switch inferior/thread before calling target methods
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
c906108c
SS
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "gdbthread.h"
32#include "annotate.h"
1adeb98a 33#include "symfile.h"
7a292a7a 34#include "top.h"
2acceee2 35#include "inf-loop.h"
4e052eda 36#include "regcache.h"
fd0407d6 37#include "value.h"
76727919 38#include "observable.h"
f636b87d 39#include "language.h"
a77053c2 40#include "solib.h"
f17517ea 41#include "main.h"
186c406b 42#include "block.h"
034dad6f 43#include "mi/mi-common.h"
4f8d22e3 44#include "event-top.h"
96429cc8 45#include "record.h"
d02ed0bb 46#include "record-full.h"
edb3359d 47#include "inline-frame.h"
4efc6507 48#include "jit.h"
06cd862c 49#include "tracepoint.h"
1bfeeb0f 50#include "skip.h"
28106bc2
SDJ
51#include "probe.h"
52#include "objfiles.h"
de0bea00 53#include "completer.h"
9107fc8d 54#include "target-descriptions.h"
f15cb84a 55#include "target-dcache.h"
d83ad864 56#include "terminal.h"
ff862be4 57#include "solist.h"
372316f1 58#include "event-loop.h"
243a9253 59#include "thread-fsm.h"
268a13a5 60#include "gdbsupport/enum-flags.h"
5ed8105e 61#include "progspace-and-thread.h"
268a13a5 62#include "gdbsupport/gdb_optional.h"
46a62268 63#include "arch-utils.h"
268a13a5
TT
64#include "gdbsupport/scope-exit.h"
65#include "gdbsupport/forward-scope-exit.h"
c906108c
SS
66
67/* Prototypes for local functions */
68
2ea28649 69static void sig_print_info (enum gdb_signal);
c906108c 70
96baa820 71static void sig_print_header (void);
c906108c 72
4ef3f3be 73static int follow_fork (void);
96baa820 74
d83ad864
DB
75static int follow_fork_inferior (int follow_child, int detach_fork);
76
77static void follow_inferior_reset_breakpoints (void);
78
a289b8f6
JK
79static int currently_stepping (struct thread_info *tp);
80
e58b0e63
PA
81void nullify_last_target_wait_ptid (void);
82
2c03e5be 83static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
84
85static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
86
2484c66b
UW
87static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
88
8550d3b3
YQ
89static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
90
aff4e175
AB
91static void resume (gdb_signal sig);
92
372316f1
PA
93/* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95static struct async_event_handler *infrun_async_inferior_event_token;
96
97/* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99static int infrun_is_async = -1;
100
101/* See infrun.h. */
102
103void
104infrun_async (int enable)
105{
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120}
121
0b333c5e
PA
122/* See infrun.h. */
123
124void
125mark_infrun_async_event_handler (void)
126{
127 mark_async_event_handler (infrun_async_inferior_event_token);
128}
129
5fbbeb29
CF
130/* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
491144b5 133bool step_stop_if_no_debug = false;
920d2a44
AC
134static void
135show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139}
5fbbeb29 140
b9f437de
PA
141/* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
96baa820 144
39f77062 145static ptid_t previous_inferior_ptid;
7a292a7a 146
07107ca6
LM
147/* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
491144b5 152static bool detach_fork = true;
6c95b8df 153
491144b5 154bool debug_displaced = false;
237fc4c9
PA
155static void
156show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160}
161
ccce17b0 162unsigned int debug_infrun = 0;
920d2a44
AC
163static void
164show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168}
527159b7 169
03583c20
UW
170
171/* Support for disabling address space randomization. */
172
491144b5 173bool disable_randomization = true;
03583c20
UW
174
175static void
176show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188}
189
190static void
eb4c3f4a 191set_disable_randomization (const char *args, int from_tty,
03583c20
UW
192 struct cmd_list_element *c)
193{
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198}
199
d32dc48e
PA
200/* User interface for non-stop mode. */
201
491144b5
CB
202bool non_stop = false;
203static bool non_stop_1 = false;
d32dc48e
PA
204
205static void
eb4c3f4a 206set_non_stop (const char *args, int from_tty,
d32dc48e
PA
207 struct cmd_list_element *c)
208{
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216}
217
218static void
219show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221{
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225}
226
d914c394
SS
227/* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
491144b5
CB
231bool observer_mode = false;
232static bool observer_mode_1 = false;
d914c394
SS
233
234static void
eb4c3f4a 235set_observer_mode (const char *args, int from_tty,
d914c394
SS
236 struct cmd_list_element *c)
237{
d914c394
SS
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
491144b5 253 may_insert_fast_tracepoints = true;
d914c394
SS
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
d914c394 261 pagination_enabled = 0;
491144b5 262 non_stop = non_stop_1 = true;
d914c394
SS
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268}
269
270static void
271show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273{
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275}
276
277/* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283void
284update_observer_mode (void)
285{
491144b5
CB
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
d914c394
SS
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298}
c2c6d25f 299
c906108c
SS
300/* Tables of how to react to signals; the user sets them. */
301
adc6a863
PA
302static unsigned char signal_stop[GDB_SIGNAL_LAST];
303static unsigned char signal_print[GDB_SIGNAL_LAST];
304static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 305
ab04a2af
TT
306/* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
308 signal" command. */
309static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 310
2455069d
UW
311/* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
adc6a863 314static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 315
c906108c
SS
316#define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324#define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
9b224c5e
PA
332/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335void
336update_signals_program_target (void)
337{
adc6a863 338 target_program_signals (signal_program);
9b224c5e
PA
339}
340
1777feb0 341/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 342
edb3359d 343#define RESUME_ALL minus_one_ptid
c906108c
SS
344
345/* Command list pointer for the "stop" placeholder. */
346
347static struct cmd_list_element *stop_command;
348
c906108c
SS
349/* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
628fe4e4 351int stop_on_solib_events;
f9e14852
GB
352
353/* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356static void
eb4c3f4a
TT
357set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
f9e14852
GB
359{
360 update_solib_breakpoints ();
361}
362
920d2a44
AC
363static void
364show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366{
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369}
c906108c 370
c906108c
SS
371/* Nonzero after stop if current stack frame should be printed. */
372
373static int stop_print_frame;
374
e02bc4cc 375/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
376 returned by target_wait()/deprecated_target_wait_hook(). This
377 information is returned by get_last_target_status(). */
39f77062 378static ptid_t target_last_wait_ptid;
e02bc4cc
DS
379static struct target_waitstatus target_last_waitstatus;
380
4e1c45ea 381void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 382
53904c9e
AC
383static const char follow_fork_mode_child[] = "child";
384static const char follow_fork_mode_parent[] = "parent";
385
40478521 386static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
387 follow_fork_mode_child,
388 follow_fork_mode_parent,
389 NULL
ef346e04 390};
c906108c 391
53904c9e 392static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
393static void
394show_follow_fork_mode_string (struct ui_file *file, int from_tty,
395 struct cmd_list_element *c, const char *value)
396{
3e43a32a
MS
397 fprintf_filtered (file,
398 _("Debugger response to a program "
399 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
400 value);
401}
c906108c
SS
402\f
403
d83ad864
DB
404/* Handle changes to the inferior list based on the type of fork,
405 which process is being followed, and whether the other process
406 should be detached. On entry inferior_ptid must be the ptid of
407 the fork parent. At return inferior_ptid is the ptid of the
408 followed inferior. */
409
410static int
411follow_fork_inferior (int follow_child, int detach_fork)
412{
413 int has_vforked;
79639e11 414 ptid_t parent_ptid, child_ptid;
d83ad864
DB
415
416 has_vforked = (inferior_thread ()->pending_follow.kind
417 == TARGET_WAITKIND_VFORKED);
79639e11
PA
418 parent_ptid = inferior_ptid;
419 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 423 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432Can not resume the parent process over vfork in the foreground while\n\
433holding the child stopped. Try \"set detach-on-fork\" or \
434\"set schedule-multiple\".\n"));
d83ad864
DB
435 return 1;
436 }
437
438 if (!follow_child)
439 {
440 /* Detach new forked process? */
441 if (detach_fork)
442 {
d83ad864
DB
443 /* Before detaching from the child, remove all breakpoints
444 from it. If we forked, then this has already been taken
445 care of by infrun.c. If we vforked however, any
446 breakpoint inserted in the parent is visible in the
447 child, even those added while stopped in a vfork
448 catchpoint. This will remove the breakpoints from the
449 parent also, but they'll be reinserted below. */
450 if (has_vforked)
451 {
452 /* Keep breakpoints list in sync. */
00431a78 453 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
454 }
455
f67c0c91 456 if (print_inferior_events)
d83ad864 457 {
8dd06f7a 458 /* Ensure that we have a process ptid. */
e99b03dc 459 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 460
223ffa71 461 target_terminal::ours_for_output ();
d83ad864 462 fprintf_filtered (gdb_stdlog,
f67c0c91 463 _("[Detaching after %s from child %s]\n"),
6f259a23 464 has_vforked ? "vfork" : "fork",
a068643d 465 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
466 }
467 }
468 else
469 {
470 struct inferior *parent_inf, *child_inf;
d83ad864
DB
471
472 /* Add process to GDB's tables. */
e99b03dc 473 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
474
475 parent_inf = current_inferior ();
476 child_inf->attach_flag = parent_inf->attach_flag;
477 copy_terminal_info (child_inf, parent_inf);
478 child_inf->gdbarch = parent_inf->gdbarch;
479 copy_inferior_target_desc_info (child_inf, parent_inf);
480
5ed8105e 481 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 482
79639e11 483 inferior_ptid = child_ptid;
f67c0c91 484 add_thread_silent (inferior_ptid);
2a00d7ce 485 set_current_inferior (child_inf);
d83ad864
DB
486 child_inf->symfile_flags = SYMFILE_NO_READ;
487
488 /* If this is a vfork child, then the address-space is
489 shared with the parent. */
490 if (has_vforked)
491 {
492 child_inf->pspace = parent_inf->pspace;
493 child_inf->aspace = parent_inf->aspace;
494
495 /* The parent will be frozen until the child is done
496 with the shared region. Keep track of the
497 parent. */
498 child_inf->vfork_parent = parent_inf;
499 child_inf->pending_detach = 0;
500 parent_inf->vfork_child = child_inf;
501 parent_inf->pending_detach = 0;
502 }
503 else
504 {
505 child_inf->aspace = new_address_space ();
564b1e3f 506 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
507 child_inf->removable = 1;
508 set_current_program_space (child_inf->pspace);
509 clone_program_space (child_inf->pspace, parent_inf->pspace);
510
511 /* Let the shared library layer (e.g., solib-svr4) learn
512 about this new process, relocate the cloned exec, pull
513 in shared libraries, and install the solib event
514 breakpoint. If a "cloned-VM" event was propagated
515 better throughout the core, this wouldn't be
516 required. */
517 solib_create_inferior_hook (0);
518 }
d83ad864
DB
519 }
520
521 if (has_vforked)
522 {
523 struct inferior *parent_inf;
524
525 parent_inf = current_inferior ();
526
527 /* If we detached from the child, then we have to be careful
528 to not insert breakpoints in the parent until the child
529 is done with the shared memory region. However, if we're
530 staying attached to the child, then we can and should
531 insert breakpoints, so that we can debug it. A
532 subsequent child exec or exit is enough to know when does
533 the child stops using the parent's address space. */
534 parent_inf->waiting_for_vfork_done = detach_fork;
535 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
536 }
537 }
538 else
539 {
540 /* Follow the child. */
541 struct inferior *parent_inf, *child_inf;
542 struct program_space *parent_pspace;
543
f67c0c91 544 if (print_inferior_events)
d83ad864 545 {
f67c0c91
SDJ
546 std::string parent_pid = target_pid_to_str (parent_ptid);
547 std::string child_pid = target_pid_to_str (child_ptid);
548
223ffa71 549 target_terminal::ours_for_output ();
6f259a23 550 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
551 _("[Attaching after %s %s to child %s]\n"),
552 parent_pid.c_str (),
6f259a23 553 has_vforked ? "vfork" : "fork",
f67c0c91 554 child_pid.c_str ());
d83ad864
DB
555 }
556
557 /* Add the new inferior first, so that the target_detach below
558 doesn't unpush the target. */
559
e99b03dc 560 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
561
562 parent_inf = current_inferior ();
563 child_inf->attach_flag = parent_inf->attach_flag;
564 copy_terminal_info (child_inf, parent_inf);
565 child_inf->gdbarch = parent_inf->gdbarch;
566 copy_inferior_target_desc_info (child_inf, parent_inf);
567
568 parent_pspace = parent_inf->pspace;
569
570 /* If we're vforking, we want to hold on to the parent until the
571 child exits or execs. At child exec or exit time we can
572 remove the old breakpoints from the parent and detach or
573 resume debugging it. Otherwise, detach the parent now; we'll
574 want to reuse it's program/address spaces, but we can't set
575 them to the child before removing breakpoints from the
576 parent, otherwise, the breakpoints module could decide to
577 remove breakpoints from the wrong process (since they'd be
578 assigned to the same address space). */
579
580 if (has_vforked)
581 {
582 gdb_assert (child_inf->vfork_parent == NULL);
583 gdb_assert (parent_inf->vfork_child == NULL);
584 child_inf->vfork_parent = parent_inf;
585 child_inf->pending_detach = 0;
586 parent_inf->vfork_child = child_inf;
587 parent_inf->pending_detach = detach_fork;
588 parent_inf->waiting_for_vfork_done = 0;
589 }
590 else if (detach_fork)
6f259a23 591 {
f67c0c91 592 if (print_inferior_events)
6f259a23 593 {
8dd06f7a 594 /* Ensure that we have a process ptid. */
e99b03dc 595 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 596
223ffa71 597 target_terminal::ours_for_output ();
6f259a23 598 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
599 _("[Detaching after fork from "
600 "parent %s]\n"),
a068643d 601 target_pid_to_str (process_ptid).c_str ());
6f259a23
DB
602 }
603
6e1e1966 604 target_detach (parent_inf, 0);
6f259a23 605 }
d83ad864
DB
606
607 /* Note that the detach above makes PARENT_INF dangling. */
608
609 /* Add the child thread to the appropriate lists, and switch to
610 this new thread, before cloning the program space, and
611 informing the solib layer about this new process. */
612
79639e11 613 inferior_ptid = child_ptid;
f67c0c91 614 add_thread_silent (inferior_ptid);
2a00d7ce 615 set_current_inferior (child_inf);
d83ad864
DB
616
617 /* If this is a vfork child, then the address-space is shared
618 with the parent. If we detached from the parent, then we can
619 reuse the parent's program/address spaces. */
620 if (has_vforked || detach_fork)
621 {
622 child_inf->pspace = parent_pspace;
623 child_inf->aspace = child_inf->pspace->aspace;
624 }
625 else
626 {
627 child_inf->aspace = new_address_space ();
564b1e3f 628 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
629 child_inf->removable = 1;
630 child_inf->symfile_flags = SYMFILE_NO_READ;
631 set_current_program_space (child_inf->pspace);
632 clone_program_space (child_inf->pspace, parent_pspace);
633
634 /* Let the shared library layer (e.g., solib-svr4) learn
635 about this new process, relocate the cloned exec, pull in
636 shared libraries, and install the solib event breakpoint.
637 If a "cloned-VM" event was propagated better throughout
638 the core, this wouldn't be required. */
639 solib_create_inferior_hook (0);
640 }
641 }
642
643 return target_follow_fork (follow_child, detach_fork);
644}
645
e58b0e63
PA
646/* Tell the target to follow the fork we're stopped at. Returns true
647 if the inferior should be resumed; false, if the target for some
648 reason decided it's best not to resume. */
649
6604731b 650static int
4ef3f3be 651follow_fork (void)
c906108c 652{
ea1dd7bc 653 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
654 int should_resume = 1;
655 struct thread_info *tp;
656
657 /* Copy user stepping state to the new inferior thread. FIXME: the
658 followed fork child thread should have a copy of most of the
4e3990f4
DE
659 parent thread structure's run control related fields, not just these.
660 Initialized to avoid "may be used uninitialized" warnings from gcc. */
661 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 662 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
663 CORE_ADDR step_range_start = 0;
664 CORE_ADDR step_range_end = 0;
665 struct frame_id step_frame_id = { 0 };
8980e177 666 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
667
668 if (!non_stop)
669 {
670 ptid_t wait_ptid;
671 struct target_waitstatus wait_status;
672
673 /* Get the last target status returned by target_wait(). */
674 get_last_target_status (&wait_ptid, &wait_status);
675
676 /* If not stopped at a fork event, then there's nothing else to
677 do. */
678 if (wait_status.kind != TARGET_WAITKIND_FORKED
679 && wait_status.kind != TARGET_WAITKIND_VFORKED)
680 return 1;
681
682 /* Check if we switched over from WAIT_PTID, since the event was
683 reported. */
00431a78
PA
684 if (wait_ptid != minus_one_ptid
685 && inferior_ptid != wait_ptid)
e58b0e63
PA
686 {
687 /* We did. Switch back to WAIT_PTID thread, to tell the
688 target to follow it (in either direction). We'll
689 afterwards refuse to resume, and inform the user what
690 happened. */
00431a78
PA
691 thread_info *wait_thread
692 = find_thread_ptid (wait_ptid);
693 switch_to_thread (wait_thread);
e58b0e63
PA
694 should_resume = 0;
695 }
696 }
697
698 tp = inferior_thread ();
699
700 /* If there were any forks/vforks that were caught and are now to be
701 followed, then do so now. */
702 switch (tp->pending_follow.kind)
703 {
704 case TARGET_WAITKIND_FORKED:
705 case TARGET_WAITKIND_VFORKED:
706 {
707 ptid_t parent, child;
708
709 /* If the user did a next/step, etc, over a fork call,
710 preserve the stepping state in the fork child. */
711 if (follow_child && should_resume)
712 {
8358c15c
JK
713 step_resume_breakpoint = clone_momentary_breakpoint
714 (tp->control.step_resume_breakpoint);
16c381f0
JK
715 step_range_start = tp->control.step_range_start;
716 step_range_end = tp->control.step_range_end;
717 step_frame_id = tp->control.step_frame_id;
186c406b
TT
718 exception_resume_breakpoint
719 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 720 thread_fsm = tp->thread_fsm;
e58b0e63
PA
721
722 /* For now, delete the parent's sr breakpoint, otherwise,
723 parent/child sr breakpoints are considered duplicates,
724 and the child version will not be installed. Remove
725 this when the breakpoints module becomes aware of
726 inferiors and address spaces. */
727 delete_step_resume_breakpoint (tp);
16c381f0
JK
728 tp->control.step_range_start = 0;
729 tp->control.step_range_end = 0;
730 tp->control.step_frame_id = null_frame_id;
186c406b 731 delete_exception_resume_breakpoint (tp);
8980e177 732 tp->thread_fsm = NULL;
e58b0e63
PA
733 }
734
735 parent = inferior_ptid;
736 child = tp->pending_follow.value.related_pid;
737
d83ad864
DB
738 /* Set up inferior(s) as specified by the caller, and tell the
739 target to do whatever is necessary to follow either parent
740 or child. */
741 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
742 {
743 /* Target refused to follow, or there's some other reason
744 we shouldn't resume. */
745 should_resume = 0;
746 }
747 else
748 {
749 /* This pending follow fork event is now handled, one way
750 or another. The previous selected thread may be gone
751 from the lists by now, but if it is still around, need
752 to clear the pending follow request. */
e09875d4 753 tp = find_thread_ptid (parent);
e58b0e63
PA
754 if (tp)
755 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
756
757 /* This makes sure we don't try to apply the "Switched
758 over from WAIT_PID" logic above. */
759 nullify_last_target_wait_ptid ();
760
1777feb0 761 /* If we followed the child, switch to it... */
e58b0e63
PA
762 if (follow_child)
763 {
00431a78
PA
764 thread_info *child_thr = find_thread_ptid (child);
765 switch_to_thread (child_thr);
e58b0e63
PA
766
767 /* ... and preserve the stepping state, in case the
768 user was stepping over the fork call. */
769 if (should_resume)
770 {
771 tp = inferior_thread ();
8358c15c
JK
772 tp->control.step_resume_breakpoint
773 = step_resume_breakpoint;
16c381f0
JK
774 tp->control.step_range_start = step_range_start;
775 tp->control.step_range_end = step_range_end;
776 tp->control.step_frame_id = step_frame_id;
186c406b
TT
777 tp->control.exception_resume_breakpoint
778 = exception_resume_breakpoint;
8980e177 779 tp->thread_fsm = thread_fsm;
e58b0e63
PA
780 }
781 else
782 {
783 /* If we get here, it was because we're trying to
784 resume from a fork catchpoint, but, the user
785 has switched threads away from the thread that
786 forked. In that case, the resume command
787 issued is most likely not applicable to the
788 child, so just warn, and refuse to resume. */
3e43a32a 789 warning (_("Not resuming: switched threads "
fd7dcb94 790 "before following fork child."));
e58b0e63
PA
791 }
792
793 /* Reset breakpoints in the child as appropriate. */
794 follow_inferior_reset_breakpoints ();
795 }
e58b0e63
PA
796 }
797 }
798 break;
799 case TARGET_WAITKIND_SPURIOUS:
800 /* Nothing to follow. */
801 break;
802 default:
803 internal_error (__FILE__, __LINE__,
804 "Unexpected pending_follow.kind %d\n",
805 tp->pending_follow.kind);
806 break;
807 }
c906108c 808
e58b0e63 809 return should_resume;
c906108c
SS
810}
811
d83ad864 812static void
6604731b 813follow_inferior_reset_breakpoints (void)
c906108c 814{
4e1c45ea
PA
815 struct thread_info *tp = inferior_thread ();
816
6604731b
DJ
817 /* Was there a step_resume breakpoint? (There was if the user
818 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
819 thread number. Cloned step_resume breakpoints are disabled on
820 creation, so enable it here now that it is associated with the
821 correct thread.
6604731b
DJ
822
823 step_resumes are a form of bp that are made to be per-thread.
824 Since we created the step_resume bp when the parent process
825 was being debugged, and now are switching to the child process,
826 from the breakpoint package's viewpoint, that's a switch of
827 "threads". We must update the bp's notion of which thread
828 it is for, or it'll be ignored when it triggers. */
829
8358c15c 830 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
831 {
832 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
833 tp->control.step_resume_breakpoint->loc->enabled = 1;
834 }
6604731b 835
a1aa2221 836 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 837 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
838 {
839 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
840 tp->control.exception_resume_breakpoint->loc->enabled = 1;
841 }
186c406b 842
6604731b
DJ
843 /* Reinsert all breakpoints in the child. The user may have set
844 breakpoints after catching the fork, in which case those
845 were never set in the child, but only in the parent. This makes
846 sure the inserted breakpoints match the breakpoint list. */
847
848 breakpoint_re_set ();
849 insert_breakpoints ();
c906108c 850}
c906108c 851
6c95b8df
PA
852/* The child has exited or execed: resume threads of the parent the
853 user wanted to be executing. */
854
855static int
856proceed_after_vfork_done (struct thread_info *thread,
857 void *arg)
858{
859 int pid = * (int *) arg;
860
00431a78
PA
861 if (thread->ptid.pid () == pid
862 && thread->state == THREAD_RUNNING
863 && !thread->executing
6c95b8df 864 && !thread->stop_requested
a493e3e2 865 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
866 {
867 if (debug_infrun)
868 fprintf_unfiltered (gdb_stdlog,
869 "infrun: resuming vfork parent thread %s\n",
a068643d 870 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 871
00431a78 872 switch_to_thread (thread);
70509625 873 clear_proceed_status (0);
64ce06e4 874 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
875 }
876
877 return 0;
878}
879
5ed8105e
PA
880/* Save/restore inferior_ptid, current program space and current
881 inferior. Only use this if the current context points at an exited
882 inferior (and therefore there's no current thread to save). */
883class scoped_restore_exited_inferior
884{
885public:
886 scoped_restore_exited_inferior ()
887 : m_saved_ptid (&inferior_ptid)
888 {}
889
890private:
891 scoped_restore_tmpl<ptid_t> m_saved_ptid;
892 scoped_restore_current_program_space m_pspace;
893 scoped_restore_current_inferior m_inferior;
894};
895
6c95b8df
PA
896/* Called whenever we notice an exec or exit event, to handle
897 detaching or resuming a vfork parent. */
898
899static void
900handle_vfork_child_exec_or_exit (int exec)
901{
902 struct inferior *inf = current_inferior ();
903
904 if (inf->vfork_parent)
905 {
906 int resume_parent = -1;
907
908 /* This exec or exit marks the end of the shared memory region
b73715df
TV
909 between the parent and the child. Break the bonds. */
910 inferior *vfork_parent = inf->vfork_parent;
911 inf->vfork_parent->vfork_child = NULL;
912 inf->vfork_parent = NULL;
6c95b8df 913
b73715df
TV
914 /* If the user wanted to detach from the parent, now is the
915 time. */
916 if (vfork_parent->pending_detach)
6c95b8df
PA
917 {
918 struct thread_info *tp;
6c95b8df
PA
919 struct program_space *pspace;
920 struct address_space *aspace;
921
1777feb0 922 /* follow-fork child, detach-on-fork on. */
6c95b8df 923
b73715df 924 vfork_parent->pending_detach = 0;
68c9da30 925
5ed8105e
PA
926 gdb::optional<scoped_restore_exited_inferior>
927 maybe_restore_inferior;
928 gdb::optional<scoped_restore_current_pspace_and_thread>
929 maybe_restore_thread;
930
931 /* If we're handling a child exit, then inferior_ptid points
932 at the inferior's pid, not to a thread. */
f50f4e56 933 if (!exec)
5ed8105e 934 maybe_restore_inferior.emplace ();
f50f4e56 935 else
5ed8105e 936 maybe_restore_thread.emplace ();
6c95b8df
PA
937
938 /* We're letting loose of the parent. */
b73715df 939 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 940 switch_to_thread (tp);
6c95b8df
PA
941
942 /* We're about to detach from the parent, which implicitly
943 removes breakpoints from its address space. There's a
944 catch here: we want to reuse the spaces for the child,
945 but, parent/child are still sharing the pspace at this
946 point, although the exec in reality makes the kernel give
947 the child a fresh set of new pages. The problem here is
948 that the breakpoints module being unaware of this, would
949 likely chose the child process to write to the parent
950 address space. Swapping the child temporarily away from
951 the spaces has the desired effect. Yes, this is "sort
952 of" a hack. */
953
954 pspace = inf->pspace;
955 aspace = inf->aspace;
956 inf->aspace = NULL;
957 inf->pspace = NULL;
958
f67c0c91 959 if (print_inferior_events)
6c95b8df 960 {
a068643d 961 std::string pidstr
b73715df 962 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 963
223ffa71 964 target_terminal::ours_for_output ();
6c95b8df
PA
965
966 if (exec)
6f259a23
DB
967 {
968 fprintf_filtered (gdb_stdlog,
f67c0c91 969 _("[Detaching vfork parent %s "
a068643d 970 "after child exec]\n"), pidstr.c_str ());
6f259a23 971 }
6c95b8df 972 else
6f259a23
DB
973 {
974 fprintf_filtered (gdb_stdlog,
f67c0c91 975 _("[Detaching vfork parent %s "
a068643d 976 "after child exit]\n"), pidstr.c_str ());
6f259a23 977 }
6c95b8df
PA
978 }
979
b73715df 980 target_detach (vfork_parent, 0);
6c95b8df
PA
981
982 /* Put it back. */
983 inf->pspace = pspace;
984 inf->aspace = aspace;
6c95b8df
PA
985 }
986 else if (exec)
987 {
988 /* We're staying attached to the parent, so, really give the
989 child a new address space. */
564b1e3f 990 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
991 inf->aspace = inf->pspace->aspace;
992 inf->removable = 1;
993 set_current_program_space (inf->pspace);
994
b73715df 995 resume_parent = vfork_parent->pid;
6c95b8df
PA
996 }
997 else
998 {
6c95b8df
PA
999 struct program_space *pspace;
1000
1001 /* If this is a vfork child exiting, then the pspace and
1002 aspaces were shared with the parent. Since we're
1003 reporting the process exit, we'll be mourning all that is
1004 found in the address space, and switching to null_ptid,
1005 preparing to start a new inferior. But, since we don't
1006 want to clobber the parent's address/program spaces, we
1007 go ahead and create a new one for this exiting
1008 inferior. */
1009
5ed8105e
PA
1010 /* Switch to null_ptid while running clone_program_space, so
1011 that clone_program_space doesn't want to read the
1012 selected frame of a dead process. */
1013 scoped_restore restore_ptid
1014 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1015
1016 /* This inferior is dead, so avoid giving the breakpoints
1017 module the option to write through to it (cloning a
1018 program space resets breakpoints). */
1019 inf->aspace = NULL;
1020 inf->pspace = NULL;
564b1e3f 1021 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1022 set_current_program_space (pspace);
1023 inf->removable = 1;
7dcd53a0 1024 inf->symfile_flags = SYMFILE_NO_READ;
b73715df 1025 clone_program_space (pspace, vfork_parent->pspace);
6c95b8df
PA
1026 inf->pspace = pspace;
1027 inf->aspace = pspace->aspace;
1028
b73715df 1029 resume_parent = vfork_parent->pid;
6c95b8df
PA
1030 }
1031
6c95b8df
PA
1032 gdb_assert (current_program_space == inf->pspace);
1033
1034 if (non_stop && resume_parent != -1)
1035 {
1036 /* If the user wanted the parent to be running, let it go
1037 free now. */
5ed8105e 1038 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1039
1040 if (debug_infrun)
3e43a32a
MS
1041 fprintf_unfiltered (gdb_stdlog,
1042 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1043 resume_parent);
1044
1045 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1046 }
1047 }
1048}
1049
eb6c553b 1050/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1051
1052static const char follow_exec_mode_new[] = "new";
1053static const char follow_exec_mode_same[] = "same";
40478521 1054static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1055{
1056 follow_exec_mode_new,
1057 follow_exec_mode_same,
1058 NULL,
1059};
1060
1061static const char *follow_exec_mode_string = follow_exec_mode_same;
1062static void
1063show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1064 struct cmd_list_element *c, const char *value)
1065{
1066 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1067}
1068
ecf45d2c 1069/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1070
c906108c 1071static void
4ca51187 1072follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1073{
6c95b8df 1074 struct inferior *inf = current_inferior ();
e99b03dc 1075 int pid = ptid.pid ();
94585166 1076 ptid_t process_ptid;
7a292a7a 1077
65d2b333
PW
1078 /* Switch terminal for any messages produced e.g. by
1079 breakpoint_re_set. */
1080 target_terminal::ours_for_output ();
1081
c906108c
SS
1082 /* This is an exec event that we actually wish to pay attention to.
1083 Refresh our symbol table to the newly exec'd program, remove any
1084 momentary bp's, etc.
1085
1086 If there are breakpoints, they aren't really inserted now,
1087 since the exec() transformed our inferior into a fresh set
1088 of instructions.
1089
1090 We want to preserve symbolic breakpoints on the list, since
1091 we have hopes that they can be reset after the new a.out's
1092 symbol table is read.
1093
1094 However, any "raw" breakpoints must be removed from the list
1095 (e.g., the solib bp's), since their address is probably invalid
1096 now.
1097
1098 And, we DON'T want to call delete_breakpoints() here, since
1099 that may write the bp's "shadow contents" (the instruction
85102364 1100 value that was overwritten with a TRAP instruction). Since
1777feb0 1101 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1102
1103 mark_breakpoints_out ();
1104
95e50b27
PA
1105 /* The target reports the exec event to the main thread, even if
1106 some other thread does the exec, and even if the main thread was
1107 stopped or already gone. We may still have non-leader threads of
1108 the process on our list. E.g., on targets that don't have thread
1109 exit events (like remote); or on native Linux in non-stop mode if
1110 there were only two threads in the inferior and the non-leader
1111 one is the one that execs (and nothing forces an update of the
1112 thread list up to here). When debugging remotely, it's best to
1113 avoid extra traffic, when possible, so avoid syncing the thread
1114 list with the target, and instead go ahead and delete all threads
1115 of the process but one that reported the event. Note this must
1116 be done before calling update_breakpoints_after_exec, as
1117 otherwise clearing the threads' resources would reference stale
1118 thread breakpoints -- it may have been one of these threads that
1119 stepped across the exec. We could just clear their stepping
1120 states, but as long as we're iterating, might as well delete
1121 them. Deleting them now rather than at the next user-visible
1122 stop provides a nicer sequence of events for user and MI
1123 notifications. */
08036331 1124 for (thread_info *th : all_threads_safe ())
d7e15655 1125 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1126 delete_thread (th);
95e50b27
PA
1127
1128 /* We also need to clear any left over stale state for the
1129 leader/event thread. E.g., if there was any step-resume
1130 breakpoint or similar, it's gone now. We cannot truly
1131 step-to-next statement through an exec(). */
08036331 1132 thread_info *th = inferior_thread ();
8358c15c 1133 th->control.step_resume_breakpoint = NULL;
186c406b 1134 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1135 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1136 th->control.step_range_start = 0;
1137 th->control.step_range_end = 0;
c906108c 1138
95e50b27
PA
1139 /* The user may have had the main thread held stopped in the
1140 previous image (e.g., schedlock on, or non-stop). Release
1141 it now. */
a75724bc
PA
1142 th->stop_requested = 0;
1143
95e50b27
PA
1144 update_breakpoints_after_exec ();
1145
1777feb0 1146 /* What is this a.out's name? */
f2907e49 1147 process_ptid = ptid_t (pid);
6c95b8df 1148 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1149 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1150 exec_file_target);
c906108c
SS
1151
1152 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1153 inferior has essentially been killed & reborn. */
7a292a7a 1154
6ca15a4b 1155 breakpoint_init_inferior (inf_execd);
e85a822c 1156
797bc1cb
TT
1157 gdb::unique_xmalloc_ptr<char> exec_file_host
1158 = exec_file_find (exec_file_target, NULL);
ff862be4 1159
ecf45d2c
SL
1160 /* If we were unable to map the executable target pathname onto a host
1161 pathname, tell the user that. Otherwise GDB's subsequent behavior
1162 is confusing. Maybe it would even be better to stop at this point
1163 so that the user can specify a file manually before continuing. */
1164 if (exec_file_host == NULL)
1165 warning (_("Could not load symbols for executable %s.\n"
1166 "Do you need \"set sysroot\"?"),
1167 exec_file_target);
c906108c 1168
cce9b6bf
PA
1169 /* Reset the shared library package. This ensures that we get a
1170 shlib event when the child reaches "_start", at which point the
1171 dld will have had a chance to initialize the child. */
1172 /* Also, loading a symbol file below may trigger symbol lookups, and
1173 we don't want those to be satisfied by the libraries of the
1174 previous incarnation of this process. */
1175 no_shared_libraries (NULL, 0);
1176
6c95b8df
PA
1177 if (follow_exec_mode_string == follow_exec_mode_new)
1178 {
6c95b8df
PA
1179 /* The user wants to keep the old inferior and program spaces
1180 around. Create a new fresh one, and switch to it. */
1181
35ed81d4
SM
1182 /* Do exit processing for the original inferior before setting the new
1183 inferior's pid. Having two inferiors with the same pid would confuse
1184 find_inferior_p(t)id. Transfer the terminal state and info from the
1185 old to the new inferior. */
1186 inf = add_inferior_with_spaces ();
1187 swap_terminal_info (inf, current_inferior ());
057302ce 1188 exit_inferior_silent (current_inferior ());
17d8546e 1189
94585166 1190 inf->pid = pid;
ecf45d2c 1191 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1192
1193 set_current_inferior (inf);
94585166 1194 set_current_program_space (inf->pspace);
c4c17fb0 1195 add_thread (ptid);
6c95b8df 1196 }
9107fc8d
PA
1197 else
1198 {
1199 /* The old description may no longer be fit for the new image.
1200 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1201 old description; we'll read a new one below. No need to do
1202 this on "follow-exec-mode new", as the old inferior stays
1203 around (its description is later cleared/refetched on
1204 restart). */
1205 target_clear_description ();
1206 }
6c95b8df
PA
1207
1208 gdb_assert (current_program_space == inf->pspace);
1209
ecf45d2c
SL
1210 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1211 because the proper displacement for a PIE (Position Independent
1212 Executable) main symbol file will only be computed by
1213 solib_create_inferior_hook below. breakpoint_re_set would fail
1214 to insert the breakpoints with the zero displacement. */
797bc1cb 1215 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1216
9107fc8d
PA
1217 /* If the target can specify a description, read it. Must do this
1218 after flipping to the new executable (because the target supplied
1219 description must be compatible with the executable's
1220 architecture, and the old executable may e.g., be 32-bit, while
1221 the new one 64-bit), and before anything involving memory or
1222 registers. */
1223 target_find_description ();
1224
268a4a75 1225 solib_create_inferior_hook (0);
c906108c 1226
4efc6507
DE
1227 jit_inferior_created_hook ();
1228
c1e56572
JK
1229 breakpoint_re_set ();
1230
c906108c
SS
1231 /* Reinsert all breakpoints. (Those which were symbolic have
1232 been reset to the proper address in the new a.out, thanks
1777feb0 1233 to symbol_file_command...). */
c906108c
SS
1234 insert_breakpoints ();
1235
1236 /* The next resume of this inferior should bring it to the shlib
1237 startup breakpoints. (If the user had also set bp's on
1238 "main" from the old (parent) process, then they'll auto-
1777feb0 1239 matically get reset there in the new process.). */
c906108c
SS
1240}
1241
c2829269
PA
1242/* The queue of threads that need to do a step-over operation to get
1243 past e.g., a breakpoint. What technique is used to step over the
1244 breakpoint/watchpoint does not matter -- all threads end up in the
1245 same queue, to maintain rough temporal order of execution, in order
1246 to avoid starvation, otherwise, we could e.g., find ourselves
1247 constantly stepping the same couple threads past their breakpoints
1248 over and over, if the single-step finish fast enough. */
1249struct thread_info *step_over_queue_head;
1250
6c4cfb24
PA
1251/* Bit flags indicating what the thread needs to step over. */
1252
8d297bbf 1253enum step_over_what_flag
6c4cfb24
PA
1254 {
1255 /* Step over a breakpoint. */
1256 STEP_OVER_BREAKPOINT = 1,
1257
1258 /* Step past a non-continuable watchpoint, in order to let the
1259 instruction execute so we can evaluate the watchpoint
1260 expression. */
1261 STEP_OVER_WATCHPOINT = 2
1262 };
8d297bbf 1263DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1264
963f9c80 1265/* Info about an instruction that is being stepped over. */
31e77af2
PA
1266
1267struct step_over_info
1268{
963f9c80
PA
1269 /* If we're stepping past a breakpoint, this is the address space
1270 and address of the instruction the breakpoint is set at. We'll
1271 skip inserting all breakpoints here. Valid iff ASPACE is
1272 non-NULL. */
8b86c959 1273 const address_space *aspace;
31e77af2 1274 CORE_ADDR address;
963f9c80
PA
1275
1276 /* The instruction being stepped over triggers a nonsteppable
1277 watchpoint. If true, we'll skip inserting watchpoints. */
1278 int nonsteppable_watchpoint_p;
21edc42f
YQ
1279
1280 /* The thread's global number. */
1281 int thread;
31e77af2
PA
1282};
1283
1284/* The step-over info of the location that is being stepped over.
