sched: Merge select_task_rq_fair() and sched_balance_self()
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
84e9dabf 296static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
57310a98
PZ
312#ifdef CONFIG_SMP
313static int root_task_group_empty(void)
314{
315 return list_empty(&root_task_group.children);
316}
317#endif
318
052f1dc7 319#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
320#ifdef CONFIG_USER_SCHED
321# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 322#else /* !CONFIG_USER_SCHED */
052f1dc7 323# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 324#endif /* CONFIG_USER_SCHED */
052f1dc7 325
cb4ad1ff 326/*
2e084786
LJ
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
cb4ad1ff
MX
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
18d95a28 334#define MIN_SHARES 2
2e084786 335#define MAX_SHARES (1UL << 18)
18d95a28 336
052f1dc7
PZ
337static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338#endif
339
29f59db3 340/* Default task group.
3a252015 341 * Every task in system belong to this group at bootup.
29f59db3 342 */
434d53b0 343struct task_group init_task_group;
29f59db3
SV
344
345/* return group to which a task belongs */
4cf86d77 346static inline struct task_group *task_group(struct task_struct *p)
29f59db3 347{
4cf86d77 348 struct task_group *tg;
9b5b7751 349
052f1dc7 350#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
052f1dc7 354#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
24e377a8 357#else
41a2d6cf 358 tg = &init_task_group;
24e377a8 359#endif
9b5b7751 360 return tg;
29f59db3
SV
361}
362
363/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 364static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 365{
052f1dc7 366#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
052f1dc7 369#endif
6f505b16 370
052f1dc7 371#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 374#endif
29f59db3
SV
375}
376
377#else
378
57310a98
PZ
379#ifdef CONFIG_SMP
380static int root_task_group_empty(void)
381{
382 return 1;
383}
384#endif
385
6f505b16 386static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
387static inline struct task_group *task_group(struct task_struct *p)
388{
389 return NULL;
390}
29f59db3 391
052f1dc7 392#endif /* CONFIG_GROUP_SCHED */
29f59db3 393
6aa645ea
IM
394/* CFS-related fields in a runqueue */
395struct cfs_rq {
396 struct load_weight load;
397 unsigned long nr_running;
398
6aa645ea 399 u64 exec_clock;
e9acbff6 400 u64 min_vruntime;
6aa645ea
IM
401
402 struct rb_root tasks_timeline;
403 struct rb_node *rb_leftmost;
4a55bd5e
PZ
404
405 struct list_head tasks;
406 struct list_head *balance_iterator;
407
408 /*
409 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
410 * It is set to NULL otherwise (i.e when none are currently running).
411 */
4793241b 412 struct sched_entity *curr, *next, *last;
ddc97297 413
5ac5c4d6 414 unsigned int nr_spread_over;
ddc97297 415
62160e3f 416#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
417 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
418
41a2d6cf
IM
419 /*
420 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
421 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
422 * (like users, containers etc.)
423 *
424 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
425 * list is used during load balance.
426 */
41a2d6cf
IM
427 struct list_head leaf_cfs_rq_list;
428 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
429
430#ifdef CONFIG_SMP
c09595f6 431 /*
c8cba857 432 * the part of load.weight contributed by tasks
c09595f6 433 */
c8cba857 434 unsigned long task_weight;
c09595f6 435
c8cba857
PZ
436 /*
437 * h_load = weight * f(tg)
438 *
439 * Where f(tg) is the recursive weight fraction assigned to
440 * this group.
441 */
442 unsigned long h_load;
c09595f6 443
c8cba857
PZ
444 /*
445 * this cpu's part of tg->shares
446 */
447 unsigned long shares;
f1d239f7
PZ
448
449 /*
450 * load.weight at the time we set shares
451 */
452 unsigned long rq_weight;
c09595f6 453#endif
6aa645ea
IM
454#endif
455};
1da177e4 456
6aa645ea
IM
457/* Real-Time classes' related field in a runqueue: */
458struct rt_rq {
459 struct rt_prio_array active;
63489e45 460 unsigned long rt_nr_running;
052f1dc7 461#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
462 struct {
463 int curr; /* highest queued rt task prio */
398a153b 464#ifdef CONFIG_SMP
e864c499 465 int next; /* next highest */
398a153b 466#endif
e864c499 467 } highest_prio;
6f505b16 468#endif
fa85ae24 469#ifdef CONFIG_SMP
73fe6aae 470 unsigned long rt_nr_migratory;
a1ba4d8b 471 unsigned long rt_nr_total;
a22d7fc1 472 int overloaded;
917b627d 473 struct plist_head pushable_tasks;
fa85ae24 474#endif
6f505b16 475 int rt_throttled;
fa85ae24 476 u64 rt_time;
ac086bc2 477 u64 rt_runtime;
ea736ed5 478 /* Nests inside the rq lock: */
ac086bc2 479 spinlock_t rt_runtime_lock;
6f505b16 480
052f1dc7 481#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
482 unsigned long rt_nr_boosted;
483
6f505b16
PZ
484 struct rq *rq;
485 struct list_head leaf_rt_rq_list;
486 struct task_group *tg;
487 struct sched_rt_entity *rt_se;
488#endif
6aa645ea
IM
489};
490
57d885fe
GH
491#ifdef CONFIG_SMP
492
493/*
494 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
495 * variables. Each exclusive cpuset essentially defines an island domain by
496 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
497 * exclusive cpuset is created, we also create and attach a new root-domain
498 * object.
499 *
57d885fe
GH
500 */
501struct root_domain {
502 atomic_t refcount;
c6c4927b
RR
503 cpumask_var_t span;
504 cpumask_var_t online;
637f5085 505
0eab9146 506 /*
637f5085
GH
507 * The "RT overload" flag: it gets set if a CPU has more than
508 * one runnable RT task.
509 */
c6c4927b 510 cpumask_var_t rto_mask;
0eab9146 511 atomic_t rto_count;
6e0534f2
GH
512#ifdef CONFIG_SMP
513 struct cpupri cpupri;
514#endif
57d885fe
GH
515};
516
dc938520
GH
517/*
518 * By default the system creates a single root-domain with all cpus as
519 * members (mimicking the global state we have today).
520 */
57d885fe
GH
521static struct root_domain def_root_domain;
522
523#endif
524
1da177e4
LT
525/*
526 * This is the main, per-CPU runqueue data structure.
527 *
528 * Locking rule: those places that want to lock multiple runqueues
529 * (such as the load balancing or the thread migration code), lock
530 * acquire operations must be ordered by ascending &runqueue.
531 */
70b97a7f 532struct rq {
d8016491
IM
533 /* runqueue lock: */
534 spinlock_t lock;
1da177e4
LT
535
536 /*
537 * nr_running and cpu_load should be in the same cacheline because
538 * remote CPUs use both these fields when doing load calculation.
539 */
540 unsigned long nr_running;
6aa645ea
IM
541 #define CPU_LOAD_IDX_MAX 5
542 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 543#ifdef CONFIG_NO_HZ
15934a37 544 unsigned long last_tick_seen;
46cb4b7c
SS
545 unsigned char in_nohz_recently;
546#endif
d8016491
IM
547 /* capture load from *all* tasks on this cpu: */
548 struct load_weight load;
6aa645ea
IM
549 unsigned long nr_load_updates;
550 u64 nr_switches;
23a185ca 551 u64 nr_migrations_in;
6aa645ea
IM
552
553 struct cfs_rq cfs;
6f505b16 554 struct rt_rq rt;
6f505b16 555
6aa645ea 556#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
557 /* list of leaf cfs_rq on this cpu: */
558 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
559#endif
560#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 561 struct list_head leaf_rt_rq_list;
1da177e4 562#endif
1da177e4
LT
563
564 /*
565 * This is part of a global counter where only the total sum
566 * over all CPUs matters. A task can increase this counter on
567 * one CPU and if it got migrated afterwards it may decrease
568 * it on another CPU. Always updated under the runqueue lock:
569 */
570 unsigned long nr_uninterruptible;
571
36c8b586 572 struct task_struct *curr, *idle;
c9819f45 573 unsigned long next_balance;
1da177e4 574 struct mm_struct *prev_mm;
6aa645ea 575
3e51f33f 576 u64 clock;
6aa645ea 577
1da177e4
LT
578 atomic_t nr_iowait;
579
580#ifdef CONFIG_SMP
0eab9146 581 struct root_domain *rd;
1da177e4
LT
582 struct sched_domain *sd;
583
a0a522ce 584 unsigned char idle_at_tick;
1da177e4 585 /* For active balancing */
3f029d3c 586 int post_schedule;
1da177e4
LT
587 int active_balance;
588 int push_cpu;
d8016491
IM
589 /* cpu of this runqueue: */
590 int cpu;
1f11eb6a 591 int online;
1da177e4 592
a8a51d5e 593 unsigned long avg_load_per_task;
1da177e4 594
36c8b586 595 struct task_struct *migration_thread;
1da177e4 596 struct list_head migration_queue;
e9e9250b
PZ
597
598 u64 rt_avg;
599 u64 age_stamp;
1da177e4
LT
600#endif
601
dce48a84
TG
602 /* calc_load related fields */
603 unsigned long calc_load_update;
604 long calc_load_active;
605
8f4d37ec 606#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
607#ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610#endif
8f4d37ec
PZ
611 struct hrtimer hrtick_timer;
612#endif
613
1da177e4
LT
614#ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
9c2c4802
KC
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
619
620 /* sys_sched_yield() stats */
480b9434 621 unsigned int yld_count;
1da177e4
LT
622
623 /* schedule() stats */
480b9434
KC
624 unsigned int sched_switch;
625 unsigned int sched_count;
626 unsigned int sched_goidle;
1da177e4
LT
627
628 /* try_to_wake_up() stats */
480b9434
KC
629 unsigned int ttwu_count;
630 unsigned int ttwu_local;
b8efb561
IM
631
632 /* BKL stats */
480b9434 633 unsigned int bkl_count;
1da177e4
LT
634#endif
635};
636
f34e3b61 637static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 638
15afe09b 639static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 640{
15afe09b 641 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
642}
643
0a2966b4
CL
644static inline int cpu_of(struct rq *rq)
645{
646#ifdef CONFIG_SMP
647 return rq->cpu;
648#else
649 return 0;
650#endif
651}
652
674311d5
NP
653/*
654 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 655 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
656 *
657 * The domain tree of any CPU may only be accessed from within
658 * preempt-disabled sections.
659 */
48f24c4d
IM
660#define for_each_domain(cpu, __sd) \
661 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
662
663#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
664#define this_rq() (&__get_cpu_var(runqueues))
665#define task_rq(p) cpu_rq(task_cpu(p))
666#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 667#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 668
aa9c4c0f 669inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
670{
671 rq->clock = sched_clock_cpu(cpu_of(rq));
672}
673
bf5c91ba
IM
674/*
675 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
676 */
677#ifdef CONFIG_SCHED_DEBUG
678# define const_debug __read_mostly
679#else
680# define const_debug static const
681#endif
682
017730c1
IM
683/**
684 * runqueue_is_locked
685 *
686 * Returns true if the current cpu runqueue is locked.
687 * This interface allows printk to be called with the runqueue lock
688 * held and know whether or not it is OK to wake up the klogd.
689 */
690int runqueue_is_locked(void)
691{
692 int cpu = get_cpu();
693 struct rq *rq = cpu_rq(cpu);
694 int ret;
695
696 ret = spin_is_locked(&rq->lock);
697 put_cpu();
698 return ret;
699}
700
bf5c91ba
IM
701/*
702 * Debugging: various feature bits
703 */
f00b45c1
PZ
704
705#define SCHED_FEAT(name, enabled) \
706 __SCHED_FEAT_##name ,
707
bf5c91ba 708enum {
f00b45c1 709#include "sched_features.h"
bf5c91ba
IM
710};
711
f00b45c1
PZ
712#undef SCHED_FEAT
713
714#define SCHED_FEAT(name, enabled) \
715 (1UL << __SCHED_FEAT_##name) * enabled |
716
bf5c91ba 717const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
718#include "sched_features.h"
719 0;
720
721#undef SCHED_FEAT
722
723#ifdef CONFIG_SCHED_DEBUG
724#define SCHED_FEAT(name, enabled) \
725 #name ,
726
983ed7a6 727static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
728#include "sched_features.h"
729 NULL
730};
731
732#undef SCHED_FEAT
733
34f3a814 734static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 735{
f00b45c1
PZ
736 int i;
737
738 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
739 if (!(sysctl_sched_features & (1UL << i)))
740 seq_puts(m, "NO_");
741 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 742 }
34f3a814 743 seq_puts(m, "\n");
f00b45c1 744
34f3a814 745 return 0;
f00b45c1
PZ
746}
747
748static ssize_t
749sched_feat_write(struct file *filp, const char __user *ubuf,
750 size_t cnt, loff_t *ppos)
751{
752 char buf[64];
753 char *cmp = buf;
754 int neg = 0;
755 int i;
756
757 if (cnt > 63)
758 cnt = 63;
759
760 if (copy_from_user(&buf, ubuf, cnt))
761 return -EFAULT;
762
763 buf[cnt] = 0;
764
c24b7c52 765 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
766 neg = 1;
767 cmp += 3;
768 }
769
770 for (i = 0; sched_feat_names[i]; i++) {
771 int len = strlen(sched_feat_names[i]);
772
773 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
774 if (neg)
775 sysctl_sched_features &= ~(1UL << i);
776 else
777 sysctl_sched_features |= (1UL << i);
778 break;
779 }
780 }
781
782 if (!sched_feat_names[i])
783 return -EINVAL;
784
785 filp->f_pos += cnt;
786
787 return cnt;
788}
789
34f3a814
LZ
790static int sched_feat_open(struct inode *inode, struct file *filp)
791{
792 return single_open(filp, sched_feat_show, NULL);
793}
794
f00b45c1 795static struct file_operations sched_feat_fops = {
34f3a814
LZ
796 .open = sched_feat_open,
797 .write = sched_feat_write,
798 .read = seq_read,
799 .llseek = seq_lseek,
800 .release = single_release,
f00b45c1
PZ
801};
802
803static __init int sched_init_debug(void)
804{
f00b45c1
PZ
805 debugfs_create_file("sched_features", 0644, NULL, NULL,
806 &sched_feat_fops);
807
808 return 0;
809}
810late_initcall(sched_init_debug);
811
812#endif
813
814#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 815
b82d9fdd
PZ
816/*
817 * Number of tasks to iterate in a single balance run.
818 * Limited because this is done with IRQs disabled.
819 */
820const_debug unsigned int sysctl_sched_nr_migrate = 32;
821
2398f2c6
PZ
822/*
823 * ratelimit for updating the group shares.
55cd5340 824 * default: 0.25ms
2398f2c6 825 */
55cd5340 826unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 827
ffda12a1
PZ
828/*
829 * Inject some fuzzyness into changing the per-cpu group shares
830 * this avoids remote rq-locks at the expense of fairness.
831 * default: 4
832 */
833unsigned int sysctl_sched_shares_thresh = 4;
834
e9e9250b
PZ
835/*
836 * period over which we average the RT time consumption, measured
837 * in ms.
838 *
839 * default: 1s
840 */
841const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
842
fa85ae24 843/*
9f0c1e56 844 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
845 * default: 1s
846 */
9f0c1e56 847unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 848
6892b75e
IM
849static __read_mostly int scheduler_running;
850
9f0c1e56
PZ
851/*
852 * part of the period that we allow rt tasks to run in us.
853 * default: 0.95s
854 */
855int sysctl_sched_rt_runtime = 950000;
fa85ae24 856
d0b27fa7
PZ
857static inline u64 global_rt_period(void)
858{
859 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
860}
861
862static inline u64 global_rt_runtime(void)
863{
e26873bb 864 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
865 return RUNTIME_INF;
866
867 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
868}
fa85ae24 869
1da177e4 870#ifndef prepare_arch_switch
4866cde0
NP
871# define prepare_arch_switch(next) do { } while (0)
872#endif
873#ifndef finish_arch_switch
874# define finish_arch_switch(prev) do { } while (0)
875#endif
876
051a1d1a
DA
877static inline int task_current(struct rq *rq, struct task_struct *p)
878{
879 return rq->curr == p;
880}
881
4866cde0 882#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 883static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 884{
051a1d1a 885 return task_current(rq, p);
4866cde0
NP
886}
887
70b97a7f 888static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
889{
890}
891
70b97a7f 892static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 893{
da04c035
IM
894#ifdef CONFIG_DEBUG_SPINLOCK
895 /* this is a valid case when another task releases the spinlock */
896 rq->lock.owner = current;
897#endif
8a25d5de
IM
898 /*
899 * If we are tracking spinlock dependencies then we have to
900 * fix up the runqueue lock - which gets 'carried over' from
901 * prev into current:
902 */
903 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
904
4866cde0
NP
905 spin_unlock_irq(&rq->lock);
906}
907
908#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 909static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 return p->oncpu;
913#else
051a1d1a 914 return task_current(rq, p);
4866cde0
NP
915#endif
916}
917
70b97a7f 918static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
919{
920#ifdef CONFIG_SMP
921 /*
922 * We can optimise this out completely for !SMP, because the
923 * SMP rebalancing from interrupt is the only thing that cares
924 * here.
925 */
926 next->oncpu = 1;
927#endif
928#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
929 spin_unlock_irq(&rq->lock);
930#else
931 spin_unlock(&rq->lock);
932#endif
933}
934
70b97a7f 935static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
936{
937#ifdef CONFIG_SMP
938 /*
939 * After ->oncpu is cleared, the task can be moved to a different CPU.
940 * We must ensure this doesn't happen until the switch is completely
941 * finished.
942 */
943 smp_wmb();
944 prev->oncpu = 0;
945#endif
946#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 local_irq_enable();
1da177e4 948#endif
4866cde0
NP
949}
950#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 951
b29739f9
IM
952/*
953 * __task_rq_lock - lock the runqueue a given task resides on.
954 * Must be called interrupts disabled.
955 */
70b97a7f 956static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
957 __acquires(rq->lock)
958{
3a5c359a
AK
959 for (;;) {
960 struct rq *rq = task_rq(p);
961 spin_lock(&rq->lock);
962 if (likely(rq == task_rq(p)))
963 return rq;
b29739f9 964 spin_unlock(&rq->lock);
b29739f9 965 }
b29739f9
IM
966}
967
1da177e4
LT
968/*
969 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 970 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
971 * explicitly disabling preemption.
972 */
70b97a7f 973static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
974 __acquires(rq->lock)
975{
70b97a7f 976 struct rq *rq;
1da177e4 977
3a5c359a
AK
978 for (;;) {
979 local_irq_save(*flags);
980 rq = task_rq(p);
981 spin_lock(&rq->lock);
982 if (likely(rq == task_rq(p)))
983 return rq;
1da177e4 984 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 985 }
1da177e4
LT
986}
987
ad474cac
ON
988void task_rq_unlock_wait(struct task_struct *p)
989{
990 struct rq *rq = task_rq(p);
991
992 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
993 spin_unlock_wait(&rq->lock);
994}
995
a9957449 996static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
997 __releases(rq->lock)
998{
999 spin_unlock(&rq->lock);
1000}
1001
70b97a7f 1002static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1003 __releases(rq->lock)
1004{
1005 spin_unlock_irqrestore(&rq->lock, *flags);
1006}
1007
1da177e4 1008/*
cc2a73b5 1009 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1010 */
a9957449 1011static struct rq *this_rq_lock(void)
1da177e4
LT
1012 __acquires(rq->lock)
1013{
70b97a7f 1014 struct rq *rq;
1da177e4
LT
1015
1016 local_irq_disable();
1017 rq = this_rq();
1018 spin_lock(&rq->lock);
1019
1020 return rq;
1021}
1022
8f4d37ec
PZ
1023#ifdef CONFIG_SCHED_HRTICK
1024/*
1025 * Use HR-timers to deliver accurate preemption points.
1026 *
1027 * Its all a bit involved since we cannot program an hrt while holding the
1028 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1029 * reschedule event.
1030 *
1031 * When we get rescheduled we reprogram the hrtick_timer outside of the
1032 * rq->lock.
1033 */
8f4d37ec
PZ
1034
1035/*
1036 * Use hrtick when:
1037 * - enabled by features
1038 * - hrtimer is actually high res
1039 */
1040static inline int hrtick_enabled(struct rq *rq)
1041{
1042 if (!sched_feat(HRTICK))
1043 return 0;
ba42059f 1044 if (!cpu_active(cpu_of(rq)))
b328ca18 1045 return 0;
8f4d37ec
PZ
1046 return hrtimer_is_hres_active(&rq->hrtick_timer);
1047}
1048
8f4d37ec
PZ
1049static void hrtick_clear(struct rq *rq)
1050{
1051 if (hrtimer_active(&rq->hrtick_timer))
1052 hrtimer_cancel(&rq->hrtick_timer);
1053}
1054
8f4d37ec
PZ
1055/*
1056 * High-resolution timer tick.
1057 * Runs from hardirq context with interrupts disabled.
1058 */
1059static enum hrtimer_restart hrtick(struct hrtimer *timer)
1060{
1061 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1062
1063 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1064
1065 spin_lock(&rq->lock);
3e51f33f 1066 update_rq_clock(rq);
8f4d37ec
PZ
1067 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1068 spin_unlock(&rq->lock);
1069
1070 return HRTIMER_NORESTART;
1071}
1072
95e904c7 1073#ifdef CONFIG_SMP
31656519
PZ
1074/*
1075 * called from hardirq (IPI) context
1076 */
1077static void __hrtick_start(void *arg)
b328ca18 1078{
31656519 1079 struct rq *rq = arg;
b328ca18 1080
31656519
PZ
1081 spin_lock(&rq->lock);
1082 hrtimer_restart(&rq->hrtick_timer);
1083 rq->hrtick_csd_pending = 0;
1084 spin_unlock(&rq->lock);
b328ca18
PZ
1085}
1086
31656519
PZ
1087/*
1088 * Called to set the hrtick timer state.
1089 *
1090 * called with rq->lock held and irqs disabled
1091 */
1092static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1093{
31656519
PZ
1094 struct hrtimer *timer = &rq->hrtick_timer;
1095 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1096
cc584b21 1097 hrtimer_set_expires(timer, time);
31656519
PZ
1098
1099 if (rq == this_rq()) {
1100 hrtimer_restart(timer);
1101 } else if (!rq->hrtick_csd_pending) {
6e275637 1102 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1103 rq->hrtick_csd_pending = 1;
1104 }
b328ca18
PZ
1105}
1106
1107static int
1108hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1109{
1110 int cpu = (int)(long)hcpu;
1111
1112 switch (action) {
1113 case CPU_UP_CANCELED:
1114 case CPU_UP_CANCELED_FROZEN:
1115 case CPU_DOWN_PREPARE:
1116 case CPU_DOWN_PREPARE_FROZEN:
1117 case CPU_DEAD:
1118 case CPU_DEAD_FROZEN:
31656519 1119 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1120 return NOTIFY_OK;
1121 }
1122
1123 return NOTIFY_DONE;
1124}
1125
fa748203 1126static __init void init_hrtick(void)
b328ca18
PZ
1127{
1128 hotcpu_notifier(hotplug_hrtick, 0);
1129}
31656519
PZ
1130#else
1131/*
1132 * Called to set the hrtick timer state.
1133 *
1134 * called with rq->lock held and irqs disabled
1135 */
1136static void hrtick_start(struct rq *rq, u64 delay)
1137{
7f1e2ca9 1138 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1139 HRTIMER_MODE_REL_PINNED, 0);
31656519 1140}
b328ca18 1141
006c75f1 1142static inline void init_hrtick(void)
8f4d37ec 1143{
8f4d37ec 1144}
31656519 1145#endif /* CONFIG_SMP */
8f4d37ec 1146
31656519 1147static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1148{
31656519
PZ
1149#ifdef CONFIG_SMP
1150 rq->hrtick_csd_pending = 0;
8f4d37ec 1151
31656519
PZ
1152 rq->hrtick_csd.flags = 0;
1153 rq->hrtick_csd.func = __hrtick_start;
1154 rq->hrtick_csd.info = rq;
1155#endif
8f4d37ec 1156
31656519
PZ
1157 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1158 rq->hrtick_timer.function = hrtick;
8f4d37ec 1159}
006c75f1 1160#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1161static inline void hrtick_clear(struct rq *rq)
1162{
1163}
1164
8f4d37ec
PZ
1165static inline void init_rq_hrtick(struct rq *rq)
1166{
1167}
1168
b328ca18
PZ
1169static inline void init_hrtick(void)
1170{
1171}
006c75f1 1172#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1173
c24d20db
IM
1174/*
1175 * resched_task - mark a task 'to be rescheduled now'.
1176 *
1177 * On UP this means the setting of the need_resched flag, on SMP it
1178 * might also involve a cross-CPU call to trigger the scheduler on
1179 * the target CPU.
1180 */
1181#ifdef CONFIG_SMP
1182
1183#ifndef tsk_is_polling
1184#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1185#endif
1186
31656519 1187static void resched_task(struct task_struct *p)
c24d20db
IM
1188{
1189 int cpu;
1190
1191 assert_spin_locked(&task_rq(p)->lock);
1192
5ed0cec0 1193 if (test_tsk_need_resched(p))
c24d20db
IM
1194 return;
1195
5ed0cec0 1196 set_tsk_need_resched(p);
c24d20db
IM
1197
1198 cpu = task_cpu(p);
1199 if (cpu == smp_processor_id())
1200 return;
1201
1202 /* NEED_RESCHED must be visible before we test polling */
1203 smp_mb();
1204 if (!tsk_is_polling(p))
1205 smp_send_reschedule(cpu);
1206}
1207
1208static void resched_cpu(int cpu)
1209{
1210 struct rq *rq = cpu_rq(cpu);
1211 unsigned long flags;
1212
1213 if (!spin_trylock_irqsave(&rq->lock, flags))
1214 return;
1215 resched_task(cpu_curr(cpu));
1216 spin_unlock_irqrestore(&rq->lock, flags);
1217}
06d8308c
TG
1218
1219#ifdef CONFIG_NO_HZ
1220/*
1221 * When add_timer_on() enqueues a timer into the timer wheel of an
1222 * idle CPU then this timer might expire before the next timer event
1223 * which is scheduled to wake up that CPU. In case of a completely
1224 * idle system the next event might even be infinite time into the
1225 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1226 * leaves the inner idle loop so the newly added timer is taken into
1227 * account when the CPU goes back to idle and evaluates the timer
1228 * wheel for the next timer event.
1229 */
1230void wake_up_idle_cpu(int cpu)
1231{
1232 struct rq *rq = cpu_rq(cpu);
1233
1234 if (cpu == smp_processor_id())
1235 return;
1236
1237 /*
1238 * This is safe, as this function is called with the timer
1239 * wheel base lock of (cpu) held. When the CPU is on the way
1240 * to idle and has not yet set rq->curr to idle then it will
1241 * be serialized on the timer wheel base lock and take the new
1242 * timer into account automatically.
1243 */
1244 if (rq->curr != rq->idle)
1245 return;
1246
1247 /*
1248 * We can set TIF_RESCHED on the idle task of the other CPU
1249 * lockless. The worst case is that the other CPU runs the
1250 * idle task through an additional NOOP schedule()
1251 */
5ed0cec0 1252 set_tsk_need_resched(rq->idle);
06d8308c
TG
1253
1254 /* NEED_RESCHED must be visible before we test polling */
1255 smp_mb();
1256 if (!tsk_is_polling(rq->idle))
1257 smp_send_reschedule(cpu);
1258}
6d6bc0ad 1259#endif /* CONFIG_NO_HZ */
06d8308c 1260
e9e9250b
PZ
1261static u64 sched_avg_period(void)
1262{
1263 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1264}
1265
1266static void sched_avg_update(struct rq *rq)
1267{
1268 s64 period = sched_avg_period();
1269
1270 while ((s64)(rq->clock - rq->age_stamp) > period) {
1271 rq->age_stamp += period;
1272 rq->rt_avg /= 2;
1273 }
1274}
1275
1276static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1277{
1278 rq->rt_avg += rt_delta;
1279 sched_avg_update(rq);
1280}
1281
6d6bc0ad 1282#else /* !CONFIG_SMP */
31656519 1283static void resched_task(struct task_struct *p)
c24d20db
IM
1284{
1285 assert_spin_locked(&task_rq(p)->lock);
31656519 1286 set_tsk_need_resched(p);
c24d20db 1287}
e9e9250b
PZ
1288
1289static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1290{
1291}
6d6bc0ad 1292#endif /* CONFIG_SMP */
c24d20db 1293
45bf76df
IM
1294#if BITS_PER_LONG == 32
1295# define WMULT_CONST (~0UL)
1296#else
1297# define WMULT_CONST (1UL << 32)
1298#endif
1299
1300#define WMULT_SHIFT 32
1301
194081eb
IM
1302/*
1303 * Shift right and round:
1304 */
cf2ab469 1305#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1306
a7be37ac
PZ
1307/*
1308 * delta *= weight / lw
1309 */
cb1c4fc9 1310static unsigned long
45bf76df
IM
1311calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1312 struct load_weight *lw)
1313{
1314 u64 tmp;
1315
7a232e03
LJ
1316 if (!lw->inv_weight) {
1317 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1318 lw->inv_weight = 1;
1319 else
1320 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1321 / (lw->weight+1);
1322 }
45bf76df
IM
1323
1324 tmp = (u64)delta_exec * weight;
1325 /*
1326 * Check whether we'd overflow the 64-bit multiplication:
1327 */
194081eb 1328 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1329 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1330 WMULT_SHIFT/2);
1331 else
cf2ab469 1332 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1333
ecf691da 1334 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1335}
1336
1091985b 1337static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1338{
1339 lw->weight += inc;
e89996ae 1340 lw->inv_weight = 0;
45bf76df
IM
1341}
1342
1091985b 1343static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1344{
1345 lw->weight -= dec;
e89996ae 1346 lw->inv_weight = 0;
45bf76df
IM
1347}
1348
2dd73a4f
PW
1349/*
1350 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351 * of tasks with abnormal "nice" values across CPUs the contribution that
1352 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1353 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1354 * scaled version of the new time slice allocation that they receive on time
1355 * slice expiry etc.
1356 */
1357
cce7ade8
PZ
1358#define WEIGHT_IDLEPRIO 3
1359#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1360
1361/*
1362 * Nice levels are multiplicative, with a gentle 10% change for every
1363 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365 * that remained on nice 0.
1366 *
1367 * The "10% effect" is relative and cumulative: from _any_ nice level,
1368 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1369 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370 * If a task goes up by ~10% and another task goes down by ~10% then
1371 * the relative distance between them is ~25%.)
dd41f596
IM
1372 */
1373static const int prio_to_weight[40] = {
254753dc
IM
1374 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1375 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1376 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1377 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1378 /* 0 */ 1024, 820, 655, 526, 423,
1379 /* 5 */ 335, 272, 215, 172, 137,
1380 /* 10 */ 110, 87, 70, 56, 45,
1381 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1382};
1383
5714d2de
IM
1384/*
1385 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1386 *
1387 * In cases where the weight does not change often, we can use the
1388 * precalculated inverse to speed up arithmetics by turning divisions
1389 * into multiplications:
1390 */
dd41f596 1391static const u32 prio_to_wmult[40] = {
254753dc
IM
1392 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1393 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1394 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1395 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1396 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1397 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1398 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1399 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1400};
2dd73a4f 1401
dd41f596
IM
1402static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1403
1404/*
1405 * runqueue iterator, to support SMP load-balancing between different
1406 * scheduling classes, without having to expose their internal data
1407 * structures to the load-balancing proper:
1408 */
1409struct rq_iterator {
1410 void *arg;
1411 struct task_struct *(*start)(void *);
1412 struct task_struct *(*next)(void *);
1413};
1414
e1d1484f
PW
1415#ifdef CONFIG_SMP
1416static unsigned long
1417balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 unsigned long max_load_move, struct sched_domain *sd,
1419 enum cpu_idle_type idle, int *all_pinned,
1420 int *this_best_prio, struct rq_iterator *iterator);
1421
1422static int
1423iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1424 struct sched_domain *sd, enum cpu_idle_type idle,
1425 struct rq_iterator *iterator);
e1d1484f 1426#endif
dd41f596 1427
ef12fefa
BR
1428/* Time spent by the tasks of the cpu accounting group executing in ... */
1429enum cpuacct_stat_index {
1430 CPUACCT_STAT_USER, /* ... user mode */
1431 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1432
1433 CPUACCT_STAT_NSTATS,
1434};
1435
d842de87
SV
1436#ifdef CONFIG_CGROUP_CPUACCT
1437static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1438static void cpuacct_update_stats(struct task_struct *tsk,
1439 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1440#else
1441static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1442static inline void cpuacct_update_stats(struct task_struct *tsk,
1443 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1444#endif
1445
18d95a28
PZ
1446static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1447{
1448 update_load_add(&rq->load, load);
1449}
1450
1451static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1452{
1453 update_load_sub(&rq->load, load);
1454}
1455
7940ca36 1456#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1457typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1458
1459/*
1460 * Iterate the full tree, calling @down when first entering a node and @up when
1461 * leaving it for the final time.
1462 */
eb755805 1463static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1464{
1465 struct task_group *parent, *child;
eb755805 1466 int ret;
c09595f6
PZ
1467
1468 rcu_read_lock();
1469 parent = &root_task_group;
1470down:
eb755805
PZ
1471 ret = (*down)(parent, data);
1472 if (ret)
1473 goto out_unlock;
c09595f6
PZ
1474 list_for_each_entry_rcu(child, &parent->children, siblings) {
1475 parent = child;
1476 goto down;
1477
1478up:
1479 continue;
1480 }
eb755805
PZ
1481 ret = (*up)(parent, data);
1482 if (ret)
1483 goto out_unlock;
c09595f6
PZ
1484
1485 child = parent;
1486 parent = parent->parent;
1487 if (parent)
1488 goto up;
eb755805 1489out_unlock:
c09595f6 1490 rcu_read_unlock();
eb755805
PZ
1491
1492 return ret;
c09595f6
PZ
1493}
1494
eb755805
PZ
1495static int tg_nop(struct task_group *tg, void *data)
1496{
1497 return 0;
c09595f6 1498}
eb755805
PZ
1499#endif
1500
1501#ifdef CONFIG_SMP
f5f08f39
PZ
1502/* Used instead of source_load when we know the type == 0 */
1503static unsigned long weighted_cpuload(const int cpu)
1504{
1505 return cpu_rq(cpu)->load.weight;
1506}
1507
1508/*
1509 * Return a low guess at the load of a migration-source cpu weighted
1510 * according to the scheduling class and "nice" value.
1511 *
1512 * We want to under-estimate the load of migration sources, to
1513 * balance conservatively.
1514 */
1515static unsigned long source_load(int cpu, int type)
1516{
1517 struct rq *rq = cpu_rq(cpu);
1518 unsigned long total = weighted_cpuload(cpu);
1519
1520 if (type == 0 || !sched_feat(LB_BIAS))
1521 return total;
1522
1523 return min(rq->cpu_load[type-1], total);
1524}
1525
1526/*
1527 * Return a high guess at the load of a migration-target cpu weighted
1528 * according to the scheduling class and "nice" value.
1529 */
1530static unsigned long target_load(int cpu, int type)
1531{
1532 struct rq *rq = cpu_rq(cpu);
1533 unsigned long total = weighted_cpuload(cpu);
1534
1535 if (type == 0 || !sched_feat(LB_BIAS))
1536 return total;
1537
1538 return max(rq->cpu_load[type-1], total);
1539}
1540
eb755805
PZ
1541static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1542
1543static unsigned long cpu_avg_load_per_task(int cpu)
1544{
1545 struct rq *rq = cpu_rq(cpu);
af6d596f 1546 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1547
4cd42620
SR
1548 if (nr_running)
1549 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1550 else
1551 rq->avg_load_per_task = 0;
eb755805
PZ
1552
1553 return rq->avg_load_per_task;
1554}
1555
1556#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1557
34d76c41
PZ
1558struct update_shares_data {
1559 unsigned long rq_weight[NR_CPUS];
1560};
1561
1562static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1563
c09595f6
PZ
1564static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1565
1566/*
1567 * Calculate and set the cpu's group shares.
1568 */
34d76c41
PZ
1569static void update_group_shares_cpu(struct task_group *tg, int cpu,
1570 unsigned long sd_shares,
1571 unsigned long sd_rq_weight,
1572 struct update_shares_data *usd)
18d95a28 1573{
34d76c41 1574 unsigned long shares, rq_weight;
a5004278 1575 int boost = 0;
c09595f6 1576
34d76c41 1577 rq_weight = usd->rq_weight[cpu];
a5004278
PZ
1578 if (!rq_weight) {
1579 boost = 1;
1580 rq_weight = NICE_0_LOAD;
1581 }
c8cba857 1582
c09595f6 1583 /*
a8af7246
PZ
1584 * \Sum_j shares_j * rq_weight_i
1585 * shares_i = -----------------------------
1586 * \Sum_j rq_weight_j
c09595f6 1587 */
ec4e0e2f 1588 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1589 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1590
ffda12a1
PZ
1591 if (abs(shares - tg->se[cpu]->load.weight) >
1592 sysctl_sched_shares_thresh) {
1593 struct rq *rq = cpu_rq(cpu);
1594 unsigned long flags;
c09595f6 1595
ffda12a1 1596 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1597 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1598 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1599 __set_se_shares(tg->se[cpu], shares);
1600 spin_unlock_irqrestore(&rq->lock, flags);
1601 }
18d95a28 1602}
c09595f6
PZ
1603
1604/*
c8cba857
PZ
1605 * Re-compute the task group their per cpu shares over the given domain.
1606 * This needs to be done in a bottom-up fashion because the rq weight of a
1607 * parent group depends on the shares of its child groups.
c09595f6 1608 */
eb755805 1609static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1610{
34d76c41
PZ
1611 unsigned long weight, rq_weight = 0, shares = 0;
1612 struct update_shares_data *usd;
eb755805 1613 struct sched_domain *sd = data;
34d76c41 1614 unsigned long flags;
c8cba857 1615 int i;
c09595f6 1616
34d76c41
PZ
1617 if (!tg->se[0])
1618 return 0;
1619
1620 local_irq_save(flags);
1621 usd = &__get_cpu_var(update_shares_data);
1622
758b2cdc 1623 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41
PZ
1624 weight = tg->cfs_rq[i]->load.weight;
1625 usd->rq_weight[i] = weight;
1626
ec4e0e2f
KC
1627 /*
1628 * If there are currently no tasks on the cpu pretend there
1629 * is one of average load so that when a new task gets to
1630 * run here it will not get delayed by group starvation.
1631 */
ec4e0e2f
KC
1632 if (!weight)
1633 weight = NICE_0_LOAD;
1634
ec4e0e2f 1635 rq_weight += weight;
c8cba857 1636 shares += tg->cfs_rq[i]->shares;
c09595f6 1637 }
c09595f6 1638
c8cba857
PZ
1639 if ((!shares && rq_weight) || shares > tg->shares)
1640 shares = tg->shares;
1641
1642 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1643 shares = tg->shares;
c09595f6 1644
758b2cdc 1645 for_each_cpu(i, sched_domain_span(sd))
34d76c41
PZ
1646 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1647
1648 local_irq_restore(flags);
eb755805
PZ
1649
1650 return 0;
c09595f6
PZ
1651}
1652
1653/*
c8cba857
PZ
1654 * Compute the cpu's hierarchical load factor for each task group.
1655 * This needs to be done in a top-down fashion because the load of a child
1656 * group is a fraction of its parents load.
c09595f6 1657 */
eb755805 1658static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1659{
c8cba857 1660 unsigned long load;
eb755805 1661 long cpu = (long)data;
c09595f6 1662
c8cba857
PZ
1663 if (!tg->parent) {
1664 load = cpu_rq(cpu)->load.weight;
1665 } else {
1666 load = tg->parent->cfs_rq[cpu]->h_load;
1667 load *= tg->cfs_rq[cpu]->shares;
1668 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1669 }
c09595f6 1670
c8cba857 1671 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1672
eb755805 1673 return 0;
c09595f6
PZ
1674}
1675
c8cba857 1676static void update_shares(struct sched_domain *sd)
4d8d595d 1677{
e7097159
PZ
1678 s64 elapsed;
1679 u64 now;
1680
1681 if (root_task_group_empty())
1682 return;
1683
1684 now = cpu_clock(raw_smp_processor_id());
1685 elapsed = now - sd->last_update;
2398f2c6
PZ
1686
1687 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1688 sd->last_update = now;
eb755805 1689 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1690 }
4d8d595d
PZ
1691}
1692
3e5459b4
PZ
1693static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1694{
e7097159
PZ
1695 if (root_task_group_empty())
1696 return;
1697
3e5459b4
PZ
1698 spin_unlock(&rq->lock);
1699 update_shares(sd);
1700 spin_lock(&rq->lock);
1701}
1702
eb755805 1703static void update_h_load(long cpu)
c09595f6 1704{
e7097159
PZ
1705 if (root_task_group_empty())
1706 return;
1707
eb755805 1708 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1709}
1710
c09595f6
PZ
1711#else
1712
c8cba857 1713static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1714{
1715}
1716
3e5459b4
PZ
1717static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1718{
1719}
1720
18d95a28
PZ
1721#endif
1722
8f45e2b5
GH
1723#ifdef CONFIG_PREEMPT
1724
b78bb868
PZ
1725static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1726
70574a99 1727/*
8f45e2b5
GH
1728 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1729 * way at the expense of forcing extra atomic operations in all
1730 * invocations. This assures that the double_lock is acquired using the
1731 * same underlying policy as the spinlock_t on this architecture, which
1732 * reduces latency compared to the unfair variant below. However, it
1733 * also adds more overhead and therefore may reduce throughput.
