mm: make set_recommended_min_free_kbytes() return void
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
1da177e4 65
7ee3d4e8 66#include <asm/sections.h>
1da177e4 67#include <asm/tlbflush.h>
ac924c60 68#include <asm/div64.h>
1da177e4
LT
69#include "internal.h"
70
c8e251fa
CS
71/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 73#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 74
72812019
LS
75#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76DEFINE_PER_CPU(int, numa_node);
77EXPORT_PER_CPU_SYMBOL(numa_node);
78#endif
79
7aac7898
LS
80#ifdef CONFIG_HAVE_MEMORYLESS_NODES
81/*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 89int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
90#endif
91
1da177e4 92/*
13808910 93 * Array of node states.
1da177e4 94 */
13808910
CL
95nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98#ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100#ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
102#endif
103#ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
105#endif
106 [N_CPU] = { { [0] = 1UL } },
107#endif /* NUMA */
108};
109EXPORT_SYMBOL(node_states);
110
c3d5f5f0
JL
111/* Protect totalram_pages and zone->managed_pages */
112static DEFINE_SPINLOCK(managed_page_count_lock);
113
6c231b7b 114unsigned long totalram_pages __read_mostly;
cb45b0e9 115unsigned long totalreserve_pages __read_mostly;
e48322ab 116unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
117/*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123unsigned long dirty_balance_reserve __read_mostly;
124
1b76b02f 125int percpu_pagelist_fraction;
dcce284a 126gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 127
452aa699
RW
128#ifdef CONFIG_PM_SLEEP
129/*
130 * The following functions are used by the suspend/hibernate code to temporarily
131 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
132 * while devices are suspended. To avoid races with the suspend/hibernate code,
133 * they should always be called with pm_mutex held (gfp_allowed_mask also should
134 * only be modified with pm_mutex held, unless the suspend/hibernate code is
135 * guaranteed not to run in parallel with that modification).
136 */
c9e664f1
RW
137
138static gfp_t saved_gfp_mask;
139
140void pm_restore_gfp_mask(void)
452aa699
RW
141{
142 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
143 if (saved_gfp_mask) {
144 gfp_allowed_mask = saved_gfp_mask;
145 saved_gfp_mask = 0;
146 }
452aa699
RW
147}
148
c9e664f1 149void pm_restrict_gfp_mask(void)
452aa699 150{
452aa699 151 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
152 WARN_ON(saved_gfp_mask);
153 saved_gfp_mask = gfp_allowed_mask;
154 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 155}
f90ac398
MG
156
157bool pm_suspended_storage(void)
158{
159 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
160 return false;
161 return true;
162}
452aa699
RW
163#endif /* CONFIG_PM_SLEEP */
164
d9c23400
MG
165#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
166int pageblock_order __read_mostly;
167#endif
168
d98c7a09 169static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 170
1da177e4
LT
171/*
172 * results with 256, 32 in the lowmem_reserve sysctl:
173 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
174 * 1G machine -> (16M dma, 784M normal, 224M high)
175 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
176 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 177 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
178 *
179 * TBD: should special case ZONE_DMA32 machines here - in those we normally
180 * don't need any ZONE_NORMAL reservation
1da177e4 181 */
2f1b6248 182int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 183#ifdef CONFIG_ZONE_DMA
2f1b6248 184 256,
4b51d669 185#endif
fb0e7942 186#ifdef CONFIG_ZONE_DMA32
2f1b6248 187 256,
fb0e7942 188#endif
e53ef38d 189#ifdef CONFIG_HIGHMEM
2a1e274a 190 32,
e53ef38d 191#endif
2a1e274a 192 32,
2f1b6248 193};
1da177e4
LT
194
195EXPORT_SYMBOL(totalram_pages);
1da177e4 196
15ad7cdc 197static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 198#ifdef CONFIG_ZONE_DMA
2f1b6248 199 "DMA",
4b51d669 200#endif
fb0e7942 201#ifdef CONFIG_ZONE_DMA32
2f1b6248 202 "DMA32",
fb0e7942 203#endif
2f1b6248 204 "Normal",
e53ef38d 205#ifdef CONFIG_HIGHMEM
2a1e274a 206 "HighMem",
e53ef38d 207#endif
2a1e274a 208 "Movable",
2f1b6248
CL
209};
210
1da177e4 211int min_free_kbytes = 1024;
42aa83cb 212int user_min_free_kbytes = -1;
1da177e4 213
2c85f51d
JB
214static unsigned long __meminitdata nr_kernel_pages;
215static unsigned long __meminitdata nr_all_pages;
a3142c8e 216static unsigned long __meminitdata dma_reserve;
1da177e4 217
0ee332c1
TH
218#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
219static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
220static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
221static unsigned long __initdata required_kernelcore;
222static unsigned long __initdata required_movablecore;
223static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
224
225/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
226int movable_zone;
227EXPORT_SYMBOL(movable_zone);
228#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 229
418508c1
MS
230#if MAX_NUMNODES > 1
231int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 232int nr_online_nodes __read_mostly = 1;
418508c1 233EXPORT_SYMBOL(nr_node_ids);
62bc62a8 234EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
235#endif
236
9ef9acb0
MG
237int page_group_by_mobility_disabled __read_mostly;
238
3a80a7fa
MG
239#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
240static inline void reset_deferred_meminit(pg_data_t *pgdat)
241{
242 pgdat->first_deferred_pfn = ULONG_MAX;
243}
244
245/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 246static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 247{
ae026b2a 248 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
249 return true;
250
251 return false;
252}
253
7e18adb4
MG
254static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
255{
256 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
257 return true;
258
259 return false;
260}
261
3a80a7fa
MG
262/*
263 * Returns false when the remaining initialisation should be deferred until
264 * later in the boot cycle when it can be parallelised.
265 */
266static inline bool update_defer_init(pg_data_t *pgdat,
267 unsigned long pfn, unsigned long zone_end,
268 unsigned long *nr_initialised)
269{
270 /* Always populate low zones for address-contrained allocations */
271 if (zone_end < pgdat_end_pfn(pgdat))
272 return true;
273
274 /* Initialise at least 2G of the highest zone */
275 (*nr_initialised)++;
276 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
277 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
278 pgdat->first_deferred_pfn = pfn;
279 return false;
280 }
281
282 return true;
283}
284#else
285static inline void reset_deferred_meminit(pg_data_t *pgdat)
286{
287}
288
289static inline bool early_page_uninitialised(unsigned long pfn)
290{
291 return false;
292}
293
7e18adb4
MG
294static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
295{
296 return false;
297}
298
3a80a7fa
MG
299static inline bool update_defer_init(pg_data_t *pgdat,
300 unsigned long pfn, unsigned long zone_end,
301 unsigned long *nr_initialised)
302{
303 return true;
304}
305#endif
306
307
ee6f509c 308void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 309{
5d0f3f72
KM
310 if (unlikely(page_group_by_mobility_disabled &&
311 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
312 migratetype = MIGRATE_UNMOVABLE;
313
b2a0ac88
MG
314 set_pageblock_flags_group(page, (unsigned long)migratetype,
315 PB_migrate, PB_migrate_end);
316}
317
13e7444b 318#ifdef CONFIG_DEBUG_VM
c6a57e19 319static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 320{
bdc8cb98
DH
321 int ret = 0;
322 unsigned seq;
323 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 324 unsigned long sp, start_pfn;
c6a57e19 325
bdc8cb98
DH
326 do {
327 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
328 start_pfn = zone->zone_start_pfn;
329 sp = zone->spanned_pages;
108bcc96 330 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
331 ret = 1;
332 } while (zone_span_seqretry(zone, seq));
333
b5e6a5a2 334 if (ret)
613813e8
DH
335 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
336 pfn, zone_to_nid(zone), zone->name,
337 start_pfn, start_pfn + sp);
b5e6a5a2 338
bdc8cb98 339 return ret;
c6a57e19
DH
340}
341
342static int page_is_consistent(struct zone *zone, struct page *page)
343{
14e07298 344 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 345 return 0;
1da177e4 346 if (zone != page_zone(page))
c6a57e19
DH
347 return 0;
348
349 return 1;
350}
351/*
352 * Temporary debugging check for pages not lying within a given zone.
353 */
354static int bad_range(struct zone *zone, struct page *page)
355{
356 if (page_outside_zone_boundaries(zone, page))
1da177e4 357 return 1;
c6a57e19
DH
358 if (!page_is_consistent(zone, page))
359 return 1;
360
1da177e4
LT
361 return 0;
362}
13e7444b
NP
363#else
364static inline int bad_range(struct zone *zone, struct page *page)
365{
366 return 0;
367}
368#endif
369
d230dec1
KS
370static void bad_page(struct page *page, const char *reason,
371 unsigned long bad_flags)
1da177e4 372{
d936cf9b
HD
373 static unsigned long resume;
374 static unsigned long nr_shown;
375 static unsigned long nr_unshown;
376
2a7684a2
WF
377 /* Don't complain about poisoned pages */
378 if (PageHWPoison(page)) {
22b751c3 379 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
380 return;
381 }
382
d936cf9b
HD
383 /*
384 * Allow a burst of 60 reports, then keep quiet for that minute;
385 * or allow a steady drip of one report per second.
386 */
387 if (nr_shown == 60) {
388 if (time_before(jiffies, resume)) {
389 nr_unshown++;
390 goto out;
391 }
392 if (nr_unshown) {
1e9e6365
HD
393 printk(KERN_ALERT
394 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
395 nr_unshown);
396 nr_unshown = 0;
397 }
398 nr_shown = 0;
399 }
400 if (nr_shown++ == 0)
401 resume = jiffies + 60 * HZ;
402
1e9e6365 403 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 404 current->comm, page_to_pfn(page));
f0b791a3 405 dump_page_badflags(page, reason, bad_flags);
3dc14741 406
4f31888c 407 print_modules();
1da177e4 408 dump_stack();
d936cf9b 409out:
8cc3b392 410 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 411 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 412 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
413}
414
1da177e4
LT
415/*
416 * Higher-order pages are called "compound pages". They are structured thusly:
417 *
418 * The first PAGE_SIZE page is called the "head page".
419 *
420 * The remaining PAGE_SIZE pages are called "tail pages".
421 *
6416b9fa
WSH
422 * All pages have PG_compound set. All tail pages have their ->first_page
423 * pointing at the head page.
1da177e4 424 *
41d78ba5
HD
425 * The first tail page's ->lru.next holds the address of the compound page's
426 * put_page() function. Its ->lru.prev holds the order of allocation.
427 * This usage means that zero-order pages may not be compound.
1da177e4 428 */
d98c7a09
HD
429
430static void free_compound_page(struct page *page)
431{
d85f3385 432 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
433}
434
01ad1c08 435void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
436{
437 int i;
438 int nr_pages = 1 << order;
439
440 set_compound_page_dtor(page, free_compound_page);
441 set_compound_order(page, order);
442 __SetPageHead(page);
443 for (i = 1; i < nr_pages; i++) {
444 struct page *p = page + i;
58a84aa9 445 set_page_count(p, 0);
18229df5 446 p->first_page = page;
668f9abb
DR
447 /* Make sure p->first_page is always valid for PageTail() */
448 smp_wmb();
449 __SetPageTail(p);
18229df5
AW
450 }
451}
452
c0a32fc5
SG
453#ifdef CONFIG_DEBUG_PAGEALLOC
454unsigned int _debug_guardpage_minorder;
031bc574 455bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
456bool _debug_guardpage_enabled __read_mostly;
457
031bc574
JK
458static int __init early_debug_pagealloc(char *buf)
459{
460 if (!buf)
461 return -EINVAL;
462
463 if (strcmp(buf, "on") == 0)
464 _debug_pagealloc_enabled = true;
465
466 return 0;
467}
468early_param("debug_pagealloc", early_debug_pagealloc);
469
e30825f1
JK
470static bool need_debug_guardpage(void)
471{
031bc574
JK
472 /* If we don't use debug_pagealloc, we don't need guard page */
473 if (!debug_pagealloc_enabled())
474 return false;
475
e30825f1
JK
476 return true;
477}
478
479static void init_debug_guardpage(void)
480{
031bc574
JK
481 if (!debug_pagealloc_enabled())
482 return;
483
e30825f1
JK
484 _debug_guardpage_enabled = true;
485}
486
487struct page_ext_operations debug_guardpage_ops = {
488 .need = need_debug_guardpage,
489 .init = init_debug_guardpage,
490};
c0a32fc5
SG
491
492static int __init debug_guardpage_minorder_setup(char *buf)
493{
494 unsigned long res;
495
496 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
497 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
498 return 0;
499 }
500 _debug_guardpage_minorder = res;
501 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
502 return 0;
503}
504__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
505
2847cf95
JK
506static inline void set_page_guard(struct zone *zone, struct page *page,
507 unsigned int order, int migratetype)
c0a32fc5 508{
e30825f1
JK
509 struct page_ext *page_ext;
510
511 if (!debug_guardpage_enabled())
512 return;
513
514 page_ext = lookup_page_ext(page);
515 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
516
2847cf95
JK
517 INIT_LIST_HEAD(&page->lru);
518 set_page_private(page, order);
519 /* Guard pages are not available for any usage */
520 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
521}
522
2847cf95
JK
523static inline void clear_page_guard(struct zone *zone, struct page *page,
524 unsigned int order, int migratetype)
c0a32fc5 525{
e30825f1
JK
526 struct page_ext *page_ext;
527
528 if (!debug_guardpage_enabled())
529 return;
530
531 page_ext = lookup_page_ext(page);
532 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
533
2847cf95
JK
534 set_page_private(page, 0);
535 if (!is_migrate_isolate(migratetype))
536 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
537}
538#else
e30825f1 539struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
540static inline void set_page_guard(struct zone *zone, struct page *page,
541 unsigned int order, int migratetype) {}
542static inline void clear_page_guard(struct zone *zone, struct page *page,
543 unsigned int order, int migratetype) {}
c0a32fc5
SG
544#endif
545
7aeb09f9 546static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 547{
4c21e2f2 548 set_page_private(page, order);
676165a8 549 __SetPageBuddy(page);
1da177e4
LT
550}
551
552static inline void rmv_page_order(struct page *page)
553{
676165a8 554 __ClearPageBuddy(page);
4c21e2f2 555 set_page_private(page, 0);
1da177e4
LT
556}
557
1da177e4
LT
558/*
559 * This function checks whether a page is free && is the buddy
560 * we can do coalesce a page and its buddy if
13e7444b 561 * (a) the buddy is not in a hole &&
676165a8 562 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
563 * (c) a page and its buddy have the same order &&
564 * (d) a page and its buddy are in the same zone.
