Documentation/trace: Correcting and extending tracepoint documentation
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
1da177e4 63
7ee3d4e8 64#include <asm/sections.h>
1da177e4 65#include <asm/tlbflush.h>
ac924c60 66#include <asm/div64.h>
1da177e4
LT
67#include "internal.h"
68
c8e251fa
CS
69/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70static DEFINE_MUTEX(pcp_batch_high_lock);
71
72812019
LS
72#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73DEFINE_PER_CPU(int, numa_node);
74EXPORT_PER_CPU_SYMBOL(numa_node);
75#endif
76
7aac7898
LS
77#ifdef CONFIG_HAVE_MEMORYLESS_NODES
78/*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86#endif
87
1da177e4 88/*
13808910 89 * Array of node states.
1da177e4 90 */
13808910
CL
91nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
92 [N_POSSIBLE] = NODE_MASK_ALL,
93 [N_ONLINE] = { { [0] = 1UL } },
94#ifndef CONFIG_NUMA
95 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
96#ifdef CONFIG_HIGHMEM
97 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
98#endif
99#ifdef CONFIG_MOVABLE_NODE
100 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
101#endif
102 [N_CPU] = { { [0] = 1UL } },
103#endif /* NUMA */
104};
105EXPORT_SYMBOL(node_states);
106
c3d5f5f0
JL
107/* Protect totalram_pages and zone->managed_pages */
108static DEFINE_SPINLOCK(managed_page_count_lock);
109
6c231b7b 110unsigned long totalram_pages __read_mostly;
cb45b0e9 111unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
112/*
113 * When calculating the number of globally allowed dirty pages, there
114 * is a certain number of per-zone reserves that should not be
115 * considered dirtyable memory. This is the sum of those reserves
116 * over all existing zones that contribute dirtyable memory.
117 */
118unsigned long dirty_balance_reserve __read_mostly;
119
1b76b02f 120int percpu_pagelist_fraction;
dcce284a 121gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 122
452aa699
RW
123#ifdef CONFIG_PM_SLEEP
124/*
125 * The following functions are used by the suspend/hibernate code to temporarily
126 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
127 * while devices are suspended. To avoid races with the suspend/hibernate code,
128 * they should always be called with pm_mutex held (gfp_allowed_mask also should
129 * only be modified with pm_mutex held, unless the suspend/hibernate code is
130 * guaranteed not to run in parallel with that modification).
131 */
c9e664f1
RW
132
133static gfp_t saved_gfp_mask;
134
135void pm_restore_gfp_mask(void)
452aa699
RW
136{
137 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
138 if (saved_gfp_mask) {
139 gfp_allowed_mask = saved_gfp_mask;
140 saved_gfp_mask = 0;
141 }
452aa699
RW
142}
143
c9e664f1 144void pm_restrict_gfp_mask(void)
452aa699 145{
452aa699 146 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
147 WARN_ON(saved_gfp_mask);
148 saved_gfp_mask = gfp_allowed_mask;
149 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 150}
f90ac398
MG
151
152bool pm_suspended_storage(void)
153{
154 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
155 return false;
156 return true;
157}
452aa699
RW
158#endif /* CONFIG_PM_SLEEP */
159
d9c23400
MG
160#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
161int pageblock_order __read_mostly;
162#endif
163
d98c7a09 164static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 165
1da177e4
LT
166/*
167 * results with 256, 32 in the lowmem_reserve sysctl:
168 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
169 * 1G machine -> (16M dma, 784M normal, 224M high)
170 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
171 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
172 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
173 *
174 * TBD: should special case ZONE_DMA32 machines here - in those we normally
175 * don't need any ZONE_NORMAL reservation
1da177e4 176 */
2f1b6248 177int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 178#ifdef CONFIG_ZONE_DMA
2f1b6248 179 256,
4b51d669 180#endif
fb0e7942 181#ifdef CONFIG_ZONE_DMA32
2f1b6248 182 256,
fb0e7942 183#endif
e53ef38d 184#ifdef CONFIG_HIGHMEM
2a1e274a 185 32,
e53ef38d 186#endif
2a1e274a 187 32,
2f1b6248 188};
1da177e4
LT
189
190EXPORT_SYMBOL(totalram_pages);
1da177e4 191
15ad7cdc 192static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 193#ifdef CONFIG_ZONE_DMA
2f1b6248 194 "DMA",
4b51d669 195#endif
fb0e7942 196#ifdef CONFIG_ZONE_DMA32
2f1b6248 197 "DMA32",
fb0e7942 198#endif
2f1b6248 199 "Normal",
e53ef38d 200#ifdef CONFIG_HIGHMEM
2a1e274a 201 "HighMem",
e53ef38d 202#endif
2a1e274a 203 "Movable",
2f1b6248
CL
204};
205
1da177e4 206int min_free_kbytes = 1024;
5f12733e 207int user_min_free_kbytes;
1da177e4 208
2c85f51d
JB
209static unsigned long __meminitdata nr_kernel_pages;
210static unsigned long __meminitdata nr_all_pages;
a3142c8e 211static unsigned long __meminitdata dma_reserve;
1da177e4 212
0ee332c1
TH
213#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
214static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
215static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __initdata required_kernelcore;
217static unsigned long __initdata required_movablecore;
218static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
219
220/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
221int movable_zone;
222EXPORT_SYMBOL(movable_zone);
223#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 224
418508c1
MS
225#if MAX_NUMNODES > 1
226int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 227int nr_online_nodes __read_mostly = 1;
418508c1 228EXPORT_SYMBOL(nr_node_ids);
62bc62a8 229EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
230#endif
231
9ef9acb0
MG
232int page_group_by_mobility_disabled __read_mostly;
233
ee6f509c 234void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 235{
49255c61
MG
236
237 if (unlikely(page_group_by_mobility_disabled))
238 migratetype = MIGRATE_UNMOVABLE;
239
b2a0ac88
MG
240 set_pageblock_flags_group(page, (unsigned long)migratetype,
241 PB_migrate, PB_migrate_end);
242}
243
7f33d49a
RW
244bool oom_killer_disabled __read_mostly;
245
13e7444b 246#ifdef CONFIG_DEBUG_VM
c6a57e19 247static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 248{
bdc8cb98
DH
249 int ret = 0;
250 unsigned seq;
251 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 252 unsigned long sp, start_pfn;
c6a57e19 253
bdc8cb98
DH
254 do {
255 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
256 start_pfn = zone->zone_start_pfn;
257 sp = zone->spanned_pages;
108bcc96 258 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
259 ret = 1;
260 } while (zone_span_seqretry(zone, seq));
261
b5e6a5a2
CS
262 if (ret)
263 pr_err("page %lu outside zone [ %lu - %lu ]\n",
264 pfn, start_pfn, start_pfn + sp);
265
bdc8cb98 266 return ret;
c6a57e19
DH
267}
268
269static int page_is_consistent(struct zone *zone, struct page *page)
270{
14e07298 271 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 272 return 0;
1da177e4 273 if (zone != page_zone(page))
c6a57e19
DH
274 return 0;
275
276 return 1;
277}
278/*
279 * Temporary debugging check for pages not lying within a given zone.
280 */
281static int bad_range(struct zone *zone, struct page *page)
282{
283 if (page_outside_zone_boundaries(zone, page))
1da177e4 284 return 1;
c6a57e19
DH
285 if (!page_is_consistent(zone, page))
286 return 1;
287
1da177e4
LT
288 return 0;
289}
13e7444b
NP
290#else
291static inline int bad_range(struct zone *zone, struct page *page)
292{
293 return 0;
294}
295#endif
296
224abf92 297static void bad_page(struct page *page)
1da177e4 298{
d936cf9b
HD
299 static unsigned long resume;
300 static unsigned long nr_shown;
301 static unsigned long nr_unshown;
302
2a7684a2
WF
303 /* Don't complain about poisoned pages */
304 if (PageHWPoison(page)) {
22b751c3 305 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
306 return;
307 }
308
d936cf9b
HD
309 /*
310 * Allow a burst of 60 reports, then keep quiet for that minute;
311 * or allow a steady drip of one report per second.
312 */
313 if (nr_shown == 60) {
314 if (time_before(jiffies, resume)) {
315 nr_unshown++;
316 goto out;
317 }
318 if (nr_unshown) {
1e9e6365
HD
319 printk(KERN_ALERT
320 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
321 nr_unshown);
322 nr_unshown = 0;
323 }
324 nr_shown = 0;
325 }
326 if (nr_shown++ == 0)
327 resume = jiffies + 60 * HZ;
328
1e9e6365 329 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 330 current->comm, page_to_pfn(page));
718a3821 331 dump_page(page);
3dc14741 332
4f31888c 333 print_modules();
1da177e4 334 dump_stack();
d936cf9b 335out:
8cc3b392 336 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 337 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 338 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
339}
340
1da177e4
LT
341/*
342 * Higher-order pages are called "compound pages". They are structured thusly:
343 *
344 * The first PAGE_SIZE page is called the "head page".
345 *
346 * The remaining PAGE_SIZE pages are called "tail pages".
347 *
6416b9fa
WSH
348 * All pages have PG_compound set. All tail pages have their ->first_page
349 * pointing at the head page.
1da177e4 350 *
41d78ba5
HD
351 * The first tail page's ->lru.next holds the address of the compound page's
352 * put_page() function. Its ->lru.prev holds the order of allocation.
353 * This usage means that zero-order pages may not be compound.
1da177e4 354 */
d98c7a09
HD
355
356static void free_compound_page(struct page *page)
357{
d85f3385 358 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
359}
360
01ad1c08 361void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
362{
363 int i;
364 int nr_pages = 1 << order;
365
366 set_compound_page_dtor(page, free_compound_page);
367 set_compound_order(page, order);
368 __SetPageHead(page);
369 for (i = 1; i < nr_pages; i++) {
370 struct page *p = page + i;
18229df5 371 __SetPageTail(p);
58a84aa9 372 set_page_count(p, 0);
18229df5
AW
373 p->first_page = page;
374 }
375}
376
59ff4216 377/* update __split_huge_page_refcount if you change this function */
8cc3b392 378static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
379{
380 int i;
381 int nr_pages = 1 << order;
8cc3b392 382 int bad = 0;
1da177e4 383
0bb2c763 384 if (unlikely(compound_order(page) != order)) {
224abf92 385 bad_page(page);
8cc3b392
HD
386 bad++;
387 }
1da177e4 388
6d777953 389 __ClearPageHead(page);
8cc3b392 390
18229df5
AW
391 for (i = 1; i < nr_pages; i++) {
392 struct page *p = page + i;
1da177e4 393
e713a21d 394 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 395 bad_page(page);
8cc3b392
HD
396 bad++;
397 }
d85f3385 398 __ClearPageTail(p);
1da177e4 399 }
8cc3b392
HD
400
401 return bad;
1da177e4 402}
1da177e4 403
17cf4406
NP
404static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
405{
406 int i;
407
6626c5d5
AM
408 /*
409 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
410 * and __GFP_HIGHMEM from hard or soft interrupt context.
411 */
725d704e 412 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
413 for (i = 0; i < (1 << order); i++)
414 clear_highpage(page + i);
415}
416
c0a32fc5
SG
417#ifdef CONFIG_DEBUG_PAGEALLOC
418unsigned int _debug_guardpage_minorder;
419
420static int __init debug_guardpage_minorder_setup(char *buf)
421{
422 unsigned long res;
423
424 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
425 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
426 return 0;
427 }
428 _debug_guardpage_minorder = res;
429 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
430 return 0;
431}
432__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
433
434static inline void set_page_guard_flag(struct page *page)
435{
436 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
437}
438
439static inline void clear_page_guard_flag(struct page *page)
440{
441 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
442}
443#else
444static inline void set_page_guard_flag(struct page *page) { }
445static inline void clear_page_guard_flag(struct page *page) { }
446#endif
447
6aa3001b
AM
448static inline void set_page_order(struct page *page, int order)
449{
4c21e2f2 450 set_page_private(page, order);
676165a8 451 __SetPageBuddy(page);
1da177e4
LT
452}
453
454static inline void rmv_page_order(struct page *page)
455{
676165a8 456 __ClearPageBuddy(page);
4c21e2f2 457 set_page_private(page, 0);
1da177e4
LT
458}
459
460/*
461 * Locate the struct page for both the matching buddy in our
462 * pair (buddy1) and the combined O(n+1) page they form (page).
463 *
464 * 1) Any buddy B1 will have an order O twin B2 which satisfies
465 * the following equation:
466 * B2 = B1 ^ (1 << O)
467 * For example, if the starting buddy (buddy2) is #8 its order
468 * 1 buddy is #10:
469 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
470 *
471 * 2) Any buddy B will have an order O+1 parent P which
472 * satisfies the following equation:
473 * P = B & ~(1 << O)
474 *
d6e05edc 475 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 476 */
1da177e4 477static inline unsigned long
43506fad 478__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 479{
43506fad 480 return page_idx ^ (1 << order);
1da177e4
LT
481}
482
483/*
484 * This function checks whether a page is free && is the buddy
485 * we can do coalesce a page and its buddy if
13e7444b 486 * (a) the buddy is not in a hole &&
676165a8 487 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
488 * (c) a page and its buddy have the same order &&
489 * (d) a page and its buddy are in the same zone.
676165a8 490 *
5f24ce5f
AA
491 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
492 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 493 *
676165a8 494 * For recording page's order, we use page_private(page).
1da177e4 495 */
cb2b95e1
AW
496static inline int page_is_buddy(struct page *page, struct page *buddy,
497 int order)
1da177e4 498{
14e07298 499 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 500 return 0;
13e7444b 501
cb2b95e1
AW
502 if (page_zone_id(page) != page_zone_id(buddy))
503 return 0;
504
c0a32fc5
SG
505 if (page_is_guard(buddy) && page_order(buddy) == order) {
506 VM_BUG_ON(page_count(buddy) != 0);
507 return 1;
508 }
509
cb2b95e1 510 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 511 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 512 return 1;
676165a8 513 }
6aa3001b 514 return 0;
1da177e4
LT
515}
516
517/*
518 * Freeing function for a buddy system allocator.
519 *
520 * The concept of a buddy system is to maintain direct-mapped table
521 * (containing bit values) for memory blocks of various "orders".
522 * The bottom level table contains the map for the smallest allocatable
523 * units of memory (here, pages), and each level above it describes
524 * pairs of units from the levels below, hence, "buddies".
525 * At a high level, all that happens here is marking the table entry
526 * at the bottom level available, and propagating the changes upward
527 * as necessary, plus some accounting needed to play nicely with other
528 * parts of the VM system.
529 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 530 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 531 * order is recorded in page_private(page) field.
1da177e4 532 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
533 * other. That is, if we allocate a small block, and both were
534 * free, the remainder of the region must be split into blocks.
1da177e4 535 * If a block is freed, and its buddy is also free, then this
5f63b720 536 * triggers coalescing into a block of larger size.
1da177e4 537 *
6d49e352 538 * -- nyc
1da177e4
LT
539 */
540
48db57f8 541static inline void __free_one_page(struct page *page,
ed0ae21d
MG
542 struct zone *zone, unsigned int order,
543 int migratetype)
1da177e4
LT
544{
545 unsigned long page_idx;
6dda9d55 546 unsigned long combined_idx;
43506fad 547 unsigned long uninitialized_var(buddy_idx);
6dda9d55 548 struct page *buddy;
1da177e4 549
d29bb978
CS
550 VM_BUG_ON(!zone_is_initialized(zone));
551
224abf92 552 if (unlikely(PageCompound(page)))
8cc3b392
HD
553 if (unlikely(destroy_compound_page(page, order)))
554 return;
1da177e4 555
ed0ae21d
MG
556 VM_BUG_ON(migratetype == -1);
557
1da177e4
LT
558 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
559
f2260e6b 560 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 561 VM_BUG_ON(bad_range(zone, page));
1da177e4 562
1da177e4 563 while (order < MAX_ORDER-1) {
43506fad
KC
564 buddy_idx = __find_buddy_index(page_idx, order);
565 buddy = page + (buddy_idx - page_idx);
cb2b95e1 566 if (!page_is_buddy(page, buddy, order))
3c82d0ce 567 break;
c0a32fc5
SG
568 /*
569 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
570 * merge with it and move up one order.
571 */
572 if (page_is_guard(buddy)) {
573 clear_page_guard_flag(buddy);
574 set_page_private(page, 0);
d1ce749a
BZ
575 __mod_zone_freepage_state(zone, 1 << order,
576 migratetype);
c0a32fc5
SG
577 } else {
578 list_del(&buddy->lru);
579 zone->free_area[order].nr_free--;
580 rmv_page_order(buddy);
581 }
43506fad 582 combined_idx = buddy_idx & page_idx;
1da177e4
LT
583 page = page + (combined_idx - page_idx);
584 page_idx = combined_idx;
585 order++;
586 }
587 set_page_order(page, order);
6dda9d55
CZ
588
589 /*
590 * If this is not the largest possible page, check if the buddy
591 * of the next-highest order is free. If it is, it's possible
592 * that pages are being freed that will coalesce soon. In case,
593 * that is happening, add the free page to the tail of the list
594 * so it's less likely to be used soon and more likely to be merged
595 * as a higher order page
596 */
b7f50cfa 597 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 598 struct page *higher_page, *higher_buddy;
43506fad
KC
599 combined_idx = buddy_idx & page_idx;
600 higher_page = page + (combined_idx - page_idx);
601 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 602 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
603 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
604 list_add_tail(&page->lru,
605 &zone->free_area[order].free_list[migratetype]);
606 goto out;
607 }
608 }
609
610 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
611out:
1da177e4
LT
612 zone->free_area[order].nr_free++;
613}
614
224abf92 615static inline int free_pages_check(struct page *page)
1da177e4 616{
92be2e33
NP
617 if (unlikely(page_mapcount(page) |
618 (page->mapping != NULL) |
a3af9c38 619 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
620 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
621 (mem_cgroup_bad_page_check(page)))) {
224abf92 622 bad_page(page);
79f4b7bf 623 return 1;
8cc3b392 624 }
22b751c3 625 page_nid_reset_last(page);
79f4b7bf
HD
626 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
627 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
628 return 0;
1da177e4
LT
629}
630
631/*
5f8dcc21 632 * Frees a number of pages from the PCP lists
1da177e4 633 * Assumes all pages on list are in same zone, and of same order.
207f36ee 634 * count is the number of pages to free.
1da177e4
LT
635 *
636 * If the zone was previously in an "all pages pinned" state then look to
637 * see if this freeing clears that state.
638 *
639 * And clear the zone's pages_scanned counter, to hold off the "all pages are
640 * pinned" detection logic.
641 */
5f8dcc21
MG
642static void free_pcppages_bulk(struct zone *zone, int count,
643 struct per_cpu_pages *pcp)
1da177e4 644{
5f8dcc21 645 int migratetype = 0;
a6f9edd6 646 int batch_free = 0;
72853e29 647 int to_free = count;
5f8dcc21 648
c54ad30c 649 spin_lock(&zone->lock);
93e4a89a 650 zone->all_unreclaimable = 0;
1da177e4 651 zone->pages_scanned = 0;
f2260e6b 652
72853e29 653 while (to_free) {
48db57f8 654 struct page *page;
5f8dcc21
MG
655 struct list_head *list;
656
657 /*
a6f9edd6
MG
658 * Remove pages from lists in a round-robin fashion. A
659 * batch_free count is maintained that is incremented when an
660 * empty list is encountered. This is so more pages are freed
661 * off fuller lists instead of spinning excessively around empty
662 * lists
5f8dcc21
MG
663 */
664 do {
a6f9edd6 665 batch_free++;
5f8dcc21
MG
666 if (++migratetype == MIGRATE_PCPTYPES)
667 migratetype = 0;
668 list = &pcp->lists[migratetype];
669 } while (list_empty(list));
48db57f8 670
1d16871d
NK
671 /* This is the only non-empty list. Free them all. */
672 if (batch_free == MIGRATE_PCPTYPES)
673 batch_free = to_free;
674
a6f9edd6 675 do {
770c8aaa
BZ
676 int mt; /* migratetype of the to-be-freed page */
677
a6f9edd6
MG
678 page = list_entry(list->prev, struct page, lru);
679 /* must delete as __free_one_page list manipulates */
680 list_del(&page->lru);
b12c4ad1 681 mt = get_freepage_migratetype(page);
a7016235 682 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
683 __free_one_page(page, zone, 0, mt);
684 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 685 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
687 if (is_migrate_cma(mt))
688 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
689 }
72853e29 690 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 691 }
c54ad30c 692 spin_unlock(&zone->lock);
1da177e4
LT
693}
694
ed0ae21d
MG
695static void free_one_page(struct zone *zone, struct page *page, int order,
696 int migratetype)
1da177e4 697{
006d22d9 698 spin_lock(&zone->lock);
93e4a89a 699 zone->all_unreclaimable = 0;
006d22d9 700 zone->pages_scanned = 0;
f2260e6b 701
ed0ae21d 702 __free_one_page(page, zone, order, migratetype);
194159fb 703 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 705 spin_unlock(&zone->lock);
48db57f8
NP
706}
707
ec95f53a 708static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 709{
1da177e4 710 int i;
8cc3b392 711 int bad = 0;
1da177e4 712
b413d48a 713 trace_mm_page_free(page, order);
b1eeab67
VN
714 kmemcheck_free_shadow(page, order);
715
8dd60a3a
AA
716 if (PageAnon(page))
717 page->mapping = NULL;
718 for (i = 0; i < (1 << order); i++)
719 bad += free_pages_check(page + i);
8cc3b392 720 if (bad)
ec95f53a 721 return false;
689bcebf 722
3ac7fe5a 723 if (!PageHighMem(page)) {
9858db50 724 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
725 debug_check_no_obj_freed(page_address(page),
726 PAGE_SIZE << order);
727 }
dafb1367 728 arch_free_page(page, order);
48db57f8 729 kernel_map_pages(page, 1 << order, 0);
dafb1367 730
ec95f53a
KM
731 return true;
732}
733
734static void __free_pages_ok(struct page *page, unsigned int order)
735{
736 unsigned long flags;
95e34412 737 int migratetype;
ec95f53a
KM
738
739 if (!free_pages_prepare(page, order))
740 return;
741
c54ad30c 742 local_irq_save(flags);
f8891e5e 743 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
744 migratetype = get_pageblock_migratetype(page);
745 set_freepage_migratetype(page, migratetype);
746 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 747 local_irq_restore(flags);
1da177e4
LT
748}
749
170a5a7e 750void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 751{
c3993076
JW
752 unsigned int nr_pages = 1 << order;
753 unsigned int loop;
a226f6c8 754
c3993076
JW
755 prefetchw(page);
756 for (loop = 0; loop < nr_pages; loop++) {
757 struct page *p = &page[loop];
758
759 if (loop + 1 < nr_pages)
760 prefetchw(p + 1);
761 __ClearPageReserved(p);
762 set_page_count(p, 0);
a226f6c8 763 }
c3993076 764
9feedc9d 765 page_zone(page)->managed_pages += 1 << order;
c3993076
JW
766 set_page_refcounted(page);
767 __free_pages(page, order);
a226f6c8
DH
768}
769
47118af0
MN
770#ifdef CONFIG_CMA
771/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
772void __init init_cma_reserved_pageblock(struct page *page)
773{
774 unsigned i = pageblock_nr_pages;
775 struct page *p = page;
776
777 do {
778 __ClearPageReserved(p);
779 set_page_count(p, 0);
780 } while (++p, --i);
781
782 set_page_refcounted(page);
783 set_pageblock_migratetype(page, MIGRATE_CMA);
784 __free_pages(page, pageblock_order);
3dcc0571 785 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
786}
787#endif
1da177e4
LT
788
789/*
790 * The order of subdivision here is critical for the IO subsystem.
791 * Please do not alter this order without good reasons and regression
792 * testing. Specifically, as large blocks of memory are subdivided,
793 * the order in which smaller blocks are delivered depends on the order
794 * they're subdivided in this function. This is the primary factor
795 * influencing the order in which pages are delivered to the IO
796 * subsystem according to empirical testing, and this is also justified
797 * by considering the behavior of a buddy system containing a single
798 * large block of memory acted on by a series of small allocations.
799 * This behavior is a critical factor in sglist merging's success.
800 *
6d49e352 801 * -- nyc
1da177e4 802 */
085cc7d5 803static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
804 int low, int high, struct free_area *area,
805 int migratetype)
1da177e4
LT
806{
807 unsigned long size = 1 << high;
808
809 while (high > low) {
810 area--;
811 high--;
812 size >>= 1;
725d704e 813 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
814
815#ifdef CONFIG_DEBUG_PAGEALLOC
816 if (high < debug_guardpage_minorder()) {
817 /*
818 * Mark as guard pages (or page), that will allow to
819 * merge back to allocator when buddy will be freed.
