mm/zswap.c: change params from hidden to ro
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
5f12733e 208int user_min_free_kbytes;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2
CS
263 if (ret)
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn, start_pfn, start_pfn + sp);
266
bdc8cb98 267 return ret;
c6a57e19
DH
268}
269
270static int page_is_consistent(struct zone *zone, struct page *page)
271{
14e07298 272 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 273 return 0;
1da177e4 274 if (zone != page_zone(page))
c6a57e19
DH
275 return 0;
276
277 return 1;
278}
279/*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282static int bad_range(struct zone *zone, struct page *page)
283{
284 if (page_outside_zone_boundaries(zone, page))
1da177e4 285 return 1;
c6a57e19
DH
286 if (!page_is_consistent(zone, page))
287 return 1;
288
1da177e4
LT
289 return 0;
290}
13e7444b
NP
291#else
292static inline int bad_range(struct zone *zone, struct page *page)
293{
294 return 0;
295}
296#endif
297
224abf92 298static void bad_page(struct page *page)
1da177e4 299{
d936cf9b
HD
300 static unsigned long resume;
301 static unsigned long nr_shown;
302 static unsigned long nr_unshown;
303
2a7684a2
WF
304 /* Don't complain about poisoned pages */
305 if (PageHWPoison(page)) {
22b751c3 306 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
307 return;
308 }
309
d936cf9b
HD
310 /*
311 * Allow a burst of 60 reports, then keep quiet for that minute;
312 * or allow a steady drip of one report per second.
313 */
314 if (nr_shown == 60) {
315 if (time_before(jiffies, resume)) {
316 nr_unshown++;
317 goto out;
318 }
319 if (nr_unshown) {
1e9e6365
HD
320 printk(KERN_ALERT
321 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
322 nr_unshown);
323 nr_unshown = 0;
324 }
325 nr_shown = 0;
326 }
327 if (nr_shown++ == 0)
328 resume = jiffies + 60 * HZ;
329
1e9e6365 330 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 331 current->comm, page_to_pfn(page));
718a3821 332 dump_page(page);
3dc14741 333
4f31888c 334 print_modules();
1da177e4 335 dump_stack();
d936cf9b 336out:
8cc3b392 337 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 338 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 339 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
340}
341
1da177e4
LT
342/*
343 * Higher-order pages are called "compound pages". They are structured thusly:
344 *
345 * The first PAGE_SIZE page is called the "head page".
346 *
347 * The remaining PAGE_SIZE pages are called "tail pages".
348 *
6416b9fa
WSH
349 * All pages have PG_compound set. All tail pages have their ->first_page
350 * pointing at the head page.
1da177e4 351 *
41d78ba5
HD
352 * The first tail page's ->lru.next holds the address of the compound page's
353 * put_page() function. Its ->lru.prev holds the order of allocation.
354 * This usage means that zero-order pages may not be compound.
1da177e4 355 */
d98c7a09
HD
356
357static void free_compound_page(struct page *page)
358{
d85f3385 359 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
360}
361
01ad1c08 362void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
363{
364 int i;
365 int nr_pages = 1 << order;
366
367 set_compound_page_dtor(page, free_compound_page);
368 set_compound_order(page, order);
369 __SetPageHead(page);
370 for (i = 1; i < nr_pages; i++) {
371 struct page *p = page + i;
18229df5 372 __SetPageTail(p);
58a84aa9 373 set_page_count(p, 0);
18229df5
AW
374 p->first_page = page;
375 }
376}
377
59ff4216 378/* update __split_huge_page_refcount if you change this function */
8cc3b392 379static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
380{
381 int i;
382 int nr_pages = 1 << order;
8cc3b392 383 int bad = 0;
1da177e4 384
0bb2c763 385 if (unlikely(compound_order(page) != order)) {
224abf92 386 bad_page(page);
8cc3b392
HD
387 bad++;
388 }
1da177e4 389
6d777953 390 __ClearPageHead(page);
8cc3b392 391
18229df5
AW
392 for (i = 1; i < nr_pages; i++) {
393 struct page *p = page + i;
1da177e4 394
e713a21d 395 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 396 bad_page(page);
8cc3b392
HD
397 bad++;
398 }
d85f3385 399 __ClearPageTail(p);
1da177e4 400 }
8cc3b392
HD
401
402 return bad;
1da177e4 403}
1da177e4 404
17cf4406
NP
405static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
406{
407 int i;
408
6626c5d5
AM
409 /*
410 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
411 * and __GFP_HIGHMEM from hard or soft interrupt context.
412 */
725d704e 413 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
414 for (i = 0; i < (1 << order); i++)
415 clear_highpage(page + i);
416}
417
c0a32fc5
SG
418#ifdef CONFIG_DEBUG_PAGEALLOC
419unsigned int _debug_guardpage_minorder;
420
421static int __init debug_guardpage_minorder_setup(char *buf)
422{
423 unsigned long res;
424
425 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
426 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
427 return 0;
428 }
429 _debug_guardpage_minorder = res;
430 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
431 return 0;
432}
433__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
434
435static inline void set_page_guard_flag(struct page *page)
436{
437 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
438}
439
440static inline void clear_page_guard_flag(struct page *page)
441{
442 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
443}
444#else
445static inline void set_page_guard_flag(struct page *page) { }
446static inline void clear_page_guard_flag(struct page *page) { }
447#endif
448
6aa3001b
AM
449static inline void set_page_order(struct page *page, int order)
450{
4c21e2f2 451 set_page_private(page, order);
676165a8 452 __SetPageBuddy(page);
1da177e4
LT
453}
454
455static inline void rmv_page_order(struct page *page)
456{
676165a8 457 __ClearPageBuddy(page);
4c21e2f2 458 set_page_private(page, 0);
1da177e4
LT
459}
460
461/*
462 * Locate the struct page for both the matching buddy in our
463 * pair (buddy1) and the combined O(n+1) page they form (page).
464 *
465 * 1) Any buddy B1 will have an order O twin B2 which satisfies
466 * the following equation:
467 * B2 = B1 ^ (1 << O)
468 * For example, if the starting buddy (buddy2) is #8 its order
469 * 1 buddy is #10:
470 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
471 *
472 * 2) Any buddy B will have an order O+1 parent P which
473 * satisfies the following equation:
474 * P = B & ~(1 << O)
475 *
d6e05edc 476 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 477 */
1da177e4 478static inline unsigned long
43506fad 479__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 480{
43506fad 481 return page_idx ^ (1 << order);
1da177e4
LT
482}
483
484/*
485 * This function checks whether a page is free && is the buddy
486 * we can do coalesce a page and its buddy if
13e7444b 487 * (a) the buddy is not in a hole &&
676165a8 488 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
489 * (c) a page and its buddy have the same order &&
490 * (d) a page and its buddy are in the same zone.
676165a8 491 *
cf6fe945
WSH
492 * For recording whether a page is in the buddy system, we set ->_mapcount
493 * PAGE_BUDDY_MAPCOUNT_VALUE.
494 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
495 * serialized by zone->lock.
1da177e4 496 *
676165a8 497 * For recording page's order, we use page_private(page).
1da177e4 498 */
cb2b95e1
AW
499static inline int page_is_buddy(struct page *page, struct page *buddy,
500 int order)
1da177e4 501{
14e07298 502 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 503 return 0;
13e7444b 504
cb2b95e1
AW
505 if (page_zone_id(page) != page_zone_id(buddy))
506 return 0;
507
c0a32fc5
SG
508 if (page_is_guard(buddy) && page_order(buddy) == order) {
509 VM_BUG_ON(page_count(buddy) != 0);
510 return 1;
511 }
512
cb2b95e1 513 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 514 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 515 return 1;
676165a8 516 }
6aa3001b 517 return 0;
1da177e4
LT
518}
519
520/*
521 * Freeing function for a buddy system allocator.
522 *
523 * The concept of a buddy system is to maintain direct-mapped table
524 * (containing bit values) for memory blocks of various "orders".
525 * The bottom level table contains the map for the smallest allocatable
526 * units of memory (here, pages), and each level above it describes
527 * pairs of units from the levels below, hence, "buddies".
528 * At a high level, all that happens here is marking the table entry
529 * at the bottom level available, and propagating the changes upward
530 * as necessary, plus some accounting needed to play nicely with other
531 * parts of the VM system.
532 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
533 * free pages of length of (1 << order) and marked with _mapcount
534 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
535 * field.
1da177e4 536 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
537 * other. That is, if we allocate a small block, and both were
538 * free, the remainder of the region must be split into blocks.
1da177e4 539 * If a block is freed, and its buddy is also free, then this
5f63b720 540 * triggers coalescing into a block of larger size.
1da177e4 541 *
6d49e352 542 * -- nyc
1da177e4
LT
543 */
544
48db57f8 545static inline void __free_one_page(struct page *page,
ed0ae21d
MG
546 struct zone *zone, unsigned int order,
547 int migratetype)
1da177e4
LT
548{
549 unsigned long page_idx;
6dda9d55 550 unsigned long combined_idx;
43506fad 551 unsigned long uninitialized_var(buddy_idx);
6dda9d55 552 struct page *buddy;
1da177e4 553
d29bb978
CS
554 VM_BUG_ON(!zone_is_initialized(zone));
555
224abf92 556 if (unlikely(PageCompound(page)))
8cc3b392
HD
557 if (unlikely(destroy_compound_page(page, order)))
558 return;
1da177e4 559
ed0ae21d
MG
560 VM_BUG_ON(migratetype == -1);
561
1da177e4
LT
562 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
563
f2260e6b 564 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 565 VM_BUG_ON(bad_range(zone, page));
1da177e4 566
1da177e4 567 while (order < MAX_ORDER-1) {
43506fad
KC
568 buddy_idx = __find_buddy_index(page_idx, order);
569 buddy = page + (buddy_idx - page_idx);
cb2b95e1 570 if (!page_is_buddy(page, buddy, order))
3c82d0ce 571 break;
c0a32fc5
SG
572 /*
573 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
574 * merge with it and move up one order.
575 */
576 if (page_is_guard(buddy)) {
577 clear_page_guard_flag(buddy);
578 set_page_private(page, 0);
d1ce749a
BZ
579 __mod_zone_freepage_state(zone, 1 << order,
580 migratetype);
c0a32fc5
SG
581 } else {
582 list_del(&buddy->lru);
583 zone->free_area[order].nr_free--;
584 rmv_page_order(buddy);
585 }
43506fad 586 combined_idx = buddy_idx & page_idx;
1da177e4
LT
587 page = page + (combined_idx - page_idx);
588 page_idx = combined_idx;
589 order++;
590 }
591 set_page_order(page, order);
6dda9d55
CZ
592
593 /*
594 * If this is not the largest possible page, check if the buddy
595 * of the next-highest order is free. If it is, it's possible
596 * that pages are being freed that will coalesce soon. In case,
597 * that is happening, add the free page to the tail of the list
598 * so it's less likely to be used soon and more likely to be merged
599 * as a higher order page
600 */
b7f50cfa 601 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 602 struct page *higher_page, *higher_buddy;
43506fad
KC
603 combined_idx = buddy_idx & page_idx;
604 higher_page = page + (combined_idx - page_idx);
605 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 606 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
607 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
608 list_add_tail(&page->lru,
609 &zone->free_area[order].free_list[migratetype]);
610 goto out;
611 }
612 }
613
614 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
615out:
1da177e4
LT
616 zone->free_area[order].nr_free++;
617}
618
224abf92 619static inline int free_pages_check(struct page *page)
1da177e4 620{
92be2e33
NP
621 if (unlikely(page_mapcount(page) |
622 (page->mapping != NULL) |
a3af9c38 623 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
624 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
625 (mem_cgroup_bad_page_check(page)))) {
224abf92 626 bad_page(page);
79f4b7bf 627 return 1;
8cc3b392 628 }
90572890 629 page_cpupid_reset_last(page);
79f4b7bf
HD
630 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
631 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
632 return 0;
1da177e4
LT
633}
634
635/*
5f8dcc21 636 * Frees a number of pages from the PCP lists
1da177e4 637 * Assumes all pages on list are in same zone, and of same order.
207f36ee 638 * count is the number of pages to free.
1da177e4
LT
639 *
640 * If the zone was previously in an "all pages pinned" state then look to
641 * see if this freeing clears that state.
642 *
643 * And clear the zone's pages_scanned counter, to hold off the "all pages are
644 * pinned" detection logic.
645 */
5f8dcc21
MG
646static void free_pcppages_bulk(struct zone *zone, int count,
647 struct per_cpu_pages *pcp)
1da177e4 648{
5f8dcc21 649 int migratetype = 0;
a6f9edd6 650 int batch_free = 0;
72853e29 651 int to_free = count;
5f8dcc21 652
c54ad30c 653 spin_lock(&zone->lock);
1da177e4 654 zone->pages_scanned = 0;
f2260e6b 655
72853e29 656 while (to_free) {
48db57f8 657 struct page *page;
5f8dcc21
MG
658 struct list_head *list;
659
660 /*
a6f9edd6
MG
661 * Remove pages from lists in a round-robin fashion. A
662 * batch_free count is maintained that is incremented when an
663 * empty list is encountered. This is so more pages are freed
664 * off fuller lists instead of spinning excessively around empty
665 * lists
5f8dcc21
MG
666 */
667 do {
a6f9edd6 668 batch_free++;
5f8dcc21
MG
669 if (++migratetype == MIGRATE_PCPTYPES)
670 migratetype = 0;
671 list = &pcp->lists[migratetype];
672 } while (list_empty(list));
48db57f8 673
1d16871d
NK
674 /* This is the only non-empty list. Free them all. */
675 if (batch_free == MIGRATE_PCPTYPES)
676 batch_free = to_free;
677
a6f9edd6 678 do {
770c8aaa
BZ
679 int mt; /* migratetype of the to-be-freed page */
680
a6f9edd6
MG
681 page = list_entry(list->prev, struct page, lru);
682 /* must delete as __free_one_page list manipulates */
683 list_del(&page->lru);
b12c4ad1 684 mt = get_freepage_migratetype(page);
a7016235 685 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
686 __free_one_page(page, zone, 0, mt);
687 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 688 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
689 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
690 if (is_migrate_cma(mt))
691 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
692 }
72853e29 693 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 694 }
c54ad30c 695 spin_unlock(&zone->lock);
1da177e4
LT
696}
697
ed0ae21d
MG
698static void free_one_page(struct zone *zone, struct page *page, int order,
699 int migratetype)
1da177e4 700{
006d22d9 701 spin_lock(&zone->lock);
006d22d9 702 zone->pages_scanned = 0;
f2260e6b 703
ed0ae21d 704 __free_one_page(page, zone, order, migratetype);
194159fb 705 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 706 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 707 spin_unlock(&zone->lock);
48db57f8
NP
708}
709
ec95f53a 710static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 711{
1da177e4 712 int i;
8cc3b392 713 int bad = 0;
1da177e4 714
b413d48a 715 trace_mm_page_free(page, order);
b1eeab67
VN
716 kmemcheck_free_shadow(page, order);
717
8dd60a3a
AA
718 if (PageAnon(page))
719 page->mapping = NULL;
720 for (i = 0; i < (1 << order); i++)
721 bad += free_pages_check(page + i);
8cc3b392 722 if (bad)
ec95f53a 723 return false;
689bcebf 724
3ac7fe5a 725 if (!PageHighMem(page)) {
b8af2941
PK
726 debug_check_no_locks_freed(page_address(page),
727 PAGE_SIZE << order);
3ac7fe5a
TG
728 debug_check_no_obj_freed(page_address(page),
729 PAGE_SIZE << order);
730 }
dafb1367 731 arch_free_page(page, order);
48db57f8 732 kernel_map_pages(page, 1 << order, 0);
dafb1367 733
ec95f53a
KM
734 return true;
735}
736
737static void __free_pages_ok(struct page *page, unsigned int order)
738{
739 unsigned long flags;
95e34412 740 int migratetype;
ec95f53a
KM
741
742 if (!free_pages_prepare(page, order))
743 return;
744
c54ad30c 745 local_irq_save(flags);
f8891e5e 746 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
747 migratetype = get_pageblock_migratetype(page);
748 set_freepage_migratetype(page, migratetype);
749 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 750 local_irq_restore(flags);
1da177e4
LT
751}
752
170a5a7e 753void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 754{
c3993076 755 unsigned int nr_pages = 1 << order;
e2d0bd2b 756 struct page *p = page;
c3993076 757 unsigned int loop;
a226f6c8 758
e2d0bd2b
YL
759 prefetchw(p);
760 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
761 prefetchw(p + 1);
c3993076
JW
762 __ClearPageReserved(p);
763 set_page_count(p, 0);
a226f6c8 764 }
e2d0bd2b
YL
765 __ClearPageReserved(p);
766 set_page_count(p, 0);
c3993076 767
e2d0bd2b 768 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
769 set_page_refcounted(page);
770 __free_pages(page, order);
a226f6c8
DH
771}
772
47118af0 773#ifdef CONFIG_CMA
9cf510a5 774/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
775void __init init_cma_reserved_pageblock(struct page *page)
776{
777 unsigned i = pageblock_nr_pages;
778 struct page *p = page;
779
780 do {
781 __ClearPageReserved(p);
782 set_page_count(p, 0);
783 } while (++p, --i);
784
785 set_page_refcounted(page);
786 set_pageblock_migratetype(page, MIGRATE_CMA);
787 __free_pages(page, pageblock_order);
3dcc0571 788 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
789}
790#endif
1da177e4
LT
791
792/*
793 * The order of subdivision here is critical for the IO subsystem.
794 * Please do not alter this order without good reasons and regression
795 * testing. Specifically, as large blocks of memory are subdivided,
796 * the order in which smaller blocks are delivered depends on the order
797 * they're subdivided in this function. This is the primary factor
798 * influencing the order in which pages are delivered to the IO
799 * subsystem according to empirical testing, and this is also justified
800 * by considering the behavior of a buddy system containing a single
801 * large block of memory acted on by a series of small allocations.
802 * This behavior is a critical factor in sglist merging's success.
803 *
6d49e352 804 * -- nyc
1da177e4 805 */
085cc7d5 806static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
807 int low, int high, struct free_area *area,
808 int migratetype)
1da177e4
LT
809{
810 unsigned long size = 1 << high;
811
812 while (high > low) {
813 area--;
814 high--;
815 size >>= 1;
725d704e 816 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
817
818#ifdef CONFIG_DEBUG_PAGEALLOC
819 if (high < debug_guardpage_minorder()) {
820 /*
821 * Mark as guard pages (or page), that will allow to
822 * merge back to allocator when buddy will be freed.
823 * Corresponding page table entries will not be touched,
824 * pages will stay not present in virtual address space
825 */
826 INIT_LIST_HEAD(&page[size].lru);
827 set_page_guard_flag(&page[size]);
828 set_page_private(&page[size], high);
829 /* Guard pages are not available for any usage */
d1ce749a
BZ
830 __mod_zone_freepage_state(zone, -(1 << high),
831 migratetype);
c0a32fc5
SG
832 continue;
833 }
834#endif
b2a0ac88 835 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
836 area->nr_free++;
837 set_page_order(&page[size], high);
838 }
1da177e4
LT
839}
840
1da177e4
LT
841/*
842 * This page is about to be returned from the page allocator
843 */
2a7684a2 844static inline int check_new_page(struct page *page)
1da177e4 845{
92be2e33
NP
846 if (unlikely(page_mapcount(page) |
847 (page->mapping != NULL) |
a3af9c38 848 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
849 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
850 (mem_cgroup_bad_page_check(page)))) {
224abf92 851 bad_page(page);
689bcebf 852 return 1;
8cc3b392 853 }
2a7684a2
WF
854 return 0;
855}
856
857static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
858{
859 int i;
860
861 for (i = 0; i < (1 << order); i++) {
862 struct page *p = page + i;
863 if (unlikely(check_new_page(p)))
864 return 1;
865 }
689bcebf 866
4c21e2f2 867 set_page_private(page, 0);
7835e98b 868 set_page_refcounted(page);
cc102509
NP
869
870 arch_alloc_page(page, order);
1da177e4 871 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
872
873 if (gfp_flags & __GFP_ZERO)
874 prep_zero_page(page, order, gfp_flags);
875
876 if (order && (gfp_flags & __GFP_COMP))
877 prep_compound_page(page, order);
878
689bcebf 879 return 0;
1da177e4
LT
880}
881
56fd56b8
MG
882/*
883 * Go through the free lists for the given migratetype and remove
884 * the smallest available page from the freelists
885 */
728ec980
MG
886static inline
887struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
888 int migratetype)
889{
890 unsigned int current_order;
b8af2941 891 struct free_area *area;
56fd56b8
MG
892 struct page *page;
893
894 /* Find a page of the appropriate size in the preferred list */
895 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
896 area = &(zone->free_area[current_order]);
897 if (list_empty(&area->free_list[migratetype]))
898 continue;
899
900 page = list_entry(area->free_list[migratetype].next,
901 struct page, lru);
902 list_del(&page->lru);
903 rmv_page_order(page);
904 area->nr_free--;
56fd56b8
MG
905 expand(zone, page, order, current_order, area, migratetype);
906 return page;
907 }
908
909 return NULL;
910}
911
912
b2a0ac88
MG
913/*
914 * This array describes the order lists are fallen back to when
915 * the free lists for the desirable migrate type are depleted
916 */
47118af0
MN
917static int fallbacks[MIGRATE_TYPES][4] = {
918 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
920#ifdef CONFIG_CMA
921 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
923#else
924 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
925#endif
6d4a4916 926 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 927#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 928 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 929#endif
b2a0ac88
MG
930};
931
c361be55
MG
932/*
933 * Move the free pages in a range to the free lists of the requested type.
d9c23400 934 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
935 * boundary. If alignment is required, use move_freepages_block()
936 */
435b405c 937int move_freepages(struct zone *zone,
b69a7288
AB
938 struct page *start_page, struct page *end_page,
939 int migratetype)
c361be55
MG
940{
941 struct page *page;
942 unsigned long order;
d100313f 943 int pages_moved = 0;
c361be55
MG
944
945#ifndef CONFIG_HOLES_IN_ZONE
946 /*
947 * page_zone is not safe to call in this context when
948 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
949 * anyway as we check zone boundaries in move_freepages_block().
950 * Remove at a later date when no bug reports exist related to
ac0e5b7a 951 * grouping pages by mobility
c361be55
MG
952 */
953 BUG_ON(page_zone(start_page) != page_zone(end_page));
954#endif
955
956 for (page = start_page; page <= end_page;) {
344c790e
AL
957 /* Make sure we are not inadvertently changing nodes */
958 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
959
c361be55
MG
960 if (!pfn_valid_within(page_to_pfn(page))) {
961 page++;
962 continue;
963 }
964
965 if (!PageBuddy(page)) {
966 page++;
967 continue;
968 }
969
970 order = page_order(page);
84be48d8
KS
971 list_move(&page->lru,
972 &zone->free_area[order].free_list[migratetype]);
95e34412 973 set_freepage_migratetype(page, migratetype);
c361be55 974 page += 1 << order;
d100313f 975 pages_moved += 1 << order;
c361be55
MG
976 }
977
d100313f 978 return pages_moved;
c361be55
MG
979}
980
ee6f509c 981int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 982 int migratetype)
c361be55
MG
983{
984 unsigned long start_pfn, end_pfn;
985 struct page *start_page, *end_page;
986
987 start_pfn = page_to_pfn(page);
d9c23400 988 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 989 start_page = pfn_to_page(start_pfn);
d9c23400
MG
990 end_page = start_page + pageblock_nr_pages - 1;
991 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
992
993 /* Do not cross zone boundaries */
108bcc96 994 if (!zone_spans_pfn(zone, start_pfn))
c361be55 995 start_page = page;
108bcc96 996 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
997 return 0;
998
999 return move_freepages(zone, start_page, end_page, migratetype);
1000}
1001
2f66a68f
MG
1002static void change_pageblock_range(struct page *pageblock_page,
1003 int start_order, int migratetype)
1004{
1005 int nr_pageblocks = 1 << (start_order - pageblock_order);
1006
1007 while (nr_pageblocks--) {
1008 set_pageblock_migratetype(pageblock_page, migratetype);
1009 pageblock_page += pageblock_nr_pages;
1010 }
1011}
1012
fef903ef
SB
1013/*
1014 * If breaking a large block of pages, move all free pages to the preferred
1015 * allocation list. If falling back for a reclaimable kernel allocation, be
1016 * more aggressive about taking ownership of free pages.
1017 *
1018 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1019 * nor move CMA pages to different free lists. We don't want unmovable pages
1020 * to be allocated from MIGRATE_CMA areas.
1021 *
1022 * Returns the new migratetype of the pageblock (or the same old migratetype
1023 * if it was unchanged).
1024 */
1025static int try_to_steal_freepages(struct zone *zone, struct page *page,
1026 int start_type, int fallback_type)
1027{
1028 int current_order = page_order(page);
1029
0cbef29a
KM
1030 /*
1031 * When borrowing from MIGRATE_CMA, we need to release the excess
1032 * buddy pages to CMA itself.
