KVM: introduce update_memslots function
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c
XG
62char *audit_point_name[] = {
63 "pre page fault",
64 "post page fault",
65 "pre pte write",
6903074c
XG
66 "post pte write",
67 "pre sync",
68 "post sync"
8b1fe17c 69};
37a7d8b0 70
8b1fe17c 71#undef MMU_DEBUG
37a7d8b0
AK
72
73#ifdef MMU_DEBUG
74
75#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
76#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
77
78#else
79
80#define pgprintk(x...) do { } while (0)
81#define rmap_printk(x...) do { } while (0)
82
83#endif
84
8b1fe17c 85#ifdef MMU_DEBUG
6ada8cca
AK
86static int dbg = 0;
87module_param(dbg, bool, 0644);
37a7d8b0 88#endif
6aa8b732 89
582801a9
MT
90static int oos_shadow = 1;
91module_param(oos_shadow, bool, 0644);
92
d6c69ee9
YD
93#ifndef MMU_DEBUG
94#define ASSERT(x) do { } while (0)
95#else
6aa8b732
AK
96#define ASSERT(x) \
97 if (!(x)) { \
98 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
99 __FILE__, __LINE__, #x); \
100 }
d6c69ee9 101#endif
6aa8b732 102
957ed9ef
XG
103#define PTE_PREFETCH_NUM 8
104
6aa8b732
AK
105#define PT_FIRST_AVAIL_BITS_SHIFT 9
106#define PT64_SECOND_AVAIL_BITS_SHIFT 52
107
6aa8b732
AK
108#define PT64_LEVEL_BITS 9
109
110#define PT64_LEVEL_SHIFT(level) \
d77c26fc 111 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 112
6aa8b732
AK
113#define PT64_INDEX(address, level)\
114 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
115
116
117#define PT32_LEVEL_BITS 10
118
119#define PT32_LEVEL_SHIFT(level) \
d77c26fc 120 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 121
e04da980
JR
122#define PT32_LVL_OFFSET_MASK(level) \
123 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
125
126#define PT32_INDEX(address, level)\
127 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
128
129
27aba766 130#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
131#define PT64_DIR_BASE_ADDR_MASK \
132 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
133#define PT64_LVL_ADDR_MASK(level) \
134 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
135 * PT64_LEVEL_BITS))) - 1))
136#define PT64_LVL_OFFSET_MASK(level) \
137 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
138 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
139
140#define PT32_BASE_ADDR_MASK PAGE_MASK
141#define PT32_DIR_BASE_ADDR_MASK \
142 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
143#define PT32_LVL_ADDR_MASK(level) \
144 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
145 * PT32_LEVEL_BITS))) - 1))
6aa8b732 146
79539cec
AK
147#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
148 | PT64_NX_MASK)
6aa8b732 149
53c07b18 150#define PTE_LIST_EXT 4
cd4a4e53 151
fe135d2c
AK
152#define ACC_EXEC_MASK 1
153#define ACC_WRITE_MASK PT_WRITABLE_MASK
154#define ACC_USER_MASK PT_USER_MASK
155#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
156
90bb6fc5
AK
157#include <trace/events/kvm.h>
158
07420171
AK
159#define CREATE_TRACE_POINTS
160#include "mmutrace.h"
161
1403283a
IE
162#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
163
135f8c2b
AK
164#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
165
53c07b18
XG
166struct pte_list_desc {
167 u64 *sptes[PTE_LIST_EXT];
168 struct pte_list_desc *more;
cd4a4e53
AK
169};
170
2d11123a
AK
171struct kvm_shadow_walk_iterator {
172 u64 addr;
173 hpa_t shadow_addr;
2d11123a 174 u64 *sptep;
dd3bfd59 175 int level;
2d11123a
AK
176 unsigned index;
177};
178
179#define for_each_shadow_entry(_vcpu, _addr, _walker) \
180 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
181 shadow_walk_okay(&(_walker)); \
182 shadow_walk_next(&(_walker)))
183
c2a2ac2b
XG
184#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
185 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
186 shadow_walk_okay(&(_walker)) && \
187 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
188 __shadow_walk_next(&(_walker), spte))
189
53c07b18 190static struct kmem_cache *pte_list_desc_cache;
d3d25b04 191static struct kmem_cache *mmu_page_header_cache;
45221ab6 192static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 193
7b52345e
SY
194static u64 __read_mostly shadow_nx_mask;
195static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
196static u64 __read_mostly shadow_user_mask;
197static u64 __read_mostly shadow_accessed_mask;
198static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
199static u64 __read_mostly shadow_mmio_mask;
200
201static void mmu_spte_set(u64 *sptep, u64 spte);
202
203void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
204{
205 shadow_mmio_mask = mmio_mask;
206}
207EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
208
209static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
210{
211 access &= ACC_WRITE_MASK | ACC_USER_MASK;
212
4f022648 213 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
214 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
215}
216
217static bool is_mmio_spte(u64 spte)
218{
219 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
220}
221
222static gfn_t get_mmio_spte_gfn(u64 spte)
223{
224 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
225}
226
227static unsigned get_mmio_spte_access(u64 spte)
228{
229 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
230}
231
232static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
233{
234 if (unlikely(is_noslot_pfn(pfn))) {
235 mark_mmio_spte(sptep, gfn, access);
236 return true;
237 }
238
239 return false;
240}
c7addb90 241
82725b20
DE
242static inline u64 rsvd_bits(int s, int e)
243{
244 return ((1ULL << (e - s + 1)) - 1) << s;
245}
246
7b52345e 247void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 248 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
249{
250 shadow_user_mask = user_mask;
251 shadow_accessed_mask = accessed_mask;
252 shadow_dirty_mask = dirty_mask;
253 shadow_nx_mask = nx_mask;
254 shadow_x_mask = x_mask;
255}
256EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
257
6aa8b732
AK
258static int is_cpuid_PSE36(void)
259{
260 return 1;
261}
262
73b1087e
AK
263static int is_nx(struct kvm_vcpu *vcpu)
264{
f6801dff 265 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
266}
267
c7addb90
AK
268static int is_shadow_present_pte(u64 pte)
269{
ce88decf 270 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
271}
272
05da4558
MT
273static int is_large_pte(u64 pte)
274{
275 return pte & PT_PAGE_SIZE_MASK;
276}
277
43a3795a 278static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 279{
439e218a 280 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
281}
282
43a3795a 283static int is_rmap_spte(u64 pte)
cd4a4e53 284{
4b1a80fa 285 return is_shadow_present_pte(pte);
cd4a4e53
AK
286}
287
776e6633
MT
288static int is_last_spte(u64 pte, int level)
289{
290 if (level == PT_PAGE_TABLE_LEVEL)
291 return 1;
852e3c19 292 if (is_large_pte(pte))
776e6633
MT
293 return 1;
294 return 0;
295}
296
35149e21 297static pfn_t spte_to_pfn(u64 pte)
0b49ea86 298{
35149e21 299 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
300}
301
da928521
AK
302static gfn_t pse36_gfn_delta(u32 gpte)
303{
304 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
305
306 return (gpte & PT32_DIR_PSE36_MASK) << shift;
307}
308
603e0651 309#ifdef CONFIG_X86_64
d555c333 310static void __set_spte(u64 *sptep, u64 spte)
e663ee64 311{
603e0651 312 *sptep = spte;
e663ee64
AK
313}
314
603e0651 315static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 316{
603e0651
XG
317 *sptep = spte;
318}
319
320static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
321{
322 return xchg(sptep, spte);
323}
c2a2ac2b
XG
324
325static u64 __get_spte_lockless(u64 *sptep)
326{
327 return ACCESS_ONCE(*sptep);
328}
ce88decf
XG
329
330static bool __check_direct_spte_mmio_pf(u64 spte)
331{
332 /* It is valid if the spte is zapped. */
333 return spte == 0ull;
334}
a9221dd5 335#else
603e0651
XG
336union split_spte {
337 struct {
338 u32 spte_low;
339 u32 spte_high;
340 };
341 u64 spte;
342};
a9221dd5 343
c2a2ac2b
XG
344static void count_spte_clear(u64 *sptep, u64 spte)
345{
346 struct kvm_mmu_page *sp = page_header(__pa(sptep));
347
348 if (is_shadow_present_pte(spte))
349 return;
350
351 /* Ensure the spte is completely set before we increase the count */
352 smp_wmb();
353 sp->clear_spte_count++;
354}
355
603e0651
XG
356static void __set_spte(u64 *sptep, u64 spte)
357{
358 union split_spte *ssptep, sspte;
a9221dd5 359
603e0651
XG
360 ssptep = (union split_spte *)sptep;
361 sspte = (union split_spte)spte;
362
363 ssptep->spte_high = sspte.spte_high;
364
365 /*
366 * If we map the spte from nonpresent to present, We should store
367 * the high bits firstly, then set present bit, so cpu can not
368 * fetch this spte while we are setting the spte.
369 */
370 smp_wmb();
371
372 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
373}
374
603e0651
XG
375static void __update_clear_spte_fast(u64 *sptep, u64 spte)
376{
377 union split_spte *ssptep, sspte;
378
379 ssptep = (union split_spte *)sptep;
380 sspte = (union split_spte)spte;
381
382 ssptep->spte_low = sspte.spte_low;
383
384 /*
385 * If we map the spte from present to nonpresent, we should clear
386 * present bit firstly to avoid vcpu fetch the old high bits.
387 */
388 smp_wmb();
389
390 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 391 count_spte_clear(sptep, spte);
603e0651
XG
392}
393
394static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
395{
396 union split_spte *ssptep, sspte, orig;
397
398 ssptep = (union split_spte *)sptep;
399 sspte = (union split_spte)spte;
400
401 /* xchg acts as a barrier before the setting of the high bits */
402 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
403 orig.spte_high = ssptep->spte_high;
404 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 405 count_spte_clear(sptep, spte);
603e0651
XG
406
407 return orig.spte;
408}
c2a2ac2b
XG
409
410/*
411 * The idea using the light way get the spte on x86_32 guest is from
412 * gup_get_pte(arch/x86/mm/gup.c).
413 * The difference is we can not catch the spte tlb flush if we leave
414 * guest mode, so we emulate it by increase clear_spte_count when spte
415 * is cleared.
416 */
417static u64 __get_spte_lockless(u64 *sptep)
418{
419 struct kvm_mmu_page *sp = page_header(__pa(sptep));
420 union split_spte spte, *orig = (union split_spte *)sptep;
421 int count;
422
423retry:
424 count = sp->clear_spte_count;
425 smp_rmb();
426
427 spte.spte_low = orig->spte_low;
428 smp_rmb();
429
430 spte.spte_high = orig->spte_high;
431 smp_rmb();
432
433 if (unlikely(spte.spte_low != orig->spte_low ||
434 count != sp->clear_spte_count))
435 goto retry;
436
437 return spte.spte;
438}
ce88decf
XG
439
440static bool __check_direct_spte_mmio_pf(u64 spte)
441{
442 union split_spte sspte = (union split_spte)spte;
443 u32 high_mmio_mask = shadow_mmio_mask >> 32;
444
445 /* It is valid if the spte is zapped. */
446 if (spte == 0ull)
447 return true;
448
449 /* It is valid if the spte is being zapped. */
450 if (sspte.spte_low == 0ull &&
451 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
452 return true;
453
454 return false;
455}
603e0651
XG
456#endif
457
8672b721
XG
458static bool spte_has_volatile_bits(u64 spte)
459{
460 if (!shadow_accessed_mask)
461 return false;
462
463 if (!is_shadow_present_pte(spte))
464 return false;
465
4132779b
XG
466 if ((spte & shadow_accessed_mask) &&
467 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
468 return false;
469
470 return true;
471}
472
4132779b
XG
473static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
474{
475 return (old_spte & bit_mask) && !(new_spte & bit_mask);
476}
477
1df9f2dc
XG
478/* Rules for using mmu_spte_set:
479 * Set the sptep from nonpresent to present.
480 * Note: the sptep being assigned *must* be either not present
481 * or in a state where the hardware will not attempt to update
482 * the spte.
483 */
484static void mmu_spte_set(u64 *sptep, u64 new_spte)
485{
486 WARN_ON(is_shadow_present_pte(*sptep));
487 __set_spte(sptep, new_spte);
488}
489
490/* Rules for using mmu_spte_update:
491 * Update the state bits, it means the mapped pfn is not changged.
492 */
493static void mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 494{
4132779b
XG
495 u64 mask, old_spte = *sptep;
496
497 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 498
1df9f2dc
XG
499 if (!is_shadow_present_pte(old_spte))
500 return mmu_spte_set(sptep, new_spte);
501
4132779b
XG
502 new_spte |= old_spte & shadow_dirty_mask;
503
504 mask = shadow_accessed_mask;
505 if (is_writable_pte(old_spte))
506 mask |= shadow_dirty_mask;
507
508 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
603e0651 509 __update_clear_spte_fast(sptep, new_spte);
4132779b 510 else
603e0651 511 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b
XG
512
513 if (!shadow_accessed_mask)
514 return;
515
516 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
517 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
518 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
519 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
b79b93f9
AK
520}
521
1df9f2dc
XG
522/*
523 * Rules for using mmu_spte_clear_track_bits:
524 * It sets the sptep from present to nonpresent, and track the
525 * state bits, it is used to clear the last level sptep.
526 */
527static int mmu_spte_clear_track_bits(u64 *sptep)
528{
529 pfn_t pfn;
530 u64 old_spte = *sptep;
531
532 if (!spte_has_volatile_bits(old_spte))
603e0651 533 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 534 else
603e0651 535 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
536
537 if (!is_rmap_spte(old_spte))
538 return 0;
539
540 pfn = spte_to_pfn(old_spte);
541 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
542 kvm_set_pfn_accessed(pfn);
543 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
544 kvm_set_pfn_dirty(pfn);
545 return 1;
546}
547
548/*
549 * Rules for using mmu_spte_clear_no_track:
550 * Directly clear spte without caring the state bits of sptep,
551 * it is used to set the upper level spte.
