x86: cpumask: x86 mmio-mod.c use cpumask_var_t for downed_cpus
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
cac64d00 226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
d0b27fa7
PZ
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243}
244
245#ifdef CONFIG_RT_GROUP_SCHED
246static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247{
248 hrtimer_cancel(&rt_b->rt_period_timer);
249}
250#endif
251
712555ee
HC
252/*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256static DEFINE_MUTEX(sched_domains_mutex);
257
052f1dc7 258#ifdef CONFIG_GROUP_SCHED
29f59db3 259
68318b8e
SV
260#include <linux/cgroup.h>
261
29f59db3
SV
262struct cfs_rq;
263
6f505b16
PZ
264static LIST_HEAD(task_groups);
265
29f59db3 266/* task group related information */
4cf86d77 267struct task_group {
052f1dc7 268#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
269 struct cgroup_subsys_state css;
270#endif
052f1dc7 271
6c415b92
AB
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
052f1dc7 276#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
d0b27fa7 288 struct rt_bandwidth rt_bandwidth;
052f1dc7 289#endif
6b2d7700 290
ae8393e5 291 struct rcu_head rcu;
6f505b16 292 struct list_head list;
f473aa5e
PZ
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
29f59db3
SV
297};
298
354d60c2 299#ifdef CONFIG_USER_SCHED
eff766a6 300
6c415b92
AB
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
eff766a6
PZ
307/*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312struct task_group root_task_group;
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
315/* Default task group's sched entity on each cpu */
316static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317/* Default task group's cfs_rq on each cpu */
318static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
320
321#ifdef CONFIG_RT_GROUP_SCHED
322static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 324#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 325#else /* !CONFIG_USER_SCHED */
eff766a6 326#define root_task_group init_task_group
9a7e0b18 327#endif /* CONFIG_USER_SCHED */
6f505b16 328
8ed36996 329/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
330 * a task group's cpu shares.
331 */
8ed36996 332static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 333
052f1dc7 334#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
335#ifdef CONFIG_USER_SCHED
336# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 337#else /* !CONFIG_USER_SCHED */
052f1dc7 338# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 339#endif /* CONFIG_USER_SCHED */
052f1dc7 340
cb4ad1ff 341/*
2e084786
LJ
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
cb4ad1ff
MX
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
348 */
18d95a28 349#define MIN_SHARES 2
2e084786 350#define MAX_SHARES (1UL << 18)
18d95a28 351
052f1dc7
PZ
352static int init_task_group_load = INIT_TASK_GROUP_LOAD;
353#endif
354
29f59db3 355/* Default task group.
3a252015 356 * Every task in system belong to this group at bootup.
29f59db3 357 */
434d53b0 358struct task_group init_task_group;
29f59db3
SV
359
360/* return group to which a task belongs */
4cf86d77 361static inline struct task_group *task_group(struct task_struct *p)
29f59db3 362{
4cf86d77 363 struct task_group *tg;
9b5b7751 364
052f1dc7 365#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
366 rcu_read_lock();
367 tg = __task_cred(p)->user->tg;
368 rcu_read_unlock();
052f1dc7 369#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 struct task_group, css);
24e377a8 372#else
41a2d6cf 373 tg = &init_task_group;
24e377a8 374#endif
9b5b7751 375 return tg;
29f59db3
SV
376}
377
378/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 380{
052f1dc7 381#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
382 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 p->se.parent = task_group(p)->se[cpu];
052f1dc7 384#endif
6f505b16 385
052f1dc7 386#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
387 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
388 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 389#endif
29f59db3
SV
390}
391
392#else
393
6f505b16 394static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
395static inline struct task_group *task_group(struct task_struct *p)
396{
397 return NULL;
398}
29f59db3 399
052f1dc7 400#endif /* CONFIG_GROUP_SCHED */
29f59db3 401
6aa645ea
IM
402/* CFS-related fields in a runqueue */
403struct cfs_rq {
404 struct load_weight load;
405 unsigned long nr_running;
406
6aa645ea 407 u64 exec_clock;
e9acbff6 408 u64 min_vruntime;
6aa645ea
IM
409
410 struct rb_root tasks_timeline;
411 struct rb_node *rb_leftmost;
4a55bd5e
PZ
412
413 struct list_head tasks;
414 struct list_head *balance_iterator;
415
416 /*
417 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
418 * It is set to NULL otherwise (i.e when none are currently running).
419 */
4793241b 420 struct sched_entity *curr, *next, *last;
ddc97297 421
5ac5c4d6 422 unsigned int nr_spread_over;
ddc97297 423
62160e3f 424#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
425 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
426
41a2d6cf
IM
427 /*
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
431 *
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
434 */
41a2d6cf
IM
435 struct list_head leaf_cfs_rq_list;
436 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
437
438#ifdef CONFIG_SMP
c09595f6 439 /*
c8cba857 440 * the part of load.weight contributed by tasks
c09595f6 441 */
c8cba857 442 unsigned long task_weight;
c09595f6 443
c8cba857
PZ
444 /*
445 * h_load = weight * f(tg)
446 *
447 * Where f(tg) is the recursive weight fraction assigned to
448 * this group.
449 */
450 unsigned long h_load;
c09595f6 451
c8cba857
PZ
452 /*
453 * this cpu's part of tg->shares
454 */
455 unsigned long shares;
f1d239f7
PZ
456
457 /*
458 * load.weight at the time we set shares
459 */
460 unsigned long rq_weight;
c09595f6 461#endif
6aa645ea
IM
462#endif
463};
1da177e4 464
6aa645ea
IM
465/* Real-Time classes' related field in a runqueue: */
466struct rt_rq {
467 struct rt_prio_array active;
63489e45 468 unsigned long rt_nr_running;
052f1dc7 469#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
470 int highest_prio; /* highest queued rt task prio */
471#endif
fa85ae24 472#ifdef CONFIG_SMP
73fe6aae 473 unsigned long rt_nr_migratory;
a22d7fc1 474 int overloaded;
fa85ae24 475#endif
6f505b16 476 int rt_throttled;
fa85ae24 477 u64 rt_time;
ac086bc2 478 u64 rt_runtime;
ea736ed5 479 /* Nests inside the rq lock: */
ac086bc2 480 spinlock_t rt_runtime_lock;
6f505b16 481
052f1dc7 482#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
483 unsigned long rt_nr_boosted;
484
6f505b16
PZ
485 struct rq *rq;
486 struct list_head leaf_rt_rq_list;
487 struct task_group *tg;
488 struct sched_rt_entity *rt_se;
489#endif
6aa645ea
IM
490};
491
57d885fe
GH
492#ifdef CONFIG_SMP
493
494/*
495 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
496 * variables. Each exclusive cpuset essentially defines an island domain by
497 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
498 * exclusive cpuset is created, we also create and attach a new root-domain
499 * object.
500 *
57d885fe
GH
501 */
502struct root_domain {
503 atomic_t refcount;
c6c4927b
RR
504 cpumask_var_t span;
505 cpumask_var_t online;
637f5085 506
0eab9146 507 /*
637f5085
GH
508 * The "RT overload" flag: it gets set if a CPU has more than
509 * one runnable RT task.
510 */
c6c4927b 511 cpumask_var_t rto_mask;
0eab9146 512 atomic_t rto_count;
6e0534f2
GH
513#ifdef CONFIG_SMP
514 struct cpupri cpupri;
515#endif
7a09b1a2
VS
516#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
517 /*
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
521 */
522 unsigned int sched_mc_preferred_wakeup_cpu;
523#endif
57d885fe
GH
524};
525
dc938520
GH
526/*
527 * By default the system creates a single root-domain with all cpus as
528 * members (mimicking the global state we have today).
529 */
57d885fe
GH
530static struct root_domain def_root_domain;
531
532#endif
533
1da177e4
LT
534/*
535 * This is the main, per-CPU runqueue data structure.
536 *
537 * Locking rule: those places that want to lock multiple runqueues
538 * (such as the load balancing or the thread migration code), lock
539 * acquire operations must be ordered by ascending &runqueue.
540 */
70b97a7f 541struct rq {
d8016491
IM
542 /* runqueue lock: */
543 spinlock_t lock;
1da177e4
LT
544
545 /*
546 * nr_running and cpu_load should be in the same cacheline because
547 * remote CPUs use both these fields when doing load calculation.
548 */
549 unsigned long nr_running;
6aa645ea
IM
550 #define CPU_LOAD_IDX_MAX 5
551 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 552 unsigned char idle_at_tick;
46cb4b7c 553#ifdef CONFIG_NO_HZ
15934a37 554 unsigned long last_tick_seen;
46cb4b7c
SS
555 unsigned char in_nohz_recently;
556#endif
d8016491
IM
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load;
6aa645ea
IM
559 unsigned long nr_load_updates;
560 u64 nr_switches;
561
562 struct cfs_rq cfs;
6f505b16 563 struct rt_rq rt;
6f505b16 564
6aa645ea 565#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
566 /* list of leaf cfs_rq on this cpu: */
567 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
568#endif
569#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 570 struct list_head leaf_rt_rq_list;
1da177e4 571#endif
1da177e4
LT
572
573 /*
574 * This is part of a global counter where only the total sum
575 * over all CPUs matters. A task can increase this counter on
576 * one CPU and if it got migrated afterwards it may decrease
577 * it on another CPU. Always updated under the runqueue lock:
578 */
579 unsigned long nr_uninterruptible;
580
36c8b586 581 struct task_struct *curr, *idle;
c9819f45 582 unsigned long next_balance;
1da177e4 583 struct mm_struct *prev_mm;
6aa645ea 584
3e51f33f 585 u64 clock;
6aa645ea 586
1da177e4
LT
587 atomic_t nr_iowait;
588
589#ifdef CONFIG_SMP
0eab9146 590 struct root_domain *rd;
1da177e4
LT
591 struct sched_domain *sd;
592
593 /* For active balancing */
594 int active_balance;
595 int push_cpu;
d8016491
IM
596 /* cpu of this runqueue: */
597 int cpu;
1f11eb6a 598 int online;
1da177e4 599
a8a51d5e 600 unsigned long avg_load_per_task;
1da177e4 601
36c8b586 602 struct task_struct *migration_thread;
1da177e4
LT
603 struct list_head migration_queue;
604#endif
605
8f4d37ec 606#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
607#ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610#endif
8f4d37ec
PZ
611 struct hrtimer hrtick_timer;
612#endif
613
1da177e4
LT
614#ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
9c2c4802
KC
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
619
620 /* sys_sched_yield() stats */
480b9434
KC
621 unsigned int yld_exp_empty;
622 unsigned int yld_act_empty;
623 unsigned int yld_both_empty;
624 unsigned int yld_count;
1da177e4
LT
625
626 /* schedule() stats */
480b9434
KC
627 unsigned int sched_switch;
628 unsigned int sched_count;
629 unsigned int sched_goidle;
1da177e4
LT
630
631 /* try_to_wake_up() stats */
480b9434
KC
632 unsigned int ttwu_count;
633 unsigned int ttwu_local;
b8efb561
IM
634
635 /* BKL stats */
480b9434 636 unsigned int bkl_count;
1da177e4
LT
637#endif
638};
639
f34e3b61 640static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 641
15afe09b 642static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 643{
15afe09b 644 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
645}
646
0a2966b4
CL
647static inline int cpu_of(struct rq *rq)
648{
649#ifdef CONFIG_SMP
650 return rq->cpu;
651#else
652 return 0;
653#endif
654}
655
674311d5
NP
656/*
657 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 658 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
659 *
660 * The domain tree of any CPU may only be accessed from within
661 * preempt-disabled sections.
662 */
48f24c4d
IM
663#define for_each_domain(cpu, __sd) \
664 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
665
666#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
667#define this_rq() (&__get_cpu_var(runqueues))
668#define task_rq(p) cpu_rq(task_cpu(p))
669#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
670
3e51f33f
PZ
671static inline void update_rq_clock(struct rq *rq)
672{
673 rq->clock = sched_clock_cpu(cpu_of(rq));
674}
675
bf5c91ba
IM
676/*
677 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
678 */
679#ifdef CONFIG_SCHED_DEBUG
680# define const_debug __read_mostly
681#else
682# define const_debug static const
683#endif
684
017730c1
IM
685/**
686 * runqueue_is_locked
687 *
688 * Returns true if the current cpu runqueue is locked.
689 * This interface allows printk to be called with the runqueue lock
690 * held and know whether or not it is OK to wake up the klogd.
691 */
692int runqueue_is_locked(void)
693{
694 int cpu = get_cpu();
695 struct rq *rq = cpu_rq(cpu);
696 int ret;
697
698 ret = spin_is_locked(&rq->lock);
699 put_cpu();
700 return ret;
701}
702
bf5c91ba
IM
703/*
704 * Debugging: various feature bits
705 */
f00b45c1
PZ
706
707#define SCHED_FEAT(name, enabled) \
708 __SCHED_FEAT_##name ,
709
bf5c91ba 710enum {
f00b45c1 711#include "sched_features.h"
bf5c91ba
IM
712};
713
f00b45c1
PZ
714#undef SCHED_FEAT
715
716#define SCHED_FEAT(name, enabled) \
717 (1UL << __SCHED_FEAT_##name) * enabled |
718
bf5c91ba 719const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
720#include "sched_features.h"
721 0;
722
723#undef SCHED_FEAT
724
725#ifdef CONFIG_SCHED_DEBUG
726#define SCHED_FEAT(name, enabled) \
727 #name ,
728
983ed7a6 729static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
730#include "sched_features.h"
731 NULL
732};
733
734#undef SCHED_FEAT
735
34f3a814 736static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 737{
f00b45c1
PZ
738 int i;
739
740 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
741 if (!(sysctl_sched_features & (1UL << i)))
742 seq_puts(m, "NO_");
743 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 744 }
34f3a814 745 seq_puts(m, "\n");
f00b45c1 746
34f3a814 747 return 0;
f00b45c1
PZ
748}
749
750static ssize_t
751sched_feat_write(struct file *filp, const char __user *ubuf,
752 size_t cnt, loff_t *ppos)
753{
754 char buf[64];
755 char *cmp = buf;
756 int neg = 0;
757 int i;
758
759 if (cnt > 63)
760 cnt = 63;
761
762 if (copy_from_user(&buf, ubuf, cnt))
763 return -EFAULT;
764
765 buf[cnt] = 0;
766
c24b7c52 767 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
768 neg = 1;
769 cmp += 3;
770 }
771
772 for (i = 0; sched_feat_names[i]; i++) {
773 int len = strlen(sched_feat_names[i]);
774
775 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
776 if (neg)
777 sysctl_sched_features &= ~(1UL << i);
778 else
779 sysctl_sched_features |= (1UL << i);
780 break;
781 }
782 }
783
784 if (!sched_feat_names[i])
785 return -EINVAL;
786
787 filp->f_pos += cnt;
788
789 return cnt;
790}
791
34f3a814
LZ
792static int sched_feat_open(struct inode *inode, struct file *filp)
793{
794 return single_open(filp, sched_feat_show, NULL);
795}
796
f00b45c1 797static struct file_operations sched_feat_fops = {
34f3a814
LZ
798 .open = sched_feat_open,
799 .write = sched_feat_write,
800 .read = seq_read,
801 .llseek = seq_lseek,
802 .release = single_release,
f00b45c1
PZ
803};
804
805static __init int sched_init_debug(void)
806{
f00b45c1
PZ
807 debugfs_create_file("sched_features", 0644, NULL, NULL,
808 &sched_feat_fops);
809
810 return 0;
811}
812late_initcall(sched_init_debug);
813
814#endif
815
816#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 817
b82d9fdd
PZ
818/*
819 * Number of tasks to iterate in a single balance run.
820 * Limited because this is done with IRQs disabled.
821 */
822const_debug unsigned int sysctl_sched_nr_migrate = 32;
823
2398f2c6
PZ
824/*
825 * ratelimit for updating the group shares.
55cd5340 826 * default: 0.25ms
2398f2c6 827 */
55cd5340 828unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 829
ffda12a1
PZ
830/*
831 * Inject some fuzzyness into changing the per-cpu group shares
832 * this avoids remote rq-locks at the expense of fairness.
833 * default: 4
834 */
835unsigned int sysctl_sched_shares_thresh = 4;
836
fa85ae24 837/*
9f0c1e56 838 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
839 * default: 1s
840 */
9f0c1e56 841unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 842
6892b75e
IM
843static __read_mostly int scheduler_running;
844
9f0c1e56
PZ
845/*
846 * part of the period that we allow rt tasks to run in us.
847 * default: 0.95s
848 */
849int sysctl_sched_rt_runtime = 950000;
fa85ae24 850
d0b27fa7
PZ
851static inline u64 global_rt_period(void)
852{
853 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
854}
855
856static inline u64 global_rt_runtime(void)
857{
e26873bb 858 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
859 return RUNTIME_INF;
860
861 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
862}
fa85ae24 863
1da177e4 864#ifndef prepare_arch_switch
4866cde0
NP
865# define prepare_arch_switch(next) do { } while (0)
866#endif
867#ifndef finish_arch_switch
868# define finish_arch_switch(prev) do { } while (0)
869#endif
870
051a1d1a
DA
871static inline int task_current(struct rq *rq, struct task_struct *p)
872{
873 return rq->curr == p;
874}
875
4866cde0 876#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 877static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 878{
051a1d1a 879 return task_current(rq, p);
4866cde0
NP
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884}
885
70b97a7f 886static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 887{
da04c035
IM
888#ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq->lock.owner = current;
891#endif
8a25d5de
IM
892 /*
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
895 * prev into current:
896 */
897 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
898
4866cde0
NP
899 spin_unlock_irq(&rq->lock);
900}
901
902#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 903static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
904{
905#ifdef CONFIG_SMP
906 return p->oncpu;
907#else
051a1d1a 908 return task_current(rq, p);
4866cde0
NP
909#endif
910}
911
70b97a7f 912static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
913{
914#ifdef CONFIG_SMP
915 /*
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
918 * here.
919 */
920 next->oncpu = 1;
921#endif
922#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq->lock);
924#else
925 spin_unlock(&rq->lock);
926#endif
927}
928
70b97a7f 929static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
930{
931#ifdef CONFIG_SMP
932 /*
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
935 * finished.
936 */
937 smp_wmb();
938 prev->oncpu = 0;
939#endif
940#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 local_irq_enable();
1da177e4 942#endif
4866cde0
NP
943}
944#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 945
b29739f9
IM
946/*
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
949 */
70b97a7f 950static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
951 __acquires(rq->lock)
952{
3a5c359a
AK
953 for (;;) {
954 struct rq *rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
b29739f9 958 spin_unlock(&rq->lock);
b29739f9 959 }
b29739f9
IM
960}
961
1da177e4
LT
962/*
963 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 964 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
965 * explicitly disabling preemption.
966 */
70b97a7f 967static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
968 __acquires(rq->lock)
969{
70b97a7f 970 struct rq *rq;
1da177e4 971
3a5c359a
AK
972 for (;;) {
973 local_irq_save(*flags);
974 rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
1da177e4 978 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 979 }
1da177e4
LT
980}
981
ad474cac
ON
982void task_rq_unlock_wait(struct task_struct *p)
983{
984 struct rq *rq = task_rq(p);
985
986 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 spin_unlock_wait(&rq->lock);
988}
989
a9957449 990static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
991 __releases(rq->lock)
992{
993 spin_unlock(&rq->lock);
994}
995
70b97a7f 996static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
997 __releases(rq->lock)
998{
999 spin_unlock_irqrestore(&rq->lock, *flags);
1000}
1001
1da177e4 1002/*
cc2a73b5 1003 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1004 */
a9957449 1005static struct rq *this_rq_lock(void)
1da177e4
LT
1006 __acquires(rq->lock)
1007{
70b97a7f 1008 struct rq *rq;
1da177e4
LT
1009
1010 local_irq_disable();
1011 rq = this_rq();
1012 spin_lock(&rq->lock);
1013
1014 return rq;
1015}
1016
8f4d37ec
PZ
1017#ifdef CONFIG_SCHED_HRTICK
1018/*
1019 * Use HR-timers to deliver accurate preemption points.
1020 *
1021 * Its all a bit involved since we cannot program an hrt while holding the
1022 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1023 * reschedule event.
1024 *
1025 * When we get rescheduled we reprogram the hrtick_timer outside of the
1026 * rq->lock.
1027 */
8f4d37ec
PZ
1028
1029/*
1030 * Use hrtick when:
1031 * - enabled by features
1032 * - hrtimer is actually high res
1033 */
1034static inline int hrtick_enabled(struct rq *rq)
1035{
1036 if (!sched_feat(HRTICK))
1037 return 0;
ba42059f 1038 if (!cpu_active(cpu_of(rq)))
b328ca18 1039 return 0;
8f4d37ec
PZ
1040 return hrtimer_is_hres_active(&rq->hrtick_timer);
1041}
1042
8f4d37ec
PZ
1043static void hrtick_clear(struct rq *rq)
1044{
1045 if (hrtimer_active(&rq->hrtick_timer))
1046 hrtimer_cancel(&rq->hrtick_timer);
1047}
1048
8f4d37ec
PZ
1049/*
1050 * High-resolution timer tick.
1051 * Runs from hardirq context with interrupts disabled.
1052 */
1053static enum hrtimer_restart hrtick(struct hrtimer *timer)
1054{
1055 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1056
1057 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1058
1059 spin_lock(&rq->lock);
3e51f33f 1060 update_rq_clock(rq);
8f4d37ec
PZ
1061 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1062 spin_unlock(&rq->lock);
1063
1064 return HRTIMER_NORESTART;
1065}
1066
95e904c7 1067#ifdef CONFIG_SMP
31656519
PZ
1068/*
1069 * called from hardirq (IPI) context
1070 */
1071static void __hrtick_start(void *arg)
b328ca18 1072{
31656519 1073 struct rq *rq = arg;
b328ca18 1074
31656519
PZ
1075 spin_lock(&rq->lock);
1076 hrtimer_restart(&rq->hrtick_timer);
1077 rq->hrtick_csd_pending = 0;
1078 spin_unlock(&rq->lock);
b328ca18
PZ
1079}
1080
31656519
PZ
1081/*
1082 * Called to set the hrtick timer state.
1083 *
1084 * called with rq->lock held and irqs disabled
1085 */
1086static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1087{
31656519
PZ
1088 struct hrtimer *timer = &rq->hrtick_timer;
1089 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1090
cc584b21 1091 hrtimer_set_expires(timer, time);
31656519
PZ
1092
1093 if (rq == this_rq()) {
1094 hrtimer_restart(timer);
1095 } else if (!rq->hrtick_csd_pending) {
1096 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1097 rq->hrtick_csd_pending = 1;
1098 }
b328ca18
PZ
1099}
1100
1101static int
1102hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1103{
1104 int cpu = (int)(long)hcpu;
1105
1106 switch (action) {
1107 case CPU_UP_CANCELED:
1108 case CPU_UP_CANCELED_FROZEN:
1109 case CPU_DOWN_PREPARE:
1110 case CPU_DOWN_PREPARE_FROZEN:
1111 case CPU_DEAD:
1112 case CPU_DEAD_FROZEN:
31656519 1113 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1114 return NOTIFY_OK;
1115 }
1116
1117 return NOTIFY_DONE;
1118}
1119
fa748203 1120static __init void init_hrtick(void)
b328ca18
PZ
1121{
1122 hotcpu_notifier(hotplug_hrtick, 0);
1123}
31656519
PZ
1124#else
1125/*
1126 * Called to set the hrtick timer state.
1127 *
1128 * called with rq->lock held and irqs disabled
1129 */
1130static void hrtick_start(struct rq *rq, u64 delay)
1131{
1132 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1133}
b328ca18 1134
006c75f1 1135static inline void init_hrtick(void)
8f4d37ec 1136{
8f4d37ec 1137}
31656519 1138#endif /* CONFIG_SMP */
8f4d37ec 1139
31656519 1140static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1141{
31656519
PZ
1142#ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
8f4d37ec 1144
31656519
PZ
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148#endif
8f4d37ec 1149
31656519
PZ
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
8f4d37ec 1152}
006c75f1 1153#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1154static inline void hrtick_clear(struct rq *rq)
1155{
1156}
1157
8f4d37ec
PZ
1158static inline void init_rq_hrtick(struct rq *rq)
1159{
1160}
1161
b328ca18
PZ
1162static inline void init_hrtick(void)
1163{
1164}
006c75f1 1165#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1166
c24d20db
IM
1167/*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174#ifdef CONFIG_SMP
1175
1176#ifndef tsk_is_polling
1177#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178#endif
1179
31656519 1180static void resched_task(struct task_struct *p)
c24d20db
IM
1181{
1182 int cpu;
1183
1184 assert_spin_locked(&task_rq(p)->lock);
1185
31656519 1186 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1187 return;
1188
31656519 1189 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199}
1200
1201static void resched_cpu(int cpu)
1202{
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1210}
06d8308c
TG
1211
1212#ifdef CONFIG_NO_HZ
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
1245 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251}
6d6bc0ad 1252#endif /* CONFIG_NO_HZ */
06d8308c 1253
6d6bc0ad 1254#else /* !CONFIG_SMP */
31656519 1255static void resched_task(struct task_struct *p)
c24d20db
IM
1256{
1257 assert_spin_locked(&task_rq(p)->lock);
31656519 1258 set_tsk_need_resched(p);
c24d20db 1259}
6d6bc0ad 1260#endif /* CONFIG_SMP */
c24d20db 1261
45bf76df
IM
1262#if BITS_PER_LONG == 32
1263# define WMULT_CONST (~0UL)
1264#else
1265# define WMULT_CONST (1UL << 32)
1266#endif
1267
1268#define WMULT_SHIFT 32
1269
194081eb
IM
1270/*
1271 * Shift right and round:
1272 */
cf2ab469 1273#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1274
a7be37ac
PZ
1275/*
1276 * delta *= weight / lw
1277 */
cb1c4fc9 1278static unsigned long
45bf76df
IM
1279calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1280 struct load_weight *lw)
1281{
1282 u64 tmp;
1283
7a232e03
LJ
1284 if (!lw->inv_weight) {
1285 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1286 lw->inv_weight = 1;
1287 else
1288 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1289 / (lw->weight+1);
1290 }
45bf76df
IM
1291
1292 tmp = (u64)delta_exec * weight;
1293 /*
1294 * Check whether we'd overflow the 64-bit multiplication:
1295 */
194081eb 1296 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1297 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1298 WMULT_SHIFT/2);
1299 else
cf2ab469 1300 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1301
ecf691da 1302 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1303}
1304
1091985b 1305static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1306{
1307 lw->weight += inc;
e89996ae 1308 lw->inv_weight = 0;
45bf76df
IM
1309}
1310
1091985b 1311static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1312{
1313 lw->weight -= dec;
e89996ae 1314 lw->inv_weight = 0;
45bf76df
IM
1315}
1316
2dd73a4f
PW
1317/*
1318 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1319 * of tasks with abnormal "nice" values across CPUs the contribution that
1320 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1321 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1322 * scaled version of the new time slice allocation that they receive on time
1323 * slice expiry etc.
1324 */
1325
cce7ade8
PZ
1326#define WEIGHT_IDLEPRIO 3
1327#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1328
1329/*
1330 * Nice levels are multiplicative, with a gentle 10% change for every
1331 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1332 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1333 * that remained on nice 0.
1334 *
1335 * The "10% effect" is relative and cumulative: from _any_ nice level,
1336 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1337 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1338 * If a task goes up by ~10% and another task goes down by ~10% then
1339 * the relative distance between them is ~25%.)
dd41f596
IM
1340 */
1341static const int prio_to_weight[40] = {
254753dc
IM
1342 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1343 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1344 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1345 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1346 /* 0 */ 1024, 820, 655, 526, 423,
1347 /* 5 */ 335, 272, 215, 172, 137,
1348 /* 10 */ 110, 87, 70, 56, 45,
1349 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1350};
1351
5714d2de
IM
1352/*
1353 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1354 *
1355 * In cases where the weight does not change often, we can use the
1356 * precalculated inverse to speed up arithmetics by turning divisions
1357 * into multiplications:
1358 */
dd41f596 1359static const u32 prio_to_wmult[40] = {
254753dc
IM
1360 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1361 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1362 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1363 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1364 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1365 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1366 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1367 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1368};
2dd73a4f 1369
dd41f596
IM
1370static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1371
1372/*
1373 * runqueue iterator, to support SMP load-balancing between different
1374 * scheduling classes, without having to expose their internal data
1375 * structures to the load-balancing proper:
1376 */
1377struct rq_iterator {
1378 void *arg;
1379 struct task_struct *(*start)(void *);
1380 struct task_struct *(*next)(void *);
1381};
1382
e1d1484f
PW
1383#ifdef CONFIG_SMP
1384static unsigned long
1385balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1386 unsigned long max_load_move, struct sched_domain *sd,
1387 enum cpu_idle_type idle, int *all_pinned,
1388 int *this_best_prio, struct rq_iterator *iterator);
1389
1390static int
1391iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1392 struct sched_domain *sd, enum cpu_idle_type idle,
1393 struct rq_iterator *iterator);
e1d1484f 1394#endif
dd41f596 1395
d842de87
SV
1396#ifdef CONFIG_CGROUP_CPUACCT
1397static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1398#else
1399static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1400#endif
1401
18d95a28
PZ
1402static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1403{
1404 update_load_add(&rq->load, load);
1405}
1406
1407static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1408{
1409 update_load_sub(&rq->load, load);
1410}
1411
7940ca36 1412#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1413typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1414
1415/*
1416 * Iterate the full tree, calling @down when first entering a node and @up when
1417 * leaving it for the final time.
1418 */
eb755805 1419static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1420{
1421 struct task_group *parent, *child;
eb755805 1422 int ret;
c09595f6
PZ
1423
1424 rcu_read_lock();
1425 parent = &root_task_group;
1426down:
eb755805
PZ
1427 ret = (*down)(parent, data);
1428 if (ret)
1429 goto out_unlock;
c09595f6
PZ
1430 list_for_each_entry_rcu(child, &parent->children, siblings) {
1431 parent = child;
1432 goto down;
1433
1434up:
1435 continue;
1436 }
eb755805
PZ
1437 ret = (*up)(parent, data);
1438 if (ret)
1439 goto out_unlock;
c09595f6
PZ
1440
1441 child = parent;
1442 parent = parent->parent;
1443 if (parent)
1444 goto up;
eb755805 1445out_unlock:
c09595f6 1446 rcu_read_unlock();
eb755805
PZ
1447
1448 return ret;
c09595f6
PZ
1449}
1450
eb755805
PZ
1451static int tg_nop(struct task_group *tg, void *data)
1452{
1453 return 0;
c09595f6 1454}
eb755805
PZ
1455#endif
1456
1457#ifdef CONFIG_SMP
1458static unsigned long source_load(int cpu, int type);
1459static unsigned long target_load(int cpu, int type);
1460static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1461
1462static unsigned long cpu_avg_load_per_task(int cpu)
1463{
1464 struct rq *rq = cpu_rq(cpu);
af6d596f 1465 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1466
4cd42620
SR
1467 if (nr_running)
1468 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1469 else
1470 rq->avg_load_per_task = 0;
eb755805
PZ
1471
1472 return rq->avg_load_per_task;
1473}
1474
1475#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1476
c09595f6
PZ
1477static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1478
1479/*
1480 * Calculate and set the cpu's group shares.
1481 */
1482static void
ffda12a1
PZ
1483update_group_shares_cpu(struct task_group *tg, int cpu,
1484 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1485{
c09595f6
PZ
1486 unsigned long shares;
1487 unsigned long rq_weight;
1488
c8cba857 1489 if (!tg->se[cpu])
c09595f6
PZ
1490 return;
1491
ec4e0e2f 1492 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1493
c09595f6
PZ
1494 /*
1495 * \Sum shares * rq_weight
1496 * shares = -----------------------
1497 * \Sum rq_weight
1498 *
1499 */
ec4e0e2f 1500 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1501 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1502
ffda12a1
PZ
1503 if (abs(shares - tg->se[cpu]->load.weight) >
1504 sysctl_sched_shares_thresh) {
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long flags;
c09595f6 1507
ffda12a1 1508 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1509 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1510
ffda12a1
PZ
1511 __set_se_shares(tg->se[cpu], shares);
1512 spin_unlock_irqrestore(&rq->lock, flags);
1513 }
18d95a28 1514}
c09595f6
PZ
1515
1516/*
c8cba857
PZ
1517 * Re-compute the task group their per cpu shares over the given domain.
1518 * This needs to be done in a bottom-up fashion because the rq weight of a
1519 * parent group depends on the shares of its child groups.
c09595f6 1520 */
eb755805 1521static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1522{
ec4e0e2f 1523 unsigned long weight, rq_weight = 0;
c8cba857 1524 unsigned long shares = 0;
eb755805 1525 struct sched_domain *sd = data;
c8cba857 1526 int i;
c09595f6 1527
758b2cdc 1528 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1529 /*
1530 * If there are currently no tasks on the cpu pretend there
1531 * is one of average load so that when a new task gets to
1532 * run here it will not get delayed by group starvation.
1533 */
1534 weight = tg->cfs_rq[i]->load.weight;
1535 if (!weight)
1536 weight = NICE_0_LOAD;
1537
1538 tg->cfs_rq[i]->rq_weight = weight;
1539 rq_weight += weight;
c8cba857 1540 shares += tg->cfs_rq[i]->shares;
c09595f6 1541 }
c09595f6 1542
c8cba857
PZ
1543 if ((!shares && rq_weight) || shares > tg->shares)
1544 shares = tg->shares;
1545
1546 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1547 shares = tg->shares;
c09595f6 1548
758b2cdc 1549 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1550 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1551
1552 return 0;
c09595f6
PZ
1553}
1554
1555/*
c8cba857
PZ
1556 * Compute the cpu's hierarchical load factor for each task group.
