LD: Support fixed-size sections some psABIs may require
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
219d1afa 2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9
TS
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
0a44bf69 38#include "elf-vxworks.h"
2f0c68f2 39#include "dwarf2.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
9ab066b4
RS
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
ead49a57 57/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
b15e6682
AO
75struct mips_got_entry
76{
3dff0dd1 77 /* One input bfd that needs the GOT entry. */
b15e6682 78 bfd *abfd;
f4416af6
AO
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 90 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
f4416af6
AO
93 struct mips_elf_link_hash_entry *h;
94 } d;
0f20cc35 95
9ab066b4
RS
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
0f20cc35
DJ
98 unsigned char tls_type;
99
9ab066b4
RS
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
b15e6682 104 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
b15e6682
AO
108};
109
13db6b44
RS
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
c224138d
RS
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
13db6b44 142 relocations against a given section. */
c224138d
RS
143struct mips_got_page_entry
144{
13db6b44
RS
145 /* The section that these entries are based on. */
146 asection *sec;
c224138d
RS
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
f0abc2a1 153/* This structure is used to hold .got information when linking. */
b49e97c9
TS
154
155struct mips_got_info
156{
b49e97c9
TS
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
23cc69b6
RS
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
0f20cc35
DJ
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
c224138d 166 /* The number of local .got entries, eventually including page entries. */
b49e97c9 167 unsigned int local_gotno;
c224138d
RS
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
ab361d49
RS
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
cb22ccf4
KCY
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
b15e6682
AO
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
13db6b44
RS
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
c224138d
RS
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
f4416af6
AO
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
d7206569 187/* Structure passed when merging bfds' gots. */
f4416af6
AO
188
189struct mips_elf_got_per_bfd_arg
190{
f4416af6
AO
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
c224138d
RS
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
0f20cc35
DJ
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
f4416af6
AO
212};
213
ab361d49
RS
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
f4416af6 216
ab361d49 217struct mips_elf_traverse_got_arg
f4416af6 218{
ab361d49 219 struct bfd_link_info *info;
f4416af6
AO
220 struct mips_got_info *g;
221 int value;
0f20cc35
DJ
222};
223
f0abc2a1
AM
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
f0abc2a1
AM
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
68bfbfcc 234 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 235
d5eaccd7
RS
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
4dfe6ac6 239 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 240
634835ae
RS
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
861fb55a
DJ
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
296#define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298#define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300#define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 302
b49e97c9
TS
303/* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306struct mips_elf_hash_sort_data
307{
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
0f20cc35
DJ
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
55f8b9d2 313 bfd_size_type min_got_dynindx;
f4416af6
AO
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 316 with dynamic relocations pointing to it from non-primary GOTs). */
55f8b9d2 317 bfd_size_type max_unref_got_dynindx;
e17b0c35
MR
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
b49e97c9 322 symbol without a GOT entry. */
55f8b9d2 323 bfd_size_type max_non_got_dynindx;
b49e97c9
TS
324};
325
1bbce132
MR
326/* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331struct plt_entry
332{
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350};
351
b49e97c9
TS
352/* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355struct mips_elf_link_hash_entry
356{
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
861fb55a
DJ
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
b49e97c9
TS
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
b49e97c9
TS
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
b49e97c9
TS
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
7c5fcef7 380
634835ae
RS
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
6ccf4795
RS
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
71782a75
RS
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
861fb55a
DJ
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
71782a75
RS
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
861fb55a
DJ
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
1bbce132
MR
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
b49e97c9
TS
419};
420
421/* MIPS ELF linker hash table. */
422
423struct mips_elf_link_hash_table
424{
425 struct elf_link_hash_table root;
861fb55a 426
b49e97c9
TS
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
861fb55a 429
b49e97c9
TS
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
861fb55a 432
e6aea42d
MR
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 435 bfd_boolean use_rld_obj_head;
861fb55a 436
b4082c70
DD
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
861fb55a 439
b49e97c9 440 /* This is set if we see any mips16 stub sections. */
b34976b6 441 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
833794fc
MR
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
8b10b0b3
MR
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
0a44bf69
RS
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
861fb55a 454
0e53d9da
AN
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
861fb55a 457
0a44bf69
RS
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
0a44bf69 460 asection *srelplt2;
4e41d0d7 461 asection *sstubs;
861fb55a 462
a8028dd0
RS
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
861fb55a 465
d222d210
RS
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
861fb55a 470 /* The size of the PLT header in bytes. */
0a44bf69 471 bfd_vma plt_header_size;
861fb55a 472
1bbce132
MR
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
861fb55a 487
33bb52fb
RS
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
861fb55a 490
5108fc1b
RS
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
861fb55a
DJ
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
1bbce132
MR
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
519};
520
4dfe6ac6
NC
521/* Get the MIPS ELF linker hash table from a link_info structure. */
522
523#define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
861fb55a 527/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
528struct mips_htab_traverse_info
529{
861fb55a
DJ
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
b49e97c9
TS
536};
537
6ae68ba3
MR
538/* MIPS ELF private object data. */
539
540struct mips_elf_obj_tdata
541{
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
ee227692 547
b60bf9be
CF
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
351cdf24
MF
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
ee227692
RS
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
698600e4
AM
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
6ae68ba3
MR
573};
574
575/* Get MIPS ELF private object data from BFD's tdata. */
576
577#define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
0f20cc35
DJ
580#define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 593 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 608
b49e97c9
TS
609/* Structure used to pass information to mips_elf_output_extsym. */
610
611struct extsym_info
612{
9e4aeb93
RS
613 bfd *abfd;
614 struct bfd_link_info *info;
b49e97c9
TS
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
b34976b6 617 bfd_boolean failed;
b49e97c9
TS
618};
619
8dc1a139 620/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
621
622static const char * const mips_elf_dynsym_rtproc_names[] =
623{
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628};
629
630/* These structures are used to generate the .compact_rel section on
8dc1a139 631 IRIX5. */
b49e97c9
TS
632
633typedef struct
634{
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641} Elf32_compact_rel;
642
643typedef struct
644{
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651} Elf32_External_compact_rel;
652
653typedef struct
654{
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661} Elf32_crinfo;
662
663typedef struct
664{
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670} Elf32_crinfo2;
671
672typedef struct
673{
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677} Elf32_External_crinfo;
678
679typedef struct
680{
681 bfd_byte info[4];
682 bfd_byte konst[4];
683} Elf32_External_crinfo2;
684
685/* These are the constants used to swap the bitfields in a crinfo. */
686
687#define CRINFO_CTYPE (0x1)
688#define CRINFO_CTYPE_SH (31)
689#define CRINFO_RTYPE (0xf)
690#define CRINFO_RTYPE_SH (27)
691#define CRINFO_DIST2TO (0xff)
692#define CRINFO_DIST2TO_SH (19)
693#define CRINFO_RELVADDR (0x7ffff)
694#define CRINFO_RELVADDR_SH (0)
695
696/* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699#define CRF_MIPS_LONG 1
700#define CRF_MIPS_SHORT 0
701
702/* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712#define CRT_MIPS_REL32 0xa
713#define CRT_MIPS_WORD 0xb
714#define CRT_MIPS_GPHI_LO 0xc
715#define CRT_MIPS_JMPAD 0xd
716
717#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721\f
722/* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725typedef struct runtime_pdr {
ae9a127f
NC
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
b49e97c9 735 long reserved;
ae9a127f 736 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
737} RPDR, *pRPDR;
738#define cbRPDR sizeof (RPDR)
739#define rpdNil ((pRPDR) 0)
740\f
b15e6682 741static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
b34976b6 744static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 745 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
746static bfd_vma mips_elf_high
747 (bfd_vma);
b34976b6 748static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
f4416af6 752static bfd_vma mips_elf_adjust_gp
9719ad41 753 (bfd *, struct mips_got_info *, bfd *);
f4416af6 754
b49e97c9
TS
755/* This will be used when we sort the dynamic relocation records. */
756static bfd *reldyn_sorting_bfd;
757
6d30f5b2
NC
758/* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760#define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
cd8d5a82
CF
764/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767#define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773#define JALR_TO_BAL_P(abfd) 1
774
38a7df63
CF
775/* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778#define JR_TO_B_P(abfd) 1
779
861fb55a
DJ
780/* True if ABFD is a PIC object. */
781#define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
351cdf24
MF
784/* Nonzero if ABFD is using the O32 ABI. */
785#define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
b49e97c9 788/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
789#define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
4a14403c 792/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 793#define ABI_64_P(abfd) \
141ff970 794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 795
4a14403c
TS
796/* Nonzero if ABFD is using NewABI conventions. */
797#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
e8faf7d1
MR
799/* Nonzero if ABFD has microMIPS code. */
800#define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
7361da2c
AB
803/* Nonzero if ABFD is MIPS R6. */
804#define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
4a14403c 808/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
809#define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
b49e97c9
TS
812/* Whether we are trying to be compatible with IRIX at all. */
813#define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816/* The name of the options section. */
817#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 819
cc2e31b9
RS
820/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
351cdf24
MF
825/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
943284cc
DJ
829/* Whether the section is readonly. */
830#define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
b49e97c9 834/* The name of the stub section. */
ca07892d 835#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
836
837/* The size of an external REL relocation. */
838#define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
0a44bf69
RS
841/* The size of an external RELA relocation. */
842#define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
b49e97c9
TS
845/* The size of an external dynamic table entry. */
846#define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849/* The size of a GOT entry. */
850#define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
b4082c70
DD
853/* The size of the .rld_map section. */
854#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
b49e97c9
TS
857/* The size of a symbol-table entry. */
858#define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861/* The default alignment for sections, as a power of two. */
862#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 863 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
864
865/* Get word-sized data. */
866#define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869/* Put out word-sized data. */
870#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
07d6d2b8
AM
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
b49e97c9
TS
873 : bfd_put_32 (abfd, val, ptr))
874
861fb55a
DJ
875/* The opcode for word-sized loads (LW or LD). */
876#define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
b49e97c9 879/* Add a dynamic symbol table-entry. */
9719ad41 880#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 881 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
882
883#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
0a44bf69
RS
886/* The name of the dynamic relocation section. */
887#define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
b49e97c9
TS
890/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 893#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 894
51e38d68
RS
895/* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
f4416af6 901/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
902#define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
904
905/* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
0a44bf69 907#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 908
6a691779 909/* Instructions which appear in a stub. */
3d6746ca
DD
910#define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
07d6d2b8 913 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 914#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca 915#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
a18a2a34 916#define STUB_JALR 0x0320f809 /* jalr ra,t9 */
5108fc1b
RS
917#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
919#define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
1bbce132
MR
924/* Likewise for the microMIPS ASE. */
925#define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 930#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
931#define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 934#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
935#define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937#define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939#define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
5108fc1b
RS
944#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
946#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
948#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
950
951/* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
07d6d2b8
AM
954#define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
b49e97c9
TS
957 : "/usr/lib/libc.so.1")
958
959#ifdef BFD64
ee6423ed
AO
960#define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
962#define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964#define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966#define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968#else
ee6423ed 969#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
970#define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972#define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974#define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976#endif
977\f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012#define FN_STUB ".mips16.fn."
1013#define CALL_STUB ".mips16.call."
1014#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1015
1016#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1019\f
861fb55a 1020/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1021static const bfd_vma mips_o32_exec_plt0_entry[] =
1022{
861fb55a
DJ
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1027 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031};
1032
1033/* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1035static const bfd_vma mips_n32_exec_plt0_entry[] =
1036{
861fb55a
DJ
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1041 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045};
1046
1047/* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1049static const bfd_vma mips_n64_exec_plt0_entry[] =
1050{
861fb55a
DJ
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1055 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059};
1060
1bbce132
MR
1061/* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068{
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078};
1079
833794fc
MR
1080/* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083{
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1088 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092};
1093
1bbce132 1094/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1095static const bfd_vma mips_exec_plt_entry[] =
1096{
861fb55a
DJ
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101};
1102
7361da2c
AB
1103/* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106static const bfd_vma mipsr6_exec_plt_entry[] =
1107{
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112};
1113
1bbce132
MR
1114/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117static const bfd_vma mips16_o32_exec_plt_entry[] =
1118{
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126};
1127
1128/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130static const bfd_vma micromips_o32_exec_plt_entry[] =
1131{
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136};
1137
833794fc
MR
1138/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140{
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145};
1146
0a44bf69 1147/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1148static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149{
0a44bf69
RS
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156};
1157
1158/* The format of subsequent PLT entries. */
6d30f5b2
NC
1159static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160{
0a44bf69
RS
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169};
1170
1171/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1172static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173{
0a44bf69
RS
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180};
1181
1182/* The format of subsequent PLT entries. */
6d30f5b2
NC
1183static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184{
0a44bf69
RS
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187};
1188\f
d21911ea
MR
1189/* microMIPS 32-bit opcode helper installer. */
1190
1191static void
1192bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193{
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
07d6d2b8 1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
d21911ea
MR
1196}
1197
1198/* microMIPS 32-bit opcode helper retriever. */
1199
1200static bfd_vma
1201bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202{
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204}
1205\f
b49e97c9
TS
1206/* Look up an entry in a MIPS ELF linker hash table. */
1207
1208#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213/* Traverse a MIPS ELF linker hash table. */
1214
1215#define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
9719ad41 1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1219 (info)))
1220
0f20cc35
DJ
1221/* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224#define TP_OFFSET 0x7000
1225#define DTP_OFFSET 0x8000
1226
1227static bfd_vma
1228dtprel_base (struct bfd_link_info *info)
1229{
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234}
1235
1236static bfd_vma
1237tprel_base (struct bfd_link_info *info)
1238{
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243}
1244
b49e97c9
TS
1245/* Create an entry in a MIPS ELF linker hash table. */
1246
1247static struct bfd_hash_entry *
9719ad41
RS
1248mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1250{
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
9719ad41
RS
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
b49e97c9
TS
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
9719ad41 1265 if (ret != NULL)
b49e97c9
TS
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
861fb55a 1272 ret->la25_stub = 0;
b49e97c9 1273 ret->possibly_dynamic_relocs = 0;
b49e97c9 1274 ret->fn_stub = NULL;
b49e97c9
TS
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
634835ae 1277 ret->global_got_area = GGA_NONE;
6ccf4795 1278 ret->got_only_for_calls = TRUE;
71782a75 1279 ret->readonly_reloc = FALSE;
861fb55a 1280 ret->has_static_relocs = FALSE;
71782a75
RS
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
861fb55a 1283 ret->has_nonpic_branches = FALSE;
33bb52fb 1284 ret->needs_lazy_stub = FALSE;
1bbce132 1285 ret->use_plt_entry = FALSE;
b49e97c9
TS
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289}
f0abc2a1 1290
6ae68ba3
MR
1291/* Allocate MIPS ELF private object data. */
1292
1293bfd_boolean
1294_bfd_mips_elf_mkobject (bfd *abfd)
1295{
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298}
1299
f0abc2a1 1300bfd_boolean
9719ad41 1301_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1302{
f592407e
AM
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1307
f592407e
AM
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
f0abc2a1
AM
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315}
b49e97c9
TS
1316\f
1317/* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
b34976b6 1320bfd_boolean
9719ad41
RS
1321_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
b49e97c9
TS
1323{
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
9719ad41 1326 char *ext_hdr;
b49e97c9
TS
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
9719ad41 1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
9719ad41 1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1336 swap->external_hdr_size))
b49e97c9
TS
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344#define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1350 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
9719ad41 1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1370#undef READ
1371
1372 debug->fdr = NULL;
b49e97c9 1373
b34976b6 1374 return TRUE;
b49e97c9
TS
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
b34976b6 1401 return FALSE;
b49e97c9
TS
1402}
1403\f
1404/* Swap RPDR (runtime procedure table entry) for output. */
1405
1406static void
9719ad41 1407ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1408{
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1420}
1421
1422/* Create a runtime procedure table from the .mdebug section. */
1423
b34976b6 1424static bfd_boolean
9719ad41
RS
1425mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
b49e97c9
TS
1428{
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
9719ad41 1433 void *rtproc;
b49e97c9
TS
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
9719ad41 1460 epdr = bfd_malloc (size * count);
b49e97c9
TS
1461 if (epdr == NULL)
1462 goto error_return;
1463
9719ad41 1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
9719ad41 1468 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
9719ad41 1473 sv = bfd_malloc (size * count);
b49e97c9
TS
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
9719ad41 1479 esym = bfd_malloc (size * count);
b49e97c9
TS
1480 if (esym == NULL)
1481 goto error_return;
1482
9719ad41 1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1484 goto error_return;
1485
1486 count = hdr->issMax;
9719ad41 1487 ss = bfd_malloc (count);
b49e97c9
TS
1488 if (ss == NULL)
1489 goto error_return;
f075ee0c 1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
9719ad41
RS
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
9719ad41 1514 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
9719ad41 1523 erp = rtproc;
b49e97c9
TS
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
eea6121a 1538 s->size = size;
9719ad41 1539 s->contents = rtproc;
b49e97c9
TS
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
8423293d 1543 s->map_head.link_order = NULL;
b49e97c9
TS
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
b34976b6 1556 return TRUE;
b49e97c9
TS
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
b34976b6 1569 return FALSE;
b49e97c9 1570}
738e5348 1571\f
861fb55a
DJ
1572/* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575static bfd_boolean
1576mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580{
a848a227 1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
861fb55a
DJ
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1584 char *name;
1585 bfd_boolean res;
861fb55a 1586
a848a227 1587 if (micromips_p)
df58fc94
RS
1588 value |= 1;
1589
861fb55a 1590 /* Create a new symbol. */
e1fa0163 1591 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1592 bh = NULL;
e1fa0163
NC
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
861fb55a
DJ
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
a848a227
MR
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
861fb55a
DJ
1607 return TRUE;
1608}
1609
738e5348
RS
1610/* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614static bfd_boolean
1615mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618{
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
e1fa0163 1621 char *name;
738e5348
RS
1622 asection *s;
1623 bfd_vma value;
e1fa0163 1624 bfd_boolean res;
738e5348
RS
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
e1fa0163 1633 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1634 bh = NULL;
e1fa0163
NC
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
738e5348
RS
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649}
1650
1651/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654static bfd_boolean
1655section_allows_mips16_refs_p (asection *section)
1656{
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664}
1665
1666/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670static unsigned long
cb4437b8
MR
1671mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
502e814e 1673 const Elf_Internal_Rela *relocs,
738e5348
RS
1674 const Elf_Internal_Rela *relend)
1675{
cb4437b8 1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1677 const Elf_Internal_Rela *rel;
1678
cb4437b8
MR
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691}
b49e97c9
TS
1692
1693/* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
861fb55a
DJ
1696static void
1697mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
b49e97c9 1699{
738e5348
RS
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
b49e97c9
TS
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
07d6d2b8
AM
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
eea6121a 1715 h->fn_stub->size = 0;
b49e97c9
TS
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1719 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1720 }
1721
1722 if (h->call_stub != NULL
30c09090 1723 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
eea6121a 1728 h->call_stub->size = 0;
b49e97c9
TS
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1732 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1733 }
1734
1735 if (h->call_fp_stub != NULL
30c09090 1736 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
eea6121a 1741 h->call_fp_stub->size = 0;
b49e97c9
TS
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1746 }
861fb55a
DJ
1747}
1748
1749/* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751static hashval_t
1752mips_elf_la25_stub_hash (const void *entry_)
1753{
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759}
1760
1761static int
1762mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763{
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772}
1773
1774/* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778bfd_boolean
1779_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782{
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1786 if (htab == NULL)
1787 return FALSE;
1788
861fb55a
DJ
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796}
1797
1798/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
861fb55a
DJ
1803
1804static bfd_boolean
1805mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806{
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
f02cb058 1811 && !bfd_is_und_section (h->root.root.u.def.section)
8f0c309a
CLT
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816}
1817
8f0c309a
CLT
1818/* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821static bfd_vma
1822mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824{
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836}
1837
861fb55a
DJ
1838/* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842static bfd_boolean
1843mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845{
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1852 if (htab == NULL)
1853 return FALSE;
861fb55a
DJ
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
8f0c309a 1862 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883}
1884
1885/* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889static bfd_boolean
1890mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892{
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1897 if (htab == NULL)
1898 return FALSE;
861fb55a
DJ
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920}
1921
1922/* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925static bfd_boolean
1926mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928{
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
861fb55a
DJ
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1943 if (htab == NULL)
1944 return FALSE;
1945
861fb55a
DJ
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
8f0c309a
CLT
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
fe152e64
MR
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
8f0c309a
CLT
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
861fb55a
DJ
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976}
1977
1978/* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981static bfd_boolean
1982mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983{
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 1987 if (!bfd_link_relocatable (hti->info))
861fb55a 1988 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1989
861fb55a
DJ
1990 if (mips_elf_local_pic_function_p (h))
1991 {
ba85c43e
NC
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
861fb55a
DJ
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
0e1862bb 2002 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
b34976b6 2013 return TRUE;
b49e97c9
TS
2014}
2015\f
d6f16593
MR
2016/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
07d6d2b8 2025 | Immediate 15:0 |
d6f16593
MR
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
07d6d2b8
AM
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
d6f16593
MR
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
07d6d2b8
AM
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
d6f16593
MR
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
738e5348
RS
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
d6f16593
MR
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
738e5348
RS
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
c9775dde
MR
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
738e5348
RS
2104
2105static inline bfd_boolean
2106mips16_reloc_p (int r_type)
2107{
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
d0f13682
CLT
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
c9775dde 2123 case R_MIPS16_PC16_S1:
738e5348
RS
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129}
2130
df58fc94
RS
2131/* Check if a microMIPS reloc. */
2132
2133static inline bfd_boolean
2134micromips_reloc_p (unsigned int r_type)
2135{
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137}
2138
2139/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143static inline bfd_boolean
2144micromips_reloc_shuffle_p (unsigned int r_type)
2145{
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149}
2150
738e5348
RS
2151static inline bfd_boolean
2152got16_reloc_p (int r_type)
2153{
df58fc94
RS
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2157}
2158
2159static inline bfd_boolean
2160call16_reloc_p (int r_type)
2161{
df58fc94
RS
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165}
2166
2167static inline bfd_boolean
2168got_disp_reloc_p (unsigned int r_type)
2169{
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171}
2172
2173static inline bfd_boolean
2174got_page_reloc_p (unsigned int r_type)
2175{
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177}
2178
df58fc94
RS
2179static inline bfd_boolean
2180got_lo16_reloc_p (unsigned int r_type)
2181{
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183}
2184
2185static inline bfd_boolean
2186call_hi16_reloc_p (unsigned int r_type)
2187{
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189}
2190
2191static inline bfd_boolean
2192call_lo16_reloc_p (unsigned int r_type)
2193{
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2195}
2196
2197static inline bfd_boolean
2198hi16_reloc_p (int r_type)
2199{
df58fc94
RS
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
7361da2c
AB
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
738e5348 2204}
d6f16593 2205
738e5348
RS
2206static inline bfd_boolean
2207lo16_reloc_p (int r_type)
2208{
df58fc94
RS
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
7361da2c
AB
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
738e5348
RS
2213}
2214
2215static inline bfd_boolean
2216mips16_call_reloc_p (int r_type)
2217{
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219}
d6f16593 2220
38a7df63
CF
2221static inline bfd_boolean
2222jal_reloc_p (int r_type)
2223{
df58fc94
RS
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227}
2228
99aefae6
MR
2229static inline bfd_boolean
2230b_reloc_p (int r_type)
2231{
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
c9775dde 2235 || r_type == R_MIPS_GNU_REL16_S2
9d862524
MR
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
99aefae6
MR
2240}
2241
7361da2c
AB
2242static inline bfd_boolean
2243aligned_pcrel_reloc_p (int r_type)
2244{
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247}
2248
9d862524
MR
2249static inline bfd_boolean
2250branch_reloc_p (int r_type)
2251{
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257}
2258
c9775dde
MR
2259static inline bfd_boolean
2260mips16_branch_reloc_p (int r_type)
2261{
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264}
2265
df58fc94
RS
2266static inline bfd_boolean
2267micromips_branch_reloc_p (int r_type)
2268{
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273}
2274
2275static inline bfd_boolean
2276tls_gd_reloc_p (unsigned int r_type)
2277{
d0f13682
CLT
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2281}
2282
2283static inline bfd_boolean
2284tls_ldm_reloc_p (unsigned int r_type)
2285{
d0f13682
CLT
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2289}
2290
2291static inline bfd_boolean
2292tls_gottprel_reloc_p (unsigned int r_type)
2293{
d0f13682
CLT
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2297}
2298
d6f16593 2299void
df58fc94
RS
2300_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2302{
df58fc94 2303 bfd_vma first, second, val;
d6f16593 2304
df58fc94 2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2306 return;
2307
df58fc94
RS
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2316 else
df58fc94
RS
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2319 bfd_put_32 (abfd, val, data);
2320}
2321
2322void
df58fc94
RS
2323_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2325{
df58fc94 2326 bfd_vma first, second, val;
d6f16593 2327
df58fc94 2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
df58fc94 2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2333 {
df58fc94
RS
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2341 }
2342 else
2343 {
df58fc94
RS
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
d6f16593 2347 }
df58fc94
RS
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
d6f16593
MR
2350}
2351
b49e97c9 2352bfd_reloc_status_type
9719ad41
RS
2353_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2356{
2357 bfd_vma relocation;
a7ebbfdf 2358 bfd_signed_vma val;
30ac9238 2359 bfd_reloc_status_type status;
b49e97c9
TS
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
07515404 2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2370 return bfd_reloc_outofrange;
2371
b49e97c9 2372 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2373 val = reloc_entry->addend;
2374
30ac9238 2375 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2376
b49e97c9 2377 /* Adjust val for the final section location and GP value. If we
1049f94e 2378 are producing relocatable output, we don't want to do this for
b49e97c9 2379 an external symbol. */
1049f94e 2380 if (! relocatable
b49e97c9
TS
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
a7ebbfdf
TS
2384 if (reloc_entry->howto->partial_inplace)
2385 {
30ac9238
RS
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
a7ebbfdf
TS
2391 }
2392 else
2393 reloc_entry->addend = val;
b49e97c9 2394
1049f94e 2395 if (relocatable)
b49e97c9 2396 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2397
2398 return bfd_reloc_ok;
2399}
2400
2401/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406struct mips_hi16
2407{
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412};
2413
2414/* FIXME: This should not be a static variable. */
2415
2416static struct mips_hi16 *mips_hi16_list;
2417
2418/* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427bfd_reloc_status_type
2428_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432{
2433 struct mips_hi16 *n;
2434
07515404 2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452}
2453
738e5348 2454/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458bfd_reloc_status_type
2459_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462{
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473}
2474
2475/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479bfd_reloc_status_type
2480_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483{
2484 bfd_vma vallo;
d6f16593 2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2486
07515404 2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2488 return bfd_reloc_outofrange;
2489
df58fc94 2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2491 location);
df58fc94
RS
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
d6f16593 2495
30ac9238
RS
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
738e5348
RS
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
30ac9238
RS
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532}
2533
2534/* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538bfd_reloc_status_type
2539_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543{
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
07515404 2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
d6f16593
MR
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
30ac9238
RS
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
df58fc94
RS
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
30ac9238 2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2594 location);
df58fc94
RS
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
d6f16593 2597
30ac9238
RS
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2604
2605 return bfd_reloc_ok;
2606}
2607\f
2608/* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611static void
9719ad41
RS
2612bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
b49e97c9
TS
2614{
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617}
2618
2619static void
9719ad41
RS
2620bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
b49e97c9
TS
2622{
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625}
2626
2627static void
9719ad41
RS
2628bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
b49e97c9
TS
2630{
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637}
2638
2639static void
9719ad41
RS
2640bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
b49e97c9
TS
2642{
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652}
b49e97c9
TS
2653\f
2654/* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658void
9719ad41
RS
2659bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
b49e97c9
TS
2661{
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668}
2669
2670void
9719ad41
RS
2671bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
b49e97c9
TS
2673{
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680}
2681
2682/* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688void
9719ad41
RS
2689bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2691{
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699}
2700
2701void
9719ad41
RS
2702bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
b49e97c9
TS
2704{
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712}
2713
2714/* Swap in an options header. */
2715
2716void
9719ad41
RS
2717bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
b49e97c9
TS
2719{
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724}
2725
2726/* Swap out an options header. */
2727
2728void
9719ad41
RS
2729bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
b49e97c9
TS
2731{
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736}
351cdf24
MF
2737
2738/* Swap in an abiflags structure. */
2739
2740void
2741bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744{
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756}
2757
2758/* Swap out an abiflags structure. */
2759
2760void
2761bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764{
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776}
b49e97c9
TS
2777\f
2778/* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781static int
9719ad41 2782sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2783{
947216bf
AM
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
6870500c 2786 int diff;
b49e97c9 2787
947216bf
AM
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2790
6870500c
RS
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
b49e97c9
TS
2800}
2801
f4416af6
AO
2802/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804static int
7e3102a7
AM
2805sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2807{
7e3102a7 2808#ifdef BFD64
f4416af6
AO
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
6870500c
RS
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
7e3102a7
AM
2827#else
2828 abort ();
2829#endif
f4416af6
AO
2830}
2831
2832
b49e97c9
TS
2833/* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
b34976b6 2847static bfd_boolean
9719ad41 2848mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2849{
9719ad41 2850 struct extsym_info *einfo = data;
b34976b6 2851 bfd_boolean strip;
b49e97c9
TS
2852 asection *sec, *output_section;
2853
b49e97c9 2854 if (h->root.indx == -2)
b34976b6 2855 strip = FALSE;
f5385ebf 2856 else if ((h->root.def_dynamic
77cfaee6
AM
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
b34976b6 2861 strip = TRUE;
b49e97c9
TS
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
b34976b6
AM
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
b49e97c9 2868 else
b34976b6 2869 strip = FALSE;
b49e97c9
TS
2870
2871 if (strip)
b34976b6 2872 return TRUE;
b49e97c9
TS
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
07d6d2b8 2890 special symbols. */
b49e97c9
TS
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
4a14403c 2906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2907 {
2908 h->esym.asym.sc = scAbs;
2909 h->esym.asym.st = stLabel;
2910 h->esym.asym.value = elf_gp (einfo->abfd);
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
33bb52fb 2978 else
b49e97c9
TS
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2984
33bb52fb 2985 if (hd->needs_lazy_stub)
b49e97c9 2986 {
1bbce132
MR
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
1bbce132 2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
b49e97c9
TS
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
b34976b6
AM
3011 einfo->failed = TRUE;
3012 return FALSE;
b49e97c9
TS
3013 }
3014
b34976b6 3015 return TRUE;
b49e97c9
TS
3016}
3017
3018/* A comparison routine used to sort .gptab entries. */
3019
3020static int
9719ad41 3021gptab_compare (const void *p1, const void *p2)
b49e97c9 3022{
9719ad41
RS
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
b49e97c9
TS
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027}
3028\f
b15e6682 3029/* Functions to manage the got entry hash table. */
f4416af6
AO
3030
3031/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034static INLINE hashval_t
9719ad41 3035mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3036{
3037#ifdef BFD64
3038 return addr + (addr >> 32);
3039#else
3040 return addr;
3041#endif
3042}
3043
f4416af6 3044static hashval_t
d9bf376d 3045mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3046{
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
e641e783 3049 return (entry->symndx
9ab066b4
RS
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
f4416af6
AO
3056}
3057
3058static int
3dff0dd1 3059mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3060{
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
e641e783 3064 return (e1->symndx == e2->symndx
9ab066b4
RS
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3071}
c224138d 3072
13db6b44
RS
3073static hashval_t
3074mips_got_page_ref_hash (const void *ref_)
3075{
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083}
3084
3085static int
3086mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087{
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097}
3098
c224138d
RS
3099static hashval_t
3100mips_got_page_entry_hash (const void *entry_)
3101{
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3105 return entry->sec->id;
c224138d
RS
3106}
3107
3108static int
3109mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110{
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3115 return entry1->sec == entry2->sec;
c224138d 3116}
b15e6682 3117\f
3dff0dd1 3118/* Create and return a new mips_got_info structure. */
5334aa52
RS
3119
3120static struct mips_got_info *
3dff0dd1 3121mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3122{
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3dff0dd1
RS
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
13db6b44
RS
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
5334aa52
RS
3137 return NULL;
3138
3139 return g;
3140}
3141
ee227692
RS
3142/* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145static struct mips_got_info *
3146mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147{
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3dff0dd1 3155 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3156 return tdata->got;
3157}
3158
d7206569
RS
3159/* Record that ABFD should use output GOT G. */
3160
3161static void
3162mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163{
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
13db6b44
RS
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3176 }
3177 tdata->got = g;
3178}
3179
0a44bf69
RS
3180/* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
f4416af6
AO
3183
3184static asection *
0a44bf69 3185mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3186{
0a44bf69 3187 const char *dname;
f4416af6 3188 asection *sreloc;
0a44bf69 3189 bfd *dynobj;
f4416af6 3190
0a44bf69
RS
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3193 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3194 if (sreloc == NULL && create_p)
3195 {
3d4d4302
AM
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
f4416af6 3203 if (sreloc == NULL
f4416af6 3204 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3206 return NULL;
3207 }
3208 return sreloc;
3209}
3210
e641e783
RS
3211/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213static int
3214mips_elf_reloc_tls_type (unsigned int r_type)
3215{
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
9ab066b4 3225 return GOT_TLS_NONE;
e641e783
RS
3226}
3227
3228/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230static int
3231mips_tls_got_entries (unsigned int type)
3232{
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
9ab066b4 3242 case GOT_TLS_NONE:
e641e783
RS
3243 return 0;
3244 }
3245 abort ();
3246}
3247
0f20cc35
DJ
3248/* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252static int
3253mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255{
3256 int indx = 0;
0f20cc35
DJ
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
0e1862bb
L
3260 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3262 indx = h->dynindx;
3263
0e1862bb 3264 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3265 && (h == NULL
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || h->root.type != bfd_link_hash_undefweak))
3268 need_relocs = TRUE;
3269
3270 if (!need_relocs)
e641e783 3271 return 0;
0f20cc35 3272
9ab066b4 3273 switch (tls_type)
0f20cc35 3274 {
e641e783
RS
3275 case GOT_TLS_GD:
3276 return indx != 0 ? 2 : 1;
0f20cc35 3277
e641e783
RS
3278 case GOT_TLS_IE:
3279 return 1;
0f20cc35 3280
e641e783 3281 case GOT_TLS_LDM:
0e1862bb 3282 return bfd_link_pic (info) ? 1 : 0;
0f20cc35 3283
e641e783
RS
3284 default:
3285 return 0;
3286 }
0f20cc35
DJ
3287}
3288
ab361d49
RS
3289/* Add the number of GOT entries and TLS relocations required by ENTRY
3290 to G. */
0f20cc35 3291
ab361d49
RS
3292static void
3293mips_elf_count_got_entry (struct bfd_link_info *info,
3294 struct mips_got_info *g,
3295 struct mips_got_entry *entry)
0f20cc35 3296{
9ab066b4 3297 if (entry->tls_type)
ab361d49 3298 {
9ab066b4
RS
3299 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3301 entry->symndx < 0
3302 ? &entry->d.h->root : NULL);
3303 }
3304 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305 g->local_gotno += 1;
3306 else
3307 g->global_gotno += 1;
0f20cc35
DJ
3308}
3309
0f20cc35
DJ
3310/* Output a simple dynamic relocation into SRELOC. */
3311
3312static void
3313mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 asection *sreloc,
861fb55a 3315 unsigned long reloc_index,
0f20cc35
DJ
3316 unsigned long indx,
3317 int r_type,
3318 bfd_vma offset)
3319{
3320 Elf_Internal_Rela rel[3];
3321
3322 memset (rel, 0, sizeof (rel));
3323
3324 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3326
3327 if (ABI_64_P (output_bfd))
3328 {
3329 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
861fb55a 3332 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3333 }
3334 else
3335 bfd_elf32_swap_reloc_out
3336 (output_bfd, &rel[0],
3337 (sreloc->contents
861fb55a 3338 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3339}
3340
3341/* Initialize a set of TLS GOT entries for one symbol. */
3342
3343static void
9ab066b4
RS
3344mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 struct mips_got_entry *entry,
0f20cc35
DJ
3346 struct mips_elf_link_hash_entry *h,
3347 bfd_vma value)
3348{
23cc69b6 3349 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3350 int indx;
3351 asection *sreloc, *sgot;
9ab066b4 3352 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3353 bfd_boolean need_relocs = FALSE;
3354
23cc69b6 3355 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3356 if (htab == NULL)
3357 return;
3358
ce558b89 3359 sgot = htab->root.sgot;
0f20cc35
DJ
3360
3361 indx = 0;
3362 if (h != NULL)
3363 {
3364 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3365
0e1862bb
L
3366 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 &h->root)
3368 && (!bfd_link_pic (info)
3369 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
0f20cc35
DJ
3370 indx = h->root.dynindx;
3371 }
3372
9ab066b4 3373 if (entry->tls_initialized)
0f20cc35
DJ
3374 return;
3375
0e1862bb 3376 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3377 && (h == NULL
3378 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 || h->root.type != bfd_link_hash_undefweak))
3380 need_relocs = TRUE;
3381
3382 /* MINUS_ONE means the symbol is not defined in this object. It may not
3383 be defined at all; assume that the value doesn't matter in that
3384 case. Otherwise complain if we would use the value. */
3385 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 || h->root.root.type == bfd_link_hash_undefweak);
3387
3388 /* Emit necessary relocations. */
0a44bf69 3389 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3390 got_offset = entry->gotidx;
0f20cc35 3391
9ab066b4 3392 switch (entry->tls_type)
0f20cc35 3393 {
e641e783
RS
3394 case GOT_TLS_GD:
3395 /* General Dynamic. */
3396 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3397
3398 if (need_relocs)
3399 {
3400 mips_elf_output_dynamic_relocation
861fb55a 3401 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3403 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3404
3405 if (indx)
3406 mips_elf_output_dynamic_relocation
861fb55a 3407 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3408 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3409 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3410 else
3411 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3412 sgot->contents + got_offset2);
0f20cc35
DJ
3413 }
3414 else
3415 {
3416 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3417 sgot->contents + got_offset);
0f20cc35 3418 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3419 sgot->contents + got_offset2);
0f20cc35 3420 }
e641e783 3421 break;
0f20cc35 3422
e641e783
RS
3423 case GOT_TLS_IE:
3424 /* Initial Exec model. */
0f20cc35
DJ
3425 if (need_relocs)
3426 {
3427 if (indx == 0)
3428 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3429 sgot->contents + got_offset);
0f20cc35
DJ
3430 else
3431 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3432 sgot->contents + got_offset);
0f20cc35
DJ
3433
3434 mips_elf_output_dynamic_relocation
861fb55a 3435 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3436 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3437 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3438 }
3439 else
3440 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3441 sgot->contents + got_offset);
3442 break;
0f20cc35 3443
e641e783 3444 case GOT_TLS_LDM:
0f20cc35
DJ
3445 /* The initial offset is zero, and the LD offsets will include the
3446 bias by DTP_OFFSET. */
3447 MIPS_ELF_PUT_WORD (abfd, 0,
3448 sgot->contents + got_offset
3449 + MIPS_ELF_GOT_SIZE (abfd));
3450
0e1862bb 3451 if (!bfd_link_pic (info))
0f20cc35
DJ
3452 MIPS_ELF_PUT_WORD (abfd, 1,
3453 sgot->contents + got_offset);
3454 else
3455 mips_elf_output_dynamic_relocation
861fb55a 3456 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3457 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3459 break;
3460
3461 default:
3462 abort ();
0f20cc35
DJ
3463 }
3464
9ab066b4 3465 entry->tls_initialized = TRUE;
e641e783 3466}
0f20cc35 3467
0a44bf69
RS
3468/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469 for global symbol H. .got.plt comes before the GOT, so the offset
3470 will be negative. */
3471
3472static bfd_vma
3473mips_elf_gotplt_index (struct bfd_link_info *info,
3474 struct elf_link_hash_entry *h)
3475{
1bbce132 3476 bfd_vma got_address, got_value;
0a44bf69
RS
3477 struct mips_elf_link_hash_table *htab;
3478
3479 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3480 BFD_ASSERT (htab != NULL);
3481
1bbce132
MR
3482 BFD_ASSERT (h->plt.plist != NULL);
3483 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3484
3485 /* Calculate the address of the associated .got.plt entry. */
ce558b89
AM
3486 got_address = (htab->root.sgotplt->output_section->vma
3487 + htab->root.sgotplt->output_offset
1bbce132
MR
3488 + (h->plt.plist->gotplt_index
3489 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3490
3491 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3492 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 + htab->root.hgot->root.u.def.section->output_offset
3494 + htab->root.hgot->root.u.def.value);
3495
3496 return got_address - got_value;
3497}
3498
5c18022e 3499/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3500 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3501 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3502 offset can be found. */
b49e97c9
TS
3503
3504static bfd_vma
9719ad41 3505mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3506 bfd_vma value, unsigned long r_symndx,
0f20cc35 3507 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3508{
a8028dd0 3509 struct mips_elf_link_hash_table *htab;
b15e6682 3510 struct mips_got_entry *entry;
b49e97c9 3511
a8028dd0 3512 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3513 BFD_ASSERT (htab != NULL);
3514
a8028dd0
RS
3515 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 r_symndx, h, r_type);
0f20cc35 3517 if (!entry)
b15e6682 3518 return MINUS_ONE;
0f20cc35 3519
e641e783 3520 if (entry->tls_type)
9ab066b4
RS
3521 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522 return entry->gotidx;
b49e97c9
TS
3523}
3524
13fbec83 3525/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3526
3527static bfd_vma
13fbec83
RS
3528mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 struct elf_link_hash_entry *h)
3530{
3531 struct mips_elf_link_hash_table *htab;
3532 long global_got_dynindx;
3533 struct mips_got_info *g;
3534 bfd_vma got_index;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 global_got_dynindx = 0;
3540 if (htab->global_gotsym != NULL)
3541 global_got_dynindx = htab->global_gotsym->dynindx;
3542
3543 /* Once we determine the global GOT entry with the lowest dynamic
3544 symbol table index, we must put all dynamic symbols with greater
3545 indices into the primary GOT. That makes it easy to calculate the
3546 GOT offset. */
3547 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548 g = mips_elf_bfd_got (obfd, FALSE);
3549 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 * MIPS_ELF_GOT_SIZE (obfd));
ce558b89 3551 BFD_ASSERT (got_index < htab->root.sgot->size);
13fbec83
RS
3552
3553 return got_index;
3554}
3555
3556/* Return the GOT index for the global symbol indicated by H, which is
3557 referenced by a relocation of type R_TYPE in IBFD. */
3558
3559static bfd_vma
3560mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3562{
a8028dd0 3563 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3564 struct mips_got_info *g;
3565 struct mips_got_entry lookup, *entry;
3566 bfd_vma gotidx;
b49e97c9 3567
a8028dd0 3568 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3569 BFD_ASSERT (htab != NULL);
3570
6c42ddb9
RS
3571 g = mips_elf_bfd_got (ibfd, FALSE);
3572 BFD_ASSERT (g);
f4416af6 3573
6c42ddb9
RS
3574 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3577
6c42ddb9
RS
3578 lookup.abfd = ibfd;
3579 lookup.symndx = -1;
3580 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581 entry = htab_find (g->got_entries, &lookup);
3582 BFD_ASSERT (entry);
0f20cc35 3583
6c42ddb9 3584 gotidx = entry->gotidx;
ce558b89 3585 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
f4416af6 3586
6c42ddb9 3587 if (lookup.tls_type)
0f20cc35 3588 {
0f20cc35
DJ
3589 bfd_vma value = MINUS_ONE;
3590
3591 if ((h->root.type == bfd_link_hash_defined
3592 || h->root.type == bfd_link_hash_defweak)
3593 && h->root.u.def.section->output_section)
3594 value = (h->root.u.def.value
3595 + h->root.u.def.section->output_offset
3596 + h->root.u.def.section->output_section->vma);
3597
9ab066b4 3598 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3599 }
6c42ddb9 3600 return gotidx;
b49e97c9
TS
3601}
3602
5c18022e
RS
3603/* Find a GOT page entry that points to within 32KB of VALUE. These
3604 entries are supposed to be placed at small offsets in the GOT, i.e.,
3605 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3606 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3607 offset of the GOT entry from VALUE. */
b49e97c9
TS
3608
3609static bfd_vma
9719ad41 3610mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3611 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3612{
91d6fa6a 3613 bfd_vma page, got_index;
b15e6682 3614 struct mips_got_entry *entry;
b49e97c9 3615
0a44bf69 3616 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3617 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3619
b15e6682
AO
3620 if (!entry)
3621 return MINUS_ONE;
143d77c5 3622
91d6fa6a 3623 got_index = entry->gotidx;
b49e97c9
TS
3624
3625 if (offsetp)
f4416af6 3626 *offsetp = value - entry->d.address;
b49e97c9 3627
91d6fa6a 3628 return got_index;
b49e97c9
TS
3629}
3630
738e5348 3631/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3632 EXTERNAL is true if the relocation was originally against a global
3633 symbol that binds locally. */
b49e97c9
TS
3634
3635static bfd_vma
9719ad41 3636mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3637 bfd_vma value, bfd_boolean external)
b49e97c9 3638{
b15e6682 3639 struct mips_got_entry *entry;
b49e97c9 3640
0a44bf69
RS
3641 /* GOT16 relocations against local symbols are followed by a LO16
3642 relocation; those against global symbols are not. Thus if the
3643 symbol was originally local, the GOT16 relocation should load the
3644 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3645 if (! external)
0a44bf69 3646 value = mips_elf_high (value) << 16;
b49e97c9 3647
738e5348
RS
3648 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3650 same in all cases. */
a8028dd0
RS
3651 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 NULL, R_MIPS_GOT16);
b15e6682
AO
3653 if (entry)
3654 return entry->gotidx;
3655 else
3656 return MINUS_ONE;
b49e97c9
TS
3657}
3658
3659/* Returns the offset for the entry at the INDEXth position
3660 in the GOT. */
3661
3662static bfd_vma
a8028dd0 3663mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3664 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3665{
a8028dd0 3666 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3667 asection *sgot;
3668 bfd_vma gp;
3669
a8028dd0 3670 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3671 BFD_ASSERT (htab != NULL);
3672
ce558b89 3673 sgot = htab->root.sgot;
f4416af6 3674 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3675 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3676
91d6fa6a 3677 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3678}
3679
0a44bf69
RS
3680/* Create and return a local GOT entry for VALUE, which was calculated
3681 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3682 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 instead. */
b49e97c9 3684
b15e6682 3685static struct mips_got_entry *
0a44bf69 3686mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3687 bfd *ibfd, bfd_vma value,
5c18022e 3688 unsigned long r_symndx,
0f20cc35
DJ
3689 struct mips_elf_link_hash_entry *h,
3690 int r_type)
b49e97c9 3691{
ebc53538
RS
3692 struct mips_got_entry lookup, *entry;
3693 void **loc;
f4416af6 3694 struct mips_got_info *g;
0a44bf69 3695 struct mips_elf_link_hash_table *htab;
6c42ddb9 3696 bfd_vma gotidx;
0a44bf69
RS
3697
3698 htab = mips_elf_hash_table (info);
4dfe6ac6 3699 BFD_ASSERT (htab != NULL);
b15e6682 3700
d7206569 3701 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3702 if (g == NULL)
3703 {
d7206569 3704 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3705 BFD_ASSERT (g != NULL);
3706 }
b15e6682 3707
020d7251
RS
3708 /* This function shouldn't be called for symbols that live in the global
3709 area of the GOT. */
3710 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3711
ebc53538
RS
3712 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713 if (lookup.tls_type)
3714 {
3715 lookup.abfd = ibfd;
df58fc94 3716 if (tls_ldm_reloc_p (r_type))
0f20cc35 3717 {
ebc53538
RS
3718 lookup.symndx = 0;
3719 lookup.d.addend = 0;
0f20cc35
DJ
3720 }
3721 else if (h == NULL)
3722 {
ebc53538
RS
3723 lookup.symndx = r_symndx;
3724 lookup.d.addend = 0;
0f20cc35
DJ
3725 }
3726 else
ebc53538
RS
3727 {
3728 lookup.symndx = -1;
3729 lookup.d.h = h;
3730 }
0f20cc35 3731
ebc53538
RS
3732 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733 BFD_ASSERT (entry);
0f20cc35 3734
6c42ddb9 3735 gotidx = entry->gotidx;
ce558b89 3736 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
6c42ddb9 3737
ebc53538 3738 return entry;
0f20cc35
DJ
3739 }
3740
ebc53538
RS
3741 lookup.abfd = NULL;
3742 lookup.symndx = -1;
3743 lookup.d.address = value;
3744 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 if (!loc)
b15e6682 3746 return NULL;
143d77c5 3747
ebc53538
RS
3748 entry = (struct mips_got_entry *) *loc;
3749 if (entry)
3750 return entry;
b15e6682 3751
cb22ccf4 3752 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3753 {
3754 /* We didn't allocate enough space in the GOT. */
4eca0228 3755 _bfd_error_handler
b49e97c9
TS
3756 (_("not enough GOT space for local GOT entries"));
3757 bfd_set_error (bfd_error_bad_value);
b15e6682 3758 return NULL;
b49e97c9
TS
3759 }
3760
ebc53538
RS
3761 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (!entry)
3763 return NULL;
3764
cb22ccf4
KCY
3765 if (got16_reloc_p (r_type)
3766 || call16_reloc_p (r_type)
3767 || got_page_reloc_p (r_type)
3768 || got_disp_reloc_p (r_type))
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770 else
3771 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772
ebc53538
RS
3773 *entry = lookup;
3774 *loc = entry;
3775
ce558b89 3776 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
b15e6682 3777
5c18022e 3778 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3779 if (htab->is_vxworks)
3780 {
3781 Elf_Internal_Rela outrel;
5c18022e 3782 asection *s;
91d6fa6a 3783 bfd_byte *rloc;
0a44bf69 3784 bfd_vma got_address;
0a44bf69
RS
3785
3786 s = mips_elf_rel_dyn_section (info, FALSE);
ce558b89
AM
3787 got_address = (htab->root.sgot->output_section->vma
3788 + htab->root.sgot->output_offset
ebc53538 3789 + entry->gotidx);
0a44bf69 3790
91d6fa6a 3791 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3792 outrel.r_offset = got_address;
5c18022e
RS
3793 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794 outrel.r_addend = value;
91d6fa6a 3795 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3796 }
3797
ebc53538 3798 return entry;
b49e97c9
TS
3799}
3800
d4596a51
RS
3801/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802 The number might be exact or a worst-case estimate, depending on how
3803 much information is available to elf_backend_omit_section_dynsym at
3804 the current linking stage. */
3805
3806static bfd_size_type
3807count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3808{
3809 bfd_size_type count;
3810
3811 count = 0;
0e1862bb
L
3812 if (bfd_link_pic (info)
3813 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3814 {
3815 asection *p;
3816 const struct elf_backend_data *bed;
3817
3818 bed = get_elf_backend_data (output_bfd);
3819 for (p = output_bfd->sections; p ; p = p->next)
3820 if ((p->flags & SEC_EXCLUDE) == 0
3821 && (p->flags & SEC_ALLOC) != 0
3822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 ++count;
3824 }
3825 return count;
3826}
3827
b49e97c9 3828/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3829 appear towards the end. */
b49e97c9 3830
b34976b6 3831static bfd_boolean
d4596a51 3832mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3833{
a8028dd0 3834 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3835 struct mips_elf_hash_sort_data hsd;
3836 struct mips_got_info *g;
b49e97c9 3837
a8028dd0 3838 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3839 BFD_ASSERT (htab != NULL);
3840
0f8c4b60 3841 if (htab->root.dynsymcount == 0)
17a80fa8
MR
3842 return TRUE;
3843
a8028dd0 3844 g = htab->got_info;
d4596a51
RS
3845 if (g == NULL)
3846 return TRUE;
f4416af6 3847
b49e97c9 3848 hsd.low = NULL;
23cc69b6
RS
3849 hsd.max_unref_got_dynindx
3850 = hsd.min_got_dynindx
0f8c4b60 3851 = (htab->root.dynsymcount - g->reloc_only_gotno);
e17b0c35
MR
3852 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3853 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3854 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3855 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
0f8c4b60 3856 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
b49e97c9
TS
3857
3858 /* There should have been enough room in the symbol table to
44c410de 3859 accommodate both the GOT and non-GOT symbols. */
e17b0c35 3860 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
b49e97c9 3861 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
55f8b9d2 3862 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
0f8c4b60 3863 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
b49e97c9
TS
3864
3865 /* Now we know which dynamic symbol has the lowest dynamic symbol
3866 table index in the GOT. */
d222d210 3867 htab->global_gotsym = hsd.low;
b49e97c9 3868
b34976b6 3869 return TRUE;
b49e97c9
TS
3870}
3871
3872/* If H needs a GOT entry, assign it the highest available dynamic
3873 index. Otherwise, assign it the lowest available dynamic
3874 index. */
3875
b34976b6 3876static bfd_boolean
9719ad41 3877mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3878{
9719ad41 3879 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3880
b49e97c9
TS
3881 /* Symbols without dynamic symbol table entries aren't interesting
3882 at all. */
3883 if (h->root.dynindx == -1)
b34976b6 3884 return TRUE;
b49e97c9 3885
634835ae 3886 switch (h->global_got_area)
f4416af6 3887 {
634835ae 3888 case GGA_NONE:
e17b0c35
MR
3889 if (h->root.forced_local)
3890 h->root.dynindx = hsd->max_local_dynindx++;
3891 else
3892 h->root.dynindx = hsd->max_non_got_dynindx++;
634835ae 3893 break;
0f20cc35 3894
634835ae 3895 case GGA_NORMAL:
b49e97c9
TS
3896 h->root.dynindx = --hsd->min_got_dynindx;
3897 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3898 break;
3899
3900 case GGA_RELOC_ONLY:
634835ae
RS
3901 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3902 hsd->low = (struct elf_link_hash_entry *) h;
3903 h->root.dynindx = hsd->max_unref_got_dynindx++;
3904 break;
b49e97c9
TS
3905 }
3906
b34976b6 3907 return TRUE;
b49e97c9
TS
3908}
3909
ee227692
RS
3910/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3911 (which is owned by the caller and shouldn't be added to the
3912 hash table directly). */
3913
3914static bfd_boolean
3915mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3916 struct mips_got_entry *lookup)
3917{
3918 struct mips_elf_link_hash_table *htab;
3919 struct mips_got_entry *entry;
3920 struct mips_got_info *g;
3921 void **loc, **bfd_loc;
3922
3923 /* Make sure there's a slot for this entry in the master GOT. */
3924 htab = mips_elf_hash_table (info);
3925 g = htab->got_info;
3926 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3927 if (!loc)
3928 return FALSE;
3929
3930 /* Populate the entry if it isn't already. */
3931 entry = (struct mips_got_entry *) *loc;
3932 if (!entry)
3933 {
3934 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3935 if (!entry)
3936 return FALSE;
3937
9ab066b4 3938 lookup->tls_initialized = FALSE;
ee227692
RS
3939 lookup->gotidx = -1;
3940 *entry = *lookup;
3941 *loc = entry;
3942 }
3943
3944 /* Reuse the same GOT entry for the BFD's GOT. */
3945 g = mips_elf_bfd_got (abfd, TRUE);
3946 if (!g)
3947 return FALSE;
3948
3949 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3950 if (!bfd_loc)
3951 return FALSE;
3952
3953 if (!*bfd_loc)
3954 *bfd_loc = entry;
3955 return TRUE;
3956}
3957
e641e783
RS
3958/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3959 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3960 using the GOT entry for calls. */
b49e97c9 3961
b34976b6 3962static bfd_boolean
9719ad41
RS
3963mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3964 bfd *abfd, struct bfd_link_info *info,
e641e783 3965 bfd_boolean for_call, int r_type)
b49e97c9 3966{
a8028dd0 3967 struct mips_elf_link_hash_table *htab;
634835ae 3968 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
3969 struct mips_got_entry entry;
3970 unsigned char tls_type;
a8028dd0
RS
3971
3972 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3973 BFD_ASSERT (htab != NULL);
3974
634835ae 3975 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3976 if (!for_call)
3977 hmips->got_only_for_calls = FALSE;
f4416af6 3978
b49e97c9
TS
3979 /* A global symbol in the GOT must also be in the dynamic symbol
3980 table. */
7c5fcef7
L
3981 if (h->dynindx == -1)
3982 {
3983 switch (ELF_ST_VISIBILITY (h->other))
3984 {
3985 case STV_INTERNAL:
3986 case STV_HIDDEN:
33bb52fb 3987 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3988 break;
3989 }
c152c796 3990 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3991 return FALSE;
7c5fcef7 3992 }
b49e97c9 3993
ee227692 3994 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 3995 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 3996 hmips->global_got_area = GGA_NORMAL;
86324f90 3997
f4416af6
AO
3998 entry.abfd = abfd;
3999 entry.symndx = -1;
4000 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
4001 entry.tls_type = tls_type;
4002 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 4003}
f4416af6 4004
e641e783
RS
4005/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4006 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
4007
4008static bfd_boolean
9719ad41 4009mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 4010 struct bfd_link_info *info, int r_type)
f4416af6 4011{
a8028dd0
RS
4012 struct mips_elf_link_hash_table *htab;
4013 struct mips_got_info *g;
ee227692 4014 struct mips_got_entry entry;
f4416af6 4015
a8028dd0 4016 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4017 BFD_ASSERT (htab != NULL);
4018
a8028dd0
RS
4019 g = htab->got_info;
4020 BFD_ASSERT (g != NULL);
4021
f4416af6
AO
4022 entry.abfd = abfd;
4023 entry.symndx = symndx;
4024 entry.d.addend = addend;
e641e783 4025 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 4026 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 4027}
c224138d 4028
13db6b44
RS
4029/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4030 H is the symbol's hash table entry, or null if SYMNDX is local
4031 to ABFD. */
c224138d
RS
4032
4033static bfd_boolean
13db6b44
RS
4034mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4035 long symndx, struct elf_link_hash_entry *h,
4036 bfd_signed_vma addend)
c224138d 4037{
a8028dd0 4038 struct mips_elf_link_hash_table *htab;
ee227692 4039 struct mips_got_info *g1, *g2;
13db6b44 4040 struct mips_got_page_ref lookup, *entry;
ee227692 4041 void **loc, **bfd_loc;
c224138d 4042
a8028dd0 4043 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4044 BFD_ASSERT (htab != NULL);
4045
ee227692
RS
4046 g1 = htab->got_info;
4047 BFD_ASSERT (g1 != NULL);
a8028dd0 4048
13db6b44
RS
4049 if (h)
4050 {
4051 lookup.symndx = -1;
4052 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4053 }
4054 else
4055 {
4056 lookup.symndx = symndx;
4057 lookup.u.abfd = abfd;
4058 }
4059 lookup.addend = addend;
4060 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4061 if (loc == NULL)
4062 return FALSE;
4063
13db6b44 4064 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4065 if (!entry)
4066 {
4067 entry = bfd_alloc (abfd, sizeof (*entry));
4068 if (!entry)
4069 return FALSE;
4070
13db6b44 4071 *entry = lookup;
c224138d
RS
4072 *loc = entry;
4073 }
4074
ee227692
RS
4075 /* Add the same entry to the BFD's GOT. */
4076 g2 = mips_elf_bfd_got (abfd, TRUE);
4077 if (!g2)
4078 return FALSE;
4079
13db6b44 4080 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4081 if (!bfd_loc)
4082 return FALSE;
4083
4084 if (!*bfd_loc)
4085 *bfd_loc = entry;
4086
c224138d
RS
4087 return TRUE;
4088}
33bb52fb
RS
4089
4090/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4091
4092static void
4093mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4094 unsigned int n)
4095{
4096 asection *s;
4097 struct mips_elf_link_hash_table *htab;
4098
4099 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4100 BFD_ASSERT (htab != NULL);
4101
33bb52fb
RS
4102 s = mips_elf_rel_dyn_section (info, FALSE);
4103 BFD_ASSERT (s != NULL);
4104
4105 if (htab->is_vxworks)
4106 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4107 else
4108 {
4109 if (s->size == 0)
4110 {
4111 /* Make room for a null element. */
4112 s->size += MIPS_ELF_REL_SIZE (abfd);
4113 ++s->reloc_count;
4114 }
4115 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4116 }
4117}
4118\f
476366af
RS
4119/* A htab_traverse callback for GOT entries, with DATA pointing to a
4120 mips_elf_traverse_got_arg structure. Count the number of GOT
4121 entries and TLS relocs. Set DATA->value to true if we need
4122 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4123
4124static int
4125mips_elf_check_recreate_got (void **entryp, void *data)
4126{
4127 struct mips_got_entry *entry;
476366af 4128 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4129
4130 entry = (struct mips_got_entry *) *entryp;
476366af 4131 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4132 if (entry->abfd != NULL && entry->symndx == -1)
4133 {
4134 struct mips_elf_link_hash_entry *h;
4135
4136 h = entry->d.h;
4137 if (h->root.root.type == bfd_link_hash_indirect
4138 || h->root.root.type == bfd_link_hash_warning)
4139 {
476366af 4140 arg->value = TRUE;
33bb52fb
RS
4141 return 0;
4142 }
4143 }
476366af 4144 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4145 return 1;
4146}
4147
476366af
RS
4148/* A htab_traverse callback for GOT entries, with DATA pointing to a
4149 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4150 converting entries for indirect and warning symbols into entries
4151 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4152
4153static int
4154mips_elf_recreate_got (void **entryp, void *data)
4155{
72e7511a 4156 struct mips_got_entry new_entry, *entry;
476366af 4157 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4158 void **slot;
4159
33bb52fb 4160 entry = (struct mips_got_entry *) *entryp;
476366af 4161 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4162 if (entry->abfd != NULL
4163 && entry->symndx == -1
4164 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4165 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4166 {
4167 struct mips_elf_link_hash_entry *h;
4168
72e7511a
RS
4169 new_entry = *entry;
4170 entry = &new_entry;
33bb52fb 4171 h = entry->d.h;
72e7511a 4172 do
634835ae
RS
4173 {
4174 BFD_ASSERT (h->global_got_area == GGA_NONE);
4175 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4176 }
72e7511a
RS
4177 while (h->root.root.type == bfd_link_hash_indirect
4178 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4179 entry->d.h = h;
4180 }
476366af 4181 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4182 if (slot == NULL)
4183 {
476366af 4184 arg->g = NULL;
33bb52fb
RS
4185 return 0;
4186 }
4187 if (*slot == NULL)
72e7511a
RS
4188 {
4189 if (entry == &new_entry)
4190 {
4191 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4192 if (!entry)
4193 {
476366af 4194 arg->g = NULL;
72e7511a
RS
4195 return 0;
4196 }
4197 *entry = new_entry;
4198 }
4199 *slot = entry;
476366af 4200 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4201 }
33bb52fb
RS
4202 return 1;
4203}
4204
13db6b44
RS
4205/* Return the maximum number of GOT page entries required for RANGE. */
4206
4207static bfd_vma
4208mips_elf_pages_for_range (const struct mips_got_page_range *range)
4209{
4210 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4211}
4212
4213/* Record that G requires a page entry that can reach SEC + ADDEND. */
4214
4215static bfd_boolean
b75d42bc 4216mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4217 asection *sec, bfd_signed_vma addend)
4218{
b75d42bc 4219 struct mips_got_info *g = arg->g;
13db6b44
RS
4220 struct mips_got_page_entry lookup, *entry;
4221 struct mips_got_page_range **range_ptr, *range;
4222 bfd_vma old_pages, new_pages;
4223 void **loc;
4224
4225 /* Find the mips_got_page_entry hash table entry for this section. */
4226 lookup.sec = sec;
4227 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4228 if (loc == NULL)
4229 return FALSE;
4230
4231 /* Create a mips_got_page_entry if this is the first time we've
4232 seen the section. */
4233 entry = (struct mips_got_page_entry *) *loc;
4234 if (!entry)
4235 {
b75d42bc 4236 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4237 if (!entry)
4238 return FALSE;
4239
4240 entry->sec = sec;
4241 *loc = entry;
4242 }
4243
4244 /* Skip over ranges whose maximum extent cannot share a page entry
4245 with ADDEND. */
4246 range_ptr = &entry->ranges;
4247 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4248 range_ptr = &(*range_ptr)->next;
4249
4250 /* If we scanned to the end of the list, or found a range whose
4251 minimum extent cannot share a page entry with ADDEND, create
4252 a new singleton range. */
4253 range = *range_ptr;
4254 if (!range || addend < range->min_addend - 0xffff)
4255 {
b75d42bc 4256 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4257 if (!range)
4258 return FALSE;
4259
4260 range->next = *range_ptr;
4261 range->min_addend = addend;
4262 range->max_addend = addend;
4263
4264 *range_ptr = range;
4265 entry->num_pages++;
4266 g->page_gotno++;
4267 return TRUE;
4268 }
4269
4270 /* Remember how many pages the old range contributed. */
4271 old_pages = mips_elf_pages_for_range (range);
4272
4273 /* Update the ranges. */
4274 if (addend < range->min_addend)
4275 range->min_addend = addend;
4276 else if (addend > range->max_addend)
4277 {
4278 if (range->next && addend >= range->next->min_addend - 0xffff)
4279 {
4280 old_pages += mips_elf_pages_for_range (range->next);
4281 range->max_addend = range->next->max_addend;
4282 range->next = range->next->next;
4283 }
4284 else
4285 range->max_addend = addend;
4286 }
4287
4288 /* Record any change in the total estimate. */
4289 new_pages = mips_elf_pages_for_range (range);
4290 if (old_pages != new_pages)
4291 {
4292 entry->num_pages += new_pages - old_pages;
4293 g->page_gotno += new_pages - old_pages;
4294 }
4295
4296 return TRUE;
4297}
4298
4299/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4300 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4301 whether the page reference described by *REFP needs a GOT page entry,
4302 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4303
4304static bfd_boolean
4305mips_elf_resolve_got_page_ref (void **refp, void *data)
4306{
4307 struct mips_got_page_ref *ref;
4308 struct mips_elf_traverse_got_arg *arg;
4309 struct mips_elf_link_hash_table *htab;
4310 asection *sec;
4311 bfd_vma addend;
4312
4313 ref = (struct mips_got_page_ref *) *refp;
4314 arg = (struct mips_elf_traverse_got_arg *) data;
4315 htab = mips_elf_hash_table (arg->info);
4316
4317 if (ref->symndx < 0)
4318 {
4319 struct mips_elf_link_hash_entry *h;
4320
4321 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4322 h = ref->u.h;
4323 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4324 return 1;
4325
4326 /* Ignore undefined symbols; we'll issue an error later if
4327 appropriate. */
4328 if (!((h->root.root.type == bfd_link_hash_defined
4329 || h->root.root.type == bfd_link_hash_defweak)
4330 && h->root.root.u.def.section))
4331 return 1;
4332
4333 sec = h->root.root.u.def.section;
4334 addend = h->root.root.u.def.value + ref->addend;
4335 }
4336 else
4337 {
4338 Elf_Internal_Sym *isym;
4339
4340 /* Read in the symbol. */
4341 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4342 ref->symndx);
4343 if (isym == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* Get the associated input section. */
4350 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351 if (sec == NULL)
4352 {
4353 arg->g = NULL;
4354 return 0;
4355 }
4356
4357 /* If this is a mergable section, work out the section and offset
4358 of the merged data. For section symbols, the addend specifies
4359 of the offset _of_ the first byte in the data, otherwise it
4360 specifies the offset _from_ the first byte. */
4361 if (sec->flags & SEC_MERGE)
4362 {
4363 void *secinfo;
4364
4365 secinfo = elf_section_data (sec)->sec_info;
4366 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4367 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4368 isym->st_value + ref->addend);
4369 else
4370 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4371 isym->st_value) + ref->addend;
4372 }
4373 else
4374 addend = isym->st_value + ref->addend;
4375 }
b75d42bc 4376 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4377 {
4378 arg->g = NULL;
4379 return 0;
4380 }
4381 return 1;
4382}
4383
33bb52fb 4384/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4385 replace them with entries for the target symbol. Convert g->got_page_refs
4386 into got_page_entry structures and estimate the number of page entries
4387 that they require. */
33bb52fb
RS
4388
4389static bfd_boolean
476366af
RS
4390mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4391 struct mips_got_info *g)
33bb52fb 4392{
476366af
RS
4393 struct mips_elf_traverse_got_arg tga;
4394 struct mips_got_info oldg;
4395
4396 oldg = *g;
33bb52fb 4397
476366af
RS
4398 tga.info = info;
4399 tga.g = g;
4400 tga.value = FALSE;
4401 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4402 if (tga.value)
33bb52fb 4403 {
476366af
RS
4404 *g = oldg;
4405 g->got_entries = htab_create (htab_size (oldg.got_entries),
4406 mips_elf_got_entry_hash,
4407 mips_elf_got_entry_eq, NULL);
4408 if (!g->got_entries)
33bb52fb
RS
4409 return FALSE;
4410
476366af
RS
4411 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4412 if (!tga.g)
4413 return FALSE;
4414
4415 htab_delete (oldg.got_entries);
33bb52fb 4416 }
13db6b44
RS
4417
4418 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4419 mips_got_page_entry_eq, NULL);
4420 if (g->got_page_entries == NULL)
4421 return FALSE;
4422
4423 tga.info = info;
4424 tga.g = g;
4425 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4426
33bb52fb
RS
4427 return TRUE;
4428}
4429
c5d6fa44
RS
4430/* Return true if a GOT entry for H should live in the local rather than
4431 global GOT area. */
4432
4433static bfd_boolean
4434mips_use_local_got_p (struct bfd_link_info *info,
4435 struct mips_elf_link_hash_entry *h)
4436{
4437 /* Symbols that aren't in the dynamic symbol table must live in the
4438 local GOT. This includes symbols that are completely undefined
4439 and which therefore don't bind locally. We'll report undefined
4440 symbols later if appropriate. */
4441 if (h->root.dynindx == -1)
4442 return TRUE;
4443
4444 /* Symbols that bind locally can (and in the case of forced-local
4445 symbols, must) live in the local GOT. */
4446 if (h->got_only_for_calls
4447 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4448 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4449 return TRUE;
4450
4451 /* If this is an executable that must provide a definition of the symbol,
4452 either though PLTs or copy relocations, then that address should go in
4453 the local rather than global GOT. */
0e1862bb 4454 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4455 return TRUE;
4456
4457 return FALSE;
4458}
4459
6c42ddb9
RS
4460/* A mips_elf_link_hash_traverse callback for which DATA points to the
4461 link_info structure. Decide whether the hash entry needs an entry in
4462 the global part of the primary GOT, setting global_got_area accordingly.