552 */
553static void mmu_spte_clear_no_track(u64 *sptep)
554{
603e0651 555 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
556}
557
c2a2ac2b
XG
558static u64 mmu_spte_get_lockless(u64 *sptep)
559{
560 return __get_spte_lockless(sptep);
561}
562
563static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
564{
565 rcu_read_lock();
566 atomic_inc(&vcpu->kvm->arch.reader_counter);
567
568 /* Increase the counter before walking shadow page table */
569 smp_mb__after_atomic_inc();
570}
571
572static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
573{
574 /* Decrease the counter after walking shadow page table finished */
575 smp_mb__before_atomic_dec();
576 atomic_dec(&vcpu->kvm->arch.reader_counter);
577 rcu_read_unlock();
578}
579
e2dec939 580static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 581 struct kmem_cache *base_cache, int min)
714b93da
AK
582{
583 void *obj;
584
585 if (cache->nobjs >= min)
e2dec939 586 return 0;
714b93da 587 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 588 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 589 if (!obj)
e2dec939 590 return -ENOMEM;
714b93da
AK
591 cache->objects[cache->nobjs++] = obj;
592 }
e2dec939 593 return 0;
714b93da
AK
594}
595
f759e2b4
XG
596static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
597{
598 return cache->nobjs;
599}
600
e8ad9a70
XG
601static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
602 struct kmem_cache *cache)
714b93da
AK
603{
604 while (mc->nobjs)
e8ad9a70 605 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
606}
607
c1158e63 608static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 609 int min)
c1158e63 610{
842f22ed 611 void *page;
c1158e63
AK
612
613 if (cache->nobjs >= min)
614 return 0;
615 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 616 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
617 if (!page)
618 return -ENOMEM;
842f22ed 619 cache->objects[cache->nobjs++] = page;
c1158e63
AK
620 }
621 return 0;
622}
623
624static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
625{
626 while (mc->nobjs)
c4d198d5 627 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
628}
629
2e3e5882 630static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 631{
e2dec939
AK
632 int r;
633
53c07b18 634 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 635 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
636 if (r)
637 goto out;
ad312c7c 638 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
639 if (r)
640 goto out;
ad312c7c 641 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 642 mmu_page_header_cache, 4);
e2dec939
AK
643out:
644 return r;
714b93da
AK
645}
646
647static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
648{
53c07b18
XG
649 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
650 pte_list_desc_cache);
ad312c7c 651 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
652 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
653 mmu_page_header_cache);
714b93da
AK
654}
655
656static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
657 size_t size)
658{
659 void *p;
660
661 BUG_ON(!mc->nobjs);
662 p = mc->objects[--mc->nobjs];
714b93da
AK
663 return p;
664}
665
53c07b18 666static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 667{
53c07b18
XG
668 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
669 sizeof(struct pte_list_desc));
714b93da
AK
670}
671
53c07b18 672static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 673{
53c07b18 674 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
675}
676
2032a93d
LJ
677static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
678{
679 if (!sp->role.direct)
680 return sp->gfns[index];
681
682 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
683}
684
685static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
686{
687 if (sp->role.direct)
688 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
689 else
690 sp->gfns[index] = gfn;
691}
692
05da4558 693/*
d4dbf470
TY
694 * Return the pointer to the large page information for a given gfn,
695 * handling slots that are not large page aligned.
05da4558 696 */
d4dbf470
TY
697static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
698 struct kvm_memory_slot *slot,
699 int level)
05da4558
MT
700{
701 unsigned long idx;
702
82855413
JR
703 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
704 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
d4dbf470 705 return &slot->lpage_info[level - 2][idx];
05da4558
MT
706}
707
708static void account_shadowed(struct kvm *kvm, gfn_t gfn)
709{
d25797b2 710 struct kvm_memory_slot *slot;
d4dbf470 711 struct kvm_lpage_info *linfo;
d25797b2 712 int i;
05da4558 713
a1f4d395 714 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
715 for (i = PT_DIRECTORY_LEVEL;
716 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
717 linfo = lpage_info_slot(gfn, slot, i);
718 linfo->write_count += 1;
d25797b2 719 }
332b207d 720 kvm->arch.indirect_shadow_pages++;
05da4558
MT
721}
722
723static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
724{
d25797b2 725 struct kvm_memory_slot *slot;
d4dbf470 726 struct kvm_lpage_info *linfo;
d25797b2 727 int i;
05da4558 728
a1f4d395 729 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
730 for (i = PT_DIRECTORY_LEVEL;
731 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
732 linfo = lpage_info_slot(gfn, slot, i);
733 linfo->write_count -= 1;
734 WARN_ON(linfo->write_count < 0);
d25797b2 735 }
332b207d 736 kvm->arch.indirect_shadow_pages--;
05da4558
MT
737}
738
d25797b2
JR
739static int has_wrprotected_page(struct kvm *kvm,
740 gfn_t gfn,
741 int level)
05da4558 742{
2843099f 743 struct kvm_memory_slot *slot;
d4dbf470 744 struct kvm_lpage_info *linfo;
05da4558 745
a1f4d395 746 slot = gfn_to_memslot(kvm, gfn);
05da4558 747 if (slot) {
d4dbf470
TY
748 linfo = lpage_info_slot(gfn, slot, level);
749 return linfo->write_count;
05da4558
MT
750 }
751
752 return 1;
753}
754
d25797b2 755static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 756{
8f0b1ab6 757 unsigned long page_size;
d25797b2 758 int i, ret = 0;
05da4558 759
8f0b1ab6 760 page_size = kvm_host_page_size(kvm, gfn);
05da4558 761
d25797b2
JR
762 for (i = PT_PAGE_TABLE_LEVEL;
763 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
764 if (page_size >= KVM_HPAGE_SIZE(i))
765 ret = i;
766 else
767 break;
768 }
769
4c2155ce 770 return ret;
05da4558
MT
771}
772
5d163b1c
XG
773static struct kvm_memory_slot *
774gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
775 bool no_dirty_log)
05da4558
MT
776{
777 struct kvm_memory_slot *slot;
5d163b1c
XG
778
779 slot = gfn_to_memslot(vcpu->kvm, gfn);
780 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
781 (no_dirty_log && slot->dirty_bitmap))
782 slot = NULL;
783
784 return slot;
785}
786
787static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
788{
a0a8eaba 789 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
790}
791
792static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
793{
794 int host_level, level, max_level;
05da4558 795
d25797b2
JR
796 host_level = host_mapping_level(vcpu->kvm, large_gfn);
797
798 if (host_level == PT_PAGE_TABLE_LEVEL)
799 return host_level;
800
878403b7
SY
801 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
802 kvm_x86_ops->get_lpage_level() : host_level;
803
804 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
805 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
806 break;
d25797b2
JR
807
808 return level - 1;
05da4558
MT
809}
810
290fc38d 811/*
53c07b18 812 * Pte mapping structures:
cd4a4e53 813 *
53c07b18 814 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 815 *
53c07b18
XG
816 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
817 * pte_list_desc containing more mappings.
53a27b39 818 *
53c07b18 819 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
820 * the spte was not added.
821 *
cd4a4e53 822 */
53c07b18
XG
823static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
824 unsigned long *pte_list)
cd4a4e53 825{
53c07b18 826 struct pte_list_desc *desc;
53a27b39 827 int i, count = 0;
cd4a4e53 828
53c07b18
XG
829 if (!*pte_list) {
830 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
831 *pte_list = (unsigned long)spte;
832 } else if (!(*pte_list & 1)) {
833 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
834 desc = mmu_alloc_pte_list_desc(vcpu);
835 desc->sptes[0] = (u64 *)*pte_list;
d555c333 836 desc->sptes[1] = spte;
53c07b18 837 *pte_list = (unsigned long)desc | 1;
cb16a7b3 838 ++count;
cd4a4e53 839 } else {
53c07b18
XG
840 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
841 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
842 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 843 desc = desc->more;
53c07b18 844 count += PTE_LIST_EXT;
53a27b39 845 }
53c07b18
XG
846 if (desc->sptes[PTE_LIST_EXT-1]) {
847 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
848 desc = desc->more;
849 }
d555c333 850 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 851 ++count;
d555c333 852 desc->sptes[i] = spte;
cd4a4e53 853 }
53a27b39 854 return count;
cd4a4e53
AK
855}
856
53c07b18
XG
857static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
858{
859 struct pte_list_desc *desc;
860 u64 *prev_spte;
861 int i;
862
863 if (!*pte_list)
864 return NULL;
865 else if (!(*pte_list & 1)) {
866 if (!spte)
867 return (u64 *)*pte_list;
868 return NULL;
869 }
870 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
871 prev_spte = NULL;
872 while (desc) {
873 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
874 if (prev_spte == spte)
875 return desc->sptes[i];
876 prev_spte = desc->sptes[i];
877 }
878 desc = desc->more;
879 }
880 return NULL;
881}
882
883static void
884pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
885 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
886{
887 int j;
888
53c07b18 889 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 890 ;
d555c333
AK
891 desc->sptes[i] = desc->sptes[j];
892 desc->sptes[j] = NULL;
cd4a4e53
AK
893 if (j != 0)
894 return;
895 if (!prev_desc && !desc->more)
53c07b18 896 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
897 else
898 if (prev_desc)
899 prev_desc->more = desc->more;
900 else
53c07b18
XG
901 *pte_list = (unsigned long)desc->more | 1;
902 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
903}
904
53c07b18 905static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 906{
53c07b18
XG
907 struct pte_list_desc *desc;
908 struct pte_list_desc *prev_desc;
cd4a4e53
AK
909 int i;
910
53c07b18
XG
911 if (!*pte_list) {
912 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 913 BUG();
53c07b18
XG
914 } else if (!(*pte_list & 1)) {
915 rmap_printk("pte_list_remove: %p 1->0\n", spte);
916 if ((u64 *)*pte_list != spte) {
917 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
918 BUG();
919 }
53c07b18 920 *pte_list = 0;
cd4a4e53 921 } else {
53c07b18
XG
922 rmap_printk("pte_list_remove: %p many->many\n", spte);
923 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
924 prev_desc = NULL;
925 while (desc) {
53c07b18 926 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 927 if (desc->sptes[i] == spte) {
53c07b18 928 pte_list_desc_remove_entry(pte_list,
714b93da 929 desc, i,
cd4a4e53
AK
930 prev_desc);
931 return;
932 }
933 prev_desc = desc;
934 desc = desc->more;
935 }
53c07b18 936 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
937 BUG();
938 }
939}
940
67052b35
XG
941typedef void (*pte_list_walk_fn) (u64 *spte);
942static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
943{
944 struct pte_list_desc *desc;
945 int i;
946
947 if (!*pte_list)
948 return;
949
950 if (!(*pte_list & 1))
951 return fn((u64 *)*pte_list);
952
953 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
954 while (desc) {
955 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
956 fn(desc->sptes[i]);
957 desc = desc->more;
958 }
959}
960
9b9b1492
TY
961static unsigned long *__gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level,
962 struct kvm_memory_slot *slot)
53c07b18 963{
53c07b18
XG
964 struct kvm_lpage_info *linfo;
965
53c07b18
XG
966 if (likely(level == PT_PAGE_TABLE_LEVEL))
967 return &slot->rmap[gfn - slot->base_gfn];
968
969 linfo = lpage_info_slot(gfn, slot, level);
53c07b18
XG
970 return &linfo->rmap_pde;
971}
972
9b9b1492
TY
973/*
974 * Take gfn and return the reverse mapping to it.
975 */
976static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
977{
978 struct kvm_memory_slot *slot;
979
980 slot = gfn_to_memslot(kvm, gfn);
981 return __gfn_to_rmap(kvm, gfn, level, slot);
982}
983
f759e2b4
XG
984static bool rmap_can_add(struct kvm_vcpu *vcpu)
985{
986 struct kvm_mmu_memory_cache *cache;
987
988 cache = &vcpu->arch.mmu_pte_list_desc_cache;
989 return mmu_memory_cache_free_objects(cache);
990}
991
53c07b18
XG
992static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
993{
994 struct kvm_mmu_page *sp;
995 unsigned long *rmapp;
996
53c07b18
XG
997 sp = page_header(__pa(spte));
998 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
999 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1000 return pte_list_add(vcpu, spte, rmapp);
1001}
1002
1003static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
1004{
1005 return pte_list_next(rmapp, spte);
1006}
1007
1008static void rmap_remove(struct kvm *kvm, u64 *spte)
1009{
1010 struct kvm_mmu_page *sp;
1011 gfn_t gfn;
1012 unsigned long *rmapp;
1013
1014 sp = page_header(__pa(spte));
1015 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1016 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1017 pte_list_remove(spte, rmapp);
1018}
1019
c3707958 1020static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1021{
1df9f2dc 1022 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1023 rmap_remove(kvm, sptep);
be38d276
AK
1024}
1025
95d4c16c
TY
1026int kvm_mmu_rmap_write_protect(struct kvm *kvm, u64 gfn,
1027 struct kvm_memory_slot *slot)
98348e95 1028{
290fc38d 1029 unsigned long *rmapp;
374cbac0 1030 u64 *spte;
44ad9944 1031 int i, write_protected = 0;
374cbac0 1032
9b9b1492 1033 rmapp = __gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL, slot);
98348e95
IE
1034 spte = rmap_next(kvm, rmapp, NULL);
1035 while (spte) {
374cbac0 1036 BUG_ON(!(*spte & PT_PRESENT_MASK));
374cbac0 1037 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
8dae4445 1038 if (is_writable_pte(*spte)) {
1df9f2dc 1039 mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
caa5b8a5
ED
1040 write_protected = 1;
1041 }
9647c14c 1042 spte = rmap_next(kvm, rmapp, spte);
374cbac0 1043 }
855149aa 1044
05da4558 1045 /* check for huge page mappings */
44ad9944
JR
1046 for (i = PT_DIRECTORY_LEVEL;
1047 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
9b9b1492 1048 rmapp = __gfn_to_rmap(kvm, gfn, i, slot);
44ad9944
JR
1049 spte = rmap_next(kvm, rmapp, NULL);
1050 while (spte) {
44ad9944 1051 BUG_ON(!(*spte & PT_PRESENT_MASK));
d6eebf8b 1052 BUG_ON(!is_large_pte(*spte));
44ad9944 1053 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
8dae4445 1054 if (is_writable_pte(*spte)) {
c3707958 1055 drop_spte(kvm, spte);
44ad9944 1056 --kvm->stat.lpages;
44ad9944
JR
1057 spte = NULL;
1058 write_protected = 1;
1059 }
1060 spte = rmap_next(kvm, rmapp, spte);
05da4558 1061 }
05da4558
MT
1062 }
1063
b1a36821 1064 return write_protected;
374cbac0
AK
1065}
1066
95d4c16c
TY
1067static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1068{
1069 struct kvm_memory_slot *slot;
1070
1071 slot = gfn_to_memslot(kvm, gfn);
1072 return kvm_mmu_rmap_write_protect(kvm, gfn, slot);
1073}
1074
8a8365c5
FD
1075static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1076 unsigned long data)
e930bffe
AA
1077{
1078 u64 *spte;
1079 int need_tlb_flush = 0;
1080
1081 while ((spte = rmap_next(kvm, rmapp, NULL))) {
1082 BUG_ON(!(*spte & PT_PRESENT_MASK));
1083 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
c3707958 1084 drop_spte(kvm, spte);
e930bffe
AA
1085 need_tlb_flush = 1;
1086 }
1087 return need_tlb_flush;
1088}
1089
8a8365c5
FD
1090static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1091 unsigned long data)
3da0dd43
IE
1092{
1093 int need_flush = 0;
e4b502ea 1094 u64 *spte, new_spte;
3da0dd43
IE
1095 pte_t *ptep = (pte_t *)data;
1096 pfn_t new_pfn;
1097
1098 WARN_ON(pte_huge(*ptep));
1099 new_pfn = pte_pfn(*ptep);
1100 spte = rmap_next(kvm, rmapp, NULL);
1101 while (spte) {
1102 BUG_ON(!is_shadow_present_pte(*spte));
1103 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1104 need_flush = 1;
1105 if (pte_write(*ptep)) {
c3707958 1106 drop_spte(kvm, spte);
3da0dd43
IE
1107 spte = rmap_next(kvm, rmapp, NULL);
1108 } else {
1109 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1110 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1111
1112 new_spte &= ~PT_WRITABLE_MASK;
1113 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1114 new_spte &= ~shadow_accessed_mask;
1df9f2dc
XG
1115 mmu_spte_clear_track_bits(spte);
1116 mmu_spte_set(spte, new_spte);
3da0dd43
IE
1117 spte = rmap_next(kvm, rmapp, spte);
1118 }
1119 }
1120 if (need_flush)
1121 kvm_flush_remote_tlbs(kvm);
1122
1123 return 0;
1124}
1125
8a8365c5
FD
1126static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1127 unsigned long data,
3da0dd43 1128 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
8a8365c5 1129 unsigned long data))
e930bffe 1130{
852e3c19 1131 int i, j;
90bb6fc5 1132 int ret;
e930bffe 1133 int retval = 0;
bc6678a3
MT
1134 struct kvm_memslots *slots;
1135
90d83dc3 1136 slots = kvm_memslots(kvm);
e930bffe 1137
46a26bf5
MT
1138 for (i = 0; i < slots->nmemslots; i++) {
1139 struct kvm_memory_slot *memslot = &slots->memslots[i];
e930bffe
AA
1140 unsigned long start = memslot->userspace_addr;
1141 unsigned long end;
1142
e930bffe
AA
1143 end = start + (memslot->npages << PAGE_SHIFT);
1144 if (hva >= start && hva < end) {
1145 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
d4dbf470 1146 gfn_t gfn = memslot->base_gfn + gfn_offset;
852e3c19 1147
90bb6fc5 1148 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
852e3c19
JR
1149
1150 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
d4dbf470
TY
1151 struct kvm_lpage_info *linfo;
1152
1153 linfo = lpage_info_slot(gfn, memslot,
1154 PT_DIRECTORY_LEVEL + j);
1155 ret |= handler(kvm, &linfo->rmap_pde, data);
852e3c19 1156 }
90bb6fc5
AK
1157 trace_kvm_age_page(hva, memslot, ret);
1158 retval |= ret;
e930bffe
AA
1159 }
1160 }
1161
1162 return retval;
1163}
1164
1165int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1166{
3da0dd43
IE
1167 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1168}
1169
1170void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1171{
8a8365c5 1172 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1173}
1174
8a8365c5
FD
1175static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1176 unsigned long data)
e930bffe
AA
1177{
1178 u64 *spte;
1179 int young = 0;
1180
6316e1c8
RR
1181 /*
1182 * Emulate the accessed bit for EPT, by checking if this page has
1183 * an EPT mapping, and clearing it if it does. On the next access,
1184 * a new EPT mapping will be established.
