Make find_thread_ptid lookup thread map instead of iterate
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4e5106e6 5 Copyright (C) 2019-2020 Advanced Micro Devices, Inc. All rights reserved.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include <ctype.h>
25#include "symtab.h"
26#include "frame.h"
27#include "inferior.h"
28#include "breakpoint.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "target.h"
2f4fcf00 32#include "target-connection.h"
c906108c
SS
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
2acceee2 37#include "inf-loop.h"
4e052eda 38#include "regcache.h"
fd0407d6 39#include "value.h"
76727919 40#include "observable.h"
f636b87d 41#include "language.h"
a77053c2 42#include "solib.h"
f17517ea 43#include "main.h"
186c406b 44#include "block.h"
034dad6f 45#include "mi/mi-common.h"
4f8d22e3 46#include "event-top.h"
96429cc8 47#include "record.h"
d02ed0bb 48#include "record-full.h"
edb3359d 49#include "inline-frame.h"
4efc6507 50#include "jit.h"
06cd862c 51#include "tracepoint.h"
1bfeeb0f 52#include "skip.h"
28106bc2
SDJ
53#include "probe.h"
54#include "objfiles.h"
de0bea00 55#include "completer.h"
9107fc8d 56#include "target-descriptions.h"
f15cb84a 57#include "target-dcache.h"
d83ad864 58#include "terminal.h"
ff862be4 59#include "solist.h"
372316f1 60#include "event-loop.h"
243a9253 61#include "thread-fsm.h"
268a13a5 62#include "gdbsupport/enum-flags.h"
5ed8105e 63#include "progspace-and-thread.h"
268a13a5 64#include "gdbsupport/gdb_optional.h"
46a62268 65#include "arch-utils.h"
268a13a5
TT
66#include "gdbsupport/scope-exit.h"
67#include "gdbsupport/forward-scope-exit.h"
5b6d1e4f
PA
68#include "gdb_select.h"
69#include <unordered_map>
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
4ef3f3be 77static int follow_fork (void);
96baa820 78
d83ad864
DB
79static int follow_fork_inferior (int follow_child, int detach_fork);
80
81static void follow_inferior_reset_breakpoints (void);
82
a289b8f6
JK
83static int currently_stepping (struct thread_info *tp);
84
2c03e5be 85static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
86
87static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
2484c66b
UW
89static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
8550d3b3
YQ
91static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
aff4e175
AB
93static void resume (gdb_signal sig);
94
5b6d1e4f
PA
95static void wait_for_inferior (inferior *inf);
96
372316f1
PA
97/* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99static struct async_event_handler *infrun_async_inferior_event_token;
100
101/* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103static int infrun_is_async = -1;
104
105/* See infrun.h. */
106
107void
108infrun_async (int enable)
109{
110 if (infrun_is_async != enable)
111 {
112 infrun_is_async = enable;
113
114 if (debug_infrun)
115 fprintf_unfiltered (gdb_stdlog,
116 "infrun: infrun_async(%d)\n",
117 enable);
118
119 if (enable)
120 mark_async_event_handler (infrun_async_inferior_event_token);
121 else
122 clear_async_event_handler (infrun_async_inferior_event_token);
123 }
124}
125
0b333c5e
PA
126/* See infrun.h. */
127
128void
129mark_infrun_async_event_handler (void)
130{
131 mark_async_event_handler (infrun_async_inferior_event_token);
132}
133
5fbbeb29
CF
134/* When set, stop the 'step' command if we enter a function which has
135 no line number information. The normal behavior is that we step
136 over such function. */
491144b5 137bool step_stop_if_no_debug = false;
920d2a44
AC
138static void
139show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141{
142 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
143}
5fbbeb29 144
b9f437de
PA
145/* proceed and normal_stop use this to notify the user when the
146 inferior stopped in a different thread than it had been running
147 in. */
96baa820 148
39f77062 149static ptid_t previous_inferior_ptid;
7a292a7a 150
07107ca6
LM
151/* If set (default for legacy reasons), when following a fork, GDB
152 will detach from one of the fork branches, child or parent.
153 Exactly which branch is detached depends on 'set follow-fork-mode'
154 setting. */
155
491144b5 156static bool detach_fork = true;
6c95b8df 157
491144b5 158bool debug_displaced = false;
237fc4c9
PA
159static void
160show_debug_displaced (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
164}
165
ccce17b0 166unsigned int debug_infrun = 0;
920d2a44
AC
167static void
168show_debug_infrun (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170{
171 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
172}
527159b7 173
03583c20
UW
174
175/* Support for disabling address space randomization. */
176
491144b5 177bool disable_randomization = true;
03583c20
UW
178
179static void
180show_disable_randomization (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182{
183 if (target_supports_disable_randomization ())
184 fprintf_filtered (file,
185 _("Disabling randomization of debuggee's "
186 "virtual address space is %s.\n"),
187 value);
188 else
189 fputs_filtered (_("Disabling randomization of debuggee's "
190 "virtual address space is unsupported on\n"
191 "this platform.\n"), file);
192}
193
194static void
eb4c3f4a 195set_disable_randomization (const char *args, int from_tty,
03583c20
UW
196 struct cmd_list_element *c)
197{
198 if (!target_supports_disable_randomization ())
199 error (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform."));
202}
203
d32dc48e
PA
204/* User interface for non-stop mode. */
205
491144b5
CB
206bool non_stop = false;
207static bool non_stop_1 = false;
d32dc48e
PA
208
209static void
eb4c3f4a 210set_non_stop (const char *args, int from_tty,
d32dc48e
PA
211 struct cmd_list_element *c)
212{
213 if (target_has_execution)
214 {
215 non_stop_1 = non_stop;
216 error (_("Cannot change this setting while the inferior is running."));
217 }
218
219 non_stop = non_stop_1;
220}
221
222static void
223show_non_stop (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225{
226 fprintf_filtered (file,
227 _("Controlling the inferior in non-stop mode is %s.\n"),
228 value);
229}
230
d914c394
SS
231/* "Observer mode" is somewhat like a more extreme version of
232 non-stop, in which all GDB operations that might affect the
233 target's execution have been disabled. */
234
491144b5
CB
235bool observer_mode = false;
236static bool observer_mode_1 = false;
d914c394
SS
237
238static void
eb4c3f4a 239set_observer_mode (const char *args, int from_tty,
d914c394
SS
240 struct cmd_list_element *c)
241{
d914c394
SS
242 if (target_has_execution)
243 {
244 observer_mode_1 = observer_mode;
245 error (_("Cannot change this setting while the inferior is running."));
246 }
247
248 observer_mode = observer_mode_1;
249
250 may_write_registers = !observer_mode;
251 may_write_memory = !observer_mode;
252 may_insert_breakpoints = !observer_mode;
253 may_insert_tracepoints = !observer_mode;
254 /* We can insert fast tracepoints in or out of observer mode,
255 but enable them if we're going into this mode. */
256 if (observer_mode)
491144b5 257 may_insert_fast_tracepoints = true;
d914c394
SS
258 may_stop = !observer_mode;
259 update_target_permissions ();
260
261 /* Going *into* observer mode we must force non-stop, then
262 going out we leave it that way. */
263 if (observer_mode)
264 {
d914c394 265 pagination_enabled = 0;
491144b5 266 non_stop = non_stop_1 = true;
d914c394
SS
267 }
268
269 if (from_tty)
270 printf_filtered (_("Observer mode is now %s.\n"),
271 (observer_mode ? "on" : "off"));
272}
273
274static void
275show_observer_mode (struct ui_file *file, int from_tty,
276 struct cmd_list_element *c, const char *value)
277{
278 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
279}
280
281/* This updates the value of observer mode based on changes in
282 permissions. Note that we are deliberately ignoring the values of
283 may-write-registers and may-write-memory, since the user may have
284 reason to enable these during a session, for instance to turn on a
285 debugging-related global. */
286
287void
288update_observer_mode (void)
289{
491144b5
CB
290 bool newval = (!may_insert_breakpoints
291 && !may_insert_tracepoints
292 && may_insert_fast_tracepoints
293 && !may_stop
294 && non_stop);
d914c394
SS
295
296 /* Let the user know if things change. */
297 if (newval != observer_mode)
298 printf_filtered (_("Observer mode is now %s.\n"),
299 (newval ? "on" : "off"));
300
301 observer_mode = observer_mode_1 = newval;
302}
c2c6d25f 303
c906108c
SS
304/* Tables of how to react to signals; the user sets them. */
305
adc6a863
PA
306static unsigned char signal_stop[GDB_SIGNAL_LAST];
307static unsigned char signal_print[GDB_SIGNAL_LAST];
308static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 309
ab04a2af
TT
310/* Table of signals that are registered with "catch signal". A
311 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
312 signal" command. */
313static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 314
2455069d
UW
315/* Table of signals that the target may silently handle.
316 This is automatically determined from the flags above,
317 and simply cached here. */
adc6a863 318static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 319
c906108c
SS
320#define SET_SIGS(nsigs,sigs,flags) \
321 do { \
322 int signum = (nsigs); \
323 while (signum-- > 0) \
324 if ((sigs)[signum]) \
325 (flags)[signum] = 1; \
326 } while (0)
327
328#define UNSET_SIGS(nsigs,sigs,flags) \
329 do { \
330 int signum = (nsigs); \
331 while (signum-- > 0) \
332 if ((sigs)[signum]) \
333 (flags)[signum] = 0; \
334 } while (0)
335
9b224c5e
PA
336/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
337 this function is to avoid exporting `signal_program'. */
338
339void
340update_signals_program_target (void)
341{
adc6a863 342 target_program_signals (signal_program);
9b224c5e
PA
343}
344
1777feb0 345/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 346
edb3359d 347#define RESUME_ALL minus_one_ptid
c906108c
SS
348
349/* Command list pointer for the "stop" placeholder. */
350
351static struct cmd_list_element *stop_command;
352
c906108c
SS
353/* Nonzero if we want to give control to the user when we're notified
354 of shared library events by the dynamic linker. */
628fe4e4 355int stop_on_solib_events;
f9e14852
GB
356
357/* Enable or disable optional shared library event breakpoints
358 as appropriate when the above flag is changed. */
359
360static void
eb4c3f4a
TT
361set_stop_on_solib_events (const char *args,
362 int from_tty, struct cmd_list_element *c)
f9e14852
GB
363{
364 update_solib_breakpoints ();
365}
366
920d2a44
AC
367static void
368show_stop_on_solib_events (struct ui_file *file, int from_tty,
369 struct cmd_list_element *c, const char *value)
370{
371 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
372 value);
373}
c906108c 374
c906108c
SS
375/* Nonzero after stop if current stack frame should be printed. */
376
377static int stop_print_frame;
378
5b6d1e4f
PA
379/* This is a cached copy of the target/ptid/waitstatus of the last
380 event returned by target_wait()/deprecated_target_wait_hook().
381 This information is returned by get_last_target_status(). */
382static process_stratum_target *target_last_proc_target;
39f77062 383static ptid_t target_last_wait_ptid;
e02bc4cc
DS
384static struct target_waitstatus target_last_waitstatus;
385
4e1c45ea 386void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 387
53904c9e
AC
388static const char follow_fork_mode_child[] = "child";
389static const char follow_fork_mode_parent[] = "parent";
390
40478521 391static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
392 follow_fork_mode_child,
393 follow_fork_mode_parent,
394 NULL
ef346e04 395};
c906108c 396
53904c9e 397static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
398static void
399show_follow_fork_mode_string (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c, const char *value)
401{
3e43a32a
MS
402 fprintf_filtered (file,
403 _("Debugger response to a program "
404 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
405 value);
406}
c906108c
SS
407\f
408
d83ad864
DB
409/* Handle changes to the inferior list based on the type of fork,
410 which process is being followed, and whether the other process
411 should be detached. On entry inferior_ptid must be the ptid of
412 the fork parent. At return inferior_ptid is the ptid of the
413 followed inferior. */
414
415static int
416follow_fork_inferior (int follow_child, int detach_fork)
417{
418 int has_vforked;
79639e11 419 ptid_t parent_ptid, child_ptid;
d83ad864
DB
420
421 has_vforked = (inferior_thread ()->pending_follow.kind
422 == TARGET_WAITKIND_VFORKED);
79639e11
PA
423 parent_ptid = inferior_ptid;
424 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
425
426 if (has_vforked
427 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 428 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
429 && !(follow_child || detach_fork || sched_multi))
430 {
431 /* The parent stays blocked inside the vfork syscall until the
432 child execs or exits. If we don't let the child run, then
433 the parent stays blocked. If we're telling the parent to run
434 in the foreground, the user will not be able to ctrl-c to get
435 back the terminal, effectively hanging the debug session. */
436 fprintf_filtered (gdb_stderr, _("\
437Can not resume the parent process over vfork in the foreground while\n\
438holding the child stopped. Try \"set detach-on-fork\" or \
439\"set schedule-multiple\".\n"));
d83ad864
DB
440 return 1;
441 }
442
443 if (!follow_child)
444 {
445 /* Detach new forked process? */
446 if (detach_fork)
447 {
d83ad864
DB
448 /* Before detaching from the child, remove all breakpoints
449 from it. If we forked, then this has already been taken
450 care of by infrun.c. If we vforked however, any
451 breakpoint inserted in the parent is visible in the
452 child, even those added while stopped in a vfork
453 catchpoint. This will remove the breakpoints from the
454 parent also, but they'll be reinserted below. */
455 if (has_vforked)
456 {
457 /* Keep breakpoints list in sync. */
00431a78 458 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
459 }
460
f67c0c91 461 if (print_inferior_events)
d83ad864 462 {
8dd06f7a 463 /* Ensure that we have a process ptid. */
e99b03dc 464 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 465
223ffa71 466 target_terminal::ours_for_output ();
d83ad864 467 fprintf_filtered (gdb_stdlog,
f67c0c91 468 _("[Detaching after %s from child %s]\n"),
6f259a23 469 has_vforked ? "vfork" : "fork",
a068643d 470 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
471 }
472 }
473 else
474 {
475 struct inferior *parent_inf, *child_inf;
d83ad864
DB
476
477 /* Add process to GDB's tables. */
e99b03dc 478 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
479
480 parent_inf = current_inferior ();
481 child_inf->attach_flag = parent_inf->attach_flag;
482 copy_terminal_info (child_inf, parent_inf);
483 child_inf->gdbarch = parent_inf->gdbarch;
484 copy_inferior_target_desc_info (child_inf, parent_inf);
485
5ed8105e 486 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 487
2a00d7ce 488 set_current_inferior (child_inf);
5b6d1e4f 489 switch_to_no_thread ();
d83ad864 490 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f
PA
491 push_target (parent_inf->process_target ());
492 add_thread_silent (child_inf->process_target (), child_ptid);
493 inferior_ptid = child_ptid;
d83ad864
DB
494
495 /* If this is a vfork child, then the address-space is
496 shared with the parent. */
497 if (has_vforked)
498 {
499 child_inf->pspace = parent_inf->pspace;
500 child_inf->aspace = parent_inf->aspace;
501
5b6d1e4f
PA
502 exec_on_vfork ();
503
d83ad864
DB
504 /* The parent will be frozen until the child is done
505 with the shared region. Keep track of the
506 parent. */
507 child_inf->vfork_parent = parent_inf;
508 child_inf->pending_detach = 0;
509 parent_inf->vfork_child = child_inf;
510 parent_inf->pending_detach = 0;
511 }
512 else
513 {
514 child_inf->aspace = new_address_space ();
564b1e3f 515 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
516 child_inf->removable = 1;
517 set_current_program_space (child_inf->pspace);
518 clone_program_space (child_inf->pspace, parent_inf->pspace);
519
520 /* Let the shared library layer (e.g., solib-svr4) learn
521 about this new process, relocate the cloned exec, pull
522 in shared libraries, and install the solib event
523 breakpoint. If a "cloned-VM" event was propagated
524 better throughout the core, this wouldn't be
525 required. */
526 solib_create_inferior_hook (0);
527 }
d83ad864
DB
528 }
529
530 if (has_vforked)
531 {
532 struct inferior *parent_inf;
533
534 parent_inf = current_inferior ();
535
536 /* If we detached from the child, then we have to be careful
537 to not insert breakpoints in the parent until the child
538 is done with the shared memory region. However, if we're
539 staying attached to the child, then we can and should
540 insert breakpoints, so that we can debug it. A
541 subsequent child exec or exit is enough to know when does
542 the child stops using the parent's address space. */
543 parent_inf->waiting_for_vfork_done = detach_fork;
544 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
545 }
546 }
547 else
548 {
549 /* Follow the child. */
550 struct inferior *parent_inf, *child_inf;
551 struct program_space *parent_pspace;
552
f67c0c91 553 if (print_inferior_events)
d83ad864 554 {
f67c0c91
SDJ
555 std::string parent_pid = target_pid_to_str (parent_ptid);
556 std::string child_pid = target_pid_to_str (child_ptid);
557
223ffa71 558 target_terminal::ours_for_output ();
6f259a23 559 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
560 _("[Attaching after %s %s to child %s]\n"),
561 parent_pid.c_str (),
6f259a23 562 has_vforked ? "vfork" : "fork",
f67c0c91 563 child_pid.c_str ());
d83ad864
DB
564 }
565
566 /* Add the new inferior first, so that the target_detach below
567 doesn't unpush the target. */
568
e99b03dc 569 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
570
571 parent_inf = current_inferior ();
572 child_inf->attach_flag = parent_inf->attach_flag;
573 copy_terminal_info (child_inf, parent_inf);
574 child_inf->gdbarch = parent_inf->gdbarch;
575 copy_inferior_target_desc_info (child_inf, parent_inf);
576
577 parent_pspace = parent_inf->pspace;
578
5b6d1e4f 579 process_stratum_target *target = parent_inf->process_target ();
d83ad864 580
5b6d1e4f
PA
581 {
582 /* Hold a strong reference to the target while (maybe)
583 detaching the parent. Otherwise detaching could close the
584 target. */
585 auto target_ref = target_ops_ref::new_reference (target);
586
587 /* If we're vforking, we want to hold on to the parent until
588 the child exits or execs. At child exec or exit time we
589 can remove the old breakpoints from the parent and detach
590 or resume debugging it. Otherwise, detach the parent now;
591 we'll want to reuse it's program/address spaces, but we
592 can't set them to the child before removing breakpoints
593 from the parent, otherwise, the breakpoints module could
594 decide to remove breakpoints from the wrong process (since
595 they'd be assigned to the same address space). */
596
597 if (has_vforked)
598 {
599 gdb_assert (child_inf->vfork_parent == NULL);
600 gdb_assert (parent_inf->vfork_child == NULL);
601 child_inf->vfork_parent = parent_inf;
602 child_inf->pending_detach = 0;
603 parent_inf->vfork_child = child_inf;
604 parent_inf->pending_detach = detach_fork;
605 parent_inf->waiting_for_vfork_done = 0;
606 }
607 else if (detach_fork)
608 {
609 if (print_inferior_events)
610 {
611 /* Ensure that we have a process ptid. */
612 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
613
614 target_terminal::ours_for_output ();
615 fprintf_filtered (gdb_stdlog,
616 _("[Detaching after fork from "
617 "parent %s]\n"),
618 target_pid_to_str (process_ptid).c_str ());
619 }
8dd06f7a 620
5b6d1e4f
PA
621 target_detach (parent_inf, 0);
622 parent_inf = NULL;
623 }
6f259a23 624
5b6d1e4f 625 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 626
5b6d1e4f
PA
627 /* Add the child thread to the appropriate lists, and switch
628 to this new thread, before cloning the program space, and
629 informing the solib layer about this new process. */
d83ad864 630
5b6d1e4f
PA
631 set_current_inferior (child_inf);
632 push_target (target);
633 }
d83ad864 634
5b6d1e4f 635 add_thread_silent (target, child_ptid);
79639e11 636 inferior_ptid = child_ptid;
d83ad864
DB
637
638 /* If this is a vfork child, then the address-space is shared
639 with the parent. If we detached from the parent, then we can
640 reuse the parent's program/address spaces. */
641 if (has_vforked || detach_fork)
642 {
643 child_inf->pspace = parent_pspace;
644 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
645
646 exec_on_vfork ();
d83ad864
DB
647 }
648 else
649 {
650 child_inf->aspace = new_address_space ();
564b1e3f 651 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
652 child_inf->removable = 1;
653 child_inf->symfile_flags = SYMFILE_NO_READ;
654 set_current_program_space (child_inf->pspace);
655 clone_program_space (child_inf->pspace, parent_pspace);
656
657 /* Let the shared library layer (e.g., solib-svr4) learn
658 about this new process, relocate the cloned exec, pull in
659 shared libraries, and install the solib event breakpoint.
660 If a "cloned-VM" event was propagated better throughout
661 the core, this wouldn't be required. */
662 solib_create_inferior_hook (0);
663 }
664 }
665
666 return target_follow_fork (follow_child, detach_fork);
667}
668
e58b0e63
PA
669/* Tell the target to follow the fork we're stopped at. Returns true
670 if the inferior should be resumed; false, if the target for some
671 reason decided it's best not to resume. */
672
6604731b 673static int
4ef3f3be 674follow_fork (void)
c906108c 675{
ea1dd7bc 676 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
677 int should_resume = 1;
678 struct thread_info *tp;
679
680 /* Copy user stepping state to the new inferior thread. FIXME: the
681 followed fork child thread should have a copy of most of the
4e3990f4
DE
682 parent thread structure's run control related fields, not just these.
683 Initialized to avoid "may be used uninitialized" warnings from gcc. */
684 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 685 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
686 CORE_ADDR step_range_start = 0;
687 CORE_ADDR step_range_end = 0;
688 struct frame_id step_frame_id = { 0 };
8980e177 689 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
690
691 if (!non_stop)
692 {
5b6d1e4f 693 process_stratum_target *wait_target;
e58b0e63
PA
694 ptid_t wait_ptid;
695 struct target_waitstatus wait_status;
696
697 /* Get the last target status returned by target_wait(). */
5b6d1e4f 698 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
699
700 /* If not stopped at a fork event, then there's nothing else to
701 do. */
702 if (wait_status.kind != TARGET_WAITKIND_FORKED
703 && wait_status.kind != TARGET_WAITKIND_VFORKED)
704 return 1;
705
706 /* Check if we switched over from WAIT_PTID, since the event was
707 reported. */
00431a78 708 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
709 && (current_inferior ()->process_target () != wait_target
710 || inferior_ptid != wait_ptid))
e58b0e63
PA
711 {
712 /* We did. Switch back to WAIT_PTID thread, to tell the
713 target to follow it (in either direction). We'll
714 afterwards refuse to resume, and inform the user what
715 happened. */
5b6d1e4f 716 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 717 switch_to_thread (wait_thread);
e58b0e63
PA
718 should_resume = 0;
719 }
720 }
721
722 tp = inferior_thread ();
723
724 /* If there were any forks/vforks that were caught and are now to be
725 followed, then do so now. */
726 switch (tp->pending_follow.kind)
727 {
728 case TARGET_WAITKIND_FORKED:
729 case TARGET_WAITKIND_VFORKED:
730 {
731 ptid_t parent, child;
732
733 /* If the user did a next/step, etc, over a fork call,
734 preserve the stepping state in the fork child. */
735 if (follow_child && should_resume)
736 {
8358c15c
JK
737 step_resume_breakpoint = clone_momentary_breakpoint
738 (tp->control.step_resume_breakpoint);
16c381f0
JK
739 step_range_start = tp->control.step_range_start;
740 step_range_end = tp->control.step_range_end;
741 step_frame_id = tp->control.step_frame_id;
186c406b
TT
742 exception_resume_breakpoint
743 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 744 thread_fsm = tp->thread_fsm;
e58b0e63
PA
745
746 /* For now, delete the parent's sr breakpoint, otherwise,
747 parent/child sr breakpoints are considered duplicates,
748 and the child version will not be installed. Remove
749 this when the breakpoints module becomes aware of
750 inferiors and address spaces. */
751 delete_step_resume_breakpoint (tp);
16c381f0
JK
752 tp->control.step_range_start = 0;
753 tp->control.step_range_end = 0;
754 tp->control.step_frame_id = null_frame_id;
186c406b 755 delete_exception_resume_breakpoint (tp);
8980e177 756 tp->thread_fsm = NULL;
e58b0e63
PA
757 }
758
759 parent = inferior_ptid;
760 child = tp->pending_follow.value.related_pid;
761
5b6d1e4f 762 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
763 /* Set up inferior(s) as specified by the caller, and tell the
764 target to do whatever is necessary to follow either parent
765 or child. */
766 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
767 {
768 /* Target refused to follow, or there's some other reason
769 we shouldn't resume. */
770 should_resume = 0;
771 }
772 else
773 {
774 /* This pending follow fork event is now handled, one way
775 or another. The previous selected thread may be gone
776 from the lists by now, but if it is still around, need
777 to clear the pending follow request. */
5b6d1e4f 778 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
779 if (tp)
780 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
781
782 /* This makes sure we don't try to apply the "Switched
783 over from WAIT_PID" logic above. */
784 nullify_last_target_wait_ptid ();
785
1777feb0 786 /* If we followed the child, switch to it... */
e58b0e63
PA
787 if (follow_child)
788 {
5b6d1e4f 789 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 790 switch_to_thread (child_thr);
e58b0e63
PA
791
792 /* ... and preserve the stepping state, in case the
793 user was stepping over the fork call. */
794 if (should_resume)
795 {
796 tp = inferior_thread ();
8358c15c
JK
797 tp->control.step_resume_breakpoint
798 = step_resume_breakpoint;
16c381f0
JK
799 tp->control.step_range_start = step_range_start;
800 tp->control.step_range_end = step_range_end;
801 tp->control.step_frame_id = step_frame_id;
186c406b
TT
802 tp->control.exception_resume_breakpoint
803 = exception_resume_breakpoint;
8980e177 804 tp->thread_fsm = thread_fsm;
e58b0e63
PA
805 }
806 else
807 {
808 /* If we get here, it was because we're trying to
809 resume from a fork catchpoint, but, the user
810 has switched threads away from the thread that
811 forked. In that case, the resume command
812 issued is most likely not applicable to the
813 child, so just warn, and refuse to resume. */
3e43a32a 814 warning (_("Not resuming: switched threads "
fd7dcb94 815 "before following fork child."));
e58b0e63
PA
816 }
817
818 /* Reset breakpoints in the child as appropriate. */
819 follow_inferior_reset_breakpoints ();
820 }
e58b0e63
PA
821 }
822 }
823 break;
824 case TARGET_WAITKIND_SPURIOUS:
825 /* Nothing to follow. */
826 break;
827 default:
828 internal_error (__FILE__, __LINE__,
829 "Unexpected pending_follow.kind %d\n",
830 tp->pending_follow.kind);
831 break;
832 }
c906108c 833
e58b0e63 834 return should_resume;
c906108c
SS
835}
836
d83ad864 837static void
6604731b 838follow_inferior_reset_breakpoints (void)
c906108c 839{
4e1c45ea
PA
840 struct thread_info *tp = inferior_thread ();
841
6604731b
DJ
842 /* Was there a step_resume breakpoint? (There was if the user
843 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
844 thread number. Cloned step_resume breakpoints are disabled on
845 creation, so enable it here now that it is associated with the
846 correct thread.
6604731b
DJ
847
848 step_resumes are a form of bp that are made to be per-thread.
849 Since we created the step_resume bp when the parent process
850 was being debugged, and now are switching to the child process,
851 from the breakpoint package's viewpoint, that's a switch of
852 "threads". We must update the bp's notion of which thread
853 it is for, or it'll be ignored when it triggers. */
854
8358c15c 855 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
856 {
857 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
858 tp->control.step_resume_breakpoint->loc->enabled = 1;
859 }
6604731b 860
a1aa2221 861 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 862 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
863 {
864 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
865 tp->control.exception_resume_breakpoint->loc->enabled = 1;
866 }
186c406b 867
6604731b
DJ
868 /* Reinsert all breakpoints in the child. The user may have set
869 breakpoints after catching the fork, in which case those
870 were never set in the child, but only in the parent. This makes
871 sure the inserted breakpoints match the breakpoint list. */
872
873 breakpoint_re_set ();
874 insert_breakpoints ();
c906108c 875}
c906108c 876
6c95b8df
PA
877/* The child has exited or execed: resume threads of the parent the
878 user wanted to be executing. */
879
880static int
881proceed_after_vfork_done (struct thread_info *thread,
882 void *arg)
883{
884 int pid = * (int *) arg;
885
00431a78
PA
886 if (thread->ptid.pid () == pid
887 && thread->state == THREAD_RUNNING
888 && !thread->executing
6c95b8df 889 && !thread->stop_requested
a493e3e2 890 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
891 {
892 if (debug_infrun)
893 fprintf_unfiltered (gdb_stdlog,
894 "infrun: resuming vfork parent thread %s\n",
a068643d 895 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 896
00431a78 897 switch_to_thread (thread);
70509625 898 clear_proceed_status (0);
64ce06e4 899 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
900 }
901
902 return 0;
903}
904
5ed8105e
PA
905/* Save/restore inferior_ptid, current program space and current
906 inferior. Only use this if the current context points at an exited
907 inferior (and therefore there's no current thread to save). */
908class scoped_restore_exited_inferior
909{
910public:
911 scoped_restore_exited_inferior ()
912 : m_saved_ptid (&inferior_ptid)
913 {}
914
915private:
916 scoped_restore_tmpl<ptid_t> m_saved_ptid;
917 scoped_restore_current_program_space m_pspace;
918 scoped_restore_current_inferior m_inferior;
919};
920
6c95b8df
PA
921/* Called whenever we notice an exec or exit event, to handle
922 detaching or resuming a vfork parent. */
923
924static void
925handle_vfork_child_exec_or_exit (int exec)
926{
927 struct inferior *inf = current_inferior ();
928
929 if (inf->vfork_parent)
930 {
931 int resume_parent = -1;
932
933 /* This exec or exit marks the end of the shared memory region
b73715df
TV
934 between the parent and the child. Break the bonds. */
935 inferior *vfork_parent = inf->vfork_parent;
936 inf->vfork_parent->vfork_child = NULL;
937 inf->vfork_parent = NULL;
6c95b8df 938
b73715df
TV
939 /* If the user wanted to detach from the parent, now is the
940 time. */
941 if (vfork_parent->pending_detach)
6c95b8df
PA
942 {
943 struct thread_info *tp;
6c95b8df
PA
944 struct program_space *pspace;
945 struct address_space *aspace;
946
1777feb0 947 /* follow-fork child, detach-on-fork on. */
6c95b8df 948
b73715df 949 vfork_parent->pending_detach = 0;
68c9da30 950
5ed8105e
PA
951 gdb::optional<scoped_restore_exited_inferior>
952 maybe_restore_inferior;
953 gdb::optional<scoped_restore_current_pspace_and_thread>
954 maybe_restore_thread;
955
956 /* If we're handling a child exit, then inferior_ptid points
957 at the inferior's pid, not to a thread. */
f50f4e56 958 if (!exec)
5ed8105e 959 maybe_restore_inferior.emplace ();
f50f4e56 960 else
5ed8105e 961 maybe_restore_thread.emplace ();
6c95b8df
PA
962
963 /* We're letting loose of the parent. */
b73715df 964 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 965 switch_to_thread (tp);
6c95b8df
PA
966
967 /* We're about to detach from the parent, which implicitly
968 removes breakpoints from its address space. There's a
969 catch here: we want to reuse the spaces for the child,
970 but, parent/child are still sharing the pspace at this
971 point, although the exec in reality makes the kernel give
972 the child a fresh set of new pages. The problem here is
973 that the breakpoints module being unaware of this, would
974 likely chose the child process to write to the parent
975 address space. Swapping the child temporarily away from
976 the spaces has the desired effect. Yes, this is "sort
977 of" a hack. */
978
979 pspace = inf->pspace;
980 aspace = inf->aspace;
981 inf->aspace = NULL;
982 inf->pspace = NULL;
983
f67c0c91 984 if (print_inferior_events)
6c95b8df 985 {
a068643d 986 std::string pidstr
b73715df 987 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 988
223ffa71 989 target_terminal::ours_for_output ();
6c95b8df
PA
990
991 if (exec)
6f259a23
DB
992 {
993 fprintf_filtered (gdb_stdlog,
f67c0c91 994 _("[Detaching vfork parent %s "
a068643d 995 "after child exec]\n"), pidstr.c_str ());
6f259a23 996 }
6c95b8df 997 else
6f259a23
DB
998 {
999 fprintf_filtered (gdb_stdlog,
f67c0c91 1000 _("[Detaching vfork parent %s "
a068643d 1001 "after child exit]\n"), pidstr.c_str ());
6f259a23 1002 }
6c95b8df
PA
1003 }
1004
b73715df 1005 target_detach (vfork_parent, 0);
6c95b8df
PA
1006
1007 /* Put it back. */
1008 inf->pspace = pspace;
1009 inf->aspace = aspace;
6c95b8df
PA
1010 }
1011 else if (exec)
1012 {
1013 /* We're staying attached to the parent, so, really give the
1014 child a new address space. */
564b1e3f 1015 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1016 inf->aspace = inf->pspace->aspace;
1017 inf->removable = 1;
1018 set_current_program_space (inf->pspace);
1019
b73715df 1020 resume_parent = vfork_parent->pid;
6c95b8df
PA
1021 }
1022 else
1023 {
6c95b8df
PA
1024 struct program_space *pspace;
1025
1026 /* If this is a vfork child exiting, then the pspace and
1027 aspaces were shared with the parent. Since we're
1028 reporting the process exit, we'll be mourning all that is
1029 found in the address space, and switching to null_ptid,
1030 preparing to start a new inferior. But, since we don't
1031 want to clobber the parent's address/program spaces, we
1032 go ahead and create a new one for this exiting
1033 inferior. */
1034
5ed8105e
PA
1035 /* Switch to null_ptid while running clone_program_space, so
1036 that clone_program_space doesn't want to read the
1037 selected frame of a dead process. */
1038 scoped_restore restore_ptid
1039 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1040
1041 /* This inferior is dead, so avoid giving the breakpoints
1042 module the option to write through to it (cloning a
1043 program space resets breakpoints). */
1044 inf->aspace = NULL;
1045 inf->pspace = NULL;
564b1e3f 1046 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1047 set_current_program_space (pspace);
1048 inf->removable = 1;
7dcd53a0 1049 inf->symfile_flags = SYMFILE_NO_READ;
b73715df 1050 clone_program_space (pspace, vfork_parent->pspace);
6c95b8df
PA
1051 inf->pspace = pspace;
1052 inf->aspace = pspace->aspace;
1053
b73715df 1054 resume_parent = vfork_parent->pid;
6c95b8df
PA
1055 }
1056
6c95b8df
PA
1057 gdb_assert (current_program_space == inf->pspace);
1058
1059 if (non_stop && resume_parent != -1)
1060 {
1061 /* If the user wanted the parent to be running, let it go
1062 free now. */
5ed8105e 1063 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1064
1065 if (debug_infrun)
3e43a32a
MS
1066 fprintf_unfiltered (gdb_stdlog,
1067 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1068 resume_parent);
1069
1070 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1071 }
1072 }
1073}
1074
eb6c553b 1075/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1076
1077static const char follow_exec_mode_new[] = "new";
1078static const char follow_exec_mode_same[] = "same";
40478521 1079static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1080{
1081 follow_exec_mode_new,
1082 follow_exec_mode_same,
1083 NULL,
1084};
1085
1086static const char *follow_exec_mode_string = follow_exec_mode_same;
1087static void
1088show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1089 struct cmd_list_element *c, const char *value)
1090{
1091 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1092}
1093
ecf45d2c 1094/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1095
c906108c 1096static void
4ca51187 1097follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1098{
6c95b8df 1099 struct inferior *inf = current_inferior ();
e99b03dc 1100 int pid = ptid.pid ();
94585166 1101 ptid_t process_ptid;
7a292a7a 1102
65d2b333
PW
1103 /* Switch terminal for any messages produced e.g. by
1104 breakpoint_re_set. */
1105 target_terminal::ours_for_output ();
1106
c906108c
SS
1107 /* This is an exec event that we actually wish to pay attention to.
1108 Refresh our symbol table to the newly exec'd program, remove any
1109 momentary bp's, etc.
1110
1111 If there are breakpoints, they aren't really inserted now,
1112 since the exec() transformed our inferior into a fresh set
1113 of instructions.
1114
1115 We want to preserve symbolic breakpoints on the list, since
1116 we have hopes that they can be reset after the new a.out's
1117 symbol table is read.
1118
1119 However, any "raw" breakpoints must be removed from the list
1120 (e.g., the solib bp's), since their address is probably invalid
1121 now.
1122
1123 And, we DON'T want to call delete_breakpoints() here, since
1124 that may write the bp's "shadow contents" (the instruction
85102364 1125 value that was overwritten with a TRAP instruction). Since
1777feb0 1126 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1127
1128 mark_breakpoints_out ();
1129
95e50b27
PA
1130 /* The target reports the exec event to the main thread, even if
1131 some other thread does the exec, and even if the main thread was
1132 stopped or already gone. We may still have non-leader threads of
1133 the process on our list. E.g., on targets that don't have thread
1134 exit events (like remote); or on native Linux in non-stop mode if
1135 there were only two threads in the inferior and the non-leader
1136 one is the one that execs (and nothing forces an update of the
1137 thread list up to here). When debugging remotely, it's best to
1138 avoid extra traffic, when possible, so avoid syncing the thread
1139 list with the target, and instead go ahead and delete all threads
1140 of the process but one that reported the event. Note this must
1141 be done before calling update_breakpoints_after_exec, as
1142 otherwise clearing the threads' resources would reference stale
1143 thread breakpoints -- it may have been one of these threads that
1144 stepped across the exec. We could just clear their stepping
1145 states, but as long as we're iterating, might as well delete
1146 them. Deleting them now rather than at the next user-visible
1147 stop provides a nicer sequence of events for user and MI
1148 notifications. */
08036331 1149 for (thread_info *th : all_threads_safe ())
d7e15655 1150 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1151 delete_thread (th);
95e50b27
PA
1152
1153 /* We also need to clear any left over stale state for the
1154 leader/event thread. E.g., if there was any step-resume
1155 breakpoint or similar, it's gone now. We cannot truly
1156 step-to-next statement through an exec(). */
08036331 1157 thread_info *th = inferior_thread ();
8358c15c 1158 th->control.step_resume_breakpoint = NULL;
186c406b 1159 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1160 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1161 th->control.step_range_start = 0;
1162 th->control.step_range_end = 0;
c906108c 1163
95e50b27
PA
1164 /* The user may have had the main thread held stopped in the
1165 previous image (e.g., schedlock on, or non-stop). Release
1166 it now. */
a75724bc
PA
1167 th->stop_requested = 0;
1168
95e50b27
PA
1169 update_breakpoints_after_exec ();
1170
1777feb0 1171 /* What is this a.out's name? */
f2907e49 1172 process_ptid = ptid_t (pid);
6c95b8df 1173 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1174 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1175 exec_file_target);
c906108c
SS
1176
1177 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1178 inferior has essentially been killed & reborn. */
7a292a7a 1179
6ca15a4b 1180 breakpoint_init_inferior (inf_execd);
e85a822c 1181
797bc1cb
TT
1182 gdb::unique_xmalloc_ptr<char> exec_file_host
1183 = exec_file_find (exec_file_target, NULL);
ff862be4 1184
ecf45d2c
SL
1185 /* If we were unable to map the executable target pathname onto a host
1186 pathname, tell the user that. Otherwise GDB's subsequent behavior
1187 is confusing. Maybe it would even be better to stop at this point
1188 so that the user can specify a file manually before continuing. */
1189 if (exec_file_host == NULL)
1190 warning (_("Could not load symbols for executable %s.\n"
1191 "Do you need \"set sysroot\"?"),
1192 exec_file_target);
c906108c 1193
cce9b6bf
PA
1194 /* Reset the shared library package. This ensures that we get a
1195 shlib event when the child reaches "_start", at which point the
1196 dld will have had a chance to initialize the child. */
1197 /* Also, loading a symbol file below may trigger symbol lookups, and
1198 we don't want those to be satisfied by the libraries of the
1199 previous incarnation of this process. */
1200 no_shared_libraries (NULL, 0);
1201
6c95b8df
PA
1202 if (follow_exec_mode_string == follow_exec_mode_new)
1203 {
6c95b8df
PA
1204 /* The user wants to keep the old inferior and program spaces
1205 around. Create a new fresh one, and switch to it. */
1206
35ed81d4
SM
1207 /* Do exit processing for the original inferior before setting the new
1208 inferior's pid. Having two inferiors with the same pid would confuse
1209 find_inferior_p(t)id. Transfer the terminal state and info from the
1210 old to the new inferior. */
1211 inf = add_inferior_with_spaces ();
1212 swap_terminal_info (inf, current_inferior ());
057302ce 1213 exit_inferior_silent (current_inferior ());
17d8546e 1214
94585166 1215 inf->pid = pid;
ecf45d2c 1216 target_follow_exec (inf, exec_file_target);
6c95b8df 1217
5b6d1e4f
PA
1218 inferior *org_inferior = current_inferior ();
1219 switch_to_inferior_no_thread (inf);
1220 push_target (org_inferior->process_target ());
1221 thread_info *thr = add_thread (inf->process_target (), ptid);
1222 switch_to_thread (thr);
6c95b8df 1223 }
9107fc8d
PA
1224 else
1225 {
1226 /* The old description may no longer be fit for the new image.
1227 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1228 old description; we'll read a new one below. No need to do
1229 this on "follow-exec-mode new", as the old inferior stays
1230 around (its description is later cleared/refetched on
1231 restart). */
1232 target_clear_description ();
1233 }
6c95b8df
PA
1234
1235 gdb_assert (current_program_space == inf->pspace);
1236
ecf45d2c
SL
1237 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1238 because the proper displacement for a PIE (Position Independent
1239 Executable) main symbol file will only be computed by
1240 solib_create_inferior_hook below. breakpoint_re_set would fail
1241 to insert the breakpoints with the zero displacement. */
797bc1cb 1242 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1243
9107fc8d
PA
1244 /* If the target can specify a description, read it. Must do this
1245 after flipping to the new executable (because the target supplied
1246 description must be compatible with the executable's
1247 architecture, and the old executable may e.g., be 32-bit, while
1248 the new one 64-bit), and before anything involving memory or
1249 registers. */
1250 target_find_description ();
1251
268a4a75 1252 solib_create_inferior_hook (0);
c906108c 1253
4efc6507
DE
1254 jit_inferior_created_hook ();
1255
c1e56572
JK
1256 breakpoint_re_set ();
1257
c906108c
SS
1258 /* Reinsert all breakpoints. (Those which were symbolic have
1259 been reset to the proper address in the new a.out, thanks
1777feb0 1260 to symbol_file_command...). */
c906108c
SS
1261 insert_breakpoints ();
1262
1263 /* The next resume of this inferior should bring it to the shlib
1264 startup breakpoints. (If the user had also set bp's on
1265 "main" from the old (parent) process, then they'll auto-
1777feb0 1266 matically get reset there in the new process.). */
c906108c
SS
1267}
1268
c2829269
PA
1269/* The queue of threads that need to do a step-over operation to get
1270 past e.g., a breakpoint. What technique is used to step over the
1271 breakpoint/watchpoint does not matter -- all threads end up in the
1272 same queue, to maintain rough temporal order of execution, in order
1273 to avoid starvation, otherwise, we could e.g., find ourselves
1274 constantly stepping the same couple threads past their breakpoints
1275 over and over, if the single-step finish fast enough. */
1276struct thread_info *step_over_queue_head;
1277
6c4cfb24
PA
1278/* Bit flags indicating what the thread needs to step over. */
1279
8d297bbf 1280enum step_over_what_flag
6c4cfb24
PA
1281 {
1282 /* Step over a breakpoint. */
1283 STEP_OVER_BREAKPOINT = 1,
1284
1285 /* Step past a non-continuable watchpoint, in order to let the
1286 instruction execute so we can evaluate the watchpoint
1287 expression. */
1288 STEP_OVER_WATCHPOINT = 2
1289 };
8d297bbf 1290DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1291
963f9c80 1292/* Info about an instruction that is being stepped over. */
31e77af2
PA
1293
1294struct step_over_info
1295{
963f9c80
PA
1296 /* If we're stepping past a breakpoint, this is the address space
1297 and address of the instruction the breakpoint is set at. We'll
1298 skip inserting all breakpoints here. Valid iff ASPACE is
1299 non-NULL. */
8b86c959 1300 const address_space *aspace;
31e77af2 1301 CORE_ADDR address;
963f9c80
PA
1302
1303 /* The instruction being stepped over triggers a nonsteppable
1304 watchpoint. If true, we'll skip inserting watchpoints. */
1305 int nonsteppable_watchpoint_p;
21edc42f
YQ
1306
1307 /* The thread's global number. */
1308 int thread;
31e77af2
PA
1309};
1310
1311/* The step-over info of the location that is being stepped over.
1312
1313 Note that with async/breakpoint always-inserted mode, a user might
1314 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1315 being stepped over. As setting a new breakpoint inserts all
1316 breakpoints, we need to make sure the breakpoint being stepped over
1317 isn't inserted then. We do that by only clearing the step-over
1318 info when the step-over is actually finished (or aborted).
1319
1320 Presently GDB can only step over one breakpoint at any given time.
1321 Given threads that can't run code in the same address space as the
1322 breakpoint's can't really miss the breakpoint, GDB could be taught
1323 to step-over at most one breakpoint per address space (so this info
1324 could move to the address space object if/when GDB is extended).
1325 The set of breakpoints being stepped over will normally be much
1326 smaller than the set of all breakpoints, so a flag in the
1327 breakpoint location structure would be wasteful. A separate list
1328 also saves complexity and run-time, as otherwise we'd have to go
1329 through all breakpoint locations clearing their flag whenever we
1330 start a new sequence. Similar considerations weigh against storing
1331 this info in the thread object. Plus, not all step overs actually
1332 have breakpoint locations -- e.g., stepping past a single-step
1333 breakpoint, or stepping to complete a non-continuable
1334 watchpoint. */
1335static struct step_over_info step_over_info;
1336
1337/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1338 stepping over.
1339 N.B. We record the aspace and address now, instead of say just the thread,
1340 because when we need the info later the thread may be running. */
31e77af2
PA
1341
1342static void
8b86c959 1343set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1344 int nonsteppable_watchpoint_p,
1345 int thread)
31e77af2
PA
1346{
1347 step_over_info.aspace = aspace;
1348 step_over_info.address = address;
963f9c80 1349 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1350 step_over_info.thread = thread;
31e77af2
PA
1351}
1352
1353/* Called when we're not longer stepping over a breakpoint / an
1354 instruction, so all breakpoints are free to be (re)inserted. */
1355
1356static void
1357clear_step_over_info (void)
1358{
372316f1
PA
1359 if (debug_infrun)
1360 fprintf_unfiltered (gdb_stdlog,
1361 "infrun: clear_step_over_info\n");
31e77af2
PA
1362 step_over_info.aspace = NULL;
1363 step_over_info.address = 0;
963f9c80 1364 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1365 step_over_info.thread = -1;
31e77af2
PA
1366}
1367
7f89fd65 1368/* See infrun.h. */
31e77af2
PA
1369
1370int
1371stepping_past_instruction_at (struct address_space *aspace,
1372 CORE_ADDR address)
1373{
1374 return (step_over_info.aspace != NULL
1375 && breakpoint_address_match (aspace, address,
1376 step_over_info.aspace,
1377 step_over_info.address));
1378}
1379
963f9c80
PA
1380/* See infrun.h. */
1381
21edc42f
YQ
1382int
1383thread_is_stepping_over_breakpoint (int thread)
1384{
1385 return (step_over_info.thread != -1
1386 && thread == step_over_info.thread);
1387}
1388
1389/* See infrun.h. */
1390
963f9c80
PA
1391int
1392stepping_past_nonsteppable_watchpoint (void)
1393{
1394 return step_over_info.nonsteppable_watchpoint_p;
1395}
1396
6cc83d2a
PA
1397/* Returns true if step-over info is valid. */
1398
1399static int
1400step_over_info_valid_p (void)
1401{
963f9c80
PA
1402 return (step_over_info.aspace != NULL
1403 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1404}
1405
c906108c 1406\f
237fc4c9
PA
1407/* Displaced stepping. */
1408
1409/* In non-stop debugging mode, we must take special care to manage
1410 breakpoints properly; in particular, the traditional strategy for
1411 stepping a thread past a breakpoint it has hit is unsuitable.
1412 'Displaced stepping' is a tactic for stepping one thread past a
1413 breakpoint it has hit while ensuring that other threads running
1414 concurrently will hit the breakpoint as they should.
1415
1416 The traditional way to step a thread T off a breakpoint in a
1417 multi-threaded program in all-stop mode is as follows:
1418
1419 a0) Initially, all threads are stopped, and breakpoints are not
1420 inserted.
1421 a1) We single-step T, leaving breakpoints uninserted.
1422 a2) We insert breakpoints, and resume all threads.
1423
1424 In non-stop debugging, however, this strategy is unsuitable: we
1425 don't want to have to stop all threads in the system in order to
1426 continue or step T past a breakpoint. Instead, we use displaced
1427 stepping:
1428
1429 n0) Initially, T is stopped, other threads are running, and
1430 breakpoints are inserted.
1431 n1) We copy the instruction "under" the breakpoint to a separate
1432 location, outside the main code stream, making any adjustments
1433 to the instruction, register, and memory state as directed by
1434 T's architecture.
1435 n2) We single-step T over the instruction at its new location.
1436 n3) We adjust the resulting register and memory state as directed
1437 by T's architecture. This includes resetting T's PC to point
1438 back into the main instruction stream.
1439 n4) We resume T.
1440
1441 This approach depends on the following gdbarch methods:
1442
1443 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1444 indicate where to copy the instruction, and how much space must
1445 be reserved there. We use these in step n1.
1446
1447 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1448 address, and makes any necessary adjustments to the instruction,
1449 register contents, and memory. We use this in step n1.
1450
1451 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1452 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1453 same effect the instruction would have had if we had executed it
1454 at its original address. We use this in step n3.
1455
237fc4c9
PA
1456 The gdbarch_displaced_step_copy_insn and
1457 gdbarch_displaced_step_fixup functions must be written so that
1458 copying an instruction with gdbarch_displaced_step_copy_insn,
1459 single-stepping across the copied instruction, and then applying
1460 gdbarch_displaced_insn_fixup should have the same effects on the
1461 thread's memory and registers as stepping the instruction in place
1462 would have. Exactly which responsibilities fall to the copy and
1463 which fall to the fixup is up to the author of those functions.
1464
1465 See the comments in gdbarch.sh for details.
1466
1467 Note that displaced stepping and software single-step cannot
1468 currently be used in combination, although with some care I think
1469 they could be made to. Software single-step works by placing
1470 breakpoints on all possible subsequent instructions; if the
1471 displaced instruction is a PC-relative jump, those breakpoints
1472 could fall in very strange places --- on pages that aren't
1473 executable, or at addresses that are not proper instruction
1474 boundaries. (We do generally let other threads run while we wait
1475 to hit the software single-step breakpoint, and they might
1476 encounter such a corrupted instruction.) One way to work around
1477 this would be to have gdbarch_displaced_step_copy_insn fully
1478 simulate the effect of PC-relative instructions (and return NULL)
1479 on architectures that use software single-stepping.
1480
1481 In non-stop mode, we can have independent and simultaneous step
1482 requests, so more than one thread may need to simultaneously step
1483 over a breakpoint. The current implementation assumes there is
1484 only one scratch space per process. In this case, we have to
1485 serialize access to the scratch space. If thread A wants to step
1486 over a breakpoint, but we are currently waiting for some other
1487 thread to complete a displaced step, we leave thread A stopped and
1488 place it in the displaced_step_request_queue. Whenever a displaced
1489 step finishes, we pick the next thread in the queue and start a new
1490 displaced step operation on it. See displaced_step_prepare and
1491 displaced_step_fixup for details. */
1492
cfba9872
SM
1493/* Default destructor for displaced_step_closure. */
1494
1495displaced_step_closure::~displaced_step_closure () = default;
1496
fc1cf338
PA
1497/* Get the displaced stepping state of process PID. */
1498
39a36629 1499static displaced_step_inferior_state *
00431a78 1500get_displaced_stepping_state (inferior *inf)
fc1cf338 1501{
d20172fc 1502 return &inf->displaced_step_state;
fc1cf338
PA
1503}
1504
372316f1
PA
1505/* Returns true if any inferior has a thread doing a displaced
1506 step. */
1507
39a36629
SM
1508static bool
1509displaced_step_in_progress_any_inferior ()
372316f1 1510{
d20172fc 1511 for (inferior *i : all_inferiors ())
39a36629 1512 {
d20172fc 1513 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1514 return true;
1515 }
372316f1 1516
39a36629 1517 return false;
372316f1
PA
1518}
1519
c0987663
YQ
1520/* Return true if thread represented by PTID is doing a displaced
1521 step. */
1522
1523static int
00431a78 1524displaced_step_in_progress_thread (thread_info *thread)
c0987663 1525{
00431a78 1526 gdb_assert (thread != NULL);
c0987663 1527
d20172fc 1528 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1529}
1530
8f572e5c
PA
1531/* Return true if process PID has a thread doing a displaced step. */
1532
1533static int
00431a78 1534displaced_step_in_progress (inferior *inf)
8f572e5c 1535{
d20172fc 1536 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1537}
1538
a42244db
YQ
1539/* If inferior is in displaced stepping, and ADDR equals to starting address
1540 of copy area, return corresponding displaced_step_closure. Otherwise,
1541 return NULL. */
1542
1543struct displaced_step_closure*
1544get_displaced_step_closure_by_addr (CORE_ADDR addr)
1545{
d20172fc 1546 displaced_step_inferior_state *displaced
00431a78 1547 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1548
1549 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1550 if (displaced->step_thread != nullptr
00431a78 1551 && displaced->step_copy == addr)
a42244db
YQ
1552 return displaced->step_closure;
1553
1554 return NULL;
1555}
1556
fc1cf338
PA
1557static void
1558infrun_inferior_exit (struct inferior *inf)
1559{
d20172fc 1560 inf->displaced_step_state.reset ();
fc1cf338 1561}
237fc4c9 1562
fff08868
HZ
1563/* If ON, and the architecture supports it, GDB will use displaced
1564 stepping to step over breakpoints. If OFF, or if the architecture
1565 doesn't support it, GDB will instead use the traditional
1566 hold-and-step approach. If AUTO (which is the default), GDB will
1567 decide which technique to use to step over breakpoints depending on
1568 which of all-stop or non-stop mode is active --- displaced stepping
1569 in non-stop mode; hold-and-step in all-stop mode. */
1570
72d0e2c5 1571static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1572
237fc4c9
PA
1573static void
1574show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1575 struct cmd_list_element *c,
1576 const char *value)
1577{
72d0e2c5 1578 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1579 fprintf_filtered (file,
1580 _("Debugger's willingness to use displaced stepping "
1581 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1582 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1583 else
3e43a32a
MS
1584 fprintf_filtered (file,
1585 _("Debugger's willingness to use displaced stepping "
1586 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1587}
1588
fff08868 1589/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1590 over breakpoints of thread TP. */
fff08868 1591
237fc4c9 1592static int
3fc8eb30 1593use_displaced_stepping (struct thread_info *tp)
237fc4c9 1594{
00431a78 1595 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1596 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1597 displaced_step_inferior_state *displaced_state
1598 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1599
fbea99ea
PA
1600 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1601 && target_is_non_stop_p ())
72d0e2c5 1602 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1603 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1604 && find_record_target () == NULL
d20172fc 1605 && !displaced_state->failed_before);
237fc4c9
PA
1606}
1607
1608/* Clean out any stray displaced stepping state. */
1609static void
fc1cf338 1610displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1611{
1612 /* Indicate that there is no cleanup pending. */
00431a78 1613 displaced->step_thread = nullptr;
237fc4c9 1614
cfba9872 1615 delete displaced->step_closure;
6d45d4b4 1616 displaced->step_closure = NULL;
237fc4c9
PA
1617}
1618
9799571e
TT
1619/* A cleanup that wraps displaced_step_clear. */
1620using displaced_step_clear_cleanup
1621 = FORWARD_SCOPE_EXIT (displaced_step_clear);
237fc4c9
PA
1622
1623/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1624void
1625displaced_step_dump_bytes (struct ui_file *file,
1626 const gdb_byte *buf,
1627 size_t len)
1628{
1629 int i;
1630
1631 for (i = 0; i < len; i++)
1632 fprintf_unfiltered (file, "%02x ", buf[i]);
1633 fputs_unfiltered ("\n", file);
1634}
1635
1636/* Prepare to single-step, using displaced stepping.
1637
1638 Note that we cannot use displaced stepping when we have a signal to
1639 deliver. If we have a signal to deliver and an instruction to step
1640 over, then after the step, there will be no indication from the
1641 target whether the thread entered a signal handler or ignored the
1642 signal and stepped over the instruction successfully --- both cases
1643 result in a simple SIGTRAP. In the first case we mustn't do a
1644 fixup, and in the second case we must --- but we can't tell which.
1645 Comments in the code for 'random signals' in handle_inferior_event
1646 explain how we handle this case instead.
1647
1648 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1649 stepped now; 0 if displaced stepping this thread got queued; or -1
1650 if this instruction can't be displaced stepped. */
1651
237fc4c9 1652static int
00431a78 1653displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1654{
00431a78 1655 regcache *regcache = get_thread_regcache (tp);
ac7936df 1656 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1657 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1658 CORE_ADDR original, copy;
1659 ULONGEST len;
1660 struct displaced_step_closure *closure;
9e529e1d 1661 int status;
237fc4c9
PA
1662
1663 /* We should never reach this function if the architecture does not
1664 support displaced stepping. */
1665 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1666
c2829269
PA
1667 /* Nor if the thread isn't meant to step over a breakpoint. */
1668 gdb_assert (tp->control.trap_expected);
1669
c1e36e3e
PA
1670 /* Disable range stepping while executing in the scratch pad. We
1671 want a single-step even if executing the displaced instruction in
1672 the scratch buffer lands within the stepping range (e.g., a
1673 jump/branch). */
1674 tp->control.may_range_step = 0;
1675
fc1cf338
PA
1676 /* We have to displaced step one thread at a time, as we only have
1677 access to a single scratch space per inferior. */
237fc4c9 1678
d20172fc
SM
1679 displaced_step_inferior_state *displaced
1680 = get_displaced_stepping_state (tp->inf);
fc1cf338 1681
00431a78 1682 if (displaced->step_thread != nullptr)
237fc4c9
PA
1683 {
1684 /* Already waiting for a displaced step to finish. Defer this
1685 request and place in queue. */
237fc4c9
PA
1686
1687 if (debug_displaced)
1688 fprintf_unfiltered (gdb_stdlog,
c2829269 1689 "displaced: deferring step of %s\n",
a068643d 1690 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1691
c2829269 1692 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1693 return 0;
1694 }
1695 else
1696 {
1697 if (debug_displaced)
1698 fprintf_unfiltered (gdb_stdlog,
1699 "displaced: stepping %s now\n",
a068643d 1700 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1701 }
1702
fc1cf338 1703 displaced_step_clear (displaced);
237fc4c9 1704
00431a78
PA
1705 scoped_restore_current_thread restore_thread;
1706
1707 switch_to_thread (tp);
ad53cd71 1708
515630c5 1709 original = regcache_read_pc (regcache);
237fc4c9
PA
1710
1711 copy = gdbarch_displaced_step_location (gdbarch);
1712 len = gdbarch_max_insn_length (gdbarch);
1713
d35ae833
PA
1714 if (breakpoint_in_range_p (aspace, copy, len))
1715 {
1716 /* There's a breakpoint set in the scratch pad location range
1717 (which is usually around the entry point). We'd either
1718 install it before resuming, which would overwrite/corrupt the
1719 scratch pad, or if it was already inserted, this displaced
1720 step would overwrite it. The latter is OK in the sense that
1721 we already assume that no thread is going to execute the code
1722 in the scratch pad range (after initial startup) anyway, but
1723 the former is unacceptable. Simply punt and fallback to
1724 stepping over this breakpoint in-line. */
1725 if (debug_displaced)
1726 {
1727 fprintf_unfiltered (gdb_stdlog,
1728 "displaced: breakpoint set in scratch pad. "
1729 "Stepping over breakpoint in-line instead.\n");
1730 }
1731
d35ae833
PA
1732 return -1;
1733 }
1734
237fc4c9 1735 /* Save the original contents of the copy area. */
d20172fc
SM
1736 displaced->step_saved_copy.resize (len);
1737 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1738 if (status != 0)
1739 throw_error (MEMORY_ERROR,
1740 _("Error accessing memory address %s (%s) for "
1741 "displaced-stepping scratch space."),
1742 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1743 if (debug_displaced)
1744 {
5af949e3
UW
1745 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1746 paddress (gdbarch, copy));
fc1cf338 1747 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1748 displaced->step_saved_copy.data (),
fc1cf338 1749 len);
237fc4c9
PA
1750 };
1751
1752 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1753 original, copy, regcache);
7f03bd92
PA
1754 if (closure == NULL)
1755 {
1756 /* The architecture doesn't know how or want to displaced step
1757 this instruction or instruction sequence. Fallback to
1758 stepping over the breakpoint in-line. */
7f03bd92
PA
1759 return -1;
1760 }
237fc4c9 1761
9f5a595d
UW
1762 /* Save the information we need to fix things up if the step
1763 succeeds. */
00431a78 1764 displaced->step_thread = tp;
fc1cf338
PA
1765 displaced->step_gdbarch = gdbarch;
1766 displaced->step_closure = closure;
1767 displaced->step_original = original;
1768 displaced->step_copy = copy;
9f5a595d 1769
9799571e
TT
1770 {
1771 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1772
9799571e
TT
1773 /* Resume execution at the copy. */
1774 regcache_write_pc (regcache, copy);
237fc4c9 1775
9799571e
TT
1776 cleanup.release ();
1777 }
ad53cd71 1778
237fc4c9 1779 if (debug_displaced)
5af949e3
UW
1780 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1781 paddress (gdbarch, copy));
237fc4c9 1782
237fc4c9
PA
1783 return 1;
1784}
1785
3fc8eb30
PA
1786/* Wrapper for displaced_step_prepare_throw that disabled further
1787 attempts at displaced stepping if we get a memory error. */
1788
1789static int
00431a78 1790displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1791{
1792 int prepared = -1;
1793
a70b8144 1794 try
3fc8eb30 1795 {
00431a78 1796 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1797 }
230d2906 1798 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1799 {
1800 struct displaced_step_inferior_state *displaced_state;
1801
16b41842
PA
1802 if (ex.error != MEMORY_ERROR
1803 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1804 throw;
3fc8eb30
PA
1805
1806 if (debug_infrun)
1807 {
1808 fprintf_unfiltered (gdb_stdlog,
1809 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1810 ex.what ());
3fc8eb30
PA
1811 }
1812
1813 /* Be verbose if "set displaced-stepping" is "on", silent if
1814 "auto". */
1815 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1816 {
fd7dcb94 1817 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1818 ex.what ());
3fc8eb30
PA
1819 }
1820
1821 /* Disable further displaced stepping attempts. */
1822 displaced_state
00431a78 1823 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1824 displaced_state->failed_before = 1;
1825 }
3fc8eb30
PA
1826
1827 return prepared;
1828}
1829
237fc4c9 1830static void
3e43a32a
MS
1831write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1832 const gdb_byte *myaddr, int len)
237fc4c9 1833{
2989a365 1834 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1835
237fc4c9
PA
1836 inferior_ptid = ptid;
1837 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1838}
1839
e2d96639
YQ
1840/* Restore the contents of the copy area for thread PTID. */
1841
1842static void
1843displaced_step_restore (struct displaced_step_inferior_state *displaced,
1844 ptid_t ptid)
1845{
1846 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1847
1848 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1849 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1850 if (debug_displaced)
1851 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1852 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1853 paddress (displaced->step_gdbarch,
1854 displaced->step_copy));
1855}
1856
372316f1
PA
1857/* If we displaced stepped an instruction successfully, adjust
1858 registers and memory to yield the same effect the instruction would
1859 have had if we had executed it at its original address, and return
1860 1. If the instruction didn't complete, relocate the PC and return
1861 -1. If the thread wasn't displaced stepping, return 0. */
1862
1863static int
00431a78 1864displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1865{
fc1cf338 1866 struct displaced_step_inferior_state *displaced
00431a78 1867 = get_displaced_stepping_state (event_thread->inf);
372316f1 1868 int ret;
fc1cf338 1869
00431a78
PA
1870 /* Was this event for the thread we displaced? */
1871 if (displaced->step_thread != event_thread)
372316f1 1872 return 0;
237fc4c9 1873
9799571e 1874 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1875
00431a78 1876 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1877
cb71640d
PA
1878 /* Fixup may need to read memory/registers. Switch to the thread
1879 that we're fixing up. Also, target_stopped_by_watchpoint checks
1880 the current thread. */
00431a78 1881 switch_to_thread (event_thread);
cb71640d 1882
237fc4c9 1883 /* Did the instruction complete successfully? */
cb71640d
PA
1884 if (signal == GDB_SIGNAL_TRAP
1885 && !(target_stopped_by_watchpoint ()
1886 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1887 || target_have_steppable_watchpoint)))
237fc4c9
PA
1888 {
1889 /* Fix up the resulting state. */
fc1cf338
PA
1890 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1891 displaced->step_closure,
1892 displaced->step_original,
1893 displaced->step_copy,
00431a78 1894 get_thread_regcache (displaced->step_thread));
372316f1 1895 ret = 1;
237fc4c9
PA
1896 }
1897 else
1898 {
1899 /* Since the instruction didn't complete, all we can do is
1900 relocate the PC. */
00431a78 1901 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1902 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1903
fc1cf338 1904 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1905 regcache_write_pc (regcache, pc);
372316f1 1906 ret = -1;
237fc4c9
PA
1907 }
1908
372316f1 1909 return ret;
c2829269 1910}
1c5cfe86 1911
4d9d9d04
PA
1912/* Data to be passed around while handling an event. This data is
1913 discarded between events. */
1914struct execution_control_state
1915{
5b6d1e4f 1916 process_stratum_target *target;
4d9d9d04
PA
1917 ptid_t ptid;
1918 /* The thread that got the event, if this was a thread event; NULL
1919 otherwise. */
1920 struct thread_info *event_thread;
1921
1922 struct target_waitstatus ws;
1923 int stop_func_filled_in;
1924 CORE_ADDR stop_func_start;
1925 CORE_ADDR stop_func_end;
1926 const char *stop_func_name;
1927 int wait_some_more;
1928
1929 /* True if the event thread hit the single-step breakpoint of
1930 another thread. Thus the event doesn't cause a stop, the thread
1931 needs to be single-stepped past the single-step breakpoint before
1932 we can switch back to the original stepping thread. */
1933 int hit_singlestep_breakpoint;
1934};
1935
1936/* Clear ECS and set it to point at TP. */
c2829269
PA
1937
1938static void
4d9d9d04
PA
1939reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1940{
1941 memset (ecs, 0, sizeof (*ecs));
1942 ecs->event_thread = tp;
1943 ecs->ptid = tp->ptid;
1944}
1945
1946static void keep_going_pass_signal (struct execution_control_state *ecs);
1947static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1948static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1949static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1950
1951/* Are there any pending step-over requests? If so, run all we can
1952 now and return true. Otherwise, return false. */
1953
1954static int
c2829269
PA
1955start_step_over (void)
1956{
1957 struct thread_info *tp, *next;
1958
372316f1
PA
1959 /* Don't start a new step-over if we already have an in-line
1960 step-over operation ongoing. */
1961 if (step_over_info_valid_p ())
1962 return 0;
1963
c2829269 1964 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1965 {
4d9d9d04
PA
1966 struct execution_control_state ecss;
1967 struct execution_control_state *ecs = &ecss;
8d297bbf 1968 step_over_what step_what;
372316f1 1969 int must_be_in_line;
c2829269 1970
c65d6b55
PA
1971 gdb_assert (!tp->stop_requested);
1972
c2829269 1973 next = thread_step_over_chain_next (tp);
237fc4c9 1974
c2829269
PA
1975 /* If this inferior already has a displaced step in process,
1976 don't start a new one. */
00431a78 1977 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1978 continue;
1979
372316f1
PA
1980 step_what = thread_still_needs_step_over (tp);
1981 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1982 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1983 && !use_displaced_stepping (tp)));
372316f1
PA
1984
1985 /* We currently stop all threads of all processes to step-over
1986 in-line. If we need to start a new in-line step-over, let
1987 any pending displaced steps finish first. */
1988 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1989 return 0;
1990
c2829269
PA
1991 thread_step_over_chain_remove (tp);
1992
1993 if (step_over_queue_head == NULL)
1994 {
1995 if (debug_infrun)
1996 fprintf_unfiltered (gdb_stdlog,
1997 "infrun: step-over queue now empty\n");
1998 }
1999
372316f1
PA
2000 if (tp->control.trap_expected
2001 || tp->resumed
2002 || tp->executing)
ad53cd71 2003 {
4d9d9d04
PA
2004 internal_error (__FILE__, __LINE__,
2005 "[%s] has inconsistent state: "
372316f1 2006 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 2007 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 2008 tp->control.trap_expected,
372316f1 2009 tp->resumed,
4d9d9d04 2010 tp->executing);
ad53cd71 2011 }
1c5cfe86 2012
4d9d9d04
PA
2013 if (debug_infrun)
2014 fprintf_unfiltered (gdb_stdlog,
2015 "infrun: resuming [%s] for step-over\n",
a068643d 2016 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
2017
2018 /* keep_going_pass_signal skips the step-over if the breakpoint
2019 is no longer inserted. In all-stop, we want to keep looking
2020 for a thread that needs a step-over instead of resuming TP,
2021 because we wouldn't be able to resume anything else until the
2022 target stops again. In non-stop, the resume always resumes
2023 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2024 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2025 continue;
8550d3b3 2026
00431a78 2027 switch_to_thread (tp);
4d9d9d04
PA
2028 reset_ecs (ecs, tp);
2029 keep_going_pass_signal (ecs);
1c5cfe86 2030
4d9d9d04
PA
2031 if (!ecs->wait_some_more)
2032 error (_("Command aborted."));
1c5cfe86 2033
372316f1
PA
2034 gdb_assert (tp->resumed);
2035
2036 /* If we started a new in-line step-over, we're done. */
2037 if (step_over_info_valid_p ())
2038 {
2039 gdb_assert (tp->control.trap_expected);
2040 return 1;
2041 }
2042
fbea99ea 2043 if (!target_is_non_stop_p ())
4d9d9d04
PA
2044 {
2045 /* On all-stop, shouldn't have resumed unless we needed a
2046 step over. */
2047 gdb_assert (tp->control.trap_expected
2048 || tp->step_after_step_resume_breakpoint);
2049
2050 /* With remote targets (at least), in all-stop, we can't
2051 issue any further remote commands until the program stops
2052 again. */
2053 return 1;
1c5cfe86 2054 }
c2829269 2055
4d9d9d04
PA
2056 /* Either the thread no longer needed a step-over, or a new
2057 displaced stepping sequence started. Even in the latter
2058 case, continue looking. Maybe we can also start another
2059 displaced step on a thread of other process. */
237fc4c9 2060 }
4d9d9d04
PA
2061
2062 return 0;
237fc4c9
PA
2063}
2064
5231c1fd
PA
2065/* Update global variables holding ptids to hold NEW_PTID if they were
2066 holding OLD_PTID. */
2067static void
2068infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2069{
d7e15655 2070 if (inferior_ptid == old_ptid)
5231c1fd 2071 inferior_ptid = new_ptid;
5231c1fd
PA
2072}
2073
237fc4c9 2074\f
c906108c 2075
53904c9e
AC
2076static const char schedlock_off[] = "off";
2077static const char schedlock_on[] = "on";
2078static const char schedlock_step[] = "step";
f2665db5 2079static const char schedlock_replay[] = "replay";
40478521 2080static const char *const scheduler_enums[] = {
ef346e04
AC
2081 schedlock_off,
2082 schedlock_on,
2083 schedlock_step,
f2665db5 2084 schedlock_replay,
ef346e04
AC
2085 NULL
2086};
f2665db5 2087static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2088static void
2089show_scheduler_mode (struct ui_file *file, int from_tty,
2090 struct cmd_list_element *c, const char *value)
2091{
3e43a32a
MS
2092 fprintf_filtered (file,
2093 _("Mode for locking scheduler "
2094 "during execution is \"%s\".\n"),
920d2a44
AC
2095 value);
2096}
c906108c
SS
2097
2098static void
eb4c3f4a 2099set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2100{
eefe576e
AC
2101 if (!target_can_lock_scheduler)
2102 {
2103 scheduler_mode = schedlock_off;
2104 error (_("Target '%s' cannot support this command."), target_shortname);
2105 }
c906108c
SS
2106}
2107
d4db2f36
PA
2108/* True if execution commands resume all threads of all processes by
2109 default; otherwise, resume only threads of the current inferior
2110 process. */
491144b5 2111bool sched_multi = false;
d4db2f36 2112
2facfe5c
DD
2113/* Try to setup for software single stepping over the specified location.
2114 Return 1 if target_resume() should use hardware single step.
2115
2116 GDBARCH the current gdbarch.
2117 PC the location to step over. */
2118
2119static int
2120maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2121{
2122 int hw_step = 1;
2123
f02253f1 2124 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2125 && gdbarch_software_single_step_p (gdbarch))
2126 hw_step = !insert_single_step_breakpoints (gdbarch);
2127
2facfe5c
DD
2128 return hw_step;
2129}
c906108c 2130
f3263aa4
PA
2131/* See infrun.h. */
2132
09cee04b
PA
2133ptid_t
2134user_visible_resume_ptid (int step)
2135{
f3263aa4 2136 ptid_t resume_ptid;
09cee04b 2137
09cee04b
PA
2138 if (non_stop)
2139 {
2140 /* With non-stop mode on, threads are always handled
2141 individually. */
2142 resume_ptid = inferior_ptid;
2143 }
2144 else if ((scheduler_mode == schedlock_on)
03d46957 2145 || (scheduler_mode == schedlock_step && step))
09cee04b 2146 {
f3263aa4
PA
2147 /* User-settable 'scheduler' mode requires solo thread
2148 resume. */
09cee04b
PA
2149 resume_ptid = inferior_ptid;
2150 }
f2665db5
MM
2151 else if ((scheduler_mode == schedlock_replay)
2152 && target_record_will_replay (minus_one_ptid, execution_direction))
2153 {
2154 /* User-settable 'scheduler' mode requires solo thread resume in replay
2155 mode. */
2156 resume_ptid = inferior_ptid;
2157 }
f3263aa4
PA
2158 else if (!sched_multi && target_supports_multi_process ())
2159 {
2160 /* Resume all threads of the current process (and none of other
2161 processes). */
e99b03dc 2162 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2163 }
2164 else
2165 {
2166 /* Resume all threads of all processes. */
2167 resume_ptid = RESUME_ALL;
2168 }
09cee04b
PA
2169
2170 return resume_ptid;
2171}
2172
5b6d1e4f
PA
2173/* See infrun.h. */
2174
2175process_stratum_target *
2176user_visible_resume_target (ptid_t resume_ptid)
2177{
2178 return (resume_ptid == minus_one_ptid && sched_multi
2179 ? NULL
2180 : current_inferior ()->process_target ());
2181}
2182
fbea99ea
PA
2183/* Return a ptid representing the set of threads that we will resume,
2184 in the perspective of the target, assuming run control handling
2185 does not require leaving some threads stopped (e.g., stepping past
2186 breakpoint). USER_STEP indicates whether we're about to start the
2187 target for a stepping command. */
2188
2189static ptid_t
2190internal_resume_ptid (int user_step)
2191{
2192 /* In non-stop, we always control threads individually. Note that
2193 the target may always work in non-stop mode even with "set
2194 non-stop off", in which case user_visible_resume_ptid could
2195 return a wildcard ptid. */
2196 if (target_is_non_stop_p ())
2197 return inferior_ptid;
2198 else
2199 return user_visible_resume_ptid (user_step);
2200}
2201
64ce06e4
PA
2202/* Wrapper for target_resume, that handles infrun-specific
2203 bookkeeping. */
2204
2205static void
2206do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2207{
2208 struct thread_info *tp = inferior_thread ();
2209
c65d6b55
PA
2210 gdb_assert (!tp->stop_requested);
2211
64ce06e4 2212 /* Install inferior's terminal modes. */
223ffa71 2213 target_terminal::inferior ();
64ce06e4
PA
2214
2215 /* Avoid confusing the next resume, if the next stop/resume
2216 happens to apply to another thread. */
2217 tp->suspend.stop_signal = GDB_SIGNAL_0;
2218
8f572e5c
PA
2219 /* Advise target which signals may be handled silently.
2220
2221 If we have removed breakpoints because we are stepping over one
2222 in-line (in any thread), we need to receive all signals to avoid
2223 accidentally skipping a breakpoint during execution of a signal
2224 handler.
2225
2226 Likewise if we're displaced stepping, otherwise a trap for a
2227 breakpoint in a signal handler might be confused with the
2228 displaced step finishing. We don't make the displaced_step_fixup
2229 step distinguish the cases instead, because:
2230
2231 - a backtrace while stopped in the signal handler would show the
2232 scratch pad as frame older than the signal handler, instead of
2233 the real mainline code.
2234
2235 - when the thread is later resumed, the signal handler would
2236 return to the scratch pad area, which would no longer be
2237 valid. */
2238 if (step_over_info_valid_p ()
00431a78 2239 || displaced_step_in_progress (tp->inf))
adc6a863 2240 target_pass_signals ({});
64ce06e4 2241 else
adc6a863 2242 target_pass_signals (signal_pass);
64ce06e4
PA
2243
2244 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2245
2246 target_commit_resume ();
5b6d1e4f
PA
2247
2248 if (target_can_async_p ())
2249 target_async (1);
64ce06e4
PA
2250}
2251
d930703d 2252/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2253 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2254 call 'resume', which handles exceptions. */
c906108c 2255
71d378ae
PA
2256static void
2257resume_1 (enum gdb_signal sig)
c906108c 2258{
515630c5 2259 struct regcache *regcache = get_current_regcache ();
ac7936df 2260 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2261 struct thread_info *tp = inferior_thread ();
515630c5 2262 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2263 const address_space *aspace = regcache->aspace ();
b0f16a3e 2264 ptid_t resume_ptid;
856e7dd6
PA
2265 /* This represents the user's step vs continue request. When
2266 deciding whether "set scheduler-locking step" applies, it's the
2267 user's intention that counts. */
2268 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2269 /* This represents what we'll actually request the target to do.
2270 This can decay from a step to a continue, if e.g., we need to
2271 implement single-stepping with breakpoints (software
2272 single-step). */
6b403daa 2273 int step;
c7e8a53c 2274
c65d6b55 2275 gdb_assert (!tp->stop_requested);
c2829269
PA
2276 gdb_assert (!thread_is_in_step_over_chain (tp));
2277
372316f1
PA
2278 if (tp->suspend.waitstatus_pending_p)
2279 {
2280 if (debug_infrun)
2281 {
23fdd69e
SM
2282 std::string statstr
2283 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2284
372316f1 2285 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2286 "infrun: resume: thread %s has pending wait "
2287 "status %s (currently_stepping=%d).\n",
a068643d
TT
2288 target_pid_to_str (tp->ptid).c_str (),
2289 statstr.c_str (),
372316f1 2290 currently_stepping (tp));
372316f1
PA
2291 }
2292
5b6d1e4f 2293 tp->inf->process_target ()->threads_executing = true;
372316f1
PA
2294 tp->resumed = 1;
2295
2296 /* FIXME: What should we do if we are supposed to resume this
2297 thread with a signal? Maybe we should maintain a queue of
2298 pending signals to deliver. */
2299 if (sig != GDB_SIGNAL_0)
2300 {
fd7dcb94 2301 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2302 gdb_signal_to_name (sig),
2303 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2304 }
2305
2306 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2307
2308 if (target_can_async_p ())
9516f85a
AB
2309 {
2310 target_async (1);
2311 /* Tell the event loop we have an event to process. */
2312 mark_async_event_handler (infrun_async_inferior_event_token);
2313 }
372316f1
PA
2314 return;
2315 }
2316
2317 tp->stepped_breakpoint = 0;
2318
6b403daa
PA
2319 /* Depends on stepped_breakpoint. */
2320 step = currently_stepping (tp);
2321
74609e71
YQ
2322 if (current_inferior ()->waiting_for_vfork_done)
2323 {
48f9886d
PA
2324 /* Don't try to single-step a vfork parent that is waiting for
2325 the child to get out of the shared memory region (by exec'ing
2326 or exiting). This is particularly important on software
2327 single-step archs, as the child process would trip on the
2328 software single step breakpoint inserted for the parent
2329 process. Since the parent will not actually execute any
2330 instruction until the child is out of the shared region (such
2331 are vfork's semantics), it is safe to simply continue it.
2332 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2333 the parent, and tell it to `keep_going', which automatically
2334 re-sets it stepping. */
74609e71
YQ
2335 if (debug_infrun)
2336 fprintf_unfiltered (gdb_stdlog,
2337 "infrun: resume : clear step\n");
a09dd441 2338 step = 0;
74609e71
YQ
2339 }
2340
527159b7 2341 if (debug_infrun)
237fc4c9 2342 fprintf_unfiltered (gdb_stdlog,
c9737c08 2343 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2344 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2345 step, gdb_signal_to_symbol_string (sig),
2346 tp->control.trap_expected,
a068643d 2347 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2348 paddress (gdbarch, pc));
c906108c 2349
c2c6d25f
JM
2350 /* Normally, by the time we reach `resume', the breakpoints are either
2351 removed or inserted, as appropriate. The exception is if we're sitting
2352 at a permanent breakpoint; we need to step over it, but permanent
2353 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2354 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2355 {
af48d08f
PA
2356 if (sig != GDB_SIGNAL_0)
2357 {
2358 /* We have a signal to pass to the inferior. The resume
2359 may, or may not take us to the signal handler. If this
2360 is a step, we'll need to stop in the signal handler, if
2361 there's one, (if the target supports stepping into
2362 handlers), or in the next mainline instruction, if
2363 there's no handler. If this is a continue, we need to be
2364 sure to run the handler with all breakpoints inserted.
