 6782 && stepped_in_from (get_current_frame (),
16c381f0 6783 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6784 {
6785 if (debug_infrun)
6786 fprintf_unfiltered (gdb_stdlog,
6787 "infrun: stepping through inlined function\n");
6788
4a4c04f1
BE
6789 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
6790 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
6791 keep_going (ecs);
6792 else
bdc36728 6793 end_stepping_range (ecs);
edb3359d
DJ
6794 return;
6795 }
6796
f2ffa92b 6797 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6798 && (ecs->event_thread->current_line != stop_pc_sal.line
6799 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6800 {
6801 /* We are at the start of a different line. So stop. Note that
6802 we don't stop if we step into the middle of a different line.
6803 That is said to make things like for (;;) statements work
6804 better. */
527159b7 6805 if (debug_infrun)
3e43a32a
MS
6806 fprintf_unfiltered (gdb_stdlog,
6807 "infrun: stepped to a different line\n");
bdc36728 6808 end_stepping_range (ecs);
488f131b
JB
6809 return;
6810 }
c906108c 6811
488f131b 6812 /* We aren't done stepping.
c906108c 6813
488f131b
JB
6814 Optimize by setting the stepping range to the line.
6815 (We might not be in the original line, but if we entered a
6816 new line in mid-statement, we continue stepping. This makes
6817 things like for(;;) statements work better.) */
c906108c 6818
16c381f0
JK
6819 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6820 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6821 ecs->event_thread->control.may_range_step = 1;
edb3359d 6822 set_step_info (frame, stop_pc_sal);
488f131b 6823
527159b7 6824 if (debug_infrun)
8a9de0e4 6825 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6826 keep_going (ecs);
104c1213
JM
6827}
6828
c447ac0b
PA
6829/* In all-stop mode, if we're currently stepping but have stopped in
6830 some other thread, we may need to switch back to the stepped
6831 thread. Returns true we set the inferior running, false if we left
6832 it stopped (and the event needs further processing). */
6833
6834static int
6835switch_back_to_stepped_thread (struct execution_control_state *ecs)
6836{
fbea99ea 6837 if (!target_is_non_stop_p ())
c447ac0b 6838 {
99619bea
PA
6839 struct thread_info *stepping_thread;
6840
6841 /* If any thread is blocked on some internal breakpoint, and we
6842 simply need to step over that breakpoint to get it going
6843 again, do that first. */
6844
6845 /* However, if we see an event for the stepping thread, then we
6846 know all other threads have been moved past their breakpoints
6847 already. Let the caller check whether the step is finished,
6848 etc., before deciding to move it past a breakpoint. */
6849 if (ecs->event_thread->control.step_range_end != 0)
6850 return 0;
6851
6852 /* Check if the current thread is blocked on an incomplete
6853 step-over, interrupted by a random signal. */
6854 if (ecs->event_thread->control.trap_expected
6855 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6856 {
99619bea
PA
6857 if (debug_infrun)
6858 {
6859 fprintf_unfiltered (gdb_stdlog,
6860 "infrun: need to finish step-over of [%s]\n",
a068643d 6861 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
6862 }
6863 keep_going (ecs);
6864 return 1;
6865 }
2adfaa28 6866
99619bea
PA
6867 /* Check if the current thread is blocked by a single-step
6868 breakpoint of another thread. */
6869 if (ecs->hit_singlestep_breakpoint)
6870 {
6871 if (debug_infrun)
6872 {
6873 fprintf_unfiltered (gdb_stdlog,
6874 "infrun: need to step [%s] over single-step "
6875 "breakpoint\n",
a068643d 6876 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
6877 }
6878 keep_going (ecs);
6879 return 1;
6880 }
6881
4d9d9d04
PA
6882 /* If this thread needs yet another step-over (e.g., stepping
6883 through a delay slot), do it first before moving on to
6884 another thread. */
6885 if (thread_still_needs_step_over (ecs->event_thread))
6886 {
6887 if (debug_infrun)
6888 {
6889 fprintf_unfiltered (gdb_stdlog,
6890 "infrun: thread [%s] still needs step-over\n",
a068643d 6891 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
6892 }
6893 keep_going (ecs);
6894 return 1;
6895 }
70509625 6896
483805cf
PA
6897 /* If scheduler locking applies even if not stepping, there's no
6898 need to walk over threads. Above we've checked whether the
6899 current thread is stepping. If some other thread not the
6900 event thread is stepping, then it must be that scheduler
6901 locking is not in effect. */
856e7dd6 6902 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6903 return 0;
6904
4d9d9d04
PA
6905 /* Otherwise, we no longer expect a trap in the current thread.
6906 Clear the trap_expected flag before switching back -- this is
6907 what keep_going does as well, if we call it. */
6908 ecs->event_thread->control.trap_expected = 0;
6909
6910 /* Likewise, clear the signal if it should not be passed. */
6911 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6912 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6913
6914 /* Do all pending step-overs before actually proceeding with
483805cf 6915 step/next/etc. */
4d9d9d04
PA
6916 if (start_step_over ())
6917 {
6918 prepare_to_wait (ecs);
6919 return 1;
6920 }
6921
6922 /* Look for the stepping/nexting thread. */
483805cf 6923 stepping_thread = NULL;
4d9d9d04 6924
08036331 6925 for (thread_info *tp : all_non_exited_threads ())
483805cf 6926 {
fbea99ea
PA
6927 /* Ignore threads of processes the caller is not
6928 resuming. */
483805cf 6929 if (!sched_multi
e99b03dc 6930 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6931 continue;
6932
6933 /* When stepping over a breakpoint, we lock all threads
6934 except the one that needs to move past the breakpoint.
6935 If a non-event thread has this set, the "incomplete
6936 step-over" check above should have caught it earlier. */
372316f1
PA
6937 if (tp->control.trap_expected)
6938 {
6939 internal_error (__FILE__, __LINE__,
6940 "[%s] has inconsistent state: "
6941 "trap_expected=%d\n",
a068643d 6942 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
6943 tp->control.trap_expected);
6944 }
483805cf
PA
6945
6946 /* Did we find the stepping thread? */
6947 if (tp->control.step_range_end)
6948 {
6949 /* Yep. There should only one though. */
6950 gdb_assert (stepping_thread == NULL);
6951
6952 /* The event thread is handled at the top, before we
6953 enter this loop. */
6954 gdb_assert (tp != ecs->event_thread);
6955
6956 /* If some thread other than the event thread is
6957 stepping, then scheduler locking can't be in effect,
6958 otherwise we wouldn't have resumed the current event
6959 thread in the first place. */
856e7dd6 6960 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6961
6962 stepping_thread = tp;
6963 }
99619bea
PA
6964 }
6965
483805cf 6966 if (stepping_thread != NULL)
99619bea 6967 {
c447ac0b
PA
6968 if (debug_infrun)
6969 fprintf_unfiltered (gdb_stdlog,
6970 "infrun: switching back to stepped thread\n");
6971
2ac7589c
PA
6972 if (keep_going_stepped_thread (stepping_thread))
6973 {
6974 prepare_to_wait (ecs);
6975 return 1;
6976 }
6977 }
6978 }
2adfaa28 6979
2ac7589c
PA
6980 return 0;
6981}
2adfaa28 6982
2ac7589c
PA
6983/* Set a previously stepped thread back to stepping. Returns true on
6984 success, false if the resume is not possible (e.g., the thread
6985 vanished). */
6986
6987static int
6988keep_going_stepped_thread (struct thread_info *tp)
6989{
6990 struct frame_info *frame;
2ac7589c
PA
6991 struct execution_control_state ecss;
6992 struct execution_control_state *ecs = &ecss;
2adfaa28 6993
2ac7589c
PA
6994 /* If the stepping thread exited, then don't try to switch back and
6995 resume it, which could fail in several different ways depending
6996 on the target. Instead, just keep going.
2adfaa28 6997
2ac7589c
PA
6998 We can find a stepping dead thread in the thread list in two
6999 cases:
2adfaa28 7000
2ac7589c
PA
7001 - The target supports thread exit events, and when the target
7002 tries to delete the thread from the thread list, inferior_ptid
7003 pointed at the exiting thread. In such case, calling
7004 delete_thread does not really remove the thread from the list;
7005 instead, the thread is left listed, with 'exited' state.
64ce06e4 7006
2ac7589c
PA
7007 - The target's debug interface does not support thread exit
7008 events, and so we have no idea whatsoever if the previously
7009 stepping thread is still alive. For that reason, we need to
7010 synchronously query the target now. */
2adfaa28 7011
00431a78 7012 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7013 {
7014 if (debug_infrun)
7015 fprintf_unfiltered (gdb_stdlog,
7016 "infrun: not resuming previously "
7017 "stepped thread, it has vanished\n");
7018
00431a78 7019 delete_thread (tp);
2ac7589c 7020 return 0;
c447ac0b 7021 }
2ac7589c
PA
7022
7023 if (debug_infrun)
7024 fprintf_unfiltered (gdb_stdlog,
7025 "infrun: resuming previously stepped thread\n");
7026
7027 reset_ecs (ecs, tp);
00431a78 7028 switch_to_thread (tp);
2ac7589c 7029
f2ffa92b 7030 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7031 frame = get_current_frame ();
2ac7589c
PA
7032
7033 /* If the PC of the thread we were trying to single-step has
7034 changed, then that thread has trapped or been signaled, but the
7035 event has not been reported to GDB yet. Re-poll the target
7036 looking for this particular thread's event (i.e. temporarily
7037 enable schedlock) by:
7038
7039 - setting a break at the current PC
7040 - resuming that particular thread, only (by setting trap
7041 expected)
7042
7043 This prevents us continuously moving the single-step breakpoint
7044 forward, one instruction at a time, overstepping. */
7045
f2ffa92b 7046 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7047 {
7048 ptid_t resume_ptid;
7049
7050 if (debug_infrun)
7051 fprintf_unfiltered (gdb_stdlog,
7052 "infrun: expected thread advanced also (%s -> %s)\n",
7053 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7054 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7055
7056 /* Clear the info of the previous step-over, as it's no longer
7057 valid (if the thread was trying to step over a breakpoint, it
7058 has already succeeded). It's what keep_going would do too,
7059 if we called it. Do this before trying to insert the sss
7060 breakpoint, otherwise if we were previously trying to step
7061 over this exact address in another thread, the breakpoint is
7062 skipped. */
7063 clear_step_over_info ();
7064 tp->control.trap_expected = 0;
7065
7066 insert_single_step_breakpoint (get_frame_arch (frame),
7067 get_frame_address_space (frame),
f2ffa92b 7068 tp->suspend.stop_pc);
2ac7589c 7069
372316f1 7070 tp->resumed = 1;
fbea99ea 7071 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7072 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7073 }
7074 else
7075 {
7076 if (debug_infrun)
7077 fprintf_unfiltered (gdb_stdlog,
7078 "infrun: expected thread still hasn't advanced\n");
7079
7080 keep_going_pass_signal (ecs);
7081 }
7082 return 1;
c447ac0b
PA
7083}
7084
8b061563
PA
7085/* Is thread TP in the middle of (software or hardware)
7086 single-stepping? (Note the result of this function must never be
7087 passed directly as target_resume's STEP parameter.) */
104c1213 7088
a289b8f6 7089static int
b3444185 7090currently_stepping (struct thread_info *tp)
a7212384 7091{
8358c15c
JK
7092 return ((tp->control.step_range_end
7093 && tp->control.step_resume_breakpoint == NULL)
7094 || tp->control.trap_expected
af48d08f 7095 || tp->stepped_breakpoint
8358c15c 7096 || bpstat_should_step ());
a7212384
UW
7097}
7098
b2175913
MS
7099/* Inferior has stepped into a subroutine call with source code that
7100 we should not step over. Do step to the first line of code in
7101 it. */
c2c6d25f
JM
7102
7103static void
568d6575
UW
7104handle_step_into_function (struct gdbarch *gdbarch,
7105 struct execution_control_state *ecs)
c2c6d25f 7106{
7e324e48
GB
7107 fill_in_stop_func (gdbarch, ecs);
7108
f2ffa92b
PA
7109 compunit_symtab *cust
7110 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7111 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7112 ecs->stop_func_start
7113 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7114
51abb421 7115 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7116 /* Use the step_resume_break to step until the end of the prologue,
7117 even if that involves jumps (as it seems to on the vax under
7118 4.2). */
7119 /* If the prologue ends in the middle of a source line, continue to
7120 the end of that source line (if it is still within the function).