676165a8 565 *
cf6fe945
WSH
566 * For recording whether a page is in the buddy system, we set ->_mapcount
567 * PAGE_BUDDY_MAPCOUNT_VALUE.
568 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
569 * serialized by zone->lock.
1da177e4 570 *
676165a8 571 * For recording page's order, we use page_private(page).
1da177e4 572 */
cb2b95e1 573static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 574 unsigned int order)
1da177e4 575{
14e07298 576 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 577 return 0;
13e7444b 578
c0a32fc5 579 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
580 if (page_zone_id(page) != page_zone_id(buddy))
581 return 0;
582
4c5018ce
WY
583 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
584
c0a32fc5
SG
585 return 1;
586 }
587
cb2b95e1 588 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
589 /*
590 * zone check is done late to avoid uselessly
591 * calculating zone/node ids for pages that could
592 * never merge.
593 */
594 if (page_zone_id(page) != page_zone_id(buddy))
595 return 0;
596
4c5018ce
WY
597 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
598
6aa3001b 599 return 1;
676165a8 600 }
6aa3001b 601 return 0;
1da177e4
LT
602}
603
604/*
605 * Freeing function for a buddy system allocator.
606 *
607 * The concept of a buddy system is to maintain direct-mapped table
608 * (containing bit values) for memory blocks of various "orders".
609 * The bottom level table contains the map for the smallest allocatable
610 * units of memory (here, pages), and each level above it describes
611 * pairs of units from the levels below, hence, "buddies".
612 * At a high level, all that happens here is marking the table entry
613 * at the bottom level available, and propagating the changes upward
614 * as necessary, plus some accounting needed to play nicely with other
615 * parts of the VM system.
616 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
617 * free pages of length of (1 << order) and marked with _mapcount
618 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
619 * field.
1da177e4 620 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
621 * other. That is, if we allocate a small block, and both were
622 * free, the remainder of the region must be split into blocks.
1da177e4 623 * If a block is freed, and its buddy is also free, then this
5f63b720 624 * triggers coalescing into a block of larger size.
1da177e4 625 *
6d49e352 626 * -- nyc
1da177e4
LT
627 */
628
48db57f8 629static inline void __free_one_page(struct page *page,
dc4b0caf 630 unsigned long pfn,
ed0ae21d
MG
631 struct zone *zone, unsigned int order,
632 int migratetype)
1da177e4
LT
633{
634 unsigned long page_idx;
6dda9d55 635 unsigned long combined_idx;
43506fad 636 unsigned long uninitialized_var(buddy_idx);
6dda9d55 637 struct page *buddy;
3c605096 638 int max_order = MAX_ORDER;
1da177e4 639
d29bb978 640 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 641 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 642
ed0ae21d 643 VM_BUG_ON(migratetype == -1);
3c605096
JK
644 if (is_migrate_isolate(migratetype)) {
645 /*
646 * We restrict max order of merging to prevent merge
647 * between freepages on isolate pageblock and normal
648 * pageblock. Without this, pageblock isolation
649 * could cause incorrect freepage accounting.
650 */
651 max_order = min(MAX_ORDER, pageblock_order + 1);
652 } else {
8f82b55d 653 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 654 }
ed0ae21d 655
3c605096 656 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 657
309381fe
SL
658 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
659 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 660
3c605096 661 while (order < max_order - 1) {
43506fad
KC
662 buddy_idx = __find_buddy_index(page_idx, order);
663 buddy = page + (buddy_idx - page_idx);
cb2b95e1 664 if (!page_is_buddy(page, buddy, order))
3c82d0ce 665 break;
c0a32fc5
SG
666 /*
667 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
668 * merge with it and move up one order.
669 */
670 if (page_is_guard(buddy)) {
2847cf95 671 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
672 } else {
673 list_del(&buddy->lru);
674 zone->free_area[order].nr_free--;
675 rmv_page_order(buddy);
676 }
43506fad 677 combined_idx = buddy_idx & page_idx;
1da177e4
LT
678 page = page + (combined_idx - page_idx);
679 page_idx = combined_idx;
680 order++;
681 }
682 set_page_order(page, order);
6dda9d55
CZ
683
684 /*
685 * If this is not the largest possible page, check if the buddy
686 * of the next-highest order is free. If it is, it's possible
687 * that pages are being freed that will coalesce soon. In case,
688 * that is happening, add the free page to the tail of the list
689 * so it's less likely to be used soon and more likely to be merged
690 * as a higher order page
691 */
b7f50cfa 692 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 693 struct page *higher_page, *higher_buddy;
43506fad
KC
694 combined_idx = buddy_idx & page_idx;
695 higher_page = page + (combined_idx - page_idx);
696 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 697 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
698 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
699 list_add_tail(&page->lru,
700 &zone->free_area[order].free_list[migratetype]);
701 goto out;
702 }
703 }
704
705 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
706out:
1da177e4
LT
707 zone->free_area[order].nr_free++;
708}
709
224abf92 710static inline int free_pages_check(struct page *page)
1da177e4 711{
d230dec1 712 const char *bad_reason = NULL;
f0b791a3
DH
713 unsigned long bad_flags = 0;
714
715 if (unlikely(page_mapcount(page)))
716 bad_reason = "nonzero mapcount";
717 if (unlikely(page->mapping != NULL))
718 bad_reason = "non-NULL mapping";
719 if (unlikely(atomic_read(&page->_count) != 0))
720 bad_reason = "nonzero _count";
721 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
722 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
723 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
724 }
9edad6ea
JW
725#ifdef CONFIG_MEMCG
726 if (unlikely(page->mem_cgroup))
727 bad_reason = "page still charged to cgroup";
728#endif
f0b791a3
DH
729 if (unlikely(bad_reason)) {
730 bad_page(page, bad_reason, bad_flags);
79f4b7bf 731 return 1;
8cc3b392 732 }
90572890 733 page_cpupid_reset_last(page);
79f4b7bf
HD
734 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
735 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
736 return 0;
1da177e4
LT
737}
738
739/*
5f8dcc21 740 * Frees a number of pages from the PCP lists
1da177e4 741 * Assumes all pages on list are in same zone, and of same order.
207f36ee 742 * count is the number of pages to free.
1da177e4
LT
743 *
744 * If the zone was previously in an "all pages pinned" state then look to
745 * see if this freeing clears that state.
746 *
747 * And clear the zone's pages_scanned counter, to hold off the "all pages are
748 * pinned" detection logic.
749 */
5f8dcc21
MG
750static void free_pcppages_bulk(struct zone *zone, int count,
751 struct per_cpu_pages *pcp)
1da177e4 752{
5f8dcc21 753 int migratetype = 0;
a6f9edd6 754 int batch_free = 0;
72853e29 755 int to_free = count;
0d5d823a 756 unsigned long nr_scanned;
5f8dcc21 757
c54ad30c 758 spin_lock(&zone->lock);
0d5d823a
MG
759 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
760 if (nr_scanned)
761 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 762
72853e29 763 while (to_free) {
48db57f8 764 struct page *page;
5f8dcc21
MG
765 struct list_head *list;
766
767 /*
a6f9edd6
MG
768 * Remove pages from lists in a round-robin fashion. A
769 * batch_free count is maintained that is incremented when an
770 * empty list is encountered. This is so more pages are freed
771 * off fuller lists instead of spinning excessively around empty
772 * lists
5f8dcc21
MG
773 */
774 do {
a6f9edd6 775 batch_free++;
5f8dcc21
MG
776 if (++migratetype == MIGRATE_PCPTYPES)
777 migratetype = 0;
778 list = &pcp->lists[migratetype];
779 } while (list_empty(list));
48db57f8 780
1d16871d
NK
781 /* This is the only non-empty list. Free them all. */
782 if (batch_free == MIGRATE_PCPTYPES)
783 batch_free = to_free;
784
a6f9edd6 785 do {
770c8aaa
BZ
786 int mt; /* migratetype of the to-be-freed page */
787
a6f9edd6
MG
788 page = list_entry(list->prev, struct page, lru);
789 /* must delete as __free_one_page list manipulates */
790 list_del(&page->lru);
b12c4ad1 791 mt = get_freepage_migratetype(page);
8f82b55d 792 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 793 mt = get_pageblock_migratetype(page);
51bb1a40 794
a7016235 795 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 796 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 797 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 798 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 799 }
c54ad30c 800 spin_unlock(&zone->lock);
1da177e4
LT
801}
802
dc4b0caf
MG
803static void free_one_page(struct zone *zone,
804 struct page *page, unsigned long pfn,
7aeb09f9 805 unsigned int order,
ed0ae21d 806 int migratetype)
1da177e4 807{
0d5d823a 808 unsigned long nr_scanned;
006d22d9 809 spin_lock(&zone->lock);
0d5d823a
MG
810 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
811 if (nr_scanned)
812 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 813
ad53f92e
JK
814 if (unlikely(has_isolate_pageblock(zone) ||
815 is_migrate_isolate(migratetype))) {
816 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 817 }
dc4b0caf 818 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 819 spin_unlock(&zone->lock);
48db57f8
NP
820}
821
81422f29
KS
822static int free_tail_pages_check(struct page *head_page, struct page *page)
823{
824 if (!IS_ENABLED(CONFIG_DEBUG_VM))
825 return 0;
826 if (unlikely(!PageTail(page))) {
827 bad_page(page, "PageTail not set", 0);
828 return 1;
829 }
830 if (unlikely(page->first_page != head_page)) {
831 bad_page(page, "first_page not consistent", 0);
832 return 1;
833 }
834 return 0;
835}
836
1e8ce83c
RH
837static void __meminit __init_single_page(struct page *page, unsigned long pfn,
838 unsigned long zone, int nid)
839{
1e8ce83c 840 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
841 init_page_count(page);
842 page_mapcount_reset(page);
843 page_cpupid_reset_last(page);
1e8ce83c 844
1e8ce83c
RH
845 INIT_LIST_HEAD(&page->lru);
846#ifdef WANT_PAGE_VIRTUAL
847 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
848 if (!is_highmem_idx(zone))
849 set_page_address(page, __va(pfn << PAGE_SHIFT));
850#endif
851}
852
853static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
854 int nid)
855{
856 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
857}
858
7e18adb4
MG
859#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
860static void init_reserved_page(unsigned long pfn)
861{
862 pg_data_t *pgdat;
863 int nid, zid;
864
865 if (!early_page_uninitialised(pfn))
866 return;
867
868 nid = early_pfn_to_nid(pfn);
869 pgdat = NODE_DATA(nid);
870
871 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
872 struct zone *zone = &pgdat->node_zones[zid];
873
874 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
875 break;
876 }
877 __init_single_pfn(pfn, zid, nid);
878}
879#else
880static inline void init_reserved_page(unsigned long pfn)
881{
882}
883#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
884
92923ca3
NZ
885/*
886 * Initialised pages do not have PageReserved set. This function is
887 * called for each range allocated by the bootmem allocator and
888 * marks the pages PageReserved. The remaining valid pages are later
889 * sent to the buddy page allocator.