70574a99 1734 */
8f45e2b5
GH
1735static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1736 __releases(this_rq->lock)
1737 __acquires(busiest->lock)
1738 __acquires(this_rq->lock)
1739{
1740 spin_unlock(&this_rq->lock);
1741 double_rq_lock(this_rq, busiest);
1742
1743 return 1;
1744}
1745
1746#else
1747/*
1748 * Unfair double_lock_balance: Optimizes throughput at the expense of
1749 * latency by eliminating extra atomic operations when the locks are
1750 * already in proper order on entry. This favors lower cpu-ids and will
1751 * grant the double lock to lower cpus over higher ids under contention,
1752 * regardless of entry order into the function.
1753 */
1754static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1755 __releases(this_rq->lock)
1756 __acquires(busiest->lock)
1757 __acquires(this_rq->lock)
1758{
1759 int ret = 0;
1760
70574a99
AD
1761 if (unlikely(!spin_trylock(&busiest->lock))) {
1762 if (busiest < this_rq) {
1763 spin_unlock(&this_rq->lock);
1764 spin_lock(&busiest->lock);
1765 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1766 ret = 1;
1767 } else
1768 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1769 }
1770 return ret;
1771}
1772
8f45e2b5
GH
1773#endif /* CONFIG_PREEMPT */
1774
1775/*
1776 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1777 */
1778static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1779{
1780 if (unlikely(!irqs_disabled())) {
1781 /* printk() doesn't work good under rq->lock */
1782 spin_unlock(&this_rq->lock);
1783 BUG_ON(1);
1784 }
1785
1786 return _double_lock_balance(this_rq, busiest);
1787}
1788
70574a99
AD
1789static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1790 __releases(busiest->lock)
1791{
1792 spin_unlock(&busiest->lock);
1793 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1794}
18d95a28
PZ
1795#endif
1796
30432094 1797#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1798static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1799{
30432094 1800#ifdef CONFIG_SMP
34e83e85
IM
1801 cfs_rq->shares = shares;
1802#endif
1803}
30432094 1804#endif
e7693a36 1805
dce48a84
TG
1806static void calc_load_account_active(struct rq *this_rq);
1807
dd41f596 1808#include "sched_stats.h"
dd41f596 1809#include "sched_idletask.c"
5522d5d5
IM
1810#include "sched_fair.c"
1811#include "sched_rt.c"
dd41f596
IM
1812#ifdef CONFIG_SCHED_DEBUG
1813# include "sched_debug.c"
1814#endif
1815
1816#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1817#define for_each_class(class) \
1818 for (class = sched_class_highest; class; class = class->next)
dd41f596 1819
c09595f6 1820static void inc_nr_running(struct rq *rq)
9c217245
IM
1821{
1822 rq->nr_running++;
9c217245
IM
1823}
1824
c09595f6 1825static void dec_nr_running(struct rq *rq)
9c217245
IM
1826{
1827 rq->nr_running--;
9c217245
IM
1828}
1829
45bf76df
IM
1830static void set_load_weight(struct task_struct *p)
1831{
1832 if (task_has_rt_policy(p)) {
dd41f596
IM
1833 p->se.load.weight = prio_to_weight[0] * 2;
1834 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1835 return;
1836 }
45bf76df 1837
dd41f596
IM
1838 /*
1839 * SCHED_IDLE tasks get minimal weight:
1840 */
1841 if (p->policy == SCHED_IDLE) {
1842 p->se.load.weight = WEIGHT_IDLEPRIO;
1843 p->se.load.inv_weight = WMULT_IDLEPRIO;
1844 return;
1845 }
71f8bd46 1846
dd41f596
IM
1847 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1848 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1849}
1850
2087a1ad
GH
1851static void update_avg(u64 *avg, u64 sample)
1852{
1853 s64 diff = sample - *avg;
1854 *avg += diff >> 3;
1855}
1856
8159f87e 1857static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1858{
831451ac
PZ
1859 if (wakeup)
1860 p->se.start_runtime = p->se.sum_exec_runtime;
1861
dd41f596 1862 sched_info_queued(p);
fd390f6a 1863 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1864 p->se.on_rq = 1;
71f8bd46
IM
1865}
1866
69be72c1 1867static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1868{
831451ac
PZ
1869 if (sleep) {
1870 if (p->se.last_wakeup) {
1871 update_avg(&p->se.avg_overlap,
1872 p->se.sum_exec_runtime - p->se.last_wakeup);
1873 p->se.last_wakeup = 0;
1874 } else {
1875 update_avg(&p->se.avg_wakeup,
1876 sysctl_sched_wakeup_granularity);
1877 }
2087a1ad
GH
1878 }
1879
46ac22ba 1880 sched_info_dequeued(p);
f02231e5 1881 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1882 p->se.on_rq = 0;
71f8bd46
IM
1883}
1884
14531189 1885/*
dd41f596 1886 * __normal_prio - return the priority that is based on the static prio
14531189 1887 */
14531189
IM
1888static inline int __normal_prio(struct task_struct *p)
1889{
dd41f596 1890 return p->static_prio;
14531189
IM
1891}
1892
b29739f9
IM
1893/*
1894 * Calculate the expected normal priority: i.e. priority
1895 * without taking RT-inheritance into account. Might be
1896 * boosted by interactivity modifiers. Changes upon fork,
1897 * setprio syscalls, and whenever the interactivity
1898 * estimator recalculates.
1899 */
36c8b586 1900static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1901{
1902 int prio;
1903
e05606d3 1904 if (task_has_rt_policy(p))
b29739f9
IM
1905 prio = MAX_RT_PRIO-1 - p->rt_priority;
1906 else
1907 prio = __normal_prio(p);
1908 return prio;
1909}
1910
1911/*
1912 * Calculate the current priority, i.e. the priority
1913 * taken into account by the scheduler. This value might
1914 * be boosted by RT tasks, or might be boosted by
1915 * interactivity modifiers. Will be RT if the task got
1916 * RT-boosted. If not then it returns p->normal_prio.
1917 */
36c8b586 1918static int effective_prio(struct task_struct *p)
b29739f9
IM
1919{
1920 p->normal_prio = normal_prio(p);
1921 /*
1922 * If we are RT tasks or we were boosted to RT priority,
1923 * keep the priority unchanged. Otherwise, update priority
1924 * to the normal priority:
1925 */
1926 if (!rt_prio(p->prio))
1927 return p->normal_prio;
1928 return p->prio;
1929}
1930
1da177e4 1931/*
dd41f596 1932 * activate_task - move a task to the runqueue.
1da177e4 1933 */
dd41f596 1934static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1935{
d9514f6c 1936 if (task_contributes_to_load(p))
dd41f596 1937 rq->nr_uninterruptible--;
1da177e4 1938
8159f87e 1939 enqueue_task(rq, p, wakeup);
c09595f6 1940 inc_nr_running(rq);
1da177e4
LT
1941}
1942
1da177e4
LT
1943/*
1944 * deactivate_task - remove a task from the runqueue.
1945 */
2e1cb74a 1946static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1947{
d9514f6c 1948 if (task_contributes_to_load(p))
dd41f596
IM
1949 rq->nr_uninterruptible++;
1950
69be72c1 1951 dequeue_task(rq, p, sleep);
c09595f6 1952 dec_nr_running(rq);
1da177e4
LT
1953}
1954
1da177e4
LT
1955/**
1956 * task_curr - is this task currently executing on a CPU?
1957 * @p: the task in question.
1958 */
36c8b586 1959inline int task_curr(const struct task_struct *p)
1da177e4
LT
1960{
1961 return cpu_curr(task_cpu(p)) == p;
1962}
1963
dd41f596
IM
1964static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1965{
6f505b16 1966 set_task_rq(p, cpu);
dd41f596 1967#ifdef CONFIG_SMP
ce96b5ac
DA
1968 /*
1969 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1970 * successfuly executed on another CPU. We must ensure that updates of
1971 * per-task data have been completed by this moment.
1972 */
1973 smp_wmb();
dd41f596 1974 task_thread_info(p)->cpu = cpu;
dd41f596 1975#endif
2dd73a4f
PW
1976}
1977
cb469845
SR
1978static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1979 const struct sched_class *prev_class,
1980 int oldprio, int running)
1981{
1982 if (prev_class != p->sched_class) {
1983 if (prev_class->switched_from)
1984 prev_class->switched_from(rq, p, running);
1985 p->sched_class->switched_to(rq, p, running);
1986 } else
1987 p->sched_class->prio_changed(rq, p, oldprio, running);
1988}
1989
1da177e4 1990#ifdef CONFIG_SMP
cc367732
IM
1991/*
1992 * Is this task likely cache-hot:
1993 */
e7693a36 1994static int
cc367732
IM
1995task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1996{
1997 s64 delta;
1998
f540a608
IM
1999 /*
2000 * Buddy candidates are cache hot:
2001 */
4793241b
PZ
2002 if (sched_feat(CACHE_HOT_BUDDY) &&
2003 (&p->se == cfs_rq_of(&p->se)->next ||
2004 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2005 return 1;
2006
cc367732
IM
2007 if (p->sched_class != &fair_sched_class)
2008 return 0;
2009
6bc1665b
IM
2010 if (sysctl_sched_migration_cost == -1)
2011 return 1;
2012 if (sysctl_sched_migration_cost == 0)
2013 return 0;
2014
cc367732
IM
2015 delta = now - p->se.exec_start;
2016
2017 return delta < (s64)sysctl_sched_migration_cost;
2018}
2019
2020
dd41f596 2021void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2022{
dd41f596
IM
2023 int old_cpu = task_cpu(p);
2024 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2025 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2026 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2027 u64 clock_offset;
dd41f596
IM
2028
2029 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 2030
de1d7286 2031 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2032
6cfb0d5d
IM
2033#ifdef CONFIG_SCHEDSTATS
2034 if (p->se.wait_start)
2035 p->se.wait_start -= clock_offset;
dd41f596
IM
2036 if (p->se.sleep_start)
2037 p->se.sleep_start -= clock_offset;
2038 if (p->se.block_start)
2039 p->se.block_start -= clock_offset;
6c594c21 2040#endif
cc367732 2041 if (old_cpu != new_cpu) {
6c594c21 2042 p->se.nr_migrations++;
23a185ca 2043 new_rq->nr_migrations_in++;
6c594c21 2044#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2045 if (task_hot(p, old_rq->clock, NULL))
2046 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2047#endif
e5289d4a
PZ
2048 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2049 1, 1, NULL, 0);
6c594c21 2050 }
2830cf8c
SV
2051 p->se.vruntime -= old_cfsrq->min_vruntime -
2052 new_cfsrq->min_vruntime;
dd41f596
IM
2053
2054 __set_task_cpu(p, new_cpu);
c65cc870
IM
2055}
2056
70b97a7f 2057struct migration_req {
1da177e4 2058 struct list_head list;
1da177e4 2059
36c8b586 2060 struct task_struct *task;
1da177e4
LT
2061 int dest_cpu;
2062
1da177e4 2063 struct completion done;
70b97a7f 2064};
1da177e4
LT
2065
2066/*
2067 * The task's runqueue lock must be held.
2068 * Returns true if you have to wait for migration thread.
2069 */
36c8b586 2070static int
70b97a7f 2071migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2072{
70b97a7f 2073 struct rq *rq = task_rq(p);
1da177e4
LT
2074
2075 /*
2076 * If the task is not on a runqueue (and not running), then
2077 * it is sufficient to simply update the task's cpu field.
2078 */
dd41f596 2079 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2080 set_task_cpu(p, dest_cpu);
2081 return 0;
2082 }
2083
2084 init_completion(&req->done);
1da177e4
LT
2085 req->task = p;
2086 req->dest_cpu = dest_cpu;
2087 list_add(&req->list, &rq->migration_queue);
48f24c4d 2088
1da177e4
LT
2089 return 1;
2090}
2091
a26b89f0
MM
2092/*
2093 * wait_task_context_switch - wait for a thread to complete at least one
2094 * context switch.
2095 *
2096 * @p must not be current.
2097 */
2098void wait_task_context_switch(struct task_struct *p)
2099{
2100 unsigned long nvcsw, nivcsw, flags;
2101 int running;
2102 struct rq *rq;
2103
2104 nvcsw = p->nvcsw;
2105 nivcsw = p->nivcsw;
2106 for (;;) {
2107 /*
2108 * The runqueue is assigned before the actual context
2109 * switch. We need to take the runqueue lock.
2110 *
2111 * We could check initially without the lock but it is
2112 * very likely that we need to take the lock in every
2113 * iteration.
2114 */
2115 rq = task_rq_lock(p, &flags);
2116 running = task_running(rq, p);
2117 task_rq_unlock(rq, &flags);
2118
2119 if (likely(!running))
2120 break;
2121 /*
2122 * The switch count is incremented before the actual
2123 * context switch. We thus wait for two switches to be
2124 * sure at least one completed.
2125 */
2126 if ((p->nvcsw - nvcsw) > 1)
2127 break;
2128 if ((p->nivcsw - nivcsw) > 1)
2129 break;
2130
2131 cpu_relax();
2132 }
2133}
2134
1da177e4
LT
2135/*
2136 * wait_task_inactive - wait for a thread to unschedule.
2137 *
85ba2d86
RM
2138 * If @match_state is nonzero, it's the @p->state value just checked and
2139 * not expected to change. If it changes, i.e. @p might have woken up,
2140 * then return zero. When we succeed in waiting for @p to be off its CPU,
2141 * we return a positive number (its total switch count). If a second call
2142 * a short while later returns the same number, the caller can be sure that
2143 * @p has remained unscheduled the whole time.
2144 *
1da177e4
LT
2145 * The caller must ensure that the task *will* unschedule sometime soon,
2146 * else this function might spin for a *long* time. This function can't
2147 * be called with interrupts off, or it may introduce deadlock with
2148 * smp_call_function() if an IPI is sent by the same process we are
2149 * waiting to become inactive.
2150 */
85ba2d86 2151unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2152{
2153 unsigned long flags;
dd41f596 2154 int running, on_rq;
85ba2d86 2155 unsigned long ncsw;
70b97a7f 2156 struct rq *rq;
1da177e4 2157
3a5c359a
AK
2158 for (;;) {
2159 /*
2160 * We do the initial early heuristics without holding
2161 * any task-queue locks at all. We'll only try to get
2162 * the runqueue lock when things look like they will
2163 * work out!
2164 */
2165 rq = task_rq(p);
fa490cfd 2166
3a5c359a
AK
2167 /*
2168 * If the task is actively running on another CPU
2169 * still, just relax and busy-wait without holding
2170 * any locks.
2171 *
2172 * NOTE! Since we don't hold any locks, it's not
2173 * even sure that "rq" stays as the right runqueue!
2174 * But we don't care, since "task_running()" will
2175 * return false if the runqueue has changed and p
2176 * is actually now running somewhere else!
2177 */
85ba2d86
RM
2178 while (task_running(rq, p)) {
2179 if (match_state && unlikely(p->state != match_state))
2180 return 0;
3a5c359a 2181 cpu_relax();
85ba2d86 2182 }
fa490cfd 2183
3a5c359a
AK
2184 /*
2185 * Ok, time to look more closely! We need the rq
2186 * lock now, to be *sure*. If we're wrong, we'll
2187 * just go back and repeat.
2188 */
2189 rq = task_rq_lock(p, &flags);
0a16b607 2190 trace_sched_wait_task(rq, p);
3a5c359a
AK
2191 running = task_running(rq, p);
2192 on_rq = p->se.on_rq;
85ba2d86 2193 ncsw = 0;
f31e11d8 2194 if (!match_state || p->state == match_state)
93dcf55f 2195 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2196 task_rq_unlock(rq, &flags);
fa490cfd 2197
85ba2d86
RM
2198 /*
2199 * If it changed from the expected state, bail out now.
2200 */
2201 if (unlikely(!ncsw))
2202 break;
2203
3a5c359a
AK
2204 /*
2205 * Was it really running after all now that we
2206 * checked with the proper locks actually held?
2207 *
2208 * Oops. Go back and try again..
2209 */
2210 if (unlikely(running)) {
2211 cpu_relax();
2212 continue;
2213 }
fa490cfd 2214
3a5c359a
AK
2215 /*
2216 * It's not enough that it's not actively running,
2217 * it must be off the runqueue _entirely_, and not
2218 * preempted!
2219 *
80dd99b3 2220 * So if it was still runnable (but just not actively
3a5c359a
AK
2221 * running right now), it's preempted, and we should
2222 * yield - it could be a while.
2223 */
2224 if (unlikely(on_rq)) {
2225 schedule_timeout_uninterruptible(1);
2226 continue;
2227 }
fa490cfd 2228
3a5c359a
AK
2229 /*
2230 * Ahh, all good. It wasn't running, and it wasn't
2231 * runnable, which means that it will never become
2232 * running in the future either. We're all done!
2233 */
2234 break;
2235 }
85ba2d86
RM
2236
2237 return ncsw;
1da177e4
LT
2238}
2239
2240/***
2241 * kick_process - kick a running thread to enter/exit the kernel
2242 * @p: the to-be-kicked thread
2243 *
2244 * Cause a process which is running on another CPU to enter
2245 * kernel-mode, without any delay. (to get signals handled.)
2246 *
2247 * NOTE: this function doesnt have to take the runqueue lock,
2248 * because all it wants to ensure is that the remote task enters
2249 * the kernel. If the IPI races and the task has been migrated
2250 * to another CPU then no harm is done and the purpose has been
2251 * achieved as well.
2252 */
36c8b586 2253void kick_process(struct task_struct *p)
1da177e4
LT
2254{
2255 int cpu;
2256
2257 preempt_disable();
2258 cpu = task_cpu(p);
2259 if ((cpu != smp_processor_id()) && task_curr(p))
2260 smp_send_reschedule(cpu);
2261 preempt_enable();
2262}
b43e3521 2263EXPORT_SYMBOL_GPL(kick_process);
476d139c 2264#endif /* CONFIG_SMP */
1da177e4 2265
0793a61d
TG
2266/**
2267 * task_oncpu_function_call - call a function on the cpu on which a task runs
2268 * @p: the task to evaluate
2269 * @func: the function to be called
2270 * @info: the function call argument
2271 *
2272 * Calls the function @func when the task is currently running. This might
2273 * be on the current CPU, which just calls the function directly
2274 */
2275void task_oncpu_function_call(struct task_struct *p,
2276 void (*func) (void *info), void *info)
2277{
2278 int cpu;
2279
2280 preempt_disable();
2281 cpu = task_cpu(p);
2282 if (task_curr(p))
2283 smp_call_function_single(cpu, func, info, 1);
2284 preempt_enable();
2285}
2286
1da177e4
LT
2287/***
2288 * try_to_wake_up - wake up a thread
2289 * @p: the to-be-woken-up thread
2290 * @state: the mask of task states that can be woken
2291 * @sync: do a synchronous wakeup?
2292 *
2293 * Put it on the run-queue if it's not already there. The "current"
2294 * thread is always on the run-queue (except when the actual
2295 * re-schedule is in progress), and as such you're allowed to do
2296 * the simpler "current->state = TASK_RUNNING" to mark yourself
2297 * runnable without the overhead of this.
2298 *
2299 * returns failure only if the task is already active.
2300 */
36c8b586 2301static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2302{
cc367732 2303 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2304 unsigned long flags;
70b97a7f 2305 struct rq *rq;
1da177e4 2306
b85d0667
IM
2307 if (!sched_feat(SYNC_WAKEUPS))
2308 sync = 0;
2309
e9c84311
PZ
2310 this_cpu = get_cpu();
2311
04e2f174 2312 smp_wmb();
1da177e4 2313 rq = task_rq_lock(p, &flags);
03e89e45 2314 update_rq_clock(rq);
e9c84311 2315 if (!(p->state & state))
1da177e4
LT
2316 goto out;
2317
dd41f596 2318 if (p->se.on_rq)
1da177e4
LT
2319 goto out_running;
2320
2321 cpu = task_cpu(p);
cc367732 2322 orig_cpu = cpu;
1da177e4
LT
2323
2324#ifdef CONFIG_SMP
2325 if (unlikely(task_running(rq, p)))
2326 goto out_activate;
2327
e9c84311
PZ
2328 /*
2329 * In order to handle concurrent wakeups and release the rq->lock
2330 * we put the task in TASK_WAKING state.
2331 */
2332 p->state = TASK_WAKING;
2333 task_rq_unlock(rq, &flags);
2334
5f3edc1b 2335 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, sync);
e9c84311 2336 if (cpu != orig_cpu)
5d2f5a61 2337 set_task_cpu(p, cpu);
1da177e4 2338
e9c84311
PZ
2339 rq = task_rq_lock(p, &flags);
2340 WARN_ON(p->state != TASK_WAKING);
2341 cpu = task_cpu(p);
1da177e4 2342
e7693a36
GH
2343#ifdef CONFIG_SCHEDSTATS
2344 schedstat_inc(rq, ttwu_count);
2345 if (cpu == this_cpu)
2346 schedstat_inc(rq, ttwu_local);
2347 else {
2348 struct sched_domain *sd;
2349 for_each_domain(this_cpu, sd) {
758b2cdc 2350 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2351 schedstat_inc(sd, ttwu_wake_remote);
2352 break;
2353 }
2354 }
2355 }
6d6bc0ad 2356#endif /* CONFIG_SCHEDSTATS */
e7693a36 2357
1da177e4
LT
2358out_activate:
2359#endif /* CONFIG_SMP */
cc367732
IM
2360 schedstat_inc(p, se.nr_wakeups);
2361 if (sync)
2362 schedstat_inc(p, se.nr_wakeups_sync);
2363 if (orig_cpu != cpu)
2364 schedstat_inc(p, se.nr_wakeups_migrate);
2365 if (cpu == this_cpu)
2366 schedstat_inc(p, se.nr_wakeups_local);
2367 else
2368 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2369 activate_task(rq, p, 1);
1da177e4
LT
2370 success = 1;
2371
831451ac
PZ
2372 /*
2373 * Only attribute actual wakeups done by this task.
2374 */
2375 if (!in_interrupt()) {
2376 struct sched_entity *se = &current->se;
2377 u64 sample = se->sum_exec_runtime;
2378
2379 if (se->last_wakeup)
2380 sample -= se->last_wakeup;
2381 else
2382 sample -= se->start_runtime;
2383 update_avg(&se->avg_wakeup, sample);
2384
2385 se->last_wakeup = se->sum_exec_runtime;
2386 }
2387
1da177e4 2388out_running:
468a15bb 2389 trace_sched_wakeup(rq, p, success);
15afe09b 2390 check_preempt_curr(rq, p, sync);
4ae7d5ce 2391
1da177e4 2392 p->state = TASK_RUNNING;
9a897c5a
SR
2393#ifdef CONFIG_SMP
2394 if (p->sched_class->task_wake_up)
2395 p->sched_class->task_wake_up(rq, p);
2396#endif
1da177e4
LT
2397out:
2398 task_rq_unlock(rq, &flags);
e9c84311 2399 put_cpu();
1da177e4
LT
2400
2401 return success;
2402}
2403
50fa610a
DH
2404/**
2405 * wake_up_process - Wake up a specific process
2406 * @p: The process to be woken up.
2407 *
2408 * Attempt to wake up the nominated process and move it to the set of runnable
2409 * processes. Returns 1 if the process was woken up, 0 if it was already
2410 * running.
2411 *
2412 * It may be assumed that this function implies a write memory barrier before
2413 * changing the task state if and only if any tasks are woken up.
2414 */
7ad5b3a5 2415int wake_up_process(struct task_struct *p)
1da177e4 2416{
d9514f6c 2417 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2418}
1da177e4
LT
2419EXPORT_SYMBOL(wake_up_process);
2420
7ad5b3a5 2421int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2422{
2423 return try_to_wake_up(p, state, 0);
2424}
2425
1da177e4
LT
2426/*
2427 * Perform scheduler related setup for a newly forked process p.
2428 * p is forked by current.
dd41f596
IM
2429 *
2430 * __sched_fork() is basic setup used by init_idle() too:
2431 */
2432static void __sched_fork(struct task_struct *p)
2433{
dd41f596
IM
2434 p->se.exec_start = 0;
2435 p->se.sum_exec_runtime = 0;
f6cf891c 2436 p->se.prev_sum_exec_runtime = 0;
6c594c21 2437 p->se.nr_migrations = 0;
4ae7d5ce
IM
2438 p->se.last_wakeup = 0;
2439 p->se.avg_overlap = 0;
831451ac
PZ
2440 p->se.start_runtime = 0;
2441 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2442
2443#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2444 p->se.wait_start = 0;
2445 p->se.wait_max = 0;
2446 p->se.wait_count = 0;
2447 p->se.wait_sum = 0;
2448
2449 p->se.sleep_start = 0;
2450 p->se.sleep_max = 0;
2451 p->se.sum_sleep_runtime = 0;
2452
2453 p->se.block_start = 0;
2454 p->se.block_max = 0;
2455 p->se.exec_max = 0;
2456 p->se.slice_max = 0;
2457
2458 p->se.nr_migrations_cold = 0;
2459 p->se.nr_failed_migrations_affine = 0;
2460 p->se.nr_failed_migrations_running = 0;
2461 p->se.nr_failed_migrations_hot = 0;
2462 p->se.nr_forced_migrations = 0;
2463 p->se.nr_forced2_migrations = 0;
2464
2465 p->se.nr_wakeups = 0;
2466 p->se.nr_wakeups_sync = 0;
2467 p->se.nr_wakeups_migrate = 0;
2468 p->se.nr_wakeups_local = 0;
2469 p->se.nr_wakeups_remote = 0;
2470 p->se.nr_wakeups_affine = 0;
2471 p->se.nr_wakeups_affine_attempts = 0;
2472 p->se.nr_wakeups_passive = 0;
2473 p->se.nr_wakeups_idle = 0;
2474
6cfb0d5d 2475#endif
476d139c 2476
fa717060 2477 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2478 p->se.on_rq = 0;
4a55bd5e 2479 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2480
e107be36
AK
2481#ifdef CONFIG_PREEMPT_NOTIFIERS
2482 INIT_HLIST_HEAD(&p->preempt_notifiers);
2483#endif
2484
1da177e4
LT
2485 /*
2486 * We mark the process as running here, but have not actually
2487 * inserted it onto the runqueue yet. This guarantees that
2488 * nobody will actually run it, and a signal or other external
2489 * event cannot wake it up and insert it on the runqueue either.
2490 */
2491 p->state = TASK_RUNNING;
dd41f596
IM
2492}
2493
2494/*
2495 * fork()/clone()-time setup:
2496 */
2497void sched_fork(struct task_struct *p, int clone_flags)
2498{
2499 int cpu = get_cpu();
2500
2501 __sched_fork(p);
2502
b29739f9 2503 /*
b9dc29e7 2504 * Make sure we do not leak PI boosting priority to the child.
b29739f9
IM
2505 */
2506 p->prio = current->normal_prio;
ca94c442 2507
b9dc29e7
MG
2508 /*
2509 * Revert to default priority/policy on fork if requested.
2510 */
2511 if (unlikely(p->sched_reset_on_fork)) {
2512 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2513 p->policy = SCHED_NORMAL;
2514
2515 if (p->normal_prio < DEFAULT_PRIO)
2516 p->prio = DEFAULT_PRIO;
2517
6c697bdf
MG
2518 if (PRIO_TO_NICE(p->static_prio) < 0) {
2519 p->static_prio = NICE_TO_PRIO(0);
2520 set_load_weight(p);
2521 }
2522
b9dc29e7
MG
2523 /*
2524 * We don't need the reset flag anymore after the fork. It has
2525 * fulfilled its duty:
2526 */
2527 p->sched_reset_on_fork = 0;
2528 }
ca94c442 2529
2ddbf952
HS
2530 if (!rt_prio(p->prio))
2531 p->sched_class = &fair_sched_class;
b29739f9 2532
5f3edc1b
PZ
2533#ifdef CONFIG_SMP
2534 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2535#endif
2536 set_task_cpu(p, cpu);
2537
52f17b6c 2538#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2539 if (likely(sched_info_on()))
52f17b6c 2540 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2541#endif
d6077cb8 2542#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2543 p->oncpu = 0;
2544#endif
1da177e4 2545#ifdef CONFIG_PREEMPT
4866cde0 2546 /* Want to start with kernel preemption disabled. */
a1261f54 2547 task_thread_info(p)->preempt_count = 1;
1da177e4 2548#endif
917b627d
GH
2549 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2550
476d139c 2551 put_cpu();
1da177e4
LT
2552}
2553
2554/*
2555 * wake_up_new_task - wake up a newly created task for the first time.
2556 *
2557 * This function will do some initial scheduler statistics housekeeping
2558 * that must be done for every newly created context, then puts the task
2559 * on the runqueue and wakes it.
2560 */
7ad5b3a5 2561void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2562{
2563 unsigned long flags;
dd41f596 2564 struct rq *rq;
1da177e4
LT
2565
2566 rq = task_rq_lock(p, &flags);
147cbb4b 2567 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2568 update_rq_clock(rq);
1da177e4
LT
2569
2570 p->prio = effective_prio(p);
2571
b9dca1e0 2572 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2573 activate_task(rq, p, 0);
1da177e4 2574 } else {
1da177e4 2575 /*
dd41f596
IM
2576 * Let the scheduling class do new task startup
2577 * management (if any):
1da177e4 2578 */
ee0827d8 2579 p->sched_class->task_new(rq, p);
c09595f6 2580 inc_nr_running(rq);
1da177e4 2581 }
c71dd42d 2582 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2583 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2584#ifdef CONFIG_SMP
2585 if (p->sched_class->task_wake_up)
2586 p->sched_class->task_wake_up(rq, p);
2587#endif
dd41f596 2588 task_rq_unlock(rq, &flags);
1da177e4
LT
2589}
2590
e107be36
AK
2591#ifdef CONFIG_PREEMPT_NOTIFIERS
2592
2593/**
80dd99b3 2594 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2595 * @notifier: notifier struct to register
e107be36
AK
2596 */
2597void preempt_notifier_register(struct preempt_notifier *notifier)
2598{
2599 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2600}
2601EXPORT_SYMBOL_GPL(preempt_notifier_register);
2602
2603/**
2604 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2605 * @notifier: notifier struct to unregister
e107be36
AK
2606 *
2607 * This is safe to call from within a preemption notifier.
2608 */
2609void preempt_notifier_unregister(struct preempt_notifier *notifier)
2610{
2611 hlist_del(&notifier->link);
2612}
2613EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2614
2615static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2616{
2617 struct preempt_notifier *notifier;
2618 struct hlist_node *node;
2619
2620 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2621 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2622}
2623
2624static void
2625fire_sched_out_preempt_notifiers(struct task_struct *curr,
2626 struct task_struct *next)
2627{
2628 struct preempt_notifier *notifier;
2629 struct hlist_node *node;
2630
2631 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2632 notifier->ops->sched_out(notifier, next);
2633}
2634
6d6bc0ad 2635#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2636
2637static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2638{
2639}
2640
2641static void
2642fire_sched_out_preempt_notifiers(struct task_struct *curr,
2643 struct task_struct *next)
2644{
2645}
2646
6d6bc0ad 2647#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2648
4866cde0
NP
2649/**
2650 * prepare_task_switch - prepare to switch tasks
2651 * @rq: the runqueue preparing to switch
421cee29 2652 * @prev: the current task that is being switched out
4866cde0
NP
2653 * @next: the task we are going to switch to.
2654 *
2655 * This is called with the rq lock held and interrupts off. It must
2656 * be paired with a subsequent finish_task_switch after the context
2657 * switch.
2658 *
2659 * prepare_task_switch sets up locking and calls architecture specific
2660 * hooks.
2661 */
e107be36
AK
2662static inline void
2663prepare_task_switch(struct rq *rq, struct task_struct *prev,
2664 struct task_struct *next)
4866cde0 2665{
e107be36 2666 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2667 prepare_lock_switch(rq, next);
2668 prepare_arch_switch(next);
2669}
2670
1da177e4
LT
2671/**
2672 * finish_task_switch - clean up after a task-switch
344babaa 2673 * @rq: runqueue associated with task-switch
1da177e4
LT
2674 * @prev: the thread we just switched away from.
2675 *
4866cde0
NP
2676 * finish_task_switch must be called after the context switch, paired
2677 * with a prepare_task_switch call before the context switch.
2678 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2679 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2680 *
2681 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2682 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2683 * with the lock held can cause deadlocks; see schedule() for
2684 * details.)
2685 */
a9957449 2686static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2687 __releases(rq->lock)
2688{
1da177e4 2689 struct mm_struct *mm = rq->prev_mm;
55a101f8 2690 long prev_state;
1da177e4
LT
2691
2692 rq->prev_mm = NULL;
2693
2694 /*
2695 * A task struct has one reference for the use as "current".
c394cc9f 2696 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2697 * schedule one last time. The schedule call will never return, and
2698 * the scheduled task must drop that reference.
c394cc9f 2699 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2700 * still held, otherwise prev could be scheduled on another cpu, die
2701 * there before we look at prev->state, and then the reference would
2702 * be dropped twice.
2703 * Manfred Spraul <manfred@colorfullife.com>
2704 */
55a101f8 2705 prev_state = prev->state;
4866cde0 2706 finish_arch_switch(prev);
0793a61d 2707 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2708 finish_lock_switch(rq, prev);
e8fa1362 2709
e107be36 2710 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2711 if (mm)
2712 mmdrop(mm);
c394cc9f 2713 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2714 /*
2715 * Remove function-return probe instances associated with this
2716 * task and put them back on the free list.
9761eea8 2717 */
c6fd91f0 2718 kprobe_flush_task(prev);
1da177e4 2719 put_task_struct(prev);
c6fd91f0 2720 }
1da177e4
LT
2721}
2722
3f029d3c
GH
2723#ifdef CONFIG_SMP
2724
2725/* assumes rq->lock is held */
2726static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2727{
2728 if (prev->sched_class->pre_schedule)
2729 prev->sched_class->pre_schedule(rq, prev);
2730}
2731
2732/* rq->lock is NOT held, but preemption is disabled */
2733static inline void post_schedule(struct rq *rq)
2734{
2735 if (rq->post_schedule) {
2736 unsigned long flags;
2737
2738 spin_lock_irqsave(&rq->lock, flags);
2739 if (rq->curr->sched_class->post_schedule)
2740 rq->curr->sched_class->post_schedule(rq);
2741 spin_unlock_irqrestore(&rq->lock, flags);
2742
2743 rq->post_schedule = 0;
2744 }
2745}
2746
2747#else
da19ab51 2748
3f029d3c
GH
2749static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2750{
2751}
2752
2753static inline void post_schedule(struct rq *rq)
2754{
1da177e4
LT
2755}
2756
3f029d3c
GH
2757#endif
2758
1da177e4
LT
2759/**
2760 * schedule_tail - first thing a freshly forked thread must call.
2761 * @prev: the thread we just switched away from.
2762 */
36c8b586 2763asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2764 __releases(rq->lock)
2765{
70b97a7f
IM
2766 struct rq *rq = this_rq();
2767
4866cde0 2768 finish_task_switch(rq, prev);
da19ab51 2769
3f029d3c
GH
2770 /*
2771 * FIXME: do we need to worry about rq being invalidated by the
2772 * task_switch?
2773 */
2774 post_schedule(rq);
70b97a7f 2775
4866cde0
NP
2776#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2777 /* In this case, finish_task_switch does not reenable preemption */
2778 preempt_enable();
2779#endif
1da177e4 2780 if (current->set_child_tid)
b488893a 2781 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2782}
2783
2784/*
2785 * context_switch - switch to the new MM and the new
2786 * thread's register state.
2787 */
dd41f596 2788static inline void
70b97a7f 2789context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2790 struct task_struct *next)
1da177e4 2791{
dd41f596 2792 struct mm_struct *mm, *oldmm;
1da177e4 2793
e107be36 2794 prepare_task_switch(rq, prev, next);
0a16b607 2795 trace_sched_switch(rq, prev, next);
dd41f596
IM
2796 mm = next->mm;
2797 oldmm = prev->active_mm;
9226d125
ZA
2798 /*
2799 * For paravirt, this is coupled with an exit in switch_to to
2800 * combine the page table reload and the switch backend into
2801 * one hypercall.
2802 */
224101ed 2803 arch_start_context_switch(prev);
9226d125 2804
dd41f596 2805 if (unlikely(!mm)) {
1da177e4
LT
2806 next->active_mm = oldmm;
2807 atomic_inc(&oldmm->mm_count);
2808 enter_lazy_tlb(oldmm, next);
2809 } else
2810 switch_mm(oldmm, mm, next);
2811
dd41f596 2812 if (unlikely(!prev->mm)) {
1da177e4 2813 prev->active_mm = NULL;
1da177e4
LT
2814 rq->prev_mm = oldmm;
2815 }
3a5f5e48
IM
2816 /*
2817 * Since the runqueue lock will be released by the next
2818 * task (which is an invalid locking op but in the case
2819 * of the scheduler it's an obvious special-case), so we
2820 * do an early lockdep release here:
2821 */
2822#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2823 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2824#endif
1da177e4
LT
2825
2826 /* Here we just switch the register state and the stack. */
2827 switch_to(prev, next, prev);
2828
dd41f596
IM
2829 barrier();
2830 /*
2831 * this_rq must be evaluated again because prev may have moved
2832 * CPUs since it called schedule(), thus the 'rq' on its stack
2833 * frame will be invalid.
2834 */
2835 finish_task_switch(this_rq(), prev);
1da177e4
LT
2836}
2837
2838/*
2839 * nr_running, nr_uninterruptible and nr_context_switches:
2840 *
2841 * externally visible scheduler statistics: current number of runnable
2842 * threads, current number of uninterruptible-sleeping threads, total
2843 * number of context switches performed since bootup.
2844 */
2845unsigned long nr_running(void)
2846{
2847 unsigned long i, sum = 0;
2848
2849 for_each_online_cpu(i)
2850 sum += cpu_rq(i)->nr_running;
2851
2852 return sum;
2853}
2854
2855unsigned long nr_uninterruptible(void)
2856{
2857 unsigned long i, sum = 0;
2858
0a945022 2859 for_each_possible_cpu(i)
1da177e4
LT
2860 sum += cpu_rq(i)->nr_uninterruptible;
2861
2862 /*
2863 * Since we read the counters lockless, it might be slightly
2864 * inaccurate. Do not allow it to go below zero though:
2865 */
2866 if (unlikely((long)sum < 0))
2867 sum = 0;
2868
2869 return sum;
2870}
2871
2872unsigned long long nr_context_switches(void)
2873{
cc94abfc
SR
2874 int i;
2875 unsigned long long sum = 0;
1da177e4 2876
0a945022 2877 for_each_possible_cpu(i)
1da177e4
LT
2878 sum += cpu_rq(i)->nr_switches;
2879
2880 return sum;
2881}
2882
2883unsigned long nr_iowait(void)
2884{
2885 unsigned long i, sum = 0;
2886
0a945022 2887 for_each_possible_cpu(i)
1da177e4
LT
2888 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2889
2890 return sum;
2891}
2892
dce48a84
TG
2893/* Variables and functions for calc_load */
2894static atomic_long_t calc_load_tasks;
2895static unsigned long calc_load_update;
2896unsigned long avenrun[3];
2897EXPORT_SYMBOL(avenrun);
2898
2d02494f
TG
2899/**
2900 * get_avenrun - get the load average array
2901 * @loads: pointer to dest load array
2902 * @offset: offset to add
2903 * @shift: shift count to shift the result left
2904 *
2905 * These values are estimates at best, so no need for locking.
2906 */
2907void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2908{
2909 loads[0] = (avenrun[0] + offset) << shift;
2910 loads[1] = (avenrun[1] + offset) << shift;
2911 loads[2] = (avenrun[2] + offset) << shift;
2912}
2913
dce48a84
TG
2914static unsigned long
2915calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2916{
dce48a84
TG
2917 load *= exp;
2918 load += active * (FIXED_1 - exp);
2919 return load >> FSHIFT;
2920}
db1b1fef 2921
dce48a84
TG
2922/*
2923 * calc_load - update the avenrun load estimates 10 ticks after the
2924 * CPUs have updated calc_load_tasks.