7121 Otherwise, just go to end of prologue. */
2afb61aa
PA
7122 if (stop_func_sal.end
7123 && stop_func_sal.pc != ecs->stop_func_start
7124 && stop_func_sal.end < ecs->stop_func_end)
7125 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7126
2dbd5e30
KB
7127 /* Architectures which require breakpoint adjustment might not be able
7128 to place a breakpoint at the computed address. If so, the test
7129 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7130 ecs->stop_func_start to an address at which a breakpoint may be
7131 legitimately placed.
8fb3e588 7132
2dbd5e30
KB
7133 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7134 made, GDB will enter an infinite loop when stepping through
7135 optimized code consisting of VLIW instructions which contain
7136 subinstructions corresponding to different source lines. On
7137 FR-V, it's not permitted to place a breakpoint on any but the
7138 first subinstruction of a VLIW instruction. When a breakpoint is
7139 set, GDB will adjust the breakpoint address to the beginning of
7140 the VLIW instruction. Thus, we need to make the corresponding
7141 adjustment here when computing the stop address. */
8fb3e588 7142
568d6575 7143 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7144 {
7145 ecs->stop_func_start
568d6575 7146 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7147 ecs->stop_func_start);
2dbd5e30
KB
7148 }
7149
f2ffa92b 7150 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7151 {
7152 /* We are already there: stop now. */
bdc36728 7153 end_stepping_range (ecs);
c2c6d25f
JM
7154 return;
7155 }
7156 else
7157 {
7158 /* Put the step-breakpoint there and go until there. */
51abb421 7159 symtab_and_line sr_sal;
c2c6d25f
JM
7160 sr_sal.pc = ecs->stop_func_start;
7161 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7162 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7163
c2c6d25f 7164 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7165 some machines the prologue is where the new fp value is
7166 established. */
a6d9a66e 7167 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7168
7169 /* And make sure stepping stops right away then. */
16c381f0
JK
7170 ecs->event_thread->control.step_range_end
7171 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7172 }
7173 keep_going (ecs);
7174}
d4f3574e 7175
b2175913
MS
7176/* Inferior has stepped backward into a subroutine call with source
7177 code that we should not step over. Do step to the beginning of the
7178 last line of code in it. */
7179
7180static void
568d6575
UW
7181handle_step_into_function_backward (struct gdbarch *gdbarch,
7182 struct execution_control_state *ecs)
b2175913 7183{
43f3e411 7184 struct compunit_symtab *cust;
167e4384 7185 struct symtab_and_line stop_func_sal;
b2175913 7186
7e324e48
GB
7187 fill_in_stop_func (gdbarch, ecs);
7188
f2ffa92b 7189 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7190 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7191 ecs->stop_func_start
7192 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7193
f2ffa92b 7194 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7195
7196 /* OK, we're just going to keep stepping here. */
f2ffa92b 7197 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7198 {
7199 /* We're there already. Just stop stepping now. */
bdc36728 7200 end_stepping_range (ecs);
b2175913
MS
7201 }
7202 else
7203 {
7204 /* Else just reset the step range and keep going.
7205 No step-resume breakpoint, they don't work for
7206 epilogues, which can have multiple entry paths. */
16c381f0
JK
7207 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7208 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7209 keep_going (ecs);
7210 }
7211 return;
7212}
7213
d3169d93 7214/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7215 This is used to both functions and to skip over code. */
7216
7217static void
2c03e5be
PA
7218insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7219 struct symtab_and_line sr_sal,
7220 struct frame_id sr_id,
7221 enum bptype sr_type)
44cbf7b5 7222{
611c83ae
PA
7223 /* There should never be more than one step-resume or longjmp-resume
7224 breakpoint per thread, so we should never be setting a new
44cbf7b5 7225 step_resume_breakpoint when one is already active. */
8358c15c 7226 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7227 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7228
7229 if (debug_infrun)
7230 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7231 "infrun: inserting step-resume breakpoint at %s\n",
7232 paddress (gdbarch, sr_sal.pc));
d3169d93 7233
8358c15c 7234 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7235 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7236}
7237
9da8c2a0 7238void
2c03e5be
PA
7239insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7240 struct symtab_and_line sr_sal,
7241 struct frame_id sr_id)
7242{
7243 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7244 sr_sal, sr_id,
7245 bp_step_resume);
44cbf7b5 7246}
7ce450bd 7247
2c03e5be
PA
7248/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7249 This is used to skip a potential signal handler.
7ce450bd 7250
14e60db5
DJ
7251 This is called with the interrupted function's frame. The signal
7252 handler, when it returns, will resume the interrupted function at
7253 RETURN_FRAME.pc. */
d303a6c7
AC
7254
7255static void
2c03e5be 7256insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7257{
f4c1edd8 7258 gdb_assert (return_frame != NULL);
d303a6c7 7259
51abb421
PA
7260 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7261
7262 symtab_and_line sr_sal;
568d6575 7263 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7264 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7265 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7266
2c03e5be
PA
7267 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7268 get_stack_frame_id (return_frame),
7269 bp_hp_step_resume);
d303a6c7
AC
7270}
7271
2c03e5be
PA
7272/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7273 is used to skip a function after stepping into it (for "next" or if
7274 the called function has no debugging information).
14e60db5
DJ
7275
7276 The current function has almost always been reached by single
7277 stepping a call or return instruction. NEXT_FRAME belongs to the
7278 current function, and the breakpoint will be set at the caller's
7279 resume address.
7280
7281 This is a separate function rather than reusing
2c03e5be 7282 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7283 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7284 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7285
7286static void
7287insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7288{
14e60db5
DJ
7289 /* We shouldn't have gotten here if we don't know where the call site
7290 is. */
c7ce8faa 7291 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7292
51abb421 7293 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7294
51abb421 7295 symtab_and_line sr_sal;
c7ce8faa
DJ
7296 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7297 frame_unwind_caller_pc (next_frame));
14e60db5 7298 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7299 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7300
a6d9a66e 7301 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7302 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7303}
7304
611c83ae
PA
7305/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7306 new breakpoint at the target of a jmp_buf. The handling of
7307 longjmp-resume uses the same mechanisms used for handling
7308 "step-resume" breakpoints. */
7309
7310static void
a6d9a66e 7311insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7312{
e81a37f7
TT
7313 /* There should never be more than one longjmp-resume breakpoint per
7314 thread, so we should never be setting a new
611c83ae 7315 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7316 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7317
7318 if (debug_infrun)
7319 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7320 "infrun: inserting longjmp-resume breakpoint at %s\n",
7321 paddress (gdbarch, pc));
611c83ae 7322
e81a37f7 7323 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7324 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7325}
7326
186c406b
TT
7327/* Insert an exception resume breakpoint. TP is the thread throwing
7328 the exception. The block B is the block of the unwinder debug hook
7329 function. FRAME is the frame corresponding to the call to this
7330 function. SYM is the symbol of the function argument holding the
7331 target PC of the exception. */
7332
7333static void
7334insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7335 const struct block *b,
186c406b
TT
7336 struct frame_info *frame,
7337 struct symbol *sym)
7338{
a70b8144 7339 try
186c406b 7340 {
63e43d3a 7341 struct block_symbol vsym;
186c406b
TT
7342 struct value *value;
7343 CORE_ADDR handler;
7344 struct breakpoint *bp;
7345
987012b8 7346 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7347 b, VAR_DOMAIN);
63e43d3a 7348 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7349 /* If the value was optimized out, revert to the old behavior. */
7350 if (! value_optimized_out (value))
7351 {
7352 handler = value_as_address (value);
7353
7354 if (debug_infrun)
7355 fprintf_unfiltered (gdb_stdlog,
7356 "infrun: exception resume at %lx\n",
7357 (unsigned long) handler);
7358
7359 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7360 handler,
7361 bp_exception_resume).release ();
c70a6932
JK
7362
7363 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7364 frame = NULL;
7365
5d5658a1 7366 bp->thread = tp->global_num;
186c406b
TT
7367 inferior_thread ()->control.exception_resume_breakpoint = bp;
7368 }
7369 }
230d2906 7370 catch (const gdb_exception_error &e)
492d29ea
PA
7371 {
7372 /* We want to ignore errors here. */
7373 }
186c406b
TT
7374}
7375
28106bc2
SDJ
7376/* A helper for check_exception_resume that sets an
7377 exception-breakpoint based on a SystemTap probe. */
7378
7379static void
7380insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7381 const struct bound_probe *probe,
28106bc2
SDJ
7382 struct frame_info *frame)
7383{
7384 struct value *arg_value;
7385 CORE_ADDR handler;
7386 struct breakpoint *bp;
7387
7388 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7389 if (!arg_value)
7390 return;
7391
7392 handler = value_as_address (arg_value);
7393
7394 if (debug_infrun)
7395 fprintf_unfiltered (gdb_stdlog,
7396 "infrun: exception resume at %s\n",
6bac7473 7397 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7398 handler));
7399
7400 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7401 handler, bp_exception_resume).release ();
5d5658a1 7402 bp->thread = tp->global_num;
28106bc2
SDJ
7403 inferior_thread ()->control.exception_resume_breakpoint = bp;
7404}
7405
186c406b
TT
7406/* This is called when an exception has been intercepted. Check to
7407 see whether the exception's destination is of interest, and if so,
7408 set an exception resume breakpoint there. */
7409
7410static void
7411check_exception_resume (struct execution_control_state *ecs,
28106bc2 7412 struct frame_info *frame)
186c406b 7413{
729662a5 7414 struct bound_probe probe;
28106bc2
SDJ
7415 struct symbol *func;
7416
7417 /* First see if this exception unwinding breakpoint was set via a
7418 SystemTap probe point. If so, the probe has two arguments: the
7419 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7420 set a breakpoint there. */
6bac7473 7421 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7422 if (probe.prob)
28106bc2 7423 {
729662a5 7424 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7425 return;
7426 }
7427
7428 func = get_frame_function (frame);
7429 if (!func)
7430 return;
186c406b 7431
a70b8144 7432 try
186c406b 7433 {
3977b71f 7434 const struct block *b;
8157b174 7435 struct block_iterator iter;
186c406b
TT
7436 struct symbol *sym;
7437 int argno = 0;
7438
7439 /* The exception breakpoint is a thread-specific breakpoint on
7440 the unwinder's debug hook, declared as:
7441
7442 void _Unwind_DebugHook (void *cfa, void *handler);
7443
7444 The CFA argument indicates the frame to which control is
7445 about to be transferred. HANDLER is the destination PC.