890 */
7e18adb4 891void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
892{
893 unsigned long start_pfn = PFN_DOWN(start);
894 unsigned long end_pfn = PFN_UP(end);
895
7e18adb4
MG
896 for (; start_pfn < end_pfn; start_pfn++) {
897 if (pfn_valid(start_pfn)) {
898 struct page *page = pfn_to_page(start_pfn);
899
900 init_reserved_page(start_pfn);
901 SetPageReserved(page);
902 }
903 }
92923ca3
NZ
904}
905
ec95f53a 906static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 907{
81422f29
KS
908 bool compound = PageCompound(page);
909 int i, bad = 0;
1da177e4 910
ab1f306f 911 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 912 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 913
b413d48a 914 trace_mm_page_free(page, order);
b1eeab67 915 kmemcheck_free_shadow(page, order);
b8c73fc2 916 kasan_free_pages(page, order);
b1eeab67 917
8dd60a3a
AA
918 if (PageAnon(page))
919 page->mapping = NULL;
81422f29
KS
920 bad += free_pages_check(page);
921 for (i = 1; i < (1 << order); i++) {
922 if (compound)
923 bad += free_tail_pages_check(page, page + i);
8dd60a3a 924 bad += free_pages_check(page + i);
81422f29 925 }
8cc3b392 926 if (bad)
ec95f53a 927 return false;
689bcebf 928
48c96a36
JK
929 reset_page_owner(page, order);
930
3ac7fe5a 931 if (!PageHighMem(page)) {
b8af2941
PK
932 debug_check_no_locks_freed(page_address(page),
933 PAGE_SIZE << order);
3ac7fe5a
TG
934 debug_check_no_obj_freed(page_address(page),
935 PAGE_SIZE << order);
936 }
dafb1367 937 arch_free_page(page, order);
48db57f8 938 kernel_map_pages(page, 1 << order, 0);
dafb1367 939
ec95f53a
KM
940 return true;
941}
942
943static void __free_pages_ok(struct page *page, unsigned int order)
944{
945 unsigned long flags;
95e34412 946 int migratetype;
dc4b0caf 947 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
948
949 if (!free_pages_prepare(page, order))
950 return;
951
cfc47a28 952 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 953 local_irq_save(flags);
f8891e5e 954 __count_vm_events(PGFREE, 1 << order);
95e34412 955 set_freepage_migratetype(page, migratetype);
dc4b0caf 956 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 957 local_irq_restore(flags);
1da177e4
LT
958}
959
0e1cc95b 960static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 961 unsigned long pfn, unsigned int order)
a226f6c8 962{
c3993076 963 unsigned int nr_pages = 1 << order;
e2d0bd2b 964 struct page *p = page;
c3993076 965 unsigned int loop;
a226f6c8 966
e2d0bd2b
YL
967 prefetchw(p);
968 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
969 prefetchw(p + 1);
c3993076
JW
970 __ClearPageReserved(p);
971 set_page_count(p, 0);
a226f6c8 972 }
e2d0bd2b
YL
973 __ClearPageReserved(p);
974 set_page_count(p, 0);
c3993076 975
e2d0bd2b 976 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
977 set_page_refcounted(page);
978 __free_pages(page, order);
a226f6c8
DH
979}
980
75a592a4
MG
981#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
982 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 983
75a592a4
MG
984static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
985
986int __meminit early_pfn_to_nid(unsigned long pfn)
987{
7ace9917 988 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
989 int nid;
990
7ace9917 991 spin_lock(&early_pfn_lock);
75a592a4 992 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
993 if (nid < 0)
994 nid = 0;
995 spin_unlock(&early_pfn_lock);
996
997 return nid;
75a592a4
MG
998}
999#endif
1000
1001#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1002static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1003 struct mminit_pfnnid_cache *state)
1004{
1005 int nid;
1006
1007 nid = __early_pfn_to_nid(pfn, state);
1008 if (nid >= 0 && nid != node)
1009 return false;
1010 return true;
1011}
1012
1013/* Only safe to use early in boot when initialisation is single-threaded */
1014static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1015{
1016 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1017}
1018
1019#else
1020
1021static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1022{
1023 return true;
1024}
1025static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1026 struct mminit_pfnnid_cache *state)
1027{
1028 return true;
1029}
1030#endif
1031
1032
0e1cc95b 1033void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1034 unsigned int order)
1035{
1036 if (early_page_uninitialised(pfn))
1037 return;
1038 return __free_pages_boot_core(page, pfn, order);
1039}
1040
7e18adb4 1041#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1042static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1043 unsigned long pfn, int nr_pages)
1044{
1045 int i;
1046
1047 if (!page)
1048 return;
1049
1050 /* Free a large naturally-aligned chunk if possible */
1051 if (nr_pages == MAX_ORDER_NR_PAGES &&
1052 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1053 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1054 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1055 return;
1056 }
1057
1058 for (i = 0; i < nr_pages; i++, page++, pfn++)
1059 __free_pages_boot_core(page, pfn, 0);
1060}
1061
d3cd131d
NS
1062/* Completion tracking for deferred_init_memmap() threads */
1063static atomic_t pgdat_init_n_undone __initdata;
1064static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1065
1066static inline void __init pgdat_init_report_one_done(void)
1067{
1068 if (atomic_dec_and_test(&pgdat_init_n_undone))
1069 complete(&pgdat_init_all_done_comp);
1070}
0e1cc95b 1071
7e18adb4 1072/* Initialise remaining memory on a node */
0e1cc95b 1073static int __init deferred_init_memmap(void *data)
7e18adb4 1074{
0e1cc95b
MG
1075 pg_data_t *pgdat = data;
1076 int nid = pgdat->node_id;
7e18adb4
MG
1077 struct mminit_pfnnid_cache nid_init_state = { };
1078 unsigned long start = jiffies;
1079 unsigned long nr_pages = 0;
1080 unsigned long walk_start, walk_end;
1081 int i, zid;
1082 struct zone *zone;
7e18adb4 1083 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1084 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1085
0e1cc95b 1086 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1087 pgdat_init_report_one_done();
0e1cc95b
MG
1088 return 0;
1089 }
1090
1091 /* Bind memory initialisation thread to a local node if possible */
1092 if (!cpumask_empty(cpumask))
1093 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1094
1095 /* Sanity check boundaries */
1096 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1097 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1098 pgdat->first_deferred_pfn = ULONG_MAX;
1099
1100 /* Only the highest zone is deferred so find it */
1101 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1102 zone = pgdat->node_zones + zid;
1103 if (first_init_pfn < zone_end_pfn(zone))
1104 break;
1105 }
1106
1107 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1108 unsigned long pfn, end_pfn;
54608c3f 1109 struct page *page = NULL;
a4de83dd
MG
1110 struct page *free_base_page = NULL;
1111 unsigned long free_base_pfn = 0;
1112 int nr_to_free = 0;
7e18adb4
MG
1113
1114 end_pfn = min(walk_end, zone_end_pfn(zone));
1115 pfn = first_init_pfn;
1116 if (pfn < walk_start)
1117 pfn = walk_start;
1118 if (pfn < zone->zone_start_pfn)
1119 pfn = zone->zone_start_pfn;
1120
1121 for (; pfn < end_pfn; pfn++) {
54608c3f 1122 if (!pfn_valid_within(pfn))
a4de83dd 1123 goto free_range;
7e18adb4 1124
54608c3f
MG
1125 /*
1126 * Ensure pfn_valid is checked every
1127 * MAX_ORDER_NR_PAGES for memory holes
1128 */
1129 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1130 if (!pfn_valid(pfn)) {
1131 page = NULL;
a4de83dd 1132 goto free_range;
54608c3f
MG
1133 }
1134 }
1135
1136 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1137 page = NULL;
a4de83dd 1138 goto free_range;
54608c3f
MG
1139 }
1140
1141 /* Minimise pfn page lookups and scheduler checks */
1142 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1143 page++;
1144 } else {
a4de83dd
MG
1145 nr_pages += nr_to_free;
1146 deferred_free_range(free_base_page,
1147 free_base_pfn, nr_to_free);
1148 free_base_page = NULL;
1149 free_base_pfn = nr_to_free = 0;
1150
54608c3f
MG
1151 page = pfn_to_page(pfn);
1152 cond_resched();
1153 }
7e18adb4
MG
1154
1155 if (page->flags) {
1156 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1157 goto free_range;
7e18adb4
MG
1158 }
1159
1160 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1161 if (!free_base_page) {
1162 free_base_page = page;
1163 free_base_pfn = pfn;
1164 nr_to_free = 0;
1165 }
1166 nr_to_free++;
1167
1168 /* Where possible, batch up pages for a single free */
1169 continue;
1170free_range:
1171 /* Free the current block of pages to allocator */
1172 nr_pages += nr_to_free;
1173 deferred_free_range(free_base_page, free_base_pfn,
1174 nr_to_free);
1175 free_base_page = NULL;
1176 free_base_pfn = nr_to_free = 0;
7e18adb4 1177 }
a4de83dd 1178
7e18adb4
MG
1179 first_init_pfn = max(end_pfn, first_init_pfn);
1180 }
1181
1182 /* Sanity check that the next zone really is unpopulated */
1183 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1184
0e1cc95b 1185 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1186 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1187
1188 pgdat_init_report_one_done();
0e1cc95b
MG
1189 return 0;
1190}
1191
1192void __init page_alloc_init_late(void)
1193{
1194 int nid;
1195
d3cd131d
NS
1196 /* There will be num_node_state(N_MEMORY) threads */
1197 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1198 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1199 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1200 }
1201
1202 /* Block until all are initialised */
d3cd131d 1203 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1204
1205 /* Reinit limits that are based on free pages after the kernel is up */
1206 files_maxfiles_init();
7e18adb4
MG
1207}
1208#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1209
47118af0 1210#ifdef CONFIG_CMA
9cf510a5 1211/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1212void __init init_cma_reserved_pageblock(struct page *page)
1213{
1214 unsigned i = pageblock_nr_pages;
1215 struct page *p = page;
1216
1217 do {
1218 __ClearPageReserved(p);
1219 set_page_count(p, 0);
1220 } while (++p, --i);
1221
47118af0 1222 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1223
1224 if (pageblock_order >= MAX_ORDER) {
1225 i = pageblock_nr_pages;
1226 p = page;
1227 do {
1228 set_page_refcounted(p);
1229 __free_pages(p, MAX_ORDER - 1);
1230 p += MAX_ORDER_NR_PAGES;
1231 } while (i -= MAX_ORDER_NR_PAGES);
1232 } else {
1233 set_page_refcounted(page);
1234 __free_pages(page, pageblock_order);
1235 }
1236
3dcc0571 1237 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1238}
1239#endif
1da177e4
LT
1240
1241/*
1242 * The order of subdivision here is critical for the IO subsystem.
1243 * Please do not alter this order without good reasons and regression
1244 * testing. Specifically, as large blocks of memory are subdivided,
1245 * the order in which smaller blocks are delivered depends on the order
1246 * they're subdivided in this function. This is the primary factor
1247 * influencing the order in which pages are delivered to the IO
1248 * subsystem according to empirical testing, and this is also justified
1249 * by considering the behavior of a buddy system containing a single
1250 * large block of memory acted on by a series of small allocations.
1251 * This behavior is a critical factor in sglist merging's success.
1252 *
6d49e352 1253 * -- nyc
1da177e4 1254 */
085cc7d5 1255static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1256 int low, int high, struct free_area *area,
1257 int migratetype)
1da177e4
LT
1258{
1259 unsigned long size = 1 << high;
1260
1261 while (high > low) {
1262 area--;
1263 high--;
1264 size >>= 1;
309381fe 1265 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1266
2847cf95 1267 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1268 debug_guardpage_enabled() &&
2847cf95 1269 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1270 /*
1271 * Mark as guard pages (or page), that will allow to
1272 * merge back to allocator when buddy will be freed.
1273 * Corresponding page table entries will not be touched,
1274 * pages will stay not present in virtual address space
1275 */
2847cf95 1276 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1277 continue;
1278 }
b2a0ac88 1279 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1280 area->nr_free++;
1281 set_page_order(&page[size], high);
1282 }
1da177e4
LT
1283}
1284
1da177e4
LT
1285/*
1286 * This page is about to be returned from the page allocator
1287 */
2a7684a2 1288static inline int check_new_page(struct page *page)
1da177e4 1289{
d230dec1 1290 const char *bad_reason = NULL;
f0b791a3
DH
1291 unsigned long bad_flags = 0;
1292
1293 if (unlikely(page_mapcount(page)))
1294 bad_reason = "nonzero mapcount";
1295 if (unlikely(page->mapping != NULL))
1296 bad_reason = "non-NULL mapping";
1297 if (unlikely(atomic_read(&page->_count) != 0))
1298 bad_reason = "nonzero _count";
f4c18e6f
NH
1299 if (unlikely(page->flags & __PG_HWPOISON)) {
1300 bad_reason = "HWPoisoned (hardware-corrupted)";
1301 bad_flags = __PG_HWPOISON;
1302 }
f0b791a3
DH
1303 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1304 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1305 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1306 }
9edad6ea
JW
1307#ifdef CONFIG_MEMCG
1308 if (unlikely(page->mem_cgroup))
1309 bad_reason = "page still charged to cgroup";
1310#endif
f0b791a3
DH
1311 if (unlikely(bad_reason)) {
1312 bad_page(page, bad_reason, bad_flags);
689bcebf 1313 return 1;
8cc3b392 1314 }
2a7684a2
WF
1315 return 0;
1316}
1317
75379191
VB
1318static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1319 int alloc_flags)
2a7684a2
WF
1320{
1321 int i;
1322
1323 for (i = 0; i < (1 << order); i++) {
1324 struct page *p = page + i;
1325 if (unlikely(check_new_page(p)))
1326 return 1;
1327 }
689bcebf 1328
4c21e2f2 1329 set_page_private(page, 0);
7835e98b 1330 set_page_refcounted(page);
cc102509
NP
1331
1332 arch_alloc_page(page, order);
1da177e4 1333 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1334 kasan_alloc_pages(page, order);
17cf4406
NP
1335
1336 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1337 for (i = 0; i < (1 << order); i++)
1338 clear_highpage(page + i);
17cf4406
NP
1339
1340 if (order && (gfp_flags & __GFP_COMP))
1341 prep_compound_page(page, order);
1342
48c96a36
JK
1343 set_page_owner(page, order, gfp_flags);
1344
75379191 1345 /*
2f064f34 1346 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1347 * allocate the page. The expectation is that the caller is taking
1348 * steps that will free more memory. The caller should avoid the page
1349 * being used for !PFMEMALLOC purposes.