4463 Count the number of global symbols that are in the primary GOT only
4464 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4465
4466static int
d4596a51 4467mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4468{
020d7251 4469 struct bfd_link_info *info;
6ccf4795 4470 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4471 struct mips_got_info *g;
4472
020d7251 4473 info = (struct bfd_link_info *) data;
6ccf4795
RS
4474 htab = mips_elf_hash_table (info);
4475 g = htab->got_info;
d4596a51 4476 if (h->global_got_area != GGA_NONE)
33bb52fb 4477 {
020d7251 4478 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4479 local or global GOT. */
4480 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4481 /* The symbol belongs in the local GOT. We no longer need this
4482 entry if it was only used for relocations; those relocations
4483 will be against the null or section symbol instead of H. */
4484 h->global_got_area = GGA_NONE;
6ccf4795
RS
4485 else if (htab->is_vxworks
4486 && h->got_only_for_calls
1bbce132 4487 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4488 /* On VxWorks, calls can refer directly to the .got.plt entry;
4489 they don't need entries in the regular GOT. .got.plt entries
4490 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4491 h->global_got_area = GGA_NONE;
6c42ddb9 4492 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4493 {
6c42ddb9 4494 g->reloc_only_gotno++;
23cc69b6 4495 g->global_gotno++;
23cc69b6 4496 }
33bb52fb
RS
4497 }
4498 return 1;
4499}
f4416af6 4500\f
d7206569
RS
4501/* A htab_traverse callback for GOT entries. Add each one to the GOT
4502 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4503
4504static int
d7206569 4505mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4506{
d7206569
RS
4507 struct mips_got_entry *entry;
4508 struct mips_elf_traverse_got_arg *arg;
4509 void **slot;
f4416af6 4510
d7206569
RS
4511 entry = (struct mips_got_entry *) *entryp;
4512 arg = (struct mips_elf_traverse_got_arg *) data;
4513 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4514 if (!slot)
f4416af6 4515 {
d7206569
RS
4516 arg->g = NULL;
4517 return 0;
f4416af6 4518 }
d7206569 4519 if (!*slot)
c224138d 4520 {
d7206569
RS
4521 *slot = entry;
4522 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4523 }
f4416af6
AO
4524 return 1;
4525}
4526
d7206569
RS
4527/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4528 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4529
4530static int
d7206569 4531mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4532{
d7206569
RS
4533 struct mips_got_page_entry *entry;
4534 struct mips_elf_traverse_got_arg *arg;
4535 void **slot;
c224138d 4536
d7206569
RS
4537 entry = (struct mips_got_page_entry *) *entryp;
4538 arg = (struct mips_elf_traverse_got_arg *) data;
4539 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4540 if (!slot)
c224138d 4541 {
d7206569 4542 arg->g = NULL;
c224138d
RS
4543 return 0;
4544 }
d7206569
RS
4545 if (!*slot)
4546 {
4547 *slot = entry;
4548 arg->g->page_gotno += entry->num_pages;
4549 }
c224138d
RS
4550 return 1;
4551}
4552
d7206569
RS
4553/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4554 this would lead to overflow, 1 if they were merged successfully,
4555 and 0 if a merge failed due to lack of memory. (These values are chosen
4556 so that nonnegative return values can be returned by a htab_traverse
4557 callback.) */
c224138d
RS
4558
4559static int
d7206569 4560mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4561 struct mips_got_info *to,
4562 struct mips_elf_got_per_bfd_arg *arg)
4563{
d7206569 4564 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4565 unsigned int estimate;
4566
4567 /* Work out how many page entries we would need for the combined GOT. */
4568 estimate = arg->max_pages;
4569 if (estimate >= from->page_gotno + to->page_gotno)
4570 estimate = from->page_gotno + to->page_gotno;
4571
e2ece73c 4572 /* And conservatively estimate how many local and TLS entries
c224138d 4573 would be needed. */
e2ece73c
RS
4574 estimate += from->local_gotno + to->local_gotno;
4575 estimate += from->tls_gotno + to->tls_gotno;
4576
17214937
RS
4577 /* If we're merging with the primary got, any TLS relocations will
4578 come after the full set of global entries. Otherwise estimate those
e2ece73c 4579 conservatively as well. */
17214937 4580 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4581 estimate += arg->global_count;
4582 else
4583 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4584
4585 /* Bail out if the combined GOT might be too big. */
4586 if (estimate > arg->max_count)
4587 return -1;
4588
c224138d 4589 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4590 tga.info = arg->info;
4591 tga.g = to;
4592 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4593 if (!tga.g)
c224138d
RS
4594 return 0;
4595
d7206569
RS
4596 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4597 if (!tga.g)
c224138d
RS
4598 return 0;
4599
d7206569 4600 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4601 return 1;
4602}
4603
d7206569 4604/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4605 as possible of the primary got, since it doesn't require explicit
4606 dynamic relocations, but don't use bfds that would reference global
4607 symbols out of the addressable range. Failing the primary got,
4608 attempt to merge with the current got, or finish the current got
4609 and then make make the new got current. */
4610
d7206569
RS
4611static bfd_boolean
4612mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4613 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4614{
c224138d
RS
4615 unsigned int estimate;
4616 int result;
4617
476366af 4618 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4619 return FALSE;
4620
c224138d
RS
4621 /* Work out the number of page, local and TLS entries. */
4622 estimate = arg->max_pages;
4623 if (estimate > g->page_gotno)
4624 estimate = g->page_gotno;
4625 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4626
4627 /* We place TLS GOT entries after both locals and globals. The globals
4628 for the primary GOT may overflow the normal GOT size limit, so be
4629 sure not to merge a GOT which requires TLS with the primary GOT in that
4630 case. This doesn't affect non-primary GOTs. */
c224138d 4631 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4632
c224138d 4633 if (estimate <= arg->max_count)
f4416af6 4634 {
c224138d
RS
4635 /* If we don't have a primary GOT, use it as
4636 a starting point for the primary GOT. */
4637 if (!arg->primary)
4638 {
d7206569
RS
4639 arg->primary = g;
4640 return TRUE;
c224138d 4641 }
f4416af6 4642
c224138d 4643 /* Try merging with the primary GOT. */
d7206569 4644 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4645 if (result >= 0)
4646 return result;
f4416af6 4647 }
c224138d 4648
f4416af6 4649 /* If we can merge with the last-created got, do it. */
c224138d 4650 if (arg->current)
f4416af6 4651 {
d7206569 4652 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4653 if (result >= 0)
4654 return result;
f4416af6 4655 }
c224138d 4656
f4416af6
AO
4657 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4658 fits; if it turns out that it doesn't, we'll get relocation
4659 overflows anyway. */
c224138d
RS
4660 g->next = arg->current;
4661 arg->current = g;
0f20cc35 4662
d7206569 4663 return TRUE;
0f20cc35
DJ
4664}
4665
72e7511a
RS
4666/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4667 to GOTIDX, duplicating the entry if it has already been assigned
4668 an index in a different GOT. */
4669
4670static bfd_boolean
4671mips_elf_set_gotidx (void **entryp, long gotidx)
4672{
4673 struct mips_got_entry *entry;
4674
4675 entry = (struct mips_got_entry *) *entryp;
4676 if (entry->gotidx > 0)
4677 {
4678 struct mips_got_entry *new_entry;
4679
4680 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4681 if (!new_entry)
4682 return FALSE;
4683
4684 *new_entry = *entry;
4685 *entryp = new_entry;
4686 entry = new_entry;
4687 }
4688 entry->gotidx = gotidx;
4689 return TRUE;
4690}
4691
4692/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4693 mips_elf_traverse_got_arg in which DATA->value is the size of one
4694 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4695
4696static int
72e7511a 4697mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4698{
72e7511a
RS
4699 struct mips_got_entry *entry;
4700 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4701
4702 /* We're only interested in TLS symbols. */
72e7511a 4703 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4704 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4705 return 1;
4706
72e7511a 4707 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4708 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4709 {
6c42ddb9
RS
4710 arg->g = NULL;
4711 return 0;
f4416af6
AO
4712 }
4713
ead49a57 4714 /* Account for the entries we've just allocated. */
9ab066b4 4715 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4716 return 1;
4717}
4718
ab361d49
RS
4719/* A htab_traverse callback for GOT entries, where DATA points to a
4720 mips_elf_traverse_got_arg. Set the global_got_area of each global
4721 symbol to DATA->value. */
f4416af6 4722
f4416af6 4723static int
ab361d49 4724mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4725{
ab361d49
RS
4726 struct mips_got_entry *entry;
4727 struct mips_elf_traverse_got_arg *arg;
f4416af6 4728
ab361d49
RS
4729 entry = (struct mips_got_entry *) *entryp;
4730 arg = (struct mips_elf_traverse_got_arg *) data;
4731 if (entry->abfd != NULL
4732 && entry->symndx == -1
4733 && entry->d.h->global_got_area != GGA_NONE)
4734 entry->d.h->global_got_area = arg->value;
4735 return 1;
4736}
4737
4738/* A htab_traverse callback for secondary GOT entries, where DATA points
4739 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4740 and record the number of relocations they require. DATA->value is
72e7511a 4741 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4742
4743static int
4744mips_elf_set_global_gotidx (void **entryp, void *data)
4745{
4746 struct mips_got_entry *entry;
4747 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4748
ab361d49
RS
4749 entry = (struct mips_got_entry *) *entryp;
4750 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4751 if (entry->abfd != NULL
4752 && entry->symndx == -1
4753 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4754 {
cb22ccf4 4755 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4756 {
4757 arg->g = NULL;
4758 return 0;
4759 }
cb22ccf4 4760 arg->g->assigned_low_gotno += 1;
72e7511a 4761
0e1862bb 4762 if (bfd_link_pic (arg->info)
ab361d49
RS
4763 || (elf_hash_table (arg->info)->dynamic_sections_created
4764 && entry->d.h->root.def_dynamic
4765 && !entry->d.h->root.def_regular))
4766 arg->g->relocs += 1;
f4416af6
AO
4767 }
4768
4769 return 1;
4770}
4771
33bb52fb
RS
4772/* A htab_traverse callback for GOT entries for which DATA is the
4773 bfd_link_info. Forbid any global symbols from having traditional
4774 lazy-binding stubs. */
4775
0626d451 4776static int
33bb52fb 4777mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4778{
33bb52fb
RS
4779 struct bfd_link_info *info;
4780 struct mips_elf_link_hash_table *htab;
4781 struct mips_got_entry *entry;
0626d451 4782
33bb52fb
RS
4783 entry = (struct mips_got_entry *) *entryp;
4784 info = (struct bfd_link_info *) data;
4785 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4786 BFD_ASSERT (htab != NULL);
4787
0626d451
RS
4788 if (entry->abfd != NULL
4789 && entry->symndx == -1
33bb52fb 4790 && entry->d.h->needs_lazy_stub)
f4416af6 4791 {
33bb52fb
RS
4792 entry->d.h->needs_lazy_stub = FALSE;
4793 htab->lazy_stub_count--;
f4416af6 4794 }
143d77c5 4795
f4416af6
AO
4796 return 1;
4797}
4798
f4416af6
AO
4799/* Return the offset of an input bfd IBFD's GOT from the beginning of
4800 the primary GOT. */
4801static bfd_vma
9719ad41 4802mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4803{
d7206569 4804 if (!g->next)
f4416af6
AO
4805 return 0;
4806
d7206569 4807 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4808 if (! g)
4809 return 0;
4810
4811 BFD_ASSERT (g->next);
4812
4813 g = g->next;
143d77c5 4814
0f20cc35
DJ
4815 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4816 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4817}
4818
4819/* Turn a single GOT that is too big for 16-bit addressing into
4820 a sequence of GOTs, each one 16-bit addressable. */
4821
4822static bfd_boolean
9719ad41 4823mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4824 asection *got, bfd_size_type pages)
f4416af6 4825{
a8028dd0 4826 struct mips_elf_link_hash_table *htab;
f4416af6 4827 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4828 struct mips_elf_traverse_got_arg tga;
a8028dd0 4829 struct mips_got_info *g, *gg;
33bb52fb 4830 unsigned int assign, needed_relocs;
d7206569 4831 bfd *dynobj, *ibfd;
f4416af6 4832
33bb52fb 4833 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4834 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4835 BFD_ASSERT (htab != NULL);
4836
a8028dd0 4837 g = htab->got_info;
f4416af6 4838
f4416af6
AO
4839 got_per_bfd_arg.obfd = abfd;
4840 got_per_bfd_arg.info = info;
f4416af6
AO
4841 got_per_bfd_arg.current = NULL;
4842 got_per_bfd_arg.primary = NULL;
0a44bf69 4843 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4844 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4845 - htab->reserved_gotno);
c224138d 4846 got_per_bfd_arg.max_pages = pages;
0f20cc35 4847 /* The number of globals that will be included in the primary GOT.
ab361d49 4848 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4849 information. */
4850 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4851
4852 /* Try to merge the GOTs of input bfds together, as long as they
4853 don't seem to exceed the maximum GOT size, choosing one of them
4854 to be the primary GOT. */
c72f2fb2 4855 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4856 {
4857 gg = mips_elf_bfd_got (ibfd, FALSE);
4858 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4859 return FALSE;
4860 }
f4416af6 4861
0f20cc35 4862 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4863 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4864 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4865 else
4866 g->next = got_per_bfd_arg.primary;
4867 g->next->next = got_per_bfd_arg.current;
4868
4869 /* GG is now the master GOT, and G is the primary GOT. */
4870 gg = g;
4871 g = g->next;
4872
4873 /* Map the output bfd to the primary got. That's what we're going
4874 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4875 didn't mark in check_relocs, and we want a quick way to find it.
4876 We can't just use gg->next because we're going to reverse the
4877 list. */
d7206569 4878 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4879
634835ae
RS
4880 /* Every symbol that is referenced in a dynamic relocation must be
4881 present in the primary GOT, so arrange for them to appear after
4882 those that are actually referenced. */
23cc69b6 4883 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4884 g->global_gotno = gg->global_gotno;
f4416af6 4885
ab361d49
RS
4886 tga.info = info;
4887 tga.value = GGA_RELOC_ONLY;
4888 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4889 tga.value = GGA_NORMAL;
4890 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4891
4892 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4893 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4894 entries in each GOT. We can then compute the end of a GOT by
4895 adding local_gotno to global_gotno. We reverse the list and make
4896 it circular since then we'll be able to quickly compute the
4897 beginning of a GOT, by computing the end of its predecessor. To
4898 avoid special cases for the primary GOT, while still preserving
4899 assertions that are valid for both single- and multi-got links,
4900 we arrange for the main got struct to have the right number of
4901 global entries, but set its local_gotno such that the initial
4902 offset of the primary GOT is zero. Remember that the primary GOT
4903 will become the last item in the circular linked list, so it
4904 points back to the master GOT. */
4905 gg->local_gotno = -g->global_gotno;
4906 gg->global_gotno = g->global_gotno;
0f20cc35 4907 gg->tls_gotno = 0;
f4416af6
AO
4908 assign = 0;
4909 gg->next = gg;
4910
4911 do
4912 {
4913 struct mips_got_info *gn;
4914
861fb55a 4915 assign += htab->reserved_gotno;
cb22ccf4 4916 g->assigned_low_gotno = assign;
c224138d
RS
4917 g->local_gotno += assign;
4918 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4919 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4920 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4921
ead49a57
RS
4922 /* Take g out of the direct list, and push it onto the reversed
4923 list that gg points to. g->next is guaranteed to be nonnull after
4924 this operation, as required by mips_elf_initialize_tls_index. */
4925 gn = g->next;
4926 g->next = gg->next;
4927 gg->next = g;
4928
0f20cc35
DJ
4929 /* Set up any TLS entries. We always place the TLS entries after
4930 all non-TLS entries. */
4931 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4932 tga.g = g;
4933 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4934 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4935 if (!tga.g)
4936 return FALSE;
1fd20d70 4937 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4938
ead49a57 4939 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4940 g = gn;
0626d451 4941
33bb52fb
RS
4942 /* Forbid global symbols in every non-primary GOT from having
4943 lazy-binding stubs. */
0626d451 4944 if (g)
33bb52fb 4945 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4946 }
4947 while (g);
4948
59b08994 4949 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4950
4951 needed_relocs = 0;
33bb52fb
RS
4952 for (g = gg->next; g && g->next != gg; g = g->next)
4953 {
4954 unsigned int save_assign;
4955
ab361d49
RS
4956 /* Assign offsets to global GOT entries and count how many
4957 relocations they need. */
cb22ccf4
KCY
4958 save_assign = g->assigned_low_gotno;
4959 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
4960 tga.info = info;
4961 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4962 tga.g = g;
4963 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
4964 if (!tga.g)
4965 return FALSE;
cb22ccf4
KCY
4966 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4967 g->assigned_low_gotno = save_assign;
72e7511a 4968
0e1862bb 4969 if (bfd_link_pic (info))
33bb52fb 4970 {
cb22ccf4
KCY
4971 g->relocs += g->local_gotno - g->assigned_low_gotno;
4972 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
4973 + g->next->global_gotno
4974 + g->next->tls_gotno
861fb55a 4975 + htab->reserved_gotno);
33bb52fb 4976 }
ab361d49 4977 needed_relocs += g->relocs;
33bb52fb 4978 }
ab361d49 4979 needed_relocs += g->relocs;
33bb52fb
RS
4980
4981 if (needed_relocs)
4982 mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 needed_relocs);
143d77c5 4984
f4416af6
AO
4985 return TRUE;
4986}
143d77c5 4987
b49e97c9
TS
4988\f
4989/* Returns the first relocation of type r_type found, beginning with
4990 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4991
4992static const Elf_Internal_Rela *
9719ad41
RS
4993mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4994 const Elf_Internal_Rela *relocation,
4995 const Elf_Internal_Rela *relend)
b49e97c9 4996{
c000e262
TS
4997 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4998
b49e97c9
TS
4999 while (relocation < relend)
5000 {
c000e262
TS
5001 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5002 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
5003 return relocation;
5004
5005 ++relocation;
5006 }
5007
5008 /* We didn't find it. */
b49e97c9
TS
5009 return NULL;
5010}
5011
020d7251 5012/* Return whether an input relocation is against a local symbol. */
b49e97c9 5013
b34976b6 5014static bfd_boolean
9719ad41
RS
5015mips_elf_local_relocation_p (bfd *input_bfd,
5016 const Elf_Internal_Rela *relocation,
020d7251 5017 asection **local_sections)
b49e97c9
TS
5018{
5019 unsigned long r_symndx;
5020 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
5021 size_t extsymoff;
5022
5023 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5026
5027 if (r_symndx < extsymoff)
b34976b6 5028 return TRUE;
b49e97c9 5029 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 5030 return TRUE;
b49e97c9 5031
b34976b6 5032 return FALSE;
b49e97c9
TS
5033}
5034\f
5035/* Sign-extend VALUE, which has the indicated number of BITS. */
5036
a7ebbfdf 5037bfd_vma
9719ad41 5038_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5039{
5040 if (value & ((bfd_vma) 1 << (bits - 1)))
5041 /* VALUE is negative. */
5042 value |= ((bfd_vma) - 1) << bits;
5043
5044 return value;
5045}
5046
5047/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5048 range expressible by a signed number with the indicated number of
b49e97c9
TS
5049 BITS. */
5050
b34976b6 5051static bfd_boolean
9719ad41 5052mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5053{
5054 bfd_signed_vma svalue = (bfd_signed_vma) value;
5055
5056 if (svalue > (1 << (bits - 1)) - 1)
5057 /* The value is too big. */
b34976b6 5058 return TRUE;
b49e97c9
TS
5059 else if (svalue < -(1 << (bits - 1)))
5060 /* The value is too small. */
b34976b6 5061 return TRUE;
b49e97c9
TS
5062
5063 /* All is well. */
b34976b6 5064 return FALSE;
b49e97c9
TS
5065}
5066
5067/* Calculate the %high function. */
5068
5069static bfd_vma
9719ad41 5070mips_elf_high (bfd_vma value)
b49e97c9
TS
5071{
5072 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5073}
5074
5075/* Calculate the %higher function. */
5076
5077static bfd_vma
9719ad41 5078mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5079{
5080#ifdef BFD64
5081 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082#else
5083 abort ();
c5ae1840 5084 return MINUS_ONE;
b49e97c9
TS
5085#endif
5086}
5087
5088/* Calculate the %highest function. */
5089
5090static bfd_vma
9719ad41 5091mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5092{
5093#ifdef BFD64
b15e6682 5094 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5095#else
5096 abort ();
c5ae1840 5097 return MINUS_ONE;
b49e97c9
TS
5098#endif
5099}
5100\f
5101/* Create the .compact_rel section. */
5102
b34976b6 5103static bfd_boolean
9719ad41
RS
5104mips_elf_create_compact_rel_section
5105 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5106{
5107 flagword flags;
5108 register asection *s;
5109
3d4d4302 5110 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5111 {
5112 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5113 | SEC_READONLY);
5114
3d4d4302 5115 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5116 if (s == NULL
b49e97c9
TS
5117 || ! bfd_set_section_alignment (abfd, s,
5118 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5119 return FALSE;
b49e97c9 5120
eea6121a 5121 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5122 }
5123
b34976b6 5124 return TRUE;
b49e97c9
TS
5125}
5126
5127/* Create the .got section to hold the global offset table. */
5128
b34976b6 5129static bfd_boolean
23cc69b6 5130mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5131{
5132 flagword flags;
5133 register asection *s;
5134 struct elf_link_hash_entry *h;
14a793b2 5135 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5136 struct mips_elf_link_hash_table *htab;
5137
5138 htab = mips_elf_hash_table (info);
4dfe6ac6 5139 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5140
5141 /* This function may be called more than once. */
ce558b89 5142 if (htab->root.sgot)
23cc69b6 5143 return TRUE;
b49e97c9
TS
5144
5145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5146 | SEC_LINKER_CREATED);
5147
72b4917c
TS
5148 /* We have to use an alignment of 2**4 here because this is hardcoded
5149 in the function stub generation and in the linker script. */
87e0a731 5150 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5151 if (s == NULL
72b4917c 5152 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 5153 return FALSE;
ce558b89 5154 htab->root.sgot = s;
b49e97c9
TS
5155
5156 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5157 linker script because we don't want to define the symbol if we
5158 are not creating a global offset table. */
14a793b2 5159 bh = NULL;
b49e97c9
TS
5160 if (! (_bfd_generic_link_add_one_symbol
5161 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5162 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5163 return FALSE;
14a793b2
AM
5164
5165 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5166 h->non_elf = 0;
5167 h->def_regular = 1;
b49e97c9 5168 h->type = STT_OBJECT;
2f9efdfc 5169 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5170 elf_hash_table (info)->hgot = h;
b49e97c9 5171
0e1862bb 5172 if (bfd_link_pic (info)
c152c796 5173 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5174 return FALSE;
b49e97c9 5175
3dff0dd1 5176 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5177 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5178 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5179
861fb55a 5180 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5181 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5182 SEC_ALLOC | SEC_LOAD
5183 | SEC_HAS_CONTENTS
5184 | SEC_IN_MEMORY
5185 | SEC_LINKER_CREATED);
861fb55a
DJ
5186 if (s == NULL)
5187 return FALSE;
ce558b89 5188 htab->root.sgotplt = s;
0a44bf69 5189
b34976b6 5190 return TRUE;
b49e97c9 5191}
b49e97c9 5192\f
0a44bf69
RS
5193/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5194 __GOTT_INDEX__ symbols. These symbols are only special for
5195 shared objects; they are not used in executables. */
5196
5197static bfd_boolean
5198is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5199{
5200 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5201 && bfd_link_pic (info)
0a44bf69
RS
5202 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5203 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5204}
861fb55a
DJ
5205
5206/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5207 require an la25 stub. See also mips_elf_local_pic_function_p,
5208 which determines whether the destination function ever requires a
5209 stub. */
5210
5211static bfd_boolean
8f0c309a
CLT
5212mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5213 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5214{
5215 /* We specifically ignore branches and jumps from EF_PIC objects,
5216 where the onus is on the compiler or programmer to perform any
5217 necessary initialization of $25. Sometimes such initialization
5218 is unnecessary; for example, -mno-shared functions do not use
5219 the incoming value of $25, and may therefore be called directly. */
5220 if (PIC_OBJECT_P (input_bfd))
5221 return FALSE;
5222
5223 switch (r_type)
5224 {
5225 case R_MIPS_26:
5226 case R_MIPS_PC16:
7361da2c
AB
5227 case R_MIPS_PC21_S2:
5228 case R_MIPS_PC26_S2:
df58fc94
RS
5229 case R_MICROMIPS_26_S1:
5230 case R_MICROMIPS_PC7_S1:
5231 case R_MICROMIPS_PC10_S1:
5232 case R_MICROMIPS_PC16_S1:
5233 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5234 return TRUE;
5235
8f0c309a
CLT
5236 case R_MIPS16_26:
5237 return !target_is_16_bit_code_p;
5238
861fb55a
DJ
5239 default:
5240 return FALSE;
5241 }
5242}
0a44bf69 5243\f
b49e97c9
TS
5244/* Calculate the value produced by the RELOCATION (which comes from
5245 the INPUT_BFD). The ADDEND is the addend to use for this
5246 RELOCATION; RELOCATION->R_ADDEND is ignored.
5247
5248 The result of the relocation calculation is stored in VALUEP.
38a7df63 5249 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5250 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5251
5252 This function returns bfd_reloc_continue if the caller need take no
5253 further action regarding this relocation, bfd_reloc_notsupported if
5254 something goes dramatically wrong, bfd_reloc_overflow if an
5255 overflow occurs, and bfd_reloc_ok to indicate success. */
5256
5257static bfd_reloc_status_type
9719ad41
RS
5258mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5259 asection *input_section,
5260 struct bfd_link_info *info,
5261 const Elf_Internal_Rela *relocation,
5262 bfd_vma addend, reloc_howto_type *howto,
5263 Elf_Internal_Sym *local_syms,
5264 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5265 const char **namep,
5266 bfd_boolean *cross_mode_jump_p,
9719ad41 5267 bfd_boolean save_addend)
b49e97c9
TS
5268{
5269 /* The eventual value we will return. */
5270 bfd_vma value;
5271 /* The address of the symbol against which the relocation is
5272 occurring. */
5273 bfd_vma symbol = 0;
5274 /* The final GP value to be used for the relocatable, executable, or
5275 shared object file being produced. */
0a61c8c2 5276 bfd_vma gp;
b49e97c9
TS
5277 /* The place (section offset or address) of the storage unit being
5278 relocated. */
5279 bfd_vma p;
5280 /* The value of GP used to create the relocatable object. */
0a61c8c2 5281 bfd_vma gp0;
b49e97c9
TS
5282 /* The offset into the global offset table at which the address of
5283 the relocation entry symbol, adjusted by the addend, resides
5284 during execution. */
5285 bfd_vma g = MINUS_ONE;
5286 /* The section in which the symbol referenced by the relocation is
5287 located. */
5288 asection *sec = NULL;
5289 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5290 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5291 symbol. */
b34976b6 5292 bfd_boolean local_p, was_local_p;
77434823
MR
5293 /* TRUE if the symbol referred to by this relocation is a section
5294 symbol. */
5295 bfd_boolean section_p = FALSE;
b34976b6
AM
5296 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5297 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5298 /* TRUE if the symbol referred to by this relocation is
5299 "__gnu_local_gp". */
5300 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5301 Elf_Internal_Shdr *symtab_hdr;
5302 size_t extsymoff;
5303 unsigned long r_symndx;
5304 int r_type;
b34976b6 5305 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5306 relocation value. */
b34976b6
AM
5307 bfd_boolean overflowed_p;
5308 /* TRUE if this relocation refers to a MIPS16 function. */
5309 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5310 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5311 struct mips_elf_link_hash_table *htab;
5312 bfd *dynobj;
ad951203 5313 bfd_boolean resolved_to_zero;
0a44bf69
RS
5314
5315 dynobj = elf_hash_table (info)->dynobj;
5316 htab = mips_elf_hash_table (info);
4dfe6ac6 5317 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5318
5319 /* Parse the relocation. */
5320 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5321 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5322 p = (input_section->output_section->vma
5323 + input_section->output_offset
5324 + relocation->r_offset);
5325
5326 /* Assume that there will be no overflow. */
b34976b6 5327 overflowed_p = FALSE;
b49e97c9
TS
5328
5329 /* Figure out whether or not the symbol is local, and get the offset
5330 used in the array of hash table entries. */
5331 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5332 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5333 local_sections);
bce03d3d 5334 was_local_p = local_p;
b49e97c9
TS
5335 if (! elf_bad_symtab (input_bfd))
5336 extsymoff = symtab_hdr->sh_info;
5337 else
5338 {
5339 /* The symbol table does not follow the rule that local symbols
5340 must come before globals. */
5341 extsymoff = 0;
5342 }
5343
5344 /* Figure out the value of the symbol. */
5345 if (local_p)
5346 {
9d862524 5347 bfd_boolean micromips_p = MICROMIPS_P (abfd);
b49e97c9
TS
5348 Elf_Internal_Sym *sym;
5349
5350 sym = local_syms + r_symndx;
5351 sec = local_sections[r_symndx];
5352
77434823
MR
5353 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5354
b49e97c9 5355 symbol = sec->output_section->vma + sec->output_offset;
77434823 5356 if (!section_p || (sec->flags & SEC_MERGE))
b49e97c9 5357 symbol += sym->st_value;
77434823 5358 if ((sec->flags & SEC_MERGE) && section_p)
d4df96e6
L
5359 {
5360 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5361 addend -= symbol;
5362 addend += sec->output_section->vma + sec->output_offset;
5363 }
b49e97c9 5364
df58fc94
RS
5365 /* MIPS16/microMIPS text labels should be treated as odd. */
5366 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5367 ++symbol;
5368
5369 /* Record the name of this symbol, for our caller. */
5370 *namep = bfd_elf_string_from_elf_section (input_bfd,
5371 symtab_hdr->sh_link,
5372 sym->st_name);
ceab86af 5373 if (*namep == NULL || **namep == '\0')
b49e97c9
TS
5374 *namep = bfd_section_name (input_bfd, sec);
5375
9d862524 5376 /* For relocations against a section symbol and ones against no
07d6d2b8 5377 symbol (absolute relocations) infer the ISA mode from the addend. */
9d862524
MR
5378 if (section_p || r_symndx == STN_UNDEF)
5379 {
5380 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5381 target_is_micromips_code_p = (addend & 1) && micromips_p;
5382 }
5383 /* For relocations against an absolute symbol infer the ISA mode
07d6d2b8 5384 from the value of the symbol plus addend. */
9d862524
MR
5385 else if (bfd_is_abs_section (sec))
5386 {
5387 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5388 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5389 }
5390 /* Otherwise just use the regular symbol annotation available. */
5391 else
5392 {
5393 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5394 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5395 }
b49e97c9
TS
5396 }
5397 else
5398 {
560e09e9
NC
5399 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5400
b49e97c9
TS
5401 /* For global symbols we look up the symbol in the hash-table. */
5402 h = ((struct mips_elf_link_hash_entry *)
5403 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5404 /* Find the real hash-table entry for this symbol. */
5405 while (h->root.root.type == bfd_link_hash_indirect
5406 || h->root.root.type == bfd_link_hash_warning)
5407 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5408
5409 /* Record the name of this symbol, for our caller. */
5410 *namep = h->root.root.root.string;
5411
5412 /* See if this is the special _gp_disp symbol. Note that such a
5413 symbol must always be a global symbol. */
560e09e9 5414 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5415 && ! NEWABI_P (input_bfd))
5416 {
5417 /* Relocations against _gp_disp are permitted only with
5418 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5419 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5420 return bfd_reloc_notsupported;
5421
b34976b6 5422 gp_disp_p = TRUE;
b49e97c9 5423 }
bbe506e8
TS
5424 /* See if this is the special _gp symbol. Note that such a
5425 symbol must always be a global symbol. */
5426 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5427 gnu_local_gp_p = TRUE;
5428
5429
b49e97c9
TS
5430 /* If this symbol is defined, calculate its address. Note that
5431 _gp_disp is a magic symbol, always implicitly defined by the
5432 linker, so it's inappropriate to check to see whether or not
5433 its defined. */
5434 else if ((h->root.root.type == bfd_link_hash_defined
5435 || h->root.root.type == bfd_link_hash_defweak)
5436 && h->root.root.u.def.section)
5437 {
5438 sec = h->root.root.u.def.section;
5439 if (sec->output_section)
5440 symbol = (h->root.root.u.def.value
5441 + sec->output_section->vma
5442 + sec->output_offset);
5443 else
5444 symbol = h->root.root.u.def.value;
5445 }
5446 else if (h->root.root.type == bfd_link_hash_undefweak)
5447 /* We allow relocations against undefined weak symbols, giving
5448 it the value zero, so that you can undefined weak functions
5449 and check to see if they exist by looking at their
5450 addresses. */
5451 symbol = 0;
59c2e50f 5452 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5453 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5454 symbol = 0;
a4d0f181
TS
5455 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5456 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5457 {
5458 /* If this is a dynamic link, we should have created a
5459 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
de194d85 5460 in _bfd_mips_elf_create_dynamic_sections.
b49e97c9
TS
5461 Otherwise, we should define the symbol with a value of 0.
5462 FIXME: It should probably get into the symbol table
5463 somehow as well. */
0e1862bb 5464 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5465 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5466 symbol = 0;
5467 }
5e2b0d47
NC
5468 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5469 {
5470 /* This is an optional symbol - an Irix specific extension to the
5471 ELF spec. Ignore it for now.
5472 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5473 than simply ignoring them, but we do not handle this for now.
5474 For information see the "64-bit ELF Object File Specification"
5475 which is available from here:
5476 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5477 symbol = 0;
5478 }
b49e97c9
TS
5479 else
5480 {
1a72702b
AM
5481 (*info->callbacks->undefined_symbol)
5482 (info, h->root.root.root.string, input_bfd,
5483 input_section, relocation->r_offset,
5484 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5485 || ELF_ST_VISIBILITY (h->root.other));
5486 return bfd_reloc_undefined;
b49e97c9
TS
5487 }
5488
30c09090 5489 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5490 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5491 }
5492
738e5348
RS
5493 /* If this is a reference to a 16-bit function with a stub, we need
5494 to redirect the relocation to the stub unless:
5495
5496 (a) the relocation is for a MIPS16 JAL;
5497
5498 (b) the relocation is for a MIPS16 PIC call, and there are no
5499 non-MIPS16 uses of the GOT slot; or
5500
5501 (c) the section allows direct references to MIPS16 functions. */
5502 if (r_type != R_MIPS16_26
0e1862bb 5503 && !bfd_link_relocatable (info)
738e5348
RS
5504 && ((h != NULL
5505 && h->fn_stub != NULL
5506 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5507 || (local_p
698600e4
AM
5508 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5509 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5510 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5511 {
5512 /* This is a 32- or 64-bit call to a 16-bit function. We should
5513 have already noticed that we were going to need the
5514 stub. */
5515 if (local_p)
8f0c309a 5516 {
698600e4 5517 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5518 value = 0;
5519 }
b49e97c9
TS
5520 else
5521 {
5522 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5523 if (h->la25_stub)
5524 {
5525 /* If a LA25 header for the stub itself exists, point to the
5526 prepended LUI/ADDIU sequence. */
5527 sec = h->la25_stub->stub_section;
5528 value = h->la25_stub->offset;
5529 }
5530 else
5531 {
5532 sec = h->fn_stub;
5533 value = 0;
5534 }
b49e97c9
TS
5535 }
5536
8f0c309a 5537 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5538 /* The target is 16-bit, but the stub isn't. */
5539 target_is_16_bit_code_p = FALSE;
b49e97c9 5540 }
1bbce132
MR
5541 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5542 to a standard MIPS function, we need to redirect the call to the stub.