820 * Corresponding page table entries will not be touched,
821 * pages will stay not present in virtual address space
822 */
823 INIT_LIST_HEAD(&page[size].lru);
824 set_page_guard_flag(&page[size]);
825 set_page_private(&page[size], high);
826 /* Guard pages are not available for any usage */
d1ce749a
BZ
827 __mod_zone_freepage_state(zone, -(1 << high),
828 migratetype);
c0a32fc5
SG
829 continue;
830 }
831#endif
b2a0ac88 832 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
833 area->nr_free++;
834 set_page_order(&page[size], high);
835 }
1da177e4
LT
836}
837
1da177e4
LT
838/*
839 * This page is about to be returned from the page allocator
840 */
2a7684a2 841static inline int check_new_page(struct page *page)
1da177e4 842{
92be2e33
NP
843 if (unlikely(page_mapcount(page) |
844 (page->mapping != NULL) |
a3af9c38 845 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
846 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
847 (mem_cgroup_bad_page_check(page)))) {
224abf92 848 bad_page(page);
689bcebf 849 return 1;
8cc3b392 850 }
2a7684a2
WF
851 return 0;
852}
853
854static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
855{
856 int i;
857
858 for (i = 0; i < (1 << order); i++) {
859 struct page *p = page + i;
860 if (unlikely(check_new_page(p)))
861 return 1;
862 }
689bcebf 863
4c21e2f2 864 set_page_private(page, 0);
7835e98b 865 set_page_refcounted(page);
cc102509
NP
866
867 arch_alloc_page(page, order);
1da177e4 868 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
869
870 if (gfp_flags & __GFP_ZERO)
871 prep_zero_page(page, order, gfp_flags);
872
873 if (order && (gfp_flags & __GFP_COMP))
874 prep_compound_page(page, order);
875
689bcebf 876 return 0;
1da177e4
LT
877}
878
56fd56b8
MG
879/*
880 * Go through the free lists for the given migratetype and remove
881 * the smallest available page from the freelists
882 */
728ec980
MG
883static inline
884struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
885 int migratetype)
886{
887 unsigned int current_order;
888 struct free_area * area;
889 struct page *page;
890
891 /* Find a page of the appropriate size in the preferred list */
892 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
893 area = &(zone->free_area[current_order]);
894 if (list_empty(&area->free_list[migratetype]))
895 continue;
896
897 page = list_entry(area->free_list[migratetype].next,
898 struct page, lru);
899 list_del(&page->lru);
900 rmv_page_order(page);
901 area->nr_free--;
56fd56b8
MG
902 expand(zone, page, order, current_order, area, migratetype);
903 return page;
904 }
905
906 return NULL;
907}
908
909
b2a0ac88
MG
910/*
911 * This array describes the order lists are fallen back to when
912 * the free lists for the desirable migrate type are depleted
913 */
47118af0
MN
914static int fallbacks[MIGRATE_TYPES][4] = {
915 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
916 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
917#ifdef CONFIG_CMA
918 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
919 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
920#else
921 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922#endif
6d4a4916 923 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 924#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 925 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 926#endif
b2a0ac88
MG
927};
928
c361be55
MG
929/*
930 * Move the free pages in a range to the free lists of the requested type.
d9c23400 931 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
932 * boundary. If alignment is required, use move_freepages_block()
933 */
435b405c 934int move_freepages(struct zone *zone,
b69a7288
AB
935 struct page *start_page, struct page *end_page,
936 int migratetype)
c361be55
MG
937{
938 struct page *page;
939 unsigned long order;
d100313f 940 int pages_moved = 0;
c361be55
MG
941
942#ifndef CONFIG_HOLES_IN_ZONE
943 /*
944 * page_zone is not safe to call in this context when
945 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
946 * anyway as we check zone boundaries in move_freepages_block().
947 * Remove at a later date when no bug reports exist related to
ac0e5b7a 948 * grouping pages by mobility
c361be55
MG
949 */
950 BUG_ON(page_zone(start_page) != page_zone(end_page));
951#endif
952
953 for (page = start_page; page <= end_page;) {
344c790e
AL
954 /* Make sure we are not inadvertently changing nodes */
955 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
956
c361be55
MG
957 if (!pfn_valid_within(page_to_pfn(page))) {
958 page++;
959 continue;
960 }
961
962 if (!PageBuddy(page)) {
963 page++;
964 continue;
965 }
966
967 order = page_order(page);
84be48d8
KS
968 list_move(&page->lru,
969 &zone->free_area[order].free_list[migratetype]);
95e34412 970 set_freepage_migratetype(page, migratetype);
c361be55 971 page += 1 << order;
d100313f 972 pages_moved += 1 << order;
c361be55
MG
973 }
974
d100313f 975 return pages_moved;
c361be55
MG
976}
977
ee6f509c 978int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 979 int migratetype)
c361be55
MG
980{
981 unsigned long start_pfn, end_pfn;
982 struct page *start_page, *end_page;
983
984 start_pfn = page_to_pfn(page);
d9c23400 985 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 986 start_page = pfn_to_page(start_pfn);
d9c23400
MG
987 end_page = start_page + pageblock_nr_pages - 1;
988 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
989
990 /* Do not cross zone boundaries */
108bcc96 991 if (!zone_spans_pfn(zone, start_pfn))
c361be55 992 start_page = page;
108bcc96 993 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
994 return 0;
995
996 return move_freepages(zone, start_page, end_page, migratetype);
997}
998
2f66a68f
MG
999static void change_pageblock_range(struct page *pageblock_page,
1000 int start_order, int migratetype)
1001{
1002 int nr_pageblocks = 1 << (start_order - pageblock_order);
1003
1004 while (nr_pageblocks--) {
1005 set_pageblock_migratetype(pageblock_page, migratetype);
1006 pageblock_page += pageblock_nr_pages;
1007 }
1008}
1009
b2a0ac88 1010/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1011static inline struct page *
1012__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
1013{
1014 struct free_area * area;
1015 int current_order;
1016 struct page *page;
1017 int migratetype, i;
1018
1019 /* Find the largest possible block of pages in the other list */
1020 for (current_order = MAX_ORDER-1; current_order >= order;
1021 --current_order) {
6d4a4916 1022 for (i = 0;; i++) {
b2a0ac88
MG
1023 migratetype = fallbacks[start_migratetype][i];
1024
56fd56b8
MG
1025 /* MIGRATE_RESERVE handled later if necessary */
1026 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1027 break;
e010487d 1028
b2a0ac88
MG
1029 area = &(zone->free_area[current_order]);
1030 if (list_empty(&area->free_list[migratetype]))
1031 continue;
1032
1033 page = list_entry(area->free_list[migratetype].next,
1034 struct page, lru);
1035 area->nr_free--;
1036
1037 /*
c361be55 1038 * If breaking a large block of pages, move all free
46dafbca
MG
1039 * pages to the preferred allocation list. If falling
1040 * back for a reclaimable kernel allocation, be more
25985edc 1041 * aggressive about taking ownership of free pages
47118af0
MN
1042 *
1043 * On the other hand, never change migration
1044 * type of MIGRATE_CMA pageblocks nor move CMA
1045 * pages on different free lists. We don't
1046 * want unmovable pages to be allocated from
1047 * MIGRATE_CMA areas.
b2a0ac88 1048 */
47118af0 1049 if (!is_migrate_cma(migratetype) &&
345606d4 1050 (current_order >= pageblock_order / 2 ||
47118af0
MN
1051 start_migratetype == MIGRATE_RECLAIMABLE ||
1052 page_group_by_mobility_disabled)) {
1053 int pages;
46dafbca
MG
1054 pages = move_freepages_block(zone, page,
1055 start_migratetype);
1056
1057 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1058 if (pages >= (1 << (pageblock_order-1)) ||
1059 page_group_by_mobility_disabled)
46dafbca
MG
1060 set_pageblock_migratetype(page,
1061 start_migratetype);
1062
b2a0ac88 1063 migratetype = start_migratetype;
c361be55 1064 }
b2a0ac88
MG
1065
1066 /* Remove the page from the freelists */
1067 list_del(&page->lru);
1068 rmv_page_order(page);
b2a0ac88 1069
2f66a68f 1070 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1071 if (current_order >= pageblock_order &&
1072 !is_migrate_cma(migratetype))
2f66a68f 1073 change_pageblock_range(page, current_order,
b2a0ac88
MG
1074 start_migratetype);
1075
47118af0
MN
1076 expand(zone, page, order, current_order, area,
1077 is_migrate_cma(migratetype)
1078 ? migratetype : start_migratetype);
e0fff1bd
MG
1079
1080 trace_mm_page_alloc_extfrag(page, order, current_order,
1081 start_migratetype, migratetype);
1082
b2a0ac88
MG
1083 return page;
1084 }
1085 }
1086
728ec980 1087 return NULL;
b2a0ac88
MG
1088}
1089
56fd56b8 1090/*
1da177e4
LT
1091 * Do the hard work of removing an element from the buddy allocator.
1092 * Call me with the zone->lock already held.
1093 */
b2a0ac88
MG
1094static struct page *__rmqueue(struct zone *zone, unsigned int order,
1095 int migratetype)
1da177e4 1096{
1da177e4
LT
1097 struct page *page;
1098
728ec980 1099retry_reserve:
56fd56b8 1100 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1101
728ec980 1102 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1103 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1104
728ec980
MG
1105 /*
1106 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1107 * is used because __rmqueue_smallest is an inline function
1108 * and we want just one call site
1109 */
1110 if (!page) {
1111 migratetype = MIGRATE_RESERVE;
1112 goto retry_reserve;
1113 }
1114 }
1115
0d3d062a 1116 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1117 return page;
1da177e4
LT
1118}
1119
5f63b720 1120/*
1da177e4
LT
1121 * Obtain a specified number of elements from the buddy allocator, all under
1122 * a single hold of the lock, for efficiency. Add them to the supplied list.
1123 * Returns the number of new pages which were placed at *list.
1124 */
5f63b720 1125static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1126 unsigned long count, struct list_head *list,
e084b2d9 1127 int migratetype, int cold)
1da177e4 1128{
47118af0 1129 int mt = migratetype, i;
5f63b720 1130
c54ad30c 1131 spin_lock(&zone->lock);
1da177e4 1132 for (i = 0; i < count; ++i) {
b2a0ac88 1133 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1134 if (unlikely(page == NULL))
1da177e4 1135 break;
81eabcbe
MG
1136
1137 /*
1138 * Split buddy pages returned by expand() are received here
1139 * in physical page order. The page is added to the callers and
1140 * list and the list head then moves forward. From the callers
1141 * perspective, the linked list is ordered by page number in
1142 * some conditions. This is useful for IO devices that can
1143 * merge IO requests if the physical pages are ordered
1144 * properly.
1145 */
e084b2d9
MG
1146 if (likely(cold == 0))
1147 list_add(&page->lru, list);
1148 else
1149 list_add_tail(&page->lru, list);
47118af0
MN
1150 if (IS_ENABLED(CONFIG_CMA)) {
1151 mt = get_pageblock_migratetype(page);
194159fb 1152 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
47118af0
MN
1153 mt = migratetype;
1154 }
b12c4ad1 1155 set_freepage_migratetype(page, mt);
81eabcbe 1156 list = &page->lru;
d1ce749a
BZ
1157 if (is_migrate_cma(mt))
1158 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1159 -(1 << order));
1da177e4 1160 }
f2260e6b 1161 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1162 spin_unlock(&zone->lock);
085cc7d5 1163 return i;
1da177e4
LT
1164}
1165
4ae7c039 1166#ifdef CONFIG_NUMA
8fce4d8e 1167/*
4037d452
CL
1168 * Called from the vmstat counter updater to drain pagesets of this
1169 * currently executing processor on remote nodes after they have
1170 * expired.
1171 *
879336c3
CL
1172 * Note that this function must be called with the thread pinned to
1173 * a single processor.
8fce4d8e 1174 */
4037d452 1175void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1176{
4ae7c039 1177 unsigned long flags;
4037d452 1178 int to_drain;
998d39cb 1179 unsigned long batch;
4ae7c039 1180
4037d452 1181 local_irq_save(flags);
998d39cb
CS
1182 batch = ACCESS_ONCE(pcp->batch);
1183 if (pcp->count >= batch)
1184 to_drain = batch;
4037d452
CL
1185 else
1186 to_drain = pcp->count;
2a13515c
KM
1187 if (to_drain > 0) {
1188 free_pcppages_bulk(zone, to_drain, pcp);
1189 pcp->count -= to_drain;
1190 }
4037d452 1191 local_irq_restore(flags);
4ae7c039
CL
1192}
1193#endif
1194
9f8f2172
CL
1195/*
1196 * Drain pages of the indicated processor.
1197 *
1198 * The processor must either be the current processor and the
1199 * thread pinned to the current processor or a processor that
1200 * is not online.
1201 */
1202static void drain_pages(unsigned int cpu)
1da177e4 1203{
c54ad30c 1204 unsigned long flags;
1da177e4 1205 struct zone *zone;
1da177e4 1206
ee99c71c 1207 for_each_populated_zone(zone) {
1da177e4 1208 struct per_cpu_pageset *pset;
3dfa5721 1209 struct per_cpu_pages *pcp;
1da177e4 1210
99dcc3e5
CL
1211 local_irq_save(flags);
1212 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1213
1214 pcp = &pset->pcp;
2ff754fa
DR
1215 if (pcp->count) {
1216 free_pcppages_bulk(zone, pcp->count, pcp);
1217 pcp->count = 0;
1218 }
3dfa5721 1219 local_irq_restore(flags);
1da177e4
LT
1220 }
1221}
1da177e4 1222
9f8f2172
CL
1223/*
1224 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1225 */
1226void drain_local_pages(void *arg)
1227{
1228 drain_pages(smp_processor_id());
1229}
1230
1231/*
74046494
GBY
1232 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1233 *
1234 * Note that this code is protected against sending an IPI to an offline
1235 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1236 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1237 * nothing keeps CPUs from showing up after we populated the cpumask and
1238 * before the call to on_each_cpu_mask().
9f8f2172
CL
1239 */
1240void drain_all_pages(void)
1241{
74046494
GBY
1242 int cpu;
1243 struct per_cpu_pageset *pcp;
1244 struct zone *zone;
1245
1246 /*
1247 * Allocate in the BSS so we wont require allocation in
1248 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1249 */
1250 static cpumask_t cpus_with_pcps;
1251
1252 /*
1253 * We don't care about racing with CPU hotplug event
1254 * as offline notification will cause the notified
1255 * cpu to drain that CPU pcps and on_each_cpu_mask
1256 * disables preemption as part of its processing
1257 */
1258 for_each_online_cpu(cpu) {
1259 bool has_pcps = false;
1260 for_each_populated_zone(zone) {
1261 pcp = per_cpu_ptr(zone->pageset, cpu);
1262 if (pcp->pcp.count) {
1263 has_pcps = true;
1264 break;
1265 }
1266 }
1267 if (has_pcps)
1268 cpumask_set_cpu(cpu, &cpus_with_pcps);
1269 else
1270 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1271 }
1272 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1273}
1274
296699de 1275#ifdef CONFIG_HIBERNATION
1da177e4
LT
1276
1277void mark_free_pages(struct zone *zone)
1278{
f623f0db
RW
1279 unsigned long pfn, max_zone_pfn;
1280 unsigned long flags;
b2a0ac88 1281 int order, t;
1da177e4
LT
1282 struct list_head *curr;
1283
1284 if (!zone->spanned_pages)
1285 return;
1286
1287 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1288
108bcc96 1289 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1290 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1291 if (pfn_valid(pfn)) {
1292 struct page *page = pfn_to_page(pfn);
1293
7be98234
RW
1294 if (!swsusp_page_is_forbidden(page))
1295 swsusp_unset_page_free(page);
f623f0db 1296 }
1da177e4 1297
b2a0ac88
MG
1298 for_each_migratetype_order(order, t) {
1299 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1300 unsigned long i;
1da177e4 1301
f623f0db
RW
1302 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1303 for (i = 0; i < (1UL << order); i++)
7be98234 1304 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1305 }
b2a0ac88 1306 }
1da177e4
LT
1307 spin_unlock_irqrestore(&zone->lock, flags);
1308}
e2c55dc8 1309#endif /* CONFIG_PM */
1da177e4 1310
1da177e4
LT
1311/*
1312 * Free a 0-order page
fc91668e 1313 * cold == 1 ? free a cold page : free a hot page
1da177e4 1314 */
fc91668e 1315void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1316{
1317 struct zone *zone = page_zone(page);
1318 struct per_cpu_pages *pcp;
1319 unsigned long flags;
5f8dcc21 1320 int migratetype;
1da177e4 1321
ec95f53a 1322 if (!free_pages_prepare(page, 0))
689bcebf
HD
1323 return;
1324
5f8dcc21 1325 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1326 set_freepage_migratetype(page, migratetype);
1da177e4 1327 local_irq_save(flags);
f8891e5e 1328 __count_vm_event(PGFREE);
da456f14 1329
5f8dcc21
MG
1330 /*
1331 * We only track unmovable, reclaimable and movable on pcp lists.
1332 * Free ISOLATE pages back to the allocator because they are being
1333 * offlined but treat RESERVE as movable pages so we can get those
1334 * areas back if necessary. Otherwise, we may have to free
1335 * excessively into the page allocator
1336 */
1337 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1338 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1339 free_one_page(zone, page, 0, migratetype);
1340 goto out;
1341 }
1342 migratetype = MIGRATE_MOVABLE;
1343 }
1344
99dcc3e5 1345 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1346 if (cold)
5f8dcc21 1347 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1348 else
5f8dcc21 1349 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1350 pcp->count++;
48db57f8 1351 if (pcp->count >= pcp->high) {
998d39cb
CS
1352 unsigned long batch = ACCESS_ONCE(pcp->batch);
1353 free_pcppages_bulk(zone, batch, pcp);
1354 pcp->count -= batch;
48db57f8 1355 }
5f8dcc21
MG
1356
1357out:
1da177e4 1358 local_irq_restore(flags);
1da177e4
LT
1359}
1360
cc59850e
KK
1361/*
1362 * Free a list of 0-order pages
1363 */
1364void free_hot_cold_page_list(struct list_head *list, int cold)
1365{
1366 struct page *page, *next;
1367
1368 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1369 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1370 free_hot_cold_page(page, cold);
1371 }
1372}
1373
8dfcc9ba
NP
1374/*
1375 * split_page takes a non-compound higher-order page, and splits it into
1376 * n (1<<order) sub-pages: page[0..n]
1377 * Each sub-page must be freed individually.
1378 *
1379 * Note: this is probably too low level an operation for use in drivers.
1380 * Please consult with lkml before using this in your driver.
1381 */
1382void split_page(struct page *page, unsigned int order)
1383{
1384 int i;
1385
725d704e
NP
1386 VM_BUG_ON(PageCompound(page));
1387 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1388
1389#ifdef CONFIG_KMEMCHECK
1390 /*
1391 * Split shadow pages too, because free(page[0]) would
1392 * otherwise free the whole shadow.
1393 */
1394 if (kmemcheck_page_is_tracked(page))
1395 split_page(virt_to_page(page[0].shadow), order);
1396#endif
1397
7835e98b
NP
1398 for (i = 1; i < (1 << order); i++)
1399 set_page_refcounted(page + i);
8dfcc9ba 1400}
5853ff23 1401EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1402
8fb74b9f 1403static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1404{
748446bb
MG
1405 unsigned long watermark;
1406 struct zone *zone;
2139cbe6 1407 int mt;
748446bb
MG
1408
1409 BUG_ON(!PageBuddy(page));
1410
1411 zone = page_zone(page);
2e30abd1 1412 mt = get_pageblock_migratetype(page);
748446bb 1413
194159fb 1414 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1415 /* Obey watermarks as if the page was being allocated */
1416 watermark = low_wmark_pages(zone) + (1 << order);
1417 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1418 return 0;
1419
8fb74b9f 1420 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1421 }
748446bb
MG
1422
1423 /* Remove page from free list */
1424 list_del(&page->lru);
1425 zone->free_area[order].nr_free--;
1426 rmv_page_order(page);
2139cbe6 1427
8fb74b9f 1428 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1429 if (order >= pageblock_order - 1) {
1430 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1431 for (; page < endpage; page += pageblock_nr_pages) {
1432 int mt = get_pageblock_migratetype(page);
194159fb 1433 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1434 set_pageblock_migratetype(page,
1435 MIGRATE_MOVABLE);
1436 }
748446bb
MG
1437 }
1438
8fb74b9f 1439 return 1UL << order;
1fb3f8ca
MG
1440}
1441
1442/*
1443 * Similar to split_page except the page is already free. As this is only
1444 * being used for migration, the migratetype of the block also changes.
1445 * As this is called with interrupts disabled, the caller is responsible
1446 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1447 * are enabled.
1448 *
1449 * Note: this is probably too low level an operation for use in drivers.
1450 * Please consult with lkml before using this in your driver.
1451 */
1452int split_free_page(struct page *page)
1453{
1454 unsigned int order;
1455 int nr_pages;
1456
1fb3f8ca
MG
1457 order = page_order(page);
1458
8fb74b9f 1459 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1460 if (!nr_pages)
1461 return 0;
1462
1463 /* Split into individual pages */
1464 set_page_refcounted(page);
1465 split_page(page, order);
1466 return nr_pages;
748446bb
MG
1467}
1468
1da177e4
LT
1469/*
1470 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1471 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1472 * or two.
1473 */
0a15c3e9
MG
1474static inline
1475struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1476 struct zone *zone, int order, gfp_t gfp_flags,
1477 int migratetype)
1da177e4
LT
1478{
1479 unsigned long flags;
689bcebf 1480 struct page *page;
1da177e4
LT
1481 int cold = !!(gfp_flags & __GFP_COLD);
1482
689bcebf 1483again:
48db57f8 1484 if (likely(order == 0)) {
1da177e4 1485 struct per_cpu_pages *pcp;
5f8dcc21 1486 struct list_head *list;
1da177e4 1487
1da177e4 1488 local_irq_save(flags);
99dcc3e5
CL
1489 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1490 list = &pcp->lists[migratetype];
5f8dcc21 1491 if (list_empty(list)) {
535131e6 1492 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1493 pcp->batch, list,
e084b2d9 1494 migratetype, cold);
5f8dcc21 1495 if (unlikely(list_empty(list)))
6fb332fa 1496 goto failed;
535131e6 1497 }
b92a6edd 1498
5f8dcc21
MG
1499 if (cold)
1500 page = list_entry(list->prev, struct page, lru);
1501 else
1502 page = list_entry(list->next, struct page, lru);
1503
b92a6edd
MG
1504 list_del(&page->lru);
1505 pcp->count--;
7fb1d9fc 1506 } else {
dab48dab
AM
1507 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1508 /*
1509 * __GFP_NOFAIL is not to be used in new code.
1510 *
1511 * All __GFP_NOFAIL callers should be fixed so that they
1512 * properly detect and handle allocation failures.
1513 *
1514 * We most definitely don't want callers attempting to
4923abf9 1515 * allocate greater than order-1 page units with
dab48dab
AM
1516 * __GFP_NOFAIL.
1517 */
4923abf9 1518 WARN_ON_ONCE(order > 1);
dab48dab 1519 }
1da177e4 1520 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1521 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1522 spin_unlock(&zone->lock);
1523 if (!page)
1524 goto failed;
d1ce749a
BZ
1525 __mod_zone_freepage_state(zone, -(1 << order),
1526 get_pageblock_migratetype(page));
1da177e4
LT
1527 }
1528
f8891e5e 1529 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1530 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1531 local_irq_restore(flags);
1da177e4 1532
725d704e 1533 VM_BUG_ON(bad_range(zone, page));
17cf4406 1534 if (prep_new_page(page, order, gfp_flags))
a74609fa 1535 goto again;
1da177e4 1536 return page;
a74609fa
NP
1537
1538failed:
1539 local_irq_restore(flags);
a74609fa 1540 return NULL;
1da177e4
LT
1541}
1542
933e312e
AM
1543#ifdef CONFIG_FAIL_PAGE_ALLOC
1544
b2588c4b 1545static struct {
933e312e
AM
1546 struct fault_attr attr;
1547
1548 u32 ignore_gfp_highmem;
1549 u32 ignore_gfp_wait;
54114994 1550 u32 min_order;
933e312e
AM
1551} fail_page_alloc = {
1552 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1553 .ignore_gfp_wait = 1,
1554 .ignore_gfp_highmem = 1,
54114994 1555 .min_order = 1,
933e312e
AM
1556};
1557
1558static int __init setup_fail_page_alloc(char *str)
1559{
1560 return setup_fault_attr(&fail_page_alloc.attr, str);
1561}
1562__setup("fail_page_alloc=", setup_fail_page_alloc);
1563
deaf386e 1564static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1565{
54114994 1566 if (order < fail_page_alloc.min_order)
deaf386e 1567 return false;
933e312e 1568 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1569 return false;
933e312e 1570 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1571 return false;
933e312e 1572 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1573 return false;
933e312e
AM
1574
1575 return should_fail(&fail_page_alloc.attr, 1 << order);
1576}
1577
1578#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1579
1580static int __init fail_page_alloc_debugfs(void)
1581{
f4ae40a6 1582 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1583 struct dentry *dir;
933e312e 1584
dd48c085
AM
1585 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1586 &fail_page_alloc.attr);
1587 if (IS_ERR(dir))
1588 return PTR_ERR(dir);
933e312e 1589
b2588c4b
AM
1590 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1591 &fail_page_alloc.ignore_gfp_wait))
1592 goto fail;
1593 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1594 &fail_page_alloc.ignore_gfp_highmem))
1595 goto fail;
1596 if (!debugfs_create_u32("min-order", mode, dir,
1597 &fail_page_alloc.min_order))
1598 goto fail;
1599
1600 return 0;
1601fail:
dd48c085 1602 debugfs_remove_recursive(dir);
933e312e 1603
b2588c4b 1604 return -ENOMEM;
933e312e
AM
1605}
1606
1607late_initcall(fail_page_alloc_debugfs);
1608
1609#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1610
1611#else /* CONFIG_FAIL_PAGE_ALLOC */
1612
deaf386e 1613static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1614{
deaf386e 1615 return false;
933e312e
AM
1616}
1617
1618#endif /* CONFIG_FAIL_PAGE_ALLOC */
1619
1da177e4 1620/*
88f5acf8 1621 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1622 * of the allocation.