1350 */
2f064f34
MH
1351 if (alloc_flags & ALLOC_NO_WATERMARKS)
1352 set_page_pfmemalloc(page);
1353 else
1354 clear_page_pfmemalloc(page);
75379191 1355
689bcebf 1356 return 0;
1da177e4
LT
1357}
1358
56fd56b8
MG
1359/*
1360 * Go through the free lists for the given migratetype and remove
1361 * the smallest available page from the freelists
1362 */
728ec980
MG
1363static inline
1364struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1365 int migratetype)
1366{
1367 unsigned int current_order;
b8af2941 1368 struct free_area *area;
56fd56b8
MG
1369 struct page *page;
1370
1371 /* Find a page of the appropriate size in the preferred list */
1372 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1373 area = &(zone->free_area[current_order]);
1374 if (list_empty(&area->free_list[migratetype]))
1375 continue;
1376
1377 page = list_entry(area->free_list[migratetype].next,
1378 struct page, lru);
1379 list_del(&page->lru);
1380 rmv_page_order(page);
1381 area->nr_free--;
56fd56b8 1382 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 1383 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
1384 return page;
1385 }
1386
1387 return NULL;
1388}
1389
1390
b2a0ac88
MG
1391/*
1392 * This array describes the order lists are fallen back to when
1393 * the free lists for the desirable migrate type are depleted
1394 */
47118af0
MN
1395static int fallbacks[MIGRATE_TYPES][4] = {
1396 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1397 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
dc67647b 1398 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
47118af0 1399#ifdef CONFIG_CMA
47118af0 1400 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
47118af0 1401#endif
6d4a4916 1402 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1403#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1404 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1405#endif
b2a0ac88
MG
1406};
1407
dc67647b
JK
1408#ifdef CONFIG_CMA
1409static struct page *__rmqueue_cma_fallback(struct zone *zone,
1410 unsigned int order)
1411{
1412 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1413}
1414#else
1415static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1416 unsigned int order) { return NULL; }
1417#endif
1418
c361be55
MG
1419/*
1420 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1421 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1422 * boundary. If alignment is required, use move_freepages_block()
1423 */
435b405c 1424int move_freepages(struct zone *zone,
b69a7288
AB
1425 struct page *start_page, struct page *end_page,
1426 int migratetype)
c361be55
MG
1427{
1428 struct page *page;
1429 unsigned long order;
d100313f 1430 int pages_moved = 0;
c361be55
MG
1431
1432#ifndef CONFIG_HOLES_IN_ZONE
1433 /*
1434 * page_zone is not safe to call in this context when
1435 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1436 * anyway as we check zone boundaries in move_freepages_block().
1437 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1438 * grouping pages by mobility
c361be55 1439 */
97ee4ba7 1440 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1441#endif
1442
1443 for (page = start_page; page <= end_page;) {
344c790e 1444 /* Make sure we are not inadvertently changing nodes */
309381fe 1445 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1446
c361be55
MG
1447 if (!pfn_valid_within(page_to_pfn(page))) {
1448 page++;
1449 continue;
1450 }
1451
1452 if (!PageBuddy(page)) {
1453 page++;
1454 continue;
1455 }
1456
1457 order = page_order(page);
84be48d8
KS
1458 list_move(&page->lru,
1459 &zone->free_area[order].free_list[migratetype]);
95e34412 1460 set_freepage_migratetype(page, migratetype);
c361be55 1461 page += 1 << order;
d100313f 1462 pages_moved += 1 << order;
c361be55
MG
1463 }
1464
d100313f 1465 return pages_moved;
c361be55
MG
1466}
1467
ee6f509c 1468int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1469 int migratetype)
c361be55
MG
1470{
1471 unsigned long start_pfn, end_pfn;
1472 struct page *start_page, *end_page;
1473
1474 start_pfn = page_to_pfn(page);
d9c23400 1475 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1476 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1477 end_page = start_page + pageblock_nr_pages - 1;
1478 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1479
1480 /* Do not cross zone boundaries */
108bcc96 1481 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1482 start_page = page;
108bcc96 1483 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1484 return 0;
1485
1486 return move_freepages(zone, start_page, end_page, migratetype);
1487}
1488
2f66a68f
MG
1489static void change_pageblock_range(struct page *pageblock_page,
1490 int start_order, int migratetype)
1491{
1492 int nr_pageblocks = 1 << (start_order - pageblock_order);
1493
1494 while (nr_pageblocks--) {
1495 set_pageblock_migratetype(pageblock_page, migratetype);
1496 pageblock_page += pageblock_nr_pages;
1497 }
1498}
1499
fef903ef 1500/*
9c0415eb
VB
1501 * When we are falling back to another migratetype during allocation, try to
1502 * steal extra free pages from the same pageblocks to satisfy further
1503 * allocations, instead of polluting multiple pageblocks.
1504 *
1505 * If we are stealing a relatively large buddy page, it is likely there will
1506 * be more free pages in the pageblock, so try to steal them all. For
1507 * reclaimable and unmovable allocations, we steal regardless of page size,
1508 * as fragmentation caused by those allocations polluting movable pageblocks
1509 * is worse than movable allocations stealing from unmovable and reclaimable
1510 * pageblocks.
fef903ef 1511 */
4eb7dce6
JK
1512static bool can_steal_fallback(unsigned int order, int start_mt)
1513{
1514 /*
1515 * Leaving this order check is intended, although there is
1516 * relaxed order check in next check. The reason is that
1517 * we can actually steal whole pageblock if this condition met,
1518 * but, below check doesn't guarantee it and that is just heuristic
1519 * so could be changed anytime.
1520 */
1521 if (order >= pageblock_order)
1522 return true;
1523
1524 if (order >= pageblock_order / 2 ||
1525 start_mt == MIGRATE_RECLAIMABLE ||
1526 start_mt == MIGRATE_UNMOVABLE ||
1527 page_group_by_mobility_disabled)
1528 return true;
1529
1530 return false;
1531}
1532
1533/*
1534 * This function implements actual steal behaviour. If order is large enough,
1535 * we can steal whole pageblock. If not, we first move freepages in this
1536 * pageblock and check whether half of pages are moved or not. If half of
1537 * pages are moved, we can change migratetype of pageblock and permanently
1538 * use it's pages as requested migratetype in the future.
1539 */
1540static void steal_suitable_fallback(struct zone *zone, struct page *page,
1541 int start_type)
fef903ef
SB
1542{
1543 int current_order = page_order(page);
4eb7dce6 1544 int pages;
fef903ef 1545
fef903ef
SB
1546 /* Take ownership for orders >= pageblock_order */
1547 if (current_order >= pageblock_order) {
1548 change_pageblock_range(page, current_order, start_type);
3a1086fb 1549 return;
fef903ef
SB
1550 }
1551
4eb7dce6 1552 pages = move_freepages_block(zone, page, start_type);
fef903ef 1553
4eb7dce6
JK
1554 /* Claim the whole block if over half of it is free */
1555 if (pages >= (1 << (pageblock_order-1)) ||
1556 page_group_by_mobility_disabled)
1557 set_pageblock_migratetype(page, start_type);
1558}
1559
2149cdae
JK
1560/*
1561 * Check whether there is a suitable fallback freepage with requested order.
1562 * If only_stealable is true, this function returns fallback_mt only if
1563 * we can steal other freepages all together. This would help to reduce
1564 * fragmentation due to mixed migratetype pages in one pageblock.
1565 */
1566int find_suitable_fallback(struct free_area *area, unsigned int order,
1567 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1568{
1569 int i;
1570 int fallback_mt;
1571
1572 if (area->nr_free == 0)
1573 return -1;
1574
1575 *can_steal = false;
1576 for (i = 0;; i++) {
1577 fallback_mt = fallbacks[migratetype][i];
1578 if (fallback_mt == MIGRATE_RESERVE)
1579 break;
1580
1581 if (list_empty(&area->free_list[fallback_mt]))
1582 continue;
fef903ef 1583
4eb7dce6
JK
1584 if (can_steal_fallback(order, migratetype))
1585 *can_steal = true;
1586
2149cdae
JK
1587 if (!only_stealable)
1588 return fallback_mt;
1589
1590 if (*can_steal)
1591 return fallback_mt;
fef903ef 1592 }
4eb7dce6
JK
1593
1594 return -1;
fef903ef
SB
1595}
1596
b2a0ac88 1597/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1598static inline struct page *
7aeb09f9 1599__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1600{
b8af2941 1601 struct free_area *area;
7aeb09f9 1602 unsigned int current_order;
b2a0ac88 1603 struct page *page;
4eb7dce6
JK
1604 int fallback_mt;
1605 bool can_steal;
b2a0ac88
MG
1606
1607 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1608 for (current_order = MAX_ORDER-1;
1609 current_order >= order && current_order <= MAX_ORDER-1;
1610 --current_order) {
4eb7dce6
JK
1611 area = &(zone->free_area[current_order]);
1612 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1613 start_migratetype, false, &can_steal);
4eb7dce6
JK
1614 if (fallback_mt == -1)
1615 continue;
b2a0ac88 1616
4eb7dce6
JK
1617 page = list_entry(area->free_list[fallback_mt].next,
1618 struct page, lru);
1619 if (can_steal)
1620 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1621
4eb7dce6
JK
1622 /* Remove the page from the freelists */
1623 area->nr_free--;
1624 list_del(&page->lru);
1625 rmv_page_order(page);
3a1086fb 1626
4eb7dce6
JK
1627 expand(zone, page, order, current_order, area,
1628 start_migratetype);
1629 /*
1630 * The freepage_migratetype may differ from pageblock's
1631 * migratetype depending on the decisions in
1632 * try_to_steal_freepages(). This is OK as long as it
1633 * does not differ for MIGRATE_CMA pageblocks. For CMA
1634 * we need to make sure unallocated pages flushed from
1635 * pcp lists are returned to the correct freelist.
1636 */
1637 set_freepage_migratetype(page, start_migratetype);
e0fff1bd 1638
4eb7dce6
JK
1639 trace_mm_page_alloc_extfrag(page, order, current_order,
1640 start_migratetype, fallback_mt);
e0fff1bd 1641
4eb7dce6 1642 return page;
b2a0ac88
MG
1643 }
1644
728ec980 1645 return NULL;
b2a0ac88
MG
1646}
1647
56fd56b8 1648/*
1da177e4
LT
1649 * Do the hard work of removing an element from the buddy allocator.
1650 * Call me with the zone->lock already held.
1651 */
b2a0ac88
MG
1652static struct page *__rmqueue(struct zone *zone, unsigned int order,
1653 int migratetype)
1da177e4 1654{
1da177e4
LT
1655 struct page *page;
1656
728ec980 1657retry_reserve:
56fd56b8 1658 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1659
728ec980 1660 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
dc67647b
JK
1661 if (migratetype == MIGRATE_MOVABLE)
1662 page = __rmqueue_cma_fallback(zone, order);
1663
1664 if (!page)
1665 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1666
728ec980
MG
1667 /*
1668 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1669 * is used because __rmqueue_smallest is an inline function
1670 * and we want just one call site
1671 */
1672 if (!page) {
1673 migratetype = MIGRATE_RESERVE;
1674 goto retry_reserve;
1675 }
1676 }
1677
0d3d062a 1678 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1679 return page;
1da177e4
LT
1680}
1681
5f63b720 1682/*
1da177e4
LT
1683 * Obtain a specified number of elements from the buddy allocator, all under
1684 * a single hold of the lock, for efficiency. Add them to the supplied list.
1685 * Returns the number of new pages which were placed at *list.
1686 */
5f63b720 1687static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1688 unsigned long count, struct list_head *list,
b745bc85 1689 int migratetype, bool cold)
1da177e4 1690{
5bcc9f86 1691 int i;
5f63b720 1692
c54ad30c 1693 spin_lock(&zone->lock);
1da177e4 1694 for (i = 0; i < count; ++i) {
b2a0ac88 1695 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1696 if (unlikely(page == NULL))
1da177e4 1697 break;
81eabcbe
MG
1698
1699 /*
1700 * Split buddy pages returned by expand() are received here
1701 * in physical page order. The page is added to the callers and
1702 * list and the list head then moves forward. From the callers
1703 * perspective, the linked list is ordered by page number in
1704 * some conditions. This is useful for IO devices that can
1705 * merge IO requests if the physical pages are ordered
1706 * properly.
1707 */
b745bc85 1708 if (likely(!cold))
e084b2d9
MG
1709 list_add(&page->lru, list);
1710 else
1711 list_add_tail(&page->lru, list);
81eabcbe 1712 list = &page->lru;
5bcc9f86 1713 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1714 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1715 -(1 << order));
1da177e4 1716 }
f2260e6b 1717 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1718 spin_unlock(&zone->lock);
085cc7d5 1719 return i;
1da177e4
LT
1720}
1721
4ae7c039 1722#ifdef CONFIG_NUMA
8fce4d8e 1723/*
4037d452
CL
1724 * Called from the vmstat counter updater to drain pagesets of this
1725 * currently executing processor on remote nodes after they have
1726 * expired.
1727 *
879336c3
CL
1728 * Note that this function must be called with the thread pinned to
1729 * a single processor.