1033 */
fef903ef
SB
1034 if (is_migrate_cma(fallback_type))
1035 return fallback_type;
1036
1037 /* Take ownership for orders >= pageblock_order */
1038 if (current_order >= pageblock_order) {
1039 change_pageblock_range(page, current_order, start_type);
1040 return start_type;
1041 }
1042
1043 if (current_order >= pageblock_order / 2 ||
1044 start_type == MIGRATE_RECLAIMABLE ||
1045 page_group_by_mobility_disabled) {
1046 int pages;
1047
1048 pages = move_freepages_block(zone, page, start_type);
1049
1050 /* Claim the whole block if over half of it is free */
1051 if (pages >= (1 << (pageblock_order-1)) ||
1052 page_group_by_mobility_disabled) {
1053
1054 set_pageblock_migratetype(page, start_type);
1055 return start_type;
1056 }
1057
1058 }
1059
1060 return fallback_type;
1061}
1062
b2a0ac88 1063/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1064static inline struct page *
1065__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 1066{
b8af2941 1067 struct free_area *area;
b2a0ac88
MG
1068 int current_order;
1069 struct page *page;
fef903ef 1070 int migratetype, new_type, i;
b2a0ac88
MG
1071
1072 /* Find the largest possible block of pages in the other list */
1073 for (current_order = MAX_ORDER-1; current_order >= order;
1074 --current_order) {
6d4a4916 1075 for (i = 0;; i++) {
b2a0ac88
MG
1076 migratetype = fallbacks[start_migratetype][i];
1077
56fd56b8
MG
1078 /* MIGRATE_RESERVE handled later if necessary */
1079 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1080 break;
e010487d 1081
b2a0ac88
MG
1082 area = &(zone->free_area[current_order]);
1083 if (list_empty(&area->free_list[migratetype]))
1084 continue;
1085
1086 page = list_entry(area->free_list[migratetype].next,
1087 struct page, lru);
1088 area->nr_free--;
1089
fef903ef
SB
1090 new_type = try_to_steal_freepages(zone, page,
1091 start_migratetype,
1092 migratetype);
b2a0ac88
MG
1093
1094 /* Remove the page from the freelists */
1095 list_del(&page->lru);
1096 rmv_page_order(page);
b2a0ac88 1097
47118af0 1098 expand(zone, page, order, current_order, area,
0cbef29a 1099 new_type);
e0fff1bd 1100
52c8f6a5
KM
1101 trace_mm_page_alloc_extfrag(page, order, current_order,
1102 start_migratetype, migratetype, new_type);
e0fff1bd 1103
b2a0ac88
MG
1104 return page;
1105 }
1106 }
1107
728ec980 1108 return NULL;
b2a0ac88
MG
1109}
1110
56fd56b8 1111/*
1da177e4
LT
1112 * Do the hard work of removing an element from the buddy allocator.
1113 * Call me with the zone->lock already held.
1114 */
b2a0ac88
MG
1115static struct page *__rmqueue(struct zone *zone, unsigned int order,
1116 int migratetype)
1da177e4 1117{
1da177e4
LT
1118 struct page *page;
1119
728ec980 1120retry_reserve:
56fd56b8 1121 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1122
728ec980 1123 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1124 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1125
728ec980
MG
1126 /*
1127 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1128 * is used because __rmqueue_smallest is an inline function
1129 * and we want just one call site
1130 */
1131 if (!page) {
1132 migratetype = MIGRATE_RESERVE;
1133 goto retry_reserve;
1134 }
1135 }
1136
0d3d062a 1137 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1138 return page;
1da177e4
LT
1139}
1140
5f63b720 1141/*
1da177e4
LT
1142 * Obtain a specified number of elements from the buddy allocator, all under
1143 * a single hold of the lock, for efficiency. Add them to the supplied list.
1144 * Returns the number of new pages which were placed at *list.
1145 */
5f63b720 1146static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1147 unsigned long count, struct list_head *list,
e084b2d9 1148 int migratetype, int cold)
1da177e4 1149{
47118af0 1150 int mt = migratetype, i;
5f63b720 1151
c54ad30c 1152 spin_lock(&zone->lock);
1da177e4 1153 for (i = 0; i < count; ++i) {
b2a0ac88 1154 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1155 if (unlikely(page == NULL))
1da177e4 1156 break;
81eabcbe
MG
1157
1158 /*
1159 * Split buddy pages returned by expand() are received here
1160 * in physical page order. The page is added to the callers and
1161 * list and the list head then moves forward. From the callers
1162 * perspective, the linked list is ordered by page number in
1163 * some conditions. This is useful for IO devices that can
1164 * merge IO requests if the physical pages are ordered
1165 * properly.
1166 */
e084b2d9
MG
1167 if (likely(cold == 0))
1168 list_add(&page->lru, list);
1169 else
1170 list_add_tail(&page->lru, list);
47118af0
MN
1171 if (IS_ENABLED(CONFIG_CMA)) {
1172 mt = get_pageblock_migratetype(page);
194159fb 1173 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
47118af0
MN
1174 mt = migratetype;
1175 }
b12c4ad1 1176 set_freepage_migratetype(page, mt);
81eabcbe 1177 list = &page->lru;
d1ce749a
BZ
1178 if (is_migrate_cma(mt))
1179 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1180 -(1 << order));
1da177e4 1181 }
f2260e6b 1182 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1183 spin_unlock(&zone->lock);
085cc7d5 1184 return i;
1da177e4
LT
1185}
1186
4ae7c039 1187#ifdef CONFIG_NUMA
8fce4d8e 1188/*
4037d452
CL
1189 * Called from the vmstat counter updater to drain pagesets of this
1190 * currently executing processor on remote nodes after they have
1191 * expired.
1192 *
879336c3
CL
1193 * Note that this function must be called with the thread pinned to
1194 * a single processor.
8fce4d8e 1195 */
4037d452 1196void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1197{
4ae7c039 1198 unsigned long flags;
4037d452 1199 int to_drain;
998d39cb 1200 unsigned long batch;
4ae7c039 1201
4037d452 1202 local_irq_save(flags);
998d39cb
CS
1203 batch = ACCESS_ONCE(pcp->batch);
1204 if (pcp->count >= batch)
1205 to_drain = batch;
4037d452
CL
1206 else
1207 to_drain = pcp->count;
2a13515c
KM
1208 if (to_drain > 0) {
1209 free_pcppages_bulk(zone, to_drain, pcp);
1210 pcp->count -= to_drain;
1211 }
4037d452 1212 local_irq_restore(flags);
4ae7c039
CL
1213}
1214#endif
1215
9f8f2172
CL
1216/*
1217 * Drain pages of the indicated processor.
1218 *
1219 * The processor must either be the current processor and the
1220 * thread pinned to the current processor or a processor that
1221 * is not online.
1222 */
1223static void drain_pages(unsigned int cpu)
1da177e4 1224{
c54ad30c 1225 unsigned long flags;
1da177e4 1226 struct zone *zone;
1da177e4 1227
ee99c71c 1228 for_each_populated_zone(zone) {
1da177e4 1229 struct per_cpu_pageset *pset;
3dfa5721 1230 struct per_cpu_pages *pcp;
1da177e4 1231
99dcc3e5
CL
1232 local_irq_save(flags);
1233 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1234
1235 pcp = &pset->pcp;
2ff754fa
DR
1236 if (pcp->count) {
1237 free_pcppages_bulk(zone, pcp->count, pcp);
1238 pcp->count = 0;
1239 }
3dfa5721 1240 local_irq_restore(flags);
1da177e4
LT
1241 }
1242}
1da177e4 1243
9f8f2172
CL
1244/*
1245 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1246 */
1247void drain_local_pages(void *arg)
1248{
1249 drain_pages(smp_processor_id());
1250}
1251
1252/*
74046494
GBY
1253 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1254 *
1255 * Note that this code is protected against sending an IPI to an offline
1256 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1257 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1258 * nothing keeps CPUs from showing up after we populated the cpumask and
1259 * before the call to on_each_cpu_mask().
9f8f2172
CL
1260 */
1261void drain_all_pages(void)
1262{
74046494
GBY
1263 int cpu;
1264 struct per_cpu_pageset *pcp;
1265 struct zone *zone;
1266
1267 /*
1268 * Allocate in the BSS so we wont require allocation in
1269 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1270 */
1271 static cpumask_t cpus_with_pcps;
1272
1273 /*
1274 * We don't care about racing with CPU hotplug event
1275 * as offline notification will cause the notified
1276 * cpu to drain that CPU pcps and on_each_cpu_mask
1277 * disables preemption as part of its processing
1278 */
1279 for_each_online_cpu(cpu) {
1280 bool has_pcps = false;
1281 for_each_populated_zone(zone) {
1282 pcp = per_cpu_ptr(zone->pageset, cpu);
1283 if (pcp->pcp.count) {
1284 has_pcps = true;
1285 break;
1286 }
1287 }
1288 if (has_pcps)
1289 cpumask_set_cpu(cpu, &cpus_with_pcps);
1290 else
1291 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1292 }
1293 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1294}
1295
296699de 1296#ifdef CONFIG_HIBERNATION
1da177e4
LT
1297
1298void mark_free_pages(struct zone *zone)
1299{
f623f0db
RW
1300 unsigned long pfn, max_zone_pfn;
1301 unsigned long flags;
b2a0ac88 1302 int order, t;
1da177e4
LT
1303 struct list_head *curr;
1304
8080fc03 1305 if (zone_is_empty(zone))
1da177e4
LT
1306 return;
1307
1308 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1309
108bcc96 1310 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1311 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1312 if (pfn_valid(pfn)) {
1313 struct page *page = pfn_to_page(pfn);
1314
7be98234
RW
1315 if (!swsusp_page_is_forbidden(page))
1316 swsusp_unset_page_free(page);
f623f0db 1317 }
1da177e4 1318
b2a0ac88
MG
1319 for_each_migratetype_order(order, t) {
1320 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1321 unsigned long i;
1da177e4 1322
f623f0db
RW
1323 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1324 for (i = 0; i < (1UL << order); i++)
7be98234 1325 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1326 }
b2a0ac88 1327 }
1da177e4
LT
1328 spin_unlock_irqrestore(&zone->lock, flags);
1329}
e2c55dc8 1330#endif /* CONFIG_PM */
1da177e4 1331
1da177e4
LT
1332/*
1333 * Free a 0-order page
fc91668e 1334 * cold == 1 ? free a cold page : free a hot page
1da177e4 1335 */
fc91668e 1336void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1337{
1338 struct zone *zone = page_zone(page);
1339 struct per_cpu_pages *pcp;
1340 unsigned long flags;
5f8dcc21 1341 int migratetype;
1da177e4 1342
ec95f53a 1343 if (!free_pages_prepare(page, 0))
689bcebf
HD
1344 return;
1345
5f8dcc21 1346 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1347 set_freepage_migratetype(page, migratetype);
1da177e4 1348 local_irq_save(flags);
f8891e5e 1349 __count_vm_event(PGFREE);
da456f14 1350
5f8dcc21
MG
1351 /*
1352 * We only track unmovable, reclaimable and movable on pcp lists.
1353 * Free ISOLATE pages back to the allocator because they are being
1354 * offlined but treat RESERVE as movable pages so we can get those
1355 * areas back if necessary. Otherwise, we may have to free
1356 * excessively into the page allocator
1357 */
1358 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1359 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1360 free_one_page(zone, page, 0, migratetype);
1361 goto out;
1362 }
1363 migratetype = MIGRATE_MOVABLE;
1364 }
1365
99dcc3e5 1366 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1367 if (cold)
5f8dcc21 1368 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1369 else
5f8dcc21 1370 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1371 pcp->count++;
48db57f8 1372 if (pcp->count >= pcp->high) {
998d39cb
CS
1373 unsigned long batch = ACCESS_ONCE(pcp->batch);
1374 free_pcppages_bulk(zone, batch, pcp);
1375 pcp->count -= batch;
48db57f8 1376 }
5f8dcc21
MG
1377
1378out:
1da177e4 1379 local_irq_restore(flags);
1da177e4
LT
1380}
1381
cc59850e
KK
1382/*
1383 * Free a list of 0-order pages
1384 */
1385void free_hot_cold_page_list(struct list_head *list, int cold)
1386{
1387 struct page *page, *next;
1388
1389 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1390 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1391 free_hot_cold_page(page, cold);
1392 }
1393}
1394
8dfcc9ba
NP
1395/*
1396 * split_page takes a non-compound higher-order page, and splits it into
1397 * n (1<<order) sub-pages: page[0..n]
1398 * Each sub-page must be freed individually.
1399 *
1400 * Note: this is probably too low level an operation for use in drivers.
1401 * Please consult with lkml before using this in your driver.
1402 */
1403void split_page(struct page *page, unsigned int order)
1404{
1405 int i;
1406
725d704e
NP
1407 VM_BUG_ON(PageCompound(page));
1408 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1409
1410#ifdef CONFIG_KMEMCHECK
1411 /*
1412 * Split shadow pages too, because free(page[0]) would
1413 * otherwise free the whole shadow.
1414 */
1415 if (kmemcheck_page_is_tracked(page))
1416 split_page(virt_to_page(page[0].shadow), order);
1417#endif
1418
7835e98b
NP
1419 for (i = 1; i < (1 << order); i++)
1420 set_page_refcounted(page + i);
8dfcc9ba 1421}
5853ff23 1422EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1423
8fb74b9f 1424static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1425{
748446bb
MG
1426 unsigned long watermark;
1427 struct zone *zone;
2139cbe6 1428 int mt;
748446bb
MG
1429
1430 BUG_ON(!PageBuddy(page));
1431
1432 zone = page_zone(page);
2e30abd1 1433 mt = get_pageblock_migratetype(page);
748446bb 1434
194159fb 1435 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1436 /* Obey watermarks as if the page was being allocated */
1437 watermark = low_wmark_pages(zone) + (1 << order);
1438 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1439 return 0;
1440
8fb74b9f 1441 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1442 }
748446bb
MG
1443
1444 /* Remove page from free list */
1445 list_del(&page->lru);
1446 zone->free_area[order].nr_free--;
1447 rmv_page_order(page);
2139cbe6 1448
8fb74b9f 1449 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1450 if (order >= pageblock_order - 1) {
1451 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1452 for (; page < endpage; page += pageblock_nr_pages) {
1453 int mt = get_pageblock_migratetype(page);
194159fb 1454 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1455 set_pageblock_migratetype(page,
1456 MIGRATE_MOVABLE);
1457 }
748446bb
MG
1458 }
1459
8fb74b9f 1460 return 1UL << order;
1fb3f8ca
MG
1461}
1462
1463/*
1464 * Similar to split_page except the page is already free. As this is only
1465 * being used for migration, the migratetype of the block also changes.
1466 * As this is called with interrupts disabled, the caller is responsible
1467 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1468 * are enabled.
1469 *
1470 * Note: this is probably too low level an operation for use in drivers.
1471 * Please consult with lkml before using this in your driver.
1472 */
1473int split_free_page(struct page *page)
1474{
1475 unsigned int order;
1476 int nr_pages;
1477
1fb3f8ca
MG
1478 order = page_order(page);
1479
8fb74b9f 1480 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1481 if (!nr_pages)
1482 return 0;
1483
1484 /* Split into individual pages */
1485 set_page_refcounted(page);
1486 split_page(page, order);
1487 return nr_pages;
748446bb
MG
1488}
1489
1da177e4
LT
1490/*
1491 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1492 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1493 * or two.
1494 */
0a15c3e9
MG
1495static inline
1496struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1497 struct zone *zone, int order, gfp_t gfp_flags,
1498 int migratetype)
1da177e4
LT
1499{
1500 unsigned long flags;
689bcebf 1501 struct page *page;
1da177e4
LT
1502 int cold = !!(gfp_flags & __GFP_COLD);
1503
689bcebf 1504again:
48db57f8 1505 if (likely(order == 0)) {
1da177e4 1506 struct per_cpu_pages *pcp;
5f8dcc21 1507 struct list_head *list;
1da177e4 1508
1da177e4 1509 local_irq_save(flags);
99dcc3e5
CL
1510 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1511 list = &pcp->lists[migratetype];
5f8dcc21 1512 if (list_empty(list)) {
535131e6 1513 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1514 pcp->batch, list,
e084b2d9 1515 migratetype, cold);
5f8dcc21 1516 if (unlikely(list_empty(list)))
6fb332fa 1517 goto failed;
535131e6 1518 }
b92a6edd 1519
5f8dcc21
MG
1520 if (cold)
1521 page = list_entry(list->prev, struct page, lru);
1522 else
1523 page = list_entry(list->next, struct page, lru);
1524
b92a6edd
MG
1525 list_del(&page->lru);
1526 pcp->count--;
7fb1d9fc 1527 } else {
dab48dab
AM
1528 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1529 /*
1530 * __GFP_NOFAIL is not to be used in new code.
1531 *
1532 * All __GFP_NOFAIL callers should be fixed so that they
1533 * properly detect and handle allocation failures.
1534 *
1535 * We most definitely don't want callers attempting to
4923abf9 1536 * allocate greater than order-1 page units with
dab48dab
AM
1537 * __GFP_NOFAIL.
1538 */
4923abf9 1539 WARN_ON_ONCE(order > 1);
dab48dab 1540 }
1da177e4 1541 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1542 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1543 spin_unlock(&zone->lock);
1544 if (!page)
1545 goto failed;
d1ce749a
BZ
1546 __mod_zone_freepage_state(zone, -(1 << order),
1547 get_pageblock_migratetype(page));
1da177e4
LT
1548 }
1549
81c0a2bb 1550 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
f8891e5e 1551 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1552 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1553 local_irq_restore(flags);
1da177e4 1554
725d704e 1555 VM_BUG_ON(bad_range(zone, page));
17cf4406 1556 if (prep_new_page(page, order, gfp_flags))
a74609fa 1557 goto again;
1da177e4 1558 return page;
a74609fa
NP
1559
1560failed:
1561 local_irq_restore(flags);
a74609fa 1562 return NULL;
1da177e4
LT
1563}
1564
933e312e
AM
1565#ifdef CONFIG_FAIL_PAGE_ALLOC
1566
b2588c4b 1567static struct {
933e312e
AM
1568 struct fault_attr attr;
1569
1570 u32 ignore_gfp_highmem;
1571 u32 ignore_gfp_wait;
54114994 1572 u32 min_order;
933e312e
AM
1573} fail_page_alloc = {
1574 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1575 .ignore_gfp_wait = 1,
1576 .ignore_gfp_highmem = 1,
54114994 1577 .min_order = 1,
933e312e
AM
1578};
1579
1580static int __init setup_fail_page_alloc(char *str)
1581{
1582 return setup_fault_attr(&fail_page_alloc.attr, str);
1583}
1584__setup("fail_page_alloc=", setup_fail_page_alloc);
1585
deaf386e 1586static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1587{
54114994 1588 if (order < fail_page_alloc.min_order)
deaf386e 1589 return false;
933e312e 1590 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1591 return false;
933e312e 1592 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1593 return false;
933e312e 1594 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1595 return false;
933e312e
AM
1596
1597 return should_fail(&fail_page_alloc.attr, 1 << order);
1598}
1599
1600#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1601
1602static int __init fail_page_alloc_debugfs(void)
1603{
f4ae40a6 1604 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1605 struct dentry *dir;
933e312e 1606
dd48c085
AM
1607 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1608 &fail_page_alloc.attr);
1609 if (IS_ERR(dir))
1610 return PTR_ERR(dir);
933e312e 1611
b2588c4b
AM
1612 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1613 &fail_page_alloc.ignore_gfp_wait))
1614 goto fail;
1615 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1616 &fail_page_alloc.ignore_gfp_highmem))
1617 goto fail;
1618 if (!debugfs_create_u32("min-order", mode, dir,
1619 &fail_page_alloc.min_order))
1620 goto fail;
1621
1622 return 0;
1623fail:
dd48c085 1624 debugfs_remove_recursive(dir);
933e312e 1625
b2588c4b 1626 return -ENOMEM;
933e312e
AM
1627}
1628
1629late_initcall(fail_page_alloc_debugfs);
1630
1631#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1632
1633#else /* CONFIG_FAIL_PAGE_ALLOC */
1634
deaf386e 1635static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1636{
deaf386e 1637 return false;
933e312e
AM
1638}
1639
1640#endif /* CONFIG_FAIL_PAGE_ALLOC */
1641
1da177e4 1642/*
88f5acf8 1643 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1644 * of the allocation.
1645 */
88f5acf8
MG
1646static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1647 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1648{
1649 /* free_pages my go negative - that's OK */
d23ad423 1650 long min = mark;
2cfed075 1651 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1652 int o;
026b0814 1653 long free_cma = 0;
1da177e4 1654
df0a6daa 1655 free_pages -= (1 << order) - 1;
7fb1d9fc 1656 if (alloc_flags & ALLOC_HIGH)
1da177e4 1657 min -= min / 2;
7fb1d9fc 1658 if (alloc_flags & ALLOC_HARDER)
1da177e4 1659 min -= min / 4;
d95ea5d1
BZ
1660#ifdef CONFIG_CMA
1661 /* If allocation can't use CMA areas don't use free CMA pages */
1662 if (!(alloc_flags & ALLOC_CMA))
026b0814 1663 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1664#endif
026b0814
TS
1665
1666 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1667 return false;
1da177e4
LT
1668 for (o = 0; o < order; o++) {
1669 /* At the next order, this order's pages become unavailable */
1670 free_pages -= z->free_area[o].nr_free << o;
1671
1672 /* Require fewer higher order pages to be free */
1673 min >>= 1;
1674
1675 if (free_pages <= min)
88f5acf8 1676 return false;
1da177e4 1677 }
88f5acf8
MG
1678 return true;
1679}
1680
1681bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1682 int classzone_idx, int alloc_flags)
1683{
1684 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1685 zone_page_state(z, NR_FREE_PAGES));
1686}
1687
1688bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1689 int classzone_idx, int alloc_flags)
1690{
1691 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1692
1693 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1694 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1695
1696 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1697 free_pages);
1da177e4
LT
1698}
1699
9276b1bc
PJ
1700#ifdef CONFIG_NUMA
1701/*
1702 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1703 * skip over zones that are not allowed by the cpuset, or that have
1704 * been recently (in last second) found to be nearly full. See further
1705 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1706 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1707 *
a1aeb65a 1708 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1709 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1710 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1711 *
1712 * If the zonelist cache is not available for this zonelist, does
1713 * nothing and returns NULL.
1714 *
1715 * If the fullzones BITMAP in the zonelist cache is stale (more than
1716 * a second since last zap'd) then we zap it out (clear its bits.)
1717 *
1718 * We hold off even calling zlc_setup, until after we've checked the
1719 * first zone in the zonelist, on the theory that most allocations will
1720 * be satisfied from that first zone, so best to examine that zone as
1721 * quickly as we can.
1722 */
1723static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1724{
1725 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1726 nodemask_t *allowednodes; /* zonelist_cache approximation */
1727
1728 zlc = zonelist->zlcache_ptr;
1729 if (!zlc)
1730 return NULL;
1731
f05111f5 1732 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1733 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1734 zlc->last_full_zap = jiffies;
1735 }
1736
1737 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1738 &cpuset_current_mems_allowed :
4b0ef1fe 1739 &node_states[N_MEMORY];
9276b1bc
PJ
1740 return allowednodes;
1741}
1742
1743/*
1744 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1745 * if it is worth looking at further for free memory:
1746 * 1) Check that the zone isn't thought to be full (doesn't have its
1747 * bit set in the zonelist_cache fullzones BITMAP).
1748 * 2) Check that the zones node (obtained from the zonelist_cache
1749 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1750 * Return true (non-zero) if zone is worth looking at further, or
1751 * else return false (zero) if it is not.
1752 *
1753 * This check -ignores- the distinction between various watermarks,
1754 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1755 * found to be full for any variation of these watermarks, it will
1756 * be considered full for up to one second by all requests, unless
1757 * we are so low on memory on all allowed nodes that we are forced
1758 * into the second scan of the zonelist.
1759 *
1760 * In the second scan we ignore this zonelist cache and exactly
1761 * apply the watermarks to all zones, even it is slower to do so.
1762 * We are low on memory in the second scan, and should leave no stone
1763 * unturned looking for a free page.
1764 */
dd1a239f 1765static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1766 nodemask_t *allowednodes)
1767{
1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1769 int i; /* index of *z in zonelist zones */
1770 int n; /* node that zone *z is on */
1771
1772 zlc = zonelist->zlcache_ptr;
1773 if (!zlc)
1774 return 1;
1775
dd1a239f 1776 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1777 n = zlc->z_to_n[i];
1778
1779 /* This zone is worth trying if it is allowed but not full */
1780 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1781}
1782
1783/*
1784 * Given 'z' scanning a zonelist, set the corresponding bit in
1785 * zlc->fullzones, so that subsequent attempts to allocate a page
1786 * from that zone don't waste time re-examining it.
1787 */
dd1a239f 1788static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1789{
1790 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1791 int i; /* index of *z in zonelist zones */
1792
1793 zlc = zonelist->zlcache_ptr;
1794 if (!zlc)
1795 return;
1796
dd1a239f 1797 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1798
1799 set_bit(i, zlc->fullzones);
1800}
1801
76d3fbf8
MG
1802/*
1803 * clear all zones full, called after direct reclaim makes progress so that
1804 * a zone that was recently full is not skipped over for up to a second
1805 */
1806static void zlc_clear_zones_full(struct zonelist *zonelist)
1807{
1808 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1809
1810 zlc = zonelist->zlcache_ptr;
1811 if (!zlc)
1812 return;
1813
1814 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1815}
1816
81c0a2bb
JW
1817static bool zone_local(struct zone *local_zone, struct zone *zone)
1818{
fff4068c 1819 return local_zone->node == zone->node;
81c0a2bb
JW
1820}
1821
957f822a
DR
1822static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1823{
1824 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1825}
1826
1827static void __paginginit init_zone_allows_reclaim(int nid)
1828{
1829 int i;
1830
1831 for_each_online_node(i)
6b187d02 1832 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1833 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1834 else
957f822a 1835 zone_reclaim_mode = 1;
957f822a
DR
1836}
1837
9276b1bc
PJ
1838#else /* CONFIG_NUMA */
1839
1840static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1841{
1842 return NULL;
1843}
1844
dd1a239f 1845static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1846 nodemask_t *allowednodes)
1847{
1848 return 1;
1849}
1850
dd1a239f 1851static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1852{
1853}
76d3fbf8
MG
1854
1855static void zlc_clear_zones_full(struct zonelist *zonelist)
1856{
1857}
957f822a 1858
81c0a2bb
JW
1859static bool zone_local(struct zone *local_zone, struct zone *zone)
1860{
1861 return true;
1862}
1863
957f822a
DR
1864static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1865{
1866 return true;
1867}
1868
1869static inline void init_zone_allows_reclaim(int nid)
1870{
1871}
9276b1bc
PJ
1872#endif /* CONFIG_NUMA */
1873
7fb1d9fc 1874/*
0798e519 1875 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1876 * a page.
1877 */
1878static struct page *
19770b32 1879get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1880 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1881 struct zone *preferred_zone, int migratetype)
753ee728 1882{
dd1a239f 1883 struct zoneref *z;
7fb1d9fc 1884 struct page *page = NULL;
54a6eb5c 1885 int classzone_idx;
5117f45d 1886 struct zone *zone;
9276b1bc
PJ
1887 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1888 int zlc_active = 0; /* set if using zonelist_cache */
1889 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1890
19770b32 1891 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1892zonelist_scan:
7fb1d9fc 1893 /*
9276b1bc 1894 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1895 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1896 */
19770b32
MG
1897 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1898 high_zoneidx, nodemask) {
e085dbc5
JW
1899 unsigned long mark;
1900
e5adfffc 1901 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1902 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1903 continue;
7fb1d9fc 1904 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1905 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1906 continue;
e085dbc5 1907 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
e66f0972 1908 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
e085dbc5 1909 goto try_this_zone;
81c0a2bb
JW
1910 /*
1911 * Distribute pages in proportion to the individual
1912 * zone size to ensure fair page aging. The zone a
1913 * page was allocated in should have no effect on the
1914 * time the page has in memory before being reclaimed.
1915 *
fff4068c
JW
1916 * Try to stay in local zones in the fastpath. If
1917 * that fails, the slowpath is entered, which will do
1918 * another pass starting with the local zones, but
1919 * ultimately fall back to remote zones that do not
1920 * partake in the fairness round-robin cycle of this
1921 * zonelist.
81c0a2bb 1922 */
8798cee2 1923 if (alloc_flags & ALLOC_WMARK_LOW) {
81c0a2bb
JW
1924 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1925 continue;
fff4068c 1926 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
1927 continue;
1928 }
a756cf59
JW
1929 /*
1930 * When allocating a page cache page for writing, we
1931 * want to get it from a zone that is within its dirty
1932 * limit, such that no single zone holds more than its
1933 * proportional share of globally allowed dirty pages.
1934 * The dirty limits take into account the zone's
1935 * lowmem reserves and high watermark so that kswapd
1936 * should be able to balance it without having to
1937 * write pages from its LRU list.
1938 *
1939 * This may look like it could increase pressure on
1940 * lower zones by failing allocations in higher zones
1941 * before they are full. But the pages that do spill
1942 * over are limited as the lower zones are protected
1943 * by this very same mechanism. It should not become
1944 * a practical burden to them.
1945 *
1946 * XXX: For now, allow allocations to potentially
1947 * exceed the per-zone dirty limit in the slowpath
1948 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1949 * which is important when on a NUMA setup the allowed
1950 * zones are together not big enough to reach the
1951 * global limit. The proper fix for these situations
1952 * will require awareness of zones in the
1953 * dirty-throttling and the flusher threads.
1954 */
1955 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1956 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1957 goto this_zone_full;
7fb1d9fc 1958
e085dbc5
JW
1959 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1960 if (!zone_watermark_ok(zone, order, mark,
1961 classzone_idx, alloc_flags)) {
fa5e084e
MG
1962 int ret;
1963
e5adfffc
KS
1964 if (IS_ENABLED(CONFIG_NUMA) &&
1965 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1966 /*
1967 * we do zlc_setup if there are multiple nodes
1968 * and before considering the first zone allowed
1969 * by the cpuset.
1970 */
1971 allowednodes = zlc_setup(zonelist, alloc_flags);
1972 zlc_active = 1;
1973 did_zlc_setup = 1;
1974 }
1975
957f822a
DR
1976 if (zone_reclaim_mode == 0 ||
1977 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1978 goto this_zone_full;
1979
cd38b115
MG
1980 /*
1981 * As we may have just activated ZLC, check if the first
1982 * eligible zone has failed zone_reclaim recently.
1983 */
e5adfffc 1984 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1985 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1986 continue;
1987
fa5e084e
MG
1988 ret = zone_reclaim(zone, gfp_mask, order);
1989 switch (ret) {
1990 case ZONE_RECLAIM_NOSCAN:
1991 /* did not scan */
cd38b115 1992 continue;
fa5e084e
MG
1993 case ZONE_RECLAIM_FULL:
1994 /* scanned but unreclaimable */
cd38b115 1995 continue;
fa5e084e
MG
1996 default:
1997 /* did we reclaim enough */
fed2719e 1998 if (zone_watermark_ok(zone, order, mark,
fa5e084e 1999 classzone_idx, alloc_flags))
fed2719e
MG
2000 goto try_this_zone;
2001
2002 /*
2003 * Failed to reclaim enough to meet watermark.
2004 * Only mark the zone full if checking the min
2005 * watermark or if we failed to reclaim just
2006 * 1<<order pages or else the page allocator
2007 * fastpath will prematurely mark zones full
2008 * when the watermark is between the low and
2009 * min watermarks.
2010 */
2011 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2012 ret == ZONE_RECLAIM_SOME)
9276b1bc 2013 goto this_zone_full;
fed2719e
MG
2014
2015 continue;
0798e519 2016 }
7fb1d9fc
RS
2017 }
2018
fa5e084e 2019try_this_zone:
3dd28266
MG
2020 page = buffered_rmqueue(preferred_zone, zone, order,
2021 gfp_mask, migratetype);
0798e519 2022 if (page)
7fb1d9fc 2023 break;
9276b1bc 2024this_zone_full:
e5adfffc 2025 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 2026 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2027 }
9276b1bc 2028
e5adfffc 2029 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
2030 /* Disable zlc cache for second zonelist scan */
2031 zlc_active = 0;
2032 goto zonelist_scan;
2033 }
b121186a
AS
2034
2035 if (page)
2036 /*
2037 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2038 * necessary to allocate the page. The expectation is
2039 * that the caller is taking steps that will free more
2040 * memory. The caller should avoid the page being used
2041 * for !PFMEMALLOC purposes.
2042 */
2043 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2044
7fb1d9fc 2045 return page;
753ee728
MH
2046}
2047
29423e77
DR
2048/*
2049 * Large machines with many possible nodes should not always dump per-node
2050 * meminfo in irq context.
2051 */
2052static inline bool should_suppress_show_mem(void)
2053{
2054 bool ret = false;
2055
2056#if NODES_SHIFT > 8
2057 ret = in_interrupt();
2058#endif
2059 return ret;
2060}
2061
a238ab5b
DH
2062static DEFINE_RATELIMIT_STATE(nopage_rs,
2063 DEFAULT_RATELIMIT_INTERVAL,
2064 DEFAULT_RATELIMIT_BURST);
2065
2066void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2067{
a238ab5b
DH
2068 unsigned int filter = SHOW_MEM_FILTER_NODES;
2069
c0a32fc5
SG
2070 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2071 debug_guardpage_minorder() > 0)
a238ab5b
DH
2072 return;
2073
2074 /*
2075 * This documents exceptions given to allocations in certain
2076 * contexts that are allowed to allocate outside current's set
2077 * of allowed nodes.
2078 */
2079 if (!(gfp_mask & __GFP_NOMEMALLOC))
2080 if (test_thread_flag(TIF_MEMDIE) ||
2081 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2082 filter &= ~SHOW_MEM_FILTER_NODES;
2083 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2084 filter &= ~SHOW_MEM_FILTER_NODES;
2085
2086 if (fmt) {
3ee9a4f0
JP
2087 struct va_format vaf;
2088 va_list args;
2089
a238ab5b 2090 va_start(args, fmt);
3ee9a4f0
JP
2091
2092 vaf.fmt = fmt;
2093 vaf.va = &args;
2094
2095 pr_warn("%pV", &vaf);
2096
a238ab5b
DH
2097 va_end(args);
2098 }
2099
3ee9a4f0
JP
2100 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2101 current->comm, order, gfp_mask);
a238ab5b
DH
2102
2103 dump_stack();
2104 if (!should_suppress_show_mem())
2105 show_mem(filter);
2106}
2107
11e33f6a
MG
2108static inline int
2109should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2110 unsigned long did_some_progress,
11e33f6a 2111 unsigned long pages_reclaimed)
1da177e4 2112{
11e33f6a
MG
2113 /* Do not loop if specifically requested */
2114 if (gfp_mask & __GFP_NORETRY)
2115 return 0;
1da177e4 2116
f90ac398
MG
2117 /* Always retry if specifically requested */
2118 if (gfp_mask & __GFP_NOFAIL)
2119 return 1;
2120
2121 /*
2122 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2123 * making forward progress without invoking OOM. Suspend also disables
2124 * storage devices so kswapd will not help. Bail if we are suspending.
2125 */
2126 if (!did_some_progress && pm_suspended_storage())
2127 return 0;
2128
11e33f6a
MG
2129 /*
2130 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2131 * means __GFP_NOFAIL, but that may not be true in other
2132 * implementations.
2133 */
2134 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2135 return 1;
2136
2137 /*
2138 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2139 * specified, then we retry until we no longer reclaim any pages
2140 * (above), or we've reclaimed an order of pages at least as
2141 * large as the allocation's order. In both cases, if the
2142 * allocation still fails, we stop retrying.
2143 */
2144 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2145 return 1;
cf40bd16 2146
11e33f6a
MG
2147 return 0;
2148}
933e312e 2149
11e33f6a
MG
2150static inline struct page *
2151__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2152 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2153 nodemask_t *nodemask, struct zone *preferred_zone,
2154 int migratetype)
11e33f6a
MG
2155{
2156 struct page *page;
2157
2158 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2159 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2160 schedule_timeout_uninterruptible(1);
1da177e4
LT
2161 return NULL;
2162 }
6b1de916 2163
11e33f6a
MG
2164 /*
2165 * Go through the zonelist yet one more time, keep very high watermark
2166 * here, this is only to catch a parallel oom killing, we must fail if
2167 * we're still under heavy pressure.
2168 */
2169 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2170 order, zonelist, high_zoneidx,
5117f45d 2171 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2172 preferred_zone, migratetype);
7fb1d9fc 2173 if (page)
11e33f6a
MG
2174 goto out;
2175
4365a567
KH
2176 if (!(gfp_mask & __GFP_NOFAIL)) {
2177 /* The OOM killer will not help higher order allocs */
2178 if (order > PAGE_ALLOC_COSTLY_ORDER)
2179 goto out;
03668b3c
DR
2180 /* The OOM killer does not needlessly kill tasks for lowmem */
2181 if (high_zoneidx < ZONE_NORMAL)
2182 goto out;
4365a567
KH
2183 /*
2184 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2185 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2186 * The caller should handle page allocation failure by itself if
2187 * it specifies __GFP_THISNODE.
2188 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2189 */
2190 if (gfp_mask & __GFP_THISNODE)
2191 goto out;
2192 }
11e33f6a 2193 /* Exhausted what can be done so it's blamo time */
08ab9b10 2194 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2195
2196out:
2197 clear_zonelist_oom(zonelist, gfp_mask);
2198 return page;
2199}
2200
56de7263
MG
2201#ifdef CONFIG_COMPACTION
2202/* Try memory compaction for high-order allocations before reclaim */
2203static struct page *
2204__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2205 struct zonelist *zonelist, enum zone_type high_zoneidx,
2206 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2207 int migratetype, bool sync_migration,
c67fe375 2208 bool *contended_compaction, bool *deferred_compaction,
66199712 2209 unsigned long *did_some_progress)
56de7263 2210{
66199712 2211 if (!order)
56de7263
MG
2212 return NULL;
2213
aff62249 2214 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2215 *deferred_compaction = true;
2216 return NULL;
2217 }
2218
c06b1fca 2219 current->flags |= PF_MEMALLOC;
56de7263 2220 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2221 nodemask, sync_migration,
8fb74b9f 2222 contended_compaction);
c06b1fca 2223 current->flags &= ~PF_MEMALLOC;
56de7263 2224
1fb3f8ca 2225 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2226 struct page *page;
2227
56de7263
MG
2228 /* Page migration frees to the PCP lists but we want merging */
2229 drain_pages(get_cpu());
2230 put_cpu();
2231
2232 page = get_page_from_freelist(gfp_mask, nodemask,
2233 order, zonelist, high_zoneidx,
cfd19c5a
MG
2234 alloc_flags & ~ALLOC_NO_WATERMARKS,
2235 preferred_zone, migratetype);
56de7263 2236 if (page) {
62997027 2237 preferred_zone->compact_blockskip_flush = false;
de6c60a6 2238 compaction_defer_reset(preferred_zone, order, true);
56de7263
MG
2239 count_vm_event(COMPACTSUCCESS);
2240 return page;
2241 }
2242
2243 /*
2244 * It's bad if compaction run occurs and fails.
2245 * The most likely reason is that pages exist,
2246 * but not enough to satisfy watermarks.
2247 */
2248 count_vm_event(COMPACTFAIL);
66199712
MG
2249
2250 /*
2251 * As async compaction considers a subset of pageblocks, only
2252 * defer if the failure was a sync compaction failure.
2253 */
2254 if (sync_migration)
aff62249 2255 defer_compaction(preferred_zone, order);
56de7263
MG
2256
2257 cond_resched();
2258 }
2259
2260 return NULL;
2261}
2262#else
2263static inline struct page *
2264__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2265 struct zonelist *zonelist, enum zone_type high_zoneidx,
2266 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2267 int migratetype, bool sync_migration,
c67fe375 2268 bool *contended_compaction, bool *deferred_compaction,
66199712 2269 unsigned long *did_some_progress)
56de7263
MG
2270{
2271 return NULL;
2272}
2273#endif /* CONFIG_COMPACTION */
2274
bba90710
MS
2275/* Perform direct synchronous page reclaim */
2276static int
2277__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2278 nodemask_t *nodemask)
11e33f6a 2279{
11e33f6a 2280 struct reclaim_state reclaim_state;
bba90710 2281 int progress;
11e33f6a
MG
2282
2283 cond_resched();
2284
2285 /* We now go into synchronous reclaim */
2286 cpuset_memory_pressure_bump();
c06b1fca 2287 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2288 lockdep_set_current_reclaim_state(gfp_mask);
2289 reclaim_state.reclaimed_slab = 0;
c06b1fca 2290 current->reclaim_state = &reclaim_state;
11e33f6a 2291
bba90710 2292 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2293
c06b1fca 2294 current->reclaim_state = NULL;
11e33f6a 2295 lockdep_clear_current_reclaim_state();
c06b1fca 2296 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2297
2298 cond_resched();
2299
bba90710
MS
2300 return progress;
2301}
2302
2303/* The really slow allocator path where we enter direct reclaim */
2304static inline struct page *
2305__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2306 struct zonelist *zonelist, enum zone_type high_zoneidx,
2307 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2308 int migratetype, unsigned long *did_some_progress)
2309{
2310 struct page *page = NULL;
2311 bool drained = false;
2312
2313 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2314 nodemask);
9ee493ce
MG
2315 if (unlikely(!(*did_some_progress)))
2316 return NULL;
11e33f6a 2317
76d3fbf8 2318 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2319 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2320 zlc_clear_zones_full(zonelist);
2321
9ee493ce
MG
2322retry:
2323 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2324 zonelist, high_zoneidx,
cfd19c5a
MG
2325 alloc_flags & ~ALLOC_NO_WATERMARKS,
2326 preferred_zone, migratetype);
9ee493ce
MG
2327
2328 /*
2329 * If an allocation failed after direct reclaim, it could be because
2330 * pages are pinned on the per-cpu lists. Drain them and try again
2331 */
2332 if (!page && !drained) {
2333 drain_all_pages();
2334 drained = true;
2335 goto retry;
2336 }
2337
11e33f6a
MG
2338 return page;
2339}
2340
1da177e4 2341/*
11e33f6a
MG
2342 * This is called in the allocator slow-path if the allocation request is of
2343 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2344 */
11e33f6a
MG
2345static inline struct page *
2346__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2347 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2348 nodemask_t *nodemask, struct zone *preferred_zone,
2349 int migratetype)
11e33f6a
MG
2350{
2351 struct page *page;
2352
2353 do {
2354 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2355 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2356 preferred_zone, migratetype);
11e33f6a
MG
2357
2358 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2359 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2360 } while (!page && (gfp_mask & __GFP_NOFAIL));
2361
2362 return page;
2363}
2364
81c0a2bb
JW
2365static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2366 struct zonelist *zonelist,
2367 enum zone_type high_zoneidx,
2368 struct zone *preferred_zone)
1da177e4 2369{
dd1a239f
MG
2370 struct zoneref *z;
2371 struct zone *zone;
1da177e4 2372
81c0a2bb
JW
2373 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2374 if (!(gfp_mask & __GFP_NO_KSWAPD))
2375 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2376 /*
2377 * Only reset the batches of zones that were actually
2378 * considered in the fast path, we don't want to
2379 * thrash fairness information for zones that are not
2380 * actually part of this zonelist's round-robin cycle.
2381 */
fff4068c 2382 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
2383 continue;
2384 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2385 high_wmark_pages(zone) -
2386 low_wmark_pages(zone) -
2387 zone_page_state(zone, NR_ALLOC_BATCH));
2388 }
11e33f6a 2389}
cf40bd16 2390
341ce06f
PZ
2391static inline int
2392gfp_to_alloc_flags(gfp_t gfp_mask)
2393{
341ce06f
PZ
2394 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2395 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2396
a56f57ff 2397 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2398 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2399
341ce06f
PZ
2400 /*
2401 * The caller may dip into page reserves a bit more if the caller
2402 * cannot run direct reclaim, or if the caller has realtime scheduling
2403 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2404 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2405 */
e6223a3b 2406 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2407
341ce06f 2408 if (!wait) {
5c3240d9
AA
2409 /*
2410 * Not worth trying to allocate harder for
2411 * __GFP_NOMEMALLOC even if it can't schedule.
2412 */
2413 if (!(gfp_mask & __GFP_NOMEMALLOC))
2414 alloc_flags |= ALLOC_HARDER;
523b9458 2415 /*
341ce06f
PZ
2416 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2417 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2418 */
341ce06f 2419 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2420 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2421 alloc_flags |= ALLOC_HARDER;
2422
b37f1dd0
MG
2423 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2424 if (gfp_mask & __GFP_MEMALLOC)
2425 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2426 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2427 alloc_flags |= ALLOC_NO_WATERMARKS;
2428 else if (!in_interrupt() &&
2429 ((current->flags & PF_MEMALLOC) ||
2430 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2431 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2432 }
d95ea5d1
BZ
2433#ifdef CONFIG_CMA
2434 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2435 alloc_flags |= ALLOC_CMA;
2436#endif
341ce06f
PZ
2437 return alloc_flags;
2438}
2439
072bb0aa
MG
2440bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2441{
b37f1dd0 2442 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2443}
2444
11e33f6a
MG
2445static inline struct page *
2446__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2447 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2448 nodemask_t *nodemask, struct zone *preferred_zone,
2449 int migratetype)
11e33f6a
MG
2450{
2451 const gfp_t wait = gfp_mask & __GFP_WAIT;
2452 struct page *page = NULL;
2453 int alloc_flags;
2454 unsigned long pages_reclaimed = 0;
2455 unsigned long did_some_progress;
77f1fe6b 2456 bool sync_migration = false;
66199712 2457 bool deferred_compaction = false;
c67fe375 2458 bool contended_compaction = false;
1da177e4 2459
72807a74
MG
2460 /*
2461 * In the slowpath, we sanity check order to avoid ever trying to
2462 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2463 * be using allocators in order of preference for an area that is
2464 * too large.
2465 */
1fc28b70
MG
2466 if (order >= MAX_ORDER) {
2467 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2468 return NULL;
1fc28b70 2469 }
1da177e4 2470
952f3b51
CL
2471 /*
2472 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2473 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2474 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2475 * using a larger set of nodes after it has established that the
2476 * allowed per node queues are empty and that nodes are
2477 * over allocated.
2478 */
e5adfffc
KS
2479 if (IS_ENABLED(CONFIG_NUMA) &&
2480 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2481 goto nopage;
2482
cc4a6851 2483restart:
81c0a2bb
JW
2484 prepare_slowpath(gfp_mask, order, zonelist,
2485 high_zoneidx, preferred_zone);
1da177e4 2486
9bf2229f 2487 /*
7fb1d9fc
RS
2488 * OK, we're below the kswapd watermark and have kicked background
2489 * reclaim. Now things get more complex, so set up alloc_flags according
2490 * to how we want to proceed.
9bf2229f 2491 */
341ce06f 2492 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2493
f33261d7
DR
2494 /*
2495 * Find the true preferred zone if the allocation is unconstrained by
2496 * cpusets.
2497 */
2498 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2499 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2500 &preferred_zone);
2501
cfa54a0f 2502rebalance:
341ce06f 2503 /* This is the last chance, in general, before the goto nopage. */
19770b32 2504 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2505 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2506 preferred_zone, migratetype);
7fb1d9fc
RS
2507 if (page)
2508 goto got_pg;
1da177e4 2509
11e33f6a 2510 /* Allocate without watermarks if the context allows */
341ce06f 2511 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2512 /*
2513 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2514 * the allocation is high priority and these type of
2515 * allocations are system rather than user orientated
2516 */
2517 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2518
341ce06f
PZ
2519 page = __alloc_pages_high_priority(gfp_mask, order,
2520 zonelist, high_zoneidx, nodemask,
2521 preferred_zone, migratetype);
cfd19c5a 2522 if (page) {
341ce06f 2523 goto got_pg;
cfd19c5a 2524 }
1da177e4
LT
2525 }
2526
2527 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2528 if (!wait) {
2529 /*
2530 * All existing users of the deprecated __GFP_NOFAIL are
2531 * blockable, so warn of any new users that actually allow this
2532 * type of allocation to fail.
2533 */
2534 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2535 goto nopage;
aed0a0e3 2536 }
1da177e4 2537
341ce06f 2538 /* Avoid recursion of direct reclaim */
c06b1fca 2539 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2540 goto nopage;
2541
6583bb64
DR
2542 /* Avoid allocations with no watermarks from looping endlessly */
2543 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2544 goto nopage;
2545
77f1fe6b
MG
2546 /*
2547 * Try direct compaction. The first pass is asynchronous. Subsequent
2548 * attempts after direct reclaim are synchronous
2549 */
56de7263
MG
2550 page = __alloc_pages_direct_compact(gfp_mask, order,
2551 zonelist, high_zoneidx,
2552 nodemask,
2553 alloc_flags, preferred_zone,
66199712 2554 migratetype, sync_migration,
c67fe375 2555 &contended_compaction,
66199712
MG
2556 &deferred_compaction,
2557 &did_some_progress);
56de7263
MG
2558 if (page)
2559 goto got_pg;
c6a140bf 2560 sync_migration = true;
56de7263 2561
31f8d42d
LT
2562 /*
2563 * If compaction is deferred for high-order allocations, it is because
2564 * sync compaction recently failed. In this is the case and the caller
2565 * requested a movable allocation that does not heavily disrupt the
2566 * system then fail the allocation instead of entering direct reclaim.
2567 */
2568 if ((deferred_compaction || contended_compaction) &&
caf49191 2569 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2570 goto nopage;
66199712 2571
11e33f6a
MG
2572 /* Try direct reclaim and then allocating */
2573 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2574 zonelist, high_zoneidx,
2575 nodemask,
5117f45d 2576 alloc_flags, preferred_zone,
3dd28266 2577 migratetype, &did_some_progress);
11e33f6a
MG
2578 if (page)
2579 goto got_pg;
1da177e4 2580
e33c3b5e 2581 /*
11e33f6a
MG
2582 * If we failed to make any progress reclaiming, then we are
2583 * running out of options and have to consider going OOM
e33c3b5e 2584 */
11e33f6a 2585 if (!did_some_progress) {
b9921ecd 2586 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2587 if (oom_killer_disabled)
2588 goto nopage;
29fd66d2
DR
2589 /* Coredumps can quickly deplete all memory reserves */
2590 if ((current->flags & PF_DUMPCORE) &&
2591 !(gfp_mask & __GFP_NOFAIL))
2592 goto nopage;
11e33f6a
MG
2593 page = __alloc_pages_may_oom(gfp_mask, order,
2594 zonelist, high_zoneidx,
3dd28266
MG
2595 nodemask, preferred_zone,
2596 migratetype);
11e33f6a
MG
2597 if (page)
2598 goto got_pg;
1da177e4 2599
03668b3c
DR
2600 if (!(gfp_mask & __GFP_NOFAIL)) {
2601 /*
2602 * The oom killer is not called for high-order
2603 * allocations that may fail, so if no progress
2604 * is being made, there are no other options and
2605 * retrying is unlikely to help.
2606 */
2607 if (order > PAGE_ALLOC_COSTLY_ORDER)
2608 goto nopage;
2609 /*
2610 * The oom killer is not called for lowmem
2611 * allocations to prevent needlessly killing
2612 * innocent tasks.
2613 */
2614 if (high_zoneidx < ZONE_NORMAL)
2615 goto nopage;
2616 }
e2c55dc8 2617
ff0ceb9d
DR
2618 goto restart;
2619 }
1da177e4
LT
2620 }
2621
11e33f6a 2622 /* Check if we should retry the allocation */
a41f24ea 2623 pages_reclaimed += did_some_progress;
f90ac398
MG
2624 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2625 pages_reclaimed)) {
11e33f6a 2626 /* Wait for some write requests to complete then retry */
0e093d99 2627 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2628 goto rebalance;
3e7d3449
MG
2629 } else {
2630 /*
2631 * High-order allocations do not necessarily loop after
2632 * direct reclaim and reclaim/compaction depends on compaction
2633 * being called after reclaim so call directly if necessary
2634 */
2635 page = __alloc_pages_direct_compact(gfp_mask, order,
2636 zonelist, high_zoneidx,
2637 nodemask,
2638 alloc_flags, preferred_zone,
66199712 2639 migratetype, sync_migration,
c67fe375 2640 &contended_compaction,
66199712
MG
2641 &deferred_compaction,
2642 &did_some_progress);
3e7d3449
MG
2643 if (page)
2644 goto got_pg;
1da177e4
LT
2645 }
2646
2647nopage:
a238ab5b 2648 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2649 return page;
1da177e4 2650got_pg:
b1eeab67
VN
2651 if (kmemcheck_enabled)
2652 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2653
072bb0aa 2654 return page;
1da177e4 2655}
11e33f6a
MG
2656
2657/*
2658 * This is the 'heart' of the zoned buddy allocator.
2659 */
2660struct page *
2661__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2662 struct zonelist *zonelist, nodemask_t *nodemask)
2663{
2664 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2665 struct zone *preferred_zone;
cc9a6c87 2666 struct page *page = NULL;
3dd28266 2667 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2668 unsigned int cpuset_mems_cookie;
d95ea5d1 2669 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2670 struct mem_cgroup *memcg = NULL;
11e33f6a 2671
dcce284a
BH
2672 gfp_mask &= gfp_allowed_mask;
2673
11e33f6a
MG
2674 lockdep_trace_alloc(gfp_mask);
2675
2676 might_sleep_if(gfp_mask & __GFP_WAIT);
2677
2678 if (should_fail_alloc_page(gfp_mask, order))
2679 return NULL;
2680
2681 /*
2682 * Check the zones suitable for the gfp_mask contain at least one
2683 * valid zone. It's possible to have an empty zonelist as a result
2684 * of GFP_THISNODE and a memoryless node
2685 */
2686 if (unlikely(!zonelist->_zonerefs->zone))
2687 return NULL;
2688
6a1a0d3b
GC
2689 /*
2690 * Will only have any effect when __GFP_KMEMCG is set. This is
2691 * verified in the (always inline) callee
2692 */
2693 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2694 return NULL;
2695
cc9a6c87
MG
2696retry_cpuset:
2697 cpuset_mems_cookie = get_mems_allowed();
2698
5117f45d 2699 /* The preferred zone is used for statistics later */
f33261d7
DR
2700 first_zones_zonelist(zonelist, high_zoneidx,
2701 nodemask ? : &cpuset_current_mems_allowed,
2702 &preferred_zone);
cc9a6c87
MG
2703 if (!preferred_zone)
2704 goto out;
5117f45d 2705
d95ea5d1
BZ
2706#ifdef CONFIG_CMA
2707 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2708 alloc_flags |= ALLOC_CMA;
2709#endif
5117f45d 2710 /* First allocation attempt */
11e33f6a 2711 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2712 zonelist, high_zoneidx, alloc_flags,
3dd28266 2713 preferred_zone, migratetype);
21caf2fc
ML
2714 if (unlikely(!page)) {
2715 /*
2716 * Runtime PM, block IO and its error handling path
2717 * can deadlock because I/O on the device might not
2718 * complete.
2719 */
2720 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2721 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2722 zonelist, high_zoneidx, nodemask,
3dd28266 2723 preferred_zone, migratetype);
21caf2fc 2724 }
11e33f6a 2725
4b4f278c 2726 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2727
2728out:
2729 /*
2730 * When updating a task's mems_allowed, it is possible to race with
2731 * parallel threads in such a way that an allocation can fail while
2732 * the mask is being updated. If a page allocation is about to fail,
2733 * check if the cpuset changed during allocation and if so, retry.
2734 */
2735 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2736 goto retry_cpuset;
2737
6a1a0d3b
GC
2738 memcg_kmem_commit_charge(page, memcg, order);
2739
11e33f6a 2740 return page;
1da177e4 2741}
d239171e 2742EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2743
2744/*
2745 * Common helper functions.
2746 */
920c7a5d 2747unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2748{
945a1113
AM
2749 struct page *page;
2750
2751 /*
2752 * __get_free_pages() returns a 32-bit address, which cannot represent
2753 * a highmem page
2754 */
2755 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2756
1da177e4
LT
2757 page = alloc_pages(gfp_mask, order);
2758 if (!page)
2759 return 0;
2760 return (unsigned long) page_address(page);
2761}
1da177e4
LT
2762EXPORT_SYMBOL(__get_free_pages);
2763
920c7a5d 2764unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2765{
945a1113 2766 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2767}
1da177e4
LT
2768EXPORT_SYMBOL(get_zeroed_page);
2769
920c7a5d 2770void __free_pages(struct page *page, unsigned int order)
1da177e4 2771{
b5810039 2772 if (put_page_testzero(page)) {
1da177e4 2773 if (order == 0)
fc91668e 2774 free_hot_cold_page(page, 0);
1da177e4
LT
2775 else
2776 __free_pages_ok(page, order);
2777 }
2778}
2779
2780EXPORT_SYMBOL(__free_pages);
2781
920c7a5d 2782void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2783{
2784 if (addr != 0) {
725d704e 2785 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2786 __free_pages(virt_to_page((void *)addr), order);
2787 }
2788}
2789
2790EXPORT_SYMBOL(free_pages);
2791
6a1a0d3b
GC
2792/*
2793 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2794 * pages allocated with __GFP_KMEMCG.
2795 *
2796 * Those pages are accounted to a particular memcg, embedded in the
2797 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2798 * for that information only to find out that it is NULL for users who have no
2799 * interest in that whatsoever, we provide these functions.
2800 *
2801 * The caller knows better which flags it relies on.
2802 */
2803void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2804{
2805 memcg_kmem_uncharge_pages(page, order);
2806 __free_pages(page, order);
2807}
2808
2809void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2810{
2811 if (addr != 0) {
2812 VM_BUG_ON(!virt_addr_valid((void *)addr));
2813 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2814 }
2815}
2816
ee85c2e1
AK
2817static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2818{
2819 if (addr) {
2820 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2821 unsigned long used = addr + PAGE_ALIGN(size);
2822
2823 split_page(virt_to_page((void *)addr), order);
2824 while (used < alloc_end) {
2825 free_page(used);
2826 used += PAGE_SIZE;
2827 }
2828 }
2829 return (void *)addr;
2830}
2831
2be0ffe2
TT
2832/**
2833 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2834 * @size: the number of bytes to allocate
2835 * @gfp_mask: GFP flags for the allocation
2836 *
2837 * This function is similar to alloc_pages(), except that it allocates the
2838 * minimum number of pages to satisfy the request. alloc_pages() can only
2839 * allocate memory in power-of-two pages.
2840 *
2841 * This function is also limited by MAX_ORDER.
2842 *
2843 * Memory allocated by this function must be released by free_pages_exact().
2844 */
2845void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2846{
2847 unsigned int order = get_order(size);
2848 unsigned long addr;
2849
2850 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2851 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2852}
2853EXPORT_SYMBOL(alloc_pages_exact);
2854
ee85c2e1
AK
2855/**
2856 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2857 * pages on a node.
b5e6ab58 2858 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2859 * @size: the number of bytes to allocate
2860 * @gfp_mask: GFP flags for the allocation
2861 *
2862 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2863 * back.
2864 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2865 * but is not exact.
2866 */
2867void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2868{
2869 unsigned order = get_order(size);
2870 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2871 if (!p)
2872 return NULL;
2873 return make_alloc_exact((unsigned long)page_address(p), order, size);
2874}
2875EXPORT_SYMBOL(alloc_pages_exact_nid);
2876
2be0ffe2
TT
2877/**
2878 * free_pages_exact - release memory allocated via alloc_pages_exact()
2879 * @virt: the value returned by alloc_pages_exact.
2880 * @size: size of allocation, same value as passed to alloc_pages_exact().
2881 *
2882 * Release the memory allocated by a previous call to alloc_pages_exact.
2883 */
2884void free_pages_exact(void *virt, size_t size)
2885{
2886 unsigned long addr = (unsigned long)virt;
2887 unsigned long end = addr + PAGE_ALIGN(size);
2888
2889 while (addr < end) {
2890 free_page(addr);
2891 addr += PAGE_SIZE;
2892 }
2893}
2894EXPORT_SYMBOL(free_pages_exact);
2895
e0fb5815
ZY
2896/**
2897 * nr_free_zone_pages - count number of pages beyond high watermark
2898 * @offset: The zone index of the highest zone
2899 *
2900 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2901 * high watermark within all zones at or below a given zone index. For each
2902 * zone, the number of pages is calculated as:
834405c3 2903 * managed_pages - high_pages
e0fb5815 2904 */
ebec3862 2905static unsigned long nr_free_zone_pages(int offset)
1da177e4 2906{
dd1a239f 2907 struct zoneref *z;
54a6eb5c
MG
2908 struct zone *zone;
2909
e310fd43 2910 /* Just pick one node, since fallback list is circular */
ebec3862 2911 unsigned long sum = 0;
1da177e4 2912
0e88460d 2913 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2914
54a6eb5c 2915 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2916 unsigned long size = zone->managed_pages;
41858966 2917 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2918 if (size > high)
2919 sum += size - high;
1da177e4
LT
2920 }
2921
2922 return sum;
2923}
2924
e0fb5815
ZY
2925/**
2926 * nr_free_buffer_pages - count number of pages beyond high watermark
2927 *
2928 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2929 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 2930 */
ebec3862 2931unsigned long nr_free_buffer_pages(void)
1da177e4 2932{
af4ca457 2933 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2934}
c2f1a551 2935EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 2936
e0fb5815
ZY
2937/**
2938 * nr_free_pagecache_pages - count number of pages beyond high watermark
2939 *
2940 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2941 * high watermark within all zones.
1da177e4 2942 */
ebec3862 2943unsigned long nr_free_pagecache_pages(void)
1da177e4 2944{
2a1e274a 2945 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2946}
08e0f6a9
CL
2947
2948static inline void show_node(struct zone *zone)
1da177e4 2949{
e5adfffc 2950 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2951 printk("Node %d ", zone_to_nid(zone));
1da177e4 2952}
1da177e4 2953
1da177e4
LT
2954void si_meminfo(struct sysinfo *val)
2955{
2956 val->totalram = totalram_pages;
2957 val->sharedram = 0;
d23ad423 2958 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2959 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2960 val->totalhigh = totalhigh_pages;
2961 val->freehigh = nr_free_highpages();
1da177e4
LT
2962 val->mem_unit = PAGE_SIZE;
2963}
2964
2965EXPORT_SYMBOL(si_meminfo);
2966
2967#ifdef CONFIG_NUMA
2968void si_meminfo_node(struct sysinfo *val, int nid)
2969{
cdd91a77
JL
2970 int zone_type; /* needs to be signed */
2971 unsigned long managed_pages = 0;
1da177e4
LT
2972 pg_data_t *pgdat = NODE_DATA(nid);
2973
cdd91a77
JL
2974 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2975 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2976 val->totalram = managed_pages;
d23ad423 2977 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2978#ifdef CONFIG_HIGHMEM
b40da049 2979 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
2980 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2981 NR_FREE_PAGES);
98d2b0eb
CL
2982#else
2983 val->totalhigh = 0;
2984 val->freehigh = 0;
2985#endif
1da177e4
LT
2986 val->mem_unit = PAGE_SIZE;
2987}
2988#endif
2989
ddd588b5 2990/*
7bf02ea2
DR
2991 * Determine whether the node should be displayed or not, depending on whether
2992 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2993 */
7bf02ea2 2994bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2995{
2996 bool ret = false;
cc9a6c87 2997 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2998
2999 if (!(flags & SHOW_MEM_FILTER_NODES))
3000 goto out;
3001
cc9a6c87
MG
3002 do {
3003 cpuset_mems_cookie = get_mems_allowed();
3004 ret = !node_isset(nid, cpuset_current_mems_allowed);
3005 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
3006out:
3007 return ret;
3008}
3009
1da177e4
LT
3010#define K(x) ((x) << (PAGE_SHIFT-10))
3011
377e4f16
RV
3012static void show_migration_types(unsigned char type)
3013{
3014 static const char types[MIGRATE_TYPES] = {
3015 [MIGRATE_UNMOVABLE] = 'U',
3016 [MIGRATE_RECLAIMABLE] = 'E',
3017 [MIGRATE_MOVABLE] = 'M',
3018 [MIGRATE_RESERVE] = 'R',
3019#ifdef CONFIG_CMA
3020 [MIGRATE_CMA] = 'C',
3021#endif
194159fb 3022#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3023 [MIGRATE_ISOLATE] = 'I',
194159fb 3024#endif
377e4f16
RV
3025 };
3026 char tmp[MIGRATE_TYPES + 1];
3027 char *p = tmp;
3028 int i;
3029
3030 for (i = 0; i < MIGRATE_TYPES; i++) {
3031 if (type & (1 << i))
3032 *p++ = types[i];
3033 }
3034
3035 *p = '\0';
3036 printk("(%s) ", tmp);
3037}
3038
1da177e4
LT
3039/*
3040 * Show free area list (used inside shift_scroll-lock stuff)
3041 * We also calculate the percentage fragmentation. We do this by counting the
3042 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3043 * Suppresses nodes that are not allowed by current's cpuset if
3044 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3045 */
7bf02ea2 3046void show_free_areas(unsigned int filter)
1da177e4 3047{
c7241913 3048 int cpu;
1da177e4
LT
3049 struct zone *zone;
3050
ee99c71c 3051 for_each_populated_zone(zone) {
7bf02ea2 3052 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3053 continue;
c7241913
JS
3054 show_node(zone);
3055 printk("%s per-cpu:\n", zone->name);
1da177e4 3056
6b482c67 3057 for_each_online_cpu(cpu) {
1da177e4
LT
3058 struct per_cpu_pageset *pageset;
3059
99dcc3e5 3060 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3061
3dfa5721
CL
3062 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3063 cpu, pageset->pcp.high,
3064 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3065 }
3066 }
3067
a731286d
KM
3068 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3069 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3070 " unevictable:%lu"
b76146ed 3071 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3072 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3073 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3074 " free_cma:%lu\n",
4f98a2fe 3075 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3076 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3077 global_page_state(NR_ISOLATED_ANON),
3078 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3079 global_page_state(NR_INACTIVE_FILE),
a731286d 3080 global_page_state(NR_ISOLATED_FILE),
7b854121 3081 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3082 global_page_state(NR_FILE_DIRTY),
ce866b34 3083 global_page_state(NR_WRITEBACK),
fd39fc85 3084 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3085 global_page_state(NR_FREE_PAGES),
3701b033
KM
3086 global_page_state(NR_SLAB_RECLAIMABLE),
3087 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3088 global_page_state(NR_FILE_MAPPED),
4b02108a 3089 global_page_state(NR_SHMEM),
a25700a5 3090 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3091 global_page_state(NR_BOUNCE),
3092 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3093
ee99c71c 3094 for_each_populated_zone(zone) {
1da177e4
LT
3095 int i;
3096
7bf02ea2 3097 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3098 continue;
1da177e4
LT
3099 show_node(zone);
3100 printk("%s"
3101 " free:%lukB"
3102 " min:%lukB"
3103 " low:%lukB"
3104 " high:%lukB"
4f98a2fe
RR
3105 " active_anon:%lukB"
3106 " inactive_anon:%lukB"
3107 " active_file:%lukB"
3108 " inactive_file:%lukB"
7b854121 3109 " unevictable:%lukB"
a731286d
KM
3110 " isolated(anon):%lukB"
3111 " isolated(file):%lukB"
1da177e4 3112 " present:%lukB"
9feedc9d 3113 " managed:%lukB"
4a0aa73f
KM
3114 " mlocked:%lukB"
3115 " dirty:%lukB"
3116 " writeback:%lukB"
3117 " mapped:%lukB"
4b02108a 3118 " shmem:%lukB"
4a0aa73f
KM
3119 " slab_reclaimable:%lukB"
3120 " slab_unreclaimable:%lukB"
c6a7f572 3121 " kernel_stack:%lukB"
4a0aa73f
KM
3122 " pagetables:%lukB"
3123 " unstable:%lukB"
3124 " bounce:%lukB"
d1ce749a 3125 " free_cma:%lukB"
4a0aa73f 3126 " writeback_tmp:%lukB"
1da177e4
LT
3127 " pages_scanned:%lu"
3128 " all_unreclaimable? %s"
3129 "\n",
3130 zone->name,
88f5acf8 3131 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3132 K(min_wmark_pages(zone)),
3133 K(low_wmark_pages(zone)),
3134 K(high_wmark_pages(zone)),
4f98a2fe
RR
3135 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3136 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3137 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3138 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3139 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3140 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3141 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3142 K(zone->present_pages),
9feedc9d 3143 K(zone->managed_pages),
4a0aa73f
KM
3144 K(zone_page_state(zone, NR_MLOCK)),
3145 K(zone_page_state(zone, NR_FILE_DIRTY)),
3146 K(zone_page_state(zone, NR_WRITEBACK)),
3147 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3148 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3149 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3150 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3151 zone_page_state(zone, NR_KERNEL_STACK) *
3152 THREAD_SIZE / 1024,
4a0aa73f
KM
3153 K(zone_page_state(zone, NR_PAGETABLE)),
3154 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3155 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3156 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3157 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3158 zone->pages_scanned,
6e543d57 3159 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3160 );
3161 printk("lowmem_reserve[]:");
3162 for (i = 0; i < MAX_NR_ZONES; i++)
3163 printk(" %lu", zone->lowmem_reserve[i]);
3164 printk("\n");
3165 }
3166
ee99c71c 3167 for_each_populated_zone(zone) {
b8af2941 3168 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3169 unsigned char types[MAX_ORDER];
1da177e4 3170
7bf02ea2 3171 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3172 continue;
1da177e4
LT
3173 show_node(zone);
3174 printk("%s: ", zone->name);
1da177e4
LT
3175
3176 spin_lock_irqsave(&zone->lock, flags);
3177 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3178 struct free_area *area = &zone->free_area[order];
3179 int type;
3180
3181 nr[order] = area->nr_free;
8f9de51a 3182 total += nr[order] << order;
377e4f16
RV
3183
3184 types[order] = 0;
3185 for (type = 0; type < MIGRATE_TYPES; type++) {
3186 if (!list_empty(&area->free_list[type]))
3187 types[order] |= 1 << type;
3188 }
1da177e4
LT
3189 }
3190 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3191 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3192 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3193 if (nr[order])
3194 show_migration_types(types[order]);
3195 }
1da177e4
LT
3196 printk("= %lukB\n", K(total));
3197 }
3198
949f7ec5
DR
3199 hugetlb_show_meminfo();
3200
e6f3602d
LW
3201 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3202
1da177e4
LT
3203 show_swap_cache_info();
3204}
3205
19770b32
MG
3206static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3207{
3208 zoneref->zone = zone;
3209 zoneref->zone_idx = zone_idx(zone);
3210}
3211
1da177e4
LT
3212/*
3213 * Builds allocation fallback zone lists.
1a93205b
CL
3214 *
3215 * Add all populated zones of a node to the zonelist.
1da177e4 3216 */
f0c0b2b8 3217static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3218 int nr_zones)
1da177e4 3219{
1a93205b 3220 struct zone *zone;
bc732f1d 3221 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3222
3223 do {
2f6726e5 3224 zone_type--;
070f8032 3225 zone = pgdat->node_zones + zone_type;
1a93205b 3226 if (populated_zone(zone)) {
dd1a239f
MG
3227 zoneref_set_zone(zone,
3228 &zonelist->_zonerefs[nr_zones++]);
070f8032 3229 check_highest_zone(zone_type);
1da177e4 3230 }
2f6726e5 3231 } while (zone_type);
bc732f1d 3232
070f8032 3233 return nr_zones;
1da177e4
LT
3234}
3235
f0c0b2b8
KH
3236
3237/*
3238 * zonelist_order:
3239 * 0 = automatic detection of better ordering.
3240 * 1 = order by ([node] distance, -zonetype)
3241 * 2 = order by (-zonetype, [node] distance)
3242 *
3243 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3244 * the same zonelist. So only NUMA can configure this param.
3245 */
3246#define ZONELIST_ORDER_DEFAULT 0
3247#define ZONELIST_ORDER_NODE 1
3248#define ZONELIST_ORDER_ZONE 2
3249
3250/* zonelist order in the kernel.
3251 * set_zonelist_order() will set this to NODE or ZONE.
3252 */
3253static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3254static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3255
3256
1da177e4 3257#ifdef CONFIG_NUMA
f0c0b2b8
KH
3258/* The value user specified ....changed by config */
3259static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3260/* string for sysctl */
3261#define NUMA_ZONELIST_ORDER_LEN 16
3262char numa_zonelist_order[16] = "default";
3263
3264/*
3265 * interface for configure zonelist ordering.
3266 * command line option "numa_zonelist_order"
3267 * = "[dD]efault - default, automatic configuration.
3268 * = "[nN]ode - order by node locality, then by zone within node
3269 * = "[zZ]one - order by zone, then by locality within zone
3270 */
3271
3272static int __parse_numa_zonelist_order(char *s)
3273{
3274 if (*s == 'd' || *s == 'D') {
3275 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3276 } else if (*s == 'n' || *s == 'N') {
3277 user_zonelist_order = ZONELIST_ORDER_NODE;
3278 } else if (*s == 'z' || *s == 'Z') {
3279 user_zonelist_order = ZONELIST_ORDER_ZONE;
3280 } else {
3281 printk(KERN_WARNING
3282 "Ignoring invalid numa_zonelist_order value: "
3283 "%s\n", s);
3284 return -EINVAL;
3285 }
3286 return 0;
3287}
3288
3289static __init int setup_numa_zonelist_order(char *s)
3290{
ecb256f8
VL
3291 int ret;
3292
3293 if (!s)
3294 return 0;
3295
3296 ret = __parse_numa_zonelist_order(s);
3297 if (ret == 0)
3298 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3299
3300 return ret;
f0c0b2b8
KH
3301}
3302early_param("numa_zonelist_order", setup_numa_zonelist_order);
3303
3304/*
3305 * sysctl handler for numa_zonelist_order
3306 */
3307int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3308 void __user *buffer, size_t *length,
f0c0b2b8
KH
3309 loff_t *ppos)
3310{
3311 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3312 int ret;
443c6f14 3313 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3314
443c6f14 3315 mutex_lock(&zl_order_mutex);
dacbde09
CG
3316 if (write) {
3317 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3318 ret = -EINVAL;
3319 goto out;
3320 }
3321 strcpy(saved_string, (char *)table->data);
3322 }
8d65af78 3323 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3324 if (ret)
443c6f14 3325 goto out;
f0c0b2b8
KH
3326 if (write) {
3327 int oldval = user_zonelist_order;
dacbde09
CG
3328
3329 ret = __parse_numa_zonelist_order((char *)table->data);
3330 if (ret) {
f0c0b2b8
KH
3331 /*
3332 * bogus value. restore saved string
3333 */
dacbde09 3334 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3335 NUMA_ZONELIST_ORDER_LEN);
3336 user_zonelist_order = oldval;
4eaf3f64
HL
3337 } else if (oldval != user_zonelist_order) {
3338 mutex_lock(&zonelists_mutex);
9adb62a5 3339 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3340 mutex_unlock(&zonelists_mutex);
3341 }
f0c0b2b8 3342 }
443c6f14
AK
3343out:
3344 mutex_unlock(&zl_order_mutex);
3345 return ret;
f0c0b2b8
KH
3346}
3347
3348
62bc62a8 3349#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3350static int node_load[MAX_NUMNODES];
3351
1da177e4 3352/**
4dc3b16b 3353 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3354 * @node: node whose fallback list we're appending
3355 * @used_node_mask: nodemask_t of already used nodes
3356 *
3357 * We use a number of factors to determine which is the next node that should
3358 * appear on a given node's fallback list. The node should not have appeared
3359 * already in @node's fallback list, and it should be the next closest node
3360 * according to the distance array (which contains arbitrary distance values
3361 * from each node to each node in the system), and should also prefer nodes
3362 * with no CPUs, since presumably they'll have very little allocation pressure
3363 * on them otherwise.
3364 * It returns -1 if no node is found.
3365 */
f0c0b2b8 3366static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3367{
4cf808eb 3368 int n, val;
1da177e4 3369 int min_val = INT_MAX;
00ef2d2f 3370 int best_node = NUMA_NO_NODE;
a70f7302 3371 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3372
4cf808eb
LT
3373 /* Use the local node if we haven't already */
3374 if (!node_isset(node, *used_node_mask)) {
3375 node_set(node, *used_node_mask);
3376 return node;
3377 }
1da177e4 3378
4b0ef1fe 3379 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3380
3381 /* Don't want a node to appear more than once */
3382 if (node_isset(n, *used_node_mask))
3383 continue;
3384
1da177e4
LT
3385 /* Use the distance array to find the distance */
3386 val = node_distance(node, n);
3387
4cf808eb
LT
3388 /* Penalize nodes under us ("prefer the next node") */
3389 val += (n < node);
3390
1da177e4 3391 /* Give preference to headless and unused nodes */
a70f7302
RR
3392 tmp = cpumask_of_node(n);
3393 if (!cpumask_empty(tmp))
1da177e4
LT
3394 val += PENALTY_FOR_NODE_WITH_CPUS;
3395
3396 /* Slight preference for less loaded node */
3397 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3398 val += node_load[n];
3399
3400 if (val < min_val) {
3401 min_val = val;
3402 best_node = n;
3403 }
3404 }
3405
3406 if (best_node >= 0)
3407 node_set(best_node, *used_node_mask);
3408
3409 return best_node;
3410}
3411
f0c0b2b8
KH
3412
3413/*
3414 * Build zonelists ordered by node and zones within node.
3415 * This results in maximum locality--normal zone overflows into local
3416 * DMA zone, if any--but risks exhausting DMA zone.
3417 */
3418static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3419{
f0c0b2b8 3420 int j;
1da177e4 3421 struct zonelist *zonelist;
f0c0b2b8 3422
54a6eb5c 3423 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3424 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3425 ;
bc732f1d 3426 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3427 zonelist->_zonerefs[j].zone = NULL;
3428 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3429}
3430
523b9458
CL
3431/*
3432 * Build gfp_thisnode zonelists
3433 */
3434static void build_thisnode_zonelists(pg_data_t *pgdat)
3435{
523b9458
CL
3436 int j;
3437 struct zonelist *zonelist;
3438
54a6eb5c 3439 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3440 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3441 zonelist->_zonerefs[j].zone = NULL;
3442 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3443}
3444
f0c0b2b8
KH
3445/*
3446 * Build zonelists ordered by zone and nodes within zones.
3447 * This results in conserving DMA zone[s] until all Normal memory is
3448 * exhausted, but results in overflowing to remote node while memory
3449 * may still exist in local DMA zone.
3450 */
3451static int node_order[MAX_NUMNODES];
3452
3453static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3454{
f0c0b2b8
KH
3455 int pos, j, node;
3456 int zone_type; /* needs to be signed */
3457 struct zone *z;
3458 struct zonelist *zonelist;
3459
54a6eb5c
MG
3460 zonelist = &pgdat->node_zonelists[0];
3461 pos = 0;
3462 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3463 for (j = 0; j < nr_nodes; j++) {
3464 node = node_order[j];
3465 z = &NODE_DATA(node)->node_zones[zone_type];
3466 if (populated_zone(z)) {
dd1a239f
MG
3467 zoneref_set_zone(z,
3468 &zonelist->_zonerefs[pos++]);
54a6eb5c 3469 check_highest_zone(zone_type);
f0c0b2b8
KH
3470 }
3471 }
f0c0b2b8 3472 }
dd1a239f
MG
3473 zonelist->_zonerefs[pos].zone = NULL;
3474 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3475}
3476
3477static int default_zonelist_order(void)
3478{
3479 int nid, zone_type;
b8af2941 3480 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3481 struct zone *z;
3482 int average_size;
3483 /*
b8af2941 3484 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3485 * If they are really small and used heavily, the system can fall
3486 * into OOM very easily.
e325c90f 3487 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3488 */
3489 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3490 low_kmem_size = 0;
3491 total_size = 0;
3492 for_each_online_node(nid) {
3493 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3494 z = &NODE_DATA(nid)->node_zones[zone_type];
3495 if (populated_zone(z)) {
3496 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3497 low_kmem_size += z->managed_pages;
3498 total_size += z->managed_pages;
e325c90f
DR
3499 } else if (zone_type == ZONE_NORMAL) {
3500 /*
3501 * If any node has only lowmem, then node order
3502 * is preferred to allow kernel allocations
3503 * locally; otherwise, they can easily infringe
3504 * on other nodes when there is an abundance of
3505 * lowmem available to allocate from.
3506 */
3507 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3508 }
3509 }
3510 }
3511 if (!low_kmem_size || /* there are no DMA area. */
3512 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3513 return ZONELIST_ORDER_NODE;
3514 /*
3515 * look into each node's config.
b8af2941
PK
3516 * If there is a node whose DMA/DMA32 memory is very big area on
3517 * local memory, NODE_ORDER may be suitable.
3518 */
37b07e41 3519 average_size = total_size /
4b0ef1fe 3520 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3521 for_each_online_node(nid) {
3522 low_kmem_size = 0;
3523 total_size = 0;
3524 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3525 z = &NODE_DATA(nid)->node_zones[zone_type];
3526 if (populated_zone(z)) {
3527 if (zone_type < ZONE_NORMAL)
3528 low_kmem_size += z->present_pages;
3529 total_size += z->present_pages;
3530 }
3531 }
3532 if (low_kmem_size &&
3533 total_size > average_size && /* ignore small node */
3534 low_kmem_size > total_size * 70/100)
3535 return ZONELIST_ORDER_NODE;
3536 }
3537 return ZONELIST_ORDER_ZONE;
3538}
3539
3540static void set_zonelist_order(void)
3541{
3542 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3543 current_zonelist_order = default_zonelist_order();
3544 else
3545 current_zonelist_order = user_zonelist_order;
3546}
3547
3548static void build_zonelists(pg_data_t *pgdat)
3549{
3550 int j, node, load;
3551 enum zone_type i;
1da177e4 3552 nodemask_t used_mask;
f0c0b2b8
KH
3553 int local_node, prev_node;
3554 struct zonelist *zonelist;
3555 int order = current_zonelist_order;
1da177e4
LT
3556
3557 /* initialize zonelists */
523b9458 3558 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3559 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3560 zonelist->_zonerefs[0].zone = NULL;
3561 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3562 }
3563
3564 /* NUMA-aware ordering of nodes */
3565 local_node = pgdat->node_id;
62bc62a8 3566 load = nr_online_nodes;
1da177e4
LT
3567 prev_node = local_node;
3568 nodes_clear(used_mask);
f0c0b2b8 3569
f0c0b2b8
KH
3570 memset(node_order, 0, sizeof(node_order));
3571 j = 0;
3572
1da177e4
LT
3573 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3574 /*
3575 * We don't want to pressure a particular node.
3576 * So adding penalty to the first node in same
3577 * distance group to make it round-robin.
3578 */
957f822a
DR
3579 if (node_distance(local_node, node) !=
3580 node_distance(local_node, prev_node))
f0c0b2b8
KH
3581 node_load[node] = load;
3582
1da177e4
LT
3583 prev_node = node;
3584 load--;
f0c0b2b8
KH
3585 if (order == ZONELIST_ORDER_NODE)
3586 build_zonelists_in_node_order(pgdat, node);
3587 else
3588 node_order[j++] = node; /* remember order */
3589 }
1da177e4 3590
f0c0b2b8
KH
3591 if (order == ZONELIST_ORDER_ZONE) {
3592 /* calculate node order -- i.e., DMA last! */
3593 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3594 }
523b9458
CL
3595
3596 build_thisnode_zonelists(pgdat);
1da177e4
LT
3597}
3598
9276b1bc 3599/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3600static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3601{
54a6eb5c
MG
3602 struct zonelist *zonelist;
3603 struct zonelist_cache *zlc;
dd1a239f 3604 struct zoneref *z;
9276b1bc 3605
54a6eb5c
MG
3606 zonelist = &pgdat->node_zonelists[0];
3607 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3608 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3609 for (z = zonelist->_zonerefs; z->zone; z++)
3610 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3611}
3612
7aac7898
LS
3613#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3614/*
3615 * Return node id of node used for "local" allocations.
3616 * I.e., first node id of first zone in arg node's generic zonelist.
3617 * Used for initializing percpu 'numa_mem', which is used primarily
3618 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3619 */
3620int local_memory_node(int node)
3621{
3622 struct zone *zone;
3623
3624 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3625 gfp_zone(GFP_KERNEL),
3626 NULL,
3627 &zone);
3628 return zone->node;
3629}
3630#endif
f0c0b2b8 3631
1da177e4
LT
3632#else /* CONFIG_NUMA */
3633
f0c0b2b8
KH
3634static void set_zonelist_order(void)
3635{
3636 current_zonelist_order = ZONELIST_ORDER_ZONE;
3637}
3638
3639static void build_zonelists(pg_data_t *pgdat)
1da177e4 3640{
19655d34 3641 int node, local_node;
54a6eb5c
MG
3642 enum zone_type j;
3643 struct zonelist *zonelist;
1da177e4
LT
3644
3645 local_node = pgdat->node_id;
1da177e4 3646
54a6eb5c 3647 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3648 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3649
54a6eb5c
MG
3650 /*
3651 * Now we build the zonelist so that it contains the zones
3652 * of all the other nodes.
3653 * We don't want to pressure a particular node, so when
3654 * building the zones for node N, we make sure that the
3655 * zones coming right after the local ones are those from
3656 * node N+1 (modulo N)
3657 */
3658 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3659 if (!node_online(node))
3660 continue;
bc732f1d 3661 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3662 }
54a6eb5c
MG
3663 for (node = 0; node < local_node; node++) {
3664 if (!node_online(node))
3665 continue;
bc732f1d 3666 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3667 }
3668
dd1a239f
MG
3669 zonelist->_zonerefs[j].zone = NULL;
3670 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3671}
3672
9276b1bc 3673/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3674static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3675{
54a6eb5c 3676 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3677}
3678
1da177e4
LT
3679#endif /* CONFIG_NUMA */
3680
99dcc3e5
CL
3681/*
3682 * Boot pageset table. One per cpu which is going to be used for all
3683 * zones and all nodes. The parameters will be set in such a way
3684 * that an item put on a list will immediately be handed over to
3685 * the buddy list. This is safe since pageset manipulation is done
3686 * with interrupts disabled.
3687 *
3688 * The boot_pagesets must be kept even after bootup is complete for
3689 * unused processors and/or zones. They do play a role for bootstrapping
3690 * hotplugged processors.
3691 *
3692 * zoneinfo_show() and maybe other functions do
3693 * not check if the processor is online before following the pageset pointer.
3694 * Other parts of the kernel may not check if the zone is available.
3695 */
3696static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3697static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3698static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3699
4eaf3f64
HL
3700/*
3701 * Global mutex to protect against size modification of zonelists
3702 * as well as to serialize pageset setup for the new populated zone.
3703 */
3704DEFINE_MUTEX(zonelists_mutex);
3705
9b1a4d38 3706/* return values int ....just for stop_machine() */
4ed7e022 3707static int __build_all_zonelists(void *data)
1da177e4 3708{
6811378e 3709 int nid;
99dcc3e5 3710 int cpu;
9adb62a5 3711 pg_data_t *self = data;
9276b1bc 3712
7f9cfb31
BL
3713#ifdef CONFIG_NUMA
3714 memset(node_load, 0, sizeof(node_load));
3715#endif
9adb62a5
JL
3716
3717 if (self && !node_online(self->node_id)) {
3718 build_zonelists(self);
3719 build_zonelist_cache(self);
3720 }
3721
9276b1bc 3722 for_each_online_node(nid) {
7ea1530a
CL
3723 pg_data_t *pgdat = NODE_DATA(nid);
3724
3725 build_zonelists(pgdat);
3726 build_zonelist_cache(pgdat);
9276b1bc 3727 }
99dcc3e5
CL
3728
3729 /*
3730 * Initialize the boot_pagesets that are going to be used
3731 * for bootstrapping processors. The real pagesets for
3732 * each zone will be allocated later when the per cpu
3733 * allocator is available.
3734 *
3735 * boot_pagesets are used also for bootstrapping offline
3736 * cpus if the system is already booted because the pagesets
3737 * are needed to initialize allocators on a specific cpu too.
3738 * F.e. the percpu allocator needs the page allocator which
3739 * needs the percpu allocator in order to allocate its pagesets
3740 * (a chicken-egg dilemma).
3741 */
7aac7898 3742 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3743 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3744
7aac7898
LS
3745#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3746 /*
3747 * We now know the "local memory node" for each node--
3748 * i.e., the node of the first zone in the generic zonelist.
3749 * Set up numa_mem percpu variable for on-line cpus. During
3750 * boot, only the boot cpu should be on-line; we'll init the
3751 * secondary cpus' numa_mem as they come on-line. During
3752 * node/memory hotplug, we'll fixup all on-line cpus.
3753 */
3754 if (cpu_online(cpu))
3755 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3756#endif
3757 }
3758
6811378e
YG
3759 return 0;
3760}
3761
4eaf3f64
HL
3762/*
3763 * Called with zonelists_mutex held always
3764 * unless system_state == SYSTEM_BOOTING.
3765 */
9adb62a5 3766void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3767{
f0c0b2b8
KH
3768 set_zonelist_order();
3769
6811378e 3770 if (system_state == SYSTEM_BOOTING) {
423b41d7 3771 __build_all_zonelists(NULL);
68ad8df4 3772 mminit_verify_zonelist();
6811378e
YG
3773 cpuset_init_current_mems_allowed();
3774 } else {
e9959f0f 3775#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3776 if (zone)
3777 setup_zone_pageset(zone);
e9959f0f 3778#endif
dd1895e2
CS
3779 /* we have to stop all cpus to guarantee there is no user
3780 of zonelist */
9adb62a5 3781 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3782 /* cpuset refresh routine should be here */
3783 }
bd1e22b8 3784 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3785 /*
3786 * Disable grouping by mobility if the number of pages in the
3787 * system is too low to allow the mechanism to work. It would be
3788 * more accurate, but expensive to check per-zone. This check is
3789 * made on memory-hotadd so a system can start with mobility
3790 * disabled and enable it later
3791 */
d9c23400 3792 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3793 page_group_by_mobility_disabled = 1;
3794 else
3795 page_group_by_mobility_disabled = 0;
3796
3797 printk("Built %i zonelists in %s order, mobility grouping %s. "
3798 "Total pages: %ld\n",
62bc62a8 3799 nr_online_nodes,
f0c0b2b8 3800 zonelist_order_name[current_zonelist_order],
9ef9acb0 3801 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3802 vm_total_pages);
3803#ifdef CONFIG_NUMA
3804 printk("Policy zone: %s\n", zone_names[policy_zone]);
3805#endif
1da177e4
LT
3806}
3807
3808/*
3809 * Helper functions to size the waitqueue hash table.
3810 * Essentially these want to choose hash table sizes sufficiently
3811 * large so that collisions trying to wait on pages are rare.
3812 * But in fact, the number of active page waitqueues on typical
3813 * systems is ridiculously low, less than 200. So this is even
3814 * conservative, even though it seems large.
3815 *
3816 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3817 * waitqueues, i.e. the size of the waitq table given the number of pages.
3818 */
3819#define PAGES_PER_WAITQUEUE 256
3820
cca448fe 3821#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3822static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3823{
3824 unsigned long size = 1;
3825
3826 pages /= PAGES_PER_WAITQUEUE;
3827
3828 while (size < pages)
3829 size <<= 1;
3830
3831 /*
3832 * Once we have dozens or even hundreds of threads sleeping
3833 * on IO we've got bigger problems than wait queue collision.
3834 * Limit the size of the wait table to a reasonable size.
3835 */
3836 size = min(size, 4096UL);
3837
3838 return max(size, 4UL);
3839}
cca448fe
YG
3840#else
3841/*
3842 * A zone's size might be changed by hot-add, so it is not possible to determine
3843 * a suitable size for its wait_table. So we use the maximum size now.
3844 *
3845 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3846 *
3847 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3848 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3849 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3850 *
3851 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3852 * or more by the traditional way. (See above). It equals:
3853 *
3854 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3855 * ia64(16K page size) : = ( 8G + 4M)byte.
3856 * powerpc (64K page size) : = (32G +16M)byte.
3857 */
3858static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3859{
3860 return 4096UL;
3861}
3862#endif
1da177e4
LT
3863
3864/*
3865 * This is an integer logarithm so that shifts can be used later
3866 * to extract the more random high bits from the multiplicative
3867 * hash function before the remainder is taken.
3868 */
3869static inline unsigned long wait_table_bits(unsigned long size)
3870{
3871 return ffz(~size);
3872}
3873
6d3163ce
AH
3874/*
3875 * Check if a pageblock contains reserved pages
3876 */
3877static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3878{
3879 unsigned long pfn;
3880
3881 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3882 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3883 return 1;
3884 }
3885 return 0;
3886}
3887
56fd56b8 3888/*
d9c23400 3889 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3890 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3891 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3892 * higher will lead to a bigger reserve which will get freed as contiguous
3893 * blocks as reclaim kicks in
3894 */
3895static void setup_zone_migrate_reserve(struct zone *zone)
3896{
6d3163ce 3897 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3898 struct page *page;
78986a67
MG
3899 unsigned long block_migratetype;
3900 int reserve;
943dca1a 3901 int old_reserve;
56fd56b8 3902
d0215638
MH
3903 /*
3904 * Get the start pfn, end pfn and the number of blocks to reserve
3905 * We have to be careful to be aligned to pageblock_nr_pages to
3906 * make sure that we always check pfn_valid for the first page in
3907 * the block.
3908 */
56fd56b8 3909 start_pfn = zone->zone_start_pfn;
108bcc96 3910 end_pfn = zone_end_pfn(zone);
d0215638 3911 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3912 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3913 pageblock_order;
56fd56b8 3914
78986a67
MG
3915 /*
3916 * Reserve blocks are generally in place to help high-order atomic
3917 * allocations that are short-lived. A min_free_kbytes value that
3918 * would result in more than 2 reserve blocks for atomic allocations
3919 * is assumed to be in place to help anti-fragmentation for the
3920 * future allocation of hugepages at runtime.
3921 */
3922 reserve = min(2, reserve);
943dca1a
YI
3923 old_reserve = zone->nr_migrate_reserve_block;
3924
3925 /* When memory hot-add, we almost always need to do nothing */
3926 if (reserve == old_reserve)
3927 return;
3928 zone->nr_migrate_reserve_block = reserve;
78986a67 3929
d9c23400 3930 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3931 if (!pfn_valid(pfn))
3932 continue;
3933 page = pfn_to_page(pfn);
3934
344c790e
AL
3935 /* Watch out for overlapping nodes */
3936 if (page_to_nid(page) != zone_to_nid(zone))
3937 continue;
3938
56fd56b8
MG
3939 block_migratetype = get_pageblock_migratetype(page);
3940
938929f1
MG
3941 /* Only test what is necessary when the reserves are not met */
3942 if (reserve > 0) {
3943 /*
3944 * Blocks with reserved pages will never free, skip
3945 * them.
3946 */
3947 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3948 if (pageblock_is_reserved(pfn, block_end_pfn))
3949 continue;
56fd56b8 3950
938929f1
MG
3951 /* If this block is reserved, account for it */
3952 if (block_migratetype == MIGRATE_RESERVE) {
3953 reserve--;
3954 continue;
3955 }
3956
3957 /* Suitable for reserving if this block is movable */
3958 if (block_migratetype == MIGRATE_MOVABLE) {
3959 set_pageblock_migratetype(page,
3960 MIGRATE_RESERVE);
3961 move_freepages_block(zone, page,
3962 MIGRATE_RESERVE);
3963 reserve--;
3964 continue;
3965 }
943dca1a
YI
3966 } else if (!old_reserve) {
3967 /*
3968 * At boot time we don't need to scan the whole zone
3969 * for turning off MIGRATE_RESERVE.
3970 */
3971 break;
56fd56b8
MG
3972 }
3973
3974 /*
3975 * If the reserve is met and this is a previous reserved block,
3976 * take it back
3977 */
3978 if (block_migratetype == MIGRATE_RESERVE) {
3979 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3980 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3981 }
3982 }
3983}
ac0e5b7a 3984
1da177e4
LT
3985/*
3986 * Initially all pages are reserved - free ones are freed
3987 * up by free_all_bootmem() once the early boot process is
3988 * done. Non-atomic initialization, single-pass.
3989 */
c09b4240 3990void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3991 unsigned long start_pfn, enum memmap_context context)
1da177e4 3992{
1da177e4 3993 struct page *page;
29751f69
AW
3994 unsigned long end_pfn = start_pfn + size;
3995 unsigned long pfn;
86051ca5 3996 struct zone *z;
1da177e4 3997
22b31eec
HD
3998 if (highest_memmap_pfn < end_pfn - 1)
3999 highest_memmap_pfn = end_pfn - 1;
4000
86051ca5 4001 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4002 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4003 /*
4004 * There can be holes in boot-time mem_map[]s
4005 * handed to this function. They do not
4006 * exist on hotplugged memory.
4007 */
4008 if (context == MEMMAP_EARLY) {
4009 if (!early_pfn_valid(pfn))
4010 continue;
4011 if (!early_pfn_in_nid(pfn, nid))
4012 continue;
4013 }
d41dee36
AW
4014 page = pfn_to_page(pfn);
4015 set_page_links(page, zone, nid, pfn);
708614e6 4016 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4017 init_page_count(page);
22b751c3 4018 page_mapcount_reset(page);
90572890 4019 page_cpupid_reset_last(page);
1da177e4 4020 SetPageReserved(page);
b2a0ac88
MG
4021 /*
4022 * Mark the block movable so that blocks are reserved for
4023 * movable at startup. This will force kernel allocations
4024 * to reserve their blocks rather than leaking throughout
4025 * the address space during boot when many long-lived
56fd56b8
MG
4026 * kernel allocations are made. Later some blocks near
4027 * the start are marked MIGRATE_RESERVE by
4028 * setup_zone_migrate_reserve()
86051ca5
KH
4029 *
4030 * bitmap is created for zone's valid pfn range. but memmap
4031 * can be created for invalid pages (for alignment)
4032 * check here not to call set_pageblock_migratetype() against
4033 * pfn out of zone.
b2a0ac88 4034 */
86051ca5 4035 if ((z->zone_start_pfn <= pfn)
108bcc96 4036 && (pfn < zone_end_pfn(z))
86051ca5 4037 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4038 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4039
1da177e4
LT
4040 INIT_LIST_HEAD(&page->lru);
4041#ifdef WANT_PAGE_VIRTUAL
4042 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4043 if (!is_highmem_idx(zone))
3212c6be 4044 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4045#endif
1da177e4
LT
4046 }
4047}
4048
1e548deb 4049static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4050{
b2a0ac88
MG
4051 int order, t;
4052 for_each_migratetype_order(order, t) {
4053 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4054 zone->free_area[order].nr_free = 0;
4055 }
4056}
4057
4058#ifndef __HAVE_ARCH_MEMMAP_INIT
4059#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4060 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4061#endif
4062
4ed7e022 4063static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 4064{
3a6be87f 4065#ifdef CONFIG_MMU
e7c8d5c9
CL
4066 int batch;
4067
4068 /*
4069 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4070 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4071 *
4072 * OK, so we don't know how big the cache is. So guess.
4073 */
b40da049 4074 batch = zone->managed_pages / 1024;
ba56e91c
SR
4075 if (batch * PAGE_SIZE > 512 * 1024)
4076 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4077 batch /= 4; /* We effectively *= 4 below */
4078 if (batch < 1)
4079 batch = 1;
4080
4081 /*
0ceaacc9
NP
4082 * Clamp the batch to a 2^n - 1 value. Having a power
4083 * of 2 value was found to be more likely to have
4084 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4085 *
0ceaacc9
NP
4086 * For example if 2 tasks are alternately allocating
4087 * batches of pages, one task can end up with a lot
4088 * of pages of one half of the possible page colors
4089 * and the other with pages of the other colors.
e7c8d5c9 4090 */
9155203a 4091 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4092
e7c8d5c9 4093 return batch;
3a6be87f
DH
4094
4095#else
4096 /* The deferral and batching of frees should be suppressed under NOMMU
4097 * conditions.
4098 *
4099 * The problem is that NOMMU needs to be able to allocate large chunks
4100 * of contiguous memory as there's no hardware page translation to
4101 * assemble apparent contiguous memory from discontiguous pages.
4102 *
4103 * Queueing large contiguous runs of pages for batching, however,
4104 * causes the pages to actually be freed in smaller chunks. As there
4105 * can be a significant delay between the individual batches being
4106 * recycled, this leads to the once large chunks of space being
4107 * fragmented and becoming unavailable for high-order allocations.
4108 */
4109 return 0;
4110#endif
e7c8d5c9
CL
4111}
4112
8d7a8fa9
CS
4113/*
4114 * pcp->high and pcp->batch values are related and dependent on one another:
4115 * ->batch must never be higher then ->high.
4116 * The following function updates them in a safe manner without read side
4117 * locking.
4118 *
4119 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4120 * those fields changing asynchronously (acording the the above rule).
4121 *
4122 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4123 * outside of boot time (or some other assurance that no concurrent updaters
4124 * exist).
4125 */
4126static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4127 unsigned long batch)
4128{
4129 /* start with a fail safe value for batch */
4130 pcp->batch = 1;
4131 smp_wmb();
4132
4133 /* Update high, then batch, in order */
4134 pcp->high = high;
4135 smp_wmb();
4136
4137 pcp->batch = batch;
4138}
4139
3664033c 4140/* a companion to pageset_set_high() */
4008bab7
CS
4141static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4142{
8d7a8fa9 4143 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4144}
4145
88c90dbc 4146static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4147{
4148 struct per_cpu_pages *pcp;
5f8dcc21 4149 int migratetype;
2caaad41 4150
1c6fe946
MD
4151 memset(p, 0, sizeof(*p));
4152
3dfa5721 4153 pcp = &p->pcp;
2caaad41 4154 pcp->count = 0;
5f8dcc21
MG
4155 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4156 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4157}
4158
88c90dbc
CS
4159static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4160{
4161 pageset_init(p);
4162 pageset_set_batch(p, batch);
4163}
4164
8ad4b1fb 4165/*
3664033c 4166 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4167 * to the value high for the pageset p.
4168 */
3664033c 4169static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4170 unsigned long high)
4171{
8d7a8fa9
CS
4172 unsigned long batch = max(1UL, high / 4);
4173 if ((high / 4) > (PAGE_SHIFT * 8))
4174 batch = PAGE_SHIFT * 8;
8ad4b1fb 4175
8d7a8fa9 4176 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4177}
4178
169f6c19
CS
4179static void __meminit pageset_set_high_and_batch(struct zone *zone,
4180 struct per_cpu_pageset *pcp)
56cef2b8 4181{
56cef2b8 4182 if (percpu_pagelist_fraction)
3664033c 4183 pageset_set_high(pcp,
56cef2b8
CS
4184 (zone->managed_pages /
4185 percpu_pagelist_fraction));
4186 else
4187 pageset_set_batch(pcp, zone_batchsize(zone));
4188}
4189
169f6c19
CS
4190static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4191{
4192 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4193
4194 pageset_init(pcp);
4195 pageset_set_high_and_batch(zone, pcp);
4196}
4197
4ed7e022 4198static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4199{
4200 int cpu;
319774e2 4201 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4202 for_each_possible_cpu(cpu)
4203 zone_pageset_init(zone, cpu);
319774e2
WF
4204}
4205
2caaad41 4206/*
99dcc3e5
CL
4207 * Allocate per cpu pagesets and initialize them.
4208 * Before this call only boot pagesets were available.
e7c8d5c9 4209 */
99dcc3e5 4210void __init setup_per_cpu_pageset(void)
e7c8d5c9 4211{
99dcc3e5 4212 struct zone *zone;
e7c8d5c9 4213
319774e2
WF
4214 for_each_populated_zone(zone)
4215 setup_zone_pageset(zone);
e7c8d5c9
CL
4216}
4217
577a32f6 4218static noinline __init_refok
cca448fe 4219int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4220{
4221 int i;
cca448fe 4222 size_t alloc_size;
ed8ece2e
DH
4223
4224 /*
4225 * The per-page waitqueue mechanism uses hashed waitqueues
4226 * per zone.
4227 */
02b694de
YG
4228 zone->wait_table_hash_nr_entries =
4229 wait_table_hash_nr_entries(zone_size_pages);
4230 zone->wait_table_bits =
4231 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4232 alloc_size = zone->wait_table_hash_nr_entries
4233 * sizeof(wait_queue_head_t);
4234
cd94b9db 4235 if (!slab_is_available()) {
cca448fe 4236 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4237 memblock_virt_alloc_node_nopanic(
4238 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4239 } else {
4240 /*
4241 * This case means that a zone whose size was 0 gets new memory
4242 * via memory hot-add.
4243 * But it may be the case that a new node was hot-added. In
4244 * this case vmalloc() will not be able to use this new node's
4245 * memory - this wait_table must be initialized to use this new
4246 * node itself as well.
4247 * To use this new node's memory, further consideration will be
4248 * necessary.
4249 */
8691f3a7 4250 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4251 }
4252 if (!zone->wait_table)
4253 return -ENOMEM;
ed8ece2e 4254
b8af2941 4255 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4256 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4257
4258 return 0;
ed8ece2e
DH
4259}
4260
c09b4240 4261static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4262{
99dcc3e5
CL
4263 /*
4264 * per cpu subsystem is not up at this point. The following code
4265 * relies on the ability of the linker to provide the
4266 * offset of a (static) per cpu variable into the per cpu area.
4267 */
4268 zone->pageset = &boot_pageset;
ed8ece2e 4269
b38a8725 4270 if (populated_zone(zone))
99dcc3e5
CL
4271 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4272 zone->name, zone->present_pages,
4273 zone_batchsize(zone));
ed8ece2e
DH
4274}
4275
4ed7e022 4276int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4277 unsigned long zone_start_pfn,
a2f3aa02
DH
4278 unsigned long size,
4279 enum memmap_context context)
ed8ece2e
DH
4280{
4281 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4282 int ret;
4283 ret = zone_wait_table_init(zone, size);
4284 if (ret)
4285 return ret;
ed8ece2e
DH
4286 pgdat->nr_zones = zone_idx(zone) + 1;
4287
ed8ece2e
DH
4288 zone->zone_start_pfn = zone_start_pfn;
4289
708614e6
MG
4290 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4291 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4292 pgdat->node_id,
4293 (unsigned long)zone_idx(zone),
4294 zone_start_pfn, (zone_start_pfn + size));
4295
1e548deb 4296 zone_init_free_lists(zone);
718127cc
YG
4297
4298 return 0;
ed8ece2e
DH
4299}
4300
0ee332c1 4301#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4302#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4303/*
4304 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4305 * Architectures may implement their own version but if add_active_range()
4306 * was used and there are no special requirements, this is a convenient
4307 * alternative
4308 */
f2dbcfa7 4309int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4310{
c13291a5 4311 unsigned long start_pfn, end_pfn;
e76b63f8 4312 int nid;
7c243c71
RA
4313 /*
4314 * NOTE: The following SMP-unsafe globals are only used early in boot
4315 * when the kernel is running single-threaded.
4316 */
4317 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4318 static int __meminitdata last_nid;
4319
4320 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4321 return last_nid;
c713216d 4322
e76b63f8
YL
4323 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4324 if (nid != -1) {
4325 last_start_pfn = start_pfn;
4326 last_end_pfn = end_pfn;
4327 last_nid = nid;
4328 }
4329
4330 return nid;
c713216d
MG
4331}
4332#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4333
f2dbcfa7
KH
4334int __meminit early_pfn_to_nid(unsigned long pfn)
4335{
cc2559bc
KH
4336 int nid;
4337
4338 nid = __early_pfn_to_nid(pfn);
4339 if (nid >= 0)
4340 return nid;
4341 /* just returns 0 */
4342 return 0;
f2dbcfa7
KH
4343}
4344
cc2559bc
KH
4345#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4346bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4347{
4348 int nid;
4349
4350 nid = __early_pfn_to_nid(pfn);
4351 if (nid >= 0 && nid != node)
4352 return false;
4353 return true;
4354}
4355#endif
f2dbcfa7 4356
c713216d 4357/**
6782832e 4358 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4359 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4360 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d
MG
4361 *
4362 * If an architecture guarantees that all ranges registered with
4363 * add_active_ranges() contain no holes and may be freed, this
6782832e
SS
4364 * this function may be used instead of calling memblock_free_early_nid()
4365 * manually.
c713216d 4366 */
c13291a5 4367void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4368{
c13291a5
TH
4369 unsigned long start_pfn, end_pfn;
4370 int i, this_nid;
edbe7d23 4371
c13291a5
TH
4372 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4373 start_pfn = min(start_pfn, max_low_pfn);
4374 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4375
c13291a5 4376 if (start_pfn < end_pfn)
6782832e
SS
4377 memblock_free_early_nid(PFN_PHYS(start_pfn),
4378 (end_pfn - start_pfn) << PAGE_SHIFT,
4379 this_nid);
edbe7d23 4380 }
edbe7d23 4381}
edbe7d23 4382
c713216d
MG
4383/**
4384 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4385 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4386 *
4387 * If an architecture guarantees that all ranges registered with
4388 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4389 * function may be used instead of calling memory_present() manually.
c713216d
MG
4390 */
4391void __init sparse_memory_present_with_active_regions(int nid)
4392{
c13291a5
TH
4393 unsigned long start_pfn, end_pfn;
4394 int i, this_nid;
c713216d 4395
c13291a5
TH
4396 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4397 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4398}
4399
4400/**
4401 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4402 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4403 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4404 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4405 *
4406 * It returns the start and end page frame of a node based on information
4407 * provided by an arch calling add_active_range(). If called for a node
4408 * with no available memory, a warning is printed and the start and end
88ca3b94 4409 * PFNs will be 0.
c713216d 4410 */
a3142c8e 4411void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4412 unsigned long *start_pfn, unsigned long *end_pfn)
4413{
c13291a5 4414 unsigned long this_start_pfn, this_end_pfn;
c713216d 4415 int i;
c13291a5 4416
c713216d
MG
4417 *start_pfn = -1UL;
4418 *end_pfn = 0;
4419
c13291a5
TH
4420 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4421 *start_pfn = min(*start_pfn, this_start_pfn);
4422 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4423 }
4424
633c0666 4425 if (*start_pfn == -1UL)
c713216d 4426 *start_pfn = 0;
c713216d
MG
4427}
4428
2a1e274a
MG
4429/*
4430 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4431 * assumption is made that zones within a node are ordered in monotonic
4432 * increasing memory addresses so that the "highest" populated zone is used
4433 */
b69a7288 4434static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4435{
4436 int zone_index;
4437 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4438 if (zone_index == ZONE_MOVABLE)
4439 continue;
4440
4441 if (arch_zone_highest_possible_pfn[zone_index] >
4442 arch_zone_lowest_possible_pfn[zone_index])
4443 break;
4444 }
4445
4446 VM_BUG_ON(zone_index == -1);
4447 movable_zone = zone_index;
4448}
4449
4450/*
4451 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4452 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4453 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4454 * in each node depending on the size of each node and how evenly kernelcore
4455 * is distributed. This helper function adjusts the zone ranges
4456 * provided by the architecture for a given node by using the end of the
4457 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4458 * zones within a node are in order of monotonic increases memory addresses
4459 */
b69a7288 4460static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4461 unsigned long zone_type,
4462 unsigned long node_start_pfn,
4463 unsigned long node_end_pfn,
4464 unsigned long *zone_start_pfn,
4465 unsigned long *zone_end_pfn)
4466{
4467 /* Only adjust if ZONE_MOVABLE is on this node */
4468 if (zone_movable_pfn[nid]) {
4469 /* Size ZONE_MOVABLE */
4470 if (zone_type == ZONE_MOVABLE) {
4471 *zone_start_pfn = zone_movable_pfn[nid];
4472 *zone_end_pfn = min(node_end_pfn,
4473 arch_zone_highest_possible_pfn[movable_zone]);
4474
4475 /* Adjust for ZONE_MOVABLE starting within this range */
4476 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4477 *zone_end_pfn > zone_movable_pfn[nid]) {
4478 *zone_end_pfn = zone_movable_pfn[nid];
4479
4480 /* Check if this whole range is within ZONE_MOVABLE */
4481 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4482 *zone_start_pfn = *zone_end_pfn;
4483 }
4484}
4485
c713216d
MG
4486/*
4487 * Return the number of pages a zone spans in a node, including holes
4488 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4489 */
6ea6e688 4490static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4491 unsigned long zone_type,
7960aedd
ZY
4492 unsigned long node_start_pfn,
4493 unsigned long node_end_pfn,
c713216d
MG
4494 unsigned long *ignored)
4495{
c713216d
MG
4496 unsigned long zone_start_pfn, zone_end_pfn;
4497
7960aedd 4498 /* Get the start and end of the zone */
c713216d
MG
4499 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4500 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4501 adjust_zone_range_for_zone_movable(nid, zone_type,
4502 node_start_pfn, node_end_pfn,
4503 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4504
4505 /* Check that this node has pages within the zone's required range */
4506 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4507 return 0;
4508
4509 /* Move the zone boundaries inside the node if necessary */
4510 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4511 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4512
4513 /* Return the spanned pages */
4514 return zone_end_pfn - zone_start_pfn;
4515}
4516
4517/*
4518 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4519 * then all holes in the requested range will be accounted for.
c713216d 4520 */
32996250 4521unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4522 unsigned long range_start_pfn,
4523 unsigned long range_end_pfn)
4524{
96e907d1
TH
4525 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4526 unsigned long start_pfn, end_pfn;
4527 int i;
c713216d 4528
96e907d1
TH
4529 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4530 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4531 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4532 nr_absent -= end_pfn - start_pfn;
c713216d 4533 }
96e907d1 4534 return nr_absent;
c713216d
MG
4535}
4536
4537/**
4538 * absent_pages_in_range - Return number of page frames in holes within a range
4539 * @start_pfn: The start PFN to start searching for holes
4540 * @end_pfn: The end PFN to stop searching for holes
4541 *
88ca3b94 4542 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4543 */
4544unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4545 unsigned long end_pfn)
4546{
4547 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4548}
4549
4550/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4551static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4552 unsigned long zone_type,
7960aedd
ZY
4553 unsigned long node_start_pfn,
4554 unsigned long node_end_pfn,
c713216d
MG
4555 unsigned long *ignored)
4556{
96e907d1
TH
4557 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4558 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4559 unsigned long zone_start_pfn, zone_end_pfn;
4560
96e907d1
TH
4561 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4562 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4563
2a1e274a
MG
4564 adjust_zone_range_for_zone_movable(nid, zone_type,
4565 node_start_pfn, node_end_pfn,
4566 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4567 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4568}
0e0b864e 4569
0ee332c1 4570#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4571static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4572 unsigned long zone_type,
7960aedd
ZY
4573 unsigned long node_start_pfn,
4574 unsigned long node_end_pfn,
c713216d
MG
4575 unsigned long *zones_size)
4576{
4577 return zones_size[zone_type];
4578}
4579
6ea6e688 4580static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4581 unsigned long zone_type,
7960aedd
ZY
4582 unsigned long node_start_pfn,
4583 unsigned long node_end_pfn,
c713216d
MG
4584 unsigned long *zholes_size)
4585{
4586 if (!zholes_size)
4587 return 0;
4588
4589 return zholes_size[zone_type];
4590}
20e6926d 4591
0ee332c1 4592#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4593
a3142c8e 4594static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4595 unsigned long node_start_pfn,
4596 unsigned long node_end_pfn,
4597 unsigned long *zones_size,
4598 unsigned long *zholes_size)
c713216d
MG
4599{
4600 unsigned long realtotalpages, totalpages = 0;
4601 enum zone_type i;
4602
4603 for (i = 0; i < MAX_NR_ZONES; i++)
4604 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4605 node_start_pfn,
4606 node_end_pfn,
4607 zones_size);
c713216d
MG
4608 pgdat->node_spanned_pages = totalpages;
4609
4610 realtotalpages = totalpages;
4611 for (i = 0; i < MAX_NR_ZONES; i++)
4612 realtotalpages -=
4613 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4614 node_start_pfn, node_end_pfn,
4615 zholes_size);
c713216d
MG
4616 pgdat->node_present_pages = realtotalpages;
4617 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4618 realtotalpages);
4619}
4620
835c134e
MG
4621#ifndef CONFIG_SPARSEMEM
4622/*
4623 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4624 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4625 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4626 * round what is now in bits to nearest long in bits, then return it in
4627 * bytes.
4628 */
7c45512d 4629static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4630{
4631 unsigned long usemapsize;
4632
7c45512d 4633 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4634 usemapsize = roundup(zonesize, pageblock_nr_pages);
4635 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4636 usemapsize *= NR_PAGEBLOCK_BITS;
4637 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4638
4639 return usemapsize / 8;
4640}
4641
4642static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4643 struct zone *zone,
4644 unsigned long zone_start_pfn,
4645 unsigned long zonesize)
835c134e 4646{
7c45512d 4647 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4648 zone->pageblock_flags = NULL;
58a01a45 4649 if (usemapsize)
6782832e
SS
4650 zone->pageblock_flags =
4651 memblock_virt_alloc_node_nopanic(usemapsize,
4652 pgdat->node_id);
835c134e
MG
4653}
4654#else
7c45512d
LT
4655static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4656 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4657#endif /* CONFIG_SPARSEMEM */
4658
d9c23400 4659#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4660
d9c23400 4661/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4662void __paginginit set_pageblock_order(void)
d9c23400 4663{
955c1cd7
AM
4664 unsigned int order;
4665
d9c23400
MG
4666 /* Check that pageblock_nr_pages has not already been setup */
4667 if (pageblock_order)
4668 return;
4669
955c1cd7
AM
4670 if (HPAGE_SHIFT > PAGE_SHIFT)
4671 order = HUGETLB_PAGE_ORDER;
4672 else
4673 order = MAX_ORDER - 1;
4674
d9c23400
MG
4675 /*
4676 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4677 * This value may be variable depending on boot parameters on IA64 and
4678 * powerpc.
d9c23400
MG
4679 */
4680 pageblock_order = order;
4681}
4682#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4683
ba72cb8c
MG
4684/*
4685 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4686 * is unused as pageblock_order is set at compile-time. See
4687 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4688 * the kernel config
ba72cb8c 4689 */
15ca220e 4690void __paginginit set_pageblock_order(void)
ba72cb8c 4691{
ba72cb8c 4692}
d9c23400
MG
4693
4694#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4695
01cefaef
JL
4696static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4697 unsigned long present_pages)
4698{
4699 unsigned long pages = spanned_pages;
4700
4701 /*
4702 * Provide a more accurate estimation if there are holes within
4703 * the zone and SPARSEMEM is in use. If there are holes within the
4704 * zone, each populated memory region may cost us one or two extra
4705 * memmap pages due to alignment because memmap pages for each
4706 * populated regions may not naturally algined on page boundary.
4707 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4708 */
4709 if (spanned_pages > present_pages + (present_pages >> 4) &&
4710 IS_ENABLED(CONFIG_SPARSEMEM))
4711 pages = present_pages;
4712
4713 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4714}
4715
1da177e4
LT
4716/*
4717 * Set up the zone data structures:
4718 * - mark all pages reserved
4719 * - mark all memory queues empty
4720 * - clear the memory bitmaps
6527af5d
MK
4721 *
4722 * NOTE: pgdat should get zeroed by caller.
1da177e4 4723 */
b5a0e011 4724static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4725 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4726 unsigned long *zones_size, unsigned long *zholes_size)
4727{
2f1b6248 4728 enum zone_type j;
ed8ece2e 4729 int nid = pgdat->node_id;
1da177e4 4730 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4731 int ret;
1da177e4 4732
208d54e5 4733 pgdat_resize_init(pgdat);
8177a420
AA
4734#ifdef CONFIG_NUMA_BALANCING
4735 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4736 pgdat->numabalancing_migrate_nr_pages = 0;
4737 pgdat->numabalancing_migrate_next_window = jiffies;
4738#endif
1da177e4 4739 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4740 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4741 pgdat_page_cgroup_init(pgdat);
5f63b720 4742
1da177e4
LT
4743 for (j = 0; j < MAX_NR_ZONES; j++) {
4744 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4745 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4746
7960aedd
ZY
4747 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4748 node_end_pfn, zones_size);
9feedc9d 4749 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4750 node_start_pfn,
4751 node_end_pfn,
c713216d 4752 zholes_size);
1da177e4 4753
0e0b864e 4754 /*
9feedc9d 4755 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4756 * is used by this zone for memmap. This affects the watermark
4757 * and per-cpu initialisations
4758 */
01cefaef 4759 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4760 if (freesize >= memmap_pages) {
4761 freesize -= memmap_pages;
5594c8c8
YL
4762 if (memmap_pages)
4763 printk(KERN_DEBUG
4764 " %s zone: %lu pages used for memmap\n",
4765 zone_names[j], memmap_pages);
0e0b864e
MG
4766 } else
4767 printk(KERN_WARNING
9feedc9d
JL
4768 " %s zone: %lu pages exceeds freesize %lu\n",
4769 zone_names[j], memmap_pages, freesize);
0e0b864e 4770
6267276f 4771 /* Account for reserved pages */
9feedc9d
JL
4772 if (j == 0 && freesize > dma_reserve) {
4773 freesize -= dma_reserve;
d903ef9f 4774 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4775 zone_names[0], dma_reserve);
0e0b864e
MG
4776 }
4777
98d2b0eb 4778 if (!is_highmem_idx(j))
9feedc9d 4779 nr_kernel_pages += freesize;
01cefaef
JL
4780 /* Charge for highmem memmap if there are enough kernel pages */
4781 else if (nr_kernel_pages > memmap_pages * 2)
4782 nr_kernel_pages -= memmap_pages;
9feedc9d 4783 nr_all_pages += freesize;
1da177e4
LT
4784
4785 zone->spanned_pages = size;
306f2e9e 4786 zone->present_pages = realsize;
9feedc9d
JL
4787 /*
4788 * Set an approximate value for lowmem here, it will be adjusted
4789 * when the bootmem allocator frees pages into the buddy system.
4790 * And all highmem pages will be managed by the buddy system.
4791 */
4792 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4793#ifdef CONFIG_NUMA
d5f541ed 4794 zone->node = nid;
9feedc9d 4795 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4796 / 100;
9feedc9d 4797 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4798#endif
1da177e4
LT
4799 zone->name = zone_names[j];
4800 spin_lock_init(&zone->lock);
4801 spin_lock_init(&zone->lru_lock);
bdc8cb98 4802 zone_seqlock_init(zone);
1da177e4 4803 zone->zone_pgdat = pgdat;
ed8ece2e 4804 zone_pcp_init(zone);
81c0a2bb
JW
4805
4806 /* For bootup, initialized properly in watermark setup */
4807 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4808
bea8c150 4809 lruvec_init(&zone->lruvec);
1da177e4
LT
4810 if (!size)
4811 continue;
4812
955c1cd7 4813 set_pageblock_order();
7c45512d 4814 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4815 ret = init_currently_empty_zone(zone, zone_start_pfn,
4816 size, MEMMAP_EARLY);
718127cc 4817 BUG_ON(ret);
76cdd58e 4818 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4819 zone_start_pfn += size;
1da177e4
LT
4820 }
4821}
4822
577a32f6 4823static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4824{
1da177e4
LT
4825 /* Skip empty nodes */
4826 if (!pgdat->node_spanned_pages)
4827 return;
4828
d41dee36 4829#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4830 /* ia64 gets its own node_mem_map, before this, without bootmem */
4831 if (!pgdat->node_mem_map) {
e984bb43 4832 unsigned long size, start, end;
d41dee36
AW
4833 struct page *map;
4834
e984bb43
BP
4835 /*
4836 * The zone's endpoints aren't required to be MAX_ORDER
4837 * aligned but the node_mem_map endpoints must be in order
4838 * for the buddy allocator to function correctly.
4839 */
4840 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4841 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4842 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4843 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4844 map = alloc_remap(pgdat->node_id, size);
4845 if (!map)
6782832e
SS
4846 map = memblock_virt_alloc_node_nopanic(size,
4847 pgdat->node_id);
e984bb43 4848 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4849 }
12d810c1 4850#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4851 /*
4852 * With no DISCONTIG, the global mem_map is just set as node 0's
4853 */
c713216d 4854 if (pgdat == NODE_DATA(0)) {
1da177e4 4855 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4856#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4857 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4858 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4859#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4860 }
1da177e4 4861#endif
d41dee36 4862#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4863}
4864
9109fb7b
JW
4865void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4866 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4867{
9109fb7b 4868 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4869 unsigned long start_pfn = 0;
4870 unsigned long end_pfn = 0;
9109fb7b 4871
88fdf75d 4872 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4873 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4874
1da177e4
LT
4875 pgdat->node_id = nid;
4876 pgdat->node_start_pfn = node_start_pfn;
957f822a 4877 init_zone_allows_reclaim(nid);
7960aedd
ZY
4878#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4879 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4880#endif
4881 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4882 zones_size, zholes_size);
1da177e4
LT
4883
4884 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4885#ifdef CONFIG_FLAT_NODE_MEM_MAP
4886 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4887 nid, (unsigned long)pgdat,
4888 (unsigned long)pgdat->node_mem_map);
4889#endif
1da177e4 4890
7960aedd
ZY
4891 free_area_init_core(pgdat, start_pfn, end_pfn,
4892 zones_size, zholes_size);
1da177e4
LT
4893}
4894
0ee332c1 4895#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4896
4897#if MAX_NUMNODES > 1
4898/*
4899 * Figure out the number of possible node ids.
4900 */
f9872caf 4901void __init setup_nr_node_ids(void)
418508c1
MS
4902{
4903 unsigned int node;
4904 unsigned int highest = 0;
4905
4906 for_each_node_mask(node, node_possible_map)
4907 highest = node;
4908 nr_node_ids = highest + 1;
4909}
418508c1
MS
4910#endif
4911
1e01979c
TH
4912/**
4913 * node_map_pfn_alignment - determine the maximum internode alignment
4914 *
4915 * This function should be called after node map is populated and sorted.
4916 * It calculates the maximum power of two alignment which can distinguish
4917 * all the nodes.
4918 *
4919 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4920 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4921 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4922 * shifted, 1GiB is enough and this function will indicate so.
4923 *
4924 * This is used to test whether pfn -> nid mapping of the chosen memory
4925 * model has fine enough granularity to avoid incorrect mapping for the
4926 * populated node map.
4927 *
4928 * Returns the determined alignment in pfn's. 0 if there is no alignment
4929 * requirement (single node).
4930 */
4931unsigned long __init node_map_pfn_alignment(void)
4932{
4933 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4934 unsigned long start, end, mask;
1e01979c 4935 int last_nid = -1;
c13291a5 4936 int i, nid;
1e01979c 4937
c13291a5 4938 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4939 if (!start || last_nid < 0 || last_nid == nid) {
4940 last_nid = nid;
4941 last_end = end;
4942 continue;
4943 }
4944
4945 /*
4946 * Start with a mask granular enough to pin-point to the
4947 * start pfn and tick off bits one-by-one until it becomes
4948 * too coarse to separate the current node from the last.
4949 */
4950 mask = ~((1 << __ffs(start)) - 1);
4951 while (mask && last_end <= (start & (mask << 1)))
4952 mask <<= 1;
4953
4954 /* accumulate all internode masks */
4955 accl_mask |= mask;
4956 }
4957
4958 /* convert mask to number of pages */
4959 return ~accl_mask + 1;
4960}
4961
a6af2bc3 4962/* Find the lowest pfn for a node */
b69a7288 4963static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4964{
a6af2bc3 4965 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4966 unsigned long start_pfn;
4967 int i;
1abbfb41 4968
c13291a5
TH
4969 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4970 min_pfn = min(min_pfn, start_pfn);
c713216d 4971
a6af2bc3
MG
4972 if (min_pfn == ULONG_MAX) {
4973 printk(KERN_WARNING
2bc0d261 4974 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4975 return 0;
4976 }
4977
4978 return min_pfn;
c713216d
MG
4979}
4980
4981/**
4982 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4983 *
4984 * It returns the minimum PFN based on information provided via
88ca3b94 4985 * add_active_range().
c713216d
MG
4986 */
4987unsigned long __init find_min_pfn_with_active_regions(void)
4988{
4989 return find_min_pfn_for_node(MAX_NUMNODES);
4990}
4991
37b07e41
LS
4992/*
4993 * early_calculate_totalpages()
4994 * Sum pages in active regions for movable zone.
4b0ef1fe 4995 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4996 */
484f51f8 4997static unsigned long __init early_calculate_totalpages(void)
7e63efef 4998{
7e63efef 4999 unsigned long totalpages = 0;
c13291a5
TH
5000 unsigned long start_pfn, end_pfn;
5001 int i, nid;
5002
5003 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5004 unsigned long pages = end_pfn - start_pfn;
7e63efef 5005
37b07e41
LS
5006 totalpages += pages;
5007 if (pages)
4b0ef1fe 5008 node_set_state(nid, N_MEMORY);
37b07e41 5009 }
b8af2941 5010 return totalpages;
7e63efef
MG
5011}
5012
2a1e274a
MG
5013/*
5014 * Find the PFN the Movable zone begins in each node. Kernel memory
5015 * is spread evenly between nodes as long as the nodes have enough
5016 * memory. When they don't, some nodes will have more kernelcore than
5017 * others
5018 */
b224ef85 5019static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5020{
5021 int i, nid;
5022 unsigned long usable_startpfn;
5023 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5024 /* save the state before borrow the nodemask */
4b0ef1fe 5025 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5026 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5027 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
b2f3eebe
TC
5028 struct memblock_type *type = &memblock.memory;
5029
5030 /* Need to find movable_zone earlier when movable_node is specified. */
5031 find_usable_zone_for_movable();
5032
5033 /*
5034 * If movable_node is specified, ignore kernelcore and movablecore
5035 * options.
5036 */
5037 if (movable_node_is_enabled()) {
5038 for (i = 0; i < type->cnt; i++) {
5039 if (!memblock_is_hotpluggable(&type->regions[i]))
5040 continue;
5041
5042 nid = type->regions[i].nid;
5043
5044 usable_startpfn = PFN_DOWN(type->regions[i].base);
5045 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5046 min(usable_startpfn, zone_movable_pfn[nid]) :
5047 usable_startpfn;
5048 }
5049
5050 goto out2;
5051 }
2a1e274a 5052
7e63efef 5053 /*
b2f3eebe 5054 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5055 * kernelcore that corresponds so that memory usable for
5056 * any allocation type is evenly spread. If both kernelcore
5057 * and movablecore are specified, then the value of kernelcore
5058 * will be used for required_kernelcore if it's greater than
5059 * what movablecore would have allowed.
5060 */
5061 if (required_movablecore) {
7e63efef
MG
5062 unsigned long corepages;
5063
5064 /*
5065 * Round-up so that ZONE_MOVABLE is at least as large as what
5066 * was requested by the user
5067 */
5068 required_movablecore =
5069 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5070 corepages = totalpages - required_movablecore;
5071
5072 required_kernelcore = max(required_kernelcore, corepages);
5073 }
5074
20e6926d
YL
5075 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5076 if (!required_kernelcore)
66918dcd 5077 goto out;
2a1e274a
MG
5078
5079 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5080 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5081
5082restart:
5083 /* Spread kernelcore memory as evenly as possible throughout nodes */
5084 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5085 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5086 unsigned long start_pfn, end_pfn;
5087
2a1e274a
MG
5088 /*
5089 * Recalculate kernelcore_node if the division per node
5090 * now exceeds what is necessary to satisfy the requested
5091 * amount of memory for the kernel
5092 */
5093 if (required_kernelcore < kernelcore_node)
5094 kernelcore_node = required_kernelcore / usable_nodes;
5095
5096 /*
5097 * As the map is walked, we track how much memory is usable
5098 * by the kernel using kernelcore_remaining. When it is
5099 * 0, the rest of the node is usable by ZONE_MOVABLE
5100 */
5101 kernelcore_remaining = kernelcore_node;
5102
5103 /* Go through each range of PFNs within this node */
c13291a5 5104 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5105 unsigned long size_pages;
5106
c13291a5 5107 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5108 if (start_pfn >= end_pfn)
5109 continue;
5110
5111 /* Account for what is only usable for kernelcore */
5112 if (start_pfn < usable_startpfn) {
5113 unsigned long kernel_pages;
5114 kernel_pages = min(end_pfn, usable_startpfn)
5115 - start_pfn;
5116
5117 kernelcore_remaining -= min(kernel_pages,
5118 kernelcore_remaining);
5119 required_kernelcore -= min(kernel_pages,
5120 required_kernelcore);
5121
5122 /* Continue if range is now fully accounted */
5123 if (end_pfn <= usable_startpfn) {
5124
5125 /*
5126 * Push zone_movable_pfn to the end so
5127 * that if we have to rebalance
5128 * kernelcore across nodes, we will
5129 * not double account here
5130 */
5131 zone_movable_pfn[nid] = end_pfn;
5132 continue;
5133 }
5134 start_pfn = usable_startpfn;
5135 }
5136
5137 /*
5138 * The usable PFN range for ZONE_MOVABLE is from
5139 * start_pfn->end_pfn. Calculate size_pages as the
5140 * number of pages used as kernelcore
5141 */
5142 size_pages = end_pfn - start_pfn;
5143 if (size_pages > kernelcore_remaining)
5144 size_pages = kernelcore_remaining;
5145 zone_movable_pfn[nid] = start_pfn + size_pages;
5146
5147 /*
5148 * Some kernelcore has been met, update counts and
5149 * break if the kernelcore for this node has been
b8af2941 5150 * satisfied
2a1e274a
MG
5151 */
5152 required_kernelcore -= min(required_kernelcore,
5153 size_pages);
5154 kernelcore_remaining -= size_pages;
5155 if (!kernelcore_remaining)
5156 break;
5157 }
5158 }
5159
5160 /*
5161 * If there is still required_kernelcore, we do another pass with one
5162 * less node in the count. This will push zone_movable_pfn[nid] further
5163 * along on the nodes that still have memory until kernelcore is
b8af2941 5164 * satisfied
2a1e274a
MG
5165 */
5166 usable_nodes--;
5167 if (usable_nodes && required_kernelcore > usable_nodes)
5168 goto restart;
5169
b2f3eebe 5170out2:
2a1e274a
MG
5171 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5172 for (nid = 0; nid < MAX_NUMNODES; nid++)
5173 zone_movable_pfn[nid] =
5174 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5175
20e6926d 5176out:
66918dcd 5177 /* restore the node_state */
4b0ef1fe 5178 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5179}
5180
4b0ef1fe
LJ
5181/* Any regular or high memory on that node ? */
5182static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5183{
37b07e41
LS
5184 enum zone_type zone_type;
5185
4b0ef1fe
LJ
5186 if (N_MEMORY == N_NORMAL_MEMORY)
5187 return;
5188
5189 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5190 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5191 if (populated_zone(zone)) {
4b0ef1fe
LJ
5192 node_set_state(nid, N_HIGH_MEMORY);
5193 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5194 zone_type <= ZONE_NORMAL)
5195 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5196 break;
5197 }
37b07e41 5198 }
37b07e41
LS
5199}
5200
c713216d
MG
5201/**
5202 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5203 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5204 *
5205 * This will call free_area_init_node() for each active node in the system.
5206 * Using the page ranges provided by add_active_range(), the size of each
5207 * zone in each node and their holes is calculated. If the maximum PFN
5208 * between two adjacent zones match, it is assumed that the zone is empty.
5209 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5210 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5211 * starts where the previous one ended. For example, ZONE_DMA32 starts
5212 * at arch_max_dma_pfn.
5213 */
5214void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5215{
c13291a5
TH
5216 unsigned long start_pfn, end_pfn;
5217 int i, nid;
a6af2bc3 5218
c713216d
MG
5219 /* Record where the zone boundaries are */
5220 memset(arch_zone_lowest_possible_pfn, 0,
5221 sizeof(arch_zone_lowest_possible_pfn));
5222 memset(arch_zone_highest_possible_pfn, 0,
5223 sizeof(arch_zone_highest_possible_pfn));
5224 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5225 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5226 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5227 if (i == ZONE_MOVABLE)
5228 continue;
c713216d
MG
5229 arch_zone_lowest_possible_pfn[i] =
5230 arch_zone_highest_possible_pfn[i-1];
5231 arch_zone_highest_possible_pfn[i] =
5232 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5233 }
2a1e274a
MG
5234 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5235 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5236
5237 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5238 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5239 find_zone_movable_pfns_for_nodes();
c713216d 5240
c713216d 5241 /* Print out the zone ranges */
a62e2f4f 5242 printk("Zone ranges:\n");
2a1e274a
MG
5243 for (i = 0; i < MAX_NR_ZONES; i++) {
5244 if (i == ZONE_MOVABLE)
5245 continue;
155cbfc8 5246 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5247 if (arch_zone_lowest_possible_pfn[i] ==
5248 arch_zone_highest_possible_pfn[i])
155cbfc8 5249 printk(KERN_CONT "empty\n");
72f0ba02 5250 else
a62e2f4f
BH
5251 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5252 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5253 (arch_zone_highest_possible_pfn[i]
5254 << PAGE_SHIFT) - 1);
2a1e274a
MG
5255 }
5256
5257 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5258 printk("Movable zone start for each node\n");
2a1e274a
MG
5259 for (i = 0; i < MAX_NUMNODES; i++) {
5260 if (zone_movable_pfn[i])
a62e2f4f
BH
5261 printk(" Node %d: %#010lx\n", i,
5262 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5263 }
c713216d 5264
f2d52fe5 5265 /* Print out the early node map */
a62e2f4f 5266 printk("Early memory node ranges\n");
c13291a5 5267 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5268 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5269 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5270
5271 /* Initialise every node */
708614e6 5272 mminit_verify_pageflags_layout();
8ef82866 5273 setup_nr_node_ids();
c713216d
MG
5274 for_each_online_node(nid) {
5275 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5276 free_area_init_node(nid, NULL,
c713216d 5277 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5278
5279 /* Any memory on that node */
5280 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5281 node_set_state(nid, N_MEMORY);
5282 check_for_memory(pgdat, nid);
c713216d
MG
5283 }
5284}
2a1e274a 5285
7e63efef 5286static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5287{
5288 unsigned long long coremem;
5289 if (!p)
5290 return -EINVAL;
5291
5292 coremem = memparse(p, &p);
7e63efef 5293 *core = coremem >> PAGE_SHIFT;
2a1e274a 5294
7e63efef 5295 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5296 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5297
5298 return 0;
5299}
ed7ed365 5300
7e63efef
MG
5301/*
5302 * kernelcore=size sets the amount of memory for use for allocations that
5303 * cannot be reclaimed or migrated.
5304 */
5305static int __init cmdline_parse_kernelcore(char *p)
5306{
5307 return cmdline_parse_core(p, &required_kernelcore);
5308}
5309
5310/*
5311 * movablecore=size sets the amount of memory for use for allocations that
5312 * can be reclaimed or migrated.
5313 */
5314static int __init cmdline_parse_movablecore(char *p)
5315{
5316 return cmdline_parse_core(p, &required_movablecore);
5317}
5318
ed7ed365 5319early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5320early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5321
0ee332c1 5322#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5323
c3d5f5f0
JL
5324void adjust_managed_page_count(struct page *page, long count)
5325{
5326 spin_lock(&managed_page_count_lock);
5327 page_zone(page)->managed_pages += count;
5328 totalram_pages += count;
3dcc0571
JL
5329#ifdef CONFIG_HIGHMEM
5330 if (PageHighMem(page))
5331 totalhigh_pages += count;
5332#endif
c3d5f5f0
JL
5333 spin_unlock(&managed_page_count_lock);
5334}
3dcc0571 5335EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5336
11199692 5337unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5338{
11199692
JL
5339 void *pos;
5340 unsigned long pages = 0;
69afade7 5341
11199692
JL
5342 start = (void *)PAGE_ALIGN((unsigned long)start);
5343 end = (void *)((unsigned long)end & PAGE_MASK);
5344 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5345 if ((unsigned int)poison <= 0xFF)
11199692
JL
5346 memset(pos, poison, PAGE_SIZE);
5347 free_reserved_page(virt_to_page(pos));
69afade7
JL
5348 }
5349
5350 if (pages && s)
11199692 5351 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5352 s, pages << (PAGE_SHIFT - 10), start, end);
5353
5354 return pages;
5355}
11199692 5356EXPORT_SYMBOL(free_reserved_area);
69afade7 5357
cfa11e08
JL
5358#ifdef CONFIG_HIGHMEM
5359void free_highmem_page(struct page *page)
5360{
5361 __free_reserved_page(page);
5362 totalram_pages++;
7b4b2a0d 5363 page_zone(page)->managed_pages++;
cfa11e08
JL
5364 totalhigh_pages++;
5365}
5366#endif
5367
7ee3d4e8
JL
5368
5369void __init mem_init_print_info(const char *str)
5370{
5371 unsigned long physpages, codesize, datasize, rosize, bss_size;
5372 unsigned long init_code_size, init_data_size;
5373
5374 physpages = get_num_physpages();
5375 codesize = _etext - _stext;
5376 datasize = _edata - _sdata;
5377 rosize = __end_rodata - __start_rodata;
5378 bss_size = __bss_stop - __bss_start;
5379 init_data_size = __init_end - __init_begin;
5380 init_code_size = _einittext - _sinittext;
5381
5382 /*
5383 * Detect special cases and adjust section sizes accordingly:
5384 * 1) .init.* may be embedded into .data sections
5385 * 2) .init.text.* may be out of [__init_begin, __init_end],
5386 * please refer to arch/tile/kernel/vmlinux.lds.S.
5387 * 3) .rodata.* may be embedded into .text or .data sections.
5388 */
5389#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5390 do { \
5391 if (start <= pos && pos < end && size > adj) \
5392 size -= adj; \
5393 } while (0)
7ee3d4e8
JL
5394
5395 adj_init_size(__init_begin, __init_end, init_data_size,
5396 _sinittext, init_code_size);
5397 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5398 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5399 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5400 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5401
5402#undef adj_init_size
5403
5404 printk("Memory: %luK/%luK available "
5405 "(%luK kernel code, %luK rwdata, %luK rodata, "
5406 "%luK init, %luK bss, %luK reserved"
5407#ifdef CONFIG_HIGHMEM
5408 ", %luK highmem"
5409#endif
5410 "%s%s)\n",
5411 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5412 codesize >> 10, datasize >> 10, rosize >> 10,
5413 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5414 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5415#ifdef CONFIG_HIGHMEM
5416 totalhigh_pages << (PAGE_SHIFT-10),
5417#endif
5418 str ? ", " : "", str ? str : "");
5419}
5420
0e0b864e 5421/**
88ca3b94
RD
5422 * set_dma_reserve - set the specified number of pages reserved in the first zone
5423 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5424 *
5425 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5426 * In the DMA zone, a significant percentage may be consumed by kernel image
5427 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5428 * function may optionally be used to account for unfreeable pages in the
5429 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5430 * smaller per-cpu batchsize.
0e0b864e
MG
5431 */
5432void __init set_dma_reserve(unsigned long new_dma_reserve)
5433{
5434 dma_reserve = new_dma_reserve;
5435}
5436
1da177e4
LT
5437void __init free_area_init(unsigned long *zones_size)
5438{
9109fb7b 5439 free_area_init_node(0, zones_size,
1da177e4
LT
5440 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5441}
1da177e4 5442
1da177e4
LT
5443static int page_alloc_cpu_notify(struct notifier_block *self,
5444 unsigned long action, void *hcpu)
5445{
5446 int cpu = (unsigned long)hcpu;
1da177e4 5447
8bb78442 5448 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5449 lru_add_drain_cpu(cpu);
9f8f2172
CL
5450 drain_pages(cpu);
5451
5452 /*
5453 * Spill the event counters of the dead processor
5454 * into the current processors event counters.
5455 * This artificially elevates the count of the current
5456 * processor.
5457 */
f8891e5e 5458 vm_events_fold_cpu(cpu);
9f8f2172
CL
5459
5460 /*
5461 * Zero the differential counters of the dead processor
5462 * so that the vm statistics are consistent.
5463 *
5464 * This is only okay since the processor is dead and cannot
5465 * race with what we are doing.
5466 */
2bb921e5 5467 cpu_vm_stats_fold(cpu);
1da177e4
LT
5468 }
5469 return NOTIFY_OK;
5470}
1da177e4
LT
5471
5472void __init page_alloc_init(void)
5473{
5474 hotcpu_notifier(page_alloc_cpu_notify, 0);
5475}
5476
cb45b0e9
HA
5477/*
5478 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5479 * or min_free_kbytes changes.
5480 */
5481static void calculate_totalreserve_pages(void)
5482{
5483 struct pglist_data *pgdat;
5484 unsigned long reserve_pages = 0;
2f6726e5 5485 enum zone_type i, j;
cb45b0e9
HA
5486
5487 for_each_online_pgdat(pgdat) {
5488 for (i = 0; i < MAX_NR_ZONES; i++) {
5489 struct zone *zone = pgdat->node_zones + i;
5490 unsigned long max = 0;
5491
5492 /* Find valid and maximum lowmem_reserve in the zone */
5493 for (j = i; j < MAX_NR_ZONES; j++) {
5494 if (zone->lowmem_reserve[j] > max)
5495 max = zone->lowmem_reserve[j];
5496 }
5497
41858966
MG
5498 /* we treat the high watermark as reserved pages. */
5499 max += high_wmark_pages(zone);
cb45b0e9 5500
b40da049
JL
5501 if (max > zone->managed_pages)
5502 max = zone->managed_pages;
cb45b0e9 5503 reserve_pages += max;
ab8fabd4
JW
5504 /*
5505 * Lowmem reserves are not available to
5506 * GFP_HIGHUSER page cache allocations and
5507 * kswapd tries to balance zones to their high
5508 * watermark. As a result, neither should be
5509 * regarded as dirtyable memory, to prevent a
5510 * situation where reclaim has to clean pages
5511 * in order to balance the zones.
5512 */
5513 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5514 }
5515 }
ab8fabd4 5516 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5517 totalreserve_pages = reserve_pages;
5518}
5519
1da177e4
LT
5520/*
5521 * setup_per_zone_lowmem_reserve - called whenever
5522 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5523 * has a correct pages reserved value, so an adequate number of
5524 * pages are left in the zone after a successful __alloc_pages().
5525 */
5526static void setup_per_zone_lowmem_reserve(void)
5527{
5528 struct pglist_data *pgdat;
2f6726e5 5529 enum zone_type j, idx;
1da177e4 5530
ec936fc5 5531 for_each_online_pgdat(pgdat) {
1da177e4
LT
5532 for (j = 0; j < MAX_NR_ZONES; j++) {
5533 struct zone *zone = pgdat->node_zones + j;
b40da049 5534 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5535
5536 zone->lowmem_reserve[j] = 0;
5537
2f6726e5
CL
5538 idx = j;
5539 while (idx) {
1da177e4
LT
5540 struct zone *lower_zone;
5541
2f6726e5
CL
5542 idx--;
5543
1da177e4
LT
5544 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5545 sysctl_lowmem_reserve_ratio[idx] = 1;
5546
5547 lower_zone = pgdat->node_zones + idx;
b40da049 5548 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5549 sysctl_lowmem_reserve_ratio[idx];
b40da049 5550 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5551 }
5552 }
5553 }
cb45b0e9
HA
5554
5555 /* update totalreserve_pages */
5556 calculate_totalreserve_pages();
1da177e4
LT
5557}
5558
cfd3da1e 5559static void __setup_per_zone_wmarks(void)
1da177e4
LT
5560{
5561 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5562 unsigned long lowmem_pages = 0;
5563 struct zone *zone;
5564 unsigned long flags;
5565
5566 /* Calculate total number of !ZONE_HIGHMEM pages */
5567 for_each_zone(zone) {
5568 if (!is_highmem(zone))
b40da049 5569 lowmem_pages += zone->managed_pages;
1da177e4
LT
5570 }
5571
5572 for_each_zone(zone) {
ac924c60
AM
5573 u64 tmp;
5574
1125b4e3 5575 spin_lock_irqsave(&zone->lock, flags);
b40da049 5576 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5577 do_div(tmp, lowmem_pages);
1da177e4
LT
5578 if (is_highmem(zone)) {
5579 /*
669ed175
NP
5580 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5581 * need highmem pages, so cap pages_min to a small
5582 * value here.
5583 *
41858966 5584 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5585 * deltas controls asynch page reclaim, and so should
5586 * not be capped for highmem.
1da177e4 5587 */
90ae8d67 5588 unsigned long min_pages;
1da177e4 5589
b40da049 5590 min_pages = zone->managed_pages / 1024;
90ae8d67 5591 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5592 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5593 } else {
669ed175
NP
5594 /*
5595 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5596 * proportionate to the zone's size.
5597 */
41858966 5598 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5599 }
5600
41858966
MG
5601 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5602 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5603
81c0a2bb
JW
5604 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5605 high_wmark_pages(zone) -
5606 low_wmark_pages(zone) -
5607 zone_page_state(zone, NR_ALLOC_BATCH));
5608
56fd56b8 5609 setup_zone_migrate_reserve(zone);
1125b4e3 5610 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5611 }
cb45b0e9
HA
5612
5613 /* update totalreserve_pages */
5614 calculate_totalreserve_pages();
1da177e4
LT
5615}
5616
cfd3da1e
MG
5617/**
5618 * setup_per_zone_wmarks - called when min_free_kbytes changes
5619 * or when memory is hot-{added|removed}
5620 *
5621 * Ensures that the watermark[min,low,high] values for each zone are set
5622 * correctly with respect to min_free_kbytes.
5623 */
5624void setup_per_zone_wmarks(void)
5625{
5626 mutex_lock(&zonelists_mutex);
5627 __setup_per_zone_wmarks();
5628 mutex_unlock(&zonelists_mutex);
5629}
5630
55a4462a 5631/*
556adecb
RR
5632 * The inactive anon list should be small enough that the VM never has to
5633 * do too much work, but large enough that each inactive page has a chance
5634 * to be referenced again before it is swapped out.
5635 *
5636 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5637 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5638 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5639 * the anonymous pages are kept on the inactive list.
5640 *
5641 * total target max
5642 * memory ratio inactive anon
5643 * -------------------------------------
5644 * 10MB 1 5MB
5645 * 100MB 1 50MB
5646 * 1GB 3 250MB
5647 * 10GB 10 0.9GB
5648 * 100GB 31 3GB
5649 * 1TB 101 10GB
5650 * 10TB 320 32GB
5651 */
1b79acc9 5652static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5653{
96cb4df5 5654 unsigned int gb, ratio;
556adecb 5655
96cb4df5 5656 /* Zone size in gigabytes */
b40da049 5657 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5658 if (gb)
556adecb 5659 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5660 else
5661 ratio = 1;
556adecb 5662
96cb4df5
MK
5663 zone->inactive_ratio = ratio;
5664}
556adecb 5665
839a4fcc 5666static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5667{
5668 struct zone *zone;
5669
5670 for_each_zone(zone)
5671 calculate_zone_inactive_ratio(zone);
556adecb
RR
5672}
5673
1da177e4
LT
5674/*
5675 * Initialise min_free_kbytes.
5676 *
5677 * For small machines we want it small (128k min). For large machines
5678 * we want it large (64MB max). But it is not linear, because network
5679 * bandwidth does not increase linearly with machine size. We use
5680 *
b8af2941 5681 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5682 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5683 *
5684 * which yields
5685 *
5686 * 16MB: 512k
5687 * 32MB: 724k
5688 * 64MB: 1024k
5689 * 128MB: 1448k
5690 * 256MB: 2048k
5691 * 512MB: 2896k
5692 * 1024MB: 4096k
5693 * 2048MB: 5792k
5694 * 4096MB: 8192k
5695 * 8192MB: 11584k
5696 * 16384MB: 16384k
5697 */
1b79acc9 5698int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5699{
5700 unsigned long lowmem_kbytes;
5f12733e 5701 int new_min_free_kbytes;
1da177e4
LT
5702
5703 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5704 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5705
5706 if (new_min_free_kbytes > user_min_free_kbytes) {
5707 min_free_kbytes = new_min_free_kbytes;
5708 if (min_free_kbytes < 128)
5709 min_free_kbytes = 128;
5710 if (min_free_kbytes > 65536)
5711 min_free_kbytes = 65536;
5712 } else {
5713 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5714 new_min_free_kbytes, user_min_free_kbytes);
5715 }
bc75d33f 5716 setup_per_zone_wmarks();
a6cccdc3 5717 refresh_zone_stat_thresholds();
1da177e4 5718 setup_per_zone_lowmem_reserve();
556adecb 5719 setup_per_zone_inactive_ratio();
1da177e4
LT
5720 return 0;
5721}
bc75d33f 5722module_init(init_per_zone_wmark_min)
1da177e4
LT
5723
5724/*
b8af2941 5725 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5726 * that we can call two helper functions whenever min_free_kbytes
5727 * changes.
5728 */
b8af2941 5729int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5730 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5731{
8d65af78 5732 proc_dointvec(table, write, buffer, length, ppos);
5f12733e
MH
5733 if (write) {
5734 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5735 setup_per_zone_wmarks();
5f12733e 5736 }
1da177e4
LT
5737 return 0;
5738}
5739
9614634f
CL
5740#ifdef CONFIG_NUMA
5741int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5742 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5743{
5744 struct zone *zone;
5745 int rc;
5746
8d65af78 5747 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5748 if (rc)
5749 return rc;
5750
5751 for_each_zone(zone)
b40da049 5752 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5753 sysctl_min_unmapped_ratio) / 100;
5754 return 0;
5755}
0ff38490
CL
5756
5757int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5758 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5759{
5760 struct zone *zone;
5761 int rc;
5762
8d65af78 5763 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5764 if (rc)
5765 return rc;
5766
5767 for_each_zone(zone)
b40da049 5768 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5769 sysctl_min_slab_ratio) / 100;
5770 return 0;
5771}
9614634f
CL
5772#endif
5773
1da177e4
LT
5774/*
5775 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5776 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5777 * whenever sysctl_lowmem_reserve_ratio changes.
5778 *
5779 * The reserve ratio obviously has absolutely no relation with the
41858966 5780 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5781 * if in function of the boot time zone sizes.
5782 */
5783int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5784 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5785{
8d65af78 5786 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5787 setup_per_zone_lowmem_reserve();
5788 return 0;
5789}
5790
8ad4b1fb
RS
5791/*
5792 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5793 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5794 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5795 */
8ad4b1fb 5796int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5797 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5798{
5799 struct zone *zone;
5800 unsigned int cpu;
5801 int ret;
5802
8d65af78 5803 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5804 if (!write || (ret < 0))
8ad4b1fb 5805 return ret;
c8e251fa
CS
5806
5807 mutex_lock(&pcp_batch_high_lock);
364df0eb 5808 for_each_populated_zone(zone) {
22a7f12b
CS
5809 unsigned long high;
5810 high = zone->managed_pages / percpu_pagelist_fraction;
5811 for_each_possible_cpu(cpu)
3664033c
CS
5812 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5813 high);
8ad4b1fb 5814 }
c8e251fa 5815 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5816 return 0;
5817}
5818
f034b5d4 5819int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5820
5821#ifdef CONFIG_NUMA
5822static int __init set_hashdist(char *str)
5823{
5824 if (!str)
5825 return 0;
5826 hashdist = simple_strtoul(str, &str, 0);
5827 return 1;
5828}
5829__setup("hashdist=", set_hashdist);
5830#endif
5831
5832/*
5833 * allocate a large system hash table from bootmem
5834 * - it is assumed that the hash table must contain an exact power-of-2
5835 * quantity of entries
5836 * - limit is the number of hash buckets, not the total allocation size
5837 */
5838void *__init alloc_large_system_hash(const char *tablename,
5839 unsigned long bucketsize,
5840 unsigned long numentries,
5841 int scale,
5842 int flags,
5843 unsigned int *_hash_shift,
5844 unsigned int *_hash_mask,
31fe62b9
TB
5845 unsigned long low_limit,
5846 unsigned long high_limit)
1da177e4 5847{
31fe62b9 5848 unsigned long long max = high_limit;
1da177e4
LT
5849 unsigned long log2qty, size;
5850 void *table = NULL;
5851
5852 /* allow the kernel cmdline to have a say */
5853 if (!numentries) {
5854 /* round applicable memory size up to nearest megabyte */
04903664 5855 numentries = nr_kernel_pages;
a7e83318
JZ
5856
5857 /* It isn't necessary when PAGE_SIZE >= 1MB */
5858 if (PAGE_SHIFT < 20)
5859 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5860
5861 /* limit to 1 bucket per 2^scale bytes of low memory */
5862 if (scale > PAGE_SHIFT)
5863 numentries >>= (scale - PAGE_SHIFT);
5864 else
5865 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5866
5867 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5868 if (unlikely(flags & HASH_SMALL)) {
5869 /* Makes no sense without HASH_EARLY */
5870 WARN_ON(!(flags & HASH_EARLY));
5871 if (!(numentries >> *_hash_shift)) {
5872 numentries = 1UL << *_hash_shift;
5873 BUG_ON(!numentries);
5874 }
5875 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5876 numentries = PAGE_SIZE / bucketsize;
1da177e4 5877 }
6e692ed3 5878 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5879
5880 /* limit allocation size to 1/16 total memory by default */
5881 if (max == 0) {
5882 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5883 do_div(max, bucketsize);
5884 }
074b8517 5885 max = min(max, 0x80000000ULL);
1da177e4 5886
31fe62b9
TB
5887 if (numentries < low_limit)
5888 numentries = low_limit;
1da177e4
LT
5889 if (numentries > max)
5890 numentries = max;
5891
f0d1b0b3 5892 log2qty = ilog2(numentries);
1da177e4
LT
5893
5894 do {
5895 size = bucketsize << log2qty;
5896 if (flags & HASH_EARLY)
6782832e 5897 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
5898 else if (hashdist)
5899 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5900 else {
1037b83b
ED
5901 /*
5902 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5903 * some pages at the end of hash table which
5904 * alloc_pages_exact() automatically does
1037b83b 5905 */
264ef8a9 5906 if (get_order(size) < MAX_ORDER) {
a1dd268c 5907 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5908 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5909 }
1da177e4
LT
5910 }
5911 } while (!table && size > PAGE_SIZE && --log2qty);
5912
5913 if (!table)
5914 panic("Failed to allocate %s hash table\n", tablename);
5915
f241e660 5916 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5917 tablename,
f241e660 5918 (1UL << log2qty),
f0d1b0b3 5919 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5920 size);
5921
5922 if (_hash_shift)
5923 *_hash_shift = log2qty;
5924 if (_hash_mask)
5925 *_hash_mask = (1 << log2qty) - 1;
5926
5927 return table;
5928}
a117e66e 5929
835c134e
MG
5930/* Return a pointer to the bitmap storing bits affecting a block of pages */
5931static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5932 unsigned long pfn)
5933{
5934#ifdef CONFIG_SPARSEMEM
5935 return __pfn_to_section(pfn)->pageblock_flags;
5936#else
5937 return zone->pageblock_flags;
5938#endif /* CONFIG_SPARSEMEM */
5939}
5940
5941static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5942{
5943#ifdef CONFIG_SPARSEMEM
5944 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5945 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5946#else
c060f943 5947 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5948 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5949#endif /* CONFIG_SPARSEMEM */
5950}
5951
5952/**
d9c23400 5953 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5954 * @page: The page within the block of interest
5955 * @start_bitidx: The first bit of interest to retrieve
5956 * @end_bitidx: The last bit of interest
5957 * returns pageblock_bits flags
5958 */
5959unsigned long get_pageblock_flags_group(struct page *page,
5960 int start_bitidx, int end_bitidx)
5961{
5962 struct zone *zone;
5963 unsigned long *bitmap;
5964 unsigned long pfn, bitidx;
5965 unsigned long flags = 0;
5966 unsigned long value = 1;
5967
5968 zone = page_zone(page);
5969 pfn = page_to_pfn(page);
5970 bitmap = get_pageblock_bitmap(zone, pfn);
5971 bitidx = pfn_to_bitidx(zone, pfn);
5972
5973 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5974 if (test_bit(bitidx + start_bitidx, bitmap))
5975 flags |= value;
6220ec78 5976
835c134e
MG
5977 return flags;
5978}
5979
5980/**
d9c23400 5981 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5982 * @page: The page within the block of interest
5983 * @start_bitidx: The first bit of interest
5984 * @end_bitidx: The last bit of interest
5985 * @flags: The flags to set
5986 */
5987void set_pageblock_flags_group(struct page *page, unsigned long flags,
5988 int start_bitidx, int end_bitidx)
5989{
5990 struct zone *zone;
5991 unsigned long *bitmap;
5992 unsigned long pfn, bitidx;
5993 unsigned long value = 1;
5994
5995 zone = page_zone(page);
5996 pfn = page_to_pfn(page);
5997 bitmap = get_pageblock_bitmap(zone, pfn);
5998 bitidx = pfn_to_bitidx(zone, pfn);
108bcc96 5999 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
835c134e
MG
6000
6001 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6002 if (flags & value)
6003 __set_bit(bitidx + start_bitidx, bitmap);
6004 else
6005 __clear_bit(bitidx + start_bitidx, bitmap);
6006}
a5d76b54
KH
6007
6008/*
80934513
MK
6009 * This function checks whether pageblock includes unmovable pages or not.
6010 * If @count is not zero, it is okay to include less @count unmovable pages
6011 *
b8af2941 6012 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6013 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6014 * expect this function should be exact.
a5d76b54 6015 */
b023f468
WC
6016bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6017 bool skip_hwpoisoned_pages)
49ac8255
KH
6018{
6019 unsigned long pfn, iter, found;
47118af0
MN
6020 int mt;
6021
49ac8255
KH
6022 /*
6023 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6024 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6025 */
6026 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6027 return false;
47118af0
MN
6028 mt = get_pageblock_migratetype(page);
6029 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6030 return false;
49ac8255
KH
6031
6032 pfn = page_to_pfn(page);
6033 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6034 unsigned long check = pfn + iter;
6035
29723fcc 6036 if (!pfn_valid_within(check))
49ac8255 6037 continue;
29723fcc 6038
49ac8255 6039 page = pfn_to_page(check);
c8721bbb
NH
6040
6041 /*
6042 * Hugepages are not in LRU lists, but they're movable.
6043 * We need not scan over tail pages bacause we don't
6044 * handle each tail page individually in migration.
6045 */
6046 if (PageHuge(page)) {
6047 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6048 continue;
6049 }
6050
97d255c8
MK
6051 /*
6052 * We can't use page_count without pin a page
6053 * because another CPU can free compound page.
6054 * This check already skips compound tails of THP
6055 * because their page->_count is zero at all time.
6056 */
6057 if (!atomic_read(&page->_count)) {
49ac8255
KH
6058 if (PageBuddy(page))
6059 iter += (1 << page_order(page)) - 1;
6060 continue;
6061 }
97d255c8 6062
b023f468
WC
6063 /*
6064 * The HWPoisoned page may be not in buddy system, and
6065 * page_count() is not 0.
6066 */
6067 if (skip_hwpoisoned_pages && PageHWPoison(page))
6068 continue;
6069
49ac8255
KH
6070 if (!PageLRU(page))
6071 found++;
6072 /*
6073 * If there are RECLAIMABLE pages, we need to check it.
6074 * But now, memory offline itself doesn't call shrink_slab()
6075 * and it still to be fixed.
6076 */
6077 /*
6078 * If the page is not RAM, page_count()should be 0.
6079 * we don't need more check. This is an _used_ not-movable page.
6080 *
6081 * The problematic thing here is PG_reserved pages. PG_reserved
6082 * is set to both of a memory hole page and a _used_ kernel
6083 * page at boot.
6084 */
6085 if (found > count)
80934513 6086 return true;
49ac8255 6087 }
80934513 6088 return false;
49ac8255
KH
6089}
6090
6091bool is_pageblock_removable_nolock(struct page *page)
6092{
656a0706
MH
6093 struct zone *zone;
6094 unsigned long pfn;
687875fb
MH
6095
6096 /*
6097 * We have to be careful here because we are iterating over memory
6098 * sections which are not zone aware so we might end up outside of
6099 * the zone but still within the section.
656a0706
MH
6100 * We have to take care about the node as well. If the node is offline
6101 * its NODE_DATA will be NULL - see page_zone.
687875fb 6102 */
656a0706
MH
6103 if (!node_online(page_to_nid(page)))
6104 return false;
6105
6106 zone = page_zone(page);
6107 pfn = page_to_pfn(page);
108bcc96 6108 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6109 return false;
6110
b023f468 6111 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6112}
0c0e6195 6113
041d3a8c
MN
6114#ifdef CONFIG_CMA
6115
6116static unsigned long pfn_max_align_down(unsigned long pfn)
6117{
6118 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6119 pageblock_nr_pages) - 1);
6120}
6121
6122static unsigned long pfn_max_align_up(unsigned long pfn)
6123{
6124 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6125 pageblock_nr_pages));
6126}
6127
041d3a8c 6128/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6129static int __alloc_contig_migrate_range(struct compact_control *cc,
6130 unsigned long start, unsigned long end)
041d3a8c
MN
6131{
6132 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6133 unsigned long nr_reclaimed;
041d3a8c
MN
6134 unsigned long pfn = start;
6135 unsigned int tries = 0;
6136 int ret = 0;
6137
be49a6e1 6138 migrate_prep();
041d3a8c 6139
bb13ffeb 6140 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6141 if (fatal_signal_pending(current)) {
6142 ret = -EINTR;
6143 break;
6144 }
6145
bb13ffeb
MG
6146 if (list_empty(&cc->migratepages)) {
6147 cc->nr_migratepages = 0;
6148 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6149 pfn, end, true);
041d3a8c
MN
6150 if (!pfn) {
6151 ret = -EINTR;
6152 break;
6153 }
6154 tries = 0;
6155 } else if (++tries == 5) {
6156 ret = ret < 0 ? ret : -EBUSY;
6157 break;
6158 }
6159
beb51eaa
MK
6160 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6161 &cc->migratepages);
6162 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6163
9c620e2b
HD
6164 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6165 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 6166 }
2a6f5124
SP
6167 if (ret < 0) {
6168 putback_movable_pages(&cc->migratepages);
6169 return ret;
6170 }
6171 return 0;
041d3a8c
MN
6172}
6173
6174/**
6175 * alloc_contig_range() -- tries to allocate given range of pages
6176 * @start: start PFN to allocate
6177 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6178 * @migratetype: migratetype of the underlaying pageblocks (either
6179 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6180 * in range must have the same migratetype and it must
6181 * be either of the two.
041d3a8c
MN
6182 *
6183 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6184 * aligned, however it's the caller's responsibility to guarantee that
6185 * we are the only thread that changes migrate type of pageblocks the
6186 * pages fall in.
6187 *
6188 * The PFN range must belong to a single zone.
6189 *
6190 * Returns zero on success or negative error code. On success all
6191 * pages which PFN is in [start, end) are allocated for the caller and
6192 * need to be freed with free_contig_range().
6193 */
0815f3d8
MN
6194int alloc_contig_range(unsigned long start, unsigned long end,
6195 unsigned migratetype)
041d3a8c 6196{
041d3a8c
MN
6197 unsigned long outer_start, outer_end;
6198 int ret = 0, order;
6199
bb13ffeb
MG
6200 struct compact_control cc = {
6201 .nr_migratepages = 0,
6202 .order = -1,
6203 .zone = page_zone(pfn_to_page(start)),
6204 .sync = true,
6205 .ignore_skip_hint = true,
6206 };
6207 INIT_LIST_HEAD(&cc.migratepages);
6208
041d3a8c
MN
6209 /*
6210 * What we do here is we mark all pageblocks in range as
6211 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6212 * have different sizes, and due to the way page allocator
6213 * work, we align the range to biggest of the two pages so
6214 * that page allocator won't try to merge buddies from
6215 * different pageblocks and change MIGRATE_ISOLATE to some
6216 * other migration type.
6217 *
6218 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6219 * migrate the pages from an unaligned range (ie. pages that
6220 * we are interested in). This will put all the pages in
6221 * range back to page allocator as MIGRATE_ISOLATE.
6222 *
6223 * When this is done, we take the pages in range from page
6224 * allocator removing them from the buddy system. This way
6225 * page allocator will never consider using them.
6226 *
6227 * This lets us mark the pageblocks back as
6228 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6229 * aligned range but not in the unaligned, original range are
6230 * put back to page allocator so that buddy can use them.
6231 */
6232
6233 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6234 pfn_max_align_up(end), migratetype,
6235 false);
041d3a8c 6236 if (ret)
86a595f9 6237 return ret;
041d3a8c 6238
bb13ffeb 6239 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6240 if (ret)
6241 goto done;
6242
6243 /*
6244 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6245 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6246 * more, all pages in [start, end) are free in page allocator.
6247 * What we are going to do is to allocate all pages from
6248 * [start, end) (that is remove them from page allocator).
6249 *
6250 * The only problem is that pages at the beginning and at the
6251 * end of interesting range may be not aligned with pages that
6252 * page allocator holds, ie. they can be part of higher order
6253 * pages. Because of this, we reserve the bigger range and
6254 * once this is done free the pages we are not interested in.
6255 *
6256 * We don't have to hold zone->lock here because the pages are
6257 * isolated thus they won't get removed from buddy.
6258 */
6259
6260 lru_add_drain_all();
6261 drain_all_pages();
6262
6263 order = 0;
6264 outer_start = start;
6265 while (!PageBuddy(pfn_to_page(outer_start))) {
6266 if (++order >= MAX_ORDER) {
6267 ret = -EBUSY;
6268 goto done;
6269 }
6270 outer_start &= ~0UL << order;
6271 }
6272
6273 /* Make sure the range is really isolated. */
b023f468 6274 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6275 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6276 outer_start, end);
6277 ret = -EBUSY;
6278 goto done;
6279 }
6280
49f223a9
MS
6281
6282 /* Grab isolated pages from freelists. */
bb13ffeb 6283 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6284 if (!outer_end) {
6285 ret = -EBUSY;
6286 goto done;
6287 }
6288
6289 /* Free head and tail (if any) */
6290 if (start != outer_start)
6291 free_contig_range(outer_start, start - outer_start);
6292 if (end != outer_end)
6293 free_contig_range(end, outer_end - end);
6294
6295done:
6296 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6297 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6298 return ret;
6299}
6300
6301void free_contig_range(unsigned long pfn, unsigned nr_pages)
6302{
bcc2b02f
MS
6303 unsigned int count = 0;
6304
6305 for (; nr_pages--; pfn++) {
6306 struct page *page = pfn_to_page(pfn);
6307
6308 count += page_count(page) != 1;
6309 __free_page(page);
6310 }
6311 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6312}
6313#endif
6314
4ed7e022 6315#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6316/*
6317 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6318 * page high values need to be recalulated.
6319 */
4ed7e022
JL
6320void __meminit zone_pcp_update(struct zone *zone)
6321{
0a647f38 6322 unsigned cpu;
c8e251fa 6323 mutex_lock(&pcp_batch_high_lock);
0a647f38 6324 for_each_possible_cpu(cpu)
169f6c19
CS
6325 pageset_set_high_and_batch(zone,
6326 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6327 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6328}
6329#endif
6330
340175b7
JL
6331void zone_pcp_reset(struct zone *zone)
6332{
6333 unsigned long flags;
5a883813
MK
6334 int cpu;
6335 struct per_cpu_pageset *pset;
340175b7
JL
6336
6337 /* avoid races with drain_pages() */
6338 local_irq_save(flags);
6339 if (zone->pageset != &boot_pageset) {
5a883813
MK
6340 for_each_online_cpu(cpu) {
6341 pset = per_cpu_ptr(zone->pageset, cpu);
6342 drain_zonestat(zone, pset);
6343 }
340175b7
JL
6344 free_percpu(zone->pageset);
6345 zone->pageset = &boot_pageset;
6346 }
6347 local_irq_restore(flags);
6348}
6349
6dcd73d7 6350#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6351/*
6352 * All pages in the range must be isolated before calling this.
6353 */
6354void
6355__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6356{
6357 struct page *page;
6358 struct zone *zone;
6359 int order, i;
6360 unsigned long pfn;
6361 unsigned long flags;
6362 /* find the first valid pfn */
6363 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6364 if (pfn_valid(pfn))
6365 break;
6366 if (pfn == end_pfn)
6367 return;
6368 zone = page_zone(pfn_to_page(pfn));
6369 spin_lock_irqsave(&zone->lock, flags);
6370 pfn = start_pfn;
6371 while (pfn < end_pfn) {
6372 if (!pfn_valid(pfn)) {
6373 pfn++;
6374 continue;
6375 }
6376 page = pfn_to_page(pfn);
b023f468
WC
6377 /*
6378 * The HWPoisoned page may be not in buddy system, and
6379 * page_count() is not 0.
6380 */
6381 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6382 pfn++;
6383 SetPageReserved(page);
6384 continue;
6385 }
6386
0c0e6195
KH
6387 BUG_ON(page_count(page));
6388 BUG_ON(!PageBuddy(page));
6389 order = page_order(page);
6390#ifdef CONFIG_DEBUG_VM
6391 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6392 pfn, 1 << order, end_pfn);
6393#endif
6394 list_del(&page->lru);
6395 rmv_page_order(page);
6396 zone->free_area[order].nr_free--;
0c0e6195
KH
6397 for (i = 0; i < (1 << order); i++)
6398 SetPageReserved((page+i));
6399 pfn += (1 << order);
6400 }
6401 spin_unlock_irqrestore(&zone->lock, flags);
6402}
6403#endif
8d22ba1b
WF
6404
6405#ifdef CONFIG_MEMORY_FAILURE
6406bool is_free_buddy_page(struct page *page)
6407{
6408 struct zone *zone = page_zone(page);
6409 unsigned long pfn = page_to_pfn(page);
6410 unsigned long flags;
6411 int order;
6412
6413 spin_lock_irqsave(&zone->lock, flags);
6414 for (order = 0; order < MAX_ORDER; order++) {
6415 struct page *page_head = page - (pfn & ((1 << order) - 1));
6416
6417 if (PageBuddy(page_head) && page_order(page_head) >= order)
6418 break;
6419 }
6420 spin_unlock_irqrestore(&zone->lock, flags);
6421
6422 return order < MAX_ORDER;
6423}
6424#endif
718a3821 6425
51300cef 6426static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6427 {1UL << PG_locked, "locked" },
6428 {1UL << PG_error, "error" },
6429 {1UL << PG_referenced, "referenced" },
6430 {1UL << PG_uptodate, "uptodate" },
6431 {1UL << PG_dirty, "dirty" },
6432 {1UL << PG_lru, "lru" },
6433 {1UL << PG_active, "active" },
6434 {1UL << PG_slab, "slab" },
6435 {1UL << PG_owner_priv_1, "owner_priv_1" },
6436 {1UL << PG_arch_1, "arch_1" },
6437 {1UL << PG_reserved, "reserved" },
6438 {1UL << PG_private, "private" },
6439 {1UL << PG_private_2, "private_2" },
6440 {1UL << PG_writeback, "writeback" },
6441#ifdef CONFIG_PAGEFLAGS_EXTENDED
6442 {1UL << PG_head, "head" },
6443 {1UL << PG_tail, "tail" },
6444#else
6445 {1UL << PG_compound, "compound" },
6446#endif
6447 {1UL << PG_swapcache, "swapcache" },
6448 {1UL << PG_mappedtodisk, "mappedtodisk" },
6449 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6450 {1UL << PG_swapbacked, "swapbacked" },
6451 {1UL << PG_unevictable, "unevictable" },
6452#ifdef CONFIG_MMU
6453 {1UL << PG_mlocked, "mlocked" },
6454#endif
6455#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6456 {1UL << PG_uncached, "uncached" },
6457#endif
6458#ifdef CONFIG_MEMORY_FAILURE
6459 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6460#endif
6461#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6462 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6463#endif
718a3821
WF
6464};
6465
6466static void dump_page_flags(unsigned long flags)
6467{
6468 const char *delim = "";
6469 unsigned long mask;
6470 int i;
6471
51300cef 6472 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6473
718a3821
WF
6474 printk(KERN_ALERT "page flags: %#lx(", flags);
6475
6476 /* remove zone id */
6477 flags &= (1UL << NR_PAGEFLAGS) - 1;
6478
51300cef 6479 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6480
6481 mask = pageflag_names[i].mask;
6482 if ((flags & mask) != mask)
6483 continue;
6484
6485 flags &= ~mask;
6486 printk("%s%s", delim, pageflag_names[i].name);
6487 delim = "|";
6488 }
6489
6490 /* check for left over flags */
6491 if (flags)
6492 printk("%s%#lx", delim, flags);
6493
6494 printk(")\n");
6495}
6496
6497void dump_page(struct page *page)
6498{
6499 printk(KERN_ALERT
6500 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6501 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6502 page->mapping, page->index);
6503 dump_page_flags(page->flags);
f212ad7c 6504 mem_cgroup_print_bad_page(page);
718a3821 6505}
This page took 1.583215 seconds and 5 git commands to generate.