7446
7447 We ignore the CFA and set a temporary breakpoint at HANDLER.
7448 This is not extremely efficient but it avoids issues in gdb
7449 with computing the DWARF CFA, and it also works even in weird
7450 cases such as throwing an exception from inside a signal
7451 handler. */
7452
7453 b = SYMBOL_BLOCK_VALUE (func);
7454 ALL_BLOCK_SYMBOLS (b, iter, sym)
7455 {
7456 if (!SYMBOL_IS_ARGUMENT (sym))
7457 continue;
7458
7459 if (argno == 0)
7460 ++argno;
7461 else
7462 {
7463 insert_exception_resume_breakpoint (ecs->event_thread,
7464 b, frame, sym);
7465 break;
7466 }
7467 }
7468 }
230d2906 7469 catch (const gdb_exception_error &e)
492d29ea
PA
7470 {
7471 }
186c406b
TT
7472}
7473
104c1213 7474static void
22bcd14b 7475stop_waiting (struct execution_control_state *ecs)
104c1213 7476{
527159b7 7477 if (debug_infrun)
22bcd14b 7478 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7479
cd0fc7c3
SS
7480 /* Let callers know we don't want to wait for the inferior anymore. */
7481 ecs->wait_some_more = 0;
fbea99ea
PA
7482
7483 /* If all-stop, but the target is always in non-stop mode, stop all
7484 threads now that we're presenting the stop to the user. */
7485 if (!non_stop && target_is_non_stop_p ())
7486 stop_all_threads ();
cd0fc7c3
SS
7487}
7488
4d9d9d04
PA
7489/* Like keep_going, but passes the signal to the inferior, even if the
7490 signal is set to nopass. */
d4f3574e
SS
7491
7492static void
4d9d9d04 7493keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7494{
d7e15655 7495 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7496 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7497
d4f3574e 7498 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7499 ecs->event_thread->prev_pc
00431a78 7500 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7501
4d9d9d04 7502 if (ecs->event_thread->control.trap_expected)
d4f3574e 7503 {
4d9d9d04
PA
7504 struct thread_info *tp = ecs->event_thread;
7505
7506 if (debug_infrun)
7507 fprintf_unfiltered (gdb_stdlog,
7508 "infrun: %s has trap_expected set, "
7509 "resuming to collect trap\n",
a068643d 7510 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7511
a9ba6bae
PA
7512 /* We haven't yet gotten our trap, and either: intercepted a
7513 non-signal event (e.g., a fork); or took a signal which we
7514 are supposed to pass through to the inferior. Simply
7515 continue. */
64ce06e4 7516 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7517 }
372316f1
PA
7518 else if (step_over_info_valid_p ())
7519 {
7520 /* Another thread is stepping over a breakpoint in-line. If
7521 this thread needs a step-over too, queue the request. In
7522 either case, this resume must be deferred for later. */
7523 struct thread_info *tp = ecs->event_thread;
7524
7525 if (ecs->hit_singlestep_breakpoint
7526 || thread_still_needs_step_over (tp))
7527 {
7528 if (debug_infrun)
7529 fprintf_unfiltered (gdb_stdlog,
7530 "infrun: step-over already in progress: "
7531 "step-over for %s deferred\n",
a068643d 7532 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7533 thread_step_over_chain_enqueue (tp);
7534 }
7535 else
7536 {
7537 if (debug_infrun)
7538 fprintf_unfiltered (gdb_stdlog,
7539 "infrun: step-over in progress: "
7540 "resume of %s deferred\n",
a068643d 7541 target_pid_to_str (tp->ptid).c_str ());
372316f1 7542 }
372316f1 7543 }
d4f3574e
SS
7544 else
7545 {
31e77af2 7546 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7547 int remove_bp;
7548 int remove_wps;
8d297bbf 7549 step_over_what step_what;
31e77af2 7550
d4f3574e 7551 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7552 anyway (if we got a signal, the user asked it be passed to
7553 the child)
7554 -- or --
7555 We got our expected trap, but decided we should resume from
7556 it.
d4f3574e 7557
a9ba6bae 7558 We're going to run this baby now!
d4f3574e 7559
c36b740a
VP
7560 Note that insert_breakpoints won't try to re-insert
7561 already inserted breakpoints. Therefore, we don't
7562 care if breakpoints were already inserted, or not. */
a9ba6bae 7563
31e77af2
PA
7564 /* If we need to step over a breakpoint, and we're not using
7565 displaced stepping to do so, insert all breakpoints
7566 (watchpoints, etc.) but the one we're stepping over, step one
7567 instruction, and then re-insert the breakpoint when that step
7568 is finished. */
963f9c80 7569
6c4cfb24
PA
7570 step_what = thread_still_needs_step_over (ecs->event_thread);
7571
963f9c80 7572 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7573 || (step_what & STEP_OVER_BREAKPOINT));
7574 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7575
cb71640d
PA
7576 /* We can't use displaced stepping if we need to step past a
7577 watchpoint. The instruction copied to the scratch pad would
7578 still trigger the watchpoint. */
7579 if (remove_bp
3fc8eb30 7580 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7581 {
a01bda52 7582 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7583 regcache_read_pc (regcache), remove_wps,
7584 ecs->event_thread->global_num);
45e8c884 7585 }
963f9c80 7586 else if (remove_wps)
21edc42f 7587 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7588
7589 /* If we now need to do an in-line step-over, we need to stop
7590 all other threads. Note this must be done before
7591 insert_breakpoints below, because that removes the breakpoint
7592 we're about to step over, otherwise other threads could miss
7593 it. */
fbea99ea 7594 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7595 stop_all_threads ();
abbb1732 7596
31e77af2 7597 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7598 try
31e77af2
PA
7599 {
7600 insert_breakpoints ();
7601 }
230d2906 7602 catch (const gdb_exception_error &e)
31e77af2
PA
7603 {
7604 exception_print (gdb_stderr, e);
22bcd14b 7605 stop_waiting (ecs);
bdf2a94a 7606 clear_step_over_info ();
31e77af2 7607 return;
d4f3574e
SS
7608 }
7609
963f9c80 7610 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7611
64ce06e4 7612 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7613 }
7614
488f131b 7615 prepare_to_wait (ecs);
d4f3574e
SS
7616}
7617
4d9d9d04
PA
7618/* Called when we should continue running the inferior, because the
7619 current event doesn't cause a user visible stop. This does the
7620 resuming part; waiting for the next event is done elsewhere. */
7621
7622static void
7623keep_going (struct execution_control_state *ecs)
7624{
7625 if (ecs->event_thread->control.trap_expected
7626 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7627 ecs->event_thread->control.trap_expected = 0;
7628
7629 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7630 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7631 keep_going_pass_signal (ecs);
7632}
7633
104c1213
JM
7634/* This function normally comes after a resume, before
7635 handle_inferior_event exits. It takes care of any last bits of
7636 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7637
104c1213
JM
7638static void
7639prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7640{
527159b7 7641 if (debug_infrun)
8a9de0e4 7642 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7643
104c1213 7644 ecs->wait_some_more = 1;
0b333c5e
PA
7645
7646 if (!target_is_async_p ())
7647 mark_infrun_async_event_handler ();
c906108c 7648}
11cf8741 7649
fd664c91 7650/* We are done with the step range of a step/next/si/ni command.
b57bacec 7651 Called once for each n of a "step n" operation. */
fd664c91
PA
7652
7653static void
bdc36728 7654end_stepping_range (struct execution_control_state *ecs)
fd664c91 7655{
bdc36728 7656 ecs->event_thread->control.stop_step = 1;
bdc36728 7657 stop_waiting (ecs);
fd664c91
PA
7658}
7659
33d62d64
JK
7660/* Several print_*_reason functions to print why the inferior has stopped.
7661 We always print something when the inferior exits, or receives a signal.
7662 The rest of the cases are dealt with later on in normal_stop and
7663 print_it_typical. Ideally there should be a call to one of these
7664 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7665 stop_waiting is called.
33d62d64 7666
fd664c91
PA
7667 Note that we don't call these directly, instead we delegate that to
7668 the interpreters, through observers. Interpreters then call these
7669 with whatever uiout is right. */
33d62d64 7670
fd664c91
PA
7671void
7672print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7673{
fd664c91 7674 /* For CLI-like interpreters, print nothing. */
33d62d64 7675
112e8700 7676 if (uiout->is_mi_like_p ())
fd664c91 7677 {
112e8700 7678 uiout->field_string ("reason",
fd664c91
PA
7679 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7680 }
7681}
33d62d64 7682
fd664c91
PA
7683void
7684print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7685{
33d62d64 7686 annotate_signalled ();
112e8700
SM
7687 if (uiout->is_mi_like_p ())
7688 uiout->field_string
7689 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7690 uiout->text ("\nProgram terminated with signal ");
33d62d64 7691 annotate_signal_name ();
112e8700 7692 uiout->field_string ("signal-name",
2ea28649 7693 gdb_signal_to_name (siggnal));
33d62d64 7694 annotate_signal_name_end ();
112e8700 7695 uiout->text (", ");
33d62d64 7696 annotate_signal_string ();
112e8700 7697 uiout->field_string ("signal-meaning",
2ea28649 7698 gdb_signal_to_string (siggnal));
33d62d64 7699 annotate_signal_string_end ();
112e8700
SM
7700 uiout->text (".\n");
7701 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7702}
7703
fd664c91
PA
7704void
7705print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7706{
fda326dd 7707 struct inferior *inf = current_inferior ();
a068643d 7708 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7709
33d62d64
JK
7710 annotate_exited (exitstatus);
7711 if (exitstatus)
7712 {
112e8700
SM
7713 if (uiout->is_mi_like_p ())
7714 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
7715 std::string exit_code_str
7716 = string_printf ("0%o", (unsigned int) exitstatus);
7717 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7718 plongest (inf->num), pidstr.c_str (),
7719 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
7720 }
7721 else
11cf8741 7722 {
112e8700
SM
7723 if (uiout->is_mi_like_p ())
7724 uiout->field_string
7725 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
7726 uiout->message ("[Inferior %s (%s) exited normally]\n",
7727 plongest (inf->num), pidstr.c_str ());
33d62d64 7728 }
33d62d64
JK
7729}
7730
012b3a21
WT
7731/* Some targets/architectures can do extra processing/display of
7732 segmentation faults. E.g., Intel MPX boundary faults.