8fce4d8e 1730 */
4037d452 1731void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1732{
4ae7c039 1733 unsigned long flags;
7be12fc9 1734 int to_drain, batch;
4ae7c039 1735
4037d452 1736 local_irq_save(flags);
4db0c3c2 1737 batch = READ_ONCE(pcp->batch);
7be12fc9 1738 to_drain = min(pcp->count, batch);
2a13515c
KM
1739 if (to_drain > 0) {
1740 free_pcppages_bulk(zone, to_drain, pcp);
1741 pcp->count -= to_drain;
1742 }
4037d452 1743 local_irq_restore(flags);
4ae7c039
CL
1744}
1745#endif
1746
9f8f2172 1747/*
93481ff0 1748 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1749 *
1750 * The processor must either be the current processor and the
1751 * thread pinned to the current processor or a processor that
1752 * is not online.
1753 */
93481ff0 1754static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1755{
c54ad30c 1756 unsigned long flags;
93481ff0
VB
1757 struct per_cpu_pageset *pset;
1758 struct per_cpu_pages *pcp;
1da177e4 1759
93481ff0
VB
1760 local_irq_save(flags);
1761 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1762
93481ff0
VB
1763 pcp = &pset->pcp;
1764 if (pcp->count) {
1765 free_pcppages_bulk(zone, pcp->count, pcp);
1766 pcp->count = 0;
1767 }
1768 local_irq_restore(flags);
1769}
3dfa5721 1770
93481ff0
VB
1771/*
1772 * Drain pcplists of all zones on the indicated processor.
1773 *
1774 * The processor must either be the current processor and the
1775 * thread pinned to the current processor or a processor that
1776 * is not online.
1777 */
1778static void drain_pages(unsigned int cpu)
1779{
1780 struct zone *zone;
1781
1782 for_each_populated_zone(zone) {
1783 drain_pages_zone(cpu, zone);
1da177e4
LT
1784 }
1785}
1da177e4 1786
9f8f2172
CL
1787/*
1788 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1789 *
1790 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1791 * the single zone's pages.
9f8f2172 1792 */
93481ff0 1793void drain_local_pages(struct zone *zone)
9f8f2172 1794{
93481ff0
VB
1795 int cpu = smp_processor_id();
1796
1797 if (zone)
1798 drain_pages_zone(cpu, zone);
1799 else
1800 drain_pages(cpu);
9f8f2172
CL
1801}
1802
1803/*
74046494
GBY
1804 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1805 *
93481ff0
VB
1806 * When zone parameter is non-NULL, spill just the single zone's pages.
1807 *
74046494
GBY
1808 * Note that this code is protected against sending an IPI to an offline
1809 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1810 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1811 * nothing keeps CPUs from showing up after we populated the cpumask and
1812 * before the call to on_each_cpu_mask().
9f8f2172 1813 */
93481ff0 1814void drain_all_pages(struct zone *zone)
9f8f2172 1815{
74046494 1816 int cpu;
74046494
GBY
1817
1818 /*
1819 * Allocate in the BSS so we wont require allocation in
1820 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1821 */
1822 static cpumask_t cpus_with_pcps;
1823
1824 /*
1825 * We don't care about racing with CPU hotplug event
1826 * as offline notification will cause the notified
1827 * cpu to drain that CPU pcps and on_each_cpu_mask
1828 * disables preemption as part of its processing
1829 */
1830 for_each_online_cpu(cpu) {
93481ff0
VB
1831 struct per_cpu_pageset *pcp;
1832 struct zone *z;
74046494 1833 bool has_pcps = false;
93481ff0
VB
1834
1835 if (zone) {
74046494 1836 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1837 if (pcp->pcp.count)
74046494 1838 has_pcps = true;
93481ff0
VB
1839 } else {
1840 for_each_populated_zone(z) {
1841 pcp = per_cpu_ptr(z->pageset, cpu);
1842 if (pcp->pcp.count) {
1843 has_pcps = true;
1844 break;
1845 }
74046494
GBY
1846 }
1847 }
93481ff0 1848
74046494
GBY
1849 if (has_pcps)
1850 cpumask_set_cpu(cpu, &cpus_with_pcps);
1851 else
1852 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1853 }
93481ff0
VB
1854 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1855 zone, 1);
9f8f2172
CL
1856}
1857
296699de 1858#ifdef CONFIG_HIBERNATION
1da177e4
LT
1859
1860void mark_free_pages(struct zone *zone)
1861{
f623f0db
RW
1862 unsigned long pfn, max_zone_pfn;
1863 unsigned long flags;
7aeb09f9 1864 unsigned int order, t;
1da177e4
LT
1865 struct list_head *curr;
1866
8080fc03 1867 if (zone_is_empty(zone))
1da177e4
LT
1868 return;
1869
1870 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1871
108bcc96 1872 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1873 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1874 if (pfn_valid(pfn)) {
1875 struct page *page = pfn_to_page(pfn);
1876
7be98234
RW
1877 if (!swsusp_page_is_forbidden(page))
1878 swsusp_unset_page_free(page);
f623f0db 1879 }
1da177e4 1880
b2a0ac88
MG
1881 for_each_migratetype_order(order, t) {
1882 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1883 unsigned long i;
1da177e4 1884
f623f0db
RW
1885 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1886 for (i = 0; i < (1UL << order); i++)
7be98234 1887 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1888 }
b2a0ac88 1889 }
1da177e4
LT
1890 spin_unlock_irqrestore(&zone->lock, flags);
1891}
e2c55dc8 1892#endif /* CONFIG_PM */
1da177e4 1893
1da177e4
LT
1894/*
1895 * Free a 0-order page
b745bc85 1896 * cold == true ? free a cold page : free a hot page
1da177e4 1897 */
b745bc85 1898void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1899{
1900 struct zone *zone = page_zone(page);
1901 struct per_cpu_pages *pcp;
1902 unsigned long flags;
dc4b0caf 1903 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1904 int migratetype;
1da177e4 1905
ec95f53a 1906 if (!free_pages_prepare(page, 0))
689bcebf
HD
1907 return;
1908
dc4b0caf 1909 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1910 set_freepage_migratetype(page, migratetype);
1da177e4 1911 local_irq_save(flags);
f8891e5e 1912 __count_vm_event(PGFREE);
da456f14 1913
5f8dcc21
MG
1914 /*
1915 * We only track unmovable, reclaimable and movable on pcp lists.
1916 * Free ISOLATE pages back to the allocator because they are being
1917 * offlined but treat RESERVE as movable pages so we can get those
1918 * areas back if necessary. Otherwise, we may have to free
1919 * excessively into the page allocator
1920 */
1921 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1922 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1923 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1924 goto out;
1925 }
1926 migratetype = MIGRATE_MOVABLE;
1927 }
1928
99dcc3e5 1929 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1930 if (!cold)
5f8dcc21 1931 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1932 else
1933 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1934 pcp->count++;
48db57f8 1935 if (pcp->count >= pcp->high) {
4db0c3c2 1936 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
1937 free_pcppages_bulk(zone, batch, pcp);
1938 pcp->count -= batch;
48db57f8 1939 }
5f8dcc21
MG
1940
1941out:
1da177e4 1942 local_irq_restore(flags);
1da177e4
LT
1943}
1944
cc59850e
KK
1945/*
1946 * Free a list of 0-order pages
1947 */
b745bc85 1948void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1949{
1950 struct page *page, *next;
1951
1952 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1953 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1954 free_hot_cold_page(page, cold);
1955 }
1956}
1957
8dfcc9ba
NP
1958/*
1959 * split_page takes a non-compound higher-order page, and splits it into
1960 * n (1<<order) sub-pages: page[0..n]
1961 * Each sub-page must be freed individually.
1962 *
1963 * Note: this is probably too low level an operation for use in drivers.
1964 * Please consult with lkml before using this in your driver.
1965 */
1966void split_page(struct page *page, unsigned int order)
1967{
1968 int i;
e2cfc911 1969 gfp_t gfp_mask;
8dfcc9ba 1970
309381fe
SL
1971 VM_BUG_ON_PAGE(PageCompound(page), page);
1972 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1973
1974#ifdef CONFIG_KMEMCHECK
1975 /*
1976 * Split shadow pages too, because free(page[0]) would
1977 * otherwise free the whole shadow.
1978 */
1979 if (kmemcheck_page_is_tracked(page))
1980 split_page(virt_to_page(page[0].shadow), order);
1981#endif
1982
e2cfc911
JK
1983 gfp_mask = get_page_owner_gfp(page);
1984 set_page_owner(page, 0, gfp_mask);
48c96a36 1985 for (i = 1; i < (1 << order); i++) {
7835e98b 1986 set_page_refcounted(page + i);
e2cfc911 1987 set_page_owner(page + i, 0, gfp_mask);
48c96a36 1988 }
8dfcc9ba 1989}
5853ff23 1990EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1991
3c605096 1992int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1993{
748446bb
MG
1994 unsigned long watermark;
1995 struct zone *zone;
2139cbe6 1996 int mt;
748446bb
MG
1997
1998 BUG_ON(!PageBuddy(page));
1999
2000 zone = page_zone(page);
2e30abd1 2001 mt = get_pageblock_migratetype(page);
748446bb 2002
194159fb 2003 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2004 /* Obey watermarks as if the page was being allocated */
2005 watermark = low_wmark_pages(zone) + (1 << order);
2006 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2007 return 0;
2008
8fb74b9f 2009 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2010 }
748446bb
MG
2011
2012 /* Remove page from free list */
2013 list_del(&page->lru);
2014 zone->free_area[order].nr_free--;
2015 rmv_page_order(page);
2139cbe6 2016
e2cfc911 2017 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2018
8fb74b9f 2019 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2020 if (order >= pageblock_order - 1) {
2021 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2022 for (; page < endpage; page += pageblock_nr_pages) {
2023 int mt = get_pageblock_migratetype(page);
194159fb 2024 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2025 set_pageblock_migratetype(page,
2026 MIGRATE_MOVABLE);
2027 }
748446bb
MG
2028 }
2029
f3a14ced 2030
8fb74b9f 2031 return 1UL << order;
1fb3f8ca
MG
2032}
2033
2034/*
2035 * Similar to split_page except the page is already free. As this is only
2036 * being used for migration, the migratetype of the block also changes.
2037 * As this is called with interrupts disabled, the caller is responsible
2038 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2039 * are enabled.
2040 *
2041 * Note: this is probably too low level an operation for use in drivers.
2042 * Please consult with lkml before using this in your driver.
2043 */
2044int split_free_page(struct page *page)
2045{
2046 unsigned int order;
2047 int nr_pages;
2048
1fb3f8ca
MG
2049 order = page_order(page);
2050
8fb74b9f 2051 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2052 if (!nr_pages)
2053 return 0;
2054
2055 /* Split into individual pages */
2056 set_page_refcounted(page);
2057 split_page(page, order);
2058 return nr_pages;
748446bb
MG
2059}
2060
1da177e4 2061/*
75379191 2062 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2063 */
0a15c3e9
MG
2064static inline
2065struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
2066 struct zone *zone, unsigned int order,
2067 gfp_t gfp_flags, int migratetype)
1da177e4
LT
2068{
2069 unsigned long flags;
689bcebf 2070 struct page *page;
b745bc85 2071 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2072
48db57f8 2073 if (likely(order == 0)) {
1da177e4 2074 struct per_cpu_pages *pcp;
5f8dcc21 2075 struct list_head *list;
1da177e4 2076
1da177e4 2077 local_irq_save(flags);
99dcc3e5
CL
2078 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2079 list = &pcp->lists[migratetype];
5f8dcc21 2080 if (list_empty(list)) {
535131e6 2081 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2082 pcp->batch, list,
e084b2d9 2083 migratetype, cold);
5f8dcc21 2084 if (unlikely(list_empty(list)))
6fb332fa 2085 goto failed;
535131e6 2086 }
b92a6edd 2087
5f8dcc21
MG
2088 if (cold)
2089 page = list_entry(list->prev, struct page, lru);
2090 else
2091 page = list_entry(list->next, struct page, lru);
2092
b92a6edd
MG
2093 list_del(&page->lru);
2094 pcp->count--;
7fb1d9fc 2095 } else {
dab48dab
AM
2096 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2097 /*
2098 * __GFP_NOFAIL is not to be used in new code.
2099 *
2100 * All __GFP_NOFAIL callers should be fixed so that they
2101 * properly detect and handle allocation failures.
2102 *
2103 * We most definitely don't want callers attempting to
4923abf9 2104 * allocate greater than order-1 page units with
dab48dab
AM
2105 * __GFP_NOFAIL.