5543 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5544 indirect calls should use an indirect stub instead. */
0e1862bb 5545 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5546 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5547 || (local_p
698600e4
AM
5548 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5549 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5550 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5551 {
b9d58d71 5552 if (local_p)
698600e4 5553 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5554 else
b49e97c9 5555 {
b9d58d71
TS
5556 /* If both call_stub and call_fp_stub are defined, we can figure
5557 out which one to use by checking which one appears in the input
5558 file. */
5559 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5560 {
b9d58d71 5561 asection *o;
68ffbac6 5562
b9d58d71
TS
5563 sec = NULL;
5564 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5565 {
b9d58d71
TS
5566 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5567 {
5568 sec = h->call_fp_stub;
5569 break;
5570 }
b49e97c9 5571 }
b9d58d71
TS
5572 if (sec == NULL)
5573 sec = h->call_stub;
b49e97c9 5574 }
b9d58d71 5575 else if (h->call_stub != NULL)
b49e97c9 5576 sec = h->call_stub;
b9d58d71
TS
5577 else
5578 sec = h->call_fp_stub;
07d6d2b8 5579 }
b49e97c9 5580
eea6121a 5581 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5582 symbol = sec->output_section->vma + sec->output_offset;
5583 }
861fb55a
DJ
5584 /* If this is a direct call to a PIC function, redirect to the
5585 non-PIC stub. */
5586 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5587 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5588 target_is_16_bit_code_p))
c7318def
MR
5589 {
5590 symbol = (h->la25_stub->stub_section->output_section->vma
5591 + h->la25_stub->stub_section->output_offset
5592 + h->la25_stub->offset);
5593 if (ELF_ST_IS_MICROMIPS (h->root.other))
5594 symbol |= 1;
5595 }
1bbce132
MR
5596 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5597 entry is used if a standard PLT entry has also been made. In this
5598 case the symbol will have been set by mips_elf_set_plt_sym_value
5599 to point to the standard PLT entry, so redirect to the compressed
5600 one. */
54806ffa
MR
5601 else if ((mips16_branch_reloc_p (r_type)
5602 || micromips_branch_reloc_p (r_type))
0e1862bb 5603 && !bfd_link_relocatable (info)
1bbce132
MR
5604 && h != NULL
5605 && h->use_plt_entry
5606 && h->root.plt.plist->comp_offset != MINUS_ONE
5607 && h->root.plt.plist->mips_offset != MINUS_ONE)
5608 {
5609 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5610
ce558b89 5611 sec = htab->root.splt;
1bbce132
MR
5612 symbol = (sec->output_section->vma
5613 + sec->output_offset
5614 + htab->plt_header_size
5615 + htab->plt_mips_offset
5616 + h->root.plt.plist->comp_offset
5617 + 1);
5618
5619 target_is_16_bit_code_p = !micromips_p;
5620 target_is_micromips_code_p = micromips_p;
5621 }
b49e97c9 5622
df58fc94 5623 /* Make sure MIPS16 and microMIPS are not used together. */
c9775dde 5624 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
df58fc94
RS
5625 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5626 {
4eca0228 5627 _bfd_error_handler
df58fc94
RS
5628 (_("MIPS16 and microMIPS functions cannot call each other"));
5629 return bfd_reloc_notsupported;
5630 }
5631
b49e97c9 5632 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5633 mode change. However, we can ignore calls to undefined weak symbols,
5634 which should never be executed at runtime. This exception is important
5635 because the assembly writer may have "known" that any definition of the
5636 symbol would be 16-bit code, and that direct jumps were therefore
5637 acceptable. */
0e1862bb 5638 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94 5639 && !(h && h->root.root.type == bfd_link_hash_undefweak)
9d862524
MR
5640 && ((mips16_branch_reloc_p (r_type)
5641 && !target_is_16_bit_code_p)
5642 || (micromips_branch_reloc_p (r_type)
df58fc94 5643 && !target_is_micromips_code_p)
9d862524
MR
5644 || ((branch_reloc_p (r_type)
5645 || r_type == R_MIPS_JALR)
df58fc94
RS
5646 && (target_is_16_bit_code_p
5647 || target_is_micromips_code_p))));
b49e97c9 5648
c5d6fa44 5649 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5650
0a61c8c2
RS
5651 gp0 = _bfd_get_gp_value (input_bfd);
5652 gp = _bfd_get_gp_value (abfd);
23cc69b6 5653 if (htab->got_info)
a8028dd0 5654 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5655
5656 if (gnu_local_gp_p)
5657 symbol = gp;
5658
df58fc94
RS
5659 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5660 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5661 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5662 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5663 {
df58fc94
RS
5664 r_type = (micromips_reloc_p (r_type)
5665 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5666 addend = 0;
5667 }
5668
ad951203
L
5669 resolved_to_zero = (h != NULL
5670 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5671 &h->root));
5672
e77760d2 5673 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5674 to need it, get it now. */
b49e97c9
TS
5675 switch (r_type)
5676 {
738e5348
RS
5677 case R_MIPS16_CALL16:
5678 case R_MIPS16_GOT16:
b49e97c9
TS
5679 case R_MIPS_CALL16:
5680 case R_MIPS_GOT16:
5681 case R_MIPS_GOT_DISP:
5682 case R_MIPS_GOT_HI16:
5683 case R_MIPS_CALL_HI16:
5684 case R_MIPS_GOT_LO16:
5685 case R_MIPS_CALL_LO16:
df58fc94
RS
5686 case R_MICROMIPS_CALL16:
5687 case R_MICROMIPS_GOT16:
5688 case R_MICROMIPS_GOT_DISP:
5689 case R_MICROMIPS_GOT_HI16:
5690 case R_MICROMIPS_CALL_HI16:
5691 case R_MICROMIPS_GOT_LO16:
5692 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5693 case R_MIPS_TLS_GD:
5694 case R_MIPS_TLS_GOTTPREL:
5695 case R_MIPS_TLS_LDM:
d0f13682
CLT
5696 case R_MIPS16_TLS_GD:
5697 case R_MIPS16_TLS_GOTTPREL:
5698 case R_MIPS16_TLS_LDM:
df58fc94
RS
5699 case R_MICROMIPS_TLS_GD:
5700 case R_MICROMIPS_TLS_GOTTPREL:
5701 case R_MICROMIPS_TLS_LDM:
b49e97c9 5702 /* Find the index into the GOT where this value is located. */
df58fc94 5703 if (tls_ldm_reloc_p (r_type))
0f20cc35 5704 {
0a44bf69 5705 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5706 0, 0, NULL, r_type);
0f20cc35
DJ
5707 if (g == MINUS_ONE)
5708 return bfd_reloc_outofrange;
5709 }
5710 else if (!local_p)
b49e97c9 5711 {
0a44bf69
RS
5712 /* On VxWorks, CALL relocations should refer to the .got.plt
5713 entry, which is initialized to point at the PLT stub. */
5714 if (htab->is_vxworks
df58fc94
RS
5715 && (call_hi16_reloc_p (r_type)
5716 || call_lo16_reloc_p (r_type)
738e5348 5717 || call16_reloc_p (r_type)))
0a44bf69
RS
5718 {
5719 BFD_ASSERT (addend == 0);
5720 BFD_ASSERT (h->root.needs_plt);
5721 g = mips_elf_gotplt_index (info, &h->root);
5722 }
5723 else
b49e97c9 5724 {
020d7251 5725 BFD_ASSERT (addend == 0);
13fbec83
RS
5726 g = mips_elf_global_got_index (abfd, info, input_bfd,
5727 &h->root, r_type);
e641e783 5728 if (!TLS_RELOC_P (r_type)
020d7251
RS
5729 && !elf_hash_table (info)->dynamic_sections_created)
5730 /* This is a static link. We must initialize the GOT entry. */
ce558b89 5731 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
b49e97c9
TS
5732 }
5733 }
0a44bf69 5734 else if (!htab->is_vxworks
738e5348 5735 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5736 /* The calculation below does not involve "g". */
b49e97c9
TS
5737 break;
5738 else
5739 {
5c18022e 5740 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5741 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5742 if (g == MINUS_ONE)
5743 return bfd_reloc_outofrange;
5744 }
5745
5746 /* Convert GOT indices to actual offsets. */
a8028dd0 5747 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5748 break;
b49e97c9
TS
5749 }
5750
0a44bf69
RS
5751 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5752 symbols are resolved by the loader. Add them to .rela.dyn. */
5753 if (h != NULL && is_gott_symbol (info, &h->root))
5754 {
5755 Elf_Internal_Rela outrel;
5756 bfd_byte *loc;
5757 asection *s;
5758
5759 s = mips_elf_rel_dyn_section (info, FALSE);
5760 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5761
5762 outrel.r_offset = (input_section->output_section->vma
5763 + input_section->output_offset
5764 + relocation->r_offset);
5765 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5766 outrel.r_addend = addend;
5767 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5768
5769 /* If we've written this relocation for a readonly section,
5770 we need to set DF_TEXTREL again, so that we do not delete the
5771 DT_TEXTREL tag. */
5772 if (MIPS_ELF_READONLY_SECTION (input_section))
5773 info->flags |= DF_TEXTREL;
5774
0a44bf69
RS
5775 *valuep = 0;
5776 return bfd_reloc_ok;
5777 }
5778
b49e97c9
TS
5779 /* Figure out what kind of relocation is being performed. */
5780 switch (r_type)
5781 {
5782 case R_MIPS_NONE:
5783 return bfd_reloc_continue;
5784
5785 case R_MIPS_16:
c3eb94b4
MF
5786 if (howto->partial_inplace)
5787 addend = _bfd_mips_elf_sign_extend (addend, 16);
5788 value = symbol + addend;
b49e97c9
TS
5789 overflowed_p = mips_elf_overflow_p (value, 16);
5790 break;
5791
5792 case R_MIPS_32:
5793 case R_MIPS_REL32:
5794 case R_MIPS_64:
0e1862bb 5795 if ((bfd_link_pic (info)
861fb55a 5796 || (htab->root.dynamic_sections_created
b49e97c9 5797 && h != NULL
f5385ebf 5798 && h->root.def_dynamic
861fb55a
DJ
5799 && !h->root.def_regular
5800 && !h->has_static_relocs))
cf35638d 5801 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5802 && (h == NULL
5803 || h->root.root.type != bfd_link_hash_undefweak
ad951203
L
5804 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5805 && !resolved_to_zero))
b49e97c9
TS
5806 && (input_section->flags & SEC_ALLOC) != 0)
5807 {
861fb55a 5808 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5809 where the symbol will end up. So, we create a relocation
5810 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5811 linker. We must do the same for executable references to
5812 shared library symbols, unless we've decided to use copy
5813 relocs or PLTs instead. */
b49e97c9
TS
5814 value = addend;
5815 if (!mips_elf_create_dynamic_relocation (abfd,
5816 info,
5817 relocation,
5818 h,
5819 sec,
5820 symbol,
5821 &value,
5822 input_section))
5823 return bfd_reloc_undefined;
5824 }
5825 else
5826 {
5827 if (r_type != R_MIPS_REL32)
5828 value = symbol + addend;
5829 else
5830 value = addend;
5831 }
5832 value &= howto->dst_mask;
092dcd75
CD
5833 break;
5834
5835 case R_MIPS_PC32:
5836 value = symbol + addend - p;
5837 value &= howto->dst_mask;
b49e97c9
TS
5838 break;
5839
b49e97c9
TS
5840 case R_MIPS16_26:
5841 /* The calculation for R_MIPS16_26 is just the same as for an
5842 R_MIPS_26. It's only the storage of the relocated field into
5843 the output file that's different. That's handled in
5844 mips_elf_perform_relocation. So, we just fall through to the
5845 R_MIPS_26 case here. */
5846 case R_MIPS_26:
df58fc94
RS
5847 case R_MICROMIPS_26_S1:
5848 {
5849 unsigned int shift;
5850
df58fc94
RS
5851 /* Shift is 2, unusually, for microMIPS JALX. */
5852 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5853
77434823 5854 if (howto->partial_inplace && !section_p)
df58fc94 5855 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
5856 else
5857 value = addend;
bc27bb05
MR
5858 value += symbol;
5859
9d862524
MR
5860 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5861 be the correct ISA mode selector except for weak undefined
5862 symbols. */
5863 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5864 && (*cross_mode_jump_p
5865 ? (value & 3) != (r_type == R_MIPS_26)
07d6d2b8 5866 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
bc27bb05
MR
5867 return bfd_reloc_outofrange;
5868
5869 value >>= shift;
77434823 5870 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
df58fc94
RS
5871 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5872 value &= howto->dst_mask;
5873 }
b49e97c9
TS
5874 break;
5875
0f20cc35 5876 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5877 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5878 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5879 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5880 & howto->dst_mask);
5881 break;
5882
5883 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5884 case R_MIPS_TLS_DTPREL32:
5885 case R_MIPS_TLS_DTPREL64:
d0f13682 5886 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5887 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5888 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5889 break;
5890
5891 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5892 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5893 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5894 value = (mips_elf_high (addend + symbol - tprel_base (info))
5895 & howto->dst_mask);
5896 break;
5897
5898 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5899 case R_MIPS_TLS_TPREL32:
5900 case R_MIPS_TLS_TPREL64:
5901 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5902 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5903 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5904 break;
5905
b49e97c9 5906 case R_MIPS_HI16:
d6f16593 5907 case R_MIPS16_HI16:
df58fc94 5908 case R_MICROMIPS_HI16:
b49e97c9
TS
5909 if (!gp_disp_p)
5910 {
5911 value = mips_elf_high (addend + symbol);
5912 value &= howto->dst_mask;
5913 }
5914 else
5915 {
d6f16593 5916 /* For MIPS16 ABI code we generate this sequence
07d6d2b8
AM
5917 0: li $v0,%hi(_gp_disp)
5918 4: addiupc $v1,%lo(_gp_disp)
5919 8: sll $v0,16
d6f16593
MR
5920 12: addu $v0,$v1
5921 14: move $gp,$v0
5922 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5923 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5924 ADDIUPC clears the low two bits of the instruction address,
5925 so the base is ($t9 + 4) & ~3. */
d6f16593 5926 if (r_type == R_MIPS16_HI16)
888b9c01 5927 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5928 /* The microMIPS .cpload sequence uses the same assembly
5929 instructions as the traditional psABI version, but the
5930 incoming $t9 has the low bit set. */
5931 else if (r_type == R_MICROMIPS_HI16)
5932 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5933 else
5934 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5935 }
5936 break;
5937
5938 case R_MIPS_LO16:
d6f16593 5939 case R_MIPS16_LO16:
df58fc94
RS
5940 case R_MICROMIPS_LO16:
5941 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5942 if (!gp_disp_p)
5943 value = (symbol + addend) & howto->dst_mask;
5944 else
5945 {
d6f16593
MR
5946 /* See the comment for R_MIPS16_HI16 above for the reason
5947 for this conditional. */
5948 if (r_type == R_MIPS16_LO16)
888b9c01 5949 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5950 else if (r_type == R_MICROMIPS_LO16
5951 || r_type == R_MICROMIPS_HI0_LO16)
5952 value = addend + gp - p + 3;
d6f16593
MR
5953 else
5954 value = addend + gp - p + 4;
b49e97c9 5955 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5956 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5957 _gp_disp are normally generated from the .cpload
5958 pseudo-op. It generates code that normally looks like
5959 this:
5960
5961 lui $gp,%hi(_gp_disp)
5962 addiu $gp,$gp,%lo(_gp_disp)
5963 addu $gp,$gp,$t9
5964
5965 Here $t9 holds the address of the function being called,
5966 as required by the MIPS ELF ABI. The R_MIPS_LO16
5967 relocation can easily overflow in this situation, but the
5968 R_MIPS_HI16 relocation will handle the overflow.
5969 Therefore, we consider this a bug in the MIPS ABI, and do
5970 not check for overflow here. */
5971 }
5972 break;
5973
5974 case R_MIPS_LITERAL:
df58fc94 5975 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5976 /* Because we don't merge literal sections, we can handle this
5977 just like R_MIPS_GPREL16. In the long run, we should merge
5978 shared literals, and then we will need to additional work
5979 here. */
5980
5981 /* Fall through. */
5982
5983 case R_MIPS16_GPREL:
5984 /* The R_MIPS16_GPREL performs the same calculation as
5985 R_MIPS_GPREL16, but stores the relocated bits in a different
5986 order. We don't need to do anything special here; the
5987 differences are handled in mips_elf_perform_relocation. */
5988 case R_MIPS_GPREL16:
df58fc94
RS
5989 case R_MICROMIPS_GPREL7_S2:
5990 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5991 /* Only sign-extend the addend if it was extracted from the
5992 instruction. If the addend was separate, leave it alone,
5993 otherwise we may lose significant bits. */
5994 if (howto->partial_inplace)
a7ebbfdf 5995 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5996 value = symbol + addend - gp;
5997 /* If the symbol was local, any earlier relocatable links will
5998 have adjusted its addend with the gp offset, so compensate
5999 for that now. Don't do it for symbols forced local in this
6000 link, though, since they won't have had the gp offset applied
6001 to them before. */
6002 if (was_local_p)
6003 value += gp0;
538baf8b
AB
6004 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6005 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
6006 break;
6007
738e5348
RS
6008 case R_MIPS16_GOT16:
6009 case R_MIPS16_CALL16:
b49e97c9
TS
6010 case R_MIPS_GOT16:
6011 case R_MIPS_CALL16:
df58fc94
RS
6012 case R_MICROMIPS_GOT16:
6013 case R_MICROMIPS_CALL16:
0a44bf69 6014 /* VxWorks does not have separate local and global semantics for
738e5348 6015 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 6016 if (!htab->is_vxworks && local_p)
b49e97c9 6017 {
5c18022e 6018 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 6019 symbol + addend, !was_local_p);
b49e97c9
TS
6020 if (value == MINUS_ONE)
6021 return bfd_reloc_outofrange;
6022 value
a8028dd0 6023 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6024 overflowed_p = mips_elf_overflow_p (value, 16);
6025 break;
6026 }
6027
6028 /* Fall through. */
6029
0f20cc35
DJ
6030 case R_MIPS_TLS_GD:
6031 case R_MIPS_TLS_GOTTPREL:
6032 case R_MIPS_TLS_LDM:
b49e97c9 6033 case R_MIPS_GOT_DISP:
d0f13682
CLT
6034 case R_MIPS16_TLS_GD:
6035 case R_MIPS16_TLS_GOTTPREL:
6036 case R_MIPS16_TLS_LDM:
df58fc94
RS
6037 case R_MICROMIPS_TLS_GD:
6038 case R_MICROMIPS_TLS_GOTTPREL:
6039 case R_MICROMIPS_TLS_LDM:
6040 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
6041 value = g;
6042 overflowed_p = mips_elf_overflow_p (value, 16);
6043 break;
6044
6045 case R_MIPS_GPREL32:
bce03d3d
AO
6046 value = (addend + symbol + gp0 - gp);
6047 if (!save_addend)
6048 value &= howto->dst_mask;
b49e97c9
TS
6049 break;
6050
6051 case R_MIPS_PC16:
bad36eac 6052 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
6053 if (howto->partial_inplace)
6054 addend = _bfd_mips_elf_sign_extend (addend, 18);
6055
9d862524 6056 /* No need to exclude weak undefined symbols here as they resolve
07d6d2b8
AM
6057 to 0 and never set `*cross_mode_jump_p', so this alignment check
6058 will never trigger for them. */
9d862524
MR
6059 if (*cross_mode_jump_p
6060 ? ((symbol + addend) & 3) != 1
6061 : ((symbol + addend) & 3) != 0)
c3eb94b4
MF
6062 return bfd_reloc_outofrange;
6063
6064 value = symbol + addend - p;
538baf8b
AB
6065 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6066 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
6067 value >>= howto->rightshift;
6068 value &= howto->dst_mask;
b49e97c9
TS
6069 break;
6070
c9775dde
MR
6071 case R_MIPS16_PC16_S1:
6072 if (howto->partial_inplace)
6073 addend = _bfd_mips_elf_sign_extend (addend, 17);
6074
6075 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
9d862524
MR
6076 && (*cross_mode_jump_p
6077 ? ((symbol + addend) & 3) != 0
6078 : ((symbol + addend) & 1) == 0))
c9775dde
MR
6079 return bfd_reloc_outofrange;
6080
6081 value = symbol + addend - p;
6082 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6083 overflowed_p = mips_elf_overflow_p (value, 17);
6084 value >>= howto->rightshift;
6085 value &= howto->dst_mask;
6086 break;
6087
7361da2c
AB
6088 case R_MIPS_PC21_S2:
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 23);
6091
6092 if ((symbol + addend) & 3)
6093 return bfd_reloc_outofrange;
6094
6095 value = symbol + addend - p;
538baf8b
AB
6096 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6097 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
6098 value >>= howto->rightshift;
6099 value &= howto->dst_mask;
6100 break;
6101
6102 case R_MIPS_PC26_S2:
6103 if (howto->partial_inplace)
6104 addend = _bfd_mips_elf_sign_extend (addend, 28);
6105
6106 if ((symbol + addend) & 3)
6107 return bfd_reloc_outofrange;
6108
6109 value = symbol + addend - p;
538baf8b
AB
6110 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6111 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6112 value >>= howto->rightshift;
6113 value &= howto->dst_mask;
6114 break;
6115
6116 case R_MIPS_PC18_S3:
6117 if (howto->partial_inplace)
6118 addend = _bfd_mips_elf_sign_extend (addend, 21);
6119
6120 if ((symbol + addend) & 7)
6121 return bfd_reloc_outofrange;
6122
6123 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6124 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6125 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6126 value >>= howto->rightshift;
6127 value &= howto->dst_mask;
6128 break;
6129
6130 case R_MIPS_PC19_S2:
6131 if (howto->partial_inplace)
6132 addend = _bfd_mips_elf_sign_extend (addend, 21);
6133
6134 if ((symbol + addend) & 3)
6135 return bfd_reloc_outofrange;
6136
6137 value = symbol + addend - p;
538baf8b
AB
6138 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6139 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6140 value >>= howto->rightshift;
6141 value &= howto->dst_mask;
6142 break;
6143
6144 case R_MIPS_PCHI16:
6145 value = mips_elf_high (symbol + addend - p);
538baf8b
AB
6146 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6147 overflowed_p = mips_elf_overflow_p (value, 16);
7361da2c
AB
6148 value &= howto->dst_mask;
6149 break;
6150
6151 case R_MIPS_PCLO16:
6152 if (howto->partial_inplace)
6153 addend = _bfd_mips_elf_sign_extend (addend, 16);
6154 value = symbol + addend - p;
6155 value &= howto->dst_mask;
6156 break;
6157
df58fc94 6158 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6159 if (howto->partial_inplace)
6160 addend = _bfd_mips_elf_sign_extend (addend, 8);
9d862524
MR
6161
6162 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6163 && (*cross_mode_jump_p
6164 ? ((symbol + addend + 2) & 3) != 0
6165 : ((symbol + addend + 2) & 1) == 0))
6166 return bfd_reloc_outofrange;
6167
c3eb94b4 6168 value = symbol + addend - p;
538baf8b
AB
6169 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6170 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6171 value >>= howto->rightshift;
6172 value &= howto->dst_mask;
6173 break;
6174
6175 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6176 if (howto->partial_inplace)
6177 addend = _bfd_mips_elf_sign_extend (addend, 11);
9d862524
MR
6178
6179 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6180 && (*cross_mode_jump_p
6181 ? ((symbol + addend + 2) & 3) != 0
6182 : ((symbol + addend + 2) & 1) == 0))
6183 return bfd_reloc_outofrange;
6184
c3eb94b4 6185 value = symbol + addend - p;
538baf8b
AB
6186 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6187 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6188 value >>= howto->rightshift;
6189 value &= howto->dst_mask;
6190 break;
6191
6192 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6193 if (howto->partial_inplace)
6194 addend = _bfd_mips_elf_sign_extend (addend, 17);
9d862524
MR
6195
6196 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6197 && (*cross_mode_jump_p
6198 ? ((symbol + addend) & 3) != 0
6199 : ((symbol + addend) & 1) == 0))
6200 return bfd_reloc_outofrange;
6201
c3eb94b4 6202 value = symbol + addend - p;
538baf8b
AB
6203 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6204 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6205 value >>= howto->rightshift;
6206 value &= howto->dst_mask;
6207 break;
6208
6209 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6210 if (howto->partial_inplace)
6211 addend = _bfd_mips_elf_sign_extend (addend, 25);
6212 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6213 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6214 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6215 value >>= howto->rightshift;
6216 value &= howto->dst_mask;
6217 break;
6218
b49e97c9
TS
6219 case R_MIPS_GOT_HI16:
6220 case R_MIPS_CALL_HI16:
df58fc94
RS
6221 case R_MICROMIPS_GOT_HI16:
6222 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6223 /* We're allowed to handle these two relocations identically.
6224 The dynamic linker is allowed to handle the CALL relocations
6225 differently by creating a lazy evaluation stub. */
6226 value = g;
6227 value = mips_elf_high (value);
6228 value &= howto->dst_mask;
6229 break;
6230
6231 case R_MIPS_GOT_LO16:
6232 case R_MIPS_CALL_LO16:
df58fc94
RS
6233 case R_MICROMIPS_GOT_LO16:
6234 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6235 value = g & howto->dst_mask;
6236 break;
6237
6238 case R_MIPS_GOT_PAGE:
df58fc94 6239 case R_MICROMIPS_GOT_PAGE:
5c18022e 6240 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6241 if (value == MINUS_ONE)
6242 return bfd_reloc_outofrange;
a8028dd0 6243 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6244 overflowed_p = mips_elf_overflow_p (value, 16);
6245 break;
6246
6247 case R_MIPS_GOT_OFST:
df58fc94 6248 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6249 if (local_p)
5c18022e 6250 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6251 else
6252 value = addend;
b49e97c9
TS
6253 overflowed_p = mips_elf_overflow_p (value, 16);
6254 break;
6255
6256 case R_MIPS_SUB:
df58fc94 6257 case R_MICROMIPS_SUB:
b49e97c9
TS
6258 value = symbol - addend;
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_HIGHER:
df58fc94 6263 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6264 value = mips_elf_higher (addend + symbol);
6265 value &= howto->dst_mask;
6266 break;
6267
6268 case R_MIPS_HIGHEST:
df58fc94 6269 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6270 value = mips_elf_highest (addend + symbol);
6271 value &= howto->dst_mask;
6272 break;
6273
6274 case R_MIPS_SCN_DISP:
df58fc94 6275 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6276 value = symbol + addend - sec->output_offset;
6277 value &= howto->dst_mask;
6278 break;
6279
b49e97c9 6280 case R_MIPS_JALR:
df58fc94 6281 case R_MICROMIPS_JALR:
1367d393
ILT
6282 /* This relocation is only a hint. In some cases, we optimize
6283 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6284 when the symbol does not resolve locally. */
6285 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393 6286 return bfd_reloc_continue;
c1556ecd
MR
6287 /* We can't optimize cross-mode jumps either. */
6288 if (*cross_mode_jump_p)
6289 return bfd_reloc_continue;
1367d393 6290 value = symbol + addend;
c1556ecd
MR
6291 /* Neither we can non-instruction-aligned targets. */
6292 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6293 return bfd_reloc_continue;
1367d393 6294 break;
b49e97c9 6295
1367d393 6296 case R_MIPS_PJUMP:
b49e97c9
TS
6297 case R_MIPS_GNU_VTINHERIT:
6298 case R_MIPS_GNU_VTENTRY:
6299 /* We don't do anything with these at present. */
6300 return bfd_reloc_continue;
6301
6302 default:
6303 /* An unrecognized relocation type. */
6304 return bfd_reloc_notsupported;
6305 }
6306
6307 /* Store the VALUE for our caller. */
6308 *valuep = value;
6309 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6310}
6311
6312/* Obtain the field relocated by RELOCATION. */
6313
6314static bfd_vma
9719ad41
RS
6315mips_elf_obtain_contents (reloc_howto_type *howto,
6316 const Elf_Internal_Rela *relocation,
6317 bfd *input_bfd, bfd_byte *contents)
b49e97c9 6318{
6346d5ca 6319 bfd_vma x = 0;
b49e97c9 6320 bfd_byte *location = contents + relocation->r_offset;
6346d5ca 6321 unsigned int size = bfd_get_reloc_size (howto);
b49e97c9
TS
6322
6323 /* Obtain the bytes. */
6346d5ca
AM
6324 if (size != 0)
6325 x = bfd_get (8 * size, input_bfd, location);
b49e97c9 6326
b49e97c9
TS
6327 return x;
6328}
6329
6330/* It has been determined that the result of the RELOCATION is the
6331 VALUE. Use HOWTO to place VALUE into the output file at the
6332 appropriate position. The SECTION is the section to which the
68ffbac6 6333 relocation applies.
38a7df63 6334 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6335 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6336
b34976b6 6337 Returns FALSE if anything goes wrong. */
b49e97c9 6338
b34976b6 6339static bfd_boolean
9719ad41
RS
6340mips_elf_perform_relocation (struct bfd_link_info *info,
6341 reloc_howto_type *howto,
6342 const Elf_Internal_Rela *relocation,
6343 bfd_vma value, bfd *input_bfd,
6344 asection *input_section, bfd_byte *contents,
38a7df63 6345 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6346{
6347 bfd_vma x;
6348 bfd_byte *location;
6349 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6346d5ca 6350 unsigned int size;
b49e97c9
TS
6351
6352 /* Figure out where the relocation is occurring. */
6353 location = contents + relocation->r_offset;
6354
df58fc94 6355 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6356
b49e97c9
TS
6357 /* Obtain the current value. */
6358 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6359
6360 /* Clear the field we are setting. */
6361 x &= ~howto->dst_mask;
6362
b49e97c9
TS
6363 /* Set the field. */
6364 x |= (value & howto->dst_mask);
6365
a6ebf616 6366 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
9d862524
MR
6367 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6368 {
6369 bfd_vma opcode = x >> 26;
6370
6371 if (r_type == R_MIPS16_26 ? opcode == 0x7
6372 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6373 : opcode == 0x1d)
6374 {
6375 info->callbacks->einfo
6376 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6377 input_bfd, input_section, relocation->r_offset);
6378 return TRUE;
6379 }
6380 }
38a7df63 6381 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6382 {
b34976b6 6383 bfd_boolean ok;
b49e97c9
TS
6384 bfd_vma opcode = x >> 26;
6385 bfd_vma jalx_opcode;
6386
6387 /* Check to see if the opcode is already JAL or JALX. */
6388 if (r_type == R_MIPS16_26)
6389 {
6390 ok = ((opcode == 0x6) || (opcode == 0x7));
6391 jalx_opcode = 0x7;
6392 }
df58fc94
RS
6393 else if (r_type == R_MICROMIPS_26_S1)
6394 {
6395 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6396 jalx_opcode = 0x3c;
6397 }
b49e97c9
TS
6398 else
6399 {
6400 ok = ((opcode == 0x3) || (opcode == 0x1d));
6401 jalx_opcode = 0x1d;
6402 }
6403
3bdf9505 6404 /* If the opcode is not JAL or JALX, there's a problem. We cannot
07d6d2b8 6405 convert J or JALS to JALX. */
b49e97c9
TS
6406 if (!ok)
6407 {
5f68df25
MR
6408 info->callbacks->einfo
6409 (_("%X%H: Unsupported jump between ISA modes; "
6410 "consider recompiling with interlinking enabled\n"),
6411 input_bfd, input_section, relocation->r_offset);
6412 return TRUE;
b49e97c9
TS
6413 }
6414
6415 /* Make this the JALX opcode. */
6416 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6417 }
9d862524
MR
6418 else if (cross_mode_jump_p && b_reloc_p (r_type))
6419 {
a6ebf616
MR
6420 bfd_boolean ok = FALSE;
6421 bfd_vma opcode = x >> 16;
6422 bfd_vma jalx_opcode = 0;
70e65ca8 6423 bfd_vma sign_bit = 0;
a6ebf616
MR
6424 bfd_vma addr;
6425 bfd_vma dest;
6426
6427 if (r_type == R_MICROMIPS_PC16_S1)
6428 {
6429 ok = opcode == 0x4060;
6430 jalx_opcode = 0x3c;
70e65ca8 6431 sign_bit = 0x10000;
a6ebf616
MR
6432 value <<= 1;
6433 }
6434 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6435 {
6436 ok = opcode == 0x411;
6437 jalx_opcode = 0x1d;
70e65ca8 6438 sign_bit = 0x20000;
a6ebf616
MR
6439 value <<= 2;
6440 }
6441
8b10b0b3 6442 if (ok && !bfd_link_pic (info))
a6ebf616 6443 {
8b10b0b3
MR
6444 addr = (input_section->output_section->vma
6445 + input_section->output_offset
6446 + relocation->r_offset
6447 + 4);
70e65ca8
MR
6448 dest = (addr
6449 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
a6ebf616 6450
8b10b0b3
MR
6451 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6452 {
6453 info->callbacks->einfo
6454 (_("%X%H: Cannot convert branch between ISA modes "
6455 "to JALX: relocation out of range\n"),
6456 input_bfd, input_section, relocation->r_offset);
6457 return TRUE;
6458 }
a6ebf616 6459
8b10b0b3
MR
6460 /* Make this the JALX opcode. */
6461 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6462 }
6463 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
a6ebf616
MR
6464 {
6465 info->callbacks->einfo
8b10b0b3 6466 (_("%X%H: Unsupported branch between ISA modes\n"),
a6ebf616
MR
6467 input_bfd, input_section, relocation->r_offset);
6468 return TRUE;
6469 }
9d862524 6470 }
b49e97c9 6471
38a7df63
CF
6472 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6473 range. */
0e1862bb 6474 if (!bfd_link_relocatable (info)
38a7df63 6475 && !cross_mode_jump_p
cd8d5a82
CF
6476 && ((JAL_TO_BAL_P (input_bfd)
6477 && r_type == R_MIPS_26
0e392101 6478 && (x >> 26) == 0x3) /* jal addr */
cd8d5a82
CF
6479 || (JALR_TO_BAL_P (input_bfd)
6480 && r_type == R_MIPS_JALR
0e392101 6481 && x == 0x0320f809) /* jalr t9 */
38a7df63
CF
6482 || (JR_TO_B_P (input_bfd)
6483 && r_type == R_MIPS_JALR
0e392101 6484 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
1367d393
ILT
6485 {
6486 bfd_vma addr;
6487 bfd_vma dest;
6488 bfd_signed_vma off;
6489
6490 addr = (input_section->output_section->vma
6491 + input_section->output_offset
6492 + relocation->r_offset
6493 + 4);
6494 if (r_type == R_MIPS_26)
6495 dest = (value << 2) | ((addr >> 28) << 28);
6496 else
6497 dest = value;
6498 off = dest - addr;
6499 if (off <= 0x1ffff && off >= -0x20000)
38a7df63 6500 {
0e392101 6501 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
38a7df63
CF
6502 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6503 else
6504 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6505 }
1367d393
ILT
6506 }
6507
b49e97c9 6508 /* Put the value into the output. */
6346d5ca
AM
6509 size = bfd_get_reloc_size (howto);
6510 if (size != 0)
6511 bfd_put (8 * size, input_bfd, x, location);
d6f16593 6512
0e1862bb 6513 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6514 location);
d6f16593 6515
b34976b6 6516 return TRUE;
b49e97c9 6517}
b49e97c9 6518\f
b49e97c9
TS
6519/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6520 is the original relocation, which is now being transformed into a
6521 dynamic relocation. The ADDENDP is adjusted if necessary; the
6522 caller should store the result in place of the original addend. */
6523
b34976b6 6524static bfd_boolean
9719ad41
RS
6525mips_elf_create_dynamic_relocation (bfd *output_bfd,
6526 struct bfd_link_info *info,
6527 const Elf_Internal_Rela *rel,
6528 struct mips_elf_link_hash_entry *h,
6529 asection *sec, bfd_vma symbol,
6530 bfd_vma *addendp, asection *input_section)
b49e97c9 6531{
947216bf 6532 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6533 asection *sreloc;
6534 bfd *dynobj;
6535 int r_type;
5d41f0b6
RS
6536 long indx;
6537 bfd_boolean defined_p;
0a44bf69 6538 struct mips_elf_link_hash_table *htab;
b49e97c9 6539
0a44bf69 6540 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6541 BFD_ASSERT (htab != NULL);
6542
b49e97c9
TS
6543 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6544 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6545 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6546 BFD_ASSERT (sreloc != NULL);
6547 BFD_ASSERT (sreloc->contents != NULL);
6548 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6549 < sreloc->size);
b49e97c9 6550
b49e97c9
TS
6551 outrel[0].r_offset =
6552 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6553 if (ABI_64_P (output_bfd))
6554 {
6555 outrel[1].r_offset =
6556 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6557 outrel[2].r_offset =
6558 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6559 }
b49e97c9 6560
c5ae1840 6561 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6562 /* The relocation field has been deleted. */
5d41f0b6
RS
6563 return TRUE;
6564
6565 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6566 {
6567 /* The relocation field has been converted into a relative value of
6568 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6569 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6570 *addendp += symbol;
5d41f0b6 6571 return TRUE;
0d591ff7 6572 }
b49e97c9 6573
5d41f0b6
RS
6574 /* We must now calculate the dynamic symbol table index to use
6575 in the relocation. */
d4a77f3f 6576 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6577 {
020d7251 6578 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6579 indx = h->root.dynindx;
6580 if (SGI_COMPAT (output_bfd))
6581 defined_p = h->root.def_regular;
6582 else
6583 /* ??? glibc's ld.so just adds the final GOT entry to the
6584 relocation field. It therefore treats relocs against
6585 defined symbols in the same way as relocs against
6586 undefined symbols. */
6587 defined_p = FALSE;
6588 }
b49e97c9
TS
6589 else
6590 {
5d41f0b6
RS
6591 if (sec != NULL && bfd_is_abs_section (sec))
6592 indx = 0;
6593 else if (sec == NULL || sec->owner == NULL)
fdd07405 6594 {
5d41f0b6
RS
6595 bfd_set_error (bfd_error_bad_value);
6596 return FALSE;
b49e97c9
TS
6597 }
6598 else
6599 {
5d41f0b6 6600 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6601 if (indx == 0)
6602 {
6603 asection *osec = htab->root.text_index_section;
6604 indx = elf_section_data (osec)->dynindx;
6605 }
5d41f0b6
RS
6606 if (indx == 0)
6607 abort ();
b49e97c9
TS
6608 }
6609
5d41f0b6
RS
6610 /* Instead of generating a relocation using the section
6611 symbol, we may as well make it a fully relative
6612 relocation. We want to avoid generating relocations to
6613 local symbols because we used to generate them
6614 incorrectly, without adding the original symbol value,
6615 which is mandated by the ABI for section symbols. In
6616 order to give dynamic loaders and applications time to
6617 phase out the incorrect use, we refrain from emitting
6618 section-relative relocations. It's not like they're
6619 useful, after all. This should be a bit more efficient
6620 as well. */
6621 /* ??? Although this behavior is compatible with glibc's ld.so,
6622 the ABI says that relocations against STN_UNDEF should have
6623 a symbol value of 0. Irix rld honors this, so relocations
6624 against STN_UNDEF have no effect. */
6625 if (!SGI_COMPAT (output_bfd))
6626 indx = 0;
6627 defined_p = TRUE;
b49e97c9
TS
6628 }
6629
5d41f0b6
RS
6630 /* If the relocation was previously an absolute relocation and
6631 this symbol will not be referred to by the relocation, we must
6632 adjust it by the value we give it in the dynamic symbol table.
6633 Otherwise leave the job up to the dynamic linker. */
6634 if (defined_p && r_type != R_MIPS_REL32)
6635 *addendp += symbol;
6636
0a44bf69
RS
6637 if (htab->is_vxworks)
6638 /* VxWorks uses non-relative relocations for this. */
6639 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6640 else
6641 /* The relocation is always an REL32 relocation because we don't
6642 know where the shared library will wind up at load-time. */
6643 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6644 R_MIPS_REL32);
6645
5d41f0b6
RS
6646 /* For strict adherence to the ABI specification, we should
6647 generate a R_MIPS_64 relocation record by itself before the
6648 _REL32/_64 record as well, such that the addend is read in as
6649 a 64-bit value (REL32 is a 32-bit relocation, after all).
6650 However, since none of the existing ELF64 MIPS dynamic
6651 loaders seems to care, we don't waste space with these
6652 artificial relocations. If this turns out to not be true,
6653 mips_elf_allocate_dynamic_relocation() should be tweaked so
6654 as to make room for a pair of dynamic relocations per
6655 invocation if ABI_64_P, and here we should generate an
6656 additional relocation record with R_MIPS_64 by itself for a
6657 NULL symbol before this relocation record. */
6658 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6659 ABI_64_P (output_bfd)
6660 ? R_MIPS_64
6661 : R_MIPS_NONE);
6662 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6663
6664 /* Adjust the output offset of the relocation to reference the
6665 correct location in the output file. */
6666 outrel[0].r_offset += (input_section->output_section->vma
6667 + input_section->output_offset);
6668 outrel[1].r_offset += (input_section->output_section->vma
6669 + input_section->output_offset);
6670 outrel[2].r_offset += (input_section->output_section->vma
6671 + input_section->output_offset);
6672
b49e97c9
TS
6673 /* Put the relocation back out. We have to use the special
6674 relocation outputter in the 64-bit case since the 64-bit
6675 relocation format is non-standard. */
6676 if (ABI_64_P (output_bfd))
6677 {
6678 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6679 (output_bfd, &outrel[0],
6680 (sreloc->contents
6681 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6682 }
0a44bf69
RS
6683 else if (htab->is_vxworks)
6684 {
6685 /* VxWorks uses RELA rather than REL dynamic relocations. */
6686 outrel[0].r_addend = *addendp;
6687 bfd_elf32_swap_reloca_out
6688 (output_bfd, &outrel[0],
6689 (sreloc->contents
6690 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6691 }
b49e97c9 6692 else
947216bf
AM
6693 bfd_elf32_swap_reloc_out
6694 (output_bfd, &outrel[0],
6695 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6696
b49e97c9
TS
6697 /* We've now added another relocation. */
6698 ++sreloc->reloc_count;
6699
6700 /* Make sure the output section is writable. The dynamic linker
6701 will be writing to it. */
6702 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6703 |= SHF_WRITE;
6704
6705 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6706 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6707 {
3d4d4302 6708 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6709 bfd_byte *cr;
6710
6711 if (scpt)
6712 {
6713 Elf32_crinfo cptrel;
6714
6715 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6716 cptrel.vaddr = (rel->r_offset
6717 + input_section->output_section->vma
6718 + input_section->output_offset);
6719 if (r_type == R_MIPS_REL32)
6720 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6721 else
6722 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6723 mips_elf_set_cr_dist2to (cptrel, 0);
6724 cptrel.konst = *addendp;
6725
6726 cr = (scpt->contents
6727 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6728 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6729 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6730 ((Elf32_External_crinfo *) cr
6731 + scpt->reloc_count));
6732 ++scpt->reloc_count;
6733 }
6734 }
6735
943284cc
DJ
6736 /* If we've written this relocation for a readonly section,
6737 we need to set DF_TEXTREL again, so that we do not delete the
6738 DT_TEXTREL tag. */
6739 if (MIPS_ELF_READONLY_SECTION (input_section))
6740 info->flags |= DF_TEXTREL;
6741
b34976b6 6742 return TRUE;
b49e97c9
TS
6743}
6744\f
b49e97c9
TS
6745/* Return the MACH for a MIPS e_flags value. */
6746
6747unsigned long
9719ad41 6748_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6749{
6750 switch (flags & EF_MIPS_MACH)
6751 {
6752 case E_MIPS_MACH_3900:
6753 return bfd_mach_mips3900;
6754
6755 case E_MIPS_MACH_4010:
6756 return bfd_mach_mips4010;
6757
6758 case E_MIPS_MACH_4100:
6759 return bfd_mach_mips4100;
6760
6761 case E_MIPS_MACH_4111:
6762 return bfd_mach_mips4111;
6763
00707a0e
RS
6764 case E_MIPS_MACH_4120:
6765 return bfd_mach_mips4120;
6766
b49e97c9
TS
6767 case E_MIPS_MACH_4650:
6768 return bfd_mach_mips4650;
6769
00707a0e
RS
6770 case E_MIPS_MACH_5400:
6771 return bfd_mach_mips5400;
6772
6773 case E_MIPS_MACH_5500:
6774 return bfd_mach_mips5500;
6775
e407c74b
NC
6776 case E_MIPS_MACH_5900:
6777 return bfd_mach_mips5900;
6778
0d2e43ed
ILT
6779 case E_MIPS_MACH_9000:
6780 return bfd_mach_mips9000;
6781
b49e97c9
TS
6782 case E_MIPS_MACH_SB1:
6783 return bfd_mach_mips_sb1;
6784
350cc38d
MS
6785 case E_MIPS_MACH_LS2E:
6786 return bfd_mach_mips_loongson_2e;
6787
6788 case E_MIPS_MACH_LS2F:
6789 return bfd_mach_mips_loongson_2f;
6790
fd503541
NC
6791 case E_MIPS_MACH_LS3A:
6792 return bfd_mach_mips_loongson_3a;
6793
2c629856
N
6794 case E_MIPS_MACH_OCTEON3:
6795 return bfd_mach_mips_octeon3;
6796
432233b3
AP
6797 case E_MIPS_MACH_OCTEON2:
6798 return bfd_mach_mips_octeon2;
6799
6f179bd0
AN
6800 case E_MIPS_MACH_OCTEON:
6801 return bfd_mach_mips_octeon;
6802
52b6b6b9
JM
6803 case E_MIPS_MACH_XLR:
6804 return bfd_mach_mips_xlr;
6805
38bf472a
MR
6806 case E_MIPS_MACH_IAMR2:
6807 return bfd_mach_mips_interaptiv_mr2;
6808
b49e97c9
TS
6809 default:
6810 switch (flags & EF_MIPS_ARCH)
6811 {
6812 default:
6813 case E_MIPS_ARCH_1:
6814 return bfd_mach_mips3000;
b49e97c9
TS
6815
6816 case E_MIPS_ARCH_2:
6817 return bfd_mach_mips6000;
b49e97c9
TS
6818
6819 case E_MIPS_ARCH_3:
6820 return bfd_mach_mips4000;
b49e97c9
TS
6821
6822 case E_MIPS_ARCH_4:
6823 return bfd_mach_mips8000;
b49e97c9
TS
6824
6825 case E_MIPS_ARCH_5:
6826 return bfd_mach_mips5;
b49e97c9
TS
6827
6828 case E_MIPS_ARCH_32:
6829 return bfd_mach_mipsisa32;
b49e97c9
TS
6830
6831 case E_MIPS_ARCH_64:
6832 return bfd_mach_mipsisa64;
af7ee8bf
CD
6833
6834 case E_MIPS_ARCH_32R2:
6835 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6836
6837 case E_MIPS_ARCH_64R2:
6838 return bfd_mach_mipsisa64r2;
7361da2c
AB
6839
6840 case E_MIPS_ARCH_32R6:
6841 return bfd_mach_mipsisa32r6;
6842
6843 case E_MIPS_ARCH_64R6:
6844 return bfd_mach_mipsisa64r6;
b49e97c9
TS
6845 }
6846 }
6847
6848 return 0;
6849}
6850
6851/* Return printable name for ABI. */
6852
6853static INLINE char *
9719ad41 6854elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6855{
6856 flagword flags;
6857
6858 flags = elf_elfheader (abfd)->e_flags;
6859 switch (flags & EF_MIPS_ABI)
6860 {
6861 case 0:
6862 if (ABI_N32_P (abfd))
6863 return "N32";
6864 else if (ABI_64_P (abfd))
6865 return "64";
6866 else
6867 return "none";
6868 case E_MIPS_ABI_O32:
6869 return "O32";
6870 case E_MIPS_ABI_O64:
6871 return "O64";
6872 case E_MIPS_ABI_EABI32:
6873 return "EABI32";
6874 case E_MIPS_ABI_EABI64:
6875 return "EABI64";
6876 default:
6877 return "unknown abi";
6878 }
6879}
6880\f
6881/* MIPS ELF uses two common sections. One is the usual one, and the
6882 other is for small objects. All the small objects are kept
6883 together, and then referenced via the gp pointer, which yields
6884 faster assembler code. This is what we use for the small common
6885 section. This approach is copied from ecoff.c. */
6886static asection mips_elf_scom_section;
6887static asymbol mips_elf_scom_symbol;
6888static asymbol *mips_elf_scom_symbol_ptr;
6889
6890/* MIPS ELF also uses an acommon section, which represents an
6891 allocated common symbol which may be overridden by a
6892 definition in a shared library. */
6893static asection mips_elf_acom_section;
6894static asymbol mips_elf_acom_symbol;
6895static asymbol *mips_elf_acom_symbol_ptr;
6896
738e5348 6897/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6898
6899void
9719ad41 6900_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6901{
6902 elf_symbol_type *elfsym;
6903
738e5348 6904 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6905 elfsym = (elf_symbol_type *) asym;
6906 switch (elfsym->internal_elf_sym.st_shndx)
6907 {
6908 case SHN_MIPS_ACOMMON:
6909 /* This section is used in a dynamically linked executable file.
6910 It is an allocated common section. The dynamic linker can
6911 either resolve these symbols to something in a shared
6912 library, or it can just leave them here. For our purposes,
6913 we can consider these symbols to be in a new section. */
6914 if (mips_elf_acom_section.name == NULL)
6915 {
6916 /* Initialize the acommon section. */
6917 mips_elf_acom_section.name = ".acommon";
6918 mips_elf_acom_section.flags = SEC_ALLOC;
6919 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6920 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6921 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6922 mips_elf_acom_symbol.name = ".acommon";
6923 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6924 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6925 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6926 }
6927 asym->section = &mips_elf_acom_section;
6928 break;
6929
6930 case SHN_COMMON:
6931 /* Common symbols less than the GP size are automatically
6932 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6933 if (asym->value > elf_gp_size (abfd)
b59eed79 6934 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6935 || IRIX_COMPAT (abfd) == ict_irix6)
6936 break;
6937 /* Fall through. */
6938 case SHN_MIPS_SCOMMON:
6939 if (mips_elf_scom_section.name == NULL)
6940 {
6941 /* Initialize the small common section. */
6942 mips_elf_scom_section.name = ".scommon";
6943 mips_elf_scom_section.flags = SEC_IS_COMMON;
6944 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6945 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6946 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6947 mips_elf_scom_symbol.name = ".scommon";
6948 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6949 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6950 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6951 }
6952 asym->section = &mips_elf_scom_section;
6953 asym->value = elfsym->internal_elf_sym.st_size;
6954 break;
6955
6956 case SHN_MIPS_SUNDEFINED:
6957 asym->section = bfd_und_section_ptr;
6958 break;
6959
b49e97c9 6960 case SHN_MIPS_TEXT:
00b4930b
TS
6961 {
6962 asection *section = bfd_get_section_by_name (abfd, ".text");
6963
00b4930b
TS
6964 if (section != NULL)
6965 {
6966 asym->section = section;
6967 /* MIPS_TEXT is a bit special, the address is not an offset
de194d85 6968 to the base of the .text section. So subtract the section
00b4930b
TS
6969 base address to make it an offset. */
6970 asym->value -= section->vma;
6971 }
6972 }
b49e97c9
TS
6973 break;
6974
6975 case SHN_MIPS_DATA:
00b4930b
TS
6976 {
6977 asection *section = bfd_get_section_by_name (abfd, ".data");
6978
00b4930b
TS
6979 if (section != NULL)
6980 {
6981 asym->section = section;
6982 /* MIPS_DATA is a bit special, the address is not an offset
de194d85 6983 to the base of the .data section. So subtract the section
00b4930b
TS
6984 base address to make it an offset. */
6985 asym->value -= section->vma;
6986 }
6987 }
b49e97c9 6988 break;
b49e97c9 6989 }
738e5348 6990
df58fc94
RS
6991 /* If this is an odd-valued function symbol, assume it's a MIPS16
6992 or microMIPS one. */
738e5348
RS
6993 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6994 && (asym->value & 1) != 0)
6995 {
6996 asym->value--;
e8faf7d1 6997 if (MICROMIPS_P (abfd))
df58fc94
RS
6998 elfsym->internal_elf_sym.st_other
6999 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7000 else
7001 elfsym->internal_elf_sym.st_other
7002 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 7003 }
b49e97c9
TS
7004}
7005\f
8c946ed5
RS
7006/* Implement elf_backend_eh_frame_address_size. This differs from
7007 the default in the way it handles EABI64.
7008
7009 EABI64 was originally specified as an LP64 ABI, and that is what
7010 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7011 historically accepted the combination of -mabi=eabi and -mlong32,
7012 and this ILP32 variation has become semi-official over time.
7013 Both forms use elf32 and have pointer-sized FDE addresses.
7014
7015 If an EABI object was generated by GCC 4.0 or above, it will have
7016 an empty .gcc_compiled_longXX section, where XX is the size of longs
7017 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7018 have no special marking to distinguish them from LP64 objects.
7019
7020 We don't want users of the official LP64 ABI to be punished for the
7021 existence of the ILP32 variant, but at the same time, we don't want
7022 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7023 We therefore take the following approach:
7024
7025 - If ABFD contains a .gcc_compiled_longXX section, use it to
07d6d2b8 7026 determine the pointer size.
8c946ed5
RS
7027
7028 - Otherwise check the type of the first relocation. Assume that
07d6d2b8 7029 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
8c946ed5
RS
7030
7031 - Otherwise punt.
7032
7033 The second check is enough to detect LP64 objects generated by pre-4.0
7034 compilers because, in the kind of output generated by those compilers,
7035 the first relocation will be associated with either a CIE personality
7036 routine or an FDE start address. Furthermore, the compilers never
7037 used a special (non-pointer) encoding for this ABI.
7038
7039 Checking the relocation type should also be safe because there is no
7040 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7041 did so. */
7042
7043unsigned int
76c20d54 7044_bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
8c946ed5
RS
7045{
7046 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7047 return 8;
7048 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7049 {
7050 bfd_boolean long32_p, long64_p;
7051
7052 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7053 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7054 if (long32_p && long64_p)
7055 return 0;
7056 if (long32_p)
7057 return 4;
7058 if (long64_p)
7059 return 8;
7060
7061 if (sec->reloc_count > 0
7062 && elf_section_data (sec)->relocs != NULL
7063 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7064 == R_MIPS_64))
7065 return 8;
7066
7067 return 0;
7068 }
7069 return 4;
7070}
7071\f
174fd7f9
RS
7072/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7073 relocations against two unnamed section symbols to resolve to the
7074 same address. For example, if we have code like:
7075
7076 lw $4,%got_disp(.data)($gp)
7077 lw $25,%got_disp(.text)($gp)
7078 jalr $25
7079
7080 then the linker will resolve both relocations to .data and the program
7081 will jump there rather than to .text.
7082
7083 We can work around this problem by giving names to local section symbols.
7084 This is also what the MIPSpro tools do. */
7085
7086bfd_boolean
7087_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7088{
7089 return SGI_COMPAT (abfd);
7090}
7091\f
b49e97c9
TS
7092/* Work over a section just before writing it out. This routine is
7093 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7094 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7095 a better way. */
7096
b34976b6 7097bfd_boolean
9719ad41 7098_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
7099{
7100 if (hdr->sh_type == SHT_MIPS_REGINFO
7101 && hdr->sh_size > 0)
7102 {
7103 bfd_byte buf[4];
7104
b49e97c9
TS
7105 BFD_ASSERT (hdr->contents == NULL);
7106
2d6dda71
MR
7107 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7108 {
7109 _bfd_error_handler
2dcf00ce
AM
7110 (_("%pB: Incorrect `.reginfo' section size; "
7111 "expected %" PRIu64 ", got %" PRIu64),
7112 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7113 (uint64_t) hdr->sh_size);
2d6dda71
MR
7114 bfd_set_error (bfd_error_bad_value);
7115 return FALSE;
7116 }
7117
b49e97c9
TS
7118 if (bfd_seek (abfd,
7119 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7120 SEEK_SET) != 0)
b34976b6 7121 return FALSE;
b49e97c9 7122 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7123 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7124 return FALSE;
b49e97c9
TS
7125 }
7126
7127 if (hdr->sh_type == SHT_MIPS_OPTIONS
7128 && hdr->bfd_section != NULL
f0abc2a1
AM
7129 && mips_elf_section_data (hdr->bfd_section) != NULL
7130 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
7131 {
7132 bfd_byte *contents, *l, *lend;
7133
f0abc2a1
AM
7134 /* We stored the section contents in the tdata field in the
7135 set_section_contents routine. We save the section contents
7136 so that we don't have to read them again.
b49e97c9
TS
7137 At this point we know that elf_gp is set, so we can look
7138 through the section contents to see if there is an
7139 ODK_REGINFO structure. */
7140
f0abc2a1 7141 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
7142 l = contents;
7143 lend = contents + hdr->sh_size;
7144 while (l + sizeof (Elf_External_Options) <= lend)
7145 {
7146 Elf_Internal_Options intopt;
7147
7148 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7149 &intopt);
1bc8074d
MR
7150 if (intopt.size < sizeof (Elf_External_Options))
7151 {
4eca0228 7152 _bfd_error_handler
695344c0 7153 /* xgettext:c-format */
871b3ab2 7154 (_("%pB: Warning: bad `%s' option size %u smaller than"
63a5468a 7155 " its header"),
1bc8074d
MR
7156 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7157 break;
7158 }
b49e97c9
TS
7159 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7160 {
7161 bfd_byte buf[8];
7162
7163 if (bfd_seek (abfd,
7164 (hdr->sh_offset
7165 + (l - contents)
7166 + sizeof (Elf_External_Options)
7167 + (sizeof (Elf64_External_RegInfo) - 8)),
7168 SEEK_SET) != 0)
b34976b6 7169 return FALSE;
b49e97c9 7170 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 7171 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 7172 return FALSE;
b49e97c9
TS
7173 }
7174 else if (intopt.kind == ODK_REGINFO)
7175 {
7176 bfd_byte buf[4];
7177
7178 if (bfd_seek (abfd,
7179 (hdr->sh_offset
7180 + (l - contents)
7181 + sizeof (Elf_External_Options)
7182 + (sizeof (Elf32_External_RegInfo) - 4)),
7183 SEEK_SET) != 0)
b34976b6 7184 return FALSE;
b49e97c9 7185 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7186 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7187 return FALSE;
b49e97c9
TS
7188 }
7189 l += intopt.size;
7190 }
7191 }
7192
7193 if (hdr->bfd_section != NULL)
7194 {
7195 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7196
2d0f9ad9
JM
7197 /* .sbss is not handled specially here because the GNU/Linux
7198 prelinker can convert .sbss from NOBITS to PROGBITS and
7199 changing it back to NOBITS breaks the binary. The entry in
7200 _bfd_mips_elf_special_sections will ensure the correct flags
7201 are set on .sbss if BFD creates it without reading it from an
7202 input file, and without special handling here the flags set
7203 on it in an input file will be followed. */
b49e97c9
TS
7204 if (strcmp (name, ".sdata") == 0
7205 || strcmp (name, ".lit8") == 0
7206 || strcmp (name, ".lit4") == 0)
fd6f9d17 7207 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7208 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7209 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7210 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7211 hdr->sh_flags = 0;
b49e97c9
TS
7212 else if (strcmp (name, ".rtproc") == 0)
7213 {
7214 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7215 {
7216 unsigned int adjust;
7217
7218 adjust = hdr->sh_size % hdr->sh_addralign;
7219 if (adjust != 0)
7220 hdr->sh_size += hdr->sh_addralign - adjust;
7221 }
7222 }
7223 }
7224
b34976b6 7225 return TRUE;
b49e97c9
TS
7226}
7227
7228/* Handle a MIPS specific section when reading an object file. This
7229 is called when elfcode.h finds a section with an unknown type.
7230 This routine supports both the 32-bit and 64-bit ELF ABI.
7231
7232 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7233 how to. */
7234
b34976b6 7235bfd_boolean
6dc132d9
L
7236_bfd_mips_elf_section_from_shdr (bfd *abfd,
7237 Elf_Internal_Shdr *hdr,
7238 const char *name,
7239 int shindex)
b49e97c9
TS
7240{
7241 flagword flags = 0;
7242
7243 /* There ought to be a place to keep ELF backend specific flags, but
7244 at the moment there isn't one. We just keep track of the
7245 sections by their name, instead. Fortunately, the ABI gives
7246 suggested names for all the MIPS specific sections, so we will
7247 probably get away with this. */
7248 switch (hdr->sh_type)
7249 {
7250 case SHT_MIPS_LIBLIST:
7251 if (strcmp (name, ".liblist") != 0)
b34976b6 7252 return FALSE;
b49e97c9
TS
7253 break;
7254 case SHT_MIPS_MSYM:
7255 if (strcmp (name, ".msym") != 0)
b34976b6 7256 return FALSE;
b49e97c9
TS
7257 break;
7258 case SHT_MIPS_CONFLICT:
7259 if (strcmp (name, ".conflict") != 0)
b34976b6 7260 return FALSE;
b49e97c9
TS
7261 break;
7262 case SHT_MIPS_GPTAB:
0112cd26 7263 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7264 return FALSE;
b49e97c9
TS
7265 break;
7266 case SHT_MIPS_UCODE:
7267 if (strcmp (name, ".ucode") != 0)
b34976b6 7268 return FALSE;
b49e97c9
TS
7269 break;
7270 case SHT_MIPS_DEBUG:
7271 if (strcmp (name, ".mdebug") != 0)
b34976b6 7272 return FALSE;
b49e97c9
TS
7273 flags = SEC_DEBUGGING;
7274 break;
7275 case SHT_MIPS_REGINFO:
7276 if (strcmp (name, ".reginfo") != 0
7277 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7278 return FALSE;
b49e97c9
TS
7279 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7280 break;
7281 case SHT_MIPS_IFACE:
7282 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7283 return FALSE;
b49e97c9
TS
7284 break;
7285 case SHT_MIPS_CONTENT:
0112cd26 7286 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7287 return FALSE;
b49e97c9
TS
7288 break;
7289 case SHT_MIPS_OPTIONS:
cc2e31b9 7290 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7291 return FALSE;
b49e97c9 7292 break;
351cdf24
MF
7293 case SHT_MIPS_ABIFLAGS:
7294 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7295 return FALSE;
7296 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7297 break;
b49e97c9 7298 case SHT_MIPS_DWARF:
1b315056 7299 if (! CONST_STRNEQ (name, ".debug_")
07d6d2b8 7300 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7301 return FALSE;
b49e97c9
TS
7302 break;
7303 case SHT_MIPS_SYMBOL_LIB:
7304 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7305 return FALSE;
b49e97c9
TS
7306 break;
7307 case SHT_MIPS_EVENTS:
0112cd26
NC
7308 if (! CONST_STRNEQ (name, ".MIPS.events")
7309 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7310 return FALSE;
b49e97c9
TS
7311 break;
7312 default:
cc2e31b9 7313 break;
b49e97c9
TS
7314 }
7315
6dc132d9 7316 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7317 return FALSE;
b49e97c9
TS
7318
7319 if (flags)
7320 {
7321 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7322 (bfd_get_section_flags (abfd,
7323 hdr->bfd_section)
7324 | flags)))
b34976b6 7325 return FALSE;
b49e97c9
TS
7326 }
7327
351cdf24
MF
7328 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7329 {
7330 Elf_External_ABIFlags_v0 ext;
7331
7332 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7333 &ext, 0, sizeof ext))
7334 return FALSE;
7335 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7336 &mips_elf_tdata (abfd)->abiflags);
7337 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7338 return FALSE;
7339 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7340 }
7341
b49e97c9
TS
7342 /* FIXME: We should record sh_info for a .gptab section. */
7343
7344 /* For a .reginfo section, set the gp value in the tdata information
7345 from the contents of this section. We need the gp value while
7346 processing relocs, so we just get it now. The .reginfo section
7347 is not used in the 64-bit MIPS ELF ABI. */
7348 if (hdr->sh_type == SHT_MIPS_REGINFO)
7349 {
7350 Elf32_External_RegInfo ext;
7351 Elf32_RegInfo s;
7352
9719ad41
RS
7353 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7354 &ext, 0, sizeof ext))
b34976b6 7355 return FALSE;
b49e97c9
TS
7356 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7357 elf_gp (abfd) = s.ri_gp_value;
7358 }
7359
7360 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7361 set the gp value based on what we find. We may see both
7362 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7363 they should agree. */
7364 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7365 {
7366 bfd_byte *contents, *l, *lend;
7367
9719ad41 7368 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7369 if (contents == NULL)
b34976b6 7370 return FALSE;
b49e97c9 7371 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7372 0, hdr->sh_size))
b49e97c9
TS
7373 {
7374 free (contents);
b34976b6 7375 return FALSE;
b49e97c9
TS
7376 }
7377 l = contents;
7378 lend = contents + hdr->sh_size;
7379 while (l + sizeof (Elf_External_Options) <= lend)
7380 {
7381 Elf_Internal_Options intopt;
7382
7383 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7384 &intopt);
1bc8074d
MR
7385 if (intopt.size < sizeof (Elf_External_Options))
7386 {
4eca0228 7387 _bfd_error_handler
695344c0 7388 /* xgettext:c-format */
871b3ab2 7389 (_("%pB: Warning: bad `%s' option size %u smaller than"
63a5468a 7390 " its header"),
1bc8074d
MR
7391 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7392 break;
7393 }
b49e97c9
TS
7394 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7395 {
7396 Elf64_Internal_RegInfo intreg;
7397
7398 bfd_mips_elf64_swap_reginfo_in
7399 (abfd,
7400 ((Elf64_External_RegInfo *)
7401 (l + sizeof (Elf_External_Options))),
7402 &intreg);
7403 elf_gp (abfd) = intreg.ri_gp_value;
7404 }
7405 else if (intopt.kind == ODK_REGINFO)
7406 {
7407 Elf32_RegInfo intreg;
7408
7409 bfd_mips_elf32_swap_reginfo_in
7410 (abfd,
7411 ((Elf32_External_RegInfo *)
7412 (l + sizeof (Elf_External_Options))),
7413 &intreg);
7414 elf_gp (abfd) = intreg.ri_gp_value;
7415 }
7416 l += intopt.size;
7417 }
7418 free (contents);
7419 }
7420
b34976b6 7421 return TRUE;
b49e97c9
TS
7422}
7423
7424/* Set the correct type for a MIPS ELF section. We do this by the
7425 section name, which is a hack, but ought to work. This routine is
7426 used by both the 32-bit and the 64-bit ABI. */
7427
b34976b6 7428bfd_boolean
9719ad41 7429_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7430{
0414f35b 7431 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
7432
7433 if (strcmp (name, ".liblist") == 0)
7434 {
7435 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7436 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7437 /* The sh_link field is set in final_write_processing. */
7438 }
7439 else if (strcmp (name, ".conflict") == 0)
7440 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7441 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7442 {
7443 hdr->sh_type = SHT_MIPS_GPTAB;
7444 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7445 /* The sh_info field is set in final_write_processing. */
7446 }
7447 else if (strcmp (name, ".ucode") == 0)
7448 hdr->sh_type = SHT_MIPS_UCODE;
7449 else if (strcmp (name, ".mdebug") == 0)
7450 {
7451 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7452 /* In a shared object on IRIX 5.3, the .mdebug section has an
07d6d2b8 7453 entsize of 0. FIXME: Does this matter? */
b49e97c9
TS
7454 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7455 hdr->sh_entsize = 0;
7456 else
7457 hdr->sh_entsize = 1;
7458 }
7459 else if (strcmp (name, ".reginfo") == 0)
7460 {
7461 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7462 /* In a shared object on IRIX 5.3, the .reginfo section has an
07d6d2b8 7463 entsize of 0x18. FIXME: Does this matter? */
b49e97c9
TS
7464 if (SGI_COMPAT (abfd))
7465 {
7466 if ((abfd->flags & DYNAMIC) != 0)
7467 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7468 else
7469 hdr->sh_entsize = 1;
7470 }
7471 else
7472 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7473 }
7474 else if (SGI_COMPAT (abfd)
7475 && (strcmp (name, ".hash") == 0
7476 || strcmp (name, ".dynamic") == 0
7477 || strcmp (name, ".dynstr") == 0))
7478 {
7479 if (SGI_COMPAT (abfd))
7480 hdr->sh_entsize = 0;
7481#if 0
8dc1a139 7482 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7483 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7484#endif
7485 }
7486 else if (strcmp (name, ".got") == 0
7487 || strcmp (name, ".srdata") == 0
7488 || strcmp (name, ".sdata") == 0
7489 || strcmp (name, ".sbss") == 0
7490 || strcmp (name, ".lit4") == 0
7491 || strcmp (name, ".lit8") == 0)
7492 hdr->sh_flags |= SHF_MIPS_GPREL;
7493 else if (strcmp (name, ".MIPS.interfaces") == 0)
7494 {
7495 hdr->sh_type = SHT_MIPS_IFACE;
7496 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7497 }
0112cd26 7498 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7499 {
7500 hdr->sh_type = SHT_MIPS_CONTENT;
7501 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7502 /* The sh_info field is set in final_write_processing. */
7503 }
cc2e31b9 7504 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7505 {
7506 hdr->sh_type = SHT_MIPS_OPTIONS;
7507 hdr->sh_entsize = 1;
7508 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7509 }
351cdf24
MF
7510 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7511 {
7512 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7513 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7514 }
1b315056 7515 else if (CONST_STRNEQ (name, ".debug_")
07d6d2b8 7516 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7517 {
7518 hdr->sh_type = SHT_MIPS_DWARF;
7519
7520 /* Irix facilities such as libexc expect a single .debug_frame
7521 per executable, the system ones have NOSTRIP set and the linker
7522 doesn't merge sections with different flags so ... */
7523 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7524 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7525 }
b49e97c9
TS
7526 else if (strcmp (name, ".MIPS.symlib") == 0)
7527 {
7528 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7529 /* The sh_link and sh_info fields are set in
07d6d2b8 7530 final_write_processing. */
b49e97c9 7531 }
0112cd26
NC
7532 else if (CONST_STRNEQ (name, ".MIPS.events")
7533 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7534 {
7535 hdr->sh_type = SHT_MIPS_EVENTS;
7536 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7537 /* The sh_link field is set in final_write_processing. */
7538 }
7539 else if (strcmp (name, ".msym") == 0)
7540 {
7541 hdr->sh_type = SHT_MIPS_MSYM;
7542 hdr->sh_flags |= SHF_ALLOC;
7543 hdr->sh_entsize = 8;
7544 }
7545
7a79a000
TS
7546 /* The generic elf_fake_sections will set up REL_HDR using the default
7547 kind of relocations. We used to set up a second header for the
7548 non-default kind of relocations here, but only NewABI would use
7549 these, and the IRIX ld doesn't like resulting empty RELA sections.