2925 */
2926void calc_global_load(void)
2927{
2928 unsigned long upd = calc_load_update + 10;
2929 long active;
2930
2931 if (time_before(jiffies, upd))
2932 return;
db1b1fef 2933
dce48a84
TG
2934 active = atomic_long_read(&calc_load_tasks);
2935 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2936
dce48a84
TG
2937 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2938 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2939 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2940
2941 calc_load_update += LOAD_FREQ;
2942}
2943
2944/*
2945 * Either called from update_cpu_load() or from a cpu going idle
2946 */
2947static void calc_load_account_active(struct rq *this_rq)
2948{
2949 long nr_active, delta;
2950
2951 nr_active = this_rq->nr_running;
2952 nr_active += (long) this_rq->nr_uninterruptible;
2953
2954 if (nr_active != this_rq->calc_load_active) {
2955 delta = nr_active - this_rq->calc_load_active;
2956 this_rq->calc_load_active = nr_active;
2957 atomic_long_add(delta, &calc_load_tasks);
2958 }
db1b1fef
JS
2959}
2960
23a185ca
PM
2961/*
2962 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
2963 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2964 */
23a185ca
PM
2965u64 cpu_nr_migrations(int cpu)
2966{
2967 return cpu_rq(cpu)->nr_migrations_in;
2968}
2969
48f24c4d 2970/*
dd41f596
IM
2971 * Update rq->cpu_load[] statistics. This function is usually called every
2972 * scheduler tick (TICK_NSEC).
48f24c4d 2973 */
dd41f596 2974static void update_cpu_load(struct rq *this_rq)
48f24c4d 2975{
495eca49 2976 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2977 int i, scale;
2978
2979 this_rq->nr_load_updates++;
dd41f596
IM
2980
2981 /* Update our load: */
2982 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2983 unsigned long old_load, new_load;
2984
2985 /* scale is effectively 1 << i now, and >> i divides by scale */
2986
2987 old_load = this_rq->cpu_load[i];
2988 new_load = this_load;
a25707f3
IM
2989 /*
2990 * Round up the averaging division if load is increasing. This
2991 * prevents us from getting stuck on 9 if the load is 10, for
2992 * example.
2993 */
2994 if (new_load > old_load)
2995 new_load += scale-1;
dd41f596
IM
2996 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2997 }
dce48a84
TG
2998
2999 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3000 this_rq->calc_load_update += LOAD_FREQ;
3001 calc_load_account_active(this_rq);
3002 }
48f24c4d
IM
3003}
3004
dd41f596
IM
3005#ifdef CONFIG_SMP
3006
1da177e4
LT
3007/*
3008 * double_rq_lock - safely lock two runqueues
3009 *
3010 * Note this does not disable interrupts like task_rq_lock,
3011 * you need to do so manually before calling.
3012 */
70b97a7f 3013static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3014 __acquires(rq1->lock)
3015 __acquires(rq2->lock)
3016{
054b9108 3017 BUG_ON(!irqs_disabled());
1da177e4
LT
3018 if (rq1 == rq2) {
3019 spin_lock(&rq1->lock);
3020 __acquire(rq2->lock); /* Fake it out ;) */
3021 } else {
c96d145e 3022 if (rq1 < rq2) {
1da177e4 3023 spin_lock(&rq1->lock);
5e710e37 3024 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3025 } else {
3026 spin_lock(&rq2->lock);
5e710e37 3027 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3028 }
3029 }
6e82a3be
IM
3030 update_rq_clock(rq1);
3031 update_rq_clock(rq2);
1da177e4
LT
3032}
3033
3034/*
3035 * double_rq_unlock - safely unlock two runqueues
3036 *
3037 * Note this does not restore interrupts like task_rq_unlock,
3038 * you need to do so manually after calling.
3039 */
70b97a7f 3040static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3041 __releases(rq1->lock)
3042 __releases(rq2->lock)
3043{
3044 spin_unlock(&rq1->lock);
3045 if (rq1 != rq2)
3046 spin_unlock(&rq2->lock);
3047 else
3048 __release(rq2->lock);
3049}
3050
1da177e4
LT
3051/*
3052 * If dest_cpu is allowed for this process, migrate the task to it.
3053 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3054 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3055 * the cpu_allowed mask is restored.
3056 */
36c8b586 3057static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3058{
70b97a7f 3059 struct migration_req req;
1da177e4 3060 unsigned long flags;
70b97a7f 3061 struct rq *rq;
1da177e4
LT
3062
3063 rq = task_rq_lock(p, &flags);
96f874e2 3064 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3065 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3066 goto out;
3067
3068 /* force the process onto the specified CPU */
3069 if (migrate_task(p, dest_cpu, &req)) {
3070 /* Need to wait for migration thread (might exit: take ref). */
3071 struct task_struct *mt = rq->migration_thread;
36c8b586 3072
1da177e4
LT
3073 get_task_struct(mt);
3074 task_rq_unlock(rq, &flags);
3075 wake_up_process(mt);
3076 put_task_struct(mt);
3077 wait_for_completion(&req.done);
36c8b586 3078
1da177e4
LT
3079 return;
3080 }
3081out:
3082 task_rq_unlock(rq, &flags);
3083}
3084
3085/*
476d139c
NP
3086 * sched_exec - execve() is a valuable balancing opportunity, because at
3087 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3088 */
3089void sched_exec(void)
3090{
1da177e4 3091 int new_cpu, this_cpu = get_cpu();
5f3edc1b 3092 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3093 put_cpu();
476d139c
NP
3094 if (new_cpu != this_cpu)
3095 sched_migrate_task(current, new_cpu);
1da177e4
LT
3096}
3097
3098/*
3099 * pull_task - move a task from a remote runqueue to the local runqueue.
3100 * Both runqueues must be locked.
3101 */
dd41f596
IM
3102static void pull_task(struct rq *src_rq, struct task_struct *p,
3103 struct rq *this_rq, int this_cpu)
1da177e4 3104{
2e1cb74a 3105 deactivate_task(src_rq, p, 0);
1da177e4 3106 set_task_cpu(p, this_cpu);
dd41f596 3107 activate_task(this_rq, p, 0);
1da177e4
LT
3108 /*
3109 * Note that idle threads have a prio of MAX_PRIO, for this test
3110 * to be always true for them.
3111 */
15afe09b 3112 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3113}
3114
3115/*
3116 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3117 */
858119e1 3118static
70b97a7f 3119int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3120 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3121 int *all_pinned)
1da177e4 3122{
708dc512 3123 int tsk_cache_hot = 0;
1da177e4
LT
3124 /*
3125 * We do not migrate tasks that are:
3126 * 1) running (obviously), or
3127 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3128 * 3) are cache-hot on their current CPU.
3129 */
96f874e2 3130 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3131 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3132 return 0;
cc367732 3133 }
81026794
NP
3134 *all_pinned = 0;
3135
cc367732
IM
3136 if (task_running(rq, p)) {
3137 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3138 return 0;
cc367732 3139 }
1da177e4 3140
da84d961
IM
3141 /*
3142 * Aggressive migration if:
3143 * 1) task is cache cold, or
3144 * 2) too many balance attempts have failed.
3145 */
3146
708dc512
LH
3147 tsk_cache_hot = task_hot(p, rq->clock, sd);
3148 if (!tsk_cache_hot ||
3149 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3150#ifdef CONFIG_SCHEDSTATS
708dc512 3151 if (tsk_cache_hot) {
da84d961 3152 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3153 schedstat_inc(p, se.nr_forced_migrations);
3154 }
da84d961
IM
3155#endif
3156 return 1;
3157 }
3158
708dc512 3159 if (tsk_cache_hot) {
cc367732 3160 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3161 return 0;
cc367732 3162 }
1da177e4
LT
3163 return 1;
3164}
3165
e1d1484f
PW
3166static unsigned long
3167balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3168 unsigned long max_load_move, struct sched_domain *sd,
3169 enum cpu_idle_type idle, int *all_pinned,
3170 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3171{
051c6764 3172 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3173 struct task_struct *p;
3174 long rem_load_move = max_load_move;
1da177e4 3175
e1d1484f 3176 if (max_load_move == 0)
1da177e4
LT
3177 goto out;
3178
81026794
NP
3179 pinned = 1;
3180
1da177e4 3181 /*
dd41f596 3182 * Start the load-balancing iterator:
1da177e4 3183 */
dd41f596
IM
3184 p = iterator->start(iterator->arg);
3185next:
b82d9fdd 3186 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3187 goto out;
051c6764
PZ
3188
3189 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3190 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3191 p = iterator->next(iterator->arg);
3192 goto next;
1da177e4
LT
3193 }
3194
dd41f596 3195 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3196 pulled++;
dd41f596 3197 rem_load_move -= p->se.load.weight;
1da177e4 3198
7e96fa58
GH
3199#ifdef CONFIG_PREEMPT
3200 /*
3201 * NEWIDLE balancing is a source of latency, so preemptible kernels
3202 * will stop after the first task is pulled to minimize the critical
3203 * section.
3204 */
3205 if (idle == CPU_NEWLY_IDLE)
3206 goto out;
3207#endif
3208
2dd73a4f 3209 /*
b82d9fdd 3210 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3211 */
e1d1484f 3212 if (rem_load_move > 0) {
a4ac01c3
PW
3213 if (p->prio < *this_best_prio)
3214 *this_best_prio = p->prio;
dd41f596
IM
3215 p = iterator->next(iterator->arg);
3216 goto next;
1da177e4
LT
3217 }
3218out:
3219 /*
e1d1484f 3220 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3221 * so we can safely collect pull_task() stats here rather than
3222 * inside pull_task().
3223 */
3224 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3225
3226 if (all_pinned)
3227 *all_pinned = pinned;
e1d1484f
PW
3228
3229 return max_load_move - rem_load_move;
1da177e4
LT
3230}
3231
dd41f596 3232/*
43010659
PW
3233 * move_tasks tries to move up to max_load_move weighted load from busiest to
3234 * this_rq, as part of a balancing operation within domain "sd".
3235 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3236 *
3237 * Called with both runqueues locked.
3238 */
3239static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3240 unsigned long max_load_move,
dd41f596
IM
3241 struct sched_domain *sd, enum cpu_idle_type idle,
3242 int *all_pinned)
3243{
5522d5d5 3244 const struct sched_class *class = sched_class_highest;
43010659 3245 unsigned long total_load_moved = 0;
a4ac01c3 3246 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3247
3248 do {
43010659
PW
3249 total_load_moved +=
3250 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3251 max_load_move - total_load_moved,
a4ac01c3 3252 sd, idle, all_pinned, &this_best_prio);
dd41f596 3253 class = class->next;
c4acb2c0 3254
7e96fa58
GH
3255#ifdef CONFIG_PREEMPT
3256 /*
3257 * NEWIDLE balancing is a source of latency, so preemptible
3258 * kernels will stop after the first task is pulled to minimize
3259 * the critical section.
3260 */
c4acb2c0
GH
3261 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3262 break;
7e96fa58 3263#endif
43010659 3264 } while (class && max_load_move > total_load_moved);
dd41f596 3265
43010659
PW
3266 return total_load_moved > 0;
3267}
3268
e1d1484f
PW
3269static int
3270iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3271 struct sched_domain *sd, enum cpu_idle_type idle,
3272 struct rq_iterator *iterator)
3273{
3274 struct task_struct *p = iterator->start(iterator->arg);
3275 int pinned = 0;
3276
3277 while (p) {
3278 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3279 pull_task(busiest, p, this_rq, this_cpu);
3280 /*
3281 * Right now, this is only the second place pull_task()
3282 * is called, so we can safely collect pull_task()
3283 * stats here rather than inside pull_task().
3284 */
3285 schedstat_inc(sd, lb_gained[idle]);
3286
3287 return 1;
3288 }
3289 p = iterator->next(iterator->arg);
3290 }
3291
3292 return 0;
3293}
3294
43010659
PW
3295/*
3296 * move_one_task tries to move exactly one task from busiest to this_rq, as
3297 * part of active balancing operations within "domain".
3298 * Returns 1 if successful and 0 otherwise.
3299 *
3300 * Called with both runqueues locked.
3301 */
3302static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3303 struct sched_domain *sd, enum cpu_idle_type idle)
3304{
5522d5d5 3305 const struct sched_class *class;
43010659 3306
cde7e5ca 3307 for_each_class(class) {
e1d1484f 3308 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3309 return 1;
cde7e5ca 3310 }
43010659
PW
3311
3312 return 0;
dd41f596 3313}
67bb6c03 3314/********** Helpers for find_busiest_group ************************/
1da177e4 3315/*
222d656d
GS
3316 * sd_lb_stats - Structure to store the statistics of a sched_domain
3317 * during load balancing.
1da177e4 3318 */
222d656d
GS
3319struct sd_lb_stats {
3320 struct sched_group *busiest; /* Busiest group in this sd */
3321 struct sched_group *this; /* Local group in this sd */
3322 unsigned long total_load; /* Total load of all groups in sd */
3323 unsigned long total_pwr; /* Total power of all groups in sd */
3324 unsigned long avg_load; /* Average load across all groups in sd */
3325
3326 /** Statistics of this group */
3327 unsigned long this_load;
3328 unsigned long this_load_per_task;
3329 unsigned long this_nr_running;
3330
3331 /* Statistics of the busiest group */
3332 unsigned long max_load;
3333 unsigned long busiest_load_per_task;
3334 unsigned long busiest_nr_running;
3335
3336 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3337#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3338 int power_savings_balance; /* Is powersave balance needed for this sd */
3339 struct sched_group *group_min; /* Least loaded group in sd */
3340 struct sched_group *group_leader; /* Group which relieves group_min */
3341 unsigned long min_load_per_task; /* load_per_task in group_min */
3342 unsigned long leader_nr_running; /* Nr running of group_leader */
3343 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3344#endif
222d656d 3345};
1da177e4 3346
d5ac537e 3347/*
381be78f
GS
3348 * sg_lb_stats - stats of a sched_group required for load_balancing
3349 */
3350struct sg_lb_stats {
3351 unsigned long avg_load; /*Avg load across the CPUs of the group */
3352 unsigned long group_load; /* Total load over the CPUs of the group */
3353 unsigned long sum_nr_running; /* Nr tasks running in the group */
3354 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3355 unsigned long group_capacity;
3356 int group_imb; /* Is there an imbalance in the group ? */
3357};
408ed066 3358
67bb6c03
GS
3359/**
3360 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3361 * @group: The group whose first cpu is to be returned.
3362 */
3363static inline unsigned int group_first_cpu(struct sched_group *group)
3364{
3365 return cpumask_first(sched_group_cpus(group));
3366}
3367
3368/**
3369 * get_sd_load_idx - Obtain the load index for a given sched domain.
3370 * @sd: The sched_domain whose load_idx is to be obtained.
3371 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3372 */
3373static inline int get_sd_load_idx(struct sched_domain *sd,
3374 enum cpu_idle_type idle)
3375{
3376 int load_idx;
3377
3378 switch (idle) {
3379 case CPU_NOT_IDLE:
7897986b 3380 load_idx = sd->busy_idx;
67bb6c03
GS
3381 break;
3382
3383 case CPU_NEWLY_IDLE:
7897986b 3384 load_idx = sd->newidle_idx;
67bb6c03
GS
3385 break;
3386 default:
7897986b 3387 load_idx = sd->idle_idx;
67bb6c03
GS
3388 break;
3389 }
1da177e4 3390
67bb6c03
GS
3391 return load_idx;
3392}
1da177e4 3393
1da177e4 3394
c071df18
GS
3395#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3396/**
3397 * init_sd_power_savings_stats - Initialize power savings statistics for
3398 * the given sched_domain, during load balancing.
3399 *
3400 * @sd: Sched domain whose power-savings statistics are to be initialized.
3401 * @sds: Variable containing the statistics for sd.
3402 * @idle: Idle status of the CPU at which we're performing load-balancing.
3403 */
3404static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3405 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3406{
3407 /*
3408 * Busy processors will not participate in power savings
3409 * balance.
3410 */
3411 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3412 sds->power_savings_balance = 0;
3413 else {
3414 sds->power_savings_balance = 1;
3415 sds->min_nr_running = ULONG_MAX;
3416 sds->leader_nr_running = 0;
3417 }
3418}
783609c6 3419
c071df18
GS
3420/**
3421 * update_sd_power_savings_stats - Update the power saving stats for a
3422 * sched_domain while performing load balancing.
3423 *
3424 * @group: sched_group belonging to the sched_domain under consideration.
3425 * @sds: Variable containing the statistics of the sched_domain
3426 * @local_group: Does group contain the CPU for which we're performing
3427 * load balancing ?
3428 * @sgs: Variable containing the statistics of the group.
3429 */
3430static inline void update_sd_power_savings_stats(struct sched_group *group,
3431 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3432{
408ed066 3433
c071df18
GS
3434 if (!sds->power_savings_balance)
3435 return;
1da177e4 3436
c071df18
GS
3437 /*
3438 * If the local group is idle or completely loaded
3439 * no need to do power savings balance at this domain
3440 */
3441 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3442 !sds->this_nr_running))
3443 sds->power_savings_balance = 0;
2dd73a4f 3444
c071df18
GS
3445 /*
3446 * If a group is already running at full capacity or idle,
3447 * don't include that group in power savings calculations
3448 */
3449 if (!sds->power_savings_balance ||
3450 sgs->sum_nr_running >= sgs->group_capacity ||
3451 !sgs->sum_nr_running)
3452 return;
5969fe06 3453
c071df18
GS
3454 /*
3455 * Calculate the group which has the least non-idle load.
3456 * This is the group from where we need to pick up the load
3457 * for saving power
3458 */
3459 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3460 (sgs->sum_nr_running == sds->min_nr_running &&
3461 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3462 sds->group_min = group;
3463 sds->min_nr_running = sgs->sum_nr_running;
3464 sds->min_load_per_task = sgs->sum_weighted_load /
3465 sgs->sum_nr_running;
3466 }
783609c6 3467
c071df18
GS
3468 /*
3469 * Calculate the group which is almost near its
3470 * capacity but still has some space to pick up some load
3471 * from other group and save more power
3472 */
d899a789 3473 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3474 return;
1da177e4 3475
c071df18
GS
3476 if (sgs->sum_nr_running > sds->leader_nr_running ||
3477 (sgs->sum_nr_running == sds->leader_nr_running &&
3478 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3479 sds->group_leader = group;
3480 sds->leader_nr_running = sgs->sum_nr_running;
3481 }
3482}
408ed066 3483
c071df18 3484/**
d5ac537e 3485 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3486 * @sds: Variable containing the statistics of the sched_domain
3487 * under consideration.
3488 * @this_cpu: Cpu at which we're currently performing load-balancing.
3489 * @imbalance: Variable to store the imbalance.
3490 *
d5ac537e
RD
3491 * Description:
3492 * Check if we have potential to perform some power-savings balance.
3493 * If yes, set the busiest group to be the least loaded group in the
3494 * sched_domain, so that it's CPUs can be put to idle.
3495 *
c071df18
GS
3496 * Returns 1 if there is potential to perform power-savings balance.
3497 * Else returns 0.
3498 */
3499static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3500 int this_cpu, unsigned long *imbalance)
3501{
3502 if (!sds->power_savings_balance)
3503 return 0;
1da177e4 3504
c071df18
GS
3505 if (sds->this != sds->group_leader ||
3506 sds->group_leader == sds->group_min)
3507 return 0;
783609c6 3508
c071df18
GS
3509 *imbalance = sds->min_load_per_task;
3510 sds->busiest = sds->group_min;
1da177e4 3511
c071df18 3512 return 1;
1da177e4 3513
c071df18
GS
3514}
3515#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3516static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3517 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3518{
3519 return;
3520}
408ed066 3521
c071df18
GS
3522static inline void update_sd_power_savings_stats(struct sched_group *group,
3523 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3524{
3525 return;
3526}
3527
3528static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3529 int this_cpu, unsigned long *imbalance)
3530{
3531 return 0;
3532}
3533#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3534
e9e9250b 3535unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3536{
3537 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3538 unsigned long smt_gain = sd->smt_gain;
3539
3540 smt_gain /= weight;
3541
3542 return smt_gain;
3543}
3544
e9e9250b
PZ
3545unsigned long scale_rt_power(int cpu)
3546{
3547 struct rq *rq = cpu_rq(cpu);
3548 u64 total, available;
3549
3550 sched_avg_update(rq);
3551
3552 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3553 available = total - rq->rt_avg;
3554
3555 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3556 total = SCHED_LOAD_SCALE;
3557
3558 total >>= SCHED_LOAD_SHIFT;
3559
3560 return div_u64(available, total);
3561}
3562
ab29230e
PZ
3563static void update_cpu_power(struct sched_domain *sd, int cpu)
3564{
3565 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3566 unsigned long power = SCHED_LOAD_SCALE;
3567 struct sched_group *sdg = sd->groups;
ab29230e
PZ
3568
3569 /* here we could scale based on cpufreq */
3570
3571 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
e9e9250b 3572 power *= arch_scale_smt_power(sd, cpu);
ab29230e
PZ
3573 power >>= SCHED_LOAD_SHIFT;
3574 }
3575
e9e9250b
PZ
3576 power *= scale_rt_power(cpu);
3577 power >>= SCHED_LOAD_SHIFT;
3578
3579 if (!power)
3580 power = 1;
ab29230e 3581
18a3885f 3582 sdg->cpu_power = power;
ab29230e
PZ
3583}
3584
3585static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3586{
3587 struct sched_domain *child = sd->child;
3588 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3589 unsigned long power;
cc9fba7d
PZ
3590
3591 if (!child) {
ab29230e 3592 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3593 return;
3594 }
3595
d7ea17a7 3596 power = 0;
cc9fba7d
PZ
3597
3598 group = child->groups;
3599 do {
d7ea17a7 3600 power += group->cpu_power;
cc9fba7d
PZ
3601 group = group->next;
3602 } while (group != child->groups);
d7ea17a7
IM
3603
3604 sdg->cpu_power = power;
cc9fba7d 3605}
c071df18 3606
1f8c553d
GS
3607/**
3608 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3609 * @group: sched_group whose statistics are to be updated.
3610 * @this_cpu: Cpu for which load balance is currently performed.
3611 * @idle: Idle status of this_cpu
3612 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3613 * @sd_idle: Idle status of the sched_domain containing group.
3614 * @local_group: Does group contain this_cpu.
3615 * @cpus: Set of cpus considered for load balancing.
3616 * @balance: Should we balance.
3617 * @sgs: variable to hold the statistics for this group.
3618 */
cc9fba7d
PZ
3619static inline void update_sg_lb_stats(struct sched_domain *sd,
3620 struct sched_group *group, int this_cpu,
1f8c553d
GS
3621 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3622 int local_group, const struct cpumask *cpus,
3623 int *balance, struct sg_lb_stats *sgs)
3624{
3625 unsigned long load, max_cpu_load, min_cpu_load;
3626 int i;
3627 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3628 unsigned long sum_avg_load_per_task;
3629 unsigned long avg_load_per_task;
3630
cc9fba7d 3631 if (local_group) {
1f8c553d 3632 balance_cpu = group_first_cpu(group);
cc9fba7d 3633 if (balance_cpu == this_cpu)
ab29230e 3634 update_group_power(sd, this_cpu);
cc9fba7d 3635 }
1f8c553d
GS
3636
3637 /* Tally up the load of all CPUs in the group */
3638 sum_avg_load_per_task = avg_load_per_task = 0;
3639 max_cpu_load = 0;
3640 min_cpu_load = ~0UL;
408ed066 3641
1f8c553d
GS
3642 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3643 struct rq *rq = cpu_rq(i);
908a7c1b 3644
1f8c553d
GS
3645 if (*sd_idle && rq->nr_running)
3646 *sd_idle = 0;
5c45bf27 3647
1f8c553d 3648 /* Bias balancing toward cpus of our domain */
1da177e4 3649 if (local_group) {
1f8c553d
GS
3650 if (idle_cpu(i) && !first_idle_cpu) {
3651 first_idle_cpu = 1;
3652 balance_cpu = i;
3653 }
3654
3655 load = target_load(i, load_idx);
3656 } else {
3657 load = source_load(i, load_idx);
3658 if (load > max_cpu_load)
3659 max_cpu_load = load;
3660 if (min_cpu_load > load)
3661 min_cpu_load = load;
1da177e4 3662 }
5c45bf27 3663
1f8c553d
GS
3664 sgs->group_load += load;
3665 sgs->sum_nr_running += rq->nr_running;
3666 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3667
1f8c553d
GS
3668 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3669 }
5c45bf27 3670
1f8c553d
GS
3671 /*
3672 * First idle cpu or the first cpu(busiest) in this sched group
3673 * is eligible for doing load balancing at this and above
3674 * domains. In the newly idle case, we will allow all the cpu's
3675 * to do the newly idle load balance.
3676 */
3677 if (idle != CPU_NEWLY_IDLE && local_group &&
3678 balance_cpu != this_cpu && balance) {
3679 *balance = 0;
3680 return;
3681 }
5c45bf27 3682
1f8c553d 3683 /* Adjust by relative CPU power of the group */
18a3885f 3684 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3685
1f8c553d
GS
3686
3687 /*
3688 * Consider the group unbalanced when the imbalance is larger
3689 * than the average weight of two tasks.
3690 *
3691 * APZ: with cgroup the avg task weight can vary wildly and
3692 * might not be a suitable number - should we keep a
3693 * normalized nr_running number somewhere that negates
3694 * the hierarchy?
3695 */
18a3885f
PZ
3696 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3697 group->cpu_power;
1f8c553d
GS
3698
3699 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3700 sgs->group_imb = 1;
3701
bdb94aa5 3702 sgs->group_capacity =
18a3885f 3703 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3704}
dd41f596 3705
37abe198
GS
3706/**
3707 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3708 * @sd: sched_domain whose statistics are to be updated.
3709 * @this_cpu: Cpu for which load balance is currently performed.
3710 * @idle: Idle status of this_cpu
3711 * @sd_idle: Idle status of the sched_domain containing group.
3712 * @cpus: Set of cpus considered for load balancing.
3713 * @balance: Should we balance.
3714 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3715 */
37abe198
GS
3716static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3717 enum cpu_idle_type idle, int *sd_idle,
3718 const struct cpumask *cpus, int *balance,
3719 struct sd_lb_stats *sds)
1da177e4 3720{
b5d978e0 3721 struct sched_domain *child = sd->child;
222d656d 3722 struct sched_group *group = sd->groups;
37abe198 3723 struct sg_lb_stats sgs;
b5d978e0
PZ
3724 int load_idx, prefer_sibling = 0;
3725
3726 if (child && child->flags & SD_PREFER_SIBLING)
3727 prefer_sibling = 1;
222d656d 3728
c071df18 3729 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3730 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3731
3732 do {
1da177e4 3733 int local_group;
1da177e4 3734
758b2cdc
RR
3735 local_group = cpumask_test_cpu(this_cpu,
3736 sched_group_cpus(group));
381be78f 3737 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3738 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3739 local_group, cpus, balance, &sgs);
1da177e4 3740
37abe198
GS
3741 if (local_group && balance && !(*balance))
3742 return;
783609c6 3743
37abe198 3744 sds->total_load += sgs.group_load;
18a3885f 3745 sds->total_pwr += group->cpu_power;
1da177e4 3746
b5d978e0
PZ
3747 /*
3748 * In case the child domain prefers tasks go to siblings
3749 * first, lower the group capacity to one so that we'll try
3750 * and move all the excess tasks away.
3751 */
3752 if (prefer_sibling)
bdb94aa5 3753 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3754
1da177e4 3755 if (local_group) {
37abe198
GS
3756 sds->this_load = sgs.avg_load;
3757 sds->this = group;
3758 sds->this_nr_running = sgs.sum_nr_running;
3759 sds->this_load_per_task = sgs.sum_weighted_load;
3760 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3761 (sgs.sum_nr_running > sgs.group_capacity ||
3762 sgs.group_imb)) {
37abe198
GS
3763 sds->max_load = sgs.avg_load;
3764 sds->busiest = group;
3765 sds->busiest_nr_running = sgs.sum_nr_running;
3766 sds->busiest_load_per_task = sgs.sum_weighted_load;
3767 sds->group_imb = sgs.group_imb;
48f24c4d 3768 }
5c45bf27 3769
c071df18 3770 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3771 group = group->next;
3772 } while (group != sd->groups);
37abe198 3773}
1da177e4 3774
2e6f44ae
GS
3775/**
3776 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3777 * amongst the groups of a sched_domain, during
3778 * load balancing.
2e6f44ae
GS
3779 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3780 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3781 * @imbalance: Variable to store the imbalance.
3782 */
3783static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3784 int this_cpu, unsigned long *imbalance)
3785{
3786 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3787 unsigned int imbn = 2;
3788
3789 if (sds->this_nr_running) {
3790 sds->this_load_per_task /= sds->this_nr_running;
3791 if (sds->busiest_load_per_task >
3792 sds->this_load_per_task)
3793 imbn = 1;
3794 } else
3795 sds->this_load_per_task =
3796 cpu_avg_load_per_task(this_cpu);
1da177e4 3797
2e6f44ae
GS
3798 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3799 sds->busiest_load_per_task * imbn) {
3800 *imbalance = sds->busiest_load_per_task;
3801 return;
3802 }
908a7c1b 3803
1da177e4 3804 /*
2e6f44ae
GS
3805 * OK, we don't have enough imbalance to justify moving tasks,
3806 * however we may be able to increase total CPU power used by
3807 * moving them.
1da177e4 3808 */
2dd73a4f 3809
18a3885f 3810 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3811 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3812 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3813 min(sds->this_load_per_task, sds->this_load);
3814 pwr_now /= SCHED_LOAD_SCALE;
3815
3816 /* Amount of load we'd subtract */
18a3885f
PZ
3817 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3818 sds->busiest->cpu_power;
2e6f44ae 3819 if (sds->max_load > tmp)
18a3885f 3820 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3821 min(sds->busiest_load_per_task, sds->max_load - tmp);
3822
3823 /* Amount of load we'd add */
18a3885f 3824 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3825 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3826 tmp = (sds->max_load * sds->busiest->cpu_power) /
3827 sds->this->cpu_power;
2e6f44ae 3828 else
18a3885f
PZ
3829 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3830 sds->this->cpu_power;
3831 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3832 min(sds->this_load_per_task, sds->this_load + tmp);
3833 pwr_move /= SCHED_LOAD_SCALE;
3834
3835 /* Move if we gain throughput */
3836 if (pwr_move > pwr_now)
3837 *imbalance = sds->busiest_load_per_task;
3838}
dbc523a3
GS
3839
3840/**
3841 * calculate_imbalance - Calculate the amount of imbalance present within the
3842 * groups of a given sched_domain during load balance.
3843 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3844 * @this_cpu: Cpu for which currently load balance is being performed.
3845 * @imbalance: The variable to store the imbalance.
3846 */
3847static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3848 unsigned long *imbalance)
3849{
3850 unsigned long max_pull;
2dd73a4f
PW
3851 /*
3852 * In the presence of smp nice balancing, certain scenarios can have
3853 * max load less than avg load(as we skip the groups at or below
3854 * its cpu_power, while calculating max_load..)
3855 */
dbc523a3 3856 if (sds->max_load < sds->avg_load) {
2dd73a4f 3857 *imbalance = 0;
dbc523a3 3858 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3859 }
0c117f1b
SS
3860
3861 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3862 max_pull = min(sds->max_load - sds->avg_load,
3863 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3864
1da177e4 3865 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3866 *imbalance = min(max_pull * sds->busiest->cpu_power,
3867 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3868 / SCHED_LOAD_SCALE;
3869
2dd73a4f
PW
3870 /*
3871 * if *imbalance is less than the average load per runnable task
3872 * there is no gaurantee that any tasks will be moved so we'll have
3873 * a think about bumping its value to force at least one task to be
3874 * moved
3875 */
dbc523a3
GS
3876 if (*imbalance < sds->busiest_load_per_task)
3877 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3878
dbc523a3 3879}
37abe198 3880/******* find_busiest_group() helpers end here *********************/
1da177e4 3881
b7bb4c9b
GS
3882/**
3883 * find_busiest_group - Returns the busiest group within the sched_domain
3884 * if there is an imbalance. If there isn't an imbalance, and
3885 * the user has opted for power-savings, it returns a group whose
3886 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3887 * such a group exists.
3888 *
3889 * Also calculates the amount of weighted load which should be moved
3890 * to restore balance.
3891 *
3892 * @sd: The sched_domain whose busiest group is to be returned.
3893 * @this_cpu: The cpu for which load balancing is currently being performed.
3894 * @imbalance: Variable which stores amount of weighted load which should
3895 * be moved to restore balance/put a group to idle.
3896 * @idle: The idle status of this_cpu.
3897 * @sd_idle: The idleness of sd
3898 * @cpus: The set of CPUs under consideration for load-balancing.
3899 * @balance: Pointer to a variable indicating if this_cpu
3900 * is the appropriate cpu to perform load balancing at this_level.
3901 *
3902 * Returns: - the busiest group if imbalance exists.
3903 * - If no imbalance and user has opted for power-savings balance,
3904 * return the least loaded group whose CPUs can be
3905 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3906 */
3907static struct sched_group *
3908find_busiest_group(struct sched_domain *sd, int this_cpu,
3909 unsigned long *imbalance, enum cpu_idle_type idle,
3910 int *sd_idle, const struct cpumask *cpus, int *balance)
3911{
3912 struct sd_lb_stats sds;
1da177e4 3913
37abe198 3914 memset(&sds, 0, sizeof(sds));
1da177e4 3915
37abe198
GS
3916 /*
3917 * Compute the various statistics relavent for load balancing at
3918 * this level.
3919 */
3920 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3921 balance, &sds);
3922
b7bb4c9b
GS
3923 /* Cases where imbalance does not exist from POV of this_cpu */
3924 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3925 * at this level.
3926 * 2) There is no busy sibling group to pull from.
3927 * 3) This group is the busiest group.
3928 * 4) This group is more busy than the avg busieness at this
3929 * sched_domain.
3930 * 5) The imbalance is within the specified limit.
3931 * 6) Any rebalance would lead to ping-pong
3932 */
37abe198
GS
3933 if (balance && !(*balance))
3934 goto ret;
1da177e4 3935
b7bb4c9b
GS
3936 if (!sds.busiest || sds.busiest_nr_running == 0)
3937 goto out_balanced;
1da177e4 3938
b7bb4c9b 3939 if (sds.this_load >= sds.max_load)
1da177e4 3940 goto out_balanced;
1da177e4 3941
222d656d 3942 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3943
b7bb4c9b
GS
3944 if (sds.this_load >= sds.avg_load)
3945 goto out_balanced;
3946
3947 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3948 goto out_balanced;
3949
222d656d
GS
3950 sds.busiest_load_per_task /= sds.busiest_nr_running;
3951 if (sds.group_imb)
3952 sds.busiest_load_per_task =
3953 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3954
1da177e4
LT
3955 /*
3956 * We're trying to get all the cpus to the average_load, so we don't
3957 * want to push ourselves above the average load, nor do we wish to
3958 * reduce the max loaded cpu below the average load, as either of these
3959 * actions would just result in more rebalancing later, and ping-pong
3960 * tasks around. Thus we look for the minimum possible imbalance.
3961 * Negative imbalances (*we* are more loaded than anyone else) will
3962 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3963 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3964 * appear as very large values with unsigned longs.
3965 */
222d656d 3966 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3967 goto out_balanced;
3968
dbc523a3
GS
3969 /* Looks like there is an imbalance. Compute it */
3970 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3971 return sds.busiest;
1da177e4
LT
3972
3973out_balanced:
c071df18
GS
3974 /*
3975 * There is no obvious imbalance. But check if we can do some balancing
3976 * to save power.
3977 */
3978 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3979 return sds.busiest;
783609c6 3980ret:
1da177e4
LT
3981 *imbalance = 0;
3982 return NULL;
3983}
3984
bdb94aa5
PZ
3985static struct sched_group *group_of(int cpu)
3986{
3987 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
3988
3989 if (!sd)
3990 return NULL;
3991
3992 return sd->groups;
3993}
3994
3995static unsigned long power_of(int cpu)
3996{
3997 struct sched_group *group = group_of(cpu);
3998
3999 if (!group)
4000 return SCHED_LOAD_SCALE;
4001
18a3885f 4002 return group->cpu_power;
bdb94aa5
PZ
4003}
4004
1da177e4
LT
4005/*
4006 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4007 */
70b97a7f 4008static struct rq *
d15bcfdb 4009find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4010 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4011{
70b97a7f 4012 struct rq *busiest = NULL, *rq;
2dd73a4f 4013 unsigned long max_load = 0;
1da177e4
LT
4014 int i;
4015
758b2cdc 4016 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4017 unsigned long power = power_of(i);
4018 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4019 unsigned long wl;
0a2966b4 4020
96f874e2 4021 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4022 continue;
4023
48f24c4d 4024 rq = cpu_rq(i);
bdb94aa5
PZ
4025 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4026 wl /= power;
2dd73a4f 4027
bdb94aa5 4028 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4029 continue;
1da177e4 4030
dd41f596
IM
4031 if (wl > max_load) {
4032 max_load = wl;
48f24c4d 4033 busiest = rq;
1da177e4
LT
4034 }
4035 }
4036
4037 return busiest;
4038}
4039
77391d71
NP
4040/*
4041 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4042 * so long as it is large enough.
4043 */
4044#define MAX_PINNED_INTERVAL 512
4045
df7c8e84
RR
4046/* Working cpumask for load_balance and load_balance_newidle. */
4047static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4048
1da177e4
LT
4049/*
4050 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4051 * tasks if there is an imbalance.
1da177e4 4052 */
70b97a7f 4053static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4054 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4055 int *balance)
1da177e4 4056{
43010659 4057 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4058 struct sched_group *group;
1da177e4 4059 unsigned long imbalance;
70b97a7f 4060 struct rq *busiest;
fe2eea3f 4061 unsigned long flags;
df7c8e84 4062 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4063
96f874e2 4064 cpumask_setall(cpus);
7c16ec58 4065
89c4710e
SS
4066 /*
4067 * When power savings policy is enabled for the parent domain, idle
4068 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4069 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4070 * portraying it as CPU_NOT_IDLE.
89c4710e 4071 */
d15bcfdb 4072 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4073 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4074 sd_idle = 1;
1da177e4 4075
2d72376b 4076 schedstat_inc(sd, lb_count[idle]);
1da177e4 4077
0a2966b4 4078redo:
c8cba857 4079 update_shares(sd);
0a2966b4 4080 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4081 cpus, balance);
783609c6 4082
06066714 4083 if (*balance == 0)
783609c6 4084 goto out_balanced;
783609c6 4085
1da177e4
LT
4086 if (!group) {
4087 schedstat_inc(sd, lb_nobusyg[idle]);
4088 goto out_balanced;
4089 }
4090
7c16ec58 4091 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4092 if (!busiest) {
4093 schedstat_inc(sd, lb_nobusyq[idle]);
4094 goto out_balanced;
4095 }
4096
db935dbd 4097 BUG_ON(busiest == this_rq);
1da177e4
LT
4098
4099 schedstat_add(sd, lb_imbalance[idle], imbalance);
4100
43010659 4101 ld_moved = 0;
1da177e4
LT
4102 if (busiest->nr_running > 1) {
4103 /*
4104 * Attempt to move tasks. If find_busiest_group has found
4105 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4106 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4107 * correctly treated as an imbalance.
4108 */
fe2eea3f 4109 local_irq_save(flags);
e17224bf 4110 double_rq_lock(this_rq, busiest);
43010659 4111 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4112 imbalance, sd, idle, &all_pinned);
e17224bf 4113 double_rq_unlock(this_rq, busiest);
fe2eea3f 4114 local_irq_restore(flags);
81026794 4115
46cb4b7c
SS
4116 /*
4117 * some other cpu did the load balance for us.
4118 */
43010659 4119 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4120 resched_cpu(this_cpu);
4121
81026794 4122 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4123 if (unlikely(all_pinned)) {
96f874e2
RR
4124 cpumask_clear_cpu(cpu_of(busiest), cpus);
4125 if (!cpumask_empty(cpus))
0a2966b4 4126 goto redo;
81026794 4127 goto out_balanced;
0a2966b4 4128 }
1da177e4 4129 }
81026794 4130
43010659 4131 if (!ld_moved) {
1da177e4
LT
4132 schedstat_inc(sd, lb_failed[idle]);
4133 sd->nr_balance_failed++;
4134
4135 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4136
fe2eea3f 4137 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4138
4139 /* don't kick the migration_thread, if the curr
4140 * task on busiest cpu can't be moved to this_cpu
4141 */
96f874e2
RR
4142 if (!cpumask_test_cpu(this_cpu,
4143 &busiest->curr->cpus_allowed)) {
fe2eea3f 4144 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4145 all_pinned = 1;
4146 goto out_one_pinned;
4147 }
4148
1da177e4
LT
4149 if (!busiest->active_balance) {
4150 busiest->active_balance = 1;
4151 busiest->push_cpu = this_cpu;
81026794 4152 active_balance = 1;
1da177e4 4153 }
fe2eea3f 4154 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4155 if (active_balance)
1da177e4
LT
4156 wake_up_process(busiest->migration_thread);
4157
4158 /*
4159 * We've kicked active balancing, reset the failure
4160 * counter.
4161 */
39507451 4162 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4163 }
81026794 4164 } else
1da177e4
LT
4165 sd->nr_balance_failed = 0;
4166
81026794 4167 if (likely(!active_balance)) {
1da177e4
LT
4168 /* We were unbalanced, so reset the balancing interval */
4169 sd->balance_interval = sd->min_interval;
81026794
NP
4170 } else {
4171 /*
4172 * If we've begun active balancing, start to back off. This
4173 * case may not be covered by the all_pinned logic if there
4174 * is only 1 task on the busy runqueue (because we don't call
4175 * move_tasks).