2106 */
4923abf9 2107 WARN_ON_ONCE(order > 1);
dab48dab 2108 }
1da177e4 2109 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 2110 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2111 spin_unlock(&zone->lock);
2112 if (!page)
2113 goto failed;
d1ce749a 2114 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 2115 get_freepage_migratetype(page));
1da177e4
LT
2116 }
2117
3a025760 2118 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2119 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2120 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2121 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2122
f8891e5e 2123 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2124 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2125 local_irq_restore(flags);
1da177e4 2126
309381fe 2127 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2128 return page;
a74609fa
NP
2129
2130failed:
2131 local_irq_restore(flags);
a74609fa 2132 return NULL;
1da177e4
LT
2133}
2134
933e312e
AM
2135#ifdef CONFIG_FAIL_PAGE_ALLOC
2136
b2588c4b 2137static struct {
933e312e
AM
2138 struct fault_attr attr;
2139
2140 u32 ignore_gfp_highmem;
2141 u32 ignore_gfp_wait;
54114994 2142 u32 min_order;
933e312e
AM
2143} fail_page_alloc = {
2144 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
2145 .ignore_gfp_wait = 1,
2146 .ignore_gfp_highmem = 1,
54114994 2147 .min_order = 1,
933e312e
AM
2148};
2149
2150static int __init setup_fail_page_alloc(char *str)
2151{
2152 return setup_fault_attr(&fail_page_alloc.attr, str);
2153}
2154__setup("fail_page_alloc=", setup_fail_page_alloc);
2155
deaf386e 2156static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2157{
54114994 2158 if (order < fail_page_alloc.min_order)
deaf386e 2159 return false;
933e312e 2160 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2161 return false;
933e312e 2162 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2163 return false;
933e312e 2164 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 2165 return false;
933e312e
AM
2166
2167 return should_fail(&fail_page_alloc.attr, 1 << order);
2168}
2169
2170#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2171
2172static int __init fail_page_alloc_debugfs(void)
2173{
f4ae40a6 2174 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2175 struct dentry *dir;
933e312e 2176
dd48c085
AM
2177 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2178 &fail_page_alloc.attr);
2179 if (IS_ERR(dir))
2180 return PTR_ERR(dir);
933e312e 2181
b2588c4b
AM
2182 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2183 &fail_page_alloc.ignore_gfp_wait))
2184 goto fail;
2185 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2186 &fail_page_alloc.ignore_gfp_highmem))
2187 goto fail;
2188 if (!debugfs_create_u32("min-order", mode, dir,
2189 &fail_page_alloc.min_order))
2190 goto fail;
2191
2192 return 0;
2193fail:
dd48c085 2194 debugfs_remove_recursive(dir);
933e312e 2195
b2588c4b 2196 return -ENOMEM;
933e312e
AM
2197}
2198
2199late_initcall(fail_page_alloc_debugfs);
2200
2201#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2202
2203#else /* CONFIG_FAIL_PAGE_ALLOC */
2204
deaf386e 2205static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2206{
deaf386e 2207 return false;
933e312e
AM
2208}
2209
2210#endif /* CONFIG_FAIL_PAGE_ALLOC */
2211
1da177e4 2212/*
88f5acf8 2213 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
2214 * of the allocation.
2215 */
7aeb09f9
MG
2216static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2217 unsigned long mark, int classzone_idx, int alloc_flags,
2218 long free_pages)
1da177e4 2219{
26086de3 2220 /* free_pages may go negative - that's OK */
d23ad423 2221 long min = mark;
1da177e4 2222 int o;
026b0814 2223 long free_cma = 0;
1da177e4 2224
df0a6daa 2225 free_pages -= (1 << order) - 1;
7fb1d9fc 2226 if (alloc_flags & ALLOC_HIGH)
1da177e4 2227 min -= min / 2;
7fb1d9fc 2228 if (alloc_flags & ALLOC_HARDER)
1da177e4 2229 min -= min / 4;
d95ea5d1
BZ
2230#ifdef CONFIG_CMA
2231 /* If allocation can't use CMA areas don't use free CMA pages */
2232 if (!(alloc_flags & ALLOC_CMA))
026b0814 2233 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2234#endif
026b0814 2235
3484b2de 2236 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2237 return false;
1da177e4
LT
2238 for (o = 0; o < order; o++) {
2239 /* At the next order, this order's pages become unavailable */
2240 free_pages -= z->free_area[o].nr_free << o;
2241
2242 /* Require fewer higher order pages to be free */
2243 min >>= 1;
2244
2245 if (free_pages <= min)
88f5acf8 2246 return false;
1da177e4 2247 }
88f5acf8
MG
2248 return true;
2249}
2250
7aeb09f9 2251bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2252 int classzone_idx, int alloc_flags)
2253{
2254 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2255 zone_page_state(z, NR_FREE_PAGES));
2256}
2257
7aeb09f9
MG
2258bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2259 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
2260{
2261 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2262
2263 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2264 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2265
2266 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2267 free_pages);
1da177e4
LT
2268}
2269
9276b1bc
PJ
2270#ifdef CONFIG_NUMA
2271/*
2272 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
2273 * skip over zones that are not allowed by the cpuset, or that have
2274 * been recently (in last second) found to be nearly full. See further
2275 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 2276 * that have to skip over a lot of full or unallowed zones.
9276b1bc 2277 *
a1aeb65a 2278 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 2279 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 2280 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
2281 *
2282 * If the zonelist cache is not available for this zonelist, does
2283 * nothing and returns NULL.
2284 *
2285 * If the fullzones BITMAP in the zonelist cache is stale (more than
2286 * a second since last zap'd) then we zap it out (clear its bits.)
2287 *
2288 * We hold off even calling zlc_setup, until after we've checked the
2289 * first zone in the zonelist, on the theory that most allocations will
2290 * be satisfied from that first zone, so best to examine that zone as
2291 * quickly as we can.
2292 */
2293static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2294{
2295 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2296 nodemask_t *allowednodes; /* zonelist_cache approximation */
2297
2298 zlc = zonelist->zlcache_ptr;
2299 if (!zlc)
2300 return NULL;
2301
f05111f5 2302 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
2303 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2304 zlc->last_full_zap = jiffies;
2305 }
2306
2307 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2308 &cpuset_current_mems_allowed :
4b0ef1fe 2309 &node_states[N_MEMORY];
9276b1bc
PJ
2310 return allowednodes;
2311}
2312
2313/*
2314 * Given 'z' scanning a zonelist, run a couple of quick checks to see
2315 * if it is worth looking at further for free memory:
2316 * 1) Check that the zone isn't thought to be full (doesn't have its
2317 * bit set in the zonelist_cache fullzones BITMAP).
2318 * 2) Check that the zones node (obtained from the zonelist_cache
2319 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2320 * Return true (non-zero) if zone is worth looking at further, or
2321 * else return false (zero) if it is not.
2322 *
2323 * This check -ignores- the distinction between various watermarks,
2324 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2325 * found to be full for any variation of these watermarks, it will
2326 * be considered full for up to one second by all requests, unless
2327 * we are so low on memory on all allowed nodes that we are forced
2328 * into the second scan of the zonelist.
2329 *
2330 * In the second scan we ignore this zonelist cache and exactly
2331 * apply the watermarks to all zones, even it is slower to do so.
2332 * We are low on memory in the second scan, and should leave no stone
2333 * unturned looking for a free page.
2334 */
dd1a239f 2335static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2336 nodemask_t *allowednodes)
2337{
2338 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2339 int i; /* index of *z in zonelist zones */
2340 int n; /* node that zone *z is on */
2341
2342 zlc = zonelist->zlcache_ptr;
2343 if (!zlc)
2344 return 1;
2345
dd1a239f 2346 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2347 n = zlc->z_to_n[i];
2348
2349 /* This zone is worth trying if it is allowed but not full */
2350 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2351}
2352
2353/*
2354 * Given 'z' scanning a zonelist, set the corresponding bit in
2355 * zlc->fullzones, so that subsequent attempts to allocate a page
2356 * from that zone don't waste time re-examining it.
2357 */
dd1a239f 2358static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2359{
2360 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2361 int i; /* index of *z in zonelist zones */
2362
2363 zlc = zonelist->zlcache_ptr;
2364 if (!zlc)
2365 return;
2366
dd1a239f 2367 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2368
2369 set_bit(i, zlc->fullzones);
2370}
2371
76d3fbf8
MG
2372/*
2373 * clear all zones full, called after direct reclaim makes progress so that
2374 * a zone that was recently full is not skipped over for up to a second
2375 */
2376static void zlc_clear_zones_full(struct zonelist *zonelist)
2377{
2378 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2379
2380 zlc = zonelist->zlcache_ptr;
2381 if (!zlc)
2382 return;
2383
2384 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2385}
2386
81c0a2bb
JW
2387static bool zone_local(struct zone *local_zone, struct zone *zone)
2388{
fff4068c 2389 return local_zone->node == zone->node;
81c0a2bb
JW
2390}
2391
957f822a
DR
2392static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2393{
5f7a75ac
MG
2394 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2395 RECLAIM_DISTANCE;
957f822a
DR
2396}
2397
9276b1bc
PJ
2398#else /* CONFIG_NUMA */
2399
2400static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2401{
2402 return NULL;
2403}
2404
dd1a239f 2405static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2406 nodemask_t *allowednodes)
2407{
2408 return 1;
2409}
2410
dd1a239f 2411static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2412{
2413}
76d3fbf8
MG
2414
2415static void zlc_clear_zones_full(struct zonelist *zonelist)
2416{
2417}
957f822a 2418
81c0a2bb
JW
2419static bool zone_local(struct zone *local_zone, struct zone *zone)
2420{
2421 return true;
2422}
2423
957f822a
DR
2424static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2425{
2426 return true;
2427}
2428
9276b1bc
PJ
2429#endif /* CONFIG_NUMA */
2430
4ffeaf35
MG
2431static void reset_alloc_batches(struct zone *preferred_zone)
2432{
2433 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2434
2435 do {
2436 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2437 high_wmark_pages(zone) - low_wmark_pages(zone) -
2438 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2439 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2440 } while (zone++ != preferred_zone);
2441}
2442
7fb1d9fc 2443/*
0798e519 2444 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2445 * a page.
2446 */
2447static struct page *
a9263751
VB
2448get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2449 const struct alloc_context *ac)
753ee728 2450{
a9263751 2451 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2452 struct zoneref *z;
7fb1d9fc 2453 struct page *page = NULL;
5117f45d 2454 struct zone *zone;
9276b1bc
PJ
2455 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2456 int zlc_active = 0; /* set if using zonelist_cache */
2457 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2458 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2459 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2460 int nr_fair_skipped = 0;
2461 bool zonelist_rescan;
54a6eb5c 2462
9276b1bc 2463zonelist_scan:
4ffeaf35
MG
2464 zonelist_rescan = false;
2465
7fb1d9fc 2466 /*
9276b1bc 2467 * Scan zonelist, looking for a zone with enough free.
344736f2 2468 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2469 */
a9263751
VB
2470 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2471 ac->nodemask) {
e085dbc5
JW
2472 unsigned long mark;
2473
e5adfffc 2474 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2475 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2476 continue;
664eedde
MG
2477 if (cpusets_enabled() &&
2478 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2479 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2480 continue;
81c0a2bb
JW
2481 /*
2482 * Distribute pages in proportion to the individual
2483 * zone size to ensure fair page aging. The zone a
2484 * page was allocated in should have no effect on the
2485 * time the page has in memory before being reclaimed.
81c0a2bb 2486 */
3a025760 2487 if (alloc_flags & ALLOC_FAIR) {
a9263751 2488 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2489 break;
57054651 2490 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2491 nr_fair_skipped++;
3a025760 2492 continue;
4ffeaf35 2493 }
81c0a2bb 2494 }
a756cf59
JW
2495 /*
2496 * When allocating a page cache page for writing, we
2497 * want to get it from a zone that is within its dirty
2498 * limit, such that no single zone holds more than its
2499 * proportional share of globally allowed dirty pages.
2500 * The dirty limits take into account the zone's
2501 * lowmem reserves and high watermark so that kswapd
2502 * should be able to balance it without having to
2503 * write pages from its LRU list.
2504 *
2505 * This may look like it could increase pressure on
2506 * lower zones by failing allocations in higher zones
2507 * before they are full. But the pages that do spill
2508 * over are limited as the lower zones are protected
2509 * by this very same mechanism. It should not become
2510 * a practical burden to them.
2511 *
2512 * XXX: For now, allow allocations to potentially
2513 * exceed the per-zone dirty limit in the slowpath
2514 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2515 * which is important when on a NUMA setup the allowed
2516 * zones are together not big enough to reach the
2517 * global limit. The proper fix for these situations
2518 * will require awareness of zones in the
2519 * dirty-throttling and the flusher threads.
2520 */
a6e21b14 2521 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2522 continue;
7fb1d9fc 2523
e085dbc5
JW
2524 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2525 if (!zone_watermark_ok(zone, order, mark,
a9263751 2526 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2527 int ret;
2528
5dab2911
MG
2529 /* Checked here to keep the fast path fast */
2530 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2531 if (alloc_flags & ALLOC_NO_WATERMARKS)
2532 goto try_this_zone;
2533
e5adfffc
KS
2534 if (IS_ENABLED(CONFIG_NUMA) &&
2535 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2536 /*
2537 * we do zlc_setup if there are multiple nodes
2538 * and before considering the first zone allowed
2539 * by the cpuset.
2540 */
2541 allowednodes = zlc_setup(zonelist, alloc_flags);
2542 zlc_active = 1;
2543 did_zlc_setup = 1;
2544 }
2545
957f822a 2546 if (zone_reclaim_mode == 0 ||
a9263751 2547 !zone_allows_reclaim(ac->preferred_zone, zone))
fa5e084e
MG
2548 goto this_zone_full;
2549
cd38b115
MG
2550 /*
2551 * As we may have just activated ZLC, check if the first
2552 * eligible zone has failed zone_reclaim recently.
2553 */
e5adfffc 2554 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2555 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2556 continue;
2557
fa5e084e
MG
2558 ret = zone_reclaim(zone, gfp_mask, order);
2559 switch (ret) {
2560 case ZONE_RECLAIM_NOSCAN:
2561 /* did not scan */
cd38b115 2562 continue;
fa5e084e
MG
2563 case ZONE_RECLAIM_FULL:
2564 /* scanned but unreclaimable */
cd38b115 2565 continue;
fa5e084e
MG
2566 default:
2567 /* did we reclaim enough */
fed2719e 2568 if (zone_watermark_ok(zone, order, mark,
a9263751 2569 ac->classzone_idx, alloc_flags))
fed2719e
MG
2570 goto try_this_zone;
2571
2572 /*
2573 * Failed to reclaim enough to meet watermark.