1185 * This has some overhead, but not as much as the cost of swapping
1186 * out actively used pages or breaking up actively used hugepages.
1187 */
534e38b4 1188 if (!shadow_accessed_mask)
6316e1c8 1189 return kvm_unmap_rmapp(kvm, rmapp, data);
534e38b4 1190
e930bffe
AA
1191 spte = rmap_next(kvm, rmapp, NULL);
1192 while (spte) {
1193 int _young;
1194 u64 _spte = *spte;
1195 BUG_ON(!(_spte & PT_PRESENT_MASK));
1196 _young = _spte & PT_ACCESSED_MASK;
1197 if (_young) {
1198 young = 1;
1199 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1200 }
1201 spte = rmap_next(kvm, rmapp, spte);
1202 }
1203 return young;
1204}
1205
8ee53820
AA
1206static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1207 unsigned long data)
1208{
1209 u64 *spte;
1210 int young = 0;
1211
1212 /*
1213 * If there's no access bit in the secondary pte set by the
1214 * hardware it's up to gup-fast/gup to set the access bit in
1215 * the primary pte or in the page structure.
1216 */
1217 if (!shadow_accessed_mask)
1218 goto out;
1219
1220 spte = rmap_next(kvm, rmapp, NULL);
1221 while (spte) {
1222 u64 _spte = *spte;
1223 BUG_ON(!(_spte & PT_PRESENT_MASK));
1224 young = _spte & PT_ACCESSED_MASK;
1225 if (young) {
1226 young = 1;
1227 break;
1228 }
1229 spte = rmap_next(kvm, rmapp, spte);
1230 }
1231out:
1232 return young;
1233}
1234
53a27b39
MT
1235#define RMAP_RECYCLE_THRESHOLD 1000
1236
852e3c19 1237static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1238{
1239 unsigned long *rmapp;
852e3c19
JR
1240 struct kvm_mmu_page *sp;
1241
1242 sp = page_header(__pa(spte));
53a27b39 1243
852e3c19 1244 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1245
3da0dd43 1246 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
53a27b39
MT
1247 kvm_flush_remote_tlbs(vcpu->kvm);
1248}
1249
e930bffe
AA
1250int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1251{
3da0dd43 1252 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
e930bffe
AA
1253}
1254
8ee53820
AA
1255int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1256{
1257 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1258}
1259
d6c69ee9 1260#ifdef MMU_DEBUG
47ad8e68 1261static int is_empty_shadow_page(u64 *spt)
6aa8b732 1262{
139bdb2d
AK
1263 u64 *pos;
1264 u64 *end;
1265
47ad8e68 1266 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1267 if (is_shadow_present_pte(*pos)) {
b8688d51 1268 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1269 pos, *pos);
6aa8b732 1270 return 0;
139bdb2d 1271 }
6aa8b732
AK
1272 return 1;
1273}
d6c69ee9 1274#endif
6aa8b732 1275
45221ab6
DH
1276/*
1277 * This value is the sum of all of the kvm instances's
1278 * kvm->arch.n_used_mmu_pages values. We need a global,
1279 * aggregate version in order to make the slab shrinker
1280 * faster
1281 */
1282static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1283{
1284 kvm->arch.n_used_mmu_pages += nr;
1285 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1286}
1287
bd4c86ea
XG
1288/*
1289 * Remove the sp from shadow page cache, after call it,
1290 * we can not find this sp from the cache, and the shadow
1291 * page table is still valid.
1292 * It should be under the protection of mmu lock.
1293 */
1294static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1295{
4db35314 1296 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1297 hlist_del(&sp->hash_link);
2032a93d 1298 if (!sp->role.direct)
842f22ed 1299 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1300}
1301
1302/*
1303 * Free the shadow page table and the sp, we can do it
1304 * out of the protection of mmu lock.
1305 */
1306static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1307{
1308 list_del(&sp->link);
1309 free_page((unsigned long)sp->spt);
e8ad9a70 1310 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1311}
1312
cea0f0e7
AK
1313static unsigned kvm_page_table_hashfn(gfn_t gfn)
1314{
1ae0a13d 1315 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1316}
1317
714b93da 1318static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1319 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1320{
cea0f0e7
AK
1321 if (!parent_pte)
1322 return;
cea0f0e7 1323
67052b35 1324 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1325}
1326
4db35314 1327static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1328 u64 *parent_pte)
1329{
67052b35 1330 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1331}
1332
bcdd9a93
XG
1333static void drop_parent_pte(struct kvm_mmu_page *sp,
1334 u64 *parent_pte)
1335{
1336 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1337 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1338}
1339
67052b35
XG
1340static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1341 u64 *parent_pte, int direct)
ad8cfbe3 1342{
67052b35
XG
1343 struct kvm_mmu_page *sp;
1344 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1345 sizeof *sp);
1346 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1347 if (!direct)
1348 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1349 PAGE_SIZE);
1350 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1351 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
93a5cef0 1352 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
67052b35
XG
1353 sp->parent_ptes = 0;
1354 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1355 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1356 return sp;
ad8cfbe3
MT
1357}
1358
67052b35 1359static void mark_unsync(u64 *spte);
1047df1f 1360static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1361{
67052b35 1362 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1363}
1364
67052b35 1365static void mark_unsync(u64 *spte)
0074ff63 1366{
67052b35 1367 struct kvm_mmu_page *sp;
1047df1f 1368 unsigned int index;
0074ff63 1369
67052b35 1370 sp = page_header(__pa(spte));
1047df1f
XG
1371 index = spte - sp->spt;
1372 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1373 return;
1047df1f 1374 if (sp->unsync_children++)
0074ff63 1375 return;
1047df1f 1376 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1377}
1378
e8bc217a 1379static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1380 struct kvm_mmu_page *sp)
e8bc217a
MT
1381{
1382 return 1;
1383}
1384
a7052897
MT
1385static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1386{
1387}
1388
0f53b5b1
XG
1389static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1390 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1391 const void *pte)
0f53b5b1
XG
1392{
1393 WARN_ON(1);
1394}
1395
60c8aec6
MT
1396#define KVM_PAGE_ARRAY_NR 16
1397
1398struct kvm_mmu_pages {
1399 struct mmu_page_and_offset {
1400 struct kvm_mmu_page *sp;
1401 unsigned int idx;
1402 } page[KVM_PAGE_ARRAY_NR];
1403 unsigned int nr;
1404};
1405
0074ff63
MT
1406#define for_each_unsync_children(bitmap, idx) \
1407 for (idx = find_first_bit(bitmap, 512); \
1408 idx < 512; \
1409 idx = find_next_bit(bitmap, 512, idx+1))
1410
cded19f3
HE
1411static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1412 int idx)
4731d4c7 1413{
60c8aec6 1414 int i;
4731d4c7 1415
60c8aec6
MT
1416 if (sp->unsync)
1417 for (i=0; i < pvec->nr; i++)
1418 if (pvec->page[i].sp == sp)
1419 return 0;
1420
1421 pvec->page[pvec->nr].sp = sp;
1422 pvec->page[pvec->nr].idx = idx;
1423 pvec->nr++;
1424 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1425}
1426
1427static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1428 struct kvm_mmu_pages *pvec)
1429{
1430 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1431
0074ff63 1432 for_each_unsync_children(sp->unsync_child_bitmap, i) {
7a8f1a74 1433 struct kvm_mmu_page *child;
4731d4c7
MT
1434 u64 ent = sp->spt[i];
1435
7a8f1a74
XG
1436 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1437 goto clear_child_bitmap;
1438
1439 child = page_header(ent & PT64_BASE_ADDR_MASK);
1440
1441 if (child->unsync_children) {
1442 if (mmu_pages_add(pvec, child, i))
1443 return -ENOSPC;
1444
1445 ret = __mmu_unsync_walk(child, pvec);
1446 if (!ret)
1447 goto clear_child_bitmap;
1448 else if (ret > 0)
1449 nr_unsync_leaf += ret;
1450 else
1451 return ret;
1452 } else if (child->unsync) {
1453 nr_unsync_leaf++;
1454 if (mmu_pages_add(pvec, child, i))
1455 return -ENOSPC;
1456 } else
1457 goto clear_child_bitmap;
1458
1459 continue;
1460
1461clear_child_bitmap:
1462 __clear_bit(i, sp->unsync_child_bitmap);
1463 sp->unsync_children--;
1464 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1465 }
1466
4731d4c7 1467
60c8aec6
MT
1468 return nr_unsync_leaf;
1469}
1470
1471static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1472 struct kvm_mmu_pages *pvec)
1473{
1474 if (!sp->unsync_children)
1475 return 0;
1476
1477 mmu_pages_add(pvec, sp, 0);
1478 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1479}
1480
4731d4c7
MT
1481static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1482{
1483 WARN_ON(!sp->unsync);
5e1b3ddb 1484 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1485 sp->unsync = 0;
1486 --kvm->stat.mmu_unsync;
1487}
1488
7775834a
XG
1489static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1490 struct list_head *invalid_list);
1491static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1492 struct list_head *invalid_list);
4731d4c7 1493
f41d335a
XG
1494#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1495 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1496 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1497 if ((sp)->gfn != (gfn)) {} else
1498
f41d335a
XG
1499#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1500 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1501 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1502 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1503 (sp)->role.invalid) {} else
1504
f918b443 1505/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1506static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1507 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1508{
5b7e0102 1509 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1510 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1511 return 1;
1512 }
1513
f918b443 1514 if (clear_unsync)
1d9dc7e0 1515 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1516
a4a8e6f7 1517 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1518 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1519 return 1;
1520 }
1521
1522 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1523 return 0;
1524}
1525
1d9dc7e0
XG
1526static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1527 struct kvm_mmu_page *sp)
1528{
d98ba053 1529 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1530 int ret;
1531
d98ba053 1532 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1533 if (ret)
d98ba053
XG
1534 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1535
1d9dc7e0
XG
1536 return ret;
1537}
1538
d98ba053
XG
1539static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1540 struct list_head *invalid_list)
1d9dc7e0 1541{
d98ba053 1542 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1543}
1544
9f1a122f
XG
1545/* @gfn should be write-protected at the call site */
1546static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1547{
9f1a122f 1548 struct kvm_mmu_page *s;
f41d335a 1549 struct hlist_node *node;
d98ba053 1550 LIST_HEAD(invalid_list);
9f1a122f
XG
1551 bool flush = false;
1552
f41d335a 1553 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1554 if (!s->unsync)
9f1a122f
XG
1555 continue;
1556
1557 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1558 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1559 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1560 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1561 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1562 continue;
1563 }
9f1a122f
XG
1564 flush = true;
1565 }
1566
d98ba053 1567 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1568 if (flush)
1569 kvm_mmu_flush_tlb(vcpu);
1570}
1571
60c8aec6
MT
1572struct mmu_page_path {
1573 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1574 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1575};
1576
60c8aec6
MT
1577#define for_each_sp(pvec, sp, parents, i) \
1578 for (i = mmu_pages_next(&pvec, &parents, -1), \
1579 sp = pvec.page[i].sp; \
1580 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1581 i = mmu_pages_next(&pvec, &parents, i))
1582
cded19f3
HE
1583static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1584 struct mmu_page_path *parents,
1585 int i)
60c8aec6
MT
1586{
1587 int n;
1588
1589 for (n = i+1; n < pvec->nr; n++) {
1590 struct kvm_mmu_page *sp = pvec->page[n].sp;
1591
1592 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1593 parents->idx[0] = pvec->page[n].idx;
1594 return n;
1595 }
1596
1597 parents->parent[sp->role.level-2] = sp;
1598 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1599 }
1600
1601 return n;
1602}
1603
cded19f3 1604static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1605{
60c8aec6
MT
1606 struct kvm_mmu_page *sp;
1607 unsigned int level = 0;
1608
1609 do {
1610 unsigned int idx = parents->idx[level];
4731d4c7 1611
60c8aec6
MT
1612 sp = parents->parent[level];
1613 if (!sp)
1614 return;
1615
1616 --sp->unsync_children;
1617 WARN_ON((int)sp->unsync_children < 0);
1618 __clear_bit(idx, sp->unsync_child_bitmap);
1619 level++;
1620 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1621}
1622
60c8aec6
MT
1623static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1624 struct mmu_page_path *parents,
1625 struct kvm_mmu_pages *pvec)
4731d4c7 1626{
60c8aec6
MT
1627 parents->parent[parent->role.level-1] = NULL;
1628 pvec->nr = 0;
1629}
4731d4c7 1630
60c8aec6
MT
1631static void mmu_sync_children(struct kvm_vcpu *vcpu,
1632 struct kvm_mmu_page *parent)
1633{
1634 int i;
1635 struct kvm_mmu_page *sp;
1636 struct mmu_page_path parents;
1637 struct kvm_mmu_pages pages;
d98ba053 1638 LIST_HEAD(invalid_list);
60c8aec6
MT
1639
1640 kvm_mmu_pages_init(parent, &parents, &pages);
1641 while (mmu_unsync_walk(parent, &pages)) {
b1a36821
MT
1642 int protected = 0;
1643
1644 for_each_sp(pages, sp, parents, i)
1645 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1646
1647 if (protected)
1648 kvm_flush_remote_tlbs(vcpu->kvm);
1649
60c8aec6 1650 for_each_sp(pages, sp, parents, i) {
d98ba053 1651 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1652 mmu_pages_clear_parents(&parents);