1557 * This needs to be done in a top-down fashion because the load of a child
1558 * group is a fraction of its parents load.
c09595f6 1559 */
eb755805 1560static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1561{
c8cba857 1562 unsigned long load;
eb755805 1563 long cpu = (long)data;
c09595f6 1564
c8cba857
PZ
1565 if (!tg->parent) {
1566 load = cpu_rq(cpu)->load.weight;
1567 } else {
1568 load = tg->parent->cfs_rq[cpu]->h_load;
1569 load *= tg->cfs_rq[cpu]->shares;
1570 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1571 }
c09595f6 1572
c8cba857 1573 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1574
eb755805 1575 return 0;
c09595f6
PZ
1576}
1577
c8cba857 1578static void update_shares(struct sched_domain *sd)
4d8d595d 1579{
2398f2c6
PZ
1580 u64 now = cpu_clock(raw_smp_processor_id());
1581 s64 elapsed = now - sd->last_update;
e1d1484f 1582
2398f2c6
PZ
1583 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1584 sd->last_update = now;
eb755805 1585 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1586 }
4d8d595d
PZ
1587}
1588
3e5459b4
PZ
1589static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1590{
1591 spin_unlock(&rq->lock);
1592 update_shares(sd);
1593 spin_lock(&rq->lock);
1594}
1595
eb755805 1596static void update_h_load(long cpu)
c09595f6 1597{
eb755805 1598 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6 1599}
dd41f596 1600
d842de87 1601#else
d842de87 1602
c8cba857 1603static inline void update_shares(struct sched_domain *sd)
18d95a28 1604{
18d95a28
PZ
1605}
1606
3e5459b4 1607static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
18d95a28 1608{
18d95a28
PZ
1609}
1610
18d95a28
PZ
1611#endif
1612
70574a99
AD
1613/*
1614 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1615 */
1616static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1617 __releases(this_rq->lock)
1618 __acquires(busiest->lock)
1619 __acquires(this_rq->lock)
1620{
1621 int ret = 0;
1622
1623 if (unlikely(!irqs_disabled())) {
1624 /* printk() doesn't work good under rq->lock */
1625 spin_unlock(&this_rq->lock);
1626 BUG_ON(1);
1627 }
1628 if (unlikely(!spin_trylock(&busiest->lock))) {
1629 if (busiest < this_rq) {
1630 spin_unlock(&this_rq->lock);
1631 spin_lock(&busiest->lock);
1632 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1633 ret = 1;
1634 } else
1635 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1636 }
1637 return ret;
1638}
1639
1640static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1642{
1643 spin_unlock(&busiest->lock);
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645}
18d95a28 1646#endif
18d95a28
PZ
1647
1648#ifdef CONFIG_FAIR_GROUP_SCHED
1649static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1650{
30432094 1651#ifdef CONFIG_SMP
34e83e85
IM
1652 cfs_rq->shares = shares;
1653#endif
18d95a28
PZ
1654}
1655#endif
1656
dd41f596 1657#include "sched_stats.h"
dd41f596 1658#include "sched_idletask.c"
5522d5d5
IM
1659#include "sched_fair.c"
1660#include "sched_rt.c"
dd41f596
IM
1661#ifdef CONFIG_SCHED_DEBUG
1662# include "sched_debug.c"
1663#endif
1664
1665#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1666#define for_each_class(class) \
1667 for (class = sched_class_highest; class; class = class->next)
dd41f596 1668
c09595f6 1669static void inc_nr_running(struct rq *rq)
9c217245
IM
1670{
1671 rq->nr_running++;
9c217245
IM
1672}
1673
c09595f6 1674static void dec_nr_running(struct rq *rq)
9c217245
IM
1675{
1676 rq->nr_running--;
9c217245
IM
1677}
1678
45bf76df
IM
1679static void set_load_weight(struct task_struct *p)
1680{
1681 if (task_has_rt_policy(p)) {
dd41f596
IM
1682 p->se.load.weight = prio_to_weight[0] * 2;
1683 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1684 return;
1685 }
45bf76df 1686
dd41f596
IM
1687 /*
1688 * SCHED_IDLE tasks get minimal weight:
1689 */
1690 if (p->policy == SCHED_IDLE) {
1691 p->se.load.weight = WEIGHT_IDLEPRIO;
1692 p->se.load.inv_weight = WMULT_IDLEPRIO;
1693 return;
1694 }
71f8bd46 1695
dd41f596
IM
1696 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1697 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1698}
1699
2087a1ad
GH
1700static void update_avg(u64 *avg, u64 sample)
1701{
1702 s64 diff = sample - *avg;
1703 *avg += diff >> 3;
1704}
1705
8159f87e 1706static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1707{
dd41f596 1708 sched_info_queued(p);
fd390f6a 1709 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1710 p->se.on_rq = 1;
71f8bd46
IM
1711}
1712
69be72c1 1713static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1714{
2087a1ad
GH
1715 if (sleep && p->se.last_wakeup) {
1716 update_avg(&p->se.avg_overlap,
1717 p->se.sum_exec_runtime - p->se.last_wakeup);
1718 p->se.last_wakeup = 0;
1719 }
1720
46ac22ba 1721 sched_info_dequeued(p);
f02231e5 1722 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1723 p->se.on_rq = 0;
71f8bd46
IM
1724}
1725
14531189 1726/*
dd41f596 1727 * __normal_prio - return the priority that is based on the static prio
14531189 1728 */
14531189
IM
1729static inline int __normal_prio(struct task_struct *p)
1730{
dd41f596 1731 return p->static_prio;
14531189
IM
1732}
1733
b29739f9
IM
1734/*
1735 * Calculate the expected normal priority: i.e. priority
1736 * without taking RT-inheritance into account. Might be
1737 * boosted by interactivity modifiers. Changes upon fork,
1738 * setprio syscalls, and whenever the interactivity
1739 * estimator recalculates.
1740 */
36c8b586 1741static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1742{
1743 int prio;
1744
e05606d3 1745 if (task_has_rt_policy(p))
b29739f9
IM
1746 prio = MAX_RT_PRIO-1 - p->rt_priority;
1747 else
1748 prio = __normal_prio(p);
1749 return prio;
1750}
1751
1752/*
1753 * Calculate the current priority, i.e. the priority
1754 * taken into account by the scheduler. This value might
1755 * be boosted by RT tasks, or might be boosted by
1756 * interactivity modifiers. Will be RT if the task got
1757 * RT-boosted. If not then it returns p->normal_prio.
1758 */
36c8b586 1759static int effective_prio(struct task_struct *p)
b29739f9
IM
1760{
1761 p->normal_prio = normal_prio(p);
1762 /*
1763 * If we are RT tasks or we were boosted to RT priority,
1764 * keep the priority unchanged. Otherwise, update priority
1765 * to the normal priority:
1766 */
1767 if (!rt_prio(p->prio))
1768 return p->normal_prio;
1769 return p->prio;
1770}
1771
1da177e4 1772/*
dd41f596 1773 * activate_task - move a task to the runqueue.
1da177e4 1774 */
dd41f596 1775static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1776{
d9514f6c 1777 if (task_contributes_to_load(p))
dd41f596 1778 rq->nr_uninterruptible--;
1da177e4 1779
8159f87e 1780 enqueue_task(rq, p, wakeup);
c09595f6 1781 inc_nr_running(rq);
1da177e4
LT
1782}
1783
1da177e4
LT
1784/*
1785 * deactivate_task - remove a task from the runqueue.
1786 */
2e1cb74a 1787static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1788{
d9514f6c 1789 if (task_contributes_to_load(p))
dd41f596
IM
1790 rq->nr_uninterruptible++;
1791
69be72c1 1792 dequeue_task(rq, p, sleep);
c09595f6 1793 dec_nr_running(rq);
1da177e4
LT
1794}
1795
1da177e4
LT
1796/**
1797 * task_curr - is this task currently executing on a CPU?
1798 * @p: the task in question.
1799 */
36c8b586 1800inline int task_curr(const struct task_struct *p)
1da177e4
LT
1801{
1802 return cpu_curr(task_cpu(p)) == p;
1803}
1804
dd41f596
IM
1805static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1806{
6f505b16 1807 set_task_rq(p, cpu);
dd41f596 1808#ifdef CONFIG_SMP
ce96b5ac
DA
1809 /*
1810 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1811 * successfuly executed on another CPU. We must ensure that updates of
1812 * per-task data have been completed by this moment.
1813 */
1814 smp_wmb();
dd41f596 1815 task_thread_info(p)->cpu = cpu;
dd41f596 1816#endif
2dd73a4f
PW
1817}
1818
cb469845
SR
1819static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1820 const struct sched_class *prev_class,
1821 int oldprio, int running)
1822{
1823 if (prev_class != p->sched_class) {
1824 if (prev_class->switched_from)
1825 prev_class->switched_from(rq, p, running);
1826 p->sched_class->switched_to(rq, p, running);
1827 } else
1828 p->sched_class->prio_changed(rq, p, oldprio, running);
1829}
1830
1da177e4 1831#ifdef CONFIG_SMP
c65cc870 1832
e958b360
TG
1833/* Used instead of source_load when we know the type == 0 */
1834static unsigned long weighted_cpuload(const int cpu)
1835{
1836 return cpu_rq(cpu)->load.weight;
1837}
1838
cc367732
IM
1839/*
1840 * Is this task likely cache-hot:
1841 */
e7693a36 1842static int
cc367732
IM
1843task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1844{
1845 s64 delta;
1846
f540a608
IM
1847 /*
1848 * Buddy candidates are cache hot:
1849 */
4793241b
PZ
1850 if (sched_feat(CACHE_HOT_BUDDY) &&
1851 (&p->se == cfs_rq_of(&p->se)->next ||
1852 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1853 return 1;
1854
cc367732
IM
1855 if (p->sched_class != &fair_sched_class)
1856 return 0;
1857
6bc1665b
IM
1858 if (sysctl_sched_migration_cost == -1)
1859 return 1;
1860 if (sysctl_sched_migration_cost == 0)
1861 return 0;
1862
cc367732
IM
1863 delta = now - p->se.exec_start;
1864
1865 return delta < (s64)sysctl_sched_migration_cost;
1866}
1867
1868
dd41f596 1869void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1870{
dd41f596
IM
1871 int old_cpu = task_cpu(p);
1872 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1873 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1874 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1875 u64 clock_offset;
dd41f596
IM
1876
1877 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1878
cbc34ed1
PZ
1879 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1880
6cfb0d5d
IM
1881#ifdef CONFIG_SCHEDSTATS
1882 if (p->se.wait_start)
1883 p->se.wait_start -= clock_offset;
dd41f596
IM
1884 if (p->se.sleep_start)
1885 p->se.sleep_start -= clock_offset;
1886 if (p->se.block_start)
1887 p->se.block_start -= clock_offset;
cc367732
IM
1888 if (old_cpu != new_cpu) {
1889 schedstat_inc(p, se.nr_migrations);
1890 if (task_hot(p, old_rq->clock, NULL))
1891 schedstat_inc(p, se.nr_forced2_migrations);
1892 }
6cfb0d5d 1893#endif
2830cf8c
SV
1894 p->se.vruntime -= old_cfsrq->min_vruntime -
1895 new_cfsrq->min_vruntime;
dd41f596
IM
1896
1897 __set_task_cpu(p, new_cpu);
c65cc870
IM
1898}
1899
70b97a7f 1900struct migration_req {
1da177e4 1901 struct list_head list;
1da177e4 1902
36c8b586 1903 struct task_struct *task;
1da177e4
LT
1904 int dest_cpu;
1905
1da177e4 1906 struct completion done;
70b97a7f 1907};
1da177e4
LT
1908
1909/*
1910 * The task's runqueue lock must be held.
1911 * Returns true if you have to wait for migration thread.
1912 */
36c8b586 1913static int
70b97a7f 1914migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1915{
70b97a7f 1916 struct rq *rq = task_rq(p);
1da177e4
LT
1917
1918 /*
1919 * If the task is not on a runqueue (and not running), then
1920 * it is sufficient to simply update the task's cpu field.
1921 */
dd41f596 1922 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1923 set_task_cpu(p, dest_cpu);
1924 return 0;
1925 }
1926
1927 init_completion(&req->done);
1da177e4
LT
1928 req->task = p;
1929 req->dest_cpu = dest_cpu;
1930 list_add(&req->list, &rq->migration_queue);
48f24c4d 1931
1da177e4
LT
1932 return 1;
1933}
1934
1935/*
1936 * wait_task_inactive - wait for a thread to unschedule.
1937 *
85ba2d86
RM
1938 * If @match_state is nonzero, it's the @p->state value just checked and
1939 * not expected to change. If it changes, i.e. @p might have woken up,
1940 * then return zero. When we succeed in waiting for @p to be off its CPU,
1941 * we return a positive number (its total switch count). If a second call
1942 * a short while later returns the same number, the caller can be sure that
1943 * @p has remained unscheduled the whole time.
1944 *
1da177e4
LT
1945 * The caller must ensure that the task *will* unschedule sometime soon,
1946 * else this function might spin for a *long* time. This function can't
1947 * be called with interrupts off, or it may introduce deadlock with
1948 * smp_call_function() if an IPI is sent by the same process we are
1949 * waiting to become inactive.
1950 */
85ba2d86 1951unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1952{
1953 unsigned long flags;
dd41f596 1954 int running, on_rq;
85ba2d86 1955 unsigned long ncsw;
70b97a7f 1956 struct rq *rq;
1da177e4 1957
3a5c359a
AK
1958 for (;;) {
1959 /*
1960 * We do the initial early heuristics without holding
1961 * any task-queue locks at all. We'll only try to get
1962 * the runqueue lock when things look like they will
1963 * work out!
1964 */
1965 rq = task_rq(p);
fa490cfd 1966
3a5c359a
AK
1967 /*
1968 * If the task is actively running on another CPU
1969 * still, just relax and busy-wait without holding
1970 * any locks.
1971 *
1972 * NOTE! Since we don't hold any locks, it's not
1973 * even sure that "rq" stays as the right runqueue!
1974 * But we don't care, since "task_running()" will
1975 * return false if the runqueue has changed and p
1976 * is actually now running somewhere else!
1977 */
85ba2d86
RM
1978 while (task_running(rq, p)) {
1979 if (match_state && unlikely(p->state != match_state))
1980 return 0;
3a5c359a 1981 cpu_relax();
85ba2d86 1982 }
fa490cfd 1983
3a5c359a
AK
1984 /*
1985 * Ok, time to look more closely! We need the rq
1986 * lock now, to be *sure*. If we're wrong, we'll
1987 * just go back and repeat.
1988 */
1989 rq = task_rq_lock(p, &flags);
0a16b607 1990 trace_sched_wait_task(rq, p);
3a5c359a
AK
1991 running = task_running(rq, p);
1992 on_rq = p->se.on_rq;
85ba2d86 1993 ncsw = 0;
f31e11d8 1994 if (!match_state || p->state == match_state)
93dcf55f 1995 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1996 task_rq_unlock(rq, &flags);
fa490cfd 1997
85ba2d86
RM
1998 /*
1999 * If it changed from the expected state, bail out now.
2000 */
2001 if (unlikely(!ncsw))
2002 break;
2003
3a5c359a
AK
2004 /*
2005 * Was it really running after all now that we
2006 * checked with the proper locks actually held?
2007 *
2008 * Oops. Go back and try again..
2009 */
2010 if (unlikely(running)) {
2011 cpu_relax();
2012 continue;
2013 }
fa490cfd 2014
3a5c359a
AK
2015 /*
2016 * It's not enough that it's not actively running,
2017 * it must be off the runqueue _entirely_, and not
2018 * preempted!
2019 *
2020 * So if it wa still runnable (but just not actively
2021 * running right now), it's preempted, and we should
2022 * yield - it could be a while.
2023 */
2024 if (unlikely(on_rq)) {
2025 schedule_timeout_uninterruptible(1);
2026 continue;
2027 }
fa490cfd 2028
3a5c359a
AK
2029 /*
2030 * Ahh, all good. It wasn't running, and it wasn't
2031 * runnable, which means that it will never become
2032 * running in the future either. We're all done!
2033 */
2034 break;
2035 }
85ba2d86
RM
2036
2037 return ncsw;
1da177e4
LT
2038}
2039
2040/***
2041 * kick_process - kick a running thread to enter/exit the kernel
2042 * @p: the to-be-kicked thread
2043 *
2044 * Cause a process which is running on another CPU to enter
2045 * kernel-mode, without any delay. (to get signals handled.)
2046 *
2047 * NOTE: this function doesnt have to take the runqueue lock,
2048 * because all it wants to ensure is that the remote task enters
2049 * the kernel. If the IPI races and the task has been migrated
2050 * to another CPU then no harm is done and the purpose has been
2051 * achieved as well.
2052 */
36c8b586 2053void kick_process(struct task_struct *p)
1da177e4
LT
2054{
2055 int cpu;
2056
2057 preempt_disable();
2058 cpu = task_cpu(p);
2059 if ((cpu != smp_processor_id()) && task_curr(p))
2060 smp_send_reschedule(cpu);
2061 preempt_enable();
2062}
2063
2064/*
2dd73a4f
PW
2065 * Return a low guess at the load of a migration-source cpu weighted
2066 * according to the scheduling class and "nice" value.
1da177e4
LT
2067 *
2068 * We want to under-estimate the load of migration sources, to
2069 * balance conservatively.
2070 */
a9957449 2071static unsigned long source_load(int cpu, int type)
1da177e4 2072{
70b97a7f 2073 struct rq *rq = cpu_rq(cpu);
dd41f596 2074 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2075
93b75217 2076 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2077 return total;
b910472d 2078
dd41f596 2079 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2080}
2081
2082/*
2dd73a4f
PW
2083 * Return a high guess at the load of a migration-target cpu weighted
2084 * according to the scheduling class and "nice" value.
1da177e4 2085 */
a9957449 2086static unsigned long target_load(int cpu, int type)
1da177e4 2087{
70b97a7f 2088 struct rq *rq = cpu_rq(cpu);
dd41f596 2089 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2090
93b75217 2091 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2092 return total;
3b0bd9bc 2093
dd41f596 2094 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2095}
2096
147cbb4b
NP
2097/*
2098 * find_idlest_group finds and returns the least busy CPU group within the
2099 * domain.
2100 */
2101static struct sched_group *
2102find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2103{
2104 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2105 unsigned long min_load = ULONG_MAX, this_load = 0;
2106 int load_idx = sd->forkexec_idx;
2107 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2108
2109 do {
2110 unsigned long load, avg_load;
2111 int local_group;
2112 int i;
2113
da5a5522 2114 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2115 if (!cpumask_intersects(sched_group_cpus(group),
2116 &p->cpus_allowed))
3a5c359a 2117 continue;
da5a5522 2118
758b2cdc
RR
2119 local_group = cpumask_test_cpu(this_cpu,
2120 sched_group_cpus(group));
147cbb4b
NP
2121
2122 /* Tally up the load of all CPUs in the group */
2123 avg_load = 0;
2124
758b2cdc 2125 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2126 /* Bias balancing toward cpus of our domain */
2127 if (local_group)
2128 load = source_load(i, load_idx);
2129 else
2130 load = target_load(i, load_idx);
2131
2132 avg_load += load;
2133 }
2134
2135 /* Adjust by relative CPU power of the group */
5517d86b
ED
2136 avg_load = sg_div_cpu_power(group,
2137 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2138
2139 if (local_group) {
2140 this_load = avg_load;
2141 this = group;
2142 } else if (avg_load < min_load) {
2143 min_load = avg_load;
2144 idlest = group;
2145 }
3a5c359a 2146 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2147
2148 if (!idlest || 100*this_load < imbalance*min_load)
2149 return NULL;
2150 return idlest;
2151}
2152
2153/*
0feaece9 2154 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2155 */
95cdf3b7 2156static int
758b2cdc 2157find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2158{
2159 unsigned long load, min_load = ULONG_MAX;
2160 int idlest = -1;
2161 int i;
2162
da5a5522 2163 /* Traverse only the allowed CPUs */
758b2cdc 2164 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2165 load = weighted_cpuload(i);
147cbb4b
NP
2166
2167 if (load < min_load || (load == min_load && i == this_cpu)) {
2168 min_load = load;
2169 idlest = i;
2170 }
2171 }
2172
2173 return idlest;
2174}
2175
476d139c
NP
2176/*
2177 * sched_balance_self: balance the current task (running on cpu) in domains
2178 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2179 * SD_BALANCE_EXEC.
2180 *
2181 * Balance, ie. select the least loaded group.
2182 *
2183 * Returns the target CPU number, or the same CPU if no balancing is needed.
2184 *
2185 * preempt must be disabled.
2186 */
2187static int sched_balance_self(int cpu, int flag)
2188{
2189 struct task_struct *t = current;
2190 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2191
c96d145e 2192 for_each_domain(cpu, tmp) {
9761eea8
IM
2193 /*
2194 * If power savings logic is enabled for a domain, stop there.
2195 */
5c45bf27
SS
2196 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2197 break;
476d139c
NP
2198 if (tmp->flags & flag)
2199 sd = tmp;
c96d145e 2200 }
476d139c 2201
039a1c41
PZ
2202 if (sd)
2203 update_shares(sd);
2204
476d139c 2205 while (sd) {
476d139c 2206 struct sched_group *group;
1a848870
SS
2207 int new_cpu, weight;
2208
2209 if (!(sd->flags & flag)) {
2210 sd = sd->child;
2211 continue;
2212 }
476d139c 2213
476d139c 2214 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2215 if (!group) {
2216 sd = sd->child;
2217 continue;
2218 }
476d139c 2219
758b2cdc 2220 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2221 if (new_cpu == -1 || new_cpu == cpu) {
2222 /* Now try balancing at a lower domain level of cpu */
2223 sd = sd->child;
2224 continue;
2225 }
476d139c 2226
1a848870 2227 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2228 cpu = new_cpu;
758b2cdc 2229 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2230 sd = NULL;
476d139c 2231 for_each_domain(cpu, tmp) {
758b2cdc 2232 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2233 break;
2234 if (tmp->flags & flag)
2235 sd = tmp;
2236 }
2237 /* while loop will break here if sd == NULL */
2238 }
2239
2240 return cpu;
2241}
2242
2243#endif /* CONFIG_SMP */
1da177e4 2244
1da177e4
LT
2245/***
2246 * try_to_wake_up - wake up a thread
2247 * @p: the to-be-woken-up thread
2248 * @state: the mask of task states that can be woken
2249 * @sync: do a synchronous wakeup?
2250 *
2251 * Put it on the run-queue if it's not already there. The "current"
2252 * thread is always on the run-queue (except when the actual
2253 * re-schedule is in progress), and as such you're allowed to do
2254 * the simpler "current->state = TASK_RUNNING" to mark yourself
2255 * runnable without the overhead of this.
2256 *
2257 * returns failure only if the task is already active.
2258 */
36c8b586 2259static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2260{
cc367732 2261 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2262 unsigned long flags;
2263 long old_state;
70b97a7f 2264 struct rq *rq;
1da177e4 2265
b85d0667
IM
2266 if (!sched_feat(SYNC_WAKEUPS))
2267 sync = 0;
2268
2398f2c6
PZ
2269#ifdef CONFIG_SMP
2270 if (sched_feat(LB_WAKEUP_UPDATE)) {
2271 struct sched_domain *sd;
2272
2273 this_cpu = raw_smp_processor_id();
2274 cpu = task_cpu(p);
2275
2276 for_each_domain(this_cpu, sd) {
758b2cdc 2277 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2278 update_shares(sd);
2279 break;
2280 }
2281 }
2282 }
2283#endif
2284
04e2f174 2285 smp_wmb();
1da177e4 2286 rq = task_rq_lock(p, &flags);
03e89e45 2287 update_rq_clock(rq);
1da177e4
LT
2288 old_state = p->state;
2289 if (!(old_state & state))
2290 goto out;
2291
dd41f596 2292 if (p->se.on_rq)
1da177e4
LT
2293 goto out_running;
2294
2295 cpu = task_cpu(p);
cc367732 2296 orig_cpu = cpu;
1da177e4
LT
2297 this_cpu = smp_processor_id();
2298
2299#ifdef CONFIG_SMP
2300 if (unlikely(task_running(rq, p)))
2301 goto out_activate;
2302
5d2f5a61
DA
2303 cpu = p->sched_class->select_task_rq(p, sync);
2304 if (cpu != orig_cpu) {
2305 set_task_cpu(p, cpu);
1da177e4
LT
2306 task_rq_unlock(rq, &flags);
2307 /* might preempt at this point */
2308 rq = task_rq_lock(p, &flags);
2309 old_state = p->state;
2310 if (!(old_state & state))
2311 goto out;
dd41f596 2312 if (p->se.on_rq)
1da177e4
LT
2313 goto out_running;
2314
2315 this_cpu = smp_processor_id();
2316 cpu = task_cpu(p);
2317 }
2318
e7693a36
GH
2319#ifdef CONFIG_SCHEDSTATS
2320 schedstat_inc(rq, ttwu_count);
2321 if (cpu == this_cpu)
2322 schedstat_inc(rq, ttwu_local);
2323 else {
2324 struct sched_domain *sd;
2325 for_each_domain(this_cpu, sd) {
758b2cdc 2326 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2327 schedstat_inc(sd, ttwu_wake_remote);
2328 break;
2329 }
2330 }
2331 }
6d6bc0ad 2332#endif /* CONFIG_SCHEDSTATS */
e7693a36 2333
1da177e4
LT
2334out_activate:
2335#endif /* CONFIG_SMP */
cc367732
IM
2336 schedstat_inc(p, se.nr_wakeups);
2337 if (sync)
2338 schedstat_inc(p, se.nr_wakeups_sync);
2339 if (orig_cpu != cpu)
2340 schedstat_inc(p, se.nr_wakeups_migrate);
2341 if (cpu == this_cpu)
2342 schedstat_inc(p, se.nr_wakeups_local);
2343 else
2344 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2345 activate_task(rq, p, 1);
1da177e4
LT
2346 success = 1;
2347
2348out_running:
468a15bb 2349 trace_sched_wakeup(rq, p, success);
15afe09b 2350 check_preempt_curr(rq, p, sync);
4ae7d5ce 2351
1da177e4 2352 p->state = TASK_RUNNING;
9a897c5a
SR
2353#ifdef CONFIG_SMP
2354 if (p->sched_class->task_wake_up)
2355 p->sched_class->task_wake_up(rq, p);
2356#endif
1da177e4 2357out:
2087a1ad
GH
2358 current->se.last_wakeup = current->se.sum_exec_runtime;
2359
1da177e4
LT
2360 task_rq_unlock(rq, &flags);
2361
2362 return success;
2363}
2364
7ad5b3a5 2365int wake_up_process(struct task_struct *p)
1da177e4 2366{
d9514f6c 2367 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2368}
1da177e4
LT
2369EXPORT_SYMBOL(wake_up_process);
2370
7ad5b3a5 2371int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2372{
2373 return try_to_wake_up(p, state, 0);
2374}
2375
1da177e4
LT
2376/*
2377 * Perform scheduler related setup for a newly forked process p.
2378 * p is forked by current.
dd41f596
IM
2379 *
2380 * __sched_fork() is basic setup used by init_idle() too:
2381 */
2382static void __sched_fork(struct task_struct *p)
2383{
dd41f596
IM
2384 p->se.exec_start = 0;
2385 p->se.sum_exec_runtime = 0;
f6cf891c 2386 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2387 p->se.last_wakeup = 0;
2388 p->se.avg_overlap = 0;
6cfb0d5d
IM
2389
2390#ifdef CONFIG_SCHEDSTATS
2391 p->se.wait_start = 0;
dd41f596
IM
2392 p->se.sum_sleep_runtime = 0;
2393 p->se.sleep_start = 0;
dd41f596
IM
2394 p->se.block_start = 0;
2395 p->se.sleep_max = 0;
2396 p->se.block_max = 0;
2397 p->se.exec_max = 0;
eba1ed4b 2398 p->se.slice_max = 0;
dd41f596 2399 p->se.wait_max = 0;
6cfb0d5d 2400#endif
476d139c 2401
fa717060 2402 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2403 p->se.on_rq = 0;
4a55bd5e 2404 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2405
e107be36
AK
2406#ifdef CONFIG_PREEMPT_NOTIFIERS
2407 INIT_HLIST_HEAD(&p->preempt_notifiers);
2408#endif
2409
1da177e4
LT
2410 /*
2411 * We mark the process as running here, but have not actually
2412 * inserted it onto the runqueue yet. This guarantees that
2413 * nobody will actually run it, and a signal or other external
2414 * event cannot wake it up and insert it on the runqueue either.
2415 */
2416 p->state = TASK_RUNNING;
dd41f596
IM
2417}
2418
2419/*
2420 * fork()/clone()-time setup:
2421 */
2422void sched_fork(struct task_struct *p, int clone_flags)
2423{
2424 int cpu = get_cpu();
2425
2426 __sched_fork(p);
2427
2428#ifdef CONFIG_SMP
2429 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2430#endif
02e4bac2 2431 set_task_cpu(p, cpu);
b29739f9
IM
2432
2433 /*
2434 * Make sure we do not leak PI boosting priority to the child:
2435 */
2436 p->prio = current->normal_prio;
2ddbf952
HS
2437 if (!rt_prio(p->prio))
2438 p->sched_class = &fair_sched_class;
b29739f9 2439
52f17b6c 2440#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2441 if (likely(sched_info_on()))
52f17b6c 2442 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2443#endif
d6077cb8 2444#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2445 p->oncpu = 0;
2446#endif
1da177e4 2447#ifdef CONFIG_PREEMPT
4866cde0 2448 /* Want to start with kernel preemption disabled. */
a1261f54 2449 task_thread_info(p)->preempt_count = 1;
1da177e4 2450#endif
476d139c 2451 put_cpu();
1da177e4
LT
2452}
2453
2454/*
2455 * wake_up_new_task - wake up a newly created task for the first time.
2456 *
2457 * This function will do some initial scheduler statistics housekeeping
2458 * that must be done for every newly created context, then puts the task
2459 * on the runqueue and wakes it.
2460 */
7ad5b3a5 2461void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2462{
2463 unsigned long flags;
dd41f596 2464 struct rq *rq;
1da177e4
LT
2465
2466 rq = task_rq_lock(p, &flags);
147cbb4b 2467 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2468 update_rq_clock(rq);
1da177e4
LT
2469
2470 p->prio = effective_prio(p);
2471
b9dca1e0 2472 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2473 activate_task(rq, p, 0);
1da177e4 2474 } else {
1da177e4 2475 /*
dd41f596
IM
2476 * Let the scheduling class do new task startup
2477 * management (if any):
1da177e4 2478 */
ee0827d8 2479 p->sched_class->task_new(rq, p);
c09595f6 2480 inc_nr_running(rq);
1da177e4 2481 }
c71dd42d 2482 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2483 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2484#ifdef CONFIG_SMP
2485 if (p->sched_class->task_wake_up)
2486 p->sched_class->task_wake_up(rq, p);
2487#endif
dd41f596 2488 task_rq_unlock(rq, &flags);
1da177e4
LT
2489}
2490
e107be36
AK
2491#ifdef CONFIG_PREEMPT_NOTIFIERS
2492
2493/**
421cee29
RD
2494 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2495 * @notifier: notifier struct to register
e107be36
AK
2496 */
2497void preempt_notifier_register(struct preempt_notifier *notifier)
2498{
2499 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2500}
2501EXPORT_SYMBOL_GPL(preempt_notifier_register);
2502
2503/**
2504 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2505 * @notifier: notifier struct to unregister
e107be36
AK
2506 *
2507 * This is safe to call from within a preemption notifier.
2508 */
2509void preempt_notifier_unregister(struct preempt_notifier *notifier)
2510{
2511 hlist_del(&notifier->link);
2512}
2513EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2514
2515static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2516{
2517 struct preempt_notifier *notifier;
2518 struct hlist_node *node;
2519
2520 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2521 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2522}
2523
2524static void
2525fire_sched_out_preempt_notifiers(struct task_struct *curr,
2526 struct task_struct *next)
2527{
2528 struct preempt_notifier *notifier;
2529 struct hlist_node *node;
2530
2531 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2532 notifier->ops->sched_out(notifier, next);
2533}
2534
6d6bc0ad 2535#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2536
2537static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2538{
2539}
2540
2541static void
2542fire_sched_out_preempt_notifiers(struct task_struct *curr,
2543 struct task_struct *next)
2544{
2545}
2546
6d6bc0ad 2547#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2548
4866cde0
NP
2549/**
2550 * prepare_task_switch - prepare to switch tasks
2551 * @rq: the runqueue preparing to switch
421cee29 2552 * @prev: the current task that is being switched out
4866cde0
NP
2553 * @next: the task we are going to switch to.
2554 *
2555 * This is called with the rq lock held and interrupts off. It must
2556 * be paired with a subsequent finish_task_switch after the context
2557 * switch.
2558 *
2559 * prepare_task_switch sets up locking and calls architecture specific
2560 * hooks.
2561 */
e107be36
AK
2562static inline void
2563prepare_task_switch(struct rq *rq, struct task_struct *prev,
2564 struct task_struct *next)
4866cde0 2565{
e107be36 2566 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2567 prepare_lock_switch(rq, next);
2568 prepare_arch_switch(next);
2569}
2570
1da177e4
LT
2571/**
2572 * finish_task_switch - clean up after a task-switch
344babaa 2573 * @rq: runqueue associated with task-switch
1da177e4
LT
2574 * @prev: the thread we just switched away from.
2575 *
4866cde0
NP
2576 * finish_task_switch must be called after the context switch, paired
2577 * with a prepare_task_switch call before the context switch.
2578 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2579 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2580 *
2581 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2582 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2583 * with the lock held can cause deadlocks; see schedule() for
2584 * details.)
2585 */
a9957449 2586static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2587 __releases(rq->lock)
2588{
1da177e4 2589 struct mm_struct *mm = rq->prev_mm;
55a101f8 2590 long prev_state;
1da177e4
LT
2591
2592 rq->prev_mm = NULL;
2593
2594 /*
2595 * A task struct has one reference for the use as "current".
c394cc9f 2596 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2597 * schedule one last time. The schedule call will never return, and
2598 * the scheduled task must drop that reference.
c394cc9f 2599 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2600 * still held, otherwise prev could be scheduled on another cpu, die
2601 * there before we look at prev->state, and then the reference would
2602 * be dropped twice.
2603 * Manfred Spraul <manfred@colorfullife.com>
2604 */
55a101f8 2605 prev_state = prev->state;
4866cde0
NP
2606 finish_arch_switch(prev);
2607 finish_lock_switch(rq, prev);
9a897c5a
SR
2608#ifdef CONFIG_SMP
2609 if (current->sched_class->post_schedule)
2610 current->sched_class->post_schedule(rq);
2611#endif
e8fa1362 2612
e107be36 2613 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2614 if (mm)
2615 mmdrop(mm);
c394cc9f 2616 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2617 /*
2618 * Remove function-return probe instances associated with this
2619 * task and put them back on the free list.
9761eea8 2620 */
c6fd91f0 2621 kprobe_flush_task(prev);
1da177e4 2622 put_task_struct(prev);
c6fd91f0 2623 }
1da177e4
LT
2624}
2625
2626/**
2627 * schedule_tail - first thing a freshly forked thread must call.
2628 * @prev: the thread we just switched away from.
2629 */
36c8b586 2630asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2631 __releases(rq->lock)
2632{
70b97a7f
IM
2633 struct rq *rq = this_rq();
2634
4866cde0
NP
2635 finish_task_switch(rq, prev);
2636#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2637 /* In this case, finish_task_switch does not reenable preemption */
2638 preempt_enable();
2639#endif
1da177e4 2640 if (current->set_child_tid)
b488893a 2641 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2642}
2643
2644/*
2645 * context_switch - switch to the new MM and the new
2646 * thread's register state.
2647 */
dd41f596 2648static inline void
70b97a7f 2649context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2650 struct task_struct *next)
1da177e4 2651{
dd41f596 2652 struct mm_struct *mm, *oldmm;
1da177e4 2653
e107be36 2654 prepare_task_switch(rq, prev, next);
0a16b607 2655 trace_sched_switch(rq, prev, next);
dd41f596
IM
2656 mm = next->mm;
2657 oldmm = prev->active_mm;
9226d125
ZA
2658 /*
2659 * For paravirt, this is coupled with an exit in switch_to to
2660 * combine the page table reload and the switch backend into
2661 * one hypercall.
2662 */
2663 arch_enter_lazy_cpu_mode();
2664
dd41f596 2665 if (unlikely(!mm)) {
1da177e4
LT
2666 next->active_mm = oldmm;
2667 atomic_inc(&oldmm->mm_count);
2668 enter_lazy_tlb(oldmm, next);
2669 } else
2670 switch_mm(oldmm, mm, next);
2671
dd41f596 2672 if (unlikely(!prev->mm)) {
1da177e4 2673 prev->active_mm = NULL;
1da177e4
LT
2674 rq->prev_mm = oldmm;
2675 }
3a5f5e48
IM
2676 /*
2677 * Since the runqueue lock will be released by the next
2678 * task (which is an invalid locking op but in the case
2679 * of the scheduler it's an obvious special-case), so we
2680 * do an early lockdep release here:
2681 */
2682#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2683 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2684#endif
1da177e4
LT
2685
2686 /* Here we just switch the register state and the stack. */
2687 switch_to(prev, next, prev);
2688
dd41f596
IM
2689 barrier();
2690 /*
2691 * this_rq must be evaluated again because prev may have moved
2692 * CPUs since it called schedule(), thus the 'rq' on its stack
2693 * frame will be invalid.
2694 */
2695 finish_task_switch(this_rq(), prev);
1da177e4
LT
2696}
2697
2698/*
2699 * nr_running, nr_uninterruptible and nr_context_switches:
2700 *
2701 * externally visible scheduler statistics: current number of runnable
2702 * threads, current number of uninterruptible-sleeping threads, total
2703 * number of context switches performed since bootup.