7733 Call the architecture dependent function to handle the fault. */
7734
7735static void
7736handle_segmentation_fault (struct ui_out *uiout)
7737{
7738 struct regcache *regcache = get_current_regcache ();
ac7936df 7739 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7740
7741 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7742 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7743}
7744
fd664c91
PA
7745void
7746print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7747{
f303dbd6
PA
7748 struct thread_info *thr = inferior_thread ();
7749
33d62d64
JK
7750 annotate_signal ();
7751
112e8700 7752 if (uiout->is_mi_like_p ())
f303dbd6
PA
7753 ;
7754 else if (show_thread_that_caused_stop ())
33d62d64 7755 {
f303dbd6 7756 const char *name;
33d62d64 7757
112e8700 7758 uiout->text ("\nThread ");
33eca680 7759 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
7760
7761 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7762 if (name != NULL)
7763 {
112e8700 7764 uiout->text (" \"");
33eca680 7765 uiout->field_string ("name", name);
112e8700 7766 uiout->text ("\"");
f303dbd6 7767 }
33d62d64 7768 }
f303dbd6 7769 else
112e8700 7770 uiout->text ("\nProgram");
f303dbd6 7771
112e8700
SM
7772 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7773 uiout->text (" stopped");
33d62d64
JK
7774 else
7775 {
112e8700 7776 uiout->text (" received signal ");
8b93c638 7777 annotate_signal_name ();
112e8700
SM
7778 if (uiout->is_mi_like_p ())
7779 uiout->field_string
7780 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7781 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7782 annotate_signal_name_end ();
112e8700 7783 uiout->text (", ");
8b93c638 7784 annotate_signal_string ();
112e8700 7785 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7786
7787 if (siggnal == GDB_SIGNAL_SEGV)
7788 handle_segmentation_fault (uiout);
7789
8b93c638 7790 annotate_signal_string_end ();
33d62d64 7791 }
112e8700 7792 uiout->text (".\n");
33d62d64 7793}
252fbfc8 7794
fd664c91
PA
7795void
7796print_no_history_reason (struct ui_out *uiout)
33d62d64 7797{
112e8700 7798 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7799}
43ff13b4 7800
0c7e1a46
PA
7801/* Print current location without a level number, if we have changed
7802 functions or hit a breakpoint. Print source line if we have one.
7803 bpstat_print contains the logic deciding in detail what to print,
7804 based on the event(s) that just occurred. */
7805
243a9253
PA
7806static void
7807print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7808{
7809 int bpstat_ret;
f486487f 7810 enum print_what source_flag;
0c7e1a46
PA
7811 int do_frame_printing = 1;
7812 struct thread_info *tp = inferior_thread ();
7813
7814 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7815 switch (bpstat_ret)
7816 {
7817 case PRINT_UNKNOWN:
7818 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7819 should) carry around the function and does (or should) use
7820 that when doing a frame comparison. */
7821 if (tp->control.stop_step
7822 && frame_id_eq (tp->control.step_frame_id,
7823 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7824 && (tp->control.step_start_function
7825 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7826 {
7827 /* Finished step, just print source line. */
7828 source_flag = SRC_LINE;
7829 }
7830 else
7831 {
7832 /* Print location and source line. */
7833 source_flag = SRC_AND_LOC;
7834 }
7835 break;
7836 case PRINT_SRC_AND_LOC:
7837 /* Print location and source line. */
7838 source_flag = SRC_AND_LOC;
7839 break;
7840 case PRINT_SRC_ONLY:
7841 source_flag = SRC_LINE;
7842 break;
7843 case PRINT_NOTHING:
7844 /* Something bogus. */
7845 source_flag = SRC_LINE;
7846 do_frame_printing = 0;
7847 break;
7848 default:
7849 internal_error (__FILE__, __LINE__, _("Unknown value."));
7850 }
7851
7852 /* The behavior of this routine with respect to the source
7853 flag is:
7854 SRC_LINE: Print only source line
7855 LOCATION: Print only location
7856 SRC_AND_LOC: Print location and source line. */
7857 if (do_frame_printing)
7858 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7859}
7860
243a9253
PA
7861/* See infrun.h. */
7862
7863void
4c7d57e7 7864print_stop_event (struct ui_out *uiout, bool displays)
243a9253 7865{
243a9253
PA
7866 struct target_waitstatus last;
7867 ptid_t last_ptid;
7868 struct thread_info *tp;
7869
7870 get_last_target_status (&last_ptid, &last);
7871
67ad9399
TT
7872 {
7873 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7874
67ad9399 7875 print_stop_location (&last);
243a9253 7876
67ad9399 7877 /* Display the auto-display expressions. */
4c7d57e7
TT
7878 if (displays)
7879 do_displays ();
67ad9399 7880 }
243a9253
PA
7881
7882 tp = inferior_thread ();
7883 if (tp->thread_fsm != NULL
46e3ed7f 7884 && tp->thread_fsm->finished_p ())
243a9253
PA
7885 {
7886 struct return_value_info *rv;
7887
46e3ed7f 7888 rv = tp->thread_fsm->return_value ();
243a9253
PA
7889 if (rv != NULL)
7890 print_return_value (uiout, rv);
7891 }
0c7e1a46
PA
7892}
7893
388a7084
PA
7894/* See infrun.h. */
7895
7896void
7897maybe_remove_breakpoints (void)
7898{
7899 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7900 {
7901 if (remove_breakpoints ())
7902 {
223ffa71 7903 target_terminal::ours_for_output ();
388a7084
PA
7904 printf_filtered (_("Cannot remove breakpoints because "
7905 "program is no longer writable.\nFurther "
7906 "execution is probably impossible.\n"));
7907 }
7908 }
7909}
7910
4c2f2a79
PA
7911/* The execution context that just caused a normal stop. */
7912
7913struct stop_context
7914{
2d844eaf
TT
7915 stop_context ();
7916 ~stop_context ();
7917
7918 DISABLE_COPY_AND_ASSIGN (stop_context);
7919
7920 bool changed () const;
7921
4c2f2a79
PA
7922 /* The stop ID. */
7923 ULONGEST stop_id;
c906108c 7924
4c2f2a79 7925 /* The event PTID. */
c906108c 7926
4c2f2a79
PA
7927 ptid_t ptid;
7928
7929 /* If stopp for a thread event, this is the thread that caused the
7930 stop. */
7931 struct thread_info *thread;
7932
7933 /* The inferior that caused the stop. */
7934 int inf_num;
7935};
7936
2d844eaf 7937/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7938 takes a strong reference to the thread. */
7939
2d844eaf 7940stop_context::stop_context ()
4c2f2a79 7941{
2d844eaf
TT
7942 stop_id = get_stop_id ();
7943 ptid = inferior_ptid;
7944 inf_num = current_inferior ()->num;
4c2f2a79 7945
d7e15655 7946 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7947 {
7948 /* Take a strong reference so that the thread can't be deleted
7949 yet. */
2d844eaf
TT
7950 thread = inferior_thread ();
7951 thread->incref ();
4c2f2a79
PA
7952 }
7953 else
2d844eaf 7954 thread = NULL;
4c2f2a79
PA
7955}
7956
7957/* Release a stop context previously created with save_stop_context.
7958 Releases the strong reference to the thread as well. */
7959
2d844eaf 7960stop_context::~stop_context ()
4c2f2a79 7961{
2d844eaf
TT
7962 if (thread != NULL)
7963 thread->decref ();
4c2f2a79
PA
7964}
7965
7966/* Return true if the current context no longer matches the saved stop
7967 context. */
7968
2d844eaf
TT
7969bool
7970stop_context::changed () const
7971{
7972 if (ptid != inferior_ptid)
7973 return true;
7974 if (inf_num != current_inferior ()->num)
7975 return true;
7976 if (thread != NULL && thread->state != THREAD_STOPPED)
7977 return true;
7978 if (get_stop_id () != stop_id)
7979 return true;
7980 return false;
4c2f2a79
PA
7981}
7982
7983/* See infrun.h. */
7984
7985int
96baa820 7986normal_stop (void)
c906108c 7987{
73b65bb0
DJ
7988 struct target_waitstatus last;
7989 ptid_t last_ptid;
7990
7991 get_last_target_status (&last_ptid, &last);
7992
4c2f2a79
PA
7993 new_stop_id ();
7994
29f49a6a
PA
7995 /* If an exception is thrown from this point on, make sure to
7996 propagate GDB's knowledge of the executing state to the
7997 frontend/user running state. A QUIT is an easy exception to see
7998 here, so do this before any filtered output. */
731f534f
PA
7999
8000 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8001
c35b1492 8002 if (!non_stop)
731f534f 8003 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
8004 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8005 || last.kind == TARGET_WAITKIND_EXITED)
8006 {
8007 /* On some targets, we may still have live threads in the
8008 inferior when we get a process exit event. E.g., for
8009 "checkpoint", when the current checkpoint/fork exits,
8010 linux-fork.c automatically switches to another fork from
8011 within target_mourn_inferior. */
731f534f
PA
8012 if (inferior_ptid != null_ptid)
8013 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
8014 }
8015 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8016 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8017
b57bacec
PA
8018 /* As we're presenting a stop, and potentially removing breakpoints,
8019 update the thread list so we can tell whether there are threads
8020 running on the target. With target remote, for example, we can
8021 only learn about new threads when we explicitly update the thread
8022 list. Do this before notifying the interpreters about signal
8023 stops, end of stepping ranges, etc., so that the "new thread"
8024 output is emitted before e.g., "Program received signal FOO",
8025 instead of after. */
8026 update_thread_list ();
8027
8028 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8029 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8030
c906108c
SS
8031 /* As with the notification of thread events, we want to delay
8032 notifying the user that we've switched thread context until
8033 the inferior actually stops.