1623 */
88f5acf8
MG
1624static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1625 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1626{
1627 /* free_pages my go negative - that's OK */
d23ad423 1628 long min = mark;
2cfed075 1629 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1630 int o;
026b0814 1631 long free_cma = 0;
1da177e4 1632
df0a6daa 1633 free_pages -= (1 << order) - 1;
7fb1d9fc 1634 if (alloc_flags & ALLOC_HIGH)
1da177e4 1635 min -= min / 2;
7fb1d9fc 1636 if (alloc_flags & ALLOC_HARDER)
1da177e4 1637 min -= min / 4;
d95ea5d1
BZ
1638#ifdef CONFIG_CMA
1639 /* If allocation can't use CMA areas don't use free CMA pages */
1640 if (!(alloc_flags & ALLOC_CMA))
026b0814 1641 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1642#endif
026b0814
TS
1643
1644 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1645 return false;
1da177e4
LT
1646 for (o = 0; o < order; o++) {
1647 /* At the next order, this order's pages become unavailable */
1648 free_pages -= z->free_area[o].nr_free << o;
1649
1650 /* Require fewer higher order pages to be free */
1651 min >>= 1;
1652
1653 if (free_pages <= min)
88f5acf8 1654 return false;
1da177e4 1655 }
88f5acf8
MG
1656 return true;
1657}
1658
1659bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1660 int classzone_idx, int alloc_flags)
1661{
1662 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1663 zone_page_state(z, NR_FREE_PAGES));
1664}
1665
1666bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1667 int classzone_idx, int alloc_flags)
1668{
1669 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1670
1671 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1672 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1673
1674 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1675 free_pages);
1da177e4
LT
1676}
1677
9276b1bc
PJ
1678#ifdef CONFIG_NUMA
1679/*
1680 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1681 * skip over zones that are not allowed by the cpuset, or that have
1682 * been recently (in last second) found to be nearly full. See further
1683 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1684 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1685 *
1686 * If the zonelist cache is present in the passed in zonelist, then
1687 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1688 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1689 *
1690 * If the zonelist cache is not available for this zonelist, does
1691 * nothing and returns NULL.
1692 *
1693 * If the fullzones BITMAP in the zonelist cache is stale (more than
1694 * a second since last zap'd) then we zap it out (clear its bits.)
1695 *
1696 * We hold off even calling zlc_setup, until after we've checked the
1697 * first zone in the zonelist, on the theory that most allocations will
1698 * be satisfied from that first zone, so best to examine that zone as
1699 * quickly as we can.
1700 */
1701static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1702{
1703 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1704 nodemask_t *allowednodes; /* zonelist_cache approximation */
1705
1706 zlc = zonelist->zlcache_ptr;
1707 if (!zlc)
1708 return NULL;
1709
f05111f5 1710 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1711 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1712 zlc->last_full_zap = jiffies;
1713 }
1714
1715 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1716 &cpuset_current_mems_allowed :
4b0ef1fe 1717 &node_states[N_MEMORY];
9276b1bc
PJ
1718 return allowednodes;
1719}
1720
1721/*
1722 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1723 * if it is worth looking at further for free memory:
1724 * 1) Check that the zone isn't thought to be full (doesn't have its
1725 * bit set in the zonelist_cache fullzones BITMAP).
1726 * 2) Check that the zones node (obtained from the zonelist_cache
1727 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1728 * Return true (non-zero) if zone is worth looking at further, or
1729 * else return false (zero) if it is not.
1730 *
1731 * This check -ignores- the distinction between various watermarks,
1732 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1733 * found to be full for any variation of these watermarks, it will
1734 * be considered full for up to one second by all requests, unless
1735 * we are so low on memory on all allowed nodes that we are forced
1736 * into the second scan of the zonelist.
1737 *
1738 * In the second scan we ignore this zonelist cache and exactly
1739 * apply the watermarks to all zones, even it is slower to do so.
1740 * We are low on memory in the second scan, and should leave no stone
1741 * unturned looking for a free page.
1742 */
dd1a239f 1743static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1744 nodemask_t *allowednodes)
1745{
1746 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1747 int i; /* index of *z in zonelist zones */
1748 int n; /* node that zone *z is on */
1749
1750 zlc = zonelist->zlcache_ptr;
1751 if (!zlc)
1752 return 1;
1753
dd1a239f 1754 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1755 n = zlc->z_to_n[i];
1756
1757 /* This zone is worth trying if it is allowed but not full */
1758 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1759}
1760
1761/*
1762 * Given 'z' scanning a zonelist, set the corresponding bit in
1763 * zlc->fullzones, so that subsequent attempts to allocate a page
1764 * from that zone don't waste time re-examining it.
1765 */
dd1a239f 1766static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1767{
1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1769 int i; /* index of *z in zonelist zones */
1770
1771 zlc = zonelist->zlcache_ptr;
1772 if (!zlc)
1773 return;
1774
dd1a239f 1775 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1776
1777 set_bit(i, zlc->fullzones);
1778}
1779
76d3fbf8
MG
1780/*
1781 * clear all zones full, called after direct reclaim makes progress so that
1782 * a zone that was recently full is not skipped over for up to a second
1783 */
1784static void zlc_clear_zones_full(struct zonelist *zonelist)
1785{
1786 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1787
1788 zlc = zonelist->zlcache_ptr;
1789 if (!zlc)
1790 return;
1791
1792 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1793}
1794
957f822a
DR
1795static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1796{
1797 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1798}
1799
1800static void __paginginit init_zone_allows_reclaim(int nid)
1801{
1802 int i;
1803
1804 for_each_online_node(i)
6b187d02 1805 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1806 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1807 else
957f822a 1808 zone_reclaim_mode = 1;
957f822a
DR
1809}
1810
9276b1bc
PJ
1811#else /* CONFIG_NUMA */
1812
1813static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1814{
1815 return NULL;
1816}
1817
dd1a239f 1818static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1819 nodemask_t *allowednodes)
1820{
1821 return 1;
1822}
1823
dd1a239f 1824static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1825{
1826}
76d3fbf8
MG
1827
1828static void zlc_clear_zones_full(struct zonelist *zonelist)
1829{
1830}
957f822a
DR
1831
1832static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1833{
1834 return true;
1835}
1836
1837static inline void init_zone_allows_reclaim(int nid)
1838{
1839}
9276b1bc
PJ
1840#endif /* CONFIG_NUMA */
1841
7fb1d9fc 1842/*
0798e519 1843 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1844 * a page.
1845 */
1846static struct page *
19770b32 1847get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1848 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1849 struct zone *preferred_zone, int migratetype)
753ee728 1850{
dd1a239f 1851 struct zoneref *z;
7fb1d9fc 1852 struct page *page = NULL;
54a6eb5c 1853 int classzone_idx;
5117f45d 1854 struct zone *zone;
9276b1bc
PJ
1855 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1856 int zlc_active = 0; /* set if using zonelist_cache */
1857 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1858
19770b32 1859 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1860zonelist_scan:
7fb1d9fc 1861 /*
9276b1bc 1862 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1863 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1864 */
19770b32
MG
1865 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1866 high_zoneidx, nodemask) {
e5adfffc 1867 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1868 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1869 continue;
7fb1d9fc 1870 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1871 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1872 continue;
a756cf59
JW
1873 /*
1874 * When allocating a page cache page for writing, we
1875 * want to get it from a zone that is within its dirty
1876 * limit, such that no single zone holds more than its
1877 * proportional share of globally allowed dirty pages.
1878 * The dirty limits take into account the zone's
1879 * lowmem reserves and high watermark so that kswapd
1880 * should be able to balance it without having to
1881 * write pages from its LRU list.
1882 *
1883 * This may look like it could increase pressure on
1884 * lower zones by failing allocations in higher zones
1885 * before they are full. But the pages that do spill
1886 * over are limited as the lower zones are protected
1887 * by this very same mechanism. It should not become
1888 * a practical burden to them.
1889 *
1890 * XXX: For now, allow allocations to potentially
1891 * exceed the per-zone dirty limit in the slowpath
1892 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1893 * which is important when on a NUMA setup the allowed
1894 * zones are together not big enough to reach the
1895 * global limit. The proper fix for these situations
1896 * will require awareness of zones in the
1897 * dirty-throttling and the flusher threads.
1898 */
1899 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1900 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1901 goto this_zone_full;
7fb1d9fc 1902
41858966 1903 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1904 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1905 unsigned long mark;
fa5e084e
MG
1906 int ret;
1907
41858966 1908 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1909 if (zone_watermark_ok(zone, order, mark,
1910 classzone_idx, alloc_flags))
1911 goto try_this_zone;
1912
e5adfffc
KS
1913 if (IS_ENABLED(CONFIG_NUMA) &&
1914 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1915 /*
1916 * we do zlc_setup if there are multiple nodes
1917 * and before considering the first zone allowed
1918 * by the cpuset.
1919 */
1920 allowednodes = zlc_setup(zonelist, alloc_flags);
1921 zlc_active = 1;
1922 did_zlc_setup = 1;
1923 }
1924
957f822a
DR
1925 if (zone_reclaim_mode == 0 ||
1926 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1927 goto this_zone_full;
1928
cd38b115
MG
1929 /*
1930 * As we may have just activated ZLC, check if the first
1931 * eligible zone has failed zone_reclaim recently.
1932 */
e5adfffc 1933 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1934 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1935 continue;
1936
fa5e084e
MG
1937 ret = zone_reclaim(zone, gfp_mask, order);
1938 switch (ret) {
1939 case ZONE_RECLAIM_NOSCAN:
1940 /* did not scan */
cd38b115 1941 continue;
fa5e084e
MG
1942 case ZONE_RECLAIM_FULL:
1943 /* scanned but unreclaimable */
cd38b115 1944 continue;
fa5e084e
MG
1945 default:
1946 /* did we reclaim enough */
fed2719e 1947 if (zone_watermark_ok(zone, order, mark,
fa5e084e 1948 classzone_idx, alloc_flags))
fed2719e
MG
1949 goto try_this_zone;
1950
1951 /*
1952 * Failed to reclaim enough to meet watermark.
1953 * Only mark the zone full if checking the min
1954 * watermark or if we failed to reclaim just
1955 * 1<<order pages or else the page allocator
1956 * fastpath will prematurely mark zones full
1957 * when the watermark is between the low and
1958 * min watermarks.
1959 */
1960 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
1961 ret == ZONE_RECLAIM_SOME)
9276b1bc 1962 goto this_zone_full;
fed2719e
MG
1963
1964 continue;
0798e519 1965 }
7fb1d9fc
RS
1966 }
1967
fa5e084e 1968try_this_zone:
3dd28266
MG
1969 page = buffered_rmqueue(preferred_zone, zone, order,
1970 gfp_mask, migratetype);
0798e519 1971 if (page)
7fb1d9fc 1972 break;
9276b1bc 1973this_zone_full:
e5adfffc 1974 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 1975 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1976 }
9276b1bc 1977
e5adfffc 1978 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
1979 /* Disable zlc cache for second zonelist scan */
1980 zlc_active = 0;
1981 goto zonelist_scan;
1982 }
b121186a
AS
1983
1984 if (page)
1985 /*
1986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1987 * necessary to allocate the page. The expectation is
1988 * that the caller is taking steps that will free more
1989 * memory. The caller should avoid the page being used
1990 * for !PFMEMALLOC purposes.
1991 */
1992 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1993
7fb1d9fc 1994 return page;
753ee728
MH
1995}
1996
29423e77
DR
1997/*
1998 * Large machines with many possible nodes should not always dump per-node
1999 * meminfo in irq context.
2000 */
2001static inline bool should_suppress_show_mem(void)
2002{
2003 bool ret = false;
2004
2005#if NODES_SHIFT > 8
2006 ret = in_interrupt();
2007#endif
2008 return ret;
2009}
2010
a238ab5b
DH
2011static DEFINE_RATELIMIT_STATE(nopage_rs,
2012 DEFAULT_RATELIMIT_INTERVAL,
2013 DEFAULT_RATELIMIT_BURST);
2014
2015void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2016{
a238ab5b
DH
2017 unsigned int filter = SHOW_MEM_FILTER_NODES;
2018
c0a32fc5
SG
2019 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2020 debug_guardpage_minorder() > 0)
a238ab5b
DH
2021 return;
2022
4b59e6c4
DR
2023 /*
2024 * Walking all memory to count page types is very expensive and should
2025 * be inhibited in non-blockable contexts.
2026 */
2027 if (!(gfp_mask & __GFP_WAIT))
2028 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2029
a238ab5b
DH
2030 /*
2031 * This documents exceptions given to allocations in certain
2032 * contexts that are allowed to allocate outside current's set
2033 * of allowed nodes.
2034 */
2035 if (!(gfp_mask & __GFP_NOMEMALLOC))
2036 if (test_thread_flag(TIF_MEMDIE) ||
2037 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2038 filter &= ~SHOW_MEM_FILTER_NODES;
2039 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2040 filter &= ~SHOW_MEM_FILTER_NODES;
2041
2042 if (fmt) {
3ee9a4f0
JP
2043 struct va_format vaf;
2044 va_list args;
2045
a238ab5b 2046 va_start(args, fmt);
3ee9a4f0
JP
2047
2048 vaf.fmt = fmt;
2049 vaf.va = &args;
2050
2051 pr_warn("%pV", &vaf);
2052
a238ab5b
DH
2053 va_end(args);
2054 }
2055
3ee9a4f0
JP
2056 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2057 current->comm, order, gfp_mask);
a238ab5b
DH
2058
2059 dump_stack();
2060 if (!should_suppress_show_mem())
2061 show_mem(filter);
2062}
2063
11e33f6a
MG
2064static inline int
2065should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2066 unsigned long did_some_progress,
11e33f6a 2067 unsigned long pages_reclaimed)
1da177e4 2068{
11e33f6a
MG
2069 /* Do not loop if specifically requested */
2070 if (gfp_mask & __GFP_NORETRY)
2071 return 0;
1da177e4 2072
f90ac398
MG
2073 /* Always retry if specifically requested */
2074 if (gfp_mask & __GFP_NOFAIL)
2075 return 1;
2076
2077 /*
2078 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2079 * making forward progress without invoking OOM. Suspend also disables
2080 * storage devices so kswapd will not help. Bail if we are suspending.
2081 */
2082 if (!did_some_progress && pm_suspended_storage())
2083 return 0;
2084
11e33f6a
MG
2085 /*
2086 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2087 * means __GFP_NOFAIL, but that may not be true in other
2088 * implementations.
2089 */
2090 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2091 return 1;
2092
2093 /*
2094 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2095 * specified, then we retry until we no longer reclaim any pages
2096 * (above), or we've reclaimed an order of pages at least as
2097 * large as the allocation's order. In both cases, if the
2098 * allocation still fails, we stop retrying.
2099 */
2100 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2101 return 1;
cf40bd16 2102
11e33f6a
MG
2103 return 0;
2104}
933e312e 2105
11e33f6a
MG
2106static inline struct page *
2107__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2108 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2109 nodemask_t *nodemask, struct zone *preferred_zone,
2110 int migratetype)
11e33f6a
MG
2111{
2112 struct page *page;
2113
2114 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2115 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2116 schedule_timeout_uninterruptible(1);
1da177e4
LT
2117 return NULL;
2118 }
6b1de916 2119
11e33f6a
MG
2120 /*
2121 * Go through the zonelist yet one more time, keep very high watermark
2122 * here, this is only to catch a parallel oom killing, we must fail if
2123 * we're still under heavy pressure.
2124 */
2125 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2126 order, zonelist, high_zoneidx,
5117f45d 2127 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2128 preferred_zone, migratetype);
7fb1d9fc 2129 if (page)
11e33f6a
MG
2130 goto out;
2131
4365a567
KH
2132 if (!(gfp_mask & __GFP_NOFAIL)) {
2133 /* The OOM killer will not help higher order allocs */
2134 if (order > PAGE_ALLOC_COSTLY_ORDER)
2135 goto out;
03668b3c
DR
2136 /* The OOM killer does not needlessly kill tasks for lowmem */
2137 if (high_zoneidx < ZONE_NORMAL)
2138 goto out;
4365a567
KH
2139 /*
2140 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2141 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2142 * The caller should handle page allocation failure by itself if
2143 * it specifies __GFP_THISNODE.
2144 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2145 */
2146 if (gfp_mask & __GFP_THISNODE)
2147 goto out;
2148 }
11e33f6a 2149 /* Exhausted what can be done so it's blamo time */
08ab9b10 2150 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2151
2152out:
2153 clear_zonelist_oom(zonelist, gfp_mask);
2154 return page;
2155}
2156
56de7263
MG
2157#ifdef CONFIG_COMPACTION
2158/* Try memory compaction for high-order allocations before reclaim */
2159static struct page *
2160__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2161 struct zonelist *zonelist, enum zone_type high_zoneidx,
2162 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2163 int migratetype, bool sync_migration,
c67fe375 2164 bool *contended_compaction, bool *deferred_compaction,
66199712 2165 unsigned long *did_some_progress)
56de7263 2166{
66199712 2167 if (!order)
56de7263
MG
2168 return NULL;
2169
aff62249 2170 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2171 *deferred_compaction = true;
2172 return NULL;
2173 }
2174
c06b1fca 2175 current->flags |= PF_MEMALLOC;
56de7263 2176 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2177 nodemask, sync_migration,
8fb74b9f 2178 contended_compaction);
c06b1fca 2179 current->flags &= ~PF_MEMALLOC;
56de7263 2180
1fb3f8ca 2181 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2182 struct page *page;
2183
56de7263
MG
2184 /* Page migration frees to the PCP lists but we want merging */
2185 drain_pages(get_cpu());
2186 put_cpu();
2187
2188 page = get_page_from_freelist(gfp_mask, nodemask,
2189 order, zonelist, high_zoneidx,
cfd19c5a
MG
2190 alloc_flags & ~ALLOC_NO_WATERMARKS,
2191 preferred_zone, migratetype);
56de7263 2192 if (page) {
62997027 2193 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2194 preferred_zone->compact_considered = 0;
2195 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2196 if (order >= preferred_zone->compact_order_failed)
2197 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2198 count_vm_event(COMPACTSUCCESS);
2199 return page;
2200 }
2201
2202 /*
2203 * It's bad if compaction run occurs and fails.
2204 * The most likely reason is that pages exist,
2205 * but not enough to satisfy watermarks.
2206 */
2207 count_vm_event(COMPACTFAIL);
66199712
MG
2208
2209 /*
2210 * As async compaction considers a subset of pageblocks, only
2211 * defer if the failure was a sync compaction failure.
2212 */
2213 if (sync_migration)
aff62249 2214 defer_compaction(preferred_zone, order);
56de7263
MG
2215
2216 cond_resched();
2217 }
2218
2219 return NULL;
2220}
2221#else
2222static inline struct page *
2223__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2224 struct zonelist *zonelist, enum zone_type high_zoneidx,
2225 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2226 int migratetype, bool sync_migration,
c67fe375 2227 bool *contended_compaction, bool *deferred_compaction,
66199712 2228 unsigned long *did_some_progress)
56de7263
MG
2229{
2230 return NULL;
2231}
2232#endif /* CONFIG_COMPACTION */
2233
bba90710
MS
2234/* Perform direct synchronous page reclaim */
2235static int
2236__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2237 nodemask_t *nodemask)
11e33f6a 2238{
11e33f6a 2239 struct reclaim_state reclaim_state;
bba90710 2240 int progress;
11e33f6a
MG
2241
2242 cond_resched();
2243
2244 /* We now go into synchronous reclaim */
2245 cpuset_memory_pressure_bump();
c06b1fca 2246 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2247 lockdep_set_current_reclaim_state(gfp_mask);
2248 reclaim_state.reclaimed_slab = 0;
c06b1fca 2249 current->reclaim_state = &reclaim_state;
11e33f6a 2250
bba90710 2251 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2252
c06b1fca 2253 current->reclaim_state = NULL;
11e33f6a 2254 lockdep_clear_current_reclaim_state();
c06b1fca 2255 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2256
2257 cond_resched();
2258
bba90710
MS
2259 return progress;
2260}
2261
2262/* The really slow allocator path where we enter direct reclaim */
2263static inline struct page *
2264__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2265 struct zonelist *zonelist, enum zone_type high_zoneidx,
2266 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2267 int migratetype, unsigned long *did_some_progress)
2268{
2269 struct page *page = NULL;
2270 bool drained = false;
2271
2272 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2273 nodemask);
9ee493ce
MG
2274 if (unlikely(!(*did_some_progress)))
2275 return NULL;
11e33f6a 2276
76d3fbf8 2277 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2278 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2279 zlc_clear_zones_full(zonelist);
2280
9ee493ce
MG
2281retry:
2282 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2283 zonelist, high_zoneidx,
cfd19c5a
MG
2284 alloc_flags & ~ALLOC_NO_WATERMARKS,
2285 preferred_zone, migratetype);
9ee493ce
MG
2286
2287 /*
2288 * If an allocation failed after direct reclaim, it could be because
2289 * pages are pinned on the per-cpu lists. Drain them and try again
2290 */
2291 if (!page && !drained) {
2292 drain_all_pages();
2293 drained = true;
2294 goto retry;
2295 }
2296
11e33f6a
MG
2297 return page;
2298}
2299
1da177e4 2300/*
11e33f6a
MG
2301 * This is called in the allocator slow-path if the allocation request is of
2302 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2303 */
11e33f6a
MG
2304static inline struct page *
2305__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2306 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2307 nodemask_t *nodemask, struct zone *preferred_zone,
2308 int migratetype)
11e33f6a
MG
2309{
2310 struct page *page;
2311
2312 do {
2313 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2314 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2315 preferred_zone, migratetype);
11e33f6a
MG
2316
2317 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2318 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2319 } while (!page && (gfp_mask & __GFP_NOFAIL));
2320
2321 return page;
2322}
2323
2324static inline
2325void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2326 enum zone_type high_zoneidx,
2327 enum zone_type classzone_idx)
1da177e4 2328{
dd1a239f
MG
2329 struct zoneref *z;
2330 struct zone *zone;
1da177e4 2331
11e33f6a 2332 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2333 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2334}
cf40bd16 2335
341ce06f
PZ
2336static inline int
2337gfp_to_alloc_flags(gfp_t gfp_mask)
2338{
341ce06f
PZ
2339 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2340 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2341
a56f57ff 2342 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2343 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2344
341ce06f
PZ
2345 /*
2346 * The caller may dip into page reserves a bit more if the caller
2347 * cannot run direct reclaim, or if the caller has realtime scheduling
2348 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2349 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2350 */
e6223a3b 2351 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2352
341ce06f 2353 if (!wait) {
5c3240d9
AA
2354 /*
2355 * Not worth trying to allocate harder for
2356 * __GFP_NOMEMALLOC even if it can't schedule.
2357 */
2358 if (!(gfp_mask & __GFP_NOMEMALLOC))
2359 alloc_flags |= ALLOC_HARDER;
523b9458 2360 /*
341ce06f
PZ
2361 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2362 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2363 */
341ce06f 2364 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2365 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2366 alloc_flags |= ALLOC_HARDER;
2367
b37f1dd0
MG
2368 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2369 if (gfp_mask & __GFP_MEMALLOC)
2370 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2371 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2372 alloc_flags |= ALLOC_NO_WATERMARKS;
2373 else if (!in_interrupt() &&
2374 ((current->flags & PF_MEMALLOC) ||
2375 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2376 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2377 }
d95ea5d1
BZ
2378#ifdef CONFIG_CMA
2379 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2380 alloc_flags |= ALLOC_CMA;
2381#endif
341ce06f
PZ
2382 return alloc_flags;
2383}
2384
072bb0aa
MG
2385bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2386{
b37f1dd0 2387 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2388}
2389
11e33f6a
MG
2390static inline struct page *
2391__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2392 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2393 nodemask_t *nodemask, struct zone *preferred_zone,
2394 int migratetype)
11e33f6a
MG
2395{
2396 const gfp_t wait = gfp_mask & __GFP_WAIT;
2397 struct page *page = NULL;
2398 int alloc_flags;
2399 unsigned long pages_reclaimed = 0;
2400 unsigned long did_some_progress;
77f1fe6b 2401 bool sync_migration = false;
66199712 2402 bool deferred_compaction = false;
c67fe375 2403 bool contended_compaction = false;
1da177e4 2404
72807a74
MG
2405 /*
2406 * In the slowpath, we sanity check order to avoid ever trying to
2407 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2408 * be using allocators in order of preference for an area that is
2409 * too large.
2410 */
1fc28b70
MG
2411 if (order >= MAX_ORDER) {
2412 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2413 return NULL;
1fc28b70 2414 }
1da177e4 2415
952f3b51
CL
2416 /*
2417 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2418 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2419 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2420 * using a larger set of nodes after it has established that the
2421 * allowed per node queues are empty and that nodes are
2422 * over allocated.
2423 */
e5adfffc
KS
2424 if (IS_ENABLED(CONFIG_NUMA) &&
2425 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2426 goto nopage;
2427
cc4a6851 2428restart:
caf49191
LT
2429 if (!(gfp_mask & __GFP_NO_KSWAPD))
2430 wake_all_kswapd(order, zonelist, high_zoneidx,
2431 zone_idx(preferred_zone));
1da177e4 2432
9bf2229f 2433 /*
7fb1d9fc
RS
2434 * OK, we're below the kswapd watermark and have kicked background
2435 * reclaim. Now things get more complex, so set up alloc_flags according
2436 * to how we want to proceed.
9bf2229f 2437 */
341ce06f 2438 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2439
f33261d7
DR
2440 /*
2441 * Find the true preferred zone if the allocation is unconstrained by
2442 * cpusets.