2365 In all cases, set a breakpoint at the current address
2366 (where the handler returns to), and once that breakpoint
2367 is hit, resume skipping the permanent breakpoint. If
2368 that breakpoint isn't hit, then we've stepped into the
2369 signal handler (or hit some other event). We'll delete
2370 the step-resume breakpoint then. */
2371
2372 if (debug_infrun)
2373 fprintf_unfiltered (gdb_stdlog,
2374 "infrun: resume: skipping permanent breakpoint, "
2375 "deliver signal first\n");
2376
2377 clear_step_over_info ();
2378 tp->control.trap_expected = 0;
2379
2380 if (tp->control.step_resume_breakpoint == NULL)
2381 {
2382 /* Set a "high-priority" step-resume, as we don't want
2383 user breakpoints at PC to trigger (again) when this
2384 hits. */
2385 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2386 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2387
2388 tp->step_after_step_resume_breakpoint = step;
2389 }
2390
2391 insert_breakpoints ();
2392 }
2393 else
2394 {
2395 /* There's no signal to pass, we can go ahead and skip the
2396 permanent breakpoint manually. */
2397 if (debug_infrun)
2398 fprintf_unfiltered (gdb_stdlog,
2399 "infrun: resume: skipping permanent breakpoint\n");
2400 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2401 /* Update pc to reflect the new address from which we will
2402 execute instructions. */
2403 pc = regcache_read_pc (regcache);
2404
2405 if (step)
2406 {
2407 /* We've already advanced the PC, so the stepping part
2408 is done. Now we need to arrange for a trap to be
2409 reported to handle_inferior_event. Set a breakpoint
2410 at the current PC, and run to it. Don't update
2411 prev_pc, because if we end in
44a1ee51
PA
2412 switch_back_to_stepped_thread, we want the "expected
2413 thread advanced also" branch to be taken. IOW, we
2414 don't want this thread to step further from PC
af48d08f 2415 (overstep). */
1ac806b8 2416 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2417 insert_single_step_breakpoint (gdbarch, aspace, pc);
2418 insert_breakpoints ();
2419
fbea99ea 2420 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2421 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2422 tp->resumed = 1;
af48d08f
PA
2423 return;
2424 }
2425 }
6d350bb5 2426 }
c2c6d25f 2427
c1e36e3e
PA
2428 /* If we have a breakpoint to step over, make sure to do a single
2429 step only. Same if we have software watchpoints. */
2430 if (tp->control.trap_expected || bpstat_should_step ())
2431 tp->control.may_range_step = 0;
2432
237fc4c9
PA
2433 /* If enabled, step over breakpoints by executing a copy of the
2434 instruction at a different address.
2435
2436 We can't use displaced stepping when we have a signal to deliver;
2437 the comments for displaced_step_prepare explain why. The
2438 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2439 signals' explain what we do instead.
2440
2441 We can't use displaced stepping when we are waiting for vfork_done
2442 event, displaced stepping breaks the vfork child similarly as single
2443 step software breakpoint. */
3fc8eb30
PA
2444 if (tp->control.trap_expected
2445 && use_displaced_stepping (tp)
cb71640d 2446 && !step_over_info_valid_p ()
a493e3e2 2447 && sig == GDB_SIGNAL_0
74609e71 2448 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2449 {
00431a78 2450 int prepared = displaced_step_prepare (tp);
fc1cf338 2451
3fc8eb30 2452 if (prepared == 0)
d56b7306 2453 {
4d9d9d04
PA
2454 if (debug_infrun)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "Got placed in step-over queue\n");
2457
2458 tp->control.trap_expected = 0;
d56b7306
VP
2459 return;
2460 }
3fc8eb30
PA
2461 else if (prepared < 0)
2462 {
2463 /* Fallback to stepping over the breakpoint in-line. */
2464
2465 if (target_is_non_stop_p ())
2466 stop_all_threads ();
2467
a01bda52 2468 set_step_over_info (regcache->aspace (),
21edc42f 2469 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2470
2471 step = maybe_software_singlestep (gdbarch, pc);
2472
2473 insert_breakpoints ();
2474 }
2475 else if (prepared > 0)
2476 {
2477 struct displaced_step_inferior_state *displaced;
99e40580 2478
3fc8eb30
PA
2479 /* Update pc to reflect the new address from which we will
2480 execute instructions due to displaced stepping. */
00431a78 2481 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2482
00431a78 2483 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2484 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2485 displaced->step_closure);
2486 }
237fc4c9
PA
2487 }
2488
2facfe5c 2489 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2490 else if (step)
2facfe5c 2491 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2492
30852783
UW
2493 /* Currently, our software single-step implementation leads to different
2494 results than hardware single-stepping in one situation: when stepping
2495 into delivering a signal which has an associated signal handler,
2496 hardware single-step will stop at the first instruction of the handler,
2497 while software single-step will simply skip execution of the handler.
2498
2499 For now, this difference in behavior is accepted since there is no
2500 easy way to actually implement single-stepping into a signal handler
2501 without kernel support.
2502
2503 However, there is one scenario where this difference leads to follow-on
2504 problems: if we're stepping off a breakpoint by removing all breakpoints
2505 and then single-stepping. In this case, the software single-step
2506 behavior means that even if there is a *breakpoint* in the signal
2507 handler, GDB still would not stop.
2508
2509 Fortunately, we can at least fix this particular issue. We detect
2510 here the case where we are about to deliver a signal while software
2511 single-stepping with breakpoints removed. In this situation, we
2512 revert the decisions to remove all breakpoints and insert single-
2513 step breakpoints, and instead we install a step-resume breakpoint
2514 at the current address, deliver the signal without stepping, and
2515 once we arrive back at the step-resume breakpoint, actually step
2516 over the breakpoint we originally wanted to step over. */
34b7e8a6 2517 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2518 && sig != GDB_SIGNAL_0
2519 && step_over_info_valid_p ())
30852783
UW
2520 {
2521 /* If we have nested signals or a pending signal is delivered
2522 immediately after a handler returns, might might already have
2523 a step-resume breakpoint set on the earlier handler. We cannot
2524 set another step-resume breakpoint; just continue on until the
2525 original breakpoint is hit. */
2526 if (tp->control.step_resume_breakpoint == NULL)
2527 {
2c03e5be 2528 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2529 tp->step_after_step_resume_breakpoint = 1;
2530 }
2531
34b7e8a6 2532 delete_single_step_breakpoints (tp);
30852783 2533
31e77af2 2534 clear_step_over_info ();
30852783 2535 tp->control.trap_expected = 0;
31e77af2
PA
2536
2537 insert_breakpoints ();
30852783
UW
2538 }
2539
b0f16a3e
SM
2540 /* If STEP is set, it's a request to use hardware stepping
2541 facilities. But in that case, we should never
2542 use singlestep breakpoint. */
34b7e8a6 2543 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2544
fbea99ea 2545 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2546 if (tp->control.trap_expected)
b0f16a3e
SM
2547 {
2548 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2549 hit, either by single-stepping the thread with the breakpoint
2550 removed, or by displaced stepping, with the breakpoint inserted.
2551 In the former case, we need to single-step only this thread,
2552 and keep others stopped, as they can miss this breakpoint if
2553 allowed to run. That's not really a problem for displaced
2554 stepping, but, we still keep other threads stopped, in case
2555 another thread is also stopped for a breakpoint waiting for
2556 its turn in the displaced stepping queue. */
b0f16a3e
SM
2557 resume_ptid = inferior_ptid;
2558 }
fbea99ea
PA
2559 else
2560 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2561
7f5ef605
PA
2562 if (execution_direction != EXEC_REVERSE
2563 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2564 {
372316f1
PA
2565 /* There are two cases where we currently need to step a
2566 breakpoint instruction when we have a signal to deliver:
2567
2568 - See handle_signal_stop where we handle random signals that
2569 could take out us out of the stepping range. Normally, in
2570 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2571 signal handler with a breakpoint at PC, but there are cases
2572 where we should _always_ single-step, even if we have a
2573 step-resume breakpoint, like when a software watchpoint is
2574 set. Assuming single-stepping and delivering a signal at the
2575 same time would takes us to the signal handler, then we could
2576 have removed the breakpoint at PC to step over it. However,
2577 some hardware step targets (like e.g., Mac OS) can't step
2578 into signal handlers, and for those, we need to leave the
2579 breakpoint at PC inserted, as otherwise if the handler
2580 recurses and executes PC again, it'll miss the breakpoint.
2581 So we leave the breakpoint inserted anyway, but we need to
2582 record that we tried to step a breakpoint instruction, so
372316f1
PA
2583 that adjust_pc_after_break doesn't end up confused.
2584
2585 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2586 in one thread after another thread that was stepping had been
2587 momentarily paused for a step-over. When we re-resume the
2588 stepping thread, it may be resumed from that address with a
2589 breakpoint that hasn't trapped yet. Seen with
2590 gdb.threads/non-stop-fair-events.exp, on targets that don't
2591 do displaced stepping. */
2592
2593 if (debug_infrun)
2594 fprintf_unfiltered (gdb_stdlog,
2595 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2596 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2597
2598 tp->stepped_breakpoint = 1;
2599
b0f16a3e
SM
2600 /* Most targets can step a breakpoint instruction, thus
2601 executing it normally. But if this one cannot, just
2602 continue and we will hit it anyway. */
7f5ef605 2603 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2604 step = 0;
2605 }
ef5cf84e 2606
b0f16a3e 2607 if (debug_displaced
cb71640d 2608 && tp->control.trap_expected
3fc8eb30 2609 && use_displaced_stepping (tp)
cb71640d 2610 && !step_over_info_valid_p ())
b0f16a3e 2611 {
00431a78 2612 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2613 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2614 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2615 gdb_byte buf[4];
2616
2617 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2618 paddress (resume_gdbarch, actual_pc));
2619 read_memory (actual_pc, buf, sizeof (buf));
2620 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2621 }
237fc4c9 2622
b0f16a3e
SM
2623 if (tp->control.may_range_step)
2624 {
2625 /* If we're resuming a thread with the PC out of the step
2626 range, then we're doing some nested/finer run control
2627 operation, like stepping the thread out of the dynamic
2628 linker or the displaced stepping scratch pad. We
2629 shouldn't have allowed a range step then. */
2630 gdb_assert (pc_in_thread_step_range (pc, tp));
2631 }
c1e36e3e 2632
64ce06e4 2633 do_target_resume (resume_ptid, step, sig);
372316f1 2634 tp->resumed = 1;
c906108c 2635}
71d378ae
PA
2636
2637/* Resume the inferior. SIG is the signal to give the inferior
2638 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2639 rolls back state on error. */
2640
aff4e175 2641static void
71d378ae
PA
2642resume (gdb_signal sig)
2643{
a70b8144 2644 try
71d378ae
PA
2645 {
2646 resume_1 (sig);
2647 }
230d2906 2648 catch (const gdb_exception &ex)
71d378ae
PA
2649 {
2650 /* If resuming is being aborted for any reason, delete any
2651 single-step breakpoint resume_1 may have created, to avoid
2652 confusing the following resumption, and to avoid leaving
2653 single-step breakpoints perturbing other threads, in case
2654 we're running in non-stop mode. */
2655 if (inferior_ptid != null_ptid)
2656 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2657 throw;
71d378ae 2658 }
71d378ae
PA
2659}
2660
c906108c 2661\f
237fc4c9 2662/* Proceeding. */
c906108c 2663
4c2f2a79
PA
2664/* See infrun.h. */
2665
2666/* Counter that tracks number of user visible stops. This can be used
2667 to tell whether a command has proceeded the inferior past the
2668 current location. This allows e.g., inferior function calls in
2669 breakpoint commands to not interrupt the command list. When the
2670 call finishes successfully, the inferior is standing at the same
2671 breakpoint as if nothing happened (and so we don't call
2672 normal_stop). */
2673static ULONGEST current_stop_id;
2674
2675/* See infrun.h. */
2676
2677ULONGEST
2678get_stop_id (void)
2679{
2680 return current_stop_id;
2681}
2682
2683/* Called when we report a user visible stop. */
2684
2685static void
2686new_stop_id (void)
2687{
2688 current_stop_id++;
2689}
2690
c906108c
SS
2691/* Clear out all variables saying what to do when inferior is continued.
2692 First do this, then set the ones you want, then call `proceed'. */
2693
a7212384
UW
2694static void
2695clear_proceed_status_thread (struct thread_info *tp)
c906108c 2696{
a7212384
UW
2697 if (debug_infrun)
2698 fprintf_unfiltered (gdb_stdlog,
2699 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2700 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2701
372316f1
PA
2702 /* If we're starting a new sequence, then the previous finished
2703 single-step is no longer relevant. */
2704 if (tp->suspend.waitstatus_pending_p)
2705 {
2706 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2707 {
2708 if (debug_infrun)
2709 fprintf_unfiltered (gdb_stdlog,
2710 "infrun: clear_proceed_status: pending "
2711 "event of %s was a finished step. "
2712 "Discarding.\n",
a068643d 2713 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2714
2715 tp->suspend.waitstatus_pending_p = 0;
2716 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2717 }
2718 else if (debug_infrun)
2719 {
23fdd69e
SM
2720 std::string statstr
2721 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2722
372316f1
PA
2723 fprintf_unfiltered (gdb_stdlog,
2724 "infrun: clear_proceed_status_thread: thread %s "
2725 "has pending wait status %s "
2726 "(currently_stepping=%d).\n",
a068643d
TT
2727 target_pid_to_str (tp->ptid).c_str (),
2728 statstr.c_str (),
372316f1 2729 currently_stepping (tp));
372316f1
PA
2730 }
2731 }
2732
70509625
PA
2733 /* If this signal should not be seen by program, give it zero.
2734 Used for debugging signals. */
2735 if (!signal_pass_state (tp->suspend.stop_signal))
2736 tp->suspend.stop_signal = GDB_SIGNAL_0;
2737
46e3ed7f 2738 delete tp->thread_fsm;
243a9253
PA
2739 tp->thread_fsm = NULL;
2740
16c381f0
JK
2741 tp->control.trap_expected = 0;
2742 tp->control.step_range_start = 0;
2743 tp->control.step_range_end = 0;
c1e36e3e 2744 tp->control.may_range_step = 0;
16c381f0
JK
2745 tp->control.step_frame_id = null_frame_id;
2746 tp->control.step_stack_frame_id = null_frame_id;
2747 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2748 tp->control.step_start_function = NULL;
a7212384 2749 tp->stop_requested = 0;
4e1c45ea 2750
16c381f0 2751 tp->control.stop_step = 0;
32400beb 2752
16c381f0 2753 tp->control.proceed_to_finish = 0;
414c69f7 2754
856e7dd6 2755 tp->control.stepping_command = 0;
17b2616c 2756
a7212384 2757 /* Discard any remaining commands or status from previous stop. */
16c381f0 2758 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2759}
32400beb 2760
a7212384 2761void
70509625 2762clear_proceed_status (int step)
a7212384 2763{
f2665db5
MM
2764 /* With scheduler-locking replay, stop replaying other threads if we're
2765 not replaying the user-visible resume ptid.
2766
2767 This is a convenience feature to not require the user to explicitly
2768 stop replaying the other threads. We're assuming that the user's
2769 intent is to resume tracing the recorded process. */
2770 if (!non_stop && scheduler_mode == schedlock_replay
2771 && target_record_is_replaying (minus_one_ptid)
2772 && !target_record_will_replay (user_visible_resume_ptid (step),
2773 execution_direction))
2774 target_record_stop_replaying ();
2775
08036331 2776 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2777 {
08036331 2778 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2779 process_stratum_target *resume_target
2780 = user_visible_resume_target (resume_ptid);
70509625
PA
2781
2782 /* In all-stop mode, delete the per-thread status of all threads
2783 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2784 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2785 clear_proceed_status_thread (tp);
6c95b8df
PA
2786 }
2787
d7e15655 2788 if (inferior_ptid != null_ptid)
a7212384
UW
2789 {
2790 struct inferior *inferior;
2791
2792 if (non_stop)
2793 {
6c95b8df
PA
2794 /* If in non-stop mode, only delete the per-thread status of
2795 the current thread. */
a7212384
UW
2796 clear_proceed_status_thread (inferior_thread ());
2797 }
6c95b8df 2798
d6b48e9c 2799 inferior = current_inferior ();
16c381f0 2800 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2801 }
2802
76727919 2803 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2804}
2805
99619bea
PA
2806/* Returns true if TP is still stopped at a breakpoint that needs
2807 stepping-over in order to make progress. If the breakpoint is gone
2808 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2809
2810static int
6c4cfb24 2811thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2812{
2813 if (tp->stepping_over_breakpoint)
2814 {
00431a78 2815 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2816
a01bda52 2817 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2818 regcache_read_pc (regcache))
2819 == ordinary_breakpoint_here)
99619bea
PA
2820 return 1;
2821
2822 tp->stepping_over_breakpoint = 0;
2823 }
2824
2825 return 0;
2826}
2827
6c4cfb24
PA
2828/* Check whether thread TP still needs to start a step-over in order
2829 to make progress when resumed. Returns an bitwise or of enum
2830 step_over_what bits, indicating what needs to be stepped over. */
2831
8d297bbf 2832static step_over_what
6c4cfb24
PA
2833thread_still_needs_step_over (struct thread_info *tp)
2834{
8d297bbf 2835 step_over_what what = 0;
6c4cfb24
PA
2836
2837 if (thread_still_needs_step_over_bp (tp))
2838 what |= STEP_OVER_BREAKPOINT;
2839
2840 if (tp->stepping_over_watchpoint
2841 && !target_have_steppable_watchpoint)
2842 what |= STEP_OVER_WATCHPOINT;
2843
2844 return what;
2845}
2846
483805cf
PA
2847/* Returns true if scheduler locking applies. STEP indicates whether
2848 we're about to do a step/next-like command to a thread. */
2849
2850static int
856e7dd6 2851schedlock_applies (struct thread_info *tp)
483805cf
PA
2852{
2853 return (scheduler_mode == schedlock_on
2854 || (scheduler_mode == schedlock_step
f2665db5
MM
2855 && tp->control.stepping_command)
2856 || (scheduler_mode == schedlock_replay
2857 && target_record_will_replay (minus_one_ptid,
2858 execution_direction)));
483805cf
PA
2859}
2860
5b6d1e4f
PA
2861/* Calls target_commit_resume on all targets. */
2862
2863static void
2864commit_resume_all_targets ()
2865{
2866 scoped_restore_current_thread restore_thread;
2867
2868 /* Map between process_target and a representative inferior. This
2869 is to avoid committing a resume in the same target more than
2870 once. Resumptions must be idempotent, so this is an
2871 optimization. */
2872 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2873
2874 for (inferior *inf : all_non_exited_inferiors ())
2875 if (inf->has_execution ())
2876 conn_inf[inf->process_target ()] = inf;
2877
2878 for (const auto &ci : conn_inf)
2879 {
2880 inferior *inf = ci.second;
2881 switch_to_inferior_no_thread (inf);
2882 target_commit_resume ();
2883 }
2884}
2885
2f4fcf00
PA
2886/* Check that all the targets we're about to resume are in non-stop
2887 mode. Ideally, we'd only care whether all targets support
2888 target-async, but we're not there yet. E.g., stop_all_threads
2889 doesn't know how to handle all-stop targets. Also, the remote
2890 protocol in all-stop mode is synchronous, irrespective of
2891 target-async, which means that things like a breakpoint re-set
2892 triggered by one target would try to read memory from all targets
2893 and fail. */
2894
2895static void
2896check_multi_target_resumption (process_stratum_target *resume_target)
2897{
2898 if (!non_stop && resume_target == nullptr)
2899 {
2900 scoped_restore_current_thread restore_thread;
2901
2902 /* This is used to track whether we're resuming more than one
2903 target. */
2904 process_stratum_target *first_connection = nullptr;
2905
2906 /* The first inferior we see with a target that does not work in
2907 always-non-stop mode. */
2908 inferior *first_not_non_stop = nullptr;
2909
2910 for (inferior *inf : all_non_exited_inferiors (resume_target))
2911 {
2912 switch_to_inferior_no_thread (inf);
2913
2914 if (!target_has_execution)
2915 continue;
2916
2917 process_stratum_target *proc_target
2918 = current_inferior ()->process_target();
2919
2920 if (!target_is_non_stop_p ())
2921 first_not_non_stop = inf;
2922
2923 if (first_connection == nullptr)
2924 first_connection = proc_target;
2925 else if (first_connection != proc_target
2926 && first_not_non_stop != nullptr)
2927 {
2928 switch_to_inferior_no_thread (first_not_non_stop);
2929
2930 proc_target = current_inferior ()->process_target();
2931
2932 error (_("Connection %d (%s) does not support "
2933 "multi-target resumption."),
2934 proc_target->connection_number,
2935 make_target_connection_string (proc_target).c_str ());
2936 }
2937 }
2938 }
2939}
2940
c906108c
SS
2941/* Basic routine for continuing the program in various fashions.
2942
2943 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2944 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2945 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2946
2947 You should call clear_proceed_status before calling proceed. */
2948
2949void
64ce06e4 2950proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2951{
e58b0e63
PA
2952 struct regcache *regcache;
2953 struct gdbarch *gdbarch;
e58b0e63 2954 CORE_ADDR pc;
4d9d9d04
PA
2955 struct execution_control_state ecss;
2956 struct execution_control_state *ecs = &ecss;
4d9d9d04 2957 int started;
c906108c 2958
e58b0e63
PA
2959 /* If we're stopped at a fork/vfork, follow the branch set by the
2960 "set follow-fork-mode" command; otherwise, we'll just proceed
2961 resuming the current thread. */
2962 if (!follow_fork ())
2963 {
2964 /* The target for some reason decided not to resume. */
2965 normal_stop ();
f148b27e
PA
2966 if (target_can_async_p ())
2967 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2968 return;
2969 }
2970
842951eb
PA
2971 /* We'll update this if & when we switch to a new thread. */
2972 previous_inferior_ptid = inferior_ptid;
2973
e58b0e63 2974 regcache = get_current_regcache ();
ac7936df 2975 gdbarch = regcache->arch ();
8b86c959
YQ
2976 const address_space *aspace = regcache->aspace ();
2977
e58b0e63 2978 pc = regcache_read_pc (regcache);
08036331 2979 thread_info *cur_thr = inferior_thread ();
e58b0e63 2980
99619bea 2981 /* Fill in with reasonable starting values. */
08036331 2982 init_thread_stepping_state (cur_thr);
99619bea 2983
08036331 2984 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2985
5b6d1e4f
PA
2986 ptid_t resume_ptid
2987 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2988 process_stratum_target *resume_target
2989 = user_visible_resume_target (resume_ptid);
2990
2f4fcf00
PA
2991 check_multi_target_resumption (resume_target);
2992
2acceee2 2993 if (addr == (CORE_ADDR) -1)
c906108c 2994 {
08036331 2995 if (pc == cur_thr->suspend.stop_pc
af48d08f 2996 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2997 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2998 /* There is a breakpoint at the address we will resume at,
2999 step one instruction before inserting breakpoints so that
3000 we do not stop right away (and report a second hit at this
b2175913
MS
3001 breakpoint).
3002
3003 Note, we don't do this in reverse, because we won't
3004 actually be executing the breakpoint insn anyway.
3005 We'll be (un-)executing the previous instruction. */
08036331 3006 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
3007 else if (gdbarch_single_step_through_delay_p (gdbarch)
3008 && gdbarch_single_step_through_delay (gdbarch,
3009 get_current_frame ()))
3352ef37
AC
3010 /* We stepped onto an instruction that needs to be stepped
3011 again before re-inserting the breakpoint, do so. */
08036331 3012 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
3013 }
3014 else
3015 {
515630c5 3016 regcache_write_pc (regcache, addr);
c906108c
SS
3017 }
3018
70509625 3019 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 3020 cur_thr->suspend.stop_signal = siggnal;
70509625 3021
4d9d9d04
PA
3022 /* If an exception is thrown from this point on, make sure to
3023 propagate GDB's knowledge of the executing state to the
3024 frontend/user running state. */
5b6d1e4f 3025 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
3026
3027 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3028 threads (e.g., we might need to set threads stepping over
3029 breakpoints first), from the user/frontend's point of view, all
3030 threads in RESUME_PTID are now running. Unless we're calling an
3031 inferior function, as in that case we pretend the inferior
3032 doesn't run at all. */
08036331 3033 if (!cur_thr->control.in_infcall)
5b6d1e4f 3034 set_running (resume_target, resume_ptid, 1);
17b2616c 3035
527159b7 3036 if (debug_infrun)
8a9de0e4 3037 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3038 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3039 paddress (gdbarch, addr),
64ce06e4 3040 gdb_signal_to_symbol_string (siggnal));
527159b7 3041
4d9d9d04
PA
3042 annotate_starting ();
3043
3044 /* Make sure that output from GDB appears before output from the
3045 inferior. */
3046 gdb_flush (gdb_stdout);
3047
d930703d
PA
3048 /* Since we've marked the inferior running, give it the terminal. A
3049 QUIT/Ctrl-C from here on is forwarded to the target (which can
3050 still detect attempts to unblock a stuck connection with repeated
3051 Ctrl-C from within target_pass_ctrlc). */
3052 target_terminal::inferior ();
3053
4d9d9d04
PA
3054 /* In a multi-threaded task we may select another thread and
3055 then continue or step.
3056
3057 But if a thread that we're resuming had stopped at a breakpoint,
3058 it will immediately cause another breakpoint stop without any
3059 execution (i.e. it will report a breakpoint hit incorrectly). So
3060 we must step over it first.
3061
3062 Look for threads other than the current (TP) that reported a
3063 breakpoint hit and haven't been resumed yet since. */
3064
3065 /* If scheduler locking applies, we can avoid iterating over all
3066 threads. */
08036331 3067 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3068 {
5b6d1e4f
PA
3069 for (thread_info *tp : all_non_exited_threads (resume_target,
3070 resume_ptid))
08036331 3071 {
f3f8ece4
PA
3072 switch_to_thread_no_regs (tp);
3073
4d9d9d04
PA
3074 /* Ignore the current thread here. It's handled
3075 afterwards. */
08036331 3076 if (tp == cur_thr)
4d9d9d04 3077 continue;
c906108c 3078
4d9d9d04
PA
3079 if (!thread_still_needs_step_over (tp))
3080 continue;
3081
3082 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3083
99619bea
PA
3084 if (debug_infrun)
3085 fprintf_unfiltered (gdb_stdlog,
3086 "infrun: need to step-over [%s] first\n",
a068643d 3087 target_pid_to_str (tp->ptid).c_str ());
99619bea 3088
4d9d9d04 3089 thread_step_over_chain_enqueue (tp);
2adfaa28 3090 }
f3f8ece4
PA
3091
3092 switch_to_thread (cur_thr);
30852783
UW
3093 }
3094
4d9d9d04
PA
3095 /* Enqueue the current thread last, so that we move all other
3096 threads over their breakpoints first. */
08036331
PA
3097 if (cur_thr->stepping_over_breakpoint)
3098 thread_step_over_chain_enqueue (cur_thr);
30852783 3099
4d9d9d04
PA
3100 /* If the thread isn't started, we'll still need to set its prev_pc,
3101 so that switch_back_to_stepped_thread knows the thread hasn't
3102 advanced. Must do this before resuming any thread, as in
3103 all-stop/remote, once we resume we can't send any other packet
3104 until the target stops again. */
08036331 3105 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 3106
a9bc57b9
TT
3107 {
3108 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3109
a9bc57b9 3110 started = start_step_over ();
c906108c 3111
a9bc57b9
TT
3112 if (step_over_info_valid_p ())
3113 {
3114 /* Either this thread started a new in-line step over, or some
3115 other thread was already doing one. In either case, don't
3116 resume anything else until the step-over is finished. */
3117 }
3118 else if (started && !target_is_non_stop_p ())
3119 {
3120 /* A new displaced stepping sequence was started. In all-stop,
3121 we can't talk to the target anymore until it next stops. */
3122 }
3123 else if (!non_stop && target_is_non_stop_p ())
3124 {
3125 /* In all-stop, but the target is always in non-stop mode.
3126 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3127 for (thread_info *tp : all_non_exited_threads (resume_target,
3128 resume_ptid))
3129 {
3130 switch_to_thread_no_regs (tp);
3131
3132 if (!tp->inf->has_execution ())
3133 {
3134 if (debug_infrun)
3135 fprintf_unfiltered (gdb_stdlog,
3136 "infrun: proceed: [%s] target has "
3137 "no execution\n",
3138 target_pid_to_str (tp->ptid).c_str ());
3139 continue;
3140 }
f3f8ece4 3141
fbea99ea
PA
3142 if (tp->resumed)
3143 {
3144 if (debug_infrun)
3145 fprintf_unfiltered (gdb_stdlog,
3146 "infrun: proceed: [%s] resumed\n",
a068643d 3147 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3148 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3149 continue;
3150 }
3151
3152 if (thread_is_in_step_over_chain (tp))
3153 {
3154 if (debug_infrun)
3155 fprintf_unfiltered (gdb_stdlog,
3156 "infrun: proceed: [%s] needs step-over\n",
a068643d 3157 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3158 continue;
3159 }
3160
3161 if (debug_infrun)
3162 fprintf_unfiltered (gdb_stdlog,
3163 "infrun: proceed: resuming %s\n",
a068643d 3164 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3165
3166 reset_ecs (ecs, tp);
00431a78 3167 switch_to_thread (tp);
fbea99ea
PA
3168 keep_going_pass_signal (ecs);
3169 if (!ecs->wait_some_more)
fd7dcb94 3170 error (_("Command aborted."));
fbea99ea 3171 }
a9bc57b9 3172 }
08036331 3173 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3174 {
3175 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3176 reset_ecs (ecs, cur_thr);
3177 switch_to_thread (cur_thr);
a9bc57b9
TT
3178 keep_going_pass_signal (ecs);
3179 if (!ecs->wait_some_more)
3180 error (_("Command aborted."));
3181 }
3182 }
c906108c 3183
5b6d1e4f 3184 commit_resume_all_targets ();
85ad3aaf 3185
731f534f 3186 finish_state.release ();
c906108c 3187
873657b9
PA
3188 /* If we've switched threads above, switch back to the previously
3189 current thread. We don't want the user to see a different
3190 selected thread. */
3191 switch_to_thread (cur_thr);
3192
0b333c5e
PA
3193 /* Tell the event loop to wait for it to stop. If the target
3194 supports asynchronous execution, it'll do this from within
3195 target_resume. */
362646f5 3196 if (!target_can_async_p ())
0b333c5e 3197 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3198}
c906108c
SS
3199\f
3200
3201/* Start remote-debugging of a machine over a serial link. */
96baa820 3202
c906108c 3203void
8621d6a9 3204start_remote (int from_tty)
c906108c 3205{
5b6d1e4f
PA
3206 inferior *inf = current_inferior ();
3207 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3208
1777feb0 3209 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3210 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3211 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3212 nothing is returned (instead of just blocking). Because of this,
3213 targets expecting an immediate response need to, internally, set
3214 things up so that the target_wait() is forced to eventually
1777feb0 3215 timeout. */
6426a772
JM
3216 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3217 differentiate to its caller what the state of the target is after
3218 the initial open has been performed. Here we're assuming that
3219 the target has stopped. It should be possible to eventually have
3220 target_open() return to the caller an indication that the target
3221 is currently running and GDB state should be set to the same as
1777feb0 3222 for an async run. */
5b6d1e4f 3223 wait_for_inferior (inf);
8621d6a9
DJ
3224
3225 /* Now that the inferior has stopped, do any bookkeeping like
3226 loading shared libraries. We want to do this before normal_stop,
3227 so that the displayed frame is up to date. */
8b88a78e 3228 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3229
6426a772 3230 normal_stop ();
c906108c
SS
3231}
3232
3233/* Initialize static vars when a new inferior begins. */
3234
3235void
96baa820 3236init_wait_for_inferior (void)
c906108c
SS
3237{
3238 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3239
c906108c
SS
3240 breakpoint_init_inferior (inf_starting);
3241
70509625 3242 clear_proceed_status (0);
9f976b41 3243
ab1ddbcf 3244 nullify_last_target_wait_ptid ();
237fc4c9 3245
842951eb 3246 previous_inferior_ptid = inferior_ptid;
c906108c 3247}
237fc4c9 3248
c906108c 3249\f
488f131b 3250
ec9499be 3251static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3252
568d6575
UW
3253static void handle_step_into_function (struct gdbarch *gdbarch,
3254 struct execution_control_state *ecs);
3255static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3256 struct execution_control_state *ecs);
4f5d7f63 3257static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3258static void check_exception_resume (struct execution_control_state *,
28106bc2 3259 struct frame_info *);
611c83ae 3260
bdc36728 3261static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3262static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3263static void keep_going (struct execution_control_state *ecs);
94c57d6a 3264static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3265static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3266
252fbfc8
PA
3267/* This function is attached as a "thread_stop_requested" observer.
3268 Cleanup local state that assumed the PTID was to be resumed, and
3269 report the stop to the frontend. */
3270
2c0b251b 3271static void
252fbfc8
PA
3272infrun_thread_stop_requested (ptid_t ptid)
3273{
5b6d1e4f
PA
3274 process_stratum_target *curr_target = current_inferior ()->process_target ();
3275
c65d6b55
PA
3276 /* PTID was requested to stop. If the thread was already stopped,
3277 but the user/frontend doesn't know about that yet (e.g., the
3278 thread had been temporarily paused for some step-over), set up
3279 for reporting the stop now. */
5b6d1e4f 3280 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3281 {
3282 if (tp->state != THREAD_RUNNING)
3283 continue;
3284 if (tp->executing)
3285 continue;
c65d6b55 3286
08036331
PA
3287 /* Remove matching threads from the step-over queue, so
3288 start_step_over doesn't try to resume them
3289 automatically. */
3290 if (thread_is_in_step_over_chain (tp))
3291 thread_step_over_chain_remove (tp);
c65d6b55 3292
08036331
PA
3293 /* If the thread is stopped, but the user/frontend doesn't
3294 know about that yet, queue a pending event, as if the
3295 thread had just stopped now. Unless the thread already had
3296 a pending event. */
3297 if (!tp->suspend.waitstatus_pending_p)
3298 {
3299 tp->suspend.waitstatus_pending_p = 1;
3300 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3301 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3302 }
c65d6b55 3303
08036331
PA
3304 /* Clear the inline-frame state, since we're re-processing the
3305 stop. */
5b6d1e4f 3306 clear_inline_frame_state (tp);
c65d6b55 3307
08036331
PA
3308 /* If this thread was paused because some other thread was
3309 doing an inline-step over, let that finish first. Once
3310 that happens, we'll restart all threads and consume pending
3311 stop events then. */
3312 if (step_over_info_valid_p ())
3313 continue;
3314
3315 /* Otherwise we can process the (new) pending event now. Set
3316 it so this pending event is considered by
3317 do_target_wait. */
3318 tp->resumed = 1;
3319 }
252fbfc8
PA
3320}
3321
a07daef3
PA
3322static void
3323infrun_thread_thread_exit (struct thread_info *tp, int silent)
3324{
5b6d1e4f
PA
3325 if (target_last_proc_target == tp->inf->process_target ()
3326 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3327 nullify_last_target_wait_ptid ();
3328}
3329
0cbcdb96
PA
3330/* Delete the step resume, single-step and longjmp/exception resume
3331 breakpoints of TP. */
4e1c45ea 3332
0cbcdb96
PA
3333static void
3334delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3335{
0cbcdb96
PA
3336 delete_step_resume_breakpoint (tp);
3337 delete_exception_resume_breakpoint (tp);
34b7e8a6 3338 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3339}
3340
0cbcdb96
PA
3341/* If the target still has execution, call FUNC for each thread that
3342 just stopped. In all-stop, that's all the non-exited threads; in
3343 non-stop, that's the current thread, only. */
3344
3345typedef void (*for_each_just_stopped_thread_callback_func)
3346 (struct thread_info *tp);
4e1c45ea
PA
3347
3348static void
0cbcdb96 3349for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3350{
d7e15655 3351 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3352 return;
3353
fbea99ea 3354 if (target_is_non_stop_p ())
4e1c45ea 3355 {
0cbcdb96
PA
3356 /* If in non-stop mode, only the current thread stopped. */
3357 func (inferior_thread ());
4e1c45ea
PA
3358 }
3359 else
0cbcdb96 3360 {
0cbcdb96 3361 /* In all-stop mode, all threads have stopped. */
08036331
PA
3362 for (thread_info *tp : all_non_exited_threads ())
3363 func (tp);
0cbcdb96
PA
3364 }
3365}
3366
3367/* Delete the step resume and longjmp/exception resume breakpoints of
3368 the threads that just stopped. */
3369
3370static void
3371delete_just_stopped_threads_infrun_breakpoints (void)
3372{
3373 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3374}
3375
3376/* Delete the single-step breakpoints of the threads that just
3377 stopped. */
7c16b83e 3378
34b7e8a6
PA
3379static void
3380delete_just_stopped_threads_single_step_breakpoints (void)
3381{
3382 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3383}
3384
221e1a37 3385/* See infrun.h. */
223698f8 3386
221e1a37 3387void
223698f8
DE
3388print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3389 const struct target_waitstatus *ws)
3390{
23fdd69e 3391 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3392 string_file stb;
223698f8
DE
3393
3394 /* The text is split over several lines because it was getting too long.
3395 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3396 output as a unit; we want only one timestamp printed if debug_timestamp
3397 is set. */
3398
d7e74731 3399 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3400 waiton_ptid.pid (),
e38504b3 3401 waiton_ptid.lwp (),
cc6bcb54 3402 waiton_ptid.tid ());
e99b03dc 3403 if (waiton_ptid.pid () != -1)
a068643d 3404 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3405 stb.printf (", status) =\n");
3406 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3407 result_ptid.pid (),
e38504b3 3408 result_ptid.lwp (),
cc6bcb54 3409 result_ptid.tid (),
a068643d 3410 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3411 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3412
3413 /* This uses %s in part to handle %'s in the text, but also to avoid
3414 a gcc error: the format attribute requires a string literal. */
d7e74731 3415 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3416}
3417
372316f1
PA
3418/* Select a thread at random, out of those which are resumed and have
3419 had events. */
3420
3421static struct thread_info *
5b6d1e4f 3422random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3423{
372316f1 3424 int num_events = 0;
08036331 3425
5b6d1e4f 3426 auto has_event = [&] (thread_info *tp)
08036331 3427 {
5b6d1e4f
PA
3428 return (tp->ptid.matches (waiton_ptid)
3429 && tp->resumed
08036331
PA
3430 && tp->suspend.waitstatus_pending_p);
3431 };
372316f1
PA
3432
3433 /* First see how many events we have. Count only resumed threads
3434 that have an event pending. */
5b6d1e4f 3435 for (thread_info *tp : inf->non_exited_threads ())
08036331 3436 if (has_event (tp))
372316f1
PA
3437 num_events++;
3438
3439 if (num_events == 0)
3440 return NULL;
3441
3442 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3443 int random_selector = (int) ((num_events * (double) rand ())
3444 / (RAND_MAX + 1.0));
372316f1
PA
3445
3446 if (debug_infrun && num_events > 1)
3447 fprintf_unfiltered (gdb_stdlog,
3448 "infrun: Found %d events, selecting #%d\n",
3449 num_events, random_selector);
3450
3451 /* Select the Nth thread that has had an event. */
5b6d1e4f 3452 for (thread_info *tp : inf->non_exited_threads ())
08036331 3453 if (has_event (tp))
372316f1 3454 if (random_selector-- == 0)
08036331 3455 return tp;
372316f1 3456
08036331 3457 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3458}
3459
3460/* Wrapper for target_wait that first checks whether threads have
3461 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3462 more events. INF is the inferior we're using to call target_wait
3463 on. */
372316f1
PA
3464
3465static ptid_t
5b6d1e4f
PA
3466do_target_wait_1 (inferior *inf, ptid_t ptid,
3467 target_waitstatus *status, int options)
372316f1
PA
3468{
3469 ptid_t event_ptid;
3470 struct thread_info *tp;
3471
3472 /* First check if there is a resumed thread with a wait status
3473 pending. */
d7e15655 3474 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3475 {
5b6d1e4f 3476 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3477 }
3478 else
3479 {
3480 if (debug_infrun)
3481 fprintf_unfiltered (gdb_stdlog,
3482 "infrun: Waiting for specific thread %s.\n",
a068643d 3483 target_pid_to_str (ptid).c_str ());
372316f1
PA
3484
3485 /* We have a specific thread to check. */
5b6d1e4f 3486 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3487 gdb_assert (tp != NULL);
3488 if (!tp->suspend.waitstatus_pending_p)
3489 tp = NULL;
3490 }
3491
3492 if (tp != NULL
3493 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3494 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3495 {
00431a78 3496 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3497 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3498 CORE_ADDR pc;
3499 int discard = 0;
3500
3501 pc = regcache_read_pc (regcache);
3502
3503 if (pc != tp->suspend.stop_pc)
3504 {
3505 if (debug_infrun)
3506 fprintf_unfiltered (gdb_stdlog,
3507 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3508 target_pid_to_str (tp->ptid).c_str (),
defd2172 3509 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3510 paddress (gdbarch, pc));
3511 discard = 1;
3512 }
a01bda52 3513 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3514 {
3515 if (debug_infrun)
3516 fprintf_unfiltered (gdb_stdlog,
3517 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3518 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3519 paddress (gdbarch, pc));
3520
3521 discard = 1;
3522 }
3523
3524 if (discard)
3525 {
3526 if (debug_infrun)
3527 fprintf_unfiltered (gdb_stdlog,
3528 "infrun: pending event of %s cancelled.\n",
a068643d 3529 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3530
3531 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3532 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3533 }
3534 }
3535
3536 if (tp != NULL)
3537 {
3538 if (debug_infrun)
3539 {
23fdd69e
SM
3540 std::string statstr
3541 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3542
372316f1
PA
3543 fprintf_unfiltered (gdb_stdlog,
3544 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3545 statstr.c_str (),
a068643d 3546 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3547 }
3548
3549 /* Now that we've selected our final event LWP, un-adjust its PC
3550 if it was a software breakpoint (and the target doesn't
3551 always adjust the PC itself). */
3552 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3553 && !target_supports_stopped_by_sw_breakpoint ())
3554 {
3555 struct regcache *regcache;
3556 struct gdbarch *gdbarch;
3557 int decr_pc;
3558
00431a78 3559 regcache = get_thread_regcache (tp);
ac7936df 3560 gdbarch = regcache->arch ();
372316f1
PA
3561
3562 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3563 if (decr_pc != 0)
3564 {
3565 CORE_ADDR pc;
3566
3567 pc = regcache_read_pc (regcache);
3568 regcache_write_pc (regcache, pc + decr_pc);
3569 }
3570 }
3571
3572 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3573 *status = tp->suspend.waitstatus;
3574 tp->suspend.waitstatus_pending_p = 0;
3575
3576 /* Wake up the event loop again, until all pending events are
3577 processed. */
3578 if (target_is_async_p ())
3579 mark_async_event_handler (infrun_async_inferior_event_token);
3580 return tp->ptid;
3581 }
3582
3583 /* But if we don't find one, we'll have to wait. */
3584
3585 if (deprecated_target_wait_hook)
3586 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3587 else
3588 event_ptid = target_wait (ptid, status, options);
3589
3590 return event_ptid;
3591}
3592
5b6d1e4f
PA
3593/* Returns true if INF has any resumed thread with a status
3594 pending. */
3595
3596static bool
3597threads_are_resumed_pending_p (inferior *inf)
3598{
3599 for (thread_info *tp : inf->non_exited_threads ())
3600 if (tp->resumed
3601 && tp->suspend.waitstatus_pending_p)
3602 return true;
3603
3604 return false;
3605}
3606
3607/* Wrapper for target_wait that first checks whether threads have
3608 pending statuses to report before actually asking the target for
3609 more events. Polls for events from all inferiors/targets. */
3610
3611static bool
3612do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3613{
3614 int num_inferiors = 0;
3615 int random_selector;
3616
3617 /* For fairness, we pick the first inferior/target to poll at
3618 random, and then continue polling the rest of the inferior list
3619 starting from that one in a circular fashion until the whole list
3620 is polled once. */
3621
3622 auto inferior_matches = [&wait_ptid] (inferior *inf)
3623 {
3624 return (inf->process_target () != NULL
3625 && (threads_are_executing (inf->process_target ())
3626 || threads_are_resumed_pending_p (inf))
3627 && ptid_t (inf->pid).matches (wait_ptid));
3628 };
3629
3630 /* First see how many resumed inferiors we have. */
3631 for (inferior *inf : all_inferiors ())
3632 if (inferior_matches (inf))
3633 num_inferiors++;
3634
3635 if (num_inferiors == 0)
3636 {
3637 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3638 return false;
3639 }
3640
3641 /* Now randomly pick an inferior out of those that were resumed. */
3642 random_selector = (int)
3643 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3644
3645 if (debug_infrun && num_inferiors > 1)
3646 fprintf_unfiltered (gdb_stdlog,
3647 "infrun: Found %d inferiors, starting at #%d\n",
3648 num_inferiors, random_selector);
3649
3650 /* Select the Nth inferior that was resumed. */
3651
3652 inferior *selected = nullptr;
3653
3654 for (inferior *inf : all_inferiors ())
3655 if (inferior_matches (inf))
3656 if (random_selector-- == 0)
3657 {
3658 selected = inf;
3659 break;
3660 }
3661
3662 /* Now poll for events out of each of the resumed inferior's
3663 targets, starting from the selected one. */
3664
3665 auto do_wait = [&] (inferior *inf)
3666 {
3667 switch_to_inferior_no_thread (inf);
3668
3669 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3670 ecs->target = inf->process_target ();
3671 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3672 };
3673
3674 /* Needed in all-stop+target-non-stop mode, because we end up here
3675 spuriously after the target is all stopped and we've already
3676 reported the stop to the user, polling for events. */
3677 scoped_restore_current_thread restore_thread;
3678
3679 int inf_num = selected->num;
3680 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3681 if (inferior_matches (inf))
3682 if (do_wait (inf))
3683 return true;
3684
3685 for (inferior *inf = inferior_list;
3686 inf != NULL && inf->num < inf_num;
3687 inf = inf->next)
3688 if (inferior_matches (inf))
3689 if (do_wait (inf))
3690 return true;
3691
3692 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3693 return false;
3694}
3695
24291992
PA
3696/* Prepare and stabilize the inferior for detaching it. E.g.,
3697 detaching while a thread is displaced stepping is a recipe for
3698 crashing it, as nothing would readjust the PC out of the scratch
3699 pad. */
3700
3701void
3702prepare_for_detach (void)
3703{
3704 struct inferior *inf = current_inferior ();
f2907e49 3705 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3706
00431a78 3707 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3708
3709 /* Is any thread of this process displaced stepping? If not,
3710 there's nothing else to do. */
d20172fc 3711 if (displaced->step_thread == nullptr)
24291992
PA
3712 return;
3713
3714 if (debug_infrun)
3715 fprintf_unfiltered (gdb_stdlog,
3716 "displaced-stepping in-process while detaching");
3717
9bcb1f16 3718 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3719
00431a78 3720 while (displaced->step_thread != nullptr)
24291992 3721 {
24291992
PA
3722 struct execution_control_state ecss;
3723 struct execution_control_state *ecs;
3724
3725 ecs = &ecss;
3726 memset (ecs, 0, sizeof (*ecs));
3727
3728 overlay_cache_invalid = 1;
f15cb84a
YQ
3729 /* Flush target cache before starting to handle each event.
3730 Target was running and cache could be stale. This is just a
3731 heuristic. Running threads may modify target memory, but we
3732 don't get any event. */
3733 target_dcache_invalidate ();
24291992 3734
5b6d1e4f 3735 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3736
3737 if (debug_infrun)
3738 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3739
3740 /* If an error happens while handling the event, propagate GDB's
3741 knowledge of the executing state to the frontend/user running
3742 state. */
5b6d1e4f
PA
3743 scoped_finish_thread_state finish_state (inf->process_target (),
3744 minus_one_ptid);
24291992
PA
3745
3746 /* Now figure out what to do with the result of the result. */
3747 handle_inferior_event (ecs);
3748
3749 /* No error, don't finish the state yet. */
731f534f 3750 finish_state.release ();
24291992
PA
3751
3752 /* Breakpoints and watchpoints are not installed on the target
3753 at this point, and signals are passed directly to the
3754 inferior, so this must mean the process is gone. */
3755 if (!ecs->wait_some_more)
3756 {
9bcb1f16 3757 restore_detaching.release ();
24291992
PA
3758 error (_("Program exited while detaching"));
3759 }
3760 }
3761
9bcb1f16 3762 restore_detaching.release ();
24291992
PA
3763}
3764
cd0fc7c3 3765/* Wait for control to return from inferior to debugger.
ae123ec6 3766
cd0fc7c3
SS
3767 If inferior gets a signal, we may decide to start it up again
3768 instead of returning. That is why there is a loop in this function.
3769 When this function actually returns it means the inferior
3770 should be left stopped and GDB should read more commands. */
3771
5b6d1e4f
PA
3772static void
3773wait_for_inferior (inferior *inf)
cd0fc7c3 3774{
527159b7 3775 if (debug_infrun)
ae123ec6 3776 fprintf_unfiltered
e4c8541f 3777 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3778
4c41382a 3779 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3780
e6f5c25b
PA
3781 /* If an error happens while handling the event, propagate GDB's
3782 knowledge of the executing state to the frontend/user running
3783 state. */
5b6d1e4f
PA
3784 scoped_finish_thread_state finish_state
3785 (inf->process_target (), minus_one_ptid);
e6f5c25b 3786
c906108c
SS
3787 while (1)
3788 {
ae25568b
PA
3789 struct execution_control_state ecss;
3790 struct execution_control_state *ecs = &ecss;
29f49a6a 3791
ae25568b
PA
3792 memset (ecs, 0, sizeof (*ecs));
3793
ec9499be 3794 overlay_cache_invalid = 1;
ec9499be 3795
f15cb84a
YQ
3796 /* Flush target cache before starting to handle each event.
3797 Target was running and cache could be stale. This is just a
3798 heuristic. Running threads may modify target memory, but we
3799 don't get any event. */
3800 target_dcache_invalidate ();
3801
5b6d1e4f
PA
3802 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3803 ecs->target = inf->process_target ();
c906108c 3804
f00150c9 3805 if (debug_infrun)
5b6d1e4f 3806 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3807
cd0fc7c3
SS
3808 /* Now figure out what to do with the result of the result. */
3809 handle_inferior_event (ecs);
c906108c 3810
cd0fc7c3
SS
3811 if (!ecs->wait_some_more)
3812 break;
3813 }
4e1c45ea 3814
e6f5c25b 3815 /* No error, don't finish the state yet. */
731f534f 3816 finish_state.release ();
cd0fc7c3 3817}
c906108c 3818
d3d4baed
PA
3819/* Cleanup that reinstalls the readline callback handler, if the
3820 target is running in the background. If while handling the target
3821 event something triggered a secondary prompt, like e.g., a
3822 pagination prompt, we'll have removed the callback handler (see
3823 gdb_readline_wrapper_line). Need to do this as we go back to the
3824 event loop, ready to process further input. Note this has no
3825 effect if the handler hasn't actually been removed, because calling
3826 rl_callback_handler_install resets the line buffer, thus losing
3827 input. */
3828
3829static void
d238133d 3830reinstall_readline_callback_handler_cleanup ()
d3d4baed 3831{
3b12939d
PA
3832 struct ui *ui = current_ui;
3833
3834 if (!ui->async)
6c400b59
PA
3835 {
3836 /* We're not going back to the top level event loop yet. Don't
3837 install the readline callback, as it'd prep the terminal,
3838 readline-style (raw, noecho) (e.g., --batch). We'll install
3839 it the next time the prompt is displayed, when we're ready
3840 for input. */
3841 return;
3842 }
3843
3b12939d 3844 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3845 gdb_rl_callback_handler_reinstall ();
3846}
3847
243a9253
PA
3848/* Clean up the FSMs of threads that are now stopped. In non-stop,
3849 that's just the event thread. In all-stop, that's all threads. */
3850
3851static void
3852clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3853{
08036331
PA
3854 if (ecs->event_thread != NULL
3855 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3856 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3857
3858 if (!non_stop)
3859 {
08036331 3860 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3861 {
3862 if (thr->thread_fsm == NULL)
3863 continue;
3864 if (thr == ecs->event_thread)
3865 continue;
3866
00431a78 3867 switch_to_thread (thr);
46e3ed7f 3868 thr->thread_fsm->clean_up (thr);
243a9253
PA
3869 }
3870
3871 if (ecs->event_thread != NULL)
00431a78 3872 switch_to_thread (ecs->event_thread);
243a9253
PA
3873 }
3874}
3875
3b12939d
PA
3876/* Helper for all_uis_check_sync_execution_done that works on the
3877 current UI. */
3878
3879static void
3880check_curr_ui_sync_execution_done (void)
3881{
3882 struct ui *ui = current_ui;
3883
3884 if (ui->prompt_state == PROMPT_NEEDED
3885 && ui->async
3886 && !gdb_in_secondary_prompt_p (ui))
3887 {
223ffa71 3888 target_terminal::ours ();
76727919 3889 gdb::observers::sync_execution_done.notify ();
3eb7562a 3890 ui_register_input_event_handler (ui);
3b12939d
PA
3891 }
3892}
3893
3894/* See infrun.h. */
3895
3896void
3897all_uis_check_sync_execution_done (void)
3898{
0e454242 3899 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3900 {
3901 check_curr_ui_sync_execution_done ();
3902 }
3903}
3904
a8836c93
PA
3905/* See infrun.h. */
3906
3907void
3908all_uis_on_sync_execution_starting (void)
3909{
0e454242 3910 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3911 {
3912 if (current_ui->prompt_state == PROMPT_NEEDED)
3913 async_disable_stdin ();
3914 }
3915}
3916
1777feb0 3917/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3918 event loop whenever a change of state is detected on the file
1777feb0
MS
3919 descriptor corresponding to the target. It can be called more than
3920 once to complete a single execution command. In such cases we need
3921 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3922 that this function is called for a single execution command, then
3923 report to the user that the inferior has stopped, and do the
1777feb0 3924 necessary cleanups. */
43ff13b4
JM
3925
3926void
fba45db2 3927fetch_inferior_event (void *client_data)
43ff13b4 3928{
0d1e5fa7 3929 struct execution_control_state ecss;
a474d7c2 3930 struct execution_control_state *ecs = &ecss;
0f641c01 3931 int cmd_done = 0;
43ff13b4 3932
0d1e5fa7
PA
3933 memset (ecs, 0, sizeof (*ecs));
3934
c61db772
PA
3935 /* Events are always processed with the main UI as current UI. This
3936 way, warnings, debug output, etc. are always consistently sent to
3937 the main console. */
4b6749b9 3938 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3939
d3d4baed 3940 /* End up with readline processing input, if necessary. */
d238133d
TT
3941 {
3942 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3943
3944 /* We're handling a live event, so make sure we're doing live
3945 debugging. If we're looking at traceframes while the target is
3946 running, we're going to need to get back to that mode after
3947 handling the event. */
3948 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3949 if (non_stop)
3950 {
3951 maybe_restore_traceframe.emplace ();
3952 set_current_traceframe (-1);
3953 }
43ff13b4 3954
873657b9
PA
3955 /* The user/frontend should not notice a thread switch due to
3956 internal events. Make sure we revert to the user selected
3957 thread and frame after handling the event and running any
3958 breakpoint commands. */
3959 scoped_restore_current_thread restore_thread;
d238133d
TT
3960
3961 overlay_cache_invalid = 1;
3962 /* Flush target cache before starting to handle each event. Target
3963 was running and cache could be stale. This is just a heuristic.
3964 Running threads may modify target memory, but we don't get any
3965 event. */
3966 target_dcache_invalidate ();
3967
3968 scoped_restore save_exec_dir
3969 = make_scoped_restore (&execution_direction,
3970 target_execution_direction ());
3971
5b6d1e4f
PA
3972 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3973 return;
3974
3975 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3976
3977 /* Switch to the target that generated the event, so we can do
3978 target calls. Any inferior bound to the target will do, so we
3979 just switch to the first we find. */
3980 for (inferior *inf : all_inferiors (ecs->target))
3981 {
3982 switch_to_inferior_no_thread (inf);
3983 break;
3984 }
d238133d
TT
3985
3986 if (debug_infrun)
5b6d1e4f 3987 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
3988
3989 /* If an error happens while handling the event, propagate GDB's
3990 knowledge of the executing state to the frontend/user running
3991 state. */
3992 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 3993 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 3994
979a0d13 3995 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3996 still for the thread which has thrown the exception. */
3997 auto defer_bpstat_clear
3998 = make_scope_exit (bpstat_clear_actions);
3999 auto defer_delete_threads
4000 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4001
4002 /* Now figure out what to do with the result of the result. */
4003 handle_inferior_event (ecs);
4004
4005 if (!ecs->wait_some_more)
4006 {
5b6d1e4f 4007 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
d238133d
TT
4008 int should_stop = 1;
4009 struct thread_info *thr = ecs->event_thread;
d6b48e9c 4010
d238133d 4011 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 4012
d238133d
TT
4013 if (thr != NULL)
4014 {
4015 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 4016
d238133d 4017 if (thread_fsm != NULL)
46e3ed7f 4018 should_stop = thread_fsm->should_stop (thr);
d238133d 4019 }
243a9253 4020
d238133d
TT
4021 if (!should_stop)
4022 {
4023 keep_going (ecs);
4024 }
4025 else
4026 {
46e3ed7f 4027 bool should_notify_stop = true;
d238133d 4028 int proceeded = 0;
1840d81a 4029
d238133d 4030 clean_up_just_stopped_threads_fsms (ecs);
243a9253 4031
d238133d 4032 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 4033 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 4034
d238133d
TT
4035 if (should_notify_stop)
4036 {
4037 /* We may not find an inferior if this was a process exit. */
4038 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4039 proceeded = normal_stop ();
4040 }
243a9253 4041
d238133d
TT
4042 if (!proceeded)
4043 {
4044 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4045 cmd_done = 1;
4046 }
873657b9
PA
4047
4048 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4049 previously selected thread is gone. We have two
4050 choices - switch to no thread selected, or restore the
4051 previously selected thread (now exited). We chose the
4052 later, just because that's what GDB used to do. After
4053 this, "info threads" says "The current thread <Thread
4054 ID 2> has terminated." instead of "No thread
4055 selected.". */
4056 if (!non_stop
4057 && cmd_done
4058 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4059 restore_thread.dont_restore ();
d238133d
TT
4060 }
4061 }
4f8d22e3 4062
d238133d
TT
4063 defer_delete_threads.release ();
4064 defer_bpstat_clear.release ();
29f49a6a 4065
d238133d
TT
4066 /* No error, don't finish the thread states yet. */
4067 finish_state.release ();
731f534f 4068
d238133d
TT
4069 /* This scope is used to ensure that readline callbacks are
4070 reinstalled here. */
4071 }
4f8d22e3 4072
3b12939d
PA
4073 /* If a UI was in sync execution mode, and now isn't, restore its
4074 prompt (a synchronous execution command has finished, and we're
4075 ready for input). */
4076 all_uis_check_sync_execution_done ();
0f641c01
PA
4077
4078 if (cmd_done
0f641c01 4079 && exec_done_display_p
00431a78
PA
4080 && (inferior_ptid == null_ptid
4081 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4082 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4083}
4084
edb3359d
DJ
4085/* Record the frame and location we're currently stepping through. */
4086void
4087set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4088{
4089 struct thread_info *tp = inferior_thread ();
4090
16c381f0
JK
4091 tp->control.step_frame_id = get_frame_id (frame);
4092 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4093
4094 tp->current_symtab = sal.symtab;
4095 tp->current_line = sal.line;
4096}
4097
0d1e5fa7
PA
4098/* Clear context switchable stepping state. */
4099
4100void
4e1c45ea 4101init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4102{
7f5ef605 4103 tss->stepped_breakpoint = 0;
0d1e5fa7 4104 tss->stepping_over_breakpoint = 0;
963f9c80 4105 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4106 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4107}
4108
ab1ddbcf 4109/* See infrun.h. */
c32c64b7 4110
6efcd9a8 4111void
5b6d1e4f
PA
4112set_last_target_status (process_stratum_target *target, ptid_t ptid,
4113 target_waitstatus status)
c32c64b7 4114{
5b6d1e4f 4115 target_last_proc_target = target;
c32c64b7
DE
4116 target_last_wait_ptid = ptid;
4117 target_last_waitstatus = status;
4118}
4119
ab1ddbcf 4120/* See infrun.h. */
e02bc4cc
DS
4121
4122void
5b6d1e4f
PA
4123get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4124 target_waitstatus *status)
e02bc4cc 4125{
5b6d1e4f
PA
4126 if (target != nullptr)
4127 *target = target_last_proc_target;
ab1ddbcf
PA
4128 if (ptid != nullptr)
4129 *ptid = target_last_wait_ptid;
4130 if (status != nullptr)
4131 *status = target_last_waitstatus;
e02bc4cc
DS
4132}
4133
ab1ddbcf
PA
4134/* See infrun.h. */
4135
ac264b3b
MS
4136void
4137nullify_last_target_wait_ptid (void)
4138{
5b6d1e4f 4139 target_last_proc_target = nullptr;
ac264b3b 4140 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4141 target_last_waitstatus = {};
ac264b3b
MS
4142}
4143
dcf4fbde 4144/* Switch thread contexts. */
dd80620e
MS
4145
4146static void
00431a78 4147context_switch (execution_control_state *ecs)
dd80620e 4148{
00431a78
PA
4149 if (debug_infrun
4150 && ecs->ptid != inferior_ptid
5b6d1e4f
PA
4151 && (inferior_ptid == null_ptid
4152 || ecs->event_thread != inferior_thread ()))
fd48f117
DJ
4153 {
4154 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 4155 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 4156 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 4157 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4158 }
4159
00431a78 4160 switch_to_thread (ecs->event_thread);
dd80620e
MS
4161}
4162
d8dd4d5f
PA
4163/* If the target can't tell whether we've hit breakpoints
4164 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4165 check whether that could have been caused by a breakpoint. If so,
4166 adjust the PC, per gdbarch_decr_pc_after_break. */
4167
4fa8626c 4168static void
d8dd4d5f
PA
4169adjust_pc_after_break (struct thread_info *thread,
4170 struct target_waitstatus *ws)
4fa8626c 4171{
24a73cce
UW
4172 struct regcache *regcache;
4173 struct gdbarch *gdbarch;
118e6252 4174 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4175
4fa8626c
DJ
4176 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4177 we aren't, just return.
9709f61c
DJ
4178
4179 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4180 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4181 implemented by software breakpoints should be handled through the normal
4182 breakpoint layer.
8fb3e588 4183
4fa8626c
DJ
4184 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4185 different signals (SIGILL or SIGEMT for instance), but it is less
4186 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4187 gdbarch_decr_pc_after_break. I don't know any specific target that
4188 generates these signals at breakpoints (the code has been in GDB since at
4189 least 1992) so I can not guess how to handle them here.
8fb3e588 4190
e6cf7916
UW
4191 In earlier versions of GDB, a target with
4192 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4193 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4194 target with both of these set in GDB history, and it seems unlikely to be
4195 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4196
d8dd4d5f 4197 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4198 return;
4199
d8dd4d5f 4200 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4201 return;
4202
4058b839
PA
4203 /* In reverse execution, when a breakpoint is hit, the instruction
4204 under it has already been de-executed. The reported PC always
4205 points at the breakpoint address, so adjusting it further would
4206 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4207 architecture:
4208
4209 B1 0x08000000 : INSN1
4210 B2 0x08000001 : INSN2
4211 0x08000002 : INSN3
4212 PC -> 0x08000003 : INSN4
4213
4214 Say you're stopped at 0x08000003 as above. Reverse continuing
4215 from that point should hit B2 as below. Reading the PC when the
4216 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4217 been de-executed already.
4218
4219 B1 0x08000000 : INSN1
4220 B2 PC -> 0x08000001 : INSN2
4221 0x08000002 : INSN3
4222 0x08000003 : INSN4
4223
4224 We can't apply the same logic as for forward execution, because
4225 we would wrongly adjust the PC to 0x08000000, since there's a
4226 breakpoint at PC - 1. We'd then report a hit on B1, although
4227 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4228 behaviour. */
4229 if (execution_direction == EXEC_REVERSE)
4230 return;
4231
1cf4d951
PA
4232 /* If the target can tell whether the thread hit a SW breakpoint,
4233 trust it. Targets that can tell also adjust the PC
4234 themselves. */
4235 if (target_supports_stopped_by_sw_breakpoint ())
4236 return;
4237
4238 /* Note that relying on whether a breakpoint is planted in memory to
4239 determine this can fail. E.g,. the breakpoint could have been
4240 removed since. Or the thread could have been told to step an
4241 instruction the size of a breakpoint instruction, and only
4242 _after_ was a breakpoint inserted at its address. */
4243
24a73cce
UW
4244 /* If this target does not decrement the PC after breakpoints, then
4245 we have nothing to do. */
00431a78 4246 regcache = get_thread_regcache (thread);
ac7936df 4247 gdbarch = regcache->arch ();
118e6252 4248
527a273a 4249 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4250 if (decr_pc == 0)
24a73cce
UW
4251 return;
4252
8b86c959 4253 const address_space *aspace = regcache->aspace ();
6c95b8df 4254
8aad930b
AC
4255 /* Find the location where (if we've hit a breakpoint) the
4256 breakpoint would be. */
118e6252 4257 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4258
1cf4d951
PA
4259 /* If the target can't tell whether a software breakpoint triggered,
4260 fallback to figuring it out based on breakpoints we think were
4261 inserted in the target, and on whether the thread was stepped or
4262 continued. */
4263
1c5cfe86
PA
4264 /* Check whether there actually is a software breakpoint inserted at
4265 that location.
4266
4267 If in non-stop mode, a race condition is possible where we've
4268 removed a breakpoint, but stop events for that breakpoint were
4269 already queued and arrive later. To suppress those spurious
4270 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4271 and retire them after a number of stop events are reported. Note
4272 this is an heuristic and can thus get confused. The real fix is
4273 to get the "stopped by SW BP and needs adjustment" info out of
4274 the target/kernel (and thus never reach here; see above). */
6c95b8df 4275 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4276 || (target_is_non_stop_p ()
4277 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4278 {
07036511 4279 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4280
8213266a 4281 if (record_full_is_used ())
07036511
TT
4282 restore_operation_disable.emplace
4283 (record_full_gdb_operation_disable_set ());
96429cc8 4284
1c0fdd0e
UW
4285 /* When using hardware single-step, a SIGTRAP is reported for both
4286 a completed single-step and a software breakpoint. Need to
4287 differentiate between the two, as the latter needs adjusting
4288 but the former does not.
4289
4290 The SIGTRAP can be due to a completed hardware single-step only if
4291 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4292 - this thread is currently being stepped
4293
4294 If any of these events did not occur, we must have stopped due
4295 to hitting a software breakpoint, and have to back up to the
4296 breakpoint address.
4297
4298 As a special case, we could have hardware single-stepped a
4299 software breakpoint. In this case (prev_pc == breakpoint_pc),
4300 we also need to back up to the breakpoint address. */
4301
d8dd4d5f
PA
4302 if (thread_has_single_step_breakpoints_set (thread)
4303 || !currently_stepping (thread)
4304 || (thread->stepped_breakpoint
4305 && thread->prev_pc == breakpoint_pc))
515630c5 4306 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4307 }
4fa8626c
DJ
4308}
4309
edb3359d
DJ
4310static int
4311stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4312{
4313 for (frame = get_prev_frame (frame);
4314 frame != NULL;
4315 frame = get_prev_frame (frame))
4316 {
4317 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4318 return 1;
4319 if (get_frame_type (frame) != INLINE_FRAME)
4320 break;
4321 }
4322
4323 return 0;
4324}
4325
4a4c04f1
BE
4326/* Look for an inline frame that is marked for skip.
4327 If PREV_FRAME is TRUE start at the previous frame,
4328 otherwise start at the current frame. Stop at the
4329 first non-inline frame, or at the frame where the
4330 step started. */
4331
4332static bool
4333inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4334{
4335 struct frame_info *frame = get_current_frame ();
4336
4337 if (prev_frame)
4338 frame = get_prev_frame (frame);
4339
4340 for (; frame != NULL; frame = get_prev_frame (frame))
4341 {
4342 const char *fn = NULL;
4343 symtab_and_line sal;
4344 struct symbol *sym;
4345
4346 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4347 break;
4348 if (get_frame_type (frame) != INLINE_FRAME)
4349 break;
4350
4351 sal = find_frame_sal (frame);
4352 sym = get_frame_function (frame);
4353
4354 if (sym != NULL)
4355 fn = sym->print_name ();
4356
4357 if (sal.line != 0
4358 && function_name_is_marked_for_skip (fn, sal))
4359 return true;
4360 }
4361
4362 return false;
4363}
4364
c65d6b55
PA
4365/* If the event thread has the stop requested flag set, pretend it
4366 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4367 target_stop). */
4368
4369static bool
4370handle_stop_requested (struct execution_control_state *ecs)
4371{
4372 if (ecs->event_thread->stop_requested)
4373 {
4374 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4375 ecs->ws.value.sig = GDB_SIGNAL_0;
4376 handle_signal_stop (ecs);
4377 return true;
4378 }
4379 return false;
4380}
4381
a96d9b2e
SDJ
4382/* Auxiliary function that handles syscall entry/return events.
4383 It returns 1 if the inferior should keep going (and GDB
4384 should ignore the event), or 0 if the event deserves to be
4385 processed. */
ca2163eb 4386
a96d9b2e 4387static int
ca2163eb 4388handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4389{
ca2163eb 4390 struct regcache *regcache;
ca2163eb
PA
4391 int syscall_number;
4392
00431a78 4393 context_switch (ecs);
ca2163eb 4394
00431a78 4395 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4396 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4397 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4398
a96d9b2e
SDJ
4399 if (catch_syscall_enabled () > 0
4400 && catching_syscall_number (syscall_number) > 0)
4401 {
4402 if (debug_infrun)
4403 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4404 syscall_number);
a96d9b2e 4405
16c381f0 4406 ecs->event_thread->control.stop_bpstat
a01bda52 4407 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4408 ecs->event_thread->suspend.stop_pc,
4409 ecs->event_thread, &ecs->ws);
ab04a2af 4410
c65d6b55
PA
4411 if (handle_stop_requested (ecs))
4412 return 0;
4413
ce12b012 4414 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4415 {
4416 /* Catchpoint hit. */
ca2163eb
PA
4417 return 0;
4418 }
a96d9b2e 4419 }
ca2163eb 4420
c65d6b55
PA
4421 if (handle_stop_requested (ecs))
4422 return 0;
4423
ca2163eb 4424 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4425 keep_going (ecs);
4426 return 1;
a96d9b2e
SDJ
4427}
4428
7e324e48
GB
4429/* Lazily fill in the execution_control_state's stop_func_* fields. */
4430
4431static void
4432fill_in_stop_func (struct gdbarch *gdbarch,
4433 struct execution_control_state *ecs)
4434{
4435 if (!ecs->stop_func_filled_in)
4436 {
98a617f8
KB
4437 const block *block;
4438
7e324e48
GB
4439 /* Don't care about return value; stop_func_start and stop_func_name
4440 will both be 0 if it doesn't work. */
98a617f8
KB
4441 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4442 &ecs->stop_func_name,
4443 &ecs->stop_func_start,
4444 &ecs->stop_func_end,
4445 &block);
4446
4447 /* The call to find_pc_partial_function, above, will set
4448 stop_func_start and stop_func_end to the start and end
4449 of the range containing the stop pc. If this range
4450 contains the entry pc for the block (which is always the
4451 case for contiguous blocks), advance stop_func_start past
4452 the function's start offset and entrypoint. Note that
4453 stop_func_start is NOT advanced when in a range of a
4454 non-contiguous block that does not contain the entry pc. */
4455 if (block != nullptr
4456 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4457 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4458 {
4459 ecs->stop_func_start
4460 += gdbarch_deprecated_function_start_offset (gdbarch);
4461
4462 if (gdbarch_skip_entrypoint_p (gdbarch))
4463 ecs->stop_func_start
4464 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4465 }
591a12a1 4466
7e324e48
GB
4467 ecs->stop_func_filled_in = 1;
4468 }
4469}
4470
4f5d7f63 4471
00431a78 4472/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4473
4474static enum stop_kind
00431a78 4475get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4476{
5b6d1e4f 4477 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4478
4479 gdb_assert (inf != NULL);
4480 return inf->control.stop_soon;
4481}
4482
5b6d1e4f
PA
4483/* Poll for one event out of the current target. Store the resulting
4484 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4485
4486static ptid_t
5b6d1e4f 4487poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4488{
4489 ptid_t event_ptid;
372316f1
PA
4490
4491 overlay_cache_invalid = 1;
4492
4493 /* Flush target cache before starting to handle each event.
4494 Target was running and cache could be stale. This is just a
4495 heuristic. Running threads may modify target memory, but we
4496 don't get any event. */
4497 target_dcache_invalidate ();
4498
4499 if (deprecated_target_wait_hook)
5b6d1e4f 4500 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4501 else
5b6d1e4f 4502 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4503
4504 if (debug_infrun)
5b6d1e4f 4505 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4506
4507 return event_ptid;
4508}
4509
5b6d1e4f
PA
4510/* An event reported by wait_one. */
4511
4512struct wait_one_event
4513{
4514 /* The target the event came out of. */
4515 process_stratum_target *target;
4516
4517 /* The PTID the event was for. */
4518 ptid_t ptid;
4519
4520 /* The waitstatus. */
4521 target_waitstatus ws;
4522};
4523
4524/* Wait for one event out of any target. */
4525
4526static wait_one_event
4527wait_one ()
4528{
4529 while (1)
4530 {
4531 for (inferior *inf : all_inferiors ())
4532 {
4533 process_stratum_target *target = inf->process_target ();
4534 if (target == NULL
4535 || !target->is_async_p ()
4536 || !target->threads_executing)
4537 continue;
4538
4539 switch_to_inferior_no_thread (inf);
4540
4541 wait_one_event event;
4542 event.target = target;
4543 event.ptid = poll_one_curr_target (&event.ws);
4544
4545 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4546 {
4547 /* If nothing is resumed, remove the target from the
4548 event loop. */
4549 target_async (0);
4550 }
4551 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4552 return event;
4553 }
4554
4555 /* Block waiting for some event. */
4556
4557 fd_set readfds;
4558 int nfds = 0;
4559
4560 FD_ZERO (&readfds);
4561
4562 for (inferior *inf : all_inferiors ())
4563 {
4564 process_stratum_target *target = inf->process_target ();
4565 if (target == NULL
4566 || !target->is_async_p ()
4567 || !target->threads_executing)
4568 continue;
4569
4570 int fd = target->async_wait_fd ();
4571 FD_SET (fd, &readfds);
4572 if (nfds <= fd)
4573 nfds = fd + 1;
4574 }
4575
4576 if (nfds == 0)
4577 {
4578 /* No waitable targets left. All must be stopped. */
4579 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4580 }
4581
4582 QUIT;
4583
4584 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4585 if (numfds < 0)
4586 {
4587 if (errno == EINTR)
4588 continue;
4589 else
4590 perror_with_name ("interruptible_select");
4591 }
4592 }
4593}
4594
372316f1
PA
4595/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4596 instead of the current thread. */
4597#define THREAD_STOPPED_BY(REASON) \
4598static int \
4599thread_stopped_by_ ## REASON (ptid_t ptid) \
4600{ \
2989a365 4601 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4602 inferior_ptid = ptid; \
4603 \
2989a365 4604 return target_stopped_by_ ## REASON (); \
372316f1
PA
4605}
4606
4607/* Generate thread_stopped_by_watchpoint. */
4608THREAD_STOPPED_BY (watchpoint)
4609/* Generate thread_stopped_by_sw_breakpoint. */
4610THREAD_STOPPED_BY (sw_breakpoint)
4611/* Generate thread_stopped_by_hw_breakpoint. */
4612THREAD_STOPPED_BY (hw_breakpoint)
4613
372316f1
PA
4614/* Save the thread's event and stop reason to process it later. */
4615
4616static void
5b6d1e4f 4617save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4618{
372316f1
PA
4619 if (debug_infrun)
4620 {
23fdd69e 4621 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4622
372316f1
PA
4623 fprintf_unfiltered (gdb_stdlog,
4624 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4625 statstr.c_str (),
e99b03dc 4626 tp->ptid.pid (),
e38504b3 4627 tp->ptid.lwp (),
cc6bcb54 4628 tp->ptid.tid ());
372316f1
PA
4629 }
4630
4631 /* Record for later. */
4632 tp->suspend.waitstatus = *ws;
4633 tp->suspend.waitstatus_pending_p = 1;
4634
00431a78 4635 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4636 const address_space *aspace = regcache->aspace ();
372316f1
PA
4637
4638 if (ws->kind == TARGET_WAITKIND_STOPPED
4639 && ws->value.sig == GDB_SIGNAL_TRAP)
4640 {
4641 CORE_ADDR pc = regcache_read_pc (regcache);
4642
4643 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4644
4645 if (thread_stopped_by_watchpoint (tp->ptid))
4646 {
4647 tp->suspend.stop_reason
4648 = TARGET_STOPPED_BY_WATCHPOINT;
4649 }
4650 else if (target_supports_stopped_by_sw_breakpoint ()
4651 && thread_stopped_by_sw_breakpoint (tp->ptid))
4652 {
4653 tp->suspend.stop_reason
4654 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4655 }
4656 else if (target_supports_stopped_by_hw_breakpoint ()
4657 && thread_stopped_by_hw_breakpoint (tp->ptid))
4658 {
4659 tp->suspend.stop_reason
4660 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4661 }
4662 else if (!target_supports_stopped_by_hw_breakpoint ()
4663 && hardware_breakpoint_inserted_here_p (aspace,
4664 pc))
4665 {
4666 tp->suspend.stop_reason
4667 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4668 }
4669 else if (!target_supports_stopped_by_sw_breakpoint ()
4670 && software_breakpoint_inserted_here_p (aspace,
4671 pc))
4672 {
4673 tp->suspend.stop_reason
4674 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4675 }
4676 else if (!thread_has_single_step_breakpoints_set (tp)
4677 && currently_stepping (tp))
4678 {
4679 tp->suspend.stop_reason
4680 = TARGET_STOPPED_BY_SINGLE_STEP;
4681 }
4682 }
4683}
4684
6efcd9a8 4685/* See infrun.h. */
372316f1 4686
6efcd9a8 4687void
372316f1
PA
4688stop_all_threads (void)
4689{
4690 /* We may need multiple passes to discover all threads. */
4691 int pass;
4692 int iterations = 0;
372316f1 4693
fbea99ea 4694 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4695
4696 if (debug_infrun)
4697 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4698
00431a78 4699 scoped_restore_current_thread restore_thread;
372316f1 4700
65706a29 4701 target_thread_events (1);
9885e6bb 4702 SCOPE_EXIT { target_thread_events (0); };
65706a29 4703
372316f1
PA
4704 /* Request threads to stop, and then wait for the stops. Because
4705 threads we already know about can spawn more threads while we're
4706 trying to stop them, and we only learn about new threads when we
4707 update the thread list, do this in a loop, and keep iterating
4708 until two passes find no threads that need to be stopped. */
4709 for (pass = 0; pass < 2; pass++, iterations++)
4710 {
4711 if (debug_infrun)
4712 fprintf_unfiltered (gdb_stdlog,
4713 "infrun: stop_all_threads, pass=%d, "
4714 "iterations=%d\n", pass, iterations);
4715 while (1)
4716 {
372316f1 4717 int need_wait = 0;
372316f1
PA
4718
4719 update_thread_list ();
4720
4721 /* Go through all threads looking for threads that we need
4722 to tell the target to stop. */
08036331 4723 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4724 {
4725 if (t->executing)
4726 {
4727 /* If already stopping, don't request a stop again.
4728 We just haven't seen the notification yet. */
4729 if (!t->stop_requested)
4730 {
4731 if (debug_infrun)
4732 fprintf_unfiltered (gdb_stdlog,
4733 "infrun: %s executing, "
4734 "need stop\n",
a068643d 4735 target_pid_to_str (t->ptid).c_str ());
f3f8ece4 4736 switch_to_thread_no_regs (t);
372316f1
PA
4737 target_stop (t->ptid);
4738 t->stop_requested = 1;
4739 }
4740 else
4741 {
4742 if (debug_infrun)
4743 fprintf_unfiltered (gdb_stdlog,
4744 "infrun: %s executing, "
4745 "already stopping\n",
a068643d 4746 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4747 }
4748
4749 if (t->stop_requested)
4750 need_wait = 1;
4751 }
4752 else
4753 {
4754 if (debug_infrun)
4755 fprintf_unfiltered (gdb_stdlog,
4756 "infrun: %s not executing\n",
a068643d 4757 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4758
4759 /* The thread may be not executing, but still be
4760 resumed with a pending status to process. */
4761 t->resumed = 0;
4762 }
4763 }
4764
4765 if (!need_wait)
4766 break;
4767
4768 /* If we find new threads on the second iteration, restart
4769 over. We want to see two iterations in a row with all
4770 threads stopped. */
4771 if (pass > 0)
4772 pass = -1;
4773
5b6d1e4f
PA
4774 wait_one_event event = wait_one ();
4775
c29705b7 4776 if (debug_infrun)
372316f1 4777 {
c29705b7
PW
4778 fprintf_unfiltered (gdb_stdlog,
4779 "infrun: stop_all_threads %s %s\n",
5b6d1e4f
PA
4780 target_waitstatus_to_string (&event.ws).c_str (),
4781 target_pid_to_str (event.ptid).c_str ());
372316f1 4782 }
372316f1 4783
5b6d1e4f
PA
4784 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED
4785 || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4786 || event.ws.kind == TARGET_WAITKIND_EXITED
4787 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
c29705b7
PW
4788 {
4789 /* All resumed threads exited
4790 or one thread/process exited/signalled. */
372316f1
PA
4791 }
4792 else
4793 {
5b6d1e4f 4794 thread_info *t = find_thread_ptid (event.target, event.ptid);
372316f1 4795 if (t == NULL)
5b6d1e4f 4796 t = add_thread (event.target, event.ptid);
372316f1
PA
4797
4798 t->stop_requested = 0;
4799 t->executing = 0;
4800 t->resumed = 0;
4801 t->control.may_range_step = 0;
4802
6efcd9a8
PA
4803 /* This may be the first time we see the inferior report
4804 a stop. */
5b6d1e4f 4805 inferior *inf = find_inferior_ptid (event.target, event.ptid);
6efcd9a8
PA
4806 if (inf->needs_setup)
4807 {
4808 switch_to_thread_no_regs (t);
4809 setup_inferior (0);
4810 }
4811
5b6d1e4f
PA
4812 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4813 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1
PA
4814 {
4815 /* We caught the event that we intended to catch, so
4816 there's no event pending. */
4817 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4818 t->suspend.waitstatus_pending_p = 0;
4819
00431a78 4820 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4821 {
4822 /* Add it back to the step-over queue. */
4823 if (debug_infrun)
4824 {
4825 fprintf_unfiltered (gdb_stdlog,
4826 "infrun: displaced-step of %s "
4827 "canceled: adding back to the "
4828 "step-over queue\n",
a068643d 4829 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4830 }
4831 t->control.trap_expected = 0;
4832 thread_step_over_chain_enqueue (t);
4833 }
4834 }
4835 else
4836 {
4837 enum gdb_signal sig;
4838 struct regcache *regcache;
372316f1
PA
4839
4840 if (debug_infrun)
4841 {
5b6d1e4f 4842 std::string statstr = target_waitstatus_to_string (&event.ws);
372316f1 4843
372316f1
PA
4844 fprintf_unfiltered (gdb_stdlog,
4845 "infrun: target_wait %s, saving "
4846 "status for %d.%ld.%ld\n",
23fdd69e 4847 statstr.c_str (),
e99b03dc 4848 t->ptid.pid (),
e38504b3 4849 t->ptid.lwp (),
cc6bcb54 4850 t->ptid.tid ());
372316f1
PA
4851 }
4852
4853 /* Record for later. */
5b6d1e4f 4854 save_waitstatus (t, &event.ws);
372316f1 4855
5b6d1e4f
PA
4856 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4857 ? event.ws.value.sig : GDB_SIGNAL_0);
372316f1 4858
00431a78 4859 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4860 {
4861 /* Add it back to the step-over queue. */
4862 t->control.trap_expected = 0;
4863 thread_step_over_chain_enqueue (t);
4864 }
4865
00431a78 4866 regcache = get_thread_regcache (t);
372316f1
PA
4867 t->suspend.stop_pc = regcache_read_pc (regcache);
4868
4869 if (debug_infrun)
4870 {
4871 fprintf_unfiltered (gdb_stdlog,
4872 "infrun: saved stop_pc=%s for %s "
4873 "(currently_stepping=%d)\n",
4874 paddress (target_gdbarch (),
4875 t->suspend.stop_pc),
a068643d 4876 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4877 currently_stepping (t));
4878 }
4879 }
4880 }
4881 }
4882 }
4883
372316f1
PA
4884 if (debug_infrun)
4885 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4886}
4887
f4836ba9
PA
4888/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4889
4890static int
4891handle_no_resumed (struct execution_control_state *ecs)
4892{
3b12939d 4893 if (target_can_async_p ())
f4836ba9 4894 {
3b12939d
PA
4895 struct ui *ui;
4896 int any_sync = 0;
f4836ba9 4897
3b12939d
PA
4898 ALL_UIS (ui)
4899 {
4900 if (ui->prompt_state == PROMPT_BLOCKED)
4901 {
4902 any_sync = 1;
4903 break;
4904 }
4905 }
4906 if (!any_sync)
4907 {
4908 /* There were no unwaited-for children left in the target, but,
4909 we're not synchronously waiting for events either. Just
4910 ignore. */
4911
4912 if (debug_infrun)
4913 fprintf_unfiltered (gdb_stdlog,
4914 "infrun: TARGET_WAITKIND_NO_RESUMED "
4915 "(ignoring: bg)\n");
4916 prepare_to_wait (ecs);
4917 return 1;
4918 }
f4836ba9
PA
4919 }
4920
4921 /* Otherwise, if we were running a synchronous execution command, we
4922 may need to cancel it and give the user back the terminal.
4923
4924 In non-stop mode, the target can't tell whether we've already
4925 consumed previous stop events, so it can end up sending us a
4926 no-resumed event like so:
4927
4928 #0 - thread 1 is left stopped
4929
4930 #1 - thread 2 is resumed and hits breakpoint
4931 -> TARGET_WAITKIND_STOPPED
4932
4933 #2 - thread 3 is resumed and exits
4934 this is the last resumed thread, so
4935 -> TARGET_WAITKIND_NO_RESUMED
4936
4937 #3 - gdb processes stop for thread 2 and decides to re-resume
4938 it.
4939
4940 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4941 thread 2 is now resumed, so the event should be ignored.
4942
4943 IOW, if the stop for thread 2 doesn't end a foreground command,
4944 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4945 event. But it could be that the event meant that thread 2 itself
4946 (or whatever other thread was the last resumed thread) exited.
4947
4948 To address this we refresh the thread list and check whether we
4949 have resumed threads _now_. In the example above, this removes
4950 thread 3 from the thread list. If thread 2 was re-resumed, we
4951 ignore this event. If we find no thread resumed, then we cancel
4952 the synchronous command show "no unwaited-for " to the user. */
4953 update_thread_list ();
4954
5b6d1e4f 4955 for (thread_info *thread : all_non_exited_threads (ecs->target))
f4836ba9
PA
4956 {
4957 if (thread->executing
4958 || thread->suspend.waitstatus_pending_p)
4959 {
4960 /* There were no unwaited-for children left in the target at
4961 some point, but there are now. Just ignore. */
4962 if (debug_infrun)
4963 fprintf_unfiltered (gdb_stdlog,
4964 "infrun: TARGET_WAITKIND_NO_RESUMED "
4965 "(ignoring: found resumed)\n");
4966 prepare_to_wait (ecs);
4967 return 1;
4968 }
4969 }
4970
4971 /* Note however that we may find no resumed thread because the whole
4972 process exited meanwhile (thus updating the thread list results
4973 in an empty thread list). In this case we know we'll be getting
4974 a process exit event shortly. */
5b6d1e4f 4975 for (inferior *inf : all_non_exited_inferiors (ecs->target))
f4836ba9 4976 {
08036331 4977 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4978 if (thread == NULL)
4979 {
4980 if (debug_infrun)
4981 fprintf_unfiltered (gdb_stdlog,
4982 "infrun: TARGET_WAITKIND_NO_RESUMED "
4983 "(expect process exit)\n");
4984 prepare_to_wait (ecs);
4985 return 1;
4986 }
4987 }
4988
4989 /* Go ahead and report the event. */
4990 return 0;
4991}
4992
05ba8510
PA
4993/* Given an execution control state that has been freshly filled in by
4994 an event from the inferior, figure out what it means and take
4995 appropriate action.
4996
4997 The alternatives are:
4998
22bcd14b 4999 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5000 debugger.
5001
5002 2) keep_going and return; to wait for the next event (set
5003 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5004 once). */
c906108c 5005
ec9499be 5006static void
595915c1 5007handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5008{
595915c1
TT
5009 /* Make sure that all temporary struct value objects that were
5010 created during the handling of the event get deleted at the
5011 end. */
5012 scoped_value_mark free_values;
5013
d6b48e9c
PA
5014 enum stop_kind stop_soon;
5015
c29705b7
PW
5016 if (debug_infrun)
5017 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5018 target_waitstatus_to_string (&ecs->ws).c_str ());
5019
28736962
PA
5020 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5021 {
5022 /* We had an event in the inferior, but we are not interested in
5023 handling it at this level. The lower layers have already
5024 done what needs to be done, if anything.
5025
5026 One of the possible circumstances for this is when the
5027 inferior produces output for the console. The inferior has
5028 not stopped, and we are ignoring the event. Another possible
5029 circumstance is any event which the lower level knows will be
5030 reported multiple times without an intervening resume. */
28736962
PA
5031 prepare_to_wait (ecs);
5032 return;
5033 }
5034
65706a29
PA
5035 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5036 {
65706a29
PA
5037 prepare_to_wait (ecs);
5038 return;
5039 }
5040
0e5bf2a8 5041 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5042 && handle_no_resumed (ecs))
5043 return;
0e5bf2a8 5044
5b6d1e4f
PA
5045 /* Cache the last target/ptid/waitstatus. */
5046 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5047
ca005067 5048 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5049 stop_stack_dummy = STOP_NONE;
ca005067 5050
0e5bf2a8
PA
5051 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5052 {
5053 /* No unwaited-for children left. IOW, all resumed children
5054 have exited. */
0e5bf2a8 5055 stop_print_frame = 0;
22bcd14b 5056 stop_waiting (ecs);
0e5bf2a8
PA
5057 return;
5058 }
5059
8c90c137 5060 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5061 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5062 {
5b6d1e4f 5063 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5064 /* If it's a new thread, add it to the thread database. */
5065 if (ecs->event_thread == NULL)
5b6d1e4f 5066 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5067
5068 /* Disable range stepping. If the next step request could use a
5069 range, this will be end up re-enabled then. */
5070 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5071 }
88ed393a
JK
5072
5073 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5074 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5075
5076 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5077 reinit_frame_cache ();
5078
28736962
PA
5079 breakpoint_retire_moribund ();
5080
2b009048
DJ
5081 /* First, distinguish signals caused by the debugger from signals
5082 that have to do with the program's own actions. Note that
5083 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5084 on the operating system version. Here we detect when a SIGILL or
5085 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5086 something similar for SIGSEGV, since a SIGSEGV will be generated
5087 when we're trying to execute a breakpoint instruction on a
5088 non-executable stack. This happens for call dummy breakpoints
5089 for architectures like SPARC that place call dummies on the
5090 stack. */
2b009048 5091 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5092 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5093 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5094 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5095 {
00431a78 5096 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5097
a01bda52 5098 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5099 regcache_read_pc (regcache)))
5100 {
5101 if (debug_infrun)
5102 fprintf_unfiltered (gdb_stdlog,
5103 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 5104 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5105 }
2b009048
DJ
5106 }
5107
28736962
PA
5108 /* Mark the non-executing threads accordingly. In all-stop, all
5109 threads of all processes are stopped when we get any event
e1316e60 5110 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
5111 {
5112 ptid_t mark_ptid;
5113
fbea99ea 5114 if (!target_is_non_stop_p ())
372316f1
PA
5115 mark_ptid = minus_one_ptid;
5116 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
5117 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
5118 {
5119 /* If we're handling a process exit in non-stop mode, even
5120 though threads haven't been deleted yet, one would think
5121 that there is nothing to do, as threads of the dead process
5122 will be soon deleted, and threads of any other process were
5123 left running. However, on some targets, threads survive a
5124 process exit event. E.g., for the "checkpoint" command,
5125 when the current checkpoint/fork exits, linux-fork.c
5126 automatically switches to another fork from within
5127 target_mourn_inferior, by associating the same
5128 inferior/thread to another fork. We haven't mourned yet at
5129 this point, but we must mark any threads left in the
5130 process as not-executing so that finish_thread_state marks
5131 them stopped (in the user's perspective) if/when we present
5132 the stop to the user. */
e99b03dc 5133 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
5134 }
5135 else
5136 mark_ptid = ecs->ptid;
5137
5b6d1e4f 5138 set_executing (ecs->target, mark_ptid, 0);
372316f1
PA
5139
5140 /* Likewise the resumed flag. */
5b6d1e4f 5141 set_resumed (ecs->target, mark_ptid, 0);
372316f1 5142 }
8c90c137 5143
488f131b
JB
5144 switch (ecs->ws.kind)
5145 {
5146 case TARGET_WAITKIND_LOADED:
00431a78 5147 context_switch (ecs);
b0f4b84b
DJ
5148 /* Ignore gracefully during startup of the inferior, as it might
5149 be the shell which has just loaded some objects, otherwise
5150 add the symbols for the newly loaded objects. Also ignore at
5151 the beginning of an attach or remote session; we will query
5152 the full list of libraries once the connection is
5153 established. */
4f5d7f63 5154
00431a78 5155 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5156 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5157 {
edcc5120
TT
5158 struct regcache *regcache;
5159
00431a78 5160 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5161
5162 handle_solib_event ();
5163
5164 ecs->event_thread->control.stop_bpstat
a01bda52 5165 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5166 ecs->event_thread->suspend.stop_pc,
5167 ecs->event_thread, &ecs->ws);
ab04a2af 5168
c65d6b55
PA
5169 if (handle_stop_requested (ecs))
5170 return;
5171
ce12b012 5172 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5173 {
5174 /* A catchpoint triggered. */
94c57d6a
PA
5175 process_event_stop_test (ecs);
5176 return;
edcc5120 5177 }
488f131b 5178
b0f4b84b
DJ
5179 /* If requested, stop when the dynamic linker notifies
5180 gdb of events. This allows the user to get control
5181 and place breakpoints in initializer routines for
5182 dynamically loaded objects (among other things). */
a493e3e2 5183 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5184 if (stop_on_solib_events)
5185 {
55409f9d
DJ
5186 /* Make sure we print "Stopped due to solib-event" in
5187 normal_stop. */
5188 stop_print_frame = 1;
5189
22bcd14b 5190 stop_waiting (ecs);
b0f4b84b
DJ
5191 return;
5192 }
488f131b 5193 }
b0f4b84b
DJ
5194
5195 /* If we are skipping through a shell, or through shared library
5196 loading that we aren't interested in, resume the program. If
5c09a2c5 5197 we're running the program normally, also resume. */
b0f4b84b
DJ
5198 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5199 {
74960c60
VP
5200 /* Loading of shared libraries might have changed breakpoint
5201 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5202 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5203 insert_breakpoints ();
64ce06e4 5204 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5205 prepare_to_wait (ecs);
5206 return;
5207 }
5208
5c09a2c5
PA
5209 /* But stop if we're attaching or setting up a remote
5210 connection. */
5211 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5212 || stop_soon == STOP_QUIETLY_REMOTE)
5213 {
5214 if (debug_infrun)
5215 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5216 stop_waiting (ecs);
5c09a2c5
PA
5217 return;
5218 }
5219
5220 internal_error (__FILE__, __LINE__,
5221 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5222
488f131b 5223 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5224 if (handle_stop_requested (ecs))
5225 return;
00431a78 5226 context_switch (ecs);
64ce06e4 5227 resume (GDB_SIGNAL_0);
488f131b
JB
5228 prepare_to_wait (ecs);
5229 return;
c5aa993b 5230
65706a29 5231 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5232 if (handle_stop_requested (ecs))
5233 return;
00431a78 5234 context_switch (ecs);
65706a29
PA
5235 if (!switch_back_to_stepped_thread (ecs))
5236 keep_going (ecs);
5237 return;
5238
488f131b 5239 case TARGET_WAITKIND_EXITED:
940c3c06 5240 case TARGET_WAITKIND_SIGNALLED:
fb66883a 5241 inferior_ptid = ecs->ptid;
5b6d1e4f 5242 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
6c95b8df
PA
5243 set_current_program_space (current_inferior ()->pspace);
5244 handle_vfork_child_exec_or_exit (0);
223ffa71 5245 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5246
0c557179
SDJ
5247 /* Clearing any previous state of convenience variables. */
5248 clear_exit_convenience_vars ();
5249
940c3c06
PA
5250 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5251 {
5252 /* Record the exit code in the convenience variable $_exitcode, so
5253 that the user can inspect this again later. */
5254 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5255 (LONGEST) ecs->ws.value.integer);
5256
5257 /* Also record this in the inferior itself. */
5258 current_inferior ()->has_exit_code = 1;
5259 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5260
98eb56a4
PA
5261 /* Support the --return-child-result option. */
5262 return_child_result_value = ecs->ws.value.integer;
5263
76727919 5264 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5265 }
5266 else
0c557179 5267 {
00431a78 5268 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5269
5270 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5271 {
5272 /* Set the value of the internal variable $_exitsignal,
5273 which holds the signal uncaught by the inferior. */
5274 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5275 gdbarch_gdb_signal_to_target (gdbarch,
5276 ecs->ws.value.sig));
5277 }
5278 else
5279 {
5280 /* We don't have access to the target's method used for
5281 converting between signal numbers (GDB's internal
5282 representation <-> target's representation).
5283 Therefore, we cannot do a good job at displaying this
5284 information to the user. It's better to just warn
5285 her about it (if infrun debugging is enabled), and
5286 give up. */
5287 if (debug_infrun)
5288 fprintf_filtered (gdb_stdlog, _("\
5289Cannot fill $_exitsignal with the correct signal number.\n"));
5290 }
5291
76727919 5292 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5293 }
8cf64490 5294
488f131b 5295 gdb_flush (gdb_stdout);
bc1e6c81 5296 target_mourn_inferior (inferior_ptid);
488f131b 5297 stop_print_frame = 0;
22bcd14b 5298 stop_waiting (ecs);
488f131b 5299 return;
c5aa993b 5300
488f131b 5301 /* The following are the only cases in which we keep going;
1777feb0 5302 the above cases end in a continue or goto. */
488f131b 5303 case TARGET_WAITKIND_FORKED:
deb3b17b 5304 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5305 /* Check whether the inferior is displaced stepping. */
5306 {
00431a78 5307 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5308 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5309
5310 /* If checking displaced stepping is supported, and thread
5311 ecs->ptid is displaced stepping. */
00431a78 5312 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
5313 {
5314 struct inferior *parent_inf
5b6d1e4f 5315 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5316 struct regcache *child_regcache;
5317 CORE_ADDR parent_pc;
5318
5319 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5320 indicating that the displaced stepping of syscall instruction
5321 has been done. Perform cleanup for parent process here. Note
5322 that this operation also cleans up the child process for vfork,
5323 because their pages are shared. */
00431a78 5324 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5325 /* Start a new step-over in another thread if there's one
5326 that needs it. */
5327 start_step_over ();
e2d96639
YQ
5328
5329 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5330 {
c0987663 5331 struct displaced_step_inferior_state *displaced
00431a78 5332 = get_displaced_stepping_state (parent_inf);
c0987663 5333
e2d96639
YQ
5334 /* Restore scratch pad for child process. */
5335 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5336 }
5337
5338 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5339 the child's PC is also within the scratchpad. Set the child's PC
5340 to the parent's PC value, which has already been fixed up.
5341 FIXME: we use the parent's aspace here, although we're touching
5342 the child, because the child hasn't been added to the inferior
5343 list yet at this point. */
5344
5345 child_regcache
5b6d1e4f
PA
5346 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5347 ecs->ws.value.related_pid,
e2d96639
YQ
5348 gdbarch,
5349 parent_inf->aspace);
5350 /* Read PC value of parent process. */
5351 parent_pc = regcache_read_pc (regcache);
5352
5353 if (debug_displaced)
5354 fprintf_unfiltered (gdb_stdlog,
5355 "displaced: write child pc from %s to %s\n",
5356 paddress (gdbarch,
5357 regcache_read_pc (child_regcache)),
5358 paddress (gdbarch, parent_pc));
5359
5360 regcache_write_pc (child_regcache, parent_pc);
5361 }
5362 }
5363
00431a78 5364 context_switch (ecs);
5a2901d9 5365
b242c3c2
PA
5366 /* Immediately detach breakpoints from the child before there's
5367 any chance of letting the user delete breakpoints from the
5368 breakpoint lists. If we don't do this early, it's easy to
5369 leave left over traps in the child, vis: "break foo; catch
5370 fork; c; <fork>; del; c; <child calls foo>". We only follow
5371 the fork on the last `continue', and by that time the
5372 breakpoint at "foo" is long gone from the breakpoint table.
5373 If we vforked, then we don't need to unpatch here, since both
5374 parent and child are sharing the same memory pages; we'll
5375 need to unpatch at follow/detach time instead to be certain
5376 that new breakpoints added between catchpoint hit time and
5377 vfork follow are detached. */
5378 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5379 {
b242c3c2
PA
5380 /* This won't actually modify the breakpoint list, but will
5381 physically remove the breakpoints from the child. */
d80ee84f 5382 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5383 }
5384
34b7e8a6 5385 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5386
e58b0e63
PA
5387 /* In case the event is caught by a catchpoint, remember that
5388 the event is to be followed at the next resume of the thread,
5389 and not immediately. */
5390 ecs->event_thread->pending_follow = ecs->ws;
5391
f2ffa92b
PA
5392 ecs->event_thread->suspend.stop_pc
5393 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5394
16c381f0 5395 ecs->event_thread->control.stop_bpstat
a01bda52 5396 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5397 ecs->event_thread->suspend.stop_pc,
5398 ecs->event_thread, &ecs->ws);
675bf4cb 5399
c65d6b55
PA
5400 if (handle_stop_requested (ecs))
5401 return;
5402
ce12b012
PA
5403 /* If no catchpoint triggered for this, then keep going. Note
5404 that we're interested in knowing the bpstat actually causes a
5405 stop, not just if it may explain the signal. Software
5406 watchpoints, for example, always appear in the bpstat. */
5407 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5408 {
e58b0e63 5409 int should_resume;
3e43a32a
MS
5410 int follow_child
5411 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5412
a493e3e2 5413 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5414
5b6d1e4f
PA
5415 process_stratum_target *targ
5416 = ecs->event_thread->inf->process_target ();
5417
e58b0e63
PA
5418 should_resume = follow_fork ();
5419
5b6d1e4f
PA
5420 /* Note that one of these may be an invalid pointer,
5421 depending on detach_fork. */
00431a78 5422 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5423 thread_info *child
5424 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5425
a2077e25
PA
5426 /* At this point, the parent is marked running, and the
5427 child is marked stopped. */
5428
5429 /* If not resuming the parent, mark it stopped. */
5430 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5431 parent->set_running (false);
a2077e25
PA
5432
5433 /* If resuming the child, mark it running. */
5434 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5435 child->set_running (true);
a2077e25 5436
6c95b8df 5437 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5438 if (!detach_fork && (non_stop
5439 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5440 {
5441 if (follow_child)
5442 switch_to_thread (parent);
5443 else
5444 switch_to_thread (child);
5445
5446 ecs->event_thread = inferior_thread ();
5447 ecs->ptid = inferior_ptid;
5448 keep_going (ecs);
5449 }
5450
5451 if (follow_child)
5452 switch_to_thread (child);
5453 else
5454 switch_to_thread (parent);
5455
e58b0e63
PA
5456 ecs->event_thread = inferior_thread ();
5457 ecs->ptid = inferior_ptid;
5458
5459 if (should_resume)
5460 keep_going (ecs);
5461 else
22bcd14b 5462 stop_waiting (ecs);
04e68871
DJ
5463 return;
5464 }
94c57d6a
PA
5465 process_event_stop_test (ecs);
5466 return;
488f131b 5467
6c95b8df
PA
5468 case TARGET_WAITKIND_VFORK_DONE:
5469 /* Done with the shared memory region. Re-insert breakpoints in
5470 the parent, and keep going. */
5471
00431a78 5472 context_switch (ecs);
6c95b8df
PA
5473
5474 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5475 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5476
5477 if (handle_stop_requested (ecs))
5478 return;
5479
6c95b8df
PA
5480 /* This also takes care of reinserting breakpoints in the
5481 previously locked inferior. */
5482 keep_going (ecs);
5483 return;
5484
488f131b 5485 case TARGET_WAITKIND_EXECD:
488f131b 5486
cbd2b4e3
PA
5487 /* Note we can't read registers yet (the stop_pc), because we
5488 don't yet know the inferior's post-exec architecture.
5489 'stop_pc' is explicitly read below instead. */
00431a78 5490 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5491
6c95b8df
PA
5492 /* Do whatever is necessary to the parent branch of the vfork. */
5493 handle_vfork_child_exec_or_exit (1);
5494
795e548f
PA
5495 /* This causes the eventpoints and symbol table to be reset.
5496 Must do this now, before trying to determine whether to
5497 stop. */
71b43ef8 5498 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5499
17d8546e
DB
5500 /* In follow_exec we may have deleted the original thread and
5501 created a new one. Make sure that the event thread is the
5502 execd thread for that case (this is a nop otherwise). */
5503 ecs->event_thread = inferior_thread ();
5504
f2ffa92b
PA
5505 ecs->event_thread->suspend.stop_pc
5506 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5507
16c381f0 5508 ecs->event_thread->control.stop_bpstat
a01bda52 5509 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5510 ecs->event_thread->suspend.stop_pc,
5511 ecs->event_thread, &ecs->ws);
795e548f 5512
71b43ef8
PA
5513 /* Note that this may be referenced from inside
5514 bpstat_stop_status above, through inferior_has_execd. */
5515 xfree (ecs->ws.value.execd_pathname);
5516 ecs->ws.value.execd_pathname = NULL;
5517
c65d6b55
PA
5518 if (handle_stop_requested (ecs))
5519 return;
5520
04e68871 5521 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5522 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5523 {
a493e3e2 5524 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5525 keep_going (ecs);
5526 return;
5527 }
94c57d6a
PA
5528 process_event_stop_test (ecs);
5529 return;
488f131b 5530
b4dc5ffa
MK
5531 /* Be careful not to try to gather much state about a thread
5532 that's in a syscall. It's frequently a losing proposition. */
488f131b 5533 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5534 /* Getting the current syscall number. */
94c57d6a
PA
5535 if (handle_syscall_event (ecs) == 0)
5536 process_event_stop_test (ecs);
5537 return;
c906108c 5538
488f131b
JB
5539 /* Before examining the threads further, step this thread to
5540 get it entirely out of the syscall. (We get notice of the
5541 event when the thread is just on the verge of exiting a
5542 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5543 into user code.) */
488f131b 5544 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5545 if (handle_syscall_event (ecs) == 0)
5546 process_event_stop_test (ecs);
5547 return;
c906108c 5548
488f131b 5549 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5550 handle_signal_stop (ecs);
5551 return;
c906108c 5552
b2175913
MS
5553 case TARGET_WAITKIND_NO_HISTORY:
5554 /* Reverse execution: target ran out of history info. */
eab402df 5555
d1988021 5556 /* Switch to the stopped thread. */
00431a78 5557 context_switch (ecs);
d1988021
MM
5558 if (debug_infrun)
5559 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5560
34b7e8a6 5561 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5562 ecs->event_thread->suspend.stop_pc
5563 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5564
5565 if (handle_stop_requested (ecs))
5566 return;
5567
76727919 5568 gdb::observers::no_history.notify ();
22bcd14b 5569 stop_waiting (ecs);
b2175913 5570 return;
488f131b 5571 }
4f5d7f63
PA
5572}
5573
372316f1
PA
5574/* Restart threads back to what they were trying to do back when we
5575 paused them for an in-line step-over. The EVENT_THREAD thread is
5576 ignored. */
4d9d9d04
PA
5577
5578static void
372316f1
PA
5579restart_threads (struct thread_info *event_thread)
5580{
372316f1
PA
5581 /* In case the instruction just stepped spawned a new thread. */
5582 update_thread_list ();
5583
08036331 5584 for (thread_info *tp : all_non_exited_threads ())
372316f1 5585 {
f3f8ece4
PA
5586 switch_to_thread_no_regs (tp);
5587
372316f1
PA
5588 if (tp == event_thread)
5589 {
5590 if (debug_infrun)
5591 fprintf_unfiltered (gdb_stdlog,
5592 "infrun: restart threads: "
5593 "[%s] is event thread\n",
a068643d 5594 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5595 continue;
5596 }
5597
5598 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5599 {
5600 if (debug_infrun)
5601 fprintf_unfiltered (gdb_stdlog,
5602 "infrun: restart threads: "
5603 "[%s] not meant to be running\n",
a068643d 5604 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5605 continue;
5606 }
5607
5608 if (tp->resumed)
5609 {
5610 if (debug_infrun)
5611 fprintf_unfiltered (gdb_stdlog,
5612 "infrun: restart threads: [%s] resumed\n",
a068643d 5613 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5614 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5615 continue;
5616 }
5617
5618 if (thread_is_in_step_over_chain (tp))
5619 {
5620 if (debug_infrun)
5621 fprintf_unfiltered (gdb_stdlog,
5622 "infrun: restart threads: "
5623 "[%s] needs step-over\n",
a068643d 5624 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5625 gdb_assert (!tp->resumed);
5626 continue;
5627 }
5628
5629
5630 if (tp->suspend.waitstatus_pending_p)
5631 {
5632 if (debug_infrun)
5633 fprintf_unfiltered (gdb_stdlog,
5634 "infrun: restart threads: "
5635 "[%s] has pending status\n",
a068643d 5636 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5637 tp->resumed = 1;
5638 continue;
5639 }
5640
c65d6b55
PA
5641 gdb_assert (!tp->stop_requested);
5642
372316f1
PA
5643 /* If some thread needs to start a step-over at this point, it
5644 should still be in the step-over queue, and thus skipped
5645 above. */
5646 if (thread_still_needs_step_over (tp))
5647 {
5648 internal_error (__FILE__, __LINE__,
5649 "thread [%s] needs a step-over, but not in "
5650 "step-over queue\n",
a068643d 5651 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5652 }
5653
5654 if (currently_stepping (tp))
5655 {
5656 if (debug_infrun)
5657 fprintf_unfiltered (gdb_stdlog,
5658 "infrun: restart threads: [%s] was stepping\n",
a068643d 5659 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5660 keep_going_stepped_thread (tp);
5661 }
5662 else
5663 {
5664 struct execution_control_state ecss;
5665 struct execution_control_state *ecs = &ecss;
5666
5667 if (debug_infrun)
5668 fprintf_unfiltered (gdb_stdlog,
5669 "infrun: restart threads: [%s] continuing\n",
a068643d 5670 target_pid_to_str (tp->ptid).c_str ());
372316f1 5671 reset_ecs (ecs, tp);
00431a78 5672 switch_to_thread (tp);
372316f1
PA
5673 keep_going_pass_signal (ecs);
5674 }
5675 }
5676}
5677
5678/* Callback for iterate_over_threads. Find a resumed thread that has
5679 a pending waitstatus. */
5680
5681static int
5682resumed_thread_with_pending_status (struct thread_info *tp,
5683 void *arg)
5684{
5685 return (tp->resumed
5686 && tp->suspend.waitstatus_pending_p);
5687}
5688
5689/* Called when we get an event that may finish an in-line or
5690 out-of-line (displaced stepping) step-over started previously.
5691 Return true if the event is processed and we should go back to the
5692 event loop; false if the caller should continue processing the
5693 event. */
5694
5695static int
4d9d9d04
PA
5696finish_step_over (struct execution_control_state *ecs)
5697{
372316f1
PA
5698 int had_step_over_info;
5699
00431a78 5700 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5701 ecs->event_thread->suspend.stop_signal);
5702
372316f1
PA
5703 had_step_over_info = step_over_info_valid_p ();
5704
5705 if (had_step_over_info)
4d9d9d04
PA
5706 {
5707 /* If we're stepping over a breakpoint with all threads locked,
5708 then only the thread that was stepped should be reporting
5709 back an event. */
5710 gdb_assert (ecs->event_thread->control.trap_expected);
5711
c65d6b55 5712 clear_step_over_info ();
4d9d9d04
PA
5713 }
5714
fbea99ea 5715 if (!target_is_non_stop_p ())
372316f1 5716 return 0;
4d9d9d04
PA
5717
5718 /* Start a new step-over in another thread if there's one that
5719 needs it. */
5720 start_step_over ();
372316f1
PA
5721
5722 /* If we were stepping over a breakpoint before, and haven't started
5723 a new in-line step-over sequence, then restart all other threads
5724 (except the event thread). We can't do this in all-stop, as then
5725 e.g., we wouldn't be able to issue any other remote packet until
5726 these other threads stop. */
5727 if (had_step_over_info && !step_over_info_valid_p ())
5728 {
5729 struct thread_info *pending;
5730
5731 /* If we only have threads with pending statuses, the restart
5732 below won't restart any thread and so nothing re-inserts the
5733 breakpoint we just stepped over. But we need it inserted
5734 when we later process the pending events, otherwise if
5735 another thread has a pending event for this breakpoint too,
5736 we'd discard its event (because the breakpoint that
5737 originally caused the event was no longer inserted). */
00431a78 5738 context_switch (ecs);
372316f1
PA
5739 insert_breakpoints ();
5740
5922befa
LM
5741 {
5742 scoped_restore save_defer_tc
5743 = make_scoped_defer_target_commit_resume ();
5744 restart_threads (ecs->event_thread);
5745 }
5746 target_commit_resume ();
372316f1
PA
5747
5748 /* If we have events pending, go through handle_inferior_event
5749 again, picking up a pending event at random. This avoids
5750 thread starvation. */
5751
5752 /* But not if we just stepped over a watchpoint in order to let
5753 the instruction execute so we can evaluate its expression.
5754 The set of watchpoints that triggered is recorded in the
5755 breakpoint objects themselves (see bp->watchpoint_triggered).
5756 If we processed another event first, that other event could
5757 clobber this info. */
5758 if (ecs->event_thread->stepping_over_watchpoint)
5759 return 0;
5760
5761 pending = iterate_over_threads (resumed_thread_with_pending_status,
5762 NULL);
5763 if (pending != NULL)
5764 {
5765 struct thread_info *tp = ecs->event_thread;
5766 struct regcache *regcache;
5767
5768 if (debug_infrun)
5769 {
5770 fprintf_unfiltered (gdb_stdlog,
5771 "infrun: found resumed threads with "
5772 "pending events, saving status\n");
5773 }
5774
5775 gdb_assert (pending != tp);
5776
5777 /* Record the event thread's event for later. */
5778 save_waitstatus (tp, &ecs->ws);
5779 /* This was cleared early, by handle_inferior_event. Set it
5780 so this pending event is considered by
5781 do_target_wait. */
5782 tp->resumed = 1;
5783
5784 gdb_assert (!tp->executing);
5785
00431a78 5786 regcache = get_thread_regcache (tp);
372316f1
PA
5787 tp->suspend.stop_pc = regcache_read_pc (regcache);
5788
5789 if (debug_infrun)
5790 {
5791 fprintf_unfiltered (gdb_stdlog,
5792 "infrun: saved stop_pc=%s for %s "
5793 "(currently_stepping=%d)\n",
5794 paddress (target_gdbarch (),
5795 tp->suspend.stop_pc),
a068643d 5796 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5797 currently_stepping (tp));
5798 }
5799
5800 /* This in-line step-over finished; clear this so we won't
5801 start a new one. This is what handle_signal_stop would
5802 do, if we returned false. */
5803 tp->stepping_over_breakpoint = 0;
5804
5805 /* Wake up the event loop again. */
5806 mark_async_event_handler (infrun_async_inferior_event_token);
5807
5808 prepare_to_wait (ecs);
5809 return 1;
5810 }
5811 }
5812
5813 return 0;
4d9d9d04
PA
5814}
5815
4f5d7f63
PA
5816/* Come here when the program has stopped with a signal. */
5817
5818static void
5819handle_signal_stop (struct execution_control_state *ecs)
5820{
5821 struct frame_info *frame;
5822 struct gdbarch *gdbarch;
5823 int stopped_by_watchpoint;
5824 enum stop_kind stop_soon;
5825 int random_signal;
c906108c 5826
f0407826
DE
5827 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5828
c65d6b55
PA
5829 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5830
f0407826
DE
5831 /* Do we need to clean up the state of a thread that has
5832 completed a displaced single-step? (Doing so usually affects
5833 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5834 if (finish_step_over (ecs))
5835 return;
f0407826
DE
5836
5837 /* If we either finished a single-step or hit a breakpoint, but
5838 the user wanted this thread to be stopped, pretend we got a
5839 SIG0 (generic unsignaled stop). */
5840 if (ecs->event_thread->stop_requested
5841 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5842 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5843
f2ffa92b
PA
5844 ecs->event_thread->suspend.stop_pc
5845 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5846
527159b7 5847 if (debug_infrun)
237fc4c9 5848 {
00431a78 5849 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5850 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5851
f3f8ece4 5852 switch_to_thread (ecs->event_thread);
5af949e3
UW
5853
5854 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5855 paddress (reg_gdbarch,
f2ffa92b 5856 ecs->event_thread->suspend.stop_pc));
d92524f1 5857 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5858 {
5859 CORE_ADDR addr;
abbb1732 5860
237fc4c9
PA
5861 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5862
8b88a78e 5863 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5864 fprintf_unfiltered (gdb_stdlog,
5af949e3 5865 "infrun: stopped data address = %s\n",
b926417a 5866 paddress (reg_gdbarch, addr));
237fc4c9
PA
5867 else
5868 fprintf_unfiltered (gdb_stdlog,
5869 "infrun: (no data address available)\n");
5870 }
5871 }
527159b7 5872
36fa8042
PA
5873 /* This is originated from start_remote(), start_inferior() and
5874 shared libraries hook functions. */
00431a78 5875 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5876 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5877 {
00431a78 5878 context_switch (ecs);
36fa8042
PA
5879 if (debug_infrun)
5880 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5881 stop_print_frame = 1;
22bcd14b 5882 stop_waiting (ecs);
36fa8042
PA
5883 return;
5884 }
5885
36fa8042
PA
5886 /* This originates from attach_command(). We need to overwrite
5887 the stop_signal here, because some kernels don't ignore a
5888 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5889 See more comments in inferior.h. On the other hand, if we
5890 get a non-SIGSTOP, report it to the user - assume the backend
5891 will handle the SIGSTOP if it should show up later.
5892
5893 Also consider that the attach is complete when we see a
5894 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5895 target extended-remote report it instead of a SIGSTOP
5896 (e.g. gdbserver). We already rely on SIGTRAP being our
5897 signal, so this is no exception.
5898
5899 Also consider that the attach is complete when we see a
5900 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5901 the target to stop all threads of the inferior, in case the
5902 low level attach operation doesn't stop them implicitly. If
5903 they weren't stopped implicitly, then the stub will report a
5904 GDB_SIGNAL_0, meaning: stopped for no particular reason
5905 other than GDB's request. */
5906 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5907 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5908 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5909 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5910 {
5911 stop_print_frame = 1;
22bcd14b 5912 stop_waiting (ecs);
36fa8042
PA
5913 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5914 return;
5915 }
5916
488f131b 5917 /* See if something interesting happened to the non-current thread. If
b40c7d58 5918 so, then switch to that thread. */
d7e15655 5919 if (ecs->ptid != inferior_ptid)
488f131b 5920 {
527159b7 5921 if (debug_infrun)
8a9de0e4 5922 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5923
00431a78 5924 context_switch (ecs);
c5aa993b 5925
9a4105ab 5926 if (deprecated_context_hook)
00431a78 5927 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5928 }
c906108c 5929
568d6575
UW
5930 /* At this point, get hold of the now-current thread's frame. */
5931 frame = get_current_frame ();
5932 gdbarch = get_frame_arch (frame);
5933
2adfaa28 5934 /* Pull the single step breakpoints out of the target. */
af48d08f 5935 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5936 {
af48d08f 5937 struct regcache *regcache;
af48d08f 5938 CORE_ADDR pc;
2adfaa28 5939
00431a78 5940 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5941 const address_space *aspace = regcache->aspace ();
5942
af48d08f 5943 pc = regcache_read_pc (regcache);
34b7e8a6 5944
af48d08f
PA
5945 /* However, before doing so, if this single-step breakpoint was
5946 actually for another thread, set this thread up for moving
5947 past it. */
5948 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5949 aspace, pc))
5950 {
5951 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5952 {
5953 if (debug_infrun)
5954 {
5955 fprintf_unfiltered (gdb_stdlog,
af48d08f 5956 "infrun: [%s] hit another thread's "
34b7e8a6 5957 "single-step breakpoint\n",
a068643d 5958 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5959 }
af48d08f
PA
5960 ecs->hit_singlestep_breakpoint = 1;
5961 }
5962 }
5963 else
5964 {
5965 if (debug_infrun)
5966 {
5967 fprintf_unfiltered (gdb_stdlog,
5968 "infrun: [%s] hit its "
5969 "single-step breakpoint\n",
a068643d 5970 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5971 }
5972 }
488f131b 5973 }
af48d08f 5974 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5975
963f9c80
PA
5976 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5977 && ecs->event_thread->control.trap_expected
5978 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5979 stopped_by_watchpoint = 0;
5980 else
5981 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5982
5983 /* If necessary, step over this watchpoint. We'll be back to display
5984 it in a moment. */
5985 if (stopped_by_watchpoint
d92524f1 5986 && (target_have_steppable_watchpoint
568d6575 5987 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5988 {
488f131b
JB
5989 /* At this point, we are stopped at an instruction which has
5990 attempted to write to a piece of memory under control of
5991 a watchpoint. The instruction hasn't actually executed
5992 yet. If we were to evaluate the watchpoint expression
5993 now, we would get the old value, and therefore no change
5994 would seem to have occurred.
5995
5996 In order to make watchpoints work `right', we really need
5997 to complete the memory write, and then evaluate the
d983da9c
DJ
5998 watchpoint expression. We do this by single-stepping the
5999 target.
6000
7f89fd65 6001 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
6002 it. For example, the PA can (with some kernel cooperation)
6003 single step over a watchpoint without disabling the watchpoint.
6004
6005 It is far more common to need to disable a watchpoint to step
6006 the inferior over it. If we have non-steppable watchpoints,
6007 we must disable the current watchpoint; it's simplest to
963f9c80
PA
6008 disable all watchpoints.
6009
6010 Any breakpoint at PC must also be stepped over -- if there's
6011 one, it will have already triggered before the watchpoint
6012 triggered, and we either already reported it to the user, or
6013 it didn't cause a stop and we called keep_going. In either
6014 case, if there was a breakpoint at PC, we must be trying to
6015 step past it. */
6016 ecs->event_thread->stepping_over_watchpoint = 1;
6017 keep_going (ecs);
488f131b
JB
6018 return;
6019 }
6020
4e1c45ea 6021 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 6022 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
6023 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6024 ecs->event_thread->control.stop_step = 0;
488f131b 6025 stop_print_frame = 1;
488f131b 6026 stopped_by_random_signal = 0;
ddfe970e 6027 bpstat stop_chain = NULL;
488f131b 6028
edb3359d
DJ
6029 /* Hide inlined functions starting here, unless we just performed stepi or
6030 nexti. After stepi and nexti, always show the innermost frame (not any
6031 inline function call sites). */
16c381f0 6032 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 6033 {
00431a78
PA
6034 const address_space *aspace
6035 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
6036
6037 /* skip_inline_frames is expensive, so we avoid it if we can
6038 determine that the address is one where functions cannot have
6039 been inlined. This improves performance with inferiors that
6040 load a lot of shared libraries, because the solib event
6041 breakpoint is defined as the address of a function (i.e. not
6042 inline). Note that we have to check the previous PC as well
6043 as the current one to catch cases when we have just
6044 single-stepped off a breakpoint prior to reinstating it.
6045 Note that we're assuming that the code we single-step to is
6046 not inline, but that's not definitive: there's nothing
6047 preventing the event breakpoint function from containing
6048 inlined code, and the single-step ending up there. If the
6049 user had set a breakpoint on that inlined code, the missing
6050 skip_inline_frames call would break things. Fortunately
6051 that's an extremely unlikely scenario. */
f2ffa92b
PA
6052 if (!pc_at_non_inline_function (aspace,
6053 ecs->event_thread->suspend.stop_pc,
6054 &ecs->ws)
a210c238
MR
6055 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6056 && ecs->event_thread->control.trap_expected
6057 && pc_at_non_inline_function (aspace,
6058 ecs->event_thread->prev_pc,
09ac7c10 6059 &ecs->ws)))
1c5a993e 6060 {
f2ffa92b
PA
6061 stop_chain = build_bpstat_chain (aspace,
6062 ecs->event_thread->suspend.stop_pc,
6063 &ecs->ws);
00431a78 6064 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6065
6066 /* Re-fetch current thread's frame in case that invalidated
6067 the frame cache. */
6068 frame = get_current_frame ();
6069 gdbarch = get_frame_arch (frame);
6070 }
0574c78f 6071 }
edb3359d 6072
a493e3e2 6073 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6074 && ecs->event_thread->control.trap_expected
568d6575 6075 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6076 && currently_stepping (ecs->event_thread))
3352ef37 6077 {
b50d7442 6078 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6079 also on an instruction that needs to be stepped multiple
1777feb0 6080 times before it's been fully executing. E.g., architectures
3352ef37
AC
6081 with a delay slot. It needs to be stepped twice, once for
6082 the instruction and once for the delay slot. */
6083 int step_through_delay
568d6575 6084 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6085
527159b7 6086 if (debug_infrun && step_through_delay)
8a9de0e4 6087 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
6088 if (ecs->event_thread->control.step_range_end == 0
6089 && step_through_delay)
3352ef37
AC
6090 {
6091 /* The user issued a continue when stopped at a breakpoint.
6092 Set up for another trap and get out of here. */
4e1c45ea 6093 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6094 keep_going (ecs);
6095 return;
6096 }
6097 else if (step_through_delay)
6098 {
6099 /* The user issued a step when stopped at a breakpoint.
6100 Maybe we should stop, maybe we should not - the delay
6101 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6102 case, don't decide that here, just set
6103 ecs->stepping_over_breakpoint, making sure we
6104 single-step again before breakpoints are re-inserted. */
4e1c45ea 6105 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6106 }
6107 }
6108
ab04a2af
TT
6109 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6110 handles this event. */
6111 ecs->event_thread->control.stop_bpstat
a01bda52 6112 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6113 ecs->event_thread->suspend.stop_pc,
6114 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6115
ab04a2af
TT
6116 /* Following in case break condition called a
6117 function. */
6118 stop_print_frame = 1;
73dd234f 6119
ab04a2af
TT
6120 /* This is where we handle "moribund" watchpoints. Unlike
6121 software breakpoints traps, hardware watchpoint traps are
6122 always distinguishable from random traps. If no high-level
6123 watchpoint is associated with the reported stop data address
6124 anymore, then the bpstat does not explain the signal ---
6125 simply make sure to ignore it if `stopped_by_watchpoint' is
6126 set. */
6127
6128 if (debug_infrun
6129 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6130 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6131 GDB_SIGNAL_TRAP)
ab04a2af
TT
6132 && stopped_by_watchpoint)
6133 fprintf_unfiltered (gdb_stdlog,
6134 "infrun: no user watchpoint explains "
6135 "watchpoint SIGTRAP, ignoring\n");
73dd234f 6136
bac7d97b 6137 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6138 at one stage in the past included checks for an inferior
6139 function call's call dummy's return breakpoint. The original
6140 comment, that went with the test, read:
03cebad2 6141
ab04a2af
TT
6142 ``End of a stack dummy. Some systems (e.g. Sony news) give
6143 another signal besides SIGTRAP, so check here as well as
6144 above.''
73dd234f 6145
ab04a2af
TT
6146 If someone ever tries to get call dummys on a
6147 non-executable stack to work (where the target would stop
6148 with something like a SIGSEGV), then those tests might need
6149 to be re-instated. Given, however, that the tests were only
6150 enabled when momentary breakpoints were not being used, I
6151 suspect that it won't be the case.
488f131b 6152
ab04a2af
TT
6153 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6154 be necessary for call dummies on a non-executable stack on
6155 SPARC. */
488f131b 6156
bac7d97b 6157 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6158 random_signal
6159 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6160 ecs->event_thread->suspend.stop_signal);
bac7d97b 6161
1cf4d951
PA
6162 /* Maybe this was a trap for a software breakpoint that has since
6163 been removed. */
6164 if (random_signal && target_stopped_by_sw_breakpoint ())
6165 {
f2ffa92b
PA
6166 if (program_breakpoint_here_p (gdbarch,
6167 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6168 {
6169 struct regcache *regcache;
6170 int decr_pc;
6171
6172 /* Re-adjust PC to what the program would see if GDB was not
6173 debugging it. */
00431a78 6174 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6175 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6176 if (decr_pc != 0)
6177 {
07036511
TT
6178 gdb::optional<scoped_restore_tmpl<int>>
6179 restore_operation_disable;
1cf4d951
PA
6180
6181 if (record_full_is_used ())
07036511
TT
6182 restore_operation_disable.emplace
6183 (record_full_gdb_operation_disable_set ());
1cf4d951 6184
f2ffa92b
PA
6185 regcache_write_pc (regcache,
6186 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6187 }
6188 }
6189 else
6190 {
6191 /* A delayed software breakpoint event. Ignore the trap. */
6192 if (debug_infrun)
6193 fprintf_unfiltered (gdb_stdlog,
6194 "infrun: delayed software breakpoint "
6195 "trap, ignoring\n");
6196 random_signal = 0;
6197 }
6198 }
6199
6200 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6201 has since been removed. */
6202 if (random_signal && target_stopped_by_hw_breakpoint ())
6203 {
6204 /* A delayed hardware breakpoint event. Ignore the trap. */
6205 if (debug_infrun)
6206 fprintf_unfiltered (gdb_stdlog,
6207 "infrun: delayed hardware breakpoint/watchpoint "
6208 "trap, ignoring\n");
6209 random_signal = 0;
6210 }
6211
bac7d97b
PA
6212 /* If not, perhaps stepping/nexting can. */
6213 if (random_signal)
6214 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6215 && currently_stepping (ecs->event_thread));
ab04a2af 6216
2adfaa28
PA
6217 /* Perhaps the thread hit a single-step breakpoint of _another_
6218 thread. Single-step breakpoints are transparent to the
6219 breakpoints module. */
6220 if (random_signal)
6221 random_signal = !ecs->hit_singlestep_breakpoint;
6222
bac7d97b
PA
6223 /* No? Perhaps we got a moribund watchpoint. */
6224 if (random_signal)
6225 random_signal = !stopped_by_watchpoint;
ab04a2af 6226
c65d6b55
PA
6227 /* Always stop if the user explicitly requested this thread to
6228 remain stopped. */
6229 if (ecs->event_thread->stop_requested)
6230 {
6231 random_signal = 1;
6232 if (debug_infrun)
6233 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6234 }
6235
488f131b
JB
6236 /* For the program's own signals, act according to
6237 the signal handling tables. */
6238
ce12b012 6239 if (random_signal)
488f131b
JB
6240 {
6241 /* Signal not for debugging purposes. */
5b6d1e4f 6242 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6243 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6244
527159b7 6245 if (debug_infrun)
c9737c08
PA
6246 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6247 gdb_signal_to_symbol_string (stop_signal));
527159b7 6248
488f131b
JB
6249 stopped_by_random_signal = 1;
6250
252fbfc8
PA
6251 /* Always stop on signals if we're either just gaining control
6252 of the program, or the user explicitly requested this thread
6253 to remain stopped. */
d6b48e9c 6254 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6255 || ecs->event_thread->stop_requested
24291992 6256 || (!inf->detaching
16c381f0 6257 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6258 {
22bcd14b 6259 stop_waiting (ecs);
488f131b
JB
6260 return;
6261 }
b57bacec
PA
6262
6263 /* Notify observers the signal has "handle print" set. Note we
6264 returned early above if stopping; normal_stop handles the
6265 printing in that case. */
6266 if (signal_print[ecs->event_thread->suspend.stop_signal])
6267 {
6268 /* The signal table tells us to print about this signal. */
223ffa71 6269 target_terminal::ours_for_output ();
76727919 6270 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6271 target_terminal::inferior ();
b57bacec 6272 }
488f131b
JB
6273
6274 /* Clear the signal if it should not be passed. */
16c381f0 6275 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6276 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6277
f2ffa92b 6278 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6279 && ecs->event_thread->control.trap_expected
8358c15c 6280 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6281 {
6282 /* We were just starting a new sequence, attempting to
6283 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6284 Instead this signal arrives. This signal will take us out
68f53502
AC
6285 of the stepping range so GDB needs to remember to, when
6286 the signal handler returns, resume stepping off that
6287 breakpoint. */
6288 /* To simplify things, "continue" is forced to use the same
6289 code paths as single-step - set a breakpoint at the
6290 signal return address and then, once hit, step off that
6291 breakpoint. */
237fc4c9
PA
6292 if (debug_infrun)
6293 fprintf_unfiltered (gdb_stdlog,
6294 "infrun: signal arrived while stepping over "
6295 "breakpoint\n");
d3169d93 6296
2c03e5be 6297 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6298 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6299 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6300 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6301
6302 /* If we were nexting/stepping some other thread, switch to
6303 it, so that we don't continue it, losing control. */
6304 if (!switch_back_to_stepped_thread (ecs))
6305 keep_going (ecs);
9d799f85 6306 return;
68f53502 6307 }
9d799f85 6308
e5f8a7cc 6309 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6310 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6311 ecs->event_thread)
e5f8a7cc 6312 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6313 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6314 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6315 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6316 {
6317 /* The inferior is about to take a signal that will take it
6318 out of the single step range. Set a breakpoint at the
6319 current PC (which is presumably where the signal handler
6320 will eventually return) and then allow the inferior to
6321 run free.
6322
6323 Note that this is only needed for a signal delivered
6324 while in the single-step range. Nested signals aren't a
6325 problem as they eventually all return. */
237fc4c9
PA
6326 if (debug_infrun)
6327 fprintf_unfiltered (gdb_stdlog,
6328 "infrun: signal may take us out of "
6329 "single-step range\n");
6330
372316f1 6331 clear_step_over_info ();
2c03e5be 6332 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6333 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6334 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6335 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6336 keep_going (ecs);
6337 return;
d303a6c7 6338 }
9d799f85 6339
85102364 6340 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6341 when either there's a nested signal, or when there's a
6342 pending signal enabled just as the signal handler returns
6343 (leaving the inferior at the step-resume-breakpoint without
6344 actually executing it). Either way continue until the
6345 breakpoint is really hit. */
c447ac0b
PA
6346
6347 if (!switch_back_to_stepped_thread (ecs))
6348 {
6349 if (debug_infrun)
6350 fprintf_unfiltered (gdb_stdlog,
6351 "infrun: random signal, keep going\n");
6352
6353 keep_going (ecs);
6354 }
6355 return;
488f131b 6356 }
94c57d6a
PA
6357
6358 process_event_stop_test (ecs);
6359}
6360
6361/* Come here when we've got some debug event / signal we can explain
6362 (IOW, not a random signal), and test whether it should cause a
6363 stop, or whether we should resume the inferior (transparently).
6364 E.g., could be a breakpoint whose condition evaluates false; we
6365 could be still stepping within the line; etc. */
6366
6367static void
6368process_event_stop_test (struct execution_control_state *ecs)
6369{
6370 struct symtab_and_line stop_pc_sal;
6371 struct frame_info *frame;
6372 struct gdbarch *gdbarch;
cdaa5b73
PA
6373 CORE_ADDR jmp_buf_pc;
6374 struct bpstat_what what;
94c57d6a 6375
cdaa5b73 6376 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6377
cdaa5b73
PA
6378 frame = get_current_frame ();
6379 gdbarch = get_frame_arch (frame);
fcf3daef 6380
cdaa5b73 6381 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6382
cdaa5b73
PA
6383 if (what.call_dummy)
6384 {
6385 stop_stack_dummy = what.call_dummy;
6386 }
186c406b 6387
243a9253
PA
6388 /* A few breakpoint types have callbacks associated (e.g.,
6389 bp_jit_event). Run them now. */
6390 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6391
cdaa5b73
PA
6392 /* If we hit an internal event that triggers symbol changes, the
6393 current frame will be invalidated within bpstat_what (e.g., if we
6394 hit an internal solib event). Re-fetch it. */
6395 frame = get_current_frame ();
6396 gdbarch = get_frame_arch (frame);
e2e4d78b 6397
cdaa5b73
PA
6398 switch (what.main_action)
6399 {
6400 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6401 /* If we hit the breakpoint at longjmp while stepping, we
6402 install a momentary breakpoint at the target of the
6403 jmp_buf. */
186c406b 6404
cdaa5b73
PA
6405 if (debug_infrun)
6406 fprintf_unfiltered (gdb_stdlog,
6407 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6408
cdaa5b73 6409 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6410
cdaa5b73
PA
6411 if (what.is_longjmp)
6412 {
6413 struct value *arg_value;
6414
6415 /* If we set the longjmp breakpoint via a SystemTap probe,
6416 then use it to extract the arguments. The destination PC
6417 is the third argument to the probe. */
6418 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6419 if (arg_value)
8fa0c4f8
AA
6420 {
6421 jmp_buf_pc = value_as_address (arg_value);
6422 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6423 }
cdaa5b73
PA
6424 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6425 || !gdbarch_get_longjmp_target (gdbarch,
6426 frame, &jmp_buf_pc))
e2e4d78b 6427 {
cdaa5b73
PA
6428 if (debug_infrun)
6429 fprintf_unfiltered (gdb_stdlog,
6430 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6431 "(!gdbarch_get_longjmp_target)\n");
6432 keep_going (ecs);
6433 return;
e2e4d78b 6434 }
e2e4d78b 6435
cdaa5b73
PA
6436 /* Insert a breakpoint at resume address. */
6437 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6438 }
6439 else
6440 check_exception_resume (ecs, frame);
6441 keep_going (ecs);
6442 return;
e81a37f7 6443
cdaa5b73
PA
6444 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6445 {
6446 struct frame_info *init_frame;
e81a37f7 6447
cdaa5b73 6448 /* There are several cases to consider.
c906108c 6449
cdaa5b73
PA
6450 1. The initiating frame no longer exists. In this case we
6451 must stop, because the exception or longjmp has gone too
6452 far.
2c03e5be 6453
cdaa5b73
PA
6454 2. The initiating frame exists, and is the same as the
6455 current frame. We stop, because the exception or longjmp
6456 has been caught.
2c03e5be 6457
cdaa5b73
PA
6458 3. The initiating frame exists and is different from the
6459 current frame. This means the exception or longjmp has
6460 been caught beneath the initiating frame, so keep going.
c906108c 6461
cdaa5b73
PA
6462 4. longjmp breakpoint has been placed just to protect
6463 against stale dummy frames and user is not interested in
6464 stopping around longjmps. */
c5aa993b 6465
cdaa5b73
PA
6466 if (debug_infrun)
6467 fprintf_unfiltered (gdb_stdlog,
6468 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6469
cdaa5b73
PA
6470 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6471 != NULL);
6472 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6473
cdaa5b73
PA
6474 if (what.is_longjmp)
6475 {
b67a2c6f 6476 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6477
cdaa5b73 6478 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6479 {
cdaa5b73
PA
6480 /* Case 4. */
6481 keep_going (ecs);
6482 return;
e5ef252a 6483 }
cdaa5b73 6484 }
c5aa993b 6485
cdaa5b73 6486 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6487
cdaa5b73
PA
6488 if (init_frame)
6489 {
6490 struct frame_id current_id
6491 = get_frame_id (get_current_frame ());
6492 if (frame_id_eq (current_id,
6493 ecs->event_thread->initiating_frame))
6494 {
6495 /* Case 2. Fall through. */
6496 }
6497 else
6498 {
6499 /* Case 3. */
6500 keep_going (ecs);
6501 return;
6502 }
68f53502 6503 }
488f131b 6504
cdaa5b73
PA
6505 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6506 exists. */
6507 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6508
bdc36728 6509 end_stepping_range (ecs);
cdaa5b73
PA
6510 }
6511 return;
e5ef252a 6512
cdaa5b73
PA
6513 case BPSTAT_WHAT_SINGLE:
6514 if (debug_infrun)
6515 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6516 ecs->event_thread->stepping_over_breakpoint = 1;
6517 /* Still need to check other stuff, at least the case where we
6518 are stepping and step out of the right range. */
6519 break;
e5ef252a 6520
cdaa5b73
PA
6521 case BPSTAT_WHAT_STEP_RESUME:
6522 if (debug_infrun)
6523 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6524
cdaa5b73
PA
6525 delete_step_resume_breakpoint (ecs->event_thread);
6526 if (ecs->event_thread->control.proceed_to_finish
6527 && execution_direction == EXEC_REVERSE)
6528 {
6529 struct thread_info *tp = ecs->event_thread;
6530
6531 /* We are finishing a function in reverse, and just hit the
6532 step-resume breakpoint at the start address of the
6533 function, and we're almost there -- just need to back up
6534 by one more single-step, which should take us back to the
6535 function call. */
6536 tp->control.step_range_start = tp->control.step_range_end = 1;
6537 keep_going (ecs);
e5ef252a 6538 return;
cdaa5b73
PA
6539 }
6540 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6541 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6542 && execution_direction == EXEC_REVERSE)
6543 {
6544 /* We are stepping over a function call in reverse, and just
6545 hit the step-resume breakpoint at the start address of
6546 the function. Go back to single-stepping, which should
6547 take us back to the function call. */
6548 ecs->event_thread->stepping_over_breakpoint = 1;
6549 keep_going (ecs);
6550 return;
6551 }
6552 break;
e5ef252a 6553
cdaa5b73
PA
6554 case BPSTAT_WHAT_STOP_NOISY:
6555 if (debug_infrun)
6556 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6557 stop_print_frame = 1;
e5ef252a 6558
99619bea
PA
6559 /* Assume the thread stopped for a breapoint. We'll still check
6560 whether a/the breakpoint is there when the thread is next
6561 resumed. */
6562 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6563
22bcd14b 6564 stop_waiting (ecs);
cdaa5b73 6565 return;
e5ef252a 6566
cdaa5b73
PA
6567 case BPSTAT_WHAT_STOP_SILENT:
6568 if (debug_infrun)
6569 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6570 stop_print_frame = 0;
e5ef252a 6571
99619bea
PA
6572 /* Assume the thread stopped for a breapoint. We'll still check
6573 whether a/the breakpoint is there when the thread is next
6574 resumed. */
6575 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6576 stop_waiting (ecs);
cdaa5b73
PA
6577 return;
6578
6579 case BPSTAT_WHAT_HP_STEP_RESUME:
6580 if (debug_infrun)
6581 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6582
6583 delete_step_resume_breakpoint (ecs->event_thread);
6584 if (ecs->event_thread->step_after_step_resume_breakpoint)
6585 {
6586 /* Back when the step-resume breakpoint was inserted, we
6587 were trying to single-step off a breakpoint. Go back to
6588 doing that. */
6589 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6590 ecs->event_thread->stepping_over_breakpoint = 1;
6591 keep_going (ecs);
6592 return;
e5ef252a 6593 }
cdaa5b73
PA
6594 break;
6595
6596 case BPSTAT_WHAT_KEEP_CHECKING:
6597 break;
e5ef252a 6598 }
c906108c 6599
af48d08f
PA
6600 /* If we stepped a permanent breakpoint and we had a high priority
6601 step-resume breakpoint for the address we stepped, but we didn't
6602 hit it, then we must have stepped into the signal handler. The
6603 step-resume was only necessary to catch the case of _not_
6604 stepping into the handler, so delete it, and fall through to
6605 checking whether the step finished. */
6606 if (ecs->event_thread->stepped_breakpoint)
6607 {
6608 struct breakpoint *sr_bp
6609 = ecs->event_thread->control.step_resume_breakpoint;
6610
8d707a12
PA
6611 if (sr_bp != NULL
6612 && sr_bp->loc->permanent
af48d08f
PA
6613 && sr_bp->type == bp_hp_step_resume
6614 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6615 {
6616 if (debug_infrun)
6617 fprintf_unfiltered (gdb_stdlog,
6618 "infrun: stepped permanent breakpoint, stopped in "
6619 "handler\n");
6620 delete_step_resume_breakpoint (ecs->event_thread);
6621 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6622 }
6623 }
6624
cdaa5b73
PA
6625 /* We come here if we hit a breakpoint but should not stop for it.
6626 Possibly we also were stepping and should stop for that. So fall
6627 through and test for stepping. But, if not stepping, do not
6628 stop. */
c906108c 6629
a7212384
UW
6630 /* In all-stop mode, if we're currently stepping but have stopped in
6631 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6632 if (switch_back_to_stepped_thread (ecs))
6633 return;
776f04fa 6634
8358c15c 6635 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6636 {
527159b7 6637 if (debug_infrun)
d3169d93
DJ
6638 fprintf_unfiltered (gdb_stdlog,
6639 "infrun: step-resume breakpoint is inserted\n");
527159b7 6640
488f131b
JB
6641 /* Having a step-resume breakpoint overrides anything
6642 else having to do with stepping commands until
6643 that breakpoint is reached. */
488f131b
JB
6644 keep_going (ecs);
6645 return;
6646 }
c5aa993b 6647
16c381f0 6648 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6649 {
527159b7 6650 if (debug_infrun)
8a9de0e4 6651 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6652 /* Likewise if we aren't even stepping. */
488f131b
JB
6653 keep_going (ecs);
6654 return;
6655 }
c5aa993b 6656
4b7703ad
JB
6657 /* Re-fetch current thread's frame in case the code above caused
6658 the frame cache to be re-initialized, making our FRAME variable
6659 a dangling pointer. */
6660 frame = get_current_frame ();
628fe4e4 6661 gdbarch = get_frame_arch (frame);
7e324e48 6662 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6663
488f131b 6664 /* If stepping through a line, keep going if still within it.
c906108c 6665
488f131b
JB
6666 Note that step_range_end is the address of the first instruction
6667 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6668 within it!
6669
6670 Note also that during reverse execution, we may be stepping
6671 through a function epilogue and therefore must detect when
6672 the current-frame changes in the middle of a line. */
6673
f2ffa92b
PA
6674 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6675 ecs->event_thread)
31410e84 6676 && (execution_direction != EXEC_REVERSE
388a8562 6677 || frame_id_eq (get_frame_id (frame),
16c381f0 6678 ecs->event_thread->control.step_frame_id)))
488f131b 6679 {
527159b7 6680 if (debug_infrun)
5af949e3
UW
6681 fprintf_unfiltered
6682 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6683 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6684 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6685
c1e36e3e
PA
6686 /* Tentatively re-enable range stepping; `resume' disables it if
6687 necessary (e.g., if we're stepping over a breakpoint or we
6688 have software watchpoints). */
6689 ecs->event_thread->control.may_range_step = 1;
6690
b2175913
MS
6691 /* When stepping backward, stop at beginning of line range
6692 (unless it's the function entry point, in which case
6693 keep going back to the call point). */
f2ffa92b 6694 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6695 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6696 && stop_pc != ecs->stop_func_start
6697 && execution_direction == EXEC_REVERSE)
bdc36728 6698 end_stepping_range (ecs);
b2175913
MS
6699 else
6700 keep_going (ecs);
6701
488f131b
JB
6702 return;
6703 }
c5aa993b 6704
488f131b 6705 /* We stepped out of the stepping range. */
c906108c 6706
488f131b 6707 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6708 loader dynamic symbol resolution code...
6709
6710 EXEC_FORWARD: we keep on single stepping until we exit the run
6711 time loader code and reach the callee's address.
6712
6713 EXEC_REVERSE: we've already executed the callee (backward), and
6714 the runtime loader code is handled just like any other
6715 undebuggable function call. Now we need only keep stepping
6716 backward through the trampoline code, and that's handled further
6717 down, so there is nothing for us to do here. */
6718
6719 if (execution_direction != EXEC_REVERSE
16c381f0 6720 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6721 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6722 {
4c8c40e6 6723 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6724 gdbarch_skip_solib_resolver (gdbarch,
6725 ecs->event_thread->suspend.stop_pc);
c906108c 6726
527159b7 6727 if (debug_infrun)
3e43a32a
MS
6728 fprintf_unfiltered (gdb_stdlog,
6729 "infrun: stepped into dynsym resolve code\n");
527159b7 6730
488f131b
JB
6731 if (pc_after_resolver)
6732 {
6733 /* Set up a step-resume breakpoint at the address
6734 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6735 symtab_and_line sr_sal;
488f131b 6736 sr_sal.pc = pc_after_resolver;
6c95b8df 6737 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6738
a6d9a66e
UW
6739 insert_step_resume_breakpoint_at_sal (gdbarch,
6740 sr_sal, null_frame_id);
c5aa993b 6741 }
c906108c 6742
488f131b
JB
6743 keep_going (ecs);
6744 return;
6745 }
c906108c 6746
1d509aa6
MM
6747 /* Step through an indirect branch thunk. */
6748 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6749 && gdbarch_in_indirect_branch_thunk (gdbarch,
6750 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6751 {
6752 if (debug_infrun)
6753 fprintf_unfiltered (gdb_stdlog,
6754 "infrun: stepped into indirect branch thunk\n");
6755 keep_going (ecs);
6756 return;
6757 }
6758
16c381f0
JK
6759 if (ecs->event_thread->control.step_range_end != 1
6760 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6761 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6762 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6763 {
527159b7 6764 if (debug_infrun)
3e43a32a
MS
6765 fprintf_unfiltered (gdb_stdlog,
6766 "infrun: stepped into signal trampoline\n");
42edda50 6767 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6768 a signal trampoline (either by a signal being delivered or by
6769 the signal handler returning). Just single-step until the
6770 inferior leaves the trampoline (either by calling the handler
6771 or returning). */
488f131b
JB
6772 keep_going (ecs);
6773 return;
6774 }
c906108c 6775
14132e89
MR
6776 /* If we're in the return path from a shared library trampoline,
6777 we want to proceed through the trampoline when stepping. */
6778 /* macro/2012-04-25: This needs to come before the subroutine
6779 call check below as on some targets return trampolines look
6780 like subroutine calls (MIPS16 return thunks). */
6781 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6782 ecs->event_thread->suspend.stop_pc,
6783 ecs->stop_func_name)
14132e89
MR
6784 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6785 {
6786 /* Determine where this trampoline returns. */
f2ffa92b
PA
6787 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6788 CORE_ADDR real_stop_pc
6789 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6790
6791 if (debug_infrun)
6792 fprintf_unfiltered (gdb_stdlog,
6793 "infrun: stepped into solib return tramp\n");
6794
6795 /* Only proceed through if we know where it's going. */
6796 if (real_stop_pc)
6797 {
6798 /* And put the step-breakpoint there and go until there. */
51abb421 6799 symtab_and_line sr_sal;
14132e89
MR
6800 sr_sal.pc = real_stop_pc;
6801 sr_sal.section = find_pc_overlay (sr_sal.pc);
6802 sr_sal.pspace = get_frame_program_space (frame);
6803
6804 /* Do not specify what the fp should be when we stop since
6805 on some machines the prologue is where the new fp value
6806 is established. */
6807 insert_step_resume_breakpoint_at_sal (gdbarch,
6808 sr_sal, null_frame_id);
6809
6810 /* Restart without fiddling with the step ranges or
6811 other state. */
6812 keep_going (ecs);
6813 return;
6814 }
6815 }
6816
c17eaafe
DJ
6817 /* Check for subroutine calls. The check for the current frame
6818 equalling the step ID is not necessary - the check of the
6819 previous frame's ID is sufficient - but it is a common case and
6820 cheaper than checking the previous frame's ID.
14e60db5
DJ
6821
6822 NOTE: frame_id_eq will never report two invalid frame IDs as
6823 being equal, so to get into this block, both the current and
6824 previous frame must have valid frame IDs. */
005ca36a
JB
6825 /* The outer_frame_id check is a heuristic to detect stepping
6826 through startup code. If we step over an instruction which
6827 sets the stack pointer from an invalid value to a valid value,
6828 we may detect that as a subroutine call from the mythical
6829 "outermost" function. This could be fixed by marking
6830 outermost frames as !stack_p,code_p,special_p. Then the
6831 initial outermost frame, before sp was valid, would
ce6cca6d 6832 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6833 for more. */
edb3359d 6834 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6835 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6836 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6837 ecs->event_thread->control.step_stack_frame_id)
6838 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6839 outer_frame_id)
885eeb5b 6840 || (ecs->event_thread->control.step_start_function
f2ffa92b 6841 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6842 {
f2ffa92b 6843 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6844 CORE_ADDR real_stop_pc;
8fb3e588 6845
527159b7 6846 if (debug_infrun)
8a9de0e4 6847 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6848
b7a084be 6849 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6850 {
6851 /* I presume that step_over_calls is only 0 when we're
6852 supposed to be stepping at the assembly language level
6853 ("stepi"). Just stop. */
388a8562 6854 /* And this works the same backward as frontward. MVS */
bdc36728 6855 end_stepping_range (ecs);
95918acb
AC
6856 return;
6857 }
8fb3e588 6858
388a8562
MS
6859 /* Reverse stepping through solib trampolines. */
6860
6861 if (execution_direction == EXEC_REVERSE
16c381f0 6862 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6863 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6864 || (ecs->stop_func_start == 0
6865 && in_solib_dynsym_resolve_code (stop_pc))))
6866 {
6867 /* Any solib trampoline code can be handled in reverse
6868 by simply continuing to single-step. We have already
6869 executed the solib function (backwards), and a few
6870 steps will take us back through the trampoline to the
6871 caller. */
6872 keep_going (ecs);
6873 return;
6874 }
6875
16c381f0 6876 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6877 {
b2175913
MS
6878 /* We're doing a "next".
6879
6880 Normal (forward) execution: set a breakpoint at the
6881 callee's return address (the address at which the caller
6882 will resume).
6883
6884 Reverse (backward) execution. set the step-resume
6885 breakpoint at the start of the function that we just
6886 stepped into (backwards), and continue to there. When we
6130d0b7 6887 get there, we'll need to single-step back to the caller. */
b2175913
MS
6888
6889 if (execution_direction == EXEC_REVERSE)
6890 {
acf9414f
JK
6891 /* If we're already at the start of the function, we've either
6892 just stepped backward into a single instruction function,
6893 or stepped back out of a signal handler to the first instruction
6894 of the function. Just keep going, which will single-step back
6895 to the caller. */
58c48e72 6896 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6897 {
acf9414f 6898 /* Normal function call return (static or dynamic). */
51abb421 6899 symtab_and_line sr_sal;
acf9414f
JK
6900 sr_sal.pc = ecs->stop_func_start;
6901 sr_sal.pspace = get_frame_program_space (frame);
6902 insert_step_resume_breakpoint_at_sal (gdbarch,
6903 sr_sal, null_frame_id);
6904 }
b2175913
MS
6905 }
6906 else
568d6575 6907 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6908
8567c30f
AC
6909 keep_going (ecs);
6910 return;
6911 }
a53c66de 6912
95918acb 6913 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6914 calling routine and the real function), locate the real
6915 function. That's what tells us (a) whether we want to step
6916 into it at all, and (b) what prologue we want to run to the
6917 end of, if we do step into it. */
568d6575 6918 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6919 if (real_stop_pc == 0)
568d6575 6920 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6921 if (real_stop_pc != 0)
6922 ecs->stop_func_start = real_stop_pc;
8fb3e588 6923
db5f024e 6924 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6925 {
51abb421 6926 symtab_and_line sr_sal;
1b2bfbb9 6927 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6928 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6929
a6d9a66e
UW
6930 insert_step_resume_breakpoint_at_sal (gdbarch,
6931 sr_sal, null_frame_id);
8fb3e588
AC
6932 keep_going (ecs);
6933 return;
1b2bfbb9
RC
6934 }
6935
95918acb 6936 /* If we have line number information for the function we are
1bfeeb0f
JL
6937 thinking of stepping into and the function isn't on the skip
6938 list, step into it.
95918acb 6939
8fb3e588
AC
6940 If there are several symtabs at that PC (e.g. with include
6941 files), just want to know whether *any* of them have line
6942 numbers. find_pc_line handles this. */
95918acb
AC
6943 {
6944 struct symtab_and_line tmp_sal;
8fb3e588 6945
95918acb 6946 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6947 if (tmp_sal.line != 0
85817405 6948 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6949 tmp_sal)
6950 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6951 {
b2175913 6952 if (execution_direction == EXEC_REVERSE)
568d6575 6953 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6954 else
568d6575 6955 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6956 return;
6957 }
6958 }
6959
6960 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6961 set, we stop the step so that the user has a chance to switch
6962 in assembly mode. */
16c381f0 6963 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6964 && step_stop_if_no_debug)
95918acb 6965 {
bdc36728 6966 end_stepping_range (ecs);
95918acb
AC
6967 return;
6968 }
6969
b2175913
MS
6970 if (execution_direction == EXEC_REVERSE)
6971 {
acf9414f
JK
6972 /* If we're already at the start of the function, we've either just
6973 stepped backward into a single instruction function without line
6974 number info, or stepped back out of a signal handler to the first
6975 instruction of the function without line number info. Just keep
6976 going, which will single-step back to the caller. */
6977 if (ecs->stop_func_start != stop_pc)
6978 {
6979 /* Set a breakpoint at callee's start address.
6980 From there we can step once and be back in the caller. */
51abb421 6981 symtab_and_line sr_sal;
acf9414f
JK
6982 sr_sal.pc = ecs->stop_func_start;
6983 sr_sal.pspace = get_frame_program_space (frame);
6984 insert_step_resume_breakpoint_at_sal (gdbarch,
6985 sr_sal, null_frame_id);
6986 }
b2175913
MS
6987 }
6988 else
6989 /* Set a breakpoint at callee's return address (the address
6990 at which the caller will resume). */
568d6575 6991 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6992
95918acb 6993 keep_going (ecs);
488f131b 6994 return;
488f131b 6995 }
c906108c 6996
fdd654f3
MS
6997 /* Reverse stepping through solib trampolines. */
6998
6999 if (execution_direction == EXEC_REVERSE
16c381f0 7000 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 7001 {
f2ffa92b
PA
7002 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7003
fdd654f3
MS
7004 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7005 || (ecs->stop_func_start == 0
7006 && in_solib_dynsym_resolve_code (stop_pc)))
7007 {
7008 /* Any solib trampoline code can be handled in reverse
7009 by simply continuing to single-step. We have already
7010 executed the solib function (backwards), and a few
7011 steps will take us back through the trampoline to the
7012 caller. */
7013 keep_going (ecs);
7014 return;
7015 }
7016 else if (in_solib_dynsym_resolve_code (stop_pc))
7017 {
7018 /* Stepped backward into the solib dynsym resolver.
7019 Set a breakpoint at its start and continue, then
7020 one more step will take us out. */
51abb421 7021 symtab_and_line sr_sal;
fdd654f3 7022 sr_sal.pc = ecs->stop_func_start;
9d1807c3 7023 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
7024 insert_step_resume_breakpoint_at_sal (gdbarch,
7025 sr_sal, null_frame_id);
7026 keep_going (ecs);
7027 return;
7028 }
7029 }
7030
f2ffa92b 7031 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 7032
1b2bfbb9
RC
7033 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7034 the trampoline processing logic, however, there are some trampolines
7035 that have no names, so we should do trampoline handling first. */
16c381f0 7036 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 7037 && ecs->stop_func_name == NULL
2afb61aa 7038 && stop_pc_sal.line == 0)
1b2bfbb9 7039 {
527159b7 7040 if (debug_infrun)
3e43a32a
MS
7041 fprintf_unfiltered (gdb_stdlog,
7042 "infrun: stepped into undebuggable function\n");
527159b7 7043
1b2bfbb9 7044 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
7045 undebuggable function (where there is no debugging information
7046 and no line number corresponding to the address where the
1b2bfbb9
RC
7047 inferior stopped). Since we want to skip this kind of code,
7048 we keep going until the inferior returns from this
14e60db5
DJ
7049 function - unless the user has asked us not to (via
7050 set step-mode) or we no longer know how to get back
7051 to the call site. */
7052 if (step_stop_if_no_debug
c7ce8faa 7053 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
7054 {
7055 /* If we have no line number and the step-stop-if-no-debug
7056 is set, we stop the step so that the user has a chance to
7057 switch in assembly mode. */
bdc36728 7058 end_stepping_range (ecs);
1b2bfbb9
RC
7059 return;
7060 }
7061 else
7062 {
7063 /* Set a breakpoint at callee's return address (the address
7064 at which the caller will resume). */
568d6575 7065 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
7066 keep_going (ecs);
7067 return;
7068 }
7069 }
7070
16c381f0 7071 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7072 {
7073 /* It is stepi or nexti. We always want to stop stepping after
7074 one instruction. */
527159b7 7075 if (debug_infrun)
8a9de0e4 7076 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 7077 end_stepping_range (ecs);
1b2bfbb9
RC
7078 return;
7079 }
7080
2afb61aa 7081 if (stop_pc_sal.line == 0)
488f131b
JB
7082 {
7083 /* We have no line number information. That means to stop
7084 stepping (does this always happen right after one instruction,
7085 when we do "s" in a function with no line numbers,
7086 or can this happen as a result of a return or longjmp?). */
527159b7 7087 if (debug_infrun)
8a9de0e4 7088 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 7089 end_stepping_range (ecs);
488f131b
JB
7090 return;
7091 }
c906108c 7092
edb3359d
DJ
7093 /* Look for "calls" to inlined functions, part one. If the inline
7094 frame machinery detected some skipped call sites, we have entered
7095 a new inline function. */
7096
7097 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7098 ecs->event_thread->control.step_frame_id)
00431a78 7099 && inline_skipped_frames (ecs->event_thread))
edb3359d 7100 {
edb3359d
DJ
7101 if (debug_infrun)
7102 fprintf_unfiltered (gdb_stdlog,
7103 "infrun: stepped into inlined function\n");
7104
51abb421 7105 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7106
16c381f0 7107 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7108 {
7109 /* For "step", we're going to stop. But if the call site
7110 for this inlined function is on the same source line as
7111 we were previously stepping, go down into the function
7112 first. Otherwise stop at the call site. */
7113
7114 if (call_sal.line == ecs->event_thread->current_line
7115 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7116 {
7117 step_into_inline_frame (ecs->event_thread);
7118 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7119 {
7120 keep_going (ecs);
7121 return;
7122 }
7123 }
edb3359d 7124
bdc36728 7125 end_stepping_range (ecs);
edb3359d
DJ
7126 return;
7127 }
7128 else
7129 {
7130 /* For "next", we should stop at the call site if it is on a
7131 different source line. Otherwise continue through the
7132 inlined function. */
7133 if (call_sal.line == ecs->event_thread->current_line
7134 && call_sal.symtab == ecs->event_thread->current_symtab)
7135 keep_going (ecs);
7136 else
bdc36728 7137 end_stepping_range (ecs);
edb3359d
DJ
7138 return;
7139 }
7140 }
7141
7142 /* Look for "calls" to inlined functions, part two. If we are still
7143 in the same real function we were stepping through, but we have
7144 to go further up to find the exact frame ID, we are stepping
7145 through a more inlined call beyond its call site. */
7146
7147 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7148 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7149 ecs->event_thread->control.step_frame_id)
edb3359d 7150 && stepped_in_from (get_current_frame (),
16c381f0 7151 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
7152 {
7153 if (debug_infrun)
7154 fprintf_unfiltered (gdb_stdlog,
7155 "infrun: stepping through inlined function\n");
7156
4a4c04f1
BE
7157 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7158 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7159 keep_going (ecs);
7160 else
bdc36728 7161 end_stepping_range (ecs);
edb3359d
DJ
7162 return;
7163 }
7164
f2ffa92b 7165 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7166 && (ecs->event_thread->current_line != stop_pc_sal.line
7167 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
7168 {
7169 /* We are at the start of a different line. So stop. Note that
7170 we don't stop if we step into the middle of a different line.
7171 That is said to make things like for (;;) statements work
7172 better. */
527159b7 7173 if (debug_infrun)
3e43a32a
MS
7174 fprintf_unfiltered (gdb_stdlog,
7175 "infrun: stepped to a different line\n");
bdc36728 7176 end_stepping_range (ecs);
488f131b
JB
7177 return;
7178 }
c906108c 7179
488f131b 7180 /* We aren't done stepping.
c906108c 7181
488f131b
JB
7182 Optimize by setting the stepping range to the line.
7183 (We might not be in the original line, but if we entered a
7184 new line in mid-statement, we continue stepping. This makes
7185 things like for(;;) statements work better.) */
c906108c 7186
16c381f0
JK
7187 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7188 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7189 ecs->event_thread->control.may_range_step = 1;
edb3359d 7190 set_step_info (frame, stop_pc_sal);
488f131b 7191
527159b7 7192 if (debug_infrun)
8a9de0e4 7193 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7194 keep_going (ecs);
104c1213
JM
7195}
7196
c447ac0b
PA
7197/* In all-stop mode, if we're currently stepping but have stopped in
7198 some other thread, we may need to switch back to the stepped
7199 thread. Returns true we set the inferior running, false if we left
7200 it stopped (and the event needs further processing). */
7201
7202static int
7203switch_back_to_stepped_thread (struct execution_control_state *ecs)
7204{
fbea99ea 7205 if (!target_is_non_stop_p ())
c447ac0b 7206 {
99619bea
PA
7207 struct thread_info *stepping_thread;
7208
7209 /* If any thread is blocked on some internal breakpoint, and we
7210 simply need to step over that breakpoint to get it going
7211 again, do that first. */
7212
7213 /* However, if we see an event for the stepping thread, then we
7214 know all other threads have been moved past their breakpoints
7215 already. Let the caller check whether the step is finished,
7216 etc., before deciding to move it past a breakpoint. */
7217 if (ecs->event_thread->control.step_range_end != 0)
7218 return 0;
7219
7220 /* Check if the current thread is blocked on an incomplete
7221 step-over, interrupted by a random signal. */
7222 if (ecs->event_thread->control.trap_expected
7223 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7224 {
99619bea
PA
7225 if (debug_infrun)
7226 {
7227 fprintf_unfiltered (gdb_stdlog,
7228 "infrun: need to finish step-over of [%s]\n",
a068643d 7229 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
7230 }
7231 keep_going (ecs);
7232 return 1;
7233 }
2adfaa28 7234
99619bea
PA
7235 /* Check if the current thread is blocked by a single-step
7236 breakpoint of another thread. */
7237 if (ecs->hit_singlestep_breakpoint)
7238 {
7239 if (debug_infrun)
7240 {
7241 fprintf_unfiltered (gdb_stdlog,
7242 "infrun: need to step [%s] over single-step "
7243 "breakpoint\n",
a068643d 7244 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
7245 }
7246 keep_going (ecs);
7247 return 1;
7248 }
7249
4d9d9d04
PA
7250 /* If this thread needs yet another step-over (e.g., stepping
7251 through a delay slot), do it first before moving on to
7252 another thread. */
7253 if (thread_still_needs_step_over (ecs->event_thread))
7254 {
7255 if (debug_infrun)
7256 {
7257 fprintf_unfiltered (gdb_stdlog,
7258 "infrun: thread [%s] still needs step-over\n",
a068643d 7259 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
7260 }
7261 keep_going (ecs);
7262 return 1;
7263 }
70509625 7264
483805cf
PA
7265 /* If scheduler locking applies even if not stepping, there's no
7266 need to walk over threads. Above we've checked whether the
7267 current thread is stepping. If some other thread not the
7268 event thread is stepping, then it must be that scheduler
7269 locking is not in effect. */
856e7dd6 7270 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7271 return 0;
7272
4d9d9d04
PA
7273 /* Otherwise, we no longer expect a trap in the current thread.
7274 Clear the trap_expected flag before switching back -- this is
7275 what keep_going does as well, if we call it. */
7276 ecs->event_thread->control.trap_expected = 0;
7277
7278 /* Likewise, clear the signal if it should not be passed. */
7279 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7280 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7281
7282 /* Do all pending step-overs before actually proceeding with
483805cf 7283 step/next/etc. */
4d9d9d04
PA
7284 if (start_step_over ())
7285 {
7286 prepare_to_wait (ecs);
7287 return 1;
7288 }
7289
7290 /* Look for the stepping/nexting thread. */
483805cf 7291 stepping_thread = NULL;
4d9d9d04 7292
08036331 7293 for (thread_info *tp : all_non_exited_threads ())
483805cf 7294 {
f3f8ece4
PA
7295 switch_to_thread_no_regs (tp);
7296
fbea99ea
PA
7297 /* Ignore threads of processes the caller is not
7298 resuming. */
483805cf 7299 if (!sched_multi
5b6d1e4f
PA
7300 && (tp->inf->process_target () != ecs->target
7301 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7302 continue;
7303
7304 /* When stepping over a breakpoint, we lock all threads
7305 except the one that needs to move past the breakpoint.
7306 If a non-event thread has this set, the "incomplete
7307 step-over" check above should have caught it earlier. */
372316f1
PA
7308 if (tp->control.trap_expected)
7309 {
7310 internal_error (__FILE__, __LINE__,
7311 "[%s] has inconsistent state: "
7312 "trap_expected=%d\n",
a068643d 7313 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7314 tp->control.trap_expected);
7315 }
483805cf
PA
7316
7317 /* Did we find the stepping thread? */
7318 if (tp->control.step_range_end)
7319 {
7320 /* Yep. There should only one though. */
7321 gdb_assert (stepping_thread == NULL);
7322
7323 /* The event thread is handled at the top, before we
7324 enter this loop. */
7325 gdb_assert (tp != ecs->event_thread);
7326
7327 /* If some thread other than the event thread is
7328 stepping, then scheduler locking can't be in effect,
7329 otherwise we wouldn't have resumed the current event
7330 thread in the first place. */
856e7dd6 7331 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7332
7333 stepping_thread = tp;
7334 }
99619bea
PA
7335 }
7336
483805cf 7337 if (stepping_thread != NULL)
99619bea 7338 {
c447ac0b
PA
7339 if (debug_infrun)
7340 fprintf_unfiltered (gdb_stdlog,
7341 "infrun: switching back to stepped thread\n");
7342
2ac7589c
PA
7343 if (keep_going_stepped_thread (stepping_thread))
7344 {
7345 prepare_to_wait (ecs);
7346 return 1;
7347 }
7348 }
f3f8ece4
PA
7349
7350 switch_to_thread (ecs->event_thread);
2ac7589c 7351 }
2adfaa28 7352
2ac7589c
PA
7353 return 0;
7354}
2adfaa28 7355
2ac7589c
PA
7356/* Set a previously stepped thread back to stepping. Returns true on
7357 success, false if the resume is not possible (e.g., the thread
7358 vanished). */
7359
7360static int
7361keep_going_stepped_thread (struct thread_info *tp)
7362{
7363 struct frame_info *frame;
2ac7589c
PA
7364 struct execution_control_state ecss;
7365 struct execution_control_state *ecs = &ecss;
2adfaa28 7366
2ac7589c
PA
7367 /* If the stepping thread exited, then don't try to switch back and
7368 resume it, which could fail in several different ways depending
7369 on the target. Instead, just keep going.
2adfaa28 7370
2ac7589c
PA
7371 We can find a stepping dead thread in the thread list in two
7372 cases:
2adfaa28 7373
2ac7589c
PA
7374 - The target supports thread exit events, and when the target
7375 tries to delete the thread from the thread list, inferior_ptid
7376 pointed at the exiting thread. In such case, calling
7377 delete_thread does not really remove the thread from the list;
7378 instead, the thread is left listed, with 'exited' state.
64ce06e4 7379
2ac7589c
PA
7380 - The target's debug interface does not support thread exit
7381 events, and so we have no idea whatsoever if the previously
7382 stepping thread is still alive. For that reason, we need to
7383 synchronously query the target now. */
2adfaa28 7384
00431a78 7385 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7386 {
7387 if (debug_infrun)
7388 fprintf_unfiltered (gdb_stdlog,
7389 "infrun: not resuming previously "
7390 "stepped thread, it has vanished\n");
7391
00431a78 7392 delete_thread (tp);
2ac7589c 7393 return 0;
c447ac0b 7394 }
2ac7589c
PA
7395
7396 if (debug_infrun)
7397 fprintf_unfiltered (gdb_stdlog,
7398 "infrun: resuming previously stepped thread\n");
7399
7400 reset_ecs (ecs, tp);
00431a78 7401 switch_to_thread (tp);
2ac7589c 7402
f2ffa92b 7403 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7404 frame = get_current_frame ();
2ac7589c
PA
7405
7406 /* If the PC of the thread we were trying to single-step has
7407 changed, then that thread has trapped or been signaled, but the
7408 event has not been reported to GDB yet. Re-poll the target
7409 looking for this particular thread's event (i.e. temporarily
7410 enable schedlock) by:
7411
7412 - setting a break at the current PC
7413 - resuming that particular thread, only (by setting trap
7414 expected)
7415
7416 This prevents us continuously moving the single-step breakpoint
7417 forward, one instruction at a time, overstepping. */
7418
f2ffa92b 7419 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7420 {
7421 ptid_t resume_ptid;
7422
7423 if (debug_infrun)
7424 fprintf_unfiltered (gdb_stdlog,
7425 "infrun: expected thread advanced also (%s -> %s)\n",
7426 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7427 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7428
7429 /* Clear the info of the previous step-over, as it's no longer
7430 valid (if the thread was trying to step over a breakpoint, it
7431 has already succeeded). It's what keep_going would do too,
7432 if we called it. Do this before trying to insert the sss
7433 breakpoint, otherwise if we were previously trying to step
7434 over this exact address in another thread, the breakpoint is
7435 skipped. */
7436 clear_step_over_info ();
7437 tp->control.trap_expected = 0;
7438
7439 insert_single_step_breakpoint (get_frame_arch (frame),
7440 get_frame_address_space (frame),
f2ffa92b 7441 tp->suspend.stop_pc);
2ac7589c 7442
372316f1 7443 tp->resumed = 1;
fbea99ea 7444 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7445 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7446 }
7447 else
7448 {
7449 if (debug_infrun)
7450 fprintf_unfiltered (gdb_stdlog,
7451 "infrun: expected thread still hasn't advanced\n");
7452
7453 keep_going_pass_signal (ecs);
7454 }
7455 return 1;
c447ac0b
PA
7456}
7457
8b061563
PA
7458/* Is thread TP in the middle of (software or hardware)
7459 single-stepping? (Note the result of this function must never be
7460 passed directly as target_resume's STEP parameter.) */
104c1213 7461
a289b8f6 7462static int
b3444185 7463currently_stepping (struct thread_info *tp)
a7212384 7464{
8358c15c
JK
7465 return ((tp->control.step_range_end
7466 && tp->control.step_resume_breakpoint == NULL)
7467 || tp->control.trap_expected
af48d08f 7468 || tp->stepped_breakpoint
8358c15c 7469 || bpstat_should_step ());
a7212384
UW
7470}
7471
b2175913
MS
7472/* Inferior has stepped into a subroutine call with source code that
7473 we should not step over. Do step to the first line of code in
7474 it. */
c2c6d25f
JM
7475
7476static void
568d6575
UW
7477handle_step_into_function (struct gdbarch *gdbarch,
7478 struct execution_control_state *ecs)
c2c6d25f 7479{
7e324e48
GB
7480 fill_in_stop_func (gdbarch, ecs);
7481
f2ffa92b
PA
7482 compunit_symtab *cust
7483 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7484 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7485 ecs->stop_func_start
7486 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7487
51abb421 7488 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7489 /* Use the step_resume_break to step until the end of the prologue,
7490 even if that involves jumps (as it seems to on the vax under
7491 4.2). */
7492 /* If the prologue ends in the middle of a source line, continue to
7493 the end of that source line (if it is still within the function).
7494 Otherwise, just go to end of prologue. */
2afb61aa
PA
7495 if (stop_func_sal.end
7496 && stop_func_sal.pc != ecs->stop_func_start
7497 && stop_func_sal.end < ecs->stop_func_end)
7498 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7499
2dbd5e30
KB
7500 /* Architectures which require breakpoint adjustment might not be able
7501 to place a breakpoint at the computed address. If so, the test
7502 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7503 ecs->stop_func_start to an address at which a breakpoint may be
7504 legitimately placed.
8fb3e588 7505
2dbd5e30
KB
7506 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7507 made, GDB will enter an infinite loop when stepping through
7508 optimized code consisting of VLIW instructions which contain
7509 subinstructions corresponding to different source lines. On
7510 FR-V, it's not permitted to place a breakpoint on any but the
7511 first subinstruction of a VLIW instruction. When a breakpoint is
7512 set, GDB will adjust the breakpoint address to the beginning of
7513 the VLIW instruction. Thus, we need to make the corresponding
7514 adjustment here when computing the stop address. */
8fb3e588 7515
568d6575 7516 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7517 {
7518 ecs->stop_func_start
568d6575 7519 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7520 ecs->stop_func_start);
2dbd5e30
KB
7521 }
7522
f2ffa92b 7523 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7524 {
7525 /* We are already there: stop now. */
bdc36728 7526 end_stepping_range (ecs);
c2c6d25f
JM
7527 return;
7528 }
7529 else
7530 {
7531 /* Put the step-breakpoint there and go until there. */
51abb421 7532 symtab_and_line sr_sal;
c2c6d25f
JM
7533 sr_sal.pc = ecs->stop_func_start;
7534 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7535 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7536
c2c6d25f 7537 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7538 some machines the prologue is where the new fp value is
7539 established. */
a6d9a66e 7540 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7541
7542 /* And make sure stepping stops right away then. */
16c381f0
JK
7543 ecs->event_thread->control.step_range_end
7544 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7545 }
7546 keep_going (ecs);
7547}
d4f3574e 7548
b2175913
MS
7549/* Inferior has stepped backward into a subroutine call with source
7550 code that we should not step over. Do step to the beginning of the
7551 last line of code in it. */
7552
7553static void
568d6575
UW
7554handle_step_into_function_backward (struct gdbarch *gdbarch,
7555 struct execution_control_state *ecs)
b2175913 7556{
43f3e411 7557 struct compunit_symtab *cust;
167e4384 7558 struct symtab_and_line stop_func_sal;
b2175913 7559
7e324e48
GB
7560 fill_in_stop_func (gdbarch, ecs);
7561
f2ffa92b 7562 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7563 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7564 ecs->stop_func_start
7565 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7566
f2ffa92b 7567 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7568
7569 /* OK, we're just going to keep stepping here. */
f2ffa92b 7570 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7571 {
7572 /* We're there already. Just stop stepping now. */
bdc36728 7573 end_stepping_range (ecs);
b2175913
MS
7574 }
7575 else
7576 {
7577 /* Else just reset the step range and keep going.
7578 No step-resume breakpoint, they don't work for
7579 epilogues, which can have multiple entry paths. */
16c381f0
JK
7580 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7581 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7582 keep_going (ecs);
7583 }
7584 return;
7585}
7586
d3169d93 7587/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7588 This is used to both functions and to skip over code. */
7589
7590static void
2c03e5be
PA
7591insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7592 struct symtab_and_line sr_sal,
7593 struct frame_id sr_id,
7594 enum bptype sr_type)
44cbf7b5 7595{
611c83ae
PA
7596 /* There should never be more than one step-resume or longjmp-resume
7597 breakpoint per thread, so we should never be setting a new
44cbf7b5 7598 step_resume_breakpoint when one is already active. */
8358c15c 7599 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7600 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7601
7602 if (debug_infrun)
7603 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7604 "infrun: inserting step-resume breakpoint at %s\n",
7605 paddress (gdbarch, sr_sal.pc));
d3169d93 7606
8358c15c 7607 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7608 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7609}
7610
9da8c2a0 7611void
2c03e5be
PA
7612insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7613 struct symtab_and_line sr_sal,
7614 struct frame_id sr_id)
7615{
7616 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7617 sr_sal, sr_id,
7618 bp_step_resume);
44cbf7b5 7619}
7ce450bd 7620
2c03e5be
PA
7621/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7622 This is used to skip a potential signal handler.
7ce450bd 7623
14e60db5
DJ
7624 This is called with the interrupted function's frame. The signal
7625 handler, when it returns, will resume the interrupted function at
7626 RETURN_FRAME.pc. */
d303a6c7
AC
7627
7628static void
2c03e5be 7629insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7630{
f4c1edd8 7631 gdb_assert (return_frame != NULL);
d303a6c7 7632
51abb421
PA
7633 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7634
7635 symtab_and_line sr_sal;
568d6575 7636 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7637 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7638 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7639
2c03e5be
PA
7640 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7641 get_stack_frame_id (return_frame),
7642 bp_hp_step_resume);
d303a6c7
AC
7643}
7644
2c03e5be
PA
7645/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7646 is used to skip a function after stepping into it (for "next" or if
7647 the called function has no debugging information).
14e60db5
DJ
7648
7649 The current function has almost always been reached by single
7650 stepping a call or return instruction. NEXT_FRAME belongs to the
7651 current function, and the breakpoint will be set at the caller's
7652 resume address.
7653
7654 This is a separate function rather than reusing
2c03e5be 7655 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7656 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7657 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7658
7659static void
7660insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7661{
14e60db5
DJ
7662 /* We shouldn't have gotten here if we don't know where the call site
7663 is. */
c7ce8faa 7664 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7665
51abb421 7666 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7667
51abb421 7668 symtab_and_line sr_sal;
c7ce8faa
DJ
7669 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7670 frame_unwind_caller_pc (next_frame));
14e60db5 7671 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7672 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7673
a6d9a66e 7674 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7675 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7676}
7677
611c83ae
PA
7678/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7679 new breakpoint at the target of a jmp_buf. The handling of
7680 longjmp-resume uses the same mechanisms used for handling
7681 "step-resume" breakpoints. */
7682
7683static void
a6d9a66e 7684insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7685{
e81a37f7
TT
7686 /* There should never be more than one longjmp-resume breakpoint per
7687 thread, so we should never be setting a new
611c83ae 7688 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7689 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7690
7691 if (debug_infrun)
7692 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7693 "infrun: inserting longjmp-resume breakpoint at %s\n",
7694 paddress (gdbarch, pc));
611c83ae 7695
e81a37f7 7696 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7697 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7698}
7699
186c406b
TT
7700/* Insert an exception resume breakpoint. TP is the thread throwing
7701 the exception. The block B is the block of the unwinder debug hook
7702 function. FRAME is the frame corresponding to the call to this
7703 function. SYM is the symbol of the function argument holding the
7704 target PC of the exception. */
7705
7706static void
7707insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7708 const struct block *b,
186c406b
TT
7709 struct frame_info *frame,
7710 struct symbol *sym)
7711{
a70b8144 7712 try
186c406b 7713 {
63e43d3a 7714 struct block_symbol vsym;
186c406b
TT
7715 struct value *value;
7716 CORE_ADDR handler;
7717 struct breakpoint *bp;
7718
987012b8 7719 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7720 b, VAR_DOMAIN);
63e43d3a 7721 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7722 /* If the value was optimized out, revert to the old behavior. */
7723 if (! value_optimized_out (value))
7724 {
7725 handler = value_as_address (value);
7726
7727 if (debug_infrun)
7728 fprintf_unfiltered (gdb_stdlog,
7729 "infrun: exception resume at %lx\n",
7730 (unsigned long) handler);
7731
7732 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7733 handler,
7734 bp_exception_resume).release ();
c70a6932
JK
7735
7736 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7737 frame = NULL;
7738
5d5658a1 7739 bp->thread = tp->global_num;
186c406b
TT
7740 inferior_thread ()->control.exception_resume_breakpoint = bp;
7741 }
7742 }
230d2906 7743 catch (const gdb_exception_error &e)
492d29ea
PA
7744 {
7745 /* We want to ignore errors here. */
7746 }
186c406b
TT
7747}
7748
28106bc2
SDJ
7749/* A helper for check_exception_resume that sets an
7750 exception-breakpoint based on a SystemTap probe. */
7751
7752static void
7753insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7754 const struct bound_probe *probe,
28106bc2
SDJ
7755 struct frame_info *frame)
7756{
7757 struct value *arg_value;
7758 CORE_ADDR handler;
7759 struct breakpoint *bp;
7760
7761 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7762 if (!arg_value)
7763 return;
7764
7765 handler = value_as_address (arg_value);
7766
7767 if (debug_infrun)
7768 fprintf_unfiltered (gdb_stdlog,
7769 "infrun: exception resume at %s\n",
6bac7473 7770 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7771 handler));
7772
7773 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7774 handler, bp_exception_resume).release ();
5d5658a1 7775 bp->thread = tp->global_num;
28106bc2
SDJ
7776 inferior_thread ()->control.exception_resume_breakpoint = bp;
7777}
7778
186c406b
TT
7779/* This is called when an exception has been intercepted. Check to
7780 see whether the exception's destination is of interest, and if so,
7781 set an exception resume breakpoint there. */
7782
7783static void
7784check_exception_resume (struct execution_control_state *ecs,
28106bc2 7785 struct frame_info *frame)
186c406b 7786{
729662a5 7787 struct bound_probe probe;
28106bc2
SDJ
7788 struct symbol *func;
7789
7790 /* First see if this exception unwinding breakpoint was set via a
7791 SystemTap probe point. If so, the probe has two arguments: the
7792 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7793 set a breakpoint there. */
6bac7473 7794 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7795 if (probe.prob)
28106bc2 7796 {
729662a5 7797 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7798 return;
7799 }
7800
7801 func = get_frame_function (frame);
7802 if (!func)
7803 return;
186c406b 7804
a70b8144 7805 try
186c406b 7806 {
3977b71f 7807 const struct block *b;
8157b174 7808 struct block_iterator iter;
186c406b
TT
7809 struct symbol *sym;
7810 int argno = 0;
7811
7812 /* The exception breakpoint is a thread-specific breakpoint on
7813 the unwinder's debug hook, declared as:
7814
7815 void _Unwind_DebugHook (void *cfa, void *handler);
7816
7817 The CFA argument indicates the frame to which control is
7818 about to be transferred. HANDLER is the destination PC.
7819
7820 We ignore the CFA and set a temporary breakpoint at HANDLER.
7821 This is not extremely efficient but it avoids issues in gdb
7822 with computing the DWARF CFA, and it also works even in weird
7823 cases such as throwing an exception from inside a signal
7824 handler. */
7825
7826 b = SYMBOL_BLOCK_VALUE (func);
7827 ALL_BLOCK_SYMBOLS (b, iter, sym)
7828 {
7829 if (!SYMBOL_IS_ARGUMENT (sym))
7830 continue;
7831
7832 if (argno == 0)
7833 ++argno;
7834 else
7835 {
7836 insert_exception_resume_breakpoint (ecs->event_thread,
7837 b, frame, sym);
7838 break;
7839 }
7840 }
7841 }
230d2906 7842 catch (const gdb_exception_error &e)
492d29ea
PA
7843 {
7844 }
186c406b
TT
7845}
7846
104c1213 7847static void
22bcd14b 7848stop_waiting (struct execution_control_state *ecs)
104c1213 7849{
527159b7 7850 if (debug_infrun)
22bcd14b 7851 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7852
cd0fc7c3
SS
7853 /* Let callers know we don't want to wait for the inferior anymore. */
7854 ecs->wait_some_more = 0;
fbea99ea
PA
7855
7856 /* If all-stop, but the target is always in non-stop mode, stop all
7857 threads now that we're presenting the stop to the user. */
7858 if (!non_stop && target_is_non_stop_p ())
7859 stop_all_threads ();
cd0fc7c3
SS
7860}
7861
4d9d9d04
PA
7862/* Like keep_going, but passes the signal to the inferior, even if the
7863 signal is set to nopass. */
d4f3574e
SS
7864
7865static void
4d9d9d04 7866keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7867{
d7e15655 7868 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7869 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7870
d4f3574e 7871 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7872 ecs->event_thread->prev_pc
00431a78 7873 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7874
4d9d9d04 7875 if (ecs->event_thread->control.trap_expected)
d4f3574e 7876 {
4d9d9d04
PA
7877 struct thread_info *tp = ecs->event_thread;
7878
7879 if (debug_infrun)
7880 fprintf_unfiltered (gdb_stdlog,
7881 "infrun: %s has trap_expected set, "
7882 "resuming to collect trap\n",
a068643d 7883 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7884
a9ba6bae
PA
7885 /* We haven't yet gotten our trap, and either: intercepted a
7886 non-signal event (e.g., a fork); or took a signal which we
7887 are supposed to pass through to the inferior. Simply
7888 continue. */
64ce06e4 7889 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7890 }
372316f1
PA
7891 else if (step_over_info_valid_p ())
7892 {
7893 /* Another thread is stepping over a breakpoint in-line. If
7894 this thread needs a step-over too, queue the request. In
7895 either case, this resume must be deferred for later. */
7896 struct thread_info *tp = ecs->event_thread;
7897
7898 if (ecs->hit_singlestep_breakpoint
7899 || thread_still_needs_step_over (tp))
7900 {
7901 if (debug_infrun)
7902 fprintf_unfiltered (gdb_stdlog,
7903 "infrun: step-over already in progress: "
7904 "step-over for %s deferred\n",
a068643d 7905 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7906 thread_step_over_chain_enqueue (tp);
7907 }
7908 else
7909 {
7910 if (debug_infrun)
7911 fprintf_unfiltered (gdb_stdlog,
7912 "infrun: step-over in progress: "
7913 "resume of %s deferred\n",
a068643d 7914 target_pid_to_str (tp->ptid).c_str ());
372316f1 7915 }
372316f1 7916 }
d4f3574e
SS
7917 else
7918 {
31e77af2 7919 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7920 int remove_bp;
7921 int remove_wps;
8d297bbf 7922 step_over_what step_what;
31e77af2 7923
d4f3574e 7924 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7925 anyway (if we got a signal, the user asked it be passed to
7926 the child)
7927 -- or --
7928 We got our expected trap, but decided we should resume from
7929 it.
d4f3574e 7930
a9ba6bae 7931 We're going to run this baby now!
d4f3574e 7932
c36b740a
VP
7933 Note that insert_breakpoints won't try to re-insert
7934 already inserted breakpoints. Therefore, we don't
7935 care if breakpoints were already inserted, or not. */
a9ba6bae 7936
31e77af2
PA
7937 /* If we need to step over a breakpoint, and we're not using
7938 displaced stepping to do so, insert all breakpoints
7939 (watchpoints, etc.) but the one we're stepping over, step one
7940 instruction, and then re-insert the breakpoint when that step
7941 is finished. */
963f9c80 7942
6c4cfb24
PA
7943 step_what = thread_still_needs_step_over (ecs->event_thread);
7944
963f9c80 7945 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7946 || (step_what & STEP_OVER_BREAKPOINT));
7947 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7948
cb71640d
PA
7949 /* We can't use displaced stepping if we need to step past a
7950 watchpoint. The instruction copied to the scratch pad would
7951 still trigger the watchpoint. */
7952 if (remove_bp
3fc8eb30 7953 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7954 {
a01bda52 7955 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7956 regcache_read_pc (regcache), remove_wps,
7957 ecs->event_thread->global_num);
45e8c884 7958 }
963f9c80 7959 else if (remove_wps)
21edc42f 7960 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7961
7962 /* If we now need to do an in-line step-over, we need to stop
7963 all other threads. Note this must be done before
7964 insert_breakpoints below, because that removes the breakpoint
7965 we're about to step over, otherwise other threads could miss
7966 it. */
fbea99ea 7967 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7968 stop_all_threads ();
abbb1732 7969
31e77af2 7970 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7971 try
31e77af2
PA
7972 {
7973 insert_breakpoints ();
7974 }
230d2906 7975 catch (const gdb_exception_error &e)
31e77af2
PA
7976 {
7977 exception_print (gdb_stderr, e);
22bcd14b 7978 stop_waiting (ecs);
bdf2a94a 7979 clear_step_over_info ();
31e77af2 7980 return;
d4f3574e
SS
7981 }
7982
963f9c80 7983 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7984
64ce06e4 7985 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7986 }
7987
488f131b 7988 prepare_to_wait (ecs);
d4f3574e
SS
7989}
7990
4d9d9d04
PA
7991/* Called when we should continue running the inferior, because the
7992 current event doesn't cause a user visible stop. This does the
7993 resuming part; waiting for the next event is done elsewhere. */
7994
7995static void
7996keep_going (struct execution_control_state *ecs)
7997{
7998 if (ecs->event_thread->control.trap_expected
7999 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8000 ecs->event_thread->control.trap_expected = 0;
8001
8002 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8003 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8004 keep_going_pass_signal (ecs);
8005}
8006
104c1213
JM
8007/* This function normally comes after a resume, before
8008 handle_inferior_event exits. It takes care of any last bits of
8009 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 8010
104c1213
JM
8011static void
8012prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 8013{
527159b7 8014 if (debug_infrun)
8a9de0e4 8015 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 8016
104c1213 8017 ecs->wait_some_more = 1;
0b333c5e
PA
8018
8019 if (!target_is_async_p ())
8020 mark_infrun_async_event_handler ();
c906108c 8021}
11cf8741 8022
fd664c91 8023/* We are done with the step range of a step/next/si/ni command.
b57bacec 8024 Called once for each n of a "step n" operation. */
fd664c91
PA
8025
8026static void
bdc36728 8027end_stepping_range (struct execution_control_state *ecs)
fd664c91 8028{
bdc36728 8029 ecs->event_thread->control.stop_step = 1;
bdc36728 8030 stop_waiting (ecs);
fd664c91
PA
8031}
8032
33d62d64
JK
8033/* Several print_*_reason functions to print why the inferior has stopped.
8034 We always print something when the inferior exits, or receives a signal.
8035 The rest of the cases are dealt with later on in normal_stop and
8036 print_it_typical. Ideally there should be a call to one of these
8037 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 8038 stop_waiting is called.
33d62d64 8039
fd664c91
PA
8040 Note that we don't call these directly, instead we delegate that to
8041 the interpreters, through observers. Interpreters then call these
8042 with whatever uiout is right. */
33d62d64 8043
fd664c91
PA
8044void
8045print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 8046{
fd664c91 8047 /* For CLI-like interpreters, print nothing. */
33d62d64 8048
112e8700 8049 if (uiout->is_mi_like_p ())
fd664c91 8050 {
112e8700 8051 uiout->field_string ("reason",
fd664c91
PA
8052 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8053 }
8054}
33d62d64 8055
fd664c91
PA
8056void
8057print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 8058{
33d62d64 8059 annotate_signalled ();
112e8700
SM
8060 if (uiout->is_mi_like_p ())
8061 uiout->field_string
8062 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8063 uiout->text ("\nProgram terminated with signal ");
33d62d64 8064 annotate_signal_name ();
112e8700 8065 uiout->field_string ("signal-name",
2ea28649 8066 gdb_signal_to_name (siggnal));
33d62d64 8067 annotate_signal_name_end ();
112e8700 8068 uiout->text (", ");
33d62d64 8069 annotate_signal_string ();
112e8700 8070 uiout->field_string ("signal-meaning",
2ea28649 8071 gdb_signal_to_string (siggnal));
33d62d64 8072 annotate_signal_string_end ();
112e8700
SM
8073 uiout->text (".\n");
8074 uiout->text ("The program no longer exists.\n");
33d62d64
JK
8075}
8076
fd664c91
PA
8077void
8078print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 8079{
fda326dd 8080 struct inferior *inf = current_inferior ();
a068643d 8081 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 8082
33d62d64
JK
8083 annotate_exited (exitstatus);
8084 if (exitstatus)
8085 {
112e8700
SM
8086 if (uiout->is_mi_like_p ())
8087 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
8088 std::string exit_code_str
8089 = string_printf ("0%o", (unsigned int) exitstatus);
8090 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8091 plongest (inf->num), pidstr.c_str (),
8092 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8093 }
8094 else
11cf8741 8095 {
112e8700
SM
8096 if (uiout->is_mi_like_p ())
8097 uiout->field_string
8098 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8099 uiout->message ("[Inferior %s (%s) exited normally]\n",
8100 plongest (inf->num), pidstr.c_str ());
33d62d64 8101 }
33d62d64
JK
8102}
8103
012b3a21
WT
8104/* Some targets/architectures can do extra processing/display of
8105 segmentation faults. E.g., Intel MPX boundary faults.
8106 Call the architecture dependent function to handle the fault. */
8107
8108static void
8109handle_segmentation_fault (struct ui_out *uiout)
8110{
8111 struct regcache *regcache = get_current_regcache ();
ac7936df 8112 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
8113
8114 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8115 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8116}
8117
fd664c91
PA
8118void
8119print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8120{
f303dbd6
PA
8121 struct thread_info *thr = inferior_thread ();
8122
33d62d64
JK
8123 annotate_signal ();
8124
112e8700 8125 if (uiout->is_mi_like_p ())
f303dbd6
PA
8126 ;
8127 else if (show_thread_that_caused_stop ())
33d62d64 8128 {
f303dbd6 8129 const char *name;
33d62d64 8130
112e8700 8131 uiout->text ("\nThread ");
33eca680 8132 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8133
8134 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8135 if (name != NULL)
8136 {
112e8700 8137 uiout->text (" \"");
33eca680 8138 uiout->field_string ("name", name);
112e8700 8139 uiout->text ("\"");
f303dbd6 8140 }
33d62d64 8141 }
f303dbd6 8142 else
112e8700 8143 uiout->text ("\nProgram");
f303dbd6 8144
112e8700
SM
8145 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8146 uiout->text (" stopped");
33d62d64
JK
8147 else
8148 {
112e8700 8149 uiout->text (" received signal ");
8b93c638 8150 annotate_signal_name ();
112e8700
SM
8151 if (uiout->is_mi_like_p ())
8152 uiout->field_string
8153 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8154 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8155 annotate_signal_name_end ();
112e8700 8156 uiout->text (", ");
8b93c638 8157 annotate_signal_string ();
112e8700 8158 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8159
8160 if (siggnal == GDB_SIGNAL_SEGV)
8161 handle_segmentation_fault (uiout);
8162
8b93c638 8163 annotate_signal_string_end ();
33d62d64 8164 }
112e8700 8165 uiout->text (".\n");
33d62d64 8166}
252fbfc8 8167
fd664c91
PA
8168void
8169print_no_history_reason (struct ui_out *uiout)
33d62d64 8170{
112e8700 8171 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8172}
43ff13b4 8173
0c7e1a46
PA
8174/* Print current location without a level number, if we have changed
8175 functions or hit a breakpoint. Print source line if we have one.
8176 bpstat_print contains the logic deciding in detail what to print,
8177 based on the event(s) that just occurred. */
8178
243a9253
PA
8179static void
8180print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8181{
8182 int bpstat_ret;
f486487f 8183 enum print_what source_flag;
0c7e1a46
PA
8184 int do_frame_printing = 1;
8185 struct thread_info *tp = inferior_thread ();
8186
8187 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8188 switch (bpstat_ret)
8189 {
8190 case PRINT_UNKNOWN:
8191 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8192 should) carry around the function and does (or should) use
8193 that when doing a frame comparison. */
8194 if (tp->control.stop_step
8195 && frame_id_eq (tp->control.step_frame_id,
8196 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8197 && (tp->control.step_start_function
8198 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8199 {
8200 /* Finished step, just print source line. */
8201 source_flag = SRC_LINE;
8202 }
8203 else
8204 {
8205 /* Print location and source line. */
8206 source_flag = SRC_AND_LOC;
8207 }
8208 break;
8209 case PRINT_SRC_AND_LOC:
8210 /* Print location and source line. */
8211 source_flag = SRC_AND_LOC;
8212 break;
8213 case PRINT_SRC_ONLY:
8214 source_flag = SRC_LINE;
8215 break;
8216 case PRINT_NOTHING:
8217 /* Something bogus. */
8218 source_flag = SRC_LINE;
8219 do_frame_printing = 0;
8220 break;
8221 default:
8222 internal_error (__FILE__, __LINE__, _("Unknown value."));
8223 }
8224
8225 /* The behavior of this routine with respect to the source
8226 flag is:
8227 SRC_LINE: Print only source line
8228 LOCATION: Print only location
8229 SRC_AND_LOC: Print location and source line. */
8230 if (do_frame_printing)
8231 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8232}
8233
243a9253
PA
8234/* See infrun.h. */
8235
8236void
4c7d57e7 8237print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8238{
243a9253 8239 struct target_waitstatus last;
243a9253
PA
8240 struct thread_info *tp;
8241
5b6d1e4f 8242 get_last_target_status (nullptr, nullptr, &last);
243a9253 8243
67ad9399
TT
8244 {
8245 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8246
67ad9399 8247 print_stop_location (&last);
243a9253 8248
67ad9399 8249 /* Display the auto-display expressions. */
4c7d57e7
TT
8250 if (displays)
8251 do_displays ();
67ad9399 8252 }
243a9253
PA
8253
8254 tp = inferior_thread ();
8255 if (tp->thread_fsm != NULL
46e3ed7f 8256 && tp->thread_fsm->finished_p ())
243a9253
PA
8257 {
8258 struct return_value_info *rv;
8259
46e3ed7f 8260 rv = tp->thread_fsm->return_value ();
243a9253
PA
8261 if (rv != NULL)
8262 print_return_value (uiout, rv);
8263 }
0c7e1a46
PA
8264}
8265
388a7084
PA
8266/* See infrun.h. */
8267
8268void
8269maybe_remove_breakpoints (void)
8270{
8271 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8272 {
8273 if (remove_breakpoints ())
8274 {
223ffa71 8275 target_terminal::ours_for_output ();
388a7084
PA
8276 printf_filtered (_("Cannot remove breakpoints because "
8277 "program is no longer writable.\nFurther "
8278 "execution is probably impossible.\n"));
8279 }
8280 }
8281}
8282
4c2f2a79
PA
8283/* The execution context that just caused a normal stop. */
8284
8285struct stop_context
8286{
2d844eaf
TT
8287 stop_context ();
8288 ~stop_context ();
8289
8290 DISABLE_COPY_AND_ASSIGN (stop_context);
8291
8292 bool changed () const;
8293
4c2f2a79
PA
8294 /* The stop ID. */
8295 ULONGEST stop_id;
c906108c 8296
4c2f2a79 8297 /* The event PTID. */
c906108c 8298
4c2f2a79
PA
8299 ptid_t ptid;
8300
8301 /* If stopp for a thread event, this is the thread that caused the
8302 stop. */
8303 struct thread_info *thread;
8304
8305 /* The inferior that caused the stop. */
8306 int inf_num;
8307};
8308
2d844eaf 8309/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8310 takes a strong reference to the thread. */
8311
2d844eaf 8312stop_context::stop_context ()
4c2f2a79 8313{
2d844eaf
TT
8314 stop_id = get_stop_id ();
8315 ptid = inferior_ptid;
8316 inf_num = current_inferior ()->num;
4c2f2a79 8317
d7e15655 8318 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8319 {
8320 /* Take a strong reference so that the thread can't be deleted
8321 yet. */
2d844eaf
TT
8322 thread = inferior_thread ();
8323 thread->incref ();
4c2f2a79
PA
8324 }
8325 else
2d844eaf 8326 thread = NULL;
4c2f2a79
PA
8327}
8328
8329/* Release a stop context previously created with save_stop_context.
8330 Releases the strong reference to the thread as well. */
8331
2d844eaf 8332stop_context::~stop_context ()
4c2f2a79 8333{
2d844eaf
TT
8334 if (thread != NULL)
8335 thread->decref ();
4c2f2a79
PA
8336}
8337
8338/* Return true if the current context no longer matches the saved stop
8339 context. */
8340
2d844eaf
TT
8341bool
8342stop_context::changed () const
8343{
8344 if (ptid != inferior_ptid)
8345 return true;
8346 if (inf_num != current_inferior ()->num)
8347 return true;
8348 if (thread != NULL && thread->state != THREAD_STOPPED)
8349 return true;
8350 if (get_stop_id () != stop_id)
8351 return true;
8352 return false;
4c2f2a79
PA
8353}
8354
8355/* See infrun.h. */
8356
8357int
96baa820 8358normal_stop (void)
c906108c 8359{
73b65bb0 8360 struct target_waitstatus last;
73b65bb0 8361
5b6d1e4f 8362 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8363
4c2f2a79
PA
8364 new_stop_id ();
8365
29f49a6a
PA
8366 /* If an exception is thrown from this point on, make sure to
8367 propagate GDB's knowledge of the executing state to the
8368 frontend/user running state. A QUIT is an easy exception to see
8369 here, so do this before any filtered output. */
731f534f 8370
5b6d1e4f 8371 ptid_t finish_ptid = null_ptid;
731f534f 8372
c35b1492 8373 if (!non_stop)
5b6d1e4f 8374 finish_ptid = minus_one_ptid;
e1316e60
PA
8375 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8376 || last.kind == TARGET_WAITKIND_EXITED)
8377 {
8378 /* On some targets, we may still have live threads in the
8379 inferior when we get a process exit event. E.g., for
8380 "checkpoint", when the current checkpoint/fork exits,
8381 linux-fork.c automatically switches to another fork from
8382 within target_mourn_inferior. */
731f534f 8383 if (inferior_ptid != null_ptid)
5b6d1e4f 8384 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8385 }
8386 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8387 finish_ptid = inferior_ptid;
8388
8389 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8390 if (finish_ptid != null_ptid)
8391 {
8392 maybe_finish_thread_state.emplace
8393 (user_visible_resume_target (finish_ptid), finish_ptid);
8394 }
29f49a6a 8395
b57bacec
PA
8396 /* As we're presenting a stop, and potentially removing breakpoints,
8397 update the thread list so we can tell whether there are threads
8398 running on the target. With target remote, for example, we can
8399 only learn about new threads when we explicitly update the thread
8400 list. Do this before notifying the interpreters about signal
8401 stops, end of stepping ranges, etc., so that the "new thread"
8402 output is emitted before e.g., "Program received signal FOO",
8403 instead of after. */
8404 update_thread_list ();
8405
8406 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8407 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8408
c906108c
SS
8409 /* As with the notification of thread events, we want to delay
8410 notifying the user that we've switched thread context until
8411 the inferior actually stops.
8412
73b65bb0
DJ
8413 There's no point in saying anything if the inferior has exited.
8414 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8415 "received a signal".
8416
8417 Also skip saying anything in non-stop mode. In that mode, as we
8418 don't want GDB to switch threads behind the user's back, to avoid
8419 races where the user is typing a command to apply to thread x,
8420 but GDB switches to thread y before the user finishes entering
8421 the command, fetch_inferior_event installs a cleanup to restore
8422 the current thread back to the thread the user had selected right
8423 after this event is handled, so we're not really switching, only
8424 informing of a stop. */
4f8d22e3 8425 if (!non_stop
731f534f 8426 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8427 && target_has_execution
8428 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8429 && last.kind != TARGET_WAITKIND_EXITED
8430 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8431 {
0e454242 8432 SWITCH_THRU_ALL_UIS ()
3b12939d 8433 {
223ffa71 8434 target_terminal::ours_for_output ();
3b12939d 8435 printf_filtered (_("[Switching to %s]\n"),
a068643d 8436 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8437 annotate_thread_changed ();
8438 }
39f77062 8439 previous_inferior_ptid = inferior_ptid;
c906108c 8440 }
c906108c 8441
0e5bf2a8
PA
8442 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8443 {
0e454242 8444 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8445 if (current_ui->prompt_state == PROMPT_BLOCKED)
8446 {
223ffa71 8447 target_terminal::ours_for_output ();
3b12939d
PA
8448 printf_filtered (_("No unwaited-for children left.\n"));
8449 }
0e5bf2a8
PA
8450 }
8451
b57bacec 8452 /* Note: this depends on the update_thread_list call above. */
388a7084 8453 maybe_remove_breakpoints ();
c906108c 8454
c906108c
SS
8455 /* If an auto-display called a function and that got a signal,
8456 delete that auto-display to avoid an infinite recursion. */
8457
8458 if (stopped_by_random_signal)
8459 disable_current_display ();
8460
0e454242 8461 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8462 {
8463 async_enable_stdin ();
8464 }
c906108c 8465
388a7084 8466 /* Let the user/frontend see the threads as stopped. */
731f534f 8467 maybe_finish_thread_state.reset ();
388a7084
PA
8468
8469 /* Select innermost stack frame - i.e., current frame is frame 0,
8470 and current location is based on that. Handle the case where the
8471 dummy call is returning after being stopped. E.g. the dummy call
8472 previously hit a breakpoint. (If the dummy call returns
8473 normally, we won't reach here.) Do this before the stop hook is
8474 run, so that it doesn't get to see the temporary dummy frame,
8475 which is not where we'll present the stop. */
8476 if (has_stack_frames ())
8477 {
8478 if (stop_stack_dummy == STOP_STACK_DUMMY)
8479 {
8480 /* Pop the empty frame that contains the stack dummy. This
8481 also restores inferior state prior to the call (struct
8482 infcall_suspend_state). */
8483 struct frame_info *frame = get_current_frame ();
8484
8485 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8486 frame_pop (frame);
8487 /* frame_pop calls reinit_frame_cache as the last thing it
8488 does which means there's now no selected frame. */
8489 }
8490
8491 select_frame (get_current_frame ());
8492
8493 /* Set the current source location. */
8494 set_current_sal_from_frame (get_current_frame ());
8495 }
dd7e2d2b
PA
8496
8497 /* Look up the hook_stop and run it (CLI internally handles problem
8498 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8499 if (stop_command != NULL)
8500 {
2d844eaf 8501 stop_context saved_context;
4c2f2a79 8502
a70b8144 8503 try
bf469271
PA
8504 {
8505 execute_cmd_pre_hook (stop_command);
8506 }
230d2906 8507 catch (const gdb_exception &ex)
bf469271
PA
8508 {
8509 exception_fprintf (gdb_stderr, ex,
8510 "Error while running hook_stop:\n");
8511 }
4c2f2a79
PA
8512
8513 /* If the stop hook resumes the target, then there's no point in
8514 trying to notify about the previous stop; its context is
8515 gone. Likewise if the command switches thread or inferior --
8516 the observers would print a stop for the wrong
8517 thread/inferior. */
2d844eaf
TT
8518 if (saved_context.changed ())
8519 return 1;
4c2f2a79 8520 }
dd7e2d2b 8521
388a7084
PA
8522 /* Notify observers about the stop. This is where the interpreters
8523 print the stop event. */
d7e15655 8524 if (inferior_ptid != null_ptid)
76727919 8525 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8526 stop_print_frame);
8527 else
76727919 8528 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8529
243a9253
PA
8530 annotate_stopped ();
8531
48844aa6
PA
8532 if (target_has_execution)
8533 {
8534 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8535 && last.kind != TARGET_WAITKIND_EXITED
8536 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8537 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8538 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8539 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8540 }
6c95b8df
PA
8541
8542 /* Try to get rid of automatically added inferiors that are no
8543 longer needed. Keeping those around slows down things linearly.
8544 Note that this never removes the current inferior. */
8545 prune_inferiors ();
4c2f2a79
PA
8546
8547 return 0;
c906108c 8548}
c906108c 8549\f
c5aa993b 8550int
96baa820 8551signal_stop_state (int signo)
c906108c 8552{
d6b48e9c 8553 return signal_stop[signo];
c906108c
SS
8554}
8555
c5aa993b 8556int
96baa820 8557signal_print_state (int signo)
c906108c
SS
8558{
8559 return signal_print[signo];
8560}
8561
c5aa993b 8562int
96baa820 8563signal_pass_state (int signo)
c906108c
SS
8564{
8565 return signal_program[signo];
8566}
8567
2455069d
UW
8568static void
8569signal_cache_update (int signo)
8570{
8571 if (signo == -1)
8572 {
a493e3e2 8573 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8574 signal_cache_update (signo);
8575
8576 return;
8577 }
8578
8579 signal_pass[signo] = (signal_stop[signo] == 0
8580 && signal_print[signo] == 0
ab04a2af
TT
8581 && signal_program[signo] == 1
8582 && signal_catch[signo] == 0);
2455069d
UW
8583}
8584
488f131b 8585int
7bda5e4a 8586signal_stop_update (int signo, int state)
d4f3574e
SS
8587{
8588 int ret = signal_stop[signo];
abbb1732 8589
d4f3574e 8590 signal_stop[signo] = state;
2455069d 8591 signal_cache_update (signo);
d4f3574e
SS
8592 return ret;
8593}
8594
488f131b 8595int
7bda5e4a 8596signal_print_update (int signo, int state)
d4f3574e
SS
8597{
8598 int ret = signal_print[signo];
abbb1732 8599
d4f3574e 8600 signal_print[signo] = state;
2455069d 8601 signal_cache_update (signo);
d4f3574e
SS
8602 return ret;
8603}
8604
488f131b 8605int
7bda5e4a 8606signal_pass_update (int signo, int state)
d4f3574e
SS
8607{
8608 int ret = signal_program[signo];
abbb1732 8609
d4f3574e 8610 signal_program[signo] = state;
2455069d 8611 signal_cache_update (signo);
d4f3574e
SS
8612 return ret;
8613}
8614
ab04a2af
TT
8615/* Update the global 'signal_catch' from INFO and notify the
8616 target. */
8617
8618void
8619signal_catch_update (const unsigned int *info)
8620{
8621 int i;
8622
8623 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8624 signal_catch[i] = info[i] > 0;
8625 signal_cache_update (-1);
adc6a863 8626 target_pass_signals (signal_pass);
ab04a2af
TT
8627}
8628
c906108c 8629static void
96baa820 8630sig_print_header (void)
c906108c 8631{
3e43a32a
MS
8632 printf_filtered (_("Signal Stop\tPrint\tPass "
8633 "to program\tDescription\n"));
c906108c
SS
8634}
8635
8636static void
2ea28649 8637sig_print_info (enum gdb_signal oursig)
c906108c 8638{
2ea28649 8639 const char *name = gdb_signal_to_name (oursig);
c906108c 8640 int name_padding = 13 - strlen (name);
96baa820 8641
c906108c
SS
8642 if (name_padding <= 0)
8643 name_padding = 0;
8644
8645 printf_filtered ("%s", name);
488f131b 8646 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8647 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8648 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8649 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8650 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8651}
8652
8653/* Specify how various signals in the inferior should be handled. */
8654
8655static void
0b39b52e 8656handle_command (const char *args, int from_tty)
c906108c 8657{
c906108c 8658 int digits, wordlen;
b926417a 8659 int sigfirst, siglast;
2ea28649 8660 enum gdb_signal oursig;
c906108c 8661 int allsigs;
c906108c
SS
8662
8663 if (args == NULL)
8664 {
e2e0b3e5 8665 error_no_arg (_("signal to handle"));
c906108c
SS
8666 }
8667
1777feb0 8668 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8669
adc6a863
PA
8670 const size_t nsigs = GDB_SIGNAL_LAST;
8671 unsigned char sigs[nsigs] {};
c906108c 8672
1777feb0 8673 /* Break the command line up into args. */
c906108c 8674
773a1edc 8675 gdb_argv built_argv (args);
c906108c
SS
8676
8677 /* Walk through the args, looking for signal oursigs, signal names, and
8678 actions. Signal numbers and signal names may be interspersed with
8679 actions, with the actions being performed for all signals cumulatively
1777feb0 8680 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8681
773a1edc 8682 for (char *arg : built_argv)
c906108c 8683 {
773a1edc
TT
8684 wordlen = strlen (arg);
8685 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8686 {;
8687 }
8688 allsigs = 0;
8689 sigfirst = siglast = -1;
8690
773a1edc 8691 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8692 {
8693 /* Apply action to all signals except those used by the
1777feb0 8694 debugger. Silently skip those. */
c906108c
SS
8695 allsigs = 1;
8696 sigfirst = 0;
8697 siglast = nsigs - 1;
8698 }
773a1edc 8699 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8700 {
8701 SET_SIGS (nsigs, sigs, signal_stop);
8702 SET_SIGS (nsigs, sigs, signal_print);
8703 }
773a1edc 8704 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8705 {
8706 UNSET_SIGS (nsigs, sigs, signal_program);
8707 }
773a1edc 8708 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8709 {
8710 SET_SIGS (nsigs, sigs, signal_print);
8711 }
773a1edc 8712 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8713 {
8714 SET_SIGS (nsigs, sigs, signal_program);
8715 }
773a1edc 8716 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8717 {
8718 UNSET_SIGS (nsigs, sigs, signal_stop);
8719 }
773a1edc 8720 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8721 {
8722 SET_SIGS (nsigs, sigs, signal_program);
8723 }
773a1edc 8724 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8725 {
8726 UNSET_SIGS (nsigs, sigs, signal_print);
8727 UNSET_SIGS (nsigs, sigs, signal_stop);
8728 }
773a1edc 8729 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8730 {
8731 UNSET_SIGS (nsigs, sigs, signal_program);
8732 }
8733 else if (digits > 0)
8734 {
8735 /* It is numeric. The numeric signal refers to our own
8736 internal signal numbering from target.h, not to host/target
8737 signal number. This is a feature; users really should be
8738 using symbolic names anyway, and the common ones like
8739 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8740
8741 sigfirst = siglast = (int)
773a1edc
TT
8742 gdb_signal_from_command (atoi (arg));
8743 if (arg[digits] == '-')
c906108c
SS
8744 {
8745 siglast = (int)
773a1edc 8746 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8747 }
8748 if (sigfirst > siglast)
8749 {
1777feb0 8750 /* Bet he didn't figure we'd think of this case... */
b926417a 8751 std::swap (sigfirst, siglast);
c906108c
SS
8752 }
8753 }
8754 else
8755 {
773a1edc 8756 oursig = gdb_signal_from_name (arg);
a493e3e2 8757 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8758 {
8759 sigfirst = siglast = (int) oursig;
8760 }
8761 else
8762 {
8763 /* Not a number and not a recognized flag word => complain. */
773a1edc 8764 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8765 }
8766 }
8767
8768 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8769 which signals to apply actions to. */
c906108c 8770
b926417a 8771 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8772 {
2ea28649 8773 switch ((enum gdb_signal) signum)
c906108c 8774 {
a493e3e2
PA
8775 case GDB_SIGNAL_TRAP:
8776 case GDB_SIGNAL_INT:
c906108c
SS
8777 if (!allsigs && !sigs[signum])
8778 {
9e2f0ad4 8779 if (query (_("%s is used by the debugger.\n\
3e43a32a 8780Are you sure you want to change it? "),
2ea28649 8781 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8782 {
8783 sigs[signum] = 1;
8784 }
8785 else
c119e040 8786 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8787 }
8788 break;
a493e3e2
PA
8789 case GDB_SIGNAL_0:
8790 case GDB_SIGNAL_DEFAULT:
8791 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8792 /* Make sure that "all" doesn't print these. */
8793 break;
8794 default:
8795 sigs[signum] = 1;
8796 break;
8797 }
8798 }
c906108c
SS
8799 }
8800
b926417a 8801 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8802 if (sigs[signum])
8803 {
2455069d 8804 signal_cache_update (-1);
adc6a863
PA
8805 target_pass_signals (signal_pass);
8806 target_program_signals (signal_program);
c906108c 8807
3a031f65
PA
8808 if (from_tty)
8809 {
8810 /* Show the results. */
8811 sig_print_header ();
8812 for (; signum < nsigs; signum++)
8813 if (sigs[signum])
aead7601 8814 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8815 }
8816
8817 break;
8818 }
c906108c
SS
8819}
8820
de0bea00
MF
8821/* Complete the "handle" command. */
8822
eb3ff9a5 8823static void
de0bea00 8824handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8825 completion_tracker &tracker,
6f937416 8826 const char *text, const char *word)
de0bea00 8827{
de0bea00
MF
8828 static const char * const keywords[] =
8829 {
8830 "all",
8831 "stop",
8832 "ignore",
8833 "print",
8834 "pass",
8835 "nostop",
8836 "noignore",
8837 "noprint",
8838 "nopass",
8839 NULL,
8840 };
8841
eb3ff9a5
PA
8842 signal_completer (ignore, tracker, text, word);
8843 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8844}
8845
2ea28649
PA
8846enum gdb_signal
8847gdb_signal_from_command (int num)
ed01b82c
PA
8848{
8849 if (num >= 1 && num <= 15)
2ea28649 8850 return (enum gdb_signal) num;
ed01b82c
PA
8851 error (_("Only signals 1-15 are valid as numeric signals.\n\
8852Use \"info signals\" for a list of symbolic signals."));
8853}
8854
c906108c
SS
8855/* Print current contents of the tables set by the handle command.
8856 It is possible we should just be printing signals actually used
8857 by the current target (but for things to work right when switching
8858 targets, all signals should be in the signal tables). */
8859
8860static void
1d12d88f 8861info_signals_command (const char *signum_exp, int from_tty)
c906108c 8862{
2ea28649 8863 enum gdb_signal oursig;
abbb1732 8864
c906108c
SS
8865 sig_print_header ();
8866
8867 if (signum_exp)
8868 {
8869 /* First see if this is a symbol name. */
2ea28649 8870 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8871 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8872 {
8873 /* No, try numeric. */
8874 oursig =
2ea28649 8875 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8876 }
8877 sig_print_info (oursig);
8878 return;
8879 }
8880
8881 printf_filtered ("\n");
8882 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8883 for (oursig = GDB_SIGNAL_FIRST;
8884 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8885 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8886 {
8887 QUIT;
8888
a493e3e2
PA
8889 if (oursig != GDB_SIGNAL_UNKNOWN
8890 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8891 sig_print_info (oursig);
8892 }
8893
3e43a32a
MS
8894 printf_filtered (_("\nUse the \"handle\" command "
8895 "to change these tables.\n"));
c906108c 8896}
4aa995e1
PA
8897
8898/* The $_siginfo convenience variable is a bit special. We don't know
8899 for sure the type of the value until we actually have a chance to
7a9dd1b2 8900 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8901 also dependent on which thread you have selected.
8902
8903 1. making $_siginfo be an internalvar that creates a new value on
8904 access.
8905
8906 2. making the value of $_siginfo be an lval_computed value. */
8907
8908/* This function implements the lval_computed support for reading a
8909 $_siginfo value. */
8910
8911static void
8912siginfo_value_read (struct value *v)
8913{
8914 LONGEST transferred;
8915
a911d87a
PA
8916 /* If we can access registers, so can we access $_siginfo. Likewise
8917 vice versa. */
8918 validate_registers_access ();
c709acd1 8919
4aa995e1 8920 transferred =
8b88a78e 8921 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8922 NULL,
8923 value_contents_all_raw (v),
8924 value_offset (v),
8925 TYPE_LENGTH (value_type (v)));
8926
8927 if (transferred != TYPE_LENGTH (value_type (v)))
8928 error (_("Unable to read siginfo"));
8929}
8930
8931/* This function implements the lval_computed support for writing a
8932 $_siginfo value. */
8933
8934static void
8935siginfo_value_write (struct value *v, struct value *fromval)
8936{
8937 LONGEST transferred;
8938
a911d87a
PA
8939 /* If we can access registers, so can we access $_siginfo. Likewise
8940 vice versa. */
8941 validate_registers_access ();
c709acd1 8942
8b88a78e 8943 transferred = target_write (current_top_target (),
4aa995e1
PA
8944 TARGET_OBJECT_SIGNAL_INFO,
8945 NULL,
8946 value_contents_all_raw (fromval),
8947 value_offset (v),
8948 TYPE_LENGTH (value_type (fromval)));
8949
8950 if (transferred != TYPE_LENGTH (value_type (fromval)))
8951 error (_("Unable to write siginfo"));
8952}
8953
c8f2448a 8954static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8955 {
8956 siginfo_value_read,
8957 siginfo_value_write
8958 };
8959
8960/* Return a new value with the correct type for the siginfo object of
78267919
UW
8961 the current thread using architecture GDBARCH. Return a void value
8962 if there's no object available. */
4aa995e1 8963
2c0b251b 8964static struct value *
22d2b532
SDJ
8965siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8966 void *ignore)
4aa995e1 8967{
4aa995e1 8968 if (target_has_stack
d7e15655 8969 && inferior_ptid != null_ptid
78267919 8970 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8971 {
78267919 8972 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8973
78267919 8974 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8975 }
8976
78267919 8977 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8978}
8979
c906108c 8980\f
16c381f0
JK
8981/* infcall_suspend_state contains state about the program itself like its
8982 registers and any signal it received when it last stopped.
8983 This state must be restored regardless of how the inferior function call
8984 ends (either successfully, or after it hits a breakpoint or signal)
8985 if the program is to properly continue where it left off. */
8986
6bf78e29 8987class infcall_suspend_state
7a292a7a 8988{
6bf78e29
AB
8989public:
8990 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8991 once the inferior function call has finished. */
8992 infcall_suspend_state (struct gdbarch *gdbarch,
8993 const struct thread_info *tp,
8994 struct regcache *regcache)
8995 : m_thread_suspend (tp->suspend),
8996 m_registers (new readonly_detached_regcache (*regcache))
8997 {
8998 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8999
9000 if (gdbarch_get_siginfo_type_p (gdbarch))
9001 {
9002 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9003 size_t len = TYPE_LENGTH (type);
9004
9005 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9006
9007 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9008 siginfo_data.get (), 0, len) != len)
9009 {
9010 /* Errors ignored. */
9011 siginfo_data.reset (nullptr);
9012 }
9013 }
9014
9015 if (siginfo_data)
9016 {
9017 m_siginfo_gdbarch = gdbarch;
9018 m_siginfo_data = std::move (siginfo_data);
9019 }
9020 }
9021
9022 /* Return a pointer to the stored register state. */
16c381f0 9023
6bf78e29
AB
9024 readonly_detached_regcache *registers () const
9025 {
9026 return m_registers.get ();
9027 }
9028
9029 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9030
9031 void restore (struct gdbarch *gdbarch,
9032 struct thread_info *tp,
9033 struct regcache *regcache) const
9034 {
9035 tp->suspend = m_thread_suspend;
9036
9037 if (m_siginfo_gdbarch == gdbarch)
9038 {
9039 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9040
9041 /* Errors ignored. */
9042 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9043 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9044 }
9045
9046 /* The inferior can be gone if the user types "print exit(0)"
9047 (and perhaps other times). */
9048 if (target_has_execution)
9049 /* NB: The register write goes through to the target. */
9050 regcache->restore (registers ());
9051 }
9052
9053private:
9054 /* How the current thread stopped before the inferior function call was
9055 executed. */
9056 struct thread_suspend_state m_thread_suspend;
9057
9058 /* The registers before the inferior function call was executed. */
9059 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 9060
35515841 9061 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 9062 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
9063
9064 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9065 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9066 content would be invalid. */
6bf78e29 9067 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
9068};
9069
cb524840
TT
9070infcall_suspend_state_up
9071save_infcall_suspend_state ()
b89667eb 9072{
b89667eb 9073 struct thread_info *tp = inferior_thread ();
1736ad11 9074 struct regcache *regcache = get_current_regcache ();
ac7936df 9075 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 9076
6bf78e29
AB
9077 infcall_suspend_state_up inf_state
9078 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 9079
6bf78e29
AB
9080 /* Having saved the current state, adjust the thread state, discarding
9081 any stop signal information. The stop signal is not useful when
9082 starting an inferior function call, and run_inferior_call will not use
9083 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 9084 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 9085
b89667eb
DE
9086 return inf_state;
9087}
9088
9089/* Restore inferior session state to INF_STATE. */
9090
9091void
16c381f0 9092restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9093{
9094 struct thread_info *tp = inferior_thread ();
1736ad11 9095 struct regcache *regcache = get_current_regcache ();
ac7936df 9096 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9097
6bf78e29 9098 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9099 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9100}
9101
b89667eb 9102void
16c381f0 9103discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9104{
dd848631 9105 delete inf_state;
b89667eb
DE
9106}
9107
daf6667d 9108readonly_detached_regcache *
16c381f0 9109get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9110{
6bf78e29 9111 return inf_state->registers ();
b89667eb
DE
9112}
9113
16c381f0
JK
9114/* infcall_control_state contains state regarding gdb's control of the
9115 inferior itself like stepping control. It also contains session state like
9116 the user's currently selected frame. */
b89667eb 9117
16c381f0 9118struct infcall_control_state
b89667eb 9119{
16c381f0
JK
9120 struct thread_control_state thread_control;
9121 struct inferior_control_state inferior_control;
d82142e2
JK
9122
9123 /* Other fields: */
ee841dd8
TT
9124 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9125 int stopped_by_random_signal = 0;
7a292a7a 9126
b89667eb 9127 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 9128 struct frame_id selected_frame_id {};
7a292a7a
SS
9129};
9130
c906108c 9131/* Save all of the information associated with the inferior<==>gdb
b89667eb 9132 connection. */
c906108c 9133
cb524840
TT
9134infcall_control_state_up
9135save_infcall_control_state ()
c906108c 9136{
cb524840 9137 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9138 struct thread_info *tp = inferior_thread ();
d6b48e9c 9139 struct inferior *inf = current_inferior ();
7a292a7a 9140
16c381f0
JK
9141 inf_status->thread_control = tp->control;
9142 inf_status->inferior_control = inf->control;
d82142e2 9143
8358c15c 9144 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9145 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9146
16c381f0
JK
9147 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9148 chain. If caller's caller is walking the chain, they'll be happier if we
9149 hand them back the original chain when restore_infcall_control_state is
9150 called. */
9151 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9152
9153 /* Other fields: */
9154 inf_status->stop_stack_dummy = stop_stack_dummy;
9155 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9156
206415a3 9157 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9158
7a292a7a 9159 return inf_status;
c906108c
SS
9160}
9161
bf469271
PA
9162static void
9163restore_selected_frame (const frame_id &fid)
c906108c 9164{
bf469271 9165 frame_info *frame = frame_find_by_id (fid);
c906108c 9166
aa0cd9c1
AC
9167 /* If inf_status->selected_frame_id is NULL, there was no previously
9168 selected frame. */
101dcfbe 9169 if (frame == NULL)
c906108c 9170 {
8a3fe4f8 9171 warning (_("Unable to restore previously selected frame."));
bf469271 9172 return;
c906108c
SS
9173 }
9174
0f7d239c 9175 select_frame (frame);
c906108c
SS
9176}
9177
b89667eb
DE
9178/* Restore inferior session state to INF_STATUS. */
9179
c906108c 9180void
16c381f0 9181restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9182{
4e1c45ea 9183 struct thread_info *tp = inferior_thread ();
d6b48e9c 9184 struct inferior *inf = current_inferior ();
4e1c45ea 9185
8358c15c
JK
9186 if (tp->control.step_resume_breakpoint)
9187 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9188
5b79abe7
TT
9189 if (tp->control.exception_resume_breakpoint)
9190 tp->control.exception_resume_breakpoint->disposition
9191 = disp_del_at_next_stop;
9192
d82142e2 9193 /* Handle the bpstat_copy of the chain. */
16c381f0 9194 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9195
16c381f0
JK
9196 tp->control = inf_status->thread_control;
9197 inf->control = inf_status->inferior_control;
d82142e2
JK
9198
9199 /* Other fields: */
9200 stop_stack_dummy = inf_status->stop_stack_dummy;
9201 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9202
b89667eb 9203 if (target_has_stack)
c906108c 9204 {
bf469271 9205 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9206 walking the stack might encounter a garbage pointer and
9207 error() trying to dereference it. */
a70b8144 9208 try
bf469271
PA
9209 {
9210 restore_selected_frame (inf_status->selected_frame_id);
9211 }
230d2906 9212 catch (const gdb_exception_error &ex)
bf469271
PA
9213 {
9214 exception_fprintf (gdb_stderr, ex,
9215 "Unable to restore previously selected frame:\n");
9216 /* Error in restoring the selected frame. Select the
9217 innermost frame. */
9218 select_frame (get_current_frame ());
9219 }
c906108c 9220 }
c906108c 9221
ee841dd8 9222 delete inf_status;
7a292a7a 9223}
c906108c
SS
9224
9225void
16c381f0 9226discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9227{
8358c15c
JK
9228 if (inf_status->thread_control.step_resume_breakpoint)
9229 inf_status->thread_control.step_resume_breakpoint->disposition
9230 = disp_del_at_next_stop;
9231
5b79abe7
TT
9232 if (inf_status->thread_control.exception_resume_breakpoint)
9233 inf_status->thread_control.exception_resume_breakpoint->disposition
9234 = disp_del_at_next_stop;
9235
1777feb0 9236 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9237 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9238
ee841dd8 9239 delete inf_status;
7a292a7a 9240}
b89667eb 9241\f
7f89fd65 9242/* See infrun.h. */
0c557179
SDJ
9243
9244void
9245clear_exit_convenience_vars (void)
9246{
9247 clear_internalvar (lookup_internalvar ("_exitsignal"));
9248 clear_internalvar (lookup_internalvar ("_exitcode"));
9249}
c5aa993b 9250\f
488f131b 9251
b2175913
MS
9252/* User interface for reverse debugging:
9253 Set exec-direction / show exec-direction commands
9254 (returns error unless target implements to_set_exec_direction method). */
9255
170742de 9256enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9257static const char exec_forward[] = "forward";
9258static const char exec_reverse[] = "reverse";
9259static const char *exec_direction = exec_forward;
40478521 9260static const char *const exec_direction_names[] = {
b2175913
MS
9261 exec_forward,
9262 exec_reverse,
9263 NULL
9264};
9265
9266static void
eb4c3f4a 9267set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9268 struct cmd_list_element *cmd)
9269{
9270 if (target_can_execute_reverse)
9271 {
9272 if (!strcmp (exec_direction, exec_forward))
9273 execution_direction = EXEC_FORWARD;
9274 else if (!strcmp (exec_direction, exec_reverse))
9275 execution_direction = EXEC_REVERSE;
9276 }
8bbed405
MS
9277 else
9278 {
9279 exec_direction = exec_forward;
9280 error (_("Target does not support this operation."));
9281 }
b2175913
MS
9282}
9283
9284static void
9285show_exec_direction_func (struct ui_file *out, int from_tty,
9286 struct cmd_list_element *cmd, const char *value)
9287{
9288 switch (execution_direction) {
9289 case EXEC_FORWARD:
9290 fprintf_filtered (out, _("Forward.\n"));
9291 break;
9292 case EXEC_REVERSE:
9293 fprintf_filtered (out, _("Reverse.\n"));
9294 break;
b2175913 9295 default:
d8b34453
PA
9296 internal_error (__FILE__, __LINE__,
9297 _("bogus execution_direction value: %d"),
9298 (int) execution_direction);
b2175913
MS
9299 }
9300}
9301
d4db2f36
PA
9302static void
9303show_schedule_multiple (struct ui_file *file, int from_tty,
9304 struct cmd_list_element *c, const char *value)
9305{
3e43a32a
MS
9306 fprintf_filtered (file, _("Resuming the execution of threads "
9307 "of all processes is %s.\n"), value);
d4db2f36 9308}
ad52ddc6 9309
22d2b532
SDJ
9310/* Implementation of `siginfo' variable. */
9311
9312static const struct internalvar_funcs siginfo_funcs =
9313{
9314 siginfo_make_value,
9315 NULL,
9316 NULL
9317};
9318
372316f1
PA
9319/* Callback for infrun's target events source. This is marked when a
9320 thread has a pending status to process. */
9321
9322static void
9323infrun_async_inferior_event_handler (gdb_client_data data)
9324{
372316f1
PA
9325 inferior_event_handler (INF_REG_EVENT, NULL);
9326}
9327
c906108c 9328void
96baa820 9329_initialize_infrun (void)
c906108c 9330{
de0bea00 9331 struct cmd_list_element *c;
c906108c 9332
372316f1
PA
9333 /* Register extra event sources in the event loop. */
9334 infrun_async_inferior_event_token
9335 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9336
11db9430 9337 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9338What debugger does when program gets various signals.\n\
9339Specify a signal as argument to print info on that signal only."));
c906108c
SS
9340 add_info_alias ("handle", "signals", 0);
9341
de0bea00 9342 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9343Specify how to handle signals.\n\
486c7739 9344Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9345Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9346If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9347will be displayed instead.\n\
9348\n\
c906108c
SS
9349Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9350from 1-15 are allowed for compatibility with old versions of GDB.\n\
9351Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9352The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9353used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9354\n\
1bedd215 9355Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9356\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9357Stop means reenter debugger if this signal happens (implies print).\n\
9358Print means print a message if this signal happens.\n\
9359Pass means let program see this signal; otherwise program doesn't know.\n\
9360Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9361Pass and Stop may be combined.\n\
9362\n\
9363Multiple signals may be specified. Signal numbers and signal names\n\
9364may be interspersed with actions, with the actions being performed for\n\
9365all signals cumulatively specified."));
de0bea00 9366 set_cmd_completer (c, handle_completer);
486c7739 9367
c906108c 9368 if (!dbx_commands)
1a966eab
AC
9369 stop_command = add_cmd ("stop", class_obscure,
9370 not_just_help_class_command, _("\
9371There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9372This allows you to set a list of commands to be run each time execution\n\
1a966eab 9373of the program stops."), &cmdlist);
c906108c 9374
ccce17b0 9375 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9376Set inferior debugging."), _("\
9377Show inferior debugging."), _("\
9378When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9379 NULL,
9380 show_debug_infrun,
9381 &setdebuglist, &showdebuglist);
527159b7 9382
3e43a32a
MS
9383 add_setshow_boolean_cmd ("displaced", class_maintenance,
9384 &debug_displaced, _("\
237fc4c9
PA
9385Set displaced stepping debugging."), _("\
9386Show displaced stepping debugging."), _("\
9387When non-zero, displaced stepping specific debugging is enabled."),
9388 NULL,
9389 show_debug_displaced,
9390 &setdebuglist, &showdebuglist);
9391
ad52ddc6
PA
9392 add_setshow_boolean_cmd ("non-stop", no_class,
9393 &non_stop_1, _("\
9394Set whether gdb controls the inferior in non-stop mode."), _("\
9395Show whether gdb controls the inferior in non-stop mode."), _("\
9396When debugging a multi-threaded program and this setting is\n\
9397off (the default, also called all-stop mode), when one thread stops\n\
9398(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9399all other threads in the program while you interact with the thread of\n\
9400interest. When you continue or step a thread, you can allow the other\n\
9401threads to run, or have them remain stopped, but while you inspect any\n\
9402thread's state, all threads stop.\n\
9403\n\
9404In non-stop mode, when one thread stops, other threads can continue\n\
9405to run freely. You'll be able to step each thread independently,\n\
9406leave it stopped or free to run as needed."),
9407 set_non_stop,
9408 show_non_stop,
9409 &setlist,
9410 &showlist);
9411
adc6a863 9412 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9413 {
9414 signal_stop[i] = 1;
9415 signal_print[i] = 1;
9416 signal_program[i] = 1;
ab04a2af 9417 signal_catch[i] = 0;
c906108c
SS
9418 }
9419
4d9d9d04
PA
9420 /* Signals caused by debugger's own actions should not be given to
9421 the program afterwards.
9422
9423 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9424 explicitly specifies that it should be delivered to the target
9425 program. Typically, that would occur when a user is debugging a
9426 target monitor on a simulator: the target monitor sets a
9427 breakpoint; the simulator encounters this breakpoint and halts
9428 the simulation handing control to GDB; GDB, noting that the stop
9429 address doesn't map to any known breakpoint, returns control back
9430 to the simulator; the simulator then delivers the hardware
9431 equivalent of a GDB_SIGNAL_TRAP to the program being
9432 debugged. */
a493e3e2
PA
9433 signal_program[GDB_SIGNAL_TRAP] = 0;
9434 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9435
9436 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9437 signal_stop[GDB_SIGNAL_ALRM] = 0;
9438 signal_print[GDB_SIGNAL_ALRM] = 0;
9439 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9440 signal_print[GDB_SIGNAL_VTALRM] = 0;
9441 signal_stop[GDB_SIGNAL_PROF] = 0;
9442 signal_print[GDB_SIGNAL_PROF] = 0;
9443 signal_stop[GDB_SIGNAL_CHLD] = 0;
9444 signal_print[GDB_SIGNAL_CHLD] = 0;
9445 signal_stop[GDB_SIGNAL_IO] = 0;
9446 signal_print[GDB_SIGNAL_IO] = 0;
9447 signal_stop[GDB_SIGNAL_POLL] = 0;
9448 signal_print[GDB_SIGNAL_POLL] = 0;
9449 signal_stop[GDB_SIGNAL_URG] = 0;
9450 signal_print[GDB_SIGNAL_URG] = 0;
9451 signal_stop[GDB_SIGNAL_WINCH] = 0;
9452 signal_print[GDB_SIGNAL_WINCH] = 0;
9453 signal_stop[GDB_SIGNAL_PRIO] = 0;
9454 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9455
cd0fc7c3
SS
9456 /* These signals are used internally by user-level thread
9457 implementations. (See signal(5) on Solaris.) Like the above
9458 signals, a healthy program receives and handles them as part of
9459 its normal operation. */
a493e3e2
PA
9460 signal_stop[GDB_SIGNAL_LWP] = 0;
9461 signal_print[GDB_SIGNAL_LWP] = 0;
9462 signal_stop[GDB_SIGNAL_WAITING] = 0;
9463 signal_print[GDB_SIGNAL_WAITING] = 0;
9464 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9465 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9466 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9467 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9468
2455069d
UW
9469 /* Update cached state. */
9470 signal_cache_update (-1);
9471
85c07804
AC
9472 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9473 &stop_on_solib_events, _("\
9474Set stopping for shared library events."), _("\
9475Show stopping for shared library events."), _("\
c906108c
SS
9476If nonzero, gdb will give control to the user when the dynamic linker\n\
9477notifies gdb of shared library events. The most common event of interest\n\
85c07804 9478to the user would be loading/unloading of a new library."),
f9e14852 9479 set_stop_on_solib_events,
920d2a44 9480 show_stop_on_solib_events,
85c07804 9481 &setlist, &showlist);
c906108c 9482
7ab04401
AC
9483 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9484 follow_fork_mode_kind_names,
9485 &follow_fork_mode_string, _("\
9486Set debugger response to a program call of fork or vfork."), _("\
9487Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9488A fork or vfork creates a new process. follow-fork-mode can be:\n\
9489 parent - the original process is debugged after a fork\n\
9490 child - the new process is debugged after a fork\n\
ea1dd7bc 9491The unfollowed process will continue to run.\n\
7ab04401
AC
9492By default, the debugger will follow the parent process."),
9493 NULL,
920d2a44 9494 show_follow_fork_mode_string,
7ab04401
AC
9495 &setlist, &showlist);
9496
6c95b8df
PA
9497 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9498 follow_exec_mode_names,
9499 &follow_exec_mode_string, _("\
9500Set debugger response to a program call of exec."), _("\
9501Show debugger response to a program call of exec."), _("\
9502An exec call replaces the program image of a process.\n\
9503\n\
9504follow-exec-mode can be:\n\
9505\n\
cce7e648 9506 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9507to this new inferior. The program the process was running before\n\
9508the exec call can be restarted afterwards by restarting the original\n\
9509inferior.\n\
9510\n\
9511 same - the debugger keeps the process bound to the same inferior.\n\
9512The new executable image replaces the previous executable loaded in\n\
9513the inferior. Restarting the inferior after the exec call restarts\n\
9514the executable the process was running after the exec call.\n\
9515\n\
9516By default, the debugger will use the same inferior."),
9517 NULL,
9518 show_follow_exec_mode_string,
9519 &setlist, &showlist);
9520
7ab04401
AC
9521 add_setshow_enum_cmd ("scheduler-locking", class_run,
9522 scheduler_enums, &scheduler_mode, _("\
9523Set mode for locking scheduler during execution."), _("\
9524Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9525off == no locking (threads may preempt at any time)\n\
9526on == full locking (no thread except the current thread may run)\n\
9527 This applies to both normal execution and replay mode.\n\
9528step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9529 In this mode, other threads may run during other commands.\n\
9530 This applies to both normal execution and replay mode.\n\
9531replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9532 set_schedlock_func, /* traps on target vector */
920d2a44 9533 show_scheduler_mode,
7ab04401 9534 &setlist, &showlist);
5fbbeb29 9535
d4db2f36
PA
9536 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9537Set mode for resuming threads of all processes."), _("\
9538Show mode for resuming threads of all processes."), _("\
9539When on, execution commands (such as 'continue' or 'next') resume all\n\
9540threads of all processes. When off (which is the default), execution\n\
9541commands only resume the threads of the current process. The set of\n\
9542threads that are resumed is further refined by the scheduler-locking\n\
9543mode (see help set scheduler-locking)."),
9544 NULL,
9545 show_schedule_multiple,
9546 &setlist, &showlist);
9547
5bf193a2
AC
9548 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9549Set mode of the step operation."), _("\
9550Show mode of the step operation."), _("\
9551When set, doing a step over a function without debug line information\n\
9552will stop at the first instruction of that function. Otherwise, the\n\
9553function is skipped and the step command stops at a different source line."),
9554 NULL,
920d2a44 9555 show_step_stop_if_no_debug,
5bf193a2 9556 &setlist, &showlist);
ca6724c1 9557
72d0e2c5
YQ
9558 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9559 &can_use_displaced_stepping, _("\
237fc4c9
PA
9560Set debugger's willingness to use displaced stepping."), _("\
9561Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9562If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9563supported by the target architecture. If off, gdb will not use displaced\n\
9564stepping to step over breakpoints, even if such is supported by the target\n\
9565architecture. If auto (which is the default), gdb will use displaced stepping\n\
9566if the target architecture supports it and non-stop mode is active, but will not\n\
9567use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9568 NULL,
9569 show_can_use_displaced_stepping,
9570 &setlist, &showlist);
237fc4c9 9571
b2175913
MS
9572 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9573 &exec_direction, _("Set direction of execution.\n\
9574Options are 'forward' or 'reverse'."),
9575 _("Show direction of execution (forward/reverse)."),
9576 _("Tells gdb whether to execute forward or backward."),
9577 set_exec_direction_func, show_exec_direction_func,
9578 &setlist, &showlist);
9579
6c95b8df
PA
9580 /* Set/show detach-on-fork: user-settable mode. */
9581
9582 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9583Set whether gdb will detach the child of a fork."), _("\
9584Show whether gdb will detach the child of a fork."), _("\
9585Tells gdb whether to detach the child of a fork."),
9586 NULL, NULL, &setlist, &showlist);
9587
03583c20
UW
9588 /* Set/show disable address space randomization mode. */
9589
9590 add_setshow_boolean_cmd ("disable-randomization", class_support,
9591 &disable_randomization, _("\
9592Set disabling of debuggee's virtual address space randomization."), _("\
9593Show disabling of debuggee's virtual address space randomization."), _("\
9594When this mode is on (which is the default), randomization of the virtual\n\
9595address space is disabled. Standalone programs run with the randomization\n\
9596enabled by default on some platforms."),
9597 &set_disable_randomization,
9598 &show_disable_randomization,
9599 &setlist, &showlist);
9600
ca6724c1 9601 /* ptid initializations */
ca6724c1
KB
9602 inferior_ptid = null_ptid;
9603 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9604
76727919
TT
9605 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9606 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9607 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9608 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9609
9610 /* Explicitly create without lookup, since that tries to create a
9611 value with a void typed value, and when we get here, gdbarch
9612 isn't initialized yet. At this point, we're quite sure there
9613 isn't another convenience variable of the same name. */
22d2b532 9614 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9615
9616 add_setshow_boolean_cmd ("observer", no_class,
9617 &observer_mode_1, _("\
9618Set whether gdb controls the inferior in observer mode."), _("\
9619Show whether gdb controls the inferior in observer mode."), _("\
9620In observer mode, GDB can get data from the inferior, but not\n\
9621affect its execution. Registers and memory may not be changed,\n\
9622breakpoints may not be set, and the program cannot be interrupted\n\
9623or signalled."),
9624 set_observer_mode,
9625 show_observer_mode,
9626 &setlist,
9627 &showlist);
c906108c 9628}
This page took 2.682942 seconds and 4 git commands to generate.