4176 */
4177 if (sd->balance_interval < sd->max_interval)
4178 sd->balance_interval *= 2;
1da177e4
LT
4179 }
4180
43010659 4181 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4182 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4183 ld_moved = -1;
4184
4185 goto out;
1da177e4
LT
4186
4187out_balanced:
1da177e4
LT
4188 schedstat_inc(sd, lb_balanced[idle]);
4189
16cfb1c0 4190 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4191
4192out_one_pinned:
1da177e4 4193 /* tune up the balancing interval */
77391d71
NP
4194 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4195 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4196 sd->balance_interval *= 2;
4197
48f24c4d 4198 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4199 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4200 ld_moved = -1;
4201 else
4202 ld_moved = 0;
4203out:
c8cba857
PZ
4204 if (ld_moved)
4205 update_shares(sd);
c09595f6 4206 return ld_moved;
1da177e4
LT
4207}
4208
4209/*
4210 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4211 * tasks if there is an imbalance.
4212 *
d15bcfdb 4213 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4214 * this_rq is locked.
4215 */
48f24c4d 4216static int
df7c8e84 4217load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4218{
4219 struct sched_group *group;
70b97a7f 4220 struct rq *busiest = NULL;
1da177e4 4221 unsigned long imbalance;
43010659 4222 int ld_moved = 0;
5969fe06 4223 int sd_idle = 0;
969bb4e4 4224 int all_pinned = 0;
df7c8e84 4225 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4226
96f874e2 4227 cpumask_setall(cpus);
5969fe06 4228
89c4710e
SS
4229 /*
4230 * When power savings policy is enabled for the parent domain, idle
4231 * sibling can pick up load irrespective of busy siblings. In this case,
4232 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4233 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4234 */
4235 if (sd->flags & SD_SHARE_CPUPOWER &&
4236 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4237 sd_idle = 1;
1da177e4 4238
2d72376b 4239 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4240redo:
3e5459b4 4241 update_shares_locked(this_rq, sd);
d15bcfdb 4242 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4243 &sd_idle, cpus, NULL);
1da177e4 4244 if (!group) {
d15bcfdb 4245 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4246 goto out_balanced;
1da177e4
LT
4247 }
4248
7c16ec58 4249 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4250 if (!busiest) {
d15bcfdb 4251 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4252 goto out_balanced;
1da177e4
LT
4253 }
4254
db935dbd
NP
4255 BUG_ON(busiest == this_rq);
4256
d15bcfdb 4257 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4258
43010659 4259 ld_moved = 0;
d6d5cfaf
NP
4260 if (busiest->nr_running > 1) {
4261 /* Attempt to move tasks */
4262 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4263 /* this_rq->clock is already updated */
4264 update_rq_clock(busiest);
43010659 4265 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4266 imbalance, sd, CPU_NEWLY_IDLE,
4267 &all_pinned);
1b12bbc7 4268 double_unlock_balance(this_rq, busiest);
0a2966b4 4269
969bb4e4 4270 if (unlikely(all_pinned)) {
96f874e2
RR
4271 cpumask_clear_cpu(cpu_of(busiest), cpus);
4272 if (!cpumask_empty(cpus))
0a2966b4
CL
4273 goto redo;
4274 }
d6d5cfaf
NP
4275 }
4276
43010659 4277 if (!ld_moved) {
36dffab6 4278 int active_balance = 0;
ad273b32 4279
d15bcfdb 4280 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4281 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4282 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4283 return -1;
ad273b32
VS
4284
4285 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4286 return -1;
4287
4288 if (sd->nr_balance_failed++ < 2)
4289 return -1;
4290
4291 /*
4292 * The only task running in a non-idle cpu can be moved to this
4293 * cpu in an attempt to completely freeup the other CPU
4294 * package. The same method used to move task in load_balance()
4295 * have been extended for load_balance_newidle() to speedup
4296 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4297 *
4298 * The package power saving logic comes from
4299 * find_busiest_group(). If there are no imbalance, then
4300 * f_b_g() will return NULL. However when sched_mc={1,2} then
4301 * f_b_g() will select a group from which a running task may be
4302 * pulled to this cpu in order to make the other package idle.
4303 * If there is no opportunity to make a package idle and if
4304 * there are no imbalance, then f_b_g() will return NULL and no
4305 * action will be taken in load_balance_newidle().
4306 *
4307 * Under normal task pull operation due to imbalance, there
4308 * will be more than one task in the source run queue and
4309 * move_tasks() will succeed. ld_moved will be true and this
4310 * active balance code will not be triggered.
4311 */
4312
4313 /* Lock busiest in correct order while this_rq is held */
4314 double_lock_balance(this_rq, busiest);
4315
4316 /*
4317 * don't kick the migration_thread, if the curr
4318 * task on busiest cpu can't be moved to this_cpu
4319 */
6ca09dfc 4320 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4321 double_unlock_balance(this_rq, busiest);
4322 all_pinned = 1;
4323 return ld_moved;
4324 }
4325
4326 if (!busiest->active_balance) {
4327 busiest->active_balance = 1;
4328 busiest->push_cpu = this_cpu;
4329 active_balance = 1;
4330 }
4331
4332 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4333 /*
4334 * Should not call ttwu while holding a rq->lock
4335 */
4336 spin_unlock(&this_rq->lock);
ad273b32
VS
4337 if (active_balance)
4338 wake_up_process(busiest->migration_thread);
da8d5089 4339 spin_lock(&this_rq->lock);
ad273b32 4340
5969fe06 4341 } else
16cfb1c0 4342 sd->nr_balance_failed = 0;
1da177e4 4343
3e5459b4 4344 update_shares_locked(this_rq, sd);
43010659 4345 return ld_moved;
16cfb1c0
NP
4346
4347out_balanced:
d15bcfdb 4348 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4349 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4350 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4351 return -1;
16cfb1c0 4352 sd->nr_balance_failed = 0;
48f24c4d 4353
16cfb1c0 4354 return 0;
1da177e4
LT
4355}
4356
4357/*
4358 * idle_balance is called by schedule() if this_cpu is about to become
4359 * idle. Attempts to pull tasks from other CPUs.
4360 */
70b97a7f 4361static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4362{
4363 struct sched_domain *sd;
efbe027e 4364 int pulled_task = 0;
dd41f596 4365 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4366
4367 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4368 unsigned long interval;
4369
4370 if (!(sd->flags & SD_LOAD_BALANCE))
4371 continue;
4372
4373 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4374 /* If we've pulled tasks over stop searching: */
7c16ec58 4375 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4376 sd);
92c4ca5c
CL
4377
4378 interval = msecs_to_jiffies(sd->balance_interval);
4379 if (time_after(next_balance, sd->last_balance + interval))
4380 next_balance = sd->last_balance + interval;
4381 if (pulled_task)
4382 break;
1da177e4 4383 }
dd41f596 4384 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4385 /*
4386 * We are going idle. next_balance may be set based on
4387 * a busy processor. So reset next_balance.
4388 */
4389 this_rq->next_balance = next_balance;
dd41f596 4390 }
1da177e4
LT
4391}
4392
4393/*
4394 * active_load_balance is run by migration threads. It pushes running tasks
4395 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4396 * running on each physical CPU where possible, and avoids physical /
4397 * logical imbalances.
4398 *
4399 * Called with busiest_rq locked.
4400 */
70b97a7f 4401static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4402{
39507451 4403 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4404 struct sched_domain *sd;
4405 struct rq *target_rq;
39507451 4406
48f24c4d 4407 /* Is there any task to move? */
39507451 4408 if (busiest_rq->nr_running <= 1)
39507451
NP
4409 return;
4410
4411 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4412
4413 /*
39507451 4414 * This condition is "impossible", if it occurs
41a2d6cf 4415 * we need to fix it. Originally reported by
39507451 4416 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4417 */
39507451 4418 BUG_ON(busiest_rq == target_rq);
1da177e4 4419
39507451
NP
4420 /* move a task from busiest_rq to target_rq */
4421 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4422 update_rq_clock(busiest_rq);
4423 update_rq_clock(target_rq);
39507451
NP
4424
4425 /* Search for an sd spanning us and the target CPU. */
c96d145e 4426 for_each_domain(target_cpu, sd) {
39507451 4427 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4428 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4429 break;
c96d145e 4430 }
39507451 4431
48f24c4d 4432 if (likely(sd)) {
2d72376b 4433 schedstat_inc(sd, alb_count);
39507451 4434
43010659
PW
4435 if (move_one_task(target_rq, target_cpu, busiest_rq,
4436 sd, CPU_IDLE))
48f24c4d
IM
4437 schedstat_inc(sd, alb_pushed);
4438 else
4439 schedstat_inc(sd, alb_failed);
4440 }
1b12bbc7 4441 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4442}
4443
46cb4b7c
SS
4444#ifdef CONFIG_NO_HZ
4445static struct {
4446 atomic_t load_balancer;
7d1e6a9b 4447 cpumask_var_t cpu_mask;
f711f609 4448 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4449} nohz ____cacheline_aligned = {
4450 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4451};
4452
eea08f32
AB
4453int get_nohz_load_balancer(void)
4454{
4455 return atomic_read(&nohz.load_balancer);
4456}
4457
f711f609
GS
4458#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4459/**
4460 * lowest_flag_domain - Return lowest sched_domain containing flag.
4461 * @cpu: The cpu whose lowest level of sched domain is to
4462 * be returned.
4463 * @flag: The flag to check for the lowest sched_domain
4464 * for the given cpu.
4465 *
4466 * Returns the lowest sched_domain of a cpu which contains the given flag.
4467 */
4468static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4469{
4470 struct sched_domain *sd;
4471
4472 for_each_domain(cpu, sd)
4473 if (sd && (sd->flags & flag))
4474 break;
4475
4476 return sd;
4477}
4478
4479/**
4480 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4481 * @cpu: The cpu whose domains we're iterating over.
4482 * @sd: variable holding the value of the power_savings_sd
4483 * for cpu.
4484 * @flag: The flag to filter the sched_domains to be iterated.
4485 *
4486 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4487 * set, starting from the lowest sched_domain to the highest.
4488 */
4489#define for_each_flag_domain(cpu, sd, flag) \
4490 for (sd = lowest_flag_domain(cpu, flag); \
4491 (sd && (sd->flags & flag)); sd = sd->parent)
4492
4493/**
4494 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4495 * @ilb_group: group to be checked for semi-idleness
4496 *
4497 * Returns: 1 if the group is semi-idle. 0 otherwise.
4498 *
4499 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4500 * and atleast one non-idle CPU. This helper function checks if the given
4501 * sched_group is semi-idle or not.
4502 */
4503static inline int is_semi_idle_group(struct sched_group *ilb_group)
4504{
4505 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4506 sched_group_cpus(ilb_group));
4507
4508 /*
4509 * A sched_group is semi-idle when it has atleast one busy cpu
4510 * and atleast one idle cpu.
4511 */
4512 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4513 return 0;
4514
4515 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4516 return 0;
4517
4518 return 1;
4519}
4520/**
4521 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4522 * @cpu: The cpu which is nominating a new idle_load_balancer.
4523 *
4524 * Returns: Returns the id of the idle load balancer if it exists,
4525 * Else, returns >= nr_cpu_ids.
4526 *
4527 * This algorithm picks the idle load balancer such that it belongs to a
4528 * semi-idle powersavings sched_domain. The idea is to try and avoid
4529 * completely idle packages/cores just for the purpose of idle load balancing
4530 * when there are other idle cpu's which are better suited for that job.
4531 */
4532static int find_new_ilb(int cpu)
4533{
4534 struct sched_domain *sd;
4535 struct sched_group *ilb_group;
4536
4537 /*
4538 * Have idle load balancer selection from semi-idle packages only
4539 * when power-aware load balancing is enabled
4540 */
4541 if (!(sched_smt_power_savings || sched_mc_power_savings))
4542 goto out_done;
4543
4544 /*
4545 * Optimize for the case when we have no idle CPUs or only one
4546 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4547 */
4548 if (cpumask_weight(nohz.cpu_mask) < 2)
4549 goto out_done;
4550
4551 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4552 ilb_group = sd->groups;
4553
4554 do {
4555 if (is_semi_idle_group(ilb_group))
4556 return cpumask_first(nohz.ilb_grp_nohz_mask);
4557
4558 ilb_group = ilb_group->next;
4559
4560 } while (ilb_group != sd->groups);
4561 }
4562
4563out_done:
4564 return cpumask_first(nohz.cpu_mask);
4565}
4566#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4567static inline int find_new_ilb(int call_cpu)
4568{
6e29ec57 4569 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4570}
4571#endif
4572
7835b98b 4573/*
46cb4b7c
SS
4574 * This routine will try to nominate the ilb (idle load balancing)
4575 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4576 * load balancing on behalf of all those cpus. If all the cpus in the system
4577 * go into this tickless mode, then there will be no ilb owner (as there is
4578 * no need for one) and all the cpus will sleep till the next wakeup event
4579 * arrives...
4580 *
4581 * For the ilb owner, tick is not stopped. And this tick will be used
4582 * for idle load balancing. ilb owner will still be part of
4583 * nohz.cpu_mask..
7835b98b 4584 *
46cb4b7c
SS
4585 * While stopping the tick, this cpu will become the ilb owner if there
4586 * is no other owner. And will be the owner till that cpu becomes busy
4587 * or if all cpus in the system stop their ticks at which point
4588 * there is no need for ilb owner.
4589 *
4590 * When the ilb owner becomes busy, it nominates another owner, during the
4591 * next busy scheduler_tick()
4592 */
4593int select_nohz_load_balancer(int stop_tick)
4594{
4595 int cpu = smp_processor_id();
4596
4597 if (stop_tick) {
46cb4b7c
SS
4598 cpu_rq(cpu)->in_nohz_recently = 1;
4599
483b4ee6
SS
4600 if (!cpu_active(cpu)) {
4601 if (atomic_read(&nohz.load_balancer) != cpu)
4602 return 0;
4603
4604 /*
4605 * If we are going offline and still the leader,
4606 * give up!
4607 */
46cb4b7c
SS
4608 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4609 BUG();
483b4ee6 4610
46cb4b7c
SS
4611 return 0;
4612 }
4613
483b4ee6
SS
4614 cpumask_set_cpu(cpu, nohz.cpu_mask);
4615
46cb4b7c 4616 /* time for ilb owner also to sleep */
7d1e6a9b 4617 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4618 if (atomic_read(&nohz.load_balancer) == cpu)
4619 atomic_set(&nohz.load_balancer, -1);
4620 return 0;
4621 }
4622
4623 if (atomic_read(&nohz.load_balancer) == -1) {
4624 /* make me the ilb owner */
4625 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4626 return 1;
e790fb0b
GS
4627 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4628 int new_ilb;
4629
4630 if (!(sched_smt_power_savings ||
4631 sched_mc_power_savings))
4632 return 1;
4633 /*
4634 * Check to see if there is a more power-efficient
4635 * ilb.
4636 */
4637 new_ilb = find_new_ilb(cpu);
4638 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4639 atomic_set(&nohz.load_balancer, -1);
4640 resched_cpu(new_ilb);
4641 return 0;
4642 }
46cb4b7c 4643 return 1;
e790fb0b 4644 }
46cb4b7c 4645 } else {
7d1e6a9b 4646 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4647 return 0;
4648
7d1e6a9b 4649 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4650
4651 if (atomic_read(&nohz.load_balancer) == cpu)
4652 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4653 BUG();
4654 }
4655 return 0;
4656}
4657#endif
4658
4659static DEFINE_SPINLOCK(balancing);
4660
4661/*
7835b98b
CL
4662 * It checks each scheduling domain to see if it is due to be balanced,
4663 * and initiates a balancing operation if so.
4664 *
4665 * Balancing parameters are set up in arch_init_sched_domains.
4666 */
a9957449 4667static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4668{
46cb4b7c
SS
4669 int balance = 1;
4670 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4671 unsigned long interval;
4672 struct sched_domain *sd;
46cb4b7c 4673 /* Earliest time when we have to do rebalance again */
c9819f45 4674 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4675 int update_next_balance = 0;
d07355f5 4676 int need_serialize;
1da177e4 4677
46cb4b7c 4678 for_each_domain(cpu, sd) {
1da177e4
LT
4679 if (!(sd->flags & SD_LOAD_BALANCE))
4680 continue;
4681
4682 interval = sd->balance_interval;
d15bcfdb 4683 if (idle != CPU_IDLE)
1da177e4
LT
4684 interval *= sd->busy_factor;
4685
4686 /* scale ms to jiffies */
4687 interval = msecs_to_jiffies(interval);
4688 if (unlikely(!interval))
4689 interval = 1;
dd41f596
IM
4690 if (interval > HZ*NR_CPUS/10)
4691 interval = HZ*NR_CPUS/10;
4692
d07355f5 4693 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4694
d07355f5 4695 if (need_serialize) {
08c183f3
CL
4696 if (!spin_trylock(&balancing))
4697 goto out;
4698 }
4699
c9819f45 4700 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4701 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4702 /*
4703 * We've pulled tasks over so either we're no
5969fe06
NP
4704 * longer idle, or one of our SMT siblings is
4705 * not idle.
4706 */
d15bcfdb 4707 idle = CPU_NOT_IDLE;
1da177e4 4708 }
1bd77f2d 4709 sd->last_balance = jiffies;
1da177e4 4710 }
d07355f5 4711 if (need_serialize)
08c183f3
CL
4712 spin_unlock(&balancing);
4713out:
f549da84 4714 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4715 next_balance = sd->last_balance + interval;
f549da84
SS
4716 update_next_balance = 1;
4717 }
783609c6
SS
4718
4719 /*
4720 * Stop the load balance at this level. There is another
4721 * CPU in our sched group which is doing load balancing more
4722 * actively.
4723 */
4724 if (!balance)
4725 break;
1da177e4 4726 }
f549da84
SS
4727
4728 /*
4729 * next_balance will be updated only when there is a need.
4730 * When the cpu is attached to null domain for ex, it will not be
4731 * updated.
4732 */
4733 if (likely(update_next_balance))
4734 rq->next_balance = next_balance;
46cb4b7c
SS
4735}
4736
4737/*
4738 * run_rebalance_domains is triggered when needed from the scheduler tick.
4739 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4740 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4741 */
4742static void run_rebalance_domains(struct softirq_action *h)
4743{
dd41f596
IM
4744 int this_cpu = smp_processor_id();
4745 struct rq *this_rq = cpu_rq(this_cpu);
4746 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4747 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4748
dd41f596 4749 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4750
4751#ifdef CONFIG_NO_HZ
4752 /*
4753 * If this cpu is the owner for idle load balancing, then do the
4754 * balancing on behalf of the other idle cpus whose ticks are
4755 * stopped.
4756 */
dd41f596
IM
4757 if (this_rq->idle_at_tick &&
4758 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4759 struct rq *rq;
4760 int balance_cpu;
4761
7d1e6a9b
RR
4762 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4763 if (balance_cpu == this_cpu)
4764 continue;
4765
46cb4b7c
SS
4766 /*
4767 * If this cpu gets work to do, stop the load balancing
4768 * work being done for other cpus. Next load
4769 * balancing owner will pick it up.
4770 */
4771 if (need_resched())
4772 break;
4773
de0cf899 4774 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4775
4776 rq = cpu_rq(balance_cpu);
dd41f596
IM
4777 if (time_after(this_rq->next_balance, rq->next_balance))
4778 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4779 }
4780 }
4781#endif
4782}
4783
8a0be9ef
FW
4784static inline int on_null_domain(int cpu)
4785{
4786 return !rcu_dereference(cpu_rq(cpu)->sd);
4787}
4788
46cb4b7c
SS
4789/*
4790 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4791 *
4792 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4793 * idle load balancing owner or decide to stop the periodic load balancing,
4794 * if the whole system is idle.
4795 */
dd41f596 4796static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4797{
46cb4b7c
SS
4798#ifdef CONFIG_NO_HZ
4799 /*
4800 * If we were in the nohz mode recently and busy at the current
4801 * scheduler tick, then check if we need to nominate new idle
4802 * load balancer.
4803 */
4804 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4805 rq->in_nohz_recently = 0;
4806
4807 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4808 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4809 atomic_set(&nohz.load_balancer, -1);
4810 }
4811
4812 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4813 int ilb = find_new_ilb(cpu);
46cb4b7c 4814
434d53b0 4815 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4816 resched_cpu(ilb);
4817 }
4818 }
4819
4820 /*
4821 * If this cpu is idle and doing idle load balancing for all the
4822 * cpus with ticks stopped, is it time for that to stop?
4823 */
4824 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4825 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4826 resched_cpu(cpu);
4827 return;
4828 }
4829
4830 /*
4831 * If this cpu is idle and the idle load balancing is done by
4832 * someone else, then no need raise the SCHED_SOFTIRQ
4833 */
4834 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4835 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4836 return;
4837#endif
8a0be9ef
FW
4838 /* Don't need to rebalance while attached to NULL domain */
4839 if (time_after_eq(jiffies, rq->next_balance) &&
4840 likely(!on_null_domain(cpu)))
46cb4b7c 4841 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4842}
dd41f596
IM
4843
4844#else /* CONFIG_SMP */
4845
1da177e4
LT
4846/*
4847 * on UP we do not need to balance between CPUs:
4848 */
70b97a7f 4849static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4850{
4851}
dd41f596 4852
1da177e4
LT
4853#endif
4854
1da177e4
LT
4855DEFINE_PER_CPU(struct kernel_stat, kstat);
4856
4857EXPORT_PER_CPU_SYMBOL(kstat);
4858
4859/*
c5f8d995 4860 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4861 * @p in case that task is currently running.
c5f8d995
HS
4862 *
4863 * Called with task_rq_lock() held on @rq.
1da177e4 4864 */
c5f8d995
HS
4865static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4866{
4867 u64 ns = 0;
4868
4869 if (task_current(rq, p)) {
4870 update_rq_clock(rq);
4871 ns = rq->clock - p->se.exec_start;
4872 if ((s64)ns < 0)
4873 ns = 0;
4874 }
4875
4876 return ns;
4877}
4878
bb34d92f 4879unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4880{
1da177e4 4881 unsigned long flags;
41b86e9c 4882 struct rq *rq;
bb34d92f 4883 u64 ns = 0;
48f24c4d 4884
41b86e9c 4885 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4886 ns = do_task_delta_exec(p, rq);
4887 task_rq_unlock(rq, &flags);
1508487e 4888
c5f8d995
HS
4889 return ns;
4890}
f06febc9 4891
c5f8d995
HS
4892/*
4893 * Return accounted runtime for the task.
4894 * In case the task is currently running, return the runtime plus current's
4895 * pending runtime that have not been accounted yet.
4896 */
4897unsigned long long task_sched_runtime(struct task_struct *p)
4898{
4899 unsigned long flags;
4900 struct rq *rq;
4901 u64 ns = 0;
4902
4903 rq = task_rq_lock(p, &flags);
4904 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4905 task_rq_unlock(rq, &flags);
4906
4907 return ns;
4908}
48f24c4d 4909
c5f8d995
HS
4910/*
4911 * Return sum_exec_runtime for the thread group.
4912 * In case the task is currently running, return the sum plus current's
4913 * pending runtime that have not been accounted yet.
4914 *
4915 * Note that the thread group might have other running tasks as well,
4916 * so the return value not includes other pending runtime that other
4917 * running tasks might have.
4918 */
4919unsigned long long thread_group_sched_runtime(struct task_struct *p)
4920{
4921 struct task_cputime totals;
4922 unsigned long flags;
4923 struct rq *rq;
4924 u64 ns;
4925
4926 rq = task_rq_lock(p, &flags);
4927 thread_group_cputime(p, &totals);
4928 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4929 task_rq_unlock(rq, &flags);
48f24c4d 4930
1da177e4
LT
4931 return ns;
4932}
4933
1da177e4
LT
4934/*
4935 * Account user cpu time to a process.
4936 * @p: the process that the cpu time gets accounted to
1da177e4 4937 * @cputime: the cpu time spent in user space since the last update
457533a7 4938 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4939 */
457533a7
MS
4940void account_user_time(struct task_struct *p, cputime_t cputime,
4941 cputime_t cputime_scaled)
1da177e4
LT
4942{
4943 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4944 cputime64_t tmp;
4945
457533a7 4946 /* Add user time to process. */
1da177e4 4947 p->utime = cputime_add(p->utime, cputime);
457533a7 4948 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4949 account_group_user_time(p, cputime);
1da177e4
LT
4950
4951 /* Add user time to cpustat. */
4952 tmp = cputime_to_cputime64(cputime);
4953 if (TASK_NICE(p) > 0)
4954 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4955 else
4956 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4957
4958 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4959 /* Account for user time used */
4960 acct_update_integrals(p);
1da177e4
LT
4961}
4962
94886b84
LV
4963/*
4964 * Account guest cpu time to a process.
4965 * @p: the process that the cpu time gets accounted to
4966 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4967 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4968 */
457533a7
MS
4969static void account_guest_time(struct task_struct *p, cputime_t cputime,
4970 cputime_t cputime_scaled)
94886b84
LV
4971{
4972 cputime64_t tmp;
4973 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4974
4975 tmp = cputime_to_cputime64(cputime);
4976
457533a7 4977 /* Add guest time to process. */
94886b84 4978 p->utime = cputime_add(p->utime, cputime);
457533a7 4979 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4980 account_group_user_time(p, cputime);
94886b84
LV
4981 p->gtime = cputime_add(p->gtime, cputime);
4982
457533a7 4983 /* Add guest time to cpustat. */
94886b84
LV
4984 cpustat->user = cputime64_add(cpustat->user, tmp);
4985 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4986}
4987
1da177e4
LT
4988/*
4989 * Account system cpu time to a process.
4990 * @p: the process that the cpu time gets accounted to
4991 * @hardirq_offset: the offset to subtract from hardirq_count()
4992 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4993 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4994 */
4995void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4996 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4997{
4998 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4999 cputime64_t tmp;
5000
983ed7a6 5001 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5002 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5003 return;
5004 }
94886b84 5005
457533a7 5006 /* Add system time to process. */
1da177e4 5007 p->stime = cputime_add(p->stime, cputime);
457533a7 5008 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5009 account_group_system_time(p, cputime);
1da177e4
LT
5010
5011 /* Add system time to cpustat. */
5012 tmp = cputime_to_cputime64(cputime);
5013 if (hardirq_count() - hardirq_offset)
5014 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5015 else if (softirq_count())
5016 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5017 else
79741dd3
MS
5018 cpustat->system = cputime64_add(cpustat->system, tmp);
5019
ef12fefa
BR
5020 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5021
1da177e4
LT
5022 /* Account for system time used */
5023 acct_update_integrals(p);
1da177e4
LT
5024}
5025
c66f08be 5026/*
1da177e4 5027 * Account for involuntary wait time.
1da177e4 5028 * @steal: the cpu time spent in involuntary wait
c66f08be 5029 */
79741dd3 5030void account_steal_time(cputime_t cputime)
c66f08be 5031{
79741dd3
MS
5032 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5033 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5034
5035 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5036}
5037
1da177e4 5038/*
79741dd3
MS
5039 * Account for idle time.
5040 * @cputime: the cpu time spent in idle wait
1da177e4 5041 */
79741dd3 5042void account_idle_time(cputime_t cputime)
1da177e4
LT
5043{
5044 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5045 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5046 struct rq *rq = this_rq();
1da177e4 5047
79741dd3
MS
5048 if (atomic_read(&rq->nr_iowait) > 0)
5049 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5050 else
5051 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5052}
5053
79741dd3
MS
5054#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5055
5056/*
5057 * Account a single tick of cpu time.
5058 * @p: the process that the cpu time gets accounted to
5059 * @user_tick: indicates if the tick is a user or a system tick
5060 */
5061void account_process_tick(struct task_struct *p, int user_tick)
5062{
5063 cputime_t one_jiffy = jiffies_to_cputime(1);
5064 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5065 struct rq *rq = this_rq();
5066
5067 if (user_tick)
5068 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5069 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5070 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5071 one_jiffy_scaled);
5072 else
5073 account_idle_time(one_jiffy);
5074}
5075
5076/*
5077 * Account multiple ticks of steal time.
5078 * @p: the process from which the cpu time has been stolen
5079 * @ticks: number of stolen ticks
5080 */
5081void account_steal_ticks(unsigned long ticks)
5082{
5083 account_steal_time(jiffies_to_cputime(ticks));
5084}
5085
5086/*
5087 * Account multiple ticks of idle time.
5088 * @ticks: number of stolen ticks
5089 */
5090void account_idle_ticks(unsigned long ticks)
5091{
5092 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5093}
5094
79741dd3
MS
5095#endif
5096
49048622
BS
5097/*
5098 * Use precise platform statistics if available:
5099 */
5100#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5101cputime_t task_utime(struct task_struct *p)
5102{
5103 return p->utime;
5104}
5105
5106cputime_t task_stime(struct task_struct *p)
5107{
5108 return p->stime;
5109}
5110#else
5111cputime_t task_utime(struct task_struct *p)
5112{
5113 clock_t utime = cputime_to_clock_t(p->utime),
5114 total = utime + cputime_to_clock_t(p->stime);
5115 u64 temp;
5116
5117 /*
5118 * Use CFS's precise accounting:
5119 */
5120 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5121
5122 if (total) {
5123 temp *= utime;
5124 do_div(temp, total);
5125 }
5126 utime = (clock_t)temp;
5127
5128 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5129 return p->prev_utime;
5130}
5131
5132cputime_t task_stime(struct task_struct *p)
5133{
5134 clock_t stime;
5135
5136 /*
5137 * Use CFS's precise accounting. (we subtract utime from
5138 * the total, to make sure the total observed by userspace
5139 * grows monotonically - apps rely on that):
5140 */
5141 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5142 cputime_to_clock_t(task_utime(p));
5143
5144 if (stime >= 0)
5145 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5146
5147 return p->prev_stime;
5148}
5149#endif
5150
5151inline cputime_t task_gtime(struct task_struct *p)
5152{
5153 return p->gtime;
5154}
5155
7835b98b
CL
5156/*
5157 * This function gets called by the timer code, with HZ frequency.
5158 * We call it with interrupts disabled.
5159 *
5160 * It also gets called by the fork code, when changing the parent's
5161 * timeslices.
5162 */
5163void scheduler_tick(void)
5164{
7835b98b
CL
5165 int cpu = smp_processor_id();
5166 struct rq *rq = cpu_rq(cpu);
dd41f596 5167 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5168
5169 sched_clock_tick();
dd41f596
IM
5170
5171 spin_lock(&rq->lock);
3e51f33f 5172 update_rq_clock(rq);
f1a438d8 5173 update_cpu_load(rq);
fa85ae24 5174 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5175 spin_unlock(&rq->lock);
7835b98b 5176
e220d2dc
PZ
5177 perf_counter_task_tick(curr, cpu);
5178
e418e1c2 5179#ifdef CONFIG_SMP
dd41f596
IM
5180 rq->idle_at_tick = idle_cpu(cpu);
5181 trigger_load_balance(rq, cpu);
e418e1c2 5182#endif
1da177e4
LT
5183}
5184
132380a0 5185notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5186{
5187 if (in_lock_functions(addr)) {
5188 addr = CALLER_ADDR2;
5189 if (in_lock_functions(addr))
5190 addr = CALLER_ADDR3;
5191 }
5192 return addr;
5193}
1da177e4 5194
7e49fcce
SR
5195#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5196 defined(CONFIG_PREEMPT_TRACER))
5197
43627582 5198void __kprobes add_preempt_count(int val)
1da177e4 5199{
6cd8a4bb 5200#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5201 /*
5202 * Underflow?
5203 */
9a11b49a
IM
5204 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5205 return;
6cd8a4bb 5206#endif
1da177e4 5207 preempt_count() += val;
6cd8a4bb 5208#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5209 /*
5210 * Spinlock count overflowing soon?
5211 */
33859f7f
MOS
5212 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5213 PREEMPT_MASK - 10);
6cd8a4bb
SR
5214#endif
5215 if (preempt_count() == val)
5216 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5217}
5218EXPORT_SYMBOL(add_preempt_count);
5219
43627582 5220void __kprobes sub_preempt_count(int val)
1da177e4 5221{
6cd8a4bb 5222#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5223 /*
5224 * Underflow?
5225 */
01e3eb82 5226 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5227 return;
1da177e4
LT
5228 /*
5229 * Is the spinlock portion underflowing?
5230 */
9a11b49a
IM
5231 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5232 !(preempt_count() & PREEMPT_MASK)))
5233 return;
6cd8a4bb 5234#endif
9a11b49a 5235
6cd8a4bb
SR
5236 if (preempt_count() == val)
5237 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5238 preempt_count() -= val;
5239}
5240EXPORT_SYMBOL(sub_preempt_count);
5241
5242#endif
5243
5244/*
dd41f596 5245 * Print scheduling while atomic bug:
1da177e4 5246 */
dd41f596 5247static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5248{
838225b4
SS
5249 struct pt_regs *regs = get_irq_regs();
5250
5251 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5252 prev->comm, prev->pid, preempt_count());
5253
dd41f596 5254 debug_show_held_locks(prev);
e21f5b15 5255 print_modules();
dd41f596
IM
5256 if (irqs_disabled())
5257 print_irqtrace_events(prev);
838225b4
SS
5258
5259 if (regs)
5260 show_regs(regs);
5261 else
5262 dump_stack();
dd41f596 5263}
1da177e4 5264
dd41f596
IM
5265/*
5266 * Various schedule()-time debugging checks and statistics:
5267 */
5268static inline void schedule_debug(struct task_struct *prev)
5269{
1da177e4 5270 /*
41a2d6cf 5271 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5272 * schedule() atomically, we ignore that path for now.
5273 * Otherwise, whine if we are scheduling when we should not be.
5274 */
3f33a7ce 5275 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5276 __schedule_bug(prev);
5277
1da177e4
LT
5278 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5279
2d72376b 5280 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5281#ifdef CONFIG_SCHEDSTATS
5282 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5283 schedstat_inc(this_rq(), bkl_count);
5284 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5285 }
5286#endif
dd41f596
IM
5287}
5288
df1c99d4
MG
5289static void put_prev_task(struct rq *rq, struct task_struct *prev)
5290{
5291 if (prev->state == TASK_RUNNING) {
5292 u64 runtime = prev->se.sum_exec_runtime;
5293
5294 runtime -= prev->se.prev_sum_exec_runtime;
5295 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5296
5297 /*
5298 * In order to avoid avg_overlap growing stale when we are
5299 * indeed overlapping and hence not getting put to sleep, grow
5300 * the avg_overlap on preemption.
5301 *
5302 * We use the average preemption runtime because that
5303 * correlates to the amount of cache footprint a task can
5304 * build up.
5305 */
5306 update_avg(&prev->se.avg_overlap, runtime);
5307 }
5308 prev->sched_class->put_prev_task(rq, prev);
5309}
5310
dd41f596
IM
5311/*
5312 * Pick up the highest-prio task:
5313 */
5314static inline struct task_struct *
b67802ea 5315pick_next_task(struct rq *rq)
dd41f596 5316{
5522d5d5 5317 const struct sched_class *class;
dd41f596 5318 struct task_struct *p;
1da177e4
LT
5319
5320 /*
dd41f596
IM
5321 * Optimization: we know that if all tasks are in
5322 * the fair class we can call that function directly:
1da177e4 5323 */
dd41f596 5324 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5325 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5326 if (likely(p))
5327 return p;
1da177e4
LT
5328 }
5329
dd41f596
IM
5330 class = sched_class_highest;
5331 for ( ; ; ) {
fb8d4724 5332 p = class->pick_next_task(rq);
dd41f596
IM
5333 if (p)
5334 return p;
5335 /*
5336 * Will never be NULL as the idle class always
5337 * returns a non-NULL p:
5338 */
5339 class = class->next;
5340 }
5341}
1da177e4 5342
dd41f596
IM
5343/*
5344 * schedule() is the main scheduler function.
5345 */
ff743345 5346asmlinkage void __sched schedule(void)
dd41f596
IM
5347{
5348 struct task_struct *prev, *next;
67ca7bde 5349 unsigned long *switch_count;
dd41f596 5350 struct rq *rq;
31656519 5351 int cpu;
dd41f596 5352
ff743345
PZ
5353need_resched:
5354 preempt_disable();
dd41f596
IM
5355 cpu = smp_processor_id();
5356 rq = cpu_rq(cpu);
d6714c22 5357 rcu_sched_qs(cpu);
dd41f596
IM
5358 prev = rq->curr;
5359 switch_count = &prev->nivcsw;
5360
5361 release_kernel_lock(prev);
5362need_resched_nonpreemptible:
5363
5364 schedule_debug(prev);
1da177e4 5365
31656519 5366 if (sched_feat(HRTICK))
f333fdc9 5367 hrtick_clear(rq);
8f4d37ec 5368
8cd162ce 5369 spin_lock_irq(&rq->lock);
3e51f33f 5370 update_rq_clock(rq);
1e819950 5371 clear_tsk_need_resched(prev);
1da177e4 5372
1da177e4 5373 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5374 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5375 prev->state = TASK_RUNNING;
16882c1e 5376 else
2e1cb74a 5377 deactivate_task(rq, prev, 1);
dd41f596 5378 switch_count = &prev->nvcsw;
1da177e4
LT
5379 }
5380
3f029d3c 5381 pre_schedule(rq, prev);
f65eda4f 5382
dd41f596 5383 if (unlikely(!rq->nr_running))
1da177e4 5384 idle_balance(cpu, rq);
1da177e4 5385
df1c99d4 5386 put_prev_task(rq, prev);
b67802ea 5387 next = pick_next_task(rq);
1da177e4 5388
1da177e4 5389 if (likely(prev != next)) {
673a90a1 5390 sched_info_switch(prev, next);
564c2b21 5391 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5392
1da177e4
LT
5393 rq->nr_switches++;
5394 rq->curr = next;
5395 ++*switch_count;
5396
dd41f596 5397 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5398 /*
5399 * the context switch might have flipped the stack from under
5400 * us, hence refresh the local variables.
5401 */
5402 cpu = smp_processor_id();
5403 rq = cpu_rq(cpu);
1da177e4
LT
5404 } else
5405 spin_unlock_irq(&rq->lock);
5406
3f029d3c 5407 post_schedule(rq);
1da177e4 5408
8f4d37ec 5409 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5410 goto need_resched_nonpreemptible;
8f4d37ec 5411
1da177e4 5412 preempt_enable_no_resched();
ff743345 5413 if (need_resched())
1da177e4
LT
5414 goto need_resched;
5415}
1da177e4
LT
5416EXPORT_SYMBOL(schedule);
5417
0d66bf6d
PZ
5418#ifdef CONFIG_SMP
5419/*
5420 * Look out! "owner" is an entirely speculative pointer
5421 * access and not reliable.
5422 */
5423int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5424{
5425 unsigned int cpu;
5426 struct rq *rq;
5427
5428 if (!sched_feat(OWNER_SPIN))
5429 return 0;
5430
5431#ifdef CONFIG_DEBUG_PAGEALLOC
5432 /*
5433 * Need to access the cpu field knowing that
5434 * DEBUG_PAGEALLOC could have unmapped it if
5435 * the mutex owner just released it and exited.
5436 */
5437 if (probe_kernel_address(&owner->cpu, cpu))
5438 goto out;
5439#else
5440 cpu = owner->cpu;
5441#endif
5442
5443 /*
5444 * Even if the access succeeded (likely case),
5445 * the cpu field may no longer be valid.
5446 */
5447 if (cpu >= nr_cpumask_bits)
5448 goto out;
5449
5450 /*
5451 * We need to validate that we can do a
5452 * get_cpu() and that we have the percpu area.
5453 */
5454 if (!cpu_online(cpu))
5455 goto out;
5456
5457 rq = cpu_rq(cpu);
5458
5459 for (;;) {
5460 /*
5461 * Owner changed, break to re-assess state.
5462 */
5463 if (lock->owner != owner)
5464 break;
5465
5466 /*
5467 * Is that owner really running on that cpu?
5468 */
5469 if (task_thread_info(rq->curr) != owner || need_resched())
5470 return 0;
5471
5472 cpu_relax();
5473 }
5474out:
5475 return 1;
5476}
5477#endif
5478
1da177e4
LT
5479#ifdef CONFIG_PREEMPT
5480/*
2ed6e34f 5481 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5482 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5483 * occur there and call schedule directly.
5484 */
5485asmlinkage void __sched preempt_schedule(void)
5486{
5487 struct thread_info *ti = current_thread_info();
6478d880 5488
1da177e4
LT
5489 /*
5490 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5491 * we do not want to preempt the current task. Just return..
1da177e4 5492 */
beed33a8 5493 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5494 return;
5495
3a5c359a
AK
5496 do {
5497 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5498 schedule();
3a5c359a 5499 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5500
3a5c359a
AK
5501 /*
5502 * Check again in case we missed a preemption opportunity
5503 * between schedule and now.
5504 */
5505 barrier();
5ed0cec0 5506 } while (need_resched());
1da177e4 5507}
1da177e4
LT
5508EXPORT_SYMBOL(preempt_schedule);
5509
5510/*
2ed6e34f 5511 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5512 * off of irq context.
5513 * Note, that this is called and return with irqs disabled. This will
5514 * protect us against recursive calling from irq.