7550 Thus we create those header only on demand now. */
b49e97c9 7551
b34976b6 7552 return TRUE;
b49e97c9
TS
7553}
7554
7555/* Given a BFD section, try to locate the corresponding ELF section
7556 index. This is used by both the 32-bit and the 64-bit ABI.
7557 Actually, it's not clear to me that the 64-bit ABI supports these,
7558 but for non-PIC objects we will certainly want support for at least
7559 the .scommon section. */
7560
b34976b6 7561bfd_boolean
9719ad41
RS
7562_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7563 asection *sec, int *retval)
b49e97c9
TS
7564{
7565 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7566 {
7567 *retval = SHN_MIPS_SCOMMON;
b34976b6 7568 return TRUE;
b49e97c9
TS
7569 }
7570 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7571 {
7572 *retval = SHN_MIPS_ACOMMON;
b34976b6 7573 return TRUE;
b49e97c9 7574 }
b34976b6 7575 return FALSE;
b49e97c9
TS
7576}
7577\f
7578/* Hook called by the linker routine which adds symbols from an object
7579 file. We must handle the special MIPS section numbers here. */
7580
b34976b6 7581bfd_boolean
9719ad41 7582_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7583 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7584 flagword *flagsp ATTRIBUTE_UNUSED,
7585 asection **secp, bfd_vma *valp)
b49e97c9
TS
7586{
7587 if (SGI_COMPAT (abfd)
7588 && (abfd->flags & DYNAMIC) != 0
7589 && strcmp (*namep, "_rld_new_interface") == 0)
7590 {
8dc1a139 7591 /* Skip IRIX5 rld entry name. */
b49e97c9 7592 *namep = NULL;
b34976b6 7593 return TRUE;
b49e97c9
TS
7594 }
7595
eedecc07
DD
7596 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7597 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7598 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7599 a magic symbol resolved by the linker, we ignore this bogus definition
7600 of _gp_disp. New ABI objects do not suffer from this problem so this
7601 is not done for them. */
7602 if (!NEWABI_P(abfd)
7603 && (sym->st_shndx == SHN_ABS)
7604 && (strcmp (*namep, "_gp_disp") == 0))
7605 {
7606 *namep = NULL;
7607 return TRUE;
7608 }
7609
b49e97c9
TS
7610 switch (sym->st_shndx)
7611 {
7612 case SHN_COMMON:
7613 /* Common symbols less than the GP size are automatically
7614 treated as SHN_MIPS_SCOMMON symbols. */
7615 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7616 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7617 || IRIX_COMPAT (abfd) == ict_irix6)
7618 break;
7619 /* Fall through. */
7620 case SHN_MIPS_SCOMMON:
7621 *secp = bfd_make_section_old_way (abfd, ".scommon");
7622 (*secp)->flags |= SEC_IS_COMMON;
7623 *valp = sym->st_size;
7624 break;
7625
7626 case SHN_MIPS_TEXT:
7627 /* This section is used in a shared object. */
698600e4 7628 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7629 {
7630 asymbol *elf_text_symbol;
7631 asection *elf_text_section;
7632 bfd_size_type amt = sizeof (asection);
7633
7634 elf_text_section = bfd_zalloc (abfd, amt);
7635 if (elf_text_section == NULL)
b34976b6 7636 return FALSE;
b49e97c9
TS
7637
7638 amt = sizeof (asymbol);
7639 elf_text_symbol = bfd_zalloc (abfd, amt);
7640 if (elf_text_symbol == NULL)
b34976b6 7641 return FALSE;
b49e97c9
TS
7642
7643 /* Initialize the section. */
7644
698600e4
AM
7645 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7646 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7647
7648 elf_text_section->symbol = elf_text_symbol;
698600e4 7649 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7650
7651 elf_text_section->name = ".text";
7652 elf_text_section->flags = SEC_NO_FLAGS;
7653 elf_text_section->output_section = NULL;
7654 elf_text_section->owner = abfd;
7655 elf_text_symbol->name = ".text";
7656 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7657 elf_text_symbol->section = elf_text_section;
7658 }
7659 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7660 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7661 so I took it out. */
698600e4 7662 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7663 break;
7664
7665 case SHN_MIPS_ACOMMON:
7666 /* Fall through. XXX Can we treat this as allocated data? */
7667 case SHN_MIPS_DATA:
7668 /* This section is used in a shared object. */
698600e4 7669 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7670 {
7671 asymbol *elf_data_symbol;
7672 asection *elf_data_section;
7673 bfd_size_type amt = sizeof (asection);
7674
7675 elf_data_section = bfd_zalloc (abfd, amt);
7676 if (elf_data_section == NULL)
b34976b6 7677 return FALSE;
b49e97c9
TS
7678
7679 amt = sizeof (asymbol);
7680 elf_data_symbol = bfd_zalloc (abfd, amt);
7681 if (elf_data_symbol == NULL)
b34976b6 7682 return FALSE;
b49e97c9
TS
7683
7684 /* Initialize the section. */
7685
698600e4
AM
7686 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7687 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7688
7689 elf_data_section->symbol = elf_data_symbol;
698600e4 7690 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7691
7692 elf_data_section->name = ".data";
7693 elf_data_section->flags = SEC_NO_FLAGS;
7694 elf_data_section->output_section = NULL;
7695 elf_data_section->owner = abfd;
7696 elf_data_symbol->name = ".data";
7697 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7698 elf_data_symbol->section = elf_data_section;
7699 }
7700 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7701 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7702 so I took it out. */
698600e4 7703 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7704 break;
7705
7706 case SHN_MIPS_SUNDEFINED:
7707 *secp = bfd_und_section_ptr;
7708 break;
7709 }
7710
7711 if (SGI_COMPAT (abfd)
0e1862bb 7712 && ! bfd_link_pic (info)
f13a99db 7713 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7714 && strcmp (*namep, "__rld_obj_head") == 0)
7715 {
7716 struct elf_link_hash_entry *h;
14a793b2 7717 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7718
7719 /* Mark __rld_obj_head as dynamic. */
14a793b2 7720 bh = NULL;
b49e97c9 7721 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7722 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7723 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7724 return FALSE;
14a793b2
AM
7725
7726 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7727 h->non_elf = 0;
7728 h->def_regular = 1;
b49e97c9
TS
7729 h->type = STT_OBJECT;
7730
c152c796 7731 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7732 return FALSE;
b49e97c9 7733
b34976b6 7734 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7735 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7736 }
7737
7738 /* If this is a mips16 text symbol, add 1 to the value to make it
7739 odd. This will cause something like .word SYM to come up with
7740 the right value when it is loaded into the PC. */
df58fc94 7741 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7742 ++*valp;
7743
b34976b6 7744 return TRUE;
b49e97c9
TS
7745}
7746
7747/* This hook function is called before the linker writes out a global
7748 symbol. We mark symbols as small common if appropriate. This is
7749 also where we undo the increment of the value for a mips16 symbol. */
7750
6e0b88f1 7751int
9719ad41
RS
7752_bfd_mips_elf_link_output_symbol_hook
7753 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7754 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7755 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7756{
7757 /* If we see a common symbol, which implies a relocatable link, then
7758 if a symbol was small common in an input file, mark it as small
7759 common in the output file. */
7760 if (sym->st_shndx == SHN_COMMON
7761 && strcmp (input_sec->name, ".scommon") == 0)
7762 sym->st_shndx = SHN_MIPS_SCOMMON;
7763
df58fc94 7764 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7765 sym->st_value &= ~1;
b49e97c9 7766
6e0b88f1 7767 return 1;
b49e97c9
TS
7768}
7769\f
7770/* Functions for the dynamic linker. */
7771
7772/* Create dynamic sections when linking against a dynamic object. */
7773
b34976b6 7774bfd_boolean
9719ad41 7775_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7776{
7777 struct elf_link_hash_entry *h;
14a793b2 7778 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7779 flagword flags;
7780 register asection *s;
7781 const char * const *namep;
0a44bf69 7782 struct mips_elf_link_hash_table *htab;
b49e97c9 7783
0a44bf69 7784 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7785 BFD_ASSERT (htab != NULL);
7786
b49e97c9
TS
7787 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7788 | SEC_LINKER_CREATED | SEC_READONLY);
7789
0a44bf69
RS
7790 /* The psABI requires a read-only .dynamic section, but the VxWorks
7791 EABI doesn't. */
7792 if (!htab->is_vxworks)
b49e97c9 7793 {
3d4d4302 7794 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7795 if (s != NULL)
7796 {
7797 if (! bfd_set_section_flags (abfd, s, flags))
7798 return FALSE;
7799 }
b49e97c9
TS
7800 }
7801
7802 /* We need to create .got section. */
23cc69b6 7803 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7804 return FALSE;
7805
0a44bf69 7806 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7807 return FALSE;
b49e97c9 7808
b49e97c9 7809 /* Create .stub section. */
3d4d4302
AM
7810 s = bfd_make_section_anyway_with_flags (abfd,
7811 MIPS_ELF_STUB_SECTION_NAME (abfd),
7812 flags | SEC_CODE);
4e41d0d7
RS
7813 if (s == NULL
7814 || ! bfd_set_section_alignment (abfd, s,
7815 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7816 return FALSE;
7817 htab->sstubs = s;
b49e97c9 7818
e6aea42d 7819 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 7820 && bfd_link_executable (info)
3d4d4302 7821 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7822 {
3d4d4302
AM
7823 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7824 flags &~ (flagword) SEC_READONLY);
b49e97c9 7825 if (s == NULL
b49e97c9
TS
7826 || ! bfd_set_section_alignment (abfd, s,
7827 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7828 return FALSE;
b49e97c9
TS
7829 }
7830
7831 /* On IRIX5, we adjust add some additional symbols and change the
7832 alignments of several sections. There is no ABI documentation
7833 indicating that this is necessary on IRIX6, nor any evidence that
7834 the linker takes such action. */
7835 if (IRIX_COMPAT (abfd) == ict_irix5)
7836 {
7837 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7838 {
14a793b2 7839 bh = NULL;
b49e97c9 7840 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7841 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7842 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7843 return FALSE;
14a793b2
AM
7844
7845 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7846 h->non_elf = 0;
7847 h->def_regular = 1;
b49e97c9
TS
7848 h->type = STT_SECTION;
7849
c152c796 7850 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7851 return FALSE;
b49e97c9
TS
7852 }
7853
7854 /* We need to create a .compact_rel section. */
7855 if (SGI_COMPAT (abfd))
7856 {
7857 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7858 return FALSE;
b49e97c9
TS
7859 }
7860
44c410de 7861 /* Change alignments of some sections. */
3d4d4302 7862 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7863 if (s != NULL)
a253d456
NC
7864 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7865
3d4d4302 7866 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7867 if (s != NULL)
a253d456
NC
7868 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7869
3d4d4302 7870 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7871 if (s != NULL)
a253d456
NC
7872 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7873
3d4d4302 7874 /* ??? */
b49e97c9
TS
7875 s = bfd_get_section_by_name (abfd, ".reginfo");
7876 if (s != NULL)
a253d456
NC
7877 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7878
3d4d4302 7879 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7880 if (s != NULL)
a253d456 7881 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7882 }
7883
0e1862bb 7884 if (bfd_link_executable (info))
b49e97c9 7885 {
14a793b2
AM
7886 const char *name;
7887
7888 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7889 bh = NULL;
7890 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7891 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7892 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7893 return FALSE;
14a793b2
AM
7894
7895 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7896 h->non_elf = 0;
7897 h->def_regular = 1;
b49e97c9
TS
7898 h->type = STT_SECTION;
7899
c152c796 7900 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7901 return FALSE;
b49e97c9
TS
7902
7903 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7904 {
7905 /* __rld_map is a four byte word located in the .data section
7906 and is filled in by the rtld to contain a pointer to
7907 the _r_debug structure. Its symbol value will be set in
7908 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7909 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7910 BFD_ASSERT (s != NULL);
14a793b2 7911
0abfb97a
L
7912 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7913 bh = NULL;
7914 if (!(_bfd_generic_link_add_one_symbol
7915 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7916 get_elf_backend_data (abfd)->collect, &bh)))
7917 return FALSE;
b49e97c9 7918
0abfb97a
L
7919 h = (struct elf_link_hash_entry *) bh;
7920 h->non_elf = 0;
7921 h->def_regular = 1;
7922 h->type = STT_OBJECT;
7923
7924 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7925 return FALSE;
b4082c70 7926 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7927 }
7928 }
7929
861fb55a 7930 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 7931 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
7932 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7933 return FALSE;
7934
1bbce132
MR
7935 /* Do the usual VxWorks handling. */
7936 if (htab->is_vxworks
7937 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7938 return FALSE;
0a44bf69 7939
b34976b6 7940 return TRUE;
b49e97c9
TS
7941}
7942\f
c224138d
RS
7943/* Return true if relocation REL against section SEC is a REL rather than
7944 RELA relocation. RELOCS is the first relocation in the section and
7945 ABFD is the bfd that contains SEC. */
7946
7947static bfd_boolean
7948mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7949 const Elf_Internal_Rela *relocs,
7950 const Elf_Internal_Rela *rel)
7951{
7952 Elf_Internal_Shdr *rel_hdr;
7953 const struct elf_backend_data *bed;
7954
d4730f92
BS
7955 /* To determine which flavor of relocation this is, we depend on the
7956 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7957 rel_hdr = elf_section_data (sec)->rel.hdr;
7958 if (rel_hdr == NULL)
7959 return FALSE;
c224138d 7960 bed = get_elf_backend_data (abfd);
d4730f92
BS
7961 return ((size_t) (rel - relocs)
7962 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7963}
7964
7965/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7966 HOWTO is the relocation's howto and CONTENTS points to the contents
7967 of the section that REL is against. */
7968
7969static bfd_vma
7970mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7971 reloc_howto_type *howto, bfd_byte *contents)
7972{
7973 bfd_byte *location;
7974 unsigned int r_type;
7975 bfd_vma addend;
17c6c9d9 7976 bfd_vma bytes;
c224138d
RS
7977
7978 r_type = ELF_R_TYPE (abfd, rel->r_info);
7979 location = contents + rel->r_offset;
7980
7981 /* Get the addend, which is stored in the input file. */
df58fc94 7982 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 7983 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7984 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 7985
17c6c9d9
MR
7986 addend = bytes & howto->src_mask;
7987
7988 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7989 accordingly. */
7990 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7991 addend <<= 1;
7992
7993 return addend;
c224138d
RS
7994}
7995
7996/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7997 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7998 and update *ADDEND with the final addend. Return true on success
7999 or false if the LO16 could not be found. RELEND is the exclusive
8000 upper bound on the relocations for REL's section. */
8001
8002static bfd_boolean
8003mips_elf_add_lo16_rel_addend (bfd *abfd,
8004 const Elf_Internal_Rela *rel,
8005 const Elf_Internal_Rela *relend,
8006 bfd_byte *contents, bfd_vma *addend)
8007{
8008 unsigned int r_type, lo16_type;
8009 const Elf_Internal_Rela *lo16_relocation;
8010 reloc_howto_type *lo16_howto;
8011 bfd_vma l;
8012
8013 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 8014 if (mips16_reloc_p (r_type))
c224138d 8015 lo16_type = R_MIPS16_LO16;
df58fc94
RS
8016 else if (micromips_reloc_p (r_type))
8017 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
8018 else if (r_type == R_MIPS_PCHI16)
8019 lo16_type = R_MIPS_PCLO16;
c224138d
RS
8020 else
8021 lo16_type = R_MIPS_LO16;
8022
8023 /* The combined value is the sum of the HI16 addend, left-shifted by
8024 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8025 code does a `lui' of the HI16 value, and then an `addiu' of the
8026 LO16 value.)
8027
8028 Scan ahead to find a matching LO16 relocation.
8029
8030 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8031 be immediately following. However, for the IRIX6 ABI, the next
8032 relocation may be a composed relocation consisting of several
8033 relocations for the same address. In that case, the R_MIPS_LO16
8034 relocation may occur as one of these. We permit a similar
8035 extension in general, as that is useful for GCC.
8036
8037 In some cases GCC dead code elimination removes the LO16 but keeps
8038 the corresponding HI16. This is strictly speaking a violation of
8039 the ABI but not immediately harmful. */
8040 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8041 if (lo16_relocation == NULL)
8042 return FALSE;
8043
8044 /* Obtain the addend kept there. */
8045 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8046 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8047
8048 l <<= lo16_howto->rightshift;
8049 l = _bfd_mips_elf_sign_extend (l, 16);
8050
8051 *addend <<= 16;
8052 *addend += l;
8053 return TRUE;
8054}
8055
8056/* Try to read the contents of section SEC in bfd ABFD. Return true and
8057 store the contents in *CONTENTS on success. Assume that *CONTENTS
8058 already holds the contents if it is nonull on entry. */
8059
8060static bfd_boolean
8061mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8062{
8063 if (*contents)
8064 return TRUE;
8065
8066 /* Get cached copy if it exists. */
8067 if (elf_section_data (sec)->this_hdr.contents != NULL)
8068 {
8069 *contents = elf_section_data (sec)->this_hdr.contents;
8070 return TRUE;
8071 }
8072
8073 return bfd_malloc_and_get_section (abfd, sec, contents);
8074}
8075
1bbce132
MR
8076/* Make a new PLT record to keep internal data. */
8077
8078static struct plt_entry *
8079mips_elf_make_plt_record (bfd *abfd)
8080{
8081 struct plt_entry *entry;
8082
8083 entry = bfd_zalloc (abfd, sizeof (*entry));
8084 if (entry == NULL)
8085 return NULL;
8086
8087 entry->stub_offset = MINUS_ONE;
8088 entry->mips_offset = MINUS_ONE;
8089 entry->comp_offset = MINUS_ONE;
8090 entry->gotplt_index = MINUS_ONE;
8091 return entry;
8092}
8093
b49e97c9 8094/* Look through the relocs for a section during the first phase, and
1bbce132
MR
8095 allocate space in the global offset table and record the need for
8096 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 8097
b34976b6 8098bfd_boolean
9719ad41
RS
8099_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8100 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
8101{
8102 const char *name;
8103 bfd *dynobj;
8104 Elf_Internal_Shdr *symtab_hdr;
8105 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
8106 size_t extsymoff;
8107 const Elf_Internal_Rela *rel;
8108 const Elf_Internal_Rela *rel_end;
b49e97c9 8109 asection *sreloc;
9c5bfbb7 8110 const struct elf_backend_data *bed;
0a44bf69 8111 struct mips_elf_link_hash_table *htab;
c224138d
RS
8112 bfd_byte *contents;
8113 bfd_vma addend;
8114 reloc_howto_type *howto;
b49e97c9 8115
0e1862bb 8116 if (bfd_link_relocatable (info))
b34976b6 8117 return TRUE;
b49e97c9 8118
0a44bf69 8119 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8120 BFD_ASSERT (htab != NULL);
8121
b49e97c9
TS
8122 dynobj = elf_hash_table (info)->dynobj;
8123 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8124 sym_hashes = elf_sym_hashes (abfd);
8125 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8126
738e5348 8127 bed = get_elf_backend_data (abfd);
056bafd4 8128 rel_end = relocs + sec->reloc_count;
738e5348 8129
b49e97c9
TS
8130 /* Check for the mips16 stub sections. */
8131
8132 name = bfd_get_section_name (abfd, sec);
b9d58d71 8133 if (FN_STUB_P (name))
b49e97c9
TS
8134 {
8135 unsigned long r_symndx;
8136
8137 /* Look at the relocation information to figure out which symbol
07d6d2b8 8138 this is for. */
b49e97c9 8139
cb4437b8 8140 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8141 if (r_symndx == 0)
8142 {
4eca0228 8143 _bfd_error_handler
695344c0 8144 /* xgettext:c-format */
871b3ab2 8145 (_("%pB: Warning: cannot determine the target function for"
738e5348
RS
8146 " stub section `%s'"),
8147 abfd, name);
8148 bfd_set_error (bfd_error_bad_value);
8149 return FALSE;
8150 }
b49e97c9
TS
8151
8152 if (r_symndx < extsymoff
8153 || sym_hashes[r_symndx - extsymoff] == NULL)
8154 {
8155 asection *o;
8156
8157 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8158 needed if there is some relocation in this BFD, other
8159 than a 16 bit function call, which refers to this symbol. */
b49e97c9
TS
8160 for (o = abfd->sections; o != NULL; o = o->next)
8161 {
8162 Elf_Internal_Rela *sec_relocs;
8163 const Elf_Internal_Rela *r, *rend;
8164
8165 /* We can ignore stub sections when looking for relocs. */
8166 if ((o->flags & SEC_RELOC) == 0
8167 || o->reloc_count == 0
738e5348 8168 || section_allows_mips16_refs_p (o))
b49e97c9
TS
8169 continue;
8170
45d6a902 8171 sec_relocs
9719ad41 8172 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8173 info->keep_memory);
b49e97c9 8174 if (sec_relocs == NULL)
b34976b6 8175 return FALSE;
b49e97c9
TS
8176
8177 rend = sec_relocs + o->reloc_count;
8178 for (r = sec_relocs; r < rend; r++)
8179 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 8180 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
8181 break;
8182
6cdc0ccc 8183 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
8184 free (sec_relocs);
8185
8186 if (r < rend)
8187 break;
8188 }
8189
8190 if (o == NULL)
8191 {
8192 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8193 not need it. Since this function is called before
8194 the linker maps input sections to output sections, we
8195 can easily discard it by setting the SEC_EXCLUDE
8196 flag. */
b49e97c9 8197 sec->flags |= SEC_EXCLUDE;
b34976b6 8198 return TRUE;
b49e97c9
TS
8199 }
8200
8201 /* Record this stub in an array of local symbol stubs for
07d6d2b8 8202 this BFD. */
698600e4 8203 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8204 {
8205 unsigned long symcount;
8206 asection **n;
8207 bfd_size_type amt;
8208
8209 if (elf_bad_symtab (abfd))
8210 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8211 else
8212 symcount = symtab_hdr->sh_info;
8213 amt = symcount * sizeof (asection *);
9719ad41 8214 n = bfd_zalloc (abfd, amt);
b49e97c9 8215 if (n == NULL)
b34976b6 8216 return FALSE;
698600e4 8217 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8218 }
8219
b9d58d71 8220 sec->flags |= SEC_KEEP;
698600e4 8221 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8222
8223 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8224 That flag is used to see whether we need to look through
8225 the global symbol table for stubs. We don't need to set
8226 it here, because we just have a local stub. */
b49e97c9
TS
8227 }
8228 else
8229 {
8230 struct mips_elf_link_hash_entry *h;
8231
8232 h = ((struct mips_elf_link_hash_entry *)
8233 sym_hashes[r_symndx - extsymoff]);
8234
973a3492
L
8235 while (h->root.root.type == bfd_link_hash_indirect
8236 || h->root.root.type == bfd_link_hash_warning)
8237 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8238
b49e97c9
TS
8239 /* H is the symbol this stub is for. */
8240
b9d58d71
TS
8241 /* If we already have an appropriate stub for this function, we
8242 don't need another one, so we can discard this one. Since
8243 this function is called before the linker maps input sections
8244 to output sections, we can easily discard it by setting the
8245 SEC_EXCLUDE flag. */
8246 if (h->fn_stub != NULL)
8247 {
8248 sec->flags |= SEC_EXCLUDE;
8249 return TRUE;
8250 }
8251
8252 sec->flags |= SEC_KEEP;
b49e97c9 8253 h->fn_stub = sec;
b34976b6 8254 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8255 }
8256 }
b9d58d71 8257 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8258 {
8259 unsigned long r_symndx;
8260 struct mips_elf_link_hash_entry *h;
8261 asection **loc;
8262
8263 /* Look at the relocation information to figure out which symbol
07d6d2b8 8264 this is for. */
b49e97c9 8265
cb4437b8 8266 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8267 if (r_symndx == 0)
8268 {
4eca0228 8269 _bfd_error_handler
695344c0 8270 /* xgettext:c-format */
871b3ab2 8271 (_("%pB: Warning: cannot determine the target function for"
738e5348
RS
8272 " stub section `%s'"),
8273 abfd, name);
8274 bfd_set_error (bfd_error_bad_value);
8275 return FALSE;
8276 }
b49e97c9
TS
8277
8278 if (r_symndx < extsymoff
8279 || sym_hashes[r_symndx - extsymoff] == NULL)
8280 {
b9d58d71 8281 asection *o;
b49e97c9 8282
b9d58d71 8283 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8284 needed if there is some relocation (R_MIPS16_26) in this BFD
8285 that refers to this symbol. */
b9d58d71
TS
8286 for (o = abfd->sections; o != NULL; o = o->next)
8287 {
8288 Elf_Internal_Rela *sec_relocs;
8289 const Elf_Internal_Rela *r, *rend;
8290
8291 /* We can ignore stub sections when looking for relocs. */
8292 if ((o->flags & SEC_RELOC) == 0
8293 || o->reloc_count == 0
738e5348 8294 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8295 continue;
8296
8297 sec_relocs
8298 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8299 info->keep_memory);
8300 if (sec_relocs == NULL)
8301 return FALSE;
8302
8303 rend = sec_relocs + o->reloc_count;
8304 for (r = sec_relocs; r < rend; r++)
8305 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8306 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8307 break;
8308
8309 if (elf_section_data (o)->relocs != sec_relocs)
8310 free (sec_relocs);
8311
8312 if (r < rend)
8313 break;
8314 }
8315
8316 if (o == NULL)
8317 {
8318 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8319 not need it. Since this function is called before
8320 the linker maps input sections to output sections, we
8321 can easily discard it by setting the SEC_EXCLUDE
8322 flag. */
b9d58d71
TS
8323 sec->flags |= SEC_EXCLUDE;
8324 return TRUE;
8325 }
8326
8327 /* Record this stub in an array of local symbol call_stubs for
07d6d2b8 8328 this BFD. */
698600e4 8329 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8330 {
8331 unsigned long symcount;
8332 asection **n;
8333 bfd_size_type amt;
8334
8335 if (elf_bad_symtab (abfd))
8336 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8337 else
8338 symcount = symtab_hdr->sh_info;
8339 amt = symcount * sizeof (asection *);
8340 n = bfd_zalloc (abfd, amt);
8341 if (n == NULL)
8342 return FALSE;
698600e4 8343 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8344 }
b49e97c9 8345
b9d58d71 8346 sec->flags |= SEC_KEEP;
698600e4 8347 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8348
b9d58d71 8349 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8350 That flag is used to see whether we need to look through
8351 the global symbol table for stubs. We don't need to set
8352 it here, because we just have a local stub. */
b9d58d71 8353 }
b49e97c9 8354 else
b49e97c9 8355 {
b9d58d71
TS
8356 h = ((struct mips_elf_link_hash_entry *)
8357 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8358
b9d58d71 8359 /* H is the symbol this stub is for. */
68ffbac6 8360
b9d58d71
TS
8361 if (CALL_FP_STUB_P (name))
8362 loc = &h->call_fp_stub;
8363 else
8364 loc = &h->call_stub;
68ffbac6 8365
b9d58d71
TS
8366 /* If we already have an appropriate stub for this function, we
8367 don't need another one, so we can discard this one. Since
8368 this function is called before the linker maps input sections
8369 to output sections, we can easily discard it by setting the
8370 SEC_EXCLUDE flag. */
8371 if (*loc != NULL)
8372 {
8373 sec->flags |= SEC_EXCLUDE;
8374 return TRUE;
8375 }
b49e97c9 8376
b9d58d71
TS
8377 sec->flags |= SEC_KEEP;
8378 *loc = sec;
8379 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8380 }
b49e97c9
TS
8381 }
8382
b49e97c9 8383 sreloc = NULL;
c224138d 8384 contents = NULL;
b49e97c9
TS
8385 for (rel = relocs; rel < rel_end; ++rel)
8386 {
8387 unsigned long r_symndx;
8388 unsigned int r_type;
8389 struct elf_link_hash_entry *h;
861fb55a 8390 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8391 bfd_boolean call_reloc_p;
8392 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8393
8394 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8395 r_type = ELF_R_TYPE (abfd, rel->r_info);
8396
8397 if (r_symndx < extsymoff)
8398 h = NULL;
8399 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8400 {
4eca0228 8401 _bfd_error_handler
695344c0 8402 /* xgettext:c-format */
871b3ab2 8403 (_("%pB: Malformed reloc detected for section %s"),
d003868e 8404 abfd, name);
b49e97c9 8405 bfd_set_error (bfd_error_bad_value);
b34976b6 8406 return FALSE;
b49e97c9
TS
8407 }
8408 else
8409 {
8410 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8411 if (h != NULL)
8412 {
8413 while (h->root.type == bfd_link_hash_indirect
8414 || h->root.type == bfd_link_hash_warning)
8415 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831 8416 }
861fb55a 8417 }
b49e97c9 8418
861fb55a
DJ
8419 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8420 relocation into a dynamic one. */
8421 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8422
8423 /* Set CALL_RELOC_P to true if the relocation is for a call,
8424 and if pointer equality therefore doesn't matter. */
8425 call_reloc_p = FALSE;
8426
8427 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8428 into account when deciding how to define the symbol.
8429 Relocations in nonallocatable sections such as .pdr and
8430 .debug* should have no effect. */
8431 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8432
861fb55a
DJ
8433 switch (r_type)
8434 {
861fb55a
DJ
8435 case R_MIPS_CALL16:
8436 case R_MIPS_CALL_HI16:
8437 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8438 case R_MIPS16_CALL16:
8439 case R_MICROMIPS_CALL16:
8440 case R_MICROMIPS_CALL_HI16:
8441 case R_MICROMIPS_CALL_LO16:
8442 call_reloc_p = TRUE;
8443 /* Fall through. */
8444
8445 case R_MIPS_GOT16:
861fb55a
DJ
8446 case R_MIPS_GOT_HI16:
8447 case R_MIPS_GOT_LO16:
8448 case R_MIPS_GOT_PAGE:
8449 case R_MIPS_GOT_OFST:
8450 case R_MIPS_GOT_DISP:
8451 case R_MIPS_TLS_GOTTPREL:
8452 case R_MIPS_TLS_GD:
8453 case R_MIPS_TLS_LDM:
d0f13682 8454 case R_MIPS16_GOT16:
d0f13682
CLT
8455 case R_MIPS16_TLS_GOTTPREL:
8456 case R_MIPS16_TLS_GD:
8457 case R_MIPS16_TLS_LDM:
df58fc94 8458 case R_MICROMIPS_GOT16:
df58fc94
RS
8459 case R_MICROMIPS_GOT_HI16:
8460 case R_MICROMIPS_GOT_LO16:
8461 case R_MICROMIPS_GOT_PAGE:
8462 case R_MICROMIPS_GOT_OFST:
8463 case R_MICROMIPS_GOT_DISP:
8464 case R_MICROMIPS_TLS_GOTTPREL:
8465 case R_MICROMIPS_TLS_GD:
8466 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8467 if (dynobj == NULL)
8468 elf_hash_table (info)->dynobj = dynobj = abfd;
8469 if (!mips_elf_create_got_section (dynobj, info))
8470 return FALSE;
0e1862bb 8471 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8472 {
4eca0228 8473 _bfd_error_handler
695344c0 8474 /* xgettext:c-format */
2dcf00ce
AM
8475 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8476 abfd, (uint64_t) rel->r_offset);
861fb55a
DJ
8477 bfd_set_error (bfd_error_bad_value);
8478 return FALSE;
b49e97c9 8479 }
c5d6fa44 8480 can_make_dynamic_p = TRUE;
861fb55a 8481 break;
b49e97c9 8482
c5d6fa44 8483 case R_MIPS_NONE:
99da6b5f 8484 case R_MIPS_JALR:
df58fc94 8485 case R_MICROMIPS_JALR:
c5d6fa44
RS
8486 /* These relocations have empty fields and are purely there to
8487 provide link information. The symbol value doesn't matter. */
8488 constrain_symbol_p = FALSE;
8489 break;
8490
8491 case R_MIPS_GPREL16:
8492 case R_MIPS_GPREL32:
8493 case R_MIPS16_GPREL:
8494 case R_MICROMIPS_GPREL16:
8495 /* GP-relative relocations always resolve to a definition in a
8496 regular input file, ignoring the one-definition rule. This is
8497 important for the GP setup sequence in NewABI code, which
8498 always resolves to a local function even if other relocations
8499 against the symbol wouldn't. */
8500 constrain_symbol_p = FALSE;
99da6b5f
AN
8501 break;
8502
861fb55a
DJ
8503 case R_MIPS_32:
8504 case R_MIPS_REL32:
8505 case R_MIPS_64:
8506 /* In VxWorks executables, references to external symbols
8507 must be handled using copy relocs or PLT entries; it is not
8508 possible to convert this relocation into a dynamic one.
8509
8510 For executables that use PLTs and copy-relocs, we have a
8511 choice between converting the relocation into a dynamic
8512 one or using copy relocations or PLT entries. It is
8513 usually better to do the former, unless the relocation is
8514 against a read-only section. */
0e1862bb 8515 if ((bfd_link_pic (info)
861fb55a
DJ
8516 || (h != NULL
8517 && !htab->is_vxworks
8518 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8519 && !(!info->nocopyreloc
8520 && !PIC_OBJECT_P (abfd)
8521 && MIPS_ELF_READONLY_SECTION (sec))))
8522 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8523 {
861fb55a 8524 can_make_dynamic_p = TRUE;
b49e97c9
TS
8525 if (dynobj == NULL)
8526 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8527 }
c5d6fa44 8528 break;
b49e97c9 8529
861fb55a
DJ
8530 case R_MIPS_26:
8531 case R_MIPS_PC16:
7361da2c
AB
8532 case R_MIPS_PC21_S2:
8533 case R_MIPS_PC26_S2:
861fb55a 8534 case R_MIPS16_26:
c9775dde 8535 case R_MIPS16_PC16_S1:
df58fc94
RS
8536 case R_MICROMIPS_26_S1:
8537 case R_MICROMIPS_PC7_S1:
8538 case R_MICROMIPS_PC10_S1:
8539 case R_MICROMIPS_PC16_S1:
8540 case R_MICROMIPS_PC23_S2:
c5d6fa44 8541 call_reloc_p = TRUE;
861fb55a 8542 break;
b49e97c9
TS
8543 }
8544
0a44bf69
RS
8545 if (h)
8546 {
c5d6fa44
RS
8547 if (constrain_symbol_p)
8548 {
8549 if (!can_make_dynamic_p)
8550 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8551
8552 if (!call_reloc_p)
8553 h->pointer_equality_needed = 1;
8554
8555 /* We must not create a stub for a symbol that has
8556 relocations related to taking the function's address.
8557 This doesn't apply to VxWorks, where CALL relocs refer
8558 to a .got.plt entry instead of a normal .got entry. */
8559 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8560 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8561 }
8562
0a44bf69
RS
8563 /* Relocations against the special VxWorks __GOTT_BASE__ and
8564 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8565 room for them in .rela.dyn. */
8566 if (is_gott_symbol (info, h))
8567 {
8568 if (sreloc == NULL)
8569 {
8570 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8571 if (sreloc == NULL)
8572 return FALSE;
8573 }
8574 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8575 if (MIPS_ELF_READONLY_SECTION (sec))
8576 /* We tell the dynamic linker that there are
8577 relocations against the text segment. */
8578 info->flags |= DF_TEXTREL;
0a44bf69
RS
8579 }
8580 }
df58fc94
RS
8581 else if (call_lo16_reloc_p (r_type)
8582 || got_lo16_reloc_p (r_type)
8583 || got_disp_reloc_p (r_type)
738e5348 8584 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8585 {
8586 /* We may need a local GOT entry for this relocation. We
8587 don't count R_MIPS_GOT_PAGE because we can estimate the
8588 maximum number of pages needed by looking at the size of
738e5348
RS
8589 the segment. Similar comments apply to R_MIPS*_GOT16 and
8590 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8591 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8592 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8593 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8594 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8595 rel->r_addend, info, r_type))
f4416af6 8596 return FALSE;
b49e97c9
TS
8597 }
8598
8f0c309a
CLT
8599 if (h != NULL
8600 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8601 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8602 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8603
b49e97c9
TS
8604 switch (r_type)
8605 {
8606 case R_MIPS_CALL16:
738e5348 8607 case R_MIPS16_CALL16:
df58fc94 8608 case R_MICROMIPS_CALL16:
b49e97c9
TS
8609 if (h == NULL)
8610 {
4eca0228 8611 _bfd_error_handler
695344c0 8612 /* xgettext:c-format */
2dcf00ce
AM
8613 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8614 abfd, (uint64_t) rel->r_offset);
b49e97c9 8615 bfd_set_error (bfd_error_bad_value);
b34976b6 8616 return FALSE;
b49e97c9
TS
8617 }
8618 /* Fall through. */
8619
8620 case R_MIPS_CALL_HI16:
8621 case R_MIPS_CALL_LO16:
df58fc94
RS
8622 case R_MICROMIPS_CALL_HI16:
8623 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8624 if (h != NULL)
8625 {
6ccf4795
RS
8626 /* Make sure there is room in the regular GOT to hold the
8627 function's address. We may eliminate it in favour of
8628 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8629 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8630 r_type))
b34976b6 8631 return FALSE;
b49e97c9
TS
8632
8633 /* We need a stub, not a plt entry for the undefined
8634 function. But we record it as if it needs plt. See
c152c796 8635 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8636 h->needs_plt = 1;
b49e97c9
TS
8637 h->type = STT_FUNC;
8638 }
8639 break;
8640
0fdc1bf1 8641 case R_MIPS_GOT_PAGE:
df58fc94 8642 case R_MICROMIPS_GOT_PAGE:
738e5348 8643 case R_MIPS16_GOT16:
b49e97c9
TS
8644 case R_MIPS_GOT16:
8645 case R_MIPS_GOT_HI16:
8646 case R_MIPS_GOT_LO16:
df58fc94
RS
8647 case R_MICROMIPS_GOT16:
8648 case R_MICROMIPS_GOT_HI16:
8649 case R_MICROMIPS_GOT_LO16:
8650 if (!h || got_page_reloc_p (r_type))
c224138d 8651 {
3a3b6725
DJ
8652 /* This relocation needs (or may need, if h != NULL) a
8653 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8654 know for sure until we know whether the symbol is
8655 preemptible. */
c224138d
RS
8656 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8657 {
8658 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8659 return FALSE;
8660 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8661 addend = mips_elf_read_rel_addend (abfd, rel,
8662 howto, contents);
9684f078 8663 if (got16_reloc_p (r_type))
c224138d
RS
8664 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8665 contents, &addend);
8666 else
8667 addend <<= howto->rightshift;
8668 }
8669 else
8670 addend = rel->r_addend;
13db6b44
RS
8671 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8672 h, addend))
c224138d 8673 return FALSE;
13db6b44
RS
8674
8675 if (h)
8676 {
8677 struct mips_elf_link_hash_entry *hmips =
8678 (struct mips_elf_link_hash_entry *) h;
8679
8680 /* This symbol is definitely not overridable. */
8681 if (hmips->root.def_regular
0e1862bb 8682 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8683 && ! hmips->root.forced_local))
8684 h = NULL;
8685 }
c224138d 8686 }
13db6b44
RS
8687 /* If this is a global, overridable symbol, GOT_PAGE will
8688 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8689 /* Fall through. */
8690
b49e97c9 8691 case R_MIPS_GOT_DISP:
df58fc94 8692 case R_MICROMIPS_GOT_DISP:
6ccf4795 8693 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8694 FALSE, r_type))
b34976b6 8695 return FALSE;
b49e97c9
TS
8696 break;
8697
0f20cc35 8698 case R_MIPS_TLS_GOTTPREL:
d0f13682 8699 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8700 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8701 if (bfd_link_pic (info))
0f20cc35
DJ
8702 info->flags |= DF_STATIC_TLS;
8703 /* Fall through */
8704
8705 case R_MIPS_TLS_LDM:
d0f13682 8706 case R_MIPS16_TLS_LDM:
df58fc94
RS
8707 case R_MICROMIPS_TLS_LDM:
8708 if (tls_ldm_reloc_p (r_type))
0f20cc35 8709 {
cf35638d 8710 r_symndx = STN_UNDEF;
0f20cc35
DJ
8711 h = NULL;
8712 }
8713 /* Fall through */
8714
8715 case R_MIPS_TLS_GD:
d0f13682 8716 case R_MIPS16_TLS_GD:
df58fc94 8717 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8718 /* This symbol requires a global offset table entry, or two
8719 for TLS GD relocations. */
e641e783
RS
8720 if (h != NULL)
8721 {
8722 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8723 FALSE, r_type))
8724 return FALSE;
8725 }
8726 else
8727 {
8728 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8729 rel->r_addend,
8730 info, r_type))
8731 return FALSE;
8732 }
0f20cc35
DJ
8733 break;
8734
b49e97c9
TS
8735 case R_MIPS_32:
8736 case R_MIPS_REL32:
8737 case R_MIPS_64:
0a44bf69
RS
8738 /* In VxWorks executables, references to external symbols
8739 are handled using copy relocs or PLT stubs, so there's
8740 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8741 if (can_make_dynamic_p)
b49e97c9
TS
8742 {
8743 if (sreloc == NULL)
8744 {
0a44bf69 8745 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8746 if (sreloc == NULL)
f4416af6 8747 return FALSE;
b49e97c9 8748 }
0e1862bb 8749 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
8750 {
8751 /* When creating a shared object, we must copy these
8752 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8753 relocs. Make room for this reloc in .rel(a).dyn. */
8754 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8755 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8756 /* We tell the dynamic linker that there are
8757 relocations against the text segment. */
8758 info->flags |= DF_TEXTREL;
8759 }
b49e97c9
TS
8760 else
8761 {
8762 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8763
9a59ad6b
DJ
8764 /* For a shared object, we must copy this relocation
8765 unless the symbol turns out to be undefined and
8766 weak with non-default visibility, in which case
8767 it will be left as zero.
8768
8769 We could elide R_MIPS_REL32 for locally binding symbols
8770 in shared libraries, but do not yet do so.
8771
8772 For an executable, we only need to copy this
8773 reloc if the symbol is defined in a dynamic
8774 object. */
b49e97c9
TS
8775 hmips = (struct mips_elf_link_hash_entry *) h;
8776 ++hmips->possibly_dynamic_relocs;
943284cc 8777 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8778 /* We need it to tell the dynamic linker if there
8779 are relocations against the text segment. */
8780 hmips->readonly_reloc = TRUE;
b49e97c9 8781 }
b49e97c9
TS
8782 }
8783
8784 if (SGI_COMPAT (abfd))
8785 mips_elf_hash_table (info)->compact_rel_size +=
8786 sizeof (Elf32_External_crinfo);
8787 break;
8788
8789 case R_MIPS_26:
8790 case R_MIPS_GPREL16:
8791 case R_MIPS_LITERAL:
8792 case R_MIPS_GPREL32:
df58fc94
RS
8793 case R_MICROMIPS_26_S1:
8794 case R_MICROMIPS_GPREL16:
8795 case R_MICROMIPS_LITERAL:
8796 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8797 if (SGI_COMPAT (abfd))
8798 mips_elf_hash_table (info)->compact_rel_size +=
8799 sizeof (Elf32_External_crinfo);
8800 break;
8801
8802 /* This relocation describes the C++ object vtable hierarchy.
8803 Reconstruct it for later use during GC. */
8804 case R_MIPS_GNU_VTINHERIT:
c152c796 8805 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8806 return FALSE;
b49e97c9
TS
8807 break;
8808
8809 /* This relocation describes which C++ vtable entries are actually
8810 used. Record for later use during GC. */
8811 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8812 BFD_ASSERT (h != NULL);
8813 if (h != NULL
8814 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8815 return FALSE;
b49e97c9
TS
8816 break;
8817
8818 default:
8819 break;
8820 }
8821
1bbce132 8822 /* Record the need for a PLT entry. At this point we don't know
07d6d2b8
AM
8823 yet if we are going to create a PLT in the first place, but
8824 we only record whether the relocation requires a standard MIPS
8825 or a compressed code entry anyway. If we don't make a PLT after
8826 all, then we'll just ignore these arrangements. Likewise if
8827 a PLT entry is not created because the symbol is satisfied
8828 locally. */
1bbce132 8829 if (h != NULL
54806ffa
MR
8830 && (branch_reloc_p (r_type)
8831 || mips16_branch_reloc_p (r_type)
8832 || micromips_branch_reloc_p (r_type))
1bbce132
MR
8833 && !SYMBOL_CALLS_LOCAL (info, h))
8834 {
8835 if (h->plt.plist == NULL)
8836 h->plt.plist = mips_elf_make_plt_record (abfd);
8837 if (h->plt.plist == NULL)
8838 return FALSE;
8839
54806ffa 8840 if (branch_reloc_p (r_type))
1bbce132
MR
8841 h->plt.plist->need_mips = TRUE;
8842 else
8843 h->plt.plist->need_comp = TRUE;
8844 }
8845
738e5348
RS
8846 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8847 if there is one. We only need to handle global symbols here;
8848 we decide whether to keep or delete stubs for local symbols
8849 when processing the stub's relocations. */
b49e97c9 8850 if (h != NULL
738e5348
RS
8851 && !mips16_call_reloc_p (r_type)
8852 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8853 {
8854 struct mips_elf_link_hash_entry *mh;
8855
8856 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8857 mh->need_fn_stub = TRUE;
b49e97c9 8858 }
861fb55a
DJ
8859
8860 /* Refuse some position-dependent relocations when creating a
8861 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8862 not PIC, but we can create dynamic relocations and the result
8863 will be fine. Also do not refuse R_MIPS_LO16, which can be
8864 combined with R_MIPS_GOT16. */
0e1862bb 8865 if (bfd_link_pic (info))
861fb55a
DJ
8866 {
8867 switch (r_type)
8868 {
8869 case R_MIPS16_HI16:
8870 case R_MIPS_HI16:
8871 case R_MIPS_HIGHER:
8872 case R_MIPS_HIGHEST:
df58fc94
RS
8873 case R_MICROMIPS_HI16:
8874 case R_MICROMIPS_HIGHER:
8875 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8876 /* Don't refuse a high part relocation if it's against
8877 no symbol (e.g. part of a compound relocation). */
cf35638d 8878 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8879 break;
8880
8881 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8882 and has a special meaning. */
8883 if (!NEWABI_P (abfd) && h != NULL
8884 && strcmp (h->root.root.string, "_gp_disp") == 0)
8885 break;
8886
0fc1eb3c
RS
8887 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8888 if (is_gott_symbol (info, h))
8889 break;
8890
861fb55a
DJ
8891 /* FALLTHROUGH */
8892
8893 case R_MIPS16_26:
8894 case R_MIPS_26:
df58fc94 8895 case R_MICROMIPS_26_S1:
861fb55a 8896 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
4eca0228 8897 _bfd_error_handler
695344c0 8898 /* xgettext:c-format */
871b3ab2 8899 (_("%pB: relocation %s against `%s' can not be used"
63a5468a 8900 " when making a shared object; recompile with -fPIC"),
861fb55a
DJ
8901 abfd, howto->name,
8902 (h) ? h->root.root.string : "a local symbol");
8903 bfd_set_error (bfd_error_bad_value);
8904 return FALSE;
8905 default:
8906 break;
8907 }
8908 }
b49e97c9
TS
8909 }
8910
b34976b6 8911 return TRUE;
b49e97c9
TS
8912}
8913\f
9a59ad6b
DJ
8914/* Allocate space for global sym dynamic relocs. */
8915
8916static bfd_boolean
8917allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8918{
8919 struct bfd_link_info *info = inf;
8920 bfd *dynobj;
8921 struct mips_elf_link_hash_entry *hmips;
8922 struct mips_elf_link_hash_table *htab;
8923
8924 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8925 BFD_ASSERT (htab != NULL);
8926
9a59ad6b
DJ
8927 dynobj = elf_hash_table (info)->dynobj;
8928 hmips = (struct mips_elf_link_hash_entry *) h;
8929
8930 /* VxWorks executables are handled elsewhere; we only need to
8931 allocate relocations in shared objects. */
0e1862bb 8932 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
8933 return TRUE;
8934
7686d77d
AM
8935 /* Ignore indirect symbols. All relocations against such symbols
8936 will be redirected to the target symbol. */
8937 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8938 return TRUE;
8939
9a59ad6b
DJ
8940 /* If this symbol is defined in a dynamic object, or we are creating
8941 a shared library, we will need to copy any R_MIPS_32 or
8942 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 8943 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
8944 && hmips->possibly_dynamic_relocs != 0
8945 && (h->root.type == bfd_link_hash_defweak
625ef6dc 8946 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 8947 || bfd_link_pic (info)))
9a59ad6b
DJ
8948 {
8949 bfd_boolean do_copy = TRUE;
8950
8951 if (h->root.type == bfd_link_hash_undefweak)
8952 {
8953 /* Do not copy relocations for undefined weak symbols with
8954 non-default visibility. */
ad951203
L
8955 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8956 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9a59ad6b
DJ
8957 do_copy = FALSE;
8958
8959 /* Make sure undefined weak symbols are output as a dynamic
8960 symbol in PIEs. */
8961 else if (h->dynindx == -1 && !h->forced_local)
8962 {
8963 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8964 return FALSE;
8965 }
8966 }
8967
8968 if (do_copy)
8969 {
aff469fa 8970 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8971 the SVR4 psABI requires it to have a dynamic symbol table
8972 index greater that DT_MIPS_GOTSYM if there are dynamic
8973 relocations against it.
8974
8975 VxWorks does not enforce the same mapping between the GOT
8976 and the symbol table, so the same requirement does not
8977 apply there. */
6ccf4795
RS
8978 if (!htab->is_vxworks)
8979 {
8980 if (hmips->global_got_area > GGA_RELOC_ONLY)
8981 hmips->global_got_area = GGA_RELOC_ONLY;
8982 hmips->got_only_for_calls = FALSE;
8983 }
aff469fa 8984
9a59ad6b
DJ
8985 mips_elf_allocate_dynamic_relocations
8986 (dynobj, info, hmips->possibly_dynamic_relocs);
8987 if (hmips->readonly_reloc)
8988 /* We tell the dynamic linker that there are relocations
8989 against the text segment. */
8990 info->flags |= DF_TEXTREL;
8991 }
8992 }
8993
8994 return TRUE;
8995}
8996
b49e97c9
TS
8997/* Adjust a symbol defined by a dynamic object and referenced by a
8998 regular object. The current definition is in some section of the
8999 dynamic object, but we're not including those sections. We have to
9000 change the definition to something the rest of the link can
9001 understand. */
9002
b34976b6 9003bfd_boolean
9719ad41
RS
9004_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9005 struct elf_link_hash_entry *h)
b49e97c9
TS
9006{
9007 bfd *dynobj;
9008 struct mips_elf_link_hash_entry *hmips;
5108fc1b 9009 struct mips_elf_link_hash_table *htab;
5474d94f 9010 asection *s, *srel;
b49e97c9 9011
5108fc1b 9012 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9013 BFD_ASSERT (htab != NULL);
9014
b49e97c9 9015 dynobj = elf_hash_table (info)->dynobj;
861fb55a 9016 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
9017
9018 /* Make sure we know what is going on here. */
9019 BFD_ASSERT (dynobj != NULL
f5385ebf 9020 && (h->needs_plt
60d67dc8 9021 || h->is_weakalias
f5385ebf
AM
9022 || (h->def_dynamic
9023 && h->ref_regular
9024 && !h->def_regular)));
b49e97c9 9025
b49e97c9 9026 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9027
861fb55a
DJ
9028 /* If there are call relocations against an externally-defined symbol,
9029 see whether we can create a MIPS lazy-binding stub for it. We can
9030 only do this if all references to the function are through call
9031 relocations, and in that case, the traditional lazy-binding stubs
9032 are much more efficient than PLT entries.