2574 * Only mark the zone full if checking the min
2575 * watermark or if we failed to reclaim just
2576 * 1<<order pages or else the page allocator
2577 * fastpath will prematurely mark zones full
2578 * when the watermark is between the low and
2579 * min watermarks.
2580 */
2581 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2582 ret == ZONE_RECLAIM_SOME)
9276b1bc 2583 goto this_zone_full;
fed2719e
MG
2584
2585 continue;
0798e519 2586 }
7fb1d9fc
RS
2587 }
2588
fa5e084e 2589try_this_zone:
a9263751
VB
2590 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2591 gfp_mask, ac->migratetype);
75379191
VB
2592 if (page) {
2593 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2594 goto try_this_zone;
2595 return page;
2596 }
9276b1bc 2597this_zone_full:
65bb3719 2598 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2599 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2600 }
9276b1bc 2601
4ffeaf35
MG
2602 /*
2603 * The first pass makes sure allocations are spread fairly within the
2604 * local node. However, the local node might have free pages left
2605 * after the fairness batches are exhausted, and remote zones haven't
2606 * even been considered yet. Try once more without fairness, and
2607 * include remote zones now, before entering the slowpath and waking
2608 * kswapd: prefer spilling to a remote zone over swapping locally.
2609 */
2610 if (alloc_flags & ALLOC_FAIR) {
2611 alloc_flags &= ~ALLOC_FAIR;
2612 if (nr_fair_skipped) {
2613 zonelist_rescan = true;
a9263751 2614 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2615 }
2616 if (nr_online_nodes > 1)
2617 zonelist_rescan = true;
2618 }
2619
2620 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2621 /* Disable zlc cache for second zonelist scan */
2622 zlc_active = 0;
2623 zonelist_rescan = true;
2624 }
2625
2626 if (zonelist_rescan)
2627 goto zonelist_scan;
2628
2629 return NULL;
753ee728
MH
2630}
2631
29423e77
DR
2632/*
2633 * Large machines with many possible nodes should not always dump per-node
2634 * meminfo in irq context.
2635 */
2636static inline bool should_suppress_show_mem(void)
2637{
2638 bool ret = false;
2639
2640#if NODES_SHIFT > 8
2641 ret = in_interrupt();
2642#endif
2643 return ret;
2644}
2645
a238ab5b
DH
2646static DEFINE_RATELIMIT_STATE(nopage_rs,
2647 DEFAULT_RATELIMIT_INTERVAL,
2648 DEFAULT_RATELIMIT_BURST);
2649
2650void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2651{
a238ab5b
DH
2652 unsigned int filter = SHOW_MEM_FILTER_NODES;
2653
c0a32fc5
SG
2654 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2655 debug_guardpage_minorder() > 0)
a238ab5b
DH
2656 return;
2657
2658 /*
2659 * This documents exceptions given to allocations in certain
2660 * contexts that are allowed to allocate outside current's set
2661 * of allowed nodes.
2662 */
2663 if (!(gfp_mask & __GFP_NOMEMALLOC))
2664 if (test_thread_flag(TIF_MEMDIE) ||
2665 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2666 filter &= ~SHOW_MEM_FILTER_NODES;
2667 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2668 filter &= ~SHOW_MEM_FILTER_NODES;
2669
2670 if (fmt) {
3ee9a4f0
JP
2671 struct va_format vaf;
2672 va_list args;
2673
a238ab5b 2674 va_start(args, fmt);
3ee9a4f0
JP
2675
2676 vaf.fmt = fmt;
2677 vaf.va = &args;
2678
2679 pr_warn("%pV", &vaf);
2680
a238ab5b
DH
2681 va_end(args);
2682 }
2683
3ee9a4f0
JP
2684 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2685 current->comm, order, gfp_mask);
a238ab5b
DH
2686
2687 dump_stack();
2688 if (!should_suppress_show_mem())
2689 show_mem(filter);
2690}
2691
11e33f6a
MG
2692static inline struct page *
2693__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2694 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a
MG
2695{
2696 struct page *page;
2697
9879de73
JW
2698 *did_some_progress = 0;
2699
9879de73 2700 /*
dc56401f
JW
2701 * Acquire the oom lock. If that fails, somebody else is
2702 * making progress for us.
9879de73 2703 */
dc56401f 2704 if (!mutex_trylock(&oom_lock)) {
9879de73 2705 *did_some_progress = 1;
11e33f6a 2706 schedule_timeout_uninterruptible(1);
1da177e4
LT
2707 return NULL;
2708 }
6b1de916 2709
11e33f6a
MG
2710 /*
2711 * Go through the zonelist yet one more time, keep very high watermark
2712 * here, this is only to catch a parallel oom killing, we must fail if
2713 * we're still under heavy pressure.
2714 */
a9263751
VB
2715 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2716 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2717 if (page)
11e33f6a
MG
2718 goto out;
2719
4365a567 2720 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2721 /* Coredumps can quickly deplete all memory reserves */
2722 if (current->flags & PF_DUMPCORE)
2723 goto out;
4365a567
KH
2724 /* The OOM killer will not help higher order allocs */
2725 if (order > PAGE_ALLOC_COSTLY_ORDER)
2726 goto out;
03668b3c 2727 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2728 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2729 goto out;
9083905a 2730 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2731 if (!(gfp_mask & __GFP_FS)) {
2732 /*
2733 * XXX: Page reclaim didn't yield anything,
2734 * and the OOM killer can't be invoked, but
9083905a 2735 * keep looping as per tradition.
cc873177
JW
2736 */
2737 *did_some_progress = 1;
9879de73 2738 goto out;
cc873177 2739 }
9083905a
JW
2740 if (pm_suspended_storage())
2741 goto out;
4167e9b2 2742 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2743 if (gfp_mask & __GFP_THISNODE)
2744 goto out;
2745 }
11e33f6a 2746 /* Exhausted what can be done so it's blamo time */
e009d5dc
MH
2747 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2748 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
c32b3cbe 2749 *did_some_progress = 1;
11e33f6a 2750out:
dc56401f 2751 mutex_unlock(&oom_lock);
11e33f6a
MG
2752 return page;
2753}
2754
56de7263
MG
2755#ifdef CONFIG_COMPACTION
2756/* Try memory compaction for high-order allocations before reclaim */
2757static struct page *
2758__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2759 int alloc_flags, const struct alloc_context *ac,
2760 enum migrate_mode mode, int *contended_compaction,
2761 bool *deferred_compaction)
56de7263 2762{
53853e2d 2763 unsigned long compact_result;
98dd3b48 2764 struct page *page;
53853e2d
VB
2765
2766 if (!order)
66199712 2767 return NULL;
66199712 2768
c06b1fca 2769 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2770 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2771 mode, contended_compaction);
c06b1fca 2772 current->flags &= ~PF_MEMALLOC;
56de7263 2773
98dd3b48
VB
2774 switch (compact_result) {
2775 case COMPACT_DEFERRED:
53853e2d 2776 *deferred_compaction = true;
98dd3b48
VB
2777 /* fall-through */
2778 case COMPACT_SKIPPED:
2779 return NULL;
2780 default:
2781 break;
2782 }
53853e2d 2783
98dd3b48
VB
2784 /*
2785 * At least in one zone compaction wasn't deferred or skipped, so let's
2786 * count a compaction stall
2787 */
2788 count_vm_event(COMPACTSTALL);
8fb74b9f 2789
a9263751
VB
2790 page = get_page_from_freelist(gfp_mask, order,
2791 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2792
98dd3b48
VB
2793 if (page) {
2794 struct zone *zone = page_zone(page);
53853e2d 2795
98dd3b48
VB
2796 zone->compact_blockskip_flush = false;
2797 compaction_defer_reset(zone, order, true);
2798 count_vm_event(COMPACTSUCCESS);
2799 return page;
2800 }
56de7263 2801
98dd3b48
VB
2802 /*
2803 * It's bad if compaction run occurs and fails. The most likely reason
2804 * is that pages exist, but not enough to satisfy watermarks.
2805 */
2806 count_vm_event(COMPACTFAIL);
66199712 2807
98dd3b48 2808 cond_resched();
56de7263
MG
2809
2810 return NULL;
2811}
2812#else
2813static inline struct page *
2814__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2815 int alloc_flags, const struct alloc_context *ac,
2816 enum migrate_mode mode, int *contended_compaction,
2817 bool *deferred_compaction)
56de7263
MG
2818{
2819 return NULL;
2820}
2821#endif /* CONFIG_COMPACTION */
2822
bba90710
MS
2823/* Perform direct synchronous page reclaim */
2824static int
a9263751
VB
2825__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2826 const struct alloc_context *ac)
11e33f6a 2827{
11e33f6a 2828 struct reclaim_state reclaim_state;
bba90710 2829 int progress;
11e33f6a
MG
2830
2831 cond_resched();
2832
2833 /* We now go into synchronous reclaim */
2834 cpuset_memory_pressure_bump();
c06b1fca 2835 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2836 lockdep_set_current_reclaim_state(gfp_mask);
2837 reclaim_state.reclaimed_slab = 0;
c06b1fca 2838 current->reclaim_state = &reclaim_state;
11e33f6a 2839
a9263751
VB
2840 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2841 ac->nodemask);
11e33f6a 2842
c06b1fca 2843 current->reclaim_state = NULL;
11e33f6a 2844 lockdep_clear_current_reclaim_state();
c06b1fca 2845 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2846
2847 cond_resched();
2848
bba90710
MS
2849 return progress;
2850}
2851
2852/* The really slow allocator path where we enter direct reclaim */
2853static inline struct page *
2854__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2855 int alloc_flags, const struct alloc_context *ac,
2856 unsigned long *did_some_progress)
bba90710
MS
2857{
2858 struct page *page = NULL;
2859 bool drained = false;
2860
a9263751 2861 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2862 if (unlikely(!(*did_some_progress)))
2863 return NULL;
11e33f6a 2864
76d3fbf8 2865 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2866 if (IS_ENABLED(CONFIG_NUMA))
a9263751 2867 zlc_clear_zones_full(ac->zonelist);
76d3fbf8 2868
9ee493ce 2869retry:
a9263751
VB
2870 page = get_page_from_freelist(gfp_mask, order,
2871 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2872
2873 /*
2874 * If an allocation failed after direct reclaim, it could be because
2875 * pages are pinned on the per-cpu lists. Drain them and try again
2876 */
2877 if (!page && !drained) {
93481ff0 2878 drain_all_pages(NULL);
9ee493ce
MG
2879 drained = true;
2880 goto retry;
2881 }
2882
11e33f6a
MG
2883 return page;
2884}
2885
1da177e4 2886/*
11e33f6a
MG
2887 * This is called in the allocator slow-path if the allocation request is of
2888 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2889 */
11e33f6a
MG
2890static inline struct page *
2891__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2892 const struct alloc_context *ac)
11e33f6a
MG
2893{
2894 struct page *page;
2895
2896 do {
a9263751
VB
2897 page = get_page_from_freelist(gfp_mask, order,
2898 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2899
2900 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2901 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2902 HZ/50);
11e33f6a
MG
2903 } while (!page && (gfp_mask & __GFP_NOFAIL));
2904
2905 return page;
2906}
2907
a9263751 2908static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2909{
2910 struct zoneref *z;
2911 struct zone *zone;
2912
a9263751
VB
2913 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2914 ac->high_zoneidx, ac->nodemask)
2915 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2916}
2917
341ce06f
PZ
2918static inline int
2919gfp_to_alloc_flags(gfp_t gfp_mask)
2920{
341ce06f 2921 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2922 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2923
a56f57ff 2924 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2925 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2926
341ce06f
PZ
2927 /*
2928 * The caller may dip into page reserves a bit more if the caller
2929 * cannot run direct reclaim, or if the caller has realtime scheduling
2930 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2931 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2932 */
e6223a3b 2933 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2934
b104a35d 2935 if (atomic) {
5c3240d9 2936 /*
b104a35d
DR
2937 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2938 * if it can't schedule.
5c3240d9 2939 */
b104a35d 2940 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2941 alloc_flags |= ALLOC_HARDER;
523b9458 2942 /*
b104a35d 2943 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2944 * comment for __cpuset_node_allowed().
523b9458 2945 */
341ce06f 2946 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2947 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2948 alloc_flags |= ALLOC_HARDER;
2949
b37f1dd0
MG
2950 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2951 if (gfp_mask & __GFP_MEMALLOC)
2952 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2953 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2954 alloc_flags |= ALLOC_NO_WATERMARKS;
2955 else if (!in_interrupt() &&
2956 ((current->flags & PF_MEMALLOC) ||
2957 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2958 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2959 }
d95ea5d1 2960#ifdef CONFIG_CMA
43e7a34d 2961 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2962 alloc_flags |= ALLOC_CMA;
2963#endif
341ce06f
PZ
2964 return alloc_flags;
2965}
2966
072bb0aa
MG
2967bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2968{
b37f1dd0 2969 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2970}
2971
11e33f6a
MG
2972static inline struct page *
2973__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2974 struct alloc_context *ac)
11e33f6a
MG
2975{
2976 const gfp_t wait = gfp_mask & __GFP_WAIT;
2977 struct page *page = NULL;
2978 int alloc_flags;
2979 unsigned long pages_reclaimed = 0;
2980 unsigned long did_some_progress;
e0b9daeb 2981 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2982 bool deferred_compaction = false;
1f9efdef 2983 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2984
72807a74
MG
2985 /*
2986 * In the slowpath, we sanity check order to avoid ever trying to
2987 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2988 * be using allocators in order of preference for an area that is
2989 * too large.