8034
73b65bb0
DJ
8035 There's no point in saying anything if the inferior has exited.
8036 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8037 "received a signal".
8038
8039 Also skip saying anything in non-stop mode. In that mode, as we
8040 don't want GDB to switch threads behind the user's back, to avoid
8041 races where the user is typing a command to apply to thread x,
8042 but GDB switches to thread y before the user finishes entering
8043 the command, fetch_inferior_event installs a cleanup to restore
8044 the current thread back to the thread the user had selected right
8045 after this event is handled, so we're not really switching, only
8046 informing of a stop. */
4f8d22e3 8047 if (!non_stop
731f534f 8048 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8049 && target_has_execution
8050 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8051 && last.kind != TARGET_WAITKIND_EXITED
8052 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8053 {
0e454242 8054 SWITCH_THRU_ALL_UIS ()
3b12939d 8055 {
223ffa71 8056 target_terminal::ours_for_output ();
3b12939d 8057 printf_filtered (_("[Switching to %s]\n"),
a068643d 8058 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8059 annotate_thread_changed ();
8060 }
39f77062 8061 previous_inferior_ptid = inferior_ptid;
c906108c 8062 }
c906108c 8063
0e5bf2a8
PA
8064 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8065 {
0e454242 8066 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8067 if (current_ui->prompt_state == PROMPT_BLOCKED)
8068 {
223ffa71 8069 target_terminal::ours_for_output ();
3b12939d
PA
8070 printf_filtered (_("No unwaited-for children left.\n"));
8071 }
0e5bf2a8
PA
8072 }
8073
b57bacec 8074 /* Note: this depends on the update_thread_list call above. */
388a7084 8075 maybe_remove_breakpoints ();
c906108c 8076
c906108c
SS
8077 /* If an auto-display called a function and that got a signal,
8078 delete that auto-display to avoid an infinite recursion. */
8079
8080 if (stopped_by_random_signal)
8081 disable_current_display ();
8082
0e454242 8083 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8084 {
8085 async_enable_stdin ();
8086 }
c906108c 8087
388a7084 8088 /* Let the user/frontend see the threads as stopped. */
731f534f 8089 maybe_finish_thread_state.reset ();
388a7084
PA
8090
8091 /* Select innermost stack frame - i.e., current frame is frame 0,
8092 and current location is based on that. Handle the case where the
8093 dummy call is returning after being stopped. E.g. the dummy call
8094 previously hit a breakpoint. (If the dummy call returns
8095 normally, we won't reach here.) Do this before the stop hook is
8096 run, so that it doesn't get to see the temporary dummy frame,
8097 which is not where we'll present the stop. */
8098 if (has_stack_frames ())
8099 {
8100 if (stop_stack_dummy == STOP_STACK_DUMMY)
8101 {
8102 /* Pop the empty frame that contains the stack dummy. This
8103 also restores inferior state prior to the call (struct
8104 infcall_suspend_state). */
8105 struct frame_info *frame = get_current_frame ();
8106
8107 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8108 frame_pop (frame);
8109 /* frame_pop calls reinit_frame_cache as the last thing it
8110 does which means there's now no selected frame. */
8111 }
8112
8113 select_frame (get_current_frame ());
8114
8115 /* Set the current source location. */
8116 set_current_sal_from_frame (get_current_frame ());
8117 }
dd7e2d2b
PA
8118
8119 /* Look up the hook_stop and run it (CLI internally handles problem
8120 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8121 if (stop_command != NULL)
8122 {
2d844eaf 8123 stop_context saved_context;
4c2f2a79 8124
a70b8144 8125 try
bf469271
PA
8126 {
8127 execute_cmd_pre_hook (stop_command);
8128 }
230d2906 8129 catch (const gdb_exception &ex)
bf469271
PA
8130 {
8131 exception_fprintf (gdb_stderr, ex,
8132 "Error while running hook_stop:\n");
8133 }
4c2f2a79
PA
8134
8135 /* If the stop hook resumes the target, then there's no point in
8136 trying to notify about the previous stop; its context is
8137 gone. Likewise if the command switches thread or inferior --
8138 the observers would print a stop for the wrong
8139 thread/inferior. */
2d844eaf
TT
8140 if (saved_context.changed ())
8141 return 1;
4c2f2a79 8142 }
dd7e2d2b 8143
388a7084
PA
8144 /* Notify observers about the stop. This is where the interpreters
8145 print the stop event. */
d7e15655 8146 if (inferior_ptid != null_ptid)
76727919 8147 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8148 stop_print_frame);
8149 else
76727919 8150 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8151
243a9253
PA
8152 annotate_stopped ();
8153
48844aa6
PA
8154 if (target_has_execution)
8155 {
8156 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8157 && last.kind != TARGET_WAITKIND_EXITED
8158 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8159 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8160 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8161 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8162 }
6c95b8df
PA
8163
8164 /* Try to get rid of automatically added inferiors that are no
8165 longer needed. Keeping those around slows down things linearly.
8166 Note that this never removes the current inferior. */
8167 prune_inferiors ();
4c2f2a79
PA
8168
8169 return 0;
c906108c 8170}
c906108c 8171\f
c5aa993b 8172int
96baa820 8173signal_stop_state (int signo)
c906108c 8174{
d6b48e9c 8175 return signal_stop[signo];
c906108c
SS
8176}
8177
c5aa993b 8178int
96baa820 8179signal_print_state (int signo)
c906108c
SS
8180{
8181 return signal_print[signo];
8182}
8183
c5aa993b 8184int
96baa820 8185signal_pass_state (int signo)
c906108c
SS
8186{
8187 return signal_program[signo];
8188}
8189
2455069d
UW
8190static void
8191signal_cache_update (int signo)
8192{
8193 if (signo == -1)
8194 {
a493e3e2 8195 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8196 signal_cache_update (signo);
8197
8198 return;
8199 }
8200
8201 signal_pass[signo] = (signal_stop[signo] == 0
8202 && signal_print[signo] == 0
ab04a2af
TT
8203 && signal_program[signo] == 1
8204 && signal_catch[signo] == 0);
2455069d
UW
8205}
8206
488f131b 8207int
7bda5e4a 8208signal_stop_update (int signo, int state)
d4f3574e
SS
8209{
8210 int ret = signal_stop[signo];
abbb1732 8211
d4f3574e 8212 signal_stop[signo] = state;
2455069d 8213 signal_cache_update (signo);
d4f3574e
SS
8214 return ret;
8215}
8216
488f131b 8217int
7bda5e4a 8218signal_print_update (int signo, int state)
d4f3574e
SS
8219{
8220 int ret = signal_print[signo];
abbb1732 8221
d4f3574e 8222 signal_print[signo] = state;
2455069d 8223 signal_cache_update (signo);
d4f3574e
SS
8224 return ret;
8225}
8226
488f131b 8227int
7bda5e4a 8228signal_pass_update (int signo, int state)
d4f3574e
SS
8229{
8230 int ret = signal_program[signo];
abbb1732 8231
d4f3574e 8232 signal_program[signo] = state;
2455069d 8233 signal_cache_update (signo);
d4f3574e
SS
8234 return ret;
8235}
8236
ab04a2af
TT
8237/* Update the global 'signal_catch' from INFO and notify the
8238 target. */
8239
8240void
8241signal_catch_update (const unsigned int *info)
8242{
8243 int i;
8244
8245 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8246 signal_catch[i] = info[i] > 0;
8247 signal_cache_update (-1);
adc6a863 8248 target_pass_signals (signal_pass);
ab04a2af
TT
8249}
8250
c906108c 8251static void
96baa820 8252sig_print_header (void)
c906108c 8253{
3e43a32a
MS
8254 printf_filtered (_("Signal Stop\tPrint\tPass "
8255 "to program\tDescription\n"));
c906108c
SS
8256}
8257
8258static void
2ea28649 8259sig_print_info (enum gdb_signal oursig)
c906108c 8260{
2ea28649 8261 const char *name = gdb_signal_to_name (oursig);
c906108c 8262 int name_padding = 13 - strlen (name);
96baa820 8263
c906108c
SS
8264 if (name_padding <= 0)
8265 name_padding = 0;
8266
8267 printf_filtered ("%s", name);
488f131b 8268 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8269 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8270 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8271 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8272 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8273}
8274
8275/* Specify how various signals in the inferior should be handled. */
8276
8277static void
0b39b52e 8278handle_command (const char *args, int from_tty)
c906108c 8279{
c906108c 8280 int digits, wordlen;
b926417a 8281 int sigfirst, siglast;
2ea28649 8282 enum gdb_signal oursig;
c906108c 8283 int allsigs;
c906108c
SS
8284
8285 if (args == NULL)
8286 {
e2e0b3e5 8287 error_no_arg (_("signal to handle"));
c906108c
SS
8288 }
8289
1777feb0 8290 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8291
adc6a863
PA
8292 const size_t nsigs = GDB_SIGNAL_LAST;
8293 unsigned char sigs[nsigs] {};
c906108c 8294
1777feb0 8295 /* Break the command line up into args. */
c906108c 8296
773a1edc 8297 gdb_argv built_argv (args);
c906108c
SS
8298
8299 /* Walk through the args, looking for signal oursigs, signal names, and
8300 actions. Signal numbers and signal names may be interspersed with
8301 actions, with the actions being performed for all signals cumulatively
1777feb0 8302 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8303
773a1edc 8304 for (char *arg : built_argv)
c906108c 8305 {
773a1edc
TT
8306 wordlen = strlen (arg);
8307 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8308 {;
8309 }
8310 allsigs = 0;
8311 sigfirst = siglast = -1;
8312
773a1edc 8313 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8314 {
8315 /* Apply action to all signals except those used by the
1777feb0 8316 debugger. Silently skip those. */
c906108c
SS
8317 allsigs = 1;
8318 sigfirst = 0;
8319 siglast = nsigs - 1;
8320 }
773a1edc 8321 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8322 {
8323 SET_SIGS (nsigs, sigs, signal_stop);
8324 SET_SIGS (nsigs, sigs, signal_print);
8325 }
773a1edc 8326 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8327 {
8328 UNSET_SIGS (nsigs, sigs, signal_program);
8329 }
773a1edc 8330 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8331 {
8332 SET_SIGS (nsigs, sigs, signal_print);
8333 }
773a1edc 8334 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8335 {
8336 SET_SIGS (nsigs, sigs, signal_program);
8337 }
773a1edc 8338 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8339 {
8340 UNSET_SIGS (nsigs, sigs, signal_stop);
8341 }
773a1edc 8342 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8343 {
8344 SET_SIGS (nsigs, sigs, signal_program);
8345 }
773a1edc 8346 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8347 {
8348 UNSET_SIGS (nsigs, sigs, signal_print);
8349 UNSET_SIGS (nsigs, sigs, signal_stop);
8350 }
773a1edc 8351 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8352 {
8353 UNSET_SIGS (nsigs, sigs, signal_program);
8354 }
8355 else if (digits > 0)
8356 {
8357 /* It is numeric. The numeric signal refers to our own
8358 internal signal numbering from target.h, not to host/target
8359 signal number. This is a feature; users really should be
8360 using symbolic names anyway, and the common ones like
8361 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8362
8363 sigfirst = siglast = (int)
773a1edc
TT
8364 gdb_signal_from_command (atoi (arg));
8365 if (arg[digits] == '-')
c906108c
SS
8366 {
8367 siglast = (int)
773a1edc 8368 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8369 }
8370 if (sigfirst > siglast)
8371 {
1777feb0 8372 /* Bet he didn't figure we'd think of this case... */
b926417a 8373 std::swap (sigfirst, siglast);
c906108c
SS
8374 }
8375 }
8376 else
8377 {
773a1edc 8378 oursig = gdb_signal_from_name (arg);
a493e3e2 8379 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8380 {
8381 sigfirst = siglast = (int) oursig;
8382 }
8383 else
8384 {
8385 /* Not a number and not a recognized flag word => complain. */
773a1edc 8386 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8387 }
8388 }
8389
8390 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8391 which signals to apply actions to. */
c906108c 8392
b926417a 8393 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8394 {
2ea28649 8395 switch ((enum gdb_signal) signum)
c906108c 8396 {
a493e3e2
PA
8397 case GDB_SIGNAL_TRAP:
8398 case GDB_SIGNAL_INT:
c906108c
SS
8399 if (!allsigs && !sigs[signum])
8400 {
9e2f0ad4 8401 if (query (_("%s is used by the debugger.\n\
3e43a32a 8402Are you sure you want to change it? "),
2ea28649 8403 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8404 {
8405 sigs[signum] = 1;
8406 }
8407 else
c119e040 8408 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8409 }
8410 break;
a493e3e2
PA
8411 case GDB_SIGNAL_0:
8412 case GDB_SIGNAL_DEFAULT:
8413 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8414 /* Make sure that "all" doesn't print these. */
8415 break;
8416 default:
8417 sigs[signum] = 1;
8418 break;
8419 }
8420 }
c906108c
SS
8421 }
8422
b926417a 8423 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8424 if (sigs[signum])
8425 {
2455069d 8426 signal_cache_update (-1);
adc6a863
PA
8427 target_pass_signals (signal_pass);
8428 target_program_signals (signal_program);
c906108c 8429
3a031f65
PA
8430 if (from_tty)
8431 {
8432 /* Show the results. */
8433 sig_print_header ();
8434 for (; signum < nsigs; signum++)
8435 if (sigs[signum])
aead7601 8436 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8437 }
8438
8439 break;
8440 }
c906108c
SS
8441}
8442
de0bea00
MF
8443/* Complete the "handle" command. */
8444
eb3ff9a5 8445static void
de0bea00 8446handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8447 completion_tracker &tracker,
6f937416 8448 const char *text, const char *word)
de0bea00 8449{
de0bea00
MF
8450 static const char * const keywords[] =
8451 {
8452 "all",
8453 "stop",
8454 "ignore",
8455 "print",
8456 "pass",
8457 "nostop",
8458 "noignore",
8459 "noprint",
8460 "nopass",
8461 NULL,
8462 };
8463
eb3ff9a5
PA
8464 signal_completer (ignore, tracker, text, word);
8465 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8466}
8467
2ea28649
PA
8468enum gdb_signal
8469gdb_signal_from_command (int num)
ed01b82c
PA
8470{
8471 if (num >= 1 && num <= 15)
2ea28649 8472 return (enum gdb_signal) num;
ed01b82c
PA
8473 error (_("Only signals 1-15 are valid as numeric signals.\n\
8474Use \"info signals\" for a list of symbolic signals."));
8475}
8476
c906108c
SS
8477/* Print current contents of the tables set by the handle command.
8478 It is possible we should just be printing signals actually used
8479 by the current target (but for things to work right when switching
8480 targets, all signals should be in the signal tables). */
8481
8482static void
1d12d88f 8483info_signals_command (const char *signum_exp, int from_tty)
c906108c 8484{
2ea28649 8485 enum gdb_signal oursig;
abbb1732 8486
c906108c
SS
8487 sig_print_header ();
8488
8489 if (signum_exp)
8490 {
8491 /* First see if this is a symbol name. */
2ea28649 8492 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8493 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8494 {
8495 /* No, try numeric. */
8496 oursig =
2ea28649 8497 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8498 }
8499 sig_print_info (oursig);
8500 return;
8501 }
8502
8503 printf_filtered ("\n");
8504 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8505 for (oursig = GDB_SIGNAL_FIRST;
8506 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8507 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8508 {
8509 QUIT;
8510
a493e3e2
PA
8511 if (oursig != GDB_SIGNAL_UNKNOWN
8512 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8513 sig_print_info (oursig);
8514 }
8515
3e43a32a
MS
8516 printf_filtered (_("\nUse the \"handle\" command "
8517 "to change these tables.\n"));
c906108c 8518}
4aa995e1
PA
8519
8520/* The $_siginfo convenience variable is a bit special. We don't know
8521 for sure the type of the value until we actually have a chance to
7a9dd1b2 8522 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8523 also dependent on which thread you have selected.
8524
8525 1. making $_siginfo be an internalvar that creates a new value on
8526 access.
8527
8528 2. making the value of $_siginfo be an lval_computed value. */
8529
8530/* This function implements the lval_computed support for reading a
8531 $_siginfo value. */
8532
8533static void
8534siginfo_value_read (struct value *v)
8535{
8536 LONGEST transferred;
8537
a911d87a
PA
8538 /* If we can access registers, so can we access $_siginfo. Likewise
8539 vice versa. */
8540 validate_registers_access ();
c709acd1 8541
4aa995e1 8542 transferred =
8b88a78e 8543 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8544 NULL,
8545 value_contents_all_raw (v),
8546 value_offset (v),
8547 TYPE_LENGTH (value_type (v)));
8548
8549 if (transferred != TYPE_LENGTH (value_type (v)))
8550 error (_("Unable to read siginfo"));
8551}
8552
8553/* This function implements the lval_computed support for writing a
8554 $_siginfo value. */
8555
8556static void
8557siginfo_value_write (struct value *v, struct value *fromval)
8558{
8559 LONGEST transferred;
8560
a911d87a
PA
8561 /* If we can access registers, so can we access $_siginfo. Likewise
8562 vice versa. */
8563 validate_registers_access ();
c709acd1 8564
8b88a78e 8565 transferred = target_write (current_top_target (),
4aa995e1
PA
8566 TARGET_OBJECT_SIGNAL_INFO,
8567 NULL,
8568 value_contents_all_raw (fromval),
8569 value_offset (v),
8570 TYPE_LENGTH (value_type (fromval)));
8571
8572 if (transferred != TYPE_LENGTH (value_type (fromval)))
8573 error (_("Unable to write siginfo"));
8574}
8575
c8f2448a 8576static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8577 {
8578 siginfo_value_read,
8579 siginfo_value_write
8580 };
8581
8582/* Return a new value with the correct type for the siginfo object of
78267919
UW
8583 the current thread using architecture GDBARCH. Return a void value
8584 if there's no object available. */
4aa995e1 8585
2c0b251b 8586static struct value *
22d2b532
SDJ
8587siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8588 void *ignore)
4aa995e1 8589{
4aa995e1 8590 if (target_has_stack
d7e15655 8591 && inferior_ptid != null_ptid
78267919 8592 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8593 {
78267919 8594 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8595
78267919 8596 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8597 }
8598
78267919 8599 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8600}
8601
c906108c 8602\f
16c381f0
JK
8603/* infcall_suspend_state contains state about the program itself like its
8604 registers and any signal it received when it last stopped.
8605 This state must be restored regardless of how the inferior function call
8606 ends (either successfully, or after it hits a breakpoint or signal)
8607 if the program is to properly continue where it left off. */
8608
6bf78e29 8609class infcall_suspend_state
7a292a7a 8610{
6bf78e29
AB
8611public:
8612 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8613 once the inferior function call has finished. */
8614 infcall_suspend_state (struct gdbarch *gdbarch,
8615 const struct thread_info *tp,
8616 struct regcache *regcache)
8617 : m_thread_suspend (tp->suspend),
8618 m_registers (new readonly_detached_regcache (*regcache))
8619 {
8620 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8621
8622 if (gdbarch_get_siginfo_type_p (gdbarch))
8623 {
8624 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8625 size_t len = TYPE_LENGTH (type);
8626
8627 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8628
8629 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8630 siginfo_data.get (), 0, len) != len)
8631 {
8632 /* Errors ignored. */
8633 siginfo_data.reset (nullptr);
8634 }
8635 }
8636
8637 if (siginfo_data)
8638 {
8639 m_siginfo_gdbarch = gdbarch;
8640 m_siginfo_data = std::move (siginfo_data);
8641 }
8642 }
8643
8644 /* Return a pointer to the stored register state. */
16c381f0 8645
6bf78e29
AB
8646 readonly_detached_regcache *registers () const
8647 {
8648 return m_registers.get ();
8649 }
8650
8651 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8652
8653 void restore (struct gdbarch *gdbarch,
8654 struct thread_info *tp,
8655 struct regcache *regcache) const
8656 {
8657 tp->suspend = m_thread_suspend;
8658
8659 if (m_siginfo_gdbarch == gdbarch)
8660 {
8661 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8662
8663 /* Errors ignored. */
8664 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8665 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8666 }
8667
8668 /* The inferior can be gone if the user types "print exit(0)"
8669 (and perhaps other times). */
8670 if (target_has_execution)
8671 /* NB: The register write goes through to the target. */
8672 regcache->restore (registers ());
8673 }
8674
8675private:
8676 /* How the current thread stopped before the inferior function call was
8677 executed. */
8678 struct thread_suspend_state m_thread_suspend;
8679
8680 /* The registers before the inferior function call was executed. */
8681 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8682
35515841 8683 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8684 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8685
8686 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8687 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8688 content would be invalid. */
6bf78e29 8689 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8690};
8691
cb524840
TT
8692infcall_suspend_state_up
8693save_infcall_suspend_state ()
b89667eb 8694{
b89667eb 8695 struct thread_info *tp = inferior_thread ();
1736ad11 8696 struct regcache *regcache = get_current_regcache ();
ac7936df 8697 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8698
6bf78e29
AB
8699 infcall_suspend_state_up inf_state
8700 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8701
6bf78e29
AB
8702 /* Having saved the current state, adjust the thread state, discarding
8703 any stop signal information. The stop signal is not useful when
8704 starting an inferior function call, and run_inferior_call will not use
8705 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8706 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8707
b89667eb
DE
8708 return inf_state;
8709}
8710
8711/* Restore inferior session state to INF_STATE. */
8712
8713void
16c381f0 8714restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8715{
8716 struct thread_info *tp = inferior_thread ();
1736ad11 8717 struct regcache *regcache = get_current_regcache ();
ac7936df 8718 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8719
6bf78e29 8720 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8721 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8722}
8723
b89667eb 8724void
16c381f0 8725discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8726{
dd848631 8727 delete inf_state;
b89667eb
DE
8728}
8729
daf6667d 8730readonly_detached_regcache *
16c381f0 8731get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8732{
6bf78e29 8733 return inf_state->registers ();
b89667eb
DE
8734}
8735
16c381f0
JK
8736/* infcall_control_state contains state regarding gdb's control of the
8737 inferior itself like stepping control. It also contains session state like
8738 the user's currently selected frame. */
b89667eb 8739
16c381f0 8740struct infcall_control_state
b89667eb 8741{
16c381f0
JK
8742 struct thread_control_state thread_control;
8743 struct inferior_control_state inferior_control;
d82142e2
JK
8744
8745 /* Other fields: */
ee841dd8
TT
8746 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8747 int stopped_by_random_signal = 0;
7a292a7a 8748
b89667eb 8749 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8750 struct frame_id selected_frame_id {};
7a292a7a
SS
8751};
8752
c906108c 8753/* Save all of the information associated with the inferior<==>gdb
b89667eb 8754 connection. */
c906108c 8755
cb524840
TT
8756infcall_control_state_up
8757save_infcall_control_state ()
c906108c 8758{
cb524840 8759 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8760 struct thread_info *tp = inferior_thread ();
d6b48e9c 8761 struct inferior *inf = current_inferior ();
7a292a7a 8762
16c381f0
JK
8763 inf_status->thread_control = tp->control;
8764 inf_status->inferior_control = inf->control;
d82142e2 8765
8358c15c 8766 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8767 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8768
16c381f0
JK
8769 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8770 chain. If caller's caller is walking the chain, they'll be happier if we
8771 hand them back the original chain when restore_infcall_control_state is
8772 called. */
8773 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8774
8775 /* Other fields: */
8776 inf_status->stop_stack_dummy = stop_stack_dummy;
8777 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8778
206415a3 8779 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8780
7a292a7a 8781 return inf_status;
c906108c
SS
8782}
8783
bf469271
PA
8784static void
8785restore_selected_frame (const frame_id &fid)
c906108c 8786{
bf469271 8787 frame_info *frame = frame_find_by_id (fid);
c906108c 8788
aa0cd9c1
AC
8789 /* If inf_status->selected_frame_id is NULL, there was no previously
8790 selected frame. */
101dcfbe 8791 if (frame == NULL)
c906108c 8792 {
8a3fe4f8 8793 warning (_("Unable to restore previously selected frame."));
bf469271 8794 return;
c906108c
SS
8795 }
8796
0f7d239c 8797 select_frame (frame);
c906108c
SS
8798}
8799
b89667eb
DE
8800/* Restore inferior session state to INF_STATUS. */
8801
c906108c 8802void
16c381f0 8803restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8804{
4e1c45ea 8805 struct thread_info *tp = inferior_thread ();
d6b48e9c 8806 struct inferior *inf = current_inferior ();
4e1c45ea 8807
8358c15c
JK
8808 if (tp->control.step_resume_breakpoint)
8809 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8810
5b79abe7
TT
8811 if (tp->control.exception_resume_breakpoint)
8812 tp->control.exception_resume_breakpoint->disposition
8813 = disp_del_at_next_stop;
8814
d82142e2 8815 /* Handle the bpstat_copy of the chain. */
16c381f0 8816 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8817
16c381f0
JK
8818 tp->control = inf_status->thread_control;
8819 inf->control = inf_status->inferior_control;
d82142e2
JK
8820
8821 /* Other fields: */
8822 stop_stack_dummy = inf_status->stop_stack_dummy;
8823 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8824
b89667eb 8825 if (target_has_stack)
c906108c 8826 {
bf469271 8827 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8828 walking the stack might encounter a garbage pointer and
8829 error() trying to dereference it. */
a70b8144 8830 try
bf469271
PA
8831 {
8832 restore_selected_frame (inf_status->selected_frame_id);
8833 }
230d2906 8834 catch (const gdb_exception_error &ex)
bf469271
PA
8835 {
8836 exception_fprintf (gdb_stderr, ex,
8837 "Unable to restore previously selected frame:\n");
8838 /* Error in restoring the selected frame. Select the
8839 innermost frame. */
8840 select_frame (get_current_frame ());
8841 }
c906108c 8842 }
c906108c 8843
ee841dd8 8844 delete inf_status;
7a292a7a 8845}
c906108c
SS
8846
8847void
16c381f0 8848discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8849{
8358c15c
JK
8850 if (inf_status->thread_control.step_resume_breakpoint)
8851 inf_status->thread_control.step_resume_breakpoint->disposition
8852 = disp_del_at_next_stop;
8853
5b79abe7
TT
8854 if (inf_status->thread_control.exception_resume_breakpoint)
8855 inf_status->thread_control.exception_resume_breakpoint->disposition
8856 = disp_del_at_next_stop;
8857
1777feb0 8858 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8859 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8860
ee841dd8 8861 delete inf_status;
7a292a7a 8862}
b89667eb 8863\f
7f89fd65 8864/* See infrun.h. */
0c557179
SDJ
8865
8866void
8867clear_exit_convenience_vars (void)
8868{
8869 clear_internalvar (lookup_internalvar ("_exitsignal"));
8870 clear_internalvar (lookup_internalvar ("_exitcode"));
8871}
c5aa993b 8872\f
488f131b 8873
b2175913
MS
8874/* User interface for reverse debugging:
8875 Set exec-direction / show exec-direction commands
8876 (returns error unless target implements to_set_exec_direction method). */
8877
170742de 8878enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8879static const char exec_forward[] = "forward";
8880static const char exec_reverse[] = "reverse";
8881static const char *exec_direction = exec_forward;
40478521 8882static const char *const exec_direction_names[] = {
b2175913
MS
8883 exec_forward,
8884 exec_reverse,
8885 NULL
8886};
8887
8888static void
eb4c3f4a 8889set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8890 struct cmd_list_element *cmd)
8891{
8892 if (target_can_execute_reverse)
8893 {
8894 if (!strcmp (exec_direction, exec_forward))
8895 execution_direction = EXEC_FORWARD;
8896 else if (!strcmp (exec_direction, exec_reverse))
8897 execution_direction = EXEC_REVERSE;
8898 }
8bbed405
MS
8899 else
8900 {
8901 exec_direction = exec_forward;
8902 error (_("Target does not support this operation."));
8903 }
b2175913
MS
8904}
8905
8906static void
8907show_exec_direction_func (struct ui_file *out, int from_tty,
8908 struct cmd_list_element *cmd, const char *value)
8909{
8910 switch (execution_direction) {
8911 case EXEC_FORWARD:
8912 fprintf_filtered (out, _("Forward.\n"));
8913 break;
8914 case EXEC_REVERSE:
8915 fprintf_filtered (out, _("Reverse.\n"));
8916 break;
b2175913 8917 default:
d8b34453
PA
8918 internal_error (__FILE__, __LINE__,
8919 _("bogus execution_direction value: %d"),
8920 (int) execution_direction);
b2175913
MS
8921 }
8922}
8923
d4db2f36
PA
8924static void
8925show_schedule_multiple (struct ui_file *file, int from_tty,
8926 struct cmd_list_element *c, const char *value)
8927{
3e43a32a
MS
8928 fprintf_filtered (file, _("Resuming the execution of threads "
8929 "of all processes is %s.\n"), value);
d4db2f36 8930}
ad52ddc6 8931
22d2b532
SDJ
8932/* Implementation of `siginfo' variable. */
8933
8934static const struct internalvar_funcs siginfo_funcs =
8935{
8936 siginfo_make_value,
8937 NULL,
8938 NULL
8939};
8940
372316f1
PA
8941/* Callback for infrun's target events source. This is marked when a
8942 thread has a pending status to process. */
8943
8944static void
8945infrun_async_inferior_event_handler (gdb_client_data data)
8946{
372316f1
PA
8947 inferior_event_handler (INF_REG_EVENT, NULL);
8948}
8949
c906108c 8950void
96baa820 8951_initialize_infrun (void)
c906108c 8952{
de0bea00 8953 struct cmd_list_element *c;
c906108c 8954
372316f1
PA
8955 /* Register extra event sources in the event loop. */
8956 infrun_async_inferior_event_token
8957 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8958
11db9430 8959 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8960What debugger does when program gets various signals.\n\
8961Specify a signal as argument to print info on that signal only."));
c906108c
SS
8962 add_info_alias ("handle", "signals", 0);
8963
de0bea00 8964 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8965Specify how to handle signals.\n\
486c7739 8966Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8967Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8968If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8969will be displayed instead.\n\
8970\n\
c906108c
SS
8971Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8972from 1-15 are allowed for compatibility with old versions of GDB.\n\
8973Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8974The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8975used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8976\n\
1bedd215 8977Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8978\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8979Stop means reenter debugger if this signal happens (implies print).\n\
8980Print means print a message if this signal happens.\n\
8981Pass means let program see this signal; otherwise program doesn't know.\n\
8982Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8983Pass and Stop may be combined.\n\
8984\n\
8985Multiple signals may be specified. Signal numbers and signal names\n\
8986may be interspersed with actions, with the actions being performed for\n\
8987all signals cumulatively specified."));
de0bea00 8988 set_cmd_completer (c, handle_completer);
486c7739 8989
c906108c 8990 if (!dbx_commands)
1a966eab
AC
8991 stop_command = add_cmd ("stop", class_obscure,
8992 not_just_help_class_command, _("\
8993There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 8994This allows you to set a list of commands to be run each time execution\n\
1a966eab 8995of the program stops."), &cmdlist);
c906108c 8996
ccce17b0 8997 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
8998Set inferior debugging."), _("\
8999Show inferior debugging."), _("\
9000When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9001 NULL,
9002 show_debug_infrun,
9003 &setdebuglist, &showdebuglist);
527159b7 9004
3e43a32a
MS
9005 add_setshow_boolean_cmd ("displaced", class_maintenance,
9006 &debug_displaced, _("\
237fc4c9
PA
9007Set displaced stepping debugging."), _("\
9008Show displaced stepping debugging."), _("\
9009When non-zero, displaced stepping specific debugging is enabled."),
9010 NULL,
9011 show_debug_displaced,
9012 &setdebuglist, &showdebuglist);
9013
ad52ddc6
PA
9014 add_setshow_boolean_cmd ("non-stop", no_class,
9015 &non_stop_1, _("\
9016Set whether gdb controls the inferior in non-stop mode."), _("\
9017Show whether gdb controls the inferior in non-stop mode."), _("\
9018When debugging a multi-threaded program and this setting is\n\
9019off (the default, also called all-stop mode), when one thread stops\n\
9020(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9021all other threads in the program while you interact with the thread of\n\
9022interest. When you continue or step a thread, you can allow the other\n\
9023threads to run, or have them remain stopped, but while you inspect any\n\
9024thread's state, all threads stop.\n\
9025\n\
9026In non-stop mode, when one thread stops, other threads can continue\n\
9027to run freely. You'll be able to step each thread independently,\n\
9028leave it stopped or free to run as needed."),
9029 set_non_stop,
9030 show_non_stop,
9031 &setlist,
9032 &showlist);
9033
adc6a863 9034 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9035 {
9036 signal_stop[i] = 1;
9037 signal_print[i] = 1;
9038 signal_program[i] = 1;
ab04a2af 9039 signal_catch[i] = 0;
c906108c
SS
9040 }
9041
4d9d9d04
PA
9042 /* Signals caused by debugger's own actions should not be given to
9043 the program afterwards.
9044
9045 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9046 explicitly specifies that it should be delivered to the target
9047 program. Typically, that would occur when a user is debugging a
9048 target monitor on a simulator: the target monitor sets a
9049 breakpoint; the simulator encounters this breakpoint and halts
9050 the simulation handing control to GDB; GDB, noting that the stop
9051 address doesn't map to any known breakpoint, returns control back
9052 to the simulator; the simulator then delivers the hardware
9053 equivalent of a GDB_SIGNAL_TRAP to the program being
9054 debugged. */
a493e3e2
PA
9055 signal_program[GDB_SIGNAL_TRAP] = 0;
9056 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9057
9058 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9059 signal_stop[GDB_SIGNAL_ALRM] = 0;
9060 signal_print[GDB_SIGNAL_ALRM] = 0;
9061 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9062 signal_print[GDB_SIGNAL_VTALRM] = 0;
9063 signal_stop[GDB_SIGNAL_PROF] = 0;
9064 signal_print[GDB_SIGNAL_PROF] = 0;
9065 signal_stop[GDB_SIGNAL_CHLD] = 0;
9066 signal_print[GDB_SIGNAL_CHLD] = 0;
9067 signal_stop[GDB_SIGNAL_IO] = 0;
9068 signal_print[GDB_SIGNAL_IO] = 0;
9069 signal_stop[GDB_SIGNAL_POLL] = 0;
9070 signal_print[GDB_SIGNAL_POLL] = 0;
9071 signal_stop[GDB_SIGNAL_URG] = 0;
9072 signal_print[GDB_SIGNAL_URG] = 0;
9073 signal_stop[GDB_SIGNAL_WINCH] = 0;
9074 signal_print[GDB_SIGNAL_WINCH] = 0;
9075 signal_stop[GDB_SIGNAL_PRIO] = 0;
9076 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9077
cd0fc7c3
SS
9078 /* These signals are used internally by user-level thread
9079 implementations. (See signal(5) on Solaris.) Like the above
9080 signals, a healthy program receives and handles them as part of
9081 its normal operation. */
a493e3e2
PA
9082 signal_stop[GDB_SIGNAL_LWP] = 0;
9083 signal_print[GDB_SIGNAL_LWP] = 0;
9084 signal_stop[GDB_SIGNAL_WAITING] = 0;
9085 signal_print[GDB_SIGNAL_WAITING] = 0;
9086 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9087 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9088 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9089 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9090
2455069d
UW
9091 /* Update cached state. */
9092 signal_cache_update (-1);
9093
85c07804
AC
9094 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9095 &stop_on_solib_events, _("\
9096Set stopping for shared library events."), _("\
9097Show stopping for shared library events."), _("\
c906108c
SS
9098If nonzero, gdb will give control to the user when the dynamic linker\n\
9099notifies gdb of shared library events. The most common event of interest\n\
85c07804 9100to the user would be loading/unloading of a new library."),
f9e14852 9101 set_stop_on_solib_events,
920d2a44 9102 show_stop_on_solib_events,
85c07804 9103 &setlist, &showlist);
c906108c 9104
7ab04401
AC
9105 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9106 follow_fork_mode_kind_names,
9107 &follow_fork_mode_string, _("\
9108Set debugger response to a program call of fork or vfork."), _("\
9109Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9110A fork or vfork creates a new process. follow-fork-mode can be:\n\
9111 parent - the original process is debugged after a fork\n\
9112 child - the new process is debugged after a fork\n\
ea1dd7bc 9113The unfollowed process will continue to run.\n\
7ab04401
AC
9114By default, the debugger will follow the parent process."),
9115 NULL,
920d2a44 9116 show_follow_fork_mode_string,
7ab04401
AC
9117 &setlist, &showlist);
9118
6c95b8df
PA
9119 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9120 follow_exec_mode_names,
9121 &follow_exec_mode_string, _("\
9122Set debugger response to a program call of exec."), _("\
9123Show debugger response to a program call of exec."), _("\
9124An exec call replaces the program image of a process.\n\
9125\n\
9126follow-exec-mode can be:\n\
9127\n\
cce7e648 9128 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9129to this new inferior. The program the process was running before\n\
9130the exec call can be restarted afterwards by restarting the original\n\
9131inferior.\n\
9132\n\
9133 same - the debugger keeps the process bound to the same inferior.\n\
9134The new executable image replaces the previous executable loaded in\n\
9135the inferior. Restarting the inferior after the exec call restarts\n\
9136the executable the process was running after the exec call.\n\
9137\n\
9138By default, the debugger will use the same inferior."),
9139 NULL,
9140 show_follow_exec_mode_string,
9141 &setlist, &showlist);
9142
7ab04401
AC
9143 add_setshow_enum_cmd ("scheduler-locking", class_run,
9144 scheduler_enums, &scheduler_mode, _("\
9145Set mode for locking scheduler during execution."), _("\
9146Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9147off == no locking (threads may preempt at any time)\n\
9148on == full locking (no thread except the current thread may run)\n\
9149 This applies to both normal execution and replay mode.\n\
9150step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9151 In this mode, other threads may run during other commands.\n\
9152 This applies to both normal execution and replay mode.\n\
9153replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9154 set_schedlock_func, /* traps on target vector */
920d2a44 9155 show_scheduler_mode,
7ab04401 9156 &setlist, &showlist);
5fbbeb29 9157
d4db2f36
PA
9158 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9159Set mode for resuming threads of all processes."), _("\
9160Show mode for resuming threads of all processes."), _("\
9161When on, execution commands (such as 'continue' or 'next') resume all\n\
9162threads of all processes. When off (which is the default), execution\n\
9163commands only resume the threads of the current process. The set of\n\
9164threads that are resumed is further refined by the scheduler-locking\n\
9165mode (see help set scheduler-locking)."),
9166 NULL,
9167 show_schedule_multiple,
9168 &setlist, &showlist);
9169
5bf193a2
AC
9170 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9171Set mode of the step operation."), _("\
9172Show mode of the step operation."), _("\
9173When set, doing a step over a function without debug line information\n\
9174will stop at the first instruction of that function. Otherwise, the\n\
9175function is skipped and the step command stops at a different source line."),
9176 NULL,
920d2a44 9177 show_step_stop_if_no_debug,
5bf193a2 9178 &setlist, &showlist);
ca6724c1 9179
72d0e2c5
YQ
9180 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9181 &can_use_displaced_stepping, _("\
237fc4c9
PA
9182Set debugger's willingness to use displaced stepping."), _("\
9183Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9184If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9185supported by the target architecture. If off, gdb will not use displaced\n\
9186stepping to step over breakpoints, even if such is supported by the target\n\
9187architecture. If auto (which is the default), gdb will use displaced stepping\n\
9188if the target architecture supports it and non-stop mode is active, but will not\n\
9189use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9190 NULL,
9191 show_can_use_displaced_stepping,
9192 &setlist, &showlist);
237fc4c9 9193
b2175913
MS
9194 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9195 &exec_direction, _("Set direction of execution.\n\
9196Options are 'forward' or 'reverse'."),
9197 _("Show direction of execution (forward/reverse)."),
9198 _("Tells gdb whether to execute forward or backward."),
9199 set_exec_direction_func, show_exec_direction_func,
9200 &setlist, &showlist);
9201
6c95b8df
PA
9202 /* Set/show detach-on-fork: user-settable mode. */
9203
9204 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9205Set whether gdb will detach the child of a fork."), _("\
9206Show whether gdb will detach the child of a fork."), _("\
9207Tells gdb whether to detach the child of a fork."),
9208 NULL, NULL, &setlist, &showlist);
9209
03583c20
UW
9210 /* Set/show disable address space randomization mode. */
9211
9212 add_setshow_boolean_cmd ("disable-randomization", class_support,
9213 &disable_randomization, _("\
9214Set disabling of debuggee's virtual address space randomization."), _("\
9215Show disabling of debuggee's virtual address space randomization."), _("\
9216When this mode is on (which is the default), randomization of the virtual\n\
9217address space is disabled. Standalone programs run with the randomization\n\
9218enabled by default on some platforms."),
9219 &set_disable_randomization,
9220 &show_disable_randomization,
9221 &setlist, &showlist);
9222
ca6724c1 9223 /* ptid initializations */
ca6724c1
KB
9224 inferior_ptid = null_ptid;
9225 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9226
76727919
TT
9227 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9228 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9229 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9230 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9231
9232 /* Explicitly create without lookup, since that tries to create a
9233 value with a void typed value, and when we get here, gdbarch
9234 isn't initialized yet. At this point, we're quite sure there
9235 isn't another convenience variable of the same name. */
22d2b532 9236 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9237
9238 add_setshow_boolean_cmd ("observer", no_class,
9239 &observer_mode_1, _("\
9240Set whether gdb controls the inferior in observer mode."), _("\
9241Show whether gdb controls the inferior in observer mode."), _("\
9242In observer mode, GDB can get data from the inferior, but not\n\
9243affect its execution. Registers and memory may not be changed,\n\
9244breakpoints may not be set, and the program cannot be interrupted\n\
9245or signalled."),
9246 set_observer_mode,
9247 show_observer_mode,
9248 &setlist,
9249 &showlist);
c906108c 9250}
This page took 2.581932 seconds and 4 git commands to generate.