2443 */
2444 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2445 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2446 &preferred_zone);
2447
cfa54a0f 2448rebalance:
341ce06f 2449 /* This is the last chance, in general, before the goto nopage. */
19770b32 2450 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2451 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2452 preferred_zone, migratetype);
7fb1d9fc
RS
2453 if (page)
2454 goto got_pg;
1da177e4 2455
11e33f6a 2456 /* Allocate without watermarks if the context allows */
341ce06f 2457 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2458 /*
2459 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2460 * the allocation is high priority and these type of
2461 * allocations are system rather than user orientated
2462 */
2463 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2464
341ce06f
PZ
2465 page = __alloc_pages_high_priority(gfp_mask, order,
2466 zonelist, high_zoneidx, nodemask,
2467 preferred_zone, migratetype);
cfd19c5a 2468 if (page) {
341ce06f 2469 goto got_pg;
cfd19c5a 2470 }
1da177e4
LT
2471 }
2472
2473 /* Atomic allocations - we can't balance anything */
2474 if (!wait)
2475 goto nopage;
2476
341ce06f 2477 /* Avoid recursion of direct reclaim */
c06b1fca 2478 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2479 goto nopage;
2480
6583bb64
DR
2481 /* Avoid allocations with no watermarks from looping endlessly */
2482 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2483 goto nopage;
2484
77f1fe6b
MG
2485 /*
2486 * Try direct compaction. The first pass is asynchronous. Subsequent
2487 * attempts after direct reclaim are synchronous
2488 */
56de7263
MG
2489 page = __alloc_pages_direct_compact(gfp_mask, order,
2490 zonelist, high_zoneidx,
2491 nodemask,
2492 alloc_flags, preferred_zone,
66199712 2493 migratetype, sync_migration,
c67fe375 2494 &contended_compaction,
66199712
MG
2495 &deferred_compaction,
2496 &did_some_progress);
56de7263
MG
2497 if (page)
2498 goto got_pg;
c6a140bf 2499 sync_migration = true;
56de7263 2500
31f8d42d
LT
2501 /*
2502 * If compaction is deferred for high-order allocations, it is because
2503 * sync compaction recently failed. In this is the case and the caller
2504 * requested a movable allocation that does not heavily disrupt the
2505 * system then fail the allocation instead of entering direct reclaim.
2506 */
2507 if ((deferred_compaction || contended_compaction) &&
caf49191 2508 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2509 goto nopage;
66199712 2510
11e33f6a
MG
2511 /* Try direct reclaim and then allocating */
2512 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2513 zonelist, high_zoneidx,
2514 nodemask,
5117f45d 2515 alloc_flags, preferred_zone,
3dd28266 2516 migratetype, &did_some_progress);
11e33f6a
MG
2517 if (page)
2518 goto got_pg;
1da177e4 2519
e33c3b5e 2520 /*
11e33f6a
MG
2521 * If we failed to make any progress reclaiming, then we are
2522 * running out of options and have to consider going OOM
e33c3b5e 2523 */
11e33f6a
MG
2524 if (!did_some_progress) {
2525 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2526 if (oom_killer_disabled)
2527 goto nopage;
29fd66d2
DR
2528 /* Coredumps can quickly deplete all memory reserves */
2529 if ((current->flags & PF_DUMPCORE) &&
2530 !(gfp_mask & __GFP_NOFAIL))
2531 goto nopage;
11e33f6a
MG
2532 page = __alloc_pages_may_oom(gfp_mask, order,
2533 zonelist, high_zoneidx,
3dd28266
MG
2534 nodemask, preferred_zone,
2535 migratetype);
11e33f6a
MG
2536 if (page)
2537 goto got_pg;
1da177e4 2538
03668b3c
DR
2539 if (!(gfp_mask & __GFP_NOFAIL)) {
2540 /*
2541 * The oom killer is not called for high-order
2542 * allocations that may fail, so if no progress
2543 * is being made, there are no other options and
2544 * retrying is unlikely to help.
2545 */
2546 if (order > PAGE_ALLOC_COSTLY_ORDER)
2547 goto nopage;
2548 /*
2549 * The oom killer is not called for lowmem
2550 * allocations to prevent needlessly killing
2551 * innocent tasks.
2552 */
2553 if (high_zoneidx < ZONE_NORMAL)
2554 goto nopage;
2555 }
e2c55dc8 2556
ff0ceb9d
DR
2557 goto restart;
2558 }
1da177e4
LT
2559 }
2560
11e33f6a 2561 /* Check if we should retry the allocation */
a41f24ea 2562 pages_reclaimed += did_some_progress;
f90ac398
MG
2563 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2564 pages_reclaimed)) {
11e33f6a 2565 /* Wait for some write requests to complete then retry */
0e093d99 2566 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2567 goto rebalance;
3e7d3449
MG
2568 } else {
2569 /*
2570 * High-order allocations do not necessarily loop after
2571 * direct reclaim and reclaim/compaction depends on compaction
2572 * being called after reclaim so call directly if necessary
2573 */
2574 page = __alloc_pages_direct_compact(gfp_mask, order,
2575 zonelist, high_zoneidx,
2576 nodemask,
2577 alloc_flags, preferred_zone,
66199712 2578 migratetype, sync_migration,
c67fe375 2579 &contended_compaction,
66199712
MG
2580 &deferred_compaction,
2581 &did_some_progress);
3e7d3449
MG
2582 if (page)
2583 goto got_pg;
1da177e4
LT
2584 }
2585
2586nopage:
a238ab5b 2587 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2588 return page;
1da177e4 2589got_pg:
b1eeab67
VN
2590 if (kmemcheck_enabled)
2591 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2592
072bb0aa 2593 return page;
1da177e4 2594}
11e33f6a
MG
2595
2596/*
2597 * This is the 'heart' of the zoned buddy allocator.
2598 */
2599struct page *
2600__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2601 struct zonelist *zonelist, nodemask_t *nodemask)
2602{
2603 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2604 struct zone *preferred_zone;
cc9a6c87 2605 struct page *page = NULL;
3dd28266 2606 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2607 unsigned int cpuset_mems_cookie;
d95ea5d1 2608 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2609 struct mem_cgroup *memcg = NULL;
11e33f6a 2610
dcce284a
BH
2611 gfp_mask &= gfp_allowed_mask;
2612
11e33f6a
MG
2613 lockdep_trace_alloc(gfp_mask);
2614
2615 might_sleep_if(gfp_mask & __GFP_WAIT);
2616
2617 if (should_fail_alloc_page(gfp_mask, order))
2618 return NULL;
2619
2620 /*
2621 * Check the zones suitable for the gfp_mask contain at least one
2622 * valid zone. It's possible to have an empty zonelist as a result
2623 * of GFP_THISNODE and a memoryless node
2624 */
2625 if (unlikely(!zonelist->_zonerefs->zone))
2626 return NULL;
2627
6a1a0d3b
GC
2628 /*
2629 * Will only have any effect when __GFP_KMEMCG is set. This is
2630 * verified in the (always inline) callee
2631 */
2632 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2633 return NULL;
2634
cc9a6c87
MG
2635retry_cpuset:
2636 cpuset_mems_cookie = get_mems_allowed();
2637
5117f45d 2638 /* The preferred zone is used for statistics later */
f33261d7
DR
2639 first_zones_zonelist(zonelist, high_zoneidx,
2640 nodemask ? : &cpuset_current_mems_allowed,
2641 &preferred_zone);
cc9a6c87
MG
2642 if (!preferred_zone)
2643 goto out;
5117f45d 2644
d95ea5d1
BZ
2645#ifdef CONFIG_CMA
2646 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2647 alloc_flags |= ALLOC_CMA;
2648#endif
5117f45d 2649 /* First allocation attempt */
11e33f6a 2650 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2651 zonelist, high_zoneidx, alloc_flags,
3dd28266 2652 preferred_zone, migratetype);
21caf2fc
ML
2653 if (unlikely(!page)) {
2654 /*
2655 * Runtime PM, block IO and its error handling path
2656 * can deadlock because I/O on the device might not
2657 * complete.
2658 */
2659 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2660 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2661 zonelist, high_zoneidx, nodemask,
3dd28266 2662 preferred_zone, migratetype);
21caf2fc 2663 }
11e33f6a 2664
4b4f278c 2665 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2666
2667out:
2668 /*
2669 * When updating a task's mems_allowed, it is possible to race with
2670 * parallel threads in such a way that an allocation can fail while
2671 * the mask is being updated. If a page allocation is about to fail,
2672 * check if the cpuset changed during allocation and if so, retry.
2673 */
2674 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2675 goto retry_cpuset;
2676
6a1a0d3b
GC
2677 memcg_kmem_commit_charge(page, memcg, order);
2678
11e33f6a 2679 return page;
1da177e4 2680}
d239171e 2681EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2682
2683/*
2684 * Common helper functions.
2685 */
920c7a5d 2686unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2687{
945a1113
AM
2688 struct page *page;
2689
2690 /*
2691 * __get_free_pages() returns a 32-bit address, which cannot represent
2692 * a highmem page
2693 */
2694 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2695
1da177e4
LT
2696 page = alloc_pages(gfp_mask, order);
2697 if (!page)
2698 return 0;
2699 return (unsigned long) page_address(page);
2700}
1da177e4
LT
2701EXPORT_SYMBOL(__get_free_pages);
2702
920c7a5d 2703unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2704{
945a1113 2705 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2706}
1da177e4
LT
2707EXPORT_SYMBOL(get_zeroed_page);
2708
920c7a5d 2709void __free_pages(struct page *page, unsigned int order)
1da177e4 2710{
b5810039 2711 if (put_page_testzero(page)) {
1da177e4 2712 if (order == 0)
fc91668e 2713 free_hot_cold_page(page, 0);
1da177e4
LT
2714 else
2715 __free_pages_ok(page, order);
2716 }
2717}
2718
2719EXPORT_SYMBOL(__free_pages);
2720
920c7a5d 2721void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2722{
2723 if (addr != 0) {
725d704e 2724 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2725 __free_pages(virt_to_page((void *)addr), order);
2726 }
2727}
2728
2729EXPORT_SYMBOL(free_pages);
2730
6a1a0d3b
GC
2731/*
2732 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2733 * pages allocated with __GFP_KMEMCG.
2734 *
2735 * Those pages are accounted to a particular memcg, embedded in the
2736 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2737 * for that information only to find out that it is NULL for users who have no
2738 * interest in that whatsoever, we provide these functions.
2739 *
2740 * The caller knows better which flags it relies on.
2741 */
2742void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2743{
2744 memcg_kmem_uncharge_pages(page, order);
2745 __free_pages(page, order);
2746}
2747
2748void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2749{
2750 if (addr != 0) {
2751 VM_BUG_ON(!virt_addr_valid((void *)addr));
2752 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2753 }
2754}
2755
ee85c2e1
AK
2756static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2757{
2758 if (addr) {
2759 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2760 unsigned long used = addr + PAGE_ALIGN(size);
2761
2762 split_page(virt_to_page((void *)addr), order);
2763 while (used < alloc_end) {
2764 free_page(used);
2765 used += PAGE_SIZE;
2766 }
2767 }
2768 return (void *)addr;
2769}
2770
2be0ffe2
TT
2771/**
2772 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2773 * @size: the number of bytes to allocate
2774 * @gfp_mask: GFP flags for the allocation
2775 *
2776 * This function is similar to alloc_pages(), except that it allocates the
2777 * minimum number of pages to satisfy the request. alloc_pages() can only
2778 * allocate memory in power-of-two pages.
2779 *
2780 * This function is also limited by MAX_ORDER.
2781 *
2782 * Memory allocated by this function must be released by free_pages_exact().
2783 */
2784void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2785{
2786 unsigned int order = get_order(size);
2787 unsigned long addr;
2788
2789 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2790 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2791}
2792EXPORT_SYMBOL(alloc_pages_exact);
2793
ee85c2e1
AK
2794/**
2795 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2796 * pages on a node.
b5e6ab58 2797 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2798 * @size: the number of bytes to allocate
2799 * @gfp_mask: GFP flags for the allocation
2800 *
2801 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2802 * back.
2803 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2804 * but is not exact.
2805 */
2806void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2807{
2808 unsigned order = get_order(size);
2809 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2810 if (!p)
2811 return NULL;
2812 return make_alloc_exact((unsigned long)page_address(p), order, size);
2813}
2814EXPORT_SYMBOL(alloc_pages_exact_nid);
2815
2be0ffe2
TT
2816/**
2817 * free_pages_exact - release memory allocated via alloc_pages_exact()
2818 * @virt: the value returned by alloc_pages_exact.
2819 * @size: size of allocation, same value as passed to alloc_pages_exact().
2820 *
2821 * Release the memory allocated by a previous call to alloc_pages_exact.
2822 */
2823void free_pages_exact(void *virt, size_t size)
2824{
2825 unsigned long addr = (unsigned long)virt;
2826 unsigned long end = addr + PAGE_ALIGN(size);
2827
2828 while (addr < end) {
2829 free_page(addr);
2830 addr += PAGE_SIZE;
2831 }
2832}
2833EXPORT_SYMBOL(free_pages_exact);
2834
e0fb5815
ZY
2835/**
2836 * nr_free_zone_pages - count number of pages beyond high watermark
2837 * @offset: The zone index of the highest zone
2838 *
2839 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2840 * high watermark within all zones at or below a given zone index. For each
2841 * zone, the number of pages is calculated as:
834405c3 2842 * managed_pages - high_pages
e0fb5815 2843 */
ebec3862 2844static unsigned long nr_free_zone_pages(int offset)
1da177e4 2845{
dd1a239f 2846 struct zoneref *z;
54a6eb5c
MG
2847 struct zone *zone;
2848
e310fd43 2849 /* Just pick one node, since fallback list is circular */
ebec3862 2850 unsigned long sum = 0;
1da177e4 2851
0e88460d 2852 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2853
54a6eb5c 2854 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2855 unsigned long size = zone->managed_pages;
41858966 2856 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2857 if (size > high)
2858 sum += size - high;
1da177e4
LT
2859 }
2860
2861 return sum;
2862}
2863
e0fb5815
ZY
2864/**
2865 * nr_free_buffer_pages - count number of pages beyond high watermark
2866 *
2867 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2868 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 2869 */
ebec3862 2870unsigned long nr_free_buffer_pages(void)
1da177e4 2871{
af4ca457 2872 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2873}
c2f1a551 2874EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 2875
e0fb5815
ZY
2876/**
2877 * nr_free_pagecache_pages - count number of pages beyond high watermark
2878 *
2879 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2880 * high watermark within all zones.
1da177e4 2881 */
ebec3862 2882unsigned long nr_free_pagecache_pages(void)
1da177e4 2883{
2a1e274a 2884 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2885}
08e0f6a9
CL
2886
2887static inline void show_node(struct zone *zone)
1da177e4 2888{
e5adfffc 2889 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2890 printk("Node %d ", zone_to_nid(zone));
1da177e4 2891}
1da177e4 2892
1da177e4
LT
2893void si_meminfo(struct sysinfo *val)
2894{
2895 val->totalram = totalram_pages;
2896 val->sharedram = 0;
d23ad423 2897 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2898 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2899 val->totalhigh = totalhigh_pages;
2900 val->freehigh = nr_free_highpages();
1da177e4
LT
2901 val->mem_unit = PAGE_SIZE;
2902}
2903
2904EXPORT_SYMBOL(si_meminfo);
2905
2906#ifdef CONFIG_NUMA
2907void si_meminfo_node(struct sysinfo *val, int nid)
2908{
cdd91a77
JL
2909 int zone_type; /* needs to be signed */
2910 unsigned long managed_pages = 0;
1da177e4
LT
2911 pg_data_t *pgdat = NODE_DATA(nid);
2912
cdd91a77
JL
2913 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2914 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2915 val->totalram = managed_pages;
d23ad423 2916 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2917#ifdef CONFIG_HIGHMEM
b40da049 2918 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
2919 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2920 NR_FREE_PAGES);
98d2b0eb
CL
2921#else
2922 val->totalhigh = 0;
2923 val->freehigh = 0;
2924#endif
1da177e4
LT
2925 val->mem_unit = PAGE_SIZE;
2926}
2927#endif
2928
ddd588b5 2929/*
7bf02ea2
DR
2930 * Determine whether the node should be displayed or not, depending on whether
2931 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2932 */
7bf02ea2 2933bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2934{
2935 bool ret = false;
cc9a6c87 2936 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2937
2938 if (!(flags & SHOW_MEM_FILTER_NODES))
2939 goto out;
2940
cc9a6c87
MG
2941 do {
2942 cpuset_mems_cookie = get_mems_allowed();
2943 ret = !node_isset(nid, cpuset_current_mems_allowed);
2944 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2945out:
2946 return ret;
2947}
2948
1da177e4
LT
2949#define K(x) ((x) << (PAGE_SHIFT-10))
2950
377e4f16
RV
2951static void show_migration_types(unsigned char type)
2952{
2953 static const char types[MIGRATE_TYPES] = {
2954 [MIGRATE_UNMOVABLE] = 'U',
2955 [MIGRATE_RECLAIMABLE] = 'E',
2956 [MIGRATE_MOVABLE] = 'M',
2957 [MIGRATE_RESERVE] = 'R',
2958#ifdef CONFIG_CMA
2959 [MIGRATE_CMA] = 'C',
2960#endif
194159fb 2961#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 2962 [MIGRATE_ISOLATE] = 'I',
194159fb 2963#endif
377e4f16
RV
2964 };
2965 char tmp[MIGRATE_TYPES + 1];
2966 char *p = tmp;
2967 int i;
2968
2969 for (i = 0; i < MIGRATE_TYPES; i++) {
2970 if (type & (1 << i))
2971 *p++ = types[i];
2972 }
2973
2974 *p = '\0';
2975 printk("(%s) ", tmp);
2976}
2977
1da177e4
LT
2978/*
2979 * Show free area list (used inside shift_scroll-lock stuff)
2980 * We also calculate the percentage fragmentation. We do this by counting the
2981 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2982 * Suppresses nodes that are not allowed by current's cpuset if
2983 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2984 */
7bf02ea2 2985void show_free_areas(unsigned int filter)
1da177e4 2986{
c7241913 2987 int cpu;
1da177e4
LT
2988 struct zone *zone;
2989
ee99c71c 2990 for_each_populated_zone(zone) {
7bf02ea2 2991 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2992 continue;
c7241913
JS
2993 show_node(zone);
2994 printk("%s per-cpu:\n", zone->name);
1da177e4 2995
6b482c67 2996 for_each_online_cpu(cpu) {
1da177e4
LT
2997 struct per_cpu_pageset *pageset;
2998
99dcc3e5 2999 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3000
3dfa5721
CL
3001 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3002 cpu, pageset->pcp.high,
3003 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3004 }
3005 }
3006
a731286d
KM
3007 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3008 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3009 " unevictable:%lu"
b76146ed 3010 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3011 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3012 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3013 " free_cma:%lu\n",
4f98a2fe 3014 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3015 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3016 global_page_state(NR_ISOLATED_ANON),
3017 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3018 global_page_state(NR_INACTIVE_FILE),
a731286d 3019 global_page_state(NR_ISOLATED_FILE),
7b854121 3020 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3021 global_page_state(NR_FILE_DIRTY),
ce866b34 3022 global_page_state(NR_WRITEBACK),
fd39fc85 3023 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3024 global_page_state(NR_FREE_PAGES),
3701b033
KM
3025 global_page_state(NR_SLAB_RECLAIMABLE),
3026 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3027 global_page_state(NR_FILE_MAPPED),
4b02108a 3028 global_page_state(NR_SHMEM),
a25700a5 3029 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3030 global_page_state(NR_BOUNCE),
3031 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3032
ee99c71c 3033 for_each_populated_zone(zone) {
1da177e4
LT
3034 int i;
3035
7bf02ea2 3036 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3037 continue;
1da177e4
LT
3038 show_node(zone);
3039 printk("%s"
3040 " free:%lukB"
3041 " min:%lukB"
3042 " low:%lukB"
3043 " high:%lukB"
4f98a2fe
RR
3044 " active_anon:%lukB"
3045 " inactive_anon:%lukB"
3046 " active_file:%lukB"
3047 " inactive_file:%lukB"
7b854121 3048 " unevictable:%lukB"
a731286d
KM
3049 " isolated(anon):%lukB"
3050 " isolated(file):%lukB"
1da177e4 3051 " present:%lukB"
9feedc9d 3052 " managed:%lukB"
4a0aa73f
KM
3053 " mlocked:%lukB"
3054 " dirty:%lukB"
3055 " writeback:%lukB"
3056 " mapped:%lukB"
4b02108a 3057 " shmem:%lukB"
4a0aa73f
KM
3058 " slab_reclaimable:%lukB"
3059 " slab_unreclaimable:%lukB"
c6a7f572 3060 " kernel_stack:%lukB"
4a0aa73f
KM
3061 " pagetables:%lukB"
3062 " unstable:%lukB"
3063 " bounce:%lukB"
d1ce749a 3064 " free_cma:%lukB"
4a0aa73f 3065 " writeback_tmp:%lukB"
1da177e4
LT
3066 " pages_scanned:%lu"
3067 " all_unreclaimable? %s"
3068 "\n",
3069 zone->name,
88f5acf8 3070 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3071 K(min_wmark_pages(zone)),
3072 K(low_wmark_pages(zone)),
3073 K(high_wmark_pages(zone)),
4f98a2fe
RR
3074 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3075 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3076 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3077 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3078 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3079 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3080 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3081 K(zone->present_pages),
9feedc9d 3082 K(zone->managed_pages),
4a0aa73f
KM
3083 K(zone_page_state(zone, NR_MLOCK)),
3084 K(zone_page_state(zone, NR_FILE_DIRTY)),
3085 K(zone_page_state(zone, NR_WRITEBACK)),
3086 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3087 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3088 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3089 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3090 zone_page_state(zone, NR_KERNEL_STACK) *
3091 THREAD_SIZE / 1024,
4a0aa73f
KM
3092 K(zone_page_state(zone, NR_PAGETABLE)),
3093 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3094 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3095 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3096 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3097 zone->pages_scanned,
93e4a89a 3098 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3099 );
3100 printk("lowmem_reserve[]:");
3101 for (i = 0; i < MAX_NR_ZONES; i++)
3102 printk(" %lu", zone->lowmem_reserve[i]);
3103 printk("\n");
3104 }
3105
ee99c71c 3106 for_each_populated_zone(zone) {
8f9de51a 3107 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3108 unsigned char types[MAX_ORDER];
1da177e4 3109
7bf02ea2 3110 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3111 continue;
1da177e4
LT
3112 show_node(zone);
3113 printk("%s: ", zone->name);
1da177e4
LT
3114
3115 spin_lock_irqsave(&zone->lock, flags);
3116 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3117 struct free_area *area = &zone->free_area[order];
3118 int type;
3119
3120 nr[order] = area->nr_free;
8f9de51a 3121 total += nr[order] << order;
377e4f16
RV
3122
3123 types[order] = 0;
3124 for (type = 0; type < MIGRATE_TYPES; type++) {
3125 if (!list_empty(&area->free_list[type]))
3126 types[order] |= 1 << type;
3127 }
1da177e4
LT
3128 }
3129 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3130 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3131 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3132 if (nr[order])
3133 show_migration_types(types[order]);
3134 }
1da177e4
LT
3135 printk("= %lukB\n", K(total));
3136 }
3137
949f7ec5
DR
3138 hugetlb_show_meminfo();
3139
e6f3602d
LW
3140 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3141
1da177e4
LT
3142 show_swap_cache_info();
3143}
3144
19770b32
MG
3145static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3146{
3147 zoneref->zone = zone;
3148 zoneref->zone_idx = zone_idx(zone);
3149}
3150
1da177e4
LT
3151/*
3152 * Builds allocation fallback zone lists.
1a93205b
CL
3153 *
3154 * Add all populated zones of a node to the zonelist.
1da177e4 3155 */
f0c0b2b8 3156static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3157 int nr_zones)
1da177e4 3158{
1a93205b 3159 struct zone *zone;
bc732f1d 3160 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3161
3162 do {
2f6726e5 3163 zone_type--;
070f8032 3164 zone = pgdat->node_zones + zone_type;
1a93205b 3165 if (populated_zone(zone)) {
dd1a239f
MG
3166 zoneref_set_zone(zone,
3167 &zonelist->_zonerefs[nr_zones++]);
070f8032 3168 check_highest_zone(zone_type);
1da177e4 3169 }
2f6726e5 3170 } while (zone_type);
bc732f1d 3171
070f8032 3172 return nr_zones;
1da177e4
LT
3173}
3174
f0c0b2b8
KH
3175
3176/*
3177 * zonelist_order:
3178 * 0 = automatic detection of better ordering.
3179 * 1 = order by ([node] distance, -zonetype)
3180 * 2 = order by (-zonetype, [node] distance)
3181 *
3182 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3183 * the same zonelist. So only NUMA can configure this param.
3184 */
3185#define ZONELIST_ORDER_DEFAULT 0
3186#define ZONELIST_ORDER_NODE 1
3187#define ZONELIST_ORDER_ZONE 2
3188
3189/* zonelist order in the kernel.
3190 * set_zonelist_order() will set this to NODE or ZONE.
3191 */
3192static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3193static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3194
3195
1da177e4 3196#ifdef CONFIG_NUMA
f0c0b2b8
KH
3197/* The value user specified ....changed by config */
3198static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3199/* string for sysctl */
3200#define NUMA_ZONELIST_ORDER_LEN 16
3201char numa_zonelist_order[16] = "default";
3202
3203/*
3204 * interface for configure zonelist ordering.
3205 * command line option "numa_zonelist_order"
3206 * = "[dD]efault - default, automatic configuration.
3207 * = "[nN]ode - order by node locality, then by zone within node
3208 * = "[zZ]one - order by zone, then by locality within zone
3209 */
3210
3211static int __parse_numa_zonelist_order(char *s)
3212{
3213 if (*s == 'd' || *s == 'D') {
3214 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3215 } else if (*s == 'n' || *s == 'N') {
3216 user_zonelist_order = ZONELIST_ORDER_NODE;
3217 } else if (*s == 'z' || *s == 'Z') {
3218 user_zonelist_order = ZONELIST_ORDER_ZONE;
3219 } else {
3220 printk(KERN_WARNING
3221 "Ignoring invalid numa_zonelist_order value: "
3222 "%s\n", s);
3223 return -EINVAL;
3224 }
3225 return 0;
3226}
3227
3228static __init int setup_numa_zonelist_order(char *s)
3229{
ecb256f8
VL
3230 int ret;
3231
3232 if (!s)
3233 return 0;
3234
3235 ret = __parse_numa_zonelist_order(s);
3236 if (ret == 0)
3237 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3238
3239 return ret;
f0c0b2b8
KH
3240}
3241early_param("numa_zonelist_order", setup_numa_zonelist_order);
3242
3243/*
3244 * sysctl handler for numa_zonelist_order
3245 */
3246int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3247 void __user *buffer, size_t *length,
f0c0b2b8
KH
3248 loff_t *ppos)
3249{
3250 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3251 int ret;
443c6f14 3252 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3253
443c6f14 3254 mutex_lock(&zl_order_mutex);
dacbde09
CG
3255 if (write) {
3256 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3257 ret = -EINVAL;
3258 goto out;
3259 }
3260 strcpy(saved_string, (char *)table->data);
3261 }
8d65af78 3262 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3263 if (ret)
443c6f14 3264 goto out;
f0c0b2b8
KH
3265 if (write) {
3266 int oldval = user_zonelist_order;
dacbde09
CG
3267
3268 ret = __parse_numa_zonelist_order((char *)table->data);
3269 if (ret) {
f0c0b2b8
KH
3270 /*
3271 * bogus value. restore saved string
3272 */
dacbde09 3273 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3274 NUMA_ZONELIST_ORDER_LEN);
3275 user_zonelist_order = oldval;
4eaf3f64
HL
3276 } else if (oldval != user_zonelist_order) {
3277 mutex_lock(&zonelists_mutex);
9adb62a5 3278 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3279 mutex_unlock(&zonelists_mutex);
3280 }
f0c0b2b8 3281 }
443c6f14
AK
3282out:
3283 mutex_unlock(&zl_order_mutex);
3284 return ret;
f0c0b2b8
KH
3285}
3286
3287
62bc62a8 3288#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3289static int node_load[MAX_NUMNODES];
3290
1da177e4 3291/**
4dc3b16b 3292 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3293 * @node: node whose fallback list we're appending
3294 * @used_node_mask: nodemask_t of already used nodes
3295 *
3296 * We use a number of factors to determine which is the next node that should
3297 * appear on a given node's fallback list. The node should not have appeared
3298 * already in @node's fallback list, and it should be the next closest node
3299 * according to the distance array (which contains arbitrary distance values
3300 * from each node to each node in the system), and should also prefer nodes
3301 * with no CPUs, since presumably they'll have very little allocation pressure
3302 * on them otherwise.
3303 * It returns -1 if no node is found.
3304 */
f0c0b2b8 3305static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3306{
4cf808eb 3307 int n, val;
1da177e4 3308 int min_val = INT_MAX;
00ef2d2f 3309 int best_node = NUMA_NO_NODE;
a70f7302 3310 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3311
4cf808eb
LT
3312 /* Use the local node if we haven't already */
3313 if (!node_isset(node, *used_node_mask)) {
3314 node_set(node, *used_node_mask);
3315 return node;
3316 }
1da177e4 3317
4b0ef1fe 3318 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3319
3320 /* Don't want a node to appear more than once */
3321 if (node_isset(n, *used_node_mask))
3322 continue;
3323
1da177e4
LT
3324 /* Use the distance array to find the distance */
3325 val = node_distance(node, n);
3326
4cf808eb
LT
3327 /* Penalize nodes under us ("prefer the next node") */
3328 val += (n < node);
3329
1da177e4 3330 /* Give preference to headless and unused nodes */
a70f7302
RR
3331 tmp = cpumask_of_node(n);
3332 if (!cpumask_empty(tmp))
1da177e4
LT
3333 val += PENALTY_FOR_NODE_WITH_CPUS;
3334
3335 /* Slight preference for less loaded node */
3336 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3337 val += node_load[n];
3338
3339 if (val < min_val) {
3340 min_val = val;
3341 best_node = n;
3342 }
3343 }
3344
3345 if (best_node >= 0)
3346 node_set(best_node, *used_node_mask);
3347
3348 return best_node;
3349}
3350
f0c0b2b8
KH
3351
3352/*
3353 * Build zonelists ordered by node and zones within node.
3354 * This results in maximum locality--normal zone overflows into local
3355 * DMA zone, if any--but risks exhausting DMA zone.
3356 */
3357static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3358{
f0c0b2b8 3359 int j;
1da177e4 3360 struct zonelist *zonelist;
f0c0b2b8 3361
54a6eb5c 3362 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3363 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3364 ;
bc732f1d 3365 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3366 zonelist->_zonerefs[j].zone = NULL;
3367 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3368}
3369
523b9458
CL
3370/*
3371 * Build gfp_thisnode zonelists
3372 */
3373static void build_thisnode_zonelists(pg_data_t *pgdat)
3374{
523b9458
CL
3375 int j;
3376 struct zonelist *zonelist;
3377
54a6eb5c 3378 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3379 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3380 zonelist->_zonerefs[j].zone = NULL;
3381 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3382}
3383
f0c0b2b8
KH
3384/*
3385 * Build zonelists ordered by zone and nodes within zones.
3386 * This results in conserving DMA zone[s] until all Normal memory is
3387 * exhausted, but results in overflowing to remote node while memory
3388 * may still exist in local DMA zone.
3389 */
3390static int node_order[MAX_NUMNODES];
3391
3392static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3393{
f0c0b2b8
KH
3394 int pos, j, node;
3395 int zone_type; /* needs to be signed */
3396 struct zone *z;
3397 struct zonelist *zonelist;
3398
54a6eb5c
MG
3399 zonelist = &pgdat->node_zonelists[0];
3400 pos = 0;
3401 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3402 for (j = 0; j < nr_nodes; j++) {
3403 node = node_order[j];
3404 z = &NODE_DATA(node)->node_zones[zone_type];
3405 if (populated_zone(z)) {
dd1a239f
MG
3406 zoneref_set_zone(z,
3407 &zonelist->_zonerefs[pos++]);
54a6eb5c 3408 check_highest_zone(zone_type);
f0c0b2b8
KH
3409 }
3410 }
f0c0b2b8 3411 }
dd1a239f
MG
3412 zonelist->_zonerefs[pos].zone = NULL;
3413 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3414}
3415
3416static int default_zonelist_order(void)
3417{
3418 int nid, zone_type;
3419 unsigned long low_kmem_size,total_size;
3420 struct zone *z;
3421 int average_size;
3422 /*
88393161 3423 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3424 * If they are really small and used heavily, the system can fall
3425 * into OOM very easily.
e325c90f 3426 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3427 */
3428 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3429 low_kmem_size = 0;
3430 total_size = 0;
3431 for_each_online_node(nid) {
3432 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3433 z = &NODE_DATA(nid)->node_zones[zone_type];
3434 if (populated_zone(z)) {
3435 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3436 low_kmem_size += z->managed_pages;
3437 total_size += z->managed_pages;
e325c90f
DR
3438 } else if (zone_type == ZONE_NORMAL) {
3439 /*
3440 * If any node has only lowmem, then node order
3441 * is preferred to allow kernel allocations
3442 * locally; otherwise, they can easily infringe
3443 * on other nodes when there is an abundance of
3444 * lowmem available to allocate from.
3445 */
3446 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3447 }
3448 }
3449 }
3450 if (!low_kmem_size || /* there are no DMA area. */
3451 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3452 return ZONELIST_ORDER_NODE;
3453 /*
3454 * look into each node's config.
3455 * If there is a node whose DMA/DMA32 memory is very big area on
3456 * local memory, NODE_ORDER may be suitable.
3457 */
37b07e41 3458 average_size = total_size /
4b0ef1fe 3459 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3460 for_each_online_node(nid) {
3461 low_kmem_size = 0;
3462 total_size = 0;
3463 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3464 z = &NODE_DATA(nid)->node_zones[zone_type];
3465 if (populated_zone(z)) {
3466 if (zone_type < ZONE_NORMAL)
3467 low_kmem_size += z->present_pages;
3468 total_size += z->present_pages;
3469 }
3470 }
3471 if (low_kmem_size &&
3472 total_size > average_size && /* ignore small node */
3473 low_kmem_size > total_size * 70/100)
3474 return ZONELIST_ORDER_NODE;
3475 }
3476 return ZONELIST_ORDER_ZONE;
3477}
3478
3479static void set_zonelist_order(void)
3480{
3481 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3482 current_zonelist_order = default_zonelist_order();
3483 else
3484 current_zonelist_order = user_zonelist_order;
3485}
3486
3487static void build_zonelists(pg_data_t *pgdat)
3488{
3489 int j, node, load;
3490 enum zone_type i;
1da177e4 3491 nodemask_t used_mask;
f0c0b2b8
KH
3492 int local_node, prev_node;
3493 struct zonelist *zonelist;
3494 int order = current_zonelist_order;
1da177e4
LT
3495
3496 /* initialize zonelists */
523b9458 3497 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3498 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3499 zonelist->_zonerefs[0].zone = NULL;
3500 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3501 }
3502
3503 /* NUMA-aware ordering of nodes */
3504 local_node = pgdat->node_id;
62bc62a8 3505 load = nr_online_nodes;
1da177e4
LT
3506 prev_node = local_node;
3507 nodes_clear(used_mask);
f0c0b2b8 3508
f0c0b2b8
KH
3509 memset(node_order, 0, sizeof(node_order));
3510 j = 0;
3511
1da177e4
LT
3512 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3513 /*
3514 * We don't want to pressure a particular node.
3515 * So adding penalty to the first node in same
3516 * distance group to make it round-robin.
3517 */
957f822a
DR
3518 if (node_distance(local_node, node) !=
3519 node_distance(local_node, prev_node))
f0c0b2b8
KH
3520 node_load[node] = load;
3521
1da177e4
LT
3522 prev_node = node;
3523 load--;
f0c0b2b8
KH
3524 if (order == ZONELIST_ORDER_NODE)
3525 build_zonelists_in_node_order(pgdat, node);
3526 else
3527 node_order[j++] = node; /* remember order */
3528 }
1da177e4 3529
f0c0b2b8
KH
3530 if (order == ZONELIST_ORDER_ZONE) {
3531 /* calculate node order -- i.e., DMA last! */
3532 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3533 }
523b9458
CL
3534
3535 build_thisnode_zonelists(pgdat);
1da177e4
LT
3536}
3537
9276b1bc 3538/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3539static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3540{
54a6eb5c
MG
3541 struct zonelist *zonelist;
3542 struct zonelist_cache *zlc;
dd1a239f 3543 struct zoneref *z;
9276b1bc 3544
54a6eb5c
MG
3545 zonelist = &pgdat->node_zonelists[0];
3546 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3547 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3548 for (z = zonelist->_zonerefs; z->zone; z++)
3549 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3550}
3551
7aac7898
LS
3552#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3553/*
3554 * Return node id of node used for "local" allocations.
3555 * I.e., first node id of first zone in arg node's generic zonelist.
3556 * Used for initializing percpu 'numa_mem', which is used primarily
3557 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3558 */
3559int local_memory_node(int node)
3560{
3561 struct zone *zone;
3562
3563 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3564 gfp_zone(GFP_KERNEL),
3565 NULL,
3566 &zone);
3567 return zone->node;
3568}
3569#endif
f0c0b2b8 3570
1da177e4
LT
3571#else /* CONFIG_NUMA */
3572
f0c0b2b8
KH
3573static void set_zonelist_order(void)
3574{
3575 current_zonelist_order = ZONELIST_ORDER_ZONE;
3576}
3577
3578static void build_zonelists(pg_data_t *pgdat)
1da177e4 3579{
19655d34 3580 int node, local_node;
54a6eb5c
MG
3581 enum zone_type j;
3582 struct zonelist *zonelist;
1da177e4
LT
3583
3584 local_node = pgdat->node_id;
1da177e4 3585
54a6eb5c 3586 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3587 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3588
54a6eb5c
MG
3589 /*
3590 * Now we build the zonelist so that it contains the zones
3591 * of all the other nodes.
3592 * We don't want to pressure a particular node, so when
3593 * building the zones for node N, we make sure that the
3594 * zones coming right after the local ones are those from
3595 * node N+1 (modulo N)
3596 */
3597 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3598 if (!node_online(node))
3599 continue;
bc732f1d 3600 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3601 }
54a6eb5c
MG
3602 for (node = 0; node < local_node; node++) {
3603 if (!node_online(node))
3604 continue;
bc732f1d 3605 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3606 }
3607
dd1a239f
MG
3608 zonelist->_zonerefs[j].zone = NULL;
3609 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3610}
3611
9276b1bc 3612/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3613static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3614{
54a6eb5c 3615 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3616}
3617
1da177e4
LT
3618#endif /* CONFIG_NUMA */
3619
99dcc3e5
CL
3620/*
3621 * Boot pageset table. One per cpu which is going to be used for all
3622 * zones and all nodes. The parameters will be set in such a way
3623 * that an item put on a list will immediately be handed over to
3624 * the buddy list. This is safe since pageset manipulation is done
3625 * with interrupts disabled.
3626 *
3627 * The boot_pagesets must be kept even after bootup is complete for
3628 * unused processors and/or zones. They do play a role for bootstrapping
3629 * hotplugged processors.
3630 *
3631 * zoneinfo_show() and maybe other functions do
3632 * not check if the processor is online before following the pageset pointer.
3633 * Other parts of the kernel may not check if the zone is available.
3634 */
3635static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3636static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3637static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3638
4eaf3f64
HL
3639/*
3640 * Global mutex to protect against size modification of zonelists
3641 * as well as to serialize pageset setup for the new populated zone.
3642 */
3643DEFINE_MUTEX(zonelists_mutex);
3644
9b1a4d38 3645/* return values int ....just for stop_machine() */
4ed7e022 3646static int __build_all_zonelists(void *data)
1da177e4 3647{
6811378e 3648 int nid;
99dcc3e5 3649 int cpu;
9adb62a5 3650 pg_data_t *self = data;
9276b1bc 3651
7f9cfb31
BL
3652#ifdef CONFIG_NUMA
3653 memset(node_load, 0, sizeof(node_load));
3654#endif
9adb62a5
JL
3655
3656 if (self && !node_online(self->node_id)) {
3657 build_zonelists(self);
3658 build_zonelist_cache(self);
3659 }
3660
9276b1bc 3661 for_each_online_node(nid) {
7ea1530a
CL
3662 pg_data_t *pgdat = NODE_DATA(nid);
3663
3664 build_zonelists(pgdat);
3665 build_zonelist_cache(pgdat);
9276b1bc 3666 }
99dcc3e5
CL
3667
3668 /*
3669 * Initialize the boot_pagesets that are going to be used
3670 * for bootstrapping processors. The real pagesets for
3671 * each zone will be allocated later when the per cpu
3672 * allocator is available.
3673 *
3674 * boot_pagesets are used also for bootstrapping offline
3675 * cpus if the system is already booted because the pagesets
3676 * are needed to initialize allocators on a specific cpu too.
3677 * F.e. the percpu allocator needs the page allocator which
3678 * needs the percpu allocator in order to allocate its pagesets
3679 * (a chicken-egg dilemma).
3680 */
7aac7898 3681 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3682 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3683
7aac7898
LS
3684#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3685 /*
3686 * We now know the "local memory node" for each node--
3687 * i.e., the node of the first zone in the generic zonelist.
3688 * Set up numa_mem percpu variable for on-line cpus. During
3689 * boot, only the boot cpu should be on-line; we'll init the
3690 * secondary cpus' numa_mem as they come on-line. During
3691 * node/memory hotplug, we'll fixup all on-line cpus.
3692 */
3693 if (cpu_online(cpu))
3694 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3695#endif
3696 }
3697
6811378e
YG
3698 return 0;
3699}
3700
4eaf3f64
HL
3701/*
3702 * Called with zonelists_mutex held always
3703 * unless system_state == SYSTEM_BOOTING.
3704 */
9adb62a5 3705void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3706{
f0c0b2b8
KH
3707 set_zonelist_order();
3708
6811378e 3709 if (system_state == SYSTEM_BOOTING) {
423b41d7 3710 __build_all_zonelists(NULL);
68ad8df4 3711 mminit_verify_zonelist();
6811378e
YG
3712 cpuset_init_current_mems_allowed();
3713 } else {
e9959f0f 3714#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3715 if (zone)
3716 setup_zone_pageset(zone);
e9959f0f 3717#endif
dd1895e2
CS
3718 /* we have to stop all cpus to guarantee there is no user
3719 of zonelist */
9adb62a5 3720 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3721 /* cpuset refresh routine should be here */
3722 }
bd1e22b8 3723 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3724 /*
3725 * Disable grouping by mobility if the number of pages in the
3726 * system is too low to allow the mechanism to work. It would be
3727 * more accurate, but expensive to check per-zone. This check is
3728 * made on memory-hotadd so a system can start with mobility
3729 * disabled and enable it later
3730 */
d9c23400 3731 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3732 page_group_by_mobility_disabled = 1;
3733 else
3734 page_group_by_mobility_disabled = 0;
3735
3736 printk("Built %i zonelists in %s order, mobility grouping %s. "
3737 "Total pages: %ld\n",
62bc62a8 3738 nr_online_nodes,
f0c0b2b8 3739 zonelist_order_name[current_zonelist_order],
9ef9acb0 3740 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3741 vm_total_pages);
3742#ifdef CONFIG_NUMA
3743 printk("Policy zone: %s\n", zone_names[policy_zone]);
3744#endif
1da177e4
LT
3745}
3746
3747/*
3748 * Helper functions to size the waitqueue hash table.
3749 * Essentially these want to choose hash table sizes sufficiently
3750 * large so that collisions trying to wait on pages are rare.
3751 * But in fact, the number of active page waitqueues on typical
3752 * systems is ridiculously low, less than 200. So this is even
3753 * conservative, even though it seems large.
3754 *
3755 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3756 * waitqueues, i.e. the size of the waitq table given the number of pages.
3757 */
3758#define PAGES_PER_WAITQUEUE 256
3759
cca448fe 3760#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3761static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3762{
3763 unsigned long size = 1;
3764
3765 pages /= PAGES_PER_WAITQUEUE;
3766
3767 while (size < pages)
3768 size <<= 1;
3769
3770 /*
3771 * Once we have dozens or even hundreds of threads sleeping
3772 * on IO we've got bigger problems than wait queue collision.
3773 * Limit the size of the wait table to a reasonable size.
3774 */
3775 size = min(size, 4096UL);
3776
3777 return max(size, 4UL);
3778}
cca448fe
YG
3779#else
3780/*
3781 * A zone's size might be changed by hot-add, so it is not possible to determine
3782 * a suitable size for its wait_table. So we use the maximum size now.
3783 *
3784 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3785 *
3786 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3787 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3788 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3789 *
3790 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3791 * or more by the traditional way. (See above). It equals:
3792 *
3793 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3794 * ia64(16K page size) : = ( 8G + 4M)byte.
3795 * powerpc (64K page size) : = (32G +16M)byte.
3796 */
3797static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3798{
3799 return 4096UL;
3800}
3801#endif
1da177e4
LT
3802
3803/*
3804 * This is an integer logarithm so that shifts can be used later
3805 * to extract the more random high bits from the multiplicative
3806 * hash function before the remainder is taken.
3807 */
3808static inline unsigned long wait_table_bits(unsigned long size)
3809{
3810 return ffz(~size);
3811}
3812
3813#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3814
6d3163ce
AH
3815/*
3816 * Check if a pageblock contains reserved pages
3817 */
3818static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3819{
3820 unsigned long pfn;
3821
3822 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3823 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3824 return 1;
3825 }
3826 return 0;
3827}
3828
56fd56b8 3829/*
d9c23400 3830 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3831 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3832 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3833 * higher will lead to a bigger reserve which will get freed as contiguous
3834 * blocks as reclaim kicks in
3835 */
3836static void setup_zone_migrate_reserve(struct zone *zone)
3837{
6d3163ce 3838 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3839 struct page *page;
78986a67
MG
3840 unsigned long block_migratetype;
3841 int reserve;
56fd56b8 3842
d0215638
MH
3843 /*
3844 * Get the start pfn, end pfn and the number of blocks to reserve
3845 * We have to be careful to be aligned to pageblock_nr_pages to
3846 * make sure that we always check pfn_valid for the first page in
3847 * the block.
3848 */
56fd56b8 3849 start_pfn = zone->zone_start_pfn;
108bcc96 3850 end_pfn = zone_end_pfn(zone);
d0215638 3851 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3852 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3853 pageblock_order;
56fd56b8 3854
78986a67
MG
3855 /*
3856 * Reserve blocks are generally in place to help high-order atomic
3857 * allocations that are short-lived. A min_free_kbytes value that
3858 * would result in more than 2 reserve blocks for atomic allocations
3859 * is assumed to be in place to help anti-fragmentation for the
3860 * future allocation of hugepages at runtime.
3861 */
3862 reserve = min(2, reserve);
3863
d9c23400 3864 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3865 if (!pfn_valid(pfn))
3866 continue;
3867 page = pfn_to_page(pfn);
3868
344c790e
AL
3869 /* Watch out for overlapping nodes */
3870 if (page_to_nid(page) != zone_to_nid(zone))
3871 continue;
3872
56fd56b8
MG
3873 block_migratetype = get_pageblock_migratetype(page);
3874
938929f1
MG
3875 /* Only test what is necessary when the reserves are not met */
3876 if (reserve > 0) {
3877 /*
3878 * Blocks with reserved pages will never free, skip
3879 * them.
3880 */
3881 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3882 if (pageblock_is_reserved(pfn, block_end_pfn))
3883 continue;
56fd56b8 3884
938929f1
MG
3885 /* If this block is reserved, account for it */
3886 if (block_migratetype == MIGRATE_RESERVE) {
3887 reserve--;
3888 continue;
3889 }
3890
3891 /* Suitable for reserving if this block is movable */
3892 if (block_migratetype == MIGRATE_MOVABLE) {
3893 set_pageblock_migratetype(page,
3894 MIGRATE_RESERVE);
3895 move_freepages_block(zone, page,
3896 MIGRATE_RESERVE);
3897 reserve--;
3898 continue;
3899 }
56fd56b8
MG
3900 }
3901
3902 /*
3903 * If the reserve is met and this is a previous reserved block,
3904 * take it back
3905 */
3906 if (block_migratetype == MIGRATE_RESERVE) {
3907 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3908 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3909 }
3910 }
3911}
ac0e5b7a 3912
1da177e4
LT
3913/*
3914 * Initially all pages are reserved - free ones are freed
3915 * up by free_all_bootmem() once the early boot process is
3916 * done. Non-atomic initialization, single-pass.
3917 */
c09b4240 3918void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3919 unsigned long start_pfn, enum memmap_context context)
1da177e4 3920{
1da177e4 3921 struct page *page;
29751f69
AW
3922 unsigned long end_pfn = start_pfn + size;
3923 unsigned long pfn;
86051ca5 3924 struct zone *z;
1da177e4 3925
22b31eec
HD
3926 if (highest_memmap_pfn < end_pfn - 1)
3927 highest_memmap_pfn = end_pfn - 1;
3928
86051ca5 3929 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3930 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3931 /*
3932 * There can be holes in boot-time mem_map[]s
3933 * handed to this function. They do not
3934 * exist on hotplugged memory.
3935 */
3936 if (context == MEMMAP_EARLY) {
3937 if (!early_pfn_valid(pfn))
3938 continue;
3939 if (!early_pfn_in_nid(pfn, nid))
3940 continue;
3941 }
d41dee36
AW
3942 page = pfn_to_page(pfn);
3943 set_page_links(page, zone, nid, pfn);
708614e6 3944 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3945 init_page_count(page);
22b751c3
MG
3946 page_mapcount_reset(page);
3947 page_nid_reset_last(page);
1da177e4 3948 SetPageReserved(page);
b2a0ac88
MG
3949 /*
3950 * Mark the block movable so that blocks are reserved for
3951 * movable at startup. This will force kernel allocations
3952 * to reserve their blocks rather than leaking throughout
3953 * the address space during boot when many long-lived
56fd56b8
MG
3954 * kernel allocations are made. Later some blocks near
3955 * the start are marked MIGRATE_RESERVE by
3956 * setup_zone_migrate_reserve()
86051ca5
KH
3957 *
3958 * bitmap is created for zone's valid pfn range. but memmap
3959 * can be created for invalid pages (for alignment)
3960 * check here not to call set_pageblock_migratetype() against
3961 * pfn out of zone.
b2a0ac88 3962 */
86051ca5 3963 if ((z->zone_start_pfn <= pfn)
108bcc96 3964 && (pfn < zone_end_pfn(z))
86051ca5 3965 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3966 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3967
1da177e4
LT
3968 INIT_LIST_HEAD(&page->lru);
3969#ifdef WANT_PAGE_VIRTUAL
3970 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3971 if (!is_highmem_idx(zone))
3212c6be 3972 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3973#endif
1da177e4
LT
3974 }
3975}
3976
1e548deb 3977static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3978{
b2a0ac88
MG
3979 int order, t;
3980 for_each_migratetype_order(order, t) {
3981 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3982 zone->free_area[order].nr_free = 0;
3983 }
3984}
3985
3986#ifndef __HAVE_ARCH_MEMMAP_INIT
3987#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3988 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3989#endif
3990
4ed7e022 3991static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3992{
3a6be87f 3993#ifdef CONFIG_MMU
e7c8d5c9
CL
3994 int batch;
3995
3996 /*
3997 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3998 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3999 *
4000 * OK, so we don't know how big the cache is. So guess.
4001 */
b40da049 4002 batch = zone->managed_pages / 1024;
ba56e91c
SR
4003 if (batch * PAGE_SIZE > 512 * 1024)
4004 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4005 batch /= 4; /* We effectively *= 4 below */
4006 if (batch < 1)
4007 batch = 1;
4008
4009 /*
0ceaacc9
NP
4010 * Clamp the batch to a 2^n - 1 value. Having a power
4011 * of 2 value was found to be more likely to have
4012 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4013 *
0ceaacc9
NP
4014 * For example if 2 tasks are alternately allocating
4015 * batches of pages, one task can end up with a lot
4016 * of pages of one half of the possible page colors
4017 * and the other with pages of the other colors.
e7c8d5c9 4018 */
9155203a 4019 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4020
e7c8d5c9 4021 return batch;
3a6be87f
DH
4022
4023#else
4024 /* The deferral and batching of frees should be suppressed under NOMMU
4025 * conditions.
4026 *
4027 * The problem is that NOMMU needs to be able to allocate large chunks
4028 * of contiguous memory as there's no hardware page translation to
4029 * assemble apparent contiguous memory from discontiguous pages.
4030 *
4031 * Queueing large contiguous runs of pages for batching, however,
4032 * causes the pages to actually be freed in smaller chunks. As there
4033 * can be a significant delay between the individual batches being
4034 * recycled, this leads to the once large chunks of space being
4035 * fragmented and becoming unavailable for high-order allocations.
4036 */
4037 return 0;
4038#endif
e7c8d5c9
CL
4039}
4040
8d7a8fa9
CS
4041/*
4042 * pcp->high and pcp->batch values are related and dependent on one another:
4043 * ->batch must never be higher then ->high.
4044 * The following function updates them in a safe manner without read side
4045 * locking.
4046 *
4047 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4048 * those fields changing asynchronously (acording the the above rule).
4049 *
4050 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4051 * outside of boot time (or some other assurance that no concurrent updaters
4052 * exist).
4053 */
4054static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4055 unsigned long batch)
4056{
4057 /* start with a fail safe value for batch */
4058 pcp->batch = 1;
4059 smp_wmb();
4060
4061 /* Update high, then batch, in order */
4062 pcp->high = high;
4063 smp_wmb();
4064
4065 pcp->batch = batch;
4066}
4067
3664033c 4068/* a companion to pageset_set_high() */
4008bab7
CS
4069static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4070{
8d7a8fa9 4071 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4072}
4073
88c90dbc 4074static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4075{
4076 struct per_cpu_pages *pcp;
5f8dcc21 4077 int migratetype;
2caaad41 4078
1c6fe946
MD
4079 memset(p, 0, sizeof(*p));
4080
3dfa5721 4081 pcp = &p->pcp;
2caaad41 4082 pcp->count = 0;
5f8dcc21
MG
4083 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4084 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4085}
4086
88c90dbc
CS
4087static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4088{
4089 pageset_init(p);
4090 pageset_set_batch(p, batch);
4091}
4092
8ad4b1fb 4093/*
3664033c 4094 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4095 * to the value high for the pageset p.
4096 */
3664033c 4097static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4098 unsigned long high)
4099{
8d7a8fa9
CS
4100 unsigned long batch = max(1UL, high / 4);
4101 if ((high / 4) > (PAGE_SHIFT * 8))
4102 batch = PAGE_SHIFT * 8;
8ad4b1fb 4103
8d7a8fa9 4104 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4105}
4106
169f6c19
CS
4107static void __meminit pageset_set_high_and_batch(struct zone *zone,
4108 struct per_cpu_pageset *pcp)
56cef2b8 4109{
56cef2b8 4110 if (percpu_pagelist_fraction)
3664033c 4111 pageset_set_high(pcp,
56cef2b8
CS
4112 (zone->managed_pages /
4113 percpu_pagelist_fraction));
4114 else
4115 pageset_set_batch(pcp, zone_batchsize(zone));
4116}
4117
169f6c19
CS
4118static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4119{
4120 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4121
4122 pageset_init(pcp);
4123 pageset_set_high_and_batch(zone, pcp);
4124}
4125
4ed7e022 4126static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4127{
4128 int cpu;
319774e2 4129 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4130 for_each_possible_cpu(cpu)
4131 zone_pageset_init(zone, cpu);
319774e2
WF
4132}
4133
2caaad41 4134/*
99dcc3e5
CL
4135 * Allocate per cpu pagesets and initialize them.
4136 * Before this call only boot pagesets were available.
e7c8d5c9 4137 */
99dcc3e5 4138void __init setup_per_cpu_pageset(void)
e7c8d5c9 4139{
99dcc3e5 4140 struct zone *zone;
e7c8d5c9 4141
319774e2
WF
4142 for_each_populated_zone(zone)
4143 setup_zone_pageset(zone);
e7c8d5c9
CL
4144}
4145
577a32f6 4146static noinline __init_refok
cca448fe 4147int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4148{
4149 int i;
4150 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4151 size_t alloc_size;
ed8ece2e
DH
4152
4153 /*
4154 * The per-page waitqueue mechanism uses hashed waitqueues
4155 * per zone.
4156 */
02b694de
YG
4157 zone->wait_table_hash_nr_entries =
4158 wait_table_hash_nr_entries(zone_size_pages);
4159 zone->wait_table_bits =
4160 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4161 alloc_size = zone->wait_table_hash_nr_entries
4162 * sizeof(wait_queue_head_t);
4163
cd94b9db 4164 if (!slab_is_available()) {
cca448fe 4165 zone->wait_table = (wait_queue_head_t *)
8f389a99 4166 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4167 } else {
4168 /*
4169 * This case means that a zone whose size was 0 gets new memory
4170 * via memory hot-add.
4171 * But it may be the case that a new node was hot-added. In
4172 * this case vmalloc() will not be able to use this new node's
4173 * memory - this wait_table must be initialized to use this new
4174 * node itself as well.
4175 * To use this new node's memory, further consideration will be
4176 * necessary.
4177 */
8691f3a7 4178 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4179 }
4180 if (!zone->wait_table)
4181 return -ENOMEM;
ed8ece2e 4182
02b694de 4183 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4184 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4185
4186 return 0;
ed8ece2e
DH
4187}
4188
c09b4240 4189static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4190{
99dcc3e5
CL
4191 /*
4192 * per cpu subsystem is not up at this point. The following code
4193 * relies on the ability of the linker to provide the
4194 * offset of a (static) per cpu variable into the per cpu area.
4195 */
4196 zone->pageset = &boot_pageset;
ed8ece2e 4197
f5335c0f 4198 if (zone->present_pages)
99dcc3e5
CL
4199 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4200 zone->name, zone->present_pages,
4201 zone_batchsize(zone));
ed8ece2e
DH
4202}
4203
4ed7e022 4204int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4205 unsigned long zone_start_pfn,
a2f3aa02
DH
4206 unsigned long size,
4207 enum memmap_context context)
ed8ece2e
DH
4208{
4209 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4210 int ret;
4211 ret = zone_wait_table_init(zone, size);
4212 if (ret)
4213 return ret;
ed8ece2e
DH
4214 pgdat->nr_zones = zone_idx(zone) + 1;
4215
ed8ece2e
DH
4216 zone->zone_start_pfn = zone_start_pfn;
4217
708614e6
MG
4218 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4219 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4220 pgdat->node_id,
4221 (unsigned long)zone_idx(zone),
4222 zone_start_pfn, (zone_start_pfn + size));
4223
1e548deb 4224 zone_init_free_lists(zone);
718127cc
YG
4225
4226 return 0;
ed8ece2e
DH
4227}
4228
0ee332c1 4229#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4230#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4231/*
4232 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4233 * Architectures may implement their own version but if add_active_range()
4234 * was used and there are no special requirements, this is a convenient
4235 * alternative
4236 */
f2dbcfa7 4237int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4238{
c13291a5
TH
4239 unsigned long start_pfn, end_pfn;
4240 int i, nid;
7c243c71
RA
4241 /*
4242 * NOTE: The following SMP-unsafe globals are only used early in boot
4243 * when the kernel is running single-threaded.
4244 */
4245 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4246 static int __meminitdata last_nid;
4247
4248 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4249 return last_nid;
c713216d 4250
c13291a5 4251 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7c243c71
RA
4252 if (start_pfn <= pfn && pfn < end_pfn) {
4253 last_start_pfn = start_pfn;
4254 last_end_pfn = end_pfn;
4255 last_nid = nid;
c13291a5 4256 return nid;
7c243c71 4257 }
cc2559bc
KH
4258 /* This is a memory hole */
4259 return -1;
c713216d
MG
4260}
4261#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4262
f2dbcfa7
KH
4263int __meminit early_pfn_to_nid(unsigned long pfn)
4264{
cc2559bc
KH
4265 int nid;
4266
4267 nid = __early_pfn_to_nid(pfn);
4268 if (nid >= 0)
4269 return nid;
4270 /* just returns 0 */
4271 return 0;
f2dbcfa7
KH
4272}
4273
cc2559bc
KH
4274#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4275bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4276{
4277 int nid;
4278
4279 nid = __early_pfn_to_nid(pfn);
4280 if (nid >= 0 && nid != node)
4281 return false;
4282 return true;
4283}
4284#endif
f2dbcfa7 4285
c713216d
MG
4286/**
4287 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4288 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4289 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4290 *
4291 * If an architecture guarantees that all ranges registered with
4292 * add_active_ranges() contain no holes and may be freed, this
4293 * this function may be used instead of calling free_bootmem() manually.
4294 */
c13291a5 4295void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4296{
c13291a5
TH
4297 unsigned long start_pfn, end_pfn;
4298 int i, this_nid;
edbe7d23 4299
c13291a5
TH
4300 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4301 start_pfn = min(start_pfn, max_low_pfn);
4302 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4303
c13291a5
TH
4304 if (start_pfn < end_pfn)
4305 free_bootmem_node(NODE_DATA(this_nid),
4306 PFN_PHYS(start_pfn),
4307 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4308 }
edbe7d23 4309}
edbe7d23 4310
c713216d
MG
4311/**
4312 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4313 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4314 *
4315 * If an architecture guarantees that all ranges registered with
4316 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4317 * function may be used instead of calling memory_present() manually.
c713216d
MG
4318 */
4319void __init sparse_memory_present_with_active_regions(int nid)
4320{
c13291a5
TH
4321 unsigned long start_pfn, end_pfn;
4322 int i, this_nid;
c713216d 4323
c13291a5
TH
4324 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4325 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4326}
4327
4328/**
4329 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4330 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4331 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4332 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4333 *
4334 * It returns the start and end page frame of a node based on information
4335 * provided by an arch calling add_active_range(). If called for a node
4336 * with no available memory, a warning is printed and the start and end
88ca3b94 4337 * PFNs will be 0.
c713216d 4338 */
a3142c8e 4339void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4340 unsigned long *start_pfn, unsigned long *end_pfn)
4341{
c13291a5 4342 unsigned long this_start_pfn, this_end_pfn;
c713216d 4343 int i;
c13291a5 4344
c713216d
MG
4345 *start_pfn = -1UL;
4346 *end_pfn = 0;
4347
c13291a5
TH
4348 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4349 *start_pfn = min(*start_pfn, this_start_pfn);
4350 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4351 }
4352
633c0666 4353 if (*start_pfn == -1UL)
c713216d 4354 *start_pfn = 0;
c713216d
MG
4355}
4356
2a1e274a
MG
4357/*
4358 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4359 * assumption is made that zones within a node are ordered in monotonic
4360 * increasing memory addresses so that the "highest" populated zone is used
4361 */
b69a7288 4362static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4363{
4364 int zone_index;
4365 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4366 if (zone_index == ZONE_MOVABLE)
4367 continue;
4368
4369 if (arch_zone_highest_possible_pfn[zone_index] >
4370 arch_zone_lowest_possible_pfn[zone_index])
4371 break;
4372 }
4373
4374 VM_BUG_ON(zone_index == -1);
4375 movable_zone = zone_index;
4376}
4377
4378/*
4379 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4380 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4381 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4382 * in each node depending on the size of each node and how evenly kernelcore
4383 * is distributed. This helper function adjusts the zone ranges
4384 * provided by the architecture for a given node by using the end of the
4385 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4386 * zones within a node are in order of monotonic increases memory addresses
4387 */
b69a7288 4388static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4389 unsigned long zone_type,
4390 unsigned long node_start_pfn,
4391 unsigned long node_end_pfn,
4392 unsigned long *zone_start_pfn,
4393 unsigned long *zone_end_pfn)
4394{
4395 /* Only adjust if ZONE_MOVABLE is on this node */
4396 if (zone_movable_pfn[nid]) {
4397 /* Size ZONE_MOVABLE */
4398 if (zone_type == ZONE_MOVABLE) {
4399 *zone_start_pfn = zone_movable_pfn[nid];
4400 *zone_end_pfn = min(node_end_pfn,
4401 arch_zone_highest_possible_pfn[movable_zone]);
4402
4403 /* Adjust for ZONE_MOVABLE starting within this range */
4404 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4405 *zone_end_pfn > zone_movable_pfn[nid]) {
4406 *zone_end_pfn = zone_movable_pfn[nid];
4407
4408 /* Check if this whole range is within ZONE_MOVABLE */
4409 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4410 *zone_start_pfn = *zone_end_pfn;
4411 }
4412}
4413
c713216d
MG
4414/*
4415 * Return the number of pages a zone spans in a node, including holes
4416 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4417 */
6ea6e688 4418static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4419 unsigned long zone_type,
7960aedd
ZY
4420 unsigned long node_start_pfn,
4421 unsigned long node_end_pfn,
c713216d
MG
4422 unsigned long *ignored)
4423{
c713216d
MG
4424 unsigned long zone_start_pfn, zone_end_pfn;
4425
7960aedd 4426 /* Get the start and end of the zone */
c713216d
MG
4427 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4428 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4429 adjust_zone_range_for_zone_movable(nid, zone_type,
4430 node_start_pfn, node_end_pfn,
4431 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4432
4433 /* Check that this node has pages within the zone's required range */
4434 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4435 return 0;
4436
4437 /* Move the zone boundaries inside the node if necessary */
4438 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4439 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4440
4441 /* Return the spanned pages */
4442 return zone_end_pfn - zone_start_pfn;
4443}
4444
4445/*
4446 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4447 * then all holes in the requested range will be accounted for.
c713216d 4448 */
32996250 4449unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4450 unsigned long range_start_pfn,
4451 unsigned long range_end_pfn)
4452{
96e907d1
TH
4453 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4454 unsigned long start_pfn, end_pfn;
4455 int i;
c713216d 4456
96e907d1
TH
4457 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4458 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4459 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4460 nr_absent -= end_pfn - start_pfn;
c713216d 4461 }
96e907d1 4462 return nr_absent;
c713216d
MG
4463}
4464
4465/**
4466 * absent_pages_in_range - Return number of page frames in holes within a range
4467 * @start_pfn: The start PFN to start searching for holes
4468 * @end_pfn: The end PFN to stop searching for holes
4469 *
88ca3b94 4470 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4471 */
4472unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4473 unsigned long end_pfn)
4474{
4475 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4476}
4477
4478/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4479static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4480 unsigned long zone_type,
7960aedd
ZY
4481 unsigned long node_start_pfn,
4482 unsigned long node_end_pfn,
c713216d
MG
4483 unsigned long *ignored)
4484{
96e907d1
TH
4485 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4486 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4487 unsigned long zone_start_pfn, zone_end_pfn;
4488
96e907d1
TH
4489 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4490 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4491
2a1e274a
MG
4492 adjust_zone_range_for_zone_movable(nid, zone_type,
4493 node_start_pfn, node_end_pfn,
4494 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4495 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4496}
0e0b864e 4497
0ee332c1 4498#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4499static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4500 unsigned long zone_type,
7960aedd
ZY
4501 unsigned long node_start_pfn,
4502 unsigned long node_end_pfn,
c713216d
MG
4503 unsigned long *zones_size)
4504{
4505 return zones_size[zone_type];
4506}
4507
6ea6e688 4508static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4509 unsigned long zone_type,
7960aedd
ZY
4510 unsigned long node_start_pfn,
4511 unsigned long node_end_pfn,
c713216d
MG
4512 unsigned long *zholes_size)
4513{
4514 if (!zholes_size)
4515 return 0;
4516
4517 return zholes_size[zone_type];
4518}
20e6926d 4519
0ee332c1 4520#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4521
a3142c8e 4522static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4523 unsigned long node_start_pfn,
4524 unsigned long node_end_pfn,
4525 unsigned long *zones_size,
4526 unsigned long *zholes_size)
c713216d
MG
4527{
4528 unsigned long realtotalpages, totalpages = 0;
4529 enum zone_type i;
4530
4531 for (i = 0; i < MAX_NR_ZONES; i++)
4532 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4533 node_start_pfn,
4534 node_end_pfn,
4535 zones_size);
c713216d
MG
4536 pgdat->node_spanned_pages = totalpages;
4537
4538 realtotalpages = totalpages;
4539 for (i = 0; i < MAX_NR_ZONES; i++)
4540 realtotalpages -=
4541 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4542 node_start_pfn, node_end_pfn,
4543 zholes_size);
c713216d
MG
4544 pgdat->node_present_pages = realtotalpages;
4545 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4546 realtotalpages);
4547}
4548
835c134e
MG
4549#ifndef CONFIG_SPARSEMEM
4550/*
4551 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4552 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4553 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4554 * round what is now in bits to nearest long in bits, then return it in
4555 * bytes.
4556 */
7c45512d 4557static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4558{
4559 unsigned long usemapsize;
4560
7c45512d 4561 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4562 usemapsize = roundup(zonesize, pageblock_nr_pages);
4563 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4564 usemapsize *= NR_PAGEBLOCK_BITS;
4565 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4566
4567 return usemapsize / 8;
4568}
4569
4570static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4571 struct zone *zone,
4572 unsigned long zone_start_pfn,
4573 unsigned long zonesize)
835c134e 4574{
7c45512d 4575 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4576 zone->pageblock_flags = NULL;
58a01a45 4577 if (usemapsize)
8f389a99
YL
4578 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4579 usemapsize);
835c134e
MG
4580}
4581#else
7c45512d
LT
4582static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4583 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4584#endif /* CONFIG_SPARSEMEM */
4585
d9c23400 4586#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4587
d9c23400 4588/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4589void __init set_pageblock_order(void)
d9c23400 4590{
955c1cd7
AM
4591 unsigned int order;
4592
d9c23400
MG
4593 /* Check that pageblock_nr_pages has not already been setup */
4594 if (pageblock_order)
4595 return;
4596
955c1cd7
AM
4597 if (HPAGE_SHIFT > PAGE_SHIFT)
4598 order = HUGETLB_PAGE_ORDER;
4599 else
4600 order = MAX_ORDER - 1;
4601
d9c23400
MG
4602 /*
4603 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4604 * This value may be variable depending on boot parameters on IA64 and
4605 * powerpc.
d9c23400
MG
4606 */
4607 pageblock_order = order;
4608}
4609#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4610
ba72cb8c
MG
4611/*
4612 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4613 * is unused as pageblock_order is set at compile-time. See
4614 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4615 * the kernel config
ba72cb8c 4616 */
ca57df79 4617void __init set_pageblock_order(void)
ba72cb8c 4618{
ba72cb8c 4619}
d9c23400
MG
4620
4621#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4622
01cefaef
JL
4623static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4624 unsigned long present_pages)
4625{
4626 unsigned long pages = spanned_pages;
4627
4628 /*
4629 * Provide a more accurate estimation if there are holes within
4630 * the zone and SPARSEMEM is in use. If there are holes within the
4631 * zone, each populated memory region may cost us one or two extra
4632 * memmap pages due to alignment because memmap pages for each
4633 * populated regions may not naturally algined on page boundary.
4634 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4635 */
4636 if (spanned_pages > present_pages + (present_pages >> 4) &&
4637 IS_ENABLED(CONFIG_SPARSEMEM))
4638 pages = present_pages;
4639
4640 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4641}
4642
1da177e4
LT
4643/*
4644 * Set up the zone data structures:
4645 * - mark all pages reserved
4646 * - mark all memory queues empty
4647 * - clear the memory bitmaps
6527af5d
MK
4648 *
4649 * NOTE: pgdat should get zeroed by caller.
1da177e4 4650 */
b5a0e011 4651static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4652 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4653 unsigned long *zones_size, unsigned long *zholes_size)
4654{
2f1b6248 4655 enum zone_type j;
ed8ece2e 4656 int nid = pgdat->node_id;
1da177e4 4657 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4658 int ret;
1da177e4 4659
208d54e5 4660 pgdat_resize_init(pgdat);
8177a420
AA
4661#ifdef CONFIG_NUMA_BALANCING
4662 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4663 pgdat->numabalancing_migrate_nr_pages = 0;
4664 pgdat->numabalancing_migrate_next_window = jiffies;
4665#endif
1da177e4 4666 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4667 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4668 pgdat_page_cgroup_init(pgdat);
5f63b720 4669
1da177e4
LT
4670 for (j = 0; j < MAX_NR_ZONES; j++) {
4671 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4672 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4673
7960aedd
ZY
4674 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4675 node_end_pfn, zones_size);
9feedc9d 4676 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4677 node_start_pfn,
4678 node_end_pfn,
c713216d 4679 zholes_size);
1da177e4 4680
0e0b864e 4681 /*
9feedc9d 4682 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4683 * is used by this zone for memmap. This affects the watermark
4684 * and per-cpu initialisations
4685 */
01cefaef 4686 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4687 if (freesize >= memmap_pages) {
4688 freesize -= memmap_pages;
5594c8c8
YL
4689 if (memmap_pages)
4690 printk(KERN_DEBUG
4691 " %s zone: %lu pages used for memmap\n",
4692 zone_names[j], memmap_pages);
0e0b864e
MG
4693 } else
4694 printk(KERN_WARNING
9feedc9d
JL
4695 " %s zone: %lu pages exceeds freesize %lu\n",
4696 zone_names[j], memmap_pages, freesize);
0e0b864e 4697
6267276f 4698 /* Account for reserved pages */
9feedc9d
JL
4699 if (j == 0 && freesize > dma_reserve) {
4700 freesize -= dma_reserve;
d903ef9f 4701 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4702 zone_names[0], dma_reserve);
0e0b864e
MG
4703 }
4704
98d2b0eb 4705 if (!is_highmem_idx(j))
9feedc9d 4706 nr_kernel_pages += freesize;
01cefaef
JL
4707 /* Charge for highmem memmap if there are enough kernel pages */
4708 else if (nr_kernel_pages > memmap_pages * 2)
4709 nr_kernel_pages -= memmap_pages;
9feedc9d 4710 nr_all_pages += freesize;
1da177e4
LT
4711
4712 zone->spanned_pages = size;
306f2e9e 4713 zone->present_pages = realsize;
9feedc9d
JL
4714 /*
4715 * Set an approximate value for lowmem here, it will be adjusted
4716 * when the bootmem allocator frees pages into the buddy system.
4717 * And all highmem pages will be managed by the buddy system.
4718 */
4719 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4720#ifdef CONFIG_NUMA
d5f541ed 4721 zone->node = nid;
9feedc9d 4722 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4723 / 100;
9feedc9d 4724 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4725#endif
1da177e4
LT
4726 zone->name = zone_names[j];
4727 spin_lock_init(&zone->lock);
4728 spin_lock_init(&zone->lru_lock);
bdc8cb98 4729 zone_seqlock_init(zone);
1da177e4 4730 zone->zone_pgdat = pgdat;
1da177e4 4731
ed8ece2e 4732 zone_pcp_init(zone);
bea8c150 4733 lruvec_init(&zone->lruvec);
1da177e4
LT
4734 if (!size)
4735 continue;
4736
955c1cd7 4737 set_pageblock_order();
7c45512d 4738 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4739 ret = init_currently_empty_zone(zone, zone_start_pfn,
4740 size, MEMMAP_EARLY);
718127cc 4741 BUG_ON(ret);
76cdd58e 4742 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4743 zone_start_pfn += size;
1da177e4
LT
4744 }
4745}
4746
577a32f6 4747static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4748{
1da177e4
LT
4749 /* Skip empty nodes */
4750 if (!pgdat->node_spanned_pages)
4751 return;
4752
d41dee36 4753#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4754 /* ia64 gets its own node_mem_map, before this, without bootmem */
4755 if (!pgdat->node_mem_map) {
e984bb43 4756 unsigned long size, start, end;
d41dee36
AW
4757 struct page *map;
4758
e984bb43
BP
4759 /*
4760 * The zone's endpoints aren't required to be MAX_ORDER
4761 * aligned but the node_mem_map endpoints must be in order
4762 * for the buddy allocator to function correctly.
4763 */
4764 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4765 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4766 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4767 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4768 map = alloc_remap(pgdat->node_id, size);
4769 if (!map)
8f389a99 4770 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4771 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4772 }
12d810c1 4773#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4774 /*
4775 * With no DISCONTIG, the global mem_map is just set as node 0's
4776 */
c713216d 4777 if (pgdat == NODE_DATA(0)) {
1da177e4 4778 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4779#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4780 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4781 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4782#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4783 }
1da177e4 4784#endif
d41dee36 4785#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4786}
4787
9109fb7b
JW
4788void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4789 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4790{
9109fb7b 4791 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4792 unsigned long start_pfn = 0;
4793 unsigned long end_pfn = 0;
9109fb7b 4794
88fdf75d 4795 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4796 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4797
1da177e4
LT
4798 pgdat->node_id = nid;
4799 pgdat->node_start_pfn = node_start_pfn;
957f822a 4800 init_zone_allows_reclaim(nid);
7960aedd
ZY
4801#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4802 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4803#endif
4804 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4805 zones_size, zholes_size);
1da177e4
LT
4806
4807 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4808#ifdef CONFIG_FLAT_NODE_MEM_MAP
4809 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4810 nid, (unsigned long)pgdat,
4811 (unsigned long)pgdat->node_mem_map);
4812#endif
1da177e4 4813
7960aedd
ZY
4814 free_area_init_core(pgdat, start_pfn, end_pfn,
4815 zones_size, zholes_size);
1da177e4
LT
4816}
4817
0ee332c1 4818#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4819
4820#if MAX_NUMNODES > 1
4821/*
4822 * Figure out the number of possible node ids.
4823 */
f9872caf 4824void __init setup_nr_node_ids(void)
418508c1
MS
4825{
4826 unsigned int node;
4827 unsigned int highest = 0;
4828
4829 for_each_node_mask(node, node_possible_map)
4830 highest = node;
4831 nr_node_ids = highest + 1;
4832}
418508c1
MS
4833#endif
4834
1e01979c
TH
4835/**
4836 * node_map_pfn_alignment - determine the maximum internode alignment
4837 *
4838 * This function should be called after node map is populated and sorted.
4839 * It calculates the maximum power of two alignment which can distinguish
4840 * all the nodes.
4841 *
4842 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4843 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4844 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4845 * shifted, 1GiB is enough and this function will indicate so.
4846 *
4847 * This is used to test whether pfn -> nid mapping of the chosen memory
4848 * model has fine enough granularity to avoid incorrect mapping for the
4849 * populated node map.
4850 *
4851 * Returns the determined alignment in pfn's. 0 if there is no alignment
4852 * requirement (single node).
4853 */
4854unsigned long __init node_map_pfn_alignment(void)
4855{
4856 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4857 unsigned long start, end, mask;
1e01979c 4858 int last_nid = -1;
c13291a5 4859 int i, nid;
1e01979c 4860
c13291a5 4861 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4862 if (!start || last_nid < 0 || last_nid == nid) {
4863 last_nid = nid;
4864 last_end = end;
4865 continue;
4866 }
4867
4868 /*
4869 * Start with a mask granular enough to pin-point to the
4870 * start pfn and tick off bits one-by-one until it becomes
4871 * too coarse to separate the current node from the last.
4872 */
4873 mask = ~((1 << __ffs(start)) - 1);
4874 while (mask && last_end <= (start & (mask << 1)))
4875 mask <<= 1;
4876
4877 /* accumulate all internode masks */
4878 accl_mask |= mask;
4879 }
4880
4881 /* convert mask to number of pages */
4882 return ~accl_mask + 1;
4883}
4884
a6af2bc3 4885/* Find the lowest pfn for a node */
b69a7288 4886static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4887{
a6af2bc3 4888 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4889 unsigned long start_pfn;
4890 int i;
1abbfb41 4891
c13291a5
TH
4892 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4893 min_pfn = min(min_pfn, start_pfn);
c713216d 4894
a6af2bc3
MG
4895 if (min_pfn == ULONG_MAX) {
4896 printk(KERN_WARNING
2bc0d261 4897 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4898 return 0;
4899 }
4900
4901 return min_pfn;
c713216d
MG
4902}
4903
4904/**
4905 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4906 *
4907 * It returns the minimum PFN based on information provided via
88ca3b94 4908 * add_active_range().
c713216d
MG
4909 */
4910unsigned long __init find_min_pfn_with_active_regions(void)
4911{
4912 return find_min_pfn_for_node(MAX_NUMNODES);
4913}
4914
37b07e41
LS
4915/*
4916 * early_calculate_totalpages()
4917 * Sum pages in active regions for movable zone.
4b0ef1fe 4918 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4919 */
484f51f8 4920static unsigned long __init early_calculate_totalpages(void)
7e63efef 4921{
7e63efef 4922 unsigned long totalpages = 0;
c13291a5
TH
4923 unsigned long start_pfn, end_pfn;
4924 int i, nid;
4925
4926 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4927 unsigned long pages = end_pfn - start_pfn;
7e63efef 4928
37b07e41
LS
4929 totalpages += pages;
4930 if (pages)
4b0ef1fe 4931 node_set_state(nid, N_MEMORY);
37b07e41
LS
4932 }
4933 return totalpages;
7e63efef
MG
4934}
4935
2a1e274a
MG
4936/*
4937 * Find the PFN the Movable zone begins in each node. Kernel memory
4938 * is spread evenly between nodes as long as the nodes have enough
4939 * memory. When they don't, some nodes will have more kernelcore than
4940 * others
4941 */
b224ef85 4942static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4943{
4944 int i, nid;
4945 unsigned long usable_startpfn;
4946 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 4947 /* save the state before borrow the nodemask */
4b0ef1fe 4948 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 4949 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 4950 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
2a1e274a 4951
7e63efef
MG
4952 /*
4953 * If movablecore was specified, calculate what size of
4954 * kernelcore that corresponds so that memory usable for
4955 * any allocation type is evenly spread. If both kernelcore
4956 * and movablecore are specified, then the value of kernelcore
4957 * will be used for required_kernelcore if it's greater than
4958 * what movablecore would have allowed.
4959 */
4960 if (required_movablecore) {
7e63efef
MG
4961 unsigned long corepages;
4962
4963 /*
4964 * Round-up so that ZONE_MOVABLE is at least as large as what
4965 * was requested by the user
4966 */
4967 required_movablecore =
4968 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4969 corepages = totalpages - required_movablecore;
4970
4971 required_kernelcore = max(required_kernelcore, corepages);
4972 }
4973
20e6926d
YL
4974 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4975 if (!required_kernelcore)
66918dcd 4976 goto out;
2a1e274a
MG
4977
4978 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
20e6926d 4979 find_usable_zone_for_movable();
2a1e274a
MG
4980 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4981
4982restart:
4983 /* Spread kernelcore memory as evenly as possible throughout nodes */
4984 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 4985 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
4986 unsigned long start_pfn, end_pfn;
4987
2a1e274a
MG
4988 /*
4989 * Recalculate kernelcore_node if the division per node
4990 * now exceeds what is necessary to satisfy the requested
4991 * amount of memory for the kernel
4992 */
4993 if (required_kernelcore < kernelcore_node)
4994 kernelcore_node = required_kernelcore / usable_nodes;
4995
4996 /*
4997 * As the map is walked, we track how much memory is usable
4998 * by the kernel using kernelcore_remaining. When it is
4999 * 0, the rest of the node is usable by ZONE_MOVABLE
5000 */
5001 kernelcore_remaining = kernelcore_node;
5002
5003 /* Go through each range of PFNs within this node */
c13291a5 5004 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5005 unsigned long size_pages;
5006
c13291a5 5007 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5008 if (start_pfn >= end_pfn)
5009 continue;
5010
5011 /* Account for what is only usable for kernelcore */
5012 if (start_pfn < usable_startpfn) {
5013 unsigned long kernel_pages;
5014 kernel_pages = min(end_pfn, usable_startpfn)
5015 - start_pfn;
5016
5017 kernelcore_remaining -= min(kernel_pages,
5018 kernelcore_remaining);
5019 required_kernelcore -= min(kernel_pages,
5020 required_kernelcore);
5021
5022 /* Continue if range is now fully accounted */
5023 if (end_pfn <= usable_startpfn) {
5024
5025 /*
5026 * Push zone_movable_pfn to the end so
5027 * that if we have to rebalance
5028 * kernelcore across nodes, we will
5029 * not double account here
5030 */
5031 zone_movable_pfn[nid] = end_pfn;
5032 continue;
5033 }
5034 start_pfn = usable_startpfn;
5035 }
5036
5037 /*
5038 * The usable PFN range for ZONE_MOVABLE is from
5039 * start_pfn->end_pfn. Calculate size_pages as the
5040 * number of pages used as kernelcore
5041 */
5042 size_pages = end_pfn - start_pfn;
5043 if (size_pages > kernelcore_remaining)
5044 size_pages = kernelcore_remaining;
5045 zone_movable_pfn[nid] = start_pfn + size_pages;
5046
5047 /*
5048 * Some kernelcore has been met, update counts and
5049 * break if the kernelcore for this node has been
5050 * satisified
5051 */
5052 required_kernelcore -= min(required_kernelcore,
5053 size_pages);
5054 kernelcore_remaining -= size_pages;
5055 if (!kernelcore_remaining)
5056 break;
5057 }
5058 }
5059
5060 /*
5061 * If there is still required_kernelcore, we do another pass with one
5062 * less node in the count. This will push zone_movable_pfn[nid] further
5063 * along on the nodes that still have memory until kernelcore is
5064 * satisified
5065 */
5066 usable_nodes--;
5067 if (usable_nodes && required_kernelcore > usable_nodes)
5068 goto restart;
5069
5070 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5071 for (nid = 0; nid < MAX_NUMNODES; nid++)
5072 zone_movable_pfn[nid] =
5073 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5074
20e6926d 5075out:
66918dcd 5076 /* restore the node_state */
4b0ef1fe 5077 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5078}
5079
4b0ef1fe
LJ
5080/* Any regular or high memory on that node ? */
5081static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5082{
37b07e41
LS
5083 enum zone_type zone_type;
5084
4b0ef1fe
LJ
5085 if (N_MEMORY == N_NORMAL_MEMORY)
5086 return;
5087
5088 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5089 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 5090 if (zone->present_pages) {
4b0ef1fe
LJ
5091 node_set_state(nid, N_HIGH_MEMORY);
5092 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5093 zone_type <= ZONE_NORMAL)
5094 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5095 break;
5096 }
37b07e41 5097 }
37b07e41
LS
5098}
5099
c713216d
MG
5100/**
5101 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5102 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5103 *
5104 * This will call free_area_init_node() for each active node in the system.
5105 * Using the page ranges provided by add_active_range(), the size of each
5106 * zone in each node and their holes is calculated. If the maximum PFN
5107 * between two adjacent zones match, it is assumed that the zone is empty.
5108 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5109 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5110 * starts where the previous one ended. For example, ZONE_DMA32 starts
5111 * at arch_max_dma_pfn.
5112 */
5113void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5114{
c13291a5
TH
5115 unsigned long start_pfn, end_pfn;
5116 int i, nid;
a6af2bc3 5117
c713216d
MG
5118 /* Record where the zone boundaries are */
5119 memset(arch_zone_lowest_possible_pfn, 0,
5120 sizeof(arch_zone_lowest_possible_pfn));
5121 memset(arch_zone_highest_possible_pfn, 0,
5122 sizeof(arch_zone_highest_possible_pfn));
5123 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5124 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5125 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5126 if (i == ZONE_MOVABLE)
5127 continue;
c713216d
MG
5128 arch_zone_lowest_possible_pfn[i] =
5129 arch_zone_highest_possible_pfn[i-1];
5130 arch_zone_highest_possible_pfn[i] =
5131 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5132 }
2a1e274a
MG
5133 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5134 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5135
5136 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5137 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5138 find_zone_movable_pfns_for_nodes();
c713216d 5139
c713216d 5140 /* Print out the zone ranges */
a62e2f4f 5141 printk("Zone ranges:\n");
2a1e274a
MG
5142 for (i = 0; i < MAX_NR_ZONES; i++) {
5143 if (i == ZONE_MOVABLE)
5144 continue;
155cbfc8 5145 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5146 if (arch_zone_lowest_possible_pfn[i] ==
5147 arch_zone_highest_possible_pfn[i])
155cbfc8 5148 printk(KERN_CONT "empty\n");
72f0ba02 5149 else
a62e2f4f
BH
5150 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5151 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5152 (arch_zone_highest_possible_pfn[i]
5153 << PAGE_SHIFT) - 1);
2a1e274a
MG
5154 }
5155
5156 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5157 printk("Movable zone start for each node\n");
2a1e274a
MG
5158 for (i = 0; i < MAX_NUMNODES; i++) {
5159 if (zone_movable_pfn[i])
a62e2f4f
BH
5160 printk(" Node %d: %#010lx\n", i,
5161 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5162 }
c713216d 5163
f2d52fe5 5164 /* Print out the early node map */
a62e2f4f 5165 printk("Early memory node ranges\n");
c13291a5 5166 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5167 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5168 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5169
5170 /* Initialise every node */
708614e6 5171 mminit_verify_pageflags_layout();
8ef82866 5172 setup_nr_node_ids();
c713216d
MG
5173 for_each_online_node(nid) {
5174 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5175 free_area_init_node(nid, NULL,
c713216d 5176 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5177
5178 /* Any memory on that node */
5179 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5180 node_set_state(nid, N_MEMORY);
5181 check_for_memory(pgdat, nid);
c713216d
MG
5182 }
5183}
2a1e274a 5184
7e63efef 5185static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5186{
5187 unsigned long long coremem;
5188 if (!p)
5189 return -EINVAL;
5190
5191 coremem = memparse(p, &p);
7e63efef 5192 *core = coremem >> PAGE_SHIFT;
2a1e274a 5193
7e63efef 5194 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5195 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5196
5197 return 0;
5198}
ed7ed365 5199
7e63efef
MG
5200/*
5201 * kernelcore=size sets the amount of memory for use for allocations that
5202 * cannot be reclaimed or migrated.
5203 */
5204static int __init cmdline_parse_kernelcore(char *p)
5205{
5206 return cmdline_parse_core(p, &required_kernelcore);
5207}
5208
5209/*
5210 * movablecore=size sets the amount of memory for use for allocations that
5211 * can be reclaimed or migrated.
5212 */
5213static int __init cmdline_parse_movablecore(char *p)
5214{
5215 return cmdline_parse_core(p, &required_movablecore);
5216}
5217
ed7ed365 5218early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5219early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5220
0ee332c1 5221#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5222
c3d5f5f0
JL
5223void adjust_managed_page_count(struct page *page, long count)
5224{
5225 spin_lock(&managed_page_count_lock);
5226 page_zone(page)->managed_pages += count;
5227 totalram_pages += count;
3dcc0571
JL
5228#ifdef CONFIG_HIGHMEM
5229 if (PageHighMem(page))
5230 totalhigh_pages += count;
5231#endif
c3d5f5f0
JL
5232 spin_unlock(&managed_page_count_lock);
5233}
3dcc0571 5234EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5235
11199692 5236unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5237{
11199692
JL
5238 void *pos;
5239 unsigned long pages = 0;
69afade7 5240
11199692
JL
5241 start = (void *)PAGE_ALIGN((unsigned long)start);
5242 end = (void *)((unsigned long)end & PAGE_MASK);
5243 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5244 if ((unsigned int)poison <= 0xFF)
11199692
JL
5245 memset(pos, poison, PAGE_SIZE);
5246 free_reserved_page(virt_to_page(pos));
69afade7
JL
5247 }
5248
5249 if (pages && s)
11199692 5250 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5251 s, pages << (PAGE_SHIFT - 10), start, end);
5252
5253 return pages;
5254}
11199692 5255EXPORT_SYMBOL(free_reserved_area);
69afade7 5256
cfa11e08
JL
5257#ifdef CONFIG_HIGHMEM
5258void free_highmem_page(struct page *page)
5259{
5260 __free_reserved_page(page);
5261 totalram_pages++;
7b4b2a0d 5262 page_zone(page)->managed_pages++;
cfa11e08
JL
5263 totalhigh_pages++;
5264}
5265#endif
5266
7ee3d4e8
JL
5267
5268void __init mem_init_print_info(const char *str)
5269{
5270 unsigned long physpages, codesize, datasize, rosize, bss_size;
5271 unsigned long init_code_size, init_data_size;
5272
5273 physpages = get_num_physpages();
5274 codesize = _etext - _stext;
5275 datasize = _edata - _sdata;
5276 rosize = __end_rodata - __start_rodata;
5277 bss_size = __bss_stop - __bss_start;
5278 init_data_size = __init_end - __init_begin;
5279 init_code_size = _einittext - _sinittext;
5280
5281 /*
5282 * Detect special cases and adjust section sizes accordingly:
5283 * 1) .init.* may be embedded into .data sections
5284 * 2) .init.text.* may be out of [__init_begin, __init_end],
5285 * please refer to arch/tile/kernel/vmlinux.lds.S.
5286 * 3) .rodata.* may be embedded into .text or .data sections.
5287 */
5288#define adj_init_size(start, end, size, pos, adj) \
5289 if (start <= pos && pos < end && size > adj) \
5290 size -= adj;
5291
5292 adj_init_size(__init_begin, __init_end, init_data_size,
5293 _sinittext, init_code_size);
5294 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5295 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5296 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5297 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5298
5299#undef adj_init_size
5300
5301 printk("Memory: %luK/%luK available "
5302 "(%luK kernel code, %luK rwdata, %luK rodata, "
5303 "%luK init, %luK bss, %luK reserved"
5304#ifdef CONFIG_HIGHMEM
5305 ", %luK highmem"
5306#endif
5307 "%s%s)\n",
5308 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5309 codesize >> 10, datasize >> 10, rosize >> 10,
5310 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5311 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5312#ifdef CONFIG_HIGHMEM
5313 totalhigh_pages << (PAGE_SHIFT-10),
5314#endif
5315 str ? ", " : "", str ? str : "");
5316}
5317
0e0b864e 5318/**
88ca3b94
RD
5319 * set_dma_reserve - set the specified number of pages reserved in the first zone
5320 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5321 *
5322 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5323 * In the DMA zone, a significant percentage may be consumed by kernel image
5324 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5325 * function may optionally be used to account for unfreeable pages in the
5326 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5327 * smaller per-cpu batchsize.
0e0b864e
MG
5328 */
5329void __init set_dma_reserve(unsigned long new_dma_reserve)
5330{
5331 dma_reserve = new_dma_reserve;
5332}
5333
1da177e4
LT
5334void __init free_area_init(unsigned long *zones_size)
5335{
9109fb7b 5336 free_area_init_node(0, zones_size,
1da177e4
LT
5337 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5338}
1da177e4 5339
1da177e4
LT
5340static int page_alloc_cpu_notify(struct notifier_block *self,
5341 unsigned long action, void *hcpu)
5342{
5343 int cpu = (unsigned long)hcpu;
1da177e4 5344
8bb78442 5345 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5346 lru_add_drain_cpu(cpu);
9f8f2172
CL
5347 drain_pages(cpu);
5348
5349 /*
5350 * Spill the event counters of the dead processor
5351 * into the current processors event counters.
5352 * This artificially elevates the count of the current
5353 * processor.
5354 */
f8891e5e 5355 vm_events_fold_cpu(cpu);
9f8f2172
CL
5356
5357 /*
5358 * Zero the differential counters of the dead processor
5359 * so that the vm statistics are consistent.
5360 *
5361 * This is only okay since the processor is dead and cannot
5362 * race with what we are doing.
5363 */
2244b95a 5364 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5365 }
5366 return NOTIFY_OK;
5367}
1da177e4
LT
5368
5369void __init page_alloc_init(void)
5370{
5371 hotcpu_notifier(page_alloc_cpu_notify, 0);
5372}
5373
cb45b0e9
HA
5374/*
5375 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5376 * or min_free_kbytes changes.
5377 */
5378static void calculate_totalreserve_pages(void)
5379{
5380 struct pglist_data *pgdat;
5381 unsigned long reserve_pages = 0;
2f6726e5 5382 enum zone_type i, j;
cb45b0e9
HA
5383
5384 for_each_online_pgdat(pgdat) {
5385 for (i = 0; i < MAX_NR_ZONES; i++) {
5386 struct zone *zone = pgdat->node_zones + i;
5387 unsigned long max = 0;
5388
5389 /* Find valid and maximum lowmem_reserve in the zone */
5390 for (j = i; j < MAX_NR_ZONES; j++) {
5391 if (zone->lowmem_reserve[j] > max)
5392 max = zone->lowmem_reserve[j];
5393 }
5394
41858966
MG
5395 /* we treat the high watermark as reserved pages. */
5396 max += high_wmark_pages(zone);
cb45b0e9 5397
b40da049
JL
5398 if (max > zone->managed_pages)
5399 max = zone->managed_pages;
cb45b0e9 5400 reserve_pages += max;
ab8fabd4
JW
5401 /*
5402 * Lowmem reserves are not available to
5403 * GFP_HIGHUSER page cache allocations and
5404 * kswapd tries to balance zones to their high
5405 * watermark. As a result, neither should be
5406 * regarded as dirtyable memory, to prevent a
5407 * situation where reclaim has to clean pages
5408 * in order to balance the zones.
5409 */
5410 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5411 }
5412 }
ab8fabd4 5413 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5414 totalreserve_pages = reserve_pages;
5415}
5416
1da177e4
LT
5417/*
5418 * setup_per_zone_lowmem_reserve - called whenever
5419 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5420 * has a correct pages reserved value, so an adequate number of
5421 * pages are left in the zone after a successful __alloc_pages().
5422 */
5423static void setup_per_zone_lowmem_reserve(void)
5424{
5425 struct pglist_data *pgdat;
2f6726e5 5426 enum zone_type j, idx;
1da177e4 5427
ec936fc5 5428 for_each_online_pgdat(pgdat) {
1da177e4
LT
5429 for (j = 0; j < MAX_NR_ZONES; j++) {
5430 struct zone *zone = pgdat->node_zones + j;
b40da049 5431 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5432
5433 zone->lowmem_reserve[j] = 0;
5434
2f6726e5
CL
5435 idx = j;
5436 while (idx) {
1da177e4
LT
5437 struct zone *lower_zone;
5438
2f6726e5
CL
5439 idx--;
5440
1da177e4
LT
5441 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5442 sysctl_lowmem_reserve_ratio[idx] = 1;
5443
5444 lower_zone = pgdat->node_zones + idx;
b40da049 5445 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5446 sysctl_lowmem_reserve_ratio[idx];
b40da049 5447 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5448 }
5449 }
5450 }
cb45b0e9
HA
5451
5452 /* update totalreserve_pages */
5453 calculate_totalreserve_pages();
1da177e4
LT
5454}
5455
cfd3da1e 5456static void __setup_per_zone_wmarks(void)
1da177e4
LT
5457{
5458 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5459 unsigned long lowmem_pages = 0;
5460 struct zone *zone;
5461 unsigned long flags;
5462
5463 /* Calculate total number of !ZONE_HIGHMEM pages */
5464 for_each_zone(zone) {
5465 if (!is_highmem(zone))
b40da049 5466 lowmem_pages += zone->managed_pages;
1da177e4
LT
5467 }
5468
5469 for_each_zone(zone) {
ac924c60
AM
5470 u64 tmp;
5471
1125b4e3 5472 spin_lock_irqsave(&zone->lock, flags);
b40da049 5473 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5474 do_div(tmp, lowmem_pages);
1da177e4
LT
5475 if (is_highmem(zone)) {
5476 /*
669ed175
NP
5477 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5478 * need highmem pages, so cap pages_min to a small
5479 * value here.
5480 *
41858966 5481 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5482 * deltas controls asynch page reclaim, and so should
5483 * not be capped for highmem.
1da177e4 5484 */
90ae8d67 5485 unsigned long min_pages;
1da177e4 5486
b40da049 5487 min_pages = zone->managed_pages / 1024;
90ae8d67 5488 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5489 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5490 } else {
669ed175
NP
5491 /*
5492 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5493 * proportionate to the zone's size.
5494 */
41858966 5495 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5496 }
5497
41858966
MG
5498 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5499 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5500
56fd56b8 5501 setup_zone_migrate_reserve(zone);
1125b4e3 5502 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5503 }
cb45b0e9
HA
5504
5505 /* update totalreserve_pages */
5506 calculate_totalreserve_pages();
1da177e4
LT
5507}
5508
cfd3da1e
MG
5509/**
5510 * setup_per_zone_wmarks - called when min_free_kbytes changes
5511 * or when memory is hot-{added|removed}
5512 *
5513 * Ensures that the watermark[min,low,high] values for each zone are set
5514 * correctly with respect to min_free_kbytes.
5515 */
5516void setup_per_zone_wmarks(void)
5517{
5518 mutex_lock(&zonelists_mutex);
5519 __setup_per_zone_wmarks();
5520 mutex_unlock(&zonelists_mutex);
5521}
5522
55a4462a 5523/*
556adecb
RR
5524 * The inactive anon list should be small enough that the VM never has to
5525 * do too much work, but large enough that each inactive page has a chance
5526 * to be referenced again before it is swapped out.
5527 *
5528 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5529 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5530 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5531 * the anonymous pages are kept on the inactive list.
5532 *
5533 * total target max
5534 * memory ratio inactive anon
5535 * -------------------------------------
5536 * 10MB 1 5MB
5537 * 100MB 1 50MB
5538 * 1GB 3 250MB
5539 * 10GB 10 0.9GB
5540 * 100GB 31 3GB
5541 * 1TB 101 10GB
5542 * 10TB 320 32GB
5543 */
1b79acc9 5544static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5545{
96cb4df5 5546 unsigned int gb, ratio;
556adecb 5547
96cb4df5 5548 /* Zone size in gigabytes */
b40da049 5549 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5550 if (gb)
556adecb 5551 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5552 else
5553 ratio = 1;
556adecb 5554
96cb4df5
MK
5555 zone->inactive_ratio = ratio;
5556}
556adecb 5557
839a4fcc 5558static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5559{
5560 struct zone *zone;
5561
5562 for_each_zone(zone)
5563 calculate_zone_inactive_ratio(zone);
556adecb
RR
5564}
5565
1da177e4
LT
5566/*
5567 * Initialise min_free_kbytes.