1285
1286 Note that with async/breakpoint always-inserted mode, a user might
1287 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1288 being stepped over. As setting a new breakpoint inserts all
1289 breakpoints, we need to make sure the breakpoint being stepped over
1290 isn't inserted then. We do that by only clearing the step-over
1291 info when the step-over is actually finished (or aborted).
1292
1293 Presently GDB can only step over one breakpoint at any given time.
1294 Given threads that can't run code in the same address space as the
1295 breakpoint's can't really miss the breakpoint, GDB could be taught
1296 to step-over at most one breakpoint per address space (so this info
1297 could move to the address space object if/when GDB is extended).
1298 The set of breakpoints being stepped over will normally be much
1299 smaller than the set of all breakpoints, so a flag in the
1300 breakpoint location structure would be wasteful. A separate list
1301 also saves complexity and run-time, as otherwise we'd have to go
1302 through all breakpoint locations clearing their flag whenever we
1303 start a new sequence. Similar considerations weigh against storing
1304 this info in the thread object. Plus, not all step overs actually
1305 have breakpoint locations -- e.g., stepping past a single-step
1306 breakpoint, or stepping to complete a non-continuable
1307 watchpoint. */
1308static struct step_over_info step_over_info;
1309
1310/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1311 stepping over.
1312 N.B. We record the aspace and address now, instead of say just the thread,
1313 because when we need the info later the thread may be running. */
31e77af2
PA
1314
1315static void
8b86c959 1316set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1317 int nonsteppable_watchpoint_p,
1318 int thread)
31e77af2
PA
1319{
1320 step_over_info.aspace = aspace;
1321 step_over_info.address = address;
963f9c80 1322 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1323 step_over_info.thread = thread;
31e77af2
PA
1324}
1325
1326/* Called when we're not longer stepping over a breakpoint / an
1327 instruction, so all breakpoints are free to be (re)inserted. */
1328
1329static void
1330clear_step_over_info (void)
1331{
372316f1
PA
1332 if (debug_infrun)
1333 fprintf_unfiltered (gdb_stdlog,
1334 "infrun: clear_step_over_info\n");
31e77af2
PA
1335 step_over_info.aspace = NULL;
1336 step_over_info.address = 0;
963f9c80 1337 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1338 step_over_info.thread = -1;
31e77af2
PA
1339}
1340
7f89fd65 1341/* See infrun.h. */
31e77af2
PA
1342
1343int
1344stepping_past_instruction_at (struct address_space *aspace,
1345 CORE_ADDR address)
1346{
1347 return (step_over_info.aspace != NULL
1348 && breakpoint_address_match (aspace, address,
1349 step_over_info.aspace,
1350 step_over_info.address));
1351}
1352
963f9c80
PA
1353/* See infrun.h. */
1354
21edc42f
YQ
1355int
1356thread_is_stepping_over_breakpoint (int thread)
1357{
1358 return (step_over_info.thread != -1
1359 && thread == step_over_info.thread);
1360}
1361
1362/* See infrun.h. */
1363
963f9c80
PA
1364int
1365stepping_past_nonsteppable_watchpoint (void)
1366{
1367 return step_over_info.nonsteppable_watchpoint_p;
1368}
1369
6cc83d2a
PA
1370/* Returns true if step-over info is valid. */
1371
1372static int
1373step_over_info_valid_p (void)
1374{
963f9c80
PA
1375 return (step_over_info.aspace != NULL
1376 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1377}
1378
c906108c 1379\f
237fc4c9
PA
1380/* Displaced stepping. */
1381
1382/* In non-stop debugging mode, we must take special care to manage
1383 breakpoints properly; in particular, the traditional strategy for
1384 stepping a thread past a breakpoint it has hit is unsuitable.
1385 'Displaced stepping' is a tactic for stepping one thread past a
1386 breakpoint it has hit while ensuring that other threads running
1387 concurrently will hit the breakpoint as they should.
1388
1389 The traditional way to step a thread T off a breakpoint in a
1390 multi-threaded program in all-stop mode is as follows:
1391
1392 a0) Initially, all threads are stopped, and breakpoints are not
1393 inserted.
1394 a1) We single-step T, leaving breakpoints uninserted.
1395 a2) We insert breakpoints, and resume all threads.
1396
1397 In non-stop debugging, however, this strategy is unsuitable: we
1398 don't want to have to stop all threads in the system in order to
1399 continue or step T past a breakpoint. Instead, we use displaced
1400 stepping:
1401
1402 n0) Initially, T is stopped, other threads are running, and
1403 breakpoints are inserted.
1404 n1) We copy the instruction "under" the breakpoint to a separate
1405 location, outside the main code stream, making any adjustments
1406 to the instruction, register, and memory state as directed by
1407 T's architecture.
1408 n2) We single-step T over the instruction at its new location.
1409 n3) We adjust the resulting register and memory state as directed
1410 by T's architecture. This includes resetting T's PC to point
1411 back into the main instruction stream.
1412 n4) We resume T.
1413
1414 This approach depends on the following gdbarch methods:
1415
1416 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1417 indicate where to copy the instruction, and how much space must
1418 be reserved there. We use these in step n1.
1419
1420 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1421 address, and makes any necessary adjustments to the instruction,
1422 register contents, and memory. We use this in step n1.
1423
1424 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1425 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1426 same effect the instruction would have had if we had executed it
1427 at its original address. We use this in step n3.
1428
237fc4c9
PA
1429 The gdbarch_displaced_step_copy_insn and
1430 gdbarch_displaced_step_fixup functions must be written so that
1431 copying an instruction with gdbarch_displaced_step_copy_insn,
1432 single-stepping across the copied instruction, and then applying
1433 gdbarch_displaced_insn_fixup should have the same effects on the
1434 thread's memory and registers as stepping the instruction in place
1435 would have. Exactly which responsibilities fall to the copy and
1436 which fall to the fixup is up to the author of those functions.
1437
1438 See the comments in gdbarch.sh for details.
1439
1440 Note that displaced stepping and software single-step cannot
1441 currently be used in combination, although with some care I think
1442 they could be made to. Software single-step works by placing
1443 breakpoints on all possible subsequent instructions; if the
1444 displaced instruction is a PC-relative jump, those breakpoints
1445 could fall in very strange places --- on pages that aren't
1446 executable, or at addresses that are not proper instruction
1447 boundaries. (We do generally let other threads run while we wait
1448 to hit the software single-step breakpoint, and they might
1449 encounter such a corrupted instruction.) One way to work around
1450 this would be to have gdbarch_displaced_step_copy_insn fully
1451 simulate the effect of PC-relative instructions (and return NULL)
1452 on architectures that use software single-stepping.
1453
1454 In non-stop mode, we can have independent and simultaneous step
1455 requests, so more than one thread may need to simultaneously step
1456 over a breakpoint. The current implementation assumes there is
1457 only one scratch space per process. In this case, we have to
1458 serialize access to the scratch space. If thread A wants to step
1459 over a breakpoint, but we are currently waiting for some other
1460 thread to complete a displaced step, we leave thread A stopped and
1461 place it in the displaced_step_request_queue. Whenever a displaced
1462 step finishes, we pick the next thread in the queue and start a new
1463 displaced step operation on it. See displaced_step_prepare and
1464 displaced_step_fixup for details. */
1465
cfba9872
SM
1466/* Default destructor for displaced_step_closure. */
1467
1468displaced_step_closure::~displaced_step_closure () = default;
1469
fc1cf338
PA
1470/* Get the displaced stepping state of process PID. */
1471
39a36629 1472static displaced_step_inferior_state *
00431a78 1473get_displaced_stepping_state (inferior *inf)
fc1cf338 1474{
d20172fc 1475 return &inf->displaced_step_state;
fc1cf338
PA
1476}
1477
372316f1
PA
1478/* Returns true if any inferior has a thread doing a displaced
1479 step. */
1480
39a36629
SM
1481static bool
1482displaced_step_in_progress_any_inferior ()
372316f1 1483{
d20172fc 1484 for (inferior *i : all_inferiors ())
39a36629 1485 {
d20172fc 1486 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1487 return true;
1488 }
372316f1 1489
39a36629 1490 return false;
372316f1
PA
1491}
1492
c0987663
YQ
1493/* Return true if thread represented by PTID is doing a displaced
1494 step. */
1495
1496static int
00431a78 1497displaced_step_in_progress_thread (thread_info *thread)
c0987663 1498{
00431a78 1499 gdb_assert (thread != NULL);
c0987663 1500
d20172fc 1501 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1502}
1503
8f572e5c
PA
1504/* Return true if process PID has a thread doing a displaced step. */
1505
1506static int
00431a78 1507displaced_step_in_progress (inferior *inf)
8f572e5c 1508{
d20172fc 1509 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1510}
1511
a42244db
YQ
1512/* If inferior is in displaced stepping, and ADDR equals to starting address
1513 of copy area, return corresponding displaced_step_closure. Otherwise,
1514 return NULL. */
1515
1516struct displaced_step_closure*
1517get_displaced_step_closure_by_addr (CORE_ADDR addr)
1518{
d20172fc 1519 displaced_step_inferior_state *displaced
00431a78 1520 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1521
1522 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1523 if (displaced->step_thread != nullptr
00431a78 1524 && displaced->step_copy == addr)
a42244db
YQ
1525 return displaced->step_closure;
1526
1527 return NULL;
1528}
1529
fc1cf338
PA
1530static void
1531infrun_inferior_exit (struct inferior *inf)
1532{
d20172fc 1533 inf->displaced_step_state.reset ();
fc1cf338 1534}
237fc4c9 1535
fff08868
HZ
1536/* If ON, and the architecture supports it, GDB will use displaced
1537 stepping to step over breakpoints. If OFF, or if the architecture
1538 doesn't support it, GDB will instead use the traditional
1539 hold-and-step approach. If AUTO (which is the default), GDB will
1540 decide which technique to use to step over breakpoints depending on
1541 which of all-stop or non-stop mode is active --- displaced stepping
1542 in non-stop mode; hold-and-step in all-stop mode. */
1543
72d0e2c5 1544static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1545
237fc4c9
PA
1546static void
1547show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1548 struct cmd_list_element *c,
1549 const char *value)
1550{
72d0e2c5 1551 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1552 fprintf_filtered (file,
1553 _("Debugger's willingness to use displaced stepping "
1554 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1555 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1556 else
3e43a32a
MS
1557 fprintf_filtered (file,
1558 _("Debugger's willingness to use displaced stepping "
1559 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1560}
1561
fff08868 1562/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1563 over breakpoints of thread TP. */
fff08868 1564
237fc4c9 1565static int
3fc8eb30 1566use_displaced_stepping (struct thread_info *tp)
237fc4c9 1567{
00431a78 1568 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1569 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1570 displaced_step_inferior_state *displaced_state
1571 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1572
fbea99ea
PA
1573 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1574 && target_is_non_stop_p ())
72d0e2c5 1575 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1576 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1577 && find_record_target () == NULL
d20172fc 1578 && !displaced_state->failed_before);
237fc4c9
PA
1579}
1580
1581/* Clean out any stray displaced stepping state. */
1582static void
fc1cf338 1583displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1584{
1585 /* Indicate that there is no cleanup pending. */
00431a78 1586 displaced->step_thread = nullptr;
237fc4c9 1587
cfba9872 1588 delete displaced->step_closure;
6d45d4b4 1589 displaced->step_closure = NULL;
237fc4c9
PA
1590}
1591
9799571e
TT
1592/* A cleanup that wraps displaced_step_clear. */
1593using displaced_step_clear_cleanup
1594 = FORWARD_SCOPE_EXIT (displaced_step_clear);
237fc4c9
PA
1595
1596/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1597void
1598displaced_step_dump_bytes (struct ui_file *file,
1599 const gdb_byte *buf,
1600 size_t len)
1601{
1602 int i;
1603
1604 for (i = 0; i < len; i++)
1605 fprintf_unfiltered (file, "%02x ", buf[i]);
1606 fputs_unfiltered ("\n", file);
1607}
1608
1609/* Prepare to single-step, using displaced stepping.
1610
1611 Note that we cannot use displaced stepping when we have a signal to
1612 deliver. If we have a signal to deliver and an instruction to step
1613 over, then after the step, there will be no indication from the
1614 target whether the thread entered a signal handler or ignored the
1615 signal and stepped over the instruction successfully --- both cases
1616 result in a simple SIGTRAP. In the first case we mustn't do a
1617 fixup, and in the second case we must --- but we can't tell which.
1618 Comments in the code for 'random signals' in handle_inferior_event
1619 explain how we handle this case instead.
1620
1621 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1622 stepped now; 0 if displaced stepping this thread got queued; or -1
1623 if this instruction can't be displaced stepped. */
1624
237fc4c9 1625static int
00431a78 1626displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1627{
00431a78 1628 regcache *regcache = get_thread_regcache (tp);
ac7936df 1629 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1630 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1631 CORE_ADDR original, copy;
1632 ULONGEST len;
1633 struct displaced_step_closure *closure;
9e529e1d 1634 int status;
237fc4c9
PA
1635
1636 /* We should never reach this function if the architecture does not
1637 support displaced stepping. */
1638 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1639
c2829269
PA
1640 /* Nor if the thread isn't meant to step over a breakpoint. */
1641 gdb_assert (tp->control.trap_expected);
1642
c1e36e3e
PA
1643 /* Disable range stepping while executing in the scratch pad. We
1644 want a single-step even if executing the displaced instruction in
1645 the scratch buffer lands within the stepping range (e.g., a
1646 jump/branch). */
1647 tp->control.may_range_step = 0;
1648
fc1cf338
PA
1649 /* We have to displaced step one thread at a time, as we only have
1650 access to a single scratch space per inferior. */
237fc4c9 1651
d20172fc
SM
1652 displaced_step_inferior_state *displaced
1653 = get_displaced_stepping_state (tp->inf);
fc1cf338 1654
00431a78 1655 if (displaced->step_thread != nullptr)
237fc4c9
PA
1656 {
1657 /* Already waiting for a displaced step to finish. Defer this
1658 request and place in queue. */
237fc4c9
PA
1659
1660 if (debug_displaced)
1661 fprintf_unfiltered (gdb_stdlog,
c2829269 1662 "displaced: deferring step of %s\n",
a068643d 1663 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1664
c2829269 1665 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1666 return 0;
1667 }
1668 else
1669 {
1670 if (debug_displaced)
1671 fprintf_unfiltered (gdb_stdlog,
1672 "displaced: stepping %s now\n",
a068643d 1673 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1674 }
1675
fc1cf338 1676 displaced_step_clear (displaced);
237fc4c9 1677
00431a78
PA
1678 scoped_restore_current_thread restore_thread;
1679
1680 switch_to_thread (tp);
ad53cd71 1681
515630c5 1682 original = regcache_read_pc (regcache);
237fc4c9
PA
1683
1684 copy = gdbarch_displaced_step_location (gdbarch);
1685 len = gdbarch_max_insn_length (gdbarch);
1686
d35ae833
PA
1687 if (breakpoint_in_range_p (aspace, copy, len))
1688 {
1689 /* There's a breakpoint set in the scratch pad location range
1690 (which is usually around the entry point). We'd either
1691 install it before resuming, which would overwrite/corrupt the
1692 scratch pad, or if it was already inserted, this displaced
1693 step would overwrite it. The latter is OK in the sense that
1694 we already assume that no thread is going to execute the code
1695 in the scratch pad range (after initial startup) anyway, but
1696 the former is unacceptable. Simply punt and fallback to
1697 stepping over this breakpoint in-line. */
1698 if (debug_displaced)
1699 {
1700 fprintf_unfiltered (gdb_stdlog,
1701 "displaced: breakpoint set in scratch pad. "
1702 "Stepping over breakpoint in-line instead.\n");
1703 }
1704
d35ae833
PA
1705 return -1;
1706 }
1707
237fc4c9 1708 /* Save the original contents of the copy area. */
d20172fc
SM
1709 displaced->step_saved_copy.resize (len);
1710 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1711 if (status != 0)
1712 throw_error (MEMORY_ERROR,
1713 _("Error accessing memory address %s (%s) for "
1714 "displaced-stepping scratch space."),
1715 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1716 if (debug_displaced)
1717 {
5af949e3
UW
1718 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1719 paddress (gdbarch, copy));
fc1cf338 1720 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1721 displaced->step_saved_copy.data (),
fc1cf338 1722 len);
237fc4c9
PA
1723 };
1724
1725 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1726 original, copy, regcache);
7f03bd92
PA
1727 if (closure == NULL)
1728 {
1729 /* The architecture doesn't know how or want to displaced step
1730 this instruction or instruction sequence. Fallback to
1731 stepping over the breakpoint in-line. */
7f03bd92
PA
1732 return -1;
1733 }
237fc4c9 1734
9f5a595d
UW
1735 /* Save the information we need to fix things up if the step
1736 succeeds. */
00431a78 1737 displaced->step_thread = tp;
fc1cf338
PA
1738 displaced->step_gdbarch = gdbarch;
1739 displaced->step_closure = closure;
1740 displaced->step_original = original;
1741 displaced->step_copy = copy;
9f5a595d 1742
9799571e
TT
1743 {
1744 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1745
9799571e
TT
1746 /* Resume execution at the copy. */
1747 regcache_write_pc (regcache, copy);
237fc4c9 1748
9799571e
TT
1749 cleanup.release ();
1750 }
ad53cd71 1751
237fc4c9 1752 if (debug_displaced)
5af949e3
UW
1753 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1754 paddress (gdbarch, copy));
237fc4c9 1755
237fc4c9
PA
1756 return 1;
1757}
1758
3fc8eb30
PA
1759/* Wrapper for displaced_step_prepare_throw that disabled further
1760 attempts at displaced stepping if we get a memory error. */
1761
1762static int
00431a78 1763displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1764{
1765 int prepared = -1;
1766
a70b8144 1767 try
3fc8eb30 1768 {
00431a78 1769 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1770 }
230d2906 1771 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1772 {
1773 struct displaced_step_inferior_state *displaced_state;
1774
16b41842
PA
1775 if (ex.error != MEMORY_ERROR
1776 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1777 throw;
3fc8eb30
PA
1778
1779 if (debug_infrun)
1780 {
1781 fprintf_unfiltered (gdb_stdlog,
1782 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1783 ex.what ());
3fc8eb30
PA
1784 }
1785
1786 /* Be verbose if "set displaced-stepping" is "on", silent if
1787 "auto". */
1788 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1789 {
fd7dcb94 1790 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1791 ex.what ());
3fc8eb30
PA
1792 }
1793
1794 /* Disable further displaced stepping attempts. */
1795 displaced_state
00431a78 1796 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1797 displaced_state->failed_before = 1;
1798 }
3fc8eb30
PA
1799
1800 return prepared;
1801}
1802
237fc4c9 1803static void
3e43a32a
MS
1804write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1805 const gdb_byte *myaddr, int len)
237fc4c9 1806{
2989a365 1807 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1808
237fc4c9
PA
1809 inferior_ptid = ptid;
1810 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1811}
1812
e2d96639
YQ
1813/* Restore the contents of the copy area for thread PTID. */
1814
1815static void
1816displaced_step_restore (struct displaced_step_inferior_state *displaced,
1817 ptid_t ptid)
1818{
1819 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1820
1821 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1822 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1823 if (debug_displaced)
1824 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1825 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1826 paddress (displaced->step_gdbarch,
1827 displaced->step_copy));
1828}
1829
372316f1
PA
1830/* If we displaced stepped an instruction successfully, adjust
1831 registers and memory to yield the same effect the instruction would
1832 have had if we had executed it at its original address, and return
1833 1. If the instruction didn't complete, relocate the PC and return
1834 -1. If the thread wasn't displaced stepping, return 0. */
1835
1836static int
00431a78 1837displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1838{
fc1cf338 1839 struct displaced_step_inferior_state *displaced
00431a78 1840 = get_displaced_stepping_state (event_thread->inf);
372316f1 1841 int ret;
fc1cf338 1842
00431a78
PA
1843 /* Was this event for the thread we displaced? */
1844 if (displaced->step_thread != event_thread)
372316f1 1845 return 0;
237fc4c9 1846
9799571e 1847 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1848
00431a78 1849 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1850
cb71640d
PA
1851 /* Fixup may need to read memory/registers. Switch to the thread
1852 that we're fixing up. Also, target_stopped_by_watchpoint checks
1853 the current thread. */
00431a78 1854 switch_to_thread (event_thread);
cb71640d 1855
237fc4c9 1856 /* Did the instruction complete successfully? */
cb71640d
PA
1857 if (signal == GDB_SIGNAL_TRAP
1858 && !(target_stopped_by_watchpoint ()
1859 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1860 || target_have_steppable_watchpoint)))
237fc4c9
PA
1861 {
1862 /* Fix up the resulting state. */
fc1cf338
PA
1863 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1864 displaced->step_closure,
1865 displaced->step_original,
1866 displaced->step_copy,
00431a78 1867 get_thread_regcache (displaced->step_thread));
372316f1 1868 ret = 1;
237fc4c9
PA
1869 }
1870 else
1871 {
1872 /* Since the instruction didn't complete, all we can do is
1873 relocate the PC. */
00431a78 1874 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1875 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1876
fc1cf338 1877 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1878 regcache_write_pc (regcache, pc);
372316f1 1879 ret = -1;
237fc4c9
PA
1880 }
1881
372316f1 1882 return ret;
c2829269 1883}
1c5cfe86 1884
4d9d9d04
PA
1885/* Data to be passed around while handling an event. This data is
1886 discarded between events. */
1887struct execution_control_state
1888{
1889 ptid_t ptid;
1890 /* The thread that got the event, if this was a thread event; NULL
1891 otherwise. */
1892 struct thread_info *event_thread;
1893
1894 struct target_waitstatus ws;
1895 int stop_func_filled_in;
1896 CORE_ADDR stop_func_start;
1897 CORE_ADDR stop_func_end;
1898 const char *stop_func_name;
1899 int wait_some_more;
1900
1901 /* True if the event thread hit the single-step breakpoint of
1902 another thread. Thus the event doesn't cause a stop, the thread
1903 needs to be single-stepped past the single-step breakpoint before
1904 we can switch back to the original stepping thread. */
1905 int hit_singlestep_breakpoint;
1906};
1907
1908/* Clear ECS and set it to point at TP. */
c2829269
PA
1909
1910static void
4d9d9d04
PA
1911reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1912{
1913 memset (ecs, 0, sizeof (*ecs));
1914 ecs->event_thread = tp;
1915 ecs->ptid = tp->ptid;
1916}
1917
1918static void keep_going_pass_signal (struct execution_control_state *ecs);
1919static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1920static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1921static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1922
1923/* Are there any pending step-over requests? If so, run all we can
1924 now and return true. Otherwise, return false. */
1925
1926static int
c2829269
PA
1927start_step_over (void)
1928{
1929 struct thread_info *tp, *next;
1930
372316f1
PA
1931 /* Don't start a new step-over if we already have an in-line
1932 step-over operation ongoing. */
1933 if (step_over_info_valid_p ())
1934 return 0;
1935
c2829269 1936 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1937 {
4d9d9d04
PA
1938 struct execution_control_state ecss;
1939 struct execution_control_state *ecs = &ecss;
8d297bbf 1940 step_over_what step_what;
372316f1 1941 int must_be_in_line;
c2829269 1942
c65d6b55
PA
1943 gdb_assert (!tp->stop_requested);
1944
c2829269 1945 next = thread_step_over_chain_next (tp);
237fc4c9 1946
c2829269
PA
1947 /* If this inferior already has a displaced step in process,
1948 don't start a new one. */
00431a78 1949 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1950 continue;
1951
372316f1
PA
1952 step_what = thread_still_needs_step_over (tp);
1953 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1954 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1955 && !use_displaced_stepping (tp)));
372316f1
PA
1956
1957 /* We currently stop all threads of all processes to step-over
1958 in-line. If we need to start a new in-line step-over, let
1959 any pending displaced steps finish first. */
1960 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1961 return 0;
1962
c2829269
PA
1963 thread_step_over_chain_remove (tp);
1964
1965 if (step_over_queue_head == NULL)
1966 {
1967 if (debug_infrun)
1968 fprintf_unfiltered (gdb_stdlog,
1969 "infrun: step-over queue now empty\n");
1970 }
1971
372316f1
PA
1972 if (tp->control.trap_expected
1973 || tp->resumed
1974 || tp->executing)
ad53cd71 1975 {
4d9d9d04
PA
1976 internal_error (__FILE__, __LINE__,
1977 "[%s] has inconsistent state: "
372316f1 1978 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1979 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1980 tp->control.trap_expected,
372316f1 1981 tp->resumed,
4d9d9d04 1982 tp->executing);
ad53cd71 1983 }
1c5cfe86 1984
4d9d9d04
PA
1985 if (debug_infrun)
1986 fprintf_unfiltered (gdb_stdlog,
1987 "infrun: resuming [%s] for step-over\n",
a068643d 1988 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1989
1990 /* keep_going_pass_signal skips the step-over if the breakpoint
1991 is no longer inserted. In all-stop, we want to keep looking
1992 for a thread that needs a step-over instead of resuming TP,
1993 because we wouldn't be able to resume anything else until the
1994 target stops again. In non-stop, the resume always resumes
1995 only TP, so it's OK to let the thread resume freely. */
fbea99ea 1996 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 1997 continue;
8550d3b3 1998
00431a78 1999 switch_to_thread (tp);
4d9d9d04
PA
2000 reset_ecs (ecs, tp);
2001 keep_going_pass_signal (ecs);
1c5cfe86 2002
4d9d9d04
PA
2003 if (!ecs->wait_some_more)
2004 error (_("Command aborted."));
1c5cfe86 2005
372316f1
PA
2006 gdb_assert (tp->resumed);
2007
2008 /* If we started a new in-line step-over, we're done. */
2009 if (step_over_info_valid_p ())
2010 {
2011 gdb_assert (tp->control.trap_expected);
2012 return 1;
2013 }
2014
fbea99ea 2015 if (!target_is_non_stop_p ())
4d9d9d04
PA
2016 {
2017 /* On all-stop, shouldn't have resumed unless we needed a
2018 step over. */
2019 gdb_assert (tp->control.trap_expected
2020 || tp->step_after_step_resume_breakpoint);
2021
2022 /* With remote targets (at least), in all-stop, we can't
2023 issue any further remote commands until the program stops
2024 again. */
2025 return 1;
1c5cfe86 2026 }
c2829269 2027
4d9d9d04
PA
2028 /* Either the thread no longer needed a step-over, or a new
2029 displaced stepping sequence started. Even in the latter
2030 case, continue looking. Maybe we can also start another
2031 displaced step on a thread of other process. */
237fc4c9 2032 }
4d9d9d04
PA
2033
2034 return 0;
237fc4c9
PA
2035}
2036
5231c1fd
PA
2037/* Update global variables holding ptids to hold NEW_PTID if they were
2038 holding OLD_PTID. */
2039static void
2040infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2041{
d7e15655 2042 if (inferior_ptid == old_ptid)
5231c1fd 2043 inferior_ptid = new_ptid;
5231c1fd
PA
2044}
2045
237fc4c9 2046\f
c906108c 2047
53904c9e
AC
2048static const char schedlock_off[] = "off";
2049static const char schedlock_on[] = "on";
2050static const char schedlock_step[] = "step";
f2665db5 2051static const char schedlock_replay[] = "replay";
40478521 2052static const char *const scheduler_enums[] = {
ef346e04
AC
2053 schedlock_off,
2054 schedlock_on,
2055 schedlock_step,
f2665db5 2056 schedlock_replay,
ef346e04
AC
2057 NULL
2058};
f2665db5 2059static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2060static void
2061show_scheduler_mode (struct ui_file *file, int from_tty,
2062 struct cmd_list_element *c, const char *value)
2063{
3e43a32a
MS
2064 fprintf_filtered (file,
2065 _("Mode for locking scheduler "
2066 "during execution is \"%s\".\n"),
920d2a44
AC
2067 value);
2068}
c906108c
SS
2069
2070static void
eb4c3f4a 2071set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2072{
eefe576e
AC
2073 if (!target_can_lock_scheduler)
2074 {
2075 scheduler_mode = schedlock_off;
2076 error (_("Target '%s' cannot support this command."), target_shortname);
2077 }
c906108c
SS
2078}
2079
d4db2f36
PA
2080/* True if execution commands resume all threads of all processes by
2081 default; otherwise, resume only threads of the current inferior
2082 process. */
491144b5 2083bool sched_multi = false;
d4db2f36 2084
2facfe5c
DD
2085/* Try to setup for software single stepping over the specified location.
2086 Return 1 if target_resume() should use hardware single step.
2087
2088 GDBARCH the current gdbarch.
2089 PC the location to step over. */
2090
2091static int
2092maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2093{
2094 int hw_step = 1;
2095
f02253f1 2096 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2097 && gdbarch_software_single_step_p (gdbarch))
2098 hw_step = !insert_single_step_breakpoints (gdbarch);
2099
2facfe5c
DD
2100 return hw_step;
2101}
c906108c 2102
f3263aa4
PA
2103/* See infrun.h. */
2104
09cee04b
PA
2105ptid_t
2106user_visible_resume_ptid (int step)
2107{
f3263aa4 2108 ptid_t resume_ptid;
09cee04b 2109
09cee04b
PA
2110 if (non_stop)
2111 {
2112 /* With non-stop mode on, threads are always handled
2113 individually. */
2114 resume_ptid = inferior_ptid;
2115 }
2116 else if ((scheduler_mode == schedlock_on)
03d46957 2117 || (scheduler_mode == schedlock_step && step))
09cee04b 2118 {
f3263aa4
PA
2119 /* User-settable 'scheduler' mode requires solo thread
2120 resume. */
09cee04b
PA
2121 resume_ptid = inferior_ptid;
2122 }
f2665db5
MM
2123 else if ((scheduler_mode == schedlock_replay)
2124 && target_record_will_replay (minus_one_ptid, execution_direction))
2125 {
2126 /* User-settable 'scheduler' mode requires solo thread resume in replay
2127 mode. */
2128 resume_ptid = inferior_ptid;
2129 }
f3263aa4
PA
2130 else if (!sched_multi && target_supports_multi_process ())
2131 {
2132 /* Resume all threads of the current process (and none of other
2133 processes). */
e99b03dc 2134 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2135 }
2136 else
2137 {
2138 /* Resume all threads of all processes. */
2139 resume_ptid = RESUME_ALL;
2140 }
09cee04b
PA
2141
2142 return resume_ptid;
2143}
2144
fbea99ea
PA
2145/* Return a ptid representing the set of threads that we will resume,
2146 in the perspective of the target, assuming run control handling
2147 does not require leaving some threads stopped (e.g., stepping past
2148 breakpoint). USER_STEP indicates whether we're about to start the
2149 target for a stepping command. */
2150
2151static ptid_t
2152internal_resume_ptid (int user_step)
2153{
2154 /* In non-stop, we always control threads individually. Note that
2155 the target may always work in non-stop mode even with "set
2156 non-stop off", in which case user_visible_resume_ptid could
2157 return a wildcard ptid. */
2158 if (target_is_non_stop_p ())
2159 return inferior_ptid;
2160 else
2161 return user_visible_resume_ptid (user_step);
2162}
2163
64ce06e4
PA
2164/* Wrapper for target_resume, that handles infrun-specific
2165 bookkeeping. */
2166
2167static void
2168do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2169{
2170 struct thread_info *tp = inferior_thread ();
2171
c65d6b55
PA
2172 gdb_assert (!tp->stop_requested);
2173
64ce06e4 2174 /* Install inferior's terminal modes. */
223ffa71 2175 target_terminal::inferior ();
64ce06e4
PA
2176
2177 /* Avoid confusing the next resume, if the next stop/resume
2178 happens to apply to another thread. */
2179 tp->suspend.stop_signal = GDB_SIGNAL_0;
2180
8f572e5c
PA
2181 /* Advise target which signals may be handled silently.
2182
2183 If we have removed breakpoints because we are stepping over one
2184 in-line (in any thread), we need to receive all signals to avoid
2185 accidentally skipping a breakpoint during execution of a signal
2186 handler.
2187
2188 Likewise if we're displaced stepping, otherwise a trap for a
2189 breakpoint in a signal handler might be confused with the
2190 displaced step finishing. We don't make the displaced_step_fixup
2191 step distinguish the cases instead, because:
2192
2193 - a backtrace while stopped in the signal handler would show the
2194 scratch pad as frame older than the signal handler, instead of
2195 the real mainline code.
2196
2197 - when the thread is later resumed, the signal handler would
2198 return to the scratch pad area, which would no longer be
2199 valid. */
2200 if (step_over_info_valid_p ()
00431a78 2201 || displaced_step_in_progress (tp->inf))
adc6a863 2202 target_pass_signals ({});
64ce06e4 2203 else
adc6a863 2204 target_pass_signals (signal_pass);
64ce06e4
PA
2205
2206 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2207
2208 target_commit_resume ();
64ce06e4
PA
2209}
2210
d930703d 2211/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2212 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2213 call 'resume', which handles exceptions. */
c906108c 2214
71d378ae
PA
2215static void
2216resume_1 (enum gdb_signal sig)
c906108c 2217{
515630c5 2218 struct regcache *regcache = get_current_regcache ();
ac7936df 2219 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2220 struct thread_info *tp = inferior_thread ();
515630c5 2221 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2222 const address_space *aspace = regcache->aspace ();
b0f16a3e 2223 ptid_t resume_ptid;
856e7dd6
PA
2224 /* This represents the user's step vs continue request. When
2225 deciding whether "set scheduler-locking step" applies, it's the
2226 user's intention that counts. */
2227 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2228 /* This represents what we'll actually request the target to do.
2229 This can decay from a step to a continue, if e.g., we need to
2230 implement single-stepping with breakpoints (software
2231 single-step). */
6b403daa 2232 int step;
c7e8a53c 2233
c65d6b55 2234 gdb_assert (!tp->stop_requested);
c2829269
PA
2235 gdb_assert (!thread_is_in_step_over_chain (tp));
2236
372316f1
PA
2237 if (tp->suspend.waitstatus_pending_p)
2238 {
2239 if (debug_infrun)
2240 {
23fdd69e
SM
2241 std::string statstr
2242 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2243
372316f1 2244 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2245 "infrun: resume: thread %s has pending wait "
2246 "status %s (currently_stepping=%d).\n",
a068643d
TT
2247 target_pid_to_str (tp->ptid).c_str (),
2248 statstr.c_str (),
372316f1 2249 currently_stepping (tp));
372316f1
PA
2250 }
2251
2252 tp->resumed = 1;
2253
2254 /* FIXME: What should we do if we are supposed to resume this
2255 thread with a signal? Maybe we should maintain a queue of
2256 pending signals to deliver. */
2257 if (sig != GDB_SIGNAL_0)
2258 {
fd7dcb94 2259 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2260 gdb_signal_to_name (sig),
2261 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2262 }
2263
2264 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2265
2266 if (target_can_async_p ())
9516f85a
AB
2267 {
2268 target_async (1);
2269 /* Tell the event loop we have an event to process. */
2270 mark_async_event_handler (infrun_async_inferior_event_token);
2271 }
372316f1
PA
2272 return;
2273 }
2274
2275 tp->stepped_breakpoint = 0;
2276
6b403daa
PA
2277 /* Depends on stepped_breakpoint. */
2278 step = currently_stepping (tp);
2279
74609e71
YQ
2280 if (current_inferior ()->waiting_for_vfork_done)
2281 {
48f9886d
PA
2282 /* Don't try to single-step a vfork parent that is waiting for
2283 the child to get out of the shared memory region (by exec'ing
2284 or exiting). This is particularly important on software
2285 single-step archs, as the child process would trip on the
2286 software single step breakpoint inserted for the parent
2287 process. Since the parent will not actually execute any
2288 instruction until the child is out of the shared region (such
2289 are vfork's semantics), it is safe to simply continue it.
2290 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2291 the parent, and tell it to `keep_going', which automatically
2292 re-sets it stepping. */
74609e71
YQ
2293 if (debug_infrun)
2294 fprintf_unfiltered (gdb_stdlog,
2295 "infrun: resume : clear step\n");
a09dd441 2296 step = 0;
74609e71
YQ
2297 }
2298
527159b7 2299 if (debug_infrun)
237fc4c9 2300 fprintf_unfiltered (gdb_stdlog,
c9737c08 2301 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2302 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2303 step, gdb_signal_to_symbol_string (sig),
2304 tp->control.trap_expected,
a068643d 2305 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2306 paddress (gdbarch, pc));
c906108c 2307
c2c6d25f
JM
2308 /* Normally, by the time we reach `resume', the breakpoints are either
2309 removed or inserted, as appropriate. The exception is if we're sitting
2310 at a permanent breakpoint; we need to step over it, but permanent
2311 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2312 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2313 {
af48d08f
PA
2314 if (sig != GDB_SIGNAL_0)
2315 {
2316 /* We have a signal to pass to the inferior. The resume
2317 may, or may not take us to the signal handler. If this
2318 is a step, we'll need to stop in the signal handler, if
2319 there's one, (if the target supports stepping into
2320 handlers), or in the next mainline instruction, if
2321 there's no handler. If this is a continue, we need to be
2322 sure to run the handler with all breakpoints inserted.
2323 In all cases, set a breakpoint at the current address
2324 (where the handler returns to), and once that breakpoint
2325 is hit, resume skipping the permanent breakpoint. If
2326 that breakpoint isn't hit, then we've stepped into the
2327 signal handler (or hit some other event). We'll delete
2328 the step-resume breakpoint then. */
2329
2330 if (debug_infrun)
2331 fprintf_unfiltered (gdb_stdlog,
2332 "infrun: resume: skipping permanent breakpoint, "
2333 "deliver signal first\n");
2334
2335 clear_step_over_info ();
2336 tp->control.trap_expected = 0;
2337
2338 if (tp->control.step_resume_breakpoint == NULL)
2339 {
2340 /* Set a "high-priority" step-resume, as we don't want
2341 user breakpoints at PC to trigger (again) when this
2342 hits. */
2343 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2344 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2345
2346 tp->step_after_step_resume_breakpoint = step;
2347 }
2348
2349 insert_breakpoints ();
2350 }
2351 else
2352 {
2353 /* There's no signal to pass, we can go ahead and skip the
2354 permanent breakpoint manually. */
2355 if (debug_infrun)
2356 fprintf_unfiltered (gdb_stdlog,
2357 "infrun: resume: skipping permanent breakpoint\n");
2358 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2359 /* Update pc to reflect the new address from which we will
2360 execute instructions. */
2361 pc = regcache_read_pc (regcache);
2362
2363 if (step)
2364 {
2365 /* We've already advanced the PC, so the stepping part
2366 is done. Now we need to arrange for a trap to be
2367 reported to handle_inferior_event. Set a breakpoint
2368 at the current PC, and run to it. Don't update
2369 prev_pc, because if we end in
44a1ee51
PA
2370 switch_back_to_stepped_thread, we want the "expected
2371 thread advanced also" branch to be taken. IOW, we
2372 don't want this thread to step further from PC
af48d08f 2373 (overstep). */
1ac806b8 2374 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2375 insert_single_step_breakpoint (gdbarch, aspace, pc);
2376 insert_breakpoints ();
2377
fbea99ea 2378 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2379 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2380 tp->resumed = 1;
af48d08f
PA
2381 return;
2382 }
2383 }
6d350bb5 2384 }
c2c6d25f 2385
c1e36e3e
PA
2386 /* If we have a breakpoint to step over, make sure to do a single
2387 step only. Same if we have software watchpoints. */
2388 if (tp->control.trap_expected || bpstat_should_step ())
2389 tp->control.may_range_step = 0;
2390
237fc4c9
PA
2391 /* If enabled, step over breakpoints by executing a copy of the
2392 instruction at a different address.
2393
2394 We can't use displaced stepping when we have a signal to deliver;
2395 the comments for displaced_step_prepare explain why. The
2396 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2397 signals' explain what we do instead.
2398
2399 We can't use displaced stepping when we are waiting for vfork_done
2400 event, displaced stepping breaks the vfork child similarly as single
2401 step software breakpoint. */
3fc8eb30
PA
2402 if (tp->control.trap_expected
2403 && use_displaced_stepping (tp)
cb71640d 2404 && !step_over_info_valid_p ()
a493e3e2 2405 && sig == GDB_SIGNAL_0
74609e71 2406 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2407 {
00431a78 2408 int prepared = displaced_step_prepare (tp);
fc1cf338 2409
3fc8eb30 2410 if (prepared == 0)
d56b7306 2411 {
4d9d9d04
PA
2412 if (debug_infrun)
2413 fprintf_unfiltered (gdb_stdlog,
2414 "Got placed in step-over queue\n");
2415
2416 tp->control.trap_expected = 0;
d56b7306
VP
2417 return;
2418 }
3fc8eb30
PA
2419 else if (prepared < 0)
2420 {
2421 /* Fallback to stepping over the breakpoint in-line. */
2422
2423 if (target_is_non_stop_p ())
2424 stop_all_threads ();
2425
a01bda52 2426 set_step_over_info (regcache->aspace (),
21edc42f 2427 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2428
2429 step = maybe_software_singlestep (gdbarch, pc);
2430
2431 insert_breakpoints ();
2432 }
2433 else if (prepared > 0)
2434 {
2435 struct displaced_step_inferior_state *displaced;
99e40580 2436
3fc8eb30
PA
2437 /* Update pc to reflect the new address from which we will
2438 execute instructions due to displaced stepping. */
00431a78 2439 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2440
00431a78 2441 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2442 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2443 displaced->step_closure);
2444 }
237fc4c9
PA
2445 }
2446
2facfe5c 2447 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2448 else if (step)
2facfe5c 2449 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2450
30852783
UW
2451 /* Currently, our software single-step implementation leads to different
2452 results than hardware single-stepping in one situation: when stepping
2453 into delivering a signal which has an associated signal handler,
2454 hardware single-step will stop at the first instruction of the handler,
2455 while software single-step will simply skip execution of the handler.
2456
2457 For now, this difference in behavior is accepted since there is no
2458 easy way to actually implement single-stepping into a signal handler
2459 without kernel support.
2460
2461 However, there is one scenario where this difference leads to follow-on
2462 problems: if we're stepping off a breakpoint by removing all breakpoints
2463 and then single-stepping. In this case, the software single-step
2464 behavior means that even if there is a *breakpoint* in the signal
2465 handler, GDB still would not stop.
2466
2467 Fortunately, we can at least fix this particular issue. We detect
2468 here the case where we are about to deliver a signal while software
2469 single-stepping with breakpoints removed. In this situation, we
2470 revert the decisions to remove all breakpoints and insert single-
2471 step breakpoints, and instead we install a step-resume breakpoint
2472 at the current address, deliver the signal without stepping, and
2473 once we arrive back at the step-resume breakpoint, actually step
2474 over the breakpoint we originally wanted to step over. */
34b7e8a6 2475 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2476 && sig != GDB_SIGNAL_0
2477 && step_over_info_valid_p ())
30852783
UW
2478 {
2479 /* If we have nested signals or a pending signal is delivered
2480 immediately after a handler returns, might might already have
2481 a step-resume breakpoint set on the earlier handler. We cannot
2482 set another step-resume breakpoint; just continue on until the
2483 original breakpoint is hit. */
2484 if (tp->control.step_resume_breakpoint == NULL)
2485 {
2c03e5be 2486 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2487 tp->step_after_step_resume_breakpoint = 1;
2488 }
2489
34b7e8a6 2490 delete_single_step_breakpoints (tp);
30852783 2491
31e77af2 2492 clear_step_over_info ();
30852783 2493 tp->control.trap_expected = 0;
31e77af2
PA
2494
2495 insert_breakpoints ();
30852783
UW
2496 }
2497
b0f16a3e
SM
2498 /* If STEP is set, it's a request to use hardware stepping
2499 facilities. But in that case, we should never
2500 use singlestep breakpoint. */
34b7e8a6 2501 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2502
fbea99ea 2503 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2504 if (tp->control.trap_expected)
b0f16a3e
SM
2505 {
2506 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2507 hit, either by single-stepping the thread with the breakpoint
2508 removed, or by displaced stepping, with the breakpoint inserted.
2509 In the former case, we need to single-step only this thread,
2510 and keep others stopped, as they can miss this breakpoint if
2511 allowed to run. That's not really a problem for displaced
2512 stepping, but, we still keep other threads stopped, in case
2513 another thread is also stopped for a breakpoint waiting for
2514 its turn in the displaced stepping queue. */
b0f16a3e
SM
2515 resume_ptid = inferior_ptid;
2516 }
fbea99ea
PA
2517 else
2518 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2519
7f5ef605
PA
2520 if (execution_direction != EXEC_REVERSE
2521 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2522 {
372316f1
PA
2523 /* There are two cases where we currently need to step a
2524 breakpoint instruction when we have a signal to deliver:
2525
2526 - See handle_signal_stop where we handle random signals that
2527 could take out us out of the stepping range. Normally, in
2528 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2529 signal handler with a breakpoint at PC, but there are cases
2530 where we should _always_ single-step, even if we have a
2531 step-resume breakpoint, like when a software watchpoint is
2532 set. Assuming single-stepping and delivering a signal at the
2533 same time would takes us to the signal handler, then we could
2534 have removed the breakpoint at PC to step over it. However,
2535 some hardware step targets (like e.g., Mac OS) can't step
2536 into signal handlers, and for those, we need to leave the
2537 breakpoint at PC inserted, as otherwise if the handler
2538 recurses and executes PC again, it'll miss the breakpoint.
2539 So we leave the breakpoint inserted anyway, but we need to
2540 record that we tried to step a breakpoint instruction, so
372316f1
PA
2541 that adjust_pc_after_break doesn't end up confused.
2542
2543 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2544 in one thread after another thread that was stepping had been
2545 momentarily paused for a step-over. When we re-resume the
2546 stepping thread, it may be resumed from that address with a
2547 breakpoint that hasn't trapped yet. Seen with
2548 gdb.threads/non-stop-fair-events.exp, on targets that don't
2549 do displaced stepping. */
2550
2551 if (debug_infrun)
2552 fprintf_unfiltered (gdb_stdlog,
2553 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2554 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2555
2556 tp->stepped_breakpoint = 1;
2557
b0f16a3e
SM
2558 /* Most targets can step a breakpoint instruction, thus
2559 executing it normally. But if this one cannot, just
2560 continue and we will hit it anyway. */
7f5ef605 2561 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2562 step = 0;
2563 }
ef5cf84e 2564
b0f16a3e 2565 if (debug_displaced
cb71640d 2566 && tp->control.trap_expected
3fc8eb30 2567 && use_displaced_stepping (tp)
cb71640d 2568 && !step_over_info_valid_p ())
b0f16a3e 2569 {
00431a78 2570 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2571 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2572 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2573 gdb_byte buf[4];
2574
2575 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2576 paddress (resume_gdbarch, actual_pc));
2577 read_memory (actual_pc, buf, sizeof (buf));
2578 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2579 }
237fc4c9 2580
b0f16a3e
SM
2581 if (tp->control.may_range_step)
2582 {
2583 /* If we're resuming a thread with the PC out of the step
2584 range, then we're doing some nested/finer run control
2585 operation, like stepping the thread out of the dynamic
2586 linker or the displaced stepping scratch pad. We
2587 shouldn't have allowed a range step then. */
2588 gdb_assert (pc_in_thread_step_range (pc, tp));
2589 }
c1e36e3e 2590
64ce06e4 2591 do_target_resume (resume_ptid, step, sig);
372316f1 2592 tp->resumed = 1;
c906108c 2593}
71d378ae
PA
2594
2595/* Resume the inferior. SIG is the signal to give the inferior
2596 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2597 rolls back state on error. */
2598
aff4e175 2599static void
71d378ae
PA
2600resume (gdb_signal sig)
2601{
a70b8144 2602 try
71d378ae
PA
2603 {
2604 resume_1 (sig);
2605 }
230d2906 2606 catch (const gdb_exception &ex)
71d378ae
PA
2607 {
2608 /* If resuming is being aborted for any reason, delete any
2609 single-step breakpoint resume_1 may have created, to avoid
2610 confusing the following resumption, and to avoid leaving
2611 single-step breakpoints perturbing other threads, in case
2612 we're running in non-stop mode. */
2613 if (inferior_ptid != null_ptid)
2614 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2615 throw;
71d378ae 2616 }
71d378ae
PA
2617}
2618
c906108c 2619\f
237fc4c9 2620/* Proceeding. */
c906108c 2621
4c2f2a79
PA
2622/* See infrun.h. */
2623
2624/* Counter that tracks number of user visible stops. This can be used
2625 to tell whether a command has proceeded the inferior past the
2626 current location. This allows e.g., inferior function calls in
2627 breakpoint commands to not interrupt the command list. When the
2628 call finishes successfully, the inferior is standing at the same
2629 breakpoint as if nothing happened (and so we don't call
2630 normal_stop). */
2631static ULONGEST current_stop_id;
2632
2633/* See infrun.h. */
2634
2635ULONGEST
2636get_stop_id (void)
2637{
2638 return current_stop_id;
2639}
2640
2641/* Called when we report a user visible stop. */
2642
2643static void
2644new_stop_id (void)
2645{
2646 current_stop_id++;
2647}
2648
c906108c
SS
2649/* Clear out all variables saying what to do when inferior is continued.
2650 First do this, then set the ones you want, then call `proceed'. */
2651
a7212384
UW
2652static void
2653clear_proceed_status_thread (struct thread_info *tp)
c906108c 2654{
a7212384
UW
2655 if (debug_infrun)
2656 fprintf_unfiltered (gdb_stdlog,
2657 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2658 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2659
372316f1
PA
2660 /* If we're starting a new sequence, then the previous finished
2661 single-step is no longer relevant. */
2662 if (tp->suspend.waitstatus_pending_p)
2663 {
2664 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2665 {
2666 if (debug_infrun)
2667 fprintf_unfiltered (gdb_stdlog,
2668 "infrun: clear_proceed_status: pending "
2669 "event of %s was a finished step. "
2670 "Discarding.\n",
a068643d 2671 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2672
2673 tp->suspend.waitstatus_pending_p = 0;
2674 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2675 }
2676 else if (debug_infrun)
2677 {
23fdd69e
SM
2678 std::string statstr
2679 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2680
372316f1
PA
2681 fprintf_unfiltered (gdb_stdlog,
2682 "infrun: clear_proceed_status_thread: thread %s "
2683 "has pending wait status %s "
2684 "(currently_stepping=%d).\n",
a068643d
TT
2685 target_pid_to_str (tp->ptid).c_str (),
2686 statstr.c_str (),
372316f1 2687 currently_stepping (tp));
372316f1
PA
2688 }
2689 }
2690
70509625
PA
2691 /* If this signal should not be seen by program, give it zero.
2692 Used for debugging signals. */
2693 if (!signal_pass_state (tp->suspend.stop_signal))
2694 tp->suspend.stop_signal = GDB_SIGNAL_0;
2695
46e3ed7f 2696 delete tp->thread_fsm;
243a9253
PA
2697 tp->thread_fsm = NULL;
2698
16c381f0
JK
2699 tp->control.trap_expected = 0;
2700 tp->control.step_range_start = 0;
2701 tp->control.step_range_end = 0;
c1e36e3e 2702 tp->control.may_range_step = 0;
16c381f0
JK
2703 tp->control.step_frame_id = null_frame_id;
2704 tp->control.step_stack_frame_id = null_frame_id;
2705 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2706 tp->control.step_start_function = NULL;
a7212384 2707 tp->stop_requested = 0;
4e1c45ea 2708
16c381f0 2709 tp->control.stop_step = 0;
32400beb 2710
16c381f0 2711 tp->control.proceed_to_finish = 0;
414c69f7 2712
856e7dd6 2713 tp->control.stepping_command = 0;
17b2616c 2714
a7212384 2715 /* Discard any remaining commands or status from previous stop. */
16c381f0 2716 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2717}
32400beb 2718
a7212384 2719void
70509625 2720clear_proceed_status (int step)
a7212384 2721{
f2665db5
MM
2722 /* With scheduler-locking replay, stop replaying other threads if we're
2723 not replaying the user-visible resume ptid.
2724
2725 This is a convenience feature to not require the user to explicitly
2726 stop replaying the other threads. We're assuming that the user's
2727 intent is to resume tracing the recorded process. */
2728 if (!non_stop && scheduler_mode == schedlock_replay
2729 && target_record_is_replaying (minus_one_ptid)
2730 && !target_record_will_replay (user_visible_resume_ptid (step),
2731 execution_direction))
2732 target_record_stop_replaying ();
2733
08036331 2734 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2735 {
08036331 2736 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2737
2738 /* In all-stop mode, delete the per-thread status of all threads
2739 we're about to resume, implicitly and explicitly. */
08036331
PA
2740 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2741 clear_proceed_status_thread (tp);
6c95b8df
PA
2742 }
2743
d7e15655 2744 if (inferior_ptid != null_ptid)
a7212384
UW
2745 {
2746 struct inferior *inferior;
2747
2748 if (non_stop)
2749 {
6c95b8df
PA
2750 /* If in non-stop mode, only delete the per-thread status of
2751 the current thread. */
a7212384
UW
2752 clear_proceed_status_thread (inferior_thread ());
2753 }
6c95b8df 2754
d6b48e9c 2755 inferior = current_inferior ();
16c381f0 2756 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2757 }
2758
76727919 2759 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2760}
2761
99619bea
PA
2762/* Returns true if TP is still stopped at a breakpoint that needs
2763 stepping-over in order to make progress. If the breakpoint is gone
2764 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2765
2766static int
6c4cfb24 2767thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2768{
2769 if (tp->stepping_over_breakpoint)
2770 {
00431a78 2771 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2772
a01bda52 2773 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2774 regcache_read_pc (regcache))
2775 == ordinary_breakpoint_here)
99619bea
PA
2776 return 1;
2777
2778 tp->stepping_over_breakpoint = 0;
2779 }
2780
2781 return 0;
2782}
2783
6c4cfb24
PA
2784/* Check whether thread TP still needs to start a step-over in order
2785 to make progress when resumed. Returns an bitwise or of enum
2786 step_over_what bits, indicating what needs to be stepped over. */
2787
8d297bbf 2788static step_over_what
6c4cfb24
PA
2789thread_still_needs_step_over (struct thread_info *tp)
2790{
8d297bbf 2791 step_over_what what = 0;
6c4cfb24
PA
2792
2793 if (thread_still_needs_step_over_bp (tp))
2794 what |= STEP_OVER_BREAKPOINT;
2795
2796 if (tp->stepping_over_watchpoint
2797 && !target_have_steppable_watchpoint)
2798 what |= STEP_OVER_WATCHPOINT;
2799
2800 return what;
2801}
2802
483805cf
PA
2803/* Returns true if scheduler locking applies. STEP indicates whether
2804 we're about to do a step/next-like command to a thread. */
2805
2806static int
856e7dd6 2807schedlock_applies (struct thread_info *tp)
483805cf
PA
2808{
2809 return (scheduler_mode == schedlock_on
2810 || (scheduler_mode == schedlock_step
f2665db5
MM
2811 && tp->control.stepping_command)
2812 || (scheduler_mode == schedlock_replay
2813 && target_record_will_replay (minus_one_ptid,
2814 execution_direction)));
483805cf
PA
2815}
2816
c906108c
SS
2817/* Basic routine for continuing the program in various fashions.
2818
2819 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2820 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2821 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2822
2823 You should call clear_proceed_status before calling proceed. */
2824
2825void
64ce06e4 2826proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2827{
e58b0e63
PA
2828 struct regcache *regcache;
2829 struct gdbarch *gdbarch;
e58b0e63 2830 CORE_ADDR pc;
4d9d9d04
PA
2831 ptid_t resume_ptid;
2832 struct execution_control_state ecss;
2833 struct execution_control_state *ecs = &ecss;
4d9d9d04 2834 int started;
c906108c 2835
e58b0e63
PA
2836 /* If we're stopped at a fork/vfork, follow the branch set by the
2837 "set follow-fork-mode" command; otherwise, we'll just proceed
2838 resuming the current thread. */
2839 if (!follow_fork ())
2840 {
2841 /* The target for some reason decided not to resume. */
2842 normal_stop ();
f148b27e
PA
2843 if (target_can_async_p ())
2844 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2845 return;
2846 }
2847
842951eb
PA
2848 /* We'll update this if & when we switch to a new thread. */
2849 previous_inferior_ptid = inferior_ptid;
2850
e58b0e63 2851 regcache = get_current_regcache ();
ac7936df 2852 gdbarch = regcache->arch ();
8b86c959
YQ
2853 const address_space *aspace = regcache->aspace ();
2854
e58b0e63 2855 pc = regcache_read_pc (regcache);
08036331 2856 thread_info *cur_thr = inferior_thread ();
e58b0e63 2857
99619bea 2858 /* Fill in with reasonable starting values. */
08036331 2859 init_thread_stepping_state (cur_thr);
99619bea 2860
08036331 2861 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2862
2acceee2 2863 if (addr == (CORE_ADDR) -1)
c906108c 2864 {
08036331 2865 if (pc == cur_thr->suspend.stop_pc
af48d08f 2866 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2867 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2868 /* There is a breakpoint at the address we will resume at,
2869 step one instruction before inserting breakpoints so that
2870 we do not stop right away (and report a second hit at this
b2175913
MS
2871 breakpoint).
2872
2873 Note, we don't do this in reverse, because we won't
2874 actually be executing the breakpoint insn anyway.
2875 We'll be (un-)executing the previous instruction. */
08036331 2876 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2877 else if (gdbarch_single_step_through_delay_p (gdbarch)
2878 && gdbarch_single_step_through_delay (gdbarch,
2879 get_current_frame ()))
3352ef37
AC
2880 /* We stepped onto an instruction that needs to be stepped
2881 again before re-inserting the breakpoint, do so. */
08036331 2882 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2883 }
2884 else
2885 {
515630c5 2886 regcache_write_pc (regcache, addr);
c906108c
SS
2887 }
2888
70509625 2889 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2890 cur_thr->suspend.stop_signal = siggnal;
70509625 2891
08036331 2892 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2893
2894 /* If an exception is thrown from this point on, make sure to
2895 propagate GDB's knowledge of the executing state to the
2896 frontend/user running state. */
731f534f 2897 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2898
2899 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2900 threads (e.g., we might need to set threads stepping over
2901 breakpoints first), from the user/frontend's point of view, all
2902 threads in RESUME_PTID are now running. Unless we're calling an
2903 inferior function, as in that case we pretend the inferior
2904 doesn't run at all. */
08036331 2905 if (!cur_thr->control.in_infcall)
4d9d9d04 2906 set_running (resume_ptid, 1);
17b2616c 2907
527159b7 2908 if (debug_infrun)
8a9de0e4 2909 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2910 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2911 paddress (gdbarch, addr),
64ce06e4 2912 gdb_signal_to_symbol_string (siggnal));
527159b7 2913
4d9d9d04
PA
2914 annotate_starting ();
2915
2916 /* Make sure that output from GDB appears before output from the
2917 inferior. */
2918 gdb_flush (gdb_stdout);
2919
d930703d
PA
2920 /* Since we've marked the inferior running, give it the terminal. A
2921 QUIT/Ctrl-C from here on is forwarded to the target (which can
2922 still detect attempts to unblock a stuck connection with repeated
2923 Ctrl-C from within target_pass_ctrlc). */
2924 target_terminal::inferior ();
2925
4d9d9d04
PA
2926 /* In a multi-threaded task we may select another thread and
2927 then continue or step.
2928
2929 But if a thread that we're resuming had stopped at a breakpoint,
2930 it will immediately cause another breakpoint stop without any
2931 execution (i.e. it will report a breakpoint hit incorrectly). So
2932 we must step over it first.
2933
2934 Look for threads other than the current (TP) that reported a
2935 breakpoint hit and haven't been resumed yet since. */
2936
2937 /* If scheduler locking applies, we can avoid iterating over all
2938 threads. */
08036331 2939 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2940 {
08036331
PA
2941 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2942 {
f3f8ece4
PA
2943 switch_to_thread_no_regs (tp);
2944
4d9d9d04
PA
2945 /* Ignore the current thread here. It's handled
2946 afterwards. */
08036331 2947 if (tp == cur_thr)
4d9d9d04 2948 continue;
c906108c 2949
4d9d9d04
PA
2950 if (!thread_still_needs_step_over (tp))
2951 continue;
2952
2953 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2954
99619bea
PA
2955 if (debug_infrun)
2956 fprintf_unfiltered (gdb_stdlog,
2957 "infrun: need to step-over [%s] first\n",
a068643d 2958 target_pid_to_str (tp->ptid).c_str ());
99619bea 2959
4d9d9d04 2960 thread_step_over_chain_enqueue (tp);
2adfaa28 2961 }
f3f8ece4
PA
2962
2963 switch_to_thread (cur_thr);
30852783
UW
2964 }
2965
4d9d9d04
PA
2966 /* Enqueue the current thread last, so that we move all other
2967 threads over their breakpoints first. */
08036331
PA
2968 if (cur_thr->stepping_over_breakpoint)
2969 thread_step_over_chain_enqueue (cur_thr);
30852783 2970
4d9d9d04
PA
2971 /* If the thread isn't started, we'll still need to set its prev_pc,
2972 so that switch_back_to_stepped_thread knows the thread hasn't
2973 advanced. Must do this before resuming any thread, as in
2974 all-stop/remote, once we resume we can't send any other packet
2975 until the target stops again. */
08036331 2976 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2977
a9bc57b9
TT
2978 {
2979 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 2980
a9bc57b9 2981 started = start_step_over ();
c906108c 2982
a9bc57b9
TT
2983 if (step_over_info_valid_p ())
2984 {
2985 /* Either this thread started a new in-line step over, or some
2986 other thread was already doing one. In either case, don't
2987 resume anything else until the step-over is finished. */
2988 }
2989 else if (started && !target_is_non_stop_p ())
2990 {
2991 /* A new displaced stepping sequence was started. In all-stop,
2992 we can't talk to the target anymore until it next stops. */
2993 }
2994 else if (!non_stop && target_is_non_stop_p ())
2995 {
2996 /* In all-stop, but the target is always in non-stop mode.
2997 Start all other threads that are implicitly resumed too. */
08036331 2998 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 2999 {
f3f8ece4
PA
3000 switch_to_thread_no_regs (tp);
3001
fbea99ea
PA
3002 if (tp->resumed)
3003 {
3004 if (debug_infrun)
3005 fprintf_unfiltered (gdb_stdlog,
3006 "infrun: proceed: [%s] resumed\n",
a068643d 3007 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3008 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3009 continue;
3010 }
3011
3012 if (thread_is_in_step_over_chain (tp))
3013 {
3014 if (debug_infrun)
3015 fprintf_unfiltered (gdb_stdlog,
3016 "infrun: proceed: [%s] needs step-over\n",
a068643d 3017 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3018 continue;
3019 }
3020
3021 if (debug_infrun)
3022 fprintf_unfiltered (gdb_stdlog,
3023 "infrun: proceed: resuming %s\n",
a068643d 3024 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3025
3026 reset_ecs (ecs, tp);
00431a78 3027 switch_to_thread (tp);
fbea99ea
PA
3028 keep_going_pass_signal (ecs);
3029 if (!ecs->wait_some_more)
fd7dcb94 3030 error (_("Command aborted."));
fbea99ea 3031 }
a9bc57b9 3032 }
08036331 3033 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3034 {
3035 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3036 reset_ecs (ecs, cur_thr);
3037 switch_to_thread (cur_thr);
a9bc57b9
TT
3038 keep_going_pass_signal (ecs);
3039 if (!ecs->wait_some_more)
3040 error (_("Command aborted."));
3041 }
3042 }
c906108c 3043
85ad3aaf
PA
3044 target_commit_resume ();
3045
731f534f 3046 finish_state.release ();
c906108c 3047
873657b9
PA
3048 /* If we've switched threads above, switch back to the previously
3049 current thread. We don't want the user to see a different
3050 selected thread. */
3051 switch_to_thread (cur_thr);
3052
0b333c5e
PA
3053 /* Tell the event loop to wait for it to stop. If the target
3054 supports asynchronous execution, it'll do this from within
3055 target_resume. */
362646f5 3056 if (!target_can_async_p ())
0b333c5e 3057 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3058}
c906108c
SS
3059\f
3060
3061/* Start remote-debugging of a machine over a serial link. */
96baa820 3062
c906108c 3063void
8621d6a9 3064start_remote (int from_tty)
c906108c 3065{
d6b48e9c 3066 struct inferior *inferior;
d6b48e9c
PA
3067
3068 inferior = current_inferior ();
16c381f0 3069 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3070
1777feb0 3071 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3072 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3073 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3074 nothing is returned (instead of just blocking). Because of this,
3075 targets expecting an immediate response need to, internally, set
3076 things up so that the target_wait() is forced to eventually
1777feb0 3077 timeout. */
6426a772
JM
3078 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3079 differentiate to its caller what the state of the target is after
3080 the initial open has been performed. Here we're assuming that
3081 the target has stopped. It should be possible to eventually have
3082 target_open() return to the caller an indication that the target
3083 is currently running and GDB state should be set to the same as
1777feb0 3084 for an async run. */
e4c8541f 3085 wait_for_inferior ();
8621d6a9
DJ
3086
3087 /* Now that the inferior has stopped, do any bookkeeping like
3088 loading shared libraries. We want to do this before normal_stop,
3089 so that the displayed frame is up to date. */
8b88a78e 3090 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3091
6426a772 3092 normal_stop ();
c906108c
SS
3093}
3094
3095/* Initialize static vars when a new inferior begins. */
3096
3097void
96baa820 3098init_wait_for_inferior (void)
c906108c
SS
3099{
3100 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3101
c906108c
SS
3102 breakpoint_init_inferior (inf_starting);
3103
70509625 3104 clear_proceed_status (0);
9f976b41 3105
ca005067 3106 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3107
842951eb 3108 previous_inferior_ptid = inferior_ptid;
c906108c 3109}
237fc4c9 3110
c906108c 3111\f
488f131b 3112
ec9499be 3113static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3114
568d6575
UW
3115static void handle_step_into_function (struct gdbarch *gdbarch,
3116 struct execution_control_state *ecs);
3117static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3118 struct execution_control_state *ecs);
4f5d7f63 3119static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3120static void check_exception_resume (struct execution_control_state *,
28106bc2 3121 struct frame_info *);
611c83ae 3122
bdc36728 3123static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3124static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3125static void keep_going (struct execution_control_state *ecs);
94c57d6a 3126static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3127static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3128
252fbfc8
PA
3129/* This function is attached as a "thread_stop_requested" observer.
3130 Cleanup local state that assumed the PTID was to be resumed, and
3131 report the stop to the frontend. */
3132
2c0b251b 3133static void
252fbfc8
PA
3134infrun_thread_stop_requested (ptid_t ptid)
3135{
c65d6b55
PA
3136 /* PTID was requested to stop. If the thread was already stopped,
3137 but the user/frontend doesn't know about that yet (e.g., the
3138 thread had been temporarily paused for some step-over), set up
3139 for reporting the stop now. */
08036331
PA
3140 for (thread_info *tp : all_threads (ptid))
3141 {
3142 if (tp->state != THREAD_RUNNING)
3143 continue;
3144 if (tp->executing)
3145 continue;
c65d6b55 3146
08036331
PA
3147 /* Remove matching threads from the step-over queue, so
3148 start_step_over doesn't try to resume them
3149 automatically. */
3150 if (thread_is_in_step_over_chain (tp))
3151 thread_step_over_chain_remove (tp);
c65d6b55 3152
08036331
PA
3153 /* If the thread is stopped, but the user/frontend doesn't
3154 know about that yet, queue a pending event, as if the
3155 thread had just stopped now. Unless the thread already had
3156 a pending event. */
3157 if (!tp->suspend.waitstatus_pending_p)
3158 {
3159 tp->suspend.waitstatus_pending_p = 1;
3160 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3161 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3162 }
c65d6b55 3163
08036331
PA
3164 /* Clear the inline-frame state, since we're re-processing the
3165 stop. */
3166 clear_inline_frame_state (tp->ptid);
c65d6b55 3167
08036331
PA
3168 /* If this thread was paused because some other thread was
3169 doing an inline-step over, let that finish first. Once
3170 that happens, we'll restart all threads and consume pending
3171 stop events then. */
3172 if (step_over_info_valid_p ())
3173 continue;
3174
3175 /* Otherwise we can process the (new) pending event now. Set
3176 it so this pending event is considered by
3177 do_target_wait. */
3178 tp->resumed = 1;
3179 }
252fbfc8
PA
3180}
3181
a07daef3
PA
3182static void
3183infrun_thread_thread_exit (struct thread_info *tp, int silent)
3184{
d7e15655 3185 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3186 nullify_last_target_wait_ptid ();
3187}
3188
0cbcdb96
PA
3189/* Delete the step resume, single-step and longjmp/exception resume
3190 breakpoints of TP. */
4e1c45ea 3191
0cbcdb96
PA
3192static void
3193delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3194{
0cbcdb96
PA
3195 delete_step_resume_breakpoint (tp);
3196 delete_exception_resume_breakpoint (tp);
34b7e8a6 3197 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3198}
3199
0cbcdb96
PA
3200/* If the target still has execution, call FUNC for each thread that
3201 just stopped. In all-stop, that's all the non-exited threads; in
3202 non-stop, that's the current thread, only. */
3203
3204typedef void (*for_each_just_stopped_thread_callback_func)
3205 (struct thread_info *tp);
4e1c45ea
PA
3206
3207static void
0cbcdb96 3208for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3209{
d7e15655 3210 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3211 return;
3212
fbea99ea 3213 if (target_is_non_stop_p ())
4e1c45ea 3214 {
0cbcdb96
PA
3215 /* If in non-stop mode, only the current thread stopped. */
3216 func (inferior_thread ());
4e1c45ea
PA
3217 }
3218 else
0cbcdb96 3219 {
0cbcdb96 3220 /* In all-stop mode, all threads have stopped. */
08036331
PA
3221 for (thread_info *tp : all_non_exited_threads ())
3222 func (tp);
0cbcdb96
PA
3223 }
3224}
3225
3226/* Delete the step resume and longjmp/exception resume breakpoints of
3227 the threads that just stopped. */
3228
3229static void
3230delete_just_stopped_threads_infrun_breakpoints (void)
3231{
3232 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3233}
3234
3235/* Delete the single-step breakpoints of the threads that just
3236 stopped. */
7c16b83e 3237
34b7e8a6
PA
3238static void
3239delete_just_stopped_threads_single_step_breakpoints (void)
3240{
3241 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3242}
3243
221e1a37 3244/* See infrun.h. */
223698f8 3245
221e1a37 3246void
223698f8
DE
3247print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3248 const struct target_waitstatus *ws)
3249{
23fdd69e 3250 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3251 string_file stb;
223698f8
DE
3252
3253 /* The text is split over several lines because it was getting too long.
3254 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3255 output as a unit; we want only one timestamp printed if debug_timestamp
3256 is set. */
3257
d7e74731 3258 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3259 waiton_ptid.pid (),
e38504b3 3260 waiton_ptid.lwp (),
cc6bcb54 3261 waiton_ptid.tid ());
e99b03dc 3262 if (waiton_ptid.pid () != -1)
a068643d 3263 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3264 stb.printf (", status) =\n");
3265 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3266 result_ptid.pid (),
e38504b3 3267 result_ptid.lwp (),
cc6bcb54 3268 result_ptid.tid (),
a068643d 3269 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3270 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3271
3272 /* This uses %s in part to handle %'s in the text, but also to avoid
3273 a gcc error: the format attribute requires a string literal. */
d7e74731 3274 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3275}
3276
372316f1
PA
3277/* Select a thread at random, out of those which are resumed and have
3278 had events. */
3279
3280static struct thread_info *
3281random_pending_event_thread (ptid_t waiton_ptid)
3282{
372316f1 3283 int num_events = 0;
08036331
PA
3284
3285 auto has_event = [] (thread_info *tp)
3286 {
3287 return (tp->resumed
3288 && tp->suspend.waitstatus_pending_p);
3289 };
372316f1
PA
3290
3291 /* First see how many events we have. Count only resumed threads
3292 that have an event pending. */
08036331
PA
3293 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3294 if (has_event (tp))
372316f1
PA
3295 num_events++;
3296
3297 if (num_events == 0)
3298 return NULL;
3299
3300 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3301 int random_selector = (int) ((num_events * (double) rand ())
3302 / (RAND_MAX + 1.0));
372316f1
PA
3303
3304 if (debug_infrun && num_events > 1)
3305 fprintf_unfiltered (gdb_stdlog,
3306 "infrun: Found %d events, selecting #%d\n",
3307 num_events, random_selector);
3308
3309 /* Select the Nth thread that has had an event. */
08036331
PA
3310 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3311 if (has_event (tp))
372316f1 3312 if (random_selector-- == 0)
08036331 3313 return tp;
372316f1 3314
08036331 3315 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3316}
3317
3318/* Wrapper for target_wait that first checks whether threads have
3319 pending statuses to report before actually asking the target for
3320 more events. */
3321
3322static ptid_t
3323do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3324{
3325 ptid_t event_ptid;
3326 struct thread_info *tp;
3327
3328 /* First check if there is a resumed thread with a wait status
3329 pending. */
d7e15655 3330 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3331 {
3332 tp = random_pending_event_thread (ptid);
3333 }
3334 else
3335 {
3336 if (debug_infrun)
3337 fprintf_unfiltered (gdb_stdlog,
3338 "infrun: Waiting for specific thread %s.\n",
a068643d 3339 target_pid_to_str (ptid).c_str ());
372316f1
PA
3340
3341 /* We have a specific thread to check. */
3342 tp = find_thread_ptid (ptid);
3343 gdb_assert (tp != NULL);
3344 if (!tp->suspend.waitstatus_pending_p)
3345 tp = NULL;
3346 }
3347
3348 if (tp != NULL
3349 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3350 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3351 {
00431a78 3352 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3353 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3354 CORE_ADDR pc;
3355 int discard = 0;
3356
3357 pc = regcache_read_pc (regcache);
3358
3359 if (pc != tp->suspend.stop_pc)
3360 {
3361 if (debug_infrun)
3362 fprintf_unfiltered (gdb_stdlog,
3363 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3364 target_pid_to_str (tp->ptid).c_str (),
defd2172 3365 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3366 paddress (gdbarch, pc));
3367 discard = 1;
3368 }
a01bda52 3369 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3370 {
3371 if (debug_infrun)
3372 fprintf_unfiltered (gdb_stdlog,
3373 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3374 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3375 paddress (gdbarch, pc));
3376
3377 discard = 1;
3378 }
3379
3380 if (discard)
3381 {
3382 if (debug_infrun)
3383 fprintf_unfiltered (gdb_stdlog,
3384 "infrun: pending event of %s cancelled.\n",
a068643d 3385 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3386
3387 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3388 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3389 }
3390 }
3391
3392 if (tp != NULL)
3393 {
3394 if (debug_infrun)
3395 {
23fdd69e
SM
3396 std::string statstr
3397 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3398
372316f1
PA
3399 fprintf_unfiltered (gdb_stdlog,
3400 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3401 statstr.c_str (),
a068643d 3402 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3403 }
3404
3405 /* Now that we've selected our final event LWP, un-adjust its PC
3406 if it was a software breakpoint (and the target doesn't
3407 always adjust the PC itself). */
3408 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3409 && !target_supports_stopped_by_sw_breakpoint ())
3410 {
3411 struct regcache *regcache;
3412 struct gdbarch *gdbarch;
3413 int decr_pc;
3414
00431a78 3415 regcache = get_thread_regcache (tp);
ac7936df 3416 gdbarch = regcache->arch ();
372316f1
PA
3417
3418 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3419 if (decr_pc != 0)
3420 {
3421 CORE_ADDR pc;
3422
3423 pc = regcache_read_pc (regcache);
3424 regcache_write_pc (regcache, pc + decr_pc);
3425 }
3426 }
3427
3428 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3429 *status = tp->suspend.waitstatus;
3430 tp->suspend.waitstatus_pending_p = 0;
3431
3432 /* Wake up the event loop again, until all pending events are
3433 processed. */
3434 if (target_is_async_p ())
3435 mark_async_event_handler (infrun_async_inferior_event_token);
3436 return tp->ptid;
3437 }
3438
3439 /* But if we don't find one, we'll have to wait. */
3440
3441 if (deprecated_target_wait_hook)
3442 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3443 else
3444 event_ptid = target_wait (ptid, status, options);
3445
3446 return event_ptid;
3447}
3448
24291992
PA
3449/* Prepare and stabilize the inferior for detaching it. E.g.,
3450 detaching while a thread is displaced stepping is a recipe for
3451 crashing it, as nothing would readjust the PC out of the scratch
3452 pad. */
3453
3454void
3455prepare_for_detach (void)
3456{
3457 struct inferior *inf = current_inferior ();
f2907e49 3458 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3459
00431a78 3460 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3461
3462 /* Is any thread of this process displaced stepping? If not,
3463 there's nothing else to do. */
d20172fc 3464 if (displaced->step_thread == nullptr)
24291992
PA
3465 return;
3466
3467 if (debug_infrun)
3468 fprintf_unfiltered (gdb_stdlog,
3469 "displaced-stepping in-process while detaching");
3470
9bcb1f16 3471 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3472
00431a78 3473 while (displaced->step_thread != nullptr)
24291992 3474 {
24291992
PA
3475 struct execution_control_state ecss;
3476 struct execution_control_state *ecs;
3477
3478 ecs = &ecss;
3479 memset (ecs, 0, sizeof (*ecs));
3480
3481 overlay_cache_invalid = 1;
f15cb84a
YQ
3482 /* Flush target cache before starting to handle each event.
3483 Target was running and cache could be stale. This is just a
3484 heuristic. Running threads may modify target memory, but we
3485 don't get any event. */
3486 target_dcache_invalidate ();
24291992 3487
372316f1 3488 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3489
3490 if (debug_infrun)
3491 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3492
3493 /* If an error happens while handling the event, propagate GDB's
3494 knowledge of the executing state to the frontend/user running
3495 state. */
731f534f 3496 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3497
3498 /* Now figure out what to do with the result of the result. */
3499 handle_inferior_event (ecs);
3500
3501 /* No error, don't finish the state yet. */
731f534f 3502 finish_state.release ();
24291992
PA
3503
3504 /* Breakpoints and watchpoints are not installed on the target
3505 at this point, and signals are passed directly to the
3506 inferior, so this must mean the process is gone. */
3507 if (!ecs->wait_some_more)
3508 {
9bcb1f16 3509 restore_detaching.release ();
24291992
PA
3510 error (_("Program exited while detaching"));
3511 }
3512 }
3513
9bcb1f16 3514 restore_detaching.release ();
24291992
PA
3515}
3516
cd0fc7c3 3517/* Wait for control to return from inferior to debugger.
ae123ec6 3518
cd0fc7c3
SS
3519 If inferior gets a signal, we may decide to start it up again
3520 instead of returning. That is why there is a loop in this function.
3521 When this function actually returns it means the inferior
3522 should be left stopped and GDB should read more commands. */
3523
3524void
e4c8541f 3525wait_for_inferior (void)
cd0fc7c3 3526{
527159b7 3527 if (debug_infrun)
ae123ec6 3528 fprintf_unfiltered
e4c8541f 3529 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3530
4c41382a 3531 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3532
e6f5c25b
PA
3533 /* If an error happens while handling the event, propagate GDB's
3534 knowledge of the executing state to the frontend/user running
3535 state. */
731f534f 3536 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3537
c906108c
SS
3538 while (1)
3539 {
ae25568b
PA
3540 struct execution_control_state ecss;
3541 struct execution_control_state *ecs = &ecss;
963f9c80 3542 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3543
ae25568b
PA
3544 memset (ecs, 0, sizeof (*ecs));
3545
ec9499be 3546 overlay_cache_invalid = 1;
ec9499be 3547
f15cb84a
YQ
3548 /* Flush target cache before starting to handle each event.
3549 Target was running and cache could be stale. This is just a
3550 heuristic. Running threads may modify target memory, but we
3551 don't get any event. */
3552 target_dcache_invalidate ();
3553
372316f1 3554 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3555
f00150c9 3556 if (debug_infrun)
223698f8 3557 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3558
cd0fc7c3
SS
3559 /* Now figure out what to do with the result of the result. */
3560 handle_inferior_event (ecs);
c906108c 3561
cd0fc7c3
SS
3562 if (!ecs->wait_some_more)
3563 break;
3564 }
4e1c45ea 3565
e6f5c25b 3566 /* No error, don't finish the state yet. */
731f534f 3567 finish_state.release ();
cd0fc7c3 3568}
c906108c 3569
d3d4baed
PA
3570/* Cleanup that reinstalls the readline callback handler, if the
3571 target is running in the background. If while handling the target
3572 event something triggered a secondary prompt, like e.g., a
3573 pagination prompt, we'll have removed the callback handler (see
3574 gdb_readline_wrapper_line). Need to do this as we go back to the
3575 event loop, ready to process further input. Note this has no
3576 effect if the handler hasn't actually been removed, because calling
3577 rl_callback_handler_install resets the line buffer, thus losing
3578 input. */
3579
3580static void
d238133d 3581reinstall_readline_callback_handler_cleanup ()
d3d4baed 3582{
3b12939d
PA
3583 struct ui *ui = current_ui;
3584
3585 if (!ui->async)
6c400b59
PA
3586 {
3587 /* We're not going back to the top level event loop yet. Don't
3588 install the readline callback, as it'd prep the terminal,
3589 readline-style (raw, noecho) (e.g., --batch). We'll install
3590 it the next time the prompt is displayed, when we're ready
3591 for input. */
3592 return;
3593 }
3594
3b12939d 3595 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3596 gdb_rl_callback_handler_reinstall ();
3597}
3598
243a9253
PA
3599/* Clean up the FSMs of threads that are now stopped. In non-stop,
3600 that's just the event thread. In all-stop, that's all threads. */
3601
3602static void
3603clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3604{
08036331
PA
3605 if (ecs->event_thread != NULL
3606 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3607 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3608
3609 if (!non_stop)
3610 {
08036331 3611 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3612 {
3613 if (thr->thread_fsm == NULL)
3614 continue;
3615 if (thr == ecs->event_thread)
3616 continue;
3617
00431a78 3618 switch_to_thread (thr);
46e3ed7f 3619 thr->thread_fsm->clean_up (thr);
243a9253
PA
3620 }
3621
3622 if (ecs->event_thread != NULL)
00431a78 3623 switch_to_thread (ecs->event_thread);
243a9253
PA
3624 }
3625}
3626
3b12939d
PA
3627/* Helper for all_uis_check_sync_execution_done that works on the
3628 current UI. */
3629
3630static void
3631check_curr_ui_sync_execution_done (void)
3632{
3633 struct ui *ui = current_ui;
3634
3635 if (ui->prompt_state == PROMPT_NEEDED
3636 && ui->async
3637 && !gdb_in_secondary_prompt_p (ui))
3638 {
223ffa71 3639 target_terminal::ours ();
76727919 3640 gdb::observers::sync_execution_done.notify ();
3eb7562a 3641 ui_register_input_event_handler (ui);
3b12939d
PA
3642 }
3643}
3644
3645/* See infrun.h. */
3646
3647void
3648all_uis_check_sync_execution_done (void)
3649{
0e454242 3650 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3651 {
3652 check_curr_ui_sync_execution_done ();
3653 }
3654}
3655
a8836c93
PA
3656/* See infrun.h. */
3657
3658void
3659all_uis_on_sync_execution_starting (void)
3660{
0e454242 3661 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3662 {
3663 if (current_ui->prompt_state == PROMPT_NEEDED)
3664 async_disable_stdin ();
3665 }
3666}
3667
1777feb0 3668/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3669 event loop whenever a change of state is detected on the file
1777feb0
MS
3670 descriptor corresponding to the target. It can be called more than
3671 once to complete a single execution command. In such cases we need
3672 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3673 that this function is called for a single execution command, then
3674 report to the user that the inferior has stopped, and do the
1777feb0 3675 necessary cleanups. */
43ff13b4
JM
3676
3677void
fba45db2 3678fetch_inferior_event (void *client_data)
43ff13b4 3679{
0d1e5fa7 3680 struct execution_control_state ecss;
a474d7c2 3681 struct execution_control_state *ecs = &ecss;
0f641c01 3682 int cmd_done = 0;
963f9c80 3683 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3684
0d1e5fa7
PA
3685 memset (ecs, 0, sizeof (*ecs));
3686
c61db772
PA
3687 /* Events are always processed with the main UI as current UI. This
3688 way, warnings, debug output, etc. are always consistently sent to
3689 the main console. */
4b6749b9 3690 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3691
d3d4baed 3692 /* End up with readline processing input, if necessary. */
d238133d
TT
3693 {
3694 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3695
3696 /* We're handling a live event, so make sure we're doing live
3697 debugging. If we're looking at traceframes while the target is
3698 running, we're going to need to get back to that mode after
3699 handling the event. */
3700 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3701 if (non_stop)
3702 {
3703 maybe_restore_traceframe.emplace ();
3704 set_current_traceframe (-1);
3705 }
43ff13b4 3706
873657b9
PA
3707 /* The user/frontend should not notice a thread switch due to
3708 internal events. Make sure we revert to the user selected
3709 thread and frame after handling the event and running any
3710 breakpoint commands. */
3711 scoped_restore_current_thread restore_thread;
d238133d
TT
3712
3713 overlay_cache_invalid = 1;
3714 /* Flush target cache before starting to handle each event. Target
3715 was running and cache could be stale. This is just a heuristic.
3716 Running threads may modify target memory, but we don't get any
3717 event. */
3718 target_dcache_invalidate ();
3719
3720 scoped_restore save_exec_dir
3721 = make_scoped_restore (&execution_direction,
3722 target_execution_direction ());
3723
3724 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3725 target_can_async_p () ? TARGET_WNOHANG : 0);
3726
3727 if (debug_infrun)
3728 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3729
3730 /* If an error happens while handling the event, propagate GDB's
3731 knowledge of the executing state to the frontend/user running
3732 state. */
3733 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3734 scoped_finish_thread_state finish_state (finish_ptid);
3735
979a0d13 3736 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3737 still for the thread which has thrown the exception. */
3738 auto defer_bpstat_clear
3739 = make_scope_exit (bpstat_clear_actions);
3740 auto defer_delete_threads
3741 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3742
3743 /* Now figure out what to do with the result of the result. */
3744 handle_inferior_event (ecs);
3745
3746 if (!ecs->wait_some_more)
3747 {
3748 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3749 int should_stop = 1;
3750 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3751
d238133d 3752 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3753
d238133d
TT
3754 if (thr != NULL)
3755 {
3756 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3757
d238133d 3758 if (thread_fsm != NULL)
46e3ed7f 3759 should_stop = thread_fsm->should_stop (thr);
d238133d 3760 }
243a9253 3761
d238133d
TT
3762 if (!should_stop)
3763 {
3764 keep_going (ecs);
3765 }
3766 else
3767 {
46e3ed7f 3768 bool should_notify_stop = true;
d238133d 3769 int proceeded = 0;
1840d81a 3770
d238133d 3771 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3772
d238133d 3773 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3774 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3775
d238133d
TT
3776 if (should_notify_stop)
3777 {
3778 /* We may not find an inferior if this was a process exit. */
3779 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3780 proceeded = normal_stop ();
3781 }
243a9253 3782
d238133d
TT
3783 if (!proceeded)
3784 {
3785 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3786 cmd_done = 1;
3787 }
873657b9
PA
3788
3789 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3790 previously selected thread is gone. We have two
3791 choices - switch to no thread selected, or restore the
3792 previously selected thread (now exited). We chose the
3793 later, just because that's what GDB used to do. After
3794 this, "info threads" says "The current thread <Thread
3795 ID 2> has terminated." instead of "No thread
3796 selected.". */
3797 if (!non_stop
3798 && cmd_done
3799 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3800 restore_thread.dont_restore ();
d238133d
TT
3801 }
3802 }
4f8d22e3 3803
d238133d
TT
3804 defer_delete_threads.release ();
3805 defer_bpstat_clear.release ();
29f49a6a 3806
d238133d
TT
3807 /* No error, don't finish the thread states yet. */
3808 finish_state.release ();
731f534f 3809
d238133d
TT
3810 /* This scope is used to ensure that readline callbacks are
3811 reinstalled here. */
3812 }
4f8d22e3 3813
3b12939d
PA
3814 /* If a UI was in sync execution mode, and now isn't, restore its
3815 prompt (a synchronous execution command has finished, and we're
3816 ready for input). */
3817 all_uis_check_sync_execution_done ();
0f641c01
PA
3818
3819 if (cmd_done
0f641c01 3820 && exec_done_display_p
00431a78
PA
3821 && (inferior_ptid == null_ptid
3822 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3823 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3824}
3825
edb3359d
DJ
3826/* Record the frame and location we're currently stepping through. */
3827void
3828set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3829{
3830 struct thread_info *tp = inferior_thread ();
3831
16c381f0
JK
3832 tp->control.step_frame_id = get_frame_id (frame);
3833 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3834
3835 tp->current_symtab = sal.symtab;
3836 tp->current_line = sal.line;
3837}
3838
0d1e5fa7
PA
3839/* Clear context switchable stepping state. */
3840
3841void
4e1c45ea 3842init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3843{
7f5ef605 3844 tss->stepped_breakpoint = 0;
0d1e5fa7 3845 tss->stepping_over_breakpoint = 0;
963f9c80 3846 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3847 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3848}
3849
c32c64b7
DE
3850/* Set the cached copy of the last ptid/waitstatus. */
3851
6efcd9a8 3852void
c32c64b7
DE
3853set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3854{
3855 target_last_wait_ptid = ptid;
3856 target_last_waitstatus = status;
3857}
3858
e02bc4cc 3859/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3860 target_wait()/deprecated_target_wait_hook(). The data is actually
3861 cached by handle_inferior_event(), which gets called immediately
3862 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3863
3864void
488f131b 3865get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3866{
39f77062 3867 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3868 *status = target_last_waitstatus;
3869}
3870
ac264b3b
MS
3871void
3872nullify_last_target_wait_ptid (void)
3873{
3874 target_last_wait_ptid = minus_one_ptid;
3875}
3876
dcf4fbde 3877/* Switch thread contexts. */
dd80620e
MS
3878
3879static void
00431a78 3880context_switch (execution_control_state *ecs)
dd80620e 3881{
00431a78
PA
3882 if (debug_infrun
3883 && ecs->ptid != inferior_ptid
3884 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3885 {
3886 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 3887 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 3888 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 3889 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
3890 }
3891
00431a78 3892 switch_to_thread (ecs->event_thread);
dd80620e
MS
3893}
3894
d8dd4d5f
PA
3895/* If the target can't tell whether we've hit breakpoints
3896 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3897 check whether that could have been caused by a breakpoint. If so,
3898 adjust the PC, per gdbarch_decr_pc_after_break. */
3899
4fa8626c 3900static void
d8dd4d5f
PA
3901adjust_pc_after_break (struct thread_info *thread,
3902 struct target_waitstatus *ws)
4fa8626c 3903{
24a73cce
UW
3904 struct regcache *regcache;
3905 struct gdbarch *gdbarch;
118e6252 3906 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3907
4fa8626c
DJ
3908 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3909 we aren't, just return.
9709f61c
DJ
3910
3911 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3912 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3913 implemented by software breakpoints should be handled through the normal
3914 breakpoint layer.
8fb3e588 3915
4fa8626c
DJ
3916 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3917 different signals (SIGILL or SIGEMT for instance), but it is less
3918 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3919 gdbarch_decr_pc_after_break. I don't know any specific target that
3920 generates these signals at breakpoints (the code has been in GDB since at
3921 least 1992) so I can not guess how to handle them here.
8fb3e588 3922
e6cf7916
UW
3923 In earlier versions of GDB, a target with
3924 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3925 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3926 target with both of these set in GDB history, and it seems unlikely to be
3927 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3928
d8dd4d5f 3929 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3930 return;
3931
d8dd4d5f 3932 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3933 return;
3934
4058b839
PA
3935 /* In reverse execution, when a breakpoint is hit, the instruction
3936 under it has already been de-executed. The reported PC always
3937 points at the breakpoint address, so adjusting it further would
3938 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3939 architecture:
3940
3941 B1 0x08000000 : INSN1
3942 B2 0x08000001 : INSN2
3943 0x08000002 : INSN3
3944 PC -> 0x08000003 : INSN4
3945
3946 Say you're stopped at 0x08000003 as above. Reverse continuing
3947 from that point should hit B2 as below. Reading the PC when the
3948 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3949 been de-executed already.
3950
3951 B1 0x08000000 : INSN1
3952 B2 PC -> 0x08000001 : INSN2
3953 0x08000002 : INSN3
3954 0x08000003 : INSN4
3955
3956 We can't apply the same logic as for forward execution, because
3957 we would wrongly adjust the PC to 0x08000000, since there's a
3958 breakpoint at PC - 1. We'd then report a hit on B1, although
3959 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3960 behaviour. */
3961 if (execution_direction == EXEC_REVERSE)
3962 return;
3963
1cf4d951
PA
3964 /* If the target can tell whether the thread hit a SW breakpoint,
3965 trust it. Targets that can tell also adjust the PC
3966 themselves. */
3967 if (target_supports_stopped_by_sw_breakpoint ())
3968 return;
3969
3970 /* Note that relying on whether a breakpoint is planted in memory to
3971 determine this can fail. E.g,. the breakpoint could have been
3972 removed since. Or the thread could have been told to step an
3973 instruction the size of a breakpoint instruction, and only
3974 _after_ was a breakpoint inserted at its address. */
3975
24a73cce
UW
3976 /* If this target does not decrement the PC after breakpoints, then
3977 we have nothing to do. */
00431a78 3978 regcache = get_thread_regcache (thread);
ac7936df 3979 gdbarch = regcache->arch ();
118e6252 3980
527a273a 3981 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3982 if (decr_pc == 0)
24a73cce
UW
3983 return;
3984
8b86c959 3985 const address_space *aspace = regcache->aspace ();
6c95b8df 3986
8aad930b
AC
3987 /* Find the location where (if we've hit a breakpoint) the
3988 breakpoint would be. */
118e6252 3989 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3990
1cf4d951
PA
3991 /* If the target can't tell whether a software breakpoint triggered,
3992 fallback to figuring it out based on breakpoints we think were
3993 inserted in the target, and on whether the thread was stepped or
3994 continued. */
3995
1c5cfe86
PA
3996 /* Check whether there actually is a software breakpoint inserted at
3997 that location.
3998
3999 If in non-stop mode, a race condition is possible where we've
4000 removed a breakpoint, but stop events for that breakpoint were
4001 already queued and arrive later. To suppress those spurious
4002 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4003 and retire them after a number of stop events are reported. Note
4004 this is an heuristic and can thus get confused. The real fix is
4005 to get the "stopped by SW BP and needs adjustment" info out of
4006 the target/kernel (and thus never reach here; see above). */
6c95b8df 4007 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4008 || (target_is_non_stop_p ()
4009 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4010 {
07036511 4011 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4012
8213266a 4013 if (record_full_is_used ())
07036511
TT
4014 restore_operation_disable.emplace
4015 (record_full_gdb_operation_disable_set ());
96429cc8 4016
1c0fdd0e
UW
4017 /* When using hardware single-step, a SIGTRAP is reported for both
4018 a completed single-step and a software breakpoint. Need to
4019 differentiate between the two, as the latter needs adjusting
4020 but the former does not.
4021
4022 The SIGTRAP can be due to a completed hardware single-step only if
4023 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4024 - this thread is currently being stepped
4025
4026 If any of these events did not occur, we must have stopped due
4027 to hitting a software breakpoint, and have to back up to the
4028 breakpoint address.
4029
4030 As a special case, we could have hardware single-stepped a
4031 software breakpoint. In this case (prev_pc == breakpoint_pc),
4032 we also need to back up to the breakpoint address. */
4033
d8dd4d5f
PA
4034 if (thread_has_single_step_breakpoints_set (thread)
4035 || !currently_stepping (thread)
4036 || (thread->stepped_breakpoint
4037 && thread->prev_pc == breakpoint_pc))
515630c5 4038 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4039 }
4fa8626c
DJ
4040}
4041
edb3359d
DJ
4042static int
4043stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4044{
4045 for (frame = get_prev_frame (frame);
4046 frame != NULL;
4047 frame = get_prev_frame (frame))
4048 {
4049 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4050 return 1;
4051 if (get_frame_type (frame) != INLINE_FRAME)
4052 break;
4053 }
4054
4055 return 0;
4056}
4057
4a4c04f1
BE
4058/* Look for an inline frame that is marked for skip.
4059 If PREV_FRAME is TRUE start at the previous frame,
4060 otherwise start at the current frame. Stop at the
4061 first non-inline frame, or at the frame where the
4062 step started. */
4063
4064static bool
4065inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4066{
4067 struct frame_info *frame = get_current_frame ();
4068
4069 if (prev_frame)
4070 frame = get_prev_frame (frame);
4071
4072 for (; frame != NULL; frame = get_prev_frame (frame))
4073 {
4074 const char *fn = NULL;
4075 symtab_and_line sal;
4076 struct symbol *sym;
4077
4078 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4079 break;
4080 if (get_frame_type (frame) != INLINE_FRAME)
4081 break;
4082
4083 sal = find_frame_sal (frame);
4084 sym = get_frame_function (frame);
4085
4086 if (sym != NULL)
4087 fn = sym->print_name ();
4088
4089 if (sal.line != 0
4090 && function_name_is_marked_for_skip (fn, sal))
4091 return true;
4092 }
4093
4094 return false;
4095}
4096
c65d6b55
PA
4097/* If the event thread has the stop requested flag set, pretend it
4098 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4099 target_stop). */
4100
4101static bool
4102handle_stop_requested (struct execution_control_state *ecs)
4103{
4104 if (ecs->event_thread->stop_requested)
4105 {
4106 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4107 ecs->ws.value.sig = GDB_SIGNAL_0;
4108 handle_signal_stop (ecs);
4109 return true;
4110 }
4111 return false;
4112}
4113
a96d9b2e
SDJ
4114/* Auxiliary function that handles syscall entry/return events.
4115 It returns 1 if the inferior should keep going (and GDB
4116 should ignore the event), or 0 if the event deserves to be
4117 processed. */
ca2163eb 4118
a96d9b2e 4119static int
ca2163eb 4120handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4121{
ca2163eb 4122 struct regcache *regcache;
ca2163eb
PA
4123 int syscall_number;
4124
00431a78 4125 context_switch (ecs);
ca2163eb 4126
00431a78 4127 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4128 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4129 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4130
a96d9b2e
SDJ
4131 if (catch_syscall_enabled () > 0
4132 && catching_syscall_number (syscall_number) > 0)
4133 {
4134 if (debug_infrun)
4135 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4136 syscall_number);
a96d9b2e 4137
16c381f0 4138 ecs->event_thread->control.stop_bpstat
a01bda52 4139 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4140 ecs->event_thread->suspend.stop_pc,
4141 ecs->event_thread, &ecs->ws);
ab04a2af 4142
c65d6b55
PA
4143 if (handle_stop_requested (ecs))
4144 return 0;
4145
ce12b012 4146 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4147 {
4148 /* Catchpoint hit. */
ca2163eb
PA
4149 return 0;
4150 }
a96d9b2e 4151 }
ca2163eb 4152
c65d6b55
PA
4153 if (handle_stop_requested (ecs))
4154 return 0;
4155
ca2163eb 4156 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4157 keep_going (ecs);
4158 return 1;
a96d9b2e
SDJ
4159}
4160
7e324e48
GB
4161/* Lazily fill in the execution_control_state's stop_func_* fields. */
4162
4163static void
4164fill_in_stop_func (struct gdbarch *gdbarch,
4165 struct execution_control_state *ecs)
4166{
4167 if (!ecs->stop_func_filled_in)
4168 {
98a617f8
KB
4169 const block *block;
4170
7e324e48
GB
4171 /* Don't care about return value; stop_func_start and stop_func_name
4172 will both be 0 if it doesn't work. */
98a617f8
KB
4173 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4174 &ecs->stop_func_name,
4175 &ecs->stop_func_start,
4176 &ecs->stop_func_end,
4177 &block);
4178
4179 /* The call to find_pc_partial_function, above, will set
4180 stop_func_start and stop_func_end to the start and end
4181 of the range containing the stop pc. If this range
4182 contains the entry pc for the block (which is always the
4183 case for contiguous blocks), advance stop_func_start past
4184 the function's start offset and entrypoint. Note that
4185 stop_func_start is NOT advanced when in a range of a
4186 non-contiguous block that does not contain the entry pc. */
4187 if (block != nullptr
4188 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4189 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4190 {
4191 ecs->stop_func_start
4192 += gdbarch_deprecated_function_start_offset (gdbarch);
4193
4194 if (gdbarch_skip_entrypoint_p (gdbarch))
4195 ecs->stop_func_start
4196 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4197 }
591a12a1 4198
7e324e48
GB
4199 ecs->stop_func_filled_in = 1;
4200 }
4201}
4202
4f5d7f63 4203
00431a78 4204/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4205
4206static enum stop_kind
00431a78 4207get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4208{
00431a78 4209 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4210
4211 gdb_assert (inf != NULL);
4212 return inf->control.stop_soon;
4213}
4214
372316f1
PA
4215/* Wait for one event. Store the resulting waitstatus in WS, and
4216 return the event ptid. */
4217
4218static ptid_t
4219wait_one (struct target_waitstatus *ws)
4220{
4221 ptid_t event_ptid;
4222 ptid_t wait_ptid = minus_one_ptid;
4223
4224 overlay_cache_invalid = 1;
4225
4226 /* Flush target cache before starting to handle each event.
4227 Target was running and cache could be stale. This is just a
4228 heuristic. Running threads may modify target memory, but we
4229 don't get any event. */
4230 target_dcache_invalidate ();
4231
4232 if (deprecated_target_wait_hook)
4233 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4234 else
4235 event_ptid = target_wait (wait_ptid, ws, 0);
4236
4237 if (debug_infrun)
4238 print_target_wait_results (wait_ptid, event_ptid, ws);
4239
4240 return event_ptid;
4241}
4242
4243/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4244 instead of the current thread. */
4245#define THREAD_STOPPED_BY(REASON) \
4246static int \
4247thread_stopped_by_ ## REASON (ptid_t ptid) \
4248{ \
2989a365 4249 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4250 inferior_ptid = ptid; \
4251 \
2989a365 4252 return target_stopped_by_ ## REASON (); \
372316f1
PA
4253}
4254
4255/* Generate thread_stopped_by_watchpoint. */
4256THREAD_STOPPED_BY (watchpoint)
4257/* Generate thread_stopped_by_sw_breakpoint. */
4258THREAD_STOPPED_BY (sw_breakpoint)
4259/* Generate thread_stopped_by_hw_breakpoint. */
4260THREAD_STOPPED_BY (hw_breakpoint)
4261
372316f1
PA
4262/* Save the thread's event and stop reason to process it later. */
4263
4264static void
4265save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4266{
372316f1
PA
4267 if (debug_infrun)
4268 {
23fdd69e 4269 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4270
372316f1
PA
4271 fprintf_unfiltered (gdb_stdlog,
4272 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4273 statstr.c_str (),
e99b03dc 4274 tp->ptid.pid (),
e38504b3 4275 tp->ptid.lwp (),
cc6bcb54 4276 tp->ptid.tid ());
372316f1
PA
4277 }
4278
4279 /* Record for later. */
4280 tp->suspend.waitstatus = *ws;
4281 tp->suspend.waitstatus_pending_p = 1;
4282
00431a78 4283 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4284 const address_space *aspace = regcache->aspace ();
372316f1
PA
4285
4286 if (ws->kind == TARGET_WAITKIND_STOPPED
4287 && ws->value.sig == GDB_SIGNAL_TRAP)
4288 {
4289 CORE_ADDR pc = regcache_read_pc (regcache);
4290
4291 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4292
4293 if (thread_stopped_by_watchpoint (tp->ptid))
4294 {
4295 tp->suspend.stop_reason
4296 = TARGET_STOPPED_BY_WATCHPOINT;
4297 }
4298 else if (target_supports_stopped_by_sw_breakpoint ()
4299 && thread_stopped_by_sw_breakpoint (tp->ptid))
4300 {
4301 tp->suspend.stop_reason
4302 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4303 }
4304 else if (target_supports_stopped_by_hw_breakpoint ()
4305 && thread_stopped_by_hw_breakpoint (tp->ptid))
4306 {
4307 tp->suspend.stop_reason
4308 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4309 }
4310 else if (!target_supports_stopped_by_hw_breakpoint ()
4311 && hardware_breakpoint_inserted_here_p (aspace,
4312 pc))
4313 {
4314 tp->suspend.stop_reason
4315 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4316 }
4317 else if (!target_supports_stopped_by_sw_breakpoint ()
4318 && software_breakpoint_inserted_here_p (aspace,
4319 pc))
4320 {
4321 tp->suspend.stop_reason
4322 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4323 }
4324 else if (!thread_has_single_step_breakpoints_set (tp)
4325 && currently_stepping (tp))
4326 {
4327 tp->suspend.stop_reason
4328 = TARGET_STOPPED_BY_SINGLE_STEP;
4329 }
4330 }
4331}
4332
6efcd9a8 4333/* See infrun.h. */
372316f1 4334
6efcd9a8 4335void
372316f1
PA
4336stop_all_threads (void)
4337{
4338 /* We may need multiple passes to discover all threads. */
4339 int pass;
4340 int iterations = 0;
372316f1 4341
fbea99ea 4342 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4343
4344 if (debug_infrun)
4345 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4346
00431a78 4347 scoped_restore_current_thread restore_thread;
372316f1 4348
65706a29 4349 target_thread_events (1);
9885e6bb 4350 SCOPE_EXIT { target_thread_events (0); };
65706a29 4351
372316f1
PA
4352 /* Request threads to stop, and then wait for the stops. Because
4353 threads we already know about can spawn more threads while we're
4354 trying to stop them, and we only learn about new threads when we
4355 update the thread list, do this in a loop, and keep iterating
4356 until two passes find no threads that need to be stopped. */
4357 for (pass = 0; pass < 2; pass++, iterations++)
4358 {
4359 if (debug_infrun)
4360 fprintf_unfiltered (gdb_stdlog,
4361 "infrun: stop_all_threads, pass=%d, "
4362 "iterations=%d\n", pass, iterations);
4363 while (1)
4364 {
4365 ptid_t event_ptid;
4366 struct target_waitstatus ws;
4367 int need_wait = 0;
372316f1
PA
4368
4369 update_thread_list ();
4370
4371 /* Go through all threads looking for threads that we need
4372 to tell the target to stop. */
08036331 4373 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4374 {
4375 if (t->executing)
4376 {
4377 /* If already stopping, don't request a stop again.
4378 We just haven't seen the notification yet. */
4379 if (!t->stop_requested)
4380 {
4381 if (debug_infrun)
4382 fprintf_unfiltered (gdb_stdlog,
4383 "infrun: %s executing, "
4384 "need stop\n",
a068643d 4385 target_pid_to_str (t->ptid).c_str ());
f3f8ece4 4386 switch_to_thread_no_regs (t);
372316f1
PA
4387 target_stop (t->ptid);
4388 t->stop_requested = 1;
4389 }
4390 else
4391 {
4392 if (debug_infrun)
4393 fprintf_unfiltered (gdb_stdlog,
4394 "infrun: %s executing, "
4395 "already stopping\n",
a068643d 4396 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4397 }
4398
4399 if (t->stop_requested)
4400 need_wait = 1;
4401 }
4402 else
4403 {
4404 if (debug_infrun)
4405 fprintf_unfiltered (gdb_stdlog,
4406 "infrun: %s not executing\n",
a068643d 4407 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4408
4409 /* The thread may be not executing, but still be
4410 resumed with a pending status to process. */
4411 t->resumed = 0;
4412 }
4413 }
4414
4415 if (!need_wait)
4416 break;
4417
4418 /* If we find new threads on the second iteration, restart
4419 over. We want to see two iterations in a row with all
4420 threads stopped. */
4421 if (pass > 0)
4422 pass = -1;
4423
4424 event_ptid = wait_one (&ws);
c29705b7 4425 if (debug_infrun)
372316f1 4426 {
c29705b7
PW
4427 fprintf_unfiltered (gdb_stdlog,
4428 "infrun: stop_all_threads %s %s\n",
4429 target_waitstatus_to_string (&ws).c_str (),
4430 target_pid_to_str (event_ptid).c_str ());
372316f1 4431 }
372316f1 4432
c29705b7
PW
4433 if (ws.kind == TARGET_WAITKIND_NO_RESUMED
4434 || ws.kind == TARGET_WAITKIND_THREAD_EXITED
4435 || ws.kind == TARGET_WAITKIND_EXITED
4436 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4437 {
4438 /* All resumed threads exited
4439 or one thread/process exited/signalled. */
372316f1
PA
4440 }
4441 else
4442 {
08036331 4443 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4444 if (t == NULL)
4445 t = add_thread (event_ptid);
4446
4447 t->stop_requested = 0;
4448 t->executing = 0;
4449 t->resumed = 0;
4450 t->control.may_range_step = 0;
4451
6efcd9a8
PA
4452 /* This may be the first time we see the inferior report
4453 a stop. */
08036331 4454 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4455 if (inf->needs_setup)
4456 {
4457 switch_to_thread_no_regs (t);
4458 setup_inferior (0);
4459 }
4460
372316f1
PA
4461 if (ws.kind == TARGET_WAITKIND_STOPPED
4462 && ws.value.sig == GDB_SIGNAL_0)
4463 {
4464 /* We caught the event that we intended to catch, so
4465 there's no event pending. */
4466 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4467 t->suspend.waitstatus_pending_p = 0;
4468
00431a78 4469 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4470 {
4471 /* Add it back to the step-over queue. */
4472 if (debug_infrun)
4473 {
4474 fprintf_unfiltered (gdb_stdlog,
4475 "infrun: displaced-step of %s "
4476 "canceled: adding back to the "
4477 "step-over queue\n",
a068643d 4478 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4479 }
4480 t->control.trap_expected = 0;
4481 thread_step_over_chain_enqueue (t);
4482 }
4483 }
4484 else
4485 {
4486 enum gdb_signal sig;
4487 struct regcache *regcache;
372316f1
PA
4488
4489 if (debug_infrun)
4490 {
23fdd69e 4491 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4492
372316f1
PA
4493 fprintf_unfiltered (gdb_stdlog,
4494 "infrun: target_wait %s, saving "
4495 "status for %d.%ld.%ld\n",
23fdd69e 4496 statstr.c_str (),
e99b03dc 4497 t->ptid.pid (),
e38504b3 4498 t->ptid.lwp (),
cc6bcb54 4499 t->ptid.tid ());
372316f1
PA
4500 }
4501
4502 /* Record for later. */
4503 save_waitstatus (t, &ws);
4504
4505 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4506 ? ws.value.sig : GDB_SIGNAL_0);
4507
00431a78 4508 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4509 {
4510 /* Add it back to the step-over queue. */
4511 t->control.trap_expected = 0;
4512 thread_step_over_chain_enqueue (t);
4513 }
4514
00431a78 4515 regcache = get_thread_regcache (t);
372316f1
PA
4516 t->suspend.stop_pc = regcache_read_pc (regcache);
4517
4518 if (debug_infrun)
4519 {
4520 fprintf_unfiltered (gdb_stdlog,
4521 "infrun: saved stop_pc=%s for %s "
4522 "(currently_stepping=%d)\n",
4523 paddress (target_gdbarch (),
4524 t->suspend.stop_pc),
a068643d 4525 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4526 currently_stepping (t));
4527 }
4528 }
4529 }
4530 }
4531 }
4532
372316f1
PA
4533 if (debug_infrun)
4534 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4535}
4536
f4836ba9
PA
4537/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4538
4539static int
4540handle_no_resumed (struct execution_control_state *ecs)
4541{
3b12939d 4542 if (target_can_async_p ())
f4836ba9 4543 {
3b12939d
PA
4544 struct ui *ui;
4545 int any_sync = 0;
f4836ba9 4546
3b12939d
PA
4547 ALL_UIS (ui)
4548 {
4549 if (ui->prompt_state == PROMPT_BLOCKED)
4550 {
4551 any_sync = 1;
4552 break;
4553 }
4554 }
4555 if (!any_sync)
4556 {
4557 /* There were no unwaited-for children left in the target, but,
4558 we're not synchronously waiting for events either. Just
4559 ignore. */
4560
4561 if (debug_infrun)
4562 fprintf_unfiltered (gdb_stdlog,
4563 "infrun: TARGET_WAITKIND_NO_RESUMED "
4564 "(ignoring: bg)\n");
4565 prepare_to_wait (ecs);
4566 return 1;
4567 }
f4836ba9
PA
4568 }
4569
4570 /* Otherwise, if we were running a synchronous execution command, we
4571 may need to cancel it and give the user back the terminal.
4572
4573 In non-stop mode, the target can't tell whether we've already
4574 consumed previous stop events, so it can end up sending us a
4575 no-resumed event like so:
4576
4577 #0 - thread 1 is left stopped
4578
4579 #1 - thread 2 is resumed and hits breakpoint
4580 -> TARGET_WAITKIND_STOPPED
4581
4582 #2 - thread 3 is resumed and exits
4583 this is the last resumed thread, so
4584 -> TARGET_WAITKIND_NO_RESUMED
4585
4586 #3 - gdb processes stop for thread 2 and decides to re-resume
4587 it.
4588
4589 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4590 thread 2 is now resumed, so the event should be ignored.
4591
4592 IOW, if the stop for thread 2 doesn't end a foreground command,
4593 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4594 event. But it could be that the event meant that thread 2 itself
4595 (or whatever other thread was the last resumed thread) exited.
4596
4597 To address this we refresh the thread list and check whether we
4598 have resumed threads _now_. In the example above, this removes
4599 thread 3 from the thread list. If thread 2 was re-resumed, we
4600 ignore this event. If we find no thread resumed, then we cancel
4601 the synchronous command show "no unwaited-for " to the user. */
4602 update_thread_list ();
4603
08036331 4604 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4605 {
4606 if (thread->executing
4607 || thread->suspend.waitstatus_pending_p)
4608 {
4609 /* There were no unwaited-for children left in the target at
4610 some point, but there are now. Just ignore. */
4611 if (debug_infrun)
4612 fprintf_unfiltered (gdb_stdlog,
4613 "infrun: TARGET_WAITKIND_NO_RESUMED "
4614 "(ignoring: found resumed)\n");
4615 prepare_to_wait (ecs);
4616 return 1;
4617 }
4618 }
4619
4620 /* Note however that we may find no resumed thread because the whole
4621 process exited meanwhile (thus updating the thread list results
4622 in an empty thread list). In this case we know we'll be getting
4623 a process exit event shortly. */
08036331 4624 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4625 {
4626 if (inf->pid == 0)
4627 continue;
4628
08036331 4629 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4630 if (thread == NULL)
4631 {
4632 if (debug_infrun)
4633 fprintf_unfiltered (gdb_stdlog,
4634 "infrun: TARGET_WAITKIND_NO_RESUMED "
4635 "(expect process exit)\n");
4636 prepare_to_wait (ecs);
4637 return 1;
4638 }
4639 }
4640
4641 /* Go ahead and report the event. */
4642 return 0;
4643}
4644
05ba8510
PA
4645/* Given an execution control state that has been freshly filled in by
4646 an event from the inferior, figure out what it means and take
4647 appropriate action.
4648
4649 The alternatives are:
4650
22bcd14b 4651 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4652 debugger.
4653
4654 2) keep_going and return; to wait for the next event (set
4655 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4656 once). */
c906108c 4657
ec9499be 4658static void
595915c1 4659handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 4660{
595915c1
TT
4661 /* Make sure that all temporary struct value objects that were
4662 created during the handling of the event get deleted at the
4663 end. */
4664 scoped_value_mark free_values;
4665
d6b48e9c
PA
4666 enum stop_kind stop_soon;
4667
c29705b7
PW
4668 if (debug_infrun)
4669 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4670 target_waitstatus_to_string (&ecs->ws).c_str ());
4671
28736962
PA
4672 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4673 {
4674 /* We had an event in the inferior, but we are not interested in
4675 handling it at this level. The lower layers have already
4676 done what needs to be done, if anything.
4677
4678 One of the possible circumstances for this is when the
4679 inferior produces output for the console. The inferior has
4680 not stopped, and we are ignoring the event. Another possible
4681 circumstance is any event which the lower level knows will be
4682 reported multiple times without an intervening resume. */
28736962
PA
4683 prepare_to_wait (ecs);
4684 return;
4685 }
4686
65706a29
PA
4687 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4688 {
65706a29
PA
4689 prepare_to_wait (ecs);
4690 return;
4691 }
4692
0e5bf2a8 4693 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4694 && handle_no_resumed (ecs))
4695 return;
0e5bf2a8 4696
1777feb0 4697 /* Cache the last pid/waitstatus. */
c32c64b7 4698 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4699
ca005067 4700 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4701 stop_stack_dummy = STOP_NONE;
ca005067 4702
0e5bf2a8
PA
4703 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4704 {
4705 /* No unwaited-for children left. IOW, all resumed children
4706 have exited. */
0e5bf2a8 4707 stop_print_frame = 0;
22bcd14b 4708 stop_waiting (ecs);
0e5bf2a8
PA
4709 return;
4710 }
4711
8c90c137 4712 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4713 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4714 {
4715 ecs->event_thread = find_thread_ptid (ecs->ptid);
4716 /* If it's a new thread, add it to the thread database. */
4717 if (ecs->event_thread == NULL)
4718 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4719
4720 /* Disable range stepping. If the next step request could use a
4721 range, this will be end up re-enabled then. */
4722 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4723 }
88ed393a
JK
4724
4725 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4726 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4727
4728 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4729 reinit_frame_cache ();
4730
28736962
PA
4731 breakpoint_retire_moribund ();
4732
2b009048
DJ
4733 /* First, distinguish signals caused by the debugger from signals
4734 that have to do with the program's own actions. Note that
4735 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4736 on the operating system version. Here we detect when a SIGILL or
4737 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4738 something similar for SIGSEGV, since a SIGSEGV will be generated
4739 when we're trying to execute a breakpoint instruction on a
4740 non-executable stack. This happens for call dummy breakpoints
4741 for architectures like SPARC that place call dummies on the
4742 stack. */
2b009048 4743 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4744 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4745 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4746 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4747 {
00431a78 4748 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4749
a01bda52 4750 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4751 regcache_read_pc (regcache)))
4752 {
4753 if (debug_infrun)
4754 fprintf_unfiltered (gdb_stdlog,
4755 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4756 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4757 }
2b009048
DJ
4758 }
4759
28736962
PA
4760 /* Mark the non-executing threads accordingly. In all-stop, all
4761 threads of all processes are stopped when we get any event
e1316e60 4762 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4763 {
4764 ptid_t mark_ptid;
4765
fbea99ea 4766 if (!target_is_non_stop_p ())
372316f1
PA
4767 mark_ptid = minus_one_ptid;
4768 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4769 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4770 {
4771 /* If we're handling a process exit in non-stop mode, even
4772 though threads haven't been deleted yet, one would think
4773 that there is nothing to do, as threads of the dead process
4774 will be soon deleted, and threads of any other process were
4775 left running. However, on some targets, threads survive a
4776 process exit event. E.g., for the "checkpoint" command,
4777 when the current checkpoint/fork exits, linux-fork.c
4778 automatically switches to another fork from within
4779 target_mourn_inferior, by associating the same
4780 inferior/thread to another fork. We haven't mourned yet at
4781 this point, but we must mark any threads left in the
4782 process as not-executing so that finish_thread_state marks
4783 them stopped (in the user's perspective) if/when we present
4784 the stop to the user. */
e99b03dc 4785 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4786 }
4787 else
4788 mark_ptid = ecs->ptid;
4789
4790 set_executing (mark_ptid, 0);
4791
4792 /* Likewise the resumed flag. */
4793 set_resumed (mark_ptid, 0);
4794 }
8c90c137 4795
488f131b
JB
4796 switch (ecs->ws.kind)
4797 {
4798 case TARGET_WAITKIND_LOADED:
00431a78 4799 context_switch (ecs);
b0f4b84b
DJ
4800 /* Ignore gracefully during startup of the inferior, as it might
4801 be the shell which has just loaded some objects, otherwise
4802 add the symbols for the newly loaded objects. Also ignore at
4803 the beginning of an attach or remote session; we will query
4804 the full list of libraries once the connection is
4805 established. */
4f5d7f63 4806
00431a78 4807 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4808 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4809 {
edcc5120
TT
4810 struct regcache *regcache;
4811
00431a78 4812 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4813
4814 handle_solib_event ();
4815
4816 ecs->event_thread->control.stop_bpstat
a01bda52 4817 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4818 ecs->event_thread->suspend.stop_pc,
4819 ecs->event_thread, &ecs->ws);
ab04a2af 4820
c65d6b55
PA
4821 if (handle_stop_requested (ecs))
4822 return;
4823
ce12b012 4824 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4825 {
4826 /* A catchpoint triggered. */
94c57d6a
PA
4827 process_event_stop_test (ecs);
4828 return;
edcc5120 4829 }
488f131b 4830
b0f4b84b
DJ
4831 /* If requested, stop when the dynamic linker notifies
4832 gdb of events. This allows the user to get control
4833 and place breakpoints in initializer routines for
4834 dynamically loaded objects (among other things). */
a493e3e2 4835 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4836 if (stop_on_solib_events)
4837 {
55409f9d
DJ
4838 /* Make sure we print "Stopped due to solib-event" in
4839 normal_stop. */
4840 stop_print_frame = 1;
4841
22bcd14b 4842 stop_waiting (ecs);
b0f4b84b
DJ
4843 return;
4844 }
488f131b 4845 }
b0f4b84b
DJ
4846
4847 /* If we are skipping through a shell, or through shared library
4848 loading that we aren't interested in, resume the program. If
5c09a2c5 4849 we're running the program normally, also resume. */
b0f4b84b
DJ
4850 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4851 {
74960c60
VP
4852 /* Loading of shared libraries might have changed breakpoint
4853 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4854 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4855 insert_breakpoints ();
64ce06e4 4856 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4857 prepare_to_wait (ecs);
4858 return;
4859 }
4860
5c09a2c5
PA
4861 /* But stop if we're attaching or setting up a remote
4862 connection. */
4863 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4864 || stop_soon == STOP_QUIETLY_REMOTE)
4865 {
4866 if (debug_infrun)
4867 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4868 stop_waiting (ecs);
5c09a2c5
PA
4869 return;
4870 }
4871
4872 internal_error (__FILE__, __LINE__,
4873 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4874
488f131b 4875 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
4876 if (handle_stop_requested (ecs))
4877 return;
00431a78 4878 context_switch (ecs);
64ce06e4 4879 resume (GDB_SIGNAL_0);
488f131b
JB
4880 prepare_to_wait (ecs);
4881 return;
c5aa993b 4882
65706a29 4883 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
4884 if (handle_stop_requested (ecs))
4885 return;
00431a78 4886 context_switch (ecs);
65706a29
PA
4887 if (!switch_back_to_stepped_thread (ecs))
4888 keep_going (ecs);
4889 return;
4890
488f131b 4891 case TARGET_WAITKIND_EXITED:
940c3c06 4892 case TARGET_WAITKIND_SIGNALLED:
fb66883a 4893 inferior_ptid = ecs->ptid;
c9657e70 4894 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4895 set_current_program_space (current_inferior ()->pspace);
4896 handle_vfork_child_exec_or_exit (0);
223ffa71 4897 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4898
0c557179
SDJ
4899 /* Clearing any previous state of convenience variables. */
4900 clear_exit_convenience_vars ();
4901
940c3c06
PA
4902 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4903 {
4904 /* Record the exit code in the convenience variable $_exitcode, so
4905 that the user can inspect this again later. */
4906 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4907 (LONGEST) ecs->ws.value.integer);
4908
4909 /* Also record this in the inferior itself. */
4910 current_inferior ()->has_exit_code = 1;
4911 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4912
98eb56a4
PA
4913 /* Support the --return-child-result option. */
4914 return_child_result_value = ecs->ws.value.integer;
4915
76727919 4916 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4917 }
4918 else
0c557179 4919 {
00431a78 4920 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4921
4922 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4923 {
4924 /* Set the value of the internal variable $_exitsignal,
4925 which holds the signal uncaught by the inferior. */
4926 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4927 gdbarch_gdb_signal_to_target (gdbarch,
4928 ecs->ws.value.sig));
4929 }
4930 else
4931 {
4932 /* We don't have access to the target's method used for
4933 converting between signal numbers (GDB's internal
4934 representation <-> target's representation).
4935 Therefore, we cannot do a good job at displaying this
4936 information to the user. It's better to just warn
4937 her about it (if infrun debugging is enabled), and
4938 give up. */
4939 if (debug_infrun)
4940 fprintf_filtered (gdb_stdlog, _("\
4941Cannot fill $_exitsignal with the correct signal number.\n"));
4942 }
4943
76727919 4944 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4945 }
8cf64490 4946
488f131b 4947 gdb_flush (gdb_stdout);
bc1e6c81 4948 target_mourn_inferior (inferior_ptid);
488f131b 4949 stop_print_frame = 0;
22bcd14b 4950 stop_waiting (ecs);
488f131b 4951 return;
c5aa993b 4952
488f131b 4953 /* The following are the only cases in which we keep going;
1777feb0 4954 the above cases end in a continue or goto. */
488f131b 4955 case TARGET_WAITKIND_FORKED:
deb3b17b 4956 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
4957 /* Check whether the inferior is displaced stepping. */
4958 {
00431a78 4959 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4960 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4961
4962 /* If checking displaced stepping is supported, and thread
4963 ecs->ptid is displaced stepping. */
00431a78 4964 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4965 {
4966 struct inferior *parent_inf
c9657e70 4967 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4968 struct regcache *child_regcache;
4969 CORE_ADDR parent_pc;
4970
4971 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4972 indicating that the displaced stepping of syscall instruction
4973 has been done. Perform cleanup for parent process here. Note
4974 that this operation also cleans up the child process for vfork,
4975 because their pages are shared. */
00431a78 4976 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4977 /* Start a new step-over in another thread if there's one
4978 that needs it. */
4979 start_step_over ();
e2d96639
YQ
4980
4981 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4982 {
c0987663 4983 struct displaced_step_inferior_state *displaced
00431a78 4984 = get_displaced_stepping_state (parent_inf);
c0987663 4985
e2d96639
YQ
4986 /* Restore scratch pad for child process. */
4987 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4988 }
4989
4990 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4991 the child's PC is also within the scratchpad. Set the child's PC
4992 to the parent's PC value, which has already been fixed up.
4993 FIXME: we use the parent's aspace here, although we're touching
4994 the child, because the child hasn't been added to the inferior
4995 list yet at this point. */
4996
4997 child_regcache
4998 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4999 gdbarch,
5000 parent_inf->aspace);
5001 /* Read PC value of parent process. */
5002 parent_pc = regcache_read_pc (regcache);
5003
5004 if (debug_displaced)
5005 fprintf_unfiltered (gdb_stdlog,
5006 "displaced: write child pc from %s to %s\n",
5007 paddress (gdbarch,
5008 regcache_read_pc (child_regcache)),
5009 paddress (gdbarch, parent_pc));
5010
5011 regcache_write_pc (child_regcache, parent_pc);
5012 }
5013 }
5014
00431a78 5015 context_switch (ecs);
5a2901d9 5016
b242c3c2
PA
5017 /* Immediately detach breakpoints from the child before there's
5018 any chance of letting the user delete breakpoints from the
5019 breakpoint lists. If we don't do this early, it's easy to
5020 leave left over traps in the child, vis: "break foo; catch
5021 fork; c; <fork>; del; c; <child calls foo>". We only follow
5022 the fork on the last `continue', and by that time the
5023 breakpoint at "foo" is long gone from the breakpoint table.
5024 If we vforked, then we don't need to unpatch here, since both
5025 parent and child are sharing the same memory pages; we'll
5026 need to unpatch at follow/detach time instead to be certain
5027 that new breakpoints added between catchpoint hit time and
5028 vfork follow are detached. */
5029 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5030 {
b242c3c2
PA
5031 /* This won't actually modify the breakpoint list, but will
5032 physically remove the breakpoints from the child. */
d80ee84f 5033 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5034 }
5035
34b7e8a6 5036 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5037
e58b0e63
PA
5038 /* In case the event is caught by a catchpoint, remember that
5039 the event is to be followed at the next resume of the thread,
5040 and not immediately. */
5041 ecs->event_thread->pending_follow = ecs->ws;
5042
f2ffa92b
PA
5043 ecs->event_thread->suspend.stop_pc
5044 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5045
16c381f0 5046 ecs->event_thread->control.stop_bpstat
a01bda52 5047 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5048 ecs->event_thread->suspend.stop_pc,
5049 ecs->event_thread, &ecs->ws);
675bf4cb 5050
c65d6b55
PA
5051 if (handle_stop_requested (ecs))
5052 return;
5053
ce12b012
PA
5054 /* If no catchpoint triggered for this, then keep going. Note
5055 that we're interested in knowing the bpstat actually causes a
5056 stop, not just if it may explain the signal. Software
5057 watchpoints, for example, always appear in the bpstat. */
5058 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5059 {
e58b0e63 5060 int should_resume;
3e43a32a
MS
5061 int follow_child
5062 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5063
a493e3e2 5064 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5065
5066 should_resume = follow_fork ();
5067
00431a78
PA
5068 thread_info *parent = ecs->event_thread;
5069 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5070
a2077e25
PA
5071 /* At this point, the parent is marked running, and the
5072 child is marked stopped. */
5073
5074 /* If not resuming the parent, mark it stopped. */
5075 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5076 parent->set_running (false);
a2077e25
PA
5077
5078 /* If resuming the child, mark it running. */
5079 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5080 child->set_running (true);
a2077e25 5081
6c95b8df 5082 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5083 if (!detach_fork && (non_stop
5084 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5085 {
5086 if (follow_child)
5087 switch_to_thread (parent);
5088 else
5089 switch_to_thread (child);
5090
5091 ecs->event_thread = inferior_thread ();
5092 ecs->ptid = inferior_ptid;
5093 keep_going (ecs);
5094 }
5095
5096 if (follow_child)
5097 switch_to_thread (child);
5098 else
5099 switch_to_thread (parent);
5100
e58b0e63
PA
5101 ecs->event_thread = inferior_thread ();
5102 ecs->ptid = inferior_ptid;
5103
5104 if (should_resume)
5105 keep_going (ecs);
5106 else
22bcd14b 5107 stop_waiting (ecs);
04e68871
DJ
5108 return;
5109 }
94c57d6a
PA
5110 process_event_stop_test (ecs);
5111 return;
488f131b 5112
6c95b8df
PA
5113 case TARGET_WAITKIND_VFORK_DONE:
5114 /* Done with the shared memory region. Re-insert breakpoints in
5115 the parent, and keep going. */
5116
00431a78 5117 context_switch (ecs);
6c95b8df
PA
5118
5119 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5120 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5121
5122 if (handle_stop_requested (ecs))
5123 return;
5124
6c95b8df
PA
5125 /* This also takes care of reinserting breakpoints in the
5126 previously locked inferior. */
5127 keep_going (ecs);
5128 return;
5129
488f131b 5130 case TARGET_WAITKIND_EXECD:
488f131b 5131
cbd2b4e3
PA
5132 /* Note we can't read registers yet (the stop_pc), because we
5133 don't yet know the inferior's post-exec architecture.
5134 'stop_pc' is explicitly read below instead. */
00431a78 5135 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5136
6c95b8df
PA
5137 /* Do whatever is necessary to the parent branch of the vfork. */
5138 handle_vfork_child_exec_or_exit (1);
5139
795e548f
PA
5140 /* This causes the eventpoints and symbol table to be reset.
5141 Must do this now, before trying to determine whether to
5142 stop. */
71b43ef8 5143 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5144
17d8546e
DB
5145 /* In follow_exec we may have deleted the original thread and
5146 created a new one. Make sure that the event thread is the
5147 execd thread for that case (this is a nop otherwise). */
5148 ecs->event_thread = inferior_thread ();
5149
f2ffa92b
PA
5150 ecs->event_thread->suspend.stop_pc
5151 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5152
16c381f0 5153 ecs->event_thread->control.stop_bpstat
a01bda52 5154 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5155 ecs->event_thread->suspend.stop_pc,
5156 ecs->event_thread, &ecs->ws);
795e548f 5157
71b43ef8
PA
5158 /* Note that this may be referenced from inside
5159 bpstat_stop_status above, through inferior_has_execd. */
5160 xfree (ecs->ws.value.execd_pathname);
5161 ecs->ws.value.execd_pathname = NULL;
5162
c65d6b55
PA
5163 if (handle_stop_requested (ecs))
5164 return;
5165
04e68871 5166 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5167 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5168 {
a493e3e2 5169 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5170 keep_going (ecs);
5171 return;
5172 }
94c57d6a
PA
5173 process_event_stop_test (ecs);
5174 return;
488f131b 5175
b4dc5ffa
MK
5176 /* Be careful not to try to gather much state about a thread
5177 that's in a syscall. It's frequently a losing proposition. */
488f131b 5178 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5179 /* Getting the current syscall number. */
94c57d6a
PA
5180 if (handle_syscall_event (ecs) == 0)
5181 process_event_stop_test (ecs);
5182 return;
c906108c 5183
488f131b
JB
5184 /* Before examining the threads further, step this thread to
5185 get it entirely out of the syscall. (We get notice of the
5186 event when the thread is just on the verge of exiting a
5187 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5188 into user code.) */
488f131b 5189 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5190 if (handle_syscall_event (ecs) == 0)
5191 process_event_stop_test (ecs);
5192 return;
c906108c 5193
488f131b 5194 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5195 handle_signal_stop (ecs);
5196 return;
c906108c 5197
b2175913
MS
5198 case TARGET_WAITKIND_NO_HISTORY:
5199 /* Reverse execution: target ran out of history info. */
eab402df 5200
d1988021 5201 /* Switch to the stopped thread. */
00431a78 5202 context_switch (ecs);
d1988021
MM
5203 if (debug_infrun)
5204 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5205
34b7e8a6 5206 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5207 ecs->event_thread->suspend.stop_pc
5208 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5209
5210 if (handle_stop_requested (ecs))
5211 return;
5212
76727919 5213 gdb::observers::no_history.notify ();
22bcd14b 5214 stop_waiting (ecs);
b2175913 5215 return;
488f131b 5216 }
4f5d7f63
PA
5217}
5218
372316f1
PA
5219/* Restart threads back to what they were trying to do back when we
5220 paused them for an in-line step-over. The EVENT_THREAD thread is
5221 ignored. */
4d9d9d04
PA
5222
5223static void
372316f1
PA
5224restart_threads (struct thread_info *event_thread)
5225{
372316f1
PA
5226 /* In case the instruction just stepped spawned a new thread. */
5227 update_thread_list ();
5228
08036331 5229 for (thread_info *tp : all_non_exited_threads ())
372316f1 5230 {
f3f8ece4
PA
5231 switch_to_thread_no_regs (tp);
5232
372316f1
PA
5233 if (tp == event_thread)
5234 {
5235 if (debug_infrun)
5236 fprintf_unfiltered (gdb_stdlog,
5237 "infrun: restart threads: "
5238 "[%s] is event thread\n",
a068643d 5239 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5240 continue;
5241 }
5242
5243 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5244 {
5245 if (debug_infrun)
5246 fprintf_unfiltered (gdb_stdlog,
5247 "infrun: restart threads: "
5248 "[%s] not meant to be running\n",
a068643d 5249 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5250 continue;
5251 }
5252
5253 if (tp->resumed)
5254 {
5255 if (debug_infrun)
5256 fprintf_unfiltered (gdb_stdlog,
5257 "infrun: restart threads: [%s] resumed\n",
a068643d 5258 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5259 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5260 continue;
5261 }
5262
5263 if (thread_is_in_step_over_chain (tp))
5264 {
5265 if (debug_infrun)
5266 fprintf_unfiltered (gdb_stdlog,
5267 "infrun: restart threads: "
5268 "[%s] needs step-over\n",
a068643d 5269 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5270 gdb_assert (!tp->resumed);
5271 continue;
5272 }
5273
5274
5275 if (tp->suspend.waitstatus_pending_p)
5276 {
5277 if (debug_infrun)
5278 fprintf_unfiltered (gdb_stdlog,
5279 "infrun: restart threads: "
5280 "[%s] has pending status\n",
a068643d 5281 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5282 tp->resumed = 1;
5283 continue;
5284 }
5285
c65d6b55
PA
5286 gdb_assert (!tp->stop_requested);
5287
372316f1
PA
5288 /* If some thread needs to start a step-over at this point, it
5289 should still be in the step-over queue, and thus skipped
5290 above. */
5291 if (thread_still_needs_step_over (tp))
5292 {
5293 internal_error (__FILE__, __LINE__,
5294 "thread [%s] needs a step-over, but not in "
5295 "step-over queue\n",
a068643d 5296 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5297 }
5298
5299 if (currently_stepping (tp))
5300 {
5301 if (debug_infrun)
5302 fprintf_unfiltered (gdb_stdlog,
5303 "infrun: restart threads: [%s] was stepping\n",
a068643d 5304 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5305 keep_going_stepped_thread (tp);
5306 }
5307 else
5308 {
5309 struct execution_control_state ecss;
5310 struct execution_control_state *ecs = &ecss;
5311
5312 if (debug_infrun)
5313 fprintf_unfiltered (gdb_stdlog,
5314 "infrun: restart threads: [%s] continuing\n",
a068643d 5315 target_pid_to_str (tp->ptid).c_str ());
372316f1 5316 reset_ecs (ecs, tp);
00431a78 5317 switch_to_thread (tp);
372316f1
PA
5318 keep_going_pass_signal (ecs);
5319 }
5320 }
5321}
5322
5323/* Callback for iterate_over_threads. Find a resumed thread that has
5324 a pending waitstatus. */
5325
5326static int
5327resumed_thread_with_pending_status (struct thread_info *tp,
5328 void *arg)
5329{
5330 return (tp->resumed
5331 && tp->suspend.waitstatus_pending_p);
5332}
5333
5334/* Called when we get an event that may finish an in-line or
5335 out-of-line (displaced stepping) step-over started previously.
5336 Return true if the event is processed and we should go back to the
5337 event loop; false if the caller should continue processing the
5338 event. */
5339
5340static int
4d9d9d04
PA
5341finish_step_over (struct execution_control_state *ecs)
5342{
372316f1
PA
5343 int had_step_over_info;
5344
00431a78 5345 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5346 ecs->event_thread->suspend.stop_signal);
5347
372316f1
PA
5348 had_step_over_info = step_over_info_valid_p ();
5349
5350 if (had_step_over_info)
4d9d9d04
PA
5351 {
5352 /* If we're stepping over a breakpoint with all threads locked,
5353 then only the thread that was stepped should be reporting
5354 back an event. */
5355 gdb_assert (ecs->event_thread->control.trap_expected);
5356
c65d6b55 5357 clear_step_over_info ();
4d9d9d04
PA
5358 }
5359
fbea99ea 5360 if (!target_is_non_stop_p ())
372316f1 5361 return 0;
4d9d9d04
PA
5362
5363 /* Start a new step-over in another thread if there's one that
5364 needs it. */
5365 start_step_over ();
372316f1
PA
5366
5367 /* If we were stepping over a breakpoint before, and haven't started
5368 a new in-line step-over sequence, then restart all other threads
5369 (except the event thread). We can't do this in all-stop, as then
5370 e.g., we wouldn't be able to issue any other remote packet until
5371 these other threads stop. */
5372 if (had_step_over_info && !step_over_info_valid_p ())
5373 {
5374 struct thread_info *pending;
5375
5376 /* If we only have threads with pending statuses, the restart
5377 below won't restart any thread and so nothing re-inserts the
5378 breakpoint we just stepped over. But we need it inserted
5379 when we later process the pending events, otherwise if
5380 another thread has a pending event for this breakpoint too,
5381 we'd discard its event (because the breakpoint that
5382 originally caused the event was no longer inserted). */
00431a78 5383 context_switch (ecs);
372316f1
PA
5384 insert_breakpoints ();
5385
5386 restart_threads (ecs->event_thread);
5387
5388 /* If we have events pending, go through handle_inferior_event
5389 again, picking up a pending event at random. This avoids
5390 thread starvation. */
5391
5392 /* But not if we just stepped over a watchpoint in order to let
5393 the instruction execute so we can evaluate its expression.
5394 The set of watchpoints that triggered is recorded in the
5395 breakpoint objects themselves (see bp->watchpoint_triggered).
5396 If we processed another event first, that other event could
5397 clobber this info. */
5398 if (ecs->event_thread->stepping_over_watchpoint)
5399 return 0;
5400
5401 pending = iterate_over_threads (resumed_thread_with_pending_status,
5402 NULL);
5403 if (pending != NULL)
5404 {
5405 struct thread_info *tp = ecs->event_thread;
5406 struct regcache *regcache;
5407
5408 if (debug_infrun)
5409 {
5410 fprintf_unfiltered (gdb_stdlog,
5411 "infrun: found resumed threads with "
5412 "pending events, saving status\n");
5413 }
5414
5415 gdb_assert (pending != tp);
5416
5417 /* Record the event thread's event for later. */
5418 save_waitstatus (tp, &ecs->ws);
5419 /* This was cleared early, by handle_inferior_event. Set it
5420 so this pending event is considered by
5421 do_target_wait. */
5422 tp->resumed = 1;
5423
5424 gdb_assert (!tp->executing);
5425
00431a78 5426 regcache = get_thread_regcache (tp);
372316f1
PA
5427 tp->suspend.stop_pc = regcache_read_pc (regcache);
5428
5429 if (debug_infrun)
5430 {
5431 fprintf_unfiltered (gdb_stdlog,
5432 "infrun: saved stop_pc=%s for %s "
5433 "(currently_stepping=%d)\n",
5434 paddress (target_gdbarch (),
5435 tp->suspend.stop_pc),
a068643d 5436 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5437 currently_stepping (tp));
5438 }
5439
5440 /* This in-line step-over finished; clear this so we won't
5441 start a new one. This is what handle_signal_stop would
5442 do, if we returned false. */
5443 tp->stepping_over_breakpoint = 0;
5444
5445 /* Wake up the event loop again. */
5446 mark_async_event_handler (infrun_async_inferior_event_token);
5447
5448 prepare_to_wait (ecs);
5449 return 1;
5450 }
5451 }
5452
5453 return 0;
4d9d9d04
PA
5454}
5455
4f5d7f63
PA
5456/* Come here when the program has stopped with a signal. */
5457
5458static void
5459handle_signal_stop (struct execution_control_state *ecs)
5460{
5461 struct frame_info *frame;
5462 struct gdbarch *gdbarch;
5463 int stopped_by_watchpoint;
5464 enum stop_kind stop_soon;
5465 int random_signal;
c906108c 5466
f0407826
DE
5467 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5468
c65d6b55
PA
5469 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5470
f0407826
DE
5471 /* Do we need to clean up the state of a thread that has
5472 completed a displaced single-step? (Doing so usually affects
5473 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5474 if (finish_step_over (ecs))
5475 return;
f0407826
DE
5476
5477 /* If we either finished a single-step or hit a breakpoint, but
5478 the user wanted this thread to be stopped, pretend we got a
5479 SIG0 (generic unsignaled stop). */
5480 if (ecs->event_thread->stop_requested
5481 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5482 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5483
f2ffa92b
PA
5484 ecs->event_thread->suspend.stop_pc
5485 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5486
527159b7 5487 if (debug_infrun)
237fc4c9 5488 {
00431a78 5489 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5490 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5491
f3f8ece4 5492 switch_to_thread (ecs->event_thread);
5af949e3
UW
5493
5494 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5495 paddress (reg_gdbarch,
f2ffa92b 5496 ecs->event_thread->suspend.stop_pc));
d92524f1 5497 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5498 {
5499 CORE_ADDR addr;
abbb1732 5500
237fc4c9
PA
5501 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5502
8b88a78e 5503 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5504 fprintf_unfiltered (gdb_stdlog,
5af949e3 5505 "infrun: stopped data address = %s\n",
b926417a 5506 paddress (reg_gdbarch, addr));
237fc4c9
PA
5507 else
5508 fprintf_unfiltered (gdb_stdlog,
5509 "infrun: (no data address available)\n");
5510 }
5511 }
527159b7 5512
36fa8042
PA
5513 /* This is originated from start_remote(), start_inferior() and
5514 shared libraries hook functions. */
00431a78 5515 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5516 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5517 {
00431a78 5518 context_switch (ecs);
36fa8042
PA
5519 if (debug_infrun)
5520 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5521 stop_print_frame = 1;
22bcd14b 5522 stop_waiting (ecs);
36fa8042
PA
5523 return;
5524 }
5525
36fa8042
PA
5526 /* This originates from attach_command(). We need to overwrite
5527 the stop_signal here, because some kernels don't ignore a
5528 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5529 See more comments in inferior.h. On the other hand, if we
5530 get a non-SIGSTOP, report it to the user - assume the backend
5531 will handle the SIGSTOP if it should show up later.
5532
5533 Also consider that the attach is complete when we see a
5534 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5535 target extended-remote report it instead of a SIGSTOP
5536 (e.g. gdbserver). We already rely on SIGTRAP being our
5537 signal, so this is no exception.
5538
5539 Also consider that the attach is complete when we see a
5540 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5541 the target to stop all threads of the inferior, in case the
5542 low level attach operation doesn't stop them implicitly. If
5543 they weren't stopped implicitly, then the stub will report a
5544 GDB_SIGNAL_0, meaning: stopped for no particular reason
5545 other than GDB's request. */
5546 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5547 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5548 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5549 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5550 {
5551 stop_print_frame = 1;
22bcd14b 5552 stop_waiting (ecs);
36fa8042
PA
5553 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5554 return;
5555 }
5556
488f131b 5557 /* See if something interesting happened to the non-current thread. If
b40c7d58 5558 so, then switch to that thread. */
d7e15655 5559 if (ecs->ptid != inferior_ptid)
488f131b 5560 {
527159b7 5561 if (debug_infrun)
8a9de0e4 5562 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5563
00431a78 5564 context_switch (ecs);
c5aa993b 5565
9a4105ab 5566 if (deprecated_context_hook)
00431a78 5567 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5568 }
c906108c 5569
568d6575
UW
5570 /* At this point, get hold of the now-current thread's frame. */
5571 frame = get_current_frame ();
5572 gdbarch = get_frame_arch (frame);
5573
2adfaa28 5574 /* Pull the single step breakpoints out of the target. */
af48d08f 5575 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5576 {
af48d08f 5577 struct regcache *regcache;
af48d08f 5578 CORE_ADDR pc;
2adfaa28 5579
00431a78 5580 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5581 const address_space *aspace = regcache->aspace ();
5582
af48d08f 5583 pc = regcache_read_pc (regcache);
34b7e8a6 5584
af48d08f
PA
5585 /* However, before doing so, if this single-step breakpoint was
5586 actually for another thread, set this thread up for moving
5587 past it. */
5588 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5589 aspace, pc))
5590 {
5591 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5592 {
5593 if (debug_infrun)
5594 {
5595 fprintf_unfiltered (gdb_stdlog,
af48d08f 5596 "infrun: [%s] hit another thread's "
34b7e8a6 5597 "single-step breakpoint\n",
a068643d 5598 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5599 }
af48d08f
PA
5600 ecs->hit_singlestep_breakpoint = 1;
5601 }
5602 }
5603 else
5604 {
5605 if (debug_infrun)
5606 {
5607 fprintf_unfiltered (gdb_stdlog,
5608 "infrun: [%s] hit its "
5609 "single-step breakpoint\n",
a068643d 5610 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5611 }
5612 }
488f131b 5613 }
af48d08f 5614 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5615
963f9c80
PA
5616 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5617 && ecs->event_thread->control.trap_expected
5618 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5619 stopped_by_watchpoint = 0;
5620 else
5621 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5622
5623 /* If necessary, step over this watchpoint. We'll be back to display
5624 it in a moment. */
5625 if (stopped_by_watchpoint
d92524f1 5626 && (target_have_steppable_watchpoint
568d6575 5627 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5628 {
488f131b
JB
5629 /* At this point, we are stopped at an instruction which has
5630 attempted to write to a piece of memory under control of
5631 a watchpoint. The instruction hasn't actually executed
5632 yet. If we were to evaluate the watchpoint expression
5633 now, we would get the old value, and therefore no change
5634 would seem to have occurred.
5635
5636 In order to make watchpoints work `right', we really need
5637 to complete the memory write, and then evaluate the
d983da9c
DJ
5638 watchpoint expression. We do this by single-stepping the
5639 target.
5640
7f89fd65 5641 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5642 it. For example, the PA can (with some kernel cooperation)
5643 single step over a watchpoint without disabling the watchpoint.
5644
5645 It is far more common to need to disable a watchpoint to step
5646 the inferior over it. If we have non-steppable watchpoints,
5647 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5648 disable all watchpoints.
5649
5650 Any breakpoint at PC must also be stepped over -- if there's
5651 one, it will have already triggered before the watchpoint
5652 triggered, and we either already reported it to the user, or
5653 it didn't cause a stop and we called keep_going. In either
5654 case, if there was a breakpoint at PC, we must be trying to
5655 step past it. */
5656 ecs->event_thread->stepping_over_watchpoint = 1;
5657 keep_going (ecs);
488f131b
JB
5658 return;
5659 }
5660
4e1c45ea 5661 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5662 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5663 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5664 ecs->event_thread->control.stop_step = 0;
488f131b 5665 stop_print_frame = 1;
488f131b 5666 stopped_by_random_signal = 0;
ddfe970e 5667 bpstat stop_chain = NULL;
488f131b 5668
edb3359d
DJ
5669 /* Hide inlined functions starting here, unless we just performed stepi or
5670 nexti. After stepi and nexti, always show the innermost frame (not any
5671 inline function call sites). */
16c381f0 5672 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5673 {
00431a78
PA
5674 const address_space *aspace
5675 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5676
5677 /* skip_inline_frames is expensive, so we avoid it if we can
5678 determine that the address is one where functions cannot have
5679 been inlined. This improves performance with inferiors that
5680 load a lot of shared libraries, because the solib event
5681 breakpoint is defined as the address of a function (i.e. not
5682 inline). Note that we have to check the previous PC as well
5683 as the current one to catch cases when we have just
5684 single-stepped off a breakpoint prior to reinstating it.
5685 Note that we're assuming that the code we single-step to is
5686 not inline, but that's not definitive: there's nothing
5687 preventing the event breakpoint function from containing
5688 inlined code, and the single-step ending up there. If the
5689 user had set a breakpoint on that inlined code, the missing
5690 skip_inline_frames call would break things. Fortunately
5691 that's an extremely unlikely scenario. */
f2ffa92b
PA
5692 if (!pc_at_non_inline_function (aspace,
5693 ecs->event_thread->suspend.stop_pc,
5694 &ecs->ws)
a210c238
MR
5695 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5696 && ecs->event_thread->control.trap_expected
5697 && pc_at_non_inline_function (aspace,
5698 ecs->event_thread->prev_pc,
09ac7c10 5699 &ecs->ws)))
1c5a993e 5700 {
f2ffa92b
PA
5701 stop_chain = build_bpstat_chain (aspace,
5702 ecs->event_thread->suspend.stop_pc,
5703 &ecs->ws);
00431a78 5704 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5705
5706 /* Re-fetch current thread's frame in case that invalidated
5707 the frame cache. */
5708 frame = get_current_frame ();
5709 gdbarch = get_frame_arch (frame);
5710 }
0574c78f 5711 }
edb3359d 5712
a493e3e2 5713 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5714 && ecs->event_thread->control.trap_expected
568d6575 5715 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5716 && currently_stepping (ecs->event_thread))
3352ef37 5717 {
b50d7442 5718 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5719 also on an instruction that needs to be stepped multiple
1777feb0 5720 times before it's been fully executing. E.g., architectures
3352ef37
AC
5721 with a delay slot. It needs to be stepped twice, once for
5722 the instruction and once for the delay slot. */
5723 int step_through_delay
568d6575 5724 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5725
527159b7 5726 if (debug_infrun && step_through_delay)
8a9de0e4 5727 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5728 if (ecs->event_thread->control.step_range_end == 0
5729 && step_through_delay)
3352ef37
AC
5730 {
5731 /* The user issued a continue when stopped at a breakpoint.
5732 Set up for another trap and get out of here. */
4e1c45ea 5733 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5734 keep_going (ecs);
5735 return;
5736 }
5737 else if (step_through_delay)
5738 {
5739 /* The user issued a step when stopped at a breakpoint.
5740 Maybe we should stop, maybe we should not - the delay
5741 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5742 case, don't decide that here, just set
5743 ecs->stepping_over_breakpoint, making sure we
5744 single-step again before breakpoints are re-inserted. */
4e1c45ea 5745 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5746 }
5747 }
5748
ab04a2af
TT
5749 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5750 handles this event. */
5751 ecs->event_thread->control.stop_bpstat
a01bda52 5752 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5753 ecs->event_thread->suspend.stop_pc,
5754 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5755
ab04a2af
TT
5756 /* Following in case break condition called a
5757 function. */
5758 stop_print_frame = 1;
73dd234f 5759
ab04a2af
TT
5760 /* This is where we handle "moribund" watchpoints. Unlike
5761 software breakpoints traps, hardware watchpoint traps are
5762 always distinguishable from random traps. If no high-level
5763 watchpoint is associated with the reported stop data address
5764 anymore, then the bpstat does not explain the signal ---
5765 simply make sure to ignore it if `stopped_by_watchpoint' is
5766 set. */
5767
5768 if (debug_infrun
5769 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5770 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5771 GDB_SIGNAL_TRAP)
ab04a2af
TT
5772 && stopped_by_watchpoint)
5773 fprintf_unfiltered (gdb_stdlog,
5774 "infrun: no user watchpoint explains "
5775 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5776
bac7d97b 5777 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5778 at one stage in the past included checks for an inferior
5779 function call's call dummy's return breakpoint. The original
5780 comment, that went with the test, read:
03cebad2 5781
ab04a2af
TT
5782 ``End of a stack dummy. Some systems (e.g. Sony news) give
5783 another signal besides SIGTRAP, so check here as well as
5784 above.''
73dd234f 5785
ab04a2af
TT
5786 If someone ever tries to get call dummys on a
5787 non-executable stack to work (where the target would stop
5788 with something like a SIGSEGV), then those tests might need
5789 to be re-instated. Given, however, that the tests were only
5790 enabled when momentary breakpoints were not being used, I
5791 suspect that it won't be the case.