1653 }
d98ba053 1654 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1655 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1656 kvm_mmu_pages_init(parent, &parents, &pages);
1657 }
4731d4c7
MT
1658}
1659
c3707958
XG
1660static void init_shadow_page_table(struct kvm_mmu_page *sp)
1661{
1662 int i;
1663
1664 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1665 sp->spt[i] = 0ull;
1666}
1667
a30f47cb
XG
1668static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1669{
1670 sp->write_flooding_count = 0;
1671}
1672
1673static void clear_sp_write_flooding_count(u64 *spte)
1674{
1675 struct kvm_mmu_page *sp = page_header(__pa(spte));
1676
1677 __clear_sp_write_flooding_count(sp);
1678}
1679
cea0f0e7
AK
1680static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1681 gfn_t gfn,
1682 gva_t gaddr,
1683 unsigned level,
f6e2c02b 1684 int direct,
41074d07 1685 unsigned access,
f7d9c7b7 1686 u64 *parent_pte)
cea0f0e7
AK
1687{
1688 union kvm_mmu_page_role role;
cea0f0e7 1689 unsigned quadrant;
9f1a122f 1690 struct kvm_mmu_page *sp;
f41d335a 1691 struct hlist_node *node;
9f1a122f 1692 bool need_sync = false;
cea0f0e7 1693
a770f6f2 1694 role = vcpu->arch.mmu.base_role;
cea0f0e7 1695 role.level = level;
f6e2c02b 1696 role.direct = direct;
84b0c8c6 1697 if (role.direct)
5b7e0102 1698 role.cr4_pae = 0;
41074d07 1699 role.access = access;
c5a78f2b
JR
1700 if (!vcpu->arch.mmu.direct_map
1701 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1702 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1703 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1704 role.quadrant = quadrant;
1705 }
f41d335a 1706 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1707 if (!need_sync && sp->unsync)
1708 need_sync = true;
4731d4c7 1709
7ae680eb
XG
1710 if (sp->role.word != role.word)
1711 continue;
4731d4c7 1712
7ae680eb
XG
1713 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1714 break;
e02aa901 1715
7ae680eb
XG
1716 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1717 if (sp->unsync_children) {
a8eeb04a 1718 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1719 kvm_mmu_mark_parents_unsync(sp);
1720 } else if (sp->unsync)
1721 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1722
a30f47cb 1723 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1724 trace_kvm_mmu_get_page(sp, false);
1725 return sp;
1726 }
dfc5aa00 1727 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1728 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1729 if (!sp)
1730 return sp;
4db35314
AK
1731 sp->gfn = gfn;
1732 sp->role = role;
7ae680eb
XG
1733 hlist_add_head(&sp->hash_link,
1734 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1735 if (!direct) {
b1a36821
MT
1736 if (rmap_write_protect(vcpu->kvm, gfn))
1737 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1738 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1739 kvm_sync_pages(vcpu, gfn);
1740
4731d4c7
MT
1741 account_shadowed(vcpu->kvm, gfn);
1742 }
c3707958 1743 init_shadow_page_table(sp);
f691fe1d 1744 trace_kvm_mmu_get_page(sp, true);
4db35314 1745 return sp;
cea0f0e7
AK
1746}
1747
2d11123a
AK
1748static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1749 struct kvm_vcpu *vcpu, u64 addr)
1750{
1751 iterator->addr = addr;
1752 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1753 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1754
1755 if (iterator->level == PT64_ROOT_LEVEL &&
1756 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1757 !vcpu->arch.mmu.direct_map)
1758 --iterator->level;
1759
2d11123a
AK
1760 if (iterator->level == PT32E_ROOT_LEVEL) {
1761 iterator->shadow_addr
1762 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1763 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1764 --iterator->level;
1765 if (!iterator->shadow_addr)
1766 iterator->level = 0;
1767 }
1768}
1769
1770static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1771{
1772 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1773 return false;
4d88954d 1774
2d11123a
AK
1775 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1776 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1777 return true;
1778}
1779
c2a2ac2b
XG
1780static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1781 u64 spte)
2d11123a 1782{
c2a2ac2b 1783 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1784 iterator->level = 0;
1785 return;
1786 }
1787
c2a2ac2b 1788 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1789 --iterator->level;
1790}
1791
c2a2ac2b
XG
1792static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1793{
1794 return __shadow_walk_next(iterator, *iterator->sptep);
1795}
1796
32ef26a3
AK
1797static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1798{
1799 u64 spte;
1800
1801 spte = __pa(sp->spt)
1802 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1803 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1804 mmu_spte_set(sptep, spte);
32ef26a3
AK
1805}
1806
a3aa51cf
AK
1807static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1808{
1809 if (is_large_pte(*sptep)) {
c3707958 1810 drop_spte(vcpu->kvm, sptep);
a3aa51cf
AK
1811 kvm_flush_remote_tlbs(vcpu->kvm);
1812 }
1813}
1814
a357bd22
AK
1815static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1816 unsigned direct_access)
1817{
1818 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1819 struct kvm_mmu_page *child;
1820
1821 /*
1822 * For the direct sp, if the guest pte's dirty bit
1823 * changed form clean to dirty, it will corrupt the
1824 * sp's access: allow writable in the read-only sp,
1825 * so we should update the spte at this point to get
1826 * a new sp with the correct access.
1827 */
1828 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1829 if (child->role.access == direct_access)
1830 return;
1831
bcdd9a93 1832 drop_parent_pte(child, sptep);
a357bd22
AK
1833 kvm_flush_remote_tlbs(vcpu->kvm);
1834 }
1835}
1836
505aef8f 1837static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1838 u64 *spte)
1839{
1840 u64 pte;
1841 struct kvm_mmu_page *child;
1842
1843 pte = *spte;
1844 if (is_shadow_present_pte(pte)) {
505aef8f 1845 if (is_last_spte(pte, sp->role.level)) {
c3707958 1846 drop_spte(kvm, spte);
505aef8f
XG
1847 if (is_large_pte(pte))
1848 --kvm->stat.lpages;
1849 } else {
38e3b2b2 1850 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1851 drop_parent_pte(child, spte);
38e3b2b2 1852 }
505aef8f
XG
1853 return true;
1854 }
1855
1856 if (is_mmio_spte(pte))
ce88decf 1857 mmu_spte_clear_no_track(spte);
c3707958 1858
505aef8f 1859 return false;
38e3b2b2
XG
1860}
1861
90cb0529 1862static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 1863 struct kvm_mmu_page *sp)
a436036b 1864{
697fe2e2 1865 unsigned i;
697fe2e2 1866
38e3b2b2
XG
1867 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1868 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
1869}
1870
4db35314 1871static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1872{
4db35314 1873 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
1874}
1875
31aa2b44 1876static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b
AK
1877{
1878 u64 *parent_pte;
1879
bcdd9a93
XG
1880 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1881 drop_parent_pte(sp, parent_pte);
31aa2b44
AK
1882}
1883
60c8aec6 1884static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
1885 struct kvm_mmu_page *parent,
1886 struct list_head *invalid_list)
4731d4c7 1887{
60c8aec6
MT
1888 int i, zapped = 0;
1889 struct mmu_page_path parents;
1890 struct kvm_mmu_pages pages;
4731d4c7 1891
60c8aec6 1892 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 1893 return 0;
60c8aec6
MT
1894
1895 kvm_mmu_pages_init(parent, &parents, &pages);
1896 while (mmu_unsync_walk(parent, &pages)) {
1897 struct kvm_mmu_page *sp;
1898
1899 for_each_sp(pages, sp, parents, i) {
7775834a 1900 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 1901 mmu_pages_clear_parents(&parents);
77662e00 1902 zapped++;
60c8aec6 1903 }
60c8aec6
MT
1904 kvm_mmu_pages_init(parent, &parents, &pages);
1905 }
1906
1907 return zapped;
4731d4c7
MT
1908}
1909
7775834a
XG
1910static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1911 struct list_head *invalid_list)
31aa2b44 1912{
4731d4c7 1913 int ret;
f691fe1d 1914
7775834a 1915 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 1916 ++kvm->stat.mmu_shadow_zapped;
7775834a 1917 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 1918 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 1919 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 1920 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 1921 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
1922 if (sp->unsync)
1923 kvm_unlink_unsync_page(kvm, sp);
4db35314 1924 if (!sp->root_count) {
54a4f023
GJ
1925 /* Count self */
1926 ret++;
7775834a 1927 list_move(&sp->link, invalid_list);
aa6bd187 1928 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 1929 } else {
5b5c6a5a 1930 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
1931 kvm_reload_remote_mmus(kvm);
1932 }
7775834a
XG
1933
1934 sp->role.invalid = 1;
4731d4c7 1935 return ret;
a436036b
AK
1936}
1937
c2a2ac2b
XG
1938static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1939{
1940 struct kvm_mmu_page *sp;
1941
1942 list_for_each_entry(sp, invalid_list, link)
1943 kvm_mmu_isolate_page(sp);
1944}
1945
1946static void free_pages_rcu(struct rcu_head *head)
1947{
1948 struct kvm_mmu_page *next, *sp;
1949
1950 sp = container_of(head, struct kvm_mmu_page, rcu);
1951 while (sp) {
1952 if (!list_empty(&sp->link))
1953 next = list_first_entry(&sp->link,
1954 struct kvm_mmu_page, link);
1955 else
1956 next = NULL;
1957 kvm_mmu_free_page(sp);
1958 sp = next;
1959 }
1960}
1961
7775834a
XG
1962static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1963 struct list_head *invalid_list)
1964{
1965 struct kvm_mmu_page *sp;
1966
1967 if (list_empty(invalid_list))
1968 return;
1969
1970 kvm_flush_remote_tlbs(kvm);
1971
c2a2ac2b
XG
1972 if (atomic_read(&kvm->arch.reader_counter)) {
1973 kvm_mmu_isolate_pages(invalid_list);
1974 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1975 list_del_init(invalid_list);
4f022648
XG
1976
1977 trace_kvm_mmu_delay_free_pages(sp);
c2a2ac2b
XG
1978 call_rcu(&sp->rcu, free_pages_rcu);
1979 return;
1980 }
1981
7775834a
XG
1982 do {
1983 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1984 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 1985 kvm_mmu_isolate_page(sp);
aa6bd187 1986 kvm_mmu_free_page(sp);
7775834a
XG
1987 } while (!list_empty(invalid_list));
1988
1989}
1990
82ce2c96
IE
1991/*
1992 * Changing the number of mmu pages allocated to the vm
49d5ca26 1993 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 1994 */
49d5ca26 1995void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 1996{
d98ba053 1997 LIST_HEAD(invalid_list);
82ce2c96
IE
1998 /*
1999 * If we set the number of mmu pages to be smaller be than the
2000 * number of actived pages , we must to free some mmu pages before we
2001 * change the value
2002 */
2003
49d5ca26
DH
2004 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2005 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2006 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2007 struct kvm_mmu_page *page;
2008
f05e70ac 2009 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2010 struct kvm_mmu_page, link);
80b63faf 2011 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2012 }
aa6bd187 2013 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2014 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2015 }
82ce2c96 2016
49d5ca26 2017 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2018}
2019
1cb3f3ae 2020int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2021{
4db35314 2022 struct kvm_mmu_page *sp;
f41d335a 2023 struct hlist_node *node;
d98ba053 2024 LIST_HEAD(invalid_list);
a436036b
AK
2025 int r;
2026
9ad17b10 2027 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2028 r = 0;
1cb3f3ae 2029 spin_lock(&kvm->mmu_lock);
f41d335a 2030 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2031 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2032 sp->role.word);
2033 r = 1;
f41d335a 2034 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2035 }
d98ba053 2036 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2037 spin_unlock(&kvm->mmu_lock);
2038
a436036b 2039 return r;
cea0f0e7 2040}
1cb3f3ae 2041EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2042
38c335f1 2043static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2044{
bc6678a3 2045 int slot = memslot_id(kvm, gfn);
4db35314 2046 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2047
291f26bc 2048 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2049}
2050
74be52e3
SY
2051/*
2052 * The function is based on mtrr_type_lookup() in
2053 * arch/x86/kernel/cpu/mtrr/generic.c
2054 */
2055static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2056 u64 start, u64 end)
2057{
2058 int i;
2059 u64 base, mask;
2060 u8 prev_match, curr_match;
2061 int num_var_ranges = KVM_NR_VAR_MTRR;
2062
2063 if (!mtrr_state->enabled)
2064 return 0xFF;
2065
2066 /* Make end inclusive end, instead of exclusive */
2067 end--;
2068
2069 /* Look in fixed ranges. Just return the type as per start */
2070 if (mtrr_state->have_fixed && (start < 0x100000)) {
2071 int idx;
2072
2073 if (start < 0x80000) {
2074 idx = 0;
2075 idx += (start >> 16);
2076 return mtrr_state->fixed_ranges[idx];
2077 } else if (start < 0xC0000) {
2078 idx = 1 * 8;
2079 idx += ((start - 0x80000) >> 14);
2080 return mtrr_state->fixed_ranges[idx];
2081 } else if (start < 0x1000000) {
2082 idx = 3 * 8;
2083 idx += ((start - 0xC0000) >> 12);
2084 return mtrr_state->fixed_ranges[idx];
2085 }
2086 }
2087
2088 /*
2089 * Look in variable ranges
2090 * Look of multiple ranges matching this address and pick type
2091 * as per MTRR precedence
2092 */
2093 if (!(mtrr_state->enabled & 2))
2094 return mtrr_state->def_type;
2095
2096 prev_match = 0xFF;
2097 for (i = 0; i < num_var_ranges; ++i) {
2098 unsigned short start_state, end_state;
2099
2100 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2101 continue;
2102
2103 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2104 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2105 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2106 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2107
2108 start_state = ((start & mask) == (base & mask));
2109 end_state = ((end & mask) == (base & mask));
2110 if (start_state != end_state)
2111 return 0xFE;
2112
2113 if ((start & mask) != (base & mask))
2114 continue;
2115
2116 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2117 if (prev_match == 0xFF) {
2118 prev_match = curr_match;
2119 continue;
2120 }
2121
2122 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2123 curr_match == MTRR_TYPE_UNCACHABLE)
2124 return MTRR_TYPE_UNCACHABLE;
2125
2126 if ((prev_match == MTRR_TYPE_WRBACK &&
2127 curr_match == MTRR_TYPE_WRTHROUGH) ||
2128 (prev_match == MTRR_TYPE_WRTHROUGH &&
2129 curr_match == MTRR_TYPE_WRBACK)) {
2130 prev_match = MTRR_TYPE_WRTHROUGH;
2131 curr_match = MTRR_TYPE_WRTHROUGH;
2132 }
2133
2134 if (prev_match != curr_match)
2135 return MTRR_TYPE_UNCACHABLE;
2136 }
2137
2138 if (prev_match != 0xFF)
2139 return prev_match;
2140
2141 return mtrr_state->def_type;
2142}
2143
4b12f0de 2144u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2145{
2146 u8 mtrr;
2147
2148 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2149 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2150 if (mtrr == 0xfe || mtrr == 0xff)
2151 mtrr = MTRR_TYPE_WRBACK;
2152 return mtrr;
2153}
4b12f0de 2154EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2155
9cf5cf5a
XG
2156static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2157{
2158 trace_kvm_mmu_unsync_page(sp);
2159 ++vcpu->kvm->stat.mmu_unsync;
2160 sp->unsync = 1;
2161
2162 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2163}
2164
2165static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2166{
4731d4c7 2167 struct kvm_mmu_page *s;
f41d335a 2168 struct hlist_node *node;
9cf5cf5a 2169
f41d335a 2170 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2171 if (s->unsync)
4731d4c7 2172 continue;
9cf5cf5a
XG
2173 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2174 __kvm_unsync_page(vcpu, s);
4731d4c7 2175 }
4731d4c7
MT
2176}
2177
2178static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2179 bool can_unsync)
2180{
9cf5cf5a 2181 struct kvm_mmu_page *s;
f41d335a 2182 struct hlist_node *node;
9cf5cf5a
XG
2183 bool need_unsync = false;
2184
f41d335a 2185 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2186 if (!can_unsync)
2187 return 1;
2188
9cf5cf5a 2189 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2190 return 1;
9cf5cf5a
XG
2191
2192 if (!need_unsync && !s->unsync) {
36a2e677 2193 if (!oos_shadow)
9cf5cf5a
XG
2194 return 1;
2195 need_unsync = true;
2196 }
4731d4c7 2197 }
9cf5cf5a
XG
2198 if (need_unsync)
2199 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2200 return 0;
2201}
2202
d555c333 2203static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2204 unsigned pte_access, int user_fault,
640d9b0d 2205 int write_fault, int level,
c2d0ee46 2206 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2207 bool can_unsync, bool host_writable)
1c4f1fd6 2208{
b330aa0c 2209 u64 spte, entry = *sptep;
1e73f9dd 2210 int ret = 0;
64d4d521 2211
ce88decf
XG
2212 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2213 return 0;
2214
982c2565 2215 spte = PT_PRESENT_MASK;
947da538 2216 if (!speculative)
3201b5d9 2217 spte |= shadow_accessed_mask;
640d9b0d 2218
7b52345e
SY
2219 if (pte_access & ACC_EXEC_MASK)
2220 spte |= shadow_x_mask;
2221 else
2222 spte |= shadow_nx_mask;
1c4f1fd6 2223 if (pte_access & ACC_USER_MASK)
7b52345e 2224 spte |= shadow_user_mask;
852e3c19 2225 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2226 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2227 if (tdp_enabled)
4b12f0de
SY
2228 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2229 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2230
9bdbba13 2231 if (host_writable)
1403283a 2232 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2233 else
2234 pte_access &= ~ACC_WRITE_MASK;
1403283a 2235
35149e21 2236 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2237
2238 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2239 || (!vcpu->arch.mmu.direct_map && write_fault
2240 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2241
852e3c19
JR
2242 if (level > PT_PAGE_TABLE_LEVEL &&
2243 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2244 ret = 1;
c3707958 2245 drop_spte(vcpu->kvm, sptep);
be38d276 2246 goto done;
38187c83
MT
2247 }
2248
1c4f1fd6 2249 spte |= PT_WRITABLE_MASK;
1c4f1fd6 2250
c5a78f2b 2251 if (!vcpu->arch.mmu.direct_map
411c588d 2252 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2253 spte &= ~PT_USER_MASK;
411c588d
AK
2254 /*
2255 * If we converted a user page to a kernel page,
2256 * so that the kernel can write to it when cr0.wp=0,
2257 * then we should prevent the kernel from executing it
2258 * if SMEP is enabled.
2259 */
2260 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2261 spte |= PT64_NX_MASK;
2262 }
69325a12 2263
ecc5589f
MT
2264 /*
2265 * Optimization: for pte sync, if spte was writable the hash
2266 * lookup is unnecessary (and expensive). Write protection
2267 * is responsibility of mmu_get_page / kvm_sync_page.
2268 * Same reasoning can be applied to dirty page accounting.
2269 */
8dae4445 2270 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2271 goto set_pte;
2272
4731d4c7 2273 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2274 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2275 __func__, gfn);
1e73f9dd 2276 ret = 1;
1c4f1fd6 2277 pte_access &= ~ACC_WRITE_MASK;
8dae4445 2278 if (is_writable_pte(spte))
1c4f1fd6 2279 spte &= ~PT_WRITABLE_MASK;
1c4f1fd6
AK
2280 }
2281 }
2282
1c4f1fd6
AK
2283 if (pte_access & ACC_WRITE_MASK)
2284 mark_page_dirty(vcpu->kvm, gfn);
2285
38187c83 2286set_pte:
1df9f2dc 2287 mmu_spte_update(sptep, spte);
b330aa0c
XG
2288 /*
2289 * If we overwrite a writable spte with a read-only one we
2290 * should flush remote TLBs. Otherwise rmap_write_protect
2291 * will find a read-only spte, even though the writable spte
2292 * might be cached on a CPU's TLB.
2293 */
2294 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2295 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2296done:
1e73f9dd
MT
2297 return ret;
2298}
2299
d555c333 2300static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2301 unsigned pt_access, unsigned pte_access,
640d9b0d 2302 int user_fault, int write_fault,
b90a0e6c 2303 int *emulate, int level, gfn_t gfn,
1403283a 2304 pfn_t pfn, bool speculative,
9bdbba13 2305 bool host_writable)
1e73f9dd
MT
2306{
2307 int was_rmapped = 0;
53a27b39 2308 int rmap_count;
1e73f9dd
MT
2309
2310 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2311 " user_fault %d gfn %llx\n",
d555c333 2312 __func__, *sptep, pt_access,
1e73f9dd
MT
2313 write_fault, user_fault, gfn);
2314
d555c333 2315 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2316 /*
2317 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2318 * the parent of the now unreachable PTE.
2319 */
852e3c19
JR
2320 if (level > PT_PAGE_TABLE_LEVEL &&
2321 !is_large_pte(*sptep)) {
1e73f9dd 2322 struct kvm_mmu_page *child;
d555c333 2323 u64 pte = *sptep;
1e73f9dd
MT
2324
2325 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2326 drop_parent_pte(child, sptep);
3be2264b 2327 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2328 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2329 pgprintk("hfn old %llx new %llx\n",
d555c333 2330 spte_to_pfn(*sptep), pfn);
c3707958 2331 drop_spte(vcpu->kvm, sptep);
91546356 2332 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2333 } else
2334 was_rmapped = 1;
1e73f9dd 2335 }
852e3c19 2336
d555c333 2337 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2338 level, gfn, pfn, speculative, true,
9bdbba13 2339 host_writable)) {
1e73f9dd 2340 if (write_fault)
b90a0e6c 2341 *emulate = 1;
5304efde 2342 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2343 }
1e73f9dd 2344
ce88decf
XG
2345 if (unlikely(is_mmio_spte(*sptep) && emulate))
2346 *emulate = 1;
2347
d555c333 2348 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2349 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2350 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2351 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2352 *sptep, sptep);
d555c333 2353 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2354 ++vcpu->kvm->stat.lpages;
2355
ffb61bb3
XG
2356 if (is_shadow_present_pte(*sptep)) {
2357 page_header_update_slot(vcpu->kvm, sptep, gfn);
2358 if (!was_rmapped) {
2359 rmap_count = rmap_add(vcpu, sptep, gfn);
2360 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2361 rmap_recycle(vcpu, sptep, gfn);
2362 }
1c4f1fd6 2363 }
9ed5520d 2364 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2365}
2366
6aa8b732
AK
2367static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2368{
2369}
2370
957ed9ef
XG
2371static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2372 bool no_dirty_log)
2373{
2374 struct kvm_memory_slot *slot;
2375 unsigned long hva;
2376
5d163b1c 2377 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2378 if (!slot) {
fce92dce
XG
2379 get_page(fault_page);
2380 return page_to_pfn(fault_page);
957ed9ef
XG
2381 }
2382
2383 hva = gfn_to_hva_memslot(slot, gfn);
2384
2385 return hva_to_pfn_atomic(vcpu->kvm, hva);
2386}
2387
2388static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2389 struct kvm_mmu_page *sp,
2390 u64 *start, u64 *end)
2391{
2392 struct page *pages[PTE_PREFETCH_NUM];
2393 unsigned access = sp->role.access;
2394 int i, ret;
2395 gfn_t gfn;
2396
2397 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2398 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2399 return -1;
2400
2401 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2402 if (ret <= 0)
2403 return -1;
2404
2405 for (i = 0; i < ret; i++, gfn++, start++)
2406 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2407 access, 0, 0, NULL,
957ed9ef
XG
2408 sp->role.level, gfn,
2409 page_to_pfn(pages[i]), true, true);
2410
2411 return 0;
2412}
2413
2414static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2415 struct kvm_mmu_page *sp, u64 *sptep)
2416{
2417 u64 *spte, *start = NULL;
2418 int i;
2419
2420 WARN_ON(!sp->role.direct);
2421
2422 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2423 spte = sp->spt + i;
2424
2425 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2426 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2427 if (!start)
2428 continue;
2429 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2430 break;
2431 start = NULL;
2432 } else if (!start)
2433 start = spte;
2434 }
2435}
2436
2437static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2438{
2439 struct kvm_mmu_page *sp;
2440
2441 /*
2442 * Since it's no accessed bit on EPT, it's no way to
2443 * distinguish between actually accessed translations
2444 * and prefetched, so disable pte prefetch if EPT is
2445 * enabled.
2446 */
2447 if (!shadow_accessed_mask)
2448 return;
2449
2450 sp = page_header(__pa(sptep));
2451 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2452 return;
2453
2454 __direct_pte_prefetch(vcpu, sp, sptep);
2455}
2456
9f652d21 2457static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2458 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2459 bool prefault)
140754bc 2460{
9f652d21 2461 struct kvm_shadow_walk_iterator iterator;
140754bc 2462 struct kvm_mmu_page *sp;
b90a0e6c 2463 int emulate = 0;
140754bc 2464 gfn_t pseudo_gfn;
6aa8b732 2465
9f652d21 2466 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2467 if (iterator.level == level) {
612819c3
MT
2468 unsigned pte_access = ACC_ALL;
2469
612819c3 2470 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2471 0, write, &emulate,
2ec4739d 2472 level, gfn, pfn, prefault, map_writable);
957ed9ef 2473 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2474 ++vcpu->stat.pf_fixed;
2475 break;
6aa8b732
AK
2476 }
2477
c3707958 2478 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2479 u64 base_addr = iterator.addr;
2480
2481 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2482 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2483 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2484 iterator.level - 1,
2485 1, ACC_ALL, iterator.sptep);
2486 if (!sp) {
2487 pgprintk("nonpaging_map: ENOMEM\n");
2488 kvm_release_pfn_clean(pfn);
2489 return -ENOMEM;
2490 }
140754bc 2491
1df9f2dc
XG
2492 mmu_spte_set(iterator.sptep,
2493 __pa(sp->spt)
2494 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2495 | shadow_user_mask | shadow_x_mask
2496 | shadow_accessed_mask);
9f652d21
AK
2497 }
2498 }
b90a0e6c 2499 return emulate;
6aa8b732
AK
2500}
2501
77db5cbd 2502static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2503{
77db5cbd
HY
2504 siginfo_t info;
2505
2506 info.si_signo = SIGBUS;
2507 info.si_errno = 0;
2508 info.si_code = BUS_MCEERR_AR;
2509 info.si_addr = (void __user *)address;
2510 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2511
77db5cbd 2512 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2513}
2514
d7c55201 2515static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2516{
2517 kvm_release_pfn_clean(pfn);
2518 if (is_hwpoison_pfn(pfn)) {
bebb106a 2519 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2520 return 0;
d7c55201 2521 }
edba23e5 2522
d7c55201 2523 return -EFAULT;
bf998156
HY
2524}
2525
936a5fe6
AA
2526static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2527 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2528{
2529 pfn_t pfn = *pfnp;
2530 gfn_t gfn = *gfnp;
2531 int level = *levelp;
2532
2533 /*
2534 * Check if it's a transparent hugepage. If this would be an
2535 * hugetlbfs page, level wouldn't be set to
2536 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2537 * here.
2538 */
2539 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2540 level == PT_PAGE_TABLE_LEVEL &&
2541 PageTransCompound(pfn_to_page(pfn)) &&
2542 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2543 unsigned long mask;
2544 /*
2545 * mmu_notifier_retry was successful and we hold the
2546 * mmu_lock here, so the pmd can't become splitting
2547 * from under us, and in turn
2548 * __split_huge_page_refcount() can't run from under
2549 * us and we can safely transfer the refcount from
2550 * PG_tail to PG_head as we switch the pfn to tail to
2551 * head.
2552 */
2553 *levelp = level = PT_DIRECTORY_LEVEL;
2554 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2555 VM_BUG_ON((gfn & mask) != (pfn & mask));
2556 if (pfn & mask) {
2557 gfn &= ~mask;
2558 *gfnp = gfn;
2559 kvm_release_pfn_clean(pfn);
2560 pfn &= ~mask;
2561 if (!get_page_unless_zero(pfn_to_page(pfn)))
2562 BUG();
2563 *pfnp = pfn;
2564 }
2565 }
2566}
2567
d7c55201
XG
2568static bool mmu_invalid_pfn(pfn_t pfn)
2569{
ce88decf 2570 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2571}
2572
2573static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2574 pfn_t pfn, unsigned access, int *ret_val)
2575{
2576 bool ret = true;
2577
2578 /* The pfn is invalid, report the error! */
2579 if (unlikely(is_invalid_pfn(pfn))) {
2580 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2581 goto exit;
2582 }
2583
ce88decf 2584 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2585 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2586
2587 ret = false;
2588exit:
2589 return ret;
2590}
2591
78b2c54a 2592static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2593 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2594
2595static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
78b2c54a 2596 bool prefault)
10589a46
MT
2597{
2598 int r;
852e3c19 2599 int level;
936a5fe6 2600 int force_pt_level;
35149e21 2601 pfn_t pfn;
e930bffe 2602 unsigned long mmu_seq;
612819c3 2603 bool map_writable;
aaee2c94 2604
936a5fe6
AA
2605 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2606 if (likely(!force_pt_level)) {
2607 level = mapping_level(vcpu, gfn);
2608 /*
2609 * This path builds a PAE pagetable - so we can map
2610 * 2mb pages at maximum. Therefore check if the level
2611 * is larger than that.
2612 */
2613 if (level > PT_DIRECTORY_LEVEL)
2614 level = PT_DIRECTORY_LEVEL;
852e3c19 2615
936a5fe6
AA
2616 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2617 } else
2618 level = PT_PAGE_TABLE_LEVEL;
05da4558 2619
e930bffe 2620 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2621 smp_rmb();
060c2abe 2622
78b2c54a 2623 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2624 return 0;
aaee2c94 2625
d7c55201
XG
2626 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2627 return r;
d196e343 2628
aaee2c94 2629 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2630 if (mmu_notifier_retry(vcpu, mmu_seq))
2631 goto out_unlock;
eb787d10 2632 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2633 if (likely(!force_pt_level))
2634 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2635 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2636 prefault);
aaee2c94
MT
2637 spin_unlock(&vcpu->kvm->mmu_lock);
2638
aaee2c94 2639
10589a46 2640 return r;
e930bffe
AA
2641
2642out_unlock:
2643 spin_unlock(&vcpu->kvm->mmu_lock);
2644 kvm_release_pfn_clean(pfn);
2645 return 0;
10589a46
MT
2646}
2647
2648
17ac10ad
AK
2649static void mmu_free_roots(struct kvm_vcpu *vcpu)
2650{
2651 int i;
4db35314 2652 struct kvm_mmu_page *sp;
d98ba053 2653 LIST_HEAD(invalid_list);
17ac10ad 2654
ad312c7c 2655 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2656 return;
aaee2c94 2657 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2658 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2659 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2660 vcpu->arch.mmu.direct_map)) {
ad312c7c 2661 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2662
4db35314
AK
2663 sp = page_header(root);
2664 --sp->root_count;
d98ba053
XG
2665 if (!sp->root_count && sp->role.invalid) {
2666 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2667 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2668 }
ad312c7c 2669 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2670 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2671 return;
2672 }
17ac10ad 2673 for (i = 0; i < 4; ++i) {
ad312c7c 2674 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2675
417726a3 2676 if (root) {
417726a3 2677 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2678 sp = page_header(root);
2679 --sp->root_count;
2e53d63a 2680 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2681 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2682 &invalid_list);
417726a3 2683 }
ad312c7c 2684 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2685 }
d98ba053 2686 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2687 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2688 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2689}
2690
8986ecc0
MT
2691static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2692{
2693 int ret = 0;
2694
2695 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2696 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2697 ret = 1;
2698 }
2699
2700 return ret;
2701}
2702
651dd37a
JR
2703static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2704{
2705 struct kvm_mmu_page *sp;
7ebaf15e 2706 unsigned i;
651dd37a
JR
2707
2708 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2709 spin_lock(&vcpu->kvm->mmu_lock);
2710 kvm_mmu_free_some_pages(vcpu);
2711 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2712 1, ACC_ALL, NULL);
2713 ++sp->root_count;
2714 spin_unlock(&vcpu->kvm->mmu_lock);
2715 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2716 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2717 for (i = 0; i < 4; ++i) {
2718 hpa_t root = vcpu->arch.mmu.pae_root[i];
2719
2720 ASSERT(!VALID_PAGE(root));
2721 spin_lock(&vcpu->kvm->mmu_lock);
2722 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2723 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2724 i << 30,
651dd37a
JR
2725 PT32_ROOT_LEVEL, 1, ACC_ALL,
2726 NULL);
2727 root = __pa(sp->spt);
2728 ++sp->root_count;
2729 spin_unlock(&vcpu->kvm->mmu_lock);
2730 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2731 }
6292757f 2732 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2733 } else
2734 BUG();
2735
2736 return 0;
2737}
2738
2739static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2740{
4db35314 2741 struct kvm_mmu_page *sp;
81407ca5
JR
2742 u64 pdptr, pm_mask;
2743 gfn_t root_gfn;
2744 int i;
3bb65a22 2745
5777ed34 2746 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2747
651dd37a
JR
2748 if (mmu_check_root(vcpu, root_gfn))
2749 return 1;
2750
2751 /*
2752 * Do we shadow a long mode page table? If so we need to
2753 * write-protect the guests page table root.
2754 */
2755 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2756 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2757
2758 ASSERT(!VALID_PAGE(root));
651dd37a 2759
8facbbff 2760 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2761 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2762 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2763 0, ACC_ALL, NULL);
4db35314
AK
2764 root = __pa(sp->spt);
2765 ++sp->root_count;
8facbbff 2766 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2767 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2768 return 0;
17ac10ad 2769 }
f87f9288 2770
651dd37a
JR
2771 /*
2772 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2773 * or a PAE 3-level page table. In either case we need to be aware that
2774 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2775 */
81407ca5
JR
2776 pm_mask = PT_PRESENT_MASK;
2777 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2778 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2779
17ac10ad 2780 for (i = 0; i < 4; ++i) {
ad312c7c 2781 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2782
2783 ASSERT(!VALID_PAGE(root));
ad312c7c 2784 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2785 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2786 if (!is_present_gpte(pdptr)) {
ad312c7c 2787 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2788 continue;
2789 }
6de4f3ad 2790 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
2791 if (mmu_check_root(vcpu, root_gfn))
2792 return 1;
5a7388c2 2793 }
8facbbff 2794 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2795 kvm_mmu_free_some_pages(vcpu);
4db35314 2796 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 2797 PT32_ROOT_LEVEL, 0,
f7d9c7b7 2798 ACC_ALL, NULL);
4db35314
AK
2799 root = __pa(sp->spt);
2800 ++sp->root_count;
8facbbff
AK
2801 spin_unlock(&vcpu->kvm->mmu_lock);
2802
81407ca5 2803 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 2804 }
6292757f 2805 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
2806
2807 /*
2808 * If we shadow a 32 bit page table with a long mode page
2809 * table we enter this path.
2810 */
2811 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2812 if (vcpu->arch.mmu.lm_root == NULL) {
2813 /*
2814 * The additional page necessary for this is only
2815 * allocated on demand.
2816 */
2817
2818 u64 *lm_root;
2819
2820 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2821 if (lm_root == NULL)
2822 return 1;
2823
2824 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2825
2826 vcpu->arch.mmu.lm_root = lm_root;
2827 }
2828
2829 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2830 }
2831
8986ecc0 2832 return 0;
17ac10ad
AK
2833}
2834
651dd37a
JR
2835static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2836{
2837 if (vcpu->arch.mmu.direct_map)
2838 return mmu_alloc_direct_roots(vcpu);
2839 else
2840 return mmu_alloc_shadow_roots(vcpu);
2841}
2842
0ba73cda
MT
2843static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2844{
2845 int i;
2846 struct kvm_mmu_page *sp;
2847
81407ca5
JR
2848 if (vcpu->arch.mmu.direct_map)
2849 return;
2850
0ba73cda
MT
2851 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2852 return;
6903074c 2853
bebb106a 2854 vcpu_clear_mmio_info(vcpu, ~0ul);
6903074c 2855 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 2856 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
2857 hpa_t root = vcpu->arch.mmu.root_hpa;
2858 sp = page_header(root);
2859 mmu_sync_children(vcpu, sp);
5054c0de 2860 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2861 return;
2862 }
2863 for (i = 0; i < 4; ++i) {
2864 hpa_t root = vcpu->arch.mmu.pae_root[i];
2865
8986ecc0 2866 if (root && VALID_PAGE(root)) {
0ba73cda
MT
2867 root &= PT64_BASE_ADDR_MASK;
2868 sp = page_header(root);
2869 mmu_sync_children(vcpu, sp);
2870 }
2871 }
6903074c 2872 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2873}
2874
2875void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2876{
2877 spin_lock(&vcpu->kvm->mmu_lock);
2878 mmu_sync_roots(vcpu);
6cffe8ca 2879 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
2880}
2881
1871c602 2882static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 2883 u32 access, struct x86_exception *exception)
6aa8b732 2884{
ab9ae313
AK
2885 if (exception)
2886 exception->error_code = 0;
6aa8b732
AK
2887 return vaddr;
2888}
2889
6539e738 2890static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
2891 u32 access,
2892 struct x86_exception *exception)
6539e738 2893{
ab9ae313
AK
2894 if (exception)
2895 exception->error_code = 0;
6539e738
JR
2896 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2897}
2898
ce88decf
XG
2899static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2900{
2901 if (direct)
2902 return vcpu_match_mmio_gpa(vcpu, addr);
2903
2904 return vcpu_match_mmio_gva(vcpu, addr);
2905}
2906
2907
2908/*
2909 * On direct hosts, the last spte is only allows two states
2910 * for mmio page fault:
2911 * - It is the mmio spte
2912 * - It is zapped or it is being zapped.
2913 *
2914 * This function completely checks the spte when the last spte
2915 * is not the mmio spte.
2916 */
2917static bool check_direct_spte_mmio_pf(u64 spte)
2918{
2919 return __check_direct_spte_mmio_pf(spte);
2920}
2921
2922static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2923{
2924 struct kvm_shadow_walk_iterator iterator;
2925 u64 spte = 0ull;
2926
2927 walk_shadow_page_lockless_begin(vcpu);
2928 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2929 if (!is_shadow_present_pte(spte))
2930 break;
2931 walk_shadow_page_lockless_end(vcpu);
2932
2933 return spte;
2934}
2935
2936/*
2937 * If it is a real mmio page fault, return 1 and emulat the instruction
2938 * directly, return 0 to let CPU fault again on the address, -1 is
2939 * returned if bug is detected.
2940 */
2941int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2942{
2943 u64 spte;
2944
2945 if (quickly_check_mmio_pf(vcpu, addr, direct))
2946 return 1;
2947
2948 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2949
2950 if (is_mmio_spte(spte)) {
2951 gfn_t gfn = get_mmio_spte_gfn(spte);
2952 unsigned access = get_mmio_spte_access(spte);
2953
2954 if (direct)
2955 addr = 0;
4f022648
XG
2956
2957 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
2958 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2959 return 1;
2960 }
2961
2962 /*
2963 * It's ok if the gva is remapped by other cpus on shadow guest,
2964 * it's a BUG if the gfn is not a mmio page.
2965 */
2966 if (direct && !check_direct_spte_mmio_pf(spte))
2967 return -1;
2968
2969 /*
2970 * If the page table is zapped by other cpus, let CPU fault again on
2971 * the address.
2972 */
2973 return 0;
2974}
2975EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2976
2977static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2978 u32 error_code, bool direct)
2979{
2980 int ret;
2981
2982 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2983 WARN_ON(ret < 0);
2984 return ret;
2985}
2986
6aa8b732 2987static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 2988 u32 error_code, bool prefault)
6aa8b732 2989{
e833240f 2990 gfn_t gfn;
e2dec939 2991 int r;
6aa8b732 2992
b8688d51 2993 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
2994
2995 if (unlikely(error_code & PFERR_RSVD_MASK))
2996 return handle_mmio_page_fault(vcpu, gva, error_code, true);
2997
e2dec939
AK
2998 r = mmu_topup_memory_caches(vcpu);
2999 if (r)
3000 return r;
714b93da 3001
6aa8b732 3002 ASSERT(vcpu);
ad312c7c 3003 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3004
e833240f 3005 gfn = gva >> PAGE_SHIFT;
6aa8b732 3006
e833240f 3007 return nonpaging_map(vcpu, gva & PAGE_MASK,
78b2c54a 3008 error_code & PFERR_WRITE_MASK, gfn, prefault);
6aa8b732
AK
3009}
3010
7e1fbeac 3011static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3012{
3013 struct kvm_arch_async_pf arch;
fb67e14f 3014
7c90705b 3015 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3016 arch.gfn = gfn;
c4806acd 3017 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3018 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3019
3020 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3021}
3022
3023static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3024{
3025 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3026 kvm_event_needs_reinjection(vcpu)))
3027 return false;
3028
3029 return kvm_x86_ops->interrupt_allowed(vcpu);
3030}
3031
78b2c54a 3032static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3033 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3034{
3035 bool async;
3036
612819c3 3037 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3038
3039 if (!async)
3040 return false; /* *pfn has correct page already */
3041
3042 put_page(pfn_to_page(*pfn));
3043
78b2c54a 3044 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3045 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3046 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3047 trace_kvm_async_pf_doublefault(gva, gfn);
3048 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3049 return true;
3050 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3051 return true;
3052 }
3053
612819c3 3054 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3055
3056 return false;
3057}
3058
56028d08 3059static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3060 bool prefault)
fb72d167 3061{
35149e21 3062 pfn_t pfn;
fb72d167 3063 int r;
852e3c19 3064 int level;
936a5fe6 3065 int force_pt_level;
05da4558 3066 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3067 unsigned long mmu_seq;
612819c3
MT
3068 int write = error_code & PFERR_WRITE_MASK;
3069 bool map_writable;
fb72d167
JR
3070
3071 ASSERT(vcpu);
3072 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3073
ce88decf
XG
3074 if (unlikely(error_code & PFERR_RSVD_MASK))
3075 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3076
fb72d167
JR
3077 r = mmu_topup_memory_caches(vcpu);
3078 if (r)
3079 return r;
3080
936a5fe6
AA
3081 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3082 if (likely(!force_pt_level)) {
3083 level = mapping_level(vcpu, gfn);
3084 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3085 } else
3086 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3087
e930bffe 3088 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3089 smp_rmb();
af585b92 3090
78b2c54a 3091 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3092 return 0;
3093
d7c55201
XG
3094 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3095 return r;
3096
fb72d167 3097 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3098 if (mmu_notifier_retry(vcpu, mmu_seq))
3099 goto out_unlock;
fb72d167 3100 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3101 if (likely(!force_pt_level))
3102 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3103 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3104 level, gfn, pfn, prefault);
fb72d167 3105 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3106
3107 return r;
e930bffe
AA
3108
3109out_unlock:
3110 spin_unlock(&vcpu->kvm->mmu_lock);
3111 kvm_release_pfn_clean(pfn);
3112 return 0;
fb72d167
JR
3113}
3114
6aa8b732
AK
3115static void nonpaging_free(struct kvm_vcpu *vcpu)
3116{
17ac10ad 3117 mmu_free_roots(vcpu);
6aa8b732
AK
3118}
3119
52fde8df
JR
3120static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3121 struct kvm_mmu *context)
6aa8b732 3122{
6aa8b732
AK
3123 context->new_cr3 = nonpaging_new_cr3;
3124 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3125 context->gva_to_gpa = nonpaging_gva_to_gpa;
3126 context->free = nonpaging_free;
e8bc217a 3127 context->sync_page = nonpaging_sync_page;
a7052897 3128 context->invlpg = nonpaging_invlpg;
0f53b5b1 3129 context->update_pte = nonpaging_update_pte;
cea0f0e7 3130 context->root_level = 0;
6aa8b732 3131 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3132 context->root_hpa = INVALID_PAGE;
c5a78f2b 3133 context->direct_map = true;
2d48a985 3134 context->nx = false;
6aa8b732
AK
3135 return 0;
3136}
3137
d835dfec 3138void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3139{
1165f5fe 3140 ++vcpu->stat.tlb_flush;
a8eeb04a 3141 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3142}
3143
3144static void paging_new_cr3(struct kvm_vcpu *vcpu)
3145{
9f8fe504 3146 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3147 mmu_free_roots(vcpu);
6aa8b732
AK
3148}
3149
5777ed34
JR
3150static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3151{
9f8fe504 3152 return kvm_read_cr3(vcpu);
5777ed34
JR
3153}
3154
6389ee94
AK
3155static void inject_page_fault(struct kvm_vcpu *vcpu,
3156 struct x86_exception *fault)
6aa8b732 3157{
6389ee94 3158 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3159}
3160
6aa8b732
AK
3161static void paging_free(struct kvm_vcpu *vcpu)
3162{
3163 nonpaging_free(vcpu);
3164}
3165
3241f22d 3166static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3167{
3168 int bit7;
3169
3170 bit7 = (gpte >> 7) & 1;
3241f22d 3171 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3172}
3173
ce88decf
XG
3174static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3175 int *nr_present)
3176{
3177 if (unlikely(is_mmio_spte(*sptep))) {
3178 if (gfn != get_mmio_spte_gfn(*sptep)) {
3179 mmu_spte_clear_no_track(sptep);
3180 return true;
3181 }
3182
3183 (*nr_present)++;
3184 mark_mmio_spte(sptep, gfn, access);
3185 return true;
3186 }
3187
3188 return false;
3189}
3190
6aa8b732
AK
3191#define PTTYPE 64
3192#include "paging_tmpl.h"
3193#undef PTTYPE
3194
3195#define PTTYPE 32
3196#include "paging_tmpl.h"
3197#undef PTTYPE
3198
52fde8df
JR
3199static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3200 struct kvm_mmu *context,
3201 int level)
82725b20 3202{
82725b20
DE
3203 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3204 u64 exb_bit_rsvd = 0;
3205
2d48a985 3206 if (!context->nx)
82725b20
DE
3207 exb_bit_rsvd = rsvd_bits(63, 63);
3208 switch (level) {
3209 case PT32_ROOT_LEVEL:
3210 /* no rsvd bits for 2 level 4K page table entries */
3211 context->rsvd_bits_mask[0][1] = 0;
3212 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3213 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3214
3215 if (!is_pse(vcpu)) {
3216 context->rsvd_bits_mask[1][1] = 0;
3217 break;
3218 }
3219
82725b20
DE
3220 if (is_cpuid_PSE36())
3221 /* 36bits PSE 4MB page */
3222 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3223 else
3224 /* 32 bits PSE 4MB page */
3225 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3226 break;
3227 case PT32E_ROOT_LEVEL:
20c466b5
DE
3228 context->rsvd_bits_mask[0][2] =
3229 rsvd_bits(maxphyaddr, 63) |
3230 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3231 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3232 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3233 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3234 rsvd_bits(maxphyaddr, 62); /* PTE */
3235 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3236 rsvd_bits(maxphyaddr, 62) |
3237 rsvd_bits(13, 20); /* large page */
f815bce8 3238 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3239 break;
3240 case PT64_ROOT_LEVEL:
3241 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3242 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3243 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3244 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3245 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3246 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3247 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3248 rsvd_bits(maxphyaddr, 51);
3249 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3250 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3251 rsvd_bits(maxphyaddr, 51) |
3252 rsvd_bits(13, 29);
82725b20 3253 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3254 rsvd_bits(maxphyaddr, 51) |
3255 rsvd_bits(13, 20); /* large page */
f815bce8 3256 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3257 break;
3258 }
3259}
3260
52fde8df
JR
3261static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3262 struct kvm_mmu *context,
3263 int level)
6aa8b732 3264{
2d48a985
JR
3265 context->nx = is_nx(vcpu);
3266
52fde8df 3267 reset_rsvds_bits_mask(vcpu, context, level);
6aa8b732
AK
3268
3269 ASSERT(is_pae(vcpu));
3270 context->new_cr3 = paging_new_cr3;
3271 context->page_fault = paging64_page_fault;
6aa8b732 3272 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3273 context->sync_page = paging64_sync_page;
a7052897 3274 context->invlpg = paging64_invlpg;
0f53b5b1 3275 context->update_pte = paging64_update_pte;
6aa8b732 3276 context->free = paging_free;
17ac10ad
AK
3277 context->root_level = level;
3278 context->shadow_root_level = level;
17c3ba9d 3279 context->root_hpa = INVALID_PAGE;
c5a78f2b 3280 context->direct_map = false;
6aa8b732
AK
3281 return 0;
3282}
3283
52fde8df
JR
3284static int paging64_init_context(struct kvm_vcpu *vcpu,
3285 struct kvm_mmu *context)
17ac10ad 3286{
52fde8df 3287 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3288}
3289
52fde8df
JR
3290static int paging32_init_context(struct kvm_vcpu *vcpu,
3291 struct kvm_mmu *context)
6aa8b732 3292{
2d48a985
JR
3293 context->nx = false;
3294
52fde8df 3295 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
6aa8b732
AK
3296
3297 context->new_cr3 = paging_new_cr3;
3298 context->page_fault = paging32_page_fault;
6aa8b732
AK
3299 context->gva_to_gpa = paging32_gva_to_gpa;
3300 context->free = paging_free;
e8bc217a 3301 context->sync_page = paging32_sync_page;
a7052897 3302 context->invlpg = paging32_invlpg;
0f53b5b1 3303 context->update_pte = paging32_update_pte;
6aa8b732
AK
3304 context->root_level = PT32_ROOT_LEVEL;
3305 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3306 context->root_hpa = INVALID_PAGE;
c5a78f2b 3307 context->direct_map = false;
6aa8b732
AK
3308 return 0;
3309}
3310
52fde8df
JR
3311static int paging32E_init_context(struct kvm_vcpu *vcpu,
3312 struct kvm_mmu *context)
6aa8b732 3313{
52fde8df 3314 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3315}
3316
fb72d167
JR
3317static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3318{
14dfe855 3319 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3320
c445f8ef 3321 context->base_role.word = 0;
fb72d167
JR
3322 context->new_cr3 = nonpaging_new_cr3;
3323 context->page_fault = tdp_page_fault;
3324 context->free = nonpaging_free;
e8bc217a 3325 context->sync_page = nonpaging_sync_page;
a7052897 3326 context->invlpg = nonpaging_invlpg;
0f53b5b1 3327 context->update_pte = nonpaging_update_pte;
67253af5 3328 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3329 context->root_hpa = INVALID_PAGE;
c5a78f2b 3330 context->direct_map = true;
1c97f0a0 3331 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3332 context->get_cr3 = get_cr3;
e4e517b4 3333 context->get_pdptr = kvm_pdptr_read;
cb659db8 3334 context->inject_page_fault = kvm_inject_page_fault;
2d48a985 3335 context->nx = is_nx(vcpu);
fb72d167
JR
3336
3337 if (!is_paging(vcpu)) {
2d48a985 3338 context->nx = false;
fb72d167
JR
3339 context->gva_to_gpa = nonpaging_gva_to_gpa;
3340 context->root_level = 0;
3341 } else if (is_long_mode(vcpu)) {
2d48a985 3342 context->nx = is_nx(vcpu);
52fde8df 3343 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
fb72d167
JR
3344 context->gva_to_gpa = paging64_gva_to_gpa;
3345 context->root_level = PT64_ROOT_LEVEL;
3346 } else if (is_pae(vcpu)) {
2d48a985 3347 context->nx = is_nx(vcpu);
52fde8df 3348 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
fb72d167
JR
3349 context->gva_to_gpa = paging64_gva_to_gpa;
3350 context->root_level = PT32E_ROOT_LEVEL;
3351 } else {
2d48a985 3352 context->nx = false;
52fde8df 3353 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
fb72d167
JR
3354 context->gva_to_gpa = paging32_gva_to_gpa;
3355 context->root_level = PT32_ROOT_LEVEL;
3356 }
3357
3358 return 0;
3359}
3360
52fde8df 3361int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3362{
a770f6f2 3363 int r;
411c588d 3364 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3365 ASSERT(vcpu);
ad312c7c 3366 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3367
3368 if (!is_paging(vcpu))
52fde8df 3369 r = nonpaging_init_context(vcpu, context);
a9058ecd 3370 else if (is_long_mode(vcpu))
52fde8df 3371 r = paging64_init_context(vcpu, context);
6aa8b732 3372 else if (is_pae(vcpu))
52fde8df 3373 r = paging32E_init_context(vcpu, context);
6aa8b732 3374 else
52fde8df 3375 r = paging32_init_context(vcpu, context);
a770f6f2 3376
5b7e0102 3377 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3378 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3379 vcpu->arch.mmu.base_role.smep_andnot_wp
3380 = smep && !is_write_protection(vcpu);
52fde8df
JR
3381
3382 return r;
3383}
3384EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3385
3386static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3387{
14dfe855 3388 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3389
14dfe855
JR
3390 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3391 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3392 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3393 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3394
3395 return r;
6aa8b732
AK
3396}
3397
02f59dc9
JR
3398static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3399{
3400 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3401
3402 g_context->get_cr3 = get_cr3;
e4e517b4 3403 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3404 g_context->inject_page_fault = kvm_inject_page_fault;
3405
3406 /*
3407 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3408 * translation of l2_gpa to l1_gpa addresses is done using the
3409 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3410 * functions between mmu and nested_mmu are swapped.
3411 */
3412 if (!is_paging(vcpu)) {
2d48a985 3413 g_context->nx = false;
02f59dc9
JR
3414 g_context->root_level = 0;
3415 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3416 } else if (is_long_mode(vcpu)) {
2d48a985 3417 g_context->nx = is_nx(vcpu);
02f59dc9
JR
3418 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3419 g_context->root_level = PT64_ROOT_LEVEL;
3420 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3421 } else if (is_pae(vcpu)) {
2d48a985 3422 g_context->nx = is_nx(vcpu);
02f59dc9
JR
3423 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3424 g_context->root_level = PT32E_ROOT_LEVEL;
3425 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3426 } else {
2d48a985 3427 g_context->nx = false;
02f59dc9
JR
3428 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3429 g_context->root_level = PT32_ROOT_LEVEL;
3430 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3431 }
3432
3433 return 0;
3434}
3435
fb72d167
JR
3436static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3437{
02f59dc9
JR
3438 if (mmu_is_nested(vcpu))
3439 return init_kvm_nested_mmu(vcpu);
3440 else if (tdp_enabled)
fb72d167
JR
3441 return init_kvm_tdp_mmu(vcpu);
3442 else
3443 return init_kvm_softmmu(vcpu);
3444}
3445
6aa8b732
AK
3446static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3447{
3448 ASSERT(vcpu);
62ad0755
SY
3449 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3450 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3451 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3452}
3453
3454int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3455{
3456 destroy_kvm_mmu(vcpu);
f8f7e5ee 3457 return init_kvm_mmu(vcpu);
17c3ba9d 3458}
8668a3c4 3459EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3460
3461int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3462{
714b93da
AK
3463 int r;
3464
e2dec939 3465 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3466 if (r)
3467 goto out;
8986ecc0 3468 r = mmu_alloc_roots(vcpu);
8facbbff 3469 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3470 mmu_sync_roots(vcpu);
aaee2c94 3471 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3472 if (r)
3473 goto out;
3662cb1c 3474 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3475 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3476out:
3477 return r;
6aa8b732 3478}
17c3ba9d
AK
3479EXPORT_SYMBOL_GPL(kvm_mmu_load);
3480
3481void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3482{
3483 mmu_free_roots(vcpu);
3484}
4b16184c 3485EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3486
0028425f 3487static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3488 struct kvm_mmu_page *sp, u64 *spte,
3489 const void *new)
0028425f 3490{
30945387 3491 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3492 ++vcpu->kvm->stat.mmu_pde_zapped;
3493 return;
30945387 3494 }
0028425f 3495
4cee5764 3496 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3497 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3498}
3499
79539cec
AK
3500static bool need_remote_flush(u64 old, u64 new)
3501{
3502 if (!is_shadow_present_pte(old))
3503 return false;
3504 if (!is_shadow_present_pte(new))
3505 return true;
3506 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3507 return true;
3508 old ^= PT64_NX_MASK;
3509 new ^= PT64_NX_MASK;
3510 return (old & ~new & PT64_PERM_MASK) != 0;
3511}
3512
0671a8e7
XG
3513static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3514 bool remote_flush, bool local_flush)
79539cec 3515{
0671a8e7
XG
3516 if (zap_page)
3517 return;
3518
3519 if (remote_flush)
79539cec 3520 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3521 else if (local_flush)
79539cec
AK
3522 kvm_mmu_flush_tlb(vcpu);
3523}
3524
889e5cbc
XG
3525static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3526 const u8 *new, int *bytes)
da4a00f0 3527{
889e5cbc
XG
3528 u64 gentry;
3529 int r;
72016f3a 3530
72016f3a
AK
3531 /*
3532 * Assume that the pte write on a page table of the same type
49b26e26
XG
3533 * as the current vcpu paging mode since we update the sptes only
3534 * when they have the same mode.
72016f3a 3535 */
889e5cbc 3536 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3537 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3538 *gpa &= ~(gpa_t)7;
3539 *bytes = 8;
3540 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3541 if (r)
3542 gentry = 0;
08e850c6
AK
3543 new = (const u8 *)&gentry;
3544 }
3545
889e5cbc 3546 switch (*bytes) {
08e850c6
AK
3547 case 4:
3548 gentry = *(const u32 *)new;
3549 break;
3550 case 8:
3551 gentry = *(const u64 *)new;
3552 break;
3553 default:
3554 gentry = 0;
3555 break;
72016f3a
AK
3556 }
3557
889e5cbc
XG
3558 return gentry;
3559}
3560
3561/*
3562 * If we're seeing too many writes to a page, it may no longer be a page table,
3563 * or we may be forking, in which case it is better to unmap the page.
3564 */
a30f47cb 3565static bool detect_write_flooding(struct kvm_mmu_page *sp, u64 *spte)
889e5cbc 3566{
a30f47cb
XG
3567 /*
3568 * Skip write-flooding detected for the sp whose level is 1, because
3569 * it can become unsync, then the guest page is not write-protected.
3570 */
3571 if (sp->role.level == 1)
3572 return false;
3246af0e 3573
a30f47cb 3574 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3575}
3576
3577/*
3578 * Misaligned accesses are too much trouble to fix up; also, they usually
3579 * indicate a page is not used as a page table.
3580 */
3581static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3582 int bytes)
3583{
3584 unsigned offset, pte_size, misaligned;
3585
3586 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3587 gpa, bytes, sp->role.word);
3588
3589 offset = offset_in_page(gpa);
3590 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3591
3592 /*
3593 * Sometimes, the OS only writes the last one bytes to update status
3594 * bits, for example, in linux, andb instruction is used in clear_bit().
3595 */
3596 if (!(offset & (pte_size - 1)) && bytes == 1)
3597 return false;
3598
889e5cbc
XG
3599 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3600 misaligned |= bytes < 4;
3601
3602 return misaligned;
3603}
3604
3605static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3606{
3607 unsigned page_offset, quadrant;
3608 u64 *spte;
3609 int level;
3610
3611 page_offset = offset_in_page(gpa);
3612 level = sp->role.level;
3613 *nspte = 1;
3614 if (!sp->role.cr4_pae) {
3615 page_offset <<= 1; /* 32->64 */
3616 /*
3617 * A 32-bit pde maps 4MB while the shadow pdes map
3618 * only 2MB. So we need to double the offset again
3619 * and zap two pdes instead of one.
3620 */
3621 if (level == PT32_ROOT_LEVEL) {
3622 page_offset &= ~7; /* kill rounding error */
3623 page_offset <<= 1;
3624 *nspte = 2;
3625 }
3626 quadrant = page_offset >> PAGE_SHIFT;
3627 page_offset &= ~PAGE_MASK;
3628 if (quadrant != sp->role.quadrant)
3629 return NULL;
3630 }
3631
3632 spte = &sp->spt[page_offset / sizeof(*spte)];
3633 return spte;
3634}
3635
3636void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3637 const u8 *new, int bytes)
3638{
3639 gfn_t gfn = gpa >> PAGE_SHIFT;
3640 union kvm_mmu_page_role mask = { .word = 0 };
3641 struct kvm_mmu_page *sp;
3642 struct hlist_node *node;
3643 LIST_HEAD(invalid_list);
3644 u64 entry, gentry, *spte;
3645 int npte;
a30f47cb 3646 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3647
3648 /*
3649 * If we don't have indirect shadow pages, it means no page is
3650 * write-protected, so we can exit simply.
3651 */
3652 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3653 return;
3654
3655 zap_page = remote_flush = local_flush = false;
3656
3657 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3658
3659 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3660
3661 /*
3662 * No need to care whether allocation memory is successful
3663 * or not since pte prefetch is skiped if it does not have
3664 * enough objects in the cache.
3665 */
3666 mmu_topup_memory_caches(vcpu);
3667
3668 spin_lock(&vcpu->kvm->mmu_lock);
3669 ++vcpu->kvm->stat.mmu_pte_write;
3670 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3671
fa1de2bf 3672 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3673 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3674 spte = get_written_sptes(sp, gpa, &npte);
889e5cbc 3675
a30f47cb
XG
3676 if (detect_write_misaligned(sp, gpa, bytes) ||
3677 detect_write_flooding(sp, spte)) {
0671a8e7 3678 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3679 &invalid_list);
4cee5764 3680 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3681 continue;
3682 }
889e5cbc
XG
3683
3684 spte = get_written_sptes(sp, gpa, &npte);
3685 if (!spte)
3686 continue;
3687
0671a8e7 3688 local_flush = true;
ac1b714e 3689 while (npte--) {
79539cec 3690 entry = *spte;
38e3b2b2 3691 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3692 if (gentry &&
3693 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3694 & mask.word) && rmap_can_add(vcpu))
7c562522 3695 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3696 if (!remote_flush && need_remote_flush(entry, *spte))
3697 remote_flush = true;
ac1b714e 3698 ++spte;
9b7a0325 3699 }
9b7a0325 3700 }
0671a8e7 3701 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3702 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
8b1fe17c 3703 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3704 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3705}
3706
a436036b
AK
3707int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3708{
10589a46
MT
3709 gpa_t gpa;
3710 int r;
a436036b 3711
c5a78f2b 3712 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3713 return 0;
3714
1871c602 3715 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3716
10589a46 3717 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 3718
10589a46 3719 return r;
a436036b 3720}
577bdc49 3721EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3722
22d95b12 3723void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3724{
d98ba053 3725 LIST_HEAD(invalid_list);
103ad25a 3726
e0df7b9f 3727 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3728 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3729 struct kvm_mmu_page *sp;
ebeace86 3730
f05e70ac 3731 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3732 struct kvm_mmu_page, link);
e0df7b9f 3733 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3734 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3735 }
aa6bd187 3736 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3737}
ebeace86 3738
1cb3f3ae
XG
3739static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3740{
3741 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3742 return vcpu_match_mmio_gpa(vcpu, addr);
3743
3744 return vcpu_match_mmio_gva(vcpu, addr);
3745}
3746
dc25e89e
AP
3747int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3748 void *insn, int insn_len)
3067714c 3749{
1cb3f3ae 3750 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
3751 enum emulation_result er;
3752
56028d08 3753 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3754 if (r < 0)
3755 goto out;
3756
3757 if (!r) {
3758 r = 1;
3759 goto out;
3760 }
3761
1cb3f3ae
XG
3762 if (is_mmio_page_fault(vcpu, cr2))
3763 emulation_type = 0;
3764
3765 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
3766
3767 switch (er) {
3768 case EMULATE_DONE:
3769 return 1;
3770 case EMULATE_DO_MMIO:
3771 ++vcpu->stat.mmio_exits;
6d77dbfc 3772 /* fall through */
3067714c 3773 case EMULATE_FAIL:
3f5d18a9 3774 return 0;
3067714c
AK
3775 default:
3776 BUG();
3777 }
3778out:
3067714c
AK
3779 return r;
3780}
3781EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3782
a7052897
MT
3783void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3784{
a7052897 3785 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
3786 kvm_mmu_flush_tlb(vcpu);
3787 ++vcpu->stat.invlpg;
3788}
3789EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3790
18552672
JR
3791void kvm_enable_tdp(void)
3792{
3793 tdp_enabled = true;
3794}
3795EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3796
5f4cb662
JR
3797void kvm_disable_tdp(void)
3798{
3799 tdp_enabled = false;
3800}
3801EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3802
6aa8b732
AK
3803static void free_mmu_pages(struct kvm_vcpu *vcpu)
3804{
ad312c7c 3805 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
3806 if (vcpu->arch.mmu.lm_root != NULL)
3807 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
3808}
3809
3810static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3811{
17ac10ad 3812 struct page *page;
6aa8b732
AK
3813 int i;
3814
3815 ASSERT(vcpu);
3816
17ac10ad
AK
3817 /*
3818 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3819 * Therefore we need to allocate shadow page tables in the first
3820 * 4GB of memory, which happens to fit the DMA32 zone.
3821 */
3822 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3823 if (!page)
d7fa6ab2
WY
3824 return -ENOMEM;
3825
ad312c7c 3826 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 3827 for (i = 0; i < 4; ++i)
ad312c7c 3828 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3829
6aa8b732 3830 return 0;
6aa8b732
AK
3831}
3832
8018c27b 3833int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 3834{
6aa8b732 3835 ASSERT(vcpu);
ad312c7c 3836 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3837
8018c27b
IM
3838 return alloc_mmu_pages(vcpu);
3839}
6aa8b732 3840
8018c27b
IM
3841int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3842{
3843 ASSERT(vcpu);
ad312c7c 3844 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 3845
8018c27b 3846 return init_kvm_mmu(vcpu);
6aa8b732
AK
3847}
3848
90cb0529 3849void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 3850{
4db35314 3851 struct kvm_mmu_page *sp;
6aa8b732 3852
f05e70ac 3853 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
3854 int i;
3855 u64 *pt;
3856
291f26bc 3857 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
3858 continue;
3859
4db35314 3860 pt = sp->spt;
8234b22e 3861 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
3862 if (!is_shadow_present_pte(pt[i]) ||
3863 !is_last_spte(pt[i], sp->role.level))
3864 continue;
3865
3866 if (is_large_pte(pt[i])) {
c3707958 3867 drop_spte(kvm, &pt[i]);
8234b22e 3868 --kvm->stat.lpages;
da8dc75f 3869 continue;
8234b22e 3870 }
da8dc75f 3871
6aa8b732 3872 /* avoid RMW */
01c168ac 3873 if (is_writable_pte(pt[i]))
1df9f2dc
XG
3874 mmu_spte_update(&pt[i],
3875 pt[i] & ~PT_WRITABLE_MASK);
8234b22e 3876 }
6aa8b732 3877 }
171d595d 3878 kvm_flush_remote_tlbs(kvm);
6aa8b732 3879}
37a7d8b0 3880
90cb0529 3881void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 3882{
4db35314 3883 struct kvm_mmu_page *sp, *node;
d98ba053 3884 LIST_HEAD(invalid_list);
e0fa826f 3885
aaee2c94 3886 spin_lock(&kvm->mmu_lock);
3246af0e 3887restart:
f05e70ac 3888 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 3889 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
3890 goto restart;
3891
d98ba053 3892 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 3893 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
3894}
3895
d98ba053
XG
3896static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3897 struct list_head *invalid_list)
3ee16c81
IE
3898{
3899 struct kvm_mmu_page *page;
3900
3901 page = container_of(kvm->arch.active_mmu_pages.prev,
3902 struct kvm_mmu_page, link);
d98ba053 3903 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
3904}
3905
1495f230 3906static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
3907{
3908 struct kvm *kvm;
3909 struct kvm *kvm_freed = NULL;
1495f230 3910 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
3911
3912 if (nr_to_scan == 0)
3913 goto out;
3ee16c81 3914
e935b837 3915 raw_spin_lock(&kvm_lock);
3ee16c81
IE
3916
3917 list_for_each_entry(kvm, &vm_list, vm_list) {
45221ab6 3918 int idx, freed_pages;
d98ba053 3919 LIST_HEAD(invalid_list);
3ee16c81 3920
f656ce01 3921 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 3922 spin_lock(&kvm->mmu_lock);
45221ab6
DH
3923 if (!kvm_freed && nr_to_scan > 0 &&
3924 kvm->arch.n_used_mmu_pages > 0) {
d98ba053
XG
3925 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3926 &invalid_list);
3ee16c81
IE
3927 kvm_freed = kvm;
3928 }
3929 nr_to_scan--;
3930
d98ba053 3931 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3ee16c81 3932 spin_unlock(&kvm->mmu_lock);
f656ce01 3933 srcu_read_unlock(&kvm->srcu, idx);
3ee16c81
IE
3934 }
3935 if (kvm_freed)
3936 list_move_tail(&kvm_freed->vm_list, &vm_list);
3937
e935b837 3938 raw_spin_unlock(&kvm_lock);
3ee16c81 3939
45221ab6
DH
3940out:
3941 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
3942}
3943
3944static struct shrinker mmu_shrinker = {
3945 .shrink = mmu_shrink,
3946 .seeks = DEFAULT_SEEKS * 10,
3947};
3948
2ddfd20e 3949static void mmu_destroy_caches(void)
b5a33a75 3950{
53c07b18
XG
3951 if (pte_list_desc_cache)
3952 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
3953 if (mmu_page_header_cache)
3954 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
3955}
3956
3957int kvm_mmu_module_init(void)
3958{
53c07b18
XG
3959 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3960 sizeof(struct pte_list_desc),
20c2df83 3961 0, 0, NULL);
53c07b18 3962 if (!pte_list_desc_cache)
b5a33a75
AK
3963 goto nomem;
3964
d3d25b04
AK
3965 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3966 sizeof(struct kvm_mmu_page),
20c2df83 3967 0, 0, NULL);
d3d25b04
AK
3968 if (!mmu_page_header_cache)
3969 goto nomem;
3970
45bf21a8
WY
3971 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3972 goto nomem;
3973
3ee16c81
IE
3974 register_shrinker(&mmu_shrinker);
3975
b5a33a75
AK
3976 return 0;
3977
3978nomem:
3ee16c81 3979 mmu_destroy_caches();
b5a33a75
AK
3980 return -ENOMEM;
3981}
3982
3ad82a7e
ZX
3983/*
3984 * Caculate mmu pages needed for kvm.
3985 */
3986unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3987{
3988 int i;
3989 unsigned int nr_mmu_pages;
3990 unsigned int nr_pages = 0;
bc6678a3 3991 struct kvm_memslots *slots;
3ad82a7e 3992
90d83dc3
LJ
3993 slots = kvm_memslots(kvm);
3994
bc6678a3
MT
3995 for (i = 0; i < slots->nmemslots; i++)
3996 nr_pages += slots->memslots[i].npages;
3ad82a7e
ZX
3997
3998 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3999 nr_mmu_pages = max(nr_mmu_pages,
4000 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4001
4002 return nr_mmu_pages;
4003}
4004
94d8b056
MT
4005int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4006{
4007 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4008 u64 spte;
94d8b056
MT
4009 int nr_sptes = 0;
4010
c2a2ac2b
XG
4011 walk_shadow_page_lockless_begin(vcpu);
4012 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4013 sptes[iterator.level-1] = spte;
94d8b056 4014 nr_sptes++;
c2a2ac2b 4015 if (!is_shadow_present_pte(spte))
94d8b056
MT
4016 break;
4017 }
c2a2ac2b 4018 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4019
4020 return nr_sptes;
4021}
4022EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4023
c42fffe3
XG
4024void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4025{
4026 ASSERT(vcpu);
4027
4028 destroy_kvm_mmu(vcpu);
4029 free_mmu_pages(vcpu);
4030 mmu_free_memory_caches(vcpu);
b034cf01
XG
4031}
4032
4033#ifdef CONFIG_KVM_MMU_AUDIT
4034#include "mmu_audit.c"
4035#else
4036static void mmu_audit_disable(void) { }
4037#endif
4038
4039void kvm_mmu_module_exit(void)
4040{
4041 mmu_destroy_caches();
4042 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4043 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4044 mmu_audit_disable();
4045}
This page took 0.755882 seconds and 5 git commands to generate.