2704 */
2705unsigned long nr_running(void)
2706{
2707 unsigned long i, sum = 0;
2708
2709 for_each_online_cpu(i)
2710 sum += cpu_rq(i)->nr_running;
2711
2712 return sum;
2713}
2714
2715unsigned long nr_uninterruptible(void)
2716{
2717 unsigned long i, sum = 0;
2718
0a945022 2719 for_each_possible_cpu(i)
1da177e4
LT
2720 sum += cpu_rq(i)->nr_uninterruptible;
2721
2722 /*
2723 * Since we read the counters lockless, it might be slightly
2724 * inaccurate. Do not allow it to go below zero though:
2725 */
2726 if (unlikely((long)sum < 0))
2727 sum = 0;
2728
2729 return sum;
2730}
2731
2732unsigned long long nr_context_switches(void)
2733{
cc94abfc
SR
2734 int i;
2735 unsigned long long sum = 0;
1da177e4 2736
0a945022 2737 for_each_possible_cpu(i)
1da177e4
LT
2738 sum += cpu_rq(i)->nr_switches;
2739
2740 return sum;
2741}
2742
2743unsigned long nr_iowait(void)
2744{
2745 unsigned long i, sum = 0;
2746
0a945022 2747 for_each_possible_cpu(i)
1da177e4
LT
2748 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2749
2750 return sum;
2751}
2752
db1b1fef
JS
2753unsigned long nr_active(void)
2754{
2755 unsigned long i, running = 0, uninterruptible = 0;
2756
2757 for_each_online_cpu(i) {
2758 running += cpu_rq(i)->nr_running;
2759 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2760 }
2761
2762 if (unlikely((long)uninterruptible < 0))
2763 uninterruptible = 0;
2764
2765 return running + uninterruptible;
2766}
2767
48f24c4d 2768/*
dd41f596
IM
2769 * Update rq->cpu_load[] statistics. This function is usually called every
2770 * scheduler tick (TICK_NSEC).
48f24c4d 2771 */
dd41f596 2772static void update_cpu_load(struct rq *this_rq)
48f24c4d 2773{
495eca49 2774 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2775 int i, scale;
2776
2777 this_rq->nr_load_updates++;
dd41f596
IM
2778
2779 /* Update our load: */
2780 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2781 unsigned long old_load, new_load;
2782
2783 /* scale is effectively 1 << i now, and >> i divides by scale */
2784
2785 old_load = this_rq->cpu_load[i];
2786 new_load = this_load;
a25707f3
IM
2787 /*
2788 * Round up the averaging division if load is increasing. This
2789 * prevents us from getting stuck on 9 if the load is 10, for
2790 * example.
2791 */
2792 if (new_load > old_load)
2793 new_load += scale-1;
dd41f596
IM
2794 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2795 }
48f24c4d
IM
2796}
2797
dd41f596
IM
2798#ifdef CONFIG_SMP
2799
1da177e4
LT
2800/*
2801 * double_rq_lock - safely lock two runqueues
2802 *
2803 * Note this does not disable interrupts like task_rq_lock,
2804 * you need to do so manually before calling.
2805 */
70b97a7f 2806static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2807 __acquires(rq1->lock)
2808 __acquires(rq2->lock)
2809{
054b9108 2810 BUG_ON(!irqs_disabled());
1da177e4
LT
2811 if (rq1 == rq2) {
2812 spin_lock(&rq1->lock);
2813 __acquire(rq2->lock); /* Fake it out ;) */
2814 } else {
c96d145e 2815 if (rq1 < rq2) {
1da177e4 2816 spin_lock(&rq1->lock);
5e710e37 2817 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2818 } else {
2819 spin_lock(&rq2->lock);
5e710e37 2820 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2821 }
2822 }
6e82a3be
IM
2823 update_rq_clock(rq1);
2824 update_rq_clock(rq2);
1da177e4
LT
2825}
2826
2827/*
2828 * double_rq_unlock - safely unlock two runqueues
2829 *
2830 * Note this does not restore interrupts like task_rq_unlock,
2831 * you need to do so manually after calling.
2832 */
70b97a7f 2833static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2834 __releases(rq1->lock)
2835 __releases(rq2->lock)
2836{
2837 spin_unlock(&rq1->lock);
2838 if (rq1 != rq2)
2839 spin_unlock(&rq2->lock);
2840 else
2841 __release(rq2->lock);
2842}
2843
1da177e4
LT
2844/*
2845 * If dest_cpu is allowed for this process, migrate the task to it.
2846 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2847 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2848 * the cpu_allowed mask is restored.
2849 */
36c8b586 2850static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2851{
70b97a7f 2852 struct migration_req req;
1da177e4 2853 unsigned long flags;
70b97a7f 2854 struct rq *rq;
1da177e4
LT
2855
2856 rq = task_rq_lock(p, &flags);
96f874e2 2857 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2858 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2859 goto out;
2860
2861 /* force the process onto the specified CPU */
2862 if (migrate_task(p, dest_cpu, &req)) {
2863 /* Need to wait for migration thread (might exit: take ref). */
2864 struct task_struct *mt = rq->migration_thread;
36c8b586 2865
1da177e4
LT
2866 get_task_struct(mt);
2867 task_rq_unlock(rq, &flags);
2868 wake_up_process(mt);
2869 put_task_struct(mt);
2870 wait_for_completion(&req.done);
36c8b586 2871
1da177e4
LT
2872 return;
2873 }
2874out:
2875 task_rq_unlock(rq, &flags);
2876}
2877
2878/*
476d139c
NP
2879 * sched_exec - execve() is a valuable balancing opportunity, because at
2880 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2881 */
2882void sched_exec(void)
2883{
1da177e4 2884 int new_cpu, this_cpu = get_cpu();
476d139c 2885 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2886 put_cpu();
476d139c
NP
2887 if (new_cpu != this_cpu)
2888 sched_migrate_task(current, new_cpu);
1da177e4
LT
2889}
2890
2891/*
2892 * pull_task - move a task from a remote runqueue to the local runqueue.
2893 * Both runqueues must be locked.
2894 */
dd41f596
IM
2895static void pull_task(struct rq *src_rq, struct task_struct *p,
2896 struct rq *this_rq, int this_cpu)
1da177e4 2897{
2e1cb74a 2898 deactivate_task(src_rq, p, 0);
1da177e4 2899 set_task_cpu(p, this_cpu);
dd41f596 2900 activate_task(this_rq, p, 0);
1da177e4
LT
2901 /*
2902 * Note that idle threads have a prio of MAX_PRIO, for this test
2903 * to be always true for them.
2904 */
15afe09b 2905 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2906}
2907
2908/*
2909 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2910 */
858119e1 2911static
70b97a7f 2912int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2913 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2914 int *all_pinned)
1da177e4
LT
2915{
2916 /*
2917 * We do not migrate tasks that are:
2918 * 1) running (obviously), or
2919 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2920 * 3) are cache-hot on their current CPU.
2921 */
96f874e2 2922 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 2923 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2924 return 0;
cc367732 2925 }
81026794
NP
2926 *all_pinned = 0;
2927
cc367732
IM
2928 if (task_running(rq, p)) {
2929 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2930 return 0;
cc367732 2931 }
1da177e4 2932
da84d961
IM
2933 /*
2934 * Aggressive migration if:
2935 * 1) task is cache cold, or
2936 * 2) too many balance attempts have failed.
2937 */
2938
6bc1665b
IM
2939 if (!task_hot(p, rq->clock, sd) ||
2940 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2941#ifdef CONFIG_SCHEDSTATS
cc367732 2942 if (task_hot(p, rq->clock, sd)) {
da84d961 2943 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2944 schedstat_inc(p, se.nr_forced_migrations);
2945 }
da84d961
IM
2946#endif
2947 return 1;
2948 }
2949
cc367732
IM
2950 if (task_hot(p, rq->clock, sd)) {
2951 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2952 return 0;
cc367732 2953 }
1da177e4
LT
2954 return 1;
2955}
2956
e1d1484f
PW
2957static unsigned long
2958balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2959 unsigned long max_load_move, struct sched_domain *sd,
2960 enum cpu_idle_type idle, int *all_pinned,
2961 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2962{
051c6764 2963 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2964 struct task_struct *p;
2965 long rem_load_move = max_load_move;
1da177e4 2966
e1d1484f 2967 if (max_load_move == 0)
1da177e4
LT
2968 goto out;
2969
81026794
NP
2970 pinned = 1;
2971
1da177e4 2972 /*
dd41f596 2973 * Start the load-balancing iterator:
1da177e4 2974 */
dd41f596
IM
2975 p = iterator->start(iterator->arg);
2976next:
b82d9fdd 2977 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2978 goto out;
051c6764
PZ
2979
2980 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2981 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2982 p = iterator->next(iterator->arg);
2983 goto next;
1da177e4
LT
2984 }
2985
dd41f596 2986 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2987 pulled++;
dd41f596 2988 rem_load_move -= p->se.load.weight;
1da177e4 2989
2dd73a4f 2990 /*
b82d9fdd 2991 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2992 */
e1d1484f 2993 if (rem_load_move > 0) {
a4ac01c3
PW
2994 if (p->prio < *this_best_prio)
2995 *this_best_prio = p->prio;
dd41f596
IM
2996 p = iterator->next(iterator->arg);
2997 goto next;
1da177e4
LT
2998 }
2999out:
3000 /*
e1d1484f 3001 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3002 * so we can safely collect pull_task() stats here rather than
3003 * inside pull_task().
3004 */
3005 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3006
3007 if (all_pinned)
3008 *all_pinned = pinned;
e1d1484f
PW
3009
3010 return max_load_move - rem_load_move;
1da177e4
LT
3011}
3012
dd41f596 3013/*
43010659
PW
3014 * move_tasks tries to move up to max_load_move weighted load from busiest to
3015 * this_rq, as part of a balancing operation within domain "sd".
3016 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3017 *
3018 * Called with both runqueues locked.
3019 */
3020static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3021 unsigned long max_load_move,
dd41f596
IM
3022 struct sched_domain *sd, enum cpu_idle_type idle,
3023 int *all_pinned)
3024{
5522d5d5 3025 const struct sched_class *class = sched_class_highest;
43010659 3026 unsigned long total_load_moved = 0;
a4ac01c3 3027 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3028
3029 do {
43010659
PW
3030 total_load_moved +=
3031 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3032 max_load_move - total_load_moved,
a4ac01c3 3033 sd, idle, all_pinned, &this_best_prio);
dd41f596 3034 class = class->next;
c4acb2c0
GH
3035
3036 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3037 break;
3038
43010659 3039 } while (class && max_load_move > total_load_moved);
dd41f596 3040
43010659
PW
3041 return total_load_moved > 0;
3042}
3043
e1d1484f
PW
3044static int
3045iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3046 struct sched_domain *sd, enum cpu_idle_type idle,
3047 struct rq_iterator *iterator)
3048{
3049 struct task_struct *p = iterator->start(iterator->arg);
3050 int pinned = 0;
3051
3052 while (p) {
3053 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3054 pull_task(busiest, p, this_rq, this_cpu);
3055 /*
3056 * Right now, this is only the second place pull_task()
3057 * is called, so we can safely collect pull_task()
3058 * stats here rather than inside pull_task().
3059 */
3060 schedstat_inc(sd, lb_gained[idle]);
3061
3062 return 1;
3063 }
3064 p = iterator->next(iterator->arg);
3065 }
3066
3067 return 0;
3068}
3069
43010659
PW
3070/*
3071 * move_one_task tries to move exactly one task from busiest to this_rq, as
3072 * part of active balancing operations within "domain".
3073 * Returns 1 if successful and 0 otherwise.
3074 *
3075 * Called with both runqueues locked.
3076 */
3077static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3078 struct sched_domain *sd, enum cpu_idle_type idle)
3079{
5522d5d5 3080 const struct sched_class *class;
43010659
PW
3081
3082 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3083 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3084 return 1;
3085
3086 return 0;
dd41f596
IM
3087}
3088
1da177e4
LT
3089/*
3090 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3091 * domain. It calculates and returns the amount of weighted load which
3092 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3093 */
3094static struct sched_group *
3095find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3096 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3097 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3098{
3099 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3100 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3101 unsigned long max_pull;
2dd73a4f
PW
3102 unsigned long busiest_load_per_task, busiest_nr_running;
3103 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3104 int load_idx, group_imb = 0;
5c45bf27
SS
3105#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3106 int power_savings_balance = 1;
3107 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3108 unsigned long min_nr_running = ULONG_MAX;
3109 struct sched_group *group_min = NULL, *group_leader = NULL;
3110#endif
1da177e4
LT
3111
3112 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3113 busiest_load_per_task = busiest_nr_running = 0;
3114 this_load_per_task = this_nr_running = 0;
408ed066 3115
d15bcfdb 3116 if (idle == CPU_NOT_IDLE)
7897986b 3117 load_idx = sd->busy_idx;
d15bcfdb 3118 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3119 load_idx = sd->newidle_idx;
3120 else
3121 load_idx = sd->idle_idx;
1da177e4
LT
3122
3123 do {
908a7c1b 3124 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3125 int local_group;
3126 int i;
908a7c1b 3127 int __group_imb = 0;
783609c6 3128 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3129 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3130 unsigned long sum_avg_load_per_task;
3131 unsigned long avg_load_per_task;
1da177e4 3132
758b2cdc
RR
3133 local_group = cpumask_test_cpu(this_cpu,
3134 sched_group_cpus(group));
1da177e4 3135
783609c6 3136 if (local_group)
758b2cdc 3137 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3138
1da177e4 3139 /* Tally up the load of all CPUs in the group */
2dd73a4f 3140 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3141 sum_avg_load_per_task = avg_load_per_task = 0;
3142
908a7c1b
KC
3143 max_cpu_load = 0;
3144 min_cpu_load = ~0UL;
1da177e4 3145
758b2cdc
RR
3146 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3147 struct rq *rq = cpu_rq(i);
2dd73a4f 3148
9439aab8 3149 if (*sd_idle && rq->nr_running)
5969fe06
NP
3150 *sd_idle = 0;
3151
1da177e4 3152 /* Bias balancing toward cpus of our domain */
783609c6
SS
3153 if (local_group) {
3154 if (idle_cpu(i) && !first_idle_cpu) {
3155 first_idle_cpu = 1;
3156 balance_cpu = i;
3157 }
3158
a2000572 3159 load = target_load(i, load_idx);
908a7c1b 3160 } else {
a2000572 3161 load = source_load(i, load_idx);
908a7c1b
KC
3162 if (load > max_cpu_load)
3163 max_cpu_load = load;
3164 if (min_cpu_load > load)
3165 min_cpu_load = load;
3166 }
1da177e4
LT
3167
3168 avg_load += load;
2dd73a4f 3169 sum_nr_running += rq->nr_running;
dd41f596 3170 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3171
3172 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3173 }
3174
783609c6
SS
3175 /*
3176 * First idle cpu or the first cpu(busiest) in this sched group
3177 * is eligible for doing load balancing at this and above
9439aab8
SS
3178 * domains. In the newly idle case, we will allow all the cpu's
3179 * to do the newly idle load balance.
783609c6 3180 */
9439aab8
SS
3181 if (idle != CPU_NEWLY_IDLE && local_group &&
3182 balance_cpu != this_cpu && balance) {
783609c6
SS
3183 *balance = 0;
3184 goto ret;
3185 }
3186
1da177e4 3187 total_load += avg_load;
5517d86b 3188 total_pwr += group->__cpu_power;
1da177e4
LT
3189
3190 /* Adjust by relative CPU power of the group */
5517d86b
ED
3191 avg_load = sg_div_cpu_power(group,
3192 avg_load * SCHED_LOAD_SCALE);
1da177e4 3193
408ed066
PZ
3194
3195 /*
3196 * Consider the group unbalanced when the imbalance is larger
3197 * than the average weight of two tasks.
3198 *
3199 * APZ: with cgroup the avg task weight can vary wildly and
3200 * might not be a suitable number - should we keep a
3201 * normalized nr_running number somewhere that negates
3202 * the hierarchy?
3203 */
3204 avg_load_per_task = sg_div_cpu_power(group,
3205 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3206
3207 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3208 __group_imb = 1;
3209
5517d86b 3210 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3211
1da177e4
LT
3212 if (local_group) {
3213 this_load = avg_load;
3214 this = group;
2dd73a4f
PW
3215 this_nr_running = sum_nr_running;
3216 this_load_per_task = sum_weighted_load;
3217 } else if (avg_load > max_load &&
908a7c1b 3218 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3219 max_load = avg_load;
3220 busiest = group;
2dd73a4f
PW
3221 busiest_nr_running = sum_nr_running;
3222 busiest_load_per_task = sum_weighted_load;
908a7c1b 3223 group_imb = __group_imb;
1da177e4 3224 }
5c45bf27
SS
3225
3226#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3227 /*
3228 * Busy processors will not participate in power savings
3229 * balance.
3230 */
dd41f596
IM
3231 if (idle == CPU_NOT_IDLE ||
3232 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3233 goto group_next;
5c45bf27
SS
3234
3235 /*
3236 * If the local group is idle or completely loaded
3237 * no need to do power savings balance at this domain
3238 */
3239 if (local_group && (this_nr_running >= group_capacity ||
3240 !this_nr_running))
3241 power_savings_balance = 0;
3242
dd41f596 3243 /*
5c45bf27
SS
3244 * If a group is already running at full capacity or idle,
3245 * don't include that group in power savings calculations
dd41f596
IM
3246 */
3247 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3248 || !sum_nr_running)
dd41f596 3249 goto group_next;
5c45bf27 3250
dd41f596 3251 /*
5c45bf27 3252 * Calculate the group which has the least non-idle load.
dd41f596
IM
3253 * This is the group from where we need to pick up the load
3254 * for saving power
3255 */
3256 if ((sum_nr_running < min_nr_running) ||
3257 (sum_nr_running == min_nr_running &&
d5679bd1 3258 cpumask_first(sched_group_cpus(group)) >
758b2cdc 3259 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3260 group_min = group;
3261 min_nr_running = sum_nr_running;
5c45bf27
SS
3262 min_load_per_task = sum_weighted_load /
3263 sum_nr_running;
dd41f596 3264 }
5c45bf27 3265
dd41f596 3266 /*
5c45bf27 3267 * Calculate the group which is almost near its
dd41f596
IM
3268 * capacity but still has some space to pick up some load
3269 * from other group and save more power
3270 */
3271 if (sum_nr_running <= group_capacity - 1) {
3272 if (sum_nr_running > leader_nr_running ||
3273 (sum_nr_running == leader_nr_running &&
d5679bd1 3274 cpumask_first(sched_group_cpus(group)) <
758b2cdc 3275 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3276 group_leader = group;
3277 leader_nr_running = sum_nr_running;
3278 }
48f24c4d 3279 }
5c45bf27
SS
3280group_next:
3281#endif
1da177e4
LT
3282 group = group->next;
3283 } while (group != sd->groups);
3284
2dd73a4f 3285 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3286 goto out_balanced;
3287
3288 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3289
3290 if (this_load >= avg_load ||
3291 100*max_load <= sd->imbalance_pct*this_load)
3292 goto out_balanced;
3293
2dd73a4f 3294 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3295 if (group_imb)
3296 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3297
1da177e4
LT
3298 /*
3299 * We're trying to get all the cpus to the average_load, so we don't
3300 * want to push ourselves above the average load, nor do we wish to
3301 * reduce the max loaded cpu below the average load, as either of these
3302 * actions would just result in more rebalancing later, and ping-pong
3303 * tasks around. Thus we look for the minimum possible imbalance.
3304 * Negative imbalances (*we* are more loaded than anyone else) will
3305 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3306 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3307 * appear as very large values with unsigned longs.
3308 */
2dd73a4f
PW
3309 if (max_load <= busiest_load_per_task)
3310 goto out_balanced;
3311
3312 /*
3313 * In the presence of smp nice balancing, certain scenarios can have
3314 * max load less than avg load(as we skip the groups at or below
3315 * its cpu_power, while calculating max_load..)
3316 */
3317 if (max_load < avg_load) {
3318 *imbalance = 0;
3319 goto small_imbalance;
3320 }
0c117f1b
SS
3321
3322 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3323 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3324
1da177e4 3325 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3326 *imbalance = min(max_pull * busiest->__cpu_power,
3327 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3328 / SCHED_LOAD_SCALE;
3329
2dd73a4f
PW
3330 /*
3331 * if *imbalance is less than the average load per runnable task
3332 * there is no gaurantee that any tasks will be moved so we'll have
3333 * a think about bumping its value to force at least one task to be
3334 * moved
3335 */
7fd0d2dd 3336 if (*imbalance < busiest_load_per_task) {
48f24c4d 3337 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3338 unsigned int imbn;
3339
3340small_imbalance:
3341 pwr_move = pwr_now = 0;
3342 imbn = 2;
3343 if (this_nr_running) {
3344 this_load_per_task /= this_nr_running;
3345 if (busiest_load_per_task > this_load_per_task)
3346 imbn = 1;
3347 } else
408ed066 3348 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3349
01c8c57d 3350 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3351 busiest_load_per_task * imbn) {
2dd73a4f 3352 *imbalance = busiest_load_per_task;
1da177e4
LT
3353 return busiest;
3354 }
3355
3356 /*
3357 * OK, we don't have enough imbalance to justify moving tasks,
3358 * however we may be able to increase total CPU power used by
3359 * moving them.
3360 */
3361
5517d86b
ED
3362 pwr_now += busiest->__cpu_power *
3363 min(busiest_load_per_task, max_load);
3364 pwr_now += this->__cpu_power *
3365 min(this_load_per_task, this_load);
1da177e4
LT
3366 pwr_now /= SCHED_LOAD_SCALE;
3367
3368 /* Amount of load we'd subtract */
5517d86b
ED
3369 tmp = sg_div_cpu_power(busiest,
3370 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3371 if (max_load > tmp)
5517d86b 3372 pwr_move += busiest->__cpu_power *
2dd73a4f 3373 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3374
3375 /* Amount of load we'd add */
5517d86b 3376 if (max_load * busiest->__cpu_power <
33859f7f 3377 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3378 tmp = sg_div_cpu_power(this,
3379 max_load * busiest->__cpu_power);
1da177e4 3380 else
5517d86b
ED
3381 tmp = sg_div_cpu_power(this,
3382 busiest_load_per_task * SCHED_LOAD_SCALE);
3383 pwr_move += this->__cpu_power *
3384 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3385 pwr_move /= SCHED_LOAD_SCALE;
3386
3387 /* Move if we gain throughput */
7fd0d2dd
SS
3388 if (pwr_move > pwr_now)
3389 *imbalance = busiest_load_per_task;
1da177e4
LT
3390 }
3391
1da177e4
LT
3392 return busiest;
3393
3394out_balanced:
5c45bf27 3395#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3396 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3397 goto ret;
1da177e4 3398
5c45bf27
SS
3399 if (this == group_leader && group_leader != group_min) {
3400 *imbalance = min_load_per_task;
7a09b1a2
VS
3401 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3402 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
9924da43 3403 cpumask_first(sched_group_cpus(group_leader));
7a09b1a2 3404 }
5c45bf27
SS
3405 return group_min;
3406 }
5c45bf27 3407#endif
783609c6 3408ret:
1da177e4
LT
3409 *imbalance = 0;
3410 return NULL;
3411}
3412
3413/*
3414 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3415 */
70b97a7f 3416static struct rq *
d15bcfdb 3417find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3418 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3419{
70b97a7f 3420 struct rq *busiest = NULL, *rq;
2dd73a4f 3421 unsigned long max_load = 0;
1da177e4
LT
3422 int i;
3423
758b2cdc 3424 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3425 unsigned long wl;
0a2966b4 3426
96f874e2 3427 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3428 continue;
3429
48f24c4d 3430 rq = cpu_rq(i);
dd41f596 3431 wl = weighted_cpuload(i);
2dd73a4f 3432
dd41f596 3433 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3434 continue;
1da177e4 3435
dd41f596
IM
3436 if (wl > max_load) {
3437 max_load = wl;
48f24c4d 3438 busiest = rq;
1da177e4
LT
3439 }
3440 }
3441
3442 return busiest;
3443}
3444
77391d71
NP
3445/*
3446 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3447 * so long as it is large enough.
3448 */
3449#define MAX_PINNED_INTERVAL 512
3450
1da177e4
LT
3451/*
3452 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3453 * tasks if there is an imbalance.
1da177e4 3454 */
70b97a7f 3455static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3456 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3457 int *balance, struct cpumask *cpus)
1da177e4 3458{
43010659 3459 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3460 struct sched_group *group;
1da177e4 3461 unsigned long imbalance;
70b97a7f 3462 struct rq *busiest;
fe2eea3f 3463 unsigned long flags;
5969fe06 3464
96f874e2 3465 cpumask_setall(cpus);
7c16ec58 3466
89c4710e
SS
3467 /*
3468 * When power savings policy is enabled for the parent domain, idle
3469 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3470 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3471 * portraying it as CPU_NOT_IDLE.
89c4710e 3472 */
d15bcfdb 3473 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3474 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3475 sd_idle = 1;
1da177e4 3476
2d72376b 3477 schedstat_inc(sd, lb_count[idle]);
1da177e4 3478
0a2966b4 3479redo:
c8cba857 3480 update_shares(sd);
0a2966b4 3481 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3482 cpus, balance);
783609c6 3483
06066714 3484 if (*balance == 0)
783609c6 3485 goto out_balanced;
783609c6 3486
1da177e4
LT
3487 if (!group) {
3488 schedstat_inc(sd, lb_nobusyg[idle]);
3489 goto out_balanced;
3490 }
3491
7c16ec58 3492 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3493 if (!busiest) {
3494 schedstat_inc(sd, lb_nobusyq[idle]);
3495 goto out_balanced;
3496 }
3497
db935dbd 3498 BUG_ON(busiest == this_rq);
1da177e4
LT
3499
3500 schedstat_add(sd, lb_imbalance[idle], imbalance);
3501
43010659 3502 ld_moved = 0;
1da177e4
LT
3503 if (busiest->nr_running > 1) {
3504 /*
3505 * Attempt to move tasks. If find_busiest_group has found
3506 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3507 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3508 * correctly treated as an imbalance.
3509 */
fe2eea3f 3510 local_irq_save(flags);
e17224bf 3511 double_rq_lock(this_rq, busiest);
43010659 3512 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3513 imbalance, sd, idle, &all_pinned);
e17224bf 3514 double_rq_unlock(this_rq, busiest);
fe2eea3f 3515 local_irq_restore(flags);
81026794 3516
46cb4b7c
SS
3517 /*
3518 * some other cpu did the load balance for us.
3519 */
43010659 3520 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3521 resched_cpu(this_cpu);
3522
81026794 3523 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3524 if (unlikely(all_pinned)) {
96f874e2
RR
3525 cpumask_clear_cpu(cpu_of(busiest), cpus);
3526 if (!cpumask_empty(cpus))
0a2966b4 3527 goto redo;
81026794 3528 goto out_balanced;
0a2966b4 3529 }
1da177e4 3530 }
81026794 3531
43010659 3532 if (!ld_moved) {
1da177e4
LT
3533 schedstat_inc(sd, lb_failed[idle]);
3534 sd->nr_balance_failed++;
3535
3536 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3537
fe2eea3f 3538 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3539
3540 /* don't kick the migration_thread, if the curr
3541 * task on busiest cpu can't be moved to this_cpu
3542 */
96f874e2
RR
3543 if (!cpumask_test_cpu(this_cpu,
3544 &busiest->curr->cpus_allowed)) {
fe2eea3f 3545 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3546 all_pinned = 1;
3547 goto out_one_pinned;
3548 }
3549
1da177e4
LT
3550 if (!busiest->active_balance) {
3551 busiest->active_balance = 1;
3552 busiest->push_cpu = this_cpu;
81026794 3553 active_balance = 1;
1da177e4 3554 }
fe2eea3f 3555 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3556 if (active_balance)
1da177e4
LT
3557 wake_up_process(busiest->migration_thread);
3558
3559 /*
3560 * We've kicked active balancing, reset the failure
3561 * counter.
3562 */
39507451 3563 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3564 }
81026794 3565 } else
1da177e4
LT
3566 sd->nr_balance_failed = 0;
3567
81026794 3568 if (likely(!active_balance)) {
1da177e4
LT
3569 /* We were unbalanced, so reset the balancing interval */
3570 sd->balance_interval = sd->min_interval;
81026794
NP
3571 } else {
3572 /*
3573 * If we've begun active balancing, start to back off. This
3574 * case may not be covered by the all_pinned logic if there
3575 * is only 1 task on the busy runqueue (because we don't call
3576 * move_tasks).
3577 */
3578 if (sd->balance_interval < sd->max_interval)
3579 sd->balance_interval *= 2;
1da177e4
LT
3580 }
3581
43010659 3582 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3583 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3584 ld_moved = -1;
3585
3586 goto out;
1da177e4
LT
3587
3588out_balanced:
1da177e4
LT
3589 schedstat_inc(sd, lb_balanced[idle]);
3590
16cfb1c0 3591 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3592
3593out_one_pinned:
1da177e4 3594 /* tune up the balancing interval */
77391d71
NP
3595 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3596 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3597 sd->balance_interval *= 2;
3598
48f24c4d 3599 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3600 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3601 ld_moved = -1;
3602 else
3603 ld_moved = 0;
3604out:
c8cba857
PZ
3605 if (ld_moved)
3606 update_shares(sd);
c09595f6 3607 return ld_moved;
1da177e4
LT
3608}
3609
3610/*
3611 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3612 * tasks if there is an imbalance.
3613 *
d15bcfdb 3614 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3615 * this_rq is locked.
3616 */
48f24c4d 3617static int
7c16ec58 3618load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3619 struct cpumask *cpus)
1da177e4
LT
3620{
3621 struct sched_group *group;
70b97a7f 3622 struct rq *busiest = NULL;
1da177e4 3623 unsigned long imbalance;
43010659 3624 int ld_moved = 0;
5969fe06 3625 int sd_idle = 0;
969bb4e4 3626 int all_pinned = 0;
7c16ec58 3627
96f874e2 3628 cpumask_setall(cpus);
5969fe06 3629
89c4710e
SS
3630 /*
3631 * When power savings policy is enabled for the parent domain, idle
3632 * sibling can pick up load irrespective of busy siblings. In this case,
3633 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3634 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3635 */
3636 if (sd->flags & SD_SHARE_CPUPOWER &&
3637 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3638 sd_idle = 1;
1da177e4 3639
2d72376b 3640 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3641redo:
3e5459b4 3642 update_shares_locked(this_rq, sd);
d15bcfdb 3643 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3644 &sd_idle, cpus, NULL);
1da177e4 3645 if (!group) {
d15bcfdb 3646 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3647 goto out_balanced;
1da177e4
LT
3648 }
3649
7c16ec58 3650 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3651 if (!busiest) {
d15bcfdb 3652 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3653 goto out_balanced;
1da177e4
LT
3654 }
3655
db935dbd
NP
3656 BUG_ON(busiest == this_rq);
3657
d15bcfdb 3658 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3659
43010659 3660 ld_moved = 0;
d6d5cfaf
NP
3661 if (busiest->nr_running > 1) {
3662 /* Attempt to move tasks */
3663 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3664 /* this_rq->clock is already updated */
3665 update_rq_clock(busiest);
43010659 3666 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3667 imbalance, sd, CPU_NEWLY_IDLE,
3668 &all_pinned);
1b12bbc7 3669 double_unlock_balance(this_rq, busiest);
0a2966b4 3670
969bb4e4 3671 if (unlikely(all_pinned)) {
96f874e2
RR
3672 cpumask_clear_cpu(cpu_of(busiest), cpus);
3673 if (!cpumask_empty(cpus))
0a2966b4
CL
3674 goto redo;
3675 }
d6d5cfaf
NP
3676 }
3677
43010659 3678 if (!ld_moved) {
36dffab6 3679 int active_balance = 0;
ad273b32 3680
d15bcfdb 3681 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3682 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3683 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3684 return -1;
ad273b32
VS
3685
3686 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3687 return -1;
3688
3689 if (sd->nr_balance_failed++ < 2)
3690 return -1;
3691
3692 /*
3693 * The only task running in a non-idle cpu can be moved to this
3694 * cpu in an attempt to completely freeup the other CPU
3695 * package. The same method used to move task in load_balance()
3696 * have been extended for load_balance_newidle() to speedup
3697 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3698 *
3699 * The package power saving logic comes from
3700 * find_busiest_group(). If there are no imbalance, then
3701 * f_b_g() will return NULL. However when sched_mc={1,2} then
3702 * f_b_g() will select a group from which a running task may be
3703 * pulled to this cpu in order to make the other package idle.
3704 * If there is no opportunity to make a package idle and if
3705 * there are no imbalance, then f_b_g() will return NULL and no
3706 * action will be taken in load_balance_newidle().
3707 *
3708 * Under normal task pull operation due to imbalance, there
3709 * will be more than one task in the source run queue and
3710 * move_tasks() will succeed. ld_moved will be true and this
3711 * active balance code will not be triggered.
3712 */
3713
3714 /* Lock busiest in correct order while this_rq is held */
3715 double_lock_balance(this_rq, busiest);
3716
3717 /*
3718 * don't kick the migration_thread, if the curr
3719 * task on busiest cpu can't be moved to this_cpu
3720 */
6ca09dfc 3721 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
3722 double_unlock_balance(this_rq, busiest);
3723 all_pinned = 1;
3724 return ld_moved;
3725 }
3726
3727 if (!busiest->active_balance) {
3728 busiest->active_balance = 1;
3729 busiest->push_cpu = this_cpu;
3730 active_balance = 1;
3731 }
3732
3733 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
3734 /*
3735 * Should not call ttwu while holding a rq->lock
3736 */
3737 spin_unlock(&this_rq->lock);
ad273b32
VS
3738 if (active_balance)
3739 wake_up_process(busiest->migration_thread);
da8d5089 3740 spin_lock(&this_rq->lock);
ad273b32 3741
5969fe06 3742 } else
16cfb1c0 3743 sd->nr_balance_failed = 0;
1da177e4 3744
3e5459b4 3745 update_shares_locked(this_rq, sd);
43010659 3746 return ld_moved;
16cfb1c0
NP
3747
3748out_balanced:
d15bcfdb 3749 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3750 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3751 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3752 return -1;
16cfb1c0 3753 sd->nr_balance_failed = 0;
48f24c4d 3754
16cfb1c0 3755 return 0;
1da177e4
LT
3756}
3757
3758/*
3759 * idle_balance is called by schedule() if this_cpu is about to become
3760 * idle. Attempts to pull tasks from other CPUs.
3761 */
70b97a7f 3762static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3763{
3764 struct sched_domain *sd;
efbe027e 3765 int pulled_task = 0;
dd41f596 3766 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3767 cpumask_var_t tmpmask;
3768
3769 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3770 return;
1da177e4
LT
3771
3772 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3773 unsigned long interval;
3774
3775 if (!(sd->flags & SD_LOAD_BALANCE))
3776 continue;
3777
3778 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3779 /* If we've pulled tasks over stop searching: */
7c16ec58 3780 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3781 sd, tmpmask);
92c4ca5c
CL
3782
3783 interval = msecs_to_jiffies(sd->balance_interval);
3784 if (time_after(next_balance, sd->last_balance + interval))
3785 next_balance = sd->last_balance + interval;
3786 if (pulled_task)
3787 break;
1da177e4 3788 }
dd41f596 3789 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3790 /*
3791 * We are going idle. next_balance may be set based on
3792 * a busy processor. So reset next_balance.
3793 */
3794 this_rq->next_balance = next_balance;
dd41f596 3795 }
4d2732c6 3796 free_cpumask_var(tmpmask);
1da177e4
LT
3797}
3798
3799/*
3800 * active_load_balance is run by migration threads. It pushes running tasks
3801 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3802 * running on each physical CPU where possible, and avoids physical /
3803 * logical imbalances.
3804 *
3805 * Called with busiest_rq locked.
3806 */
70b97a7f 3807static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3808{
39507451 3809 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3810 struct sched_domain *sd;
3811 struct rq *target_rq;
39507451 3812
48f24c4d 3813 /* Is there any task to move? */
39507451 3814 if (busiest_rq->nr_running <= 1)
39507451
NP
3815 return;
3816
3817 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3818
3819 /*
39507451 3820 * This condition is "impossible", if it occurs
41a2d6cf 3821 * we need to fix it. Originally reported by
39507451 3822 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3823 */
39507451 3824 BUG_ON(busiest_rq == target_rq);
1da177e4 3825
39507451
NP
3826 /* move a task from busiest_rq to target_rq */
3827 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3828 update_rq_clock(busiest_rq);
3829 update_rq_clock(target_rq);
39507451
NP
3830
3831 /* Search for an sd spanning us and the target CPU. */
c96d145e 3832 for_each_domain(target_cpu, sd) {
39507451 3833 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3834 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3835 break;
c96d145e 3836 }
39507451 3837
48f24c4d 3838 if (likely(sd)) {
2d72376b 3839 schedstat_inc(sd, alb_count);
39507451 3840
43010659
PW
3841 if (move_one_task(target_rq, target_cpu, busiest_rq,
3842 sd, CPU_IDLE))
48f24c4d
IM
3843 schedstat_inc(sd, alb_pushed);
3844 else
3845 schedstat_inc(sd, alb_failed);
3846 }
1b12bbc7 3847 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3848}
3849
46cb4b7c
SS
3850#ifdef CONFIG_NO_HZ
3851static struct {
3852 atomic_t load_balancer;
7d1e6a9b 3853 cpumask_var_t cpu_mask;
46cb4b7c
SS
3854} nohz ____cacheline_aligned = {
3855 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3856};
3857
7835b98b 3858/*
46cb4b7c
SS
3859 * This routine will try to nominate the ilb (idle load balancing)
3860 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3861 * load balancing on behalf of all those cpus. If all the cpus in the system
3862 * go into this tickless mode, then there will be no ilb owner (as there is
3863 * no need for one) and all the cpus will sleep till the next wakeup event
3864 * arrives...
3865 *
3866 * For the ilb owner, tick is not stopped. And this tick will be used
3867 * for idle load balancing. ilb owner will still be part of
3868 * nohz.cpu_mask..
7835b98b 3869 *
46cb4b7c
SS
3870 * While stopping the tick, this cpu will become the ilb owner if there
3871 * is no other owner. And will be the owner till that cpu becomes busy
3872 * or if all cpus in the system stop their ticks at which point
3873 * there is no need for ilb owner.
3874 *
3875 * When the ilb owner becomes busy, it nominates another owner, during the
3876 * next busy scheduler_tick()
3877 */
3878int select_nohz_load_balancer(int stop_tick)
3879{
3880 int cpu = smp_processor_id();
3881
3882 if (stop_tick) {
46cb4b7c
SS
3883 cpu_rq(cpu)->in_nohz_recently = 1;
3884
483b4ee6
SS
3885 if (!cpu_active(cpu)) {
3886 if (atomic_read(&nohz.load_balancer) != cpu)
3887 return 0;
3888
3889 /*
3890 * If we are going offline and still the leader,
3891 * give up!
3892 */
46cb4b7c
SS
3893 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3894 BUG();
483b4ee6 3895
46cb4b7c
SS
3896 return 0;
3897 }
3898
483b4ee6
SS
3899 cpumask_set_cpu(cpu, nohz.cpu_mask);
3900
46cb4b7c 3901 /* time for ilb owner also to sleep */
7d1e6a9b 3902 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
3903 if (atomic_read(&nohz.load_balancer) == cpu)
3904 atomic_set(&nohz.load_balancer, -1);
3905 return 0;
3906 }
3907
3908 if (atomic_read(&nohz.load_balancer) == -1) {
3909 /* make me the ilb owner */
3910 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3911 return 1;
3912 } else if (atomic_read(&nohz.load_balancer) == cpu)
3913 return 1;
3914 } else {
7d1e6a9b 3915 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
3916 return 0;
3917
7d1e6a9b 3918 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3919
3920 if (atomic_read(&nohz.load_balancer) == cpu)
3921 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3922 BUG();
3923 }
3924 return 0;
3925}
3926#endif
3927
3928static DEFINE_SPINLOCK(balancing);
3929
3930/*
7835b98b
CL
3931 * It checks each scheduling domain to see if it is due to be balanced,
3932 * and initiates a balancing operation if so.
3933 *
3934 * Balancing parameters are set up in arch_init_sched_domains.
3935 */
a9957449 3936static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3937{
46cb4b7c
SS
3938 int balance = 1;
3939 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3940 unsigned long interval;
3941 struct sched_domain *sd;
46cb4b7c 3942 /* Earliest time when we have to do rebalance again */
c9819f45 3943 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3944 int update_next_balance = 0;
d07355f5 3945 int need_serialize;
a0e90245
RR
3946 cpumask_var_t tmp;
3947
3948 /* Fails alloc? Rebalancing probably not a priority right now. */
3949 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3950 return;
1da177e4 3951
46cb4b7c 3952 for_each_domain(cpu, sd) {
1da177e4
LT
3953 if (!(sd->flags & SD_LOAD_BALANCE))
3954 continue;
3955
3956 interval = sd->balance_interval;
d15bcfdb 3957 if (idle != CPU_IDLE)
1da177e4
LT
3958 interval *= sd->busy_factor;
3959
3960 /* scale ms to jiffies */
3961 interval = msecs_to_jiffies(interval);
3962 if (unlikely(!interval))
3963 interval = 1;
dd41f596
IM
3964 if (interval > HZ*NR_CPUS/10)
3965 interval = HZ*NR_CPUS/10;
3966
d07355f5 3967 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3968
d07355f5 3969 if (need_serialize) {
08c183f3
CL
3970 if (!spin_trylock(&balancing))
3971 goto out;
3972 }
3973
c9819f45 3974 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 3975 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
3976 /*
3977 * We've pulled tasks over so either we're no
5969fe06
NP
3978 * longer idle, or one of our SMT siblings is
3979 * not idle.
3980 */
d15bcfdb 3981 idle = CPU_NOT_IDLE;
1da177e4 3982 }
1bd77f2d 3983 sd->last_balance = jiffies;
1da177e4 3984 }
d07355f5 3985 if (need_serialize)
08c183f3
CL
3986 spin_unlock(&balancing);
3987out:
f549da84 3988 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3989 next_balance = sd->last_balance + interval;
f549da84
SS
3990 update_next_balance = 1;
3991 }
783609c6
SS
3992
3993 /*
3994 * Stop the load balance at this level. There is another
3995 * CPU in our sched group which is doing load balancing more
3996 * actively.
3997 */
3998 if (!balance)
3999 break;
1da177e4 4000 }
f549da84
SS
4001
4002 /*
4003 * next_balance will be updated only when there is a need.
4004 * When the cpu is attached to null domain for ex, it will not be
4005 * updated.
4006 */
4007 if (likely(update_next_balance))
4008 rq->next_balance = next_balance;
a0e90245
RR
4009
4010 free_cpumask_var(tmp);
46cb4b7c
SS
4011}
4012
4013/*
4014 * run_rebalance_domains is triggered when needed from the scheduler tick.
4015 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4016 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4017 */
4018static void run_rebalance_domains(struct softirq_action *h)
4019{
dd41f596
IM
4020 int this_cpu = smp_processor_id();
4021 struct rq *this_rq = cpu_rq(this_cpu);
4022 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4023 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4024
dd41f596 4025 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4026
4027#ifdef CONFIG_NO_HZ
4028 /*
4029 * If this cpu is the owner for idle load balancing, then do the
4030 * balancing on behalf of the other idle cpus whose ticks are
4031 * stopped.
4032 */
dd41f596
IM
4033 if (this_rq->idle_at_tick &&
4034 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4035 struct rq *rq;
4036 int balance_cpu;
4037
7d1e6a9b
RR
4038 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4039 if (balance_cpu == this_cpu)
4040 continue;
4041
46cb4b7c
SS
4042 /*
4043 * If this cpu gets work to do, stop the load balancing
4044 * work being done for other cpus. Next load
4045 * balancing owner will pick it up.
4046 */
4047 if (need_resched())
4048 break;
4049
de0cf899 4050 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4051
4052 rq = cpu_rq(balance_cpu);
dd41f596
IM
4053 if (time_after(this_rq->next_balance, rq->next_balance))
4054 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4055 }
4056 }
4057#endif
4058}
4059
4060/*
4061 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4062 *
4063 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4064 * idle load balancing owner or decide to stop the periodic load balancing,
4065 * if the whole system is idle.
4066 */
dd41f596 4067static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4068{
46cb4b7c
SS
4069#ifdef CONFIG_NO_HZ
4070 /*
4071 * If we were in the nohz mode recently and busy at the current
4072 * scheduler tick, then check if we need to nominate new idle
4073 * load balancer.
4074 */
4075 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4076 rq->in_nohz_recently = 0;
4077
4078 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4079 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4080 atomic_set(&nohz.load_balancer, -1);
4081 }
4082
4083 if (atomic_read(&nohz.load_balancer) == -1) {
4084 /*
4085 * simple selection for now: Nominate the
4086 * first cpu in the nohz list to be the next
4087 * ilb owner.
4088 *
4089 * TBD: Traverse the sched domains and nominate
4090 * the nearest cpu in the nohz.cpu_mask.
4091 */
7d1e6a9b 4092 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4093
434d53b0 4094 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4095 resched_cpu(ilb);
4096 }
4097 }
4098
4099 /*
4100 * If this cpu is idle and doing idle load balancing for all the
4101 * cpus with ticks stopped, is it time for that to stop?
4102 */
4103 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4104 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4105 resched_cpu(cpu);
4106 return;
4107 }
4108
4109 /*
4110 * If this cpu is idle and the idle load balancing is done by
4111 * someone else, then no need raise the SCHED_SOFTIRQ
4112 */
4113 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4114 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4115 return;
4116#endif
4117 if (time_after_eq(jiffies, rq->next_balance))
4118 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4119}
dd41f596
IM
4120
4121#else /* CONFIG_SMP */
4122
1da177e4
LT
4123/*
4124 * on UP we do not need to balance between CPUs:
4125 */
70b97a7f 4126static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4127{
4128}
dd41f596 4129
1da177e4
LT
4130#endif
4131
1da177e4
LT
4132DEFINE_PER_CPU(struct kernel_stat, kstat);
4133
4134EXPORT_PER_CPU_SYMBOL(kstat);
4135
4136/*
f06febc9
FM
4137 * Return any ns on the sched_clock that have not yet been banked in
4138 * @p in case that task is currently running.
1da177e4 4139 */
bb34d92f 4140unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4141{
1da177e4 4142 unsigned long flags;
41b86e9c 4143 struct rq *rq;
bb34d92f 4144 u64 ns = 0;
48f24c4d 4145
41b86e9c 4146 rq = task_rq_lock(p, &flags);
1508487e 4147
051a1d1a 4148 if (task_current(rq, p)) {
f06febc9
FM
4149 u64 delta_exec;
4150
a8e504d2
IM
4151 update_rq_clock(rq);
4152 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4153 if ((s64)delta_exec > 0)
bb34d92f 4154 ns = delta_exec;
41b86e9c 4155 }
48f24c4d 4156
41b86e9c 4157 task_rq_unlock(rq, &flags);
48f24c4d 4158
1da177e4
LT
4159 return ns;
4160}
4161
1da177e4
LT
4162/*
4163 * Account user cpu time to a process.
4164 * @p: the process that the cpu time gets accounted to
1da177e4 4165 * @cputime: the cpu time spent in user space since the last update
457533a7 4166 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4167 */
457533a7
MS
4168void account_user_time(struct task_struct *p, cputime_t cputime,
4169 cputime_t cputime_scaled)
1da177e4
LT
4170{
4171 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4172 cputime64_t tmp;
4173
457533a7 4174 /* Add user time to process. */
1da177e4 4175 p->utime = cputime_add(p->utime, cputime);
457533a7 4176 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4177 account_group_user_time(p, cputime);
1da177e4
LT
4178
4179 /* Add user time to cpustat. */
4180 tmp = cputime_to_cputime64(cputime);
4181 if (TASK_NICE(p) > 0)
4182 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4183 else
4184 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4185 /* Account for user time used */
4186 acct_update_integrals(p);
1da177e4
LT
4187}
4188
94886b84
LV
4189/*
4190 * Account guest cpu time to a process.
4191 * @p: the process that the cpu time gets accounted to
4192 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4193 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4194 */
457533a7
MS
4195static void account_guest_time(struct task_struct *p, cputime_t cputime,
4196 cputime_t cputime_scaled)
94886b84
LV
4197{
4198 cputime64_t tmp;
4199 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4200
4201 tmp = cputime_to_cputime64(cputime);
4202
457533a7 4203 /* Add guest time to process. */
94886b84 4204 p->utime = cputime_add(p->utime, cputime);
457533a7 4205 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4206 account_group_user_time(p, cputime);
94886b84
LV
4207 p->gtime = cputime_add(p->gtime, cputime);
4208
457533a7 4209 /* Add guest time to cpustat. */
94886b84
LV
4210 cpustat->user = cputime64_add(cpustat->user, tmp);
4211 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4212}
4213
1da177e4
LT
4214/*
4215 * Account system cpu time to a process.
4216 * @p: the process that the cpu time gets accounted to
4217 * @hardirq_offset: the offset to subtract from hardirq_count()
4218 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4219 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4220 */
4221void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4222 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4223{
4224 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4225 cputime64_t tmp;
4226
983ed7a6 4227 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4228 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4229 return;
4230 }
94886b84 4231
457533a7 4232 /* Add system time to process. */
1da177e4 4233 p->stime = cputime_add(p->stime, cputime);
457533a7 4234 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4235 account_group_system_time(p, cputime);
1da177e4
LT
4236
4237 /* Add system time to cpustat. */
4238 tmp = cputime_to_cputime64(cputime);
4239 if (hardirq_count() - hardirq_offset)
4240 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4241 else if (softirq_count())
4242 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4243 else
79741dd3
MS
4244 cpustat->system = cputime64_add(cpustat->system, tmp);
4245
1da177e4
LT
4246 /* Account for system time used */
4247 acct_update_integrals(p);
1da177e4
LT
4248}
4249
c66f08be 4250/*
1da177e4 4251 * Account for involuntary wait time.
1da177e4 4252 * @steal: the cpu time spent in involuntary wait
c66f08be 4253 */
79741dd3 4254void account_steal_time(cputime_t cputime)
c66f08be 4255{
79741dd3
MS
4256 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4257 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4258
4259 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4260}
4261
1da177e4 4262/*
79741dd3
MS
4263 * Account for idle time.
4264 * @cputime: the cpu time spent in idle wait
1da177e4 4265 */
79741dd3 4266void account_idle_time(cputime_t cputime)
1da177e4
LT
4267{
4268 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4269 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4270 struct rq *rq = this_rq();
1da177e4 4271
79741dd3
MS
4272 if (atomic_read(&rq->nr_iowait) > 0)
4273 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4274 else
4275 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4276}
4277
79741dd3
MS
4278#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4279
4280/*
4281 * Account a single tick of cpu time.
4282 * @p: the process that the cpu time gets accounted to
4283 * @user_tick: indicates if the tick is a user or a system tick
4284 */
4285void account_process_tick(struct task_struct *p, int user_tick)
4286{
4287 cputime_t one_jiffy = jiffies_to_cputime(1);
4288 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4289 struct rq *rq = this_rq();
4290
4291 if (user_tick)
4292 account_user_time(p, one_jiffy, one_jiffy_scaled);
4293 else if (p != rq->idle)
4294 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4295 one_jiffy_scaled);
4296 else
4297 account_idle_time(one_jiffy);
1da177e4
LT
4298}
4299
79741dd3
MS
4300/*
4301 * Account multiple ticks of steal time.
4302 * @p: the process from which the cpu time has been stolen
4303 * @ticks: number of stolen ticks
4304 */
4305void account_steal_ticks(unsigned long ticks)
4306{
4307 account_steal_time(jiffies_to_cputime(ticks));
4308}
4309
4310/*
4311 * Account multiple ticks of idle time.
4312 * @ticks: number of stolen ticks
4313 */
4314void account_idle_ticks(unsigned long ticks)
4315{
4316 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4317}
4318
79741dd3
MS
4319#endif
4320
49048622
BS
4321/*
4322 * Use precise platform statistics if available:
4323 */
4324#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4325cputime_t task_utime(struct task_struct *p)
4326{
4327 return p->utime;
4328}
4329
4330cputime_t task_stime(struct task_struct *p)
4331{
4332 return p->stime;
4333}
4334#else
4335cputime_t task_utime(struct task_struct *p)
4336{
4337 clock_t utime = cputime_to_clock_t(p->utime),
4338 total = utime + cputime_to_clock_t(p->stime);
4339 u64 temp;
4340
4341 /*
4342 * Use CFS's precise accounting:
4343 */
4344 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4345
4346 if (total) {
4347 temp *= utime;
4348 do_div(temp, total);
4349 }
4350 utime = (clock_t)temp;
4351
4352 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4353 return p->prev_utime;
4354}
4355
4356cputime_t task_stime(struct task_struct *p)
4357{
4358 clock_t stime;
4359
4360 /*
4361 * Use CFS's precise accounting. (we subtract utime from
4362 * the total, to make sure the total observed by userspace
4363 * grows monotonically - apps rely on that):
4364 */
4365 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4366 cputime_to_clock_t(task_utime(p));
4367
4368 if (stime >= 0)
4369 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4370
4371 return p->prev_stime;
4372}
4373#endif
4374
4375inline cputime_t task_gtime(struct task_struct *p)
4376{
4377 return p->gtime;
4378}
4379
7835b98b
CL
4380/*
4381 * This function gets called by the timer code, with HZ frequency.
4382 * We call it with interrupts disabled.
4383 *
4384 * It also gets called by the fork code, when changing the parent's
4385 * timeslices.
4386 */
4387void scheduler_tick(void)
4388{
7835b98b
CL
4389 int cpu = smp_processor_id();
4390 struct rq *rq = cpu_rq(cpu);
dd41f596 4391 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4392
4393 sched_clock_tick();
dd41f596
IM
4394
4395 spin_lock(&rq->lock);
3e51f33f 4396 update_rq_clock(rq);
f1a438d8 4397 update_cpu_load(rq);
fa85ae24 4398 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4399 spin_unlock(&rq->lock);
7835b98b 4400
e418e1c2 4401#ifdef CONFIG_SMP
dd41f596
IM
4402 rq->idle_at_tick = idle_cpu(cpu);
4403 trigger_load_balance(rq, cpu);
e418e1c2 4404#endif
1da177e4
LT
4405}
4406
6cd8a4bb
SR
4407#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4408 defined(CONFIG_PREEMPT_TRACER))
4409
4410static inline unsigned long get_parent_ip(unsigned long addr)
4411{
4412 if (in_lock_functions(addr)) {
4413 addr = CALLER_ADDR2;
4414 if (in_lock_functions(addr))
4415 addr = CALLER_ADDR3;
4416 }
4417 return addr;
4418}
1da177e4 4419
43627582 4420void __kprobes add_preempt_count(int val)
1da177e4 4421{
6cd8a4bb 4422#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4423 /*
4424 * Underflow?
4425 */
9a11b49a
IM
4426 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4427 return;
6cd8a4bb 4428#endif
1da177e4 4429 preempt_count() += val;
6cd8a4bb 4430#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4431 /*
4432 * Spinlock count overflowing soon?
4433 */
33859f7f
MOS
4434 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4435 PREEMPT_MASK - 10);
6cd8a4bb
SR
4436#endif
4437 if (preempt_count() == val)
4438 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4439}
4440EXPORT_SYMBOL(add_preempt_count);
4441
43627582 4442void __kprobes sub_preempt_count(int val)
1da177e4 4443{
6cd8a4bb 4444#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4445 /*
4446 * Underflow?
4447 */
01e3eb82 4448 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4449 return;
1da177e4
LT
4450 /*
4451 * Is the spinlock portion underflowing?
4452 */
9a11b49a
IM
4453 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4454 !(preempt_count() & PREEMPT_MASK)))
4455 return;
6cd8a4bb 4456#endif
9a11b49a 4457
6cd8a4bb
SR
4458 if (preempt_count() == val)
4459 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4460 preempt_count() -= val;
4461}
4462EXPORT_SYMBOL(sub_preempt_count);
4463
4464#endif
4465
4466/*
dd41f596 4467 * Print scheduling while atomic bug:
1da177e4 4468 */
dd41f596 4469static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4470{
838225b4
SS
4471 struct pt_regs *regs = get_irq_regs();
4472
4473 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4474 prev->comm, prev->pid, preempt_count());
4475
dd41f596 4476 debug_show_held_locks(prev);
e21f5b15 4477 print_modules();
dd41f596
IM
4478 if (irqs_disabled())
4479 print_irqtrace_events(prev);
838225b4
SS
4480
4481 if (regs)
4482 show_regs(regs);
4483 else
4484 dump_stack();
dd41f596 4485}
1da177e4 4486
dd41f596
IM
4487/*
4488 * Various schedule()-time debugging checks and statistics:
4489 */
4490static inline void schedule_debug(struct task_struct *prev)
4491{
1da177e4 4492 /*
41a2d6cf 4493 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4494 * schedule() atomically, we ignore that path for now.
4495 * Otherwise, whine if we are scheduling when we should not be.
4496 */
3f33a7ce 4497 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4498 __schedule_bug(prev);
4499
1da177e4
LT
4500 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4501
2d72376b 4502 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4503#ifdef CONFIG_SCHEDSTATS
4504 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4505 schedstat_inc(this_rq(), bkl_count);
4506 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4507 }
4508#endif
dd41f596
IM
4509}
4510
4511/*
4512 * Pick up the highest-prio task:
4513 */
4514static inline struct task_struct *
ff95f3df 4515pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4516{
5522d5d5 4517 const struct sched_class *class;
dd41f596 4518 struct task_struct *p;
1da177e4
LT
4519
4520 /*
dd41f596
IM
4521 * Optimization: we know that if all tasks are in
4522 * the fair class we can call that function directly:
1da177e4 4523 */
dd41f596 4524 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4525 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4526 if (likely(p))
4527 return p;
1da177e4
LT
4528 }
4529
dd41f596
IM
4530 class = sched_class_highest;
4531 for ( ; ; ) {
fb8d4724 4532 p = class->pick_next_task(rq);
dd41f596
IM
4533 if (p)
4534 return p;
4535 /*
4536 * Will never be NULL as the idle class always
4537 * returns a non-NULL p:
4538 */
4539 class = class->next;
4540 }
4541}
1da177e4 4542
dd41f596
IM
4543/*
4544 * schedule() is the main scheduler function.
4545 */
4546asmlinkage void __sched schedule(void)
4547{
4548 struct task_struct *prev, *next;
67ca7bde 4549 unsigned long *switch_count;
dd41f596 4550 struct rq *rq;
dd41f596
IM
4551 int cpu;
4552
4553need_resched:
4554 preempt_disable();
4555 cpu = smp_processor_id();
4556 rq = cpu_rq(cpu);
4557 rcu_qsctr_inc(cpu);
4558 prev = rq->curr;
4559 switch_count = &prev->nivcsw;
4560
4561 release_kernel_lock(prev);
4562need_resched_nonpreemptible:
4563
4564 schedule_debug(prev);
1da177e4 4565
31656519 4566 if (sched_feat(HRTICK))
f333fdc9 4567 hrtick_clear(rq);
8f4d37ec 4568
8cd162ce 4569 spin_lock_irq(&rq->lock);
3e51f33f 4570 update_rq_clock(rq);
1e819950 4571 clear_tsk_need_resched(prev);
1da177e4 4572
1da177e4 4573 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4574 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4575 prev->state = TASK_RUNNING;
16882c1e 4576 else
2e1cb74a 4577 deactivate_task(rq, prev, 1);
dd41f596 4578 switch_count = &prev->nvcsw;
1da177e4
LT
4579 }
4580
9a897c5a
SR
4581#ifdef CONFIG_SMP
4582 if (prev->sched_class->pre_schedule)
4583 prev->sched_class->pre_schedule(rq, prev);
4584#endif
f65eda4f 4585
dd41f596 4586 if (unlikely(!rq->nr_running))
1da177e4 4587 idle_balance(cpu, rq);
1da177e4 4588
31ee529c 4589 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4590 next = pick_next_task(rq, prev);
1da177e4 4591
1da177e4 4592 if (likely(prev != next)) {
673a90a1
DS
4593 sched_info_switch(prev, next);
4594
1da177e4
LT
4595 rq->nr_switches++;
4596 rq->curr = next;
4597 ++*switch_count;
4598
dd41f596 4599 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4600 /*
4601 * the context switch might have flipped the stack from under
4602 * us, hence refresh the local variables.
4603 */
4604 cpu = smp_processor_id();
4605 rq = cpu_rq(cpu);
1da177e4
LT
4606 } else
4607 spin_unlock_irq(&rq->lock);
4608
8f4d37ec 4609 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4610 goto need_resched_nonpreemptible;
8f4d37ec 4611
1da177e4
LT
4612 preempt_enable_no_resched();
4613 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4614 goto need_resched;
4615}
1da177e4
LT
4616EXPORT_SYMBOL(schedule);
4617
4618#ifdef CONFIG_PREEMPT
4619/*
2ed6e34f 4620 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4621 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4622 * occur there and call schedule directly.
4623 */
4624asmlinkage void __sched preempt_schedule(void)
4625{
4626 struct thread_info *ti = current_thread_info();
6478d880 4627
1da177e4
LT
4628 /*
4629 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4630 * we do not want to preempt the current task. Just return..
1da177e4 4631 */
beed33a8 4632 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4633 return;
4634
3a5c359a
AK
4635 do {
4636 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4637 schedule();
3a5c359a 4638 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4639
3a5c359a
AK
4640 /*
4641 * Check again in case we missed a preemption opportunity
4642 * between schedule and now.
4643 */
4644 barrier();
4645 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4646}
1da177e4
LT
4647EXPORT_SYMBOL(preempt_schedule);
4648
4649/*
2ed6e34f 4650 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4651 * off of irq context.
4652 * Note, that this is called and return with irqs disabled. This will
4653 * protect us against recursive calling from irq.
4654 */
4655asmlinkage void __sched preempt_schedule_irq(void)
4656{
4657 struct thread_info *ti = current_thread_info();
6478d880 4658
2ed6e34f 4659 /* Catch callers which need to be fixed */
1da177e4
LT
4660 BUG_ON(ti->preempt_count || !irqs_disabled());
4661
3a5c359a
AK
4662 do {
4663 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4664 local_irq_enable();
4665 schedule();
4666 local_irq_disable();
3a5c359a 4667 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4668
3a5c359a
AK
4669 /*
4670 * Check again in case we missed a preemption opportunity
4671 * between schedule and now.
4672 */
4673 barrier();
4674 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4675}
4676
4677#endif /* CONFIG_PREEMPT */
4678
95cdf3b7
IM
4679int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4680 void *key)
1da177e4 4681{
48f24c4d 4682 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4683}
1da177e4
LT
4684EXPORT_SYMBOL(default_wake_function);
4685
4686/*
41a2d6cf
IM
4687 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4688 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4689 * number) then we wake all the non-exclusive tasks and one exclusive task.
4690 *
4691 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4692 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4693 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4694 */
777c6c5f
JW
4695void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4696 int nr_exclusive, int sync, void *key)
1da177e4 4697{
2e45874c 4698 wait_queue_t *curr, *next;
1da177e4 4699
2e45874c 4700 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4701 unsigned flags = curr->flags;
4702
1da177e4 4703 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4704 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4705 break;
4706 }
4707}
4708
4709/**
4710 * __wake_up - wake up threads blocked on a waitqueue.
4711 * @q: the waitqueue
4712 * @mode: which threads
4713 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4714 * @key: is directly passed to the wakeup function
1da177e4 4715 */
7ad5b3a5 4716void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4717 int nr_exclusive, void *key)
1da177e4
LT
4718{
4719 unsigned long flags;
4720
4721 spin_lock_irqsave(&q->lock, flags);
4722 __wake_up_common(q, mode, nr_exclusive, 0, key);
4723 spin_unlock_irqrestore(&q->lock, flags);
4724}
1da177e4
LT
4725EXPORT_SYMBOL(__wake_up);
4726
4727/*
4728 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4729 */
7ad5b3a5 4730void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4731{
4732 __wake_up_common(q, mode, 1, 0, NULL);
4733}
4734
4735/**
67be2dd1 4736 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4737 * @q: the waitqueue
4738 * @mode: which threads
4739 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4740 *
4741 * The sync wakeup differs that the waker knows that it will schedule
4742 * away soon, so while the target thread will be woken up, it will not
4743 * be migrated to another CPU - ie. the two threads are 'synchronized'
4744 * with each other. This can prevent needless bouncing between CPUs.
4745 *
4746 * On UP it can prevent extra preemption.
4747 */
7ad5b3a5 4748void
95cdf3b7 4749__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4750{
4751 unsigned long flags;
4752 int sync = 1;
4753
4754 if (unlikely(!q))
4755 return;
4756
4757 if (unlikely(!nr_exclusive))
4758 sync = 0;
4759
4760 spin_lock_irqsave(&q->lock, flags);
4761 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4762 spin_unlock_irqrestore(&q->lock, flags);
4763}
4764EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4765
65eb3dc6
KD
4766/**
4767 * complete: - signals a single thread waiting on this completion
4768 * @x: holds the state of this particular completion
4769 *
4770 * This will wake up a single thread waiting on this completion. Threads will be
4771 * awakened in the same order in which they were queued.
4772 *
4773 * See also complete_all(), wait_for_completion() and related routines.
4774 */
b15136e9 4775void complete(struct completion *x)
1da177e4
LT
4776{
4777 unsigned long flags;
4778
4779 spin_lock_irqsave(&x->wait.lock, flags);
4780 x->done++;
d9514f6c 4781 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4782 spin_unlock_irqrestore(&x->wait.lock, flags);
4783}
4784EXPORT_SYMBOL(complete);
4785
65eb3dc6
KD
4786/**
4787 * complete_all: - signals all threads waiting on this completion
4788 * @x: holds the state of this particular completion
4789 *
4790 * This will wake up all threads waiting on this particular completion event.
4791 */
b15136e9 4792void complete_all(struct completion *x)
1da177e4
LT
4793{
4794 unsigned long flags;
4795
4796 spin_lock_irqsave(&x->wait.lock, flags);
4797 x->done += UINT_MAX/2;
d9514f6c 4798 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4799 spin_unlock_irqrestore(&x->wait.lock, flags);
4800}
4801EXPORT_SYMBOL(complete_all);
4802
8cbbe86d
AK
4803static inline long __sched
4804do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4805{
1da177e4
LT
4806 if (!x->done) {
4807 DECLARE_WAITQUEUE(wait, current);
4808
4809 wait.flags |= WQ_FLAG_EXCLUSIVE;
4810 __add_wait_queue_tail(&x->wait, &wait);
4811 do {
94d3d824 4812 if (signal_pending_state(state, current)) {
ea71a546
ON
4813 timeout = -ERESTARTSYS;
4814 break;
8cbbe86d
AK
4815 }
4816 __set_current_state(state);
1da177e4
LT
4817 spin_unlock_irq(&x->wait.lock);
4818 timeout = schedule_timeout(timeout);
4819 spin_lock_irq(&x->wait.lock);
ea71a546 4820 } while (!x->done && timeout);
1da177e4 4821 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4822 if (!x->done)
4823 return timeout;
1da177e4
LT
4824 }
4825 x->done--;
ea71a546 4826 return timeout ?: 1;
1da177e4 4827}
1da177e4 4828
8cbbe86d
AK
4829static long __sched
4830wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4831{
1da177e4
LT
4832 might_sleep();
4833
4834 spin_lock_irq(&x->wait.lock);
8cbbe86d 4835 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4836 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4837 return timeout;
4838}
1da177e4 4839
65eb3dc6
KD
4840/**
4841 * wait_for_completion: - waits for completion of a task
4842 * @x: holds the state of this particular completion
4843 *
4844 * This waits to be signaled for completion of a specific task. It is NOT
4845 * interruptible and there is no timeout.
4846 *
4847 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4848 * and interrupt capability. Also see complete().
4849 */
b15136e9 4850void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4851{
4852 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4853}
8cbbe86d 4854EXPORT_SYMBOL(wait_for_completion);
1da177e4 4855
65eb3dc6
KD
4856/**
4857 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4858 * @x: holds the state of this particular completion
4859 * @timeout: timeout value in jiffies
4860 *
4861 * This waits for either a completion of a specific task to be signaled or for a
4862 * specified timeout to expire. The timeout is in jiffies. It is not
4863 * interruptible.
4864 */
b15136e9 4865unsigned long __sched
8cbbe86d 4866wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4867{
8cbbe86d 4868 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4869}
8cbbe86d 4870EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4871
65eb3dc6
KD
4872/**
4873 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4874 * @x: holds the state of this particular completion
4875 *
4876 * This waits for completion of a specific task to be signaled. It is
4877 * interruptible.
4878 */
8cbbe86d 4879int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4880{
51e97990
AK
4881 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4882 if (t == -ERESTARTSYS)
4883 return t;
4884 return 0;
0fec171c 4885}
8cbbe86d 4886EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4887
65eb3dc6
KD
4888/**
4889 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4890 * @x: holds the state of this particular completion
4891 * @timeout: timeout value in jiffies
4892 *
4893 * This waits for either a completion of a specific task to be signaled or for a
4894 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4895 */
b15136e9 4896unsigned long __sched
8cbbe86d
AK
4897wait_for_completion_interruptible_timeout(struct completion *x,
4898 unsigned long timeout)
0fec171c 4899{
8cbbe86d 4900 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4901}
8cbbe86d 4902EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4903
65eb3dc6
KD
4904/**
4905 * wait_for_completion_killable: - waits for completion of a task (killable)
4906 * @x: holds the state of this particular completion
4907 *
4908 * This waits to be signaled for completion of a specific task. It can be
4909 * interrupted by a kill signal.
4910 */
009e577e
MW
4911int __sched wait_for_completion_killable(struct completion *x)
4912{
4913 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4914 if (t == -ERESTARTSYS)
4915 return t;
4916 return 0;
4917}
4918EXPORT_SYMBOL(wait_for_completion_killable);
4919
be4de352
DC
4920/**
4921 * try_wait_for_completion - try to decrement a completion without blocking
4922 * @x: completion structure
4923 *
4924 * Returns: 0 if a decrement cannot be done without blocking
4925 * 1 if a decrement succeeded.
4926 *
4927 * If a completion is being used as a counting completion,
4928 * attempt to decrement the counter without blocking. This
4929 * enables us to avoid waiting if the resource the completion
4930 * is protecting is not available.
4931 */
4932bool try_wait_for_completion(struct completion *x)
4933{
4934 int ret = 1;
4935
4936 spin_lock_irq(&x->wait.lock);
4937 if (!x->done)
4938 ret = 0;
4939 else
4940 x->done--;
4941 spin_unlock_irq(&x->wait.lock);
4942 return ret;
4943}
4944EXPORT_SYMBOL(try_wait_for_completion);
4945
4946/**
4947 * completion_done - Test to see if a completion has any waiters
4948 * @x: completion structure
4949 *
4950 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4951 * 1 if there are no waiters.
4952 *
4953 */
4954bool completion_done(struct completion *x)
4955{
4956 int ret = 1;
4957
4958 spin_lock_irq(&x->wait.lock);
4959 if (!x->done)
4960 ret = 0;
4961 spin_unlock_irq(&x->wait.lock);
4962 return ret;
4963}
4964EXPORT_SYMBOL(completion_done);
4965
8cbbe86d
AK
4966static long __sched
4967sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4968{
0fec171c
IM
4969 unsigned long flags;
4970 wait_queue_t wait;
4971
4972 init_waitqueue_entry(&wait, current);
1da177e4 4973
8cbbe86d 4974 __set_current_state(state);
1da177e4 4975
8cbbe86d
AK
4976 spin_lock_irqsave(&q->lock, flags);
4977 __add_wait_queue(q, &wait);
4978 spin_unlock(&q->lock);
4979 timeout = schedule_timeout(timeout);
4980 spin_lock_irq(&q->lock);
4981 __remove_wait_queue(q, &wait);
4982 spin_unlock_irqrestore(&q->lock, flags);
4983
4984 return timeout;
4985}
4986
4987void __sched interruptible_sleep_on(wait_queue_head_t *q)
4988{
4989 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4990}
1da177e4
LT
4991EXPORT_SYMBOL(interruptible_sleep_on);
4992
0fec171c 4993long __sched
95cdf3b7 4994interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4995{
8cbbe86d 4996 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4997}
1da177e4
LT
4998EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4999
0fec171c 5000void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5001{
8cbbe86d 5002 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5003}
1da177e4
LT
5004EXPORT_SYMBOL(sleep_on);
5005
0fec171c 5006long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5007{
8cbbe86d 5008 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5009}
1da177e4
LT
5010EXPORT_SYMBOL(sleep_on_timeout);
5011
b29739f9
IM
5012#ifdef CONFIG_RT_MUTEXES
5013
5014/*
5015 * rt_mutex_setprio - set the current priority of a task
5016 * @p: task
5017 * @prio: prio value (kernel-internal form)
5018 *
5019 * This function changes the 'effective' priority of a task. It does
5020 * not touch ->normal_prio like __setscheduler().
5021 *
5022 * Used by the rt_mutex code to implement priority inheritance logic.
5023 */
36c8b586 5024void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5025{
5026 unsigned long flags;
83b699ed 5027 int oldprio, on_rq, running;
70b97a7f 5028 struct rq *rq;
cb469845 5029 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5030
5031 BUG_ON(prio < 0 || prio > MAX_PRIO);
5032
5033 rq = task_rq_lock(p, &flags);
a8e504d2 5034 update_rq_clock(rq);
b29739f9 5035
d5f9f942 5036 oldprio = p->prio;
dd41f596 5037 on_rq = p->se.on_rq;
051a1d1a 5038 running = task_current(rq, p);
0e1f3483 5039 if (on_rq)
69be72c1 5040 dequeue_task(rq, p, 0);
0e1f3483
HS
5041 if (running)
5042 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5043
5044 if (rt_prio(prio))
5045 p->sched_class = &rt_sched_class;
5046 else
5047 p->sched_class = &fair_sched_class;
5048
b29739f9
IM
5049 p->prio = prio;
5050
0e1f3483
HS
5051 if (running)
5052 p->sched_class->set_curr_task(rq);
dd41f596 5053 if (on_rq) {
8159f87e 5054 enqueue_task(rq, p, 0);
cb469845
SR
5055
5056 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5057 }
5058 task_rq_unlock(rq, &flags);
5059}
5060
5061#endif
5062
36c8b586 5063void set_user_nice(struct task_struct *p, long nice)
1da177e4 5064{
dd41f596 5065 int old_prio, delta, on_rq;
1da177e4 5066 unsigned long flags;
70b97a7f 5067 struct rq *rq;
1da177e4
LT
5068
5069 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5070 return;
5071 /*
5072 * We have to be careful, if called from sys_setpriority(),
5073 * the task might be in the middle of scheduling on another CPU.
5074 */
5075 rq = task_rq_lock(p, &flags);
a8e504d2 5076 update_rq_clock(rq);
1da177e4
LT
5077 /*
5078 * The RT priorities are set via sched_setscheduler(), but we still
5079 * allow the 'normal' nice value to be set - but as expected
5080 * it wont have any effect on scheduling until the task is
dd41f596 5081 * SCHED_FIFO/SCHED_RR:
1da177e4 5082 */
e05606d3 5083 if (task_has_rt_policy(p)) {
1da177e4
LT
5084 p->static_prio = NICE_TO_PRIO(nice);
5085 goto out_unlock;
5086 }
dd41f596 5087 on_rq = p->se.on_rq;
c09595f6 5088 if (on_rq)
69be72c1 5089 dequeue_task(rq, p, 0);
1da177e4 5090
1da177e4 5091 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5092 set_load_weight(p);
b29739f9
IM
5093 old_prio = p->prio;
5094 p->prio = effective_prio(p);
5095 delta = p->prio - old_prio;
1da177e4 5096
dd41f596 5097 if (on_rq) {
8159f87e 5098 enqueue_task(rq, p, 0);
1da177e4 5099 /*
d5f9f942
AM
5100 * If the task increased its priority or is running and
5101 * lowered its priority, then reschedule its CPU:
1da177e4 5102 */
d5f9f942 5103 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5104 resched_task(rq->curr);
5105 }
5106out_unlock:
5107 task_rq_unlock(rq, &flags);
5108}
1da177e4
LT
5109EXPORT_SYMBOL(set_user_nice);
5110
e43379f1
MM
5111/*
5112 * can_nice - check if a task can reduce its nice value
5113 * @p: task
5114 * @nice: nice value
5115 */
36c8b586 5116int can_nice(const struct task_struct *p, const int nice)
e43379f1 5117{
024f4747
MM
5118 /* convert nice value [19,-20] to rlimit style value [1,40] */
5119 int nice_rlim = 20 - nice;
48f24c4d 5120
e43379f1
MM
5121 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5122 capable(CAP_SYS_NICE));
5123}
5124
1da177e4
LT
5125#ifdef __ARCH_WANT_SYS_NICE
5126
5127/*
5128 * sys_nice - change the priority of the current process.
5129 * @increment: priority increment
5130 *
5131 * sys_setpriority is a more generic, but much slower function that
5132 * does similar things.
5133 */
5add95d4 5134SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5135{
48f24c4d 5136 long nice, retval;
1da177e4
LT
5137
5138 /*
5139 * Setpriority might change our priority at the same moment.
5140 * We don't have to worry. Conceptually one call occurs first
5141 * and we have a single winner.
5142 */
e43379f1
MM
5143 if (increment < -40)
5144 increment = -40;
1da177e4
LT
5145 if (increment > 40)
5146 increment = 40;
5147
5148 nice = PRIO_TO_NICE(current->static_prio) + increment;
5149 if (nice < -20)
5150 nice = -20;
5151 if (nice > 19)
5152 nice = 19;
5153
e43379f1
MM
5154 if (increment < 0 && !can_nice(current, nice))
5155 return -EPERM;
5156
1da177e4
LT
5157 retval = security_task_setnice(current, nice);
5158 if (retval)
5159 return retval;
5160
5161 set_user_nice(current, nice);
5162 return 0;
5163}
5164
5165#endif
5166
5167/**
5168 * task_prio - return the priority value of a given task.
5169 * @p: the task in question.
5170 *
5171 * This is the priority value as seen by users in /proc.
5172 * RT tasks are offset by -200. Normal tasks are centered
5173 * around 0, value goes from -16 to +15.
5174 */
36c8b586 5175int task_prio(const struct task_struct *p)
1da177e4
LT
5176{
5177 return p->prio - MAX_RT_PRIO;
5178}
5179
5180/**
5181 * task_nice - return the nice value of a given task.
5182 * @p: the task in question.
5183 */
36c8b586 5184int task_nice(const struct task_struct *p)
1da177e4
LT
5185{
5186 return TASK_NICE(p);
5187}
150d8bed 5188EXPORT_SYMBOL(task_nice);
1da177e4
LT
5189
5190/**
5191 * idle_cpu - is a given cpu idle currently?
5192 * @cpu: the processor in question.
5193 */
5194int idle_cpu(int cpu)
5195{
5196 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5197}
5198
1da177e4
LT
5199/**
5200 * idle_task - return the idle task for a given cpu.
5201 * @cpu: the processor in question.
5202 */
36c8b586 5203struct task_struct *idle_task(int cpu)
1da177e4
LT
5204{
5205 return cpu_rq(cpu)->idle;
5206}
5207
5208/**
5209 * find_process_by_pid - find a process with a matching PID value.
5210 * @pid: the pid in question.
5211 */
a9957449 5212static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5213{
228ebcbe 5214 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5215}
5216
5217/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5218static void
5219__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5220{
dd41f596 5221 BUG_ON(p->se.on_rq);
48f24c4d 5222
1da177e4 5223 p->policy = policy;
dd41f596
IM
5224 switch (p->policy) {
5225 case SCHED_NORMAL:
5226 case SCHED_BATCH:
5227 case SCHED_IDLE:
5228 p->sched_class = &fair_sched_class;
5229 break;
5230 case SCHED_FIFO:
5231 case SCHED_RR:
5232 p->sched_class = &rt_sched_class;
5233 break;
5234 }
5235
1da177e4 5236 p->rt_priority = prio;
b29739f9
IM
5237 p->normal_prio = normal_prio(p);
5238 /* we are holding p->pi_lock already */
5239 p->prio = rt_mutex_getprio(p);
2dd73a4f 5240 set_load_weight(p);
1da177e4
LT
5241}
5242
c69e8d9c
DH
5243/*
5244 * check the target process has a UID that matches the current process's
5245 */
5246static bool check_same_owner(struct task_struct *p)
5247{
5248 const struct cred *cred = current_cred(), *pcred;
5249 bool match;
5250
5251 rcu_read_lock();
5252 pcred = __task_cred(p);
5253 match = (cred->euid == pcred->euid ||
5254 cred->euid == pcred->uid);
5255 rcu_read_unlock();
5256 return match;
5257}
5258
961ccddd
RR
5259static int __sched_setscheduler(struct task_struct *p, int policy,
5260 struct sched_param *param, bool user)
1da177e4 5261{
83b699ed 5262 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5263 unsigned long flags;
cb469845 5264 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5265 struct rq *rq;
1da177e4 5266
66e5393a
SR
5267 /* may grab non-irq protected spin_locks */
5268 BUG_ON(in_interrupt());
1da177e4
LT
5269recheck:
5270 /* double check policy once rq lock held */
5271 if (policy < 0)
5272 policy = oldpolicy = p->policy;
5273 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5274 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5275 policy != SCHED_IDLE)
b0a9499c 5276 return -EINVAL;
1da177e4
LT
5277 /*
5278 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5279 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5280 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5281 */
5282 if (param->sched_priority < 0 ||
95cdf3b7 5283 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5284 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5285 return -EINVAL;
e05606d3 5286 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5287 return -EINVAL;
5288
37e4ab3f
OC
5289 /*
5290 * Allow unprivileged RT tasks to decrease priority:
5291 */
961ccddd 5292 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5293 if (rt_policy(policy)) {
8dc3e909 5294 unsigned long rlim_rtprio;
8dc3e909
ON
5295
5296 if (!lock_task_sighand(p, &flags))
5297 return -ESRCH;
5298 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5299 unlock_task_sighand(p, &flags);
5300
5301 /* can't set/change the rt policy */
5302 if (policy != p->policy && !rlim_rtprio)
5303 return -EPERM;
5304
5305 /* can't increase priority */
5306 if (param->sched_priority > p->rt_priority &&
5307 param->sched_priority > rlim_rtprio)
5308 return -EPERM;
5309 }
dd41f596
IM
5310 /*
5311 * Like positive nice levels, dont allow tasks to
5312 * move out of SCHED_IDLE either:
5313 */
5314 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5315 return -EPERM;
5fe1d75f 5316
37e4ab3f 5317 /* can't change other user's priorities */
c69e8d9c 5318 if (!check_same_owner(p))
37e4ab3f
OC
5319 return -EPERM;
5320 }
1da177e4 5321
725aad24 5322 if (user) {
b68aa230 5323#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5324 /*
5325 * Do not allow realtime tasks into groups that have no runtime
5326 * assigned.
5327 */
9a7e0b18
PZ
5328 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5329 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5330 return -EPERM;
b68aa230
PZ
5331#endif
5332
725aad24
JF
5333 retval = security_task_setscheduler(p, policy, param);
5334 if (retval)
5335 return retval;
5336 }
5337
b29739f9
IM
5338 /*
5339 * make sure no PI-waiters arrive (or leave) while we are
5340 * changing the priority of the task:
5341 */
5342 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5343 /*
5344 * To be able to change p->policy safely, the apropriate
5345 * runqueue lock must be held.
5346 */
b29739f9 5347 rq = __task_rq_lock(p);
1da177e4
LT
5348 /* recheck policy now with rq lock held */
5349 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5350 policy = oldpolicy = -1;
b29739f9
IM
5351 __task_rq_unlock(rq);
5352 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5353 goto recheck;
5354 }
2daa3577 5355 update_rq_clock(rq);
dd41f596 5356 on_rq = p->se.on_rq;
051a1d1a 5357 running = task_current(rq, p);
0e1f3483 5358 if (on_rq)
2e1cb74a 5359 deactivate_task(rq, p, 0);
0e1f3483
HS
5360 if (running)
5361 p->sched_class->put_prev_task(rq, p);
f6b53205 5362
1da177e4 5363 oldprio = p->prio;
dd41f596 5364 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5365
0e1f3483
HS
5366 if (running)
5367 p->sched_class->set_curr_task(rq);
dd41f596
IM
5368 if (on_rq) {
5369 activate_task(rq, p, 0);
cb469845
SR
5370
5371 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5372 }
b29739f9
IM
5373 __task_rq_unlock(rq);
5374 spin_unlock_irqrestore(&p->pi_lock, flags);
5375
95e02ca9
TG
5376 rt_mutex_adjust_pi(p);
5377
1da177e4
LT
5378 return 0;
5379}
961ccddd
RR
5380
5381/**
5382 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5383 * @p: the task in question.
5384 * @policy: new policy.
5385 * @param: structure containing the new RT priority.
5386 *
5387 * NOTE that the task may be already dead.
5388 */
5389int sched_setscheduler(struct task_struct *p, int policy,
5390 struct sched_param *param)
5391{
5392 return __sched_setscheduler(p, policy, param, true);
5393}
1da177e4
LT
5394EXPORT_SYMBOL_GPL(sched_setscheduler);
5395
961ccddd
RR
5396/**
5397 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5398 * @p: the task in question.
5399 * @policy: new policy.
5400 * @param: structure containing the new RT priority.
5401 *
5402 * Just like sched_setscheduler, only don't bother checking if the
5403 * current context has permission. For example, this is needed in
5404 * stop_machine(): we create temporary high priority worker threads,
5405 * but our caller might not have that capability.
5406 */
5407int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5408 struct sched_param *param)
5409{
5410 return __sched_setscheduler(p, policy, param, false);
5411}
5412
95cdf3b7
IM
5413static int
5414do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5415{
1da177e4
LT
5416 struct sched_param lparam;
5417 struct task_struct *p;
36c8b586 5418 int retval;
1da177e4
LT
5419
5420 if (!param || pid < 0)
5421 return -EINVAL;
5422 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5423 return -EFAULT;
5fe1d75f
ON
5424
5425 rcu_read_lock();
5426 retval = -ESRCH;
1da177e4 5427 p = find_process_by_pid(pid);
5fe1d75f
ON
5428 if (p != NULL)
5429 retval = sched_setscheduler(p, policy, &lparam);
5430 rcu_read_unlock();
36c8b586 5431
1da177e4
LT
5432 return retval;
5433}
5434
5435/**
5436 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5437 * @pid: the pid in question.
5438 * @policy: new policy.
5439 * @param: structure containing the new RT priority.
5440 */
5add95d4
HC
5441SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5442 struct sched_param __user *, param)
1da177e4 5443{
c21761f1
JB
5444 /* negative values for policy are not valid */
5445 if (policy < 0)
5446 return -EINVAL;
5447
1da177e4
LT
5448 return do_sched_setscheduler(pid, policy, param);
5449}
5450
5451/**
5452 * sys_sched_setparam - set/change the RT priority of a thread
5453 * @pid: the pid in question.
5454 * @param: structure containing the new RT priority.
5455 */
5add95d4 5456SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5457{
5458 return do_sched_setscheduler(pid, -1, param);
5459}
5460
5461/**
5462 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5463 * @pid: the pid in question.
5464 */
5add95d4 5465SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5466{
36c8b586 5467 struct task_struct *p;
3a5c359a 5468 int retval;
1da177e4
LT
5469
5470 if (pid < 0)
3a5c359a 5471 return -EINVAL;
1da177e4
LT
5472
5473 retval = -ESRCH;
5474 read_lock(&tasklist_lock);
5475 p = find_process_by_pid(pid);
5476 if (p) {
5477 retval = security_task_getscheduler(p);
5478 if (!retval)
5479 retval = p->policy;
5480 }
5481 read_unlock(&tasklist_lock);
1da177e4
LT
5482 return retval;
5483}
5484
5485/**
5486 * sys_sched_getscheduler - get the RT priority of a thread
5487 * @pid: the pid in question.
5488 * @param: structure containing the RT priority.
5489 */
5add95d4 5490SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5491{
5492 struct sched_param lp;
36c8b586 5493 struct task_struct *p;
3a5c359a 5494 int retval;
1da177e4
LT
5495
5496 if (!param || pid < 0)
3a5c359a 5497 return -EINVAL;
1da177e4
LT
5498
5499 read_lock(&tasklist_lock);
5500 p = find_process_by_pid(pid);
5501 retval = -ESRCH;
5502 if (!p)
5503 goto out_unlock;
5504
5505 retval = security_task_getscheduler(p);
5506 if (retval)
5507 goto out_unlock;
5508
5509 lp.sched_priority = p->rt_priority;
5510 read_unlock(&tasklist_lock);
5511
5512 /*
5513 * This one might sleep, we cannot do it with a spinlock held ...
5514 */
5515 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5516
1da177e4
LT
5517 return retval;
5518
5519out_unlock:
5520 read_unlock(&tasklist_lock);
5521 return retval;
5522}
5523
96f874e2 5524long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5525{
5a16f3d3 5526 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5527 struct task_struct *p;
5528 int retval;
1da177e4 5529
95402b38 5530 get_online_cpus();
1da177e4
LT
5531 read_lock(&tasklist_lock);
5532
5533 p = find_process_by_pid(pid);
5534 if (!p) {
5535 read_unlock(&tasklist_lock);
95402b38 5536 put_online_cpus();
1da177e4
LT
5537 return -ESRCH;
5538 }
5539
5540 /*
5541 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5542 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5543 * usage count and then drop tasklist_lock.
5544 */
5545 get_task_struct(p);
5546 read_unlock(&tasklist_lock);
5547
5a16f3d3
RR
5548 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5549 retval = -ENOMEM;
5550 goto out_put_task;
5551 }
5552 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5553 retval = -ENOMEM;
5554 goto out_free_cpus_allowed;
5555 }
1da177e4 5556 retval = -EPERM;
c69e8d9c 5557 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5558 goto out_unlock;
5559
e7834f8f
DQ
5560 retval = security_task_setscheduler(p, 0, NULL);
5561 if (retval)
5562 goto out_unlock;
5563
5a16f3d3
RR
5564 cpuset_cpus_allowed(p, cpus_allowed);
5565 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5566 again:
5a16f3d3 5567 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5568
8707d8b8 5569 if (!retval) {
5a16f3d3
RR
5570 cpuset_cpus_allowed(p, cpus_allowed);
5571 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5572 /*
5573 * We must have raced with a concurrent cpuset
5574 * update. Just reset the cpus_allowed to the
5575 * cpuset's cpus_allowed
5576 */
5a16f3d3 5577 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5578 goto again;
5579 }
5580 }
1da177e4 5581out_unlock:
5a16f3d3
RR
5582 free_cpumask_var(new_mask);
5583out_free_cpus_allowed:
5584 free_cpumask_var(cpus_allowed);
5585out_put_task:
1da177e4 5586 put_task_struct(p);
95402b38 5587 put_online_cpus();
1da177e4
LT
5588 return retval;
5589}
5590
5591static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5592 struct cpumask *new_mask)
1da177e4 5593{
96f874e2
RR
5594 if (len < cpumask_size())
5595 cpumask_clear(new_mask);
5596 else if (len > cpumask_size())
5597 len = cpumask_size();
5598
1da177e4
LT
5599 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5600}
5601
5602/**
5603 * sys_sched_setaffinity - set the cpu affinity of a process
5604 * @pid: pid of the process
5605 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5606 * @user_mask_ptr: user-space pointer to the new cpu mask
5607 */
5add95d4
HC
5608SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5609 unsigned long __user *, user_mask_ptr)
1da177e4 5610{
5a16f3d3 5611 cpumask_var_t new_mask;
1da177e4
LT
5612 int retval;
5613
5a16f3d3
RR
5614 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5615 return -ENOMEM;
1da177e4 5616
5a16f3d3
RR
5617 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5618 if (retval == 0)
5619 retval = sched_setaffinity(pid, new_mask);
5620 free_cpumask_var(new_mask);
5621 return retval;
1da177e4
LT
5622}
5623
96f874e2 5624long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5625{
36c8b586 5626 struct task_struct *p;
1da177e4 5627 int retval;
1da177e4 5628
95402b38 5629 get_online_cpus();
1da177e4
LT
5630 read_lock(&tasklist_lock);
5631
5632 retval = -ESRCH;
5633 p = find_process_by_pid(pid);
5634 if (!p)
5635 goto out_unlock;
5636
e7834f8f
DQ
5637 retval = security_task_getscheduler(p);
5638 if (retval)
5639 goto out_unlock;
5640
96f874e2 5641 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5642
5643out_unlock:
5644 read_unlock(&tasklist_lock);
95402b38 5645 put_online_cpus();
1da177e4 5646
9531b62f 5647 return retval;
1da177e4
LT
5648}
5649
5650/**
5651 * sys_sched_getaffinity - get the cpu affinity of a process
5652 * @pid: pid of the process
5653 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5654 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5655 */
5add95d4
HC
5656SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5657 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5658{
5659 int ret;
f17c8607 5660 cpumask_var_t mask;
1da177e4 5661
f17c8607 5662 if (len < cpumask_size())
1da177e4
LT
5663 return -EINVAL;
5664
f17c8607
RR
5665 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5666 return -ENOMEM;
1da177e4 5667
f17c8607
RR
5668 ret = sched_getaffinity(pid, mask);
5669 if (ret == 0) {
5670 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5671 ret = -EFAULT;
5672 else
5673 ret = cpumask_size();
5674 }
5675 free_cpumask_var(mask);
1da177e4 5676
f17c8607 5677 return ret;
1da177e4
LT
5678}
5679
5680/**
5681 * sys_sched_yield - yield the current processor to other threads.
5682 *
dd41f596
IM
5683 * This function yields the current CPU to other tasks. If there are no
5684 * other threads running on this CPU then this function will return.
1da177e4 5685 */
5add95d4 5686SYSCALL_DEFINE0(sched_yield)
1da177e4 5687{
70b97a7f 5688 struct rq *rq = this_rq_lock();
1da177e4 5689
2d72376b 5690 schedstat_inc(rq, yld_count);
4530d7ab 5691 current->sched_class->yield_task(rq);
1da177e4
LT
5692
5693 /*
5694 * Since we are going to call schedule() anyway, there's
5695 * no need to preempt or enable interrupts:
5696 */
5697 __release(rq->lock);
8a25d5de 5698 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5699 _raw_spin_unlock(&rq->lock);
5700 preempt_enable_no_resched();
5701
5702 schedule();
5703
5704 return 0;
5705}
5706
e7b38404 5707static void __cond_resched(void)
1da177e4 5708{
8e0a43d8
IM
5709#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5710 __might_sleep(__FILE__, __LINE__);
5711#endif
5bbcfd90
IM
5712 /*
5713 * The BKS might be reacquired before we have dropped
5714 * PREEMPT_ACTIVE, which could trigger a second
5715 * cond_resched() call.
5716 */
1da177e4
LT
5717 do {
5718 add_preempt_count(PREEMPT_ACTIVE);
5719 schedule();
5720 sub_preempt_count(PREEMPT_ACTIVE);
5721 } while (need_resched());
5722}
5723
02b67cc3 5724int __sched _cond_resched(void)
1da177e4 5725{
9414232f
IM
5726 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5727 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5728 __cond_resched();
5729 return 1;
5730 }
5731 return 0;
5732}
02b67cc3 5733EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5734
5735/*
5736 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5737 * call schedule, and on return reacquire the lock.
5738 *
41a2d6cf 5739 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5740 * operations here to prevent schedule() from being called twice (once via
5741 * spin_unlock(), once by hand).
5742 */
95cdf3b7 5743int cond_resched_lock(spinlock_t *lock)
1da177e4 5744{
95c354fe 5745 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5746 int ret = 0;
5747
95c354fe 5748 if (spin_needbreak(lock) || resched) {
1da177e4 5749 spin_unlock(lock);
95c354fe
NP
5750 if (resched && need_resched())
5751 __cond_resched();
5752 else
5753 cpu_relax();
6df3cecb 5754 ret = 1;
1da177e4 5755 spin_lock(lock);
1da177e4 5756 }
6df3cecb 5757 return ret;
1da177e4 5758}
1da177e4
LT
5759EXPORT_SYMBOL(cond_resched_lock);
5760
5761int __sched cond_resched_softirq(void)
5762{
5763 BUG_ON(!in_softirq());
5764
9414232f 5765 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5766 local_bh_enable();
1da177e4
LT
5767 __cond_resched();
5768 local_bh_disable();
5769 return 1;
5770 }
5771 return 0;
5772}
1da177e4
LT
5773EXPORT_SYMBOL(cond_resched_softirq);
5774
1da177e4
LT
5775/**
5776 * yield - yield the current processor to other threads.
5777 *
72fd4a35 5778 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5779 * thread runnable and calls sys_sched_yield().
5780 */
5781void __sched yield(void)
5782{
5783 set_current_state(TASK_RUNNING);
5784 sys_sched_yield();
5785}
1da177e4
LT
5786EXPORT_SYMBOL(yield);
5787
5788/*
41a2d6cf 5789 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5790 * that process accounting knows that this is a task in IO wait state.
5791 *
5792 * But don't do that if it is a deliberate, throttling IO wait (this task
5793 * has set its backing_dev_info: the queue against which it should throttle)
5794 */
5795void __sched io_schedule(void)
5796{
70b97a7f 5797 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5798
0ff92245 5799 delayacct_blkio_start();
1da177e4
LT
5800 atomic_inc(&rq->nr_iowait);
5801 schedule();
5802 atomic_dec(&rq->nr_iowait);
0ff92245 5803 delayacct_blkio_end();
1da177e4 5804}
1da177e4
LT
5805EXPORT_SYMBOL(io_schedule);
5806
5807long __sched io_schedule_timeout(long timeout)
5808{
70b97a7f 5809 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5810 long ret;
5811
0ff92245 5812 delayacct_blkio_start();
1da177e4
LT
5813 atomic_inc(&rq->nr_iowait);
5814 ret = schedule_timeout(timeout);
5815 atomic_dec(&rq->nr_iowait);
0ff92245 5816 delayacct_blkio_end();
1da177e4
LT
5817 return ret;
5818}
5819
5820/**
5821 * sys_sched_get_priority_max - return maximum RT priority.
5822 * @policy: scheduling class.
5823 *
5824 * this syscall returns the maximum rt_priority that can be used
5825 * by a given scheduling class.
5826 */
5add95d4 5827SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5828{
5829 int ret = -EINVAL;
5830
5831 switch (policy) {
5832 case SCHED_FIFO:
5833 case SCHED_RR:
5834 ret = MAX_USER_RT_PRIO-1;
5835 break;
5836 case SCHED_NORMAL:
b0a9499c 5837 case SCHED_BATCH:
dd41f596 5838 case SCHED_IDLE:
1da177e4
LT
5839 ret = 0;
5840 break;
5841 }
5842 return ret;
5843}
5844
5845/**
5846 * sys_sched_get_priority_min - return minimum RT priority.
5847 * @policy: scheduling class.
5848 *
5849 * this syscall returns the minimum rt_priority that can be used
5850 * by a given scheduling class.
5851 */
5add95d4 5852SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5853{
5854 int ret = -EINVAL;
5855
5856 switch (policy) {
5857 case SCHED_FIFO:
5858 case SCHED_RR:
5859 ret = 1;
5860 break;
5861 case SCHED_NORMAL:
b0a9499c 5862 case SCHED_BATCH:
dd41f596 5863 case SCHED_IDLE:
1da177e4
LT
5864 ret = 0;
5865 }
5866 return ret;
5867}
5868
5869/**
5870 * sys_sched_rr_get_interval - return the default timeslice of a process.
5871 * @pid: pid of the process.
5872 * @interval: userspace pointer to the timeslice value.
5873 *
5874 * this syscall writes the default timeslice value of a given process
5875 * into the user-space timespec buffer. A value of '0' means infinity.
5876 */
17da2bd9 5877SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5878 struct timespec __user *, interval)
1da177e4 5879{
36c8b586 5880 struct task_struct *p;
a4ec24b4 5881 unsigned int time_slice;
3a5c359a 5882 int retval;
1da177e4 5883 struct timespec t;
1da177e4
LT
5884
5885 if (pid < 0)
3a5c359a 5886 return -EINVAL;
1da177e4
LT
5887
5888 retval = -ESRCH;
5889 read_lock(&tasklist_lock);
5890 p = find_process_by_pid(pid);
5891 if (!p)
5892 goto out_unlock;
5893
5894 retval = security_task_getscheduler(p);
5895 if (retval)
5896 goto out_unlock;
5897
77034937
IM
5898 /*
5899 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5900 * tasks that are on an otherwise idle runqueue:
5901 */
5902 time_slice = 0;
5903 if (p->policy == SCHED_RR) {
a4ec24b4 5904 time_slice = DEF_TIMESLICE;
1868f958 5905 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5906 struct sched_entity *se = &p->se;
5907 unsigned long flags;
5908 struct rq *rq;
5909
5910 rq = task_rq_lock(p, &flags);
77034937
IM
5911 if (rq->cfs.load.weight)
5912 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5913 task_rq_unlock(rq, &flags);
5914 }
1da177e4 5915 read_unlock(&tasklist_lock);
a4ec24b4 5916 jiffies_to_timespec(time_slice, &t);
1da177e4 5917 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5918 return retval;
3a5c359a 5919
1da177e4
LT
5920out_unlock:
5921 read_unlock(&tasklist_lock);
5922 return retval;
5923}
5924
7c731e0a 5925static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5926
82a1fcb9 5927void sched_show_task(struct task_struct *p)
1da177e4 5928{
1da177e4 5929 unsigned long free = 0;
36c8b586 5930 unsigned state;
1da177e4 5931
1da177e4 5932 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5933 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5934 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5935#if BITS_PER_LONG == 32
1da177e4 5936 if (state == TASK_RUNNING)
cc4ea795 5937 printk(KERN_CONT " running ");
1da177e4 5938 else
cc4ea795 5939 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5940#else
5941 if (state == TASK_RUNNING)
cc4ea795 5942 printk(KERN_CONT " running task ");
1da177e4 5943 else
cc4ea795 5944 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5945#endif
5946#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5947 free = stack_not_used(p);
1da177e4 5948#endif
ba25f9dc 5949 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5950 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5951
5fb5e6de 5952 show_stack(p, NULL);
1da177e4
LT
5953}
5954
e59e2ae2 5955void show_state_filter(unsigned long state_filter)
1da177e4 5956{
36c8b586 5957 struct task_struct *g, *p;
1da177e4 5958
4bd77321
IM
5959#if BITS_PER_LONG == 32
5960 printk(KERN_INFO
5961 " task PC stack pid father\n");
1da177e4 5962#else
4bd77321
IM
5963 printk(KERN_INFO
5964 " task PC stack pid father\n");
1da177e4
LT
5965#endif
5966 read_lock(&tasklist_lock);
5967 do_each_thread(g, p) {
5968 /*
5969 * reset the NMI-timeout, listing all files on a slow
5970 * console might take alot of time:
5971 */
5972 touch_nmi_watchdog();
39bc89fd 5973 if (!state_filter || (p->state & state_filter))
82a1fcb9 5974 sched_show_task(p);
1da177e4
LT
5975 } while_each_thread(g, p);
5976
04c9167f
JF
5977 touch_all_softlockup_watchdogs();
5978
dd41f596
IM
5979#ifdef CONFIG_SCHED_DEBUG
5980 sysrq_sched_debug_show();
5981#endif
1da177e4 5982 read_unlock(&tasklist_lock);
e59e2ae2
IM
5983 /*
5984 * Only show locks if all tasks are dumped:
5985 */
5986 if (state_filter == -1)
5987 debug_show_all_locks();
1da177e4
LT
5988}
5989
1df21055
IM
5990void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5991{
dd41f596 5992 idle->sched_class = &idle_sched_class;
1df21055
IM
5993}
5994
f340c0d1
IM
5995/**
5996 * init_idle - set up an idle thread for a given CPU
5997 * @idle: task in question
5998 * @cpu: cpu the idle task belongs to
5999 *
6000 * NOTE: this function does not set the idle thread's NEED_RESCHED
6001 * flag, to make booting more robust.
6002 */
5c1e1767 6003void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6004{
70b97a7f 6005 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6006 unsigned long flags;
6007
5cbd54ef
IM
6008 spin_lock_irqsave(&rq->lock, flags);
6009
dd41f596
IM
6010 __sched_fork(idle);
6011 idle->se.exec_start = sched_clock();
6012
b29739f9 6013 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6014 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6015 __set_task_cpu(idle, cpu);
1da177e4 6016
1da177e4 6017 rq->curr = rq->idle = idle;
4866cde0
NP
6018#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6019 idle->oncpu = 1;
6020#endif
1da177e4
LT
6021 spin_unlock_irqrestore(&rq->lock, flags);
6022
6023 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6024#if defined(CONFIG_PREEMPT)
6025 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6026#else
a1261f54 6027 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6028#endif
dd41f596
IM
6029 /*
6030 * The idle tasks have their own, simple scheduling class:
6031 */
6032 idle->sched_class = &idle_sched_class;
fb52607a 6033 ftrace_graph_init_task(idle);
1da177e4
LT
6034}
6035
6036/*
6037 * In a system that switches off the HZ timer nohz_cpu_mask
6038 * indicates which cpus entered this state. This is used
6039 * in the rcu update to wait only for active cpus. For system
6040 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6041 * always be CPU_BITS_NONE.
1da177e4 6042 */
6a7b3dc3 6043cpumask_var_t nohz_cpu_mask;
1da177e4 6044
19978ca6
IM
6045/*
6046 * Increase the granularity value when there are more CPUs,
6047 * because with more CPUs the 'effective latency' as visible
6048 * to users decreases. But the relationship is not linear,
6049 * so pick a second-best guess by going with the log2 of the
6050 * number of CPUs.
6051 *
6052 * This idea comes from the SD scheduler of Con Kolivas:
6053 */
6054static inline void sched_init_granularity(void)
6055{
6056 unsigned int factor = 1 + ilog2(num_online_cpus());
6057 const unsigned long limit = 200000000;
6058
6059 sysctl_sched_min_granularity *= factor;
6060 if (sysctl_sched_min_granularity > limit)
6061 sysctl_sched_min_granularity = limit;
6062
6063 sysctl_sched_latency *= factor;
6064 if (sysctl_sched_latency > limit)
6065 sysctl_sched_latency = limit;
6066
6067 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6068
6069 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6070}
6071
1da177e4
LT
6072#ifdef CONFIG_SMP
6073/*
6074 * This is how migration works:
6075 *
70b97a7f 6076 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6077 * runqueue and wake up that CPU's migration thread.
6078 * 2) we down() the locked semaphore => thread blocks.
6079 * 3) migration thread wakes up (implicitly it forces the migrated
6080 * thread off the CPU)
6081 * 4) it gets the migration request and checks whether the migrated
6082 * task is still in the wrong runqueue.
6083 * 5) if it's in the wrong runqueue then the migration thread removes
6084 * it and puts it into the right queue.
6085 * 6) migration thread up()s the semaphore.
6086 * 7) we wake up and the migration is done.
6087 */
6088
6089/*
6090 * Change a given task's CPU affinity. Migrate the thread to a
6091 * proper CPU and schedule it away if the CPU it's executing on
6092 * is removed from the allowed bitmask.
6093 *
6094 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6095 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6096 * call is not atomic; no spinlocks may be held.
6097 */
96f874e2 6098int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6099{
70b97a7f 6100 struct migration_req req;
1da177e4 6101 unsigned long flags;
70b97a7f 6102 struct rq *rq;
48f24c4d 6103 int ret = 0;
1da177e4
LT
6104
6105 rq = task_rq_lock(p, &flags);
96f874e2 6106 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6107 ret = -EINVAL;
6108 goto out;
6109 }
6110
9985b0ba 6111 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6112 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6113 ret = -EINVAL;
6114 goto out;
6115 }
6116
73fe6aae 6117 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6118 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6119 else {
96f874e2
RR
6120 cpumask_copy(&p->cpus_allowed, new_mask);
6121 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6122 }
6123
1da177e4 6124 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6125 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6126 goto out;
6127
1e5ce4f4 6128 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6129 /* Need help from migration thread: drop lock and wait. */
6130 task_rq_unlock(rq, &flags);
6131 wake_up_process(rq->migration_thread);
6132 wait_for_completion(&req.done);
6133 tlb_migrate_finish(p->mm);
6134 return 0;
6135 }
6136out:
6137 task_rq_unlock(rq, &flags);
48f24c4d 6138
1da177e4
LT
6139 return ret;
6140}
cd8ba7cd 6141EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6142
6143/*
41a2d6cf 6144 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6145 * this because either it can't run here any more (set_cpus_allowed()
6146 * away from this CPU, or CPU going down), or because we're
6147 * attempting to rebalance this task on exec (sched_exec).
6148 *
6149 * So we race with normal scheduler movements, but that's OK, as long
6150 * as the task is no longer on this CPU.
efc30814
KK
6151 *
6152 * Returns non-zero if task was successfully migrated.
1da177e4 6153 */
efc30814 6154static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6155{
70b97a7f 6156 struct rq *rq_dest, *rq_src;
dd41f596 6157 int ret = 0, on_rq;
1da177e4 6158
e761b772 6159 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6160 return ret;
1da177e4
LT
6161
6162 rq_src = cpu_rq(src_cpu);
6163 rq_dest = cpu_rq(dest_cpu);
6164
6165 double_rq_lock(rq_src, rq_dest);
6166 /* Already moved. */
6167 if (task_cpu(p) != src_cpu)
b1e38734 6168 goto done;
1da177e4 6169 /* Affinity changed (again). */
96f874e2 6170 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6171 goto fail;
1da177e4 6172
dd41f596 6173 on_rq = p->se.on_rq;
6e82a3be 6174 if (on_rq)
2e1cb74a 6175 deactivate_task(rq_src, p, 0);
6e82a3be 6176
1da177e4 6177 set_task_cpu(p, dest_cpu);
dd41f596
IM
6178 if (on_rq) {
6179 activate_task(rq_dest, p, 0);
15afe09b 6180 check_preempt_curr(rq_dest, p, 0);
1da177e4 6181 }
b1e38734 6182done:
efc30814 6183 ret = 1;
b1e38734 6184fail:
1da177e4 6185 double_rq_unlock(rq_src, rq_dest);
efc30814 6186 return ret;
1da177e4
LT
6187}
6188
6189/*
6190 * migration_thread - this is a highprio system thread that performs
6191 * thread migration by bumping thread off CPU then 'pushing' onto
6192 * another runqueue.
6193 */
95cdf3b7 6194static int migration_thread(void *data)
1da177e4 6195{
1da177e4 6196 int cpu = (long)data;
70b97a7f 6197 struct rq *rq;
1da177e4
LT
6198
6199 rq = cpu_rq(cpu);
6200 BUG_ON(rq->migration_thread != current);
6201
6202 set_current_state(TASK_INTERRUPTIBLE);
6203 while (!kthread_should_stop()) {
70b97a7f 6204 struct migration_req *req;
1da177e4 6205 struct list_head *head;
1da177e4 6206
1da177e4
LT
6207 spin_lock_irq(&rq->lock);
6208
6209 if (cpu_is_offline(cpu)) {
6210 spin_unlock_irq(&rq->lock);
6211 goto wait_to_die;
6212 }
6213
6214 if (rq->active_balance) {
6215 active_load_balance(rq, cpu);
6216 rq->active_balance = 0;
6217 }
6218
6219 head = &rq->migration_queue;
6220
6221 if (list_empty(head)) {
6222 spin_unlock_irq(&rq->lock);
6223 schedule();
6224 set_current_state(TASK_INTERRUPTIBLE);
6225 continue;
6226 }
70b97a7f 6227 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6228 list_del_init(head->next);
6229
674311d5
NP
6230 spin_unlock(&rq->lock);
6231 __migrate_task(req->task, cpu, req->dest_cpu);
6232 local_irq_enable();
1da177e4
LT
6233
6234 complete(&req->done);
6235 }
6236 __set_current_state(TASK_RUNNING);
6237 return 0;
6238
6239wait_to_die:
6240 /* Wait for kthread_stop */
6241 set_current_state(TASK_INTERRUPTIBLE);
6242 while (!kthread_should_stop()) {
6243 schedule();
6244 set_current_state(TASK_INTERRUPTIBLE);
6245 }
6246 __set_current_state(TASK_RUNNING);
6247 return 0;
6248}
6249
6250#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6251
6252static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6253{
6254 int ret;
6255
6256 local_irq_disable();
6257 ret = __migrate_task(p, src_cpu, dest_cpu);
6258 local_irq_enable();
6259 return ret;
6260}
6261
054b9108 6262/*
3a4fa0a2 6263 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6264 */
48f24c4d 6265static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6266{
70b97a7f 6267 int dest_cpu;
6ca09dfc 6268 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
1da177e4 6269
e76bd8d9
RR
6270again:
6271 /* Look for allowed, online CPU in same node. */
6272 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6273 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6274 goto move;
3a5c359a 6275
e76bd8d9
RR
6276 /* Any allowed, online CPU? */
6277 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6278 if (dest_cpu < nr_cpu_ids)
6279 goto move;
3a5c359a 6280
e76bd8d9
RR
6281 /* No more Mr. Nice Guy. */
6282 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6283 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6284 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
f9a86fcb 6285
e76bd8d9
RR
6286 /*
6287 * Don't tell them about moving exiting tasks or
6288 * kernel threads (both mm NULL), since they never
6289 * leave kernel.
6290 */
6291 if (p->mm && printk_ratelimit()) {
6292 printk(KERN_INFO "process %d (%s) no "
6293 "longer affine to cpu%d\n",
6294 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6295 }
e76bd8d9
RR
6296 }
6297
6298move:
6299 /* It can have affinity changed while we were choosing. */
6300 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6301 goto again;
1da177e4
LT
6302}
6303
6304/*
6305 * While a dead CPU has no uninterruptible tasks queued at this point,
6306 * it might still have a nonzero ->nr_uninterruptible counter, because
6307 * for performance reasons the counter is not stricly tracking tasks to
6308 * their home CPUs. So we just add the counter to another CPU's counter,
6309 * to keep the global sum constant after CPU-down:
6310 */
70b97a7f 6311static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6312{
1e5ce4f4 6313 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6314 unsigned long flags;
6315
6316 local_irq_save(flags);
6317 double_rq_lock(rq_src, rq_dest);
6318 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6319 rq_src->nr_uninterruptible = 0;
6320 double_rq_unlock(rq_src, rq_dest);
6321 local_irq_restore(flags);
6322}
6323
6324/* Run through task list and migrate tasks from the dead cpu. */
6325static void migrate_live_tasks(int src_cpu)
6326{
48f24c4d 6327 struct task_struct *p, *t;
1da177e4 6328
f7b4cddc 6329 read_lock(&tasklist_lock);
1da177e4 6330
48f24c4d
IM
6331 do_each_thread(t, p) {
6332 if (p == current)
1da177e4
LT
6333 continue;
6334
48f24c4d
IM
6335 if (task_cpu(p) == src_cpu)
6336 move_task_off_dead_cpu(src_cpu, p);
6337 } while_each_thread(t, p);
1da177e4 6338
f7b4cddc 6339 read_unlock(&tasklist_lock);
1da177e4
LT
6340}
6341
dd41f596
IM
6342/*
6343 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6344 * It does so by boosting its priority to highest possible.
6345 * Used by CPU offline code.
1da177e4
LT
6346 */
6347void sched_idle_next(void)
6348{
48f24c4d 6349 int this_cpu = smp_processor_id();
70b97a7f 6350 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6351 struct task_struct *p = rq->idle;
6352 unsigned long flags;
6353
6354 /* cpu has to be offline */
48f24c4d 6355 BUG_ON(cpu_online(this_cpu));
1da177e4 6356
48f24c4d
IM
6357 /*
6358 * Strictly not necessary since rest of the CPUs are stopped by now
6359 * and interrupts disabled on the current cpu.
1da177e4
LT
6360 */
6361 spin_lock_irqsave(&rq->lock, flags);
6362
dd41f596 6363 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6364
94bc9a7b
DA
6365 update_rq_clock(rq);
6366 activate_task(rq, p, 0);
1da177e4
LT
6367
6368 spin_unlock_irqrestore(&rq->lock, flags);
6369}
6370
48f24c4d
IM
6371/*
6372 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6373 * offline.
6374 */
6375void idle_task_exit(void)
6376{
6377 struct mm_struct *mm = current->active_mm;
6378
6379 BUG_ON(cpu_online(smp_processor_id()));
6380
6381 if (mm != &init_mm)
6382 switch_mm(mm, &init_mm, current);
6383 mmdrop(mm);
6384}
6385
054b9108 6386/* called under rq->lock with disabled interrupts */
36c8b586 6387static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6388{
70b97a7f 6389 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6390
6391 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6392 BUG_ON(!p->exit_state);
1da177e4
LT
6393
6394 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6395 BUG_ON(p->state == TASK_DEAD);
1da177e4 6396
48f24c4d 6397 get_task_struct(p);
1da177e4
LT
6398
6399 /*
6400 * Drop lock around migration; if someone else moves it,
41a2d6cf 6401 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6402 * fine.
6403 */
f7b4cddc 6404 spin_unlock_irq(&rq->lock);
48f24c4d 6405 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6406 spin_lock_irq(&rq->lock);
1da177e4 6407
48f24c4d 6408 put_task_struct(p);
1da177e4
LT
6409}
6410
6411/* release_task() removes task from tasklist, so we won't find dead tasks. */
6412static void migrate_dead_tasks(unsigned int dead_cpu)
6413{
70b97a7f 6414 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6415 struct task_struct *next;
48f24c4d 6416
dd41f596
IM
6417 for ( ; ; ) {
6418 if (!rq->nr_running)
6419 break;
a8e504d2 6420 update_rq_clock(rq);
ff95f3df 6421 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6422 if (!next)
6423 break;
79c53799 6424 next->sched_class->put_prev_task(rq, next);
dd41f596 6425 migrate_dead(dead_cpu, next);
e692ab53 6426
1da177e4
LT
6427 }
6428}
6429#endif /* CONFIG_HOTPLUG_CPU */
6430
e692ab53
NP
6431#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6432
6433static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6434 {
6435 .procname = "sched_domain",
c57baf1e 6436 .mode = 0555,
e0361851 6437 },
38605cae 6438 {0, },
e692ab53
NP
6439};
6440
6441static struct ctl_table sd_ctl_root[] = {
e0361851 6442 {
c57baf1e 6443 .ctl_name = CTL_KERN,
e0361851 6444 .procname = "kernel",
c57baf1e 6445 .mode = 0555,
e0361851
AD
6446 .child = sd_ctl_dir,
6447 },
38605cae 6448 {0, },
e692ab53
NP
6449};
6450
6451static struct ctl_table *sd_alloc_ctl_entry(int n)
6452{
6453 struct ctl_table *entry =
5cf9f062 6454 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6455
e692ab53
NP
6456 return entry;
6457}
6458
6382bc90
MM
6459static void sd_free_ctl_entry(struct ctl_table **tablep)
6460{
cd790076 6461 struct ctl_table *entry;
6382bc90 6462
cd790076
MM
6463 /*
6464 * In the intermediate directories, both the child directory and
6465 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6466 * will always be set. In the lowest directory the names are
cd790076
MM
6467 * static strings and all have proc handlers.
6468 */
6469 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6470 if (entry->child)
6471 sd_free_ctl_entry(&entry->child);
cd790076
MM
6472 if (entry->proc_handler == NULL)
6473 kfree(entry->procname);
6474 }
6382bc90
MM
6475
6476 kfree(*tablep);
6477 *tablep = NULL;
6478}
6479
e692ab53 6480static void
e0361851 6481set_table_entry(struct ctl_table *entry,
e692ab53
NP
6482 const char *procname, void *data, int maxlen,
6483 mode_t mode, proc_handler *proc_handler)
6484{
e692ab53
NP
6485 entry->procname = procname;
6486 entry->data = data;
6487 entry->maxlen = maxlen;
6488 entry->mode = mode;
6489 entry->proc_handler = proc_handler;
6490}
6491
6492static struct ctl_table *
6493sd_alloc_ctl_domain_table(struct sched_domain *sd)
6494{
a5d8c348 6495 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6496
ad1cdc1d
MM
6497 if (table == NULL)
6498 return NULL;
6499
e0361851 6500 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6501 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6502 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6503 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6504 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6505 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6506 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6507 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6508 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6509 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6510 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6511 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6512 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6513 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6514 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6515 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6516 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6517 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6518 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6519 &sd->cache_nice_tries,
6520 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6521 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6522 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6523 set_table_entry(&table[11], "name", sd->name,
6524 CORENAME_MAX_SIZE, 0444, proc_dostring);
6525 /* &table[12] is terminator */
e692ab53
NP
6526
6527 return table;
6528}
6529
9a4e7159 6530static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6531{
6532 struct ctl_table *entry, *table;
6533 struct sched_domain *sd;
6534 int domain_num = 0, i;
6535 char buf[32];
6536
6537 for_each_domain(cpu, sd)
6538 domain_num++;
6539 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6540 if (table == NULL)
6541 return NULL;
e692ab53
NP
6542
6543 i = 0;
6544 for_each_domain(cpu, sd) {
6545 snprintf(buf, 32, "domain%d", i);
e692ab53 6546 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6547 entry->mode = 0555;
e692ab53
NP
6548 entry->child = sd_alloc_ctl_domain_table(sd);
6549 entry++;
6550 i++;
6551 }
6552 return table;
6553}
6554
6555static struct ctl_table_header *sd_sysctl_header;
6382bc90 6556static void register_sched_domain_sysctl(void)
e692ab53
NP
6557{
6558 int i, cpu_num = num_online_cpus();
6559 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6560 char buf[32];
6561
7378547f
MM
6562 WARN_ON(sd_ctl_dir[0].child);
6563 sd_ctl_dir[0].child = entry;
6564
ad1cdc1d
MM
6565 if (entry == NULL)
6566 return;
6567
97b6ea7b 6568 for_each_online_cpu(i) {
e692ab53 6569 snprintf(buf, 32, "cpu%d", i);
e692ab53 6570 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6571 entry->mode = 0555;
e692ab53 6572 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6573 entry++;
e692ab53 6574 }
7378547f
MM
6575
6576 WARN_ON(sd_sysctl_header);
e692ab53
NP
6577 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6578}
6382bc90 6579
7378547f 6580/* may be called multiple times per register */
6382bc90
MM
6581static void unregister_sched_domain_sysctl(void)
6582{
7378547f
MM
6583 if (sd_sysctl_header)
6584 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6585 sd_sysctl_header = NULL;
7378547f
MM
6586 if (sd_ctl_dir[0].child)
6587 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6588}
e692ab53 6589#else
6382bc90
MM
6590static void register_sched_domain_sysctl(void)
6591{
6592}
6593static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6594{
6595}
6596#endif
6597
1f11eb6a
GH
6598static void set_rq_online(struct rq *rq)
6599{
6600 if (!rq->online) {
6601 const struct sched_class *class;
6602
c6c4927b 6603 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6604 rq->online = 1;
6605
6606 for_each_class(class) {
6607 if (class->rq_online)
6608 class->rq_online(rq);
6609 }
6610 }
6611}
6612
6613static void set_rq_offline(struct rq *rq)
6614{
6615 if (rq->online) {
6616 const struct sched_class *class;
6617
6618 for_each_class(class) {
6619 if (class->rq_offline)
6620 class->rq_offline(rq);
6621 }
6622
c6c4927b 6623 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6624 rq->online = 0;
6625 }
6626}
6627
1da177e4
LT
6628/*
6629 * migration_call - callback that gets triggered when a CPU is added.
6630 * Here we can start up the necessary migration thread for the new CPU.
6631 */
48f24c4d
IM
6632static int __cpuinit
6633migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6634{
1da177e4 6635 struct task_struct *p;
48f24c4d 6636 int cpu = (long)hcpu;
1da177e4 6637 unsigned long flags;
70b97a7f 6638 struct rq *rq;
1da177e4
LT
6639
6640 switch (action) {
5be9361c 6641
1da177e4 6642 case CPU_UP_PREPARE:
8bb78442 6643 case CPU_UP_PREPARE_FROZEN:
dd41f596 6644 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6645 if (IS_ERR(p))
6646 return NOTIFY_BAD;
1da177e4
LT
6647 kthread_bind(p, cpu);
6648 /* Must be high prio: stop_machine expects to yield to it. */
6649 rq = task_rq_lock(p, &flags);
dd41f596 6650 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6651 task_rq_unlock(rq, &flags);
6652 cpu_rq(cpu)->migration_thread = p;
6653 break;
48f24c4d 6654
1da177e4 6655 case CPU_ONLINE:
8bb78442 6656 case CPU_ONLINE_FROZEN:
3a4fa0a2 6657 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6658 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6659
6660 /* Update our root-domain */
6661 rq = cpu_rq(cpu);
6662 spin_lock_irqsave(&rq->lock, flags);
6663 if (rq->rd) {
c6c4927b 6664 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6665
6666 set_rq_online(rq);
1f94ef59
GH
6667 }
6668 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6669 break;
48f24c4d 6670
1da177e4
LT
6671#ifdef CONFIG_HOTPLUG_CPU
6672 case CPU_UP_CANCELED:
8bb78442 6673 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6674 if (!cpu_rq(cpu)->migration_thread)
6675 break;
41a2d6cf 6676 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6677 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6678 cpumask_any(cpu_online_mask));
1da177e4
LT
6679 kthread_stop(cpu_rq(cpu)->migration_thread);
6680 cpu_rq(cpu)->migration_thread = NULL;
6681 break;
48f24c4d 6682
1da177e4 6683 case CPU_DEAD:
8bb78442 6684 case CPU_DEAD_FROZEN:
470fd646 6685 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6686 migrate_live_tasks(cpu);
6687 rq = cpu_rq(cpu);
6688 kthread_stop(rq->migration_thread);
6689 rq->migration_thread = NULL;
6690 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6691 spin_lock_irq(&rq->lock);
a8e504d2 6692 update_rq_clock(rq);
2e1cb74a 6693 deactivate_task(rq, rq->idle, 0);
1da177e4 6694 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6695 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6696 rq->idle->sched_class = &idle_sched_class;
1da177e4 6697 migrate_dead_tasks(cpu);
d2da272a 6698 spin_unlock_irq(&rq->lock);
470fd646 6699 cpuset_unlock();
1da177e4
LT
6700 migrate_nr_uninterruptible(rq);
6701 BUG_ON(rq->nr_running != 0);
6702
41a2d6cf
IM
6703 /*
6704 * No need to migrate the tasks: it was best-effort if
6705 * they didn't take sched_hotcpu_mutex. Just wake up
6706 * the requestors.
6707 */
1da177e4
LT
6708 spin_lock_irq(&rq->lock);
6709 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6710 struct migration_req *req;
6711
1da177e4 6712 req = list_entry(rq->migration_queue.next,
70b97a7f 6713 struct migration_req, list);
1da177e4 6714 list_del_init(&req->list);
9a2bd244 6715 spin_unlock_irq(&rq->lock);
1da177e4 6716 complete(&req->done);
9a2bd244 6717 spin_lock_irq(&rq->lock);
1da177e4
LT
6718 }
6719 spin_unlock_irq(&rq->lock);
6720 break;
57d885fe 6721
08f503b0
GH
6722 case CPU_DYING:
6723 case CPU_DYING_FROZEN:
57d885fe
GH
6724 /* Update our root-domain */
6725 rq = cpu_rq(cpu);
6726 spin_lock_irqsave(&rq->lock, flags);
6727 if (rq->rd) {
c6c4927b 6728 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6729 set_rq_offline(rq);
57d885fe
GH
6730 }
6731 spin_unlock_irqrestore(&rq->lock, flags);
6732 break;
1da177e4
LT
6733#endif
6734 }
6735 return NOTIFY_OK;
6736}
6737
6738/* Register at highest priority so that task migration (migrate_all_tasks)
6739 * happens before everything else.
6740 */
26c2143b 6741static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6742 .notifier_call = migration_call,
6743 .priority = 10
6744};
6745
7babe8db 6746static int __init migration_init(void)
1da177e4
LT
6747{
6748 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6749 int err;
48f24c4d
IM
6750
6751 /* Start one for the boot CPU: */
07dccf33
AM
6752 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6753 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6754 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6755 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6756
6757 return err;
1da177e4 6758}
7babe8db 6759early_initcall(migration_init);
1da177e4
LT
6760#endif
6761
6762#ifdef CONFIG_SMP
476f3534 6763
3e9830dc 6764#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6765
7c16ec58 6766static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6767 struct cpumask *groupmask)
1da177e4 6768{
4dcf6aff 6769 struct sched_group *group = sd->groups;
434d53b0 6770 char str[256];
1da177e4 6771
968ea6d8 6772 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6773 cpumask_clear(groupmask);
4dcf6aff
IM
6774
6775 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6776
6777 if (!(sd->flags & SD_LOAD_BALANCE)) {
6778 printk("does not load-balance\n");
6779 if (sd->parent)
6780 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6781 " has parent");
6782 return -1;
41c7ce9a
NP
6783 }
6784
eefd796a 6785 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6786
758b2cdc 6787 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6788 printk(KERN_ERR "ERROR: domain->span does not contain "
6789 "CPU%d\n", cpu);
6790 }
758b2cdc 6791 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6792 printk(KERN_ERR "ERROR: domain->groups does not contain"
6793 " CPU%d\n", cpu);
6794 }
1da177e4 6795
4dcf6aff 6796 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6797 do {
4dcf6aff
IM
6798 if (!group) {
6799 printk("\n");
6800 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6801 break;
6802 }
6803
4dcf6aff
IM
6804 if (!group->__cpu_power) {
6805 printk(KERN_CONT "\n");
6806 printk(KERN_ERR "ERROR: domain->cpu_power not "
6807 "set\n");
6808 break;
6809 }
1da177e4 6810
758b2cdc 6811 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6812 printk(KERN_CONT "\n");
6813 printk(KERN_ERR "ERROR: empty group\n");
6814 break;
6815 }
1da177e4 6816
758b2cdc 6817 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6818 printk(KERN_CONT "\n");
6819 printk(KERN_ERR "ERROR: repeated CPUs\n");
6820 break;
6821 }
1da177e4 6822
758b2cdc 6823 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6824
968ea6d8 6825 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 6826 printk(KERN_CONT " %s", str);
1da177e4 6827
4dcf6aff
IM
6828 group = group->next;
6829 } while (group != sd->groups);
6830 printk(KERN_CONT "\n");
1da177e4 6831
758b2cdc 6832 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6833 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6834
758b2cdc
RR
6835 if (sd->parent &&
6836 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6837 printk(KERN_ERR "ERROR: parent span is not a superset "
6838 "of domain->span\n");
6839 return 0;
6840}
1da177e4 6841
4dcf6aff
IM
6842static void sched_domain_debug(struct sched_domain *sd, int cpu)
6843{
d5dd3db1 6844 cpumask_var_t groupmask;
4dcf6aff 6845 int level = 0;
1da177e4 6846
4dcf6aff
IM
6847 if (!sd) {
6848 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6849 return;
6850 }
1da177e4 6851
4dcf6aff
IM
6852 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6853
d5dd3db1 6854 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6855 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6856 return;
6857 }
6858
4dcf6aff 6859 for (;;) {
7c16ec58 6860 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6861 break;
1da177e4
LT
6862 level++;
6863 sd = sd->parent;
33859f7f 6864 if (!sd)
4dcf6aff
IM
6865 break;
6866 }
d5dd3db1 6867 free_cpumask_var(groupmask);
1da177e4 6868}
6d6bc0ad 6869#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6870# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6871#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6872
1a20ff27 6873static int sd_degenerate(struct sched_domain *sd)
245af2c7 6874{
758b2cdc 6875 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6876 return 1;
6877
6878 /* Following flags need at least 2 groups */
6879 if (sd->flags & (SD_LOAD_BALANCE |
6880 SD_BALANCE_NEWIDLE |
6881 SD_BALANCE_FORK |
89c4710e
SS
6882 SD_BALANCE_EXEC |
6883 SD_SHARE_CPUPOWER |
6884 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6885 if (sd->groups != sd->groups->next)
6886 return 0;
6887 }
6888
6889 /* Following flags don't use groups */
6890 if (sd->flags & (SD_WAKE_IDLE |
6891 SD_WAKE_AFFINE |
6892 SD_WAKE_BALANCE))
6893 return 0;
6894
6895 return 1;
6896}
6897
48f24c4d
IM
6898static int
6899sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6900{
6901 unsigned long cflags = sd->flags, pflags = parent->flags;
6902
6903 if (sd_degenerate(parent))
6904 return 1;
6905
758b2cdc 6906 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6907 return 0;
6908
6909 /* Does parent contain flags not in child? */
6910 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6911 if (cflags & SD_WAKE_AFFINE)
6912 pflags &= ~SD_WAKE_BALANCE;
6913 /* Flags needing groups don't count if only 1 group in parent */
6914 if (parent->groups == parent->groups->next) {
6915 pflags &= ~(SD_LOAD_BALANCE |
6916 SD_BALANCE_NEWIDLE |
6917 SD_BALANCE_FORK |
89c4710e
SS
6918 SD_BALANCE_EXEC |
6919 SD_SHARE_CPUPOWER |
6920 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6921 if (nr_node_ids == 1)
6922 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6923 }
6924 if (~cflags & pflags)
6925 return 0;
6926
6927 return 1;
6928}
6929
c6c4927b
RR
6930static void free_rootdomain(struct root_domain *rd)
6931{
68e74568
RR
6932 cpupri_cleanup(&rd->cpupri);
6933
c6c4927b
RR
6934 free_cpumask_var(rd->rto_mask);
6935 free_cpumask_var(rd->online);
6936 free_cpumask_var(rd->span);
6937 kfree(rd);
6938}
6939
57d885fe
GH
6940static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6941{
a0490fa3 6942 struct root_domain *old_rd = NULL;
57d885fe 6943 unsigned long flags;
57d885fe
GH
6944
6945 spin_lock_irqsave(&rq->lock, flags);
6946
6947 if (rq->rd) {
a0490fa3 6948 old_rd = rq->rd;
57d885fe 6949
c6c4927b 6950 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6951 set_rq_offline(rq);
57d885fe 6952
c6c4927b 6953 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6954
a0490fa3
IM
6955 /*
6956 * If we dont want to free the old_rt yet then
6957 * set old_rd to NULL to skip the freeing later
6958 * in this function:
6959 */
6960 if (!atomic_dec_and_test(&old_rd->refcount))
6961 old_rd = NULL;
57d885fe
GH
6962 }
6963
6964 atomic_inc(&rd->refcount);
6965 rq->rd = rd;
6966
c6c4927b
RR
6967 cpumask_set_cpu(rq->cpu, rd->span);
6968 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 6969 set_rq_online(rq);
57d885fe
GH
6970
6971 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6972
6973 if (old_rd)
6974 free_rootdomain(old_rd);
57d885fe
GH
6975}
6976
db2f59c8 6977static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
6978{
6979 memset(rd, 0, sizeof(*rd));
6980
c6c4927b
RR
6981 if (bootmem) {
6982 alloc_bootmem_cpumask_var(&def_root_domain.span);
6983 alloc_bootmem_cpumask_var(&def_root_domain.online);
6984 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 6985 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
6986 return 0;
6987 }
6988
6989 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6990 goto out;
c6c4927b
RR
6991 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6992 goto free_span;
6993 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6994 goto free_online;
6e0534f2 6995
68e74568
RR
6996 if (cpupri_init(&rd->cpupri, false) != 0)
6997 goto free_rto_mask;
c6c4927b 6998 return 0;
6e0534f2 6999
68e74568
RR
7000free_rto_mask:
7001 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7002free_online:
7003 free_cpumask_var(rd->online);
7004free_span:
7005 free_cpumask_var(rd->span);
0c910d28 7006out:
c6c4927b 7007 return -ENOMEM;
57d885fe
GH
7008}
7009
7010static void init_defrootdomain(void)
7011{
c6c4927b
RR
7012 init_rootdomain(&def_root_domain, true);
7013
57d885fe
GH
7014 atomic_set(&def_root_domain.refcount, 1);
7015}
7016
dc938520 7017static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7018{
7019 struct root_domain *rd;
7020
7021 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7022 if (!rd)
7023 return NULL;
7024
c6c4927b
RR
7025 if (init_rootdomain(rd, false) != 0) {
7026 kfree(rd);
7027 return NULL;
7028 }
57d885fe
GH
7029
7030 return rd;
7031}
7032
1da177e4 7033/*
0eab9146 7034 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7035 * hold the hotplug lock.
7036 */
0eab9146
IM
7037static void
7038cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7039{
70b97a7f 7040 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7041 struct sched_domain *tmp;
7042
7043 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7044 for (tmp = sd; tmp; ) {
245af2c7
SS
7045 struct sched_domain *parent = tmp->parent;
7046 if (!parent)
7047 break;
f29c9b1c 7048
1a848870 7049 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7050 tmp->parent = parent->parent;
1a848870
SS
7051 if (parent->parent)
7052 parent->parent->child = tmp;
f29c9b1c
LZ
7053 } else
7054 tmp = tmp->parent;
245af2c7
SS
7055 }
7056
1a848870 7057 if (sd && sd_degenerate(sd)) {
245af2c7 7058 sd = sd->parent;
1a848870
SS
7059 if (sd)
7060 sd->child = NULL;
7061 }
1da177e4
LT
7062
7063 sched_domain_debug(sd, cpu);
7064
57d885fe 7065 rq_attach_root(rq, rd);
674311d5 7066 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7067}
7068
7069/* cpus with isolated domains */
dcc30a35 7070static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7071
7072/* Setup the mask of cpus configured for isolated domains */
7073static int __init isolated_cpu_setup(char *str)
7074{
968ea6d8 7075 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7076 return 1;
7077}
7078
8927f494 7079__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7080
7081/*
6711cab4
SS
7082 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7083 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7084 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7085 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7086 *
7087 * init_sched_build_groups will build a circular linked list of the groups
7088 * covered by the given span, and will set each group's ->cpumask correctly,
7089 * and ->cpu_power to 0.
7090 */
a616058b 7091static void
96f874e2
RR
7092init_sched_build_groups(const struct cpumask *span,
7093 const struct cpumask *cpu_map,
7094 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7095 struct sched_group **sg,
96f874e2
RR
7096 struct cpumask *tmpmask),
7097 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7098{
7099 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7100 int i;
7101
96f874e2 7102 cpumask_clear(covered);
7c16ec58 7103
abcd083a 7104 for_each_cpu(i, span) {
6711cab4 7105 struct sched_group *sg;
7c16ec58 7106 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7107 int j;
7108
758b2cdc 7109 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7110 continue;
7111
758b2cdc 7112 cpumask_clear(sched_group_cpus(sg));
5517d86b 7113 sg->__cpu_power = 0;
1da177e4 7114
abcd083a 7115 for_each_cpu(j, span) {
7c16ec58 7116 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7117 continue;
7118
96f874e2 7119 cpumask_set_cpu(j, covered);
758b2cdc 7120 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7121 }
7122 if (!first)
7123 first = sg;
7124 if (last)
7125 last->next = sg;
7126 last = sg;
7127 }
7128 last->next = first;
7129}
7130
9c1cfda2 7131#define SD_NODES_PER_DOMAIN 16
1da177e4 7132
9c1cfda2 7133#ifdef CONFIG_NUMA
198e2f18 7134
9c1cfda2
JH
7135/**
7136 * find_next_best_node - find the next node to include in a sched_domain
7137 * @node: node whose sched_domain we're building
7138 * @used_nodes: nodes already in the sched_domain
7139 *
41a2d6cf 7140 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7141 * finds the closest node not already in the @used_nodes map.
7142 *
7143 * Should use nodemask_t.
7144 */
c5f59f08 7145static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7146{
7147 int i, n, val, min_val, best_node = 0;
7148
7149 min_val = INT_MAX;
7150
076ac2af 7151 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7152 /* Start at @node */
076ac2af 7153 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7154
7155 if (!nr_cpus_node(n))
7156 continue;
7157
7158 /* Skip already used nodes */
c5f59f08 7159 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7160 continue;
7161
7162 /* Simple min distance search */
7163 val = node_distance(node, n);
7164
7165 if (val < min_val) {
7166 min_val = val;
7167 best_node = n;
7168 }
7169 }
7170
c5f59f08 7171 node_set(best_node, *used_nodes);
9c1cfda2
JH
7172 return best_node;
7173}
7174
7175/**
7176 * sched_domain_node_span - get a cpumask for a node's sched_domain
7177 * @node: node whose cpumask we're constructing
73486722 7178 * @span: resulting cpumask
9c1cfda2 7179 *
41a2d6cf 7180 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7181 * should be one that prevents unnecessary balancing, but also spreads tasks
7182 * out optimally.
7183 */
96f874e2 7184static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7185{
c5f59f08 7186 nodemask_t used_nodes;
48f24c4d 7187 int i;
9c1cfda2 7188
6ca09dfc 7189 cpumask_clear(span);
c5f59f08 7190 nodes_clear(used_nodes);
9c1cfda2 7191
6ca09dfc 7192 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7193 node_set(node, used_nodes);
9c1cfda2
JH
7194
7195 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7196 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7197
6ca09dfc 7198 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7199 }
9c1cfda2 7200}
6d6bc0ad 7201#endif /* CONFIG_NUMA */
9c1cfda2 7202
5c45bf27 7203int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7204
6c99e9ad
RR
7205/*
7206 * The cpus mask in sched_group and sched_domain hangs off the end.
7207 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7208 * for nr_cpu_ids < CONFIG_NR_CPUS.
7209 */
7210struct static_sched_group {
7211 struct sched_group sg;
7212 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7213};
7214
7215struct static_sched_domain {
7216 struct sched_domain sd;
7217 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7218};
7219
9c1cfda2 7220/*
48f24c4d 7221 * SMT sched-domains:
9c1cfda2 7222 */
1da177e4 7223#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7224static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7225static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7226
41a2d6cf 7227static int
96f874e2
RR
7228cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7229 struct sched_group **sg, struct cpumask *unused)
1da177e4 7230{
6711cab4 7231 if (sg)
6c99e9ad 7232 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7233 return cpu;
7234}
6d6bc0ad 7235#endif /* CONFIG_SCHED_SMT */
1da177e4 7236
48f24c4d
IM
7237/*
7238 * multi-core sched-domains:
7239 */
1e9f28fa 7240#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7241static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7242static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7243#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7244
7245#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7246static int
96f874e2
RR
7247cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7248 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7249{
6711cab4 7250 int group;
7c16ec58 7251
c69fc56d 7252 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 7253 group = cpumask_first(mask);
6711cab4 7254 if (sg)
6c99e9ad 7255 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7256 return group;
1e9f28fa
SS
7257}
7258#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7259static int
96f874e2
RR
7260cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7261 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7262{
6711cab4 7263 if (sg)
6c99e9ad 7264 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7265 return cpu;
7266}
7267#endif
7268
6c99e9ad
RR
7269static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7270static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7271
41a2d6cf 7272static int
96f874e2
RR
7273cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7274 struct sched_group **sg, struct cpumask *mask)
1da177e4 7275{
6711cab4 7276 int group;
48f24c4d 7277#ifdef CONFIG_SCHED_MC
6ca09dfc 7278 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7279 group = cpumask_first(mask);
1e9f28fa 7280#elif defined(CONFIG_SCHED_SMT)
c69fc56d 7281 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 7282 group = cpumask_first(mask);
1da177e4 7283#else
6711cab4 7284 group = cpu;
1da177e4 7285#endif
6711cab4 7286 if (sg)
6c99e9ad 7287 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7288 return group;
1da177e4
LT
7289}
7290
7291#ifdef CONFIG_NUMA
1da177e4 7292/*
9c1cfda2
JH
7293 * The init_sched_build_groups can't handle what we want to do with node
7294 * groups, so roll our own. Now each node has its own list of groups which
7295 * gets dynamically allocated.
1da177e4 7296 */
62ea9ceb 7297static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7298static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7299
62ea9ceb 7300static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7301static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7302
96f874e2
RR
7303static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7304 struct sched_group **sg,
7305 struct cpumask *nodemask)
9c1cfda2 7306{
6711cab4
SS
7307 int group;
7308
6ca09dfc 7309 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7310 group = cpumask_first(nodemask);
6711cab4
SS
7311
7312 if (sg)
6c99e9ad 7313 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7314 return group;
1da177e4 7315}
6711cab4 7316
08069033
SS
7317static void init_numa_sched_groups_power(struct sched_group *group_head)
7318{
7319 struct sched_group *sg = group_head;
7320 int j;
7321
7322 if (!sg)
7323 return;
3a5c359a 7324 do {
758b2cdc 7325 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7326 struct sched_domain *sd;
08069033 7327
6c99e9ad 7328 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7329 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7330 /*
7331 * Only add "power" once for each
7332 * physical package.
7333 */
7334 continue;
7335 }
08069033 7336
3a5c359a
AK
7337 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7338 }
7339 sg = sg->next;
7340 } while (sg != group_head);
08069033 7341}
6d6bc0ad 7342#endif /* CONFIG_NUMA */
1da177e4 7343
a616058b 7344#ifdef CONFIG_NUMA
51888ca2 7345/* Free memory allocated for various sched_group structures */
96f874e2
RR
7346static void free_sched_groups(const struct cpumask *cpu_map,
7347 struct cpumask *nodemask)
51888ca2 7348{
a616058b 7349 int cpu, i;
51888ca2 7350
abcd083a 7351 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7352 struct sched_group **sched_group_nodes
7353 = sched_group_nodes_bycpu[cpu];
7354
51888ca2
SV
7355 if (!sched_group_nodes)
7356 continue;
7357
076ac2af 7358 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7359 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7360
6ca09dfc 7361 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7362 if (cpumask_empty(nodemask))
51888ca2
SV
7363 continue;
7364
7365 if (sg == NULL)
7366 continue;
7367 sg = sg->next;
7368next_sg:
7369 oldsg = sg;
7370 sg = sg->next;
7371 kfree(oldsg);
7372 if (oldsg != sched_group_nodes[i])
7373 goto next_sg;
7374 }
7375 kfree(sched_group_nodes);
7376 sched_group_nodes_bycpu[cpu] = NULL;
7377 }
51888ca2 7378}
6d6bc0ad 7379#else /* !CONFIG_NUMA */
96f874e2
RR
7380static void free_sched_groups(const struct cpumask *cpu_map,
7381 struct cpumask *nodemask)
a616058b
SS
7382{
7383}
6d6bc0ad 7384#endif /* CONFIG_NUMA */
51888ca2 7385
89c4710e
SS
7386/*
7387 * Initialize sched groups cpu_power.
7388 *
7389 * cpu_power indicates the capacity of sched group, which is used while
7390 * distributing the load between different sched groups in a sched domain.
7391 * Typically cpu_power for all the groups in a sched domain will be same unless
7392 * there are asymmetries in the topology. If there are asymmetries, group
7393 * having more cpu_power will pickup more load compared to the group having
7394 * less cpu_power.
7395 *
7396 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7397 * the maximum number of tasks a group can handle in the presence of other idle
7398 * or lightly loaded groups in the same sched domain.
7399 */
7400static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7401{
7402 struct sched_domain *child;
7403 struct sched_group *group;
7404
7405 WARN_ON(!sd || !sd->groups);
7406
758b2cdc 7407 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7408 return;
7409
7410 child = sd->child;
7411
5517d86b
ED
7412 sd->groups->__cpu_power = 0;
7413
89c4710e
SS
7414 /*
7415 * For perf policy, if the groups in child domain share resources
7416 * (for example cores sharing some portions of the cache hierarchy
7417 * or SMT), then set this domain groups cpu_power such that each group
7418 * can handle only one task, when there are other idle groups in the
7419 * same sched domain.
7420 */
7421 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7422 (child->flags &
7423 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7424 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7425 return;
7426 }
7427
89c4710e
SS
7428 /*
7429 * add cpu_power of each child group to this groups cpu_power
7430 */
7431 group = child->groups;
7432 do {
5517d86b 7433 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7434 group = group->next;
7435 } while (group != child->groups);
7436}
7437
7c16ec58
MT
7438/*
7439 * Initializers for schedule domains
7440 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7441 */
7442
a5d8c348
IM
7443#ifdef CONFIG_SCHED_DEBUG
7444# define SD_INIT_NAME(sd, type) sd->name = #type
7445#else
7446# define SD_INIT_NAME(sd, type) do { } while (0)
7447#endif
7448
7c16ec58 7449#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7450
7c16ec58
MT
7451#define SD_INIT_FUNC(type) \
7452static noinline void sd_init_##type(struct sched_domain *sd) \
7453{ \
7454 memset(sd, 0, sizeof(*sd)); \
7455 *sd = SD_##type##_INIT; \
1d3504fc 7456 sd->level = SD_LV_##type; \
a5d8c348 7457 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7458}
7459
7460SD_INIT_FUNC(CPU)
7461#ifdef CONFIG_NUMA
7462 SD_INIT_FUNC(ALLNODES)
7463 SD_INIT_FUNC(NODE)
7464#endif
7465#ifdef CONFIG_SCHED_SMT
7466 SD_INIT_FUNC(SIBLING)
7467#endif
7468#ifdef CONFIG_SCHED_MC
7469 SD_INIT_FUNC(MC)
7470#endif
7471
1d3504fc
HS
7472static int default_relax_domain_level = -1;
7473
7474static int __init setup_relax_domain_level(char *str)
7475{
30e0e178
LZ
7476 unsigned long val;
7477
7478 val = simple_strtoul(str, NULL, 0);
7479 if (val < SD_LV_MAX)
7480 default_relax_domain_level = val;
7481
1d3504fc
HS
7482 return 1;
7483}
7484__setup("relax_domain_level=", setup_relax_domain_level);
7485
7486static void set_domain_attribute(struct sched_domain *sd,
7487 struct sched_domain_attr *attr)
7488{
7489 int request;
7490
7491 if (!attr || attr->relax_domain_level < 0) {
7492 if (default_relax_domain_level < 0)
7493 return;
7494 else
7495 request = default_relax_domain_level;
7496 } else
7497 request = attr->relax_domain_level;
7498 if (request < sd->level) {
7499 /* turn off idle balance on this domain */
7500 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7501 } else {
7502 /* turn on idle balance on this domain */
7503 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7504 }
7505}
7506
1da177e4 7507/*
1a20ff27
DG
7508 * Build sched domains for a given set of cpus and attach the sched domains
7509 * to the individual cpus
1da177e4 7510 */
96f874e2 7511static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7512 struct sched_domain_attr *attr)
1da177e4 7513{
3404c8d9 7514 int i, err = -ENOMEM;
57d885fe 7515 struct root_domain *rd;
3404c8d9
RR
7516 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7517 tmpmask;
d1b55138 7518#ifdef CONFIG_NUMA
3404c8d9 7519 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7520 struct sched_group **sched_group_nodes = NULL;
6711cab4 7521 int sd_allnodes = 0;
d1b55138 7522
3404c8d9
RR
7523 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7524 goto out;
7525 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7526 goto free_domainspan;
7527 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7528 goto free_covered;
7529#endif
7530
7531 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7532 goto free_notcovered;
7533 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7534 goto free_nodemask;
7535 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7536 goto free_this_sibling_map;
7537 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7538 goto free_this_core_map;
7539 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7540 goto free_send_covered;
7541
7542#ifdef CONFIG_NUMA
d1b55138
JH
7543 /*
7544 * Allocate the per-node list of sched groups
7545 */
076ac2af 7546 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7547 GFP_KERNEL);
d1b55138
JH
7548 if (!sched_group_nodes) {
7549 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7550 goto free_tmpmask;
d1b55138 7551 }
d1b55138 7552#endif
1da177e4 7553
dc938520 7554 rd = alloc_rootdomain();
57d885fe
GH
7555 if (!rd) {
7556 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7557 goto free_sched_groups;
7c16ec58 7558 }
6d21cd62 7559
7c16ec58 7560#ifdef CONFIG_NUMA
96f874e2 7561 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7562#endif
7563
1da177e4 7564 /*
1a20ff27 7565 * Set up domains for cpus specified by the cpu_map.
1da177e4 7566 */
abcd083a 7567 for_each_cpu(i, cpu_map) {
1da177e4 7568 struct sched_domain *sd = NULL, *p;
1da177e4 7569
6ca09dfc 7570 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7571
7572#ifdef CONFIG_NUMA
96f874e2
RR
7573 if (cpumask_weight(cpu_map) >
7574 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7575 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7576 SD_INIT(sd, ALLNODES);
1d3504fc 7577 set_domain_attribute(sd, attr);
758b2cdc 7578 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7579 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7580 p = sd;
6711cab4 7581 sd_allnodes = 1;
9c1cfda2
JH
7582 } else
7583 p = NULL;
7584
62ea9ceb 7585 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7586 SD_INIT(sd, NODE);
1d3504fc 7587 set_domain_attribute(sd, attr);
758b2cdc 7588 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7589 sd->parent = p;
1a848870
SS
7590 if (p)
7591 p->child = sd;
758b2cdc
RR
7592 cpumask_and(sched_domain_span(sd),
7593 sched_domain_span(sd), cpu_map);
1da177e4
LT
7594#endif
7595
7596 p = sd;
6c99e9ad 7597 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7598 SD_INIT(sd, CPU);
1d3504fc 7599 set_domain_attribute(sd, attr);
758b2cdc 7600 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7601 sd->parent = p;
1a848870
SS
7602 if (p)
7603 p->child = sd;
7c16ec58 7604 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7605
1e9f28fa
SS
7606#ifdef CONFIG_SCHED_MC
7607 p = sd;
6c99e9ad 7608 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7609 SD_INIT(sd, MC);
1d3504fc 7610 set_domain_attribute(sd, attr);
6ca09dfc
MT
7611 cpumask_and(sched_domain_span(sd), cpu_map,
7612 cpu_coregroup_mask(i));
1e9f28fa 7613 sd->parent = p;
1a848870 7614 p->child = sd;
7c16ec58 7615 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7616#endif
7617
1da177e4
LT
7618#ifdef CONFIG_SCHED_SMT
7619 p = sd;
6c99e9ad 7620 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7621 SD_INIT(sd, SIBLING);
1d3504fc 7622 set_domain_attribute(sd, attr);
758b2cdc 7623 cpumask_and(sched_domain_span(sd),
c69fc56d 7624 topology_thread_cpumask(i), cpu_map);
1da177e4 7625 sd->parent = p;
1a848870 7626 p->child = sd;
7c16ec58 7627 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7628#endif
7629 }
7630
7631#ifdef CONFIG_SCHED_SMT
7632 /* Set up CPU (sibling) groups */
abcd083a 7633 for_each_cpu(i, cpu_map) {
96f874e2 7634 cpumask_and(this_sibling_map,
c69fc56d 7635 topology_thread_cpumask(i), cpu_map);
96f874e2 7636 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7637 continue;
7638
dd41f596 7639 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7640 &cpu_to_cpu_group,
7641 send_covered, tmpmask);
1da177e4
LT
7642 }
7643#endif
7644
1e9f28fa
SS
7645#ifdef CONFIG_SCHED_MC
7646 /* Set up multi-core groups */
abcd083a 7647 for_each_cpu(i, cpu_map) {
6ca09dfc 7648 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 7649 if (i != cpumask_first(this_core_map))
1e9f28fa 7650 continue;
7c16ec58 7651
dd41f596 7652 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7653 &cpu_to_core_group,
7654 send_covered, tmpmask);
1e9f28fa
SS
7655 }
7656#endif
7657
1da177e4 7658 /* Set up physical groups */
076ac2af 7659 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 7660 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7661 if (cpumask_empty(nodemask))
1da177e4
LT
7662 continue;
7663
7c16ec58
MT
7664 init_sched_build_groups(nodemask, cpu_map,
7665 &cpu_to_phys_group,
7666 send_covered, tmpmask);
1da177e4
LT
7667 }
7668
7669#ifdef CONFIG_NUMA
7670 /* Set up node groups */
7c16ec58 7671 if (sd_allnodes) {
7c16ec58
MT
7672 init_sched_build_groups(cpu_map, cpu_map,
7673 &cpu_to_allnodes_group,
7674 send_covered, tmpmask);
7675 }
9c1cfda2 7676
076ac2af 7677 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7678 /* Set up node groups */
7679 struct sched_group *sg, *prev;
9c1cfda2
JH
7680 int j;
7681
96f874e2 7682 cpumask_clear(covered);
6ca09dfc 7683 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7684 if (cpumask_empty(nodemask)) {
d1b55138 7685 sched_group_nodes[i] = NULL;
9c1cfda2 7686 continue;
d1b55138 7687 }
9c1cfda2 7688
4bdbaad3 7689 sched_domain_node_span(i, domainspan);
96f874e2 7690 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7691
6c99e9ad
RR
7692 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7693 GFP_KERNEL, i);
51888ca2
SV
7694 if (!sg) {
7695 printk(KERN_WARNING "Can not alloc domain group for "
7696 "node %d\n", i);
7697 goto error;
7698 }
9c1cfda2 7699 sched_group_nodes[i] = sg;
abcd083a 7700 for_each_cpu(j, nodemask) {
9c1cfda2 7701 struct sched_domain *sd;
9761eea8 7702
62ea9ceb 7703 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 7704 sd->groups = sg;
9c1cfda2 7705 }
5517d86b 7706 sg->__cpu_power = 0;
758b2cdc 7707 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7708 sg->next = sg;
96f874e2 7709 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7710 prev = sg;
7711
076ac2af 7712 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7713 int n = (i + j) % nr_node_ids;
9c1cfda2 7714
96f874e2
RR
7715 cpumask_complement(notcovered, covered);
7716 cpumask_and(tmpmask, notcovered, cpu_map);
7717 cpumask_and(tmpmask, tmpmask, domainspan);
7718 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7719 break;
7720
6ca09dfc 7721 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 7722 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7723 continue;
7724
6c99e9ad
RR
7725 sg = kmalloc_node(sizeof(struct sched_group) +
7726 cpumask_size(),
15f0b676 7727 GFP_KERNEL, i);
9c1cfda2
JH
7728 if (!sg) {
7729 printk(KERN_WARNING
7730 "Can not alloc domain group for node %d\n", j);
51888ca2 7731 goto error;
9c1cfda2 7732 }
5517d86b 7733 sg->__cpu_power = 0;
758b2cdc 7734 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7735 sg->next = prev->next;
96f874e2 7736 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7737 prev->next = sg;
7738 prev = sg;
7739 }
9c1cfda2 7740 }
1da177e4
LT
7741#endif
7742
7743 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7744#ifdef CONFIG_SCHED_SMT
abcd083a 7745 for_each_cpu(i, cpu_map) {
6c99e9ad 7746 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7747
89c4710e 7748 init_sched_groups_power(i, sd);
5c45bf27 7749 }
1da177e4 7750#endif
1e9f28fa 7751#ifdef CONFIG_SCHED_MC
abcd083a 7752 for_each_cpu(i, cpu_map) {
6c99e9ad 7753 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7754
89c4710e 7755 init_sched_groups_power(i, sd);
5c45bf27
SS
7756 }
7757#endif
1e9f28fa 7758
abcd083a 7759 for_each_cpu(i, cpu_map) {
6c99e9ad 7760 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7761
89c4710e 7762 init_sched_groups_power(i, sd);
1da177e4
LT
7763 }
7764
9c1cfda2 7765#ifdef CONFIG_NUMA
076ac2af 7766 for (i = 0; i < nr_node_ids; i++)
08069033 7767 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7768
6711cab4
SS
7769 if (sd_allnodes) {
7770 struct sched_group *sg;
f712c0c7 7771
96f874e2 7772 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7773 tmpmask);
f712c0c7
SS
7774 init_numa_sched_groups_power(sg);
7775 }
9c1cfda2
JH
7776#endif
7777
1da177e4 7778 /* Attach the domains */
abcd083a 7779 for_each_cpu(i, cpu_map) {
1da177e4
LT
7780 struct sched_domain *sd;
7781#ifdef CONFIG_SCHED_SMT
6c99e9ad 7782 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7783#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7784 sd = &per_cpu(core_domains, i).sd;
1da177e4 7785#else
6c99e9ad 7786 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7787#endif
57d885fe 7788 cpu_attach_domain(sd, rd, i);
1da177e4 7789 }
51888ca2 7790
3404c8d9
RR
7791 err = 0;
7792
7793free_tmpmask:
7794 free_cpumask_var(tmpmask);
7795free_send_covered:
7796 free_cpumask_var(send_covered);
7797free_this_core_map:
7798 free_cpumask_var(this_core_map);
7799free_this_sibling_map:
7800 free_cpumask_var(this_sibling_map);
7801free_nodemask:
7802 free_cpumask_var(nodemask);
7803free_notcovered:
7804#ifdef CONFIG_NUMA
7805 free_cpumask_var(notcovered);
7806free_covered:
7807 free_cpumask_var(covered);
7808free_domainspan:
7809 free_cpumask_var(domainspan);
7810out:
7811#endif
7812 return err;
7813
7814free_sched_groups:
7815#ifdef CONFIG_NUMA
7816 kfree(sched_group_nodes);
7817#endif
7818 goto free_tmpmask;
51888ca2 7819
a616058b 7820#ifdef CONFIG_NUMA
51888ca2 7821error:
7c16ec58 7822 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7823 free_rootdomain(rd);
3404c8d9 7824 goto free_tmpmask;
a616058b 7825#endif
1da177e4 7826}
029190c5 7827
96f874e2 7828static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7829{
7830 return __build_sched_domains(cpu_map, NULL);
7831}
7832
96f874e2 7833static struct cpumask *doms_cur; /* current sched domains */
029190c5 7834static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7835static struct sched_domain_attr *dattr_cur;
7836 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7837
7838/*
7839 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7840 * cpumask) fails, then fallback to a single sched domain,
7841 * as determined by the single cpumask fallback_doms.
029190c5 7842 */
4212823f 7843static cpumask_var_t fallback_doms;
029190c5 7844
ee79d1bd
HC
7845/*
7846 * arch_update_cpu_topology lets virtualized architectures update the
7847 * cpu core maps. It is supposed to return 1 if the topology changed
7848 * or 0 if it stayed the same.
7849 */
7850int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7851{
ee79d1bd 7852 return 0;
22e52b07
HC
7853}
7854
1a20ff27 7855/*
41a2d6cf 7856 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7857 * For now this just excludes isolated cpus, but could be used to
7858 * exclude other special cases in the future.
1a20ff27 7859 */
96f874e2 7860static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7861{
7378547f
MM
7862 int err;
7863
22e52b07 7864 arch_update_cpu_topology();
029190c5 7865 ndoms_cur = 1;
96f874e2 7866 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 7867 if (!doms_cur)
4212823f 7868 doms_cur = fallback_doms;
dcc30a35 7869 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 7870 dattr_cur = NULL;
7378547f 7871 err = build_sched_domains(doms_cur);
6382bc90 7872 register_sched_domain_sysctl();
7378547f
MM
7873
7874 return err;
1a20ff27
DG
7875}
7876
96f874e2
RR
7877static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7878 struct cpumask *tmpmask)
1da177e4 7879{
7c16ec58 7880 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7881}
1da177e4 7882
1a20ff27
DG
7883/*
7884 * Detach sched domains from a group of cpus specified in cpu_map
7885 * These cpus will now be attached to the NULL domain
7886 */
96f874e2 7887static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7888{
96f874e2
RR
7889 /* Save because hotplug lock held. */
7890 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7891 int i;
7892
abcd083a 7893 for_each_cpu(i, cpu_map)
57d885fe 7894 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7895 synchronize_sched();
96f874e2 7896 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7897}
7898
1d3504fc
HS
7899/* handle null as "default" */
7900static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7901 struct sched_domain_attr *new, int idx_new)
7902{
7903 struct sched_domain_attr tmp;
7904
7905 /* fast path */
7906 if (!new && !cur)
7907 return 1;
7908
7909 tmp = SD_ATTR_INIT;
7910 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7911 new ? (new + idx_new) : &tmp,
7912 sizeof(struct sched_domain_attr));
7913}
7914
029190c5
PJ
7915/*
7916 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7917 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7918 * doms_new[] to the current sched domain partitioning, doms_cur[].
7919 * It destroys each deleted domain and builds each new domain.
7920 *
96f874e2 7921 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
7922 * The masks don't intersect (don't overlap.) We should setup one
7923 * sched domain for each mask. CPUs not in any of the cpumasks will
7924 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7925 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7926 * it as it is.
7927 *
41a2d6cf
IM
7928 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7929 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7930 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7931 * ndoms_new == 1, and partition_sched_domains() will fallback to
7932 * the single partition 'fallback_doms', it also forces the domains
7933 * to be rebuilt.
029190c5 7934 *
96f874e2 7935 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7936 * ndoms_new == 0 is a special case for destroying existing domains,
7937 * and it will not create the default domain.
029190c5
PJ
7938 *
7939 * Call with hotplug lock held
7940 */
96f874e2
RR
7941/* FIXME: Change to struct cpumask *doms_new[] */
7942void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 7943 struct sched_domain_attr *dattr_new)
029190c5 7944{
dfb512ec 7945 int i, j, n;
d65bd5ec 7946 int new_topology;
029190c5 7947
712555ee 7948 mutex_lock(&sched_domains_mutex);
a1835615 7949
7378547f
MM
7950 /* always unregister in case we don't destroy any domains */
7951 unregister_sched_domain_sysctl();
7952
d65bd5ec
HC
7953 /* Let architecture update cpu core mappings. */
7954 new_topology = arch_update_cpu_topology();
7955
dfb512ec 7956 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7957
7958 /* Destroy deleted domains */
7959 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7960 for (j = 0; j < n && !new_topology; j++) {
96f874e2 7961 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 7962 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7963 goto match1;
7964 }
7965 /* no match - a current sched domain not in new doms_new[] */
7966 detach_destroy_domains(doms_cur + i);
7967match1:
7968 ;
7969 }
7970
e761b772
MK
7971 if (doms_new == NULL) {
7972 ndoms_cur = 0;
4212823f 7973 doms_new = fallback_doms;
dcc30a35 7974 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 7975 WARN_ON_ONCE(dattr_new);
e761b772
MK
7976 }
7977
029190c5
PJ
7978 /* Build new domains */
7979 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7980 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 7981 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 7982 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7983 goto match2;
7984 }
7985 /* no match - add a new doms_new */
1d3504fc
HS
7986 __build_sched_domains(doms_new + i,
7987 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7988match2:
7989 ;
7990 }
7991
7992 /* Remember the new sched domains */
4212823f 7993 if (doms_cur != fallback_doms)
029190c5 7994 kfree(doms_cur);
1d3504fc 7995 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7996 doms_cur = doms_new;
1d3504fc 7997 dattr_cur = dattr_new;
029190c5 7998 ndoms_cur = ndoms_new;
7378547f
MM
7999
8000 register_sched_domain_sysctl();
a1835615 8001
712555ee 8002 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8003}
8004
5c45bf27 8005#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8006static void arch_reinit_sched_domains(void)
5c45bf27 8007{
95402b38 8008 get_online_cpus();
dfb512ec
MK
8009
8010 /* Destroy domains first to force the rebuild */
8011 partition_sched_domains(0, NULL, NULL);
8012
e761b772 8013 rebuild_sched_domains();
95402b38 8014 put_online_cpus();
5c45bf27
SS
8015}
8016
8017static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8018{
afb8a9b7 8019 unsigned int level = 0;
5c45bf27 8020
afb8a9b7
GS
8021 if (sscanf(buf, "%u", &level) != 1)
8022 return -EINVAL;
8023
8024 /*
8025 * level is always be positive so don't check for
8026 * level < POWERSAVINGS_BALANCE_NONE which is 0
8027 * What happens on 0 or 1 byte write,
8028 * need to check for count as well?
8029 */
5c45bf27 8030
afb8a9b7 8031 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8032 return -EINVAL;
8033
8034 if (smt)
afb8a9b7 8035 sched_smt_power_savings = level;
5c45bf27 8036 else
afb8a9b7 8037 sched_mc_power_savings = level;
5c45bf27 8038
c70f22d2 8039 arch_reinit_sched_domains();
5c45bf27 8040
c70f22d2 8041 return count;
5c45bf27
SS
8042}
8043
5c45bf27 8044#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8045static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8046 char *page)
5c45bf27
SS
8047{
8048 return sprintf(page, "%u\n", sched_mc_power_savings);
8049}
f718cd4a 8050static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8051 const char *buf, size_t count)
5c45bf27
SS
8052{
8053 return sched_power_savings_store(buf, count, 0);
8054}
f718cd4a
AK
8055static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8056 sched_mc_power_savings_show,
8057 sched_mc_power_savings_store);
5c45bf27
SS
8058#endif
8059
8060#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8061static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8062 char *page)
5c45bf27
SS
8063{
8064 return sprintf(page, "%u\n", sched_smt_power_savings);
8065}
f718cd4a 8066static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8067 const char *buf, size_t count)
5c45bf27
SS
8068{
8069 return sched_power_savings_store(buf, count, 1);
8070}
f718cd4a
AK
8071static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8072 sched_smt_power_savings_show,
6707de00
AB
8073 sched_smt_power_savings_store);
8074#endif
8075
39aac648 8076int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8077{
8078 int err = 0;
8079
8080#ifdef CONFIG_SCHED_SMT
8081 if (smt_capable())
8082 err = sysfs_create_file(&cls->kset.kobj,
8083 &attr_sched_smt_power_savings.attr);
8084#endif
8085#ifdef CONFIG_SCHED_MC
8086 if (!err && mc_capable())
8087 err = sysfs_create_file(&cls->kset.kobj,
8088 &attr_sched_mc_power_savings.attr);
8089#endif
8090 return err;
8091}
6d6bc0ad 8092#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8093
e761b772 8094#ifndef CONFIG_CPUSETS
1da177e4 8095/*
e761b772
MK
8096 * Add online and remove offline CPUs from the scheduler domains.
8097 * When cpusets are enabled they take over this function.
1da177e4
LT
8098 */
8099static int update_sched_domains(struct notifier_block *nfb,
8100 unsigned long action, void *hcpu)
8101{
1da177e4 8102 switch (action) {
e761b772
MK
8103 case CPU_ONLINE:
8104 case CPU_ONLINE_FROZEN:
8105 case CPU_DEAD:
8106 case CPU_DEAD_FROZEN:
dfb512ec 8107 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8108 return NOTIFY_OK;
8109
8110 default:
8111 return NOTIFY_DONE;
8112 }
8113}
8114#endif
8115
8116static int update_runtime(struct notifier_block *nfb,
8117 unsigned long action, void *hcpu)
1da177e4 8118{
7def2be1
PZ
8119 int cpu = (int)(long)hcpu;
8120
1da177e4 8121 switch (action) {
1da177e4 8122 case CPU_DOWN_PREPARE:
8bb78442 8123 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8124 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8125 return NOTIFY_OK;
8126
1da177e4 8127 case CPU_DOWN_FAILED:
8bb78442 8128 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8129 case CPU_ONLINE:
8bb78442 8130 case CPU_ONLINE_FROZEN:
7def2be1 8131 enable_runtime(cpu_rq(cpu));
e761b772
MK
8132 return NOTIFY_OK;
8133
1da177e4
LT
8134 default:
8135 return NOTIFY_DONE;
8136 }
1da177e4 8137}
1da177e4
LT
8138
8139void __init sched_init_smp(void)
8140{
dcc30a35
RR
8141 cpumask_var_t non_isolated_cpus;
8142
8143 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8144
434d53b0
MT
8145#if defined(CONFIG_NUMA)
8146 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8147 GFP_KERNEL);
8148 BUG_ON(sched_group_nodes_bycpu == NULL);
8149#endif
95402b38 8150 get_online_cpus();
712555ee 8151 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8152 arch_init_sched_domains(cpu_online_mask);
8153 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8154 if (cpumask_empty(non_isolated_cpus))
8155 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8156 mutex_unlock(&sched_domains_mutex);
95402b38 8157 put_online_cpus();
e761b772
MK
8158
8159#ifndef CONFIG_CPUSETS
1da177e4
LT
8160 /* XXX: Theoretical race here - CPU may be hotplugged now */
8161 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8162#endif
8163
8164 /* RT runtime code needs to handle some hotplug events */
8165 hotcpu_notifier(update_runtime, 0);
8166
b328ca18 8167 init_hrtick();
5c1e1767
NP
8168
8169 /* Move init over to a non-isolated CPU */
dcc30a35 8170 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8171 BUG();
19978ca6 8172 sched_init_granularity();
dcc30a35 8173 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8174
8175 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8176 init_sched_rt_class();
1da177e4
LT
8177}
8178#else
8179void __init sched_init_smp(void)
8180{
19978ca6 8181 sched_init_granularity();
1da177e4
LT
8182}
8183#endif /* CONFIG_SMP */
8184
8185int in_sched_functions(unsigned long addr)
8186{
1da177e4
LT
8187 return in_lock_functions(addr) ||
8188 (addr >= (unsigned long)__sched_text_start
8189 && addr < (unsigned long)__sched_text_end);
8190}
8191
a9957449 8192static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8193{
8194 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8195 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8196#ifdef CONFIG_FAIR_GROUP_SCHED
8197 cfs_rq->rq = rq;
8198#endif
67e9fb2a 8199 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8200}
8201
fa85ae24
PZ
8202static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8203{
8204 struct rt_prio_array *array;
8205 int i;
8206
8207 array = &rt_rq->active;
8208 for (i = 0; i < MAX_RT_PRIO; i++) {
8209 INIT_LIST_HEAD(array->queue + i);
8210 __clear_bit(i, array->bitmap);
8211 }
8212 /* delimiter for bitsearch: */
8213 __set_bit(MAX_RT_PRIO, array->bitmap);
8214
052f1dc7 8215#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8216 rt_rq->highest_prio = MAX_RT_PRIO;
8217#endif
fa85ae24
PZ
8218#ifdef CONFIG_SMP
8219 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8220 rt_rq->overloaded = 0;
8221#endif
8222
8223 rt_rq->rt_time = 0;
8224 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8225 rt_rq->rt_runtime = 0;
8226 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8227
052f1dc7 8228#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8229 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8230 rt_rq->rq = rq;
8231#endif
fa85ae24
PZ
8232}
8233
6f505b16 8234#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8235static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8236 struct sched_entity *se, int cpu, int add,
8237 struct sched_entity *parent)
6f505b16 8238{
ec7dc8ac 8239 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8240 tg->cfs_rq[cpu] = cfs_rq;
8241 init_cfs_rq(cfs_rq, rq);
8242 cfs_rq->tg = tg;
8243 if (add)
8244 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8245
8246 tg->se[cpu] = se;
354d60c2
DG
8247 /* se could be NULL for init_task_group */
8248 if (!se)
8249 return;
8250
ec7dc8ac
DG
8251 if (!parent)
8252 se->cfs_rq = &rq->cfs;
8253 else
8254 se->cfs_rq = parent->my_q;
8255
6f505b16
PZ
8256 se->my_q = cfs_rq;
8257 se->load.weight = tg->shares;
e05510d0 8258 se->load.inv_weight = 0;
ec7dc8ac 8259 se->parent = parent;
6f505b16 8260}
052f1dc7 8261#endif
6f505b16 8262
052f1dc7 8263#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8264static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8265 struct sched_rt_entity *rt_se, int cpu, int add,
8266 struct sched_rt_entity *parent)
6f505b16 8267{
ec7dc8ac
DG
8268 struct rq *rq = cpu_rq(cpu);
8269
6f505b16
PZ
8270 tg->rt_rq[cpu] = rt_rq;
8271 init_rt_rq(rt_rq, rq);
8272 rt_rq->tg = tg;
8273 rt_rq->rt_se = rt_se;
ac086bc2 8274 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8275 if (add)
8276 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8277
8278 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8279 if (!rt_se)
8280 return;
8281
ec7dc8ac
DG
8282 if (!parent)
8283 rt_se->rt_rq = &rq->rt;
8284 else
8285 rt_se->rt_rq = parent->my_q;
8286
6f505b16 8287 rt_se->my_q = rt_rq;
ec7dc8ac 8288 rt_se->parent = parent;
6f505b16
PZ
8289 INIT_LIST_HEAD(&rt_se->run_list);
8290}
8291#endif
8292
1da177e4
LT
8293void __init sched_init(void)
8294{
dd41f596 8295 int i, j;
434d53b0
MT
8296 unsigned long alloc_size = 0, ptr;
8297
8298#ifdef CONFIG_FAIR_GROUP_SCHED
8299 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8300#endif
8301#ifdef CONFIG_RT_GROUP_SCHED
8302 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8303#endif
8304#ifdef CONFIG_USER_SCHED
8305 alloc_size *= 2;
434d53b0
MT
8306#endif
8307 /*
8308 * As sched_init() is called before page_alloc is setup,
8309 * we use alloc_bootmem().
8310 */
8311 if (alloc_size) {
5a9d3225 8312 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8313
8314#ifdef CONFIG_FAIR_GROUP_SCHED
8315 init_task_group.se = (struct sched_entity **)ptr;
8316 ptr += nr_cpu_ids * sizeof(void **);
8317
8318 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8319 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8320
8321#ifdef CONFIG_USER_SCHED
8322 root_task_group.se = (struct sched_entity **)ptr;
8323 ptr += nr_cpu_ids * sizeof(void **);
8324
8325 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8326 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8327#endif /* CONFIG_USER_SCHED */
8328#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8329#ifdef CONFIG_RT_GROUP_SCHED
8330 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8331 ptr += nr_cpu_ids * sizeof(void **);
8332
8333 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8334 ptr += nr_cpu_ids * sizeof(void **);
8335
8336#ifdef CONFIG_USER_SCHED
8337 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8338 ptr += nr_cpu_ids * sizeof(void **);
8339
8340 root_task_group.rt_rq = (struct rt_rq **)ptr;
8341 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8342#endif /* CONFIG_USER_SCHED */
8343#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8344 }
dd41f596 8345
57d885fe
GH
8346#ifdef CONFIG_SMP
8347 init_defrootdomain();
8348#endif
8349
d0b27fa7
PZ
8350 init_rt_bandwidth(&def_rt_bandwidth,
8351 global_rt_period(), global_rt_runtime());
8352
8353#ifdef CONFIG_RT_GROUP_SCHED
8354 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8355 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8356#ifdef CONFIG_USER_SCHED
8357 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8358 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8359#endif /* CONFIG_USER_SCHED */
8360#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8361
052f1dc7 8362#ifdef CONFIG_GROUP_SCHED
6f505b16 8363 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8364 INIT_LIST_HEAD(&init_task_group.children);
8365
8366#ifdef CONFIG_USER_SCHED
8367 INIT_LIST_HEAD(&root_task_group.children);
8368 init_task_group.parent = &root_task_group;
8369 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8370#endif /* CONFIG_USER_SCHED */
8371#endif /* CONFIG_GROUP_SCHED */
6f505b16 8372
0a945022 8373 for_each_possible_cpu(i) {
70b97a7f 8374 struct rq *rq;
1da177e4
LT
8375
8376 rq = cpu_rq(i);
8377 spin_lock_init(&rq->lock);
7897986b 8378 rq->nr_running = 0;
dd41f596 8379 init_cfs_rq(&rq->cfs, rq);
6f505b16 8380 init_rt_rq(&rq->rt, rq);
dd41f596 8381#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8382 init_task_group.shares = init_task_group_load;
6f505b16 8383 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8384#ifdef CONFIG_CGROUP_SCHED
8385 /*
8386 * How much cpu bandwidth does init_task_group get?
8387 *
8388 * In case of task-groups formed thr' the cgroup filesystem, it
8389 * gets 100% of the cpu resources in the system. This overall
8390 * system cpu resource is divided among the tasks of
8391 * init_task_group and its child task-groups in a fair manner,
8392 * based on each entity's (task or task-group's) weight
8393 * (se->load.weight).
8394 *
8395 * In other words, if init_task_group has 10 tasks of weight
8396 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8397 * then A0's share of the cpu resource is:
8398 *
8399 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8400 *
8401 * We achieve this by letting init_task_group's tasks sit
8402 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8403 */
ec7dc8ac 8404 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8405#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8406 root_task_group.shares = NICE_0_LOAD;
8407 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8408 /*
8409 * In case of task-groups formed thr' the user id of tasks,
8410 * init_task_group represents tasks belonging to root user.
8411 * Hence it forms a sibling of all subsequent groups formed.
8412 * In this case, init_task_group gets only a fraction of overall
8413 * system cpu resource, based on the weight assigned to root
8414 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8415 * by letting tasks of init_task_group sit in a separate cfs_rq
8416 * (init_cfs_rq) and having one entity represent this group of
8417 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8418 */
ec7dc8ac 8419 init_tg_cfs_entry(&init_task_group,
6f505b16 8420 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8421 &per_cpu(init_sched_entity, i), i, 1,
8422 root_task_group.se[i]);
6f505b16 8423
052f1dc7 8424#endif
354d60c2
DG
8425#endif /* CONFIG_FAIR_GROUP_SCHED */
8426
8427 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8428#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8429 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8430#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8431 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8432#elif defined CONFIG_USER_SCHED
eff766a6 8433 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8434 init_tg_rt_entry(&init_task_group,
6f505b16 8435 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8436 &per_cpu(init_sched_rt_entity, i), i, 1,
8437 root_task_group.rt_se[i]);
354d60c2 8438#endif
dd41f596 8439#endif
1da177e4 8440
dd41f596
IM
8441 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8442 rq->cpu_load[j] = 0;
1da177e4 8443#ifdef CONFIG_SMP
41c7ce9a 8444 rq->sd = NULL;
57d885fe 8445 rq->rd = NULL;
1da177e4 8446 rq->active_balance = 0;
dd41f596 8447 rq->next_balance = jiffies;
1da177e4 8448 rq->push_cpu = 0;
0a2966b4 8449 rq->cpu = i;
1f11eb6a 8450 rq->online = 0;
1da177e4
LT
8451 rq->migration_thread = NULL;
8452 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8453 rq_attach_root(rq, &def_root_domain);
1da177e4 8454#endif
8f4d37ec 8455 init_rq_hrtick(rq);
1da177e4 8456 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8457 }
8458
2dd73a4f 8459 set_load_weight(&init_task);
b50f60ce 8460
e107be36
AK
8461#ifdef CONFIG_PREEMPT_NOTIFIERS
8462 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8463#endif
8464
c9819f45 8465#ifdef CONFIG_SMP
962cf36c 8466 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8467#endif
8468
b50f60ce
HC
8469#ifdef CONFIG_RT_MUTEXES
8470 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8471#endif
8472
1da177e4
LT
8473 /*
8474 * The boot idle thread does lazy MMU switching as well:
8475 */
8476 atomic_inc(&init_mm.mm_count);
8477 enter_lazy_tlb(&init_mm, current);
8478
8479 /*
8480 * Make us the idle thread. Technically, schedule() should not be
8481 * called from this thread, however somewhere below it might be,
8482 * but because we are the idle thread, we just pick up running again
8483 * when this runqueue becomes "idle".
8484 */
8485 init_idle(current, smp_processor_id());
dd41f596
IM
8486 /*
8487 * During early bootup we pretend to be a normal task:
8488 */
8489 current->sched_class = &fair_sched_class;
6892b75e 8490
6a7b3dc3
RR
8491 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8492 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8493#ifdef CONFIG_SMP
7d1e6a9b
RR
8494#ifdef CONFIG_NO_HZ
8495 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8496#endif
dcc30a35 8497 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8498#endif /* SMP */
6a7b3dc3 8499
6892b75e 8500 scheduler_running = 1;
1da177e4
LT
8501}
8502
8503#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8504void __might_sleep(char *file, int line)
8505{
48f24c4d 8506#ifdef in_atomic
1da177e4
LT
8507 static unsigned long prev_jiffy; /* ratelimiting */
8508
aef745fc
IM
8509 if ((!in_atomic() && !irqs_disabled()) ||
8510 system_state != SYSTEM_RUNNING || oops_in_progress)
8511 return;
8512 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8513 return;
8514 prev_jiffy = jiffies;
8515
8516 printk(KERN_ERR
8517 "BUG: sleeping function called from invalid context at %s:%d\n",
8518 file, line);
8519 printk(KERN_ERR
8520 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8521 in_atomic(), irqs_disabled(),
8522 current->pid, current->comm);
8523
8524 debug_show_held_locks(current);
8525 if (irqs_disabled())
8526 print_irqtrace_events(current);
8527 dump_stack();
1da177e4
LT
8528#endif
8529}
8530EXPORT_SYMBOL(__might_sleep);
8531#endif
8532
8533#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8534static void normalize_task(struct rq *rq, struct task_struct *p)
8535{
8536 int on_rq;
3e51f33f 8537
3a5e4dc1
AK
8538 update_rq_clock(rq);
8539 on_rq = p->se.on_rq;
8540 if (on_rq)
8541 deactivate_task(rq, p, 0);
8542 __setscheduler(rq, p, SCHED_NORMAL, 0);
8543 if (on_rq) {
8544 activate_task(rq, p, 0);
8545 resched_task(rq->curr);
8546 }
8547}
8548
1da177e4
LT
8549void normalize_rt_tasks(void)
8550{
a0f98a1c 8551 struct task_struct *g, *p;
1da177e4 8552 unsigned long flags;
70b97a7f 8553 struct rq *rq;
1da177e4 8554
4cf5d77a 8555 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8556 do_each_thread(g, p) {
178be793
IM
8557 /*
8558 * Only normalize user tasks:
8559 */
8560 if (!p->mm)
8561 continue;
8562
6cfb0d5d 8563 p->se.exec_start = 0;
6cfb0d5d 8564#ifdef CONFIG_SCHEDSTATS
dd41f596 8565 p->se.wait_start = 0;
dd41f596 8566 p->se.sleep_start = 0;
dd41f596 8567 p->se.block_start = 0;
6cfb0d5d 8568#endif
dd41f596
IM
8569
8570 if (!rt_task(p)) {
8571 /*
8572 * Renice negative nice level userspace
8573 * tasks back to 0:
8574 */
8575 if (TASK_NICE(p) < 0 && p->mm)
8576 set_user_nice(p, 0);
1da177e4 8577 continue;
dd41f596 8578 }
1da177e4 8579
4cf5d77a 8580 spin_lock(&p->pi_lock);
b29739f9 8581 rq = __task_rq_lock(p);
1da177e4 8582
178be793 8583 normalize_task(rq, p);
3a5e4dc1 8584
b29739f9 8585 __task_rq_unlock(rq);
4cf5d77a 8586 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8587 } while_each_thread(g, p);
8588
4cf5d77a 8589 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8590}
8591
8592#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8593
8594#ifdef CONFIG_IA64
8595/*
8596 * These functions are only useful for the IA64 MCA handling.
8597 *
8598 * They can only be called when the whole system has been
8599 * stopped - every CPU needs to be quiescent, and no scheduling
8600 * activity can take place. Using them for anything else would
8601 * be a serious bug, and as a result, they aren't even visible
8602 * under any other configuration.
8603 */
8604
8605/**
8606 * curr_task - return the current task for a given cpu.
8607 * @cpu: the processor in question.
8608 *
8609 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8610 */
36c8b586 8611struct task_struct *curr_task(int cpu)
1df5c10a
LT
8612{
8613 return cpu_curr(cpu);
8614}
8615
8616/**
8617 * set_curr_task - set the current task for a given cpu.
8618 * @cpu: the processor in question.
8619 * @p: the task pointer to set.
8620 *
8621 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8622 * are serviced on a separate stack. It allows the architecture to switch the
8623 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8624 * must be called with all CPU's synchronized, and interrupts disabled, the
8625 * and caller must save the original value of the current task (see
8626 * curr_task() above) and restore that value before reenabling interrupts and
8627 * re-starting the system.
8628 *
8629 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8630 */
36c8b586 8631void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8632{
8633 cpu_curr(cpu) = p;
8634}
8635
8636#endif
29f59db3 8637
bccbe08a
PZ
8638#ifdef CONFIG_FAIR_GROUP_SCHED
8639static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8640{
8641 int i;
8642
8643 for_each_possible_cpu(i) {
8644 if (tg->cfs_rq)
8645 kfree(tg->cfs_rq[i]);
8646 if (tg->se)
8647 kfree(tg->se[i]);
6f505b16
PZ
8648 }
8649
8650 kfree(tg->cfs_rq);
8651 kfree(tg->se);
6f505b16
PZ
8652}
8653
ec7dc8ac
DG
8654static
8655int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8656{
29f59db3 8657 struct cfs_rq *cfs_rq;
eab17229 8658 struct sched_entity *se;
9b5b7751 8659 struct rq *rq;
29f59db3
SV
8660 int i;
8661
434d53b0 8662 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8663 if (!tg->cfs_rq)
8664 goto err;
434d53b0 8665 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8666 if (!tg->se)
8667 goto err;
052f1dc7
PZ
8668
8669 tg->shares = NICE_0_LOAD;
29f59db3
SV
8670
8671 for_each_possible_cpu(i) {
9b5b7751 8672 rq = cpu_rq(i);
29f59db3 8673
eab17229
LZ
8674 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8675 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8676 if (!cfs_rq)
8677 goto err;
8678
eab17229
LZ
8679 se = kzalloc_node(sizeof(struct sched_entity),
8680 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8681 if (!se)
8682 goto err;
8683
eab17229 8684 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8685 }
8686
8687 return 1;
8688
8689 err:
8690 return 0;
8691}
8692
8693static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8694{
8695 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8696 &cpu_rq(cpu)->leaf_cfs_rq_list);
8697}
8698
8699static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8700{
8701 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8702}
6d6bc0ad 8703#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8704static inline void free_fair_sched_group(struct task_group *tg)
8705{
8706}
8707
ec7dc8ac
DG
8708static inline
8709int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8710{
8711 return 1;
8712}
8713
8714static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8715{
8716}
8717
8718static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8719{
8720}
6d6bc0ad 8721#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8722
8723#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8724static void free_rt_sched_group(struct task_group *tg)
8725{
8726 int i;
8727
d0b27fa7
PZ
8728 destroy_rt_bandwidth(&tg->rt_bandwidth);
8729
bccbe08a
PZ
8730 for_each_possible_cpu(i) {
8731 if (tg->rt_rq)
8732 kfree(tg->rt_rq[i]);
8733 if (tg->rt_se)
8734 kfree(tg->rt_se[i]);
8735 }
8736
8737 kfree(tg->rt_rq);
8738 kfree(tg->rt_se);
8739}
8740
ec7dc8ac
DG
8741static
8742int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8743{
8744 struct rt_rq *rt_rq;
eab17229 8745 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8746 struct rq *rq;
8747 int i;
8748
434d53b0 8749 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8750 if (!tg->rt_rq)
8751 goto err;
434d53b0 8752 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8753 if (!tg->rt_se)
8754 goto err;
8755
d0b27fa7
PZ
8756 init_rt_bandwidth(&tg->rt_bandwidth,
8757 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8758
8759 for_each_possible_cpu(i) {
8760 rq = cpu_rq(i);
8761
eab17229
LZ
8762 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8763 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8764 if (!rt_rq)
8765 goto err;
29f59db3 8766
eab17229
LZ
8767 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8768 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8769 if (!rt_se)
8770 goto err;
29f59db3 8771
eab17229 8772 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8773 }
8774
bccbe08a
PZ
8775 return 1;
8776
8777 err:
8778 return 0;
8779}
8780
8781static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8782{
8783 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8784 &cpu_rq(cpu)->leaf_rt_rq_list);
8785}
8786
8787static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8788{
8789 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8790}
6d6bc0ad 8791#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8792static inline void free_rt_sched_group(struct task_group *tg)
8793{
8794}
8795
ec7dc8ac
DG
8796static inline
8797int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8798{
8799 return 1;
8800}
8801
8802static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8803{
8804}
8805
8806static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8807{
8808}
6d6bc0ad 8809#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8810
d0b27fa7 8811#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8812static void free_sched_group(struct task_group *tg)
8813{
8814 free_fair_sched_group(tg);
8815 free_rt_sched_group(tg);
8816 kfree(tg);
8817}
8818
8819/* allocate runqueue etc for a new task group */
ec7dc8ac 8820struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8821{
8822 struct task_group *tg;
8823 unsigned long flags;
8824 int i;
8825
8826 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8827 if (!tg)
8828 return ERR_PTR(-ENOMEM);
8829
ec7dc8ac 8830 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8831 goto err;
8832
ec7dc8ac 8833 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8834 goto err;
8835
8ed36996 8836 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8837 for_each_possible_cpu(i) {
bccbe08a
PZ
8838 register_fair_sched_group(tg, i);
8839 register_rt_sched_group(tg, i);
9b5b7751 8840 }
6f505b16 8841 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8842
8843 WARN_ON(!parent); /* root should already exist */
8844
8845 tg->parent = parent;
f473aa5e 8846 INIT_LIST_HEAD(&tg->children);
09f2724a 8847 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8848 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8849
9b5b7751 8850 return tg;
29f59db3
SV
8851
8852err:
6f505b16 8853 free_sched_group(tg);
29f59db3
SV
8854 return ERR_PTR(-ENOMEM);
8855}
8856
9b5b7751 8857/* rcu callback to free various structures associated with a task group */
6f505b16 8858static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8859{
29f59db3 8860 /* now it should be safe to free those cfs_rqs */
6f505b16 8861 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8862}
8863
9b5b7751 8864/* Destroy runqueue etc associated with a task group */
4cf86d77 8865void sched_destroy_group(struct task_group *tg)
29f59db3 8866{
8ed36996 8867 unsigned long flags;
9b5b7751 8868 int i;
29f59db3 8869
8ed36996 8870 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8871 for_each_possible_cpu(i) {
bccbe08a
PZ
8872 unregister_fair_sched_group(tg, i);
8873 unregister_rt_sched_group(tg, i);
9b5b7751 8874 }
6f505b16 8875 list_del_rcu(&tg->list);
f473aa5e 8876 list_del_rcu(&tg->siblings);
8ed36996 8877 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8878
9b5b7751 8879 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8880 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8881}
8882
9b5b7751 8883/* change task's runqueue when it moves between groups.
3a252015
IM
8884 * The caller of this function should have put the task in its new group
8885 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8886 * reflect its new group.
9b5b7751
SV
8887 */
8888void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8889{
8890 int on_rq, running;
8891 unsigned long flags;
8892 struct rq *rq;
8893
8894 rq = task_rq_lock(tsk, &flags);
8895
29f59db3
SV
8896 update_rq_clock(rq);
8897
051a1d1a 8898 running = task_current(rq, tsk);
29f59db3
SV
8899 on_rq = tsk->se.on_rq;
8900
0e1f3483 8901 if (on_rq)
29f59db3 8902 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8903 if (unlikely(running))
8904 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8905
6f505b16 8906 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8907
810b3817
PZ
8908#ifdef CONFIG_FAIR_GROUP_SCHED
8909 if (tsk->sched_class->moved_group)
8910 tsk->sched_class->moved_group(tsk);
8911#endif
8912
0e1f3483
HS
8913 if (unlikely(running))
8914 tsk->sched_class->set_curr_task(rq);
8915 if (on_rq)
7074badb 8916 enqueue_task(rq, tsk, 0);
29f59db3 8917
29f59db3
SV
8918 task_rq_unlock(rq, &flags);
8919}
6d6bc0ad 8920#endif /* CONFIG_GROUP_SCHED */
29f59db3 8921
052f1dc7 8922#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8923static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8924{
8925 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8926 int on_rq;
8927
29f59db3 8928 on_rq = se->on_rq;
62fb1851 8929 if (on_rq)
29f59db3
SV
8930 dequeue_entity(cfs_rq, se, 0);
8931
8932 se->load.weight = shares;
e05510d0 8933 se->load.inv_weight = 0;
29f59db3 8934
62fb1851 8935 if (on_rq)
29f59db3 8936 enqueue_entity(cfs_rq, se, 0);
c09595f6 8937}
18d95a28 8938
c09595f6
PZ
8939static void set_se_shares(struct sched_entity *se, unsigned long shares)
8940{
8941 struct cfs_rq *cfs_rq = se->cfs_rq;
8942 struct rq *rq = cfs_rq->rq;
8943 unsigned long flags;
8944
8945 spin_lock_irqsave(&rq->lock, flags);
8946 __set_se_shares(se, shares);
8947 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8948}
8949
8ed36996
PZ
8950static DEFINE_MUTEX(shares_mutex);
8951
4cf86d77 8952int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8953{
8954 int i;
8ed36996 8955 unsigned long flags;
c61935fd 8956
ec7dc8ac
DG
8957 /*
8958 * We can't change the weight of the root cgroup.
8959 */
8960 if (!tg->se[0])
8961 return -EINVAL;
8962
18d95a28
PZ
8963 if (shares < MIN_SHARES)
8964 shares = MIN_SHARES;
cb4ad1ff
MX
8965 else if (shares > MAX_SHARES)
8966 shares = MAX_SHARES;
62fb1851 8967
8ed36996 8968 mutex_lock(&shares_mutex);
9b5b7751 8969 if (tg->shares == shares)
5cb350ba 8970 goto done;
29f59db3 8971
8ed36996 8972 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8973 for_each_possible_cpu(i)
8974 unregister_fair_sched_group(tg, i);
f473aa5e 8975 list_del_rcu(&tg->siblings);
8ed36996 8976 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8977
8978 /* wait for any ongoing reference to this group to finish */
8979 synchronize_sched();
8980
8981 /*
8982 * Now we are free to modify the group's share on each cpu
8983 * w/o tripping rebalance_share or load_balance_fair.
8984 */
9b5b7751 8985 tg->shares = shares;
c09595f6
PZ
8986 for_each_possible_cpu(i) {
8987 /*
8988 * force a rebalance
8989 */
8990 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8991 set_se_shares(tg->se[i], shares);
c09595f6 8992 }
29f59db3 8993
6b2d7700
SV
8994 /*
8995 * Enable load balance activity on this group, by inserting it back on
8996 * each cpu's rq->leaf_cfs_rq_list.
8997 */
8ed36996 8998 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8999 for_each_possible_cpu(i)
9000 register_fair_sched_group(tg, i);
f473aa5e 9001 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9002 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9003done:
8ed36996 9004 mutex_unlock(&shares_mutex);
9b5b7751 9005 return 0;
29f59db3
SV
9006}
9007
5cb350ba
DG
9008unsigned long sched_group_shares(struct task_group *tg)
9009{
9010 return tg->shares;
9011}
052f1dc7 9012#endif
5cb350ba 9013
052f1dc7 9014#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9015/*
9f0c1e56 9016 * Ensure that the real time constraints are schedulable.
6f505b16 9017 */
9f0c1e56
PZ
9018static DEFINE_MUTEX(rt_constraints_mutex);
9019
9020static unsigned long to_ratio(u64 period, u64 runtime)
9021{
9022 if (runtime == RUNTIME_INF)
9a7e0b18 9023 return 1ULL << 20;
9f0c1e56 9024
9a7e0b18 9025 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9026}
9027
9a7e0b18
PZ
9028/* Must be called with tasklist_lock held */
9029static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9030{
9a7e0b18 9031 struct task_struct *g, *p;
b40b2e8e 9032
9a7e0b18
PZ
9033 do_each_thread(g, p) {
9034 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9035 return 1;
9036 } while_each_thread(g, p);
b40b2e8e 9037
9a7e0b18
PZ
9038 return 0;
9039}
b40b2e8e 9040
9a7e0b18
PZ
9041struct rt_schedulable_data {
9042 struct task_group *tg;
9043 u64 rt_period;
9044 u64 rt_runtime;
9045};
b40b2e8e 9046
9a7e0b18
PZ
9047static int tg_schedulable(struct task_group *tg, void *data)
9048{
9049 struct rt_schedulable_data *d = data;
9050 struct task_group *child;
9051 unsigned long total, sum = 0;
9052 u64 period, runtime;
b40b2e8e 9053
9a7e0b18
PZ
9054 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9055 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9056
9a7e0b18
PZ
9057 if (tg == d->tg) {
9058 period = d->rt_period;
9059 runtime = d->rt_runtime;
b40b2e8e 9060 }
b40b2e8e 9061
98a4826b
PZ
9062#ifdef CONFIG_USER_SCHED
9063 if (tg == &root_task_group) {
9064 period = global_rt_period();
9065 runtime = global_rt_runtime();
9066 }
9067#endif
9068
4653f803
PZ
9069 /*
9070 * Cannot have more runtime than the period.
9071 */
9072 if (runtime > period && runtime != RUNTIME_INF)
9073 return -EINVAL;
6f505b16 9074
4653f803
PZ
9075 /*
9076 * Ensure we don't starve existing RT tasks.
9077 */
9a7e0b18
PZ
9078 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9079 return -EBUSY;
6f505b16 9080
9a7e0b18 9081 total = to_ratio(period, runtime);
6f505b16 9082
4653f803
PZ
9083 /*
9084 * Nobody can have more than the global setting allows.
9085 */
9086 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9087 return -EINVAL;
9088
9089 /*
9090 * The sum of our children's runtime should not exceed our own.
9091 */
9a7e0b18
PZ
9092 list_for_each_entry_rcu(child, &tg->children, siblings) {
9093 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9094 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9095
9a7e0b18
PZ
9096 if (child == d->tg) {
9097 period = d->rt_period;
9098 runtime = d->rt_runtime;
9099 }
6f505b16 9100
9a7e0b18 9101 sum += to_ratio(period, runtime);
9f0c1e56 9102 }
6f505b16 9103
9a7e0b18
PZ
9104 if (sum > total)
9105 return -EINVAL;
9106
9107 return 0;
6f505b16
PZ
9108}
9109
9a7e0b18 9110static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9111{
9a7e0b18
PZ
9112 struct rt_schedulable_data data = {
9113 .tg = tg,
9114 .rt_period = period,
9115 .rt_runtime = runtime,
9116 };
9117
9118 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9119}
9120
d0b27fa7
PZ
9121static int tg_set_bandwidth(struct task_group *tg,
9122 u64 rt_period, u64 rt_runtime)
6f505b16 9123{
ac086bc2 9124 int i, err = 0;
9f0c1e56 9125
9f0c1e56 9126 mutex_lock(&rt_constraints_mutex);
521f1a24 9127 read_lock(&tasklist_lock);
9a7e0b18
PZ
9128 err = __rt_schedulable(tg, rt_period, rt_runtime);
9129 if (err)
9f0c1e56 9130 goto unlock;
ac086bc2
PZ
9131
9132 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9133 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9134 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9135
9136 for_each_possible_cpu(i) {
9137 struct rt_rq *rt_rq = tg->rt_rq[i];
9138
9139 spin_lock(&rt_rq->rt_runtime_lock);
9140 rt_rq->rt_runtime = rt_runtime;
9141 spin_unlock(&rt_rq->rt_runtime_lock);
9142 }
9143 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9144 unlock:
521f1a24 9145 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9146 mutex_unlock(&rt_constraints_mutex);
9147
9148 return err;
6f505b16
PZ
9149}
9150
d0b27fa7
PZ
9151int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9152{
9153 u64 rt_runtime, rt_period;
9154
9155 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9156 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9157 if (rt_runtime_us < 0)
9158 rt_runtime = RUNTIME_INF;
9159
9160 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9161}
9162
9f0c1e56
PZ
9163long sched_group_rt_runtime(struct task_group *tg)
9164{
9165 u64 rt_runtime_us;
9166
d0b27fa7 9167 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9168 return -1;
9169
d0b27fa7 9170 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9171 do_div(rt_runtime_us, NSEC_PER_USEC);
9172 return rt_runtime_us;
9173}
d0b27fa7
PZ
9174
9175int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9176{
9177 u64 rt_runtime, rt_period;
9178
9179 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9180 rt_runtime = tg->rt_bandwidth.rt_runtime;
9181
619b0488
R
9182 if (rt_period == 0)
9183 return -EINVAL;
9184
d0b27fa7
PZ
9185 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9186}
9187
9188long sched_group_rt_period(struct task_group *tg)
9189{
9190 u64 rt_period_us;
9191
9192 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9193 do_div(rt_period_us, NSEC_PER_USEC);
9194 return rt_period_us;
9195}
9196
9197static int sched_rt_global_constraints(void)
9198{
4653f803 9199 u64 runtime, period;
d0b27fa7
PZ
9200 int ret = 0;
9201
ec5d4989
HS
9202 if (sysctl_sched_rt_period <= 0)
9203 return -EINVAL;
9204
4653f803
PZ
9205 runtime = global_rt_runtime();
9206 period = global_rt_period();
9207
9208 /*
9209 * Sanity check on the sysctl variables.
9210 */
9211 if (runtime > period && runtime != RUNTIME_INF)
9212 return -EINVAL;
10b612f4 9213
d0b27fa7 9214 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9215 read_lock(&tasklist_lock);
4653f803 9216 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9217 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9218 mutex_unlock(&rt_constraints_mutex);
9219
9220 return ret;
9221}
54e99124
DG
9222
9223int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9224{
9225 /* Don't accept realtime tasks when there is no way for them to run */
9226 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9227 return 0;
9228
9229 return 1;
9230}
9231
6d6bc0ad 9232#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9233static int sched_rt_global_constraints(void)
9234{
ac086bc2
PZ
9235 unsigned long flags;
9236 int i;
9237
ec5d4989
HS
9238 if (sysctl_sched_rt_period <= 0)
9239 return -EINVAL;
9240
ac086bc2
PZ
9241 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9242 for_each_possible_cpu(i) {
9243 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9244
9245 spin_lock(&rt_rq->rt_runtime_lock);
9246 rt_rq->rt_runtime = global_rt_runtime();
9247 spin_unlock(&rt_rq->rt_runtime_lock);
9248 }
9249 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9250
d0b27fa7
PZ
9251 return 0;
9252}
6d6bc0ad 9253#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9254
9255int sched_rt_handler(struct ctl_table *table, int write,
9256 struct file *filp, void __user *buffer, size_t *lenp,
9257 loff_t *ppos)
9258{
9259 int ret;
9260 int old_period, old_runtime;
9261 static DEFINE_MUTEX(mutex);
9262
9263 mutex_lock(&mutex);
9264 old_period = sysctl_sched_rt_period;
9265 old_runtime = sysctl_sched_rt_runtime;
9266
9267 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9268
9269 if (!ret && write) {
9270 ret = sched_rt_global_constraints();
9271 if (ret) {
9272 sysctl_sched_rt_period = old_period;
9273 sysctl_sched_rt_runtime = old_runtime;
9274 } else {
9275 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9276 def_rt_bandwidth.rt_period =
9277 ns_to_ktime(global_rt_period());
9278 }
9279 }
9280 mutex_unlock(&mutex);
9281
9282 return ret;
9283}
68318b8e 9284
052f1dc7 9285#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9286
9287/* return corresponding task_group object of a cgroup */
2b01dfe3 9288static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9289{
2b01dfe3
PM
9290 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9291 struct task_group, css);
68318b8e
SV
9292}
9293
9294static struct cgroup_subsys_state *
2b01dfe3 9295cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9296{
ec7dc8ac 9297 struct task_group *tg, *parent;
68318b8e 9298
2b01dfe3 9299 if (!cgrp->parent) {
68318b8e 9300 /* This is early initialization for the top cgroup */
68318b8e
SV
9301 return &init_task_group.css;
9302 }
9303
ec7dc8ac
DG
9304 parent = cgroup_tg(cgrp->parent);
9305 tg = sched_create_group(parent);
68318b8e
SV
9306 if (IS_ERR(tg))
9307 return ERR_PTR(-ENOMEM);
9308
68318b8e
SV
9309 return &tg->css;
9310}
9311
41a2d6cf
IM
9312static void
9313cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9314{
2b01dfe3 9315 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9316
9317 sched_destroy_group(tg);
9318}
9319
41a2d6cf
IM
9320static int
9321cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9322 struct task_struct *tsk)
68318b8e 9323{
b68aa230 9324#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9325 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9326 return -EINVAL;
9327#else
68318b8e
SV
9328 /* We don't support RT-tasks being in separate groups */
9329 if (tsk->sched_class != &fair_sched_class)
9330 return -EINVAL;
b68aa230 9331#endif
68318b8e
SV
9332
9333 return 0;
9334}
9335
9336static void
2b01dfe3 9337cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9338 struct cgroup *old_cont, struct task_struct *tsk)
9339{
9340 sched_move_task(tsk);
9341}
9342
052f1dc7 9343#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9344static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9345 u64 shareval)
68318b8e 9346{
2b01dfe3 9347 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9348}
9349
f4c753b7 9350static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9351{
2b01dfe3 9352 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9353
9354 return (u64) tg->shares;
9355}
6d6bc0ad 9356#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9357
052f1dc7 9358#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9359static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9360 s64 val)
6f505b16 9361{
06ecb27c 9362 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9363}
9364
06ecb27c 9365static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9366{
06ecb27c 9367 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9368}
d0b27fa7
PZ
9369
9370static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9371 u64 rt_period_us)
9372{
9373 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9374}
9375
9376static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9377{
9378 return sched_group_rt_period(cgroup_tg(cgrp));
9379}
6d6bc0ad 9380#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9381
fe5c7cc2 9382static struct cftype cpu_files[] = {
052f1dc7 9383#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9384 {
9385 .name = "shares",
f4c753b7
PM
9386 .read_u64 = cpu_shares_read_u64,
9387 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9388 },
052f1dc7
PZ
9389#endif
9390#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9391 {
9f0c1e56 9392 .name = "rt_runtime_us",
06ecb27c
PM
9393 .read_s64 = cpu_rt_runtime_read,
9394 .write_s64 = cpu_rt_runtime_write,
6f505b16 9395 },
d0b27fa7
PZ
9396 {
9397 .name = "rt_period_us",
f4c753b7
PM
9398 .read_u64 = cpu_rt_period_read_uint,
9399 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9400 },
052f1dc7 9401#endif
68318b8e
SV
9402};
9403
9404static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9405{
fe5c7cc2 9406 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9407}
9408
9409struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9410 .name = "cpu",
9411 .create = cpu_cgroup_create,
9412 .destroy = cpu_cgroup_destroy,
9413 .can_attach = cpu_cgroup_can_attach,
9414 .attach = cpu_cgroup_attach,
9415 .populate = cpu_cgroup_populate,
9416 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9417 .early_init = 1,
9418};
9419
052f1dc7 9420#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9421
9422#ifdef CONFIG_CGROUP_CPUACCT
9423
9424/*
9425 * CPU accounting code for task groups.
9426 *
9427 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9428 * (balbir@in.ibm.com).
9429 */
9430
934352f2 9431/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9432struct cpuacct {
9433 struct cgroup_subsys_state css;
9434 /* cpuusage holds pointer to a u64-type object on every cpu */
9435 u64 *cpuusage;
934352f2 9436 struct cpuacct *parent;
d842de87
SV
9437};
9438
9439struct cgroup_subsys cpuacct_subsys;
9440
9441/* return cpu accounting group corresponding to this container */
32cd756a 9442static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9443{
32cd756a 9444 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9445 struct cpuacct, css);
9446}
9447
9448/* return cpu accounting group to which this task belongs */
9449static inline struct cpuacct *task_ca(struct task_struct *tsk)
9450{
9451 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9452 struct cpuacct, css);
9453}
9454
9455/* create a new cpu accounting group */
9456static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9457 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9458{
9459 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9460
9461 if (!ca)
9462 return ERR_PTR(-ENOMEM);
9463
9464 ca->cpuusage = alloc_percpu(u64);
9465 if (!ca->cpuusage) {
9466 kfree(ca);
9467 return ERR_PTR(-ENOMEM);
9468 }
9469
934352f2
BR
9470 if (cgrp->parent)
9471 ca->parent = cgroup_ca(cgrp->parent);
9472
d842de87
SV
9473 return &ca->css;
9474}
9475
9476/* destroy an existing cpu accounting group */
41a2d6cf 9477static void
32cd756a 9478cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9479{
32cd756a 9480 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9481
9482 free_percpu(ca->cpuusage);
9483 kfree(ca);
9484}
9485
720f5498
KC
9486static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9487{
b36128c8 9488 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9489 u64 data;
9490
9491#ifndef CONFIG_64BIT
9492 /*
9493 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9494 */
9495 spin_lock_irq(&cpu_rq(cpu)->lock);
9496 data = *cpuusage;
9497 spin_unlock_irq(&cpu_rq(cpu)->lock);
9498#else
9499 data = *cpuusage;
9500#endif
9501
9502 return data;
9503}
9504
9505static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9506{
b36128c8 9507 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9508
9509#ifndef CONFIG_64BIT
9510 /*
9511 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9512 */
9513 spin_lock_irq(&cpu_rq(cpu)->lock);
9514 *cpuusage = val;
9515 spin_unlock_irq(&cpu_rq(cpu)->lock);
9516#else
9517 *cpuusage = val;
9518#endif
9519}
9520
d842de87 9521/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9522static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9523{
32cd756a 9524 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9525 u64 totalcpuusage = 0;
9526 int i;
9527
720f5498
KC
9528 for_each_present_cpu(i)
9529 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9530
9531 return totalcpuusage;
9532}
9533
0297b803
DG
9534static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9535 u64 reset)
9536{
9537 struct cpuacct *ca = cgroup_ca(cgrp);
9538 int err = 0;
9539 int i;
9540
9541 if (reset) {
9542 err = -EINVAL;
9543 goto out;
9544 }
9545
720f5498
KC
9546 for_each_present_cpu(i)
9547 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9548
0297b803
DG
9549out:
9550 return err;
9551}
9552
e9515c3c
KC
9553static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9554 struct seq_file *m)
9555{
9556 struct cpuacct *ca = cgroup_ca(cgroup);
9557 u64 percpu;
9558 int i;
9559
9560 for_each_present_cpu(i) {
9561 percpu = cpuacct_cpuusage_read(ca, i);
9562 seq_printf(m, "%llu ", (unsigned long long) percpu);
9563 }
9564 seq_printf(m, "\n");
9565 return 0;
9566}
9567
d842de87
SV
9568static struct cftype files[] = {
9569 {
9570 .name = "usage",
f4c753b7
PM
9571 .read_u64 = cpuusage_read,
9572 .write_u64 = cpuusage_write,
d842de87 9573 },
e9515c3c
KC
9574 {
9575 .name = "usage_percpu",
9576 .read_seq_string = cpuacct_percpu_seq_read,
9577 },
9578
d842de87
SV
9579};
9580
32cd756a 9581static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9582{
32cd756a 9583 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9584}
9585
9586/*
9587 * charge this task's execution time to its accounting group.
9588 *
9589 * called with rq->lock held.
9590 */
9591static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9592{
9593 struct cpuacct *ca;
934352f2 9594 int cpu;
d842de87
SV
9595
9596 if (!cpuacct_subsys.active)
9597 return;
9598
934352f2 9599 cpu = task_cpu(tsk);
d842de87 9600 ca = task_ca(tsk);
d842de87 9601
934352f2 9602 for (; ca; ca = ca->parent) {
b36128c8 9603 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9604 *cpuusage += cputime;
9605 }
9606}
9607
9608struct cgroup_subsys cpuacct_subsys = {
9609 .name = "cpuacct",
9610 .create = cpuacct_create,
9611 .destroy = cpuacct_destroy,
9612 .populate = cpuacct_populate,
9613 .subsys_id = cpuacct_subsys_id,
9614};
9615#endif /* CONFIG_CGROUP_CPUACCT */
This page took 1.506682 seconds and 5 git commands to generate.