488f131b 5792
ab04a2af
TT
5793 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5794 be necessary for call dummies on a non-executable stack on
5795 SPARC. */
488f131b 5796
bac7d97b 5797 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5798 random_signal
5799 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5800 ecs->event_thread->suspend.stop_signal);
bac7d97b 5801
1cf4d951
PA
5802 /* Maybe this was a trap for a software breakpoint that has since
5803 been removed. */
5804 if (random_signal && target_stopped_by_sw_breakpoint ())
5805 {
f2ffa92b
PA
5806 if (program_breakpoint_here_p (gdbarch,
5807 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5808 {
5809 struct regcache *regcache;
5810 int decr_pc;
5811
5812 /* Re-adjust PC to what the program would see if GDB was not
5813 debugging it. */
00431a78 5814 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5815 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5816 if (decr_pc != 0)
5817 {
07036511
TT
5818 gdb::optional<scoped_restore_tmpl<int>>
5819 restore_operation_disable;
1cf4d951
PA
5820
5821 if (record_full_is_used ())
07036511
TT
5822 restore_operation_disable.emplace
5823 (record_full_gdb_operation_disable_set ());
1cf4d951 5824
f2ffa92b
PA
5825 regcache_write_pc (regcache,
5826 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5827 }
5828 }
5829 else
5830 {
5831 /* A delayed software breakpoint event. Ignore the trap. */
5832 if (debug_infrun)
5833 fprintf_unfiltered (gdb_stdlog,
5834 "infrun: delayed software breakpoint "
5835 "trap, ignoring\n");
5836 random_signal = 0;
5837 }
5838 }
5839
5840 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5841 has since been removed. */
5842 if (random_signal && target_stopped_by_hw_breakpoint ())
5843 {
5844 /* A delayed hardware breakpoint event. Ignore the trap. */
5845 if (debug_infrun)
5846 fprintf_unfiltered (gdb_stdlog,
5847 "infrun: delayed hardware breakpoint/watchpoint "
5848 "trap, ignoring\n");
5849 random_signal = 0;
5850 }
5851
bac7d97b
PA
5852 /* If not, perhaps stepping/nexting can. */
5853 if (random_signal)
5854 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5855 && currently_stepping (ecs->event_thread));
ab04a2af 5856
2adfaa28
PA
5857 /* Perhaps the thread hit a single-step breakpoint of _another_
5858 thread. Single-step breakpoints are transparent to the
5859 breakpoints module. */
5860 if (random_signal)
5861 random_signal = !ecs->hit_singlestep_breakpoint;
5862
bac7d97b
PA
5863 /* No? Perhaps we got a moribund watchpoint. */
5864 if (random_signal)
5865 random_signal = !stopped_by_watchpoint;
ab04a2af 5866
c65d6b55
PA
5867 /* Always stop if the user explicitly requested this thread to
5868 remain stopped. */
5869 if (ecs->event_thread->stop_requested)
5870 {
5871 random_signal = 1;
5872 if (debug_infrun)
5873 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5874 }
5875
488f131b
JB
5876 /* For the program's own signals, act according to
5877 the signal handling tables. */
5878
ce12b012 5879 if (random_signal)
488f131b
JB
5880 {
5881 /* Signal not for debugging purposes. */
c9657e70 5882 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5883 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5884
527159b7 5885 if (debug_infrun)
c9737c08
PA
5886 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5887 gdb_signal_to_symbol_string (stop_signal));
527159b7 5888
488f131b
JB
5889 stopped_by_random_signal = 1;
5890
252fbfc8
PA
5891 /* Always stop on signals if we're either just gaining control
5892 of the program, or the user explicitly requested this thread
5893 to remain stopped. */
d6b48e9c 5894 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5895 || ecs->event_thread->stop_requested
24291992 5896 || (!inf->detaching
16c381f0 5897 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5898 {
22bcd14b 5899 stop_waiting (ecs);
488f131b
JB
5900 return;
5901 }
b57bacec
PA
5902
5903 /* Notify observers the signal has "handle print" set. Note we
5904 returned early above if stopping; normal_stop handles the
5905 printing in that case. */
5906 if (signal_print[ecs->event_thread->suspend.stop_signal])
5907 {
5908 /* The signal table tells us to print about this signal. */
223ffa71 5909 target_terminal::ours_for_output ();
76727919 5910 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5911 target_terminal::inferior ();
b57bacec 5912 }
488f131b
JB
5913
5914 /* Clear the signal if it should not be passed. */
16c381f0 5915 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5916 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5917
f2ffa92b 5918 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5919 && ecs->event_thread->control.trap_expected
8358c15c 5920 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5921 {
5922 /* We were just starting a new sequence, attempting to
5923 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5924 Instead this signal arrives. This signal will take us out
68f53502
AC
5925 of the stepping range so GDB needs to remember to, when
5926 the signal handler returns, resume stepping off that
5927 breakpoint. */
5928 /* To simplify things, "continue" is forced to use the same
5929 code paths as single-step - set a breakpoint at the
5930 signal return address and then, once hit, step off that
5931 breakpoint. */
237fc4c9
PA
5932 if (debug_infrun)
5933 fprintf_unfiltered (gdb_stdlog,
5934 "infrun: signal arrived while stepping over "
5935 "breakpoint\n");
d3169d93 5936
2c03e5be 5937 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5938 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5939 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5940 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5941
5942 /* If we were nexting/stepping some other thread, switch to
5943 it, so that we don't continue it, losing control. */
5944 if (!switch_back_to_stepped_thread (ecs))
5945 keep_going (ecs);
9d799f85 5946 return;
68f53502 5947 }
9d799f85 5948
e5f8a7cc 5949 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5950 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5951 ecs->event_thread)
e5f8a7cc 5952 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5953 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5954 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5955 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5956 {
5957 /* The inferior is about to take a signal that will take it
5958 out of the single step range. Set a breakpoint at the
5959 current PC (which is presumably where the signal handler
5960 will eventually return) and then allow the inferior to
5961 run free.
5962
5963 Note that this is only needed for a signal delivered
5964 while in the single-step range. Nested signals aren't a
5965 problem as they eventually all return. */
237fc4c9
PA
5966 if (debug_infrun)
5967 fprintf_unfiltered (gdb_stdlog,
5968 "infrun: signal may take us out of "
5969 "single-step range\n");
5970
372316f1 5971 clear_step_over_info ();
2c03e5be 5972 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5973 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5974 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5975 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5976 keep_going (ecs);
5977 return;
d303a6c7 5978 }
9d799f85 5979
85102364 5980 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
5981 when either there's a nested signal, or when there's a
5982 pending signal enabled just as the signal handler returns
5983 (leaving the inferior at the step-resume-breakpoint without
5984 actually executing it). Either way continue until the
5985 breakpoint is really hit. */
c447ac0b
PA
5986
5987 if (!switch_back_to_stepped_thread (ecs))
5988 {
5989 if (debug_infrun)
5990 fprintf_unfiltered (gdb_stdlog,
5991 "infrun: random signal, keep going\n");
5992
5993 keep_going (ecs);
5994 }
5995 return;
488f131b 5996 }
94c57d6a
PA
5997
5998 process_event_stop_test (ecs);
5999}
6000
6001/* Come here when we've got some debug event / signal we can explain
6002 (IOW, not a random signal), and test whether it should cause a
6003 stop, or whether we should resume the inferior (transparently).
6004 E.g., could be a breakpoint whose condition evaluates false; we
6005 could be still stepping within the line; etc. */
6006
6007static void
6008process_event_stop_test (struct execution_control_state *ecs)
6009{
6010 struct symtab_and_line stop_pc_sal;
6011 struct frame_info *frame;
6012 struct gdbarch *gdbarch;
cdaa5b73
PA
6013 CORE_ADDR jmp_buf_pc;
6014 struct bpstat_what what;
94c57d6a 6015
cdaa5b73 6016 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6017
cdaa5b73
PA
6018 frame = get_current_frame ();
6019 gdbarch = get_frame_arch (frame);
fcf3daef 6020
cdaa5b73 6021 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6022
cdaa5b73
PA
6023 if (what.call_dummy)
6024 {
6025 stop_stack_dummy = what.call_dummy;
6026 }
186c406b 6027
243a9253
PA
6028 /* A few breakpoint types have callbacks associated (e.g.,
6029 bp_jit_event). Run them now. */
6030 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6031
cdaa5b73
PA
6032 /* If we hit an internal event that triggers symbol changes, the
6033 current frame will be invalidated within bpstat_what (e.g., if we
6034 hit an internal solib event). Re-fetch it. */
6035 frame = get_current_frame ();
6036 gdbarch = get_frame_arch (frame);
e2e4d78b 6037
cdaa5b73
PA
6038 switch (what.main_action)
6039 {
6040 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6041 /* If we hit the breakpoint at longjmp while stepping, we
6042 install a momentary breakpoint at the target of the
6043 jmp_buf. */
186c406b 6044
cdaa5b73
PA
6045 if (debug_infrun)
6046 fprintf_unfiltered (gdb_stdlog,
6047 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6048
cdaa5b73 6049 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6050
cdaa5b73
PA
6051 if (what.is_longjmp)
6052 {
6053 struct value *arg_value;
6054
6055 /* If we set the longjmp breakpoint via a SystemTap probe,
6056 then use it to extract the arguments. The destination PC
6057 is the third argument to the probe. */
6058 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6059 if (arg_value)
8fa0c4f8
AA
6060 {
6061 jmp_buf_pc = value_as_address (arg_value);
6062 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6063 }
cdaa5b73
PA
6064 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6065 || !gdbarch_get_longjmp_target (gdbarch,
6066 frame, &jmp_buf_pc))
e2e4d78b 6067 {
cdaa5b73
PA
6068 if (debug_infrun)
6069 fprintf_unfiltered (gdb_stdlog,
6070 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6071 "(!gdbarch_get_longjmp_target)\n");
6072 keep_going (ecs);
6073 return;
e2e4d78b 6074 }
e2e4d78b 6075
cdaa5b73
PA
6076 /* Insert a breakpoint at resume address. */
6077 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6078 }
6079 else
6080 check_exception_resume (ecs, frame);
6081 keep_going (ecs);
6082 return;
e81a37f7 6083
cdaa5b73
PA
6084 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6085 {
6086 struct frame_info *init_frame;
e81a37f7 6087
cdaa5b73 6088 /* There are several cases to consider.
c906108c 6089
cdaa5b73
PA
6090 1. The initiating frame no longer exists. In this case we
6091 must stop, because the exception or longjmp has gone too
6092 far.
2c03e5be 6093
cdaa5b73
PA
6094 2. The initiating frame exists, and is the same as the
6095 current frame. We stop, because the exception or longjmp
6096 has been caught.
2c03e5be 6097
cdaa5b73
PA
6098 3. The initiating frame exists and is different from the
6099 current frame. This means the exception or longjmp has
6100 been caught beneath the initiating frame, so keep going.
c906108c 6101
cdaa5b73
PA
6102 4. longjmp breakpoint has been placed just to protect
6103 against stale dummy frames and user is not interested in
6104 stopping around longjmps. */
c5aa993b 6105
cdaa5b73
PA
6106 if (debug_infrun)
6107 fprintf_unfiltered (gdb_stdlog,
6108 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6109
cdaa5b73
PA
6110 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6111 != NULL);
6112 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6113
cdaa5b73
PA
6114 if (what.is_longjmp)
6115 {
b67a2c6f 6116 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6117
cdaa5b73 6118 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6119 {
cdaa5b73
PA
6120 /* Case 4. */
6121 keep_going (ecs);
6122 return;
e5ef252a 6123 }
cdaa5b73 6124 }
c5aa993b 6125
cdaa5b73 6126 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6127
cdaa5b73
PA
6128 if (init_frame)
6129 {
6130 struct frame_id current_id
6131 = get_frame_id (get_current_frame ());
6132 if (frame_id_eq (current_id,
6133 ecs->event_thread->initiating_frame))
6134 {
6135 /* Case 2. Fall through. */
6136 }
6137 else
6138 {
6139 /* Case 3. */
6140 keep_going (ecs);
6141 return;
6142 }
68f53502 6143 }
488f131b 6144
cdaa5b73
PA
6145 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6146 exists. */
6147 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6148
bdc36728 6149 end_stepping_range (ecs);
cdaa5b73
PA
6150 }
6151 return;
e5ef252a 6152
cdaa5b73
PA
6153 case BPSTAT_WHAT_SINGLE:
6154 if (debug_infrun)
6155 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6156 ecs->event_thread->stepping_over_breakpoint = 1;
6157 /* Still need to check other stuff, at least the case where we
6158 are stepping and step out of the right range. */
6159 break;
e5ef252a 6160
cdaa5b73
PA
6161 case BPSTAT_WHAT_STEP_RESUME:
6162 if (debug_infrun)
6163 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6164
cdaa5b73
PA
6165 delete_step_resume_breakpoint (ecs->event_thread);
6166 if (ecs->event_thread->control.proceed_to_finish
6167 && execution_direction == EXEC_REVERSE)
6168 {
6169 struct thread_info *tp = ecs->event_thread;
6170
6171 /* We are finishing a function in reverse, and just hit the
6172 step-resume breakpoint at the start address of the
6173 function, and we're almost there -- just need to back up
6174 by one more single-step, which should take us back to the
6175 function call. */
6176 tp->control.step_range_start = tp->control.step_range_end = 1;
6177 keep_going (ecs);
e5ef252a 6178 return;
cdaa5b73
PA
6179 }
6180 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6181 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6182 && execution_direction == EXEC_REVERSE)
6183 {
6184 /* We are stepping over a function call in reverse, and just
6185 hit the step-resume breakpoint at the start address of
6186 the function. Go back to single-stepping, which should
6187 take us back to the function call. */
6188 ecs->event_thread->stepping_over_breakpoint = 1;
6189 keep_going (ecs);
6190 return;
6191 }
6192 break;
e5ef252a 6193
cdaa5b73
PA
6194 case BPSTAT_WHAT_STOP_NOISY:
6195 if (debug_infrun)
6196 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6197 stop_print_frame = 1;
e5ef252a 6198
99619bea
PA
6199 /* Assume the thread stopped for a breapoint. We'll still check
6200 whether a/the breakpoint is there when the thread is next
6201 resumed. */
6202 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6203
22bcd14b 6204 stop_waiting (ecs);
cdaa5b73 6205 return;
e5ef252a 6206
cdaa5b73
PA
6207 case BPSTAT_WHAT_STOP_SILENT:
6208 if (debug_infrun)
6209 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6210 stop_print_frame = 0;
e5ef252a 6211
99619bea
PA
6212 /* Assume the thread stopped for a breapoint. We'll still check
6213 whether a/the breakpoint is there when the thread is next
6214 resumed. */
6215 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6216 stop_waiting (ecs);
cdaa5b73
PA
6217 return;
6218
6219 case BPSTAT_WHAT_HP_STEP_RESUME:
6220 if (debug_infrun)
6221 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6222
6223 delete_step_resume_breakpoint (ecs->event_thread);
6224 if (ecs->event_thread->step_after_step_resume_breakpoint)
6225 {
6226 /* Back when the step-resume breakpoint was inserted, we
6227 were trying to single-step off a breakpoint. Go back to
6228 doing that. */
6229 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6230 ecs->event_thread->stepping_over_breakpoint = 1;
6231 keep_going (ecs);
6232 return;
e5ef252a 6233 }
cdaa5b73
PA
6234 break;
6235
6236 case BPSTAT_WHAT_KEEP_CHECKING:
6237 break;
e5ef252a 6238 }
c906108c 6239
af48d08f
PA
6240 /* If we stepped a permanent breakpoint and we had a high priority
6241 step-resume breakpoint for the address we stepped, but we didn't
6242 hit it, then we must have stepped into the signal handler. The
6243 step-resume was only necessary to catch the case of _not_
6244 stepping into the handler, so delete it, and fall through to
6245 checking whether the step finished. */
6246 if (ecs->event_thread->stepped_breakpoint)
6247 {
6248 struct breakpoint *sr_bp
6249 = ecs->event_thread->control.step_resume_breakpoint;
6250
8d707a12
PA
6251 if (sr_bp != NULL
6252 && sr_bp->loc->permanent
af48d08f
PA
6253 && sr_bp->type == bp_hp_step_resume
6254 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6255 {
6256 if (debug_infrun)
6257 fprintf_unfiltered (gdb_stdlog,
6258 "infrun: stepped permanent breakpoint, stopped in "
6259 "handler\n");
6260 delete_step_resume_breakpoint (ecs->event_thread);
6261 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6262 }
6263 }
6264
cdaa5b73
PA
6265 /* We come here if we hit a breakpoint but should not stop for it.
6266 Possibly we also were stepping and should stop for that. So fall
6267 through and test for stepping. But, if not stepping, do not
6268 stop. */
c906108c 6269
a7212384
UW
6270 /* In all-stop mode, if we're currently stepping but have stopped in
6271 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6272 if (switch_back_to_stepped_thread (ecs))
6273 return;
776f04fa 6274
8358c15c 6275 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6276 {
527159b7 6277 if (debug_infrun)
d3169d93
DJ
6278 fprintf_unfiltered (gdb_stdlog,
6279 "infrun: step-resume breakpoint is inserted\n");
527159b7 6280
488f131b
JB
6281 /* Having a step-resume breakpoint overrides anything
6282 else having to do with stepping commands until
6283 that breakpoint is reached. */
488f131b
JB
6284 keep_going (ecs);
6285 return;
6286 }
c5aa993b 6287
16c381f0 6288 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6289 {
527159b7 6290 if (debug_infrun)
8a9de0e4 6291 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6292 /* Likewise if we aren't even stepping. */
488f131b
JB
6293 keep_going (ecs);
6294 return;
6295 }
c5aa993b 6296
4b7703ad
JB
6297 /* Re-fetch current thread's frame in case the code above caused
6298 the frame cache to be re-initialized, making our FRAME variable
6299 a dangling pointer. */
6300 frame = get_current_frame ();
628fe4e4 6301 gdbarch = get_frame_arch (frame);
7e324e48 6302 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6303
488f131b 6304 /* If stepping through a line, keep going if still within it.
c906108c 6305
488f131b
JB
6306 Note that step_range_end is the address of the first instruction
6307 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6308 within it!
6309
6310 Note also that during reverse execution, we may be stepping
6311 through a function epilogue and therefore must detect when
6312 the current-frame changes in the middle of a line. */
6313
f2ffa92b
PA
6314 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6315 ecs->event_thread)
31410e84 6316 && (execution_direction != EXEC_REVERSE
388a8562 6317 || frame_id_eq (get_frame_id (frame),
16c381f0 6318 ecs->event_thread->control.step_frame_id)))
488f131b 6319 {
527159b7 6320 if (debug_infrun)
5af949e3
UW
6321 fprintf_unfiltered
6322 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6323 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6324 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6325
c1e36e3e
PA
6326 /* Tentatively re-enable range stepping; `resume' disables it if
6327 necessary (e.g., if we're stepping over a breakpoint or we
6328 have software watchpoints). */
6329 ecs->event_thread->control.may_range_step = 1;
6330
b2175913
MS
6331 /* When stepping backward, stop at beginning of line range
6332 (unless it's the function entry point, in which case
6333 keep going back to the call point). */
f2ffa92b 6334 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6335 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6336 && stop_pc != ecs->stop_func_start
6337 && execution_direction == EXEC_REVERSE)
bdc36728 6338 end_stepping_range (ecs);
b2175913
MS
6339 else
6340 keep_going (ecs);
6341
488f131b
JB
6342 return;
6343 }
c5aa993b 6344
488f131b 6345 /* We stepped out of the stepping range. */
c906108c 6346
488f131b 6347 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6348 loader dynamic symbol resolution code...
6349
6350 EXEC_FORWARD: we keep on single stepping until we exit the run
6351 time loader code and reach the callee's address.
6352
6353 EXEC_REVERSE: we've already executed the callee (backward), and
6354 the runtime loader code is handled just like any other
6355 undebuggable function call. Now we need only keep stepping
6356 backward through the trampoline code, and that's handled further
6357 down, so there is nothing for us to do here. */
6358
6359 if (execution_direction != EXEC_REVERSE
16c381f0 6360 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6361 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6362 {
4c8c40e6 6363 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6364 gdbarch_skip_solib_resolver (gdbarch,
6365 ecs->event_thread->suspend.stop_pc);
c906108c 6366
527159b7 6367 if (debug_infrun)
3e43a32a
MS
6368 fprintf_unfiltered (gdb_stdlog,
6369 "infrun: stepped into dynsym resolve code\n");
527159b7 6370
488f131b
JB
6371 if (pc_after_resolver)
6372 {
6373 /* Set up a step-resume breakpoint at the address
6374 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6375 symtab_and_line sr_sal;
488f131b 6376 sr_sal.pc = pc_after_resolver;
6c95b8df 6377 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6378
a6d9a66e
UW
6379 insert_step_resume_breakpoint_at_sal (gdbarch,
6380 sr_sal, null_frame_id);
c5aa993b 6381 }
c906108c 6382
488f131b
JB
6383 keep_going (ecs);
6384 return;
6385 }
c906108c 6386
1d509aa6
MM
6387 /* Step through an indirect branch thunk. */
6388 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6389 && gdbarch_in_indirect_branch_thunk (gdbarch,
6390 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6391 {
6392 if (debug_infrun)
6393 fprintf_unfiltered (gdb_stdlog,
6394 "infrun: stepped into indirect branch thunk\n");
6395 keep_going (ecs);
6396 return;
6397 }
6398
16c381f0
JK
6399 if (ecs->event_thread->control.step_range_end != 1
6400 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6401 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6402 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6403 {
527159b7 6404 if (debug_infrun)
3e43a32a
MS
6405 fprintf_unfiltered (gdb_stdlog,
6406 "infrun: stepped into signal trampoline\n");
42edda50 6407 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6408 a signal trampoline (either by a signal being delivered or by
6409 the signal handler returning). Just single-step until the
6410 inferior leaves the trampoline (either by calling the handler
6411 or returning). */
488f131b
JB
6412 keep_going (ecs);
6413 return;
6414 }
c906108c 6415
14132e89
MR
6416 /* If we're in the return path from a shared library trampoline,
6417 we want to proceed through the trampoline when stepping. */
6418 /* macro/2012-04-25: This needs to come before the subroutine
6419 call check below as on some targets return trampolines look
6420 like subroutine calls (MIPS16 return thunks). */
6421 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6422 ecs->event_thread->suspend.stop_pc,
6423 ecs->stop_func_name)
14132e89
MR
6424 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6425 {
6426 /* Determine where this trampoline returns. */
f2ffa92b
PA
6427 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6428 CORE_ADDR real_stop_pc
6429 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6430
6431 if (debug_infrun)
6432 fprintf_unfiltered (gdb_stdlog,
6433 "infrun: stepped into solib return tramp\n");
6434
6435 /* Only proceed through if we know where it's going. */
6436 if (real_stop_pc)
6437 {
6438 /* And put the step-breakpoint there and go until there. */
51abb421 6439 symtab_and_line sr_sal;
14132e89
MR
6440 sr_sal.pc = real_stop_pc;
6441 sr_sal.section = find_pc_overlay (sr_sal.pc);
6442 sr_sal.pspace = get_frame_program_space (frame);
6443
6444 /* Do not specify what the fp should be when we stop since
6445 on some machines the prologue is where the new fp value
6446 is established. */
6447 insert_step_resume_breakpoint_at_sal (gdbarch,
6448 sr_sal, null_frame_id);
6449
6450 /* Restart without fiddling with the step ranges or
6451 other state. */
6452 keep_going (ecs);
6453 return;
6454 }
6455 }
6456
c17eaafe
DJ
6457 /* Check for subroutine calls. The check for the current frame
6458 equalling the step ID is not necessary - the check of the
6459 previous frame's ID is sufficient - but it is a common case and
6460 cheaper than checking the previous frame's ID.
14e60db5
DJ
6461
6462 NOTE: frame_id_eq will never report two invalid frame IDs as
6463 being equal, so to get into this block, both the current and
6464 previous frame must have valid frame IDs. */
005ca36a
JB
6465 /* The outer_frame_id check is a heuristic to detect stepping
6466 through startup code. If we step over an instruction which
6467 sets the stack pointer from an invalid value to a valid value,
6468 we may detect that as a subroutine call from the mythical
6469 "outermost" function. This could be fixed by marking
6470 outermost frames as !stack_p,code_p,special_p. Then the
6471 initial outermost frame, before sp was valid, would
ce6cca6d 6472 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6473 for more. */
edb3359d 6474 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6475 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6476 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6477 ecs->event_thread->control.step_stack_frame_id)
6478 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6479 outer_frame_id)
885eeb5b 6480 || (ecs->event_thread->control.step_start_function
f2ffa92b 6481 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6482 {
f2ffa92b 6483 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6484 CORE_ADDR real_stop_pc;
8fb3e588 6485
527159b7 6486 if (debug_infrun)
8a9de0e4 6487 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6488
b7a084be 6489 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6490 {
6491 /* I presume that step_over_calls is only 0 when we're
6492 supposed to be stepping at the assembly language level
6493 ("stepi"). Just stop. */
388a8562 6494 /* And this works the same backward as frontward. MVS */
bdc36728 6495 end_stepping_range (ecs);
95918acb
AC
6496 return;
6497 }
8fb3e588 6498
388a8562
MS
6499 /* Reverse stepping through solib trampolines. */
6500
6501 if (execution_direction == EXEC_REVERSE
16c381f0 6502 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6503 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6504 || (ecs->stop_func_start == 0
6505 && in_solib_dynsym_resolve_code (stop_pc))))
6506 {
6507 /* Any solib trampoline code can be handled in reverse
6508 by simply continuing to single-step. We have already
6509 executed the solib function (backwards), and a few
6510 steps will take us back through the trampoline to the
6511 caller. */
6512 keep_going (ecs);
6513 return;
6514 }
6515
16c381f0 6516 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6517 {
b2175913
MS
6518 /* We're doing a "next".
6519
6520 Normal (forward) execution: set a breakpoint at the
6521 callee's return address (the address at which the caller
6522 will resume).
6523
6524 Reverse (backward) execution. set the step-resume
6525 breakpoint at the start of the function that we just
6526 stepped into (backwards), and continue to there. When we
6130d0b7 6527 get there, we'll need to single-step back to the caller. */
b2175913
MS
6528
6529 if (execution_direction == EXEC_REVERSE)
6530 {
acf9414f
JK
6531 /* If we're already at the start of the function, we've either
6532 just stepped backward into a single instruction function,
6533 or stepped back out of a signal handler to the first instruction
6534 of the function. Just keep going, which will single-step back
6535 to the caller. */
58c48e72 6536 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6537 {
acf9414f 6538 /* Normal function call return (static or dynamic). */
51abb421 6539 symtab_and_line sr_sal;
acf9414f
JK
6540 sr_sal.pc = ecs->stop_func_start;
6541 sr_sal.pspace = get_frame_program_space (frame);
6542 insert_step_resume_breakpoint_at_sal (gdbarch,
6543 sr_sal, null_frame_id);
6544 }
b2175913
MS
6545 }
6546 else
568d6575 6547 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6548
8567c30f
AC
6549 keep_going (ecs);
6550 return;
6551 }
a53c66de 6552
95918acb 6553 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6554 calling routine and the real function), locate the real
6555 function. That's what tells us (a) whether we want to step
6556 into it at all, and (b) what prologue we want to run to the
6557 end of, if we do step into it. */
568d6575 6558 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6559 if (real_stop_pc == 0)
568d6575 6560 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6561 if (real_stop_pc != 0)
6562 ecs->stop_func_start = real_stop_pc;
8fb3e588 6563
db5f024e 6564 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6565 {
51abb421 6566 symtab_and_line sr_sal;
1b2bfbb9 6567 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6568 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6569
a6d9a66e
UW
6570 insert_step_resume_breakpoint_at_sal (gdbarch,
6571 sr_sal, null_frame_id);
8fb3e588
AC
6572 keep_going (ecs);
6573 return;
1b2bfbb9
RC
6574 }
6575
95918acb 6576 /* If we have line number information for the function we are
1bfeeb0f
JL
6577 thinking of stepping into and the function isn't on the skip
6578 list, step into it.
95918acb 6579
8fb3e588
AC
6580 If there are several symtabs at that PC (e.g. with include
6581 files), just want to know whether *any* of them have line
6582 numbers. find_pc_line handles this. */
95918acb
AC
6583 {
6584 struct symtab_and_line tmp_sal;
8fb3e588 6585
95918acb 6586 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6587 if (tmp_sal.line != 0
85817405 6588 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6589 tmp_sal)
6590 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6591 {
b2175913 6592 if (execution_direction == EXEC_REVERSE)
568d6575 6593 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6594 else
568d6575 6595 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6596 return;
6597 }
6598 }
6599
6600 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6601 set, we stop the step so that the user has a chance to switch
6602 in assembly mode. */
16c381f0 6603 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6604 && step_stop_if_no_debug)
95918acb 6605 {
bdc36728 6606 end_stepping_range (ecs);
95918acb
AC
6607 return;
6608 }
6609
b2175913
MS
6610 if (execution_direction == EXEC_REVERSE)
6611 {
acf9414f
JK
6612 /* If we're already at the start of the function, we've either just
6613 stepped backward into a single instruction function without line
6614 number info, or stepped back out of a signal handler to the first
6615 instruction of the function without line number info. Just keep
6616 going, which will single-step back to the caller. */
6617 if (ecs->stop_func_start != stop_pc)
6618 {
6619 /* Set a breakpoint at callee's start address.
6620 From there we can step once and be back in the caller. */
51abb421 6621 symtab_and_line sr_sal;
acf9414f
JK
6622 sr_sal.pc = ecs->stop_func_start;
6623 sr_sal.pspace = get_frame_program_space (frame);
6624 insert_step_resume_breakpoint_at_sal (gdbarch,
6625 sr_sal, null_frame_id);
6626 }
b2175913
MS
6627 }
6628 else
6629 /* Set a breakpoint at callee's return address (the address
6630 at which the caller will resume). */
568d6575 6631 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6632
95918acb 6633 keep_going (ecs);
488f131b 6634 return;
488f131b 6635 }
c906108c 6636
fdd654f3
MS
6637 /* Reverse stepping through solib trampolines. */
6638
6639 if (execution_direction == EXEC_REVERSE
16c381f0 6640 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6641 {
f2ffa92b
PA
6642 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6643
fdd654f3
MS
6644 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6645 || (ecs->stop_func_start == 0
6646 && in_solib_dynsym_resolve_code (stop_pc)))
6647 {
6648 /* Any solib trampoline code can be handled in reverse
6649 by simply continuing to single-step. We have already
6650 executed the solib function (backwards), and a few
6651 steps will take us back through the trampoline to the
6652 caller. */
6653 keep_going (ecs);
6654 return;
6655 }
6656 else if (in_solib_dynsym_resolve_code (stop_pc))
6657 {
6658 /* Stepped backward into the solib dynsym resolver.
6659 Set a breakpoint at its start and continue, then
6660 one more step will take us out. */
51abb421 6661 symtab_and_line sr_sal;
fdd654f3 6662 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6663 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6664 insert_step_resume_breakpoint_at_sal (gdbarch,
6665 sr_sal, null_frame_id);
6666 keep_going (ecs);
6667 return;
6668 }
6669 }
6670
f2ffa92b 6671 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6672
1b2bfbb9
RC
6673 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6674 the trampoline processing logic, however, there are some trampolines
6675 that have no names, so we should do trampoline handling first. */
16c381f0 6676 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6677 && ecs->stop_func_name == NULL
2afb61aa 6678 && stop_pc_sal.line == 0)
1b2bfbb9 6679 {
527159b7 6680 if (debug_infrun)
3e43a32a
MS
6681 fprintf_unfiltered (gdb_stdlog,
6682 "infrun: stepped into undebuggable function\n");
527159b7 6683
1b2bfbb9 6684 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6685 undebuggable function (where there is no debugging information
6686 and no line number corresponding to the address where the
1b2bfbb9
RC
6687 inferior stopped). Since we want to skip this kind of code,
6688 we keep going until the inferior returns from this
14e60db5
DJ
6689 function - unless the user has asked us not to (via
6690 set step-mode) or we no longer know how to get back
6691 to the call site. */
6692 if (step_stop_if_no_debug
c7ce8faa 6693 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6694 {
6695 /* If we have no line number and the step-stop-if-no-debug
6696 is set, we stop the step so that the user has a chance to
6697 switch in assembly mode. */
bdc36728 6698 end_stepping_range (ecs);
1b2bfbb9
RC
6699 return;
6700 }
6701 else
6702 {
6703 /* Set a breakpoint at callee's return address (the address
6704 at which the caller will resume). */
568d6575 6705 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6706 keep_going (ecs);
6707 return;
6708 }
6709 }
6710
16c381f0 6711 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6712 {
6713 /* It is stepi or nexti. We always want to stop stepping after
6714 one instruction. */
527159b7 6715 if (debug_infrun)
8a9de0e4 6716 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6717 end_stepping_range (ecs);
1b2bfbb9
RC
6718 return;
6719 }
6720
2afb61aa 6721 if (stop_pc_sal.line == 0)
488f131b
JB
6722 {
6723 /* We have no line number information. That means to stop
6724 stepping (does this always happen right after one instruction,
6725 when we do "s" in a function with no line numbers,
6726 or can this happen as a result of a return or longjmp?). */
527159b7 6727 if (debug_infrun)
8a9de0e4 6728 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6729 end_stepping_range (ecs);
488f131b
JB
6730 return;
6731 }
c906108c 6732
edb3359d
DJ
6733 /* Look for "calls" to inlined functions, part one. If the inline
6734 frame machinery detected some skipped call sites, we have entered
6735 a new inline function. */
6736
6737 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6738 ecs->event_thread->control.step_frame_id)
00431a78 6739 && inline_skipped_frames (ecs->event_thread))
edb3359d 6740 {
edb3359d
DJ
6741 if (debug_infrun)
6742 fprintf_unfiltered (gdb_stdlog,
6743 "infrun: stepped into inlined function\n");
6744
51abb421 6745 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6746
16c381f0 6747 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6748 {
6749 /* For "step", we're going to stop. But if the call site
6750 for this inlined function is on the same source line as
6751 we were previously stepping, go down into the function
6752 first. Otherwise stop at the call site. */
6753
6754 if (call_sal.line == ecs->event_thread->current_line
6755 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
6756 {
6757 step_into_inline_frame (ecs->event_thread);
6758 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
6759 {
6760 keep_going (ecs);
6761 return;
6762 }
6763 }
edb3359d 6764
bdc36728 6765 end_stepping_range (ecs);
edb3359d
DJ
6766 return;
6767 }
6768 else
6769 {
6770 /* For "next", we should stop at the call site if it is on a
6771 different source line. Otherwise continue through the
6772 inlined function. */
6773 if (call_sal.line == ecs->event_thread->current_line
6774 && call_sal.symtab == ecs->event_thread->current_symtab)
6775 keep_going (ecs);
6776 else
bdc36728 6777 end_stepping_range (ecs);
edb3359d
DJ
6778 return;
6779 }
6780 }
6781
6782 /* Look for "calls" to inlined functions, part two. If we are still
6783 in the same real function we were stepping through, but we have
6784 to go further up to find the exact frame ID, we are stepping
6785 through a more inlined call beyond its call site. */
6786
6787 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6788 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6789 ecs->event_thread->control.step_frame_id)
edb3359d 6790 && stepped_in_from (get_current_frame (),
16c381f0 6791 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6792 {
6793 if (debug_infrun)
6794 fprintf_unfiltered (gdb_stdlog,
6795 "infrun: stepping through inlined function\n");
6796
4a4c04f1
BE
6797 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
6798 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
6799 keep_going (ecs);
6800 else
bdc36728 6801 end_stepping_range (ecs);
edb3359d
DJ
6802 return;
6803 }
6804
f2ffa92b 6805 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6806 && (ecs->event_thread->current_line != stop_pc_sal.line
6807 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6808 {
6809 /* We are at the start of a different line. So stop. Note that
6810 we don't stop if we step into the middle of a different line.
6811 That is said to make things like for (;;) statements work
6812 better. */
527159b7 6813 if (debug_infrun)
3e43a32a
MS
6814 fprintf_unfiltered (gdb_stdlog,
6815 "infrun: stepped to a different line\n");
bdc36728 6816 end_stepping_range (ecs);
488f131b
JB
6817 return;
6818 }
c906108c 6819
488f131b 6820 /* We aren't done stepping.
c906108c 6821
488f131b
JB
6822 Optimize by setting the stepping range to the line.
6823 (We might not be in the original line, but if we entered a
6824 new line in mid-statement, we continue stepping. This makes
6825 things like for(;;) statements work better.) */
c906108c 6826
16c381f0
JK
6827 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6828 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6829 ecs->event_thread->control.may_range_step = 1;
edb3359d 6830 set_step_info (frame, stop_pc_sal);
488f131b 6831
527159b7 6832 if (debug_infrun)
8a9de0e4 6833 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6834 keep_going (ecs);
104c1213
JM
6835}
6836
c447ac0b
PA
6837/* In all-stop mode, if we're currently stepping but have stopped in
6838 some other thread, we may need to switch back to the stepped
6839 thread. Returns true we set the inferior running, false if we left
6840 it stopped (and the event needs further processing). */
6841
6842static int
6843switch_back_to_stepped_thread (struct execution_control_state *ecs)
6844{
fbea99ea 6845 if (!target_is_non_stop_p ())
c447ac0b 6846 {
99619bea
PA
6847 struct thread_info *stepping_thread;
6848
6849 /* If any thread is blocked on some internal breakpoint, and we
6850 simply need to step over that breakpoint to get it going
6851 again, do that first. */
6852
6853 /* However, if we see an event for the stepping thread, then we
6854 know all other threads have been moved past their breakpoints
6855 already. Let the caller check whether the step is finished,
6856 etc., before deciding to move it past a breakpoint. */
6857 if (ecs->event_thread->control.step_range_end != 0)
6858 return 0;
6859
6860 /* Check if the current thread is blocked on an incomplete
6861 step-over, interrupted by a random signal. */
6862 if (ecs->event_thread->control.trap_expected
6863 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6864 {
99619bea
PA
6865 if (debug_infrun)
6866 {
6867 fprintf_unfiltered (gdb_stdlog,
6868 "infrun: need to finish step-over of [%s]\n",
a068643d 6869 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
6870 }
6871 keep_going (ecs);
6872 return 1;
6873 }
2adfaa28 6874
99619bea
PA
6875 /* Check if the current thread is blocked by a single-step
6876 breakpoint of another thread. */
6877 if (ecs->hit_singlestep_breakpoint)
6878 {
6879 if (debug_infrun)
6880 {
6881 fprintf_unfiltered (gdb_stdlog,
6882 "infrun: need to step [%s] over single-step "
6883 "breakpoint\n",
a068643d 6884 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
6885 }
6886 keep_going (ecs);
6887 return 1;
6888 }
6889
4d9d9d04
PA
6890 /* If this thread needs yet another step-over (e.g., stepping
6891 through a delay slot), do it first before moving on to
6892 another thread. */
6893 if (thread_still_needs_step_over (ecs->event_thread))
6894 {
6895 if (debug_infrun)
6896 {
6897 fprintf_unfiltered (gdb_stdlog,
6898 "infrun: thread [%s] still needs step-over\n",
a068643d 6899 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
6900 }
6901 keep_going (ecs);
6902 return 1;
6903 }
70509625 6904
483805cf
PA
6905 /* If scheduler locking applies even if not stepping, there's no
6906 need to walk over threads. Above we've checked whether the
6907 current thread is stepping. If some other thread not the
6908 event thread is stepping, then it must be that scheduler
6909 locking is not in effect. */
856e7dd6 6910 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6911 return 0;
6912
4d9d9d04
PA
6913 /* Otherwise, we no longer expect a trap in the current thread.
6914 Clear the trap_expected flag before switching back -- this is
6915 what keep_going does as well, if we call it. */
6916 ecs->event_thread->control.trap_expected = 0;
6917
6918 /* Likewise, clear the signal if it should not be passed. */
6919 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6920 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6921
6922 /* Do all pending step-overs before actually proceeding with
483805cf 6923 step/next/etc. */
4d9d9d04
PA
6924 if (start_step_over ())
6925 {
6926 prepare_to_wait (ecs);
6927 return 1;
6928 }
6929
6930 /* Look for the stepping/nexting thread. */
483805cf 6931 stepping_thread = NULL;
4d9d9d04 6932
08036331 6933 for (thread_info *tp : all_non_exited_threads ())
483805cf 6934 {
f3f8ece4
PA
6935 switch_to_thread_no_regs (tp);
6936
fbea99ea
PA
6937 /* Ignore threads of processes the caller is not
6938 resuming. */
483805cf 6939 if (!sched_multi
e99b03dc 6940 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6941 continue;
6942
6943 /* When stepping over a breakpoint, we lock all threads
6944 except the one that needs to move past the breakpoint.
6945 If a non-event thread has this set, the "incomplete
6946 step-over" check above should have caught it earlier. */
372316f1
PA
6947 if (tp->control.trap_expected)
6948 {
6949 internal_error (__FILE__, __LINE__,
6950 "[%s] has inconsistent state: "
6951 "trap_expected=%d\n",
a068643d 6952 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
6953 tp->control.trap_expected);
6954 }
483805cf
PA
6955
6956 /* Did we find the stepping thread? */
6957 if (tp->control.step_range_end)
6958 {
6959 /* Yep. There should only one though. */
6960 gdb_assert (stepping_thread == NULL);
6961
6962 /* The event thread is handled at the top, before we
6963 enter this loop. */
6964 gdb_assert (tp != ecs->event_thread);
6965
6966 /* If some thread other than the event thread is
6967 stepping, then scheduler locking can't be in effect,
6968 otherwise we wouldn't have resumed the current event
6969 thread in the first place. */
856e7dd6 6970 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6971
6972 stepping_thread = tp;
6973 }
99619bea
PA
6974 }
6975
483805cf 6976 if (stepping_thread != NULL)
99619bea 6977 {
c447ac0b
PA
6978 if (debug_infrun)
6979 fprintf_unfiltered (gdb_stdlog,
6980 "infrun: switching back to stepped thread\n");
6981
2ac7589c
PA
6982 if (keep_going_stepped_thread (stepping_thread))
6983 {
6984 prepare_to_wait (ecs);
6985 return 1;
6986 }
6987 }
f3f8ece4
PA
6988
6989 switch_to_thread (ecs->event_thread);
2ac7589c 6990 }
2adfaa28 6991
2ac7589c
PA
6992 return 0;
6993}
2adfaa28 6994
2ac7589c
PA
6995/* Set a previously stepped thread back to stepping. Returns true on
6996 success, false if the resume is not possible (e.g., the thread
6997 vanished). */
6998
6999static int
7000keep_going_stepped_thread (struct thread_info *tp)
7001{
7002 struct frame_info *frame;
2ac7589c
PA
7003 struct execution_control_state ecss;
7004 struct execution_control_state *ecs = &ecss;
2adfaa28 7005
2ac7589c
PA
7006 /* If the stepping thread exited, then don't try to switch back and
7007 resume it, which could fail in several different ways depending
7008 on the target. Instead, just keep going.
2adfaa28 7009
2ac7589c
PA
7010 We can find a stepping dead thread in the thread list in two
7011 cases:
2adfaa28 7012
2ac7589c
PA
7013 - The target supports thread exit events, and when the target
7014 tries to delete the thread from the thread list, inferior_ptid
7015 pointed at the exiting thread. In such case, calling
7016 delete_thread does not really remove the thread from the list;
7017 instead, the thread is left listed, with 'exited' state.
64ce06e4 7018
2ac7589c
PA
7019 - The target's debug interface does not support thread exit
7020 events, and so we have no idea whatsoever if the previously
7021 stepping thread is still alive. For that reason, we need to
7022 synchronously query the target now. */
2adfaa28 7023
00431a78 7024 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7025 {
7026 if (debug_infrun)
7027 fprintf_unfiltered (gdb_stdlog,
7028 "infrun: not resuming previously "
7029 "stepped thread, it has vanished\n");
7030
00431a78 7031 delete_thread (tp);
2ac7589c 7032 return 0;
c447ac0b 7033 }
2ac7589c
PA
7034
7035 if (debug_infrun)
7036 fprintf_unfiltered (gdb_stdlog,
7037 "infrun: resuming previously stepped thread\n");
7038
7039 reset_ecs (ecs, tp);
00431a78 7040 switch_to_thread (tp);
2ac7589c 7041
f2ffa92b 7042 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7043 frame = get_current_frame ();
2ac7589c
PA
7044
7045 /* If the PC of the thread we were trying to single-step has
7046 changed, then that thread has trapped or been signaled, but the
7047 event has not been reported to GDB yet. Re-poll the target
7048 looking for this particular thread's event (i.e. temporarily
7049 enable schedlock) by:
7050
7051 - setting a break at the current PC
7052 - resuming that particular thread, only (by setting trap
7053 expected)
7054
7055 This prevents us continuously moving the single-step breakpoint
7056 forward, one instruction at a time, overstepping. */
7057
f2ffa92b 7058 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7059 {
7060 ptid_t resume_ptid;
7061
7062 if (debug_infrun)
7063 fprintf_unfiltered (gdb_stdlog,
7064 "infrun: expected thread advanced also (%s -> %s)\n",
7065 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7066 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7067
7068 /* Clear the info of the previous step-over, as it's no longer
7069 valid (if the thread was trying to step over a breakpoint, it
7070 has already succeeded). It's what keep_going would do too,
7071 if we called it. Do this before trying to insert the sss
7072 breakpoint, otherwise if we were previously trying to step
7073 over this exact address in another thread, the breakpoint is
7074 skipped. */
7075 clear_step_over_info ();
7076 tp->control.trap_expected = 0;
7077
7078 insert_single_step_breakpoint (get_frame_arch (frame),
7079 get_frame_address_space (frame),
f2ffa92b 7080 tp->suspend.stop_pc);
2ac7589c 7081
372316f1 7082 tp->resumed = 1;
fbea99ea 7083 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7084 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7085 }
7086 else
7087 {
7088 if (debug_infrun)
7089 fprintf_unfiltered (gdb_stdlog,
7090 "infrun: expected thread still hasn't advanced\n");
7091
7092 keep_going_pass_signal (ecs);
7093 }
7094 return 1;
c447ac0b
PA
7095}
7096
8b061563
PA
7097/* Is thread TP in the middle of (software or hardware)
7098 single-stepping? (Note the result of this function must never be
7099 passed directly as target_resume's STEP parameter.) */
104c1213 7100
a289b8f6 7101static int
b3444185 7102currently_stepping (struct thread_info *tp)
a7212384 7103{
8358c15c
JK
7104 return ((tp->control.step_range_end
7105 && tp->control.step_resume_breakpoint == NULL)
7106 || tp->control.trap_expected
af48d08f 7107 || tp->stepped_breakpoint
8358c15c 7108 || bpstat_should_step ());
a7212384
UW
7109}
7110
b2175913
MS
7111/* Inferior has stepped into a subroutine call with source code that
7112 we should not step over. Do step to the first line of code in
7113 it. */
c2c6d25f
JM
7114
7115static void
568d6575
UW
7116handle_step_into_function (struct gdbarch *gdbarch,
7117 struct execution_control_state *ecs)
c2c6d25f 7118{
7e324e48
GB
7119 fill_in_stop_func (gdbarch, ecs);
7120
f2ffa92b
PA
7121 compunit_symtab *cust
7122 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7123 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7124 ecs->stop_func_start
7125 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7126
51abb421 7127 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7128 /* Use the step_resume_break to step until the end of the prologue,
7129 even if that involves jumps (as it seems to on the vax under
7130 4.2). */
7131 /* If the prologue ends in the middle of a source line, continue to
7132 the end of that source line (if it is still within the function).
7133 Otherwise, just go to end of prologue. */
2afb61aa
PA
7134 if (stop_func_sal.end
7135 && stop_func_sal.pc != ecs->stop_func_start
7136 && stop_func_sal.end < ecs->stop_func_end)
7137 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7138
2dbd5e30
KB
7139 /* Architectures which require breakpoint adjustment might not be able
7140 to place a breakpoint at the computed address. If so, the test
7141 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7142 ecs->stop_func_start to an address at which a breakpoint may be
7143 legitimately placed.
8fb3e588 7144
2dbd5e30
KB
7145 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7146 made, GDB will enter an infinite loop when stepping through
7147 optimized code consisting of VLIW instructions which contain
7148 subinstructions corresponding to different source lines. On
7149 FR-V, it's not permitted to place a breakpoint on any but the
7150 first subinstruction of a VLIW instruction. When a breakpoint is
7151 set, GDB will adjust the breakpoint address to the beginning of
7152 the VLIW instruction. Thus, we need to make the corresponding
7153 adjustment here when computing the stop address. */
8fb3e588 7154
568d6575 7155 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7156 {
7157 ecs->stop_func_start
568d6575 7158 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7159 ecs->stop_func_start);
2dbd5e30
KB
7160 }
7161
f2ffa92b 7162 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7163 {
7164 /* We are already there: stop now. */
bdc36728 7165 end_stepping_range (ecs);
c2c6d25f
JM
7166 return;
7167 }
7168 else
7169 {
7170 /* Put the step-breakpoint there and go until there. */
51abb421 7171 symtab_and_line sr_sal;
c2c6d25f
JM
7172 sr_sal.pc = ecs->stop_func_start;
7173 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7174 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7175
c2c6d25f 7176 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7177 some machines the prologue is where the new fp value is
7178 established. */
a6d9a66e 7179 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7180
7181 /* And make sure stepping stops right away then. */
16c381f0
JK
7182 ecs->event_thread->control.step_range_end
7183 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7184 }
7185 keep_going (ecs);
7186}
d4f3574e 7187
b2175913
MS
7188/* Inferior has stepped backward into a subroutine call with source
7189 code that we should not step over. Do step to the beginning of the
7190 last line of code in it. */
7191
7192static void
568d6575
UW
7193handle_step_into_function_backward (struct gdbarch *gdbarch,
7194 struct execution_control_state *ecs)
b2175913 7195{
43f3e411 7196 struct compunit_symtab *cust;
167e4384 7197 struct symtab_and_line stop_func_sal;
b2175913 7198
7e324e48
GB
7199 fill_in_stop_func (gdbarch, ecs);
7200
f2ffa92b 7201 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7202 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7203 ecs->stop_func_start
7204 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7205
f2ffa92b 7206 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7207
7208 /* OK, we're just going to keep stepping here. */
f2ffa92b 7209 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7210 {
7211 /* We're there already. Just stop stepping now. */
bdc36728 7212 end_stepping_range (ecs);
b2175913
MS
7213 }
7214 else
7215 {
7216 /* Else just reset the step range and keep going.
7217 No step-resume breakpoint, they don't work for
7218 epilogues, which can have multiple entry paths. */
16c381f0
JK
7219 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7220 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7221 keep_going (ecs);
7222 }
7223 return;
7224}
7225
d3169d93 7226/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7227 This is used to both functions and to skip over code. */
7228
7229static void
2c03e5be
PA
7230insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7231 struct symtab_and_line sr_sal,
7232 struct frame_id sr_id,
7233 enum bptype sr_type)
44cbf7b5 7234{
611c83ae
PA
7235 /* There should never be more than one step-resume or longjmp-resume
7236 breakpoint per thread, so we should never be setting a new
44cbf7b5 7237 step_resume_breakpoint when one is already active. */
8358c15c 7238 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7239 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7240
7241 if (debug_infrun)
7242 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7243 "infrun: inserting step-resume breakpoint at %s\n",
7244 paddress (gdbarch, sr_sal.pc));
d3169d93 7245
8358c15c 7246 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7247 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7248}
7249
9da8c2a0 7250void
2c03e5be
PA
7251insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7252 struct symtab_and_line sr_sal,
7253 struct frame_id sr_id)
7254{
7255 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7256 sr_sal, sr_id,
7257 bp_step_resume);
44cbf7b5 7258}
7ce450bd 7259
2c03e5be
PA
7260/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7261 This is used to skip a potential signal handler.
7ce450bd 7262
14e60db5
DJ
7263 This is called with the interrupted function's frame. The signal
7264 handler, when it returns, will resume the interrupted function at
7265 RETURN_FRAME.pc. */
d303a6c7
AC
7266
7267static void
2c03e5be 7268insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7269{
f4c1edd8 7270 gdb_assert (return_frame != NULL);
d303a6c7 7271
51abb421
PA
7272 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7273
7274 symtab_and_line sr_sal;
568d6575 7275 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7276 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7277 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7278
2c03e5be
PA
7279 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7280 get_stack_frame_id (return_frame),
7281 bp_hp_step_resume);
d303a6c7
AC
7282}
7283
2c03e5be
PA
7284/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7285 is used to skip a function after stepping into it (for "next" or if
7286 the called function has no debugging information).
14e60db5
DJ
7287
7288 The current function has almost always been reached by single
7289 stepping a call or return instruction. NEXT_FRAME belongs to the
7290 current function, and the breakpoint will be set at the caller's
7291 resume address.
7292
7293 This is a separate function rather than reusing
2c03e5be 7294 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7295 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7296 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7297
7298static void
7299insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7300{
14e60db5
DJ
7301 /* We shouldn't have gotten here if we don't know where the call site
7302 is. */
c7ce8faa 7303 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7304
51abb421 7305 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7306
51abb421 7307 symtab_and_line sr_sal;
c7ce8faa
DJ
7308 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7309 frame_unwind_caller_pc (next_frame));
14e60db5 7310 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7311 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7312
a6d9a66e 7313 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7314 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7315}
7316
611c83ae
PA
7317/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7318 new breakpoint at the target of a jmp_buf. The handling of
7319 longjmp-resume uses the same mechanisms used for handling
7320 "step-resume" breakpoints. */
7321
7322static void
a6d9a66e 7323insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7324{
e81a37f7
TT
7325 /* There should never be more than one longjmp-resume breakpoint per
7326 thread, so we should never be setting a new
611c83ae 7327 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7328 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7329
7330 if (debug_infrun)
7331 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7332 "infrun: inserting longjmp-resume breakpoint at %s\n",
7333 paddress (gdbarch, pc));
611c83ae 7334
e81a37f7 7335 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7336 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7337}
7338
186c406b
TT
7339/* Insert an exception resume breakpoint. TP is the thread throwing
7340 the exception. The block B is the block of the unwinder debug hook
7341 function. FRAME is the frame corresponding to the call to this
7342 function. SYM is the symbol of the function argument holding the
7343 target PC of the exception. */
7344
7345static void
7346insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7347 const struct block *b,
186c406b
TT
7348 struct frame_info *frame,
7349 struct symbol *sym)
7350{
a70b8144 7351 try
186c406b 7352 {
63e43d3a 7353 struct block_symbol vsym;
186c406b
TT
7354 struct value *value;
7355 CORE_ADDR handler;
7356 struct breakpoint *bp;
7357
987012b8 7358 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7359 b, VAR_DOMAIN);
63e43d3a 7360 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7361 /* If the value was optimized out, revert to the old behavior. */
7362 if (! value_optimized_out (value))
7363 {
7364 handler = value_as_address (value);
7365
7366 if (debug_infrun)
7367 fprintf_unfiltered (gdb_stdlog,
7368 "infrun: exception resume at %lx\n",
7369 (unsigned long) handler);
7370
7371 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7372 handler,
7373 bp_exception_resume).release ();
c70a6932
JK
7374
7375 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7376 frame = NULL;
7377
5d5658a1 7378 bp->thread = tp->global_num;
186c406b
TT
7379 inferior_thread ()->control.exception_resume_breakpoint = bp;
7380 }
7381 }
230d2906 7382 catch (const gdb_exception_error &e)
492d29ea
PA
7383 {
7384 /* We want to ignore errors here. */
7385 }
186c406b
TT
7386}
7387
28106bc2
SDJ
7388/* A helper for check_exception_resume that sets an
7389 exception-breakpoint based on a SystemTap probe. */
7390
7391static void
7392insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7393 const struct bound_probe *probe,
28106bc2
SDJ
7394 struct frame_info *frame)
7395{
7396 struct value *arg_value;
7397 CORE_ADDR handler;
7398 struct breakpoint *bp;
7399
7400 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7401 if (!arg_value)
7402 return;
7403
7404 handler = value_as_address (arg_value);
7405
7406 if (debug_infrun)
7407 fprintf_unfiltered (gdb_stdlog,
7408 "infrun: exception resume at %s\n",
6bac7473 7409 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7410 handler));
7411
7412 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7413 handler, bp_exception_resume).release ();
5d5658a1 7414 bp->thread = tp->global_num;
28106bc2
SDJ
7415 inferior_thread ()->control.exception_resume_breakpoint = bp;
7416}
7417
186c406b
TT
7418/* This is called when an exception has been intercepted. Check to
7419 see whether the exception's destination is of interest, and if so,
7420 set an exception resume breakpoint there. */
7421
7422static void
7423check_exception_resume (struct execution_control_state *ecs,
28106bc2 7424 struct frame_info *frame)
186c406b 7425{
729662a5 7426 struct bound_probe probe;
28106bc2
SDJ
7427 struct symbol *func;
7428
7429 /* First see if this exception unwinding breakpoint was set via a
7430 SystemTap probe point. If so, the probe has two arguments: the
7431 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7432 set a breakpoint there. */
6bac7473 7433 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7434 if (probe.prob)
28106bc2 7435 {
729662a5 7436 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7437 return;
7438 }
7439
7440 func = get_frame_function (frame);
7441 if (!func)
7442 return;
186c406b 7443
a70b8144 7444 try
186c406b 7445 {
3977b71f 7446 const struct block *b;
8157b174 7447 struct block_iterator iter;
186c406b
TT
7448 struct symbol *sym;
7449 int argno = 0;
7450
7451 /* The exception breakpoint is a thread-specific breakpoint on
7452 the unwinder's debug hook, declared as:
7453
7454 void _Unwind_DebugHook (void *cfa, void *handler);
7455
7456 The CFA argument indicates the frame to which control is
7457 about to be transferred. HANDLER is the destination PC.
7458
7459 We ignore the CFA and set a temporary breakpoint at HANDLER.
7460 This is not extremely efficient but it avoids issues in gdb
7461 with computing the DWARF CFA, and it also works even in weird
7462 cases such as throwing an exception from inside a signal
7463 handler. */
7464
7465 b = SYMBOL_BLOCK_VALUE (func);
7466 ALL_BLOCK_SYMBOLS (b, iter, sym)
7467 {
7468 if (!SYMBOL_IS_ARGUMENT (sym))
7469 continue;
7470
7471 if (argno == 0)
7472 ++argno;
7473 else
7474 {
7475 insert_exception_resume_breakpoint (ecs->event_thread,
7476 b, frame, sym);
7477 break;
7478 }
7479 }
7480 }
230d2906 7481 catch (const gdb_exception_error &e)
492d29ea
PA
7482 {
7483 }
186c406b
TT
7484}
7485
104c1213 7486static void
22bcd14b 7487stop_waiting (struct execution_control_state *ecs)
104c1213 7488{
527159b7 7489 if (debug_infrun)
22bcd14b 7490 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7491
cd0fc7c3
SS
7492 /* Let callers know we don't want to wait for the inferior anymore. */
7493 ecs->wait_some_more = 0;
fbea99ea
PA
7494
7495 /* If all-stop, but the target is always in non-stop mode, stop all
7496 threads now that we're presenting the stop to the user. */
7497 if (!non_stop && target_is_non_stop_p ())
7498 stop_all_threads ();
cd0fc7c3
SS
7499}
7500
4d9d9d04
PA
7501/* Like keep_going, but passes the signal to the inferior, even if the
7502 signal is set to nopass. */
d4f3574e
SS
7503
7504static void
4d9d9d04 7505keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7506{
d7e15655 7507 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7508 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7509
d4f3574e 7510 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7511 ecs->event_thread->prev_pc
00431a78 7512 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7513
4d9d9d04 7514 if (ecs->event_thread->control.trap_expected)
d4f3574e 7515 {
4d9d9d04
PA
7516 struct thread_info *tp = ecs->event_thread;
7517
7518 if (debug_infrun)
7519 fprintf_unfiltered (gdb_stdlog,
7520 "infrun: %s has trap_expected set, "
7521 "resuming to collect trap\n",
a068643d 7522 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7523
a9ba6bae
PA
7524 /* We haven't yet gotten our trap, and either: intercepted a
7525 non-signal event (e.g., a fork); or took a signal which we
7526 are supposed to pass through to the inferior. Simply
7527 continue. */
64ce06e4 7528 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7529 }
372316f1
PA
7530 else if (step_over_info_valid_p ())
7531 {
7532 /* Another thread is stepping over a breakpoint in-line. If
7533 this thread needs a step-over too, queue the request. In
7534 either case, this resume must be deferred for later. */
7535 struct thread_info *tp = ecs->event_thread;
7536
7537 if (ecs->hit_singlestep_breakpoint
7538 || thread_still_needs_step_over (tp))
7539 {
7540 if (debug_infrun)
7541 fprintf_unfiltered (gdb_stdlog,
7542 "infrun: step-over already in progress: "
7543 "step-over for %s deferred\n",
a068643d 7544 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7545 thread_step_over_chain_enqueue (tp);
7546 }
7547 else
7548 {
7549 if (debug_infrun)
7550 fprintf_unfiltered (gdb_stdlog,
7551 "infrun: step-over in progress: "
7552 "resume of %s deferred\n",
a068643d 7553 target_pid_to_str (tp->ptid).c_str ());
372316f1 7554 }
372316f1 7555 }
d4f3574e
SS
7556 else
7557 {
31e77af2 7558 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7559 int remove_bp;
7560 int remove_wps;
8d297bbf 7561 step_over_what step_what;
31e77af2 7562
d4f3574e 7563 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7564 anyway (if we got a signal, the user asked it be passed to
7565 the child)
7566 -- or --
7567 We got our expected trap, but decided we should resume from
7568 it.
d4f3574e 7569
a9ba6bae 7570 We're going to run this baby now!
d4f3574e 7571
c36b740a
VP
7572 Note that insert_breakpoints won't try to re-insert
7573 already inserted breakpoints. Therefore, we don't
7574 care if breakpoints were already inserted, or not. */
a9ba6bae 7575
31e77af2
PA
7576 /* If we need to step over a breakpoint, and we're not using
7577 displaced stepping to do so, insert all breakpoints
7578 (watchpoints, etc.) but the one we're stepping over, step one
7579 instruction, and then re-insert the breakpoint when that step
7580 is finished. */
963f9c80 7581
6c4cfb24
PA
7582 step_what = thread_still_needs_step_over (ecs->event_thread);
7583
963f9c80 7584 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7585 || (step_what & STEP_OVER_BREAKPOINT));
7586 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7587
cb71640d
PA
7588 /* We can't use displaced stepping if we need to step past a
7589 watchpoint. The instruction copied to the scratch pad would
7590 still trigger the watchpoint. */
7591 if (remove_bp
3fc8eb30 7592 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7593 {
a01bda52 7594 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7595 regcache_read_pc (regcache), remove_wps,
7596 ecs->event_thread->global_num);
45e8c884 7597 }
963f9c80 7598 else if (remove_wps)
21edc42f 7599 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7600
7601 /* If we now need to do an in-line step-over, we need to stop
7602 all other threads. Note this must be done before
7603 insert_breakpoints below, because that removes the breakpoint
7604 we're about to step over, otherwise other threads could miss
7605 it. */
fbea99ea 7606 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7607 stop_all_threads ();
abbb1732 7608
31e77af2 7609 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7610 try
31e77af2
PA
7611 {
7612 insert_breakpoints ();
7613 }
230d2906 7614 catch (const gdb_exception_error &e)
31e77af2
PA
7615 {
7616 exception_print (gdb_stderr, e);
22bcd14b 7617 stop_waiting (ecs);
bdf2a94a 7618 clear_step_over_info ();
31e77af2 7619 return;
d4f3574e
SS
7620 }
7621
963f9c80 7622 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7623
64ce06e4 7624 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7625 }
7626
488f131b 7627 prepare_to_wait (ecs);
d4f3574e
SS
7628}
7629
4d9d9d04
PA
7630/* Called when we should continue running the inferior, because the
7631 current event doesn't cause a user visible stop. This does the
7632 resuming part; waiting for the next event is done elsewhere. */
7633
7634static void
7635keep_going (struct execution_control_state *ecs)
7636{
7637 if (ecs->event_thread->control.trap_expected
7638 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7639 ecs->event_thread->control.trap_expected = 0;
7640
7641 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7642 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7643 keep_going_pass_signal (ecs);
7644}
7645
104c1213
JM
7646/* This function normally comes after a resume, before
7647 handle_inferior_event exits. It takes care of any last bits of
7648 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7649
104c1213
JM
7650static void
7651prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7652{
527159b7 7653 if (debug_infrun)
8a9de0e4 7654 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7655
104c1213 7656 ecs->wait_some_more = 1;
0b333c5e
PA
7657
7658 if (!target_is_async_p ())
7659 mark_infrun_async_event_handler ();
c906108c 7660}
11cf8741 7661
fd664c91 7662/* We are done with the step range of a step/next/si/ni command.
b57bacec 7663 Called once for each n of a "step n" operation. */
fd664c91
PA
7664
7665static void
bdc36728 7666end_stepping_range (struct execution_control_state *ecs)
fd664c91 7667{
bdc36728 7668 ecs->event_thread->control.stop_step = 1;
bdc36728 7669 stop_waiting (ecs);
fd664c91
PA
7670}
7671
33d62d64
JK
7672/* Several print_*_reason functions to print why the inferior has stopped.
7673 We always print something when the inferior exits, or receives a signal.
7674 The rest of the cases are dealt with later on in normal_stop and
7675 print_it_typical. Ideally there should be a call to one of these
7676 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7677 stop_waiting is called.
33d62d64 7678
fd664c91
PA
7679 Note that we don't call these directly, instead we delegate that to
7680 the interpreters, through observers. Interpreters then call these
7681 with whatever uiout is right. */
33d62d64 7682
fd664c91
PA
7683void
7684print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7685{
fd664c91 7686 /* For CLI-like interpreters, print nothing. */
33d62d64 7687
112e8700 7688 if (uiout->is_mi_like_p ())
fd664c91 7689 {
112e8700 7690 uiout->field_string ("reason",
fd664c91
PA
7691 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7692 }
7693}
33d62d64 7694
fd664c91
PA
7695void
7696print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7697{
33d62d64 7698 annotate_signalled ();
112e8700
SM
7699 if (uiout->is_mi_like_p ())
7700 uiout->field_string
7701 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7702 uiout->text ("\nProgram terminated with signal ");
33d62d64 7703 annotate_signal_name ();
112e8700 7704 uiout->field_string ("signal-name",
2ea28649 7705 gdb_signal_to_name (siggnal));
33d62d64 7706 annotate_signal_name_end ();
112e8700 7707 uiout->text (", ");
33d62d64 7708 annotate_signal_string ();
112e8700 7709 uiout->field_string ("signal-meaning",
2ea28649 7710 gdb_signal_to_string (siggnal));
33d62d64 7711 annotate_signal_string_end ();
112e8700
SM
7712 uiout->text (".\n");
7713 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7714}
7715
fd664c91
PA
7716void
7717print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7718{
fda326dd 7719 struct inferior *inf = current_inferior ();
a068643d 7720 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7721
33d62d64
JK
7722 annotate_exited (exitstatus);
7723 if (exitstatus)
7724 {
112e8700
SM
7725 if (uiout->is_mi_like_p ())
7726 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
7727 std::string exit_code_str
7728 = string_printf ("0%o", (unsigned int) exitstatus);
7729 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7730 plongest (inf->num), pidstr.c_str (),
7731 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
7732 }
7733 else
11cf8741 7734 {
112e8700
SM
7735 if (uiout->is_mi_like_p ())
7736 uiout->field_string
7737 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
7738 uiout->message ("[Inferior %s (%s) exited normally]\n",
7739 plongest (inf->num), pidstr.c_str ());
33d62d64 7740 }
33d62d64
JK
7741}
7742
012b3a21
WT
7743/* Some targets/architectures can do extra processing/display of
7744 segmentation faults. E.g., Intel MPX boundary faults.
7745 Call the architecture dependent function to handle the fault. */
7746
7747static void
7748handle_segmentation_fault (struct ui_out *uiout)
7749{
7750 struct regcache *regcache = get_current_regcache ();
ac7936df 7751 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7752
7753 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7754 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7755}
7756
fd664c91
PA
7757void
7758print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7759{
f303dbd6
PA
7760 struct thread_info *thr = inferior_thread ();
7761
33d62d64
JK
7762 annotate_signal ();
7763
112e8700 7764 if (uiout->is_mi_like_p ())
f303dbd6
PA
7765 ;
7766 else if (show_thread_that_caused_stop ())
33d62d64 7767 {
f303dbd6 7768 const char *name;
33d62d64 7769
112e8700 7770 uiout->text ("\nThread ");
33eca680 7771 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
7772
7773 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7774 if (name != NULL)
7775 {
112e8700 7776 uiout->text (" \"");
33eca680 7777 uiout->field_string ("name", name);
112e8700 7778 uiout->text ("\"");
f303dbd6 7779 }
33d62d64 7780 }
f303dbd6 7781 else
112e8700 7782 uiout->text ("\nProgram");
f303dbd6 7783
112e8700
SM
7784 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7785 uiout->text (" stopped");
33d62d64
JK
7786 else
7787 {
112e8700 7788 uiout->text (" received signal ");
8b93c638 7789 annotate_signal_name ();
112e8700
SM
7790 if (uiout->is_mi_like_p ())
7791 uiout->field_string
7792 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7793 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7794 annotate_signal_name_end ();
112e8700 7795 uiout->text (", ");
8b93c638 7796 annotate_signal_string ();
112e8700 7797 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7798
7799 if (siggnal == GDB_SIGNAL_SEGV)
7800 handle_segmentation_fault (uiout);
7801
8b93c638 7802 annotate_signal_string_end ();
33d62d64 7803 }
112e8700 7804 uiout->text (".\n");
33d62d64 7805}
252fbfc8 7806
fd664c91
PA
7807void
7808print_no_history_reason (struct ui_out *uiout)
33d62d64 7809{
112e8700 7810 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7811}
43ff13b4 7812
0c7e1a46
PA
7813/* Print current location without a level number, if we have changed
7814 functions or hit a breakpoint. Print source line if we have one.
7815 bpstat_print contains the logic deciding in detail what to print,
7816 based on the event(s) that just occurred. */
7817
243a9253
PA
7818static void
7819print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7820{
7821 int bpstat_ret;
f486487f 7822 enum print_what source_flag;
0c7e1a46
PA
7823 int do_frame_printing = 1;
7824 struct thread_info *tp = inferior_thread ();
7825
7826 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7827 switch (bpstat_ret)
7828 {
7829 case PRINT_UNKNOWN:
7830 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7831 should) carry around the function and does (or should) use
7832 that when doing a frame comparison. */
7833 if (tp->control.stop_step
7834 && frame_id_eq (tp->control.step_frame_id,
7835 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7836 && (tp->control.step_start_function
7837 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7838 {
7839 /* Finished step, just print source line. */
7840 source_flag = SRC_LINE;
7841 }
7842 else
7843 {
7844 /* Print location and source line. */
7845 source_flag = SRC_AND_LOC;
7846 }
7847 break;
7848 case PRINT_SRC_AND_LOC:
7849 /* Print location and source line. */
7850 source_flag = SRC_AND_LOC;
7851 break;
7852 case PRINT_SRC_ONLY:
7853 source_flag = SRC_LINE;
7854 break;
7855 case PRINT_NOTHING:
7856 /* Something bogus. */
7857 source_flag = SRC_LINE;
7858 do_frame_printing = 0;
7859 break;
7860 default:
7861 internal_error (__FILE__, __LINE__, _("Unknown value."));
7862 }
7863
7864 /* The behavior of this routine with respect to the source
7865 flag is:
7866 SRC_LINE: Print only source line
7867 LOCATION: Print only location
7868 SRC_AND_LOC: Print location and source line. */
7869 if (do_frame_printing)
7870 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7871}
7872
243a9253
PA
7873/* See infrun.h. */
7874
7875void
4c7d57e7 7876print_stop_event (struct ui_out *uiout, bool displays)
243a9253 7877{
243a9253
PA
7878 struct target_waitstatus last;
7879 ptid_t last_ptid;
7880 struct thread_info *tp;
7881
7882 get_last_target_status (&last_ptid, &last);
7883
67ad9399
TT
7884 {
7885 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7886
67ad9399 7887 print_stop_location (&last);
243a9253 7888
67ad9399 7889 /* Display the auto-display expressions. */
4c7d57e7
TT
7890 if (displays)
7891 do_displays ();
67ad9399 7892 }
243a9253
PA
7893
7894 tp = inferior_thread ();
7895 if (tp->thread_fsm != NULL
46e3ed7f 7896 && tp->thread_fsm->finished_p ())
243a9253
PA
7897 {
7898 struct return_value_info *rv;
7899
46e3ed7f 7900 rv = tp->thread_fsm->return_value ();
243a9253
PA
7901 if (rv != NULL)
7902 print_return_value (uiout, rv);
7903 }
0c7e1a46
PA
7904}
7905
388a7084
PA
7906/* See infrun.h. */
7907
7908void
7909maybe_remove_breakpoints (void)
7910{
7911 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7912 {
7913 if (remove_breakpoints ())
7914 {
223ffa71 7915 target_terminal::ours_for_output ();
388a7084
PA
7916 printf_filtered (_("Cannot remove breakpoints because "
7917 "program is no longer writable.\nFurther "
7918 "execution is probably impossible.\n"));
7919 }
7920 }
7921}
7922
4c2f2a79
PA
7923/* The execution context that just caused a normal stop. */
7924
7925struct stop_context
7926{
2d844eaf
TT
7927 stop_context ();
7928 ~stop_context ();
7929
7930 DISABLE_COPY_AND_ASSIGN (stop_context);
7931
7932 bool changed () const;
7933
4c2f2a79
PA
7934 /* The stop ID. */
7935 ULONGEST stop_id;
c906108c 7936
4c2f2a79 7937 /* The event PTID. */
c906108c 7938
4c2f2a79
PA
7939 ptid_t ptid;
7940
7941 /* If stopp for a thread event, this is the thread that caused the
7942 stop. */
7943 struct thread_info *thread;
7944
7945 /* The inferior that caused the stop. */
7946 int inf_num;
7947};
7948
2d844eaf 7949/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7950 takes a strong reference to the thread. */
7951
2d844eaf 7952stop_context::stop_context ()
4c2f2a79 7953{
2d844eaf
TT
7954 stop_id = get_stop_id ();
7955 ptid = inferior_ptid;
7956 inf_num = current_inferior ()->num;
4c2f2a79 7957
d7e15655 7958 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7959 {
7960 /* Take a strong reference so that the thread can't be deleted
7961 yet. */
2d844eaf
TT
7962 thread = inferior_thread ();
7963 thread->incref ();
4c2f2a79
PA
7964 }
7965 else
2d844eaf 7966 thread = NULL;
4c2f2a79
PA
7967}
7968
7969/* Release a stop context previously created with save_stop_context.
7970 Releases the strong reference to the thread as well. */
7971
2d844eaf 7972stop_context::~stop_context ()
4c2f2a79 7973{
2d844eaf
TT
7974 if (thread != NULL)
7975 thread->decref ();
4c2f2a79
PA
7976}
7977
7978/* Return true if the current context no longer matches the saved stop
7979 context. */
7980
2d844eaf
TT
7981bool
7982stop_context::changed () const
7983{
7984 if (ptid != inferior_ptid)
7985 return true;
7986 if (inf_num != current_inferior ()->num)
7987 return true;
7988 if (thread != NULL && thread->state != THREAD_STOPPED)
7989 return true;
7990 if (get_stop_id () != stop_id)
7991 return true;
7992 return false;
4c2f2a79
PA
7993}
7994
7995/* See infrun.h. */
7996
7997int
96baa820 7998normal_stop (void)
c906108c 7999{
73b65bb0
DJ
8000 struct target_waitstatus last;
8001 ptid_t last_ptid;
8002
8003 get_last_target_status (&last_ptid, &last);
8004
4c2f2a79
PA
8005 new_stop_id ();
8006
29f49a6a
PA
8007 /* If an exception is thrown from this point on, make sure to
8008 propagate GDB's knowledge of the executing state to the
8009 frontend/user running state. A QUIT is an easy exception to see
8010 here, so do this before any filtered output. */
731f534f
PA
8011
8012 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8013
c35b1492 8014 if (!non_stop)
731f534f 8015 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
8016 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8017 || last.kind == TARGET_WAITKIND_EXITED)
8018 {
8019 /* On some targets, we may still have live threads in the
8020 inferior when we get a process exit event. E.g., for
8021 "checkpoint", when the current checkpoint/fork exits,
8022 linux-fork.c automatically switches to another fork from
8023 within target_mourn_inferior. */
731f534f
PA
8024 if (inferior_ptid != null_ptid)
8025 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
8026 }
8027 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8028 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8029
b57bacec
PA
8030 /* As we're presenting a stop, and potentially removing breakpoints,
8031 update the thread list so we can tell whether there are threads
8032 running on the target. With target remote, for example, we can
8033 only learn about new threads when we explicitly update the thread
8034 list. Do this before notifying the interpreters about signal
8035 stops, end of stepping ranges, etc., so that the "new thread"
8036 output is emitted before e.g., "Program received signal FOO",
8037 instead of after. */
8038 update_thread_list ();
8039
8040 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8041 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8042
c906108c
SS
8043 /* As with the notification of thread events, we want to delay
8044 notifying the user that we've switched thread context until
8045 the inferior actually stops.
8046
73b65bb0
DJ
8047 There's no point in saying anything if the inferior has exited.
8048 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8049 "received a signal".
8050
8051 Also skip saying anything in non-stop mode. In that mode, as we
8052 don't want GDB to switch threads behind the user's back, to avoid
8053 races where the user is typing a command to apply to thread x,
8054 but GDB switches to thread y before the user finishes entering
8055 the command, fetch_inferior_event installs a cleanup to restore
8056 the current thread back to the thread the user had selected right
8057 after this event is handled, so we're not really switching, only
8058 informing of a stop. */
4f8d22e3 8059 if (!non_stop
731f534f 8060 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8061 && target_has_execution
8062 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8063 && last.kind != TARGET_WAITKIND_EXITED
8064 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8065 {
0e454242 8066 SWITCH_THRU_ALL_UIS ()
3b12939d 8067 {
223ffa71 8068 target_terminal::ours_for_output ();
3b12939d 8069 printf_filtered (_("[Switching to %s]\n"),
a068643d 8070 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8071 annotate_thread_changed ();
8072 }
39f77062 8073 previous_inferior_ptid = inferior_ptid;
c906108c 8074 }
c906108c 8075
0e5bf2a8
PA
8076 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8077 {
0e454242 8078 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8079 if (current_ui->prompt_state == PROMPT_BLOCKED)
8080 {
223ffa71 8081 target_terminal::ours_for_output ();
3b12939d
PA
8082 printf_filtered (_("No unwaited-for children left.\n"));
8083 }
0e5bf2a8
PA
8084 }
8085
b57bacec 8086 /* Note: this depends on the update_thread_list call above. */
388a7084 8087 maybe_remove_breakpoints ();
c906108c 8088
c906108c
SS
8089 /* If an auto-display called a function and that got a signal,
8090 delete that auto-display to avoid an infinite recursion. */
8091
8092 if (stopped_by_random_signal)
8093 disable_current_display ();
8094
0e454242 8095 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8096 {
8097 async_enable_stdin ();
8098 }
c906108c 8099
388a7084 8100 /* Let the user/frontend see the threads as stopped. */
731f534f 8101 maybe_finish_thread_state.reset ();
388a7084
PA
8102
8103 /* Select innermost stack frame - i.e., current frame is frame 0,
8104 and current location is based on that. Handle the case where the
8105 dummy call is returning after being stopped. E.g. the dummy call
8106 previously hit a breakpoint. (If the dummy call returns
8107 normally, we won't reach here.) Do this before the stop hook is
8108 run, so that it doesn't get to see the temporary dummy frame,
8109 which is not where we'll present the stop. */
8110 if (has_stack_frames ())
8111 {
8112 if (stop_stack_dummy == STOP_STACK_DUMMY)
8113 {
8114 /* Pop the empty frame that contains the stack dummy. This
8115 also restores inferior state prior to the call (struct
8116 infcall_suspend_state). */
8117 struct frame_info *frame = get_current_frame ();
8118
8119 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8120 frame_pop (frame);
8121 /* frame_pop calls reinit_frame_cache as the last thing it
8122 does which means there's now no selected frame. */
8123 }
8124
8125 select_frame (get_current_frame ());
8126
8127 /* Set the current source location. */
8128 set_current_sal_from_frame (get_current_frame ());
8129 }
dd7e2d2b
PA
8130
8131 /* Look up the hook_stop and run it (CLI internally handles problem
8132 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8133 if (stop_command != NULL)
8134 {
2d844eaf 8135 stop_context saved_context;
4c2f2a79 8136
a70b8144 8137 try
bf469271
PA
8138 {
8139 execute_cmd_pre_hook (stop_command);
8140 }
230d2906 8141 catch (const gdb_exception &ex)
bf469271
PA
8142 {
8143 exception_fprintf (gdb_stderr, ex,
8144 "Error while running hook_stop:\n");
8145 }
4c2f2a79
PA
8146
8147 /* If the stop hook resumes the target, then there's no point in
8148 trying to notify about the previous stop; its context is
8149 gone. Likewise if the command switches thread or inferior --
8150 the observers would print a stop for the wrong
8151 thread/inferior. */
2d844eaf
TT
8152 if (saved_context.changed ())
8153 return 1;
4c2f2a79 8154 }
dd7e2d2b 8155
388a7084
PA
8156 /* Notify observers about the stop. This is where the interpreters
8157 print the stop event. */
d7e15655 8158 if (inferior_ptid != null_ptid)
76727919 8159 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8160 stop_print_frame);
8161 else
76727919 8162 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8163
243a9253
PA
8164 annotate_stopped ();
8165
48844aa6
PA
8166 if (target_has_execution)
8167 {
8168 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8169 && last.kind != TARGET_WAITKIND_EXITED
8170 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8171 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8172 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8173 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8174 }
6c95b8df
PA
8175
8176 /* Try to get rid of automatically added inferiors that are no
8177 longer needed. Keeping those around slows down things linearly.
8178 Note that this never removes the current inferior. */
8179 prune_inferiors ();
4c2f2a79
PA
8180
8181 return 0;
c906108c 8182}
c906108c 8183\f
c5aa993b 8184int
96baa820 8185signal_stop_state (int signo)
c906108c 8186{
d6b48e9c 8187 return signal_stop[signo];
c906108c
SS
8188}
8189
c5aa993b 8190int
96baa820 8191signal_print_state (int signo)
c906108c
SS
8192{
8193 return signal_print[signo];
8194}
8195
c5aa993b 8196int
96baa820 8197signal_pass_state (int signo)
c906108c
SS
8198{
8199 return signal_program[signo];
8200}
8201
2455069d
UW
8202static void
8203signal_cache_update (int signo)
8204{
8205 if (signo == -1)
8206 {
a493e3e2 8207 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8208 signal_cache_update (signo);
8209
8210 return;
8211 }
8212
8213 signal_pass[signo] = (signal_stop[signo] == 0
8214 && signal_print[signo] == 0
ab04a2af
TT
8215 && signal_program[signo] == 1
8216 && signal_catch[signo] == 0);
2455069d
UW
8217}
8218
488f131b 8219int
7bda5e4a 8220signal_stop_update (int signo, int state)
d4f3574e
SS
8221{
8222 int ret = signal_stop[signo];
abbb1732 8223
d4f3574e 8224 signal_stop[signo] = state;
2455069d 8225 signal_cache_update (signo);
d4f3574e
SS
8226 return ret;
8227}
8228
488f131b 8229int
7bda5e4a 8230signal_print_update (int signo, int state)
d4f3574e
SS
8231{
8232 int ret = signal_print[signo];
abbb1732 8233
d4f3574e 8234 signal_print[signo] = state;
2455069d 8235 signal_cache_update (signo);
d4f3574e
SS
8236 return ret;
8237}
8238
488f131b 8239int
7bda5e4a 8240signal_pass_update (int signo, int state)
d4f3574e
SS
8241{
8242 int ret = signal_program[signo];
abbb1732 8243
d4f3574e 8244 signal_program[signo] = state;
2455069d 8245 signal_cache_update (signo);
d4f3574e
SS
8246 return ret;
8247}
8248
ab04a2af
TT
8249/* Update the global 'signal_catch' from INFO and notify the
8250 target. */
8251
8252void
8253signal_catch_update (const unsigned int *info)
8254{
8255 int i;
8256
8257 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8258 signal_catch[i] = info[i] > 0;
8259 signal_cache_update (-1);
adc6a863 8260 target_pass_signals (signal_pass);
ab04a2af
TT
8261}
8262
c906108c 8263static void
96baa820 8264sig_print_header (void)
c906108c 8265{
3e43a32a
MS
8266 printf_filtered (_("Signal Stop\tPrint\tPass "
8267 "to program\tDescription\n"));
c906108c
SS
8268}
8269
8270static void
2ea28649 8271sig_print_info (enum gdb_signal oursig)
c906108c 8272{
2ea28649 8273 const char *name = gdb_signal_to_name (oursig);
c906108c 8274 int name_padding = 13 - strlen (name);
96baa820 8275
c906108c
SS
8276 if (name_padding <= 0)
8277 name_padding = 0;
8278
8279 printf_filtered ("%s", name);
488f131b 8280 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8281 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8282 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8283 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8284 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8285}
8286
8287/* Specify how various signals in the inferior should be handled. */
8288
8289static void
0b39b52e 8290handle_command (const char *args, int from_tty)
c906108c 8291{
c906108c 8292 int digits, wordlen;
b926417a 8293 int sigfirst, siglast;
2ea28649 8294 enum gdb_signal oursig;
c906108c 8295 int allsigs;
c906108c
SS
8296
8297 if (args == NULL)
8298 {
e2e0b3e5 8299 error_no_arg (_("signal to handle"));
c906108c
SS
8300 }
8301
1777feb0 8302 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8303
adc6a863
PA
8304 const size_t nsigs = GDB_SIGNAL_LAST;
8305 unsigned char sigs[nsigs] {};
c906108c 8306
1777feb0 8307 /* Break the command line up into args. */
c906108c 8308
773a1edc 8309 gdb_argv built_argv (args);
c906108c
SS
8310
8311 /* Walk through the args, looking for signal oursigs, signal names, and
8312 actions. Signal numbers and signal names may be interspersed with
8313 actions, with the actions being performed for all signals cumulatively
1777feb0 8314 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8315
773a1edc 8316 for (char *arg : built_argv)
c906108c 8317 {
773a1edc
TT
8318 wordlen = strlen (arg);
8319 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8320 {;
8321 }
8322 allsigs = 0;
8323 sigfirst = siglast = -1;
8324
773a1edc 8325 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8326 {
8327 /* Apply action to all signals except those used by the
1777feb0 8328 debugger. Silently skip those. */
c906108c
SS
8329 allsigs = 1;
8330 sigfirst = 0;
8331 siglast = nsigs - 1;
8332 }
773a1edc 8333 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8334 {
8335 SET_SIGS (nsigs, sigs, signal_stop);
8336 SET_SIGS (nsigs, sigs, signal_print);
8337 }
773a1edc 8338 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8339 {
8340 UNSET_SIGS (nsigs, sigs, signal_program);
8341 }
773a1edc 8342 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8343 {
8344 SET_SIGS (nsigs, sigs, signal_print);
8345 }
773a1edc 8346 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8347 {
8348 SET_SIGS (nsigs, sigs, signal_program);
8349 }
773a1edc 8350 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8351 {
8352 UNSET_SIGS (nsigs, sigs, signal_stop);
8353 }
773a1edc 8354 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8355 {
8356 SET_SIGS (nsigs, sigs, signal_program);
8357 }
773a1edc 8358 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8359 {
8360 UNSET_SIGS (nsigs, sigs, signal_print);
8361 UNSET_SIGS (nsigs, sigs, signal_stop);
8362 }
773a1edc 8363 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8364 {
8365 UNSET_SIGS (nsigs, sigs, signal_program);
8366 }
8367 else if (digits > 0)
8368 {
8369 /* It is numeric. The numeric signal refers to our own
8370 internal signal numbering from target.h, not to host/target
8371 signal number. This is a feature; users really should be
8372 using symbolic names anyway, and the common ones like
8373 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8374
8375 sigfirst = siglast = (int)
773a1edc
TT
8376 gdb_signal_from_command (atoi (arg));
8377 if (arg[digits] == '-')
c906108c
SS
8378 {
8379 siglast = (int)
773a1edc 8380 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8381 }
8382 if (sigfirst > siglast)
8383 {
1777feb0 8384 /* Bet he didn't figure we'd think of this case... */
b926417a 8385 std::swap (sigfirst, siglast);
c906108c
SS
8386 }
8387 }
8388 else
8389 {
773a1edc 8390 oursig = gdb_signal_from_name (arg);
a493e3e2 8391 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8392 {
8393 sigfirst = siglast = (int) oursig;
8394 }
8395 else
8396 {
8397 /* Not a number and not a recognized flag word => complain. */
773a1edc 8398 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8399 }
8400 }
8401
8402 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8403 which signals to apply actions to. */
c906108c 8404
b926417a 8405 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8406 {
2ea28649 8407 switch ((enum gdb_signal) signum)
c906108c 8408 {
a493e3e2
PA
8409 case GDB_SIGNAL_TRAP:
8410 case GDB_SIGNAL_INT:
c906108c
SS
8411 if (!allsigs && !sigs[signum])
8412 {
9e2f0ad4 8413 if (query (_("%s is used by the debugger.\n\
3e43a32a 8414Are you sure you want to change it? "),
2ea28649 8415 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8416 {
8417 sigs[signum] = 1;
8418 }
8419 else
c119e040 8420 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8421 }
8422 break;
a493e3e2
PA
8423 case GDB_SIGNAL_0:
8424 case GDB_SIGNAL_DEFAULT:
8425 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8426 /* Make sure that "all" doesn't print these. */
8427 break;
8428 default:
8429 sigs[signum] = 1;
8430 break;
8431 }
8432 }
c906108c
SS
8433 }
8434
b926417a 8435 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8436 if (sigs[signum])
8437 {
2455069d 8438 signal_cache_update (-1);
adc6a863
PA
8439 target_pass_signals (signal_pass);
8440 target_program_signals (signal_program);
c906108c 8441
3a031f65
PA
8442 if (from_tty)
8443 {
8444 /* Show the results. */
8445 sig_print_header ();
8446 for (; signum < nsigs; signum++)
8447 if (sigs[signum])
aead7601 8448 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8449 }
8450
8451 break;
8452 }
c906108c
SS
8453}
8454
de0bea00
MF
8455/* Complete the "handle" command. */
8456
eb3ff9a5 8457static void
de0bea00 8458handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8459 completion_tracker &tracker,
6f937416 8460 const char *text, const char *word)
de0bea00 8461{
de0bea00
MF
8462 static const char * const keywords[] =
8463 {
8464 "all",
8465 "stop",
8466 "ignore",
8467 "print",
8468 "pass",
8469 "nostop",
8470 "noignore",
8471 "noprint",
8472 "nopass",
8473 NULL,
8474 };
8475
eb3ff9a5
PA
8476 signal_completer (ignore, tracker, text, word);
8477 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8478}
8479
2ea28649
PA
8480enum gdb_signal
8481gdb_signal_from_command (int num)
ed01b82c
PA
8482{
8483 if (num >= 1 && num <= 15)
2ea28649 8484 return (enum gdb_signal) num;
ed01b82c
PA
8485 error (_("Only signals 1-15 are valid as numeric signals.\n\
8486Use \"info signals\" for a list of symbolic signals."));
8487}
8488
c906108c
SS
8489/* Print current contents of the tables set by the handle command.
8490 It is possible we should just be printing signals actually used
8491 by the current target (but for things to work right when switching
8492 targets, all signals should be in the signal tables). */
8493
8494static void
1d12d88f 8495info_signals_command (const char *signum_exp, int from_tty)
c906108c 8496{
2ea28649 8497 enum gdb_signal oursig;
abbb1732 8498
c906108c
SS
8499 sig_print_header ();
8500
8501 if (signum_exp)
8502 {
8503 /* First see if this is a symbol name. */
2ea28649 8504 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8505 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8506 {
8507 /* No, try numeric. */
8508 oursig =
2ea28649 8509 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8510 }
8511 sig_print_info (oursig);
8512 return;
8513 }
8514
8515 printf_filtered ("\n");
8516 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8517 for (oursig = GDB_SIGNAL_FIRST;
8518 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8519 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8520 {
8521 QUIT;
8522
a493e3e2
PA
8523 if (oursig != GDB_SIGNAL_UNKNOWN
8524 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8525 sig_print_info (oursig);
8526 }
8527
3e43a32a
MS
8528 printf_filtered (_("\nUse the \"handle\" command "
8529 "to change these tables.\n"));
c906108c 8530}
4aa995e1
PA
8531
8532/* The $_siginfo convenience variable is a bit special. We don't know
8533 for sure the type of the value until we actually have a chance to
7a9dd1b2 8534 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8535 also dependent on which thread you have selected.
8536
8537 1. making $_siginfo be an internalvar that creates a new value on
8538 access.
8539
8540 2. making the value of $_siginfo be an lval_computed value. */
8541
8542/* This function implements the lval_computed support for reading a
8543 $_siginfo value. */
8544
8545static void
8546siginfo_value_read (struct value *v)
8547{
8548 LONGEST transferred;
8549
a911d87a
PA
8550 /* If we can access registers, so can we access $_siginfo. Likewise
8551 vice versa. */
8552 validate_registers_access ();
c709acd1 8553
4aa995e1 8554 transferred =
8b88a78e 8555 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8556 NULL,
8557 value_contents_all_raw (v),
8558 value_offset (v),
8559 TYPE_LENGTH (value_type (v)));
8560
8561 if (transferred != TYPE_LENGTH (value_type (v)))
8562 error (_("Unable to read siginfo"));
8563}
8564
8565/* This function implements the lval_computed support for writing a
8566 $_siginfo value. */
8567
8568static void
8569siginfo_value_write (struct value *v, struct value *fromval)
8570{
8571 LONGEST transferred;
8572
a911d87a
PA
8573 /* If we can access registers, so can we access $_siginfo. Likewise
8574 vice versa. */
8575 validate_registers_access ();
c709acd1 8576
8b88a78e 8577 transferred = target_write (current_top_target (),
4aa995e1
PA
8578 TARGET_OBJECT_SIGNAL_INFO,
8579 NULL,
8580 value_contents_all_raw (fromval),
8581 value_offset (v),
8582 TYPE_LENGTH (value_type (fromval)));
8583
8584 if (transferred != TYPE_LENGTH (value_type (fromval)))
8585 error (_("Unable to write siginfo"));
8586}
8587
c8f2448a 8588static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8589 {
8590 siginfo_value_read,
8591 siginfo_value_write
8592 };
8593
8594/* Return a new value with the correct type for the siginfo object of
78267919
UW
8595 the current thread using architecture GDBARCH. Return a void value
8596 if there's no object available. */
4aa995e1 8597
2c0b251b 8598static struct value *
22d2b532
SDJ
8599siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8600 void *ignore)
4aa995e1 8601{
4aa995e1 8602 if (target_has_stack
d7e15655 8603 && inferior_ptid != null_ptid
78267919 8604 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8605 {
78267919 8606 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8607
78267919 8608 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8609 }
8610
78267919 8611 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8612}
8613
c906108c 8614\f
16c381f0
JK
8615/* infcall_suspend_state contains state about the program itself like its
8616 registers and any signal it received when it last stopped.
8617 This state must be restored regardless of how the inferior function call
8618 ends (either successfully, or after it hits a breakpoint or signal)
8619 if the program is to properly continue where it left off. */
8620
6bf78e29 8621class infcall_suspend_state
7a292a7a 8622{
6bf78e29
AB
8623public:
8624 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8625 once the inferior function call has finished. */
8626 infcall_suspend_state (struct gdbarch *gdbarch,
8627 const struct thread_info *tp,
8628 struct regcache *regcache)
8629 : m_thread_suspend (tp->suspend),
8630 m_registers (new readonly_detached_regcache (*regcache))
8631 {
8632 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8633
8634 if (gdbarch_get_siginfo_type_p (gdbarch))
8635 {
8636 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8637 size_t len = TYPE_LENGTH (type);
8638
8639 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8640
8641 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8642 siginfo_data.get (), 0, len) != len)
8643 {
8644 /* Errors ignored. */
8645 siginfo_data.reset (nullptr);
8646 }
8647 }
8648
8649 if (siginfo_data)
8650 {
8651 m_siginfo_gdbarch = gdbarch;
8652 m_siginfo_data = std::move (siginfo_data);
8653 }
8654 }
8655
8656 /* Return a pointer to the stored register state. */
16c381f0 8657
6bf78e29
AB
8658 readonly_detached_regcache *registers () const
8659 {
8660 return m_registers.get ();
8661 }
8662
8663 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8664
8665 void restore (struct gdbarch *gdbarch,
8666 struct thread_info *tp,
8667 struct regcache *regcache) const
8668 {
8669 tp->suspend = m_thread_suspend;
8670
8671 if (m_siginfo_gdbarch == gdbarch)
8672 {
8673 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8674
8675 /* Errors ignored. */
8676 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8677 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8678 }
8679
8680 /* The inferior can be gone if the user types "print exit(0)"
8681 (and perhaps other times). */
8682 if (target_has_execution)
8683 /* NB: The register write goes through to the target. */
8684 regcache->restore (registers ());
8685 }
8686
8687private:
8688 /* How the current thread stopped before the inferior function call was
8689 executed. */
8690 struct thread_suspend_state m_thread_suspend;
8691
8692 /* The registers before the inferior function call was executed. */
8693 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8694
35515841 8695 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8696 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8697
8698 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8699 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8700 content would be invalid. */
6bf78e29 8701 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8702};
8703
cb524840
TT
8704infcall_suspend_state_up
8705save_infcall_suspend_state ()
b89667eb 8706{
b89667eb 8707 struct thread_info *tp = inferior_thread ();
1736ad11 8708 struct regcache *regcache = get_current_regcache ();
ac7936df 8709 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8710
6bf78e29
AB
8711 infcall_suspend_state_up inf_state
8712 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8713
6bf78e29
AB
8714 /* Having saved the current state, adjust the thread state, discarding
8715 any stop signal information. The stop signal is not useful when
8716 starting an inferior function call, and run_inferior_call will not use
8717 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8718 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8719
b89667eb
DE
8720 return inf_state;
8721}
8722
8723/* Restore inferior session state to INF_STATE. */
8724
8725void
16c381f0 8726restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8727{
8728 struct thread_info *tp = inferior_thread ();
1736ad11 8729 struct regcache *regcache = get_current_regcache ();
ac7936df 8730 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8731
6bf78e29 8732 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8733 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8734}
8735
b89667eb 8736void
16c381f0 8737discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8738{
dd848631 8739 delete inf_state;
b89667eb
DE
8740}
8741
daf6667d 8742readonly_detached_regcache *
16c381f0 8743get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8744{
6bf78e29 8745 return inf_state->registers ();
b89667eb
DE
8746}
8747
16c381f0
JK
8748/* infcall_control_state contains state regarding gdb's control of the
8749 inferior itself like stepping control. It also contains session state like
8750 the user's currently selected frame. */
b89667eb 8751
16c381f0 8752struct infcall_control_state
b89667eb 8753{
16c381f0
JK
8754 struct thread_control_state thread_control;
8755 struct inferior_control_state inferior_control;
d82142e2
JK
8756
8757 /* Other fields: */
ee841dd8
TT
8758 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8759 int stopped_by_random_signal = 0;
7a292a7a 8760
b89667eb 8761 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8762 struct frame_id selected_frame_id {};
7a292a7a
SS
8763};
8764
c906108c 8765/* Save all of the information associated with the inferior<==>gdb
b89667eb 8766 connection. */
c906108c 8767
cb524840
TT
8768infcall_control_state_up
8769save_infcall_control_state ()
c906108c 8770{
cb524840 8771 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8772 struct thread_info *tp = inferior_thread ();
d6b48e9c 8773 struct inferior *inf = current_inferior ();
7a292a7a 8774
16c381f0
JK
8775 inf_status->thread_control = tp->control;
8776 inf_status->inferior_control = inf->control;
d82142e2 8777
8358c15c 8778 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8779 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8780
16c381f0
JK
8781 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8782 chain. If caller's caller is walking the chain, they'll be happier if we
8783 hand them back the original chain when restore_infcall_control_state is
8784 called. */
8785 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8786
8787 /* Other fields: */
8788 inf_status->stop_stack_dummy = stop_stack_dummy;
8789 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8790
206415a3 8791 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8792
7a292a7a 8793 return inf_status;
c906108c
SS
8794}
8795
bf469271
PA
8796static void
8797restore_selected_frame (const frame_id &fid)
c906108c 8798{
bf469271 8799 frame_info *frame = frame_find_by_id (fid);
c906108c 8800
aa0cd9c1
AC
8801 /* If inf_status->selected_frame_id is NULL, there was no previously
8802 selected frame. */
101dcfbe 8803 if (frame == NULL)
c906108c 8804 {
8a3fe4f8 8805 warning (_("Unable to restore previously selected frame."));
bf469271 8806 return;
c906108c
SS
8807 }
8808
0f7d239c 8809 select_frame (frame);
c906108c
SS
8810}
8811
b89667eb
DE
8812/* Restore inferior session state to INF_STATUS. */
8813
c906108c 8814void
16c381f0 8815restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8816{
4e1c45ea 8817 struct thread_info *tp = inferior_thread ();
d6b48e9c 8818 struct inferior *inf = current_inferior ();
4e1c45ea 8819
8358c15c
JK
8820 if (tp->control.step_resume_breakpoint)
8821 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8822
5b79abe7
TT
8823 if (tp->control.exception_resume_breakpoint)
8824 tp->control.exception_resume_breakpoint->disposition
8825 = disp_del_at_next_stop;
8826
d82142e2 8827 /* Handle the bpstat_copy of the chain. */
16c381f0 8828 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8829
16c381f0
JK
8830 tp->control = inf_status->thread_control;
8831 inf->control = inf_status->inferior_control;
d82142e2
JK
8832
8833 /* Other fields: */
8834 stop_stack_dummy = inf_status->stop_stack_dummy;
8835 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8836
b89667eb 8837 if (target_has_stack)
c906108c 8838 {
bf469271 8839 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8840 walking the stack might encounter a garbage pointer and
8841 error() trying to dereference it. */
a70b8144 8842 try
bf469271
PA
8843 {
8844 restore_selected_frame (inf_status->selected_frame_id);
8845 }
230d2906 8846 catch (const gdb_exception_error &ex)
bf469271
PA
8847 {
8848 exception_fprintf (gdb_stderr, ex,
8849 "Unable to restore previously selected frame:\n");
8850 /* Error in restoring the selected frame. Select the
8851 innermost frame. */
8852 select_frame (get_current_frame ());
8853 }
c906108c 8854 }
c906108c 8855
ee841dd8 8856 delete inf_status;
7a292a7a 8857}
c906108c
SS
8858
8859void
16c381f0 8860discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8861{
8358c15c
JK
8862 if (inf_status->thread_control.step_resume_breakpoint)
8863 inf_status->thread_control.step_resume_breakpoint->disposition
8864 = disp_del_at_next_stop;
8865
5b79abe7
TT
8866 if (inf_status->thread_control.exception_resume_breakpoint)
8867 inf_status->thread_control.exception_resume_breakpoint->disposition
8868 = disp_del_at_next_stop;
8869
1777feb0 8870 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8871 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8872
ee841dd8 8873 delete inf_status;
7a292a7a 8874}
b89667eb 8875\f
7f89fd65 8876/* See infrun.h. */
0c557179
SDJ
8877
8878void
8879clear_exit_convenience_vars (void)
8880{
8881 clear_internalvar (lookup_internalvar ("_exitsignal"));
8882 clear_internalvar (lookup_internalvar ("_exitcode"));
8883}
c5aa993b 8884\f
488f131b 8885
b2175913
MS
8886/* User interface for reverse debugging:
8887 Set exec-direction / show exec-direction commands
8888 (returns error unless target implements to_set_exec_direction method). */
8889
170742de 8890enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8891static const char exec_forward[] = "forward";
8892static const char exec_reverse[] = "reverse";
8893static const char *exec_direction = exec_forward;
40478521 8894static const char *const exec_direction_names[] = {
b2175913
MS
8895 exec_forward,
8896 exec_reverse,
8897 NULL
8898};
8899
8900static void
eb4c3f4a 8901set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8902 struct cmd_list_element *cmd)
8903{
8904 if (target_can_execute_reverse)
8905 {
8906 if (!strcmp (exec_direction, exec_forward))
8907 execution_direction = EXEC_FORWARD;
8908 else if (!strcmp (exec_direction, exec_reverse))
8909 execution_direction = EXEC_REVERSE;
8910 }
8bbed405
MS
8911 else
8912 {
8913 exec_direction = exec_forward;
8914 error (_("Target does not support this operation."));
8915 }
b2175913
MS
8916}
8917
8918static void
8919show_exec_direction_func (struct ui_file *out, int from_tty,
8920 struct cmd_list_element *cmd, const char *value)
8921{
8922 switch (execution_direction) {
8923 case EXEC_FORWARD:
8924 fprintf_filtered (out, _("Forward.\n"));
8925 break;
8926 case EXEC_REVERSE:
8927 fprintf_filtered (out, _("Reverse.\n"));
8928 break;
b2175913 8929 default:
d8b34453
PA
8930 internal_error (__FILE__, __LINE__,
8931 _("bogus execution_direction value: %d"),
8932 (int) execution_direction);
b2175913
MS
8933 }
8934}
8935
d4db2f36
PA
8936static void
8937show_schedule_multiple (struct ui_file *file, int from_tty,
8938 struct cmd_list_element *c, const char *value)
8939{
3e43a32a
MS
8940 fprintf_filtered (file, _("Resuming the execution of threads "
8941 "of all processes is %s.\n"), value);
d4db2f36 8942}
ad52ddc6 8943
22d2b532
SDJ
8944/* Implementation of `siginfo' variable. */
8945
8946static const struct internalvar_funcs siginfo_funcs =
8947{
8948 siginfo_make_value,
8949 NULL,
8950 NULL
8951};
8952
372316f1
PA
8953/* Callback for infrun's target events source. This is marked when a
8954 thread has a pending status to process. */
8955
8956static void
8957infrun_async_inferior_event_handler (gdb_client_data data)
8958{
372316f1
PA
8959 inferior_event_handler (INF_REG_EVENT, NULL);
8960}
8961
c906108c 8962void
96baa820 8963_initialize_infrun (void)
c906108c 8964{
de0bea00 8965 struct cmd_list_element *c;
c906108c 8966
372316f1
PA
8967 /* Register extra event sources in the event loop. */
8968 infrun_async_inferior_event_token
8969 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8970
11db9430 8971 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8972What debugger does when program gets various signals.\n\
8973Specify a signal as argument to print info on that signal only."));
c906108c
SS
8974 add_info_alias ("handle", "signals", 0);
8975
de0bea00 8976 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8977Specify how to handle signals.\n\
486c7739 8978Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8979Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8980If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8981will be displayed instead.\n\
8982\n\
c906108c
SS
8983Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8984from 1-15 are allowed for compatibility with old versions of GDB.\n\
8985Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8986The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8987used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8988\n\
1bedd215 8989Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8990\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8991Stop means reenter debugger if this signal happens (implies print).\n\
8992Print means print a message if this signal happens.\n\
8993Pass means let program see this signal; otherwise program doesn't know.\n\
8994Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8995Pass and Stop may be combined.\n\
8996\n\
8997Multiple signals may be specified. Signal numbers and signal names\n\
8998may be interspersed with actions, with the actions being performed for\n\
8999all signals cumulatively specified."));
de0bea00 9000 set_cmd_completer (c, handle_completer);
486c7739 9001
c906108c 9002 if (!dbx_commands)
1a966eab
AC
9003 stop_command = add_cmd ("stop", class_obscure,
9004 not_just_help_class_command, _("\
9005There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9006This allows you to set a list of commands to be run each time execution\n\
1a966eab 9007of the program stops."), &cmdlist);
c906108c 9008
ccce17b0 9009 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9010Set inferior debugging."), _("\
9011Show inferior debugging."), _("\
9012When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9013 NULL,
9014 show_debug_infrun,
9015 &setdebuglist, &showdebuglist);
527159b7 9016
3e43a32a
MS
9017 add_setshow_boolean_cmd ("displaced", class_maintenance,
9018 &debug_displaced, _("\
237fc4c9
PA
9019Set displaced stepping debugging."), _("\
9020Show displaced stepping debugging."), _("\
9021When non-zero, displaced stepping specific debugging is enabled."),
9022 NULL,
9023 show_debug_displaced,
9024 &setdebuglist, &showdebuglist);
9025
ad52ddc6
PA
9026 add_setshow_boolean_cmd ("non-stop", no_class,
9027 &non_stop_1, _("\
9028Set whether gdb controls the inferior in non-stop mode."), _("\
9029Show whether gdb controls the inferior in non-stop mode."), _("\
9030When debugging a multi-threaded program and this setting is\n\
9031off (the default, also called all-stop mode), when one thread stops\n\
9032(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9033all other threads in the program while you interact with the thread of\n\
9034interest. When you continue or step a thread, you can allow the other\n\
9035threads to run, or have them remain stopped, but while you inspect any\n\
9036thread's state, all threads stop.\n\
9037\n\
9038In non-stop mode, when one thread stops, other threads can continue\n\
9039to run freely. You'll be able to step each thread independently,\n\
9040leave it stopped or free to run as needed."),
9041 set_non_stop,
9042 show_non_stop,
9043 &setlist,
9044 &showlist);
9045
adc6a863 9046 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9047 {
9048 signal_stop[i] = 1;
9049 signal_print[i] = 1;
9050 signal_program[i] = 1;
ab04a2af 9051 signal_catch[i] = 0;
c906108c
SS
9052 }
9053
4d9d9d04
PA
9054 /* Signals caused by debugger's own actions should not be given to
9055 the program afterwards.
9056
9057 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9058 explicitly specifies that it should be delivered to the target
9059 program. Typically, that would occur when a user is debugging a
9060 target monitor on a simulator: the target monitor sets a
9061 breakpoint; the simulator encounters this breakpoint and halts
9062 the simulation handing control to GDB; GDB, noting that the stop
9063 address doesn't map to any known breakpoint, returns control back
9064 to the simulator; the simulator then delivers the hardware
9065 equivalent of a GDB_SIGNAL_TRAP to the program being
9066 debugged. */
a493e3e2
PA
9067 signal_program[GDB_SIGNAL_TRAP] = 0;
9068 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9069
9070 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9071 signal_stop[GDB_SIGNAL_ALRM] = 0;
9072 signal_print[GDB_SIGNAL_ALRM] = 0;
9073 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9074 signal_print[GDB_SIGNAL_VTALRM] = 0;
9075 signal_stop[GDB_SIGNAL_PROF] = 0;
9076 signal_print[GDB_SIGNAL_PROF] = 0;
9077 signal_stop[GDB_SIGNAL_CHLD] = 0;
9078 signal_print[GDB_SIGNAL_CHLD] = 0;
9079 signal_stop[GDB_SIGNAL_IO] = 0;
9080 signal_print[GDB_SIGNAL_IO] = 0;
9081 signal_stop[GDB_SIGNAL_POLL] = 0;
9082 signal_print[GDB_SIGNAL_POLL] = 0;
9083 signal_stop[GDB_SIGNAL_URG] = 0;
9084 signal_print[GDB_SIGNAL_URG] = 0;
9085 signal_stop[GDB_SIGNAL_WINCH] = 0;
9086 signal_print[GDB_SIGNAL_WINCH] = 0;
9087 signal_stop[GDB_SIGNAL_PRIO] = 0;
9088 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9089
cd0fc7c3
SS
9090 /* These signals are used internally by user-level thread
9091 implementations. (See signal(5) on Solaris.) Like the above
9092 signals, a healthy program receives and handles them as part of
9093 its normal operation. */
a493e3e2
PA
9094 signal_stop[GDB_SIGNAL_LWP] = 0;
9095 signal_print[GDB_SIGNAL_LWP] = 0;
9096 signal_stop[GDB_SIGNAL_WAITING] = 0;
9097 signal_print[GDB_SIGNAL_WAITING] = 0;
9098 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9099 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9100 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9101 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9102
2455069d
UW
9103 /* Update cached state. */
9104 signal_cache_update (-1);
9105
85c07804
AC
9106 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9107 &stop_on_solib_events, _("\
9108Set stopping for shared library events."), _("\
9109Show stopping for shared library events."), _("\
c906108c
SS
9110If nonzero, gdb will give control to the user when the dynamic linker\n\
9111notifies gdb of shared library events. The most common event of interest\n\
85c07804 9112to the user would be loading/unloading of a new library."),
f9e14852 9113 set_stop_on_solib_events,
920d2a44 9114 show_stop_on_solib_events,
85c07804 9115 &setlist, &showlist);
c906108c 9116
7ab04401
AC
9117 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9118 follow_fork_mode_kind_names,
9119 &follow_fork_mode_string, _("\
9120Set debugger response to a program call of fork or vfork."), _("\
9121Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9122A fork or vfork creates a new process. follow-fork-mode can be:\n\
9123 parent - the original process is debugged after a fork\n\
9124 child - the new process is debugged after a fork\n\
ea1dd7bc 9125The unfollowed process will continue to run.\n\
7ab04401
AC
9126By default, the debugger will follow the parent process."),
9127 NULL,
920d2a44 9128 show_follow_fork_mode_string,
7ab04401
AC
9129 &setlist, &showlist);
9130
6c95b8df
PA
9131 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9132 follow_exec_mode_names,
9133 &follow_exec_mode_string, _("\
9134Set debugger response to a program call of exec."), _("\
9135Show debugger response to a program call of exec."), _("\
9136An exec call replaces the program image of a process.\n\
9137\n\
9138follow-exec-mode can be:\n\
9139\n\
cce7e648 9140 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9141to this new inferior. The program the process was running before\n\
9142the exec call can be restarted afterwards by restarting the original\n\
9143inferior.\n\
9144\n\
9145 same - the debugger keeps the process bound to the same inferior.\n\
9146The new executable image replaces the previous executable loaded in\n\
9147the inferior. Restarting the inferior after the exec call restarts\n\
9148the executable the process was running after the exec call.\n\
9149\n\
9150By default, the debugger will use the same inferior."),
9151 NULL,
9152 show_follow_exec_mode_string,
9153 &setlist, &showlist);
9154
7ab04401
AC
9155 add_setshow_enum_cmd ("scheduler-locking", class_run,
9156 scheduler_enums, &scheduler_mode, _("\
9157Set mode for locking scheduler during execution."), _("\
9158Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9159off == no locking (threads may preempt at any time)\n\
9160on == full locking (no thread except the current thread may run)\n\
9161 This applies to both normal execution and replay mode.\n\
9162step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9163 In this mode, other threads may run during other commands.\n\
9164 This applies to both normal execution and replay mode.\n\
9165replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9166 set_schedlock_func, /* traps on target vector */
920d2a44 9167 show_scheduler_mode,
7ab04401 9168 &setlist, &showlist);
5fbbeb29 9169
d4db2f36
PA
9170 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9171Set mode for resuming threads of all processes."), _("\
9172Show mode for resuming threads of all processes."), _("\
9173When on, execution commands (such as 'continue' or 'next') resume all\n\
9174threads of all processes. When off (which is the default), execution\n\
9175commands only resume the threads of the current process. The set of\n\
9176threads that are resumed is further refined by the scheduler-locking\n\
9177mode (see help set scheduler-locking)."),
9178 NULL,
9179 show_schedule_multiple,
9180 &setlist, &showlist);
9181
5bf193a2
AC
9182 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9183Set mode of the step operation."), _("\
9184Show mode of the step operation."), _("\
9185When set, doing a step over a function without debug line information\n\
9186will stop at the first instruction of that function. Otherwise, the\n\
9187function is skipped and the step command stops at a different source line."),
9188 NULL,
920d2a44 9189 show_step_stop_if_no_debug,
5bf193a2 9190 &setlist, &showlist);
ca6724c1 9191
72d0e2c5
YQ
9192 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9193 &can_use_displaced_stepping, _("\
237fc4c9
PA
9194Set debugger's willingness to use displaced stepping."), _("\
9195Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9196If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9197supported by the target architecture. If off, gdb will not use displaced\n\
9198stepping to step over breakpoints, even if such is supported by the target\n\
9199architecture. If auto (which is the default), gdb will use displaced stepping\n\
9200if the target architecture supports it and non-stop mode is active, but will not\n\
9201use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9202 NULL,
9203 show_can_use_displaced_stepping,
9204 &setlist, &showlist);
237fc4c9 9205
b2175913
MS
9206 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9207 &exec_direction, _("Set direction of execution.\n\
9208Options are 'forward' or 'reverse'."),
9209 _("Show direction of execution (forward/reverse)."),
9210 _("Tells gdb whether to execute forward or backward."),
9211 set_exec_direction_func, show_exec_direction_func,
9212 &setlist, &showlist);
9213
6c95b8df
PA
9214 /* Set/show detach-on-fork: user-settable mode. */
9215
9216 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9217Set whether gdb will detach the child of a fork."), _("\
9218Show whether gdb will detach the child of a fork."), _("\
9219Tells gdb whether to detach the child of a fork."),
9220 NULL, NULL, &setlist, &showlist);
9221
03583c20
UW
9222 /* Set/show disable address space randomization mode. */
9223
9224 add_setshow_boolean_cmd ("disable-randomization", class_support,
9225 &disable_randomization, _("\
9226Set disabling of debuggee's virtual address space randomization."), _("\
9227Show disabling of debuggee's virtual address space randomization."), _("\
9228When this mode is on (which is the default), randomization of the virtual\n\
9229address space is disabled. Standalone programs run with the randomization\n\
9230enabled by default on some platforms."),
9231 &set_disable_randomization,
9232 &show_disable_randomization,
9233 &setlist, &showlist);
9234
ca6724c1 9235 /* ptid initializations */
ca6724c1
KB
9236 inferior_ptid = null_ptid;
9237 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9238
76727919
TT
9239 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9240 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9241 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9242 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9243
9244 /* Explicitly create without lookup, since that tries to create a
9245 value with a void typed value, and when we get here, gdbarch
9246 isn't initialized yet. At this point, we're quite sure there
9247 isn't another convenience variable of the same name. */
22d2b532 9248 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9249
9250 add_setshow_boolean_cmd ("observer", no_class,
9251 &observer_mode_1, _("\
9252Set whether gdb controls the inferior in observer mode."), _("\
9253Show whether gdb controls the inferior in observer mode."), _("\
9254In observer mode, GDB can get data from the inferior, but not\n\
9255affect its execution. Registers and memory may not be changed,\n\
9256breakpoints may not be set, and the program cannot be interrupted\n\
9257or signalled."),
9258 set_observer_mode,
9259 show_observer_mode,
9260 &setlist,
9261 &showlist);
c906108c 9262}
This page took 2.611219 seconds and 4 git commands to generate.