9033
9034 Traditional stubs are only available on SVR4 psABI-based systems;
9035 VxWorks always uses PLTs instead. */
9036 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
9037 {
9038 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 9039 return TRUE;
b49e97c9
TS
9040
9041 /* If this symbol is not defined in a regular file, then set
9042 the symbol to the stub location. This is required to make
9043 function pointers compare as equal between the normal
9044 executable and the shared library. */
f5385ebf 9045 if (!h->def_regular)
b49e97c9 9046 {
33bb52fb
RS
9047 hmips->needs_lazy_stub = TRUE;
9048 htab->lazy_stub_count++;
b34976b6 9049 return TRUE;
b49e97c9
TS
9050 }
9051 }
861fb55a
DJ
9052 /* As above, VxWorks requires PLT entries for externally-defined
9053 functions that are only accessed through call relocations.
b49e97c9 9054
861fb55a
DJ
9055 Both VxWorks and non-VxWorks targets also need PLT entries if there
9056 are static-only relocations against an externally-defined function.
9057 This can technically occur for shared libraries if there are
9058 branches to the symbol, although it is unlikely that this will be
9059 used in practice due to the short ranges involved. It can occur
9060 for any relative or absolute relocation in executables; in that
9061 case, the PLT entry becomes the function's canonical address. */
9062 else if (((h->needs_plt && !hmips->no_fn_stub)
9063 || (h->type == STT_FUNC && hmips->has_static_relocs))
9064 && htab->use_plts_and_copy_relocs
9065 && !SYMBOL_CALLS_LOCAL (info, h)
9066 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9067 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9068 {
1bbce132
MR
9069 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9070 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9071
9072 /* If this is the first symbol to need a PLT entry, then make some
07d6d2b8
AM
9073 basic setup. Also work out PLT entry sizes. We'll need them
9074 for PLT offset calculations. */
1bbce132 9075 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a 9076 {
ce558b89 9077 BFD_ASSERT (htab->root.sgotplt->size == 0);
1bbce132 9078 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9079
861fb55a
DJ
9080 /* If we're using the PLT additions to the psABI, each PLT
9081 entry is 16 bytes and the PLT0 entry is 32 bytes.
9082 Encourage better cache usage by aligning. We do this
9083 lazily to avoid pessimizing traditional objects. */
9084 if (!htab->is_vxworks
ce558b89 9085 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
861fb55a 9086 return FALSE;
0a44bf69 9087
861fb55a
DJ
9088 /* Make sure that .got.plt is word-aligned. We do this lazily
9089 for the same reason as above. */
ce558b89 9090 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
861fb55a
DJ
9091 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9092 return FALSE;
0a44bf69 9093
861fb55a
DJ
9094 /* On non-VxWorks targets, the first two entries in .got.plt
9095 are reserved. */
9096 if (!htab->is_vxworks)
1bbce132
MR
9097 htab->plt_got_index
9098 += (get_elf_backend_data (dynobj)->got_header_size
9099 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9100
861fb55a
DJ
9101 /* On VxWorks, also allocate room for the header's
9102 .rela.plt.unloaded entries. */
0e1862bb 9103 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9104 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9105
9106 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9107 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9108 htab->plt_mips_entry_size
9109 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9110 else if (htab->is_vxworks)
9111 htab->plt_mips_entry_size
9112 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9113 else if (newabi_p)
9114 htab->plt_mips_entry_size
9115 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9116 else if (!micromips_p)
1bbce132
MR
9117 {
9118 htab->plt_mips_entry_size
9119 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9120 htab->plt_comp_entry_size
833794fc
MR
9121 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9122 }
9123 else if (htab->insn32)
9124 {
9125 htab->plt_mips_entry_size
9126 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9127 htab->plt_comp_entry_size
9128 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9129 }
9130 else
9131 {
9132 htab->plt_mips_entry_size
9133 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9134 htab->plt_comp_entry_size
833794fc 9135 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9136 }
0a44bf69
RS
9137 }
9138
1bbce132
MR
9139 if (h->plt.plist == NULL)
9140 h->plt.plist = mips_elf_make_plt_record (dynobj);
9141 if (h->plt.plist == NULL)
9142 return FALSE;
9143
9144 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
07d6d2b8 9145 n32 or n64, so always use a standard entry there.
1bbce132 9146
07d6d2b8
AM
9147 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9148 all MIPS16 calls will go via that stub, and there is no benefit
9149 to having a MIPS16 entry. And in the case of call_stub a
9150 standard entry actually has to be used as the stub ends with a J
9151 instruction. */
1bbce132
MR
9152 if (newabi_p
9153 || htab->is_vxworks
9154 || hmips->call_stub
9155 || hmips->call_fp_stub)
9156 {
9157 h->plt.plist->need_mips = TRUE;
9158 h->plt.plist->need_comp = FALSE;
9159 }
9160
9161 /* Otherwise, if there are no direct calls to the function, we
07d6d2b8
AM
9162 have a free choice of whether to use standard or compressed
9163 entries. Prefer microMIPS entries if the object is known to
9164 contain microMIPS code, so that it becomes possible to create
9165 pure microMIPS binaries. Prefer standard entries otherwise,
9166 because MIPS16 ones are no smaller and are usually slower. */
1bbce132
MR
9167 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9168 {
9169 if (micromips_p)
9170 h->plt.plist->need_comp = TRUE;
9171 else
9172 h->plt.plist->need_mips = TRUE;
9173 }
9174
9175 if (h->plt.plist->need_mips)
9176 {
9177 h->plt.plist->mips_offset = htab->plt_mips_offset;
9178 htab->plt_mips_offset += htab->plt_mips_entry_size;
9179 }
9180 if (h->plt.plist->need_comp)
9181 {
9182 h->plt.plist->comp_offset = htab->plt_comp_offset;
9183 htab->plt_comp_offset += htab->plt_comp_entry_size;
9184 }
9185
9186 /* Reserve the corresponding .got.plt entry now too. */
9187 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9188
9189 /* If the output file has no definition of the symbol, set the
861fb55a 9190 symbol's value to the address of the stub. */
0e1862bb 9191 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9192 hmips->use_plt_entry = TRUE;
0a44bf69 9193
1bbce132 9194 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
ce558b89
AM
9195 htab->root.srelplt->size += (htab->is_vxworks
9196 ? MIPS_ELF_RELA_SIZE (dynobj)
9197 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9198
9199 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9200 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9201 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9202
861fb55a
DJ
9203 /* All relocations against this symbol that could have been made
9204 dynamic will now refer to the PLT entry instead. */
9205 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9206
0a44bf69
RS
9207 return TRUE;
9208 }
9209
9210 /* If this is a weak symbol, and there is a real definition, the
9211 processor independent code will have arranged for us to see the
9212 real definition first, and we can just use the same value. */
60d67dc8 9213 if (h->is_weakalias)
0a44bf69 9214 {
60d67dc8
AM
9215 struct elf_link_hash_entry *def = weakdef (h);
9216 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9217 h->root.u.def.section = def->root.u.def.section;
9218 h->root.u.def.value = def->root.u.def.value;
0a44bf69
RS
9219 return TRUE;
9220 }
9221
861fb55a
DJ
9222 /* Otherwise, there is nothing further to do for symbols defined
9223 in regular objects. */
9224 if (h->def_regular)
0a44bf69
RS
9225 return TRUE;
9226
861fb55a
DJ
9227 /* There's also nothing more to do if we'll convert all relocations
9228 against this symbol into dynamic relocations. */
9229 if (!hmips->has_static_relocs)
9230 return TRUE;
9231
9232 /* We're now relying on copy relocations. Complain if we have
9233 some that we can't convert. */
0e1862bb 9234 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a 9235 {
4eca0228
AM
9236 _bfd_error_handler (_("non-dynamic relocations refer to "
9237 "dynamic symbol %s"),
9238 h->root.root.string);
861fb55a
DJ
9239 bfd_set_error (bfd_error_bad_value);
9240 return FALSE;
9241 }
9242
0a44bf69
RS
9243 /* We must allocate the symbol in our .dynbss section, which will
9244 become part of the .bss section of the executable. There will be
9245 an entry for this symbol in the .dynsym section. The dynamic
9246 object will contain position independent code, so all references
9247 from the dynamic object to this symbol will go through the global
9248 offset table. The dynamic linker will use the .dynsym entry to
9249 determine the address it must put in the global offset table, so
9250 both the dynamic object and the regular object will refer to the
9251 same memory location for the variable. */
9252
5474d94f
AM
9253 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9254 {
9255 s = htab->root.sdynrelro;
9256 srel = htab->root.sreldynrelro;
9257 }
9258 else
9259 {
9260 s = htab->root.sdynbss;
9261 srel = htab->root.srelbss;
9262 }
0a44bf69
RS
9263 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9264 {
861fb55a 9265 if (htab->is_vxworks)
5474d94f 9266 srel->size += sizeof (Elf32_External_Rela);
861fb55a
DJ
9267 else
9268 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9269 h->needs_copy = 1;
9270 }
9271
861fb55a
DJ
9272 /* All relocations against this symbol that could have been made
9273 dynamic will now refer to the local copy instead. */
9274 hmips->possibly_dynamic_relocs = 0;
9275
5474d94f 9276 return _bfd_elf_adjust_dynamic_copy (info, h, s);
0a44bf69 9277}
b49e97c9
TS
9278\f
9279/* This function is called after all the input files have been read,
9280 and the input sections have been assigned to output sections. We
9281 check for any mips16 stub sections that we can discard. */
9282
b34976b6 9283bfd_boolean
9719ad41
RS
9284_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9285 struct bfd_link_info *info)
b49e97c9 9286{
351cdf24 9287 asection *sect;
0a44bf69 9288 struct mips_elf_link_hash_table *htab;
861fb55a 9289 struct mips_htab_traverse_info hti;
0a44bf69
RS
9290
9291 htab = mips_elf_hash_table (info);
4dfe6ac6 9292 BFD_ASSERT (htab != NULL);
f4416af6 9293
b49e97c9 9294 /* The .reginfo section has a fixed size. */
351cdf24
MF
9295 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9296 if (sect != NULL)
9297 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9298
9299 /* The .MIPS.abiflags section has a fixed size. */
9300 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9301 if (sect != NULL)
9302 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
b49e97c9 9303
861fb55a
DJ
9304 hti.info = info;
9305 hti.output_bfd = output_bfd;
9306 hti.error = FALSE;
9307 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9308 mips_elf_check_symbols, &hti);
9309 if (hti.error)
9310 return FALSE;
f4416af6 9311
33bb52fb
RS
9312 return TRUE;
9313}
9314
9315/* If the link uses a GOT, lay it out and work out its size. */
9316
9317static bfd_boolean
9318mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9319{
9320 bfd *dynobj;
9321 asection *s;
9322 struct mips_got_info *g;
33bb52fb
RS
9323 bfd_size_type loadable_size = 0;
9324 bfd_size_type page_gotno;
d7206569 9325 bfd *ibfd;
ab361d49 9326 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9327 struct mips_elf_link_hash_table *htab;
9328
9329 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9330 BFD_ASSERT (htab != NULL);
9331
ce558b89 9332 s = htab->root.sgot;
f4416af6 9333 if (s == NULL)
b34976b6 9334 return TRUE;
b49e97c9 9335
33bb52fb 9336 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9337 g = htab->got_info;
9338
861fb55a
DJ
9339 /* Allocate room for the reserved entries. VxWorks always reserves
9340 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9341 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9342 if (htab->is_vxworks)
9343 htab->reserved_gotno = 3;
9344 else
9345 htab->reserved_gotno = 2;
9346 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9347 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9348
6c42ddb9
RS
9349 /* Decide which symbols need to go in the global part of the GOT and
9350 count the number of reloc-only GOT symbols. */
020d7251 9351 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9352
13db6b44
RS
9353 if (!mips_elf_resolve_final_got_entries (info, g))
9354 return FALSE;
9355
33bb52fb
RS
9356 /* Calculate the total loadable size of the output. That
9357 will give us the maximum number of GOT_PAGE entries
9358 required. */
c72f2fb2 9359 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9360 {
9361 asection *subsection;
5108fc1b 9362
d7206569 9363 for (subsection = ibfd->sections;
33bb52fb
RS
9364 subsection;
9365 subsection = subsection->next)
9366 {
9367 if ((subsection->flags & SEC_ALLOC) == 0)
9368 continue;
9369 loadable_size += ((subsection->size + 0xf)
9370 &~ (bfd_size_type) 0xf);
9371 }
9372 }
f4416af6 9373
0a44bf69 9374 if (htab->is_vxworks)
738e5348 9375 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9376 relocations against local symbols evaluate to "G", and the EABI does
9377 not include R_MIPS_GOT_PAGE. */
c224138d 9378 page_gotno = 0;
0a44bf69
RS
9379 else
9380 /* Assume there are two loadable segments consisting of contiguous
9381 sections. Is 5 enough? */
c224138d
RS
9382 page_gotno = (loadable_size >> 16) + 5;
9383
13db6b44 9384 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9385 conservative. */
9386 if (page_gotno > g->page_gotno)
9387 page_gotno = g->page_gotno;
f4416af6 9388
c224138d 9389 g->local_gotno += page_gotno;
cb22ccf4 9390 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9391
ab361d49
RS
9392 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9393 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9394 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9395
0a44bf69
RS
9396 /* VxWorks does not support multiple GOTs. It initializes $gp to
9397 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9398 dynamic loader. */
57093f5e 9399 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9400 {
a8028dd0 9401 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9402 return FALSE;
9403 }
9404 else
9405 {
d7206569
RS
9406 /* Record that all bfds use G. This also has the effect of freeing
9407 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9408 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9409 if (mips_elf_bfd_got (ibfd, FALSE))
9410 mips_elf_replace_bfd_got (ibfd, g);
9411 mips_elf_replace_bfd_got (output_bfd, g);
9412
33bb52fb 9413 /* Set up TLS entries. */
0f20cc35 9414 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9415 tga.info = info;
9416 tga.g = g;
9417 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9418 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9419 if (!tga.g)
9420 return FALSE;
1fd20d70
RS
9421 BFD_ASSERT (g->tls_assigned_gotno
9422 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9423
57093f5e 9424 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9425 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9426 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9427
33bb52fb 9428 /* Allocate room for the TLS relocations. */
ab361d49
RS
9429 if (g->relocs)
9430 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9431 }
b49e97c9 9432
b34976b6 9433 return TRUE;
b49e97c9
TS
9434}
9435
33bb52fb
RS
9436/* Estimate the size of the .MIPS.stubs section. */
9437
9438static void
9439mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9440{
9441 struct mips_elf_link_hash_table *htab;
9442 bfd_size_type dynsymcount;
9443
9444 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9445 BFD_ASSERT (htab != NULL);
9446
33bb52fb
RS
9447 if (htab->lazy_stub_count == 0)
9448 return;
9449
9450 /* IRIX rld assumes that a function stub isn't at the end of the .text
9451 section, so add a dummy entry to the end. */
9452 htab->lazy_stub_count++;
9453
9454 /* Get a worst-case estimate of the number of dynamic symbols needed.
9455 At this point, dynsymcount does not account for section symbols
9456 and count_section_dynsyms may overestimate the number that will
9457 be needed. */
9458 dynsymcount = (elf_hash_table (info)->dynsymcount
9459 + count_section_dynsyms (output_bfd, info));
9460
1bbce132
MR
9461 /* Determine the size of one stub entry. There's no disadvantage
9462 from using microMIPS code here, so for the sake of pure-microMIPS
9463 binaries we prefer it whenever there's any microMIPS code in
9464 output produced at all. This has a benefit of stubs being
833794fc
MR
9465 shorter by 4 bytes each too, unless in the insn32 mode. */
9466 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9467 htab->function_stub_size = (dynsymcount > 0x10000
9468 ? MIPS_FUNCTION_STUB_BIG_SIZE
9469 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9470 else if (htab->insn32)
9471 htab->function_stub_size = (dynsymcount > 0x10000
9472 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9473 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9474 else
9475 htab->function_stub_size = (dynsymcount > 0x10000
9476 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9477 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9478
9479 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9480}
9481
1bbce132
MR
9482/* A mips_elf_link_hash_traverse callback for which DATA points to a
9483 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9484 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9485
9486static bfd_boolean
af924177 9487mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9488{
1bbce132 9489 struct mips_htab_traverse_info *hti = data;
33bb52fb 9490 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9491 struct bfd_link_info *info;
9492 bfd *output_bfd;
9493
9494 info = hti->info;
9495 output_bfd = hti->output_bfd;
9496 htab = mips_elf_hash_table (info);
9497 BFD_ASSERT (htab != NULL);
33bb52fb 9498
33bb52fb
RS
9499 if (h->needs_lazy_stub)
9500 {
1bbce132
MR
9501 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9502 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9503 bfd_vma isa_bit = micromips_p;
9504
9505 BFD_ASSERT (htab->root.dynobj != NULL);
9506 if (h->root.plt.plist == NULL)
9507 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9508 if (h->root.plt.plist == NULL)
9509 {
9510 hti->error = TRUE;
9511 return FALSE;
9512 }
33bb52fb 9513 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9514 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9515 h->root.plt.plist->stub_offset = htab->sstubs->size;
9516 h->root.other = other;
33bb52fb
RS
9517 htab->sstubs->size += htab->function_stub_size;
9518 }
9519 return TRUE;
9520}
9521
9522/* Allocate offsets in the stubs section to each symbol that needs one.
9523 Set the final size of the .MIPS.stub section. */
9524
1bbce132 9525static bfd_boolean
33bb52fb
RS
9526mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9527{
1bbce132
MR
9528 bfd *output_bfd = info->output_bfd;
9529 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9530 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9531 bfd_vma isa_bit = micromips_p;
33bb52fb 9532 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9533 struct mips_htab_traverse_info hti;
9534 struct elf_link_hash_entry *h;
9535 bfd *dynobj;
33bb52fb
RS
9536
9537 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9538 BFD_ASSERT (htab != NULL);
9539
33bb52fb 9540 if (htab->lazy_stub_count == 0)
1bbce132 9541 return TRUE;
33bb52fb
RS
9542
9543 htab->sstubs->size = 0;
1bbce132
MR
9544 hti.info = info;
9545 hti.output_bfd = output_bfd;
9546 hti.error = FALSE;
9547 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9548 if (hti.error)
9549 return FALSE;
33bb52fb
RS
9550 htab->sstubs->size += htab->function_stub_size;
9551 BFD_ASSERT (htab->sstubs->size
9552 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9553
9554 dynobj = elf_hash_table (info)->dynobj;
9555 BFD_ASSERT (dynobj != NULL);
9556 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9557 if (h == NULL)
9558 return FALSE;
9559 h->root.u.def.value = isa_bit;
9560 h->other = other;
9561 h->type = STT_FUNC;
9562
9563 return TRUE;
9564}
9565
9566/* A mips_elf_link_hash_traverse callback for which DATA points to a
9567 bfd_link_info. If H uses the address of a PLT entry as the value
9568 of the symbol, then set the entry in the symbol table now. Prefer
9569 a standard MIPS PLT entry. */
9570
9571static bfd_boolean
9572mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9573{
9574 struct bfd_link_info *info = data;
9575 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9576 struct mips_elf_link_hash_table *htab;
9577 unsigned int other;
9578 bfd_vma isa_bit;
9579 bfd_vma val;
9580
9581 htab = mips_elf_hash_table (info);
9582 BFD_ASSERT (htab != NULL);
9583
9584 if (h->use_plt_entry)
9585 {
9586 BFD_ASSERT (h->root.plt.plist != NULL);
9587 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9588 || h->root.plt.plist->comp_offset != MINUS_ONE);
9589
9590 val = htab->plt_header_size;
9591 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9592 {
9593 isa_bit = 0;
9594 val += h->root.plt.plist->mips_offset;
9595 other = 0;
9596 }
9597 else
9598 {
9599 isa_bit = 1;
9600 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9601 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9602 }
9603 val += isa_bit;
9604 /* For VxWorks, point at the PLT load stub rather than the lazy
07d6d2b8
AM
9605 resolution stub; this stub will become the canonical function
9606 address. */
1bbce132
MR
9607 if (htab->is_vxworks)
9608 val += 8;
9609
ce558b89 9610 h->root.root.u.def.section = htab->root.splt;
1bbce132
MR
9611 h->root.root.u.def.value = val;
9612 h->root.other = other;
9613 }
9614
9615 return TRUE;
33bb52fb
RS
9616}
9617
b49e97c9
TS
9618/* Set the sizes of the dynamic sections. */
9619
b34976b6 9620bfd_boolean
9719ad41
RS
9621_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9622 struct bfd_link_info *info)
b49e97c9
TS
9623{
9624 bfd *dynobj;
861fb55a 9625 asection *s, *sreldyn;
b34976b6 9626 bfd_boolean reltext;
0a44bf69 9627 struct mips_elf_link_hash_table *htab;
b49e97c9 9628
0a44bf69 9629 htab = mips_elf_hash_table (info);
4dfe6ac6 9630 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9631 dynobj = elf_hash_table (info)->dynobj;
9632 BFD_ASSERT (dynobj != NULL);
9633
9634 if (elf_hash_table (info)->dynamic_sections_created)
9635 {
9636 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9637 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9638 {
3d4d4302 9639 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9640 BFD_ASSERT (s != NULL);
eea6121a 9641 s->size
b49e97c9
TS
9642 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9643 s->contents
9644 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9645 }
861fb55a 9646
1bbce132 9647 /* Figure out the size of the PLT header if we know that we
07d6d2b8
AM
9648 are using it. For the sake of cache alignment always use
9649 a standard header whenever any standard entries are present
9650 even if microMIPS entries are present as well. This also
9651 lets the microMIPS header rely on the value of $v0 only set
9652 by microMIPS entries, for a small size reduction.
1bbce132 9653
07d6d2b8
AM
9654 Set symbol table entry values for symbols that use the
9655 address of their PLT entry now that we can calculate it.
1bbce132 9656
07d6d2b8
AM
9657 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9658 haven't already in _bfd_elf_create_dynamic_sections. */
ce558b89 9659 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9660 {
1bbce132
MR
9661 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9662 && !htab->plt_mips_offset);
9663 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9664 bfd_vma isa_bit = micromips_p;
861fb55a 9665 struct elf_link_hash_entry *h;
1bbce132 9666 bfd_vma size;
861fb55a
DJ
9667
9668 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
9669 BFD_ASSERT (htab->root.sgotplt->size == 0);
9670 BFD_ASSERT (htab->root.splt->size == 0);
1bbce132 9671
0e1862bb 9672 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9673 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9674 else if (htab->is_vxworks)
9675 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9676 else if (ABI_64_P (output_bfd))
9677 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9678 else if (ABI_N32_P (output_bfd))
9679 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9680 else if (!micromips_p)
9681 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9682 else if (htab->insn32)
9683 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9684 else
9685 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9686
1bbce132
MR
9687 htab->plt_header_is_comp = micromips_p;
9688 htab->plt_header_size = size;
ce558b89
AM
9689 htab->root.splt->size = (size
9690 + htab->plt_mips_offset
9691 + htab->plt_comp_offset);
9692 htab->root.sgotplt->size = (htab->plt_got_index
9693 * MIPS_ELF_GOT_SIZE (dynobj));
1bbce132
MR
9694
9695 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9696
9697 if (htab->root.hplt == NULL)
9698 {
ce558b89 9699 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
1bbce132
MR
9700 "_PROCEDURE_LINKAGE_TABLE_");
9701 htab->root.hplt = h;
9702 if (h == NULL)
9703 return FALSE;
9704 }
9705
9706 h = htab->root.hplt;
9707 h->root.u.def.value = isa_bit;
9708 h->other = other;
861fb55a
DJ
9709 h->type = STT_FUNC;
9710 }
9711 }
4e41d0d7 9712
9a59ad6b 9713 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9714 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9715
33bb52fb
RS
9716 mips_elf_estimate_stub_size (output_bfd, info);
9717
9718 if (!mips_elf_lay_out_got (output_bfd, info))
9719 return FALSE;
9720
9721 mips_elf_lay_out_lazy_stubs (info);
9722
b49e97c9
TS
9723 /* The check_relocs and adjust_dynamic_symbol entry points have
9724 determined the sizes of the various dynamic sections. Allocate
9725 memory for them. */
b34976b6 9726 reltext = FALSE;
b49e97c9
TS
9727 for (s = dynobj->sections; s != NULL; s = s->next)
9728 {
9729 const char *name;
b49e97c9
TS
9730
9731 /* It's OK to base decisions on the section name, because none
9732 of the dynobj section names depend upon the input files. */
9733 name = bfd_get_section_name (dynobj, s);
9734
9735 if ((s->flags & SEC_LINKER_CREATED) == 0)
9736 continue;
9737
0112cd26 9738 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9739 {
c456f082 9740 if (s->size != 0)
b49e97c9
TS
9741 {
9742 const char *outname;
9743 asection *target;
9744
9745 /* If this relocation section applies to a read only
07d6d2b8
AM
9746 section, then we probably need a DT_TEXTREL entry.
9747 If the relocation section is .rel(a).dyn, we always
9748 assert a DT_TEXTREL entry rather than testing whether
9749 there exists a relocation to a read only section or
9750 not. */
b49e97c9
TS
9751 outname = bfd_get_section_name (output_bfd,
9752 s->output_section);
9753 target = bfd_get_section_by_name (output_bfd, outname + 4);
9754 if ((target != NULL
9755 && (target->flags & SEC_READONLY) != 0
9756 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9757 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9758 reltext = TRUE;
b49e97c9
TS
9759
9760 /* We use the reloc_count field as a counter if we need
9761 to copy relocs into the output file. */
0a44bf69 9762 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9763 s->reloc_count = 0;
f4416af6
AO
9764
9765 /* If combreloc is enabled, elf_link_sort_relocs() will
9766 sort relocations, but in a different way than we do,
9767 and before we're done creating relocations. Also, it
9768 will move them around between input sections'
9769 relocation's contents, so our sorting would be
9770 broken, so don't let it run. */
9771 info->combreloc = 0;
b49e97c9
TS
9772 }
9773 }
0e1862bb 9774 else if (bfd_link_executable (info)
b49e97c9 9775 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9776 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9777 {
5108fc1b 9778 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9779 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9780 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9781 }
9782 else if (SGI_COMPAT (output_bfd)
0112cd26 9783 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9784 s->size += mips_elf_hash_table (info)->compact_rel_size;
ce558b89 9785 else if (s == htab->root.splt)
861fb55a
DJ
9786 {
9787 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9788 room for an extra nop to fill the delay slot. This is
9789 for CPUs without load interlocking. */
9790 if (! LOAD_INTERLOCKS_P (output_bfd)
9791 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9792 s->size += 4;
9793 }
0112cd26 9794 else if (! CONST_STRNEQ (name, ".init")
ce558b89
AM
9795 && s != htab->root.sgot
9796 && s != htab->root.sgotplt
861fb55a 9797 && s != htab->sstubs
5474d94f
AM
9798 && s != htab->root.sdynbss
9799 && s != htab->root.sdynrelro)
b49e97c9
TS
9800 {
9801 /* It's not one of our sections, so don't allocate space. */
9802 continue;
9803 }
9804
c456f082 9805 if (s->size == 0)
b49e97c9 9806 {
8423293d 9807 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9808 continue;
9809 }
9810
c456f082
AM
9811 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9812 continue;
9813
b49e97c9 9814 /* Allocate memory for the section contents. */
eea6121a 9815 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9816 if (s->contents == NULL)
b49e97c9
TS
9817 {
9818 bfd_set_error (bfd_error_no_memory);
b34976b6 9819 return FALSE;
b49e97c9
TS
9820 }
9821 }
9822
9823 if (elf_hash_table (info)->dynamic_sections_created)
9824 {
9825 /* Add some entries to the .dynamic section. We fill in the
9826 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9827 must add the entries now so that we get the correct size for
5750dcec 9828 the .dynamic section. */
af5978fb
RS
9829
9830 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9831 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9832 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9833 may only look at the first one they see. */
0e1862bb 9834 if (!bfd_link_pic (info)
af5978fb
RS
9835 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9836 return FALSE;
b49e97c9 9837
0e1862bb 9838 if (bfd_link_executable (info)
a5499fa4
MF
9839 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9840 return FALSE;
9841
5750dcec
DJ
9842 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9843 used by the debugger. */
0e1862bb 9844 if (bfd_link_executable (info)
5750dcec
DJ
9845 && !SGI_COMPAT (output_bfd)
9846 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9847 return FALSE;
9848
0a44bf69 9849 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9850 info->flags |= DF_TEXTREL;
9851
9852 if ((info->flags & DF_TEXTREL) != 0)
9853 {
9854 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9855 return FALSE;
943284cc
DJ
9856
9857 /* Clear the DF_TEXTREL flag. It will be set again if we
9858 write out an actual text relocation; we may not, because
9859 at this point we do not know whether e.g. any .eh_frame
9860 absolute relocations have been converted to PC-relative. */
9861 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9862 }
9863
9864 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9865 return FALSE;
b49e97c9 9866
861fb55a 9867 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9868 if (htab->is_vxworks)
b49e97c9 9869 {
0a44bf69
RS
9870 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9871 use any of the DT_MIPS_* tags. */
861fb55a 9872 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9873 {
9874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9875 return FALSE;
b49e97c9 9876
0a44bf69
RS
9877 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9878 return FALSE;
b49e97c9 9879
0a44bf69
RS
9880 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9881 return FALSE;
9882 }
b49e97c9 9883 }
0a44bf69
RS
9884 else
9885 {
861fb55a 9886 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9887 {
9888 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9889 return FALSE;
b49e97c9 9890
0a44bf69
RS
9891 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9892 return FALSE;
b49e97c9 9893
0a44bf69
RS
9894 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9895 return FALSE;
9896 }
b49e97c9 9897
0a44bf69
RS
9898 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9899 return FALSE;
b49e97c9 9900
0a44bf69
RS
9901 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9902 return FALSE;
b49e97c9 9903
0a44bf69
RS
9904 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9905 return FALSE;
b49e97c9 9906
0a44bf69
RS
9907 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9908 return FALSE;
b49e97c9 9909
0a44bf69
RS
9910 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9911 return FALSE;
b49e97c9 9912
0a44bf69
RS
9913 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9914 return FALSE;
b49e97c9 9915
0a44bf69
RS
9916 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9917 return FALSE;
9918
9919 if (IRIX_COMPAT (dynobj) == ict_irix5
9920 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9921 return FALSE;
9922
9923 if (IRIX_COMPAT (dynobj) == ict_irix6
9924 && (bfd_get_section_by_name
af0edeb8 9925 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
9926 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9927 return FALSE;
9928 }
ce558b89 9929 if (htab->root.splt->size > 0)
861fb55a
DJ
9930 {
9931 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9932 return FALSE;
9933
9934 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9935 return FALSE;
9936
9937 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9938 return FALSE;
9939
9940 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9941 return FALSE;
9942 }
7a2b07ff
NS
9943 if (htab->is_vxworks
9944 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9945 return FALSE;
b49e97c9
TS
9946 }
9947
b34976b6 9948 return TRUE;
b49e97c9
TS
9949}
9950\f
81d43bff
RS
9951/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9952 Adjust its R_ADDEND field so that it is correct for the output file.
9953 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9954 and sections respectively; both use symbol indexes. */
9955
9956static void
9957mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9958 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9959 asection **local_sections, Elf_Internal_Rela *rel)
9960{
9961 unsigned int r_type, r_symndx;
9962 Elf_Internal_Sym *sym;
9963 asection *sec;
9964
020d7251 9965 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9966 {
9967 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9968 if (gprel16_reloc_p (r_type)
81d43bff 9969 || r_type == R_MIPS_GPREL32
df58fc94 9970 || literal_reloc_p (r_type))
81d43bff
RS
9971 {
9972 rel->r_addend += _bfd_get_gp_value (input_bfd);
9973 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9974 }
9975
9976 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9977 sym = local_syms + r_symndx;
9978
9979 /* Adjust REL's addend to account for section merging. */
0e1862bb 9980 if (!bfd_link_relocatable (info))
81d43bff
RS
9981 {
9982 sec = local_sections[r_symndx];
9983 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9984 }
9985
9986 /* This would normally be done by the rela_normal code in elflink.c. */
9987 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9988 rel->r_addend += local_sections[r_symndx]->output_offset;
9989 }
9990}
9991
545fd46b
MR
9992/* Handle relocations against symbols from removed linkonce sections,
9993 or sections discarded by a linker script. We use this wrapper around
9994 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9995 on 64-bit ELF targets. In this case for any relocation handled, which
9996 always be the first in a triplet, the remaining two have to be processed
9997 together with the first, even if they are R_MIPS_NONE. It is the symbol
9998 index referred by the first reloc that applies to all the three and the
9999 remaining two never refer to an object symbol. And it is the final
10000 relocation (the last non-null one) that determines the output field of
10001 the whole relocation so retrieve the corresponding howto structure for
10002 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10003
10004 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10005 and therefore requires to be pasted in a loop. It also defines a block
10006 and does not protect any of its arguments, hence the extra brackets. */
10007
10008static void
10009mips_reloc_against_discarded_section (bfd *output_bfd,
10010 struct bfd_link_info *info,
10011 bfd *input_bfd, asection *input_section,
10012 Elf_Internal_Rela **rel,
10013 const Elf_Internal_Rela **relend,
10014 bfd_boolean rel_reloc,
10015 reloc_howto_type *howto,
10016 bfd_byte *contents)
10017{
10018 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10019 int count = bed->s->int_rels_per_ext_rel;
10020 unsigned int r_type;
10021 int i;
10022
10023 for (i = count - 1; i > 0; i--)
10024 {
10025 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10026 if (r_type != R_MIPS_NONE)
10027 {
10028 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10029 break;
10030 }
10031 }
10032 do
10033 {
10034 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10035 (*rel), count, (*relend),
10036 howto, i, contents);
10037 }
10038 while (0);
10039}
10040
b49e97c9
TS
10041/* Relocate a MIPS ELF section. */
10042
b34976b6 10043bfd_boolean
9719ad41
RS
10044_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10045 bfd *input_bfd, asection *input_section,
10046 bfd_byte *contents, Elf_Internal_Rela *relocs,
10047 Elf_Internal_Sym *local_syms,
10048 asection **local_sections)
b49e97c9
TS
10049{
10050 Elf_Internal_Rela *rel;
10051 const Elf_Internal_Rela *relend;
10052 bfd_vma addend = 0;
b34976b6 10053 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9 10054
056bafd4 10055 relend = relocs + input_section->reloc_count;
b49e97c9
TS
10056 for (rel = relocs; rel < relend; ++rel)
10057 {
10058 const char *name;
c9adbffe 10059 bfd_vma value = 0;
b49e97c9 10060 reloc_howto_type *howto;
ad3d9127 10061 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10062 /* TRUE if the relocation is a RELA relocation, rather than a
07d6d2b8 10063 REL relocation. */
b34976b6 10064 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10065 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10066 const char *msg;
ab96bf03
AM
10067 unsigned long r_symndx;
10068 asection *sec;
749b8d9d
L
10069 Elf_Internal_Shdr *symtab_hdr;
10070 struct elf_link_hash_entry *h;
d4730f92 10071 bfd_boolean rel_reloc;
b49e97c9 10072
d4730f92
BS
10073 rel_reloc = (NEWABI_P (input_bfd)
10074 && mips_elf_rel_relocation_p (input_bfd, input_section,
10075 relocs, rel));
b49e97c9 10076 /* Find the relocation howto for this relocation. */
d4730f92 10077 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10078
10079 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10080 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10081 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10082 {
10083 sec = local_sections[r_symndx];
10084 h = NULL;
10085 }
ab96bf03
AM
10086 else
10087 {
ab96bf03 10088 unsigned long extsymoff;
ab96bf03 10089
ab96bf03
AM
10090 extsymoff = 0;
10091 if (!elf_bad_symtab (input_bfd))
10092 extsymoff = symtab_hdr->sh_info;
10093 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10094 while (h->root.type == bfd_link_hash_indirect
10095 || h->root.type == bfd_link_hash_warning)
10096 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10097
10098 sec = NULL;
10099 if (h->root.type == bfd_link_hash_defined
10100 || h->root.type == bfd_link_hash_defweak)
10101 sec = h->root.u.def.section;
10102 }
10103
dbaa2011 10104 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10105 {
10106 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10107 input_section, &rel, &relend,
10108 rel_reloc, howto, contents);
10109 continue;
10110 }
ab96bf03 10111
4a14403c 10112 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10113 {
10114 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10115 64-bit code, but make sure all their addresses are in the
10116 lowermost or uppermost 32-bit section of the 64-bit address
10117 space. Thus, when they use an R_MIPS_64 they mean what is
10118 usually meant by R_MIPS_32, with the exception that the
10119 stored value is sign-extended to 64 bits. */
b34976b6 10120 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10121
10122 /* On big-endian systems, we need to lie about the position
10123 of the reloc. */
10124 if (bfd_big_endian (input_bfd))
10125 rel->r_offset += 4;
10126 }
b49e97c9
TS
10127
10128 if (!use_saved_addend_p)
10129 {
b49e97c9
TS
10130 /* If these relocations were originally of the REL variety,
10131 we must pull the addend out of the field that will be
10132 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10133 RELA relocation. */
10134 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10135 relocs, rel))
b49e97c9 10136 {
b34976b6 10137 rela_relocation_p = FALSE;
c224138d
RS
10138 addend = mips_elf_read_rel_addend (input_bfd, rel,
10139 howto, contents);
738e5348
RS
10140 if (hi16_reloc_p (r_type)
10141 || (got16_reloc_p (r_type)
b49e97c9 10142 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10143 local_sections)))
b49e97c9 10144 {
c224138d
RS
10145 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10146 contents, &addend))
749b8d9d 10147 {
749b8d9d
L
10148 if (h)
10149 name = h->root.root.string;
10150 else
10151 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10152 local_syms + r_symndx,
10153 sec);
4eca0228 10154 _bfd_error_handler
695344c0 10155 /* xgettext:c-format */
871b3ab2 10156 (_("%pB: Can't find matching LO16 reloc against `%s'"
2dcf00ce 10157 " for %s at %#" PRIx64 " in section `%pA'"),
c08bb8dd 10158 input_bfd, name,
2dcf00ce 10159 howto->name, (uint64_t) rel->r_offset, input_section);
749b8d9d 10160 }
b49e97c9 10161 }
30ac9238
RS
10162 else
10163 addend <<= howto->rightshift;
b49e97c9
TS
10164 }
10165 else
10166 addend = rel->r_addend;
81d43bff
RS
10167 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10168 local_syms, local_sections, rel);
b49e97c9
TS
10169 }
10170
0e1862bb 10171 if (bfd_link_relocatable (info))
b49e97c9 10172 {
4a14403c 10173 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10174 && bfd_big_endian (input_bfd))
10175 rel->r_offset -= 4;
10176
81d43bff 10177 if (!rela_relocation_p && rel->r_addend)
5a659663 10178 {
81d43bff 10179 addend += rel->r_addend;
738e5348 10180 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10181 addend = mips_elf_high (addend);
10182 else if (r_type == R_MIPS_HIGHER)
10183 addend = mips_elf_higher (addend);
10184 else if (r_type == R_MIPS_HIGHEST)
10185 addend = mips_elf_highest (addend);
30ac9238
RS
10186 else
10187 addend >>= howto->rightshift;
b49e97c9 10188
30ac9238
RS
10189 /* We use the source mask, rather than the destination
10190 mask because the place to which we are writing will be
10191 source of the addend in the final link. */
b49e97c9
TS
10192 addend &= howto->src_mask;
10193
5a659663 10194 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10195 /* See the comment above about using R_MIPS_64 in the 32-bit
10196 ABI. Here, we need to update the addend. It would be
10197 possible to get away with just using the R_MIPS_32 reloc
10198 but for endianness. */
10199 {
10200 bfd_vma sign_bits;
10201 bfd_vma low_bits;
10202 bfd_vma high_bits;
10203
10204 if (addend & ((bfd_vma) 1 << 31))
10205#ifdef BFD64
10206 sign_bits = ((bfd_vma) 1 << 32) - 1;
10207#else
10208 sign_bits = -1;
10209#endif
10210 else
10211 sign_bits = 0;
10212
10213 /* If we don't know that we have a 64-bit type,
10214 do two separate stores. */
10215 if (bfd_big_endian (input_bfd))
10216 {
10217 /* Store the sign-bits (which are most significant)
10218 first. */
10219 low_bits = sign_bits;
10220 high_bits = addend;
10221 }
10222 else
10223 {
10224 low_bits = addend;
10225 high_bits = sign_bits;
10226 }
10227 bfd_put_32 (input_bfd, low_bits,
10228 contents + rel->r_offset);
10229 bfd_put_32 (input_bfd, high_bits,
10230 contents + rel->r_offset + 4);
10231 continue;
10232 }
10233
10234 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10235 input_bfd, input_section,
b34976b6
AM
10236 contents, FALSE))
10237 return FALSE;
b49e97c9
TS
10238 }
10239
10240 /* Go on to the next relocation. */
10241 continue;
10242 }
10243
10244 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10245 relocations for the same offset. In that case we are
10246 supposed to treat the output of each relocation as the addend
10247 for the next. */
10248 if (rel + 1 < relend
10249 && rel->r_offset == rel[1].r_offset
10250 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10251 use_saved_addend_p = TRUE;
b49e97c9 10252 else
b34976b6 10253 use_saved_addend_p = FALSE;
b49e97c9
TS
10254
10255 /* Figure out what value we are supposed to relocate. */
10256 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10257 input_section, info, rel,
10258 addend, howto, local_syms,
10259 local_sections, &value,
38a7df63 10260 &name, &cross_mode_jump_p,
bce03d3d 10261 use_saved_addend_p))
b49e97c9
TS
10262 {
10263 case bfd_reloc_continue:
10264 /* There's nothing to do. */
10265 continue;
10266
10267 case bfd_reloc_undefined:
10268 /* mips_elf_calculate_relocation already called the
10269 undefined_symbol callback. There's no real point in
10270 trying to perform the relocation at this point, so we
10271 just skip ahead to the next relocation. */
10272 continue;
10273
10274 case bfd_reloc_notsupported:
10275 msg = _("internal error: unsupported relocation error");
10276 info->callbacks->warning
10277 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10278 return FALSE;
b49e97c9
TS
10279
10280 case bfd_reloc_overflow:
10281 if (use_saved_addend_p)
10282 /* Ignore overflow until we reach the last relocation for
10283 a given location. */
10284 ;
10285 else
10286 {
0e53d9da
AN
10287 struct mips_elf_link_hash_table *htab;
10288
10289 htab = mips_elf_hash_table (info);
4dfe6ac6 10290 BFD_ASSERT (htab != NULL);
b49e97c9 10291 BFD_ASSERT (name != NULL);
0e53d9da 10292 if (!htab->small_data_overflow_reported
9684f078 10293 && (gprel16_reloc_p (howto->type)
df58fc94 10294 || literal_reloc_p (howto->type)))
0e53d9da 10295 {
91d6fa6a
NC
10296 msg = _("small-data section exceeds 64KB;"
10297 " lower small-data size limit (see option -G)");
0e53d9da
AN
10298
10299 htab->small_data_overflow_reported = TRUE;
10300 (*info->callbacks->einfo) ("%P: %s\n", msg);
10301 }
1a72702b
AM
10302 (*info->callbacks->reloc_overflow)
10303 (info, NULL, name, howto->name, (bfd_vma) 0,
10304 input_bfd, input_section, rel->r_offset);
b49e97c9
TS
10305 }
10306 break;
10307
10308 case bfd_reloc_ok:
10309 break;
10310
df58fc94 10311 case bfd_reloc_outofrange:
7db9a74e 10312 msg = NULL;
df58fc94 10313 if (jal_reloc_p (howto->type))
9d862524
MR
10314 msg = (cross_mode_jump_p
10315 ? _("Cannot convert a jump to JALX "
10316 "for a non-word-aligned address")
10317 : (howto->type == R_MIPS16_26
10318 ? _("Jump to a non-word-aligned address")
10319 : _("Jump to a non-instruction-aligned address")));
99aefae6 10320 else if (b_reloc_p (howto->type))
a6ebf616
MR
10321 msg = (cross_mode_jump_p
10322 ? _("Cannot convert a branch to JALX "
10323 "for a non-word-aligned address")
10324 : _("Branch to a non-instruction-aligned address"));
7db9a74e
MR
10325 else if (aligned_pcrel_reloc_p (howto->type))
10326 msg = _("PC-relative load from unaligned address");
10327 if (msg)
df58fc94 10328 {
de341542 10329 info->callbacks->einfo
ed53407e
MR
10330 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10331 break;
7361da2c 10332 }
df58fc94
RS
10333 /* Fall through. */
10334
b49e97c9
TS
10335 default:
10336 abort ();
10337 break;
10338 }
10339
10340 /* If we've got another relocation for the address, keep going
10341 until we reach the last one. */
10342 if (use_saved_addend_p)
10343 {
10344 addend = value;
10345 continue;
10346 }
10347
4a14403c 10348 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10349 /* See the comment above about using R_MIPS_64 in the 32-bit
10350 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10351 that calculated the right value. Now, however, we
10352 sign-extend the 32-bit result to 64-bits, and store it as a
10353 64-bit value. We are especially generous here in that we
10354 go to extreme lengths to support this usage on systems with
10355 only a 32-bit VMA. */
10356 {
10357 bfd_vma sign_bits;
10358 bfd_vma low_bits;
10359 bfd_vma high_bits;
10360
10361 if (value & ((bfd_vma) 1 << 31))
10362#ifdef BFD64
10363 sign_bits = ((bfd_vma) 1 << 32) - 1;
10364#else
10365 sign_bits = -1;
10366#endif
10367 else
10368 sign_bits = 0;
10369
10370 /* If we don't know that we have a 64-bit type,
10371 do two separate stores. */
10372 if (bfd_big_endian (input_bfd))
10373 {
10374 /* Undo what we did above. */
10375 rel->r_offset -= 4;
10376 /* Store the sign-bits (which are most significant)
10377 first. */
10378 low_bits = sign_bits;
10379 high_bits = value;
10380 }
10381 else
10382 {
10383 low_bits = value;
10384 high_bits = sign_bits;
10385 }
10386 bfd_put_32 (input_bfd, low_bits,
10387 contents + rel->r_offset);
10388 bfd_put_32 (input_bfd, high_bits,
10389 contents + rel->r_offset + 4);
10390 continue;
10391 }
10392
10393 /* Actually perform the relocation. */
10394 if (! mips_elf_perform_relocation (info, howto, rel, value,
10395 input_bfd, input_section,
38a7df63 10396 contents, cross_mode_jump_p))
b34976b6 10397 return FALSE;
b49e97c9
TS
10398 }
10399
b34976b6 10400 return TRUE;
b49e97c9
TS
10401}
10402\f
861fb55a
DJ
10403/* A function that iterates over each entry in la25_stubs and fills
10404 in the code for each one. DATA points to a mips_htab_traverse_info. */
10405
10406static int
10407mips_elf_create_la25_stub (void **slot, void *data)
10408{
10409 struct mips_htab_traverse_info *hti;
10410 struct mips_elf_link_hash_table *htab;
10411 struct mips_elf_la25_stub *stub;
10412 asection *s;
10413 bfd_byte *loc;
10414 bfd_vma offset, target, target_high, target_low;
10415
10416 stub = (struct mips_elf_la25_stub *) *slot;
10417 hti = (struct mips_htab_traverse_info *) data;
10418 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10419 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10420
10421 /* Create the section contents, if we haven't already. */
10422 s = stub->stub_section;
10423 loc = s->contents;
10424 if (loc == NULL)
10425 {
10426 loc = bfd_malloc (s->size);
10427 if (loc == NULL)
10428 {
10429 hti->error = TRUE;
10430 return FALSE;
10431 }
10432 s->contents = loc;
10433 }
10434
10435 /* Work out where in the section this stub should go. */
10436 offset = stub->offset;
10437
10438 /* Work out the target address. */
8f0c309a
CLT
10439 target = mips_elf_get_la25_target (stub, &s);
10440 target += s->output_section->vma + s->output_offset;
10441
861fb55a
DJ
10442 target_high = ((target + 0x8000) >> 16) & 0xffff;
10443 target_low = (target & 0xffff);
10444
10445 if (stub->stub_section != htab->strampoline)
10446 {
df58fc94 10447 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10448 of the section and write the two instructions at the end. */
10449 memset (loc, 0, offset);
10450 loc += offset;
df58fc94
RS
10451 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10452 {
d21911ea
MR
10453 bfd_put_micromips_32 (hti->output_bfd,
10454 LA25_LUI_MICROMIPS (target_high),
10455 loc);
10456 bfd_put_micromips_32 (hti->output_bfd,
10457 LA25_ADDIU_MICROMIPS (target_low),
10458 loc + 4);
df58fc94
RS
10459 }
10460 else
10461 {
10462 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10463 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10464 }
861fb55a
DJ
10465 }
10466 else
10467 {
10468 /* This is trampoline. */
10469 loc += offset;
df58fc94
RS
10470 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10471 {
d21911ea
MR
10472 bfd_put_micromips_32 (hti->output_bfd,
10473 LA25_LUI_MICROMIPS (target_high), loc);
10474 bfd_put_micromips_32 (hti->output_bfd,
10475 LA25_J_MICROMIPS (target), loc + 4);
10476 bfd_put_micromips_32 (hti->output_bfd,
10477 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10478 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10479 }
10480 else
10481 {
10482 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10483 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10484 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10485 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10486 }
861fb55a
DJ
10487 }
10488 return TRUE;
10489}
10490
b49e97c9
TS
10491/* If NAME is one of the special IRIX6 symbols defined by the linker,
10492 adjust it appropriately now. */
10493
10494static void
9719ad41
RS
10495mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10496 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10497{
10498 /* The linker script takes care of providing names and values for
10499 these, but we must place them into the right sections. */
10500 static const char* const text_section_symbols[] = {
10501 "_ftext",
10502 "_etext",
10503 "__dso_displacement",
10504 "__elf_header",
10505 "__program_header_table",
10506 NULL
10507 };
10508
10509 static const char* const data_section_symbols[] = {
10510 "_fdata",
10511 "_edata",
10512 "_end",
10513 "_fbss",
10514 NULL
10515 };
10516
10517 const char* const *p;
10518 int i;
10519
10520 for (i = 0; i < 2; ++i)
10521 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10522 *p;
10523 ++p)
10524 if (strcmp (*p, name) == 0)
10525 {
10526 /* All of these symbols are given type STT_SECTION by the
10527 IRIX6 linker. */
10528 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10529 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10530
10531 /* The IRIX linker puts these symbols in special sections. */
10532 if (i == 0)
10533 sym->st_shndx = SHN_MIPS_TEXT;
10534 else
10535 sym->st_shndx = SHN_MIPS_DATA;
10536
10537 break;
10538 }
10539}
10540
10541/* Finish up dynamic symbol handling. We set the contents of various
10542 dynamic sections here. */
10543
b34976b6 10544bfd_boolean
9719ad41
RS
10545_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10546 struct bfd_link_info *info,
10547 struct elf_link_hash_entry *h,
10548 Elf_Internal_Sym *sym)
b49e97c9
TS
10549{
10550 bfd *dynobj;
b49e97c9 10551 asection *sgot;
f4416af6 10552 struct mips_got_info *g, *gg;
b49e97c9 10553 const char *name;
3d6746ca 10554 int idx;
5108fc1b 10555 struct mips_elf_link_hash_table *htab;
738e5348 10556 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10557
5108fc1b 10558 htab = mips_elf_hash_table (info);
4dfe6ac6 10559 BFD_ASSERT (htab != NULL);
b49e97c9 10560 dynobj = elf_hash_table (info)->dynobj;
738e5348 10561 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10562
861fb55a
DJ
10563 BFD_ASSERT (!htab->is_vxworks);
10564
1bbce132
MR
10565 if (h->plt.plist != NULL
10566 && (h->plt.plist->mips_offset != MINUS_ONE
10567 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10568 {
10569 /* We've decided to create a PLT entry for this symbol. */
10570 bfd_byte *loc;
1bbce132 10571 bfd_vma header_address, got_address;
861fb55a 10572 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10573 bfd_vma got_index;
10574 bfd_vma isa_bit;
10575
10576 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10577
10578 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10579 BFD_ASSERT (h->dynindx != -1);
ce558b89 10580 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 10581 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10582 BFD_ASSERT (!h->def_regular);
10583
10584 /* Calculate the address of the PLT header. */
1bbce132 10585 isa_bit = htab->plt_header_is_comp;
ce558b89
AM
10586 header_address = (htab->root.splt->output_section->vma
10587 + htab->root.splt->output_offset + isa_bit);
861fb55a
DJ
10588
10589 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
10590 got_address = (htab->root.sgotplt->output_section->vma
10591 + htab->root.sgotplt->output_offset
1bbce132
MR
10592 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10593
861fb55a
DJ
10594 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10595 got_address_low = got_address & 0xffff;
10596
10597 /* Initially point the .got.plt entry at the PLT header. */
ce558b89 10598 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10599 if (ABI_64_P (output_bfd))
10600 bfd_put_64 (output_bfd, header_address, loc);
10601 else
10602 bfd_put_32 (output_bfd, header_address, loc);
10603
1bbce132 10604 /* Now handle the PLT itself. First the standard entry (the order
07d6d2b8 10605 does not matter, we just have to pick one). */
1bbce132
MR
10606 if (h->plt.plist->mips_offset != MINUS_ONE)
10607 {
10608 const bfd_vma *plt_entry;
10609 bfd_vma plt_offset;
861fb55a 10610
1bbce132 10611 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10612
ce558b89 10613 BFD_ASSERT (plt_offset <= htab->root.splt->size);
6d30f5b2 10614
1bbce132 10615 /* Find out where the .plt entry should go. */
ce558b89 10616 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10617
10618 /* Pick the load opcode. */
10619 load = MIPS_ELF_LOAD_WORD (output_bfd);
10620
10621 /* Fill in the PLT entry itself. */
7361da2c
AB
10622
10623 if (MIPSR6_P (output_bfd))
10624 plt_entry = mipsr6_exec_plt_entry;
10625 else
10626 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10627 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10628 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10629 loc + 4);
10630
10631 if (! LOAD_INTERLOCKS_P (output_bfd))
10632 {
10633 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10634 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10635 }
10636 else
10637 {
10638 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10639 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10640 loc + 12);
10641 }
6d30f5b2 10642 }
1bbce132
MR
10643
10644 /* Now the compressed entry. They come after any standard ones. */
10645 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10646 {
1bbce132
MR
10647 bfd_vma plt_offset;
10648
10649 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10650 + h->plt.plist->comp_offset);
10651
ce558b89 10652 BFD_ASSERT (plt_offset <= htab->root.splt->size);
1bbce132
MR
10653
10654 /* Find out where the .plt entry should go. */
ce558b89 10655 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10656
10657 /* Fill in the PLT entry itself. */
833794fc
MR
10658 if (!MICROMIPS_P (output_bfd))
10659 {
10660 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10661
10662 bfd_put_16 (output_bfd, plt_entry[0], loc);
10663 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10664 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10665 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10666 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10667 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10668 bfd_put_32 (output_bfd, got_address, loc + 12);
10669 }
10670 else if (htab->insn32)
10671 {
10672 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10673
10674 bfd_put_16 (output_bfd, plt_entry[0], loc);
10675 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10676 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10677 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10678 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10679 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10680 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10681 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10682 }
10683 else
1bbce132
MR
10684 {
10685 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10686 bfd_signed_vma gotpc_offset;
10687 bfd_vma loc_address;
10688
10689 BFD_ASSERT (got_address % 4 == 0);
10690
ce558b89
AM
10691 loc_address = (htab->root.splt->output_section->vma
10692 + htab->root.splt->output_offset + plt_offset);
1bbce132
MR
10693 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10694
10695 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10696 if (gotpc_offset + 0x1000000 >= 0x2000000)
10697 {
4eca0228 10698 _bfd_error_handler
695344c0 10699 /* xgettext:c-format */
2dcf00ce 10700 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
1bbce132
MR
10701 "beyond the range of ADDIUPC"),
10702 output_bfd,
ce558b89 10703 htab->root.sgotplt->output_section,
2dcf00ce 10704 (int64_t) gotpc_offset,
c08bb8dd 10705 htab->root.splt->output_section);
1bbce132
MR
10706 bfd_set_error (bfd_error_no_error);
10707 return FALSE;
10708 }
10709 bfd_put_16 (output_bfd,
10710 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10711 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10712 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10713 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10714 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10715 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10716 }
6d30f5b2 10717 }
861fb55a
DJ
10718
10719 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 10720 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
1bbce132 10721 got_index - 2, h->dynindx,
861fb55a
DJ
10722 R_MIPS_JUMP_SLOT, got_address);
10723
10724 /* We distinguish between PLT entries and lazy-binding stubs by
10725 giving the former an st_other value of STO_MIPS_PLT. Set the
10726 flag and leave the value if there are any relocations in the
10727 binary where pointer equality matters. */
10728 sym->st_shndx = SHN_UNDEF;
10729 if (h->pointer_equality_needed)
1bbce132 10730 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 10731 else
1bbce132
MR
10732 {
10733 sym->st_value = 0;
10734 sym->st_other = 0;
10735 }
861fb55a 10736 }
1bbce132
MR
10737
10738 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 10739 {
861fb55a 10740 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
10741 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10742 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10743 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 10744 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
10745 bfd_vma isa_bit = micromips_p;
10746 bfd_vma stub_big_size;
10747
833794fc 10748 if (!micromips_p)
1bbce132 10749 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
10750 else if (htab->insn32)
10751 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10752 else
10753 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
10754
10755 /* This symbol has a stub. Set it up. */
10756
10757 BFD_ASSERT (h->dynindx != -1);
10758
1bbce132 10759 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
10760
10761 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
10762 sign extension at runtime in the stub, resulting in a negative
10763 index value. */
10764 if (h->dynindx & ~0x7fffffff)
b34976b6 10765 return FALSE;
b49e97c9
TS
10766
10767 /* Fill the stub. */
1bbce132
MR
10768 if (micromips_p)
10769 {
10770 idx = 0;
10771 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10772 stub + idx);
10773 idx += 4;
833794fc
MR
10774 if (htab->insn32)
10775 {
10776 bfd_put_micromips_32 (output_bfd,
40fc1451 10777 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
10778 idx += 4;
10779 }
10780 else
10781 {
10782 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10783 idx += 2;
10784 }
1bbce132
MR
10785 if (stub_size == stub_big_size)
10786 {
10787 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10788
10789 bfd_put_micromips_32 (output_bfd,
10790 STUB_LUI_MICROMIPS (dynindx_hi),
10791 stub + idx);
10792 idx += 4;
10793 }
833794fc
MR
10794 if (htab->insn32)
10795 {
10796 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10797 stub + idx);
10798 idx += 4;
10799 }
10800 else
10801 {
10802 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10803 idx += 2;
10804 }
1bbce132
MR
10805
10806 /* If a large stub is not required and sign extension is not a
10807 problem, then use legacy code in the stub. */
10808 if (stub_size == stub_big_size)
10809 bfd_put_micromips_32 (output_bfd,
10810 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10811 stub + idx);
10812 else if (h->dynindx & ~0x7fff)
10813 bfd_put_micromips_32 (output_bfd,
10814 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10815 stub + idx);
10816 else
10817 bfd_put_micromips_32 (output_bfd,
10818 STUB_LI16S_MICROMIPS (output_bfd,
10819 h->dynindx),
10820 stub + idx);
10821 }
3d6746ca 10822 else
1bbce132
MR
10823 {
10824 idx = 0;
10825 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10826 idx += 4;
40fc1451 10827 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
10828 idx += 4;
10829 if (stub_size == stub_big_size)
10830 {
10831 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10832 stub + idx);
10833 idx += 4;
10834 }
10835 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10836 idx += 4;
10837
10838 /* If a large stub is not required and sign extension is not a
10839 problem, then use legacy code in the stub. */
10840 if (stub_size == stub_big_size)
10841 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10842 stub + idx);
10843 else if (h->dynindx & ~0x7fff)
10844 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10845 stub + idx);
10846 else
10847 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10848 stub + idx);
10849 }
5108fc1b 10850
1bbce132
MR
10851 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10852 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10853 stub, stub_size);
b49e97c9 10854
1bbce132 10855 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
10856 only for the referenced symbol. */
10857 sym->st_shndx = SHN_UNDEF;
10858
10859 /* The run-time linker uses the st_value field of the symbol
10860 to reset the global offset table entry for this external
10861 to its stub address when unlinking a shared object. */
4e41d0d7
RS
10862 sym->st_value = (htab->sstubs->output_section->vma
10863 + htab->sstubs->output_offset
1bbce132
MR
10864 + h->plt.plist->stub_offset
10865 + isa_bit);
10866 sym->st_other = other;
b49e97c9
TS
10867 }
10868
738e5348
RS
10869 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10870 refer to the stub, since only the stub uses the standard calling
10871 conventions. */
10872 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10873 {
10874 BFD_ASSERT (hmips->need_fn_stub);
10875 sym->st_value = (hmips->fn_stub->output_section->vma
10876 + hmips->fn_stub->output_offset);
10877 sym->st_size = hmips->fn_stub->size;
10878 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10879 }
10880
b49e97c9 10881 BFD_ASSERT (h->dynindx != -1
f5385ebf 10882 || h->forced_local);
b49e97c9 10883
ce558b89 10884 sgot = htab->root.sgot;
a8028dd0 10885 g = htab->got_info;
b49e97c9
TS
10886 BFD_ASSERT (g != NULL);
10887
10888 /* Run through the global symbol table, creating GOT entries for all
10889 the symbols that need them. */
020d7251 10890 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
10891 {
10892 bfd_vma offset;
10893 bfd_vma value;
10894
6eaa6adc 10895 value = sym->st_value;
13fbec83 10896 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
10897 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10898 }
10899
e641e783 10900 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
10901 {
10902 struct mips_got_entry e, *p;
0626d451 10903 bfd_vma entry;
f4416af6 10904 bfd_vma offset;
f4416af6
AO
10905
10906 gg = g;
10907
10908 e.abfd = output_bfd;
10909 e.symndx = -1;
738e5348 10910 e.d.h = hmips;
9ab066b4 10911 e.tls_type = GOT_TLS_NONE;
143d77c5 10912
f4416af6
AO
10913 for (g = g->next; g->next != gg; g = g->next)
10914 {
10915 if (g->got_entries
10916 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10917 &e)))
10918 {
10919 offset = p->gotidx;
ce558b89 10920 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
0e1862bb 10921 if (bfd_link_pic (info)
0626d451
RS
10922 || (elf_hash_table (info)->dynamic_sections_created
10923 && p->d.h != NULL
f5385ebf
AM
10924 && p->d.h->root.def_dynamic
10925 && !p->d.h->root.def_regular))
0626d451
RS
10926 {
10927 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10928 the various compatibility problems, it's easier to mock
10929 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10930 mips_elf_create_dynamic_relocation to calculate the
10931 appropriate addend. */
10932 Elf_Internal_Rela rel[3];
10933
10934 memset (rel, 0, sizeof (rel));
10935 if (ABI_64_P (output_bfd))
10936 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10937 else
10938 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10939 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10940
10941 entry = 0;
10942 if (! (mips_elf_create_dynamic_relocation
10943 (output_bfd, info, rel,
10944 e.d.h, NULL, sym->st_value, &entry, sgot)))
10945 return FALSE;
10946 }
10947 else
10948 entry = sym->st_value;
10949 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10950 }
10951 }
10952 }
10953
b49e97c9
TS
10954 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10955 name = h->root.root.string;
9637f6ef 10956 if (h == elf_hash_table (info)->hdynamic
22edb2f1 10957 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10958 sym->st_shndx = SHN_ABS;
10959 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10960 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10961 {
10962 sym->st_shndx = SHN_ABS;
10963 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10964 sym->st_value = 1;
10965 }
4a14403c 10966 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10967 {
10968 sym->st_shndx = SHN_ABS;
10969 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10970 sym->st_value = elf_gp (output_bfd);
10971 }
10972 else if (SGI_COMPAT (output_bfd))
10973 {
10974 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10975 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10976 {
10977 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10978 sym->st_other = STO_PROTECTED;
10979 sym->st_value = 0;
10980 sym->st_shndx = SHN_MIPS_DATA;
10981 }
10982 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10983 {
10984 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10985 sym->st_other = STO_PROTECTED;
10986 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10987 sym->st_shndx = SHN_ABS;
10988 }
10989 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10990 {
10991 if (h->type == STT_FUNC)
10992 sym->st_shndx = SHN_MIPS_TEXT;
10993 else if (h->type == STT_OBJECT)
10994 sym->st_shndx = SHN_MIPS_DATA;
10995 }
10996 }
10997
861fb55a
DJ
10998 /* Emit a copy reloc, if needed. */
10999 if (h->needs_copy)
11000 {
11001 asection *s;
11002 bfd_vma symval;
11003
11004 BFD_ASSERT (h->dynindx != -1);
11005 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11006
11007 s = mips_elf_rel_dyn_section (info, FALSE);
11008 symval = (h->root.u.def.section->output_section->vma
11009 + h->root.u.def.section->output_offset
11010 + h->root.u.def.value);
11011 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11012 h->dynindx, R_MIPS_COPY, symval);
11013 }
11014
b49e97c9
TS
11015 /* Handle the IRIX6-specific symbols. */
11016 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11017 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11018
cbf8d970
MR
11019 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11020 to treat compressed symbols like any other. */
30c09090 11021 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
11022 {
11023 BFD_ASSERT (sym->st_value & 1);
11024 sym->st_other -= STO_MIPS16;
11025 }
cbf8d970
MR
11026 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11027 {
11028 BFD_ASSERT (sym->st_value & 1);
11029 sym->st_other -= STO_MICROMIPS;
11030 }
b49e97c9 11031
b34976b6 11032 return TRUE;
b49e97c9
TS
11033}
11034
0a44bf69
RS
11035/* Likewise, for VxWorks. */
11036
11037bfd_boolean
11038_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11039 struct bfd_link_info *info,
11040 struct elf_link_hash_entry *h,
11041 Elf_Internal_Sym *sym)
11042{
11043 bfd *dynobj;
11044 asection *sgot;
11045 struct mips_got_info *g;
11046 struct mips_elf_link_hash_table *htab;
020d7251 11047 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
11048
11049 htab = mips_elf_hash_table (info);
4dfe6ac6 11050 BFD_ASSERT (htab != NULL);
0a44bf69 11051 dynobj = elf_hash_table (info)->dynobj;
020d7251 11052 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 11053
1bbce132 11054 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 11055 {
6d79d2ed 11056 bfd_byte *loc;
1bbce132 11057 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
11058 Elf_Internal_Rela rel;
11059 static const bfd_vma *plt_entry;
1bbce132
MR
11060 bfd_vma gotplt_index;
11061 bfd_vma plt_offset;
11062
11063 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11064 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11065
11066 BFD_ASSERT (h->dynindx != -1);
ce558b89 11067 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 11068 BFD_ASSERT (gotplt_index != MINUS_ONE);
ce558b89 11069 BFD_ASSERT (plt_offset <= htab->root.splt->size);
0a44bf69
RS
11070
11071 /* Calculate the address of the .plt entry. */
ce558b89
AM
11072 plt_address = (htab->root.splt->output_section->vma
11073 + htab->root.splt->output_offset
1bbce132 11074 + plt_offset);
0a44bf69
RS
11075
11076 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
11077 got_address = (htab->root.sgotplt->output_section->vma
11078 + htab->root.sgotplt->output_offset
1bbce132 11079 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11080
11081 /* Calculate the offset of the .got.plt entry from
11082 _GLOBAL_OFFSET_TABLE_. */
11083 got_offset = mips_elf_gotplt_index (info, h);
11084
11085 /* Calculate the offset for the branch at the start of the PLT
11086 entry. The branch jumps to the beginning of .plt. */
1bbce132 11087 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11088
11089 /* Fill in the initial value of the .got.plt entry. */
11090 bfd_put_32 (output_bfd, plt_address,
ce558b89 11091 (htab->root.sgotplt->contents
1bbce132 11092 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11093
11094 /* Find out where the .plt entry should go. */
ce558b89 11095 loc = htab->root.splt->contents + plt_offset;
0a44bf69 11096
0e1862bb 11097 if (bfd_link_pic (info))
0a44bf69
RS
11098 {
11099 plt_entry = mips_vxworks_shared_plt_entry;
11100 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11101 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11102 }
11103 else
11104 {
11105 bfd_vma got_address_high, got_address_low;
11106
11107 plt_entry = mips_vxworks_exec_plt_entry;
11108 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11109 got_address_low = got_address & 0xffff;
11110
11111 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11112 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11113 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11114 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11115 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11116 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11117 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11118 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11119
11120 loc = (htab->srelplt2->contents
1bbce132 11121 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11122
11123 /* Emit a relocation for the .got.plt entry. */
11124 rel.r_offset = got_address;
11125 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11126 rel.r_addend = plt_offset;
0a44bf69
RS
11127 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11128
11129 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11130 loc += sizeof (Elf32_External_Rela);
11131 rel.r_offset = plt_address + 8;
11132 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11133 rel.r_addend = got_offset;
11134 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11135
11136 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11137 loc += sizeof (Elf32_External_Rela);
11138 rel.r_offset += 4;
11139 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11140 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11141 }
11142
11143 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11144 loc = (htab->root.srelplt->contents
1bbce132 11145 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11146 rel.r_offset = got_address;
11147 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11148 rel.r_addend = 0;
11149 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11150
11151 if (!h->def_regular)
11152 sym->st_shndx = SHN_UNDEF;
11153 }
11154
11155 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11156
ce558b89 11157 sgot = htab->root.sgot;
a8028dd0 11158 g = htab->got_info;
0a44bf69
RS
11159 BFD_ASSERT (g != NULL);
11160
11161 /* See if this symbol has an entry in the GOT. */
020d7251 11162 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11163 {
11164 bfd_vma offset;
11165 Elf_Internal_Rela outrel;
11166 bfd_byte *loc;
11167 asection *s;
11168
11169 /* Install the symbol value in the GOT. */
13fbec83 11170 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11171 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11172
11173 /* Add a dynamic relocation for it. */
11174 s = mips_elf_rel_dyn_section (info, FALSE);
11175 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11176 outrel.r_offset = (sgot->output_section->vma
11177 + sgot->output_offset
11178 + offset);
11179 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11180 outrel.r_addend = 0;
11181 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11182 }
11183
11184 /* Emit a copy reloc, if needed. */
11185 if (h->needs_copy)
11186 {
11187 Elf_Internal_Rela rel;
5474d94f
AM
11188 asection *srel;
11189 bfd_byte *loc;
0a44bf69
RS
11190
11191 BFD_ASSERT (h->dynindx != -1);
11192
11193 rel.r_offset = (h->root.u.def.section->output_section->vma
11194 + h->root.u.def.section->output_offset
11195 + h->root.u.def.value);
11196 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11197 rel.r_addend = 0;
afbf7e8e 11198 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
11199 srel = htab->root.sreldynrelro;
11200 else
11201 srel = htab->root.srelbss;
11202 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11203 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11204 ++srel->reloc_count;
0a44bf69
RS
11205 }
11206
df58fc94
RS
11207 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11208 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11209 sym->st_value &= ~1;
11210
11211 return TRUE;
11212}
11213
861fb55a
DJ
11214/* Write out a plt0 entry to the beginning of .plt. */
11215
1bbce132 11216static bfd_boolean
861fb55a
DJ
11217mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11218{
11219 bfd_byte *loc;
11220 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11221 static const bfd_vma *plt_entry;
11222 struct mips_elf_link_hash_table *htab;
11223
11224 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11225 BFD_ASSERT (htab != NULL);
11226
861fb55a
DJ
11227 if (ABI_64_P (output_bfd))
11228 plt_entry = mips_n64_exec_plt0_entry;
11229 else if (ABI_N32_P (output_bfd))
11230 plt_entry = mips_n32_exec_plt0_entry;
833794fc 11231 else if (!htab->plt_header_is_comp)
861fb55a 11232 plt_entry = mips_o32_exec_plt0_entry;
833794fc
MR
11233 else if (htab->insn32)
11234 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11235 else
11236 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11237
11238 /* Calculate the value of .got.plt. */
ce558b89
AM
11239 gotplt_value = (htab->root.sgotplt->output_section->vma
11240 + htab->root.sgotplt->output_offset);
861fb55a
DJ
11241 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11242 gotplt_value_low = gotplt_value & 0xffff;
11243
11244 /* The PLT sequence is not safe for N64 if .got.plt's address can
11245 not be loaded in two instructions. */
11246 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11247 || ~(gotplt_value | 0x7fffffff) == 0);
11248
11249 /* Install the PLT header. */
ce558b89 11250 loc = htab->root.splt->contents;
1bbce132
MR
11251 if (plt_entry == micromips_o32_exec_plt0_entry)
11252 {
11253 bfd_vma gotpc_offset;
11254 bfd_vma loc_address;
11255 size_t i;
11256
11257 BFD_ASSERT (gotplt_value % 4 == 0);
11258
ce558b89
AM
11259 loc_address = (htab->root.splt->output_section->vma
11260 + htab->root.splt->output_offset);
1bbce132
MR
11261 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11262
11263 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11264 if (gotpc_offset + 0x1000000 >= 0x2000000)
11265 {
4eca0228 11266 _bfd_error_handler
695344c0 11267 /* xgettext:c-format */
2dcf00ce
AM
11268 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11269 "beyond the range of ADDIUPC"),
1bbce132 11270 output_bfd,
ce558b89 11271 htab->root.sgotplt->output_section,
2dcf00ce 11272 (int64_t) gotpc_offset,
c08bb8dd 11273 htab->root.splt->output_section);
1bbce132
MR
11274 bfd_set_error (bfd_error_no_error);
11275 return FALSE;
11276 }
11277 bfd_put_16 (output_bfd,
11278 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11279 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11280 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11281 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11282 }
833794fc
MR
11283 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11284 {
11285 size_t i;
11286
11287 bfd_put_16 (output_bfd, plt_entry[0], loc);
11288 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11289 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11290 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11291 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11292 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11293 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11294 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11295 }
1bbce132
MR
11296 else
11297 {
11298 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11299 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11300 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11301 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11302 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11303 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11304 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11305 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11306 }
11307
11308 return TRUE;
861fb55a
DJ
11309}
11310
0a44bf69
RS
11311/* Install the PLT header for a VxWorks executable and finalize the
11312 contents of .rela.plt.unloaded. */
11313
11314static void
11315mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11316{
11317 Elf_Internal_Rela rela;
11318 bfd_byte *loc;
11319 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11320 static const bfd_vma *plt_entry;
11321 struct mips_elf_link_hash_table *htab;
11322
11323 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11324 BFD_ASSERT (htab != NULL);
11325
0a44bf69
RS
11326 plt_entry = mips_vxworks_exec_plt0_entry;
11327
11328 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11329 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11330 + htab->root.hgot->root.u.def.section->output_offset
11331 + htab->root.hgot->root.u.def.value);
11332
11333 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11334 got_value_low = got_value & 0xffff;
11335
11336 /* Calculate the address of the PLT header. */
ce558b89
AM
11337 plt_address = (htab->root.splt->output_section->vma
11338 + htab->root.splt->output_offset);
0a44bf69
RS
11339
11340 /* Install the PLT header. */
ce558b89 11341 loc = htab->root.splt->contents;
0a44bf69
RS
11342 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11343 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11344 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11345 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11346 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11347 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11348
11349 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11350 loc = htab->srelplt2->contents;
11351 rela.r_offset = plt_address;
11352 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11353 rela.r_addend = 0;
11354 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11355 loc += sizeof (Elf32_External_Rela);
11356
11357 /* Output the relocation for the following addiu of
11358 %lo(_GLOBAL_OFFSET_TABLE_). */
11359 rela.r_offset += 4;
11360 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11361 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11362 loc += sizeof (Elf32_External_Rela);
11363
11364 /* Fix up the remaining relocations. They may have the wrong
11365 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11366 in which symbols were output. */
11367 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11368 {
11369 Elf_Internal_Rela rel;
11370
11371 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11372 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11373 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11374 loc += sizeof (Elf32_External_Rela);
11375
11376 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11377 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11378 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11379 loc += sizeof (Elf32_External_Rela);
11380
11381 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11382 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11383 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11384 loc += sizeof (Elf32_External_Rela);
11385 }
11386}
11387
11388/* Install the PLT header for a VxWorks shared library. */
11389
11390static void
11391mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11392{
11393 unsigned int i;
11394 struct mips_elf_link_hash_table *htab;
11395
11396 htab = mips_elf_hash_table (info);
4dfe6ac6 11397 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11398
11399 /* We just need to copy the entry byte-by-byte. */
11400 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11401 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
ce558b89 11402 htab->root.splt->contents + i * 4);
0a44bf69
RS
11403}
11404
b49e97c9
TS
11405/* Finish up the dynamic sections. */
11406
b34976b6 11407bfd_boolean
9719ad41
RS
11408_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11409 struct bfd_link_info *info)
b49e97c9
TS
11410{
11411 bfd *dynobj;
11412 asection *sdyn;
11413 asection *sgot;
f4416af6 11414 struct mips_got_info *gg, *g;
0a44bf69 11415 struct mips_elf_link_hash_table *htab;
b49e97c9 11416
0a44bf69 11417 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11418 BFD_ASSERT (htab != NULL);
11419
b49e97c9
TS
11420 dynobj = elf_hash_table (info)->dynobj;
11421
3d4d4302 11422 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11423
ce558b89 11424 sgot = htab->root.sgot;
23cc69b6 11425 gg = htab->got_info;
b49e97c9
TS
11426
11427 if (elf_hash_table (info)->dynamic_sections_created)
11428 {
11429 bfd_byte *b;
943284cc 11430 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11431
11432 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11433 BFD_ASSERT (gg != NULL);
11434
d7206569 11435 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11436 BFD_ASSERT (g != NULL);
11437
11438 for (b = sdyn->contents;
eea6121a 11439 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11440 b += MIPS_ELF_DYN_SIZE (dynobj))
11441 {
11442 Elf_Internal_Dyn dyn;
11443 const char *name;
11444 size_t elemsize;
11445 asection *s;
b34976b6 11446 bfd_boolean swap_out_p;
b49e97c9
TS
11447
11448 /* Read in the current dynamic entry. */
11449 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11450
11451 /* Assume that we're going to modify it and write it out. */
b34976b6 11452 swap_out_p = TRUE;
b49e97c9
TS
11453
11454 switch (dyn.d_tag)
11455 {
11456 case DT_RELENT:
b49e97c9
TS
11457 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11458 break;
11459
0a44bf69
RS
11460 case DT_RELAENT:
11461 BFD_ASSERT (htab->is_vxworks);
11462 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11463 break;
11464
b49e97c9
TS
11465 case DT_STRSZ:
11466 /* Rewrite DT_STRSZ. */
11467 dyn.d_un.d_val =
11468 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11469 break;
11470
11471 case DT_PLTGOT:
ce558b89 11472 s = htab->root.sgot;
861fb55a
DJ
11473 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11474 break;
11475
11476 case DT_MIPS_PLTGOT:
ce558b89 11477 s = htab->root.sgotplt;
861fb55a 11478 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11479 break;
11480
11481 case DT_MIPS_RLD_VERSION:
11482 dyn.d_un.d_val = 1; /* XXX */
11483 break;
11484
11485 case DT_MIPS_FLAGS:
11486 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11487 break;
11488
b49e97c9 11489 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11490 {
11491 time_t t;
11492 time (&t);
11493 dyn.d_un.d_val = t;
11494 }
b49e97c9
TS
11495 break;
11496
11497 case DT_MIPS_ICHECKSUM:
11498 /* XXX FIXME: */
b34976b6 11499 swap_out_p = FALSE;
b49e97c9
TS
11500 break;
11501
11502 case DT_MIPS_IVERSION:
11503 /* XXX FIXME: */
b34976b6 11504 swap_out_p = FALSE;
b49e97c9
TS
11505 break;
11506
11507 case DT_MIPS_BASE_ADDRESS:
11508 s = output_bfd->sections;
11509 BFD_ASSERT (s != NULL);
11510 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11511 break;
11512
11513 case DT_MIPS_LOCAL_GOTNO:
11514 dyn.d_un.d_val = g->local_gotno;
11515 break;
11516
11517 case DT_MIPS_UNREFEXTNO:
11518 /* The index into the dynamic symbol table which is the
11519 entry of the first external symbol that is not
11520 referenced within the same object. */
11521 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11522 break;
11523
11524 case DT_MIPS_GOTSYM:
d222d210 11525 if (htab->global_gotsym)
b49e97c9 11526 {
d222d210 11527 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11528 break;
11529 }
11530 /* In case if we don't have global got symbols we default
11531 to setting DT_MIPS_GOTSYM to the same value as
1a0670f3
AM
11532 DT_MIPS_SYMTABNO. */
11533 /* Fall through. */
b49e97c9
TS
11534
11535 case DT_MIPS_SYMTABNO:
11536 name = ".dynsym";
11537 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11538 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11539
131e2f8e
MF
11540 if (s != NULL)
11541 dyn.d_un.d_val = s->size / elemsize;
11542 else
11543 dyn.d_un.d_val = 0;
b49e97c9
TS
11544 break;
11545
11546 case DT_MIPS_HIPAGENO:
861fb55a 11547 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11548 break;
11549
11550 case DT_MIPS_RLD_MAP:
b4082c70
DD
11551 {
11552 struct elf_link_hash_entry *h;
11553 h = mips_elf_hash_table (info)->rld_symbol;
11554 if (!h)
11555 {
11556 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11557 swap_out_p = FALSE;
11558 break;
11559 }
11560 s = h->root.u.def.section;
a5499fa4
MF
11561
11562 /* The MIPS_RLD_MAP tag stores the absolute address of the
11563 debug pointer. */
b4082c70
DD
11564 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11565 + h->root.u.def.value);
11566 }
b49e97c9
TS
11567 break;
11568
a5499fa4
MF
11569 case DT_MIPS_RLD_MAP_REL:
11570 {
11571 struct elf_link_hash_entry *h;
11572 bfd_vma dt_addr, rld_addr;
11573 h = mips_elf_hash_table (info)->rld_symbol;
11574 if (!h)
11575 {
11576 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11577 swap_out_p = FALSE;
11578 break;
11579 }
11580 s = h->root.u.def.section;
11581
11582 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11583 pointer, relative to the address of the tag. */
11584 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11585 + (b - sdyn->contents));
a5499fa4
MF
11586 rld_addr = (s->output_section->vma + s->output_offset
11587 + h->root.u.def.value);
11588 dyn.d_un.d_ptr = rld_addr - dt_addr;
11589 }
11590 break;
11591
b49e97c9
TS
11592 case DT_MIPS_OPTIONS:
11593 s = (bfd_get_section_by_name
11594 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11595 dyn.d_un.d_ptr = s->vma;
11596 break;
11597
0a44bf69 11598 case DT_PLTREL:
861fb55a
DJ
11599 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11600 if (htab->is_vxworks)
11601 dyn.d_un.d_val = DT_RELA;
11602 else
11603 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11604 break;
11605
11606 case DT_PLTRELSZ:
861fb55a 11607 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89 11608 dyn.d_un.d_val = htab->root.srelplt->size;
0a44bf69
RS
11609 break;
11610
11611 case DT_JMPREL:
861fb55a 11612 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
11613 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11614 + htab->root.srelplt->output_offset);
0a44bf69
RS
11615 break;
11616
943284cc
DJ
11617 case DT_TEXTREL:
11618 /* If we didn't need any text relocations after all, delete
11619 the dynamic tag. */
11620 if (!(info->flags & DF_TEXTREL))
11621 {
11622 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11623 swap_out_p = FALSE;
11624 }
11625 break;
11626
11627 case DT_FLAGS:
11628 /* If we didn't need any text relocations after all, clear
11629 DF_TEXTREL from DT_FLAGS. */
11630 if (!(info->flags & DF_TEXTREL))
11631 dyn.d_un.d_val &= ~DF_TEXTREL;
11632 else
11633 swap_out_p = FALSE;
11634 break;
11635
b49e97c9 11636 default:
b34976b6 11637 swap_out_p = FALSE;
7a2b07ff
NS
11638 if (htab->is_vxworks
11639 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11640 swap_out_p = TRUE;
b49e97c9
TS
11641 break;
11642 }
11643
943284cc 11644 if (swap_out_p || dyn_skipped)
b49e97c9 11645 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
11646 (dynobj, &dyn, b - dyn_skipped);
11647
11648 if (dyn_to_skip)
11649 {
11650 dyn_skipped += dyn_to_skip;
11651 dyn_to_skip = 0;
11652 }
b49e97c9 11653 }
943284cc
DJ
11654
11655 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11656 if (dyn_skipped > 0)
11657 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
11658 }
11659
b55fd4d4
DJ
11660 if (sgot != NULL && sgot->size > 0
11661 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 11662 {
0a44bf69
RS
11663 if (htab->is_vxworks)
11664 {
11665 /* The first entry of the global offset table points to the
11666 ".dynamic" section. The second is initialized by the
11667 loader and contains the shared library identifier.
11668 The third is also initialized by the loader and points
11669 to the lazy resolution stub. */
11670 MIPS_ELF_PUT_WORD (output_bfd,
11671 sdyn->output_offset + sdyn->output_section->vma,
11672 sgot->contents);
11673 MIPS_ELF_PUT_WORD (output_bfd, 0,
11674 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11675 MIPS_ELF_PUT_WORD (output_bfd, 0,
11676 sgot->contents
11677 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11678 }
11679 else
11680 {
11681 /* The first entry of the global offset table will be filled at
11682 runtime. The second entry will be used by some runtime loaders.
11683 This isn't the case of IRIX rld. */
11684 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 11685 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
11686 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11687 }
b49e97c9 11688
54938e2a
TS
11689 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11690 = MIPS_ELF_GOT_SIZE (output_bfd);
11691 }
b49e97c9 11692
f4416af6
AO
11693 /* Generate dynamic relocations for the non-primary gots. */
11694 if (gg != NULL && gg->next)
11695 {
11696 Elf_Internal_Rela rel[3];
11697 bfd_vma addend = 0;
11698
11699 memset (rel, 0, sizeof (rel));
11700 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11701
11702 for (g = gg->next; g->next != gg; g = g->next)
11703 {
91d6fa6a 11704 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 11705 + g->next->tls_gotno;
f4416af6 11706
9719ad41 11707 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 11708 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
11709 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11710 sgot->contents
91d6fa6a 11711 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 11712
0e1862bb 11713 if (! bfd_link_pic (info))
f4416af6
AO
11714 continue;
11715
cb22ccf4 11716 for (; got_index < g->local_gotno; got_index++)
f4416af6 11717 {
cb22ccf4
KCY
11718 if (got_index >= g->assigned_low_gotno
11719 && got_index <= g->assigned_high_gotno)
11720 continue;
11721
f4416af6 11722 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 11723 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
11724 if (!(mips_elf_create_dynamic_relocation
11725 (output_bfd, info, rel, NULL,
11726 bfd_abs_section_ptr,
11727 0, &addend, sgot)))
11728 return FALSE;
11729 BFD_ASSERT (addend == 0);
11730 }
11731 }
11732 }
11733
3133ddbf
DJ
11734 /* The generation of dynamic relocations for the non-primary gots
11735 adds more dynamic relocations. We cannot count them until
11736 here. */
11737
11738 if (elf_hash_table (info)->dynamic_sections_created)
11739 {
11740 bfd_byte *b;
11741 bfd_boolean swap_out_p;
11742
11743 BFD_ASSERT (sdyn != NULL);
11744
11745 for (b = sdyn->contents;
11746 b < sdyn->contents + sdyn->size;
11747 b += MIPS_ELF_DYN_SIZE (dynobj))
11748 {
11749 Elf_Internal_Dyn dyn;
11750 asection *s;
11751
11752 /* Read in the current dynamic entry. */
11753 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11754
11755 /* Assume that we're going to modify it and write it out. */
11756 swap_out_p = TRUE;
11757
11758 switch (dyn.d_tag)
11759 {
11760 case DT_RELSZ:
11761 /* Reduce DT_RELSZ to account for any relocations we
11762 decided not to make. This is for the n64 irix rld,
11763 which doesn't seem to apply any relocations if there
11764 are trailing null entries. */
0a44bf69 11765 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
11766 dyn.d_un.d_val = (s->reloc_count
11767 * (ABI_64_P (output_bfd)
11768 ? sizeof (Elf64_Mips_External_Rel)
11769 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
11770 /* Adjust the section size too. Tools like the prelinker
11771 can reasonably expect the values to the same. */
11772 elf_section_data (s->output_section)->this_hdr.sh_size
11773 = dyn.d_un.d_val;
3133ddbf
DJ
11774 break;
11775
11776 default:
11777 swap_out_p = FALSE;
11778 break;
11779 }
11780
11781 if (swap_out_p)
11782 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11783 (dynobj, &dyn, b);
11784 }
11785 }
11786
b49e97c9 11787 {
b49e97c9
TS
11788 asection *s;
11789 Elf32_compact_rel cpt;
11790
b49e97c9
TS
11791 if (SGI_COMPAT (output_bfd))
11792 {
11793 /* Write .compact_rel section out. */
3d4d4302 11794 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
11795 if (s != NULL)
11796 {
11797 cpt.id1 = 1;
11798 cpt.num = s->reloc_count;
11799 cpt.id2 = 2;
11800 cpt.offset = (s->output_section->filepos
11801 + sizeof (Elf32_External_compact_rel));
11802 cpt.reserved0 = 0;
11803 cpt.reserved1 = 0;
11804 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11805 ((Elf32_External_compact_rel *)
11806 s->contents));
11807
11808 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 11809 if (htab->sstubs != NULL)
b49e97c9
TS
11810 {
11811 file_ptr dummy_offset;
11812
4e41d0d7
RS
11813 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11814 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11815 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 11816 htab->function_stub_size);
b49e97c9
TS
11817 }
11818 }
11819 }
11820
0a44bf69
RS
11821 /* The psABI says that the dynamic relocations must be sorted in
11822 increasing order of r_symndx. The VxWorks EABI doesn't require
11823 this, and because the code below handles REL rather than RELA
11824 relocations, using it for VxWorks would be outright harmful. */
11825 if (!htab->is_vxworks)
b49e97c9 11826 {
0a44bf69
RS
11827 s = mips_elf_rel_dyn_section (info, FALSE);
11828 if (s != NULL
11829 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11830 {
11831 reldyn_sorting_bfd = output_bfd;
b49e97c9 11832
0a44bf69
RS
11833 if (ABI_64_P (output_bfd))
11834 qsort ((Elf64_External_Rel *) s->contents + 1,
11835 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11836 sort_dynamic_relocs_64);
11837 else
11838 qsort ((Elf32_External_Rel *) s->contents + 1,
11839 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11840 sort_dynamic_relocs);
11841 }
b49e97c9 11842 }
b49e97c9
TS
11843 }
11844
ce558b89 11845 if (htab->root.splt && htab->root.splt->size > 0)
0a44bf69 11846 {
861fb55a
DJ
11847 if (htab->is_vxworks)
11848 {
0e1862bb 11849 if (bfd_link_pic (info))
861fb55a
DJ
11850 mips_vxworks_finish_shared_plt (output_bfd, info);
11851 else
11852 mips_vxworks_finish_exec_plt (output_bfd, info);
11853 }
0a44bf69 11854 else
861fb55a 11855 {
0e1862bb 11856 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
11857 if (!mips_finish_exec_plt (output_bfd, info))
11858 return FALSE;
861fb55a 11859 }
0a44bf69 11860 }
b34976b6 11861 return TRUE;
b49e97c9
TS
11862}
11863
b49e97c9 11864
64543e1a
RS
11865/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11866
11867static void
9719ad41 11868mips_set_isa_flags (bfd *abfd)
b49e97c9 11869{
64543e1a 11870 flagword val;
b49e97c9
TS
11871
11872 switch (bfd_get_mach (abfd))
11873 {
11874 default:
11875 case bfd_mach_mips3000:
11876 val = E_MIPS_ARCH_1;
11877 break;
11878
11879 case bfd_mach_mips3900:
11880 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11881 break;
11882
11883 case bfd_mach_mips6000:
11884 val = E_MIPS_ARCH_2;
11885 break;
11886
b417536f
MR
11887 case bfd_mach_mips4010:
11888 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11889 break;
11890
b49e97c9
TS
11891 case bfd_mach_mips4000:
11892 case bfd_mach_mips4300:
11893 case bfd_mach_mips4400:
11894 case bfd_mach_mips4600:
11895 val = E_MIPS_ARCH_3;
11896 break;
11897
b49e97c9
TS
11898 case bfd_mach_mips4100:
11899 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11900 break;
11901
11902 case bfd_mach_mips4111:
11903 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11904 break;
11905
00707a0e
RS
11906 case bfd_mach_mips4120:
11907 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11908 break;
11909
b49e97c9
TS
11910 case bfd_mach_mips4650:
11911 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11912 break;
11913
00707a0e
RS
11914 case bfd_mach_mips5400:
11915 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11916 break;
11917
11918 case bfd_mach_mips5500:
11919 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11920 break;
11921
e407c74b
NC
11922 case bfd_mach_mips5900:
11923 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11924 break;
11925
0d2e43ed
ILT
11926 case bfd_mach_mips9000:
11927 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11928 break;
11929
b49e97c9 11930 case bfd_mach_mips5000:
5a7ea749 11931 case bfd_mach_mips7000:
b49e97c9
TS
11932 case bfd_mach_mips8000:
11933 case bfd_mach_mips10000:
11934 case bfd_mach_mips12000:
3aa3176b
TS
11935 case bfd_mach_mips14000:
11936 case bfd_mach_mips16000:
b49e97c9
TS
11937 val = E_MIPS_ARCH_4;
11938 break;
11939
11940 case bfd_mach_mips5:
11941 val = E_MIPS_ARCH_5;
11942 break;
11943
350cc38d
MS
11944 case bfd_mach_mips_loongson_2e:
11945 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11946 break;
11947
11948 case bfd_mach_mips_loongson_2f:
11949 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11950 break;
11951
b49e97c9
TS
11952 case bfd_mach_mips_sb1:
11953 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11954 break;
11955
d051516a 11956 case bfd_mach_mips_loongson_3a:
4ba154f5 11957 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
d051516a
NC
11958 break;
11959
6f179bd0 11960 case bfd_mach_mips_octeon:
dd6a37e7 11961 case bfd_mach_mips_octeonp:
6f179bd0
AN
11962 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11963 break;
11964
2c629856
N
11965 case bfd_mach_mips_octeon3:
11966 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11967 break;
11968
52b6b6b9
JM
11969 case bfd_mach_mips_xlr:
11970 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11971 break;
11972
432233b3
AP
11973 case bfd_mach_mips_octeon2:
11974 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11975 break;
11976
b49e97c9
TS
11977 case bfd_mach_mipsisa32:
11978 val = E_MIPS_ARCH_32;
11979 break;
11980
11981 case bfd_mach_mipsisa64:
11982 val = E_MIPS_ARCH_64;
af7ee8bf
CD
11983 break;
11984
11985 case bfd_mach_mipsisa32r2:
ae52f483
AB
11986 case bfd_mach_mipsisa32r3:
11987 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
11988 val = E_MIPS_ARCH_32R2;
11989 break;
5f74bc13 11990
38bf472a
MR
11991 case bfd_mach_mips_interaptiv_mr2:
11992 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
11993 break;
11994
5f74bc13 11995 case bfd_mach_mipsisa64r2:
ae52f483
AB
11996 case bfd_mach_mipsisa64r3:
11997 case bfd_mach_mipsisa64r5:
5f74bc13
CD
11998 val = E_MIPS_ARCH_64R2;
11999 break;
7361da2c
AB
12000
12001 case bfd_mach_mipsisa32r6:
12002 val = E_MIPS_ARCH_32R6;
12003 break;
12004
12005 case bfd_mach_mipsisa64r6:
12006 val = E_MIPS_ARCH_64R6;
12007 break;
b49e97c9 12008 }
b49e97c9
TS
12009 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12010 elf_elfheader (abfd)->e_flags |= val;
12011
64543e1a
RS
12012}
12013
12014
28dbcedc
AM
12015/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12016 Don't do so for code sections. We want to keep ordering of HI16/LO16
12017 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12018 relocs to be sorted. */
12019
12020bfd_boolean
12021_bfd_mips_elf_sort_relocs_p (asection *sec)
12022{
12023 return (sec->flags & SEC_CODE) == 0;
12024}
12025
12026
64543e1a
RS
12027/* The final processing done just before writing out a MIPS ELF object
12028 file. This gets the MIPS architecture right based on the machine
12029 number. This is used by both the 32-bit and the 64-bit ABI. */
12030
12031void
9719ad41
RS
12032_bfd_mips_elf_final_write_processing (bfd *abfd,
12033 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
12034{
12035 unsigned int i;
12036 Elf_Internal_Shdr **hdrpp;
12037 const char *name;
12038 asection *sec;
12039
12040 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12041 is nonzero. This is for compatibility with old objects, which used
12042 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12043 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12044 mips_set_isa_flags (abfd);
12045
b49e97c9
TS
12046 /* Set the sh_info field for .gptab sections and other appropriate
12047 info for each special section. */
12048 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12049 i < elf_numsections (abfd);
12050 i++, hdrpp++)
12051 {
12052 switch ((*hdrpp)->sh_type)
12053 {
12054 case SHT_MIPS_MSYM:
12055 case SHT_MIPS_LIBLIST:
12056 sec = bfd_get_section_by_name (abfd, ".dynstr");
12057 if (sec != NULL)
12058 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12059 break;
12060
12061 case SHT_MIPS_GPTAB:
12062 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12063 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12064 BFD_ASSERT (name != NULL
0112cd26 12065 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12066 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12067 BFD_ASSERT (sec != NULL);
12068 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12069 break;
12070
12071 case SHT_MIPS_CONTENT:
12072 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12073 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12074 BFD_ASSERT (name != NULL
0112cd26 12075 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12076 sec = bfd_get_section_by_name (abfd,
12077 name + sizeof ".MIPS.content" - 1);
12078 BFD_ASSERT (sec != NULL);
12079 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12080 break;
12081
12082 case SHT_MIPS_SYMBOL_LIB:
12083 sec = bfd_get_section_by_name (abfd, ".dynsym");
12084 if (sec != NULL)
12085 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12086 sec = bfd_get_section_by_name (abfd, ".liblist");
12087 if (sec != NULL)
12088 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12089 break;
12090
12091 case SHT_MIPS_EVENTS:
12092 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12093 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12094 BFD_ASSERT (name != NULL);
0112cd26 12095 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12096 sec = bfd_get_section_by_name (abfd,
12097 name + sizeof ".MIPS.events" - 1);
12098 else
12099 {
0112cd26 12100 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12101 sec = bfd_get_section_by_name (abfd,
12102 (name
12103 + sizeof ".MIPS.post_rel" - 1));
12104 }
12105 BFD_ASSERT (sec != NULL);
12106 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12107 break;
12108
12109 }
12110 }
12111}
12112\f
8dc1a139 12113/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12114 segments. */
12115
12116int
a6b96beb
AM
12117_bfd_mips_elf_additional_program_headers (bfd *abfd,
12118 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12119{
12120 asection *s;
12121 int ret = 0;
12122
12123 /* See if we need a PT_MIPS_REGINFO segment. */
12124 s = bfd_get_section_by_name (abfd, ".reginfo");
12125 if (s && (s->flags & SEC_LOAD))
12126 ++ret;
12127
351cdf24
MF
12128 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12129 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12130 ++ret;
12131
b49e97c9
TS
12132 /* See if we need a PT_MIPS_OPTIONS segment. */
12133 if (IRIX_COMPAT (abfd) == ict_irix6
12134 && bfd_get_section_by_name (abfd,
12135 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12136 ++ret;
12137
12138 /* See if we need a PT_MIPS_RTPROC segment. */
12139 if (IRIX_COMPAT (abfd) == ict_irix5
12140 && bfd_get_section_by_name (abfd, ".dynamic")
12141 && bfd_get_section_by_name (abfd, ".mdebug"))
12142 ++ret;
12143
98c904a8
RS
12144 /* Allocate a PT_NULL header in dynamic objects. See
12145 _bfd_mips_elf_modify_segment_map for details. */
12146 if (!SGI_COMPAT (abfd)
12147 && bfd_get_section_by_name (abfd, ".dynamic"))
12148 ++ret;
12149
b49e97c9
TS
12150 return ret;
12151}
12152
8dc1a139 12153/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12154
b34976b6 12155bfd_boolean
9719ad41 12156_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12157 struct bfd_link_info *info)
b49e97c9
TS
12158{
12159 asection *s;
12160 struct elf_segment_map *m, **pm;
12161 bfd_size_type amt;
12162
12163 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12164 segment. */
12165 s = bfd_get_section_by_name (abfd, ".reginfo");
12166 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12167 {
12bd6957 12168 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12169 if (m->p_type == PT_MIPS_REGINFO)
12170 break;
12171 if (m == NULL)
12172 {
12173 amt = sizeof *m;
9719ad41 12174 m = bfd_zalloc (abfd, amt);
b49e97c9 12175 if (m == NULL)
b34976b6 12176 return FALSE;
b49e97c9
TS
12177
12178 m->p_type = PT_MIPS_REGINFO;
12179 m->count = 1;
12180 m->sections[0] = s;
12181
12182 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12183 pm = &elf_seg_map (abfd);
b49e97c9
TS
12184 while (*pm != NULL
12185 && ((*pm)->p_type == PT_PHDR
12186 || (*pm)->p_type == PT_INTERP))
12187 pm = &(*pm)->next;
12188
12189 m->next = *pm;
12190 *pm = m;
12191 }
12192 }
12193
351cdf24
MF
12194 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12195 segment. */
12196 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12197 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12198 {
12199 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12200 if (m->p_type == PT_MIPS_ABIFLAGS)
12201 break;
12202 if (m == NULL)
12203 {
12204 amt = sizeof *m;
12205 m = bfd_zalloc (abfd, amt);
12206 if (m == NULL)
12207 return FALSE;
12208
12209 m->p_type = PT_MIPS_ABIFLAGS;
12210 m->count = 1;
12211 m->sections[0] = s;
12212
12213 /* We want to put it after the PHDR and INTERP segments. */
12214 pm = &elf_seg_map (abfd);
12215 while (*pm != NULL
12216 && ((*pm)->p_type == PT_PHDR
12217 || (*pm)->p_type == PT_INTERP))
12218 pm = &(*pm)->next;
12219
12220 m->next = *pm;
12221 *pm = m;
12222 }
12223 }
12224
b49e97c9
TS
12225 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12226 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12227 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12228 table. */
c1fd6598
AO
12229 if (NEWABI_P (abfd)
12230 /* On non-IRIX6 new abi, we'll have already created a segment
12231 for this section, so don't create another. I'm not sure this
12232 is not also the case for IRIX 6, but I can't test it right
12233 now. */
12234 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12235 {
12236 for (s = abfd->sections; s; s = s->next)
12237 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12238 break;
12239
12240 if (s)
12241 {
12242 struct elf_segment_map *options_segment;
12243
12bd6957 12244 pm = &elf_seg_map (abfd);
98a8deaf
RS
12245 while (*pm != NULL
12246 && ((*pm)->p_type == PT_PHDR
12247 || (*pm)->p_type == PT_INTERP))
12248 pm = &(*pm)->next;
b49e97c9 12249
8ded5a0f
AM
12250 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12251 {
12252 amt = sizeof (struct elf_segment_map);
12253 options_segment = bfd_zalloc (abfd, amt);
12254 options_segment->next = *pm;
12255 options_segment->p_type = PT_MIPS_OPTIONS;
12256 options_segment->p_flags = PF_R;
12257 options_segment->p_flags_valid = TRUE;
12258 options_segment->count = 1;
12259 options_segment->sections[0] = s;
12260 *pm = options_segment;
12261 }
b49e97c9
TS
12262 }
12263 }
12264 else
12265 {
12266 if (IRIX_COMPAT (abfd) == ict_irix5)
12267 {
12268 /* If there are .dynamic and .mdebug sections, we make a room
12269 for the RTPROC header. FIXME: Rewrite without section names. */
12270 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12271 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12272 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12273 {
12bd6957 12274 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12275 if (m->p_type == PT_MIPS_RTPROC)
12276 break;
12277 if (m == NULL)
12278 {
12279 amt = sizeof *m;
9719ad41 12280 m = bfd_zalloc (abfd, amt);
b49e97c9 12281 if (m == NULL)
b34976b6 12282 return FALSE;
b49e97c9
TS
12283
12284 m->p_type = PT_MIPS_RTPROC;
12285
12286 s = bfd_get_section_by_name (abfd, ".rtproc");
12287 if (s == NULL)
12288 {
12289 m->count = 0;
12290 m->p_flags = 0;
12291 m->p_flags_valid = 1;
12292 }
12293 else
12294 {
12295 m->count = 1;
12296 m->sections[0] = s;
12297 }
12298
12299 /* We want to put it after the DYNAMIC segment. */
12bd6957 12300 pm = &elf_seg_map (abfd);
b49e97c9
TS
12301 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12302 pm = &(*pm)->next;
12303 if (*pm != NULL)
12304 pm = &(*pm)->next;
12305
12306 m->next = *pm;
12307 *pm = m;
12308 }
12309 }
12310 }
8dc1a139 12311 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12312 .dynstr, .dynsym, and .hash sections, and everything in
12313 between. */
12bd6957 12314 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12315 pm = &(*pm)->next)
12316 if ((*pm)->p_type == PT_DYNAMIC)
12317 break;
12318 m = *pm;
f6f62d6f
RS
12319 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12320 glibc's dynamic linker has traditionally derived the number of
12321 tags from the p_filesz field, and sometimes allocates stack
12322 arrays of that size. An overly-big PT_DYNAMIC segment can
12323 be actively harmful in such cases. Making PT_DYNAMIC contain
12324 other sections can also make life hard for the prelinker,
12325 which might move one of the other sections to a different
12326 PT_LOAD segment. */
12327 if (SGI_COMPAT (abfd)
12328 && m != NULL
12329 && m->count == 1
12330 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12331 {
12332 static const char *sec_names[] =
12333 {
12334 ".dynamic", ".dynstr", ".dynsym", ".hash"
12335 };
12336 bfd_vma low, high;
12337 unsigned int i, c;
12338 struct elf_segment_map *n;
12339
792b4a53 12340 low = ~(bfd_vma) 0;
b49e97c9
TS
12341 high = 0;
12342 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12343 {
12344 s = bfd_get_section_by_name (abfd, sec_names[i]);
12345 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12346 {
12347 bfd_size_type sz;
12348
12349 if (low > s->vma)
12350 low = s->vma;
eea6121a 12351 sz = s->size;
b49e97c9
TS
12352 if (high < s->vma + sz)
12353 high = s->vma + sz;
12354 }
12355 }
12356
12357 c = 0;
12358 for (s = abfd->sections; s != NULL; s = s->next)
12359 if ((s->flags & SEC_LOAD) != 0
12360 && s->vma >= low
eea6121a 12361 && s->vma + s->size <= high)
b49e97c9
TS
12362 ++c;
12363
12364 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12365 n = bfd_zalloc (abfd, amt);
b49e97c9 12366 if (n == NULL)
b34976b6 12367 return FALSE;
b49e97c9
TS
12368 *n = *m;
12369 n->count = c;
12370
12371 i = 0;
12372 for (s = abfd->sections; s != NULL; s = s->next)
12373 {
12374 if ((s->flags & SEC_LOAD) != 0
12375 && s->vma >= low
eea6121a 12376 && s->vma + s->size <= high)
b49e97c9
TS
12377 {
12378 n->sections[i] = s;
12379 ++i;
12380 }
12381 }
12382
12383 *pm = n;
12384 }
12385 }
12386
98c904a8
RS
12387 /* Allocate a spare program header in dynamic objects so that tools
12388 like the prelinker can add an extra PT_LOAD entry.
12389
12390 If the prelinker needs to make room for a new PT_LOAD entry, its
12391 standard procedure is to move the first (read-only) sections into
12392 the new (writable) segment. However, the MIPS ABI requires
12393 .dynamic to be in a read-only segment, and the section will often
12394 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12395
12396 Although the prelinker could in principle move .dynamic to a
12397 writable segment, it seems better to allocate a spare program
12398 header instead, and avoid the need to move any sections.
12399 There is a long tradition of allocating spare dynamic tags,
12400 so allocating a spare program header seems like a natural
7c8b76cc
JM
12401 extension.
12402
12403 If INFO is NULL, we may be copying an already prelinked binary
12404 with objcopy or strip, so do not add this header. */
12405 if (info != NULL
12406 && !SGI_COMPAT (abfd)
98c904a8
RS
12407 && bfd_get_section_by_name (abfd, ".dynamic"))
12408 {
12bd6957 12409 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12410 if ((*pm)->p_type == PT_NULL)
12411 break;
12412 if (*pm == NULL)
12413 {
12414 m = bfd_zalloc (abfd, sizeof (*m));
12415 if (m == NULL)
12416 return FALSE;
12417
12418 m->p_type = PT_NULL;
12419 *pm = m;
12420 }
12421 }
12422
b34976b6 12423 return TRUE;
b49e97c9
TS
12424}
12425\f
12426/* Return the section that should be marked against GC for a given
12427 relocation. */
12428
12429asection *
9719ad41 12430_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12431 struct bfd_link_info *info,
9719ad41
RS
12432 Elf_Internal_Rela *rel,
12433 struct elf_link_hash_entry *h,
12434 Elf_Internal_Sym *sym)
b49e97c9
TS
12435{
12436 /* ??? Do mips16 stub sections need to be handled special? */
12437
12438 if (h != NULL)
07adf181
AM
12439 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12440 {
12441 case R_MIPS_GNU_VTINHERIT:
12442 case R_MIPS_GNU_VTENTRY:
12443 return NULL;
12444 }
b49e97c9 12445
07adf181 12446 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12447}
12448
351cdf24
MF
12449/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12450
12451bfd_boolean
12452_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12453 elf_gc_mark_hook_fn gc_mark_hook)
12454{
12455 bfd *sub;
12456
12457 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12458
12459 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12460 {
12461 asection *o;
12462
12463 if (! is_mips_elf (sub))
12464 continue;
12465
12466 for (o = sub->sections; o != NULL; o = o->next)
12467 if (!o->gc_mark
12468 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12469 (bfd_get_section_name (sub, o)))
12470 {
12471 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12472 return FALSE;
12473 }
12474 }
12475
12476 return TRUE;
12477}
b49e97c9
TS
12478\f
12479/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12480 hiding the old indirect symbol. Process additional relocation
12481 information. Also called for weakdefs, in which case we just let
12482 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12483
12484void
fcfa13d2 12485_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12486 struct elf_link_hash_entry *dir,
12487 struct elf_link_hash_entry *ind)
b49e97c9
TS
12488{
12489 struct mips_elf_link_hash_entry *dirmips, *indmips;
12490
fcfa13d2 12491 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12492
861fb55a
DJ
12493 dirmips = (struct mips_elf_link_hash_entry *) dir;
12494 indmips = (struct mips_elf_link_hash_entry *) ind;
12495 /* Any absolute non-dynamic relocations against an indirect or weak
12496 definition will be against the target symbol. */
12497 if (indmips->has_static_relocs)
12498 dirmips->has_static_relocs = TRUE;
12499
b49e97c9
TS
12500 if (ind->root.type != bfd_link_hash_indirect)
12501 return;
12502
b49e97c9
TS
12503 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12504 if (indmips->readonly_reloc)
b34976b6 12505 dirmips->readonly_reloc = TRUE;
b49e97c9 12506 if (indmips->no_fn_stub)
b34976b6 12507 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12508 if (indmips->fn_stub)
12509 {
12510 dirmips->fn_stub = indmips->fn_stub;
12511 indmips->fn_stub = NULL;
12512 }
12513 if (indmips->need_fn_stub)
12514 {
12515 dirmips->need_fn_stub = TRUE;
12516 indmips->need_fn_stub = FALSE;
12517 }
12518 if (indmips->call_stub)
12519 {
12520 dirmips->call_stub = indmips->call_stub;
12521 indmips->call_stub = NULL;
12522 }
12523 if (indmips->call_fp_stub)
12524 {
12525 dirmips->call_fp_stub = indmips->call_fp_stub;
12526 indmips->call_fp_stub = NULL;
12527 }
634835ae
RS
12528 if (indmips->global_got_area < dirmips->global_got_area)
12529 dirmips->global_got_area = indmips->global_got_area;
12530 if (indmips->global_got_area < GGA_NONE)
12531 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12532 if (indmips->has_nonpic_branches)
12533 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12534}
b49e97c9 12535\f
d01414a5
TS
12536#define PDR_SIZE 32
12537
b34976b6 12538bfd_boolean
9719ad41
RS
12539_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12540 struct bfd_link_info *info)
d01414a5
TS
12541{
12542 asection *o;
b34976b6 12543 bfd_boolean ret = FALSE;
d01414a5
TS
12544 unsigned char *tdata;
12545 size_t i, skip;
12546
12547 o = bfd_get_section_by_name (abfd, ".pdr");
12548 if (! o)
b34976b6 12549 return FALSE;
eea6121a 12550 if (o->size == 0)
b34976b6 12551 return FALSE;
eea6121a 12552 if (o->size % PDR_SIZE != 0)
b34976b6 12553 return FALSE;
d01414a5
TS
12554 if (o->output_section != NULL
12555 && bfd_is_abs_section (o->output_section))
b34976b6 12556 return FALSE;
d01414a5 12557
eea6121a 12558 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12559 if (! tdata)
b34976b6 12560 return FALSE;
d01414a5 12561
9719ad41 12562 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12563 info->keep_memory);
d01414a5
TS
12564 if (!cookie->rels)
12565 {
12566 free (tdata);
b34976b6 12567 return FALSE;
d01414a5
TS
12568 }
12569
12570 cookie->rel = cookie->rels;
12571 cookie->relend = cookie->rels + o->reloc_count;
12572
eea6121a 12573 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12574 {
c152c796 12575 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12576 {
12577 tdata[i] = 1;
12578 skip ++;
12579 }
12580 }
12581
12582 if (skip != 0)
12583 {
f0abc2a1 12584 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12585 if (o->rawsize == 0)
12586 o->rawsize = o->size;
eea6121a 12587 o->size -= skip * PDR_SIZE;
b34976b6 12588 ret = TRUE;
d01414a5
TS
12589 }
12590 else
12591 free (tdata);
12592
12593 if (! info->keep_memory)
12594 free (cookie->rels);
12595
12596 return ret;
12597}
12598
b34976b6 12599bfd_boolean
9719ad41 12600_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
12601{
12602 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
12603 return TRUE;
12604 return FALSE;
53bfd6b4 12605}
d01414a5 12606
b34976b6 12607bfd_boolean
c7b8f16e
JB
12608_bfd_mips_elf_write_section (bfd *output_bfd,
12609 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
07d6d2b8 12610 asection *sec, bfd_byte *contents)
d01414a5
TS
12611{
12612 bfd_byte *to, *from, *end;
12613 int i;
12614
12615 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 12616 return FALSE;
d01414a5 12617
f0abc2a1 12618 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 12619 return FALSE;
d01414a5
TS
12620
12621 to = contents;
eea6121a 12622 end = contents + sec->size;
d01414a5
TS
12623 for (from = contents, i = 0;
12624 from < end;
12625 from += PDR_SIZE, i++)
12626 {
f0abc2a1 12627 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
12628 continue;
12629 if (to != from)
12630 memcpy (to, from, PDR_SIZE);
12631 to += PDR_SIZE;
12632 }
12633 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 12634 sec->output_offset, sec->size);
b34976b6 12635 return TRUE;
d01414a5 12636}
53bfd6b4 12637\f
df58fc94
RS
12638/* microMIPS code retains local labels for linker relaxation. Omit them
12639 from output by default for clarity. */
12640
12641bfd_boolean
12642_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12643{
12644 return _bfd_elf_is_local_label_name (abfd, sym->name);
12645}
12646
b49e97c9
TS
12647/* MIPS ELF uses a special find_nearest_line routine in order the
12648 handle the ECOFF debugging information. */
12649
12650struct mips_elf_find_line
12651{
12652 struct ecoff_debug_info d;
12653 struct ecoff_find_line i;
12654};
12655
b34976b6 12656bfd_boolean
fb167eb2
AM
12657_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12658 asection *section, bfd_vma offset,
9719ad41
RS
12659 const char **filename_ptr,
12660 const char **functionname_ptr,
fb167eb2
AM
12661 unsigned int *line_ptr,
12662 unsigned int *discriminator_ptr)
b49e97c9
TS
12663{
12664 asection *msec;
12665
fb167eb2 12666 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 12667 filename_ptr, functionname_ptr,
fb167eb2
AM
12668 line_ptr, discriminator_ptr,
12669 dwarf_debug_sections,
12670 ABI_64_P (abfd) ? 8 : 0,
46d09186
NC
12671 &elf_tdata (abfd)->dwarf2_find_line_info)
12672 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12673 filename_ptr, functionname_ptr,
12674 line_ptr))
12675 {
12676 /* PR 22789: If the function name or filename was not found through
12677 the debug information, then try an ordinary lookup instead. */
12678 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12679 || (filename_ptr != NULL && *filename_ptr == NULL))
12680 {
12681 /* Do not override already discovered names. */
12682 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12683 functionname_ptr = NULL;
b49e97c9 12684
46d09186
NC
12685 if (filename_ptr != NULL && *filename_ptr != NULL)
12686 filename_ptr = NULL;
12687
12688 _bfd_elf_find_function (abfd, symbols, section, offset,
12689 filename_ptr, functionname_ptr);
12690 }
12691
12692 return TRUE;
12693 }
b49e97c9
TS
12694
12695 msec = bfd_get_section_by_name (abfd, ".mdebug");
12696 if (msec != NULL)
12697 {
12698 flagword origflags;
12699 struct mips_elf_find_line *fi;
12700 const struct ecoff_debug_swap * const swap =
12701 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12702
12703 /* If we are called during a link, mips_elf_final_link may have
12704 cleared the SEC_HAS_CONTENTS field. We force it back on here
12705 if appropriate (which it normally will be). */
12706 origflags = msec->flags;
12707 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12708 msec->flags |= SEC_HAS_CONTENTS;
12709
698600e4 12710 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
12711 if (fi == NULL)
12712 {
12713 bfd_size_type external_fdr_size;
12714 char *fraw_src;
12715 char *fraw_end;
12716 struct fdr *fdr_ptr;
12717 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12718
9719ad41 12719 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
12720 if (fi == NULL)
12721 {
12722 msec->flags = origflags;
b34976b6 12723 return FALSE;
b49e97c9
TS
12724 }
12725
12726 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12727 {
12728 msec->flags = origflags;
b34976b6 12729 return FALSE;
b49e97c9
TS
12730 }
12731
12732 /* Swap in the FDR information. */
12733 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 12734 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
12735 if (fi->d.fdr == NULL)
12736 {
12737 msec->flags = origflags;
b34976b6 12738 return FALSE;
b49e97c9
TS
12739 }
12740 external_fdr_size = swap->external_fdr_size;
12741 fdr_ptr = fi->d.fdr;
12742 fraw_src = (char *) fi->d.external_fdr;
12743 fraw_end = (fraw_src
12744 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12745 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 12746 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 12747
698600e4 12748 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
12749
12750 /* Note that we don't bother to ever free this information.
07d6d2b8
AM
12751 find_nearest_line is either called all the time, as in
12752 objdump -l, so the information should be saved, or it is
12753 rarely called, as in ld error messages, so the memory
12754 wasted is unimportant. Still, it would probably be a
12755 good idea for free_cached_info to throw it away. */
b49e97c9
TS
12756 }
12757
12758 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12759 &fi->i, filename_ptr, functionname_ptr,
12760 line_ptr))
12761 {
12762 msec->flags = origflags;
b34976b6 12763 return TRUE;
b49e97c9
TS
12764 }
12765
12766 msec->flags = origflags;
12767 }
12768
12769 /* Fall back on the generic ELF find_nearest_line routine. */
12770
fb167eb2 12771 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12772 filename_ptr, functionname_ptr,
fb167eb2 12773 line_ptr, discriminator_ptr);
b49e97c9 12774}
4ab527b0
FF
12775
12776bfd_boolean
12777_bfd_mips_elf_find_inliner_info (bfd *abfd,
12778 const char **filename_ptr,
12779 const char **functionname_ptr,
12780 unsigned int *line_ptr)
12781{
12782 bfd_boolean found;
12783 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12784 functionname_ptr, line_ptr,
12785 & elf_tdata (abfd)->dwarf2_find_line_info);
12786 return found;
12787}
12788
b49e97c9
TS
12789\f
12790/* When are writing out the .options or .MIPS.options section,
12791 remember the bytes we are writing out, so that we can install the
12792 GP value in the section_processing routine. */
12793
b34976b6 12794bfd_boolean
9719ad41
RS
12795_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12796 const void *location,
12797 file_ptr offset, bfd_size_type count)
b49e97c9 12798{
cc2e31b9 12799 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
12800 {
12801 bfd_byte *c;
12802
12803 if (elf_section_data (section) == NULL)
12804 {
12805 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 12806 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 12807 if (elf_section_data (section) == NULL)
b34976b6 12808 return FALSE;
b49e97c9 12809 }
f0abc2a1 12810 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
12811 if (c == NULL)
12812 {
eea6121a 12813 c = bfd_zalloc (abfd, section->size);
b49e97c9 12814 if (c == NULL)
b34976b6 12815 return FALSE;
f0abc2a1 12816 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
12817 }
12818
9719ad41 12819 memcpy (c + offset, location, count);
b49e97c9
TS
12820 }
12821
12822 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12823 count);
12824}
12825
12826/* This is almost identical to bfd_generic_get_... except that some
12827 MIPS relocations need to be handled specially. Sigh. */
12828
12829bfd_byte *
9719ad41
RS
12830_bfd_elf_mips_get_relocated_section_contents
12831 (bfd *abfd,
12832 struct bfd_link_info *link_info,
12833 struct bfd_link_order *link_order,
12834 bfd_byte *data,
12835 bfd_boolean relocatable,
12836 asymbol **symbols)
b49e97c9
TS
12837{
12838 /* Get enough memory to hold the stuff */
12839 bfd *input_bfd = link_order->u.indirect.section->owner;
12840 asection *input_section = link_order->u.indirect.section;
eea6121a 12841 bfd_size_type sz;
b49e97c9
TS
12842
12843 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12844 arelent **reloc_vector = NULL;
12845 long reloc_count;
12846
12847 if (reloc_size < 0)
12848 goto error_return;
12849
9719ad41 12850 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
12851 if (reloc_vector == NULL && reloc_size != 0)
12852 goto error_return;
12853
12854 /* read in the section */
eea6121a
AM
12855 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12856 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
12857 goto error_return;
12858
b49e97c9
TS
12859 reloc_count = bfd_canonicalize_reloc (input_bfd,
12860 input_section,
12861 reloc_vector,
12862 symbols);
12863 if (reloc_count < 0)
12864 goto error_return;
12865
12866 if (reloc_count > 0)
12867 {
12868 arelent **parent;
12869 /* for mips */
12870 int gp_found;
12871 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12872
12873 {
12874 struct bfd_hash_entry *h;
12875 struct bfd_link_hash_entry *lh;
12876 /* Skip all this stuff if we aren't mixing formats. */
12877 if (abfd && input_bfd
12878 && abfd->xvec == input_bfd->xvec)
12879 lh = 0;
12880 else
12881 {
b34976b6 12882 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
12883 lh = (struct bfd_link_hash_entry *) h;
12884 }
12885 lookup:
12886 if (lh)
12887 {
12888 switch (lh->type)
12889 {
12890 case bfd_link_hash_undefined:
12891 case bfd_link_hash_undefweak:
12892 case bfd_link_hash_common:
12893 gp_found = 0;
12894 break;
12895 case bfd_link_hash_defined:
12896 case bfd_link_hash_defweak:
12897 gp_found = 1;
12898 gp = lh->u.def.value;
12899 break;
12900 case bfd_link_hash_indirect:
12901 case bfd_link_hash_warning:
12902 lh = lh->u.i.link;
12903 /* @@FIXME ignoring warning for now */
12904 goto lookup;
12905 case bfd_link_hash_new:
12906 default:
12907 abort ();
12908 }
12909 }
12910 else
12911 gp_found = 0;
12912 }
12913 /* end mips */
9719ad41 12914 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 12915 {
9719ad41 12916 char *error_message = NULL;
b49e97c9
TS
12917 bfd_reloc_status_type r;
12918
12919 /* Specific to MIPS: Deal with relocation types that require
12920 knowing the gp of the output bfd. */
12921 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 12922
8236346f
EC
12923 /* If we've managed to find the gp and have a special
12924 function for the relocation then go ahead, else default
12925 to the generic handling. */
12926 if (gp_found
12927 && (*parent)->howto->special_function
12928 == _bfd_mips_elf32_gprel16_reloc)
12929 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12930 input_section, relocatable,
12931 data, gp);
12932 else
86324f90 12933 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
12934 input_section,
12935 relocatable ? abfd : NULL,
12936 &error_message);
b49e97c9 12937
1049f94e 12938 if (relocatable)
b49e97c9
TS
12939 {
12940 asection *os = input_section->output_section;
12941
12942 /* A partial link, so keep the relocs */
12943 os->orelocation[os->reloc_count] = *parent;
12944 os->reloc_count++;
12945 }
12946
12947 if (r != bfd_reloc_ok)
12948 {
12949 switch (r)
12950 {
12951 case bfd_reloc_undefined:
1a72702b
AM
12952 (*link_info->callbacks->undefined_symbol)
12953 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12954 input_bfd, input_section, (*parent)->address, TRUE);
b49e97c9
TS
12955 break;
12956 case bfd_reloc_dangerous:
9719ad41 12957 BFD_ASSERT (error_message != NULL);
1a72702b
AM
12958 (*link_info->callbacks->reloc_dangerous)
12959 (link_info, error_message,
12960 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
12961 break;
12962 case bfd_reloc_overflow:
1a72702b
AM
12963 (*link_info->callbacks->reloc_overflow)
12964 (link_info, NULL,
12965 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12966 (*parent)->howto->name, (*parent)->addend,
12967 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
12968 break;
12969 case bfd_reloc_outofrange:
12970 default:
12971 abort ();
12972 break;
12973 }
12974
12975 }
12976 }
12977 }
12978 if (reloc_vector != NULL)
12979 free (reloc_vector);
12980 return data;
12981
12982error_return:
12983 if (reloc_vector != NULL)
12984 free (reloc_vector);
12985 return NULL;
12986}
12987\f
df58fc94
RS
12988static bfd_boolean
12989mips_elf_relax_delete_bytes (bfd *abfd,
12990 asection *sec, bfd_vma addr, int count)
12991{
12992 Elf_Internal_Shdr *symtab_hdr;
12993 unsigned int sec_shndx;
12994 bfd_byte *contents;
12995 Elf_Internal_Rela *irel, *irelend;
12996 Elf_Internal_Sym *isym;
12997 Elf_Internal_Sym *isymend;
12998 struct elf_link_hash_entry **sym_hashes;
12999 struct elf_link_hash_entry **end_hashes;
13000 struct elf_link_hash_entry **start_hashes;
13001 unsigned int symcount;
13002
13003 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13004 contents = elf_section_data (sec)->this_hdr.contents;
13005
13006 irel = elf_section_data (sec)->relocs;
13007 irelend = irel + sec->reloc_count;
13008
13009 /* Actually delete the bytes. */
13010 memmove (contents + addr, contents + addr + count,
13011 (size_t) (sec->size - addr - count));
13012 sec->size -= count;
13013
13014 /* Adjust all the relocs. */
13015 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13016 {
13017 /* Get the new reloc address. */
13018 if (irel->r_offset > addr)
13019 irel->r_offset -= count;
13020 }
13021
13022 BFD_ASSERT (addr % 2 == 0);
13023 BFD_ASSERT (count % 2 == 0);
13024
13025 /* Adjust the local symbols defined in this section. */
13026 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13027 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13028 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13029 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13030 isym->st_value -= count;
13031
13032 /* Now adjust the global symbols defined in this section. */
13033 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13034 - symtab_hdr->sh_info);
13035 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13036 end_hashes = sym_hashes + symcount;
13037
13038 for (; sym_hashes < end_hashes; sym_hashes++)
13039 {
13040 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13041
13042 if ((sym_hash->root.type == bfd_link_hash_defined
13043 || sym_hash->root.type == bfd_link_hash_defweak)
13044 && sym_hash->root.u.def.section == sec)
13045 {
2309ddf2 13046 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13047
df58fc94
RS
13048 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13049 value &= MINUS_TWO;
13050 if (value > addr)
13051 sym_hash->root.u.def.value -= count;
13052 }
13053 }
13054
13055 return TRUE;
13056}
13057
13058
13059/* Opcodes needed for microMIPS relaxation as found in
13060 opcodes/micromips-opc.c. */
13061
13062struct opcode_descriptor {
13063 unsigned long match;
13064 unsigned long mask;
13065};
13066
13067/* The $ra register aka $31. */
13068
13069#define RA 31
13070
13071/* 32-bit instruction format register fields. */
13072
13073#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13074#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13075
13076/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13077
13078#define OP16_VALID_REG(r) \
13079 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13080
13081
13082/* 32-bit and 16-bit branches. */
13083
13084static const struct opcode_descriptor b_insns_32[] = {
13085 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13086 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13087 { 0, 0 } /* End marker for find_match(). */
13088};
13089
13090static const struct opcode_descriptor bc_insn_32 =
13091 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13092
13093static const struct opcode_descriptor bz_insn_32 =
13094 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13095
13096static const struct opcode_descriptor bzal_insn_32 =
13097 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13098
13099static const struct opcode_descriptor beq_insn_32 =
13100 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13101
13102static const struct opcode_descriptor b_insn_16 =
13103 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13104
13105static const struct opcode_descriptor bz_insn_16 =
c088dedf 13106 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13107
13108
13109/* 32-bit and 16-bit branch EQ and NE zero. */
13110
13111/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13112 eq and second the ne. This convention is used when replacing a
13113 32-bit BEQ/BNE with the 16-bit version. */
13114
13115#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13116
13117static const struct opcode_descriptor bz_rs_insns_32[] = {
13118 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13119 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13120 { 0, 0 } /* End marker for find_match(). */
13121};
13122
13123static const struct opcode_descriptor bz_rt_insns_32[] = {
13124 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13125 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13126 { 0, 0 } /* End marker for find_match(). */
13127};
13128
13129static const struct opcode_descriptor bzc_insns_32[] = {
13130 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13131 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13132 { 0, 0 } /* End marker for find_match(). */
13133};
13134
13135static const struct opcode_descriptor bz_insns_16[] = {
13136 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13137 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13138 { 0, 0 } /* End marker for find_match(). */
13139};
13140
13141/* Switch between a 5-bit register index and its 3-bit shorthand. */
13142
e67f83e5 13143#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13144#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13145
13146
13147/* 32-bit instructions with a delay slot. */
13148
13149static const struct opcode_descriptor jal_insn_32_bd16 =
13150 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13151
13152static const struct opcode_descriptor jal_insn_32_bd32 =
13153 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13154
13155static const struct opcode_descriptor jal_x_insn_32_bd32 =
13156 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13157
13158static const struct opcode_descriptor j_insn_32 =
13159 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13160
13161static const struct opcode_descriptor jalr_insn_32 =
13162 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13163
13164/* This table can be compacted, because no opcode replacement is made. */
13165
13166static const struct opcode_descriptor ds_insns_32_bd16[] = {
13167 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13168
13169 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13170 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13171
13172 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13173 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13174 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13175 { 0, 0 } /* End marker for find_match(). */
13176};
13177
13178/* This table can be compacted, because no opcode replacement is made. */
13179
13180static const struct opcode_descriptor ds_insns_32_bd32[] = {
13181 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13182
13183 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13184 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13185 { 0, 0 } /* End marker for find_match(). */
13186};
13187
13188
13189/* 16-bit instructions with a delay slot. */
13190
13191static const struct opcode_descriptor jalr_insn_16_bd16 =
13192 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13193
13194static const struct opcode_descriptor jalr_insn_16_bd32 =
13195 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13196
13197static const struct opcode_descriptor jr_insn_16 =
13198 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13199
13200#define JR16_REG(opcode) ((opcode) & 0x1f)
13201
13202/* This table can be compacted, because no opcode replacement is made. */
13203
13204static const struct opcode_descriptor ds_insns_16_bd16[] = {
13205 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13206
13207 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13208 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13209 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13210 { 0, 0 } /* End marker for find_match(). */
13211};
13212
13213
13214/* LUI instruction. */
13215
13216static const struct opcode_descriptor lui_insn =
13217 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13218
13219
13220/* ADDIU instruction. */
13221
13222static const struct opcode_descriptor addiu_insn =
13223 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13224
13225static const struct opcode_descriptor addiupc_insn =
13226 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13227
13228#define ADDIUPC_REG_FIELD(r) \
13229 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13230
13231
13232/* Relaxable instructions in a JAL delay slot: MOVE. */
13233
13234/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13235 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13236#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13237#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13238
13239#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13240#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13241
13242static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13243 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13244 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13245 { 0, 0 } /* End marker for find_match(). */
13246};
13247
13248static const struct opcode_descriptor move_insn_16 =
13249 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13250
13251
13252/* NOP instructions. */
13253
13254static const struct opcode_descriptor nop_insn_32 =
13255 { /* "nop", "", */ 0x00000000, 0xffffffff };
13256
13257static const struct opcode_descriptor nop_insn_16 =
13258 { /* "nop", "", */ 0x0c00, 0xffff };
13259
13260
13261/* Instruction match support. */
13262
13263#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13264
13265static int
13266find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13267{
13268 unsigned long indx;
13269
13270 for (indx = 0; insn[indx].mask != 0; indx++)
13271 if (MATCH (opcode, insn[indx]))
13272 return indx;
13273
13274 return -1;
13275}
13276
13277
13278/* Branch and delay slot decoding support. */
13279
13280/* If PTR points to what *might* be a 16-bit branch or jump, then
13281 return the minimum length of its delay slot, otherwise return 0.
13282 Non-zero results are not definitive as we might be checking against
13283 the second half of another instruction. */
13284
13285static int
13286check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13287{
13288 unsigned long opcode;
13289 int bdsize;
13290
13291 opcode = bfd_get_16 (abfd, ptr);
13292 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13293 /* 16-bit branch/jump with a 32-bit delay slot. */
13294 bdsize = 4;
13295 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13296 || find_match (opcode, ds_insns_16_bd16) >= 0)
13297 /* 16-bit branch/jump with a 16-bit delay slot. */
13298 bdsize = 2;
13299 else
13300 /* No delay slot. */
13301 bdsize = 0;
13302
13303 return bdsize;
13304}
13305
13306/* If PTR points to what *might* be a 32-bit branch or jump, then
13307 return the minimum length of its delay slot, otherwise return 0.
13308 Non-zero results are not definitive as we might be checking against
13309 the second half of another instruction. */
13310
13311static int
13312check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13313{
13314 unsigned long opcode;
13315 int bdsize;
13316
d21911ea 13317 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13318 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13319 /* 32-bit branch/jump with a 32-bit delay slot. */
13320 bdsize = 4;
13321 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13322 /* 32-bit branch/jump with a 16-bit delay slot. */
13323 bdsize = 2;
13324 else
13325 /* No delay slot. */
13326 bdsize = 0;
13327
13328 return bdsize;
13329}
13330
13331/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13332 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13333
13334static bfd_boolean
13335check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13336{
13337 unsigned long opcode;
13338
13339 opcode = bfd_get_16 (abfd, ptr);
13340 if (MATCH (opcode, b_insn_16)
13341 /* B16 */
13342 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13343 /* JR16 */
13344 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13345 /* BEQZ16, BNEZ16 */
13346 || (MATCH (opcode, jalr_insn_16_bd32)
13347 /* JALR16 */
13348 && reg != JR16_REG (opcode) && reg != RA))
13349 return TRUE;
13350
13351 return FALSE;
13352}
13353
13354/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13355 then return TRUE, otherwise FALSE. */
13356
f41e5fcc 13357static bfd_boolean
df58fc94
RS
13358check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13359{
13360 unsigned long opcode;
13361
d21911ea 13362 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13363 if (MATCH (opcode, j_insn_32)
13364 /* J */
13365 || MATCH (opcode, bc_insn_32)
13366 /* BC1F, BC1T, BC2F, BC2T */
13367 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13368 /* JAL, JALX */
13369 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13370 /* BGEZ, BGTZ, BLEZ, BLTZ */
13371 || (MATCH (opcode, bzal_insn_32)
13372 /* BGEZAL, BLTZAL */
13373 && reg != OP32_SREG (opcode) && reg != RA)
13374 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13375 /* JALR, JALR.HB, BEQ, BNE */
13376 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13377 return TRUE;
13378
13379 return FALSE;
13380}
13381
80cab405
MR
13382/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13383 IRELEND) at OFFSET indicate that there must be a compact branch there,
13384 then return TRUE, otherwise FALSE. */
df58fc94
RS
13385
13386static bfd_boolean
80cab405
MR
13387check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13388 const Elf_Internal_Rela *internal_relocs,
13389 const Elf_Internal_Rela *irelend)
df58fc94 13390{
80cab405
MR
13391 const Elf_Internal_Rela *irel;
13392 unsigned long opcode;
13393
d21911ea 13394 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13395 if (find_match (opcode, bzc_insns_32) < 0)
13396 return FALSE;
df58fc94
RS
13397
13398 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13399 if (irel->r_offset == offset
13400 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13401 return TRUE;
13402
df58fc94
RS
13403 return FALSE;
13404}
80cab405
MR
13405
13406/* Bitsize checking. */
13407#define IS_BITSIZE(val, N) \
13408 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13409 - (1ULL << ((N) - 1))) == (val))
13410
df58fc94
RS
13411\f
13412bfd_boolean
13413_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13414 struct bfd_link_info *link_info,
13415 bfd_boolean *again)
13416{
833794fc 13417 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13418 Elf_Internal_Shdr *symtab_hdr;
13419 Elf_Internal_Rela *internal_relocs;
13420 Elf_Internal_Rela *irel, *irelend;
13421 bfd_byte *contents = NULL;
13422 Elf_Internal_Sym *isymbuf = NULL;
13423
13424 /* Assume nothing changes. */
13425 *again = FALSE;
13426
13427 /* We don't have to do anything for a relocatable link, if
13428 this section does not have relocs, or if this is not a
13429 code section. */
13430
0e1862bb 13431 if (bfd_link_relocatable (link_info)
df58fc94
RS
13432 || (sec->flags & SEC_RELOC) == 0
13433 || sec->reloc_count == 0
13434 || (sec->flags & SEC_CODE) == 0)
13435 return TRUE;
13436
13437 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13438
13439 /* Get a copy of the native relocations. */
13440 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13441 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13442 link_info->keep_memory));
13443 if (internal_relocs == NULL)
13444 goto error_return;
13445
13446 /* Walk through them looking for relaxing opportunities. */
13447 irelend = internal_relocs + sec->reloc_count;
13448 for (irel = internal_relocs; irel < irelend; irel++)
13449 {
13450 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13451 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13452 bfd_boolean target_is_micromips_code_p;
13453 unsigned long opcode;
13454 bfd_vma symval;
13455 bfd_vma pcrval;
2309ddf2 13456 bfd_byte *ptr;
df58fc94
RS
13457 int fndopc;
13458
13459 /* The number of bytes to delete for relaxation and from where
07d6d2b8 13460 to delete these bytes starting at irel->r_offset. */
df58fc94
RS
13461 int delcnt = 0;
13462 int deloff = 0;
13463
13464 /* If this isn't something that can be relaxed, then ignore
07d6d2b8 13465 this reloc. */
df58fc94
RS
13466 if (r_type != R_MICROMIPS_HI16
13467 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13468 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13469 continue;
13470
13471 /* Get the section contents if we haven't done so already. */
13472 if (contents == NULL)
13473 {
13474 /* Get cached copy if it exists. */
13475 if (elf_section_data (sec)->this_hdr.contents != NULL)
13476 contents = elf_section_data (sec)->this_hdr.contents;
13477 /* Go get them off disk. */
13478 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13479 goto error_return;
13480 }
2309ddf2 13481 ptr = contents + irel->r_offset;
df58fc94
RS
13482
13483 /* Read this BFD's local symbols if we haven't done so already. */
13484 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13485 {
13486 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13487 if (isymbuf == NULL)
13488 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13489 symtab_hdr->sh_info, 0,
13490 NULL, NULL, NULL);
13491 if (isymbuf == NULL)
13492 goto error_return;
13493 }
13494
13495 /* Get the value of the symbol referred to by the reloc. */
13496 if (r_symndx < symtab_hdr->sh_info)
13497 {
13498 /* A local symbol. */
13499 Elf_Internal_Sym *isym;
13500 asection *sym_sec;
13501
13502 isym = isymbuf + r_symndx;
13503 if (isym->st_shndx == SHN_UNDEF)
13504 sym_sec = bfd_und_section_ptr;
13505 else if (isym->st_shndx == SHN_ABS)
13506 sym_sec = bfd_abs_section_ptr;
13507 else if (isym->st_shndx == SHN_COMMON)
13508 sym_sec = bfd_com_section_ptr;
13509 else
13510 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13511 symval = (isym->st_value
13512 + sym_sec->output_section->vma
13513 + sym_sec->output_offset);
13514 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13515 }
13516 else
13517 {
13518 unsigned long indx;
13519 struct elf_link_hash_entry *h;
13520
13521 /* An external symbol. */
13522 indx = r_symndx - symtab_hdr->sh_info;
13523 h = elf_sym_hashes (abfd)[indx];
13524 BFD_ASSERT (h != NULL);
13525
13526 if (h->root.type != bfd_link_hash_defined
13527 && h->root.type != bfd_link_hash_defweak)
13528 /* This appears to be a reference to an undefined
13529 symbol. Just ignore it -- it will be caught by the
13530 regular reloc processing. */
13531 continue;
13532
13533 symval = (h->root.u.def.value
13534 + h->root.u.def.section->output_section->vma
13535 + h->root.u.def.section->output_offset);
13536 target_is_micromips_code_p = (!h->needs_plt
13537 && ELF_ST_IS_MICROMIPS (h->other));
13538 }
13539
13540
13541 /* For simplicity of coding, we are going to modify the
07d6d2b8
AM
13542 section contents, the section relocs, and the BFD symbol
13543 table. We must tell the rest of the code not to free up this
13544 information. It would be possible to instead create a table
13545 of changes which have to be made, as is done in coff-mips.c;
13546 that would be more work, but would require less memory when
13547 the linker is run. */
df58fc94
RS
13548
13549 /* Only 32-bit instructions relaxed. */
13550 if (irel->r_offset + 4 > sec->size)
13551 continue;
13552
d21911ea 13553 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13554
13555 /* This is the pc-relative distance from the instruction the
07d6d2b8 13556 relocation is applied to, to the symbol referred. */
df58fc94
RS
13557 pcrval = (symval
13558 - (sec->output_section->vma + sec->output_offset)
13559 - irel->r_offset);
13560
13561 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
07d6d2b8
AM
13562 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13563 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
df58fc94 13564
07d6d2b8 13565 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
df58fc94 13566
07d6d2b8
AM
13567 where pcrval has first to be adjusted to apply against the LO16
13568 location (we make the adjustment later on, when we have figured
13569 out the offset). */
df58fc94
RS
13570 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13571 {
80cab405 13572 bfd_boolean bzc = FALSE;
df58fc94
RS
13573 unsigned long nextopc;
13574 unsigned long reg;
13575 bfd_vma offset;
13576
13577 /* Give up if the previous reloc was a HI16 against this symbol
13578 too. */
13579 if (irel > internal_relocs
13580 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13581 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13582 continue;
13583
13584 /* Or if the next reloc is not a LO16 against this symbol. */
13585 if (irel + 1 >= irelend
13586 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13587 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13588 continue;
13589
13590 /* Or if the second next reloc is a LO16 against this symbol too. */
13591 if (irel + 2 >= irelend
13592 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13593 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13594 continue;
13595
80cab405
MR
13596 /* See if the LUI instruction *might* be in a branch delay slot.
13597 We check whether what looks like a 16-bit branch or jump is
13598 actually an immediate argument to a compact branch, and let
13599 it through if so. */
df58fc94 13600 if (irel->r_offset >= 2
2309ddf2 13601 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13602 && !(irel->r_offset >= 4
80cab405
MR
13603 && (bzc = check_relocated_bzc (abfd,
13604 ptr - 4, irel->r_offset - 4,
13605 internal_relocs, irelend))))
df58fc94
RS
13606 continue;
13607 if (irel->r_offset >= 4
80cab405 13608 && !bzc
2309ddf2 13609 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13610 continue;
13611
13612 reg = OP32_SREG (opcode);
13613
13614 /* We only relax adjacent instructions or ones separated with
13615 a branch or jump that has a delay slot. The branch or jump
13616 must not fiddle with the register used to hold the address.
13617 Subtract 4 for the LUI itself. */
13618 offset = irel[1].r_offset - irel[0].r_offset;
13619 switch (offset - 4)
13620 {
13621 case 0:
13622 break;
13623 case 2:
2309ddf2 13624 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
13625 break;
13626 continue;
13627 case 4:
2309ddf2 13628 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
13629 break;
13630 continue;
13631 default:
13632 continue;
13633 }
13634
d21911ea 13635 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
13636
13637 /* Give up unless the same register is used with both
13638 relocations. */
13639 if (OP32_SREG (nextopc) != reg)
13640 continue;
13641
13642 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13643 and rounding up to take masking of the two LSBs into account. */
13644 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13645
13646 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13647 if (IS_BITSIZE (symval, 16))
13648 {
13649 /* Fix the relocation's type. */
13650 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13651
13652 /* Instructions using R_MICROMIPS_LO16 have the base or
07d6d2b8
AM
13653 source register in bits 20:16. This register becomes $0
13654 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
df58fc94
RS
13655 nextopc &= ~0x001f0000;
13656 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13657 contents + irel[1].r_offset);
13658 }
13659
13660 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13661 We add 4 to take LUI deletion into account while checking
13662 the PC-relative distance. */
13663 else if (symval % 4 == 0
13664 && IS_BITSIZE (pcrval + 4, 25)
13665 && MATCH (nextopc, addiu_insn)
13666 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13667 && OP16_VALID_REG (OP32_TREG (nextopc)))
13668 {
13669 /* Fix the relocation's type. */
13670 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13671
13672 /* Replace ADDIU with the ADDIUPC version. */
13673 nextopc = (addiupc_insn.match
13674 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13675
d21911ea
MR
13676 bfd_put_micromips_32 (abfd, nextopc,
13677 contents + irel[1].r_offset);
df58fc94
RS
13678 }
13679
13680 /* Can't do anything, give up, sigh... */
13681 else
13682 continue;
13683
13684 /* Fix the relocation's type. */
13685 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13686
13687 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13688 delcnt = 4;
13689 deloff = 0;
13690 }
13691
13692 /* Compact branch relaxation -- due to the multitude of macros
07d6d2b8
AM
13693 employed by the compiler/assembler, compact branches are not
13694 always generated. Obviously, this can/will be fixed elsewhere,
13695 but there is no drawback in double checking it here. */
df58fc94
RS
13696 else if (r_type == R_MICROMIPS_PC16_S1
13697 && irel->r_offset + 5 < sec->size
13698 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13699 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
13700 && ((!insn32
13701 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13702 nop_insn_16) ? 2 : 0))
13703 || (irel->r_offset + 7 < sec->size
13704 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13705 ptr + 4),
13706 nop_insn_32) ? 4 : 0))))
df58fc94
RS
13707 {
13708 unsigned long reg;
13709
13710 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13711
13712 /* Replace BEQZ/BNEZ with the compact version. */
13713 opcode = (bzc_insns_32[fndopc].match
13714 | BZC32_REG_FIELD (reg)
13715 | (opcode & 0xffff)); /* Addend value. */
13716
d21911ea 13717 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 13718
833794fc
MR
13719 /* Delete the delay slot NOP: two or four bytes from
13720 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
13721 deloff = 4;
13722 }
13723
13724 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
07d6d2b8 13725 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13726 else if (!insn32
13727 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13728 && IS_BITSIZE (pcrval - 2, 11)
13729 && find_match (opcode, b_insns_32) >= 0)
13730 {
13731 /* Fix the relocation's type. */
13732 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13733
a8685210 13734 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13735 bfd_put_16 (abfd,
13736 (b_insn_16.match
13737 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 13738 ptr);
df58fc94
RS
13739
13740 /* Delete 2 bytes from irel->r_offset + 2. */
13741 delcnt = 2;
13742 deloff = 2;
13743 }
13744
13745 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
07d6d2b8 13746 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13747 else if (!insn32
13748 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13749 && IS_BITSIZE (pcrval - 2, 8)
13750 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13751 && OP16_VALID_REG (OP32_SREG (opcode)))
13752 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13753 && OP16_VALID_REG (OP32_TREG (opcode)))))
13754 {
13755 unsigned long reg;
13756
13757 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13758
13759 /* Fix the relocation's type. */
13760 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13761
a8685210 13762 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13763 bfd_put_16 (abfd,
13764 (bz_insns_16[fndopc].match
13765 | BZ16_REG_FIELD (reg)
13766 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 13767 ptr);
df58fc94
RS
13768
13769 /* Delete 2 bytes from irel->r_offset + 2. */
13770 delcnt = 2;
13771 deloff = 2;
13772 }
13773
13774 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
13775 else if (!insn32
13776 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
13777 && target_is_micromips_code_p
13778 && irel->r_offset + 7 < sec->size
13779 && MATCH (opcode, jal_insn_32_bd32))
13780 {
13781 unsigned long n32opc;
13782 bfd_boolean relaxed = FALSE;
13783
d21911ea 13784 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
13785
13786 if (MATCH (n32opc, nop_insn_32))
13787 {
13788 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 13789 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
13790
13791 relaxed = TRUE;
13792 }
13793 else if (find_match (n32opc, move_insns_32) >= 0)
13794 {
13795 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13796 bfd_put_16 (abfd,
13797 (move_insn_16.match
13798 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13799 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 13800 ptr + 4);
df58fc94
RS
13801
13802 relaxed = TRUE;
13803 }
13804 /* Other 32-bit instructions relaxable to 16-bit
13805 instructions will be handled here later. */
13806
13807 if (relaxed)
13808 {
13809 /* JAL with 32-bit delay slot that is changed to a JALS
07d6d2b8 13810 with 16-bit delay slot. */
d21911ea 13811 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
13812
13813 /* Delete 2 bytes from irel->r_offset + 6. */
13814 delcnt = 2;
13815 deloff = 6;
13816 }
13817 }
13818
13819 if (delcnt != 0)
13820 {
13821 /* Note that we've changed the relocs, section contents, etc. */
13822 elf_section_data (sec)->relocs = internal_relocs;
13823 elf_section_data (sec)->this_hdr.contents = contents;
13824 symtab_hdr->contents = (unsigned char *) isymbuf;
13825
13826 /* Delete bytes depending on the delcnt and deloff. */
13827 if (!mips_elf_relax_delete_bytes (abfd, sec,
13828 irel->r_offset + deloff, delcnt))
13829 goto error_return;
13830
13831 /* That will change things, so we should relax again.
13832 Note that this is not required, and it may be slow. */
13833 *again = TRUE;
13834 }
13835 }
13836
13837 if (isymbuf != NULL
13838 && symtab_hdr->contents != (unsigned char *) isymbuf)
13839 {
13840 if (! link_info->keep_memory)
13841 free (isymbuf);
13842 else
13843 {
13844 /* Cache the symbols for elf_link_input_bfd. */
13845 symtab_hdr->contents = (unsigned char *) isymbuf;
13846 }
13847 }
13848
13849 if (contents != NULL
13850 && elf_section_data (sec)->this_hdr.contents != contents)
13851 {
13852 if (! link_info->keep_memory)
13853 free (contents);
13854 else
13855 {
13856 /* Cache the section contents for elf_link_input_bfd. */
13857 elf_section_data (sec)->this_hdr.contents = contents;
13858 }
13859 }
13860
13861 if (internal_relocs != NULL
13862 && elf_section_data (sec)->relocs != internal_relocs)
13863 free (internal_relocs);
13864
13865 return TRUE;
13866
13867 error_return:
13868 if (isymbuf != NULL
13869 && symtab_hdr->contents != (unsigned char *) isymbuf)
13870 free (isymbuf);
13871 if (contents != NULL
13872 && elf_section_data (sec)->this_hdr.contents != contents)
13873 free (contents);
13874 if (internal_relocs != NULL
13875 && elf_section_data (sec)->relocs != internal_relocs)
13876 free (internal_relocs);
13877
13878 return FALSE;
13879}
13880\f
b49e97c9
TS
13881/* Create a MIPS ELF linker hash table. */
13882
13883struct bfd_link_hash_table *
9719ad41 13884_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
13885{
13886 struct mips_elf_link_hash_table *ret;
13887 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13888
7bf52ea2 13889 ret = bfd_zmalloc (amt);
9719ad41 13890 if (ret == NULL)
b49e97c9
TS
13891 return NULL;
13892
66eb6687
AM
13893 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13894 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
13895 sizeof (struct mips_elf_link_hash_entry),
13896 MIPS_ELF_DATA))
b49e97c9 13897 {
e2d34d7d 13898 free (ret);
b49e97c9
TS
13899 return NULL;
13900 }
1bbce132
MR
13901 ret->root.init_plt_refcount.plist = NULL;
13902 ret->root.init_plt_offset.plist = NULL;
b49e97c9 13903
b49e97c9
TS
13904 return &ret->root.root;
13905}
0a44bf69
RS
13906
13907/* Likewise, but indicate that the target is VxWorks. */
13908
13909struct bfd_link_hash_table *
13910_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13911{
13912 struct bfd_link_hash_table *ret;
13913
13914 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13915 if (ret)
13916 {
13917 struct mips_elf_link_hash_table *htab;
13918
13919 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
13920 htab->use_plts_and_copy_relocs = TRUE;
13921 htab->is_vxworks = TRUE;
0a44bf69
RS
13922 }
13923 return ret;
13924}
861fb55a
DJ
13925
13926/* A function that the linker calls if we are allowed to use PLTs
13927 and copy relocs. */
13928
13929void
13930_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13931{
13932 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13933}
833794fc
MR
13934
13935/* A function that the linker calls to select between all or only
8b10b0b3
MR
13936 32-bit microMIPS instructions, and between making or ignoring
13937 branch relocation checks for invalid transitions between ISA modes. */
833794fc
MR
13938
13939void
8b10b0b3
MR
13940_bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13941 bfd_boolean ignore_branch_isa)
833794fc 13942{
8b10b0b3
MR
13943 mips_elf_hash_table (info)->insn32 = insn32;
13944 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
833794fc 13945}
b49e97c9 13946\f
c97c330b
MF
13947/* Structure for saying that BFD machine EXTENSION extends BASE. */
13948
13949struct mips_mach_extension
13950{
13951 unsigned long extension, base;
13952};
13953
13954
13955/* An array describing how BFD machines relate to one another. The entries
13956 are ordered topologically with MIPS I extensions listed last. */
13957
13958static const struct mips_mach_extension mips_mach_extensions[] =
13959{
13960 /* MIPS64r2 extensions. */
13961 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13962 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13963 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13964 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13965 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13966
13967 /* MIPS64 extensions. */
13968 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13969 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13970 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13971
13972 /* MIPS V extensions. */
13973 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13974
13975 /* R10000 extensions. */
13976 { bfd_mach_mips12000, bfd_mach_mips10000 },
13977 { bfd_mach_mips14000, bfd_mach_mips10000 },
13978 { bfd_mach_mips16000, bfd_mach_mips10000 },
13979
13980 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13981 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13982 better to allow vr5400 and vr5500 code to be merged anyway, since
13983 many libraries will just use the core ISA. Perhaps we could add
13984 some sort of ASE flag if this ever proves a problem. */
13985 { bfd_mach_mips5500, bfd_mach_mips5400 },
13986 { bfd_mach_mips5400, bfd_mach_mips5000 },
13987
13988 /* MIPS IV extensions. */
13989 { bfd_mach_mips5, bfd_mach_mips8000 },
13990 { bfd_mach_mips10000, bfd_mach_mips8000 },
13991 { bfd_mach_mips5000, bfd_mach_mips8000 },
13992 { bfd_mach_mips7000, bfd_mach_mips8000 },
13993 { bfd_mach_mips9000, bfd_mach_mips8000 },
13994
13995 /* VR4100 extensions. */
13996 { bfd_mach_mips4120, bfd_mach_mips4100 },
13997 { bfd_mach_mips4111, bfd_mach_mips4100 },
13998
13999 /* MIPS III extensions. */
14000 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14001 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14002 { bfd_mach_mips8000, bfd_mach_mips4000 },
14003 { bfd_mach_mips4650, bfd_mach_mips4000 },
14004 { bfd_mach_mips4600, bfd_mach_mips4000 },
14005 { bfd_mach_mips4400, bfd_mach_mips4000 },
14006 { bfd_mach_mips4300, bfd_mach_mips4000 },
14007 { bfd_mach_mips4100, bfd_mach_mips4000 },
c97c330b
MF
14008 { bfd_mach_mips5900, bfd_mach_mips4000 },
14009
38bf472a
MR
14010 /* MIPS32r3 extensions. */
14011 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14012
14013 /* MIPS32r2 extensions. */
14014 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14015
c97c330b
MF
14016 /* MIPS32 extensions. */
14017 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14018
14019 /* MIPS II extensions. */
14020 { bfd_mach_mips4000, bfd_mach_mips6000 },
14021 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
b417536f 14022 { bfd_mach_mips4010, bfd_mach_mips6000 },
c97c330b
MF
14023
14024 /* MIPS I extensions. */
14025 { bfd_mach_mips6000, bfd_mach_mips3000 },
14026 { bfd_mach_mips3900, bfd_mach_mips3000 }
14027};
14028
14029/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14030
14031static bfd_boolean
14032mips_mach_extends_p (unsigned long base, unsigned long extension)
14033{
14034 size_t i;
14035
14036 if (extension == base)
14037 return TRUE;
14038
14039 if (base == bfd_mach_mipsisa32
14040 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14041 return TRUE;
14042
14043 if (base == bfd_mach_mipsisa32r2
14044 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14045 return TRUE;
14046
14047 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14048 if (extension == mips_mach_extensions[i].extension)
14049 {
14050 extension = mips_mach_extensions[i].base;
14051 if (extension == base)
14052 return TRUE;
14053 }
14054
14055 return FALSE;
14056}
14057
14058/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14059
14060static unsigned long
14061bfd_mips_isa_ext_mach (unsigned int isa_ext)
14062{
14063 switch (isa_ext)
14064 {
07d6d2b8
AM
14065 case AFL_EXT_3900: return bfd_mach_mips3900;
14066 case AFL_EXT_4010: return bfd_mach_mips4010;
14067 case AFL_EXT_4100: return bfd_mach_mips4100;
14068 case AFL_EXT_4111: return bfd_mach_mips4111;
14069 case AFL_EXT_4120: return bfd_mach_mips4120;
14070 case AFL_EXT_4650: return bfd_mach_mips4650;
14071 case AFL_EXT_5400: return bfd_mach_mips5400;
14072 case AFL_EXT_5500: return bfd_mach_mips5500;
14073 case AFL_EXT_5900: return bfd_mach_mips5900;
14074 case AFL_EXT_10000: return bfd_mach_mips10000;
c97c330b
MF
14075 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14076 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14077 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
07d6d2b8 14078 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
c97c330b
MF
14079 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14080 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14081 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
07d6d2b8
AM
14082 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14083 default: return bfd_mach_mips3000;
c97c330b
MF
14084 }
14085}
14086
351cdf24
MF
14087/* Return the .MIPS.abiflags value representing each ISA Extension. */
14088
14089unsigned int
14090bfd_mips_isa_ext (bfd *abfd)
14091{
14092 switch (bfd_get_mach (abfd))
14093 {
07d6d2b8
AM
14094 case bfd_mach_mips3900: return AFL_EXT_3900;
14095 case bfd_mach_mips4010: return AFL_EXT_4010;
14096 case bfd_mach_mips4100: return AFL_EXT_4100;
14097 case bfd_mach_mips4111: return AFL_EXT_4111;
14098 case bfd_mach_mips4120: return AFL_EXT_4120;
14099 case bfd_mach_mips4650: return AFL_EXT_4650;
14100 case bfd_mach_mips5400: return AFL_EXT_5400;
14101 case bfd_mach_mips5500: return AFL_EXT_5500;
14102 case bfd_mach_mips5900: return AFL_EXT_5900;
14103 case bfd_mach_mips10000: return AFL_EXT_10000;
c97c330b
MF
14104 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14105 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14106 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
07d6d2b8
AM
14107 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14108 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14109 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14110 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14111 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14112 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
38bf472a
MR
14113 case bfd_mach_mips_interaptiv_mr2:
14114 return AFL_EXT_INTERAPTIV_MR2;
07d6d2b8 14115 default: return 0;
c97c330b
MF
14116 }
14117}
14118
14119/* Encode ISA level and revision as a single value. */
14120#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14121
14122/* Decode a single value into level and revision. */
14123#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14124#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14125
14126/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14127
14128static void
14129update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14130{
c97c330b 14131 int new_isa = 0;
351cdf24
MF
14132 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14133 {
c97c330b
MF
14134 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14135 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14136 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14137 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14138 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14139 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14140 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14141 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14142 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14143 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14144 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24 14145 default:
4eca0228 14146 _bfd_error_handler
695344c0 14147 /* xgettext:c-format */
871b3ab2 14148 (_("%pB: Unknown architecture %s"),
351cdf24
MF
14149 abfd, bfd_printable_name (abfd));
14150 }
14151
c97c330b
MF
14152 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14153 {
14154 abiflags->isa_level = ISA_LEVEL (new_isa);
14155 abiflags->isa_rev = ISA_REV (new_isa);
14156 }
14157
14158 /* Update the isa_ext if ABFD describes a further extension. */
14159 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14160 bfd_get_mach (abfd)))
14161 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14162}
14163
14164/* Return true if the given ELF header flags describe a 32-bit binary. */
14165
14166static bfd_boolean
14167mips_32bit_flags_p (flagword flags)
14168{
14169 return ((flags & EF_MIPS_32BITMODE) != 0
14170 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14171 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14172 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14173 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14174 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14175 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14176 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14177}
14178
14179/* Infer the content of the ABI flags based on the elf header. */
14180
14181static void
14182infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14183{
14184 obj_attribute *in_attr;
14185
14186 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14187 update_mips_abiflags_isa (abfd, abiflags);
14188
14189 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14190 abiflags->gpr_size = AFL_REG_32;
14191 else
14192 abiflags->gpr_size = AFL_REG_64;
14193
14194 abiflags->cpr1_size = AFL_REG_NONE;
14195
14196 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14197 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14198
14199 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14200 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14201 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14202 && abiflags->gpr_size == AFL_REG_32))
14203 abiflags->cpr1_size = AFL_REG_32;
14204 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14205 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14206 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14207 abiflags->cpr1_size = AFL_REG_64;
14208
14209 abiflags->cpr2_size = AFL_REG_NONE;
14210
14211 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14212 abiflags->ases |= AFL_ASE_MDMX;
14213 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14214 abiflags->ases |= AFL_ASE_MIPS16;
14215 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14216 abiflags->ases |= AFL_ASE_MICROMIPS;
14217
14218 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14219 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14220 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14221 && abiflags->isa_level >= 32
14222 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14223 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14224}
14225
b49e97c9
TS
14226/* We need to use a special link routine to handle the .reginfo and
14227 the .mdebug sections. We need to merge all instances of these
14228 sections together, not write them all out sequentially. */
14229
b34976b6 14230bfd_boolean
9719ad41 14231_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14232{
b49e97c9
TS
14233 asection *o;
14234 struct bfd_link_order *p;
14235 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14236 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14237 Elf32_RegInfo reginfo;
14238 struct ecoff_debug_info debug;
861fb55a 14239 struct mips_htab_traverse_info hti;
7a2a6943
NC
14240 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14241 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14242 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14243 void *mdebug_handle = NULL;
b49e97c9
TS
14244 asection *s;
14245 EXTR esym;
14246 unsigned int i;
14247 bfd_size_type amt;
0a44bf69 14248 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14249
14250 static const char * const secname[] =
14251 {
14252 ".text", ".init", ".fini", ".data",
14253 ".rodata", ".sdata", ".sbss", ".bss"
14254 };
14255 static const int sc[] =
14256 {
14257 scText, scInit, scFini, scData,
14258 scRData, scSData, scSBss, scBss
14259 };
14260
0a44bf69 14261 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14262 BFD_ASSERT (htab != NULL);
14263
64575f78
MR
14264 /* Sort the dynamic symbols so that those with GOT entries come after
14265 those without. */
d4596a51
RS
14266 if (!mips_elf_sort_hash_table (abfd, info))
14267 return FALSE;
b49e97c9 14268
861fb55a
DJ
14269 /* Create any scheduled LA25 stubs. */
14270 hti.info = info;
14271 hti.output_bfd = abfd;
14272 hti.error = FALSE;
14273 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14274 if (hti.error)
14275 return FALSE;
14276
b49e97c9
TS
14277 /* Get a value for the GP register. */
14278 if (elf_gp (abfd) == 0)
14279 {
14280 struct bfd_link_hash_entry *h;
14281
b34976b6 14282 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14283 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14284 elf_gp (abfd) = (h->u.def.value
14285 + h->u.def.section->output_section->vma
14286 + h->u.def.section->output_offset);
0a44bf69
RS
14287 else if (htab->is_vxworks
14288 && (h = bfd_link_hash_lookup (info->hash,
14289 "_GLOBAL_OFFSET_TABLE_",
14290 FALSE, FALSE, TRUE))
14291 && h->type == bfd_link_hash_defined)
14292 elf_gp (abfd) = (h->u.def.section->output_section->vma
14293 + h->u.def.section->output_offset
14294 + h->u.def.value);
0e1862bb 14295 else if (bfd_link_relocatable (info))
b49e97c9
TS
14296 {
14297 bfd_vma lo = MINUS_ONE;
14298
14299 /* Find the GP-relative section with the lowest offset. */
9719ad41 14300 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14301 if (o->vma < lo
14302 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14303 lo = o->vma;
14304
14305 /* And calculate GP relative to that. */
0a44bf69 14306 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14307 }
14308 else
14309 {
14310 /* If the relocate_section function needs to do a reloc
14311 involving the GP value, it should make a reloc_dangerous
14312 callback to warn that GP is not defined. */
14313 }
14314 }
14315
14316 /* Go through the sections and collect the .reginfo and .mdebug
14317 information. */
351cdf24 14318 abiflags_sec = NULL;
b49e97c9
TS
14319 reginfo_sec = NULL;
14320 mdebug_sec = NULL;
14321 gptab_data_sec = NULL;
14322 gptab_bss_sec = NULL;
9719ad41 14323 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14324 {
351cdf24
MF
14325 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14326 {
14327 /* We have found the .MIPS.abiflags section in the output file.
14328 Look through all the link_orders comprising it and remove them.
14329 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14330 for (p = o->map_head.link_order; p != NULL; p = p->next)
14331 {
14332 asection *input_section;
14333
14334 if (p->type != bfd_indirect_link_order)
14335 {
14336 if (p->type == bfd_data_link_order)
14337 continue;
14338 abort ();
14339 }
14340
14341 input_section = p->u.indirect.section;
14342
14343 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14344 elf_link_input_bfd ignores this section. */
14345 input_section->flags &= ~SEC_HAS_CONTENTS;
14346 }
14347
14348 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14349 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14350
14351 /* Skip this section later on (I don't think this currently
14352 matters, but someday it might). */
14353 o->map_head.link_order = NULL;
14354
14355 abiflags_sec = o;
14356 }
14357
b49e97c9
TS
14358 if (strcmp (o->name, ".reginfo") == 0)
14359 {
14360 memset (&reginfo, 0, sizeof reginfo);
14361
14362 /* We have found the .reginfo section in the output file.
14363 Look through all the link_orders comprising it and merge
14364 the information together. */
8423293d 14365 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14366 {
14367 asection *input_section;
14368 bfd *input_bfd;
14369 Elf32_External_RegInfo ext;
14370 Elf32_RegInfo sub;
14371
14372 if (p->type != bfd_indirect_link_order)
14373 {
14374 if (p->type == bfd_data_link_order)
14375 continue;
14376 abort ();
14377 }
14378
14379 input_section = p->u.indirect.section;
14380 input_bfd = input_section->owner;
14381
b49e97c9 14382 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 14383 &ext, 0, sizeof ext))
b34976b6 14384 return FALSE;
b49e97c9
TS
14385
14386 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14387
14388 reginfo.ri_gprmask |= sub.ri_gprmask;
14389 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14390 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14391 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14392 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14393
14394 /* ri_gp_value is set by the function
1c5e4ee9 14395 `_bfd_mips_elf_section_processing' when the section is
b49e97c9
TS
14396 finally written out. */
14397
14398 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14399 elf_link_input_bfd ignores this section. */
14400 input_section->flags &= ~SEC_HAS_CONTENTS;
14401 }
14402
14403 /* Size has been set in _bfd_mips_elf_always_size_sections. */
58807c48
VI
14404 if (o->size != sizeof (Elf32_External_RegInfo))
14405 {
14406 _bfd_error_handler
f2b740ac
AM
14407 (_("%pB: .reginfo section size should be %ld bytes, "
14408 "actual size is %" PRId64),
14409 abfd, (unsigned long) sizeof (Elf32_External_RegInfo),
14410 (int64_t) o->size);
58807c48
VI
14411
14412 return FALSE;
14413 }
b49e97c9
TS
14414
14415 /* Skip this section later on (I don't think this currently
14416 matters, but someday it might). */
8423293d 14417 o->map_head.link_order = NULL;
b49e97c9
TS
14418
14419 reginfo_sec = o;
14420 }
14421
14422 if (strcmp (o->name, ".mdebug") == 0)
14423 {
14424 struct extsym_info einfo;
14425 bfd_vma last;
14426
14427 /* We have found the .mdebug section in the output file.
14428 Look through all the link_orders comprising it and merge
14429 the information together. */
14430 symhdr->magic = swap->sym_magic;
14431 /* FIXME: What should the version stamp be? */
14432 symhdr->vstamp = 0;
14433 symhdr->ilineMax = 0;
14434 symhdr->cbLine = 0;
14435 symhdr->idnMax = 0;
14436 symhdr->ipdMax = 0;
14437 symhdr->isymMax = 0;
14438 symhdr->ioptMax = 0;
14439 symhdr->iauxMax = 0;
14440 symhdr->issMax = 0;
14441 symhdr->issExtMax = 0;
14442 symhdr->ifdMax = 0;
14443 symhdr->crfd = 0;
14444 symhdr->iextMax = 0;
14445
14446 /* We accumulate the debugging information itself in the
14447 debug_info structure. */
14448 debug.line = NULL;
14449 debug.external_dnr = NULL;
14450 debug.external_pdr = NULL;
14451 debug.external_sym = NULL;
14452 debug.external_opt = NULL;
14453 debug.external_aux = NULL;
14454 debug.ss = NULL;
14455 debug.ssext = debug.ssext_end = NULL;
14456 debug.external_fdr = NULL;
14457 debug.external_rfd = NULL;
14458 debug.external_ext = debug.external_ext_end = NULL;
14459
14460 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14461 if (mdebug_handle == NULL)
b34976b6 14462 return FALSE;
b49e97c9
TS
14463
14464 esym.jmptbl = 0;
14465 esym.cobol_main = 0;
14466 esym.weakext = 0;
14467 esym.reserved = 0;
14468 esym.ifd = ifdNil;
14469 esym.asym.iss = issNil;
14470 esym.asym.st = stLocal;
14471 esym.asym.reserved = 0;
14472 esym.asym.index = indexNil;
14473 last = 0;
14474 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14475 {
14476 esym.asym.sc = sc[i];
14477 s = bfd_get_section_by_name (abfd, secname[i]);
14478 if (s != NULL)
14479 {
14480 esym.asym.value = s->vma;
eea6121a 14481 last = s->vma + s->size;
b49e97c9
TS
14482 }
14483 else
14484 esym.asym.value = last;
14485 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14486 secname[i], &esym))
b34976b6 14487 return FALSE;
b49e97c9
TS
14488 }
14489
8423293d 14490 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14491 {
14492 asection *input_section;
14493 bfd *input_bfd;
14494 const struct ecoff_debug_swap *input_swap;
14495 struct ecoff_debug_info input_debug;
14496 char *eraw_src;
14497 char *eraw_end;
14498
14499 if (p->type != bfd_indirect_link_order)
14500 {
14501 if (p->type == bfd_data_link_order)
14502 continue;
14503 abort ();
14504 }
14505
14506 input_section = p->u.indirect.section;
14507 input_bfd = input_section->owner;
14508
d5eaccd7 14509 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14510 {
14511 /* I don't know what a non MIPS ELF bfd would be
14512 doing with a .mdebug section, but I don't really
14513 want to deal with it. */
14514 continue;
14515 }
14516
14517 input_swap = (get_elf_backend_data (input_bfd)
14518 ->elf_backend_ecoff_debug_swap);
14519
eea6121a 14520 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14521
14522 /* The ECOFF linking code expects that we have already
14523 read in the debugging information and set up an
14524 ecoff_debug_info structure, so we do that now. */
14525 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14526 &input_debug))
b34976b6 14527 return FALSE;
b49e97c9
TS
14528
14529 if (! (bfd_ecoff_debug_accumulate
14530 (mdebug_handle, abfd, &debug, swap, input_bfd,
14531 &input_debug, input_swap, info)))
b34976b6 14532 return FALSE;
b49e97c9
TS
14533
14534 /* Loop through the external symbols. For each one with
14535 interesting information, try to find the symbol in
14536 the linker global hash table and save the information
14537 for the output external symbols. */
14538 eraw_src = input_debug.external_ext;
14539 eraw_end = (eraw_src
14540 + (input_debug.symbolic_header.iextMax
14541 * input_swap->external_ext_size));
14542 for (;
14543 eraw_src < eraw_end;
14544 eraw_src += input_swap->external_ext_size)
14545 {
14546 EXTR ext;
14547 const char *name;
14548 struct mips_elf_link_hash_entry *h;
14549
9719ad41 14550 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14551 if (ext.asym.sc == scNil
14552 || ext.asym.sc == scUndefined
14553 || ext.asym.sc == scSUndefined)
14554 continue;
14555
14556 name = input_debug.ssext + ext.asym.iss;
14557 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14558 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14559 if (h == NULL || h->esym.ifd != -2)
14560 continue;
14561
14562 if (ext.ifd != -1)
14563 {
14564 BFD_ASSERT (ext.ifd
14565 < input_debug.symbolic_header.ifdMax);
14566 ext.ifd = input_debug.ifdmap[ext.ifd];
14567 }
14568
14569 h->esym = ext;
14570 }
14571
14572 /* Free up the information we just read. */
14573 free (input_debug.line);
14574 free (input_debug.external_dnr);
14575 free (input_debug.external_pdr);
14576 free (input_debug.external_sym);
14577 free (input_debug.external_opt);
14578 free (input_debug.external_aux);
14579 free (input_debug.ss);
14580 free (input_debug.ssext);
14581 free (input_debug.external_fdr);
14582 free (input_debug.external_rfd);
14583 free (input_debug.external_ext);
14584
14585 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14586 elf_link_input_bfd ignores this section. */
14587 input_section->flags &= ~SEC_HAS_CONTENTS;
14588 }
14589
0e1862bb 14590 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14591 {
14592 /* Create .rtproc section. */
87e0a731 14593 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14594 if (rtproc_sec == NULL)
14595 {
14596 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14597 | SEC_LINKER_CREATED | SEC_READONLY);
14598
87e0a731
AM
14599 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14600 ".rtproc",
14601 flags);
b49e97c9 14602 if (rtproc_sec == NULL
b49e97c9 14603 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 14604 return FALSE;
b49e97c9
TS
14605 }
14606
14607 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14608 info, rtproc_sec,
14609 &debug))
b34976b6 14610 return FALSE;
b49e97c9
TS
14611 }
14612
14613 /* Build the external symbol information. */
14614 einfo.abfd = abfd;
14615 einfo.info = info;
14616 einfo.debug = &debug;
14617 einfo.swap = swap;
b34976b6 14618 einfo.failed = FALSE;
b49e97c9 14619 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 14620 mips_elf_output_extsym, &einfo);
b49e97c9 14621 if (einfo.failed)
b34976b6 14622 return FALSE;
b49e97c9
TS
14623
14624 /* Set the size of the .mdebug section. */
eea6121a 14625 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
14626
14627 /* Skip this section later on (I don't think this currently
14628 matters, but someday it might). */
8423293d 14629 o->map_head.link_order = NULL;
b49e97c9
TS
14630
14631 mdebug_sec = o;
14632 }
14633
0112cd26 14634 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
14635 {
14636 const char *subname;
14637 unsigned int c;
14638 Elf32_gptab *tab;
14639 Elf32_External_gptab *ext_tab;
14640 unsigned int j;
14641
14642 /* The .gptab.sdata and .gptab.sbss sections hold
14643 information describing how the small data area would
14644 change depending upon the -G switch. These sections
14645 not used in executables files. */
0e1862bb 14646 if (! bfd_link_relocatable (info))
b49e97c9 14647 {
8423293d 14648 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14649 {
14650 asection *input_section;
14651
14652 if (p->type != bfd_indirect_link_order)
14653 {
14654 if (p->type == bfd_data_link_order)
14655 continue;
14656 abort ();
14657 }
14658
14659 input_section = p->u.indirect.section;
14660
14661 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14662 elf_link_input_bfd ignores this section. */
14663 input_section->flags &= ~SEC_HAS_CONTENTS;
14664 }
14665
14666 /* Skip this section later on (I don't think this
14667 currently matters, but someday it might). */
8423293d 14668 o->map_head.link_order = NULL;
b49e97c9
TS
14669
14670 /* Really remove the section. */
5daa8fe7 14671 bfd_section_list_remove (abfd, o);
b49e97c9
TS
14672 --abfd->section_count;
14673
14674 continue;
14675 }
14676
14677 /* There is one gptab for initialized data, and one for
14678 uninitialized data. */
14679 if (strcmp (o->name, ".gptab.sdata") == 0)
14680 gptab_data_sec = o;
14681 else if (strcmp (o->name, ".gptab.sbss") == 0)
14682 gptab_bss_sec = o;
14683 else
14684 {
4eca0228 14685 _bfd_error_handler
695344c0 14686 /* xgettext:c-format */
871b3ab2 14687 (_("%pB: illegal section name `%pA'"), abfd, o);
b49e97c9 14688 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 14689 return FALSE;
b49e97c9
TS
14690 }
14691
14692 /* The linker script always combines .gptab.data and
14693 .gptab.sdata into .gptab.sdata, and likewise for
14694 .gptab.bss and .gptab.sbss. It is possible that there is
14695 no .sdata or .sbss section in the output file, in which
14696 case we must change the name of the output section. */
14697 subname = o->name + sizeof ".gptab" - 1;
14698 if (bfd_get_section_by_name (abfd, subname) == NULL)
14699 {
14700 if (o == gptab_data_sec)
14701 o->name = ".gptab.data";
14702 else
14703 o->name = ".gptab.bss";
14704 subname = o->name + sizeof ".gptab" - 1;
14705 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14706 }
14707
14708 /* Set up the first entry. */
14709 c = 1;
14710 amt = c * sizeof (Elf32_gptab);
9719ad41 14711 tab = bfd_malloc (amt);
b49e97c9 14712 if (tab == NULL)
b34976b6 14713 return FALSE;
b49e97c9
TS
14714 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14715 tab[0].gt_header.gt_unused = 0;
14716
14717 /* Combine the input sections. */
8423293d 14718 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14719 {
14720 asection *input_section;
14721 bfd *input_bfd;
14722 bfd_size_type size;
14723 unsigned long last;
14724 bfd_size_type gpentry;
14725
14726 if (p->type != bfd_indirect_link_order)
14727 {
14728 if (p->type == bfd_data_link_order)
14729 continue;
14730 abort ();
14731 }
14732
14733 input_section = p->u.indirect.section;
14734 input_bfd = input_section->owner;
14735
14736 /* Combine the gptab entries for this input section one
14737 by one. We know that the input gptab entries are
14738 sorted by ascending -G value. */
eea6121a 14739 size = input_section->size;
b49e97c9
TS
14740 last = 0;
14741 for (gpentry = sizeof (Elf32_External_gptab);
14742 gpentry < size;
14743 gpentry += sizeof (Elf32_External_gptab))
14744 {
14745 Elf32_External_gptab ext_gptab;
14746 Elf32_gptab int_gptab;
14747 unsigned long val;
14748 unsigned long add;
b34976b6 14749 bfd_boolean exact;
b49e97c9
TS
14750 unsigned int look;
14751
14752 if (! (bfd_get_section_contents
9719ad41
RS
14753 (input_bfd, input_section, &ext_gptab, gpentry,
14754 sizeof (Elf32_External_gptab))))
b49e97c9
TS
14755 {
14756 free (tab);
b34976b6 14757 return FALSE;
b49e97c9
TS
14758 }
14759
14760 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14761 &int_gptab);
14762 val = int_gptab.gt_entry.gt_g_value;
14763 add = int_gptab.gt_entry.gt_bytes - last;
14764
b34976b6 14765 exact = FALSE;
b49e97c9
TS
14766 for (look = 1; look < c; look++)
14767 {
14768 if (tab[look].gt_entry.gt_g_value >= val)
14769 tab[look].gt_entry.gt_bytes += add;
14770
14771 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 14772 exact = TRUE;
b49e97c9
TS
14773 }
14774
14775 if (! exact)
14776 {
14777 Elf32_gptab *new_tab;
14778 unsigned int max;
14779
14780 /* We need a new table entry. */
14781 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 14782 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
14783 if (new_tab == NULL)
14784 {
14785 free (tab);
b34976b6 14786 return FALSE;
b49e97c9
TS
14787 }
14788 tab = new_tab;
14789 tab[c].gt_entry.gt_g_value = val;
14790 tab[c].gt_entry.gt_bytes = add;
14791
14792 /* Merge in the size for the next smallest -G
14793 value, since that will be implied by this new
14794 value. */
14795 max = 0;
14796 for (look = 1; look < c; look++)
14797 {
14798 if (tab[look].gt_entry.gt_g_value < val
14799 && (max == 0
14800 || (tab[look].gt_entry.gt_g_value
14801 > tab[max].gt_entry.gt_g_value)))
14802 max = look;
14803 }
14804 if (max != 0)
14805 tab[c].gt_entry.gt_bytes +=
14806 tab[max].gt_entry.gt_bytes;
14807
14808 ++c;
14809 }
14810
14811 last = int_gptab.gt_entry.gt_bytes;
14812 }
14813
14814 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14815 elf_link_input_bfd ignores this section. */
14816 input_section->flags &= ~SEC_HAS_CONTENTS;
14817 }
14818
14819 /* The table must be sorted by -G value. */
14820 if (c > 2)
14821 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14822
14823 /* Swap out the table. */
14824 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 14825 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
14826 if (ext_tab == NULL)
14827 {
14828 free (tab);
b34976b6 14829 return FALSE;
b49e97c9
TS
14830 }
14831
14832 for (j = 0; j < c; j++)
14833 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14834 free (tab);
14835
eea6121a 14836 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
14837 o->contents = (bfd_byte *) ext_tab;
14838
14839 /* Skip this section later on (I don't think this currently
14840 matters, but someday it might). */
8423293d 14841 o->map_head.link_order = NULL;
b49e97c9
TS
14842 }
14843 }
14844
14845 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 14846 if (!bfd_elf_final_link (abfd, info))
b34976b6 14847 return FALSE;
b49e97c9
TS
14848
14849 /* Now write out the computed sections. */
14850
351cdf24
MF
14851 if (abiflags_sec != NULL)
14852 {
14853 Elf_External_ABIFlags_v0 ext;
14854 Elf_Internal_ABIFlags_v0 *abiflags;
14855
14856 abiflags = &mips_elf_tdata (abfd)->abiflags;
14857
14858 /* Set up the abiflags if no valid input sections were found. */
14859 if (!mips_elf_tdata (abfd)->abiflags_valid)
14860 {
14861 infer_mips_abiflags (abfd, abiflags);
14862 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14863 }
14864 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14865 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14866 return FALSE;
14867 }
14868
9719ad41 14869 if (reginfo_sec != NULL)
b49e97c9
TS
14870 {
14871 Elf32_External_RegInfo ext;
14872
14873 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 14874 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 14875 return FALSE;
b49e97c9
TS
14876 }
14877
9719ad41 14878 if (mdebug_sec != NULL)
b49e97c9
TS
14879 {
14880 BFD_ASSERT (abfd->output_has_begun);
14881 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14882 swap, info,
14883 mdebug_sec->filepos))
b34976b6 14884 return FALSE;
b49e97c9
TS
14885
14886 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14887 }
14888
9719ad41 14889 if (gptab_data_sec != NULL)
b49e97c9
TS
14890 {
14891 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14892 gptab_data_sec->contents,
eea6121a 14893 0, gptab_data_sec->size))
b34976b6 14894 return FALSE;
b49e97c9
TS
14895 }
14896
9719ad41 14897 if (gptab_bss_sec != NULL)
b49e97c9
TS
14898 {
14899 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14900 gptab_bss_sec->contents,
eea6121a 14901 0, gptab_bss_sec->size))
b34976b6 14902 return FALSE;
b49e97c9
TS
14903 }
14904
14905 if (SGI_COMPAT (abfd))
14906 {
14907 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14908 if (rtproc_sec != NULL)
14909 {
14910 if (! bfd_set_section_contents (abfd, rtproc_sec,
14911 rtproc_sec->contents,
eea6121a 14912 0, rtproc_sec->size))
b34976b6 14913 return FALSE;
b49e97c9
TS
14914 }
14915 }
14916
b34976b6 14917 return TRUE;
b49e97c9
TS
14918}
14919\f
b2e9744f
MR
14920/* Merge object file header flags from IBFD into OBFD. Raise an error
14921 if there are conflicting settings. */
14922
14923static bfd_boolean
50e03d47 14924mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
b2e9744f 14925{
50e03d47 14926 bfd *obfd = info->output_bfd;
b2e9744f
MR
14927 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14928 flagword old_flags;
14929 flagword new_flags;
14930 bfd_boolean ok;
14931
14932 new_flags = elf_elfheader (ibfd)->e_flags;
14933 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14934 old_flags = elf_elfheader (obfd)->e_flags;
14935
14936 /* Check flag compatibility. */
14937
14938 new_flags &= ~EF_MIPS_NOREORDER;
14939 old_flags &= ~EF_MIPS_NOREORDER;
14940
14941 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14942 doesn't seem to matter. */
14943 new_flags &= ~EF_MIPS_XGOT;
14944 old_flags &= ~EF_MIPS_XGOT;
14945
14946 /* MIPSpro generates ucode info in n64 objects. Again, we should
14947 just be able to ignore this. */
14948 new_flags &= ~EF_MIPS_UCODE;
14949 old_flags &= ~EF_MIPS_UCODE;
14950
14951 /* DSOs should only be linked with CPIC code. */
14952 if ((ibfd->flags & DYNAMIC) != 0)
14953 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14954
14955 if (new_flags == old_flags)
14956 return TRUE;
14957
14958 ok = TRUE;
14959
14960 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14961 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14962 {
4eca0228 14963 _bfd_error_handler
871b3ab2 14964 (_("%pB: warning: linking abicalls files with non-abicalls files"),
b2e9744f
MR
14965 ibfd);
14966 ok = TRUE;
14967 }
14968
14969 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14970 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14971 if (! (new_flags & EF_MIPS_PIC))
14972 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14973
14974 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14975 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14976
14977 /* Compare the ISAs. */
14978 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14979 {
4eca0228 14980 _bfd_error_handler
871b3ab2 14981 (_("%pB: linking 32-bit code with 64-bit code"),
b2e9744f
MR
14982 ibfd);
14983 ok = FALSE;
14984 }
14985 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14986 {
14987 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14988 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14989 {
14990 /* Copy the architecture info from IBFD to OBFD. Also copy
14991 the 32-bit flag (if set) so that we continue to recognise
14992 OBFD as a 32-bit binary. */
14993 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14994 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14995 elf_elfheader (obfd)->e_flags
14996 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14997
14998 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14999 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15000
15001 /* Copy across the ABI flags if OBFD doesn't use them
15002 and if that was what caused us to treat IBFD as 32-bit. */
15003 if ((old_flags & EF_MIPS_ABI) == 0
15004 && mips_32bit_flags_p (new_flags)
15005 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15006 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15007 }
15008 else
15009 {
15010 /* The ISAs aren't compatible. */
4eca0228 15011 _bfd_error_handler
695344c0 15012 /* xgettext:c-format */
871b3ab2 15013 (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15014 ibfd,
15015 bfd_printable_name (ibfd),
15016 bfd_printable_name (obfd));
15017 ok = FALSE;
15018 }
15019 }
15020
15021 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15022 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15023
15024 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15025 does set EI_CLASS differently from any 32-bit ABI. */
15026 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15027 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15028 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15029 {
15030 /* Only error if both are set (to different values). */
15031 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15032 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15033 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15034 {
4eca0228 15035 _bfd_error_handler
695344c0 15036 /* xgettext:c-format */
871b3ab2 15037 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15038 ibfd,
15039 elf_mips_abi_name (ibfd),
15040 elf_mips_abi_name (obfd));
15041 ok = FALSE;
15042 }
15043 new_flags &= ~EF_MIPS_ABI;
15044 old_flags &= ~EF_MIPS_ABI;
15045 }
15046
15047 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15048 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15049 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15050 {
15051 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15052 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15053 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15054 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15055 int micro_mis = old_m16 && new_micro;
15056 int m16_mis = old_micro && new_m16;
15057
15058 if (m16_mis || micro_mis)
15059 {
4eca0228 15060 _bfd_error_handler
695344c0 15061 /* xgettext:c-format */
871b3ab2 15062 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15063 ibfd,
15064 m16_mis ? "MIPS16" : "microMIPS",
15065 m16_mis ? "microMIPS" : "MIPS16");
15066 ok = FALSE;
15067 }
15068
15069 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15070
15071 new_flags &= ~ EF_MIPS_ARCH_ASE;
15072 old_flags &= ~ EF_MIPS_ARCH_ASE;
15073 }
15074
15075 /* Compare NaN encodings. */
15076 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15077 {
695344c0 15078 /* xgettext:c-format */
871b3ab2 15079 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15080 ibfd,
15081 (new_flags & EF_MIPS_NAN2008
15082 ? "-mnan=2008" : "-mnan=legacy"),
15083 (old_flags & EF_MIPS_NAN2008
15084 ? "-mnan=2008" : "-mnan=legacy"));
15085 ok = FALSE;
15086 new_flags &= ~EF_MIPS_NAN2008;
15087 old_flags &= ~EF_MIPS_NAN2008;
15088 }
15089
15090 /* Compare FP64 state. */
15091 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15092 {
695344c0 15093 /* xgettext:c-format */
871b3ab2 15094 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15095 ibfd,
15096 (new_flags & EF_MIPS_FP64
15097 ? "-mfp64" : "-mfp32"),
15098 (old_flags & EF_MIPS_FP64
15099 ? "-mfp64" : "-mfp32"));
15100 ok = FALSE;
15101 new_flags &= ~EF_MIPS_FP64;
15102 old_flags &= ~EF_MIPS_FP64;
15103 }
15104
15105 /* Warn about any other mismatches */
15106 if (new_flags != old_flags)
15107 {
695344c0 15108 /* xgettext:c-format */
4eca0228 15109 _bfd_error_handler
871b3ab2 15110 (_("%pB: uses different e_flags (%#x) fields than previous modules "
d42c267e
AM
15111 "(%#x)"),
15112 ibfd, new_flags, old_flags);
b2e9744f
MR
15113 ok = FALSE;
15114 }
15115
15116 return ok;
15117}
15118
2cf19d5c
JM
15119/* Merge object attributes from IBFD into OBFD. Raise an error if
15120 there are conflicting attributes. */
15121static bfd_boolean
50e03d47 15122mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
2cf19d5c 15123{
50e03d47 15124 bfd *obfd = info->output_bfd;
2cf19d5c
JM
15125 obj_attribute *in_attr;
15126 obj_attribute *out_attr;
6ae68ba3 15127 bfd *abi_fp_bfd;
b60bf9be 15128 bfd *abi_msa_bfd;
6ae68ba3
MR
15129
15130 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15131 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15132 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15133 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15134
b60bf9be
CF
15135 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15136 if (!abi_msa_bfd
15137 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15138 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15139
2cf19d5c
JM
15140 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15141 {
15142 /* This is the first object. Copy the attributes. */
15143 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15144
15145 /* Use the Tag_null value to indicate the attributes have been
15146 initialized. */
15147 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15148
15149 return TRUE;
15150 }
15151
15152 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15153 non-conflicting ones. */
2cf19d5c
JM
15154 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15155 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15156 {
757a636f 15157 int out_fp, in_fp;
6ae68ba3 15158
757a636f
RS
15159 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15160 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15161 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15162 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15163 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15164 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15165 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15166 || in_fp == Val_GNU_MIPS_ABI_FP_64
15167 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15168 {
15169 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15170 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15171 }
15172 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15173 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15174 || out_fp == Val_GNU_MIPS_ABI_FP_64
15175 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15176 /* Keep the current setting. */;
15177 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15178 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15179 {
15180 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15181 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15182 }
15183 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15184 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15185 /* Keep the current setting. */;
757a636f
RS
15186 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15187 {
15188 const char *out_string, *in_string;
6ae68ba3 15189
757a636f
RS
15190 out_string = _bfd_mips_fp_abi_string (out_fp);
15191 in_string = _bfd_mips_fp_abi_string (in_fp);
15192 /* First warn about cases involving unrecognised ABIs. */
15193 if (!out_string && !in_string)
695344c0 15194 /* xgettext:c-format */
757a636f 15195 _bfd_error_handler
871b3ab2
AM
15196 (_("Warning: %pB uses unknown floating point ABI %d "
15197 "(set by %pB), %pB uses unknown floating point ABI %d"),
c08bb8dd 15198 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15199 else if (!out_string)
15200 _bfd_error_handler
695344c0 15201 /* xgettext:c-format */
871b3ab2
AM
15202 (_("Warning: %pB uses unknown floating point ABI %d "
15203 "(set by %pB), %pB uses %s"),
c08bb8dd 15204 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15205 else if (!in_string)
15206 _bfd_error_handler
695344c0 15207 /* xgettext:c-format */
871b3ab2
AM
15208 (_("Warning: %pB uses %s (set by %pB), "
15209 "%pB uses unknown floating point ABI %d"),
c08bb8dd 15210 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15211 else
15212 {
15213 /* If one of the bfds is soft-float, the other must be
15214 hard-float. The exact choice of hard-float ABI isn't
15215 really relevant to the error message. */
15216 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15217 out_string = "-mhard-float";
15218 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15219 in_string = "-mhard-float";
15220 _bfd_error_handler
695344c0 15221 /* xgettext:c-format */
871b3ab2 15222 (_("Warning: %pB uses %s (set by %pB), %pB uses %s"),
c08bb8dd 15223 obfd, out_string, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15224 }
15225 }
2cf19d5c
JM
15226 }
15227
b60bf9be
CF
15228 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15229 non-conflicting ones. */
15230 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15231 {
15232 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15233 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15234 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15235 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15236 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15237 {
15238 case Val_GNU_MIPS_ABI_MSA_128:
15239 _bfd_error_handler
695344c0 15240 /* xgettext:c-format */
871b3ab2
AM
15241 (_("Warning: %pB uses %s (set by %pB), "
15242 "%pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15243 obfd, "-mmsa", abi_msa_bfd,
15244 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15245 break;
15246
15247 default:
15248 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15249 {
15250 case Val_GNU_MIPS_ABI_MSA_128:
15251 _bfd_error_handler
695344c0 15252 /* xgettext:c-format */
871b3ab2
AM
15253 (_("Warning: %pB uses unknown MSA ABI %d "
15254 "(set by %pB), %pB uses %s"),
c08bb8dd
AM
15255 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15256 abi_msa_bfd, ibfd, "-mmsa");
b60bf9be
CF
15257 break;
15258
15259 default:
15260 _bfd_error_handler
695344c0 15261 /* xgettext:c-format */
871b3ab2
AM
15262 (_("Warning: %pB uses unknown MSA ABI %d "
15263 "(set by %pB), %pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15264 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15265 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15266 break;
15267 }
15268 }
15269 }
15270
2cf19d5c 15271 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15272 return _bfd_elf_merge_object_attributes (ibfd, info);
2cf19d5c
JM
15273}
15274
a3dc0a7f
MR
15275/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15276 there are conflicting settings. */
15277
15278static bfd_boolean
15279mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15280{
15281 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15282 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15283 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15284
15285 /* Update the output abiflags fp_abi using the computed fp_abi. */
15286 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15287
15288#define max(a, b) ((a) > (b) ? (a) : (b))
15289 /* Merge abiflags. */
15290 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15291 in_tdata->abiflags.isa_level);
15292 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15293 in_tdata->abiflags.isa_rev);
15294 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15295 in_tdata->abiflags.gpr_size);
15296 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15297 in_tdata->abiflags.cpr1_size);
15298 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15299 in_tdata->abiflags.cpr2_size);
15300#undef max
15301 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15302 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15303
15304 return TRUE;
15305}
15306
b49e97c9
TS
15307/* Merge backend specific data from an object file to the output
15308 object file when linking. */
15309
b34976b6 15310bfd_boolean
50e03d47 15311_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
b49e97c9 15312{
50e03d47 15313 bfd *obfd = info->output_bfd;
cf8502c1
MR
15314 struct mips_elf_obj_tdata *out_tdata;
15315 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15316 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15317 asection *sec;
d537eeb5 15318 bfd_boolean ok;
b49e97c9 15319
58238693 15320 /* Check if we have the same endianness. */
50e03d47 15321 if (! _bfd_generic_verify_endian_match (ibfd, info))
aa701218 15322 {
4eca0228 15323 _bfd_error_handler
871b3ab2 15324 (_("%pB: endianness incompatible with that of the selected emulation"),
d003868e 15325 ibfd);
aa701218
AO
15326 return FALSE;
15327 }
b49e97c9 15328
d5eaccd7 15329 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15330 return TRUE;
b49e97c9 15331
cf8502c1
MR
15332 in_tdata = mips_elf_tdata (ibfd);
15333 out_tdata = mips_elf_tdata (obfd);
15334
aa701218
AO
15335 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15336 {
4eca0228 15337 _bfd_error_handler
871b3ab2 15338 (_("%pB: ABI is incompatible with that of the selected emulation"),
d003868e 15339 ibfd);
aa701218
AO
15340 return FALSE;
15341 }
15342
23ba6f18
MR
15343 /* Check to see if the input BFD actually contains any sections. If not,
15344 then it has no attributes, and its flags may not have been initialized
15345 either, but it cannot actually cause any incompatibility. */
351cdf24
MF
15346 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15347 {
15348 /* Ignore synthetic sections and empty .text, .data and .bss sections
15349 which are automatically generated by gas. Also ignore fake
15350 (s)common sections, since merely defining a common symbol does
15351 not affect compatibility. */
15352 if ((sec->flags & SEC_IS_COMMON) == 0
15353 && strcmp (sec->name, ".reginfo")
15354 && strcmp (sec->name, ".mdebug")
15355 && (sec->size != 0
15356 || (strcmp (sec->name, ".text")
15357 && strcmp (sec->name, ".data")
15358 && strcmp (sec->name, ".bss"))))
15359 {
15360 null_input_bfd = FALSE;
15361 break;
15362 }
15363 }
15364 if (null_input_bfd)
15365 return TRUE;
15366
28d45e28 15367 /* Populate abiflags using existing information. */
23ba6f18
MR
15368 if (in_tdata->abiflags_valid)
15369 {
15370 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15371 Elf_Internal_ABIFlags_v0 in_abiflags;
15372 Elf_Internal_ABIFlags_v0 abiflags;
15373
15374 /* Set up the FP ABI attribute from the abiflags if it is not already
07d6d2b8 15375 set. */
23ba6f18 15376 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
07d6d2b8 15377 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15378
351cdf24 15379 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15380 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15381
15382 /* It is not possible to infer the correct ISA revision
07d6d2b8 15383 for R3 or R5 so drop down to R2 for the checks. */
351cdf24
MF
15384 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15385 in_abiflags.isa_rev = 2;
15386
c97c330b
MF
15387 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15388 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
4eca0228 15389 _bfd_error_handler
871b3ab2 15390 (_("%pB: warning: Inconsistent ISA between e_flags and "
351cdf24
MF
15391 ".MIPS.abiflags"), ibfd);
15392 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15393 && in_abiflags.fp_abi != abiflags.fp_abi)
4eca0228 15394 _bfd_error_handler
871b3ab2 15395 (_("%pB: warning: Inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15396 ".MIPS.abiflags"), ibfd);
15397 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
4eca0228 15398 _bfd_error_handler
871b3ab2 15399 (_("%pB: warning: Inconsistent ASEs between e_flags and "
351cdf24 15400 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15401 /* The isa_ext is allowed to be an extension of what can be inferred
15402 from e_flags. */
15403 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15404 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
4eca0228 15405 _bfd_error_handler
871b3ab2 15406 (_("%pB: warning: Inconsistent ISA extensions between e_flags and "
351cdf24
MF
15407 ".MIPS.abiflags"), ibfd);
15408 if (in_abiflags.flags2 != 0)
4eca0228 15409 _bfd_error_handler
871b3ab2 15410 (_("%pB: warning: Unexpected flag in the flags2 field of "
351cdf24 15411 ".MIPS.abiflags (0x%lx)"), ibfd,
d42c267e 15412 in_abiflags.flags2);
351cdf24 15413 }
28d45e28
MR
15414 else
15415 {
15416 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15417 in_tdata->abiflags_valid = TRUE;
15418 }
15419
cf8502c1 15420 if (!out_tdata->abiflags_valid)
351cdf24
MF
15421 {
15422 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15423 out_tdata->abiflags = in_tdata->abiflags;
15424 out_tdata->abiflags_valid = TRUE;
351cdf24 15425 }
b49e97c9
TS
15426
15427 if (! elf_flags_init (obfd))
15428 {
b34976b6 15429 elf_flags_init (obfd) = TRUE;
351cdf24 15430 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15431 elf_elfheader (obfd)->e_ident[EI_CLASS]
15432 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15433
15434 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15435 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15436 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15437 bfd_get_mach (ibfd))))
b49e97c9
TS
15438 {
15439 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15440 bfd_get_mach (ibfd)))
b34976b6 15441 return FALSE;
351cdf24
MF
15442
15443 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15444 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15445 }
15446
d537eeb5 15447 ok = TRUE;
b49e97c9 15448 }
d537eeb5 15449 else
50e03d47 15450 ok = mips_elf_merge_obj_e_flags (ibfd, info);
d537eeb5 15451
50e03d47 15452 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
b49e97c9 15453
a3dc0a7f 15454 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15455
d537eeb5 15456 if (!ok)
b49e97c9
TS
15457 {
15458 bfd_set_error (bfd_error_bad_value);
b34976b6 15459 return FALSE;
b49e97c9
TS
15460 }
15461
b34976b6 15462 return TRUE;
b49e97c9
TS
15463}
15464
15465/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15466
b34976b6 15467bfd_boolean
9719ad41 15468_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15469{
15470 BFD_ASSERT (!elf_flags_init (abfd)
15471 || elf_elfheader (abfd)->e_flags == flags);
15472
15473 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15474 elf_flags_init (abfd) = TRUE;
15475 return TRUE;
b49e97c9
TS
15476}
15477
ad9563d6
CM
15478char *
15479_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15480{
15481 switch (dtag)
15482 {
15483 default: return "";
15484 case DT_MIPS_RLD_VERSION:
15485 return "MIPS_RLD_VERSION";
15486 case DT_MIPS_TIME_STAMP:
15487 return "MIPS_TIME_STAMP";
15488 case DT_MIPS_ICHECKSUM:
15489 return "MIPS_ICHECKSUM";
15490 case DT_MIPS_IVERSION:
15491 return "MIPS_IVERSION";
15492 case DT_MIPS_FLAGS:
15493 return "MIPS_FLAGS";
15494 case DT_MIPS_BASE_ADDRESS:
15495 return "MIPS_BASE_ADDRESS";
15496 case DT_MIPS_MSYM:
15497 return "MIPS_MSYM";
15498 case DT_MIPS_CONFLICT:
15499 return "MIPS_CONFLICT";
15500 case DT_MIPS_LIBLIST:
15501 return "MIPS_LIBLIST";
15502 case DT_MIPS_LOCAL_GOTNO:
15503 return "MIPS_LOCAL_GOTNO";
15504 case DT_MIPS_CONFLICTNO:
15505 return "MIPS_CONFLICTNO";
15506 case DT_MIPS_LIBLISTNO:
15507 return "MIPS_LIBLISTNO";
15508 case DT_MIPS_SYMTABNO:
15509 return "MIPS_SYMTABNO";
15510 case DT_MIPS_UNREFEXTNO:
15511 return "MIPS_UNREFEXTNO";
15512 case DT_MIPS_GOTSYM:
15513 return "MIPS_GOTSYM";
15514 case DT_MIPS_HIPAGENO:
15515 return "MIPS_HIPAGENO";
15516 case DT_MIPS_RLD_MAP:
15517 return "MIPS_RLD_MAP";
a5499fa4
MF
15518 case DT_MIPS_RLD_MAP_REL:
15519 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15520 case DT_MIPS_DELTA_CLASS:
15521 return "MIPS_DELTA_CLASS";
15522 case DT_MIPS_DELTA_CLASS_NO:
15523 return "MIPS_DELTA_CLASS_NO";
15524 case DT_MIPS_DELTA_INSTANCE:
15525 return "MIPS_DELTA_INSTANCE";
15526 case DT_MIPS_DELTA_INSTANCE_NO:
15527 return "MIPS_DELTA_INSTANCE_NO";
15528 case DT_MIPS_DELTA_RELOC:
15529 return "MIPS_DELTA_RELOC";
15530 case DT_MIPS_DELTA_RELOC_NO:
15531 return "MIPS_DELTA_RELOC_NO";
15532 case DT_MIPS_DELTA_SYM:
15533 return "MIPS_DELTA_SYM";
15534 case DT_MIPS_DELTA_SYM_NO:
15535 return "MIPS_DELTA_SYM_NO";
15536 case DT_MIPS_DELTA_CLASSSYM:
15537 return "MIPS_DELTA_CLASSSYM";
15538 case DT_MIPS_DELTA_CLASSSYM_NO:
15539 return "MIPS_DELTA_CLASSSYM_NO";
15540 case DT_MIPS_CXX_FLAGS:
15541 return "MIPS_CXX_FLAGS";
15542 case DT_MIPS_PIXIE_INIT:
15543 return "MIPS_PIXIE_INIT";
15544 case DT_MIPS_SYMBOL_LIB:
15545 return "MIPS_SYMBOL_LIB";
15546 case DT_MIPS_LOCALPAGE_GOTIDX:
15547 return "MIPS_LOCALPAGE_GOTIDX";
15548 case DT_MIPS_LOCAL_GOTIDX:
15549 return "MIPS_LOCAL_GOTIDX";
15550 case DT_MIPS_HIDDEN_GOTIDX:
15551 return "MIPS_HIDDEN_GOTIDX";
15552 case DT_MIPS_PROTECTED_GOTIDX:
15553 return "MIPS_PROTECTED_GOT_IDX";
15554 case DT_MIPS_OPTIONS:
15555 return "MIPS_OPTIONS";
15556 case DT_MIPS_INTERFACE:
15557 return "MIPS_INTERFACE";
15558 case DT_MIPS_DYNSTR_ALIGN:
15559 return "DT_MIPS_DYNSTR_ALIGN";
15560 case DT_MIPS_INTERFACE_SIZE:
15561 return "DT_MIPS_INTERFACE_SIZE";
15562 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15563 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15564 case DT_MIPS_PERF_SUFFIX:
15565 return "DT_MIPS_PERF_SUFFIX";
15566 case DT_MIPS_COMPACT_SIZE:
15567 return "DT_MIPS_COMPACT_SIZE";
15568 case DT_MIPS_GP_VALUE:
15569 return "DT_MIPS_GP_VALUE";
15570 case DT_MIPS_AUX_DYNAMIC:
15571 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15572 case DT_MIPS_PLTGOT:
15573 return "DT_MIPS_PLTGOT";
15574 case DT_MIPS_RWPLT:
15575 return "DT_MIPS_RWPLT";
ad9563d6
CM
15576 }
15577}
15578
757a636f
RS
15579/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15580 not known. */
15581
15582const char *
15583_bfd_mips_fp_abi_string (int fp)
15584{
15585 switch (fp)
15586 {
15587 /* These strings aren't translated because they're simply
15588 option lists. */
15589 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15590 return "-mdouble-float";
15591
15592 case Val_GNU_MIPS_ABI_FP_SINGLE:
15593 return "-msingle-float";
15594
15595 case Val_GNU_MIPS_ABI_FP_SOFT:
15596 return "-msoft-float";
15597
351cdf24
MF
15598 case Val_GNU_MIPS_ABI_FP_OLD_64:
15599 return _("-mips32r2 -mfp64 (12 callee-saved)");
15600
15601 case Val_GNU_MIPS_ABI_FP_XX:
15602 return "-mfpxx";
15603
757a636f 15604 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
15605 return "-mgp32 -mfp64";
15606
15607 case Val_GNU_MIPS_ABI_FP_64A:
15608 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
15609
15610 default:
15611 return 0;
15612 }
15613}
15614
351cdf24
MF
15615static void
15616print_mips_ases (FILE *file, unsigned int mask)
15617{
15618 if (mask & AFL_ASE_DSP)
15619 fputs ("\n\tDSP ASE", file);
15620 if (mask & AFL_ASE_DSPR2)
15621 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
15622 if (mask & AFL_ASE_DSPR3)
15623 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
15624 if (mask & AFL_ASE_EVA)
15625 fputs ("\n\tEnhanced VA Scheme", file);
15626 if (mask & AFL_ASE_MCU)
15627 fputs ("\n\tMCU (MicroController) ASE", file);
15628 if (mask & AFL_ASE_MDMX)
15629 fputs ("\n\tMDMX ASE", file);
15630 if (mask & AFL_ASE_MIPS3D)
15631 fputs ("\n\tMIPS-3D ASE", file);
15632 if (mask & AFL_ASE_MT)
15633 fputs ("\n\tMT ASE", file);
15634 if (mask & AFL_ASE_SMARTMIPS)
15635 fputs ("\n\tSmartMIPS ASE", file);
15636 if (mask & AFL_ASE_VIRT)
15637 fputs ("\n\tVZ ASE", file);
15638 if (mask & AFL_ASE_MSA)
15639 fputs ("\n\tMSA ASE", file);
15640 if (mask & AFL_ASE_MIPS16)
15641 fputs ("\n\tMIPS16 ASE", file);
15642 if (mask & AFL_ASE_MICROMIPS)
15643 fputs ("\n\tMICROMIPS ASE", file);
15644 if (mask & AFL_ASE_XPA)
15645 fputs ("\n\tXPA ASE", file);
25499ac7
MR
15646 if (mask & AFL_ASE_MIPS16E2)
15647 fputs ("\n\tMIPS16e2 ASE", file);
351cdf24
MF
15648 if (mask == 0)
15649 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
15650 else if ((mask & ~AFL_ASE_MASK) != 0)
15651 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
15652}
15653
15654static void
15655print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15656{
15657 switch (isa_ext)
15658 {
15659 case 0:
15660 fputs (_("None"), file);
15661 break;
15662 case AFL_EXT_XLR:
15663 fputs ("RMI XLR", file);
15664 break;
2c629856
N
15665 case AFL_EXT_OCTEON3:
15666 fputs ("Cavium Networks Octeon3", file);
15667 break;
351cdf24
MF
15668 case AFL_EXT_OCTEON2:
15669 fputs ("Cavium Networks Octeon2", file);
15670 break;
15671 case AFL_EXT_OCTEONP:
15672 fputs ("Cavium Networks OcteonP", file);
15673 break;
15674 case AFL_EXT_LOONGSON_3A:
15675 fputs ("Loongson 3A", file);
15676 break;
15677 case AFL_EXT_OCTEON:
15678 fputs ("Cavium Networks Octeon", file);
15679 break;
15680 case AFL_EXT_5900:
15681 fputs ("Toshiba R5900", file);
15682 break;
15683 case AFL_EXT_4650:
15684 fputs ("MIPS R4650", file);
15685 break;
15686 case AFL_EXT_4010:
15687 fputs ("LSI R4010", file);
15688 break;
15689 case AFL_EXT_4100:
15690 fputs ("NEC VR4100", file);
15691 break;
15692 case AFL_EXT_3900:
15693 fputs ("Toshiba R3900", file);
15694 break;
15695 case AFL_EXT_10000:
15696 fputs ("MIPS R10000", file);
15697 break;
15698 case AFL_EXT_SB1:
15699 fputs ("Broadcom SB-1", file);
15700 break;
15701 case AFL_EXT_4111:
15702 fputs ("NEC VR4111/VR4181", file);
15703 break;
15704 case AFL_EXT_4120:
15705 fputs ("NEC VR4120", file);
15706 break;
15707 case AFL_EXT_5400:
15708 fputs ("NEC VR5400", file);
15709 break;
15710 case AFL_EXT_5500:
15711 fputs ("NEC VR5500", file);
15712 break;
15713 case AFL_EXT_LOONGSON_2E:
15714 fputs ("ST Microelectronics Loongson 2E", file);
15715 break;
15716 case AFL_EXT_LOONGSON_2F:
15717 fputs ("ST Microelectronics Loongson 2F", file);
15718 break;
38bf472a
MR
15719 case AFL_EXT_INTERAPTIV_MR2:
15720 fputs ("Imagination interAptiv MR2", file);
15721 break;
351cdf24 15722 default:
00ac7aa0 15723 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
15724 break;
15725 }
15726}
15727
15728static void
15729print_mips_fp_abi_value (FILE *file, int val)
15730{
15731 switch (val)
15732 {
15733 case Val_GNU_MIPS_ABI_FP_ANY:
15734 fprintf (file, _("Hard or soft float\n"));
15735 break;
15736 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15737 fprintf (file, _("Hard float (double precision)\n"));
15738 break;
15739 case Val_GNU_MIPS_ABI_FP_SINGLE:
15740 fprintf (file, _("Hard float (single precision)\n"));
15741 break;
15742 case Val_GNU_MIPS_ABI_FP_SOFT:
15743 fprintf (file, _("Soft float\n"));
15744 break;
15745 case Val_GNU_MIPS_ABI_FP_OLD_64:
15746 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15747 break;
15748 case Val_GNU_MIPS_ABI_FP_XX:
15749 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15750 break;
15751 case Val_GNU_MIPS_ABI_FP_64:
15752 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15753 break;
15754 case Val_GNU_MIPS_ABI_FP_64A:
15755 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15756 break;
15757 default:
15758 fprintf (file, "??? (%d)\n", val);
15759 break;
15760 }
15761}
15762
15763static int
15764get_mips_reg_size (int reg_size)
15765{
15766 return (reg_size == AFL_REG_NONE) ? 0
15767 : (reg_size == AFL_REG_32) ? 32
15768 : (reg_size == AFL_REG_64) ? 64
15769 : (reg_size == AFL_REG_128) ? 128
15770 : -1;
15771}
15772
b34976b6 15773bfd_boolean
9719ad41 15774_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 15775{
9719ad41 15776 FILE *file = ptr;
b49e97c9
TS
15777
15778 BFD_ASSERT (abfd != NULL && ptr != NULL);
15779
15780 /* Print normal ELF private data. */
15781 _bfd_elf_print_private_bfd_data (abfd, ptr);
15782
15783 /* xgettext:c-format */
15784 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15785
15786 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15787 fprintf (file, _(" [abi=O32]"));
15788 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15789 fprintf (file, _(" [abi=O64]"));
15790 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15791 fprintf (file, _(" [abi=EABI32]"));
15792 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15793 fprintf (file, _(" [abi=EABI64]"));
15794 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15795 fprintf (file, _(" [abi unknown]"));
15796 else if (ABI_N32_P (abfd))
15797 fprintf (file, _(" [abi=N32]"));
15798 else if (ABI_64_P (abfd))
15799 fprintf (file, _(" [abi=64]"));
15800 else
15801 fprintf (file, _(" [no abi set]"));
15802
15803 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 15804 fprintf (file, " [mips1]");
b49e97c9 15805 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 15806 fprintf (file, " [mips2]");
b49e97c9 15807 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 15808 fprintf (file, " [mips3]");
b49e97c9 15809 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 15810 fprintf (file, " [mips4]");
b49e97c9 15811 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 15812 fprintf (file, " [mips5]");
b49e97c9 15813 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 15814 fprintf (file, " [mips32]");
b49e97c9 15815 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 15816 fprintf (file, " [mips64]");
af7ee8bf 15817 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 15818 fprintf (file, " [mips32r2]");
5f74bc13 15819 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 15820 fprintf (file, " [mips64r2]");
7361da2c
AB
15821 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15822 fprintf (file, " [mips32r6]");
15823 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15824 fprintf (file, " [mips64r6]");
b49e97c9
TS
15825 else
15826 fprintf (file, _(" [unknown ISA]"));
15827
40d32fc6 15828 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 15829 fprintf (file, " [mdmx]");
40d32fc6
CD
15830
15831 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 15832 fprintf (file, " [mips16]");
40d32fc6 15833
df58fc94
RS
15834 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15835 fprintf (file, " [micromips]");
15836
ba92f887
MR
15837 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15838 fprintf (file, " [nan2008]");
15839
5baf5e34 15840 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 15841 fprintf (file, " [old fp64]");
5baf5e34 15842
b49e97c9 15843 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 15844 fprintf (file, " [32bitmode]");
b49e97c9
TS
15845 else
15846 fprintf (file, _(" [not 32bitmode]"));
15847
c0e3f241 15848 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 15849 fprintf (file, " [noreorder]");
c0e3f241
CD
15850
15851 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 15852 fprintf (file, " [PIC]");
c0e3f241
CD
15853
15854 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 15855 fprintf (file, " [CPIC]");
c0e3f241
CD
15856
15857 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 15858 fprintf (file, " [XGOT]");
c0e3f241
CD
15859
15860 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 15861 fprintf (file, " [UCODE]");
c0e3f241 15862
b49e97c9
TS
15863 fputc ('\n', file);
15864
351cdf24
MF
15865 if (mips_elf_tdata (abfd)->abiflags_valid)
15866 {
15867 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15868 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15869 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15870 if (abiflags->isa_rev > 1)
15871 fprintf (file, "r%d", abiflags->isa_rev);
15872 fprintf (file, "\nGPR size: %d",
15873 get_mips_reg_size (abiflags->gpr_size));
15874 fprintf (file, "\nCPR1 size: %d",
15875 get_mips_reg_size (abiflags->cpr1_size));
15876 fprintf (file, "\nCPR2 size: %d",
15877 get_mips_reg_size (abiflags->cpr2_size));
15878 fputs ("\nFP ABI: ", file);
15879 print_mips_fp_abi_value (file, abiflags->fp_abi);
15880 fputs ("ISA Extension: ", file);
15881 print_mips_isa_ext (file, abiflags->isa_ext);
15882 fputs ("\nASEs:", file);
15883 print_mips_ases (file, abiflags->ases);
15884 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15885 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15886 fputc ('\n', file);
15887 }
15888
b34976b6 15889 return TRUE;
b49e97c9 15890}
2f89ff8d 15891
b35d266b 15892const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 15893{
07d6d2b8
AM
15894 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15895 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26 15896 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
07d6d2b8 15897 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26
NC
15898 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15899 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
07d6d2b8 15900 { NULL, 0, 0, 0, 0 }
2f89ff8d 15901};
5e2b0d47 15902
8992f0d7
TS
15903/* Merge non visibility st_other attributes. Ensure that the
15904 STO_OPTIONAL flag is copied into h->other, even if this is not a
15905 definiton of the symbol. */
5e2b0d47
NC
15906void
15907_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15908 const Elf_Internal_Sym *isym,
15909 bfd_boolean definition,
15910 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15911{
8992f0d7
TS
15912 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15913 {
15914 unsigned char other;
15915
15916 other = (definition ? isym->st_other : h->other);
15917 other &= ~ELF_ST_VISIBILITY (-1);
15918 h->other = other | ELF_ST_VISIBILITY (h->other);
15919 }
15920
15921 if (!definition
5e2b0d47
NC
15922 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15923 h->other |= STO_OPTIONAL;
15924}
12ac1cf5
NC
15925
15926/* Decide whether an undefined symbol is special and can be ignored.
15927 This is the case for OPTIONAL symbols on IRIX. */
15928bfd_boolean
15929_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15930{
15931 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15932}
e0764319
NC
15933
15934bfd_boolean
15935_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15936{
15937 return (sym->st_shndx == SHN_COMMON
15938 || sym->st_shndx == SHN_MIPS_ACOMMON
15939 || sym->st_shndx == SHN_MIPS_SCOMMON);
15940}
861fb55a
DJ
15941
15942/* Return address for Ith PLT stub in section PLT, for relocation REL
15943 or (bfd_vma) -1 if it should not be included. */
15944
15945bfd_vma
15946_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15947 const arelent *rel ATTRIBUTE_UNUSED)
15948{
15949 return (plt->vma
15950 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15951 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15952}
15953
1bbce132
MR
15954/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15955 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15956 and .got.plt and also the slots may be of a different size each we walk
15957 the PLT manually fetching instructions and matching them against known
15958 patterns. To make things easier standard MIPS slots, if any, always come
15959 first. As we don't create proper ELF symbols we use the UDATA.I member
15960 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15961 with the ST_OTHER member of the ELF symbol. */
15962
15963long
15964_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15965 long symcount ATTRIBUTE_UNUSED,
15966 asymbol **syms ATTRIBUTE_UNUSED,
15967 long dynsymcount, asymbol **dynsyms,
15968 asymbol **ret)
15969{
15970 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15971 static const char microsuffix[] = "@micromipsplt";
15972 static const char m16suffix[] = "@mips16plt";
15973 static const char mipssuffix[] = "@plt";
15974
15975 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15976 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15977 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15978 Elf_Internal_Shdr *hdr;
15979 bfd_byte *plt_data;
15980 bfd_vma plt_offset;
15981 unsigned int other;
15982 bfd_vma entry_size;
15983 bfd_vma plt0_size;
15984 asection *relplt;
15985 bfd_vma opcode;
15986 asection *plt;
15987 asymbol *send;
15988 size_t size;
15989 char *names;
15990 long counti;
15991 arelent *p;
15992 asymbol *s;
15993 char *nend;
15994 long count;
15995 long pi;
15996 long i;
15997 long n;
15998
15999 *ret = NULL;
16000
16001 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16002 return 0;
16003
16004 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16005 if (relplt == NULL)
16006 return 0;
16007
16008 hdr = &elf_section_data (relplt)->this_hdr;
16009 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16010 return 0;
16011
16012 plt = bfd_get_section_by_name (abfd, ".plt");
16013 if (plt == NULL)
16014 return 0;
16015
16016 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16017 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16018 return -1;
16019 p = relplt->relocation;
16020
16021 /* Calculating the exact amount of space required for symbols would
16022 require two passes over the PLT, so just pessimise assuming two
16023 PLT slots per relocation. */
16024 count = relplt->size / hdr->sh_entsize;
16025 counti = count * bed->s->int_rels_per_ext_rel;
16026 size = 2 * count * sizeof (asymbol);
16027 size += count * (sizeof (mipssuffix) +
16028 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16029 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16030 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16031
16032 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16033 size += sizeof (asymbol) + sizeof (pltname);
16034
16035 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16036 return -1;
16037
16038 if (plt->size < 16)
16039 return -1;
16040
16041 s = *ret = bfd_malloc (size);
16042 if (s == NULL)
16043 return -1;
16044 send = s + 2 * count + 1;
16045
16046 names = (char *) send;
16047 nend = (char *) s + size;
16048 n = 0;
16049
16050 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16051 if (opcode == 0x3302fffe)
16052 {
16053 if (!micromips_p)
16054 return -1;
16055 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16056 other = STO_MICROMIPS;
16057 }
833794fc
MR
16058 else if (opcode == 0x0398c1d0)
16059 {
16060 if (!micromips_p)
16061 return -1;
16062 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16063 other = STO_MICROMIPS;
16064 }
1bbce132
MR
16065 else
16066 {
16067 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16068 other = 0;
16069 }
16070
16071 s->the_bfd = abfd;
16072 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16073 s->section = plt;
16074 s->value = 0;
16075 s->name = names;
16076 s->udata.i = other;
16077 memcpy (names, pltname, sizeof (pltname));
16078 names += sizeof (pltname);
16079 ++s, ++n;
16080
16081 pi = 0;
16082 for (plt_offset = plt0_size;
16083 plt_offset + 8 <= plt->size && s < send;
16084 plt_offset += entry_size)
16085 {
16086 bfd_vma gotplt_addr;
16087 const char *suffix;
16088 bfd_vma gotplt_hi;
16089 bfd_vma gotplt_lo;
16090 size_t suffixlen;
16091
16092 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16093
16094 /* Check if the second word matches the expected MIPS16 instruction. */
16095 if (opcode == 0x651aeb00)
16096 {
16097 if (micromips_p)
16098 return -1;
16099 /* Truncated table??? */
16100 if (plt_offset + 16 > plt->size)
16101 break;
16102 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16103 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16104 suffixlen = sizeof (m16suffix);
16105 suffix = m16suffix;
16106 other = STO_MIPS16;
16107 }
833794fc 16108 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16109 else if (opcode == 0xff220000)
16110 {
16111 if (!micromips_p)
16112 return -1;
16113 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16114 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16115 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16116 gotplt_lo <<= 2;
16117 gotplt_addr = gotplt_hi + gotplt_lo;
16118 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16119 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16120 suffixlen = sizeof (microsuffix);
16121 suffix = microsuffix;
16122 other = STO_MICROMIPS;
16123 }
833794fc
MR
16124 /* Likewise the expected microMIPS instruction (insn32 mode). */
16125 else if ((opcode & 0xffff0000) == 0xff2f0000)
16126 {
16127 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16128 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16129 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16130 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16131 gotplt_addr = gotplt_hi + gotplt_lo;
16132 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16133 suffixlen = sizeof (microsuffix);
16134 suffix = microsuffix;
16135 other = STO_MICROMIPS;
16136 }
1bbce132
MR
16137 /* Otherwise assume standard MIPS code. */
16138 else
16139 {
16140 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16141 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16142 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16143 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16144 gotplt_addr = gotplt_hi + gotplt_lo;
16145 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16146 suffixlen = sizeof (mipssuffix);
16147 suffix = mipssuffix;
16148 other = 0;
16149 }
16150 /* Truncated table??? */
16151 if (plt_offset + entry_size > plt->size)
16152 break;
16153
16154 for (i = 0;
16155 i < count && p[pi].address != gotplt_addr;
16156 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16157
16158 if (i < count)
16159 {
16160 size_t namelen;
16161 size_t len;
16162
16163 *s = **p[pi].sym_ptr_ptr;
16164 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16165 we are defining a symbol, ensure one of them is set. */
16166 if ((s->flags & BSF_LOCAL) == 0)
16167 s->flags |= BSF_GLOBAL;
16168 s->flags |= BSF_SYNTHETIC;
16169 s->section = plt;
16170 s->value = plt_offset;
16171 s->name = names;
16172 s->udata.i = other;
16173
16174 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16175 namelen = len + suffixlen;
16176 if (names + namelen > nend)
16177 break;
16178
16179 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16180 names += len;
16181 memcpy (names, suffix, suffixlen);
16182 names += suffixlen;
16183
16184 ++s, ++n;
16185 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16186 }
16187 }
16188
16189 free (plt_data);
16190
16191 return n;
16192}
16193
5e7fc731
MR
16194/* Return the ABI flags associated with ABFD if available. */
16195
16196Elf_Internal_ABIFlags_v0 *
16197bfd_mips_elf_get_abiflags (bfd *abfd)
16198{
16199 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16200
16201 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16202}
16203
861fb55a
DJ
16204void
16205_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16206{
16207 struct mips_elf_link_hash_table *htab;
16208 Elf_Internal_Ehdr *i_ehdrp;
16209
16210 i_ehdrp = elf_elfheader (abfd);
16211 if (link_info)
16212 {
16213 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
16214 BFD_ASSERT (htab != NULL);
16215
861fb55a
DJ
16216 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16217 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16218 }
0af03126
L
16219
16220 _bfd_elf_post_process_headers (abfd, link_info);
351cdf24
MF
16221
16222 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16223 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16224 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
861fb55a 16225}
2f0c68f2
CM
16226
16227int
16228_bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16229{
16230 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16231}
16232
16233/* Return the opcode for can't unwind. */
16234
16235int
16236_bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16237{
16238 return COMPACT_EH_CANT_UNWIND_OPCODE;
16239}
This page took 2.387216 seconds and 4 git commands to generate.