5515 */
5516asmlinkage void __sched preempt_schedule_irq(void)
5517{
5518 struct thread_info *ti = current_thread_info();
6478d880 5519
2ed6e34f 5520 /* Catch callers which need to be fixed */
1da177e4
LT
5521 BUG_ON(ti->preempt_count || !irqs_disabled());
5522
3a5c359a
AK
5523 do {
5524 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5525 local_irq_enable();
5526 schedule();
5527 local_irq_disable();
3a5c359a 5528 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5529
3a5c359a
AK
5530 /*
5531 * Check again in case we missed a preemption opportunity
5532 * between schedule and now.
5533 */
5534 barrier();
5ed0cec0 5535 } while (need_resched());
1da177e4
LT
5536}
5537
5538#endif /* CONFIG_PREEMPT */
5539
95cdf3b7
IM
5540int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5541 void *key)
1da177e4 5542{
48f24c4d 5543 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5544}
1da177e4
LT
5545EXPORT_SYMBOL(default_wake_function);
5546
5547/*
41a2d6cf
IM
5548 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5549 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5550 * number) then we wake all the non-exclusive tasks and one exclusive task.
5551 *
5552 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5553 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5554 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5555 */
78ddb08f 5556static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5557 int nr_exclusive, int sync, void *key)
1da177e4 5558{
2e45874c 5559 wait_queue_t *curr, *next;
1da177e4 5560
2e45874c 5561 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5562 unsigned flags = curr->flags;
5563
1da177e4 5564 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5565 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5566 break;
5567 }
5568}
5569
5570/**
5571 * __wake_up - wake up threads blocked on a waitqueue.
5572 * @q: the waitqueue
5573 * @mode: which threads
5574 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5575 * @key: is directly passed to the wakeup function
50fa610a
DH
5576 *
5577 * It may be assumed that this function implies a write memory barrier before
5578 * changing the task state if and only if any tasks are woken up.
1da177e4 5579 */
7ad5b3a5 5580void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5581 int nr_exclusive, void *key)
1da177e4
LT
5582{
5583 unsigned long flags;
5584
5585 spin_lock_irqsave(&q->lock, flags);
5586 __wake_up_common(q, mode, nr_exclusive, 0, key);
5587 spin_unlock_irqrestore(&q->lock, flags);
5588}
1da177e4
LT
5589EXPORT_SYMBOL(__wake_up);
5590
5591/*
5592 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5593 */
7ad5b3a5 5594void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5595{
5596 __wake_up_common(q, mode, 1, 0, NULL);
5597}
5598
4ede816a
DL
5599void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5600{
5601 __wake_up_common(q, mode, 1, 0, key);
5602}
5603
1da177e4 5604/**
4ede816a 5605 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5606 * @q: the waitqueue
5607 * @mode: which threads
5608 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5609 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5610 *
5611 * The sync wakeup differs that the waker knows that it will schedule
5612 * away soon, so while the target thread will be woken up, it will not
5613 * be migrated to another CPU - ie. the two threads are 'synchronized'
5614 * with each other. This can prevent needless bouncing between CPUs.
5615 *
5616 * On UP it can prevent extra preemption.
50fa610a
DH
5617 *
5618 * It may be assumed that this function implies a write memory barrier before
5619 * changing the task state if and only if any tasks are woken up.
1da177e4 5620 */
4ede816a
DL
5621void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5622 int nr_exclusive, void *key)
1da177e4
LT
5623{
5624 unsigned long flags;
5625 int sync = 1;
5626
5627 if (unlikely(!q))
5628 return;
5629
5630 if (unlikely(!nr_exclusive))
5631 sync = 0;
5632
5633 spin_lock_irqsave(&q->lock, flags);
4ede816a 5634 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5635 spin_unlock_irqrestore(&q->lock, flags);
5636}
4ede816a
DL
5637EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5638
5639/*
5640 * __wake_up_sync - see __wake_up_sync_key()
5641 */
5642void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5643{
5644 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5645}
1da177e4
LT
5646EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5647
65eb3dc6
KD
5648/**
5649 * complete: - signals a single thread waiting on this completion
5650 * @x: holds the state of this particular completion
5651 *
5652 * This will wake up a single thread waiting on this completion. Threads will be
5653 * awakened in the same order in which they were queued.
5654 *
5655 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5656 *
5657 * It may be assumed that this function implies a write memory barrier before
5658 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5659 */
b15136e9 5660void complete(struct completion *x)
1da177e4
LT
5661{
5662 unsigned long flags;
5663
5664 spin_lock_irqsave(&x->wait.lock, flags);
5665 x->done++;
d9514f6c 5666 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5667 spin_unlock_irqrestore(&x->wait.lock, flags);
5668}
5669EXPORT_SYMBOL(complete);
5670
65eb3dc6
KD
5671/**
5672 * complete_all: - signals all threads waiting on this completion
5673 * @x: holds the state of this particular completion
5674 *
5675 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5676 *
5677 * It may be assumed that this function implies a write memory barrier before
5678 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5679 */
b15136e9 5680void complete_all(struct completion *x)
1da177e4
LT
5681{
5682 unsigned long flags;
5683
5684 spin_lock_irqsave(&x->wait.lock, flags);
5685 x->done += UINT_MAX/2;
d9514f6c 5686 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5687 spin_unlock_irqrestore(&x->wait.lock, flags);
5688}
5689EXPORT_SYMBOL(complete_all);
5690
8cbbe86d
AK
5691static inline long __sched
5692do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5693{
1da177e4
LT
5694 if (!x->done) {
5695 DECLARE_WAITQUEUE(wait, current);
5696
5697 wait.flags |= WQ_FLAG_EXCLUSIVE;
5698 __add_wait_queue_tail(&x->wait, &wait);
5699 do {
94d3d824 5700 if (signal_pending_state(state, current)) {
ea71a546
ON
5701 timeout = -ERESTARTSYS;
5702 break;
8cbbe86d
AK
5703 }
5704 __set_current_state(state);
1da177e4
LT
5705 spin_unlock_irq(&x->wait.lock);
5706 timeout = schedule_timeout(timeout);
5707 spin_lock_irq(&x->wait.lock);
ea71a546 5708 } while (!x->done && timeout);
1da177e4 5709 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5710 if (!x->done)
5711 return timeout;
1da177e4
LT
5712 }
5713 x->done--;
ea71a546 5714 return timeout ?: 1;
1da177e4 5715}
1da177e4 5716
8cbbe86d
AK
5717static long __sched
5718wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5719{
1da177e4
LT
5720 might_sleep();
5721
5722 spin_lock_irq(&x->wait.lock);
8cbbe86d 5723 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5724 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5725 return timeout;
5726}
1da177e4 5727
65eb3dc6
KD
5728/**
5729 * wait_for_completion: - waits for completion of a task
5730 * @x: holds the state of this particular completion
5731 *
5732 * This waits to be signaled for completion of a specific task. It is NOT
5733 * interruptible and there is no timeout.
5734 *
5735 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5736 * and interrupt capability. Also see complete().
5737 */
b15136e9 5738void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5739{
5740 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5741}
8cbbe86d 5742EXPORT_SYMBOL(wait_for_completion);
1da177e4 5743
65eb3dc6
KD
5744/**
5745 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5746 * @x: holds the state of this particular completion
5747 * @timeout: timeout value in jiffies
5748 *
5749 * This waits for either a completion of a specific task to be signaled or for a
5750 * specified timeout to expire. The timeout is in jiffies. It is not
5751 * interruptible.
5752 */
b15136e9 5753unsigned long __sched
8cbbe86d 5754wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5755{
8cbbe86d 5756 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5757}
8cbbe86d 5758EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5759
65eb3dc6
KD
5760/**
5761 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5762 * @x: holds the state of this particular completion
5763 *
5764 * This waits for completion of a specific task to be signaled. It is
5765 * interruptible.
5766 */
8cbbe86d 5767int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5768{
51e97990
AK
5769 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5770 if (t == -ERESTARTSYS)
5771 return t;
5772 return 0;
0fec171c 5773}
8cbbe86d 5774EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5775
65eb3dc6
KD
5776/**
5777 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5778 * @x: holds the state of this particular completion
5779 * @timeout: timeout value in jiffies
5780 *
5781 * This waits for either a completion of a specific task to be signaled or for a
5782 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5783 */
b15136e9 5784unsigned long __sched
8cbbe86d
AK
5785wait_for_completion_interruptible_timeout(struct completion *x,
5786 unsigned long timeout)
0fec171c 5787{
8cbbe86d 5788 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5789}
8cbbe86d 5790EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5791
65eb3dc6
KD
5792/**
5793 * wait_for_completion_killable: - waits for completion of a task (killable)
5794 * @x: holds the state of this particular completion
5795 *
5796 * This waits to be signaled for completion of a specific task. It can be
5797 * interrupted by a kill signal.
5798 */
009e577e
MW
5799int __sched wait_for_completion_killable(struct completion *x)
5800{
5801 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5802 if (t == -ERESTARTSYS)
5803 return t;
5804 return 0;
5805}
5806EXPORT_SYMBOL(wait_for_completion_killable);
5807
be4de352
DC
5808/**
5809 * try_wait_for_completion - try to decrement a completion without blocking
5810 * @x: completion structure
5811 *
5812 * Returns: 0 if a decrement cannot be done without blocking
5813 * 1 if a decrement succeeded.
5814 *
5815 * If a completion is being used as a counting completion,
5816 * attempt to decrement the counter without blocking. This
5817 * enables us to avoid waiting if the resource the completion
5818 * is protecting is not available.
5819 */
5820bool try_wait_for_completion(struct completion *x)
5821{
5822 int ret = 1;
5823
5824 spin_lock_irq(&x->wait.lock);
5825 if (!x->done)
5826 ret = 0;
5827 else
5828 x->done--;
5829 spin_unlock_irq(&x->wait.lock);
5830 return ret;
5831}
5832EXPORT_SYMBOL(try_wait_for_completion);
5833
5834/**
5835 * completion_done - Test to see if a completion has any waiters
5836 * @x: completion structure
5837 *
5838 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5839 * 1 if there are no waiters.
5840 *
5841 */
5842bool completion_done(struct completion *x)
5843{
5844 int ret = 1;
5845
5846 spin_lock_irq(&x->wait.lock);
5847 if (!x->done)
5848 ret = 0;
5849 spin_unlock_irq(&x->wait.lock);
5850 return ret;
5851}
5852EXPORT_SYMBOL(completion_done);
5853
8cbbe86d
AK
5854static long __sched
5855sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5856{
0fec171c
IM
5857 unsigned long flags;
5858 wait_queue_t wait;
5859
5860 init_waitqueue_entry(&wait, current);
1da177e4 5861
8cbbe86d 5862 __set_current_state(state);
1da177e4 5863
8cbbe86d
AK
5864 spin_lock_irqsave(&q->lock, flags);
5865 __add_wait_queue(q, &wait);
5866 spin_unlock(&q->lock);
5867 timeout = schedule_timeout(timeout);
5868 spin_lock_irq(&q->lock);
5869 __remove_wait_queue(q, &wait);
5870 spin_unlock_irqrestore(&q->lock, flags);
5871
5872 return timeout;
5873}
5874
5875void __sched interruptible_sleep_on(wait_queue_head_t *q)
5876{
5877 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5878}
1da177e4
LT
5879EXPORT_SYMBOL(interruptible_sleep_on);
5880
0fec171c 5881long __sched
95cdf3b7 5882interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5883{
8cbbe86d 5884 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5885}
1da177e4
LT
5886EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5887
0fec171c 5888void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5889{
8cbbe86d 5890 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5891}
1da177e4
LT
5892EXPORT_SYMBOL(sleep_on);
5893
0fec171c 5894long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5895{
8cbbe86d 5896 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5897}
1da177e4
LT
5898EXPORT_SYMBOL(sleep_on_timeout);
5899
b29739f9
IM
5900#ifdef CONFIG_RT_MUTEXES
5901
5902/*
5903 * rt_mutex_setprio - set the current priority of a task
5904 * @p: task
5905 * @prio: prio value (kernel-internal form)
5906 *
5907 * This function changes the 'effective' priority of a task. It does
5908 * not touch ->normal_prio like __setscheduler().
5909 *
5910 * Used by the rt_mutex code to implement priority inheritance logic.
5911 */
36c8b586 5912void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5913{
5914 unsigned long flags;
83b699ed 5915 int oldprio, on_rq, running;
70b97a7f 5916 struct rq *rq;
cb469845 5917 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5918
5919 BUG_ON(prio < 0 || prio > MAX_PRIO);
5920
5921 rq = task_rq_lock(p, &flags);
a8e504d2 5922 update_rq_clock(rq);
b29739f9 5923
d5f9f942 5924 oldprio = p->prio;
dd41f596 5925 on_rq = p->se.on_rq;
051a1d1a 5926 running = task_current(rq, p);
0e1f3483 5927 if (on_rq)
69be72c1 5928 dequeue_task(rq, p, 0);
0e1f3483
HS
5929 if (running)
5930 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5931
5932 if (rt_prio(prio))
5933 p->sched_class = &rt_sched_class;
5934 else
5935 p->sched_class = &fair_sched_class;
5936
b29739f9
IM
5937 p->prio = prio;
5938
0e1f3483
HS
5939 if (running)
5940 p->sched_class->set_curr_task(rq);
dd41f596 5941 if (on_rq) {
8159f87e 5942 enqueue_task(rq, p, 0);
cb469845
SR
5943
5944 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5945 }
5946 task_rq_unlock(rq, &flags);
5947}
5948
5949#endif
5950
36c8b586 5951void set_user_nice(struct task_struct *p, long nice)
1da177e4 5952{
dd41f596 5953 int old_prio, delta, on_rq;
1da177e4 5954 unsigned long flags;
70b97a7f 5955 struct rq *rq;
1da177e4
LT
5956
5957 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5958 return;
5959 /*
5960 * We have to be careful, if called from sys_setpriority(),
5961 * the task might be in the middle of scheduling on another CPU.
5962 */
5963 rq = task_rq_lock(p, &flags);
a8e504d2 5964 update_rq_clock(rq);
1da177e4
LT
5965 /*
5966 * The RT priorities are set via sched_setscheduler(), but we still
5967 * allow the 'normal' nice value to be set - but as expected
5968 * it wont have any effect on scheduling until the task is
dd41f596 5969 * SCHED_FIFO/SCHED_RR:
1da177e4 5970 */
e05606d3 5971 if (task_has_rt_policy(p)) {
1da177e4
LT
5972 p->static_prio = NICE_TO_PRIO(nice);
5973 goto out_unlock;
5974 }
dd41f596 5975 on_rq = p->se.on_rq;
c09595f6 5976 if (on_rq)
69be72c1 5977 dequeue_task(rq, p, 0);
1da177e4 5978
1da177e4 5979 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5980 set_load_weight(p);
b29739f9
IM
5981 old_prio = p->prio;
5982 p->prio = effective_prio(p);
5983 delta = p->prio - old_prio;
1da177e4 5984
dd41f596 5985 if (on_rq) {
8159f87e 5986 enqueue_task(rq, p, 0);
1da177e4 5987 /*
d5f9f942
AM
5988 * If the task increased its priority or is running and
5989 * lowered its priority, then reschedule its CPU:
1da177e4 5990 */
d5f9f942 5991 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5992 resched_task(rq->curr);
5993 }
5994out_unlock:
5995 task_rq_unlock(rq, &flags);
5996}
1da177e4
LT
5997EXPORT_SYMBOL(set_user_nice);
5998
e43379f1
MM
5999/*
6000 * can_nice - check if a task can reduce its nice value
6001 * @p: task
6002 * @nice: nice value
6003 */
36c8b586 6004int can_nice(const struct task_struct *p, const int nice)
e43379f1 6005{
024f4747
MM
6006 /* convert nice value [19,-20] to rlimit style value [1,40] */
6007 int nice_rlim = 20 - nice;
48f24c4d 6008
e43379f1
MM
6009 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6010 capable(CAP_SYS_NICE));
6011}
6012
1da177e4
LT
6013#ifdef __ARCH_WANT_SYS_NICE
6014
6015/*
6016 * sys_nice - change the priority of the current process.
6017 * @increment: priority increment
6018 *
6019 * sys_setpriority is a more generic, but much slower function that
6020 * does similar things.
6021 */
5add95d4 6022SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6023{
48f24c4d 6024 long nice, retval;
1da177e4
LT
6025
6026 /*
6027 * Setpriority might change our priority at the same moment.
6028 * We don't have to worry. Conceptually one call occurs first
6029 * and we have a single winner.
6030 */
e43379f1
MM
6031 if (increment < -40)
6032 increment = -40;
1da177e4
LT
6033 if (increment > 40)
6034 increment = 40;
6035
2b8f836f 6036 nice = TASK_NICE(current) + increment;
1da177e4
LT
6037 if (nice < -20)
6038 nice = -20;
6039 if (nice > 19)
6040 nice = 19;
6041
e43379f1
MM
6042 if (increment < 0 && !can_nice(current, nice))
6043 return -EPERM;
6044
1da177e4
LT
6045 retval = security_task_setnice(current, nice);
6046 if (retval)
6047 return retval;
6048
6049 set_user_nice(current, nice);
6050 return 0;
6051}
6052
6053#endif
6054
6055/**
6056 * task_prio - return the priority value of a given task.
6057 * @p: the task in question.
6058 *
6059 * This is the priority value as seen by users in /proc.
6060 * RT tasks are offset by -200. Normal tasks are centered
6061 * around 0, value goes from -16 to +15.
6062 */
36c8b586 6063int task_prio(const struct task_struct *p)
1da177e4
LT
6064{
6065 return p->prio - MAX_RT_PRIO;
6066}
6067
6068/**
6069 * task_nice - return the nice value of a given task.
6070 * @p: the task in question.
6071 */
36c8b586 6072int task_nice(const struct task_struct *p)
1da177e4
LT
6073{
6074 return TASK_NICE(p);
6075}
150d8bed 6076EXPORT_SYMBOL(task_nice);
1da177e4
LT
6077
6078/**
6079 * idle_cpu - is a given cpu idle currently?
6080 * @cpu: the processor in question.
6081 */
6082int idle_cpu(int cpu)
6083{
6084 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6085}
6086
1da177e4
LT
6087/**
6088 * idle_task - return the idle task for a given cpu.
6089 * @cpu: the processor in question.
6090 */
36c8b586 6091struct task_struct *idle_task(int cpu)
1da177e4
LT
6092{
6093 return cpu_rq(cpu)->idle;
6094}
6095
6096/**
6097 * find_process_by_pid - find a process with a matching PID value.
6098 * @pid: the pid in question.
6099 */
a9957449 6100static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6101{
228ebcbe 6102 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6103}
6104
6105/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6106static void
6107__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6108{
dd41f596 6109 BUG_ON(p->se.on_rq);
48f24c4d 6110
1da177e4 6111 p->policy = policy;
dd41f596
IM
6112 switch (p->policy) {
6113 case SCHED_NORMAL:
6114 case SCHED_BATCH:
6115 case SCHED_IDLE:
6116 p->sched_class = &fair_sched_class;
6117 break;
6118 case SCHED_FIFO:
6119 case SCHED_RR:
6120 p->sched_class = &rt_sched_class;
6121 break;
6122 }
6123
1da177e4 6124 p->rt_priority = prio;
b29739f9
IM
6125 p->normal_prio = normal_prio(p);
6126 /* we are holding p->pi_lock already */
6127 p->prio = rt_mutex_getprio(p);
2dd73a4f 6128 set_load_weight(p);
1da177e4
LT
6129}
6130
c69e8d9c
DH
6131/*
6132 * check the target process has a UID that matches the current process's
6133 */
6134static bool check_same_owner(struct task_struct *p)
6135{
6136 const struct cred *cred = current_cred(), *pcred;
6137 bool match;
6138
6139 rcu_read_lock();
6140 pcred = __task_cred(p);
6141 match = (cred->euid == pcred->euid ||
6142 cred->euid == pcred->uid);
6143 rcu_read_unlock();
6144 return match;
6145}
6146
961ccddd
RR
6147static int __sched_setscheduler(struct task_struct *p, int policy,
6148 struct sched_param *param, bool user)
1da177e4 6149{
83b699ed 6150 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6151 unsigned long flags;
cb469845 6152 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6153 struct rq *rq;
ca94c442 6154 int reset_on_fork;
1da177e4 6155
66e5393a
SR
6156 /* may grab non-irq protected spin_locks */
6157 BUG_ON(in_interrupt());
1da177e4
LT
6158recheck:
6159 /* double check policy once rq lock held */
ca94c442
LP
6160 if (policy < 0) {
6161 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6162 policy = oldpolicy = p->policy;
ca94c442
LP
6163 } else {
6164 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6165 policy &= ~SCHED_RESET_ON_FORK;
6166
6167 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6168 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6169 policy != SCHED_IDLE)
6170 return -EINVAL;
6171 }
6172
1da177e4
LT
6173 /*
6174 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6175 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6176 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6177 */
6178 if (param->sched_priority < 0 ||
95cdf3b7 6179 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6180 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6181 return -EINVAL;
e05606d3 6182 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6183 return -EINVAL;
6184
37e4ab3f
OC
6185 /*
6186 * Allow unprivileged RT tasks to decrease priority:
6187 */
961ccddd 6188 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6189 if (rt_policy(policy)) {
8dc3e909 6190 unsigned long rlim_rtprio;
8dc3e909
ON
6191
6192 if (!lock_task_sighand(p, &flags))
6193 return -ESRCH;
6194 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6195 unlock_task_sighand(p, &flags);
6196
6197 /* can't set/change the rt policy */
6198 if (policy != p->policy && !rlim_rtprio)
6199 return -EPERM;
6200
6201 /* can't increase priority */
6202 if (param->sched_priority > p->rt_priority &&
6203 param->sched_priority > rlim_rtprio)
6204 return -EPERM;
6205 }
dd41f596
IM
6206 /*
6207 * Like positive nice levels, dont allow tasks to
6208 * move out of SCHED_IDLE either:
6209 */
6210 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6211 return -EPERM;
5fe1d75f 6212
37e4ab3f 6213 /* can't change other user's priorities */
c69e8d9c 6214 if (!check_same_owner(p))
37e4ab3f 6215 return -EPERM;
ca94c442
LP
6216
6217 /* Normal users shall not reset the sched_reset_on_fork flag */
6218 if (p->sched_reset_on_fork && !reset_on_fork)
6219 return -EPERM;
37e4ab3f 6220 }
1da177e4 6221
725aad24 6222 if (user) {
b68aa230 6223#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6224 /*
6225 * Do not allow realtime tasks into groups that have no runtime
6226 * assigned.
6227 */
9a7e0b18
PZ
6228 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6229 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6230 return -EPERM;
b68aa230
PZ
6231#endif
6232
725aad24
JF
6233 retval = security_task_setscheduler(p, policy, param);
6234 if (retval)
6235 return retval;
6236 }
6237
b29739f9
IM
6238 /*
6239 * make sure no PI-waiters arrive (or leave) while we are
6240 * changing the priority of the task:
6241 */
6242 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6243 /*
6244 * To be able to change p->policy safely, the apropriate
6245 * runqueue lock must be held.
6246 */
b29739f9 6247 rq = __task_rq_lock(p);
1da177e4
LT
6248 /* recheck policy now with rq lock held */
6249 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6250 policy = oldpolicy = -1;
b29739f9
IM
6251 __task_rq_unlock(rq);
6252 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6253 goto recheck;
6254 }
2daa3577 6255 update_rq_clock(rq);
dd41f596 6256 on_rq = p->se.on_rq;
051a1d1a 6257 running = task_current(rq, p);
0e1f3483 6258 if (on_rq)
2e1cb74a 6259 deactivate_task(rq, p, 0);
0e1f3483
HS
6260 if (running)
6261 p->sched_class->put_prev_task(rq, p);
f6b53205 6262
ca94c442
LP
6263 p->sched_reset_on_fork = reset_on_fork;
6264
1da177e4 6265 oldprio = p->prio;
dd41f596 6266 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6267
0e1f3483
HS
6268 if (running)
6269 p->sched_class->set_curr_task(rq);
dd41f596
IM
6270 if (on_rq) {
6271 activate_task(rq, p, 0);
cb469845
SR
6272
6273 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6274 }
b29739f9
IM
6275 __task_rq_unlock(rq);
6276 spin_unlock_irqrestore(&p->pi_lock, flags);
6277
95e02ca9
TG
6278 rt_mutex_adjust_pi(p);
6279
1da177e4
LT
6280 return 0;
6281}
961ccddd
RR
6282
6283/**
6284 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6285 * @p: the task in question.
6286 * @policy: new policy.
6287 * @param: structure containing the new RT priority.
6288 *
6289 * NOTE that the task may be already dead.
6290 */
6291int sched_setscheduler(struct task_struct *p, int policy,
6292 struct sched_param *param)
6293{
6294 return __sched_setscheduler(p, policy, param, true);
6295}
1da177e4
LT
6296EXPORT_SYMBOL_GPL(sched_setscheduler);
6297
961ccddd
RR
6298/**
6299 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6300 * @p: the task in question.
6301 * @policy: new policy.
6302 * @param: structure containing the new RT priority.
6303 *
6304 * Just like sched_setscheduler, only don't bother checking if the
6305 * current context has permission. For example, this is needed in
6306 * stop_machine(): we create temporary high priority worker threads,
6307 * but our caller might not have that capability.
6308 */
6309int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6310 struct sched_param *param)
6311{
6312 return __sched_setscheduler(p, policy, param, false);
6313}
6314
95cdf3b7
IM
6315static int
6316do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6317{
1da177e4
LT
6318 struct sched_param lparam;
6319 struct task_struct *p;
36c8b586 6320 int retval;
1da177e4
LT
6321
6322 if (!param || pid < 0)
6323 return -EINVAL;
6324 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6325 return -EFAULT;
5fe1d75f
ON
6326
6327 rcu_read_lock();
6328 retval = -ESRCH;
1da177e4 6329 p = find_process_by_pid(pid);
5fe1d75f
ON
6330 if (p != NULL)
6331 retval = sched_setscheduler(p, policy, &lparam);
6332 rcu_read_unlock();
36c8b586 6333
1da177e4
LT
6334 return retval;
6335}
6336
6337/**
6338 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6339 * @pid: the pid in question.
6340 * @policy: new policy.
6341 * @param: structure containing the new RT priority.
6342 */
5add95d4
HC
6343SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6344 struct sched_param __user *, param)
1da177e4 6345{
c21761f1
JB
6346 /* negative values for policy are not valid */
6347 if (policy < 0)
6348 return -EINVAL;
6349
1da177e4
LT
6350 return do_sched_setscheduler(pid, policy, param);
6351}
6352
6353/**
6354 * sys_sched_setparam - set/change the RT priority of a thread
6355 * @pid: the pid in question.
6356 * @param: structure containing the new RT priority.
6357 */
5add95d4 6358SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6359{
6360 return do_sched_setscheduler(pid, -1, param);
6361}
6362
6363/**
6364 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6365 * @pid: the pid in question.
6366 */
5add95d4 6367SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6368{
36c8b586 6369 struct task_struct *p;
3a5c359a 6370 int retval;
1da177e4
LT
6371
6372 if (pid < 0)
3a5c359a 6373 return -EINVAL;
1da177e4
LT
6374
6375 retval = -ESRCH;
6376 read_lock(&tasklist_lock);
6377 p = find_process_by_pid(pid);
6378 if (p) {
6379 retval = security_task_getscheduler(p);
6380 if (!retval)
ca94c442
LP
6381 retval = p->policy
6382 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6383 }
6384 read_unlock(&tasklist_lock);
1da177e4
LT
6385 return retval;
6386}
6387
6388/**
ca94c442 6389 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6390 * @pid: the pid in question.
6391 * @param: structure containing the RT priority.
6392 */
5add95d4 6393SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6394{
6395 struct sched_param lp;
36c8b586 6396 struct task_struct *p;
3a5c359a 6397 int retval;
1da177e4
LT
6398
6399 if (!param || pid < 0)
3a5c359a 6400 return -EINVAL;
1da177e4
LT
6401
6402 read_lock(&tasklist_lock);
6403 p = find_process_by_pid(pid);
6404 retval = -ESRCH;
6405 if (!p)
6406 goto out_unlock;
6407
6408 retval = security_task_getscheduler(p);
6409 if (retval)
6410 goto out_unlock;
6411
6412 lp.sched_priority = p->rt_priority;
6413 read_unlock(&tasklist_lock);
6414
6415 /*
6416 * This one might sleep, we cannot do it with a spinlock held ...
6417 */
6418 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6419
1da177e4
LT
6420 return retval;
6421
6422out_unlock:
6423 read_unlock(&tasklist_lock);
6424 return retval;
6425}
6426
96f874e2 6427long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6428{
5a16f3d3 6429 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6430 struct task_struct *p;
6431 int retval;
1da177e4 6432
95402b38 6433 get_online_cpus();
1da177e4
LT
6434 read_lock(&tasklist_lock);
6435
6436 p = find_process_by_pid(pid);
6437 if (!p) {
6438 read_unlock(&tasklist_lock);
95402b38 6439 put_online_cpus();
1da177e4
LT
6440 return -ESRCH;
6441 }
6442
6443 /*
6444 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6445 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6446 * usage count and then drop tasklist_lock.
6447 */
6448 get_task_struct(p);
6449 read_unlock(&tasklist_lock);
6450
5a16f3d3
RR
6451 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6452 retval = -ENOMEM;
6453 goto out_put_task;
6454 }
6455 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6456 retval = -ENOMEM;
6457 goto out_free_cpus_allowed;
6458 }
1da177e4 6459 retval = -EPERM;
c69e8d9c 6460 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6461 goto out_unlock;
6462
e7834f8f
DQ
6463 retval = security_task_setscheduler(p, 0, NULL);
6464 if (retval)
6465 goto out_unlock;
6466
5a16f3d3
RR
6467 cpuset_cpus_allowed(p, cpus_allowed);
6468 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6469 again:
5a16f3d3 6470 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6471
8707d8b8 6472 if (!retval) {
5a16f3d3
RR
6473 cpuset_cpus_allowed(p, cpus_allowed);
6474 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6475 /*
6476 * We must have raced with a concurrent cpuset
6477 * update. Just reset the cpus_allowed to the
6478 * cpuset's cpus_allowed
6479 */
5a16f3d3 6480 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6481 goto again;
6482 }
6483 }
1da177e4 6484out_unlock:
5a16f3d3
RR
6485 free_cpumask_var(new_mask);
6486out_free_cpus_allowed:
6487 free_cpumask_var(cpus_allowed);
6488out_put_task:
1da177e4 6489 put_task_struct(p);
95402b38 6490 put_online_cpus();
1da177e4
LT
6491 return retval;
6492}
6493
6494static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6495 struct cpumask *new_mask)
1da177e4 6496{
96f874e2
RR
6497 if (len < cpumask_size())
6498 cpumask_clear(new_mask);
6499 else if (len > cpumask_size())
6500 len = cpumask_size();
6501
1da177e4
LT
6502 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6503}
6504
6505/**
6506 * sys_sched_setaffinity - set the cpu affinity of a process
6507 * @pid: pid of the process
6508 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6509 * @user_mask_ptr: user-space pointer to the new cpu mask
6510 */
5add95d4
HC
6511SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6512 unsigned long __user *, user_mask_ptr)
1da177e4 6513{
5a16f3d3 6514 cpumask_var_t new_mask;
1da177e4
LT
6515 int retval;
6516
5a16f3d3
RR
6517 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6518 return -ENOMEM;
1da177e4 6519
5a16f3d3
RR
6520 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6521 if (retval == 0)
6522 retval = sched_setaffinity(pid, new_mask);
6523 free_cpumask_var(new_mask);
6524 return retval;
1da177e4
LT
6525}
6526
96f874e2 6527long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6528{
36c8b586 6529 struct task_struct *p;
1da177e4 6530 int retval;
1da177e4 6531
95402b38 6532 get_online_cpus();
1da177e4
LT
6533 read_lock(&tasklist_lock);
6534
6535 retval = -ESRCH;
6536 p = find_process_by_pid(pid);
6537 if (!p)
6538 goto out_unlock;
6539
e7834f8f
DQ
6540 retval = security_task_getscheduler(p);
6541 if (retval)
6542 goto out_unlock;
6543
96f874e2 6544 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6545
6546out_unlock:
6547 read_unlock(&tasklist_lock);
95402b38 6548 put_online_cpus();
1da177e4 6549
9531b62f 6550 return retval;
1da177e4
LT
6551}
6552
6553/**
6554 * sys_sched_getaffinity - get the cpu affinity of a process
6555 * @pid: pid of the process
6556 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6557 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6558 */
5add95d4
HC
6559SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6560 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6561{
6562 int ret;
f17c8607 6563 cpumask_var_t mask;
1da177e4 6564
f17c8607 6565 if (len < cpumask_size())
1da177e4
LT
6566 return -EINVAL;
6567
f17c8607
RR
6568 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6569 return -ENOMEM;
1da177e4 6570
f17c8607
RR
6571 ret = sched_getaffinity(pid, mask);
6572 if (ret == 0) {
6573 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6574 ret = -EFAULT;
6575 else
6576 ret = cpumask_size();
6577 }
6578 free_cpumask_var(mask);
1da177e4 6579
f17c8607 6580 return ret;
1da177e4
LT
6581}
6582
6583/**
6584 * sys_sched_yield - yield the current processor to other threads.
6585 *
dd41f596
IM
6586 * This function yields the current CPU to other tasks. If there are no
6587 * other threads running on this CPU then this function will return.
1da177e4 6588 */
5add95d4 6589SYSCALL_DEFINE0(sched_yield)
1da177e4 6590{
70b97a7f 6591 struct rq *rq = this_rq_lock();
1da177e4 6592
2d72376b 6593 schedstat_inc(rq, yld_count);
4530d7ab 6594 current->sched_class->yield_task(rq);
1da177e4
LT
6595
6596 /*
6597 * Since we are going to call schedule() anyway, there's
6598 * no need to preempt or enable interrupts:
6599 */
6600 __release(rq->lock);
8a25d5de 6601 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6602 _raw_spin_unlock(&rq->lock);
6603 preempt_enable_no_resched();
6604
6605 schedule();
6606
6607 return 0;
6608}
6609
d86ee480
PZ
6610static inline int should_resched(void)
6611{
6612 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6613}
6614
e7b38404 6615static void __cond_resched(void)
1da177e4 6616{
e7aaaa69
FW
6617 add_preempt_count(PREEMPT_ACTIVE);
6618 schedule();
6619 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6620}
6621
02b67cc3 6622int __sched _cond_resched(void)
1da177e4 6623{
d86ee480 6624 if (should_resched()) {
1da177e4
LT
6625 __cond_resched();
6626 return 1;
6627 }
6628 return 0;
6629}
02b67cc3 6630EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6631
6632/*
613afbf8 6633 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6634 * call schedule, and on return reacquire the lock.
6635 *
41a2d6cf 6636 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6637 * operations here to prevent schedule() from being called twice (once via
6638 * spin_unlock(), once by hand).
6639 */
613afbf8 6640int __cond_resched_lock(spinlock_t *lock)
1da177e4 6641{
d86ee480 6642 int resched = should_resched();
6df3cecb
JK
6643 int ret = 0;
6644
f607c668
PZ
6645 lockdep_assert_held(lock);
6646
95c354fe 6647 if (spin_needbreak(lock) || resched) {
1da177e4 6648 spin_unlock(lock);
d86ee480 6649 if (resched)
95c354fe
NP
6650 __cond_resched();
6651 else
6652 cpu_relax();
6df3cecb 6653 ret = 1;
1da177e4 6654 spin_lock(lock);
1da177e4 6655 }
6df3cecb 6656 return ret;
1da177e4 6657}
613afbf8 6658EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6659
613afbf8 6660int __sched __cond_resched_softirq(void)
1da177e4
LT
6661{
6662 BUG_ON(!in_softirq());
6663
d86ee480 6664 if (should_resched()) {
98d82567 6665 local_bh_enable();
1da177e4
LT
6666 __cond_resched();
6667 local_bh_disable();
6668 return 1;
6669 }
6670 return 0;
6671}
613afbf8 6672EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6673
1da177e4
LT
6674/**
6675 * yield - yield the current processor to other threads.
6676 *
72fd4a35 6677 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6678 * thread runnable and calls sys_sched_yield().
6679 */
6680void __sched yield(void)
6681{
6682 set_current_state(TASK_RUNNING);
6683 sys_sched_yield();
6684}
1da177e4
LT
6685EXPORT_SYMBOL(yield);
6686
6687/*
41a2d6cf 6688 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6689 * that process accounting knows that this is a task in IO wait state.
6690 *
6691 * But don't do that if it is a deliberate, throttling IO wait (this task
6692 * has set its backing_dev_info: the queue against which it should throttle)
6693 */
6694void __sched io_schedule(void)
6695{
54d35f29 6696 struct rq *rq = raw_rq();
1da177e4 6697
0ff92245 6698 delayacct_blkio_start();
1da177e4 6699 atomic_inc(&rq->nr_iowait);
8f0dfc34 6700 current->in_iowait = 1;
1da177e4 6701 schedule();
8f0dfc34 6702 current->in_iowait = 0;
1da177e4 6703 atomic_dec(&rq->nr_iowait);
0ff92245 6704 delayacct_blkio_end();
1da177e4 6705}
1da177e4
LT
6706EXPORT_SYMBOL(io_schedule);
6707
6708long __sched io_schedule_timeout(long timeout)
6709{
54d35f29 6710 struct rq *rq = raw_rq();
1da177e4
LT
6711 long ret;
6712
0ff92245 6713 delayacct_blkio_start();
1da177e4 6714 atomic_inc(&rq->nr_iowait);
8f0dfc34 6715 current->in_iowait = 1;
1da177e4 6716 ret = schedule_timeout(timeout);
8f0dfc34 6717 current->in_iowait = 0;
1da177e4 6718 atomic_dec(&rq->nr_iowait);
0ff92245 6719 delayacct_blkio_end();
1da177e4
LT
6720 return ret;
6721}
6722
6723/**
6724 * sys_sched_get_priority_max - return maximum RT priority.
6725 * @policy: scheduling class.
6726 *
6727 * this syscall returns the maximum rt_priority that can be used
6728 * by a given scheduling class.
6729 */
5add95d4 6730SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6731{
6732 int ret = -EINVAL;
6733
6734 switch (policy) {
6735 case SCHED_FIFO:
6736 case SCHED_RR:
6737 ret = MAX_USER_RT_PRIO-1;
6738 break;
6739 case SCHED_NORMAL:
b0a9499c 6740 case SCHED_BATCH:
dd41f596 6741 case SCHED_IDLE:
1da177e4
LT
6742 ret = 0;
6743 break;
6744 }
6745 return ret;
6746}
6747
6748/**
6749 * sys_sched_get_priority_min - return minimum RT priority.
6750 * @policy: scheduling class.
6751 *
6752 * this syscall returns the minimum rt_priority that can be used
6753 * by a given scheduling class.
6754 */
5add95d4 6755SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6756{
6757 int ret = -EINVAL;
6758
6759 switch (policy) {
6760 case SCHED_FIFO:
6761 case SCHED_RR:
6762 ret = 1;
6763 break;
6764 case SCHED_NORMAL:
b0a9499c 6765 case SCHED_BATCH:
dd41f596 6766 case SCHED_IDLE:
1da177e4
LT
6767 ret = 0;
6768 }
6769 return ret;
6770}
6771
6772/**
6773 * sys_sched_rr_get_interval - return the default timeslice of a process.
6774 * @pid: pid of the process.
6775 * @interval: userspace pointer to the timeslice value.
6776 *
6777 * this syscall writes the default timeslice value of a given process
6778 * into the user-space timespec buffer. A value of '0' means infinity.