2990 */
1fc28b70
MG
2991 if (order >= MAX_ORDER) {
2992 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2993 return NULL;
1fc28b70 2994 }
1da177e4 2995
952f3b51 2996 /*
4167e9b2
DR
2997 * If this allocation cannot block and it is for a specific node, then
2998 * fail early. There's no need to wakeup kswapd or retry for a
2999 * speculative node-specific allocation.
952f3b51 3000 */
4167e9b2 3001 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
952f3b51
CL
3002 goto nopage;
3003
9879de73 3004retry:
3a025760 3005 if (!(gfp_mask & __GFP_NO_KSWAPD))
a9263751 3006 wake_all_kswapds(order, ac);
1da177e4 3007
9bf2229f 3008 /*
7fb1d9fc
RS
3009 * OK, we're below the kswapd watermark and have kicked background
3010 * reclaim. Now things get more complex, so set up alloc_flags according
3011 * to how we want to proceed.
9bf2229f 3012 */
341ce06f 3013 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3014
f33261d7
DR
3015 /*
3016 * Find the true preferred zone if the allocation is unconstrained by
3017 * cpusets.
3018 */
a9263751 3019 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3020 struct zoneref *preferred_zoneref;
a9263751
VB
3021 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3022 ac->high_zoneidx, NULL, &ac->preferred_zone);
3023 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3024 }
f33261d7 3025
341ce06f 3026 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3027 page = get_page_from_freelist(gfp_mask, order,
3028 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3029 if (page)
3030 goto got_pg;
1da177e4 3031
11e33f6a 3032 /* Allocate without watermarks if the context allows */
341ce06f 3033 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3034 /*
3035 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3036 * the allocation is high priority and these type of
3037 * allocations are system rather than user orientated
3038 */
a9263751
VB
3039 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3040
3041 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 3042
cfd19c5a 3043 if (page) {
341ce06f 3044 goto got_pg;
cfd19c5a 3045 }
1da177e4
LT
3046 }
3047
3048 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
3049 if (!wait) {
3050 /*
3051 * All existing users of the deprecated __GFP_NOFAIL are
3052 * blockable, so warn of any new users that actually allow this
3053 * type of allocation to fail.
3054 */
3055 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3056 goto nopage;
aed0a0e3 3057 }
1da177e4 3058
341ce06f 3059 /* Avoid recursion of direct reclaim */
c06b1fca 3060 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
3061 goto nopage;
3062
6583bb64
DR
3063 /* Avoid allocations with no watermarks from looping endlessly */
3064 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3065 goto nopage;
3066
77f1fe6b
MG
3067 /*
3068 * Try direct compaction. The first pass is asynchronous. Subsequent
3069 * attempts after direct reclaim are synchronous
3070 */
a9263751
VB
3071 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3072 migration_mode,
3073 &contended_compaction,
53853e2d 3074 &deferred_compaction);
56de7263
MG
3075 if (page)
3076 goto got_pg;
75f30861 3077
1f9efdef
VB
3078 /* Checks for THP-specific high-order allocations */
3079 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
3080 /*
3081 * If compaction is deferred for high-order allocations, it is
3082 * because sync compaction recently failed. If this is the case
3083 * and the caller requested a THP allocation, we do not want
3084 * to heavily disrupt the system, so we fail the allocation
3085 * instead of entering direct reclaim.
3086 */
3087 if (deferred_compaction)
3088 goto nopage;
3089
3090 /*
3091 * In all zones where compaction was attempted (and not
3092 * deferred or skipped), lock contention has been detected.
3093 * For THP allocation we do not want to disrupt the others
3094 * so we fallback to base pages instead.
3095 */
3096 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3097 goto nopage;
3098
3099 /*
3100 * If compaction was aborted due to need_resched(), we do not
3101 * want to further increase allocation latency, unless it is
3102 * khugepaged trying to collapse.
3103 */
3104 if (contended_compaction == COMPACT_CONTENDED_SCHED
3105 && !(current->flags & PF_KTHREAD))
3106 goto nopage;
3107 }
66199712 3108
8fe78048
DR
3109 /*
3110 * It can become very expensive to allocate transparent hugepages at
3111 * fault, so use asynchronous memory compaction for THP unless it is
3112 * khugepaged trying to collapse.
3113 */
3114 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
3115 (current->flags & PF_KTHREAD))
3116 migration_mode = MIGRATE_SYNC_LIGHT;
3117
11e33f6a 3118 /* Try direct reclaim and then allocating */
a9263751
VB
3119 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3120 &did_some_progress);
11e33f6a
MG
3121 if (page)
3122 goto got_pg;
1da177e4 3123
9083905a
JW
3124 /* Do not loop if specifically requested */
3125 if (gfp_mask & __GFP_NORETRY)
3126 goto noretry;
3127
3128 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3129 pages_reclaimed += did_some_progress;
9083905a
JW
3130 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3131 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3132 /* Wait for some write requests to complete then retry */
a9263751 3133 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3134 goto retry;
1da177e4
LT
3135 }
3136
9083905a
JW
3137 /* Reclaim has failed us, start killing things */
3138 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3139 if (page)
3140 goto got_pg;
3141
3142 /* Retry as long as the OOM killer is making progress */
3143 if (did_some_progress)
3144 goto retry;
3145
3146noretry:
3147 /*
3148 * High-order allocations do not necessarily loop after
3149 * direct reclaim and reclaim/compaction depends on compaction
3150 * being called after reclaim so call directly if necessary
3151 */
3152 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3153 ac, migration_mode,
3154 &contended_compaction,
3155 &deferred_compaction);
3156 if (page)
3157 goto got_pg;
1da177e4 3158nopage:
a238ab5b 3159 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3160got_pg:
072bb0aa 3161 return page;
1da177e4 3162}
11e33f6a
MG
3163
3164/*
3165 * This is the 'heart' of the zoned buddy allocator.
3166 */
3167struct page *
3168__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3169 struct zonelist *zonelist, nodemask_t *nodemask)
3170{
d8846374 3171 struct zoneref *preferred_zoneref;
cc9a6c87 3172 struct page *page = NULL;
cc9a6c87 3173 unsigned int cpuset_mems_cookie;
3a025760 3174 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3175 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3176 struct alloc_context ac = {
3177 .high_zoneidx = gfp_zone(gfp_mask),
3178 .nodemask = nodemask,
3179 .migratetype = gfpflags_to_migratetype(gfp_mask),
3180 };
11e33f6a 3181
dcce284a
BH
3182 gfp_mask &= gfp_allowed_mask;
3183
11e33f6a
MG
3184 lockdep_trace_alloc(gfp_mask);
3185
3186 might_sleep_if(gfp_mask & __GFP_WAIT);
3187
3188 if (should_fail_alloc_page(gfp_mask, order))
3189 return NULL;
3190
3191 /*
3192 * Check the zones suitable for the gfp_mask contain at least one
3193 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3194 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3195 */
3196 if (unlikely(!zonelist->_zonerefs->zone))
3197 return NULL;
3198
a9263751 3199 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3200 alloc_flags |= ALLOC_CMA;
3201
cc9a6c87 3202retry_cpuset:
d26914d1 3203 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3204
a9263751
VB
3205 /* We set it here, as __alloc_pages_slowpath might have changed it */
3206 ac.zonelist = zonelist;
5117f45d 3207 /* The preferred zone is used for statistics later */
a9263751
VB
3208 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3209 ac.nodemask ? : &cpuset_current_mems_allowed,
3210 &ac.preferred_zone);
3211 if (!ac.preferred_zone)
cc9a6c87 3212 goto out;
a9263751 3213 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3214
3215 /* First allocation attempt */
91fbdc0f 3216 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3217 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3218 if (unlikely(!page)) {
3219 /*
3220 * Runtime PM, block IO and its error handling path
3221 * can deadlock because I/O on the device might not
3222 * complete.
3223 */
91fbdc0f
AM
3224 alloc_mask = memalloc_noio_flags(gfp_mask);
3225
a9263751 3226 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3227 }
11e33f6a 3228
23f086f9
XQ
3229 if (kmemcheck_enabled && page)
3230 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3231
a9263751 3232 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3233
3234out:
3235 /*
3236 * When updating a task's mems_allowed, it is possible to race with
3237 * parallel threads in such a way that an allocation can fail while
3238 * the mask is being updated. If a page allocation is about to fail,
3239 * check if the cpuset changed during allocation and if so, retry.
3240 */
d26914d1 3241 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3242 goto retry_cpuset;
3243
11e33f6a 3244 return page;
1da177e4 3245}
d239171e 3246EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3247
3248/*
3249 * Common helper functions.
3250 */
920c7a5d 3251unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3252{
945a1113
AM
3253 struct page *page;
3254
3255 /*
3256 * __get_free_pages() returns a 32-bit address, which cannot represent
3257 * a highmem page
3258 */
3259 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3260
1da177e4
LT
3261 page = alloc_pages(gfp_mask, order);
3262 if (!page)
3263 return 0;
3264 return (unsigned long) page_address(page);
3265}
1da177e4
LT
3266EXPORT_SYMBOL(__get_free_pages);
3267
920c7a5d 3268unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3269{
945a1113 3270 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3271}
1da177e4
LT
3272EXPORT_SYMBOL(get_zeroed_page);
3273
920c7a5d 3274void __free_pages(struct page *page, unsigned int order)
1da177e4 3275{
b5810039 3276 if (put_page_testzero(page)) {
1da177e4 3277 if (order == 0)
b745bc85 3278 free_hot_cold_page(page, false);
1da177e4
LT
3279 else
3280 __free_pages_ok(page, order);
3281 }
3282}
3283
3284EXPORT_SYMBOL(__free_pages);
3285
920c7a5d 3286void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3287{
3288 if (addr != 0) {
725d704e 3289 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3290 __free_pages(virt_to_page((void *)addr), order);
3291 }
3292}
3293
3294EXPORT_SYMBOL(free_pages);
3295
b63ae8ca
AD
3296/*
3297 * Page Fragment:
3298 * An arbitrary-length arbitrary-offset area of memory which resides
3299 * within a 0 or higher order page. Multiple fragments within that page
3300 * are individually refcounted, in the page's reference counter.
3301 *
3302 * The page_frag functions below provide a simple allocation framework for
3303 * page fragments. This is used by the network stack and network device
3304 * drivers to provide a backing region of memory for use as either an
3305 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3306 */
3307static struct page *__page_frag_refill(struct page_frag_cache *nc,
3308 gfp_t gfp_mask)
3309{
3310 struct page *page = NULL;
3311 gfp_t gfp = gfp_mask;
3312
3313#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3314 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3315 __GFP_NOMEMALLOC;
3316 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3317 PAGE_FRAG_CACHE_MAX_ORDER);
3318 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3319#endif
3320 if (unlikely(!page))
3321 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3322
3323 nc->va = page ? page_address(page) : NULL;
3324
3325 return page;
3326}
3327
3328void *__alloc_page_frag(struct page_frag_cache *nc,
3329 unsigned int fragsz, gfp_t gfp_mask)
3330{
3331 unsigned int size = PAGE_SIZE;
3332 struct page *page;
3333 int offset;
3334
3335 if (unlikely(!nc->va)) {
3336refill:
3337 page = __page_frag_refill(nc, gfp_mask);
3338 if (!page)
3339 return NULL;
3340
3341#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3342 /* if size can vary use size else just use PAGE_SIZE */
3343 size = nc->size;
3344#endif
3345 /* Even if we own the page, we do not use atomic_set().
3346 * This would break get_page_unless_zero() users.
3347 */
3348 atomic_add(size - 1, &page->_count);
3349
3350 /* reset page count bias and offset to start of new frag */
2f064f34 3351 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3352 nc->pagecnt_bias = size;
3353 nc->offset = size;
3354 }
3355
3356 offset = nc->offset - fragsz;
3357 if (unlikely(offset < 0)) {
3358 page = virt_to_page(nc->va);
3359
3360 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3361 goto refill;
3362
3363#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3364 /* if size can vary use size else just use PAGE_SIZE */
3365 size = nc->size;
3366#endif
3367 /* OK, page count is 0, we can safely set it */
3368 atomic_set(&page->_count, size);
3369
3370 /* reset page count bias and offset to start of new frag */
3371 nc->pagecnt_bias = size;
3372 offset = size - fragsz;
3373 }
3374
3375 nc->pagecnt_bias--;
3376 nc->offset = offset;
3377
3378 return nc->va + offset;
3379}
3380EXPORT_SYMBOL(__alloc_page_frag);
3381
3382/*
3383 * Frees a page fragment allocated out of either a compound or order 0 page.
3384 */
3385void __free_page_frag(void *addr)
3386{
3387 struct page *page = virt_to_head_page(addr);
3388
3389 if (unlikely(put_page_testzero(page)))
3390 __free_pages_ok(page, compound_order(page));
3391}
3392EXPORT_SYMBOL(__free_page_frag);
3393
6a1a0d3b 3394/*
52383431
VD
3395 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3396 * of the current memory cgroup.
6a1a0d3b 3397 *
52383431
VD
3398 * It should be used when the caller would like to use kmalloc, but since the
3399 * allocation is large, it has to fall back to the page allