sched/core: Fix unserialized r-m-w scribbling stuff
[deliverable/linux.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
3e26c149 43#include <linux/proportions.h>
1da177e4 44#include <linux/seccomp.h>
e56d0903 45#include <linux/rcupdate.h>
05725f7e 46#include <linux/rculist.h>
23f78d4a 47#include <linux/rtmutex.h>
1da177e4 48
a3b6714e
DW
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
5aaa0b7a 180extern void update_cpu_load_nohz(void);
3289bdb4
PZ
181#else
182static inline void update_cpu_load_nohz(void) { }
183#endif
1da177e4 184
7e49fcce
SR
185extern unsigned long get_parent_ip(unsigned long addr);
186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8
PZ
221#define TASK_NOLOAD 1024
222#define TASK_STATE_MAX 2048
f021a3c2 223
80ed87c8 224#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
73342151 225
e1781538
PZ
226extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
228
229/* Convenience macros for the sake of set_task_state */
230#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 233
80ed87c8
PZ
234#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
92a1f4bc
MW
236/* Convenience macros for the sake of wake_up */
237#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 238#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
239
240/* get_task_state() */
241#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 244
f021a3c2
MW
245#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 247#define task_is_stopped_or_traced(task) \
f021a3c2 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 249#define task_contributes_to_load(task) \
e3c8ca83 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
1da177e4 253
8eb23b9f
PZ
254#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256#define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261#define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 264 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
265 } while (0)
266
267/*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278#define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283#define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
b92b8b35 286 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
287 } while (0)
288
289#else
290
1da177e4
LT
291#define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293#define set_task_state(tsk, state_value) \
b92b8b35 294 smp_store_mb((tsk)->state, (state_value))
1da177e4 295
498d0c57
AM
296/*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
8eb23b9f 307#define __set_current_state(state_value) \
1da177e4 308 do { current->state = (state_value); } while (0)
8eb23b9f 309#define set_current_state(state_value) \
b92b8b35 310 smp_store_mb(current->state, (state_value))
1da177e4 311
8eb23b9f
PZ
312#endif
313
1da177e4
LT
314/* Task command name length */
315#define TASK_COMM_LEN 16
316
1da177e4
LT
317#include <linux/spinlock.h>
318
319/*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325extern rwlock_t tasklist_lock;
326extern spinlock_t mmlist_lock;
327
36c8b586 328struct task_struct;
1da177e4 329
db1466b3
PM
330#ifdef CONFIG_PROVE_RCU
331extern int lockdep_tasklist_lock_is_held(void);
332#endif /* #ifdef CONFIG_PROVE_RCU */
333
1da177e4
LT
334extern void sched_init(void);
335extern void sched_init_smp(void);
2d07b255 336extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 337extern void init_idle(struct task_struct *idle, int cpu);
1df21055 338extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 339
3fa0818b
RR
340extern cpumask_var_t cpu_isolated_map;
341
89f19f04 342extern int runqueue_is_locked(int cpu);
017730c1 343
3451d024 344#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 345extern void nohz_balance_enter_idle(int cpu);
69e1e811 346extern void set_cpu_sd_state_idle(void);
bc7a34b8 347extern int get_nohz_timer_target(void);
46cb4b7c 348#else
c1cc017c 349static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 350static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 351#endif
1da177e4 352
e59e2ae2 353/*
39bc89fd 354 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
355 */
356extern void show_state_filter(unsigned long state_filter);
357
358static inline void show_state(void)
359{
39bc89fd 360 show_state_filter(0);
e59e2ae2
IM
361}
362
1da177e4
LT
363extern void show_regs(struct pt_regs *);
364
365/*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370extern void show_stack(struct task_struct *task, unsigned long *sp);
371
1da177e4
LT
372extern void cpu_init (void);
373extern void trap_init(void);
374extern void update_process_times(int user);
375extern void scheduler_tick(void);
376
82a1fcb9
IM
377extern void sched_show_task(struct task_struct *p);
378
19cc36c0 379#ifdef CONFIG_LOCKUP_DETECTOR
8446f1d3 380extern void touch_softlockup_watchdog(void);
d6ad3e28 381extern void touch_softlockup_watchdog_sync(void);
04c9167f 382extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
383extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
9c44bc03 386extern unsigned int softlockup_panic;
ac1f5912 387extern unsigned int hardlockup_panic;
004417a6 388void lockup_detector_init(void);
8446f1d3 389#else
8446f1d3
IM
390static inline void touch_softlockup_watchdog(void)
391{
392}
d6ad3e28
JW
393static inline void touch_softlockup_watchdog_sync(void)
394{
395}
04c9167f
JF
396static inline void touch_all_softlockup_watchdogs(void)
397{
398}
004417a6
PZ
399static inline void lockup_detector_init(void)
400{
401}
8446f1d3
IM
402#endif
403
8b414521
MT
404#ifdef CONFIG_DETECT_HUNG_TASK
405void reset_hung_task_detector(void);
406#else
407static inline void reset_hung_task_detector(void)
408{
409}
410#endif
411
1da177e4
LT
412/* Attach to any functions which should be ignored in wchan output. */
413#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
414
415/* Linker adds these: start and end of __sched functions */
416extern char __sched_text_start[], __sched_text_end[];
417
1da177e4
LT
418/* Is this address in the __sched functions? */
419extern int in_sched_functions(unsigned long addr);
420
421#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 422extern signed long schedule_timeout(signed long timeout);
64ed93a2 423extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 424extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 425extern signed long schedule_timeout_uninterruptible(signed long timeout);
1da177e4 426asmlinkage void schedule(void);
c5491ea7 427extern void schedule_preempt_disabled(void);
1da177e4 428
9cff8ade
N
429extern long io_schedule_timeout(long timeout);
430
431static inline void io_schedule(void)
432{
433 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
434}
435
ab516013 436struct nsproxy;
acce292c 437struct user_namespace;
1da177e4 438
efc1a3b1
DH
439#ifdef CONFIG_MMU
440extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
441extern unsigned long
442arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
443 unsigned long, unsigned long);
444extern unsigned long
445arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
446 unsigned long len, unsigned long pgoff,
447 unsigned long flags);
efc1a3b1
DH
448#else
449static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
450#endif
1da177e4 451
d049f74f
KC
452#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
453#define SUID_DUMP_USER 1 /* Dump as user of process */
454#define SUID_DUMP_ROOT 2 /* Dump as root */
455
6c5d5238 456/* mm flags */
f8af4da3 457
7288e118 458/* for SUID_DUMP_* above */
3cb4a0bb 459#define MMF_DUMPABLE_BITS 2
f8af4da3 460#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 461
942be387
ON
462extern void set_dumpable(struct mm_struct *mm, int value);
463/*
464 * This returns the actual value of the suid_dumpable flag. For things
465 * that are using this for checking for privilege transitions, it must
466 * test against SUID_DUMP_USER rather than treating it as a boolean
467 * value.
468 */
469static inline int __get_dumpable(unsigned long mm_flags)
470{
471 return mm_flags & MMF_DUMPABLE_MASK;
472}
473
474static inline int get_dumpable(struct mm_struct *mm)
475{
476 return __get_dumpable(mm->flags);
477}
478
3cb4a0bb
KH
479/* coredump filter bits */
480#define MMF_DUMP_ANON_PRIVATE 2
481#define MMF_DUMP_ANON_SHARED 3
482#define MMF_DUMP_MAPPED_PRIVATE 4
483#define MMF_DUMP_MAPPED_SHARED 5
82df3973 484#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
485#define MMF_DUMP_HUGETLB_PRIVATE 7
486#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
487#define MMF_DUMP_DAX_PRIVATE 9
488#define MMF_DUMP_DAX_SHARED 10
f8af4da3 489
3cb4a0bb 490#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 491#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
492#define MMF_DUMP_FILTER_MASK \
493 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
494#define MMF_DUMP_FILTER_DEFAULT \
e575f111 495 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
496 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
497
498#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
499# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
500#else
501# define MMF_DUMP_MASK_DEFAULT_ELF 0
502#endif
f8af4da3
HD
503 /* leave room for more dump flags */
504#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 505#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 506#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 507
9f68f672
ON
508#define MMF_HAS_UPROBES 19 /* has uprobes */
509#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 510
f8af4da3 511#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 512
1da177e4
LT
513struct sighand_struct {
514 atomic_t count;
515 struct k_sigaction action[_NSIG];
516 spinlock_t siglock;
b8fceee1 517 wait_queue_head_t signalfd_wqh;
1da177e4
LT
518};
519
0e464814 520struct pacct_struct {
f6ec29a4
KK
521 int ac_flag;
522 long ac_exitcode;
0e464814 523 unsigned long ac_mem;
77787bfb
KK
524 cputime_t ac_utime, ac_stime;
525 unsigned long ac_minflt, ac_majflt;
0e464814
KK
526};
527
42c4ab41
SG
528struct cpu_itimer {
529 cputime_t expires;
530 cputime_t incr;
8356b5f9
SG
531 u32 error;
532 u32 incr_error;
42c4ab41
SG
533};
534
d37f761d 535/**
9d7fb042 536 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
537 * @utime: time spent in user mode
538 * @stime: time spent in system mode
9d7fb042 539 * @lock: protects the above two fields
d37f761d 540 *
9d7fb042
PZ
541 * Stores previous user/system time values such that we can guarantee
542 * monotonicity.
d37f761d 543 */
9d7fb042
PZ
544struct prev_cputime {
545#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
546 cputime_t utime;
547 cputime_t stime;
9d7fb042
PZ
548 raw_spinlock_t lock;
549#endif
d37f761d
FW
550};
551
9d7fb042
PZ
552static inline void prev_cputime_init(struct prev_cputime *prev)
553{
554#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
555 prev->utime = prev->stime = 0;
556 raw_spin_lock_init(&prev->lock);
557#endif
558}
559
f06febc9
FM
560/**
561 * struct task_cputime - collected CPU time counts
562 * @utime: time spent in user mode, in &cputime_t units
563 * @stime: time spent in kernel mode, in &cputime_t units
564 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 565 *
9d7fb042
PZ
566 * This structure groups together three kinds of CPU time that are tracked for
567 * threads and thread groups. Most things considering CPU time want to group
568 * these counts together and treat all three of them in parallel.
f06febc9
FM
569 */
570struct task_cputime {
571 cputime_t utime;
572 cputime_t stime;
573 unsigned long long sum_exec_runtime;
574};
9d7fb042 575
f06febc9 576/* Alternate field names when used to cache expirations. */
f06febc9 577#define virt_exp utime
9d7fb042 578#define prof_exp stime
f06febc9
FM
579#define sched_exp sum_exec_runtime
580
4cd4c1b4
PZ
581#define INIT_CPUTIME \
582 (struct task_cputime) { \
64861634
MS
583 .utime = 0, \
584 .stime = 0, \
4cd4c1b4
PZ
585 .sum_exec_runtime = 0, \
586 }
587
971e8a98
JL
588/*
589 * This is the atomic variant of task_cputime, which can be used for
590 * storing and updating task_cputime statistics without locking.
591 */
592struct task_cputime_atomic {
593 atomic64_t utime;
594 atomic64_t stime;
595 atomic64_t sum_exec_runtime;
596};
597
598#define INIT_CPUTIME_ATOMIC \
599 (struct task_cputime_atomic) { \
600 .utime = ATOMIC64_INIT(0), \
601 .stime = ATOMIC64_INIT(0), \
602 .sum_exec_runtime = ATOMIC64_INIT(0), \
603 }
604
609ca066 605#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 606
c99e6efe 607/*
87dcbc06
PZ
608 * Disable preemption until the scheduler is running -- use an unconditional
609 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 610 *
87dcbc06 611 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 612 */
87dcbc06 613#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 614
c99e6efe 615/*
609ca066
PZ
616 * Initial preempt_count value; reflects the preempt_count schedule invariant
617 * which states that during context switches:
d86ee480 618 *
609ca066
PZ
619 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
620 *
621 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
622 * Note: See finish_task_switch().
c99e6efe 623 */
609ca066 624#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 625
f06febc9 626/**
4cd4c1b4 627 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 628 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
629 * @running: true when there are timers running and
630 * @cputime_atomic receives updates.
c8d75aa4
JL
631 * @checking_timer: true when a thread in the group is in the
632 * process of checking for thread group timers.
f06febc9
FM
633 *
634 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 635 * used for thread group CPU timer calculations.
f06febc9 636 */
4cd4c1b4 637struct thread_group_cputimer {
71107445 638 struct task_cputime_atomic cputime_atomic;
d5c373eb 639 bool running;
c8d75aa4 640 bool checking_timer;
f06febc9 641};
f06febc9 642
4714d1d3 643#include <linux/rwsem.h>
5091faa4
MG
644struct autogroup;
645
1da177e4 646/*
e815f0a8 647 * NOTE! "signal_struct" does not have its own
1da177e4
LT
648 * locking, because a shared signal_struct always
649 * implies a shared sighand_struct, so locking
650 * sighand_struct is always a proper superset of
651 * the locking of signal_struct.
652 */
653struct signal_struct {
ea6d290c 654 atomic_t sigcnt;
1da177e4 655 atomic_t live;
b3ac022c 656 int nr_threads;
0c740d0a 657 struct list_head thread_head;
1da177e4
LT
658
659 wait_queue_head_t wait_chldexit; /* for wait4() */
660
661 /* current thread group signal load-balancing target: */
36c8b586 662 struct task_struct *curr_target;
1da177e4
LT
663
664 /* shared signal handling: */
665 struct sigpending shared_pending;
666
667 /* thread group exit support */
668 int group_exit_code;
669 /* overloaded:
670 * - notify group_exit_task when ->count is equal to notify_count
671 * - everyone except group_exit_task is stopped during signal delivery
672 * of fatal signals, group_exit_task processes the signal.
673 */
1da177e4 674 int notify_count;
07dd20e0 675 struct task_struct *group_exit_task;
1da177e4
LT
676
677 /* thread group stop support, overloads group_exit_code too */
678 int group_stop_count;
679 unsigned int flags; /* see SIGNAL_* flags below */
680
ebec18a6
LP
681 /*
682 * PR_SET_CHILD_SUBREAPER marks a process, like a service
683 * manager, to re-parent orphan (double-forking) child processes
684 * to this process instead of 'init'. The service manager is
685 * able to receive SIGCHLD signals and is able to investigate
686 * the process until it calls wait(). All children of this
687 * process will inherit a flag if they should look for a
688 * child_subreaper process at exit.
689 */
690 unsigned int is_child_subreaper:1;
691 unsigned int has_child_subreaper:1;
692
1da177e4 693 /* POSIX.1b Interval Timers */
5ed67f05
PE
694 int posix_timer_id;
695 struct list_head posix_timers;
1da177e4
LT
696
697 /* ITIMER_REAL timer for the process */
2ff678b8 698 struct hrtimer real_timer;
fea9d175 699 struct pid *leader_pid;
2ff678b8 700 ktime_t it_real_incr;
1da177e4 701
42c4ab41
SG
702 /*
703 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
704 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
705 * values are defined to 0 and 1 respectively
706 */
707 struct cpu_itimer it[2];
1da177e4 708
f06febc9 709 /*
4cd4c1b4
PZ
710 * Thread group totals for process CPU timers.
711 * See thread_group_cputimer(), et al, for details.
f06febc9 712 */
4cd4c1b4 713 struct thread_group_cputimer cputimer;
f06febc9
FM
714
715 /* Earliest-expiration cache. */
716 struct task_cputime cputime_expires;
717
718 struct list_head cpu_timers[3];
719
ab521dc0 720 struct pid *tty_old_pgrp;
1ec320af 721
1da177e4
LT
722 /* boolean value for session group leader */
723 int leader;
724
725 struct tty_struct *tty; /* NULL if no tty */
726
5091faa4
MG
727#ifdef CONFIG_SCHED_AUTOGROUP
728 struct autogroup *autogroup;
729#endif
1da177e4
LT
730 /*
731 * Cumulative resource counters for dead threads in the group,
732 * and for reaped dead child processes forked by this group.
733 * Live threads maintain their own counters and add to these
734 * in __exit_signal, except for the group leader.
735 */
e78c3496 736 seqlock_t stats_lock;
32bd671d 737 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
738 cputime_t gtime;
739 cputime_t cgtime;
9d7fb042 740 struct prev_cputime prev_cputime;
1da177e4
LT
741 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
742 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 743 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 744 unsigned long maxrss, cmaxrss;
940389b8 745 struct task_io_accounting ioac;
1da177e4 746
32bd671d
PZ
747 /*
748 * Cumulative ns of schedule CPU time fo dead threads in the
749 * group, not including a zombie group leader, (This only differs
750 * from jiffies_to_ns(utime + stime) if sched_clock uses something
751 * other than jiffies.)
752 */
753 unsigned long long sum_sched_runtime;
754
1da177e4
LT
755 /*
756 * We don't bother to synchronize most readers of this at all,
757 * because there is no reader checking a limit that actually needs
758 * to get both rlim_cur and rlim_max atomically, and either one
759 * alone is a single word that can safely be read normally.
760 * getrlimit/setrlimit use task_lock(current->group_leader) to
761 * protect this instead of the siglock, because they really
762 * have no need to disable irqs.
763 */
764 struct rlimit rlim[RLIM_NLIMITS];
765
0e464814
KK
766#ifdef CONFIG_BSD_PROCESS_ACCT
767 struct pacct_struct pacct; /* per-process accounting information */
768#endif
ad4ecbcb 769#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
770 struct taskstats *stats;
771#endif
522ed776
MT
772#ifdef CONFIG_AUDIT
773 unsigned audit_tty;
46e959ea 774 unsigned audit_tty_log_passwd;
522ed776
MT
775 struct tty_audit_buf *tty_audit_buf;
776#endif
28b83c51 777
e1e12d2f 778 oom_flags_t oom_flags;
a9c58b90
DR
779 short oom_score_adj; /* OOM kill score adjustment */
780 short oom_score_adj_min; /* OOM kill score adjustment min value.
781 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
782
783 struct mutex cred_guard_mutex; /* guard against foreign influences on
784 * credential calculations
785 * (notably. ptrace) */
1da177e4
LT
786};
787
788/*
789 * Bits in flags field of signal_struct.
790 */
791#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
792#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
793#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 794#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
795/*
796 * Pending notifications to parent.
797 */
798#define SIGNAL_CLD_STOPPED 0x00000010
799#define SIGNAL_CLD_CONTINUED 0x00000020
800#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 801
fae5fa44
ON
802#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
803
ed5d2cac
ON
804/* If true, all threads except ->group_exit_task have pending SIGKILL */
805static inline int signal_group_exit(const struct signal_struct *sig)
806{
807 return (sig->flags & SIGNAL_GROUP_EXIT) ||
808 (sig->group_exit_task != NULL);
809}
810
1da177e4
LT
811/*
812 * Some day this will be a full-fledged user tracking system..
813 */
814struct user_struct {
815 atomic_t __count; /* reference count */
816 atomic_t processes; /* How many processes does this user have? */
1da177e4 817 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 818#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
819 atomic_t inotify_watches; /* How many inotify watches does this user have? */
820 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
821#endif
4afeff85
EP
822#ifdef CONFIG_FANOTIFY
823 atomic_t fanotify_listeners;
824#endif
7ef9964e 825#ifdef CONFIG_EPOLL
52bd19f7 826 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 827#endif
970a8645 828#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
829 /* protected by mq_lock */
830 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 831#endif
1da177e4
LT
832 unsigned long locked_shm; /* How many pages of mlocked shm ? */
833
834#ifdef CONFIG_KEYS
835 struct key *uid_keyring; /* UID specific keyring */
836 struct key *session_keyring; /* UID's default session keyring */
837#endif
838
839 /* Hash table maintenance information */
735de223 840 struct hlist_node uidhash_node;
7b44ab97 841 kuid_t uid;
24e377a8 842
aaac3ba9 843#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
844 atomic_long_t locked_vm;
845#endif
1da177e4
LT
846};
847
eb41d946 848extern int uids_sysfs_init(void);
5cb350ba 849
7b44ab97 850extern struct user_struct *find_user(kuid_t);
1da177e4
LT
851
852extern struct user_struct root_user;
853#define INIT_USER (&root_user)
854
b6dff3ec 855
1da177e4
LT
856struct backing_dev_info;
857struct reclaim_state;
858
f6db8347 859#ifdef CONFIG_SCHED_INFO
1da177e4
LT
860struct sched_info {
861 /* cumulative counters */
2d72376b 862 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 863 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
864
865 /* timestamps */
172ba844
BS
866 unsigned long long last_arrival,/* when we last ran on a cpu */
867 last_queued; /* when we were last queued to run */
1da177e4 868};
f6db8347 869#endif /* CONFIG_SCHED_INFO */
1da177e4 870
ca74e92b
SN
871#ifdef CONFIG_TASK_DELAY_ACCT
872struct task_delay_info {
873 spinlock_t lock;
874 unsigned int flags; /* Private per-task flags */
875
876 /* For each stat XXX, add following, aligned appropriately
877 *
878 * struct timespec XXX_start, XXX_end;
879 * u64 XXX_delay;
880 * u32 XXX_count;
881 *
882 * Atomicity of updates to XXX_delay, XXX_count protected by
883 * single lock above (split into XXX_lock if contention is an issue).
884 */
0ff92245
SN
885
886 /*
887 * XXX_count is incremented on every XXX operation, the delay
888 * associated with the operation is added to XXX_delay.
889 * XXX_delay contains the accumulated delay time in nanoseconds.
890 */
9667a23d 891 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
892 u64 blkio_delay; /* wait for sync block io completion */
893 u64 swapin_delay; /* wait for swapin block io completion */
894 u32 blkio_count; /* total count of the number of sync block */
895 /* io operations performed */
896 u32 swapin_count; /* total count of the number of swapin block */
897 /* io operations performed */
873b4771 898
9667a23d 899 u64 freepages_start;
873b4771
KK
900 u64 freepages_delay; /* wait for memory reclaim */
901 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 902};
52f17b6c
CS
903#endif /* CONFIG_TASK_DELAY_ACCT */
904
905static inline int sched_info_on(void)
906{
907#ifdef CONFIG_SCHEDSTATS
908 return 1;
909#elif defined(CONFIG_TASK_DELAY_ACCT)
910 extern int delayacct_on;
911 return delayacct_on;
912#else
913 return 0;
ca74e92b 914#endif
52f17b6c 915}
ca74e92b 916
d15bcfdb
IM
917enum cpu_idle_type {
918 CPU_IDLE,
919 CPU_NOT_IDLE,
920 CPU_NEWLY_IDLE,
921 CPU_MAX_IDLE_TYPES
1da177e4
LT
922};
923
1399fa78 924/*
ca8ce3d0 925 * Increase resolution of cpu_capacity calculations
1399fa78 926 */
ca8ce3d0
NP
927#define SCHED_CAPACITY_SHIFT 10
928#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 929
76751049
PZ
930/*
931 * Wake-queues are lists of tasks with a pending wakeup, whose
932 * callers have already marked the task as woken internally,
933 * and can thus carry on. A common use case is being able to
934 * do the wakeups once the corresponding user lock as been
935 * released.
936 *
937 * We hold reference to each task in the list across the wakeup,
938 * thus guaranteeing that the memory is still valid by the time
939 * the actual wakeups are performed in wake_up_q().
940 *
941 * One per task suffices, because there's never a need for a task to be
942 * in two wake queues simultaneously; it is forbidden to abandon a task
943 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
944 * already in a wake queue, the wakeup will happen soon and the second
945 * waker can just skip it.
946 *
947 * The WAKE_Q macro declares and initializes the list head.
948 * wake_up_q() does NOT reinitialize the list; it's expected to be
949 * called near the end of a function, where the fact that the queue is
950 * not used again will be easy to see by inspection.
951 *
952 * Note that this can cause spurious wakeups. schedule() callers
953 * must ensure the call is done inside a loop, confirming that the
954 * wakeup condition has in fact occurred.
955 */
956struct wake_q_node {
957 struct wake_q_node *next;
958};
959
960struct wake_q_head {
961 struct wake_q_node *first;
962 struct wake_q_node **lastp;
963};
964
965#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
966
967#define WAKE_Q(name) \
968 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
969
970extern void wake_q_add(struct wake_q_head *head,
971 struct task_struct *task);
972extern void wake_up_q(struct wake_q_head *head);
973
1399fa78
NR
974/*
975 * sched-domains (multiprocessor balancing) declarations:
976 */
2dd73a4f 977#ifdef CONFIG_SMP
b5d978e0
PZ
978#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
979#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
980#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
981#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 982#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 983#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 984#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 985#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
986#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
987#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 988#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 989#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 990#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 991#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 992
143e1e28 993#ifdef CONFIG_SCHED_SMT
b6220ad6 994static inline int cpu_smt_flags(void)
143e1e28 995{
5d4dfddd 996 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
997}
998#endif
999
1000#ifdef CONFIG_SCHED_MC
b6220ad6 1001static inline int cpu_core_flags(void)
143e1e28
VG
1002{
1003 return SD_SHARE_PKG_RESOURCES;
1004}
1005#endif
1006
1007#ifdef CONFIG_NUMA
b6220ad6 1008static inline int cpu_numa_flags(void)
143e1e28
VG
1009{
1010 return SD_NUMA;
1011}
1012#endif
532cb4c4 1013
1d3504fc
HS
1014struct sched_domain_attr {
1015 int relax_domain_level;
1016};
1017
1018#define SD_ATTR_INIT (struct sched_domain_attr) { \
1019 .relax_domain_level = -1, \
1020}
1021
60495e77
PZ
1022extern int sched_domain_level_max;
1023
5e6521ea
LZ
1024struct sched_group;
1025
1da177e4
LT
1026struct sched_domain {
1027 /* These fields must be setup */
1028 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1029 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1030 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1031 unsigned long min_interval; /* Minimum balance interval ms */
1032 unsigned long max_interval; /* Maximum balance interval ms */
1033 unsigned int busy_factor; /* less balancing by factor if busy */
1034 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1035 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1036 unsigned int busy_idx;
1037 unsigned int idle_idx;
1038 unsigned int newidle_idx;
1039 unsigned int wake_idx;
147cbb4b 1040 unsigned int forkexec_idx;
a52bfd73 1041 unsigned int smt_gain;
25f55d9d
VG
1042
1043 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1044 int flags; /* See SD_* */
60495e77 1045 int level;
1da177e4
LT
1046
1047 /* Runtime fields. */
1048 unsigned long last_balance; /* init to jiffies. units in jiffies */
1049 unsigned int balance_interval; /* initialise to 1. units in ms. */
1050 unsigned int nr_balance_failed; /* initialise to 0 */
1051
f48627e6 1052 /* idle_balance() stats */
9bd721c5 1053 u64 max_newidle_lb_cost;
f48627e6 1054 unsigned long next_decay_max_lb_cost;
2398f2c6 1055
1da177e4
LT
1056#ifdef CONFIG_SCHEDSTATS
1057 /* load_balance() stats */
480b9434
KC
1058 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1059 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1060 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1061 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1062 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1063 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1064 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1065 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1066
1067 /* Active load balancing */
480b9434
KC
1068 unsigned int alb_count;
1069 unsigned int alb_failed;
1070 unsigned int alb_pushed;
1da177e4 1071
68767a0a 1072 /* SD_BALANCE_EXEC stats */
480b9434
KC
1073 unsigned int sbe_count;
1074 unsigned int sbe_balanced;
1075 unsigned int sbe_pushed;
1da177e4 1076
68767a0a 1077 /* SD_BALANCE_FORK stats */
480b9434
KC
1078 unsigned int sbf_count;
1079 unsigned int sbf_balanced;
1080 unsigned int sbf_pushed;
68767a0a 1081
1da177e4 1082 /* try_to_wake_up() stats */
480b9434
KC
1083 unsigned int ttwu_wake_remote;
1084 unsigned int ttwu_move_affine;
1085 unsigned int ttwu_move_balance;
1da177e4 1086#endif
a5d8c348
IM
1087#ifdef CONFIG_SCHED_DEBUG
1088 char *name;
1089#endif
dce840a0
PZ
1090 union {
1091 void *private; /* used during construction */
1092 struct rcu_head rcu; /* used during destruction */
1093 };
6c99e9ad 1094
669c55e9 1095 unsigned int span_weight;
4200efd9
IM
1096 /*
1097 * Span of all CPUs in this domain.
1098 *
1099 * NOTE: this field is variable length. (Allocated dynamically
1100 * by attaching extra space to the end of the structure,
1101 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1102 */
1103 unsigned long span[0];
1da177e4
LT
1104};
1105
758b2cdc
RR
1106static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1107{
6c99e9ad 1108 return to_cpumask(sd->span);
758b2cdc
RR
1109}
1110
acc3f5d7 1111extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1112 struct sched_domain_attr *dattr_new);
029190c5 1113
acc3f5d7
RR
1114/* Allocate an array of sched domains, for partition_sched_domains(). */
1115cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1116void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1117
39be3501
PZ
1118bool cpus_share_cache(int this_cpu, int that_cpu);
1119
143e1e28 1120typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1121typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1122
1123#define SDTL_OVERLAP 0x01
1124
1125struct sd_data {
1126 struct sched_domain **__percpu sd;
1127 struct sched_group **__percpu sg;
63b2ca30 1128 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1129};
1130
1131struct sched_domain_topology_level {
1132 sched_domain_mask_f mask;
1133 sched_domain_flags_f sd_flags;
1134 int flags;
1135 int numa_level;
1136 struct sd_data data;
1137#ifdef CONFIG_SCHED_DEBUG
1138 char *name;
1139#endif
1140};
1141
143e1e28 1142extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1143extern void wake_up_if_idle(int cpu);
143e1e28
VG
1144
1145#ifdef CONFIG_SCHED_DEBUG
1146# define SD_INIT_NAME(type) .name = #type
1147#else
1148# define SD_INIT_NAME(type)
1149#endif
1150
1b427c15 1151#else /* CONFIG_SMP */
1da177e4 1152
1b427c15 1153struct sched_domain_attr;
d02c7a8c 1154
1b427c15 1155static inline void
acc3f5d7 1156partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1157 struct sched_domain_attr *dattr_new)
1158{
d02c7a8c 1159}
39be3501
PZ
1160
1161static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1162{
1163 return true;
1164}
1165
1b427c15 1166#endif /* !CONFIG_SMP */
1da177e4 1167
47fe38fc 1168
1da177e4 1169struct io_context; /* See blkdev.h */
1da177e4 1170
1da177e4 1171
383f2835 1172#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1173extern void prefetch_stack(struct task_struct *t);
383f2835
CK
1174#else
1175static inline void prefetch_stack(struct task_struct *t) { }
1176#endif
1da177e4
LT
1177
1178struct audit_context; /* See audit.c */
1179struct mempolicy;
b92ce558 1180struct pipe_inode_info;
4865ecf1 1181struct uts_namespace;
1da177e4 1182
20b8a59f 1183struct load_weight {
9dbdb155
PZ
1184 unsigned long weight;
1185 u32 inv_weight;
20b8a59f
IM
1186};
1187
9d89c257
YD
1188/*
1189 * The load_avg/util_avg accumulates an infinite geometric series.
e0f5f3af
DE
1190 * 1) load_avg factors frequency scaling into the amount of time that a
1191 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1192 * aggregated such weights of all runnable and blocked sched_entities.
e3279a2e 1193 * 2) util_avg factors frequency and cpu scaling into the amount of time
9d89c257
YD
1194 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1195 * For cfs_rq, it is the aggregated such times of all runnable and
1196 * blocked sched_entities.
1197 * The 64 bit load_sum can:
1198 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1199 * the highest weight (=88761) always runnable, we should not overflow
1200 * 2) for entity, support any load.weight always runnable
1201 */
9d85f21c 1202struct sched_avg {
9d89c257
YD
1203 u64 last_update_time, load_sum;
1204 u32 util_sum, period_contrib;
1205 unsigned long load_avg, util_avg;
9d85f21c
PT
1206};
1207
94c18227 1208#ifdef CONFIG_SCHEDSTATS
41acab88 1209struct sched_statistics {
20b8a59f 1210 u64 wait_start;
94c18227 1211 u64 wait_max;
6d082592
AV
1212 u64 wait_count;
1213 u64 wait_sum;
8f0dfc34
AV
1214 u64 iowait_count;
1215 u64 iowait_sum;
94c18227 1216
20b8a59f 1217 u64 sleep_start;
20b8a59f 1218 u64 sleep_max;
94c18227
IM
1219 s64 sum_sleep_runtime;
1220
1221 u64 block_start;
20b8a59f
IM
1222 u64 block_max;
1223 u64 exec_max;
eba1ed4b 1224 u64 slice_max;
cc367732 1225
cc367732
IM
1226 u64 nr_migrations_cold;
1227 u64 nr_failed_migrations_affine;
1228 u64 nr_failed_migrations_running;
1229 u64 nr_failed_migrations_hot;
1230 u64 nr_forced_migrations;
cc367732
IM
1231
1232 u64 nr_wakeups;
1233 u64 nr_wakeups_sync;
1234 u64 nr_wakeups_migrate;
1235 u64 nr_wakeups_local;
1236 u64 nr_wakeups_remote;
1237 u64 nr_wakeups_affine;
1238 u64 nr_wakeups_affine_attempts;
1239 u64 nr_wakeups_passive;
1240 u64 nr_wakeups_idle;
41acab88
LDM
1241};
1242#endif
1243
1244struct sched_entity {
1245 struct load_weight load; /* for load-balancing */
1246 struct rb_node run_node;
1247 struct list_head group_node;
1248 unsigned int on_rq;
1249
1250 u64 exec_start;
1251 u64 sum_exec_runtime;
1252 u64 vruntime;
1253 u64 prev_sum_exec_runtime;
1254
41acab88
LDM
1255 u64 nr_migrations;
1256
41acab88
LDM
1257#ifdef CONFIG_SCHEDSTATS
1258 struct sched_statistics statistics;
94c18227
IM
1259#endif
1260
20b8a59f 1261#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1262 int depth;
20b8a59f
IM
1263 struct sched_entity *parent;
1264 /* rq on which this entity is (to be) queued: */
1265 struct cfs_rq *cfs_rq;
1266 /* rq "owned" by this entity/group: */
1267 struct cfs_rq *my_q;
1268#endif
8bd75c77 1269
141965c7 1270#ifdef CONFIG_SMP
9d89c257 1271 /* Per entity load average tracking */
9d85f21c
PT
1272 struct sched_avg avg;
1273#endif
20b8a59f 1274};
70b97a7f 1275
fa717060
PZ
1276struct sched_rt_entity {
1277 struct list_head run_list;
78f2c7db 1278 unsigned long timeout;
57d2aa00 1279 unsigned long watchdog_stamp;
bee367ed 1280 unsigned int time_slice;
6f505b16 1281
58d6c2d7 1282 struct sched_rt_entity *back;
052f1dc7 1283#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1284 struct sched_rt_entity *parent;
1285 /* rq on which this entity is (to be) queued: */
1286 struct rt_rq *rt_rq;
1287 /* rq "owned" by this entity/group: */
1288 struct rt_rq *my_q;
1289#endif
fa717060
PZ
1290};
1291
aab03e05
DF
1292struct sched_dl_entity {
1293 struct rb_node rb_node;
1294
1295 /*
1296 * Original scheduling parameters. Copied here from sched_attr
4027d080 1297 * during sched_setattr(), they will remain the same until
1298 * the next sched_setattr().
aab03e05
DF
1299 */
1300 u64 dl_runtime; /* maximum runtime for each instance */
1301 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1302 u64 dl_period; /* separation of two instances (period) */
332ac17e 1303 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1304
1305 /*
1306 * Actual scheduling parameters. Initialized with the values above,
1307 * they are continously updated during task execution. Note that
1308 * the remaining runtime could be < 0 in case we are in overrun.
1309 */
1310 s64 runtime; /* remaining runtime for this instance */
1311 u64 deadline; /* absolute deadline for this instance */
1312 unsigned int flags; /* specifying the scheduler behaviour */
1313
1314 /*
1315 * Some bool flags:
1316 *
1317 * @dl_throttled tells if we exhausted the runtime. If so, the
1318 * task has to wait for a replenishment to be performed at the
1319 * next firing of dl_timer.
1320 *
1321 * @dl_new tells if a new instance arrived. If so we must
1322 * start executing it with full runtime and reset its absolute
1323 * deadline;
2d3d891d
DF
1324 *
1325 * @dl_boosted tells if we are boosted due to DI. If so we are
1326 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1327 * exit the critical section);
1328 *
1329 * @dl_yielded tells if task gave up the cpu before consuming
1330 * all its available runtime during the last job.
aab03e05 1331 */
5bfd126e 1332 int dl_throttled, dl_new, dl_boosted, dl_yielded;
aab03e05
DF
1333
1334 /*
1335 * Bandwidth enforcement timer. Each -deadline task has its
1336 * own bandwidth to be enforced, thus we need one timer per task.
1337 */
1338 struct hrtimer dl_timer;
1339};
8bd75c77 1340
1d082fd0
PM
1341union rcu_special {
1342 struct {
8203d6d0
PM
1343 u8 blocked;
1344 u8 need_qs;
1345 u8 exp_need_qs;
1346 u8 pad; /* Otherwise the compiler can store garbage here. */
1347 } b; /* Bits. */
1348 u32 s; /* Set of bits. */
1d082fd0 1349};
86848966
PM
1350struct rcu_node;
1351
8dc85d54
PZ
1352enum perf_event_task_context {
1353 perf_invalid_context = -1,
1354 perf_hw_context = 0,
89a1e187 1355 perf_sw_context,
8dc85d54
PZ
1356 perf_nr_task_contexts,
1357};
1358
72b252ae
MG
1359/* Track pages that require TLB flushes */
1360struct tlbflush_unmap_batch {
1361 /*
1362 * Each bit set is a CPU that potentially has a TLB entry for one of
1363 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1364 */
1365 struct cpumask cpumask;
1366
1367 /* True if any bit in cpumask is set */
1368 bool flush_required;
d950c947
MG
1369
1370 /*
1371 * If true then the PTE was dirty when unmapped. The entry must be
1372 * flushed before IO is initiated or a stale TLB entry potentially
1373 * allows an update without redirtying the page.
1374 */
1375 bool writable;
72b252ae
MG
1376};
1377
1da177e4
LT
1378struct task_struct {
1379 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1380 void *stack;
1da177e4 1381 atomic_t usage;
97dc32cd
WC
1382 unsigned int flags; /* per process flags, defined below */
1383 unsigned int ptrace;
1da177e4 1384
2dd73a4f 1385#ifdef CONFIG_SMP
fa14ff4a 1386 struct llist_node wake_entry;
3ca7a440 1387 int on_cpu;
63b0e9ed 1388 unsigned int wakee_flips;
62470419 1389 unsigned long wakee_flip_decay_ts;
63b0e9ed 1390 struct task_struct *last_wakee;
ac66f547
PZ
1391
1392 int wake_cpu;
2dd73a4f 1393#endif
fd2f4419 1394 int on_rq;
50e645a8 1395
b29739f9 1396 int prio, static_prio, normal_prio;
c7aceaba 1397 unsigned int rt_priority;
5522d5d5 1398 const struct sched_class *sched_class;
20b8a59f 1399 struct sched_entity se;
fa717060 1400 struct sched_rt_entity rt;
8323f26c
PZ
1401#ifdef CONFIG_CGROUP_SCHED
1402 struct task_group *sched_task_group;
1403#endif
aab03e05 1404 struct sched_dl_entity dl;
1da177e4 1405
e107be36
AK
1406#ifdef CONFIG_PREEMPT_NOTIFIERS
1407 /* list of struct preempt_notifier: */
1408 struct hlist_head preempt_notifiers;
1409#endif
1410
6c5c9341 1411#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1412 unsigned int btrace_seq;
6c5c9341 1413#endif
1da177e4 1414
97dc32cd 1415 unsigned int policy;
29baa747 1416 int nr_cpus_allowed;
1da177e4 1417 cpumask_t cpus_allowed;
1da177e4 1418
a57eb940 1419#ifdef CONFIG_PREEMPT_RCU
e260be67 1420 int rcu_read_lock_nesting;
1d082fd0 1421 union rcu_special rcu_read_unlock_special;
f41d911f 1422 struct list_head rcu_node_entry;
a57eb940 1423 struct rcu_node *rcu_blocked_node;
28f6569a 1424#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1425#ifdef CONFIG_TASKS_RCU
1426 unsigned long rcu_tasks_nvcsw;
1427 bool rcu_tasks_holdout;
1428 struct list_head rcu_tasks_holdout_list;
176f8f7a 1429 int rcu_tasks_idle_cpu;
8315f422 1430#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1431
f6db8347 1432#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1433 struct sched_info sched_info;
1434#endif
1435
1436 struct list_head tasks;
806c09a7 1437#ifdef CONFIG_SMP
917b627d 1438 struct plist_node pushable_tasks;
1baca4ce 1439 struct rb_node pushable_dl_tasks;
806c09a7 1440#endif
1da177e4
LT
1441
1442 struct mm_struct *mm, *active_mm;
615d6e87
DB
1443 /* per-thread vma caching */
1444 u32 vmacache_seqnum;
1445 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1446#if defined(SPLIT_RSS_COUNTING)
1447 struct task_rss_stat rss_stat;
1448#endif
1da177e4 1449/* task state */
97dc32cd 1450 int exit_state;
1da177e4
LT
1451 int exit_code, exit_signal;
1452 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1453 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1454
1455 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1456 unsigned int personality;
9b89f6ba 1457
be958bdc 1458 /* scheduler bits, serialized by scheduler locks */
ca94c442 1459 unsigned sched_reset_on_fork:1;
a8e4f2ea 1460 unsigned sched_contributes_to_load:1;
ff303e66 1461 unsigned sched_migrated:1;
be958bdc
PZ
1462 unsigned :0; /* force alignment to the next boundary */
1463
1464 /* unserialized, strictly 'current' */
1465 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1466 unsigned in_iowait:1;
626ebc41
TH
1467#ifdef CONFIG_MEMCG
1468 unsigned memcg_may_oom:1;
1469#endif
6f185c29
VD
1470#ifdef CONFIG_MEMCG_KMEM
1471 unsigned memcg_kmem_skip_account:1;
1472#endif
ff303e66
PZ
1473#ifdef CONFIG_COMPAT_BRK
1474 unsigned brk_randomized:1;
1475#endif
6f185c29 1476
1d4457f9
KC
1477 unsigned long atomic_flags; /* Flags needing atomic access. */
1478
f56141e3
AL
1479 struct restart_block restart_block;
1480
1da177e4
LT
1481 pid_t pid;
1482 pid_t tgid;
0a425405 1483
1314562a 1484#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1485 /* Canary value for the -fstack-protector gcc feature */
1486 unsigned long stack_canary;
1314562a 1487#endif
4d1d61a6 1488 /*
1da177e4 1489 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1490 * older sibling, respectively. (p->father can be replaced with
f470021a 1491 * p->real_parent->pid)
1da177e4 1492 */
abd63bc3
KC
1493 struct task_struct __rcu *real_parent; /* real parent process */
1494 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1495 /*
f470021a 1496 * children/sibling forms the list of my natural children
1da177e4
LT
1497 */
1498 struct list_head children; /* list of my children */
1499 struct list_head sibling; /* linkage in my parent's children list */
1500 struct task_struct *group_leader; /* threadgroup leader */
1501
f470021a
RM
1502 /*
1503 * ptraced is the list of tasks this task is using ptrace on.
1504 * This includes both natural children and PTRACE_ATTACH targets.
1505 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1506 */
1507 struct list_head ptraced;
1508 struct list_head ptrace_entry;
1509
1da177e4 1510 /* PID/PID hash table linkage. */
92476d7f 1511 struct pid_link pids[PIDTYPE_MAX];
47e65328 1512 struct list_head thread_group;
0c740d0a 1513 struct list_head thread_node;
1da177e4
LT
1514
1515 struct completion *vfork_done; /* for vfork() */
1516 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1517 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1518
c66f08be 1519 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1520 cputime_t gtime;
9d7fb042 1521 struct prev_cputime prev_cputime;
6a61671b
FW
1522#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1523 seqlock_t vtime_seqlock;
1524 unsigned long long vtime_snap;
1525 enum {
1526 VTIME_SLEEPING = 0,
1527 VTIME_USER,
1528 VTIME_SYS,
1529 } vtime_snap_whence;
d99ca3b9 1530#endif
1da177e4 1531 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1532 u64 start_time; /* monotonic time in nsec */
57e0be04 1533 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1534/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1535 unsigned long min_flt, maj_flt;
1536
f06febc9 1537 struct task_cputime cputime_expires;
1da177e4
LT
1538 struct list_head cpu_timers[3];
1539
1540/* process credentials */
1b0ba1c9 1541 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1542 * credentials (COW) */
1b0ba1c9 1543 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1544 * credentials (COW) */
36772092
PBG
1545 char comm[TASK_COMM_LEN]; /* executable name excluding path
1546 - access with [gs]et_task_comm (which lock
1547 it with task_lock())
221af7f8 1548 - initialized normally by setup_new_exec */
1da177e4 1549/* file system info */
756daf26 1550 struct nameidata *nameidata;
3d5b6fcc 1551#ifdef CONFIG_SYSVIPC
1da177e4
LT
1552/* ipc stuff */
1553 struct sysv_sem sysvsem;
ab602f79 1554 struct sysv_shm sysvshm;
3d5b6fcc 1555#endif
e162b39a 1556#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1557/* hung task detection */
82a1fcb9
IM
1558 unsigned long last_switch_count;
1559#endif
1da177e4
LT
1560/* filesystem information */
1561 struct fs_struct *fs;
1562/* open file information */
1563 struct files_struct *files;
1651e14e 1564/* namespaces */
ab516013 1565 struct nsproxy *nsproxy;
1da177e4
LT
1566/* signal handlers */
1567 struct signal_struct *signal;
1568 struct sighand_struct *sighand;
1569
1570 sigset_t blocked, real_blocked;
f3de272b 1571 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1572 struct sigpending pending;
1573
1574 unsigned long sas_ss_sp;
1575 size_t sas_ss_size;
2e01fabe 1576
67d12145 1577 struct callback_head *task_works;
e73f8959 1578
1da177e4 1579 struct audit_context *audit_context;
bfef93a5 1580#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1581 kuid_t loginuid;
4746ec5b 1582 unsigned int sessionid;
bfef93a5 1583#endif
932ecebb 1584 struct seccomp seccomp;
1da177e4
LT
1585
1586/* Thread group tracking */
1587 u32 parent_exec_id;
1588 u32 self_exec_id;
58568d2a
MX
1589/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1590 * mempolicy */
1da177e4 1591 spinlock_t alloc_lock;
1da177e4 1592
b29739f9 1593 /* Protection of the PI data structures: */
1d615482 1594 raw_spinlock_t pi_lock;
b29739f9 1595
76751049
PZ
1596 struct wake_q_node wake_q;
1597
23f78d4a
IM
1598#ifdef CONFIG_RT_MUTEXES
1599 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1600 struct rb_root pi_waiters;
1601 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1602 /* Deadlock detection and priority inheritance handling */
1603 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1604#endif
1605
408894ee
IM
1606#ifdef CONFIG_DEBUG_MUTEXES
1607 /* mutex deadlock detection */
1608 struct mutex_waiter *blocked_on;
1609#endif
de30a2b3
IM
1610#ifdef CONFIG_TRACE_IRQFLAGS
1611 unsigned int irq_events;
de30a2b3 1612 unsigned long hardirq_enable_ip;
de30a2b3 1613 unsigned long hardirq_disable_ip;
fa1452e8 1614 unsigned int hardirq_enable_event;
de30a2b3 1615 unsigned int hardirq_disable_event;
fa1452e8
HS
1616 int hardirqs_enabled;
1617 int hardirq_context;
de30a2b3 1618 unsigned long softirq_disable_ip;
de30a2b3 1619 unsigned long softirq_enable_ip;
fa1452e8 1620 unsigned int softirq_disable_event;
de30a2b3 1621 unsigned int softirq_enable_event;
fa1452e8 1622 int softirqs_enabled;
de30a2b3
IM
1623 int softirq_context;
1624#endif
fbb9ce95 1625#ifdef CONFIG_LOCKDEP
bdb9441e 1626# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1627 u64 curr_chain_key;
1628 int lockdep_depth;
fbb9ce95 1629 unsigned int lockdep_recursion;
c7aceaba 1630 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1631 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1632#endif
408894ee 1633
1da177e4
LT
1634/* journalling filesystem info */
1635 void *journal_info;
1636
d89d8796 1637/* stacked block device info */
bddd87c7 1638 struct bio_list *bio_list;
d89d8796 1639
73c10101
JA
1640#ifdef CONFIG_BLOCK
1641/* stack plugging */
1642 struct blk_plug *plug;
1643#endif
1644
1da177e4
LT
1645/* VM state */
1646 struct reclaim_state *reclaim_state;
1647
1da177e4
LT
1648 struct backing_dev_info *backing_dev_info;
1649
1650 struct io_context *io_context;
1651
1652 unsigned long ptrace_message;
1653 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1654 struct task_io_accounting ioac;
8f0ab514 1655#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1656 u64 acct_rss_mem1; /* accumulated rss usage */
1657 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1658 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1659#endif
1660#ifdef CONFIG_CPUSETS
58568d2a 1661 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1662 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1663 int cpuset_mem_spread_rotor;
6adef3eb 1664 int cpuset_slab_spread_rotor;
1da177e4 1665#endif
ddbcc7e8 1666#ifdef CONFIG_CGROUPS
817929ec 1667 /* Control Group info protected by css_set_lock */
2c392b8c 1668 struct css_set __rcu *cgroups;
817929ec
PM
1669 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1670 struct list_head cg_list;
ddbcc7e8 1671#endif
42b2dd0a 1672#ifdef CONFIG_FUTEX
0771dfef 1673 struct robust_list_head __user *robust_list;
34f192c6
IM
1674#ifdef CONFIG_COMPAT
1675 struct compat_robust_list_head __user *compat_robust_list;
1676#endif
c87e2837
IM
1677 struct list_head pi_state_list;
1678 struct futex_pi_state *pi_state_cache;
c7aceaba 1679#endif
cdd6c482 1680#ifdef CONFIG_PERF_EVENTS
8dc85d54 1681 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1682 struct mutex perf_event_mutex;
1683 struct list_head perf_event_list;
a63eaf34 1684#endif
8f47b187
TG
1685#ifdef CONFIG_DEBUG_PREEMPT
1686 unsigned long preempt_disable_ip;
1687#endif
c7aceaba 1688#ifdef CONFIG_NUMA
58568d2a 1689 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1690 short il_next;
207205a2 1691 short pref_node_fork;
42b2dd0a 1692#endif
cbee9f88
PZ
1693#ifdef CONFIG_NUMA_BALANCING
1694 int numa_scan_seq;
cbee9f88 1695 unsigned int numa_scan_period;
598f0ec0 1696 unsigned int numa_scan_period_max;
de1c9ce6 1697 int numa_preferred_nid;
6b9a7460 1698 unsigned long numa_migrate_retry;
cbee9f88 1699 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1700 u64 last_task_numa_placement;
1701 u64 last_sum_exec_runtime;
cbee9f88 1702 struct callback_head numa_work;
f809ca9a 1703
8c8a743c
PZ
1704 struct list_head numa_entry;
1705 struct numa_group *numa_group;
1706
745d6147 1707 /*
44dba3d5
IM
1708 * numa_faults is an array split into four regions:
1709 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1710 * in this precise order.
1711 *
1712 * faults_memory: Exponential decaying average of faults on a per-node
1713 * basis. Scheduling placement decisions are made based on these
1714 * counts. The values remain static for the duration of a PTE scan.
1715 * faults_cpu: Track the nodes the process was running on when a NUMA
1716 * hinting fault was incurred.
1717 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1718 * during the current scan window. When the scan completes, the counts
1719 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1720 */
44dba3d5 1721 unsigned long *numa_faults;
83e1d2cd 1722 unsigned long total_numa_faults;
745d6147 1723
04bb2f94
RR
1724 /*
1725 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1726 * scan window were remote/local or failed to migrate. The task scan
1727 * period is adapted based on the locality of the faults with different
1728 * weights depending on whether they were shared or private faults
04bb2f94 1729 */
074c2381 1730 unsigned long numa_faults_locality[3];
04bb2f94 1731
b32e86b4 1732 unsigned long numa_pages_migrated;
cbee9f88
PZ
1733#endif /* CONFIG_NUMA_BALANCING */
1734
72b252ae
MG
1735#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1736 struct tlbflush_unmap_batch tlb_ubc;
1737#endif
1738
e56d0903 1739 struct rcu_head rcu;
b92ce558
JA
1740
1741 /*
1742 * cache last used pipe for splice
1743 */
1744 struct pipe_inode_info *splice_pipe;
5640f768
ED
1745
1746 struct page_frag task_frag;
1747
ca74e92b
SN
1748#ifdef CONFIG_TASK_DELAY_ACCT
1749 struct task_delay_info *delays;
f4f154fd
AM
1750#endif
1751#ifdef CONFIG_FAULT_INJECTION
1752 int make_it_fail;
ca74e92b 1753#endif
9d823e8f
WF
1754 /*
1755 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1756 * balance_dirty_pages() for some dirty throttling pause
1757 */
1758 int nr_dirtied;
1759 int nr_dirtied_pause;
83712358 1760 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1761
9745512c
AV
1762#ifdef CONFIG_LATENCYTOP
1763 int latency_record_count;
1764 struct latency_record latency_record[LT_SAVECOUNT];
1765#endif
6976675d
AV
1766 /*
1767 * time slack values; these are used to round up poll() and
1768 * select() etc timeout values. These are in nanoseconds.
1769 */
1770 unsigned long timer_slack_ns;
1771 unsigned long default_timer_slack_ns;
f8d570a4 1772
0b24becc
AR
1773#ifdef CONFIG_KASAN
1774 unsigned int kasan_depth;
1775#endif
fb52607a 1776#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1777 /* Index of current stored address in ret_stack */
f201ae23
FW
1778 int curr_ret_stack;
1779 /* Stack of return addresses for return function tracing */
1780 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1781 /* time stamp for last schedule */
1782 unsigned long long ftrace_timestamp;
f201ae23
FW
1783 /*
1784 * Number of functions that haven't been traced
1785 * because of depth overrun.
1786 */
1787 atomic_t trace_overrun;
380c4b14
FW
1788 /* Pause for the tracing */
1789 atomic_t tracing_graph_pause;
f201ae23 1790#endif
ea4e2bc4
SR
1791#ifdef CONFIG_TRACING
1792 /* state flags for use by tracers */
1793 unsigned long trace;
b1cff0ad 1794 /* bitmask and counter of trace recursion */
261842b7
SR
1795 unsigned long trace_recursion;
1796#endif /* CONFIG_TRACING */
6f185c29 1797#ifdef CONFIG_MEMCG
626ebc41
TH
1798 struct mem_cgroup *memcg_in_oom;
1799 gfp_t memcg_oom_gfp_mask;
1800 int memcg_oom_order;
b23afb93
TH
1801
1802 /* number of pages to reclaim on returning to userland */
1803 unsigned int memcg_nr_pages_over_high;
569b846d 1804#endif
0326f5a9
SD
1805#ifdef CONFIG_UPROBES
1806 struct uprobe_task *utask;
0326f5a9 1807#endif
cafe5635
KO
1808#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1809 unsigned int sequential_io;
1810 unsigned int sequential_io_avg;
1811#endif
8eb23b9f
PZ
1812#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1813 unsigned long task_state_change;
1814#endif
8bcbde54 1815 int pagefault_disabled;
0c8c0f03
DH
1816/* CPU-specific state of this task */
1817 struct thread_struct thread;
1818/*
1819 * WARNING: on x86, 'thread_struct' contains a variable-sized
1820 * structure. It *MUST* be at the end of 'task_struct'.
1821 *
1822 * Do not put anything below here!
1823 */
1da177e4
LT
1824};
1825
5aaeb5c0
IM
1826#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1827extern int arch_task_struct_size __read_mostly;
1828#else
1829# define arch_task_struct_size (sizeof(struct task_struct))
1830#endif
0c8c0f03 1831
76e6eee0 1832/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1833#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1834
6688cc05
PZ
1835#define TNF_MIGRATED 0x01
1836#define TNF_NO_GROUP 0x02
dabe1d99 1837#define TNF_SHARED 0x04
04bb2f94 1838#define TNF_FAULT_LOCAL 0x08
074c2381 1839#define TNF_MIGRATE_FAIL 0x10
6688cc05 1840
cbee9f88 1841#ifdef CONFIG_NUMA_BALANCING
6688cc05 1842extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1843extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1844extern void set_numabalancing_state(bool enabled);
82727018 1845extern void task_numa_free(struct task_struct *p);
10f39042
RR
1846extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1847 int src_nid, int dst_cpu);
cbee9f88 1848#else
ac8e895b 1849static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1850 int flags)
cbee9f88
PZ
1851{
1852}
e29cf08b
MG
1853static inline pid_t task_numa_group_id(struct task_struct *p)
1854{
1855 return 0;
1856}
1a687c2e
MG
1857static inline void set_numabalancing_state(bool enabled)
1858{
1859}
82727018
RR
1860static inline void task_numa_free(struct task_struct *p)
1861{
1862}
10f39042
RR
1863static inline bool should_numa_migrate_memory(struct task_struct *p,
1864 struct page *page, int src_nid, int dst_cpu)
1865{
1866 return true;
1867}
cbee9f88
PZ
1868#endif
1869
e868171a 1870static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1871{
1872 return task->pids[PIDTYPE_PID].pid;
1873}
1874
e868171a 1875static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1876{
1877 return task->group_leader->pids[PIDTYPE_PID].pid;
1878}
1879
6dda81f4
ON
1880/*
1881 * Without tasklist or rcu lock it is not safe to dereference
1882 * the result of task_pgrp/task_session even if task == current,
1883 * we can race with another thread doing sys_setsid/sys_setpgid.
1884 */
e868171a 1885static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1886{
1887 return task->group_leader->pids[PIDTYPE_PGID].pid;
1888}
1889
e868171a 1890static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1891{
1892 return task->group_leader->pids[PIDTYPE_SID].pid;
1893}
1894
7af57294
PE
1895struct pid_namespace;
1896
1897/*
1898 * the helpers to get the task's different pids as they are seen
1899 * from various namespaces
1900 *
1901 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1902 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1903 * current.
7af57294
PE
1904 * task_xid_nr_ns() : id seen from the ns specified;
1905 *
1906 * set_task_vxid() : assigns a virtual id to a task;
1907 *
7af57294
PE
1908 * see also pid_nr() etc in include/linux/pid.h
1909 */
52ee2dfd
ON
1910pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1911 struct pid_namespace *ns);
7af57294 1912
e868171a 1913static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1914{
1915 return tsk->pid;
1916}
1917
52ee2dfd
ON
1918static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1919 struct pid_namespace *ns)
1920{
1921 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1922}
7af57294
PE
1923
1924static inline pid_t task_pid_vnr(struct task_struct *tsk)
1925{
52ee2dfd 1926 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1927}
1928
1929
e868171a 1930static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1931{
1932 return tsk->tgid;
1933}
1934
2f2a3a46 1935pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1936
1937static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1938{
1939 return pid_vnr(task_tgid(tsk));
1940}
1941
1942
80e0b6e8 1943static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
1944static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1945{
1946 pid_t pid = 0;
1947
1948 rcu_read_lock();
1949 if (pid_alive(tsk))
1950 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1951 rcu_read_unlock();
1952
1953 return pid;
1954}
1955
1956static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1957{
1958 return task_ppid_nr_ns(tsk, &init_pid_ns);
1959}
1960
52ee2dfd
ON
1961static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1962 struct pid_namespace *ns)
7af57294 1963{
52ee2dfd 1964 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1965}
1966
7af57294
PE
1967static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1968{
52ee2dfd 1969 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1970}
1971
1972
52ee2dfd
ON
1973static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1974 struct pid_namespace *ns)
7af57294 1975{
52ee2dfd 1976 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1977}
1978
7af57294
PE
1979static inline pid_t task_session_vnr(struct task_struct *tsk)
1980{
52ee2dfd 1981 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1982}
1983
1b0f7ffd
ON
1984/* obsolete, do not use */
1985static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1986{
1987 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1988}
7af57294 1989
1da177e4
LT
1990/**
1991 * pid_alive - check that a task structure is not stale
1992 * @p: Task structure to be checked.
1993 *
1994 * Test if a process is not yet dead (at most zombie state)
1995 * If pid_alive fails, then pointers within the task structure
1996 * can be stale and must not be dereferenced.
e69f6186
YB
1997 *
1998 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 1999 */
ad36d282 2000static inline int pid_alive(const struct task_struct *p)
1da177e4 2001{
92476d7f 2002 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2003}
2004
f400e198 2005/**
570f5241
SS
2006 * is_global_init - check if a task structure is init. Since init
2007 * is free to have sub-threads we need to check tgid.
3260259f
H
2008 * @tsk: Task structure to be checked.
2009 *
2010 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2011 *
2012 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2013 */
e868171a 2014static inline int is_global_init(struct task_struct *tsk)
b461cc03 2015{
570f5241 2016 return task_tgid_nr(tsk) == 1;
b461cc03 2017}
b460cbc5 2018
9ec52099
CLG
2019extern struct pid *cad_pid;
2020
1da177e4 2021extern void free_task(struct task_struct *tsk);
1da177e4 2022#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2023
158d9ebd 2024extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2025
2026static inline void put_task_struct(struct task_struct *t)
2027{
2028 if (atomic_dec_and_test(&t->usage))
8c7904a0 2029 __put_task_struct(t);
e56d0903 2030}
1da177e4 2031
6a61671b
FW
2032#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2033extern void task_cputime(struct task_struct *t,
2034 cputime_t *utime, cputime_t *stime);
2035extern void task_cputime_scaled(struct task_struct *t,
2036 cputime_t *utimescaled, cputime_t *stimescaled);
2037extern cputime_t task_gtime(struct task_struct *t);
2038#else
6fac4829
FW
2039static inline void task_cputime(struct task_struct *t,
2040 cputime_t *utime, cputime_t *stime)
2041{
2042 if (utime)
2043 *utime = t->utime;
2044 if (stime)
2045 *stime = t->stime;
2046}
2047
2048static inline void task_cputime_scaled(struct task_struct *t,
2049 cputime_t *utimescaled,
2050 cputime_t *stimescaled)
2051{
2052 if (utimescaled)
2053 *utimescaled = t->utimescaled;
2054 if (stimescaled)
2055 *stimescaled = t->stimescaled;
2056}
6a61671b
FW
2057
2058static inline cputime_t task_gtime(struct task_struct *t)
2059{
2060 return t->gtime;
2061}
2062#endif
e80d0a1a
FW
2063extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2064extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2065
1da177e4
LT
2066/*
2067 * Per process flags
2068 */
1da177e4 2069#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2070#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2071#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2072#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2073#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2074#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2075#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2076#define PF_DUMPCORE 0x00000200 /* dumped core */
2077#define PF_SIGNALED 0x00000400 /* killed by a signal */
2078#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2079#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2080#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2081#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2082#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2083#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2084#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2085#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2086#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2087#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2088#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2089#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2090#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2091#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2092#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2093#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2094#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2095#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2096
2097/*
2098 * Only the _current_ task can read/write to tsk->flags, but other
2099 * tasks can access tsk->flags in readonly mode for example
2100 * with tsk_used_math (like during threaded core dumping).
2101 * There is however an exception to this rule during ptrace
2102 * or during fork: the ptracer task is allowed to write to the
2103 * child->flags of its traced child (same goes for fork, the parent
2104 * can write to the child->flags), because we're guaranteed the
2105 * child is not running and in turn not changing child->flags
2106 * at the same time the parent does it.
2107 */
2108#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2109#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2110#define clear_used_math() clear_stopped_child_used_math(current)
2111#define set_used_math() set_stopped_child_used_math(current)
2112#define conditional_stopped_child_used_math(condition, child) \
2113 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2114#define conditional_used_math(condition) \
2115 conditional_stopped_child_used_math(condition, current)
2116#define copy_to_stopped_child_used_math(child) \
2117 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2118/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2119#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2120#define used_math() tsk_used_math(current)
2121
934f3072
JB
2122/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2123 * __GFP_FS is also cleared as it implies __GFP_IO.
2124 */
21caf2fc
ML
2125static inline gfp_t memalloc_noio_flags(gfp_t flags)
2126{
2127 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2128 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2129 return flags;
2130}
2131
2132static inline unsigned int memalloc_noio_save(void)
2133{
2134 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2135 current->flags |= PF_MEMALLOC_NOIO;
2136 return flags;
2137}
2138
2139static inline void memalloc_noio_restore(unsigned int flags)
2140{
2141 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2142}
2143
1d4457f9 2144/* Per-process atomic flags. */
a2b86f77 2145#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2146#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2147#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2148
1d4457f9 2149
e0e5070b
ZL
2150#define TASK_PFA_TEST(name, func) \
2151 static inline bool task_##func(struct task_struct *p) \
2152 { return test_bit(PFA_##name, &p->atomic_flags); }
2153#define TASK_PFA_SET(name, func) \
2154 static inline void task_set_##func(struct task_struct *p) \
2155 { set_bit(PFA_##name, &p->atomic_flags); }
2156#define TASK_PFA_CLEAR(name, func) \
2157 static inline void task_clear_##func(struct task_struct *p) \
2158 { clear_bit(PFA_##name, &p->atomic_flags); }
2159
2160TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2161TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2162
2ad654bc
ZL
2163TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2164TASK_PFA_SET(SPREAD_PAGE, spread_page)
2165TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2166
2167TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2168TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2169TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2170
e5c1902e 2171/*
a8f072c1 2172 * task->jobctl flags
e5c1902e 2173 */
a8f072c1 2174#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2175
a8f072c1
TH
2176#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2177#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2178#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2179#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2180#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2181#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2182#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2183
b76808e6
PD
2184#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2185#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2186#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2187#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2188#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2189#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2190#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2191
fb1d910c 2192#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2193#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2194
7dd3db54 2195extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2196 unsigned long mask);
73ddff2b 2197extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2198extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2199 unsigned long mask);
39efa3ef 2200
f41d911f
PM
2201static inline void rcu_copy_process(struct task_struct *p)
2202{
8315f422 2203#ifdef CONFIG_PREEMPT_RCU
f41d911f 2204 p->rcu_read_lock_nesting = 0;
1d082fd0 2205 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2206 p->rcu_blocked_node = NULL;
f41d911f 2207 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2208#endif /* #ifdef CONFIG_PREEMPT_RCU */
2209#ifdef CONFIG_TASKS_RCU
2210 p->rcu_tasks_holdout = false;
2211 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2212 p->rcu_tasks_idle_cpu = -1;
8315f422 2213#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2214}
2215
907aed48
MG
2216static inline void tsk_restore_flags(struct task_struct *task,
2217 unsigned long orig_flags, unsigned long flags)
2218{
2219 task->flags &= ~flags;
2220 task->flags |= orig_flags & flags;
2221}
2222
f82f8042
JL
2223extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2224 const struct cpumask *trial);
7f51412a
JL
2225extern int task_can_attach(struct task_struct *p,
2226 const struct cpumask *cs_cpus_allowed);
1da177e4 2227#ifdef CONFIG_SMP
1e1b6c51
KM
2228extern void do_set_cpus_allowed(struct task_struct *p,
2229 const struct cpumask *new_mask);
2230
cd8ba7cd 2231extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2232 const struct cpumask *new_mask);
1da177e4 2233#else
1e1b6c51
KM
2234static inline void do_set_cpus_allowed(struct task_struct *p,
2235 const struct cpumask *new_mask)
2236{
2237}
cd8ba7cd 2238static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2239 const struct cpumask *new_mask)
1da177e4 2240{
96f874e2 2241 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2242 return -EINVAL;
2243 return 0;
2244}
2245#endif
e0ad9556 2246
3451d024 2247#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2248void calc_load_enter_idle(void);
2249void calc_load_exit_idle(void);
2250#else
2251static inline void calc_load_enter_idle(void) { }
2252static inline void calc_load_exit_idle(void) { }
3451d024 2253#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2254
b342501c 2255/*
c676329a
PZ
2256 * Do not use outside of architecture code which knows its limitations.
2257 *
2258 * sched_clock() has no promise of monotonicity or bounded drift between
2259 * CPUs, use (which you should not) requires disabling IRQs.
2260 *
2261 * Please use one of the three interfaces below.
b342501c 2262 */
1bbfa6f2 2263extern unsigned long long notrace sched_clock(void);
c676329a 2264/*
489a71b0 2265 * See the comment in kernel/sched/clock.c
c676329a
PZ
2266 */
2267extern u64 cpu_clock(int cpu);
2268extern u64 local_clock(void);
545a2bf7 2269extern u64 running_clock(void);
c676329a
PZ
2270extern u64 sched_clock_cpu(int cpu);
2271
e436d800 2272
c1955a3d 2273extern void sched_clock_init(void);
3e51f33f 2274
c1955a3d 2275#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2276static inline void sched_clock_tick(void)
2277{
2278}
2279
2280static inline void sched_clock_idle_sleep_event(void)
2281{
2282}
2283
2284static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2285{
2286}
2287#else
c676329a
PZ
2288/*
2289 * Architectures can set this to 1 if they have specified
2290 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2291 * but then during bootup it turns out that sched_clock()
2292 * is reliable after all:
2293 */
35af99e6
PZ
2294extern int sched_clock_stable(void);
2295extern void set_sched_clock_stable(void);
2296extern void clear_sched_clock_stable(void);
c676329a 2297
3e51f33f
PZ
2298extern void sched_clock_tick(void);
2299extern void sched_clock_idle_sleep_event(void);
2300extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2301#endif
2302
b52bfee4
VP
2303#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2304/*
2305 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2306 * The reason for this explicit opt-in is not to have perf penalty with
2307 * slow sched_clocks.
2308 */
2309extern void enable_sched_clock_irqtime(void);
2310extern void disable_sched_clock_irqtime(void);
2311#else
2312static inline void enable_sched_clock_irqtime(void) {}
2313static inline void disable_sched_clock_irqtime(void) {}
2314#endif
2315
36c8b586 2316extern unsigned long long
41b86e9c 2317task_sched_runtime(struct task_struct *task);
1da177e4
LT
2318
2319/* sched_exec is called by processes performing an exec */
2320#ifdef CONFIG_SMP
2321extern void sched_exec(void);
2322#else
2323#define sched_exec() {}
2324#endif
2325
2aa44d05
IM
2326extern void sched_clock_idle_sleep_event(void);
2327extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2328
1da177e4
LT
2329#ifdef CONFIG_HOTPLUG_CPU
2330extern void idle_task_exit(void);
2331#else
2332static inline void idle_task_exit(void) {}
2333#endif
2334
3451d024 2335#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2336extern void wake_up_nohz_cpu(int cpu);
06d8308c 2337#else
1c20091e 2338static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2339#endif
2340
ce831b38
FW
2341#ifdef CONFIG_NO_HZ_FULL
2342extern bool sched_can_stop_tick(void);
265f22a9 2343extern u64 scheduler_tick_max_deferment(void);
ce831b38
FW
2344#else
2345static inline bool sched_can_stop_tick(void) { return false; }
06d8308c
TG
2346#endif
2347
5091faa4 2348#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2349extern void sched_autogroup_create_attach(struct task_struct *p);
2350extern void sched_autogroup_detach(struct task_struct *p);
2351extern void sched_autogroup_fork(struct signal_struct *sig);
2352extern void sched_autogroup_exit(struct signal_struct *sig);
2353#ifdef CONFIG_PROC_FS
2354extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2355extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2356#endif
2357#else
2358static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2359static inline void sched_autogroup_detach(struct task_struct *p) { }
2360static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2361static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2362#endif
2363
fa93384f 2364extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2365extern void set_user_nice(struct task_struct *p, long nice);
2366extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2367/**
2368 * task_nice - return the nice value of a given task.
2369 * @p: the task in question.
2370 *
2371 * Return: The nice value [ -20 ... 0 ... 19 ].
2372 */
2373static inline int task_nice(const struct task_struct *p)
2374{
2375 return PRIO_TO_NICE((p)->static_prio);
2376}
36c8b586
IM
2377extern int can_nice(const struct task_struct *p, const int nice);
2378extern int task_curr(const struct task_struct *p);
1da177e4 2379extern int idle_cpu(int cpu);
fe7de49f
KM
2380extern int sched_setscheduler(struct task_struct *, int,
2381 const struct sched_param *);
961ccddd 2382extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2383 const struct sched_param *);
d50dde5a
DF
2384extern int sched_setattr(struct task_struct *,
2385 const struct sched_attr *);
36c8b586 2386extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2387/**
2388 * is_idle_task - is the specified task an idle task?
fa757281 2389 * @p: the task in question.
e69f6186
YB
2390 *
2391 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2392 */
7061ca3b 2393static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2394{
2395 return p->pid == 0;
2396}
36c8b586
IM
2397extern struct task_struct *curr_task(int cpu);
2398extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2399
2400void yield(void);
2401
1da177e4
LT
2402union thread_union {
2403 struct thread_info thread_info;
2404 unsigned long stack[THREAD_SIZE/sizeof(long)];
2405};
2406
2407#ifndef __HAVE_ARCH_KSTACK_END
2408static inline int kstack_end(void *addr)
2409{
2410 /* Reliable end of stack detection:
2411 * Some APM bios versions misalign the stack
2412 */
2413 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2414}
2415#endif
2416
2417extern union thread_union init_thread_union;
2418extern struct task_struct init_task;
2419
2420extern struct mm_struct init_mm;
2421
198fe21b
PE
2422extern struct pid_namespace init_pid_ns;
2423
2424/*
2425 * find a task by one of its numerical ids
2426 *
198fe21b
PE
2427 * find_task_by_pid_ns():
2428 * finds a task by its pid in the specified namespace
228ebcbe
PE
2429 * find_task_by_vpid():
2430 * finds a task by its virtual pid
198fe21b 2431 *
e49859e7 2432 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2433 */
2434
228ebcbe
PE
2435extern struct task_struct *find_task_by_vpid(pid_t nr);
2436extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2437 struct pid_namespace *ns);
198fe21b 2438
1da177e4 2439/* per-UID process charging. */
7b44ab97 2440extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2441static inline struct user_struct *get_uid(struct user_struct *u)
2442{
2443 atomic_inc(&u->__count);
2444 return u;
2445}
2446extern void free_uid(struct user_struct *);
1da177e4
LT
2447
2448#include <asm/current.h>
2449
f0af911a 2450extern void xtime_update(unsigned long ticks);
1da177e4 2451
b3c97528
HH
2452extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2453extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2454extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2455#ifdef CONFIG_SMP
2456 extern void kick_process(struct task_struct *tsk);
2457#else
2458 static inline void kick_process(struct task_struct *tsk) { }
2459#endif
aab03e05 2460extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2461extern void sched_dead(struct task_struct *p);
1da177e4 2462
1da177e4
LT
2463extern void proc_caches_init(void);
2464extern void flush_signals(struct task_struct *);
10ab825b 2465extern void ignore_signals(struct task_struct *);
1da177e4
LT
2466extern void flush_signal_handlers(struct task_struct *, int force_default);
2467extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2468
be0e6f29 2469static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2470{
be0e6f29
ON
2471 struct task_struct *tsk = current;
2472 siginfo_t __info;
1da177e4
LT
2473 int ret;
2474
be0e6f29
ON
2475 spin_lock_irq(&tsk->sighand->siglock);
2476 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2477 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2478
2479 return ret;
53c8f9f1 2480}
1da177e4 2481
9a13049e
ON
2482static inline void kernel_signal_stop(void)
2483{
2484 spin_lock_irq(&current->sighand->siglock);
2485 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2486 __set_current_state(TASK_STOPPED);
2487 spin_unlock_irq(&current->sighand->siglock);
2488
2489 schedule();
2490}
2491
1da177e4
LT
2492extern void release_task(struct task_struct * p);
2493extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2494extern int force_sigsegv(int, struct task_struct *);
2495extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2496extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2497extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2498extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2499 const struct cred *, u32);
c4b92fc1
EB
2500extern int kill_pgrp(struct pid *pid, int sig, int priv);
2501extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2502extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2503extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2504extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2505extern void force_sig(int, struct task_struct *);
1da177e4 2506extern int send_sig(int, struct task_struct *, int);
09faef11 2507extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2508extern struct sigqueue *sigqueue_alloc(void);
2509extern void sigqueue_free(struct sigqueue *);
ac5c2153 2510extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2511extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2512
51a7b448
AV
2513static inline void restore_saved_sigmask(void)
2514{
2515 if (test_and_clear_restore_sigmask())
77097ae5 2516 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2517}
2518
b7f9a11a
AV
2519static inline sigset_t *sigmask_to_save(void)
2520{
2521 sigset_t *res = &current->blocked;
2522 if (unlikely(test_restore_sigmask()))
2523 res = &current->saved_sigmask;
2524 return res;
2525}
2526
9ec52099
CLG
2527static inline int kill_cad_pid(int sig, int priv)
2528{
2529 return kill_pid(cad_pid, sig, priv);
2530}
2531
1da177e4
LT
2532/* These can be the second arg to send_sig_info/send_group_sig_info. */
2533#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2534#define SEND_SIG_PRIV ((struct siginfo *) 1)
2535#define SEND_SIG_FORCED ((struct siginfo *) 2)
2536
2a855dd0
SAS
2537/*
2538 * True if we are on the alternate signal stack.
2539 */
1da177e4
LT
2540static inline int on_sig_stack(unsigned long sp)
2541{
2a855dd0
SAS
2542#ifdef CONFIG_STACK_GROWSUP
2543 return sp >= current->sas_ss_sp &&
2544 sp - current->sas_ss_sp < current->sas_ss_size;
2545#else
2546 return sp > current->sas_ss_sp &&
2547 sp - current->sas_ss_sp <= current->sas_ss_size;
2548#endif
1da177e4
LT
2549}
2550
2551static inline int sas_ss_flags(unsigned long sp)
2552{
72f15c03
RW
2553 if (!current->sas_ss_size)
2554 return SS_DISABLE;
2555
2556 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2557}
2558
5a1b98d3
AV
2559static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2560{
2561 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2562#ifdef CONFIG_STACK_GROWSUP
2563 return current->sas_ss_sp;
2564#else
2565 return current->sas_ss_sp + current->sas_ss_size;
2566#endif
2567 return sp;
2568}
2569
1da177e4
LT
2570/*
2571 * Routines for handling mm_structs
2572 */
2573extern struct mm_struct * mm_alloc(void);
2574
2575/* mmdrop drops the mm and the page tables */
b3c97528 2576extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2577static inline void mmdrop(struct mm_struct * mm)
2578{
6fb43d7b 2579 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2580 __mmdrop(mm);
2581}
2582
2583/* mmput gets rid of the mappings and all user-space */
2584extern void mmput(struct mm_struct *);
2585/* Grab a reference to a task's mm, if it is not already going away */
2586extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2587/*
2588 * Grab a reference to a task's mm, if it is not already going away
2589 * and ptrace_may_access with the mode parameter passed to it
2590 * succeeds.
2591 */
2592extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2593/* Remove the current tasks stale references to the old mm_struct */
2594extern void mm_release(struct task_struct *, struct mm_struct *);
2595
3033f14a
JT
2596#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2597extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2598 struct task_struct *, unsigned long);
2599#else
6f2c55b8 2600extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2601 struct task_struct *);
3033f14a
JT
2602
2603/* Architectures that haven't opted into copy_thread_tls get the tls argument
2604 * via pt_regs, so ignore the tls argument passed via C. */
2605static inline int copy_thread_tls(
2606 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2607 struct task_struct *p, unsigned long tls)
2608{
2609 return copy_thread(clone_flags, sp, arg, p);
2610}
2611#endif
1da177e4
LT
2612extern void flush_thread(void);
2613extern void exit_thread(void);
2614
1da177e4 2615extern void exit_files(struct task_struct *);
a7e5328a 2616extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2617
1da177e4 2618extern void exit_itimers(struct signal_struct *);
cbaffba1 2619extern void flush_itimer_signals(void);
1da177e4 2620
9402c95f 2621extern void do_group_exit(int);
1da177e4 2622
c4ad8f98 2623extern int do_execve(struct filename *,
d7627467 2624 const char __user * const __user *,
da3d4c5f 2625 const char __user * const __user *);
51f39a1f
DD
2626extern int do_execveat(int, struct filename *,
2627 const char __user * const __user *,
2628 const char __user * const __user *,
2629 int);
3033f14a 2630extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2631extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2632struct task_struct *fork_idle(int);
2aa3a7f8 2633extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2634
82b89778
AH
2635extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2636static inline void set_task_comm(struct task_struct *tsk, const char *from)
2637{
2638 __set_task_comm(tsk, from, false);
2639}
59714d65 2640extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2641
2642#ifdef CONFIG_SMP
317f3941 2643void scheduler_ipi(void);
85ba2d86 2644extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2645#else
184748cc 2646static inline void scheduler_ipi(void) { }
85ba2d86
RM
2647static inline unsigned long wait_task_inactive(struct task_struct *p,
2648 long match_state)
2649{
2650 return 1;
2651}
1da177e4
LT
2652#endif
2653
fafe870f
FW
2654#define tasklist_empty() \
2655 list_empty(&init_task.tasks)
2656
05725f7e
JP
2657#define next_task(p) \
2658 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2659
2660#define for_each_process(p) \
2661 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2662
5bb459bb 2663extern bool current_is_single_threaded(void);
d84f4f99 2664
1da177e4
LT
2665/*
2666 * Careful: do_each_thread/while_each_thread is a double loop so
2667 * 'break' will not work as expected - use goto instead.
2668 */
2669#define do_each_thread(g, t) \
2670 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2671
2672#define while_each_thread(g, t) \
2673 while ((t = next_thread(t)) != g)
2674
0c740d0a
ON
2675#define __for_each_thread(signal, t) \
2676 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2677
2678#define for_each_thread(p, t) \
2679 __for_each_thread((p)->signal, t)
2680
2681/* Careful: this is a double loop, 'break' won't work as expected. */
2682#define for_each_process_thread(p, t) \
2683 for_each_process(p) for_each_thread(p, t)
2684
7e49827c
ON
2685static inline int get_nr_threads(struct task_struct *tsk)
2686{
b3ac022c 2687 return tsk->signal->nr_threads;
7e49827c
ON
2688}
2689
087806b1
ON
2690static inline bool thread_group_leader(struct task_struct *p)
2691{
2692 return p->exit_signal >= 0;
2693}
1da177e4 2694
0804ef4b
EB
2695/* Do to the insanities of de_thread it is possible for a process
2696 * to have the pid of the thread group leader without actually being
2697 * the thread group leader. For iteration through the pids in proc
2698 * all we care about is that we have a task with the appropriate
2699 * pid, we don't actually care if we have the right task.
2700 */
e1403b8e 2701static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2702{
e1403b8e 2703 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2704}
2705
bac0abd6 2706static inline
e1403b8e 2707bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2708{
e1403b8e 2709 return p1->signal == p2->signal;
bac0abd6
PE
2710}
2711
36c8b586 2712static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2713{
05725f7e
JP
2714 return list_entry_rcu(p->thread_group.next,
2715 struct task_struct, thread_group);
47e65328
ON
2716}
2717
e868171a 2718static inline int thread_group_empty(struct task_struct *p)
1da177e4 2719{
47e65328 2720 return list_empty(&p->thread_group);
1da177e4
LT
2721}
2722
2723#define delay_group_leader(p) \
2724 (thread_group_leader(p) && !thread_group_empty(p))
2725
1da177e4 2726/*
260ea101 2727 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2728 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2729 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2730 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2731 *
2732 * Nests both inside and outside of read_lock(&tasklist_lock).
2733 * It must not be nested with write_lock_irq(&tasklist_lock),
2734 * neither inside nor outside.
2735 */
2736static inline void task_lock(struct task_struct *p)
2737{
2738 spin_lock(&p->alloc_lock);
2739}
2740
2741static inline void task_unlock(struct task_struct *p)
2742{
2743 spin_unlock(&p->alloc_lock);
2744}
2745
b8ed374e 2746extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2747 unsigned long *flags);
2748
9388dc30
AV
2749static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2750 unsigned long *flags)
2751{
2752 struct sighand_struct *ret;
2753
2754 ret = __lock_task_sighand(tsk, flags);
2755 (void)__cond_lock(&tsk->sighand->siglock, ret);
2756 return ret;
2757}
b8ed374e 2758
f63ee72e
ON
2759static inline void unlock_task_sighand(struct task_struct *tsk,
2760 unsigned long *flags)
2761{
2762 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2763}
2764
77e4ef99 2765/**
7d7efec3
TH
2766 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2767 * @tsk: task causing the changes
77e4ef99 2768 *
7d7efec3
TH
2769 * All operations which modify a threadgroup - a new thread joining the
2770 * group, death of a member thread (the assertion of PF_EXITING) and
2771 * exec(2) dethreading the process and replacing the leader - are wrapped
2772 * by threadgroup_change_{begin|end}(). This is to provide a place which
2773 * subsystems needing threadgroup stability can hook into for
2774 * synchronization.
77e4ef99 2775 */
7d7efec3 2776static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2777{
7d7efec3
TH
2778 might_sleep();
2779 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2780}
77e4ef99
TH
2781
2782/**
7d7efec3
TH
2783 * threadgroup_change_end - mark the end of changes to a threadgroup
2784 * @tsk: task causing the changes
77e4ef99 2785 *
7d7efec3 2786 * See threadgroup_change_begin().
77e4ef99 2787 */
7d7efec3 2788static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2789{
7d7efec3 2790 cgroup_threadgroup_change_end(tsk);
4714d1d3 2791}
4714d1d3 2792
f037360f
AV
2793#ifndef __HAVE_THREAD_FUNCTIONS
2794
f7e4217b
RZ
2795#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2796#define task_stack_page(task) ((task)->stack)
a1261f54 2797
10ebffde
AV
2798static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2799{
2800 *task_thread_info(p) = *task_thread_info(org);
2801 task_thread_info(p)->task = p;
2802}
2803
6a40281a
CE
2804/*
2805 * Return the address of the last usable long on the stack.
2806 *
2807 * When the stack grows down, this is just above the thread
2808 * info struct. Going any lower will corrupt the threadinfo.
2809 *
2810 * When the stack grows up, this is the highest address.
2811 * Beyond that position, we corrupt data on the next page.
2812 */
10ebffde
AV
2813static inline unsigned long *end_of_stack(struct task_struct *p)
2814{
6a40281a
CE
2815#ifdef CONFIG_STACK_GROWSUP
2816 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2817#else
f7e4217b 2818 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2819#endif
10ebffde
AV
2820}
2821
f037360f 2822#endif
a70857e4
AT
2823#define task_stack_end_corrupted(task) \
2824 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2825
8b05c7e6
FT
2826static inline int object_is_on_stack(void *obj)
2827{
2828 void *stack = task_stack_page(current);
2829
2830 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2831}
2832
8c9843e5
BH
2833extern void thread_info_cache_init(void);
2834
7c9f8861
ES
2835#ifdef CONFIG_DEBUG_STACK_USAGE
2836static inline unsigned long stack_not_used(struct task_struct *p)
2837{
2838 unsigned long *n = end_of_stack(p);
2839
2840 do { /* Skip over canary */
2841 n++;
2842 } while (!*n);
2843
2844 return (unsigned long)n - (unsigned long)end_of_stack(p);
2845}
2846#endif
d4311ff1 2847extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2848
1da177e4
LT
2849/* set thread flags in other task's structures
2850 * - see asm/thread_info.h for TIF_xxxx flags available
2851 */
2852static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2853{
a1261f54 2854 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2855}
2856
2857static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2858{
a1261f54 2859 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2860}
2861
2862static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2863{
a1261f54 2864 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2865}
2866
2867static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2868{
a1261f54 2869 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2870}
2871
2872static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2873{
a1261f54 2874 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2875}
2876
2877static inline void set_tsk_need_resched(struct task_struct *tsk)
2878{
2879 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2880}
2881
2882static inline void clear_tsk_need_resched(struct task_struct *tsk)
2883{
2884 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2885}
2886
8ae121ac
GH
2887static inline int test_tsk_need_resched(struct task_struct *tsk)
2888{
2889 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2890}
2891
690cc3ff
EB
2892static inline int restart_syscall(void)
2893{
2894 set_tsk_thread_flag(current, TIF_SIGPENDING);
2895 return -ERESTARTNOINTR;
2896}
2897
1da177e4
LT
2898static inline int signal_pending(struct task_struct *p)
2899{
2900 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2901}
f776d12d 2902
d9588725
RM
2903static inline int __fatal_signal_pending(struct task_struct *p)
2904{
2905 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2906}
f776d12d
MW
2907
2908static inline int fatal_signal_pending(struct task_struct *p)
2909{
2910 return signal_pending(p) && __fatal_signal_pending(p);
2911}
2912
16882c1e
ON
2913static inline int signal_pending_state(long state, struct task_struct *p)
2914{
2915 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2916 return 0;
2917 if (!signal_pending(p))
2918 return 0;
2919
16882c1e
ON
2920 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2921}
2922
1da177e4
LT
2923/*
2924 * cond_resched() and cond_resched_lock(): latency reduction via
2925 * explicit rescheduling in places that are safe. The return
2926 * value indicates whether a reschedule was done in fact.
2927 * cond_resched_lock() will drop the spinlock before scheduling,
2928 * cond_resched_softirq() will enable bhs before scheduling.
2929 */
c3921ab7 2930extern int _cond_resched(void);
6f80bd98 2931
613afbf8 2932#define cond_resched() ({ \
3427445a 2933 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2934 _cond_resched(); \
2935})
6f80bd98 2936
613afbf8
FW
2937extern int __cond_resched_lock(spinlock_t *lock);
2938
2939#define cond_resched_lock(lock) ({ \
3427445a 2940 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
2941 __cond_resched_lock(lock); \
2942})
2943
2944extern int __cond_resched_softirq(void);
2945
75e1056f 2946#define cond_resched_softirq() ({ \
3427445a 2947 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 2948 __cond_resched_softirq(); \
613afbf8 2949})
1da177e4 2950
f6f3c437
SH
2951static inline void cond_resched_rcu(void)
2952{
2953#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2954 rcu_read_unlock();
2955 cond_resched();
2956 rcu_read_lock();
2957#endif
2958}
2959
1da177e4
LT
2960/*
2961 * Does a critical section need to be broken due to another
95c354fe
NP
2962 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2963 * but a general need for low latency)
1da177e4 2964 */
95c354fe 2965static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2966{
95c354fe
NP
2967#ifdef CONFIG_PREEMPT
2968 return spin_is_contended(lock);
2969#else
1da177e4 2970 return 0;
95c354fe 2971#endif
1da177e4
LT
2972}
2973
ee761f62
TG
2974/*
2975 * Idle thread specific functions to determine the need_resched
69dd0f84 2976 * polling state.
ee761f62 2977 */
69dd0f84 2978#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
2979static inline int tsk_is_polling(struct task_struct *p)
2980{
2981 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2982}
ea811747
PZ
2983
2984static inline void __current_set_polling(void)
3a98f871
TG
2985{
2986 set_thread_flag(TIF_POLLING_NRFLAG);
2987}
2988
ea811747
PZ
2989static inline bool __must_check current_set_polling_and_test(void)
2990{
2991 __current_set_polling();
2992
2993 /*
2994 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2995 * paired by resched_curr()
ea811747 2996 */
4e857c58 2997 smp_mb__after_atomic();
ea811747
PZ
2998
2999 return unlikely(tif_need_resched());
3000}
3001
3002static inline void __current_clr_polling(void)
3a98f871
TG
3003{
3004 clear_thread_flag(TIF_POLLING_NRFLAG);
3005}
ea811747
PZ
3006
3007static inline bool __must_check current_clr_polling_and_test(void)
3008{
3009 __current_clr_polling();
3010
3011 /*
3012 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3013 * paired by resched_curr()
ea811747 3014 */
4e857c58 3015 smp_mb__after_atomic();
ea811747
PZ
3016
3017 return unlikely(tif_need_resched());
3018}
3019
ee761f62
TG
3020#else
3021static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3022static inline void __current_set_polling(void) { }
3023static inline void __current_clr_polling(void) { }
3024
3025static inline bool __must_check current_set_polling_and_test(void)
3026{
3027 return unlikely(tif_need_resched());
3028}
3029static inline bool __must_check current_clr_polling_and_test(void)
3030{
3031 return unlikely(tif_need_resched());
3032}
ee761f62
TG
3033#endif
3034
8cb75e0c
PZ
3035static inline void current_clr_polling(void)
3036{
3037 __current_clr_polling();
3038
3039 /*
3040 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3041 * Once the bit is cleared, we'll get IPIs with every new
3042 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3043 * fold.
3044 */
8875125e 3045 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3046
3047 preempt_fold_need_resched();
3048}
3049
75f93fed
PZ
3050static __always_inline bool need_resched(void)
3051{
3052 return unlikely(tif_need_resched());
3053}
3054
f06febc9
FM
3055/*
3056 * Thread group CPU time accounting.
3057 */
4cd4c1b4 3058void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3059void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3060
7bb44ade
RM
3061/*
3062 * Reevaluate whether the task has signals pending delivery.
3063 * Wake the task if so.
3064 * This is required every time the blocked sigset_t changes.
3065 * callers must hold sighand->siglock.
3066 */
3067extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3068extern void recalc_sigpending(void);
3069
910ffdb1
ON
3070extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3071
3072static inline void signal_wake_up(struct task_struct *t, bool resume)
3073{
3074 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3075}
3076static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3077{
3078 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3079}
1da177e4
LT
3080
3081/*
3082 * Wrappers for p->thread_info->cpu access. No-op on UP.
3083 */
3084#ifdef CONFIG_SMP
3085
3086static inline unsigned int task_cpu(const struct task_struct *p)
3087{
a1261f54 3088 return task_thread_info(p)->cpu;
1da177e4
LT
3089}
3090
b32e86b4
IM
3091static inline int task_node(const struct task_struct *p)
3092{
3093 return cpu_to_node(task_cpu(p));
3094}
3095
c65cc870 3096extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3097
3098#else
3099
3100static inline unsigned int task_cpu(const struct task_struct *p)
3101{
3102 return 0;
3103}
3104
3105static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3106{
3107}
3108
3109#endif /* CONFIG_SMP */
3110
96f874e2
RR
3111extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3112extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3113
7c941438 3114#ifdef CONFIG_CGROUP_SCHED
07e06b01 3115extern struct task_group root_task_group;
8323f26c 3116#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3117
54e99124
DG
3118extern int task_can_switch_user(struct user_struct *up,
3119 struct task_struct *tsk);
3120
4b98d11b
AD
3121#ifdef CONFIG_TASK_XACCT
3122static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3123{
940389b8 3124 tsk->ioac.rchar += amt;
4b98d11b
AD
3125}
3126
3127static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3128{
940389b8 3129 tsk->ioac.wchar += amt;
4b98d11b
AD
3130}
3131
3132static inline void inc_syscr(struct task_struct *tsk)
3133{
940389b8 3134 tsk->ioac.syscr++;
4b98d11b
AD
3135}
3136
3137static inline void inc_syscw(struct task_struct *tsk)
3138{
940389b8 3139 tsk->ioac.syscw++;
4b98d11b
AD
3140}
3141#else
3142static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3143{
3144}
3145
3146static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3147{
3148}
3149
3150static inline void inc_syscr(struct task_struct *tsk)
3151{
3152}
3153
3154static inline void inc_syscw(struct task_struct *tsk)
3155{
3156}
3157#endif
3158
82455257
DH
3159#ifndef TASK_SIZE_OF
3160#define TASK_SIZE_OF(tsk) TASK_SIZE
3161#endif
3162
f98bafa0 3163#ifdef CONFIG_MEMCG
cf475ad2 3164extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3165#else
3166static inline void mm_update_next_owner(struct mm_struct *mm)
3167{
3168}
f98bafa0 3169#endif /* CONFIG_MEMCG */
cf475ad2 3170
3e10e716
JS
3171static inline unsigned long task_rlimit(const struct task_struct *tsk,
3172 unsigned int limit)
3173{
316c1608 3174 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3175}
3176
3177static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3178 unsigned int limit)
3179{
316c1608 3180 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3181}
3182
3183static inline unsigned long rlimit(unsigned int limit)
3184{
3185 return task_rlimit(current, limit);
3186}
3187
3188static inline unsigned long rlimit_max(unsigned int limit)
3189{
3190 return task_rlimit_max(current, limit);
3191}
3192
1da177e4 3193#endif
This page took 2.038523 seconds and 5 git commands to generate.