6779 */
17da2bd9 6780SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6781 struct timespec __user *, interval)
1da177e4 6782{
36c8b586 6783 struct task_struct *p;
a4ec24b4 6784 unsigned int time_slice;
3a5c359a 6785 int retval;
1da177e4 6786 struct timespec t;
1da177e4
LT
6787
6788 if (pid < 0)
3a5c359a 6789 return -EINVAL;
1da177e4
LT
6790
6791 retval = -ESRCH;
6792 read_lock(&tasklist_lock);
6793 p = find_process_by_pid(pid);
6794 if (!p)
6795 goto out_unlock;
6796
6797 retval = security_task_getscheduler(p);
6798 if (retval)
6799 goto out_unlock;
6800
77034937
IM
6801 /*
6802 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6803 * tasks that are on an otherwise idle runqueue:
6804 */
6805 time_slice = 0;
6806 if (p->policy == SCHED_RR) {
a4ec24b4 6807 time_slice = DEF_TIMESLICE;
1868f958 6808 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6809 struct sched_entity *se = &p->se;
6810 unsigned long flags;
6811 struct rq *rq;
6812
6813 rq = task_rq_lock(p, &flags);
77034937
IM
6814 if (rq->cfs.load.weight)
6815 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6816 task_rq_unlock(rq, &flags);
6817 }
1da177e4 6818 read_unlock(&tasklist_lock);
a4ec24b4 6819 jiffies_to_timespec(time_slice, &t);
1da177e4 6820 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6821 return retval;
3a5c359a 6822
1da177e4
LT
6823out_unlock:
6824 read_unlock(&tasklist_lock);
6825 return retval;
6826}
6827
7c731e0a 6828static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6829
82a1fcb9 6830void sched_show_task(struct task_struct *p)
1da177e4 6831{
1da177e4 6832 unsigned long free = 0;
36c8b586 6833 unsigned state;
1da177e4 6834
1da177e4 6835 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6836 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6837 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6838#if BITS_PER_LONG == 32
1da177e4 6839 if (state == TASK_RUNNING)
cc4ea795 6840 printk(KERN_CONT " running ");
1da177e4 6841 else
cc4ea795 6842 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6843#else
6844 if (state == TASK_RUNNING)
cc4ea795 6845 printk(KERN_CONT " running task ");
1da177e4 6846 else
cc4ea795 6847 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6848#endif
6849#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6850 free = stack_not_used(p);
1da177e4 6851#endif
aa47b7e0
DR
6852 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6853 task_pid_nr(p), task_pid_nr(p->real_parent),
6854 (unsigned long)task_thread_info(p)->flags);
1da177e4 6855
5fb5e6de 6856 show_stack(p, NULL);
1da177e4
LT
6857}
6858
e59e2ae2 6859void show_state_filter(unsigned long state_filter)
1da177e4 6860{
36c8b586 6861 struct task_struct *g, *p;
1da177e4 6862
4bd77321
IM
6863#if BITS_PER_LONG == 32
6864 printk(KERN_INFO
6865 " task PC stack pid father\n");
1da177e4 6866#else
4bd77321
IM
6867 printk(KERN_INFO
6868 " task PC stack pid father\n");
1da177e4
LT
6869#endif
6870 read_lock(&tasklist_lock);
6871 do_each_thread(g, p) {
6872 /*
6873 * reset the NMI-timeout, listing all files on a slow
6874 * console might take alot of time:
6875 */
6876 touch_nmi_watchdog();
39bc89fd 6877 if (!state_filter || (p->state & state_filter))
82a1fcb9 6878 sched_show_task(p);
1da177e4
LT
6879 } while_each_thread(g, p);
6880
04c9167f
JF
6881 touch_all_softlockup_watchdogs();
6882
dd41f596
IM
6883#ifdef CONFIG_SCHED_DEBUG
6884 sysrq_sched_debug_show();
6885#endif
1da177e4 6886 read_unlock(&tasklist_lock);
e59e2ae2
IM
6887 /*
6888 * Only show locks if all tasks are dumped:
6889 */
6890 if (state_filter == -1)
6891 debug_show_all_locks();
1da177e4
LT
6892}
6893
1df21055
IM
6894void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6895{
dd41f596 6896 idle->sched_class = &idle_sched_class;
1df21055
IM
6897}
6898
f340c0d1
IM
6899/**
6900 * init_idle - set up an idle thread for a given CPU
6901 * @idle: task in question
6902 * @cpu: cpu the idle task belongs to
6903 *
6904 * NOTE: this function does not set the idle thread's NEED_RESCHED
6905 * flag, to make booting more robust.
6906 */
5c1e1767 6907void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6908{
70b97a7f 6909 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6910 unsigned long flags;
6911
5cbd54ef
IM
6912 spin_lock_irqsave(&rq->lock, flags);
6913
dd41f596
IM
6914 __sched_fork(idle);
6915 idle->se.exec_start = sched_clock();
6916
b29739f9 6917 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6918 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6919 __set_task_cpu(idle, cpu);
1da177e4 6920
1da177e4 6921 rq->curr = rq->idle = idle;
4866cde0
NP
6922#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6923 idle->oncpu = 1;
6924#endif
1da177e4
LT
6925 spin_unlock_irqrestore(&rq->lock, flags);
6926
6927 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6928#if defined(CONFIG_PREEMPT)
6929 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6930#else
a1261f54 6931 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6932#endif
dd41f596
IM
6933 /*
6934 * The idle tasks have their own, simple scheduling class:
6935 */
6936 idle->sched_class = &idle_sched_class;
fb52607a 6937 ftrace_graph_init_task(idle);
1da177e4
LT
6938}
6939
6940/*
6941 * In a system that switches off the HZ timer nohz_cpu_mask
6942 * indicates which cpus entered this state. This is used
6943 * in the rcu update to wait only for active cpus. For system
6944 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6945 * always be CPU_BITS_NONE.
1da177e4 6946 */
6a7b3dc3 6947cpumask_var_t nohz_cpu_mask;
1da177e4 6948
19978ca6
IM
6949/*
6950 * Increase the granularity value when there are more CPUs,
6951 * because with more CPUs the 'effective latency' as visible
6952 * to users decreases. But the relationship is not linear,
6953 * so pick a second-best guess by going with the log2 of the
6954 * number of CPUs.
6955 *
6956 * This idea comes from the SD scheduler of Con Kolivas:
6957 */
6958static inline void sched_init_granularity(void)
6959{
6960 unsigned int factor = 1 + ilog2(num_online_cpus());
6961 const unsigned long limit = 200000000;
6962
6963 sysctl_sched_min_granularity *= factor;
6964 if (sysctl_sched_min_granularity > limit)
6965 sysctl_sched_min_granularity = limit;
6966
6967 sysctl_sched_latency *= factor;
6968 if (sysctl_sched_latency > limit)
6969 sysctl_sched_latency = limit;
6970
6971 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6972
6973 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6974}
6975
1da177e4
LT
6976#ifdef CONFIG_SMP
6977/*
6978 * This is how migration works:
6979 *
70b97a7f 6980 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6981 * runqueue and wake up that CPU's migration thread.
6982 * 2) we down() the locked semaphore => thread blocks.
6983 * 3) migration thread wakes up (implicitly it forces the migrated
6984 * thread off the CPU)
6985 * 4) it gets the migration request and checks whether the migrated
6986 * task is still in the wrong runqueue.
6987 * 5) if it's in the wrong runqueue then the migration thread removes
6988 * it and puts it into the right queue.
6989 * 6) migration thread up()s the semaphore.
6990 * 7) we wake up and the migration is done.
6991 */
6992
6993/*
6994 * Change a given task's CPU affinity. Migrate the thread to a
6995 * proper CPU and schedule it away if the CPU it's executing on
6996 * is removed from the allowed bitmask.
6997 *
6998 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6999 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7000 * call is not atomic; no spinlocks may be held.
7001 */
96f874e2 7002int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7003{
70b97a7f 7004 struct migration_req req;
1da177e4 7005 unsigned long flags;
70b97a7f 7006 struct rq *rq;
48f24c4d 7007 int ret = 0;
1da177e4
LT
7008
7009 rq = task_rq_lock(p, &flags);
96f874e2 7010 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7011 ret = -EINVAL;
7012 goto out;
7013 }
7014
9985b0ba 7015 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7016 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7017 ret = -EINVAL;
7018 goto out;
7019 }
7020
73fe6aae 7021 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7022 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7023 else {
96f874e2
RR
7024 cpumask_copy(&p->cpus_allowed, new_mask);
7025 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7026 }
7027
1da177e4 7028 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7029 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7030 goto out;
7031
1e5ce4f4 7032 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7033 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7034 struct task_struct *mt = rq->migration_thread;
7035
7036 get_task_struct(mt);
1da177e4
LT
7037 task_rq_unlock(rq, &flags);
7038 wake_up_process(rq->migration_thread);
693525e3 7039 put_task_struct(mt);
1da177e4
LT
7040 wait_for_completion(&req.done);
7041 tlb_migrate_finish(p->mm);
7042 return 0;
7043 }
7044out:
7045 task_rq_unlock(rq, &flags);
48f24c4d 7046
1da177e4
LT
7047 return ret;
7048}
cd8ba7cd 7049EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7050
7051/*
41a2d6cf 7052 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7053 * this because either it can't run here any more (set_cpus_allowed()
7054 * away from this CPU, or CPU going down), or because we're
7055 * attempting to rebalance this task on exec (sched_exec).
7056 *
7057 * So we race with normal scheduler movements, but that's OK, as long
7058 * as the task is no longer on this CPU.
efc30814
KK
7059 *
7060 * Returns non-zero if task was successfully migrated.
1da177e4 7061 */
efc30814 7062static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7063{
70b97a7f 7064 struct rq *rq_dest, *rq_src;
dd41f596 7065 int ret = 0, on_rq;
1da177e4 7066
e761b772 7067 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7068 return ret;
1da177e4
LT
7069
7070 rq_src = cpu_rq(src_cpu);
7071 rq_dest = cpu_rq(dest_cpu);
7072
7073 double_rq_lock(rq_src, rq_dest);
7074 /* Already moved. */
7075 if (task_cpu(p) != src_cpu)
b1e38734 7076 goto done;
1da177e4 7077 /* Affinity changed (again). */
96f874e2 7078 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7079 goto fail;
1da177e4 7080
dd41f596 7081 on_rq = p->se.on_rq;
6e82a3be 7082 if (on_rq)
2e1cb74a 7083 deactivate_task(rq_src, p, 0);
6e82a3be 7084
1da177e4 7085 set_task_cpu(p, dest_cpu);
dd41f596
IM
7086 if (on_rq) {
7087 activate_task(rq_dest, p, 0);
15afe09b 7088 check_preempt_curr(rq_dest, p, 0);
1da177e4 7089 }
b1e38734 7090done:
efc30814 7091 ret = 1;
b1e38734 7092fail:
1da177e4 7093 double_rq_unlock(rq_src, rq_dest);
efc30814 7094 return ret;
1da177e4
LT
7095}
7096
03b042bf
PM
7097#define RCU_MIGRATION_IDLE 0
7098#define RCU_MIGRATION_NEED_QS 1
7099#define RCU_MIGRATION_GOT_QS 2
7100#define RCU_MIGRATION_MUST_SYNC 3
7101
1da177e4
LT
7102/*
7103 * migration_thread - this is a highprio system thread that performs
7104 * thread migration by bumping thread off CPU then 'pushing' onto
7105 * another runqueue.
7106 */
95cdf3b7 7107static int migration_thread(void *data)
1da177e4 7108{
03b042bf 7109 int badcpu;
1da177e4 7110 int cpu = (long)data;
70b97a7f 7111 struct rq *rq;
1da177e4
LT
7112
7113 rq = cpu_rq(cpu);
7114 BUG_ON(rq->migration_thread != current);
7115
7116 set_current_state(TASK_INTERRUPTIBLE);
7117 while (!kthread_should_stop()) {
70b97a7f 7118 struct migration_req *req;
1da177e4 7119 struct list_head *head;
1da177e4 7120
1da177e4
LT
7121 spin_lock_irq(&rq->lock);
7122
7123 if (cpu_is_offline(cpu)) {
7124 spin_unlock_irq(&rq->lock);
371cbb38 7125 break;
1da177e4
LT
7126 }
7127
7128 if (rq->active_balance) {
7129 active_load_balance(rq, cpu);
7130 rq->active_balance = 0;
7131 }
7132
7133 head = &rq->migration_queue;
7134
7135 if (list_empty(head)) {
7136 spin_unlock_irq(&rq->lock);
7137 schedule();
7138 set_current_state(TASK_INTERRUPTIBLE);
7139 continue;
7140 }
70b97a7f 7141 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7142 list_del_init(head->next);
7143
03b042bf
PM
7144 if (req->task != NULL) {
7145 spin_unlock(&rq->lock);
7146 __migrate_task(req->task, cpu, req->dest_cpu);
7147 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7148 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7149 spin_unlock(&rq->lock);
7150 } else {
7151 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7152 spin_unlock(&rq->lock);
7153 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7154 }
674311d5 7155 local_irq_enable();
1da177e4
LT
7156
7157 complete(&req->done);
7158 }
7159 __set_current_state(TASK_RUNNING);
1da177e4 7160
1da177e4
LT
7161 return 0;
7162}
7163
7164#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7165
7166static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7167{
7168 int ret;
7169
7170 local_irq_disable();
7171 ret = __migrate_task(p, src_cpu, dest_cpu);
7172 local_irq_enable();
7173 return ret;
7174}
7175
054b9108 7176/*
3a4fa0a2 7177 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7178 */
48f24c4d 7179static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7180{
70b97a7f 7181 int dest_cpu;
6ca09dfc 7182 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7183
7184again:
7185 /* Look for allowed, online CPU in same node. */
7186 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7187 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7188 goto move;
7189
7190 /* Any allowed, online CPU? */
7191 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7192 if (dest_cpu < nr_cpu_ids)
7193 goto move;
7194
7195 /* No more Mr. Nice Guy. */
7196 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7197 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7198 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7199
e76bd8d9
RR
7200 /*
7201 * Don't tell them about moving exiting tasks or
7202 * kernel threads (both mm NULL), since they never
7203 * leave kernel.
7204 */
7205 if (p->mm && printk_ratelimit()) {
7206 printk(KERN_INFO "process %d (%s) no "
7207 "longer affine to cpu%d\n",
7208 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7209 }
e76bd8d9
RR
7210 }
7211
7212move:
7213 /* It can have affinity changed while we were choosing. */
7214 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7215 goto again;
1da177e4
LT
7216}
7217
7218/*
7219 * While a dead CPU has no uninterruptible tasks queued at this point,
7220 * it might still have a nonzero ->nr_uninterruptible counter, because
7221 * for performance reasons the counter is not stricly tracking tasks to
7222 * their home CPUs. So we just add the counter to another CPU's counter,
7223 * to keep the global sum constant after CPU-down:
7224 */
70b97a7f 7225static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7226{
1e5ce4f4 7227 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7228 unsigned long flags;
7229
7230 local_irq_save(flags);
7231 double_rq_lock(rq_src, rq_dest);
7232 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7233 rq_src->nr_uninterruptible = 0;
7234 double_rq_unlock(rq_src, rq_dest);
7235 local_irq_restore(flags);
7236}
7237
7238/* Run through task list and migrate tasks from the dead cpu. */
7239static void migrate_live_tasks(int src_cpu)
7240{
48f24c4d 7241 struct task_struct *p, *t;
1da177e4 7242
f7b4cddc 7243 read_lock(&tasklist_lock);
1da177e4 7244
48f24c4d
IM
7245 do_each_thread(t, p) {
7246 if (p == current)
1da177e4
LT
7247 continue;
7248
48f24c4d
IM
7249 if (task_cpu(p) == src_cpu)
7250 move_task_off_dead_cpu(src_cpu, p);
7251 } while_each_thread(t, p);
1da177e4 7252
f7b4cddc 7253 read_unlock(&tasklist_lock);
1da177e4
LT
7254}
7255
dd41f596
IM
7256/*
7257 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7258 * It does so by boosting its priority to highest possible.
7259 * Used by CPU offline code.
1da177e4
LT
7260 */
7261void sched_idle_next(void)
7262{
48f24c4d 7263 int this_cpu = smp_processor_id();
70b97a7f 7264 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7265 struct task_struct *p = rq->idle;
7266 unsigned long flags;
7267
7268 /* cpu has to be offline */
48f24c4d 7269 BUG_ON(cpu_online(this_cpu));
1da177e4 7270
48f24c4d
IM
7271 /*
7272 * Strictly not necessary since rest of the CPUs are stopped by now
7273 * and interrupts disabled on the current cpu.
1da177e4
LT
7274 */
7275 spin_lock_irqsave(&rq->lock, flags);
7276
dd41f596 7277 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7278
94bc9a7b
DA
7279 update_rq_clock(rq);
7280 activate_task(rq, p, 0);
1da177e4
LT
7281
7282 spin_unlock_irqrestore(&rq->lock, flags);
7283}
7284
48f24c4d
IM
7285/*
7286 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7287 * offline.
7288 */
7289void idle_task_exit(void)
7290{
7291 struct mm_struct *mm = current->active_mm;
7292
7293 BUG_ON(cpu_online(smp_processor_id()));
7294
7295 if (mm != &init_mm)
7296 switch_mm(mm, &init_mm, current);
7297 mmdrop(mm);
7298}
7299
054b9108 7300/* called under rq->lock with disabled interrupts */
36c8b586 7301static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7302{
70b97a7f 7303 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7304
7305 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7306 BUG_ON(!p->exit_state);
1da177e4
LT
7307
7308 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7309 BUG_ON(p->state == TASK_DEAD);
1da177e4 7310
48f24c4d 7311 get_task_struct(p);
1da177e4
LT
7312
7313 /*
7314 * Drop lock around migration; if someone else moves it,
41a2d6cf 7315 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7316 * fine.
7317 */
f7b4cddc 7318 spin_unlock_irq(&rq->lock);
48f24c4d 7319 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7320 spin_lock_irq(&rq->lock);
1da177e4 7321
48f24c4d 7322 put_task_struct(p);
1da177e4
LT
7323}
7324
7325/* release_task() removes task from tasklist, so we won't find dead tasks. */
7326static void migrate_dead_tasks(unsigned int dead_cpu)
7327{
70b97a7f 7328 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7329 struct task_struct *next;
48f24c4d 7330
dd41f596
IM
7331 for ( ; ; ) {
7332 if (!rq->nr_running)
7333 break;
a8e504d2 7334 update_rq_clock(rq);
b67802ea 7335 next = pick_next_task(rq);
dd41f596
IM
7336 if (!next)
7337 break;
79c53799 7338 next->sched_class->put_prev_task(rq, next);
dd41f596 7339 migrate_dead(dead_cpu, next);
e692ab53 7340
1da177e4
LT
7341 }
7342}
dce48a84
TG
7343
7344/*
7345 * remove the tasks which were accounted by rq from calc_load_tasks.
7346 */
7347static void calc_global_load_remove(struct rq *rq)
7348{
7349 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7350 rq->calc_load_active = 0;
dce48a84 7351}
1da177e4
LT
7352#endif /* CONFIG_HOTPLUG_CPU */
7353
e692ab53
NP
7354#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7355
7356static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7357 {
7358 .procname = "sched_domain",
c57baf1e 7359 .mode = 0555,
e0361851 7360 },
38605cae 7361 {0, },
e692ab53
NP
7362};
7363
7364static struct ctl_table sd_ctl_root[] = {
e0361851 7365 {
c57baf1e 7366 .ctl_name = CTL_KERN,
e0361851 7367 .procname = "kernel",
c57baf1e 7368 .mode = 0555,
e0361851
AD
7369 .child = sd_ctl_dir,
7370 },
38605cae 7371 {0, },
e692ab53
NP
7372};
7373
7374static struct ctl_table *sd_alloc_ctl_entry(int n)
7375{
7376 struct ctl_table *entry =
5cf9f062 7377 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7378
e692ab53
NP
7379 return entry;
7380}
7381
6382bc90
MM
7382static void sd_free_ctl_entry(struct ctl_table **tablep)
7383{
cd790076 7384 struct ctl_table *entry;
6382bc90 7385
cd790076
MM
7386 /*
7387 * In the intermediate directories, both the child directory and
7388 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7389 * will always be set. In the lowest directory the names are
cd790076
MM
7390 * static strings and all have proc handlers.
7391 */
7392 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7393 if (entry->child)
7394 sd_free_ctl_entry(&entry->child);
cd790076
MM
7395 if (entry->proc_handler == NULL)
7396 kfree(entry->procname);
7397 }
6382bc90
MM
7398
7399 kfree(*tablep);
7400 *tablep = NULL;
7401}
7402
e692ab53 7403static void
e0361851 7404set_table_entry(struct ctl_table *entry,
e692ab53
NP
7405 const char *procname, void *data, int maxlen,
7406 mode_t mode, proc_handler *proc_handler)
7407{
e692ab53
NP
7408 entry->procname = procname;
7409 entry->data = data;
7410 entry->maxlen = maxlen;
7411 entry->mode = mode;
7412 entry->proc_handler = proc_handler;
7413}
7414
7415static struct ctl_table *
7416sd_alloc_ctl_domain_table(struct sched_domain *sd)
7417{
a5d8c348 7418 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7419
ad1cdc1d
MM
7420 if (table == NULL)
7421 return NULL;
7422
e0361851 7423 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7424 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7425 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7426 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7427 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7428 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7429 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7430 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7431 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7432 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7433 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7434 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7435 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7436 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7437 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7438 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7439 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7440 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7441 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7442 &sd->cache_nice_tries,
7443 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7444 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7445 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7446 set_table_entry(&table[11], "name", sd->name,
7447 CORENAME_MAX_SIZE, 0444, proc_dostring);
7448 /* &table[12] is terminator */
e692ab53
NP
7449
7450 return table;
7451}
7452
9a4e7159 7453static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7454{
7455 struct ctl_table *entry, *table;
7456 struct sched_domain *sd;
7457 int domain_num = 0, i;
7458 char buf[32];
7459
7460 for_each_domain(cpu, sd)
7461 domain_num++;
7462 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7463 if (table == NULL)
7464 return NULL;
e692ab53
NP
7465
7466 i = 0;
7467 for_each_domain(cpu, sd) {
7468 snprintf(buf, 32, "domain%d", i);
e692ab53 7469 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7470 entry->mode = 0555;
e692ab53
NP
7471 entry->child = sd_alloc_ctl_domain_table(sd);
7472 entry++;
7473 i++;
7474 }
7475 return table;
7476}
7477
7478static struct ctl_table_header *sd_sysctl_header;
6382bc90 7479static void register_sched_domain_sysctl(void)
e692ab53
NP
7480{
7481 int i, cpu_num = num_online_cpus();
7482 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7483 char buf[32];
7484
7378547f
MM
7485 WARN_ON(sd_ctl_dir[0].child);
7486 sd_ctl_dir[0].child = entry;
7487
ad1cdc1d
MM
7488 if (entry == NULL)
7489 return;
7490
97b6ea7b 7491 for_each_online_cpu(i) {
e692ab53 7492 snprintf(buf, 32, "cpu%d", i);
e692ab53 7493 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7494 entry->mode = 0555;
e692ab53 7495 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7496 entry++;
e692ab53 7497 }
7378547f
MM
7498
7499 WARN_ON(sd_sysctl_header);
e692ab53
NP
7500 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7501}
6382bc90 7502
7378547f 7503/* may be called multiple times per register */
6382bc90
MM
7504static void unregister_sched_domain_sysctl(void)
7505{
7378547f
MM
7506 if (sd_sysctl_header)
7507 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7508 sd_sysctl_header = NULL;
7378547f
MM
7509 if (sd_ctl_dir[0].child)
7510 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7511}
e692ab53 7512#else
6382bc90
MM
7513static void register_sched_domain_sysctl(void)
7514{
7515}
7516static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7517{
7518}
7519#endif
7520
1f11eb6a
GH
7521static void set_rq_online(struct rq *rq)
7522{
7523 if (!rq->online) {
7524 const struct sched_class *class;
7525
c6c4927b 7526 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7527 rq->online = 1;
7528
7529 for_each_class(class) {
7530 if (class->rq_online)
7531 class->rq_online(rq);
7532 }
7533 }
7534}
7535
7536static void set_rq_offline(struct rq *rq)
7537{
7538 if (rq->online) {
7539 const struct sched_class *class;
7540
7541 for_each_class(class) {
7542 if (class->rq_offline)
7543 class->rq_offline(rq);
7544 }
7545
c6c4927b 7546 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7547 rq->online = 0;
7548 }
7549}
7550
1da177e4
LT
7551/*
7552 * migration_call - callback that gets triggered when a CPU is added.
7553 * Here we can start up the necessary migration thread for the new CPU.
7554 */
48f24c4d
IM
7555static int __cpuinit
7556migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7557{
1da177e4 7558 struct task_struct *p;
48f24c4d 7559 int cpu = (long)hcpu;
1da177e4 7560 unsigned long flags;
70b97a7f 7561 struct rq *rq;
1da177e4
LT
7562
7563 switch (action) {
5be9361c 7564
1da177e4 7565 case CPU_UP_PREPARE:
8bb78442 7566 case CPU_UP_PREPARE_FROZEN:
dd41f596 7567 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7568 if (IS_ERR(p))
7569 return NOTIFY_BAD;
1da177e4
LT
7570 kthread_bind(p, cpu);
7571 /* Must be high prio: stop_machine expects to yield to it. */
7572 rq = task_rq_lock(p, &flags);
dd41f596 7573 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7574 task_rq_unlock(rq, &flags);
371cbb38 7575 get_task_struct(p);
1da177e4 7576 cpu_rq(cpu)->migration_thread = p;
a468d389 7577 rq->calc_load_update = calc_load_update;
1da177e4 7578 break;
48f24c4d 7579
1da177e4 7580 case CPU_ONLINE:
8bb78442 7581 case CPU_ONLINE_FROZEN:
3a4fa0a2 7582 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7583 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7584
7585 /* Update our root-domain */
7586 rq = cpu_rq(cpu);
7587 spin_lock_irqsave(&rq->lock, flags);
7588 if (rq->rd) {
c6c4927b 7589 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7590
7591 set_rq_online(rq);
1f94ef59
GH
7592 }
7593 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7594 break;
48f24c4d 7595
1da177e4
LT
7596#ifdef CONFIG_HOTPLUG_CPU
7597 case CPU_UP_CANCELED:
8bb78442 7598 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7599 if (!cpu_rq(cpu)->migration_thread)
7600 break;
41a2d6cf 7601 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7602 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7603 cpumask_any(cpu_online_mask));
1da177e4 7604 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7605 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7606 cpu_rq(cpu)->migration_thread = NULL;
7607 break;
48f24c4d 7608
1da177e4 7609 case CPU_DEAD:
8bb78442 7610 case CPU_DEAD_FROZEN:
470fd646 7611 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7612 migrate_live_tasks(cpu);
7613 rq = cpu_rq(cpu);
7614 kthread_stop(rq->migration_thread);
371cbb38 7615 put_task_struct(rq->migration_thread);
1da177e4
LT
7616 rq->migration_thread = NULL;
7617 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7618 spin_lock_irq(&rq->lock);
a8e504d2 7619 update_rq_clock(rq);
2e1cb74a 7620 deactivate_task(rq, rq->idle, 0);
1da177e4 7621 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7622 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7623 rq->idle->sched_class = &idle_sched_class;
1da177e4 7624 migrate_dead_tasks(cpu);
d2da272a 7625 spin_unlock_irq(&rq->lock);
470fd646 7626 cpuset_unlock();
1da177e4
LT
7627 migrate_nr_uninterruptible(rq);
7628 BUG_ON(rq->nr_running != 0);
dce48a84 7629 calc_global_load_remove(rq);
41a2d6cf
IM
7630 /*
7631 * No need to migrate the tasks: it was best-effort if
7632 * they didn't take sched_hotcpu_mutex. Just wake up
7633 * the requestors.
7634 */
1da177e4
LT
7635 spin_lock_irq(&rq->lock);
7636 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7637 struct migration_req *req;
7638
1da177e4 7639 req = list_entry(rq->migration_queue.next,
70b97a7f 7640 struct migration_req, list);
1da177e4 7641 list_del_init(&req->list);
9a2bd244 7642 spin_unlock_irq(&rq->lock);
1da177e4 7643 complete(&req->done);
9a2bd244 7644 spin_lock_irq(&rq->lock);
1da177e4
LT
7645 }
7646 spin_unlock_irq(&rq->lock);
7647 break;
57d885fe 7648
08f503b0
GH
7649 case CPU_DYING:
7650 case CPU_DYING_FROZEN:
57d885fe
GH
7651 /* Update our root-domain */
7652 rq = cpu_rq(cpu);
7653 spin_lock_irqsave(&rq->lock, flags);
7654 if (rq->rd) {
c6c4927b 7655 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7656 set_rq_offline(rq);
57d885fe
GH
7657 }
7658 spin_unlock_irqrestore(&rq->lock, flags);
7659 break;
1da177e4
LT
7660#endif
7661 }
7662 return NOTIFY_OK;
7663}
7664
f38b0820
PM
7665/*
7666 * Register at high priority so that task migration (migrate_all_tasks)
7667 * happens before everything else. This has to be lower priority than
7668 * the notifier in the perf_counter subsystem, though.
1da177e4 7669 */
26c2143b 7670static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7671 .notifier_call = migration_call,
7672 .priority = 10
7673};
7674
7babe8db 7675static int __init migration_init(void)
1da177e4
LT
7676{
7677 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7678 int err;
48f24c4d
IM
7679
7680 /* Start one for the boot CPU: */
07dccf33
AM
7681 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7682 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7683 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7684 register_cpu_notifier(&migration_notifier);
7babe8db 7685
a004cd42 7686 return 0;
1da177e4 7687}
7babe8db 7688early_initcall(migration_init);
1da177e4
LT
7689#endif
7690
7691#ifdef CONFIG_SMP
476f3534 7692
3e9830dc 7693#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7694
7c16ec58 7695static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7696 struct cpumask *groupmask)
1da177e4 7697{
4dcf6aff 7698 struct sched_group *group = sd->groups;
434d53b0 7699 char str[256];
1da177e4 7700
968ea6d8 7701 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7702 cpumask_clear(groupmask);
4dcf6aff
IM
7703
7704 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7705
7706 if (!(sd->flags & SD_LOAD_BALANCE)) {
7707 printk("does not load-balance\n");
7708 if (sd->parent)
7709 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7710 " has parent");
7711 return -1;
41c7ce9a
NP
7712 }
7713
eefd796a 7714 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7715
758b2cdc 7716 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7717 printk(KERN_ERR "ERROR: domain->span does not contain "
7718 "CPU%d\n", cpu);
7719 }
758b2cdc 7720 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7721 printk(KERN_ERR "ERROR: domain->groups does not contain"
7722 " CPU%d\n", cpu);
7723 }
1da177e4 7724
4dcf6aff 7725 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7726 do {
4dcf6aff
IM
7727 if (!group) {
7728 printk("\n");
7729 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7730 break;
7731 }
7732
18a3885f 7733 if (!group->cpu_power) {
4dcf6aff
IM
7734 printk(KERN_CONT "\n");
7735 printk(KERN_ERR "ERROR: domain->cpu_power not "
7736 "set\n");
7737 break;
7738 }
1da177e4 7739
758b2cdc 7740 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7741 printk(KERN_CONT "\n");
7742 printk(KERN_ERR "ERROR: empty group\n");
7743 break;
7744 }
1da177e4 7745
758b2cdc 7746 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7747 printk(KERN_CONT "\n");
7748 printk(KERN_ERR "ERROR: repeated CPUs\n");
7749 break;
7750 }
1da177e4 7751
758b2cdc 7752 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7753
968ea6d8 7754 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7755
7756 printk(KERN_CONT " %s", str);
18a3885f
PZ
7757 if (group->cpu_power != SCHED_LOAD_SCALE) {
7758 printk(KERN_CONT " (cpu_power = %d)",
7759 group->cpu_power);
381512cf 7760 }
1da177e4 7761
4dcf6aff
IM
7762 group = group->next;
7763 } while (group != sd->groups);
7764 printk(KERN_CONT "\n");
1da177e4 7765
758b2cdc 7766 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7767 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7768
758b2cdc
RR
7769 if (sd->parent &&
7770 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7771 printk(KERN_ERR "ERROR: parent span is not a superset "
7772 "of domain->span\n");
7773 return 0;
7774}
1da177e4 7775
4dcf6aff
IM
7776static void sched_domain_debug(struct sched_domain *sd, int cpu)
7777{
d5dd3db1 7778 cpumask_var_t groupmask;
4dcf6aff 7779 int level = 0;
1da177e4 7780
4dcf6aff
IM
7781 if (!sd) {
7782 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7783 return;
7784 }
1da177e4 7785
4dcf6aff
IM
7786 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7787
d5dd3db1 7788 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7789 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7790 return;
7791 }
7792
4dcf6aff 7793 for (;;) {
7c16ec58 7794 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7795 break;
1da177e4
LT
7796 level++;
7797 sd = sd->parent;
33859f7f 7798 if (!sd)
4dcf6aff
IM
7799 break;
7800 }
d5dd3db1 7801 free_cpumask_var(groupmask);
1da177e4 7802}
6d6bc0ad 7803#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7804# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7805#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7806
1a20ff27 7807static int sd_degenerate(struct sched_domain *sd)
245af2c7 7808{
758b2cdc 7809 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7810 return 1;
7811
7812 /* Following flags need at least 2 groups */
7813 if (sd->flags & (SD_LOAD_BALANCE |
7814 SD_BALANCE_NEWIDLE |
7815 SD_BALANCE_FORK |
89c4710e
SS
7816 SD_BALANCE_EXEC |
7817 SD_SHARE_CPUPOWER |
7818 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7819 if (sd->groups != sd->groups->next)
7820 return 0;
7821 }
7822
7823 /* Following flags don't use groups */
c88d5910 7824 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7825 return 0;
7826
7827 return 1;
7828}
7829
48f24c4d
IM
7830static int
7831sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7832{
7833 unsigned long cflags = sd->flags, pflags = parent->flags;
7834
7835 if (sd_degenerate(parent))
7836 return 1;
7837
758b2cdc 7838 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7839 return 0;
7840
245af2c7
SS
7841 /* Flags needing groups don't count if only 1 group in parent */
7842 if (parent->groups == parent->groups->next) {
7843 pflags &= ~(SD_LOAD_BALANCE |
7844 SD_BALANCE_NEWIDLE |
7845 SD_BALANCE_FORK |
89c4710e
SS
7846 SD_BALANCE_EXEC |
7847 SD_SHARE_CPUPOWER |
7848 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7849 if (nr_node_ids == 1)
7850 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7851 }
7852 if (~cflags & pflags)
7853 return 0;
7854
7855 return 1;
7856}
7857
c6c4927b
RR
7858static void free_rootdomain(struct root_domain *rd)
7859{
68e74568
RR
7860 cpupri_cleanup(&rd->cpupri);
7861
c6c4927b
RR
7862 free_cpumask_var(rd->rto_mask);
7863 free_cpumask_var(rd->online);
7864 free_cpumask_var(rd->span);
7865 kfree(rd);
7866}
7867
57d885fe
GH
7868static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7869{
a0490fa3 7870 struct root_domain *old_rd = NULL;
57d885fe 7871 unsigned long flags;
57d885fe
GH
7872
7873 spin_lock_irqsave(&rq->lock, flags);
7874
7875 if (rq->rd) {
a0490fa3 7876 old_rd = rq->rd;
57d885fe 7877
c6c4927b 7878 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7879 set_rq_offline(rq);
57d885fe 7880
c6c4927b 7881 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7882
a0490fa3
IM
7883 /*
7884 * If we dont want to free the old_rt yet then
7885 * set old_rd to NULL to skip the freeing later
7886 * in this function:
7887 */
7888 if (!atomic_dec_and_test(&old_rd->refcount))
7889 old_rd = NULL;
57d885fe
GH
7890 }
7891
7892 atomic_inc(&rd->refcount);
7893 rq->rd = rd;
7894
c6c4927b 7895 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7896 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7897 set_rq_online(rq);
57d885fe
GH
7898
7899 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7900
7901 if (old_rd)
7902 free_rootdomain(old_rd);
57d885fe
GH
7903}
7904
fd5e1b5d 7905static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7906{
36b7b6d4
PE
7907 gfp_t gfp = GFP_KERNEL;
7908
57d885fe
GH
7909 memset(rd, 0, sizeof(*rd));
7910
36b7b6d4
PE
7911 if (bootmem)
7912 gfp = GFP_NOWAIT;
c6c4927b 7913
36b7b6d4 7914 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7915 goto out;
36b7b6d4 7916 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7917 goto free_span;
36b7b6d4 7918 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7919 goto free_online;
6e0534f2 7920
0fb53029 7921 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7922 goto free_rto_mask;
c6c4927b 7923 return 0;
6e0534f2 7924
68e74568
RR
7925free_rto_mask:
7926 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7927free_online:
7928 free_cpumask_var(rd->online);
7929free_span:
7930 free_cpumask_var(rd->span);
0c910d28 7931out:
c6c4927b 7932 return -ENOMEM;
57d885fe
GH
7933}
7934
7935static void init_defrootdomain(void)
7936{
c6c4927b
RR
7937 init_rootdomain(&def_root_domain, true);
7938
57d885fe
GH
7939 atomic_set(&def_root_domain.refcount, 1);
7940}
7941
dc938520 7942static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7943{
7944 struct root_domain *rd;
7945
7946 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7947 if (!rd)
7948 return NULL;
7949
c6c4927b
RR
7950 if (init_rootdomain(rd, false) != 0) {
7951 kfree(rd);
7952 return NULL;
7953 }
57d885fe
GH
7954
7955 return rd;
7956}
7957
1da177e4 7958/*
0eab9146 7959 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7960 * hold the hotplug lock.
7961 */
0eab9146
IM
7962static void
7963cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7964{
70b97a7f 7965 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7966 struct sched_domain *tmp;
7967
7968 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7969 for (tmp = sd; tmp; ) {
245af2c7
SS
7970 struct sched_domain *parent = tmp->parent;
7971 if (!parent)
7972 break;
f29c9b1c 7973
1a848870 7974 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7975 tmp->parent = parent->parent;
1a848870
SS
7976 if (parent->parent)
7977 parent->parent->child = tmp;
f29c9b1c
LZ
7978 } else
7979 tmp = tmp->parent;
245af2c7
SS
7980 }
7981
1a848870 7982 if (sd && sd_degenerate(sd)) {
245af2c7 7983 sd = sd->parent;
1a848870
SS
7984 if (sd)
7985 sd->child = NULL;
7986 }
1da177e4
LT
7987
7988 sched_domain_debug(sd, cpu);
7989
57d885fe 7990 rq_attach_root(rq, rd);
674311d5 7991 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7992}
7993
7994/* cpus with isolated domains */
dcc30a35 7995static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7996
7997/* Setup the mask of cpus configured for isolated domains */
7998static int __init isolated_cpu_setup(char *str)
7999{
968ea6d8 8000 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8001 return 1;
8002}
8003
8927f494 8004__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8005
8006/*
6711cab4
SS
8007 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8008 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8009 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8010 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8011 *
8012 * init_sched_build_groups will build a circular linked list of the groups
8013 * covered by the given span, and will set each group's ->cpumask correctly,
8014 * and ->cpu_power to 0.
8015 */
a616058b 8016static void
96f874e2
RR
8017init_sched_build_groups(const struct cpumask *span,
8018 const struct cpumask *cpu_map,
8019 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8020 struct sched_group **sg,
96f874e2
RR
8021 struct cpumask *tmpmask),
8022 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8023{
8024 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8025 int i;
8026
96f874e2 8027 cpumask_clear(covered);
7c16ec58 8028
abcd083a 8029 for_each_cpu(i, span) {
6711cab4 8030 struct sched_group *sg;
7c16ec58 8031 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8032 int j;
8033
758b2cdc 8034 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8035 continue;
8036
758b2cdc 8037 cpumask_clear(sched_group_cpus(sg));
18a3885f 8038 sg->cpu_power = 0;
1da177e4 8039
abcd083a 8040 for_each_cpu(j, span) {
7c16ec58 8041 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8042 continue;
8043
96f874e2 8044 cpumask_set_cpu(j, covered);
758b2cdc 8045 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8046 }
8047 if (!first)
8048 first = sg;
8049 if (last)
8050 last->next = sg;
8051 last = sg;
8052 }
8053 last->next = first;
8054}
8055
9c1cfda2 8056#define SD_NODES_PER_DOMAIN 16
1da177e4 8057
9c1cfda2 8058#ifdef CONFIG_NUMA
198e2f18 8059
9c1cfda2
JH
8060/**
8061 * find_next_best_node - find the next node to include in a sched_domain
8062 * @node: node whose sched_domain we're building
8063 * @used_nodes: nodes already in the sched_domain
8064 *
41a2d6cf 8065 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8066 * finds the closest node not already in the @used_nodes map.
8067 *
8068 * Should use nodemask_t.
8069 */
c5f59f08 8070static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8071{
8072 int i, n, val, min_val, best_node = 0;
8073
8074 min_val = INT_MAX;
8075
076ac2af 8076 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8077 /* Start at @node */
076ac2af 8078 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8079
8080 if (!nr_cpus_node(n))
8081 continue;
8082
8083 /* Skip already used nodes */
c5f59f08 8084 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8085 continue;
8086
8087 /* Simple min distance search */
8088 val = node_distance(node, n);
8089
8090 if (val < min_val) {
8091 min_val = val;
8092 best_node = n;
8093 }
8094 }
8095
c5f59f08 8096 node_set(best_node, *used_nodes);
9c1cfda2
JH
8097 return best_node;
8098}
8099
8100/**
8101 * sched_domain_node_span - get a cpumask for a node's sched_domain
8102 * @node: node whose cpumask we're constructing
73486722 8103 * @span: resulting cpumask
9c1cfda2 8104 *
41a2d6cf 8105 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8106 * should be one that prevents unnecessary balancing, but also spreads tasks
8107 * out optimally.
8108 */
96f874e2 8109static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8110{
c5f59f08 8111 nodemask_t used_nodes;
48f24c4d 8112 int i;
9c1cfda2 8113
6ca09dfc 8114 cpumask_clear(span);
c5f59f08 8115 nodes_clear(used_nodes);
9c1cfda2 8116
6ca09dfc 8117 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8118 node_set(node, used_nodes);
9c1cfda2
JH
8119
8120 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8121 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8122
6ca09dfc 8123 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8124 }
9c1cfda2 8125}
6d6bc0ad 8126#endif /* CONFIG_NUMA */
9c1cfda2 8127
5c45bf27 8128int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8129
6c99e9ad
RR
8130/*
8131 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8132 *
8133 * ( See the the comments in include/linux/sched.h:struct sched_group
8134 * and struct sched_domain. )
6c99e9ad
RR
8135 */
8136struct static_sched_group {
8137 struct sched_group sg;
8138 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8139};
8140
8141struct static_sched_domain {
8142 struct sched_domain sd;
8143 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8144};
8145
49a02c51
AH
8146struct s_data {
8147#ifdef CONFIG_NUMA
8148 int sd_allnodes;
8149 cpumask_var_t domainspan;
8150 cpumask_var_t covered;
8151 cpumask_var_t notcovered;
8152#endif
8153 cpumask_var_t nodemask;
8154 cpumask_var_t this_sibling_map;
8155 cpumask_var_t this_core_map;
8156 cpumask_var_t send_covered;
8157 cpumask_var_t tmpmask;
8158 struct sched_group **sched_group_nodes;
8159 struct root_domain *rd;
8160};
8161
2109b99e
AH
8162enum s_alloc {
8163 sa_sched_groups = 0,
8164 sa_rootdomain,
8165 sa_tmpmask,
8166 sa_send_covered,
8167 sa_this_core_map,
8168 sa_this_sibling_map,
8169 sa_nodemask,
8170 sa_sched_group_nodes,
8171#ifdef CONFIG_NUMA
8172 sa_notcovered,
8173 sa_covered,
8174 sa_domainspan,
8175#endif
8176 sa_none,
8177};
8178
9c1cfda2 8179/*
48f24c4d 8180 * SMT sched-domains:
9c1cfda2 8181 */
1da177e4 8182#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8183static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8184static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8185
41a2d6cf 8186static int
96f874e2
RR
8187cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8188 struct sched_group **sg, struct cpumask *unused)
1da177e4 8189{
6711cab4 8190 if (sg)
6c99e9ad 8191 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8192 return cpu;
8193}
6d6bc0ad 8194#endif /* CONFIG_SCHED_SMT */
1da177e4 8195
48f24c4d
IM
8196/*
8197 * multi-core sched-domains:
8198 */
1e9f28fa 8199#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8200static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8201static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8202#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8203
8204#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8205static int
96f874e2
RR
8206cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8207 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8208{
6711cab4 8209 int group;
7c16ec58 8210
c69fc56d 8211 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8212 group = cpumask_first(mask);
6711cab4 8213 if (sg)
6c99e9ad 8214 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8215 return group;
1e9f28fa
SS
8216}
8217#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8218static int
96f874e2
RR
8219cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8220 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8221{
6711cab4 8222 if (sg)
6c99e9ad 8223 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8224 return cpu;
8225}
8226#endif
8227
6c99e9ad
RR
8228static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8229static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8230
41a2d6cf 8231static int
96f874e2
RR
8232cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8233 struct sched_group **sg, struct cpumask *mask)
1da177e4 8234{
6711cab4 8235 int group;
48f24c4d 8236#ifdef CONFIG_SCHED_MC
6ca09dfc 8237 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8238 group = cpumask_first(mask);
1e9f28fa 8239#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8240 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8241 group = cpumask_first(mask);
1da177e4 8242#else
6711cab4 8243 group = cpu;
1da177e4 8244#endif
6711cab4 8245 if (sg)
6c99e9ad 8246 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8247 return group;
1da177e4
LT
8248}
8249
8250#ifdef CONFIG_NUMA
1da177e4 8251/*
9c1cfda2
JH
8252 * The init_sched_build_groups can't handle what we want to do with node
8253 * groups, so roll our own. Now each node has its own list of groups which
8254 * gets dynamically allocated.
1da177e4 8255 */
62ea9ceb 8256static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8257static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8258
62ea9ceb 8259static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8260static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8261
96f874e2
RR
8262static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8263 struct sched_group **sg,
8264 struct cpumask *nodemask)
9c1cfda2 8265{
6711cab4
SS
8266 int group;
8267
6ca09dfc 8268 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8269 group = cpumask_first(nodemask);
6711cab4
SS
8270
8271 if (sg)
6c99e9ad 8272 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8273 return group;
1da177e4 8274}
6711cab4 8275
08069033
SS
8276static void init_numa_sched_groups_power(struct sched_group *group_head)
8277{
8278 struct sched_group *sg = group_head;
8279 int j;
8280
8281 if (!sg)
8282 return;
3a5c359a 8283 do {
758b2cdc 8284 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8285 struct sched_domain *sd;
08069033 8286
6c99e9ad 8287 sd = &per_cpu(phys_domains, j).sd;
13318a71 8288 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8289 /*
8290 * Only add "power" once for each
8291 * physical package.
8292 */
8293 continue;
8294 }
08069033 8295
18a3885f 8296 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8297 }
8298 sg = sg->next;
8299 } while (sg != group_head);
08069033 8300}
0601a88d
AH
8301
8302static int build_numa_sched_groups(struct s_data *d,
8303 const struct cpumask *cpu_map, int num)
8304{
8305 struct sched_domain *sd;
8306 struct sched_group *sg, *prev;
8307 int n, j;
8308
8309 cpumask_clear(d->covered);
8310 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8311 if (cpumask_empty(d->nodemask)) {
8312 d->sched_group_nodes[num] = NULL;
8313 goto out;
8314 }
8315
8316 sched_domain_node_span(num, d->domainspan);
8317 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8318
8319 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8320 GFP_KERNEL, num);
8321 if (!sg) {
8322 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8323 num);
8324 return -ENOMEM;
8325 }
8326 d->sched_group_nodes[num] = sg;
8327
8328 for_each_cpu(j, d->nodemask) {
8329 sd = &per_cpu(node_domains, j).sd;
8330 sd->groups = sg;
8331 }
8332
18a3885f 8333 sg->cpu_power = 0;
0601a88d
AH
8334 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8335 sg->next = sg;
8336 cpumask_or(d->covered, d->covered, d->nodemask);
8337
8338 prev = sg;
8339 for (j = 0; j < nr_node_ids; j++) {
8340 n = (num + j) % nr_node_ids;
8341 cpumask_complement(d->notcovered, d->covered);
8342 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8343 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8344 if (cpumask_empty(d->tmpmask))
8345 break;
8346 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8347 if (cpumask_empty(d->tmpmask))
8348 continue;
8349 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8350 GFP_KERNEL, num);
8351 if (!sg) {
8352 printk(KERN_WARNING
8353 "Can not alloc domain group for node %d\n", j);
8354 return -ENOMEM;
8355 }
18a3885f 8356 sg->cpu_power = 0;
0601a88d
AH
8357 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8358 sg->next = prev->next;
8359 cpumask_or(d->covered, d->covered, d->tmpmask);
8360 prev->next = sg;
8361 prev = sg;
8362 }
8363out:
8364 return 0;
8365}
6d6bc0ad 8366#endif /* CONFIG_NUMA */
1da177e4 8367
a616058b 8368#ifdef CONFIG_NUMA
51888ca2 8369/* Free memory allocated for various sched_group structures */
96f874e2
RR
8370static void free_sched_groups(const struct cpumask *cpu_map,
8371 struct cpumask *nodemask)
51888ca2 8372{
a616058b 8373 int cpu, i;
51888ca2 8374
abcd083a 8375 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8376 struct sched_group **sched_group_nodes
8377 = sched_group_nodes_bycpu[cpu];
8378
51888ca2
SV
8379 if (!sched_group_nodes)
8380 continue;
8381
076ac2af 8382 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8383 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8384
6ca09dfc 8385 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8386 if (cpumask_empty(nodemask))
51888ca2
SV
8387 continue;
8388
8389 if (sg == NULL)
8390 continue;
8391 sg = sg->next;
8392next_sg:
8393 oldsg = sg;
8394 sg = sg->next;
8395 kfree(oldsg);
8396 if (oldsg != sched_group_nodes[i])
8397 goto next_sg;
8398 }
8399 kfree(sched_group_nodes);
8400 sched_group_nodes_bycpu[cpu] = NULL;
8401 }
51888ca2 8402}
6d6bc0ad 8403#else /* !CONFIG_NUMA */
96f874e2
RR
8404static void free_sched_groups(const struct cpumask *cpu_map,
8405 struct cpumask *nodemask)
a616058b
SS
8406{
8407}
6d6bc0ad 8408#endif /* CONFIG_NUMA */
51888ca2 8409
89c4710e
SS
8410/*
8411 * Initialize sched groups cpu_power.
8412 *
8413 * cpu_power indicates the capacity of sched group, which is used while
8414 * distributing the load between different sched groups in a sched domain.
8415 * Typically cpu_power for all the groups in a sched domain will be same unless
8416 * there are asymmetries in the topology. If there are asymmetries, group
8417 * having more cpu_power will pickup more load compared to the group having
8418 * less cpu_power.
89c4710e
SS
8419 */
8420static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8421{
8422 struct sched_domain *child;
8423 struct sched_group *group;
f93e65c1
PZ
8424 long power;
8425 int weight;
89c4710e
SS
8426
8427 WARN_ON(!sd || !sd->groups);
8428
13318a71 8429 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8430 return;
8431
8432 child = sd->child;
8433
18a3885f 8434 sd->groups->cpu_power = 0;
5517d86b 8435
f93e65c1
PZ
8436 if (!child) {
8437 power = SCHED_LOAD_SCALE;
8438 weight = cpumask_weight(sched_domain_span(sd));
8439 /*
8440 * SMT siblings share the power of a single core.
a52bfd73
PZ
8441 * Usually multiple threads get a better yield out of
8442 * that one core than a single thread would have,
8443 * reflect that in sd->smt_gain.
f93e65c1 8444 */
a52bfd73
PZ
8445 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8446 power *= sd->smt_gain;
f93e65c1 8447 power /= weight;
a52bfd73
PZ
8448 power >>= SCHED_LOAD_SHIFT;
8449 }
18a3885f 8450 sd->groups->cpu_power += power;
89c4710e
SS
8451 return;
8452 }
8453
89c4710e 8454 /*
f93e65c1 8455 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8456 */
8457 group = child->groups;
8458 do {
18a3885f 8459 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8460 group = group->next;
8461 } while (group != child->groups);
8462}
8463
7c16ec58
MT
8464/*
8465 * Initializers for schedule domains
8466 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8467 */
8468
a5d8c348
IM
8469#ifdef CONFIG_SCHED_DEBUG
8470# define SD_INIT_NAME(sd, type) sd->name = #type
8471#else
8472# define SD_INIT_NAME(sd, type) do { } while (0)
8473#endif
8474
7c16ec58 8475#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8476
7c16ec58
MT
8477#define SD_INIT_FUNC(type) \
8478static noinline void sd_init_##type(struct sched_domain *sd) \
8479{ \
8480 memset(sd, 0, sizeof(*sd)); \
8481 *sd = SD_##type##_INIT; \
1d3504fc 8482 sd->level = SD_LV_##type; \
a5d8c348 8483 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8484}
8485
8486SD_INIT_FUNC(CPU)
8487#ifdef CONFIG_NUMA
8488 SD_INIT_FUNC(ALLNODES)
8489 SD_INIT_FUNC(NODE)
8490#endif
8491#ifdef CONFIG_SCHED_SMT
8492 SD_INIT_FUNC(SIBLING)
8493#endif
8494#ifdef CONFIG_SCHED_MC
8495 SD_INIT_FUNC(MC)
8496#endif
8497
1d3504fc
HS
8498static int default_relax_domain_level = -1;
8499
8500static int __init setup_relax_domain_level(char *str)
8501{
30e0e178
LZ
8502 unsigned long val;
8503
8504 val = simple_strtoul(str, NULL, 0);
8505 if (val < SD_LV_MAX)
8506 default_relax_domain_level = val;
8507
1d3504fc
HS
8508 return 1;
8509}
8510__setup("relax_domain_level=", setup_relax_domain_level);
8511
8512static void set_domain_attribute(struct sched_domain *sd,
8513 struct sched_domain_attr *attr)
8514{
8515 int request;
8516
8517 if (!attr || attr->relax_domain_level < 0) {
8518 if (default_relax_domain_level < 0)
8519 return;
8520 else
8521 request = default_relax_domain_level;
8522 } else
8523 request = attr->relax_domain_level;
8524 if (request < sd->level) {
8525 /* turn off idle balance on this domain */
c88d5910 8526 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8527 } else {
8528 /* turn on idle balance on this domain */
c88d5910 8529 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8530 }
8531}
8532
2109b99e
AH
8533static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8534 const struct cpumask *cpu_map)
8535{
8536 switch (what) {
8537 case sa_sched_groups:
8538 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8539 d->sched_group_nodes = NULL;
8540 case sa_rootdomain:
8541 free_rootdomain(d->rd); /* fall through */
8542 case sa_tmpmask:
8543 free_cpumask_var(d->tmpmask); /* fall through */
8544 case sa_send_covered:
8545 free_cpumask_var(d->send_covered); /* fall through */
8546 case sa_this_core_map:
8547 free_cpumask_var(d->this_core_map); /* fall through */
8548 case sa_this_sibling_map:
8549 free_cpumask_var(d->this_sibling_map); /* fall through */
8550 case sa_nodemask:
8551 free_cpumask_var(d->nodemask); /* fall through */
8552 case sa_sched_group_nodes:
d1b55138 8553#ifdef CONFIG_NUMA
2109b99e
AH
8554 kfree(d->sched_group_nodes); /* fall through */
8555 case sa_notcovered:
8556 free_cpumask_var(d->notcovered); /* fall through */
8557 case sa_covered:
8558 free_cpumask_var(d->covered); /* fall through */
8559 case sa_domainspan:
8560 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8561#endif
2109b99e
AH
8562 case sa_none:
8563 break;
8564 }
8565}
3404c8d9 8566
2109b99e
AH
8567static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8568 const struct cpumask *cpu_map)
8569{
3404c8d9 8570#ifdef CONFIG_NUMA
2109b99e
AH
8571 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8572 return sa_none;
8573 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8574 return sa_domainspan;
8575 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8576 return sa_covered;
8577 /* Allocate the per-node list of sched groups */
8578 d->sched_group_nodes = kcalloc(nr_node_ids,
8579 sizeof(struct sched_group *), GFP_KERNEL);
8580 if (!d->sched_group_nodes) {
d1b55138 8581 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8582 return sa_notcovered;
d1b55138 8583 }
2109b99e 8584 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8585#endif
2109b99e
AH
8586 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8587 return sa_sched_group_nodes;
8588 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8589 return sa_nodemask;
8590 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8591 return sa_this_sibling_map;
8592 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8593 return sa_this_core_map;
8594 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8595 return sa_send_covered;
8596 d->rd = alloc_rootdomain();
8597 if (!d->rd) {
57d885fe 8598 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8599 return sa_tmpmask;
57d885fe 8600 }
2109b99e
AH
8601 return sa_rootdomain;
8602}
57d885fe 8603
7f4588f3
AH
8604static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8605 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8606{
8607 struct sched_domain *sd = NULL;
7c16ec58 8608#ifdef CONFIG_NUMA
7f4588f3 8609 struct sched_domain *parent;
1da177e4 8610
7f4588f3
AH
8611 d->sd_allnodes = 0;
8612 if (cpumask_weight(cpu_map) >
8613 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8614 sd = &per_cpu(allnodes_domains, i).sd;
8615 SD_INIT(sd, ALLNODES);
1d3504fc 8616 set_domain_attribute(sd, attr);
7f4588f3
AH
8617 cpumask_copy(sched_domain_span(sd), cpu_map);
8618 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8619 d->sd_allnodes = 1;
8620 }
8621 parent = sd;
8622
8623 sd = &per_cpu(node_domains, i).sd;
8624 SD_INIT(sd, NODE);
8625 set_domain_attribute(sd, attr);
8626 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8627 sd->parent = parent;
8628 if (parent)
8629 parent->child = sd;
8630 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8631#endif
7f4588f3
AH
8632 return sd;
8633}
1da177e4 8634
87cce662
AH
8635static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8636 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8637 struct sched_domain *parent, int i)
8638{
8639 struct sched_domain *sd;
8640 sd = &per_cpu(phys_domains, i).sd;
8641 SD_INIT(sd, CPU);
8642 set_domain_attribute(sd, attr);
8643 cpumask_copy(sched_domain_span(sd), d->nodemask);
8644 sd->parent = parent;
8645 if (parent)
8646 parent->child = sd;
8647 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8648 return sd;
8649}
1da177e4 8650
410c4081
AH
8651static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8652 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8653 struct sched_domain *parent, int i)
8654{
8655 struct sched_domain *sd = parent;
1e9f28fa 8656#ifdef CONFIG_SCHED_MC
410c4081
AH
8657 sd = &per_cpu(core_domains, i).sd;
8658 SD_INIT(sd, MC);
8659 set_domain_attribute(sd, attr);
8660 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8661 sd->parent = parent;
8662 parent->child = sd;
8663 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8664#endif
410c4081
AH
8665 return sd;
8666}
1e9f28fa 8667
d8173535
AH
8668static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8669 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8670 struct sched_domain *parent, int i)
8671{
8672 struct sched_domain *sd = parent;
1da177e4 8673#ifdef CONFIG_SCHED_SMT
d8173535
AH
8674 sd = &per_cpu(cpu_domains, i).sd;
8675 SD_INIT(sd, SIBLING);
8676 set_domain_attribute(sd, attr);
8677 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8678 sd->parent = parent;
8679 parent->child = sd;
8680 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8681#endif
d8173535
AH
8682 return sd;
8683}
1da177e4 8684
0e8e85c9
AH
8685static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8686 const struct cpumask *cpu_map, int cpu)
8687{
8688 switch (l) {
1da177e4 8689#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8690 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8691 cpumask_and(d->this_sibling_map, cpu_map,
8692 topology_thread_cpumask(cpu));
8693 if (cpu == cpumask_first(d->this_sibling_map))
8694 init_sched_build_groups(d->this_sibling_map, cpu_map,
8695 &cpu_to_cpu_group,
8696 d->send_covered, d->tmpmask);
8697 break;
1da177e4 8698#endif
1e9f28fa 8699#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8700 case SD_LV_MC: /* set up multi-core groups */
8701 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8702 if (cpu == cpumask_first(d->this_core_map))
8703 init_sched_build_groups(d->this_core_map, cpu_map,
8704 &cpu_to_core_group,
8705 d->send_covered, d->tmpmask);
8706 break;
1e9f28fa 8707#endif
86548096
AH
8708 case SD_LV_CPU: /* set up physical groups */
8709 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8710 if (!cpumask_empty(d->nodemask))
8711 init_sched_build_groups(d->nodemask, cpu_map,
8712 &cpu_to_phys_group,
8713 d->send_covered, d->tmpmask);
8714 break;
1da177e4 8715#ifdef CONFIG_NUMA
de616e36
AH
8716 case SD_LV_ALLNODES:
8717 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8718 d->send_covered, d->tmpmask);
8719 break;
8720#endif
0e8e85c9
AH
8721 default:
8722 break;
7c16ec58 8723 }
0e8e85c9 8724}
9c1cfda2 8725
2109b99e
AH
8726/*
8727 * Build sched domains for a given set of cpus and attach the sched domains
8728 * to the individual cpus
8729 */
8730static int __build_sched_domains(const struct cpumask *cpu_map,
8731 struct sched_domain_attr *attr)
8732{
8733 enum s_alloc alloc_state = sa_none;
8734 struct s_data d;
294b0c96 8735 struct sched_domain *sd;
2109b99e 8736 int i;
7c16ec58 8737#ifdef CONFIG_NUMA
2109b99e 8738 d.sd_allnodes = 0;
7c16ec58 8739#endif
9c1cfda2 8740
2109b99e
AH
8741 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8742 if (alloc_state != sa_rootdomain)
8743 goto error;
8744 alloc_state = sa_sched_groups;
9c1cfda2 8745
1da177e4 8746 /*
1a20ff27 8747 * Set up domains for cpus specified by the cpu_map.
1da177e4 8748 */
abcd083a 8749 for_each_cpu(i, cpu_map) {
49a02c51
AH
8750 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8751 cpu_map);
9761eea8 8752
7f4588f3 8753 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8754 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8755 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8756 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8757 }
9c1cfda2 8758
abcd083a 8759 for_each_cpu(i, cpu_map) {
0e8e85c9 8760 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8761 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8762 }
9c1cfda2 8763
1da177e4 8764 /* Set up physical groups */
86548096
AH
8765 for (i = 0; i < nr_node_ids; i++)
8766 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8767
1da177e4
LT
8768#ifdef CONFIG_NUMA
8769 /* Set up node groups */
de616e36
AH
8770 if (d.sd_allnodes)
8771 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8772
0601a88d
AH
8773 for (i = 0; i < nr_node_ids; i++)
8774 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8775 goto error;
1da177e4
LT
8776#endif
8777
8778 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8779#ifdef CONFIG_SCHED_SMT
abcd083a 8780 for_each_cpu(i, cpu_map) {
294b0c96 8781 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8782 init_sched_groups_power(i, sd);
5c45bf27 8783 }
1da177e4 8784#endif
1e9f28fa 8785#ifdef CONFIG_SCHED_MC
abcd083a 8786 for_each_cpu(i, cpu_map) {
294b0c96 8787 sd = &per_cpu(core_domains, i).sd;
89c4710e 8788 init_sched_groups_power(i, sd);
5c45bf27
SS
8789 }
8790#endif
1e9f28fa 8791
abcd083a 8792 for_each_cpu(i, cpu_map) {
294b0c96 8793 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8794 init_sched_groups_power(i, sd);
1da177e4
LT
8795 }
8796
9c1cfda2 8797#ifdef CONFIG_NUMA
076ac2af 8798 for (i = 0; i < nr_node_ids; i++)
49a02c51 8799 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8800
49a02c51 8801 if (d.sd_allnodes) {
6711cab4 8802 struct sched_group *sg;
f712c0c7 8803
96f874e2 8804 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8805 d.tmpmask);
f712c0c7
SS
8806 init_numa_sched_groups_power(sg);
8807 }
9c1cfda2
JH
8808#endif
8809
1da177e4 8810 /* Attach the domains */
abcd083a 8811 for_each_cpu(i, cpu_map) {
1da177e4 8812#ifdef CONFIG_SCHED_SMT
6c99e9ad 8813 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8814#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8815 sd = &per_cpu(core_domains, i).sd;
1da177e4 8816#else
6c99e9ad 8817 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8818#endif
49a02c51 8819 cpu_attach_domain(sd, d.rd, i);
1da177e4 8820 }
51888ca2 8821
2109b99e
AH
8822 d.sched_group_nodes = NULL; /* don't free this we still need it */
8823 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8824 return 0;
51888ca2 8825
51888ca2 8826error:
2109b99e
AH
8827 __free_domain_allocs(&d, alloc_state, cpu_map);
8828 return -ENOMEM;
1da177e4 8829}
029190c5 8830
96f874e2 8831static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8832{
8833 return __build_sched_domains(cpu_map, NULL);
8834}
8835
96f874e2 8836static struct cpumask *doms_cur; /* current sched domains */
029190c5 8837static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8838static struct sched_domain_attr *dattr_cur;
8839 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8840
8841/*
8842 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8843 * cpumask) fails, then fallback to a single sched domain,
8844 * as determined by the single cpumask fallback_doms.
029190c5 8845 */
4212823f 8846static cpumask_var_t fallback_doms;
029190c5 8847
ee79d1bd
HC
8848/*
8849 * arch_update_cpu_topology lets virtualized architectures update the
8850 * cpu core maps. It is supposed to return 1 if the topology changed
8851 * or 0 if it stayed the same.
8852 */
8853int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8854{
ee79d1bd 8855 return 0;
22e52b07
HC
8856}
8857
1a20ff27 8858/*
41a2d6cf 8859 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8860 * For now this just excludes isolated cpus, but could be used to
8861 * exclude other special cases in the future.
1a20ff27 8862 */
96f874e2 8863static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8864{
7378547f
MM
8865 int err;
8866
22e52b07 8867 arch_update_cpu_topology();
029190c5 8868 ndoms_cur = 1;
96f874e2 8869 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8870 if (!doms_cur)
4212823f 8871 doms_cur = fallback_doms;
dcc30a35 8872 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8873 dattr_cur = NULL;
7378547f 8874 err = build_sched_domains(doms_cur);
6382bc90 8875 register_sched_domain_sysctl();
7378547f
MM
8876
8877 return err;
1a20ff27
DG
8878}
8879
96f874e2
RR
8880static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8881 struct cpumask *tmpmask)
1da177e4 8882{
7c16ec58 8883 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8884}
1da177e4 8885
1a20ff27
DG
8886/*
8887 * Detach sched domains from a group of cpus specified in cpu_map
8888 * These cpus will now be attached to the NULL domain
8889 */
96f874e2 8890static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8891{
96f874e2
RR
8892 /* Save because hotplug lock held. */
8893 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8894 int i;
8895
abcd083a 8896 for_each_cpu(i, cpu_map)
57d885fe 8897 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8898 synchronize_sched();
96f874e2 8899 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8900}
8901
1d3504fc
HS
8902/* handle null as "default" */
8903static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8904 struct sched_domain_attr *new, int idx_new)
8905{
8906 struct sched_domain_attr tmp;
8907
8908 /* fast path */
8909 if (!new && !cur)
8910 return 1;
8911
8912 tmp = SD_ATTR_INIT;
8913 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8914 new ? (new + idx_new) : &tmp,
8915 sizeof(struct sched_domain_attr));
8916}
8917
029190c5
PJ
8918/*
8919 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8920 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8921 * doms_new[] to the current sched domain partitioning, doms_cur[].
8922 * It destroys each deleted domain and builds each new domain.
8923 *
96f874e2 8924 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8925 * The masks don't intersect (don't overlap.) We should setup one
8926 * sched domain for each mask. CPUs not in any of the cpumasks will
8927 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8928 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8929 * it as it is.
8930 *
41a2d6cf
IM
8931 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8932 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8933 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8934 * ndoms_new == 1, and partition_sched_domains() will fallback to
8935 * the single partition 'fallback_doms', it also forces the domains
8936 * to be rebuilt.
029190c5 8937 *
96f874e2 8938 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8939 * ndoms_new == 0 is a special case for destroying existing domains,
8940 * and it will not create the default domain.
dfb512ec 8941 *
029190c5
PJ
8942 * Call with hotplug lock held
8943 */
96f874e2
RR
8944/* FIXME: Change to struct cpumask *doms_new[] */
8945void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8946 struct sched_domain_attr *dattr_new)
029190c5 8947{
dfb512ec 8948 int i, j, n;
d65bd5ec 8949 int new_topology;
029190c5 8950
712555ee 8951 mutex_lock(&sched_domains_mutex);
a1835615 8952
7378547f
MM
8953 /* always unregister in case we don't destroy any domains */
8954 unregister_sched_domain_sysctl();
8955
d65bd5ec
HC
8956 /* Let architecture update cpu core mappings. */
8957 new_topology = arch_update_cpu_topology();
8958
dfb512ec 8959 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8960
8961 /* Destroy deleted domains */
8962 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8963 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8964 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8965 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8966 goto match1;
8967 }
8968 /* no match - a current sched domain not in new doms_new[] */
8969 detach_destroy_domains(doms_cur + i);
8970match1:
8971 ;
8972 }
8973
e761b772
MK
8974 if (doms_new == NULL) {
8975 ndoms_cur = 0;
4212823f 8976 doms_new = fallback_doms;
dcc30a35 8977 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8978 WARN_ON_ONCE(dattr_new);
e761b772
MK
8979 }
8980
029190c5
PJ
8981 /* Build new domains */
8982 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8983 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8984 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8985 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8986 goto match2;
8987 }
8988 /* no match - add a new doms_new */
1d3504fc
HS
8989 __build_sched_domains(doms_new + i,
8990 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8991match2:
8992 ;
8993 }
8994
8995 /* Remember the new sched domains */
4212823f 8996 if (doms_cur != fallback_doms)
029190c5 8997 kfree(doms_cur);
1d3504fc 8998 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8999 doms_cur = doms_new;
1d3504fc 9000 dattr_cur = dattr_new;
029190c5 9001 ndoms_cur = ndoms_new;
7378547f
MM
9002
9003 register_sched_domain_sysctl();
a1835615 9004
712555ee 9005 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9006}
9007
5c45bf27 9008#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9009static void arch_reinit_sched_domains(void)
5c45bf27 9010{
95402b38 9011 get_online_cpus();
dfb512ec
MK
9012
9013 /* Destroy domains first to force the rebuild */
9014 partition_sched_domains(0, NULL, NULL);
9015
e761b772 9016 rebuild_sched_domains();
95402b38 9017 put_online_cpus();
5c45bf27
SS
9018}
9019
9020static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9021{
afb8a9b7 9022 unsigned int level = 0;
5c45bf27 9023
afb8a9b7
GS
9024 if (sscanf(buf, "%u", &level) != 1)
9025 return -EINVAL;
9026
9027 /*
9028 * level is always be positive so don't check for
9029 * level < POWERSAVINGS_BALANCE_NONE which is 0
9030 * What happens on 0 or 1 byte write,
9031 * need to check for count as well?
9032 */
9033
9034 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9035 return -EINVAL;
9036
9037 if (smt)
afb8a9b7 9038 sched_smt_power_savings = level;
5c45bf27 9039 else
afb8a9b7 9040 sched_mc_power_savings = level;
5c45bf27 9041
c70f22d2 9042 arch_reinit_sched_domains();
5c45bf27 9043
c70f22d2 9044 return count;
5c45bf27
SS
9045}
9046
5c45bf27 9047#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9048static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9049 char *page)
5c45bf27
SS
9050{
9051 return sprintf(page, "%u\n", sched_mc_power_savings);
9052}
f718cd4a 9053static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9054 const char *buf, size_t count)
5c45bf27
SS
9055{
9056 return sched_power_savings_store(buf, count, 0);
9057}
f718cd4a
AK
9058static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9059 sched_mc_power_savings_show,
9060 sched_mc_power_savings_store);
5c45bf27
SS
9061#endif
9062
9063#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9064static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9065 char *page)
5c45bf27
SS
9066{
9067 return sprintf(page, "%u\n", sched_smt_power_savings);
9068}
f718cd4a 9069static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9070 const char *buf, size_t count)
5c45bf27
SS
9071{
9072 return sched_power_savings_store(buf, count, 1);
9073}
f718cd4a
AK
9074static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9075 sched_smt_power_savings_show,
6707de00
AB
9076 sched_smt_power_savings_store);
9077#endif
9078
39aac648 9079int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9080{
9081 int err = 0;
9082
9083#ifdef CONFIG_SCHED_SMT
9084 if (smt_capable())
9085 err = sysfs_create_file(&cls->kset.kobj,
9086 &attr_sched_smt_power_savings.attr);
9087#endif
9088#ifdef CONFIG_SCHED_MC
9089 if (!err && mc_capable())
9090 err = sysfs_create_file(&cls->kset.kobj,
9091 &attr_sched_mc_power_savings.attr);
9092#endif
9093 return err;
9094}
6d6bc0ad 9095#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9096
e761b772 9097#ifndef CONFIG_CPUSETS
1da177e4 9098/*
e761b772
MK
9099 * Add online and remove offline CPUs from the scheduler domains.
9100 * When cpusets are enabled they take over this function.
1da177e4
LT
9101 */
9102static int update_sched_domains(struct notifier_block *nfb,
9103 unsigned long action, void *hcpu)
e761b772
MK
9104{
9105 switch (action) {
9106 case CPU_ONLINE:
9107 case CPU_ONLINE_FROZEN:
9108 case CPU_DEAD:
9109 case CPU_DEAD_FROZEN:
dfb512ec 9110 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9111 return NOTIFY_OK;
9112
9113 default:
9114 return NOTIFY_DONE;
9115 }
9116}
9117#endif
9118
9119static int update_runtime(struct notifier_block *nfb,
9120 unsigned long action, void *hcpu)
1da177e4 9121{
7def2be1
PZ
9122 int cpu = (int)(long)hcpu;
9123
1da177e4 9124 switch (action) {
1da177e4 9125 case CPU_DOWN_PREPARE:
8bb78442 9126 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9127 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9128 return NOTIFY_OK;
9129
1da177e4 9130 case CPU_DOWN_FAILED:
8bb78442 9131 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9132 case CPU_ONLINE:
8bb78442 9133 case CPU_ONLINE_FROZEN:
7def2be1 9134 enable_runtime(cpu_rq(cpu));
e761b772
MK
9135 return NOTIFY_OK;
9136
1da177e4
LT
9137 default:
9138 return NOTIFY_DONE;
9139 }
1da177e4 9140}
1da177e4
LT
9141
9142void __init sched_init_smp(void)
9143{
dcc30a35
RR
9144 cpumask_var_t non_isolated_cpus;
9145
9146 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 9147
434d53b0
MT
9148#if defined(CONFIG_NUMA)
9149 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9150 GFP_KERNEL);
9151 BUG_ON(sched_group_nodes_bycpu == NULL);
9152#endif
95402b38 9153 get_online_cpus();
712555ee 9154 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9155 arch_init_sched_domains(cpu_online_mask);
9156 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9157 if (cpumask_empty(non_isolated_cpus))
9158 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9159 mutex_unlock(&sched_domains_mutex);
95402b38 9160 put_online_cpus();
e761b772
MK
9161
9162#ifndef CONFIG_CPUSETS
1da177e4
LT
9163 /* XXX: Theoretical race here - CPU may be hotplugged now */
9164 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9165#endif
9166
9167 /* RT runtime code needs to handle some hotplug events */
9168 hotcpu_notifier(update_runtime, 0);
9169
b328ca18 9170 init_hrtick();
5c1e1767
NP
9171
9172 /* Move init over to a non-isolated CPU */
dcc30a35 9173 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9174 BUG();
19978ca6 9175 sched_init_granularity();
dcc30a35 9176 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9177
9178 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9179 init_sched_rt_class();
1da177e4
LT
9180}
9181#else
9182void __init sched_init_smp(void)
9183{
19978ca6 9184 sched_init_granularity();
1da177e4
LT
9185}
9186#endif /* CONFIG_SMP */
9187
cd1bb94b
AB
9188const_debug unsigned int sysctl_timer_migration = 1;
9189
1da177e4
LT
9190int in_sched_functions(unsigned long addr)
9191{
1da177e4
LT
9192 return in_lock_functions(addr) ||
9193 (addr >= (unsigned long)__sched_text_start
9194 && addr < (unsigned long)__sched_text_end);
9195}
9196
a9957449 9197static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9198{
9199 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9200 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9201#ifdef CONFIG_FAIR_GROUP_SCHED
9202 cfs_rq->rq = rq;
9203#endif
67e9fb2a 9204 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9205}
9206
fa85ae24
PZ
9207static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9208{
9209 struct rt_prio_array *array;
9210 int i;
9211
9212 array = &rt_rq->active;
9213 for (i = 0; i < MAX_RT_PRIO; i++) {
9214 INIT_LIST_HEAD(array->queue + i);
9215 __clear_bit(i, array->bitmap);
9216 }
9217 /* delimiter for bitsearch: */
9218 __set_bit(MAX_RT_PRIO, array->bitmap);
9219
052f1dc7 9220#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9221 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9222#ifdef CONFIG_SMP
e864c499 9223 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9224#endif
48d5e258 9225#endif
fa85ae24
PZ
9226#ifdef CONFIG_SMP
9227 rt_rq->rt_nr_migratory = 0;
fa85ae24 9228 rt_rq->overloaded = 0;
c20b08e3 9229 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9230#endif
9231
9232 rt_rq->rt_time = 0;
9233 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9234 rt_rq->rt_runtime = 0;
9235 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9236
052f1dc7 9237#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9238 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9239 rt_rq->rq = rq;
9240#endif
fa85ae24
PZ
9241}
9242
6f505b16 9243#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9244static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9245 struct sched_entity *se, int cpu, int add,
9246 struct sched_entity *parent)
6f505b16 9247{
ec7dc8ac 9248 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9249 tg->cfs_rq[cpu] = cfs_rq;
9250 init_cfs_rq(cfs_rq, rq);
9251 cfs_rq->tg = tg;
9252 if (add)
9253 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9254
9255 tg->se[cpu] = se;
354d60c2
DG
9256 /* se could be NULL for init_task_group */
9257 if (!se)
9258 return;
9259
ec7dc8ac
DG
9260 if (!parent)
9261 se->cfs_rq = &rq->cfs;
9262 else
9263 se->cfs_rq = parent->my_q;
9264
6f505b16
PZ
9265 se->my_q = cfs_rq;
9266 se->load.weight = tg->shares;
e05510d0 9267 se->load.inv_weight = 0;
ec7dc8ac 9268 se->parent = parent;
6f505b16 9269}
052f1dc7 9270#endif
6f505b16 9271
052f1dc7 9272#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9273static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9274 struct sched_rt_entity *rt_se, int cpu, int add,
9275 struct sched_rt_entity *parent)
6f505b16 9276{
ec7dc8ac
DG
9277 struct rq *rq = cpu_rq(cpu);
9278
6f505b16
PZ
9279 tg->rt_rq[cpu] = rt_rq;
9280 init_rt_rq(rt_rq, rq);
9281 rt_rq->tg = tg;
9282 rt_rq->rt_se = rt_se;
ac086bc2 9283 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9284 if (add)
9285 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9286
9287 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9288 if (!rt_se)
9289 return;
9290
ec7dc8ac
DG
9291 if (!parent)
9292 rt_se->rt_rq = &rq->rt;
9293 else
9294 rt_se->rt_rq = parent->my_q;
9295
6f505b16 9296 rt_se->my_q = rt_rq;
ec7dc8ac 9297 rt_se->parent = parent;
6f505b16
PZ
9298 INIT_LIST_HEAD(&rt_se->run_list);
9299}
9300#endif
9301
1da177e4
LT
9302void __init sched_init(void)
9303{
dd41f596 9304 int i, j;
434d53b0
MT
9305 unsigned long alloc_size = 0, ptr;
9306
9307#ifdef CONFIG_FAIR_GROUP_SCHED
9308 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9309#endif
9310#ifdef CONFIG_RT_GROUP_SCHED
9311 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9312#endif
9313#ifdef CONFIG_USER_SCHED
9314 alloc_size *= 2;
df7c8e84
RR
9315#endif
9316#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9317 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9318#endif
9319 /*
9320 * As sched_init() is called before page_alloc is setup,
9321 * we use alloc_bootmem().
9322 */
9323 if (alloc_size) {
36b7b6d4 9324 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9325
9326#ifdef CONFIG_FAIR_GROUP_SCHED
9327 init_task_group.se = (struct sched_entity **)ptr;
9328 ptr += nr_cpu_ids * sizeof(void **);
9329
9330 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9331 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9332
9333#ifdef CONFIG_USER_SCHED
9334 root_task_group.se = (struct sched_entity **)ptr;
9335 ptr += nr_cpu_ids * sizeof(void **);
9336
9337 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9338 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9339#endif /* CONFIG_USER_SCHED */
9340#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9341#ifdef CONFIG_RT_GROUP_SCHED
9342 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9343 ptr += nr_cpu_ids * sizeof(void **);
9344
9345 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9346 ptr += nr_cpu_ids * sizeof(void **);
9347
9348#ifdef CONFIG_USER_SCHED
9349 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9350 ptr += nr_cpu_ids * sizeof(void **);
9351
9352 root_task_group.rt_rq = (struct rt_rq **)ptr;
9353 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9354#endif /* CONFIG_USER_SCHED */
9355#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9356#ifdef CONFIG_CPUMASK_OFFSTACK
9357 for_each_possible_cpu(i) {
9358 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9359 ptr += cpumask_size();
9360 }
9361#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9362 }
dd41f596 9363
57d885fe
GH
9364#ifdef CONFIG_SMP
9365 init_defrootdomain();
9366#endif
9367
d0b27fa7
PZ
9368 init_rt_bandwidth(&def_rt_bandwidth,
9369 global_rt_period(), global_rt_runtime());
9370
9371#ifdef CONFIG_RT_GROUP_SCHED
9372 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9373 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9374#ifdef CONFIG_USER_SCHED
9375 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9376 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9377#endif /* CONFIG_USER_SCHED */
9378#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9379
052f1dc7 9380#ifdef CONFIG_GROUP_SCHED
6f505b16 9381 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9382 INIT_LIST_HEAD(&init_task_group.children);
9383
9384#ifdef CONFIG_USER_SCHED
9385 INIT_LIST_HEAD(&root_task_group.children);
9386 init_task_group.parent = &root_task_group;
9387 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9388#endif /* CONFIG_USER_SCHED */
9389#endif /* CONFIG_GROUP_SCHED */
6f505b16 9390
0a945022 9391 for_each_possible_cpu(i) {
70b97a7f 9392 struct rq *rq;
1da177e4
LT
9393
9394 rq = cpu_rq(i);
9395 spin_lock_init(&rq->lock);
7897986b 9396 rq->nr_running = 0;
dce48a84
TG
9397 rq->calc_load_active = 0;
9398 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9399 init_cfs_rq(&rq->cfs, rq);
6f505b16 9400 init_rt_rq(&rq->rt, rq);
dd41f596 9401#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9402 init_task_group.shares = init_task_group_load;
6f505b16 9403 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9404#ifdef CONFIG_CGROUP_SCHED
9405 /*
9406 * How much cpu bandwidth does init_task_group get?
9407 *
9408 * In case of task-groups formed thr' the cgroup filesystem, it
9409 * gets 100% of the cpu resources in the system. This overall
9410 * system cpu resource is divided among the tasks of
9411 * init_task_group and its child task-groups in a fair manner,
9412 * based on each entity's (task or task-group's) weight
9413 * (se->load.weight).
9414 *
9415 * In other words, if init_task_group has 10 tasks of weight
9416 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9417 * then A0's share of the cpu resource is:
9418 *
0d905bca 9419 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9420 *
9421 * We achieve this by letting init_task_group's tasks sit
9422 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9423 */
ec7dc8ac 9424 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9425#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9426 root_task_group.shares = NICE_0_LOAD;
9427 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9428 /*
9429 * In case of task-groups formed thr' the user id of tasks,
9430 * init_task_group represents tasks belonging to root user.
9431 * Hence it forms a sibling of all subsequent groups formed.
9432 * In this case, init_task_group gets only a fraction of overall
9433 * system cpu resource, based on the weight assigned to root
9434 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9435 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9436 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9437 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9438 */
ec7dc8ac 9439 init_tg_cfs_entry(&init_task_group,
84e9dabf 9440 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9441 &per_cpu(init_sched_entity, i), i, 1,
9442 root_task_group.se[i]);
6f505b16 9443
052f1dc7 9444#endif
354d60c2
DG
9445#endif /* CONFIG_FAIR_GROUP_SCHED */
9446
9447 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9448#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9449 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9450#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9451 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9452#elif defined CONFIG_USER_SCHED
eff766a6 9453 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9454 init_tg_rt_entry(&init_task_group,
6f505b16 9455 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9456 &per_cpu(init_sched_rt_entity, i), i, 1,
9457 root_task_group.rt_se[i]);
354d60c2 9458#endif
dd41f596 9459#endif
1da177e4 9460
dd41f596
IM
9461 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9462 rq->cpu_load[j] = 0;
1da177e4 9463#ifdef CONFIG_SMP
41c7ce9a 9464 rq->sd = NULL;
57d885fe 9465 rq->rd = NULL;
3f029d3c 9466 rq->post_schedule = 0;
1da177e4 9467 rq->active_balance = 0;
dd41f596 9468 rq->next_balance = jiffies;
1da177e4 9469 rq->push_cpu = 0;
0a2966b4 9470 rq->cpu = i;
1f11eb6a 9471 rq->online = 0;
1da177e4
LT
9472 rq->migration_thread = NULL;
9473 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9474 rq_attach_root(rq, &def_root_domain);
1da177e4 9475#endif
8f4d37ec 9476 init_rq_hrtick(rq);
1da177e4 9477 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9478 }
9479
2dd73a4f 9480 set_load_weight(&init_task);
b50f60ce 9481
e107be36
AK
9482#ifdef CONFIG_PREEMPT_NOTIFIERS
9483 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9484#endif
9485
c9819f45 9486#ifdef CONFIG_SMP
962cf36c 9487 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9488#endif
9489
b50f60ce
HC
9490#ifdef CONFIG_RT_MUTEXES
9491 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9492#endif
9493
1da177e4
LT
9494 /*
9495 * The boot idle thread does lazy MMU switching as well:
9496 */
9497 atomic_inc(&init_mm.mm_count);
9498 enter_lazy_tlb(&init_mm, current);
9499
9500 /*
9501 * Make us the idle thread. Technically, schedule() should not be
9502 * called from this thread, however somewhere below it might be,
9503 * but because we are the idle thread, we just pick up running again
9504 * when this runqueue becomes "idle".
9505 */
9506 init_idle(current, smp_processor_id());
dce48a84
TG
9507
9508 calc_load_update = jiffies + LOAD_FREQ;
9509
dd41f596
IM
9510 /*
9511 * During early bootup we pretend to be a normal task:
9512 */
9513 current->sched_class = &fair_sched_class;
6892b75e 9514
6a7b3dc3 9515 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9516 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9517#ifdef CONFIG_SMP
7d1e6a9b 9518#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9519 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9520 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9521#endif
4bdddf8f 9522 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9523#endif /* SMP */
6a7b3dc3 9524
0d905bca
IM
9525 perf_counter_init();
9526
6892b75e 9527 scheduler_running = 1;
1da177e4
LT
9528}
9529
9530#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9531static inline int preempt_count_equals(int preempt_offset)
9532{
9533 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9534
9535 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9536}
9537
9538void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9539{
48f24c4d 9540#ifdef in_atomic
1da177e4
LT
9541 static unsigned long prev_jiffy; /* ratelimiting */
9542
e4aafea2
FW
9543 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9544 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9545 return;
9546 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9547 return;
9548 prev_jiffy = jiffies;
9549
9550 printk(KERN_ERR
9551 "BUG: sleeping function called from invalid context at %s:%d\n",
9552 file, line);
9553 printk(KERN_ERR
9554 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9555 in_atomic(), irqs_disabled(),
9556 current->pid, current->comm);
9557
9558 debug_show_held_locks(current);
9559 if (irqs_disabled())
9560 print_irqtrace_events(current);
9561 dump_stack();
1da177e4
LT
9562#endif
9563}
9564EXPORT_SYMBOL(__might_sleep);
9565#endif
9566
9567#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9568static void normalize_task(struct rq *rq, struct task_struct *p)
9569{
9570 int on_rq;
3e51f33f 9571
3a5e4dc1
AK
9572 update_rq_clock(rq);
9573 on_rq = p->se.on_rq;
9574 if (on_rq)
9575 deactivate_task(rq, p, 0);
9576 __setscheduler(rq, p, SCHED_NORMAL, 0);
9577 if (on_rq) {
9578 activate_task(rq, p, 0);
9579 resched_task(rq->curr);
9580 }
9581}
9582
1da177e4
LT
9583void normalize_rt_tasks(void)
9584{
a0f98a1c 9585 struct task_struct *g, *p;
1da177e4 9586 unsigned long flags;
70b97a7f 9587 struct rq *rq;
1da177e4 9588
4cf5d77a 9589 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9590 do_each_thread(g, p) {
178be793
IM
9591 /*
9592 * Only normalize user tasks:
9593 */
9594 if (!p->mm)
9595 continue;
9596
6cfb0d5d 9597 p->se.exec_start = 0;
6cfb0d5d 9598#ifdef CONFIG_SCHEDSTATS
dd41f596 9599 p->se.wait_start = 0;
dd41f596 9600 p->se.sleep_start = 0;
dd41f596 9601 p->se.block_start = 0;
6cfb0d5d 9602#endif
dd41f596
IM
9603
9604 if (!rt_task(p)) {
9605 /*
9606 * Renice negative nice level userspace
9607 * tasks back to 0:
9608 */
9609 if (TASK_NICE(p) < 0 && p->mm)
9610 set_user_nice(p, 0);
1da177e4 9611 continue;
dd41f596 9612 }
1da177e4 9613
4cf5d77a 9614 spin_lock(&p->pi_lock);
b29739f9 9615 rq = __task_rq_lock(p);
1da177e4 9616
178be793 9617 normalize_task(rq, p);
3a5e4dc1 9618
b29739f9 9619 __task_rq_unlock(rq);
4cf5d77a 9620 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9621 } while_each_thread(g, p);
9622
4cf5d77a 9623 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9624}
9625
9626#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9627
9628#ifdef CONFIG_IA64
9629/*
9630 * These functions are only useful for the IA64 MCA handling.
9631 *
9632 * They can only be called when the whole system has been
9633 * stopped - every CPU needs to be quiescent, and no scheduling
9634 * activity can take place. Using them for anything else would
9635 * be a serious bug, and as a result, they aren't even visible
9636 * under any other configuration.
9637 */
9638
9639/**
9640 * curr_task - return the current task for a given cpu.
9641 * @cpu: the processor in question.
9642 *
9643 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9644 */
36c8b586 9645struct task_struct *curr_task(int cpu)
1df5c10a
LT
9646{
9647 return cpu_curr(cpu);
9648}
9649
9650/**
9651 * set_curr_task - set the current task for a given cpu.
9652 * @cpu: the processor in question.
9653 * @p: the task pointer to set.
9654 *
9655 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9656 * are serviced on a separate stack. It allows the architecture to switch the
9657 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9658 * must be called with all CPU's synchronized, and interrupts disabled, the
9659 * and caller must save the original value of the current task (see
9660 * curr_task() above) and restore that value before reenabling interrupts and
9661 * re-starting the system.
9662 *
9663 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9664 */
36c8b586 9665void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9666{
9667 cpu_curr(cpu) = p;
9668}
9669
9670#endif
29f59db3 9671
bccbe08a
PZ
9672#ifdef CONFIG_FAIR_GROUP_SCHED
9673static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9674{
9675 int i;
9676
9677 for_each_possible_cpu(i) {
9678 if (tg->cfs_rq)
9679 kfree(tg->cfs_rq[i]);
9680 if (tg->se)
9681 kfree(tg->se[i]);
6f505b16
PZ
9682 }
9683
9684 kfree(tg->cfs_rq);
9685 kfree(tg->se);
6f505b16
PZ
9686}
9687
ec7dc8ac
DG
9688static
9689int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9690{
29f59db3 9691 struct cfs_rq *cfs_rq;
eab17229 9692 struct sched_entity *se;
9b5b7751 9693 struct rq *rq;
29f59db3
SV
9694 int i;
9695
434d53b0 9696 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9697 if (!tg->cfs_rq)
9698 goto err;
434d53b0 9699 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9700 if (!tg->se)
9701 goto err;
052f1dc7
PZ
9702
9703 tg->shares = NICE_0_LOAD;
29f59db3
SV
9704
9705 for_each_possible_cpu(i) {
9b5b7751 9706 rq = cpu_rq(i);
29f59db3 9707
eab17229
LZ
9708 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9709 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9710 if (!cfs_rq)
9711 goto err;
9712
eab17229
LZ
9713 se = kzalloc_node(sizeof(struct sched_entity),
9714 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9715 if (!se)
9716 goto err;
9717
eab17229 9718 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9719 }
9720
9721 return 1;
9722
9723 err:
9724 return 0;
9725}
9726
9727static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9728{
9729 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9730 &cpu_rq(cpu)->leaf_cfs_rq_list);
9731}
9732
9733static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9734{
9735 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9736}
6d6bc0ad 9737#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9738static inline void free_fair_sched_group(struct task_group *tg)
9739{
9740}
9741
ec7dc8ac
DG
9742static inline
9743int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9744{
9745 return 1;
9746}
9747
9748static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9749{
9750}
9751
9752static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9753{
9754}
6d6bc0ad 9755#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9756
9757#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9758static void free_rt_sched_group(struct task_group *tg)
9759{
9760 int i;
9761
d0b27fa7
PZ
9762 destroy_rt_bandwidth(&tg->rt_bandwidth);
9763
bccbe08a
PZ
9764 for_each_possible_cpu(i) {
9765 if (tg->rt_rq)
9766 kfree(tg->rt_rq[i]);
9767 if (tg->rt_se)
9768 kfree(tg->rt_se[i]);
9769 }
9770
9771 kfree(tg->rt_rq);
9772 kfree(tg->rt_se);
9773}
9774
ec7dc8ac
DG
9775static
9776int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9777{
9778 struct rt_rq *rt_rq;
eab17229 9779 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9780 struct rq *rq;
9781 int i;
9782
434d53b0 9783 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9784 if (!tg->rt_rq)
9785 goto err;
434d53b0 9786 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9787 if (!tg->rt_se)
9788 goto err;
9789
d0b27fa7
PZ
9790 init_rt_bandwidth(&tg->rt_bandwidth,
9791 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9792
9793 for_each_possible_cpu(i) {
9794 rq = cpu_rq(i);
9795
eab17229
LZ
9796 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9797 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9798 if (!rt_rq)
9799 goto err;
29f59db3 9800
eab17229
LZ
9801 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9802 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9803 if (!rt_se)
9804 goto err;
29f59db3 9805
eab17229 9806 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9807 }
9808
bccbe08a
PZ
9809 return 1;
9810
9811 err:
9812 return 0;
9813}
9814
9815static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9816{
9817 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9818 &cpu_rq(cpu)->leaf_rt_rq_list);
9819}
9820
9821static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9822{
9823 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9824}
6d6bc0ad 9825#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9826static inline void free_rt_sched_group(struct task_group *tg)
9827{
9828}
9829
ec7dc8ac
DG
9830static inline
9831int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9832{
9833 return 1;
9834}
9835
9836static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9837{
9838}
9839
9840static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9841{
9842}
6d6bc0ad 9843#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9844
d0b27fa7 9845#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9846static void free_sched_group(struct task_group *tg)
9847{
9848 free_fair_sched_group(tg);
9849 free_rt_sched_group(tg);
9850 kfree(tg);
9851}
9852
9853/* allocate runqueue etc for a new task group */
ec7dc8ac 9854struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9855{
9856 struct task_group *tg;
9857 unsigned long flags;
9858 int i;
9859
9860 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9861 if (!tg)
9862 return ERR_PTR(-ENOMEM);
9863
ec7dc8ac 9864 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9865 goto err;
9866
ec7dc8ac 9867 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9868 goto err;
9869
8ed36996 9870 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9871 for_each_possible_cpu(i) {
bccbe08a
PZ
9872 register_fair_sched_group(tg, i);
9873 register_rt_sched_group(tg, i);
9b5b7751 9874 }
6f505b16 9875 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9876
9877 WARN_ON(!parent); /* root should already exist */
9878
9879 tg->parent = parent;
f473aa5e 9880 INIT_LIST_HEAD(&tg->children);
09f2724a 9881 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9882 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9883
9b5b7751 9884 return tg;
29f59db3
SV
9885
9886err:
6f505b16 9887 free_sched_group(tg);
29f59db3
SV
9888 return ERR_PTR(-ENOMEM);
9889}
9890
9b5b7751 9891/* rcu callback to free various structures associated with a task group */
6f505b16 9892static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9893{
29f59db3 9894 /* now it should be safe to free those cfs_rqs */
6f505b16 9895 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9896}
9897
9b5b7751 9898/* Destroy runqueue etc associated with a task group */
4cf86d77 9899void sched_destroy_group(struct task_group *tg)
29f59db3 9900{
8ed36996 9901 unsigned long flags;
9b5b7751 9902 int i;
29f59db3 9903
8ed36996 9904 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9905 for_each_possible_cpu(i) {
bccbe08a
PZ
9906 unregister_fair_sched_group(tg, i);
9907 unregister_rt_sched_group(tg, i);
9b5b7751 9908 }
6f505b16 9909 list_del_rcu(&tg->list);
f473aa5e 9910 list_del_rcu(&tg->siblings);
8ed36996 9911 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9912
9b5b7751 9913 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9914 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9915}
9916
9b5b7751 9917/* change task's runqueue when it moves between groups.
3a252015
IM
9918 * The caller of this function should have put the task in its new group
9919 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9920 * reflect its new group.
9b5b7751
SV
9921 */
9922void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9923{
9924 int on_rq, running;
9925 unsigned long flags;
9926 struct rq *rq;
9927
9928 rq = task_rq_lock(tsk, &flags);
9929
29f59db3
SV
9930 update_rq_clock(rq);
9931
051a1d1a 9932 running = task_current(rq, tsk);
29f59db3
SV
9933 on_rq = tsk->se.on_rq;
9934
0e1f3483 9935 if (on_rq)
29f59db3 9936 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9937 if (unlikely(running))
9938 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9939
6f505b16 9940 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9941
810b3817
PZ
9942#ifdef CONFIG_FAIR_GROUP_SCHED
9943 if (tsk->sched_class->moved_group)
9944 tsk->sched_class->moved_group(tsk);
9945#endif
9946
0e1f3483
HS
9947 if (unlikely(running))
9948 tsk->sched_class->set_curr_task(rq);
9949 if (on_rq)
7074badb 9950 enqueue_task(rq, tsk, 0);
29f59db3 9951
29f59db3
SV
9952 task_rq_unlock(rq, &flags);
9953}
6d6bc0ad 9954#endif /* CONFIG_GROUP_SCHED */
29f59db3 9955
052f1dc7 9956#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9957static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9958{
9959 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9960 int on_rq;
9961
29f59db3 9962 on_rq = se->on_rq;
62fb1851 9963 if (on_rq)
29f59db3
SV
9964 dequeue_entity(cfs_rq, se, 0);
9965
9966 se->load.weight = shares;
e05510d0 9967 se->load.inv_weight = 0;
29f59db3 9968
62fb1851 9969 if (on_rq)
29f59db3 9970 enqueue_entity(cfs_rq, se, 0);
c09595f6 9971}
62fb1851 9972
c09595f6
PZ
9973static void set_se_shares(struct sched_entity *se, unsigned long shares)
9974{
9975 struct cfs_rq *cfs_rq = se->cfs_rq;
9976 struct rq *rq = cfs_rq->rq;
9977 unsigned long flags;
9978
9979 spin_lock_irqsave(&rq->lock, flags);
9980 __set_se_shares(se, shares);
9981 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9982}
9983
8ed36996
PZ
9984static DEFINE_MUTEX(shares_mutex);
9985
4cf86d77 9986int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9987{
9988 int i;
8ed36996 9989 unsigned long flags;
c61935fd 9990
ec7dc8ac
DG
9991 /*
9992 * We can't change the weight of the root cgroup.
9993 */
9994 if (!tg->se[0])
9995 return -EINVAL;
9996
18d95a28
PZ
9997 if (shares < MIN_SHARES)
9998 shares = MIN_SHARES;
cb4ad1ff
MX
9999 else if (shares > MAX_SHARES)
10000 shares = MAX_SHARES;
62fb1851 10001
8ed36996 10002 mutex_lock(&shares_mutex);
9b5b7751 10003 if (tg->shares == shares)
5cb350ba 10004 goto done;
29f59db3 10005
8ed36996 10006 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10007 for_each_possible_cpu(i)
10008 unregister_fair_sched_group(tg, i);
f473aa5e 10009 list_del_rcu(&tg->siblings);
8ed36996 10010 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10011
10012 /* wait for any ongoing reference to this group to finish */
10013 synchronize_sched();
10014
10015 /*
10016 * Now we are free to modify the group's share on each cpu
10017 * w/o tripping rebalance_share or load_balance_fair.
10018 */
9b5b7751 10019 tg->shares = shares;
c09595f6
PZ
10020 for_each_possible_cpu(i) {
10021 /*
10022 * force a rebalance
10023 */
10024 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10025 set_se_shares(tg->se[i], shares);
c09595f6 10026 }
29f59db3 10027
6b2d7700
SV
10028 /*
10029 * Enable load balance activity on this group, by inserting it back on
10030 * each cpu's rq->leaf_cfs_rq_list.
10031 */
8ed36996 10032 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10033 for_each_possible_cpu(i)
10034 register_fair_sched_group(tg, i);
f473aa5e 10035 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10036 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10037done:
8ed36996 10038 mutex_unlock(&shares_mutex);
9b5b7751 10039 return 0;
29f59db3
SV
10040}
10041
5cb350ba
DG
10042unsigned long sched_group_shares(struct task_group *tg)
10043{
10044 return tg->shares;
10045}
052f1dc7 10046#endif
5cb350ba 10047
052f1dc7 10048#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10049/*
9f0c1e56 10050 * Ensure that the real time constraints are schedulable.
6f505b16 10051 */
9f0c1e56
PZ
10052static DEFINE_MUTEX(rt_constraints_mutex);
10053
10054static unsigned long to_ratio(u64 period, u64 runtime)
10055{
10056 if (runtime == RUNTIME_INF)
9a7e0b18 10057 return 1ULL << 20;
9f0c1e56 10058
9a7e0b18 10059 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10060}
10061
9a7e0b18
PZ
10062/* Must be called with tasklist_lock held */
10063static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10064{
9a7e0b18 10065 struct task_struct *g, *p;
b40b2e8e 10066
9a7e0b18
PZ
10067 do_each_thread(g, p) {
10068 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10069 return 1;
10070 } while_each_thread(g, p);
b40b2e8e 10071
9a7e0b18
PZ
10072 return 0;
10073}
b40b2e8e 10074
9a7e0b18
PZ
10075struct rt_schedulable_data {
10076 struct task_group *tg;
10077 u64 rt_period;
10078 u64 rt_runtime;
10079};
b40b2e8e 10080
9a7e0b18
PZ
10081static int tg_schedulable(struct task_group *tg, void *data)
10082{
10083 struct rt_schedulable_data *d = data;
10084 struct task_group *child;
10085 unsigned long total, sum = 0;
10086 u64 period, runtime;
b40b2e8e 10087
9a7e0b18
PZ
10088 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10089 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10090
9a7e0b18
PZ
10091 if (tg == d->tg) {
10092 period = d->rt_period;
10093 runtime = d->rt_runtime;
b40b2e8e 10094 }
b40b2e8e 10095
98a4826b
PZ
10096#ifdef CONFIG_USER_SCHED
10097 if (tg == &root_task_group) {
10098 period = global_rt_period();
10099 runtime = global_rt_runtime();
10100 }
10101#endif
10102
4653f803
PZ
10103 /*
10104 * Cannot have more runtime than the period.
10105 */
10106 if (runtime > period && runtime != RUNTIME_INF)
10107 return -EINVAL;
6f505b16 10108
4653f803
PZ
10109 /*
10110 * Ensure we don't starve existing RT tasks.
10111 */
9a7e0b18
PZ
10112 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10113 return -EBUSY;
6f505b16 10114
9a7e0b18 10115 total = to_ratio(period, runtime);
6f505b16 10116
4653f803
PZ
10117 /*
10118 * Nobody can have more than the global setting allows.
10119 */
10120 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10121 return -EINVAL;
6f505b16 10122
4653f803
PZ
10123 /*
10124 * The sum of our children's runtime should not exceed our own.
10125 */
9a7e0b18
PZ
10126 list_for_each_entry_rcu(child, &tg->children, siblings) {
10127 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10128 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10129
9a7e0b18
PZ
10130 if (child == d->tg) {
10131 period = d->rt_period;
10132 runtime = d->rt_runtime;
10133 }
6f505b16 10134
9a7e0b18 10135 sum += to_ratio(period, runtime);
9f0c1e56 10136 }
6f505b16 10137
9a7e0b18
PZ
10138 if (sum > total)
10139 return -EINVAL;
10140
10141 return 0;
6f505b16
PZ
10142}
10143
9a7e0b18 10144static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10145{
9a7e0b18
PZ
10146 struct rt_schedulable_data data = {
10147 .tg = tg,
10148 .rt_period = period,
10149 .rt_runtime = runtime,
10150 };
10151
10152 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10153}
10154
d0b27fa7
PZ
10155static int tg_set_bandwidth(struct task_group *tg,
10156 u64 rt_period, u64 rt_runtime)
6f505b16 10157{
ac086bc2 10158 int i, err = 0;
9f0c1e56 10159
9f0c1e56 10160 mutex_lock(&rt_constraints_mutex);
521f1a24 10161 read_lock(&tasklist_lock);
9a7e0b18
PZ
10162 err = __rt_schedulable(tg, rt_period, rt_runtime);
10163 if (err)
9f0c1e56 10164 goto unlock;
ac086bc2
PZ
10165
10166 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10167 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10168 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10169
10170 for_each_possible_cpu(i) {
10171 struct rt_rq *rt_rq = tg->rt_rq[i];
10172
10173 spin_lock(&rt_rq->rt_runtime_lock);
10174 rt_rq->rt_runtime = rt_runtime;
10175 spin_unlock(&rt_rq->rt_runtime_lock);
10176 }
10177 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10178 unlock:
521f1a24 10179 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10180 mutex_unlock(&rt_constraints_mutex);
10181
10182 return err;
6f505b16
PZ
10183}
10184
d0b27fa7
PZ
10185int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10186{
10187 u64 rt_runtime, rt_period;
10188
10189 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10190 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10191 if (rt_runtime_us < 0)
10192 rt_runtime = RUNTIME_INF;
10193
10194 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10195}
10196
9f0c1e56
PZ
10197long sched_group_rt_runtime(struct task_group *tg)
10198{
10199 u64 rt_runtime_us;
10200
d0b27fa7 10201 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10202 return -1;
10203
d0b27fa7 10204 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10205 do_div(rt_runtime_us, NSEC_PER_USEC);
10206 return rt_runtime_us;
10207}
d0b27fa7
PZ
10208
10209int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10210{
10211 u64 rt_runtime, rt_period;
10212
10213 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10214 rt_runtime = tg->rt_bandwidth.rt_runtime;
10215
619b0488
R
10216 if (rt_period == 0)
10217 return -EINVAL;
10218
d0b27fa7
PZ
10219 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10220}
10221
10222long sched_group_rt_period(struct task_group *tg)
10223{
10224 u64 rt_period_us;
10225
10226 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10227 do_div(rt_period_us, NSEC_PER_USEC);
10228 return rt_period_us;
10229}
10230
10231static int sched_rt_global_constraints(void)
10232{
4653f803 10233 u64 runtime, period;
d0b27fa7
PZ
10234 int ret = 0;
10235
ec5d4989
HS
10236 if (sysctl_sched_rt_period <= 0)
10237 return -EINVAL;
10238
4653f803
PZ
10239 runtime = global_rt_runtime();
10240 period = global_rt_period();
10241
10242 /*
10243 * Sanity check on the sysctl variables.
10244 */
10245 if (runtime > period && runtime != RUNTIME_INF)
10246 return -EINVAL;
10b612f4 10247
d0b27fa7 10248 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10249 read_lock(&tasklist_lock);
4653f803 10250 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10251 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10252 mutex_unlock(&rt_constraints_mutex);
10253
10254 return ret;
10255}
54e99124
DG
10256
10257int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10258{
10259 /* Don't accept realtime tasks when there is no way for them to run */
10260 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10261 return 0;
10262
10263 return 1;
10264}
10265
6d6bc0ad 10266#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10267static int sched_rt_global_constraints(void)
10268{
ac086bc2
PZ
10269 unsigned long flags;
10270 int i;
10271
ec5d4989
HS
10272 if (sysctl_sched_rt_period <= 0)
10273 return -EINVAL;
10274
60aa605d
PZ
10275 /*
10276 * There's always some RT tasks in the root group
10277 * -- migration, kstopmachine etc..
10278 */
10279 if (sysctl_sched_rt_runtime == 0)
10280 return -EBUSY;
10281
ac086bc2
PZ
10282 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10283 for_each_possible_cpu(i) {
10284 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10285
10286 spin_lock(&rt_rq->rt_runtime_lock);
10287 rt_rq->rt_runtime = global_rt_runtime();
10288 spin_unlock(&rt_rq->rt_runtime_lock);
10289 }
10290 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10291
d0b27fa7
PZ
10292 return 0;
10293}
6d6bc0ad 10294#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10295
10296int sched_rt_handler(struct ctl_table *table, int write,
10297 struct file *filp, void __user *buffer, size_t *lenp,
10298 loff_t *ppos)
10299{
10300 int ret;
10301 int old_period, old_runtime;
10302 static DEFINE_MUTEX(mutex);
10303
10304 mutex_lock(&mutex);
10305 old_period = sysctl_sched_rt_period;
10306 old_runtime = sysctl_sched_rt_runtime;
10307
10308 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10309
10310 if (!ret && write) {
10311 ret = sched_rt_global_constraints();
10312 if (ret) {
10313 sysctl_sched_rt_period = old_period;
10314 sysctl_sched_rt_runtime = old_runtime;
10315 } else {
10316 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10317 def_rt_bandwidth.rt_period =
10318 ns_to_ktime(global_rt_period());
10319 }
10320 }
10321 mutex_unlock(&mutex);
10322
10323 return ret;
10324}
68318b8e 10325
052f1dc7 10326#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10327
10328/* return corresponding task_group object of a cgroup */
2b01dfe3 10329static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10330{
2b01dfe3
PM
10331 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10332 struct task_group, css);
68318b8e
SV
10333}
10334
10335static struct cgroup_subsys_state *
2b01dfe3 10336cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10337{
ec7dc8ac 10338 struct task_group *tg, *parent;
68318b8e 10339
2b01dfe3 10340 if (!cgrp->parent) {
68318b8e 10341 /* This is early initialization for the top cgroup */
68318b8e
SV
10342 return &init_task_group.css;
10343 }
10344
ec7dc8ac
DG
10345 parent = cgroup_tg(cgrp->parent);
10346 tg = sched_create_group(parent);
68318b8e
SV
10347 if (IS_ERR(tg))
10348 return ERR_PTR(-ENOMEM);
10349
68318b8e
SV
10350 return &tg->css;
10351}
10352
41a2d6cf
IM
10353static void
10354cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10355{
2b01dfe3 10356 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10357
10358 sched_destroy_group(tg);
10359}
10360
41a2d6cf
IM
10361static int
10362cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10363 struct task_struct *tsk)
68318b8e 10364{
b68aa230 10365#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10366 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10367 return -EINVAL;
10368#else
68318b8e
SV
10369 /* We don't support RT-tasks being in separate groups */
10370 if (tsk->sched_class != &fair_sched_class)
10371 return -EINVAL;
b68aa230 10372#endif
68318b8e
SV
10373
10374 return 0;
10375}
10376
10377static void
2b01dfe3 10378cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10379 struct cgroup *old_cont, struct task_struct *tsk)
10380{
10381 sched_move_task(tsk);
10382}
10383
052f1dc7 10384#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10385static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10386 u64 shareval)
68318b8e 10387{
2b01dfe3 10388 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10389}
10390
f4c753b7 10391static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10392{
2b01dfe3 10393 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10394
10395 return (u64) tg->shares;
10396}
6d6bc0ad 10397#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10398
052f1dc7 10399#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10400static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10401 s64 val)
6f505b16 10402{
06ecb27c 10403 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10404}
10405
06ecb27c 10406static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10407{
06ecb27c 10408 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10409}
d0b27fa7
PZ
10410
10411static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10412 u64 rt_period_us)
10413{
10414 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10415}
10416
10417static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10418{
10419 return sched_group_rt_period(cgroup_tg(cgrp));
10420}
6d6bc0ad 10421#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10422
fe5c7cc2 10423static struct cftype cpu_files[] = {
052f1dc7 10424#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10425 {
10426 .name = "shares",
f4c753b7
PM
10427 .read_u64 = cpu_shares_read_u64,
10428 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10429 },
052f1dc7
PZ
10430#endif
10431#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10432 {
9f0c1e56 10433 .name = "rt_runtime_us",
06ecb27c
PM
10434 .read_s64 = cpu_rt_runtime_read,
10435 .write_s64 = cpu_rt_runtime_write,
6f505b16 10436 },
d0b27fa7
PZ
10437 {
10438 .name = "rt_period_us",
f4c753b7
PM
10439 .read_u64 = cpu_rt_period_read_uint,
10440 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10441 },
052f1dc7 10442#endif
68318b8e
SV
10443};
10444
10445static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10446{
fe5c7cc2 10447 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10448}
10449
10450struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10451 .name = "cpu",
10452 .create = cpu_cgroup_create,
10453 .destroy = cpu_cgroup_destroy,
10454 .can_attach = cpu_cgroup_can_attach,
10455 .attach = cpu_cgroup_attach,
10456 .populate = cpu_cgroup_populate,
10457 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10458 .early_init = 1,
10459};
10460
052f1dc7 10461#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10462
10463#ifdef CONFIG_CGROUP_CPUACCT
10464
10465/*
10466 * CPU accounting code for task groups.
10467 *
10468 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10469 * (balbir@in.ibm.com).
10470 */
10471
934352f2 10472/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10473struct cpuacct {
10474 struct cgroup_subsys_state css;
10475 /* cpuusage holds pointer to a u64-type object on every cpu */
10476 u64 *cpuusage;
ef12fefa 10477 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10478 struct cpuacct *parent;
d842de87
SV
10479};
10480
10481struct cgroup_subsys cpuacct_subsys;
10482
10483/* return cpu accounting group corresponding to this container */
32cd756a 10484static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10485{
32cd756a 10486 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10487 struct cpuacct, css);
10488}
10489
10490/* return cpu accounting group to which this task belongs */
10491static inline struct cpuacct *task_ca(struct task_struct *tsk)
10492{
10493 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10494 struct cpuacct, css);
10495}
10496
10497/* create a new cpu accounting group */
10498static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10499 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10500{
10501 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10502 int i;
d842de87
SV
10503
10504 if (!ca)
ef12fefa 10505 goto out;
d842de87
SV
10506
10507 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10508 if (!ca->cpuusage)
10509 goto out_free_ca;
10510
10511 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10512 if (percpu_counter_init(&ca->cpustat[i], 0))
10513 goto out_free_counters;
d842de87 10514
934352f2
BR
10515 if (cgrp->parent)
10516 ca->parent = cgroup_ca(cgrp->parent);
10517
d842de87 10518 return &ca->css;
ef12fefa
BR
10519
10520out_free_counters:
10521 while (--i >= 0)
10522 percpu_counter_destroy(&ca->cpustat[i]);
10523 free_percpu(ca->cpuusage);
10524out_free_ca:
10525 kfree(ca);
10526out:
10527 return ERR_PTR(-ENOMEM);
d842de87
SV
10528}
10529
10530/* destroy an existing cpu accounting group */
41a2d6cf 10531static void
32cd756a 10532cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10533{
32cd756a 10534 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10535 int i;
d842de87 10536
ef12fefa
BR
10537 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10538 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10539 free_percpu(ca->cpuusage);
10540 kfree(ca);
10541}
10542
720f5498
KC
10543static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10544{
b36128c8 10545 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10546 u64 data;
10547
10548#ifndef CONFIG_64BIT
10549 /*
10550 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10551 */
10552 spin_lock_irq(&cpu_rq(cpu)->lock);
10553 data = *cpuusage;
10554 spin_unlock_irq(&cpu_rq(cpu)->lock);
10555#else
10556 data = *cpuusage;
10557#endif
10558
10559 return data;
10560}
10561
10562static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10563{
b36128c8 10564 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10565
10566#ifndef CONFIG_64BIT
10567 /*
10568 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10569 */
10570 spin_lock_irq(&cpu_rq(cpu)->lock);
10571 *cpuusage = val;
10572 spin_unlock_irq(&cpu_rq(cpu)->lock);
10573#else
10574 *cpuusage = val;
10575#endif
10576}
10577
d842de87 10578/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10579static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10580{
32cd756a 10581 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10582 u64 totalcpuusage = 0;
10583 int i;
10584
720f5498
KC
10585 for_each_present_cpu(i)
10586 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10587
10588 return totalcpuusage;
10589}
10590
0297b803
DG
10591static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10592 u64 reset)
10593{
10594 struct cpuacct *ca = cgroup_ca(cgrp);
10595 int err = 0;
10596 int i;
10597
10598 if (reset) {
10599 err = -EINVAL;
10600 goto out;
10601 }
10602
720f5498
KC
10603 for_each_present_cpu(i)
10604 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10605
0297b803
DG
10606out:
10607 return err;
10608}
10609
e9515c3c
KC
10610static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10611 struct seq_file *m)
10612{
10613 struct cpuacct *ca = cgroup_ca(cgroup);
10614 u64 percpu;
10615 int i;
10616
10617 for_each_present_cpu(i) {
10618 percpu = cpuacct_cpuusage_read(ca, i);
10619 seq_printf(m, "%llu ", (unsigned long long) percpu);
10620 }
10621 seq_printf(m, "\n");
10622 return 0;
10623}
10624
ef12fefa
BR
10625static const char *cpuacct_stat_desc[] = {
10626 [CPUACCT_STAT_USER] = "user",
10627 [CPUACCT_STAT_SYSTEM] = "system",
10628};
10629
10630static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10631 struct cgroup_map_cb *cb)
10632{
10633 struct cpuacct *ca = cgroup_ca(cgrp);
10634 int i;
10635
10636 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10637 s64 val = percpu_counter_read(&ca->cpustat[i]);
10638 val = cputime64_to_clock_t(val);
10639 cb->fill(cb, cpuacct_stat_desc[i], val);
10640 }
10641 return 0;
10642}
10643
d842de87
SV
10644static struct cftype files[] = {
10645 {
10646 .name = "usage",
f4c753b7
PM
10647 .read_u64 = cpuusage_read,
10648 .write_u64 = cpuusage_write,
d842de87 10649 },
e9515c3c
KC
10650 {
10651 .name = "usage_percpu",
10652 .read_seq_string = cpuacct_percpu_seq_read,
10653 },
ef12fefa
BR
10654 {
10655 .name = "stat",
10656 .read_map = cpuacct_stats_show,
10657 },
d842de87
SV
10658};
10659
32cd756a 10660static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10661{
32cd756a 10662 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10663}
10664
10665/*
10666 * charge this task's execution time to its accounting group.
10667 *
10668 * called with rq->lock held.
10669 */
10670static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10671{
10672 struct cpuacct *ca;
934352f2 10673 int cpu;
d842de87 10674
c40c6f85 10675 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10676 return;
10677
934352f2 10678 cpu = task_cpu(tsk);
a18b83b7
BR
10679
10680 rcu_read_lock();
10681
d842de87 10682 ca = task_ca(tsk);
d842de87 10683
934352f2 10684 for (; ca; ca = ca->parent) {
b36128c8 10685 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10686 *cpuusage += cputime;
10687 }
a18b83b7
BR
10688
10689 rcu_read_unlock();
d842de87
SV
10690}
10691
ef12fefa
BR
10692/*
10693 * Charge the system/user time to the task's accounting group.
10694 */
10695static void cpuacct_update_stats(struct task_struct *tsk,
10696 enum cpuacct_stat_index idx, cputime_t val)
10697{
10698 struct cpuacct *ca;
10699
10700 if (unlikely(!cpuacct_subsys.active))
10701 return;
10702
10703 rcu_read_lock();
10704 ca = task_ca(tsk);
10705
10706 do {
10707 percpu_counter_add(&ca->cpustat[idx], val);
10708 ca = ca->parent;
10709 } while (ca);
10710 rcu_read_unlock();
10711}
10712
d842de87
SV
10713struct cgroup_subsys cpuacct_subsys = {
10714 .name = "cpuacct",
10715 .create = cpuacct_create,
10716 .destroy = cpuacct_destroy,
10717 .populate = cpuacct_populate,
10718 .subsys_id = cpuacct_subsys_id,
10719};
10720#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10721
10722#ifndef CONFIG_SMP
10723
10724int rcu_expedited_torture_stats(char *page)
10725{
10726 return 0;
10727}
10728EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10729
10730void synchronize_sched_expedited(void)
10731{
10732}
10733EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10734
10735#else /* #ifndef CONFIG_SMP */
10736
10737static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10738static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10739
10740#define RCU_EXPEDITED_STATE_POST -2
10741#define RCU_EXPEDITED_STATE_IDLE -1
10742
10743static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10744
10745int rcu_expedited_torture_stats(char *page)
10746{
10747 int cnt = 0;
10748 int cpu;
10749
10750 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10751 for_each_online_cpu(cpu) {
10752 cnt += sprintf(&page[cnt], " %d:%d",
10753 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10754 }
10755 cnt += sprintf(&page[cnt], "\n");
10756 return cnt;
10757}
10758EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10759
10760static long synchronize_sched_expedited_count;
10761
10762/*
10763 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10764 * approach to force grace period to end quickly. This consumes
10765 * significant time on all CPUs, and is thus not recommended for
10766 * any sort of common-case code.
10767 *
10768 * Note that it is illegal to call this function while holding any
10769 * lock that is acquired by a CPU-hotplug notifier. Failing to
10770 * observe this restriction will result in deadlock.
10771 */
10772void synchronize_sched_expedited(void)
10773{
10774 int cpu;
10775 unsigned long flags;
10776 bool need_full_sync = 0;
10777 struct rq *rq;
10778 struct migration_req *req;
10779 long snap;
10780 int trycount = 0;
10781
10782 smp_mb(); /* ensure prior mod happens before capturing snap. */
10783 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10784 get_online_cpus();
10785 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10786 put_online_cpus();
10787 if (trycount++ < 10)
10788 udelay(trycount * num_online_cpus());
10789 else {
10790 synchronize_sched();
10791 return;
10792 }
10793 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10794 smp_mb(); /* ensure test happens before caller kfree */
10795 return;
10796 }
10797 get_online_cpus();
10798 }
10799 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10800 for_each_online_cpu(cpu) {
10801 rq = cpu_rq(cpu);
10802 req = &per_cpu(rcu_migration_req, cpu);
10803 init_completion(&req->done);
10804 req->task = NULL;
10805 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10806 spin_lock_irqsave(&rq->lock, flags);
10807 list_add(&req->list, &rq->migration_queue);
10808 spin_unlock_irqrestore(&rq->lock, flags);
10809 wake_up_process(rq->migration_thread);
10810 }
10811 for_each_online_cpu(cpu) {
10812 rcu_expedited_state = cpu;
10813 req = &per_cpu(rcu_migration_req, cpu);
10814 rq = cpu_rq(cpu);
10815 wait_for_completion(&req->done);
10816 spin_lock_irqsave(&rq->lock, flags);
10817 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10818 need_full_sync = 1;
10819 req->dest_cpu = RCU_MIGRATION_IDLE;
10820 spin_unlock_irqrestore(&rq->lock, flags);
10821 }
10822 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10823 mutex_unlock(&rcu_sched_expedited_mutex);
10824 put_online_cpus();
10825 if (need_full_sync)
10826 synchronize_sched();
10827}
10828EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10829
10830#endif /* #else #ifndef CONFIG_SMP */
This page took 2.044039 seconds and 5 git commands to generate.