5568 *
5569 * For small machines we want it small (128k min). For large machines
5570 * we want it large (64MB max). But it is not linear, because network
5571 * bandwidth does not increase linearly with machine size. We use
5572 *
5573 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5574 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5575 *
5576 * which yields
5577 *
5578 * 16MB: 512k
5579 * 32MB: 724k
5580 * 64MB: 1024k
5581 * 128MB: 1448k
5582 * 256MB: 2048k
5583 * 512MB: 2896k
5584 * 1024MB: 4096k
5585 * 2048MB: 5792k
5586 * 4096MB: 8192k
5587 * 8192MB: 11584k
5588 * 16384MB: 16384k
5589 */
1b79acc9 5590int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5591{
5592 unsigned long lowmem_kbytes;
5f12733e 5593 int new_min_free_kbytes;
1da177e4
LT
5594
5595 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5596 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5597
5598 if (new_min_free_kbytes > user_min_free_kbytes) {
5599 min_free_kbytes = new_min_free_kbytes;
5600 if (min_free_kbytes < 128)
5601 min_free_kbytes = 128;
5602 if (min_free_kbytes > 65536)
5603 min_free_kbytes = 65536;
5604 } else {
5605 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5606 new_min_free_kbytes, user_min_free_kbytes);
5607 }
bc75d33f 5608 setup_per_zone_wmarks();
a6cccdc3 5609 refresh_zone_stat_thresholds();
1da177e4 5610 setup_per_zone_lowmem_reserve();
556adecb 5611 setup_per_zone_inactive_ratio();
1da177e4
LT
5612 return 0;
5613}
bc75d33f 5614module_init(init_per_zone_wmark_min)
1da177e4
LT
5615
5616/*
5617 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5618 * that we can call two helper functions whenever min_free_kbytes
5619 * changes.
5620 */
5621int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5622 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5623{
8d65af78 5624 proc_dointvec(table, write, buffer, length, ppos);
5f12733e
MH
5625 if (write) {
5626 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5627 setup_per_zone_wmarks();
5f12733e 5628 }
1da177e4
LT
5629 return 0;
5630}
5631
9614634f
CL
5632#ifdef CONFIG_NUMA
5633int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5634 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5635{
5636 struct zone *zone;
5637 int rc;
5638
8d65af78 5639 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5640 if (rc)
5641 return rc;
5642
5643 for_each_zone(zone)
b40da049 5644 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5645 sysctl_min_unmapped_ratio) / 100;
5646 return 0;
5647}
0ff38490
CL
5648
5649int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5650 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5651{
5652 struct zone *zone;
5653 int rc;
5654
8d65af78 5655 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5656 if (rc)
5657 return rc;
5658
5659 for_each_zone(zone)
b40da049 5660 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5661 sysctl_min_slab_ratio) / 100;
5662 return 0;
5663}
9614634f
CL
5664#endif
5665
1da177e4
LT
5666/*
5667 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5668 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5669 * whenever sysctl_lowmem_reserve_ratio changes.
5670 *
5671 * The reserve ratio obviously has absolutely no relation with the
41858966 5672 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5673 * if in function of the boot time zone sizes.
5674 */
5675int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5676 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5677{
8d65af78 5678 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5679 setup_per_zone_lowmem_reserve();
5680 return 0;
5681}
5682
8ad4b1fb
RS
5683/*
5684 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5685 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5686 * can have before it gets flushed back to buddy allocator.
5687 */
8ad4b1fb 5688int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5689 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5690{
5691 struct zone *zone;
5692 unsigned int cpu;
5693 int ret;
5694
8d65af78 5695 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5696 if (!write || (ret < 0))
8ad4b1fb 5697 return ret;
c8e251fa
CS
5698
5699 mutex_lock(&pcp_batch_high_lock);
364df0eb 5700 for_each_populated_zone(zone) {
22a7f12b
CS
5701 unsigned long high;
5702 high = zone->managed_pages / percpu_pagelist_fraction;
5703 for_each_possible_cpu(cpu)
3664033c
CS
5704 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5705 high);
8ad4b1fb 5706 }
c8e251fa 5707 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5708 return 0;
5709}
5710
f034b5d4 5711int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5712
5713#ifdef CONFIG_NUMA
5714static int __init set_hashdist(char *str)
5715{
5716 if (!str)
5717 return 0;
5718 hashdist = simple_strtoul(str, &str, 0);
5719 return 1;
5720}
5721__setup("hashdist=", set_hashdist);
5722#endif
5723
5724/*
5725 * allocate a large system hash table from bootmem
5726 * - it is assumed that the hash table must contain an exact power-of-2
5727 * quantity of entries
5728 * - limit is the number of hash buckets, not the total allocation size
5729 */
5730void *__init alloc_large_system_hash(const char *tablename,
5731 unsigned long bucketsize,
5732 unsigned long numentries,
5733 int scale,
5734 int flags,
5735 unsigned int *_hash_shift,
5736 unsigned int *_hash_mask,
31fe62b9
TB
5737 unsigned long low_limit,
5738 unsigned long high_limit)
1da177e4 5739{
31fe62b9 5740 unsigned long long max = high_limit;
1da177e4
LT
5741 unsigned long log2qty, size;
5742 void *table = NULL;
5743
5744 /* allow the kernel cmdline to have a say */
5745 if (!numentries) {
5746 /* round applicable memory size up to nearest megabyte */
04903664 5747 numentries = nr_kernel_pages;
1da177e4
LT
5748 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5749 numentries >>= 20 - PAGE_SHIFT;
5750 numentries <<= 20 - PAGE_SHIFT;
5751
5752 /* limit to 1 bucket per 2^scale bytes of low memory */
5753 if (scale > PAGE_SHIFT)
5754 numentries >>= (scale - PAGE_SHIFT);
5755 else
5756 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5757
5758 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5759 if (unlikely(flags & HASH_SMALL)) {
5760 /* Makes no sense without HASH_EARLY */
5761 WARN_ON(!(flags & HASH_EARLY));
5762 if (!(numentries >> *_hash_shift)) {
5763 numentries = 1UL << *_hash_shift;
5764 BUG_ON(!numentries);
5765 }
5766 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5767 numentries = PAGE_SIZE / bucketsize;
1da177e4 5768 }
6e692ed3 5769 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5770
5771 /* limit allocation size to 1/16 total memory by default */
5772 if (max == 0) {
5773 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5774 do_div(max, bucketsize);
5775 }
074b8517 5776 max = min(max, 0x80000000ULL);
1da177e4 5777
31fe62b9
TB
5778 if (numentries < low_limit)
5779 numentries = low_limit;
1da177e4
LT
5780 if (numentries > max)
5781 numentries = max;
5782
f0d1b0b3 5783 log2qty = ilog2(numentries);
1da177e4
LT
5784
5785 do {
5786 size = bucketsize << log2qty;
5787 if (flags & HASH_EARLY)
74768ed8 5788 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5789 else if (hashdist)
5790 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5791 else {
1037b83b
ED
5792 /*
5793 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5794 * some pages at the end of hash table which
5795 * alloc_pages_exact() automatically does
1037b83b 5796 */
264ef8a9 5797 if (get_order(size) < MAX_ORDER) {
a1dd268c 5798 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5799 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5800 }
1da177e4
LT
5801 }
5802 } while (!table && size > PAGE_SIZE && --log2qty);
5803
5804 if (!table)
5805 panic("Failed to allocate %s hash table\n", tablename);
5806
f241e660 5807 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5808 tablename,
f241e660 5809 (1UL << log2qty),
f0d1b0b3 5810 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5811 size);
5812
5813 if (_hash_shift)
5814 *_hash_shift = log2qty;
5815 if (_hash_mask)
5816 *_hash_mask = (1 << log2qty) - 1;
5817
5818 return table;
5819}
a117e66e 5820
835c134e
MG
5821/* Return a pointer to the bitmap storing bits affecting a block of pages */
5822static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5823 unsigned long pfn)
5824{
5825#ifdef CONFIG_SPARSEMEM
5826 return __pfn_to_section(pfn)->pageblock_flags;
5827#else
5828 return zone->pageblock_flags;
5829#endif /* CONFIG_SPARSEMEM */
5830}
5831
5832static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5833{
5834#ifdef CONFIG_SPARSEMEM
5835 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5836 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5837#else
c060f943 5838 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5839 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5840#endif /* CONFIG_SPARSEMEM */
5841}
5842
5843/**
d9c23400 5844 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5845 * @page: The page within the block of interest
5846 * @start_bitidx: The first bit of interest to retrieve
5847 * @end_bitidx: The last bit of interest
5848 * returns pageblock_bits flags
5849 */
5850unsigned long get_pageblock_flags_group(struct page *page,
5851 int start_bitidx, int end_bitidx)
5852{
5853 struct zone *zone;
5854 unsigned long *bitmap;
5855 unsigned long pfn, bitidx;
5856 unsigned long flags = 0;
5857 unsigned long value = 1;
5858
5859 zone = page_zone(page);
5860 pfn = page_to_pfn(page);
5861 bitmap = get_pageblock_bitmap(zone, pfn);
5862 bitidx = pfn_to_bitidx(zone, pfn);
5863
5864 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5865 if (test_bit(bitidx + start_bitidx, bitmap))
5866 flags |= value;
6220ec78 5867
835c134e
MG
5868 return flags;
5869}
5870
5871/**
d9c23400 5872 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5873 * @page: The page within the block of interest
5874 * @start_bitidx: The first bit of interest
5875 * @end_bitidx: The last bit of interest
5876 * @flags: The flags to set
5877 */
5878void set_pageblock_flags_group(struct page *page, unsigned long flags,
5879 int start_bitidx, int end_bitidx)
5880{
5881 struct zone *zone;
5882 unsigned long *bitmap;
5883 unsigned long pfn, bitidx;
5884 unsigned long value = 1;
5885
5886 zone = page_zone(page);
5887 pfn = page_to_pfn(page);
5888 bitmap = get_pageblock_bitmap(zone, pfn);
5889 bitidx = pfn_to_bitidx(zone, pfn);
108bcc96 5890 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
835c134e
MG
5891
5892 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5893 if (flags & value)
5894 __set_bit(bitidx + start_bitidx, bitmap);
5895 else
5896 __clear_bit(bitidx + start_bitidx, bitmap);
5897}
a5d76b54
KH
5898
5899/*
80934513
MK
5900 * This function checks whether pageblock includes unmovable pages or not.
5901 * If @count is not zero, it is okay to include less @count unmovable pages
5902 *
5903 * PageLRU check wihtout isolation or lru_lock could race so that
5904 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5905 * expect this function should be exact.
a5d76b54 5906 */
b023f468
WC
5907bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5908 bool skip_hwpoisoned_pages)
49ac8255
KH
5909{
5910 unsigned long pfn, iter, found;
47118af0
MN
5911 int mt;
5912
49ac8255
KH
5913 /*
5914 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5915 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5916 */
5917 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5918 return false;
47118af0
MN
5919 mt = get_pageblock_migratetype(page);
5920 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5921 return false;
49ac8255
KH
5922
5923 pfn = page_to_pfn(page);
5924 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5925 unsigned long check = pfn + iter;
5926
29723fcc 5927 if (!pfn_valid_within(check))
49ac8255 5928 continue;
29723fcc 5929
49ac8255 5930 page = pfn_to_page(check);
97d255c8
MK
5931 /*
5932 * We can't use page_count without pin a page
5933 * because another CPU can free compound page.
5934 * This check already skips compound tails of THP
5935 * because their page->_count is zero at all time.
5936 */
5937 if (!atomic_read(&page->_count)) {
49ac8255
KH
5938 if (PageBuddy(page))
5939 iter += (1 << page_order(page)) - 1;
5940 continue;
5941 }
97d255c8 5942
b023f468
WC
5943 /*
5944 * The HWPoisoned page may be not in buddy system, and
5945 * page_count() is not 0.
5946 */
5947 if (skip_hwpoisoned_pages && PageHWPoison(page))
5948 continue;
5949
49ac8255
KH
5950 if (!PageLRU(page))
5951 found++;
5952 /*
5953 * If there are RECLAIMABLE pages, we need to check it.
5954 * But now, memory offline itself doesn't call shrink_slab()
5955 * and it still to be fixed.
5956 */
5957 /*
5958 * If the page is not RAM, page_count()should be 0.
5959 * we don't need more check. This is an _used_ not-movable page.
5960 *
5961 * The problematic thing here is PG_reserved pages. PG_reserved
5962 * is set to both of a memory hole page and a _used_ kernel
5963 * page at boot.
5964 */
5965 if (found > count)
80934513 5966 return true;
49ac8255 5967 }
80934513 5968 return false;
49ac8255
KH
5969}
5970
5971bool is_pageblock_removable_nolock(struct page *page)
5972{
656a0706
MH
5973 struct zone *zone;
5974 unsigned long pfn;
687875fb
MH
5975
5976 /*
5977 * We have to be careful here because we are iterating over memory
5978 * sections which are not zone aware so we might end up outside of
5979 * the zone but still within the section.
656a0706
MH
5980 * We have to take care about the node as well. If the node is offline
5981 * its NODE_DATA will be NULL - see page_zone.
687875fb 5982 */
656a0706
MH
5983 if (!node_online(page_to_nid(page)))
5984 return false;
5985
5986 zone = page_zone(page);
5987 pfn = page_to_pfn(page);
108bcc96 5988 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
5989 return false;
5990
b023f468 5991 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 5992}
0c0e6195 5993
041d3a8c
MN
5994#ifdef CONFIG_CMA
5995
5996static unsigned long pfn_max_align_down(unsigned long pfn)
5997{
5998 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5999 pageblock_nr_pages) - 1);
6000}
6001
6002static unsigned long pfn_max_align_up(unsigned long pfn)
6003{
6004 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6005 pageblock_nr_pages));
6006}
6007
041d3a8c 6008/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6009static int __alloc_contig_migrate_range(struct compact_control *cc,
6010 unsigned long start, unsigned long end)
041d3a8c
MN
6011{
6012 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6013 unsigned long nr_reclaimed;
041d3a8c
MN
6014 unsigned long pfn = start;
6015 unsigned int tries = 0;
6016 int ret = 0;
6017
be49a6e1 6018 migrate_prep();
041d3a8c 6019
bb13ffeb 6020 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6021 if (fatal_signal_pending(current)) {
6022 ret = -EINTR;
6023 break;
6024 }
6025
bb13ffeb
MG
6026 if (list_empty(&cc->migratepages)) {
6027 cc->nr_migratepages = 0;
6028 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6029 pfn, end, true);
041d3a8c
MN
6030 if (!pfn) {
6031 ret = -EINTR;
6032 break;
6033 }
6034 tries = 0;
6035 } else if (++tries == 5) {
6036 ret = ret < 0 ? ret : -EBUSY;
6037 break;
6038 }
6039
beb51eaa
MK
6040 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6041 &cc->migratepages);
6042 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6043
9c620e2b
HD
6044 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6045 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 6046 }
2a6f5124
SP
6047 if (ret < 0) {
6048 putback_movable_pages(&cc->migratepages);
6049 return ret;
6050 }
6051 return 0;
041d3a8c
MN
6052}
6053
6054/**
6055 * alloc_contig_range() -- tries to allocate given range of pages
6056 * @start: start PFN to allocate
6057 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6058 * @migratetype: migratetype of the underlaying pageblocks (either
6059 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6060 * in range must have the same migratetype and it must
6061 * be either of the two.
041d3a8c
MN
6062 *
6063 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6064 * aligned, however it's the caller's responsibility to guarantee that
6065 * we are the only thread that changes migrate type of pageblocks the
6066 * pages fall in.
6067 *
6068 * The PFN range must belong to a single zone.
6069 *
6070 * Returns zero on success or negative error code. On success all
6071 * pages which PFN is in [start, end) are allocated for the caller and
6072 * need to be freed with free_contig_range().
6073 */
0815f3d8
MN
6074int alloc_contig_range(unsigned long start, unsigned long end,
6075 unsigned migratetype)
041d3a8c 6076{
041d3a8c
MN
6077 unsigned long outer_start, outer_end;
6078 int ret = 0, order;
6079
bb13ffeb
MG
6080 struct compact_control cc = {
6081 .nr_migratepages = 0,
6082 .order = -1,
6083 .zone = page_zone(pfn_to_page(start)),
6084 .sync = true,
6085 .ignore_skip_hint = true,
6086 };
6087 INIT_LIST_HEAD(&cc.migratepages);
6088
041d3a8c
MN
6089 /*
6090 * What we do here is we mark all pageblocks in range as
6091 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6092 * have different sizes, and due to the way page allocator
6093 * work, we align the range to biggest of the two pages so
6094 * that page allocator won't try to merge buddies from
6095 * different pageblocks and change MIGRATE_ISOLATE to some
6096 * other migration type.
6097 *
6098 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6099 * migrate the pages from an unaligned range (ie. pages that
6100 * we are interested in). This will put all the pages in
6101 * range back to page allocator as MIGRATE_ISOLATE.
6102 *
6103 * When this is done, we take the pages in range from page
6104 * allocator removing them from the buddy system. This way
6105 * page allocator will never consider using them.
6106 *
6107 * This lets us mark the pageblocks back as
6108 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6109 * aligned range but not in the unaligned, original range are
6110 * put back to page allocator so that buddy can use them.
6111 */
6112
6113 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6114 pfn_max_align_up(end), migratetype,
6115 false);
041d3a8c 6116 if (ret)
86a595f9 6117 return ret;
041d3a8c 6118
bb13ffeb 6119 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6120 if (ret)
6121 goto done;
6122
6123 /*
6124 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6125 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6126 * more, all pages in [start, end) are free in page allocator.
6127 * What we are going to do is to allocate all pages from
6128 * [start, end) (that is remove them from page allocator).
6129 *
6130 * The only problem is that pages at the beginning and at the
6131 * end of interesting range may be not aligned with pages that
6132 * page allocator holds, ie. they can be part of higher order
6133 * pages. Because of this, we reserve the bigger range and
6134 * once this is done free the pages we are not interested in.
6135 *
6136 * We don't have to hold zone->lock here because the pages are
6137 * isolated thus they won't get removed from buddy.
6138 */
6139
6140 lru_add_drain_all();
6141 drain_all_pages();
6142
6143 order = 0;
6144 outer_start = start;
6145 while (!PageBuddy(pfn_to_page(outer_start))) {
6146 if (++order >= MAX_ORDER) {
6147 ret = -EBUSY;
6148 goto done;
6149 }
6150 outer_start &= ~0UL << order;
6151 }
6152
6153 /* Make sure the range is really isolated. */
b023f468 6154 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6155 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6156 outer_start, end);
6157 ret = -EBUSY;
6158 goto done;
6159 }
6160
49f223a9
MS
6161
6162 /* Grab isolated pages from freelists. */
bb13ffeb 6163 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6164 if (!outer_end) {
6165 ret = -EBUSY;
6166 goto done;
6167 }
6168
6169 /* Free head and tail (if any) */
6170 if (start != outer_start)
6171 free_contig_range(outer_start, start - outer_start);
6172 if (end != outer_end)
6173 free_contig_range(end, outer_end - end);
6174
6175done:
6176 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6177 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6178 return ret;
6179}
6180
6181void free_contig_range(unsigned long pfn, unsigned nr_pages)
6182{
bcc2b02f
MS
6183 unsigned int count = 0;
6184
6185 for (; nr_pages--; pfn++) {
6186 struct page *page = pfn_to_page(pfn);
6187
6188 count += page_count(page) != 1;
6189 __free_page(page);
6190 }
6191 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6192}
6193#endif
6194
4ed7e022 6195#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6196/*
6197 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6198 * page high values need to be recalulated.
6199 */
4ed7e022
JL
6200void __meminit zone_pcp_update(struct zone *zone)
6201{
0a647f38 6202 unsigned cpu;
c8e251fa 6203 mutex_lock(&pcp_batch_high_lock);
0a647f38 6204 for_each_possible_cpu(cpu)
169f6c19
CS
6205 pageset_set_high_and_batch(zone,
6206 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6207 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6208}
6209#endif
6210
340175b7
JL
6211void zone_pcp_reset(struct zone *zone)
6212{
6213 unsigned long flags;
5a883813
MK
6214 int cpu;
6215 struct per_cpu_pageset *pset;
340175b7
JL
6216
6217 /* avoid races with drain_pages() */
6218 local_irq_save(flags);
6219 if (zone->pageset != &boot_pageset) {
5a883813
MK
6220 for_each_online_cpu(cpu) {
6221 pset = per_cpu_ptr(zone->pageset, cpu);
6222 drain_zonestat(zone, pset);
6223 }
340175b7
JL
6224 free_percpu(zone->pageset);
6225 zone->pageset = &boot_pageset;
6226 }
6227 local_irq_restore(flags);
6228}
6229
6dcd73d7 6230#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6231/*
6232 * All pages in the range must be isolated before calling this.
6233 */
6234void
6235__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6236{
6237 struct page *page;
6238 struct zone *zone;
6239 int order, i;
6240 unsigned long pfn;
6241 unsigned long flags;
6242 /* find the first valid pfn */
6243 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6244 if (pfn_valid(pfn))
6245 break;
6246 if (pfn == end_pfn)
6247 return;
6248 zone = page_zone(pfn_to_page(pfn));
6249 spin_lock_irqsave(&zone->lock, flags);
6250 pfn = start_pfn;
6251 while (pfn < end_pfn) {
6252 if (!pfn_valid(pfn)) {
6253 pfn++;
6254 continue;
6255 }
6256 page = pfn_to_page(pfn);
b023f468
WC
6257 /*
6258 * The HWPoisoned page may be not in buddy system, and
6259 * page_count() is not 0.
6260 */
6261 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6262 pfn++;
6263 SetPageReserved(page);
6264 continue;
6265 }
6266
0c0e6195
KH
6267 BUG_ON(page_count(page));
6268 BUG_ON(!PageBuddy(page));
6269 order = page_order(page);
6270#ifdef CONFIG_DEBUG_VM
6271 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6272 pfn, 1 << order, end_pfn);
6273#endif
6274 list_del(&page->lru);
6275 rmv_page_order(page);
6276 zone->free_area[order].nr_free--;
cea27eb2
WL
6277#ifdef CONFIG_HIGHMEM
6278 if (PageHighMem(page))
6279 totalhigh_pages -= 1 << order;
6280#endif
0c0e6195
KH
6281 for (i = 0; i < (1 << order); i++)
6282 SetPageReserved((page+i));
6283 pfn += (1 << order);
6284 }
6285 spin_unlock_irqrestore(&zone->lock, flags);
6286}
6287#endif
8d22ba1b
WF
6288
6289#ifdef CONFIG_MEMORY_FAILURE
6290bool is_free_buddy_page(struct page *page)
6291{
6292 struct zone *zone = page_zone(page);
6293 unsigned long pfn = page_to_pfn(page);
6294 unsigned long flags;
6295 int order;
6296
6297 spin_lock_irqsave(&zone->lock, flags);
6298 for (order = 0; order < MAX_ORDER; order++) {
6299 struct page *page_head = page - (pfn & ((1 << order) - 1));
6300
6301 if (PageBuddy(page_head) && page_order(page_head) >= order)
6302 break;
6303 }
6304 spin_unlock_irqrestore(&zone->lock, flags);
6305
6306 return order < MAX_ORDER;
6307}
6308#endif
718a3821 6309
51300cef 6310static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6311 {1UL << PG_locked, "locked" },
6312 {1UL << PG_error, "error" },
6313 {1UL << PG_referenced, "referenced" },
6314 {1UL << PG_uptodate, "uptodate" },
6315 {1UL << PG_dirty, "dirty" },
6316 {1UL << PG_lru, "lru" },
6317 {1UL << PG_active, "active" },
6318 {1UL << PG_slab, "slab" },
6319 {1UL << PG_owner_priv_1, "owner_priv_1" },
6320 {1UL << PG_arch_1, "arch_1" },
6321 {1UL << PG_reserved, "reserved" },
6322 {1UL << PG_private, "private" },
6323 {1UL << PG_private_2, "private_2" },
6324 {1UL << PG_writeback, "writeback" },
6325#ifdef CONFIG_PAGEFLAGS_EXTENDED
6326 {1UL << PG_head, "head" },
6327 {1UL << PG_tail, "tail" },
6328#else
6329 {1UL << PG_compound, "compound" },
6330#endif
6331 {1UL << PG_swapcache, "swapcache" },
6332 {1UL << PG_mappedtodisk, "mappedtodisk" },
6333 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6334 {1UL << PG_swapbacked, "swapbacked" },
6335 {1UL << PG_unevictable, "unevictable" },
6336#ifdef CONFIG_MMU
6337 {1UL << PG_mlocked, "mlocked" },
6338#endif
6339#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6340 {1UL << PG_uncached, "uncached" },
6341#endif
6342#ifdef CONFIG_MEMORY_FAILURE
6343 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6344#endif
6345#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6346 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6347#endif
718a3821
WF
6348};
6349
6350static void dump_page_flags(unsigned long flags)
6351{
6352 const char *delim = "";
6353 unsigned long mask;
6354 int i;
6355
51300cef 6356 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6357
718a3821
WF
6358 printk(KERN_ALERT "page flags: %#lx(", flags);
6359
6360 /* remove zone id */
6361 flags &= (1UL << NR_PAGEFLAGS) - 1;
6362
51300cef 6363 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6364
6365 mask = pageflag_names[i].mask;
6366 if ((flags & mask) != mask)
6367 continue;
6368
6369 flags &= ~mask;
6370 printk("%s%s", delim, pageflag_names[i].name);
6371 delim = "|";
6372 }
6373
6374 /* check for left over flags */
6375 if (flags)
6376 printk("%s%#lx", delim, flags);
6377
6378 printk(")\n");
6379}
6380
6381void dump_page(struct page *page)
6382{
6383 printk(KERN_ALERT
6384 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6385 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6386 page->mapping, page->index);
6387 dump_page_flags(page->flags);
f212ad7c 6388 mem_cgroup_print_bad_page(page);
718a3821 6389}
This page took 1.351977 seconds and 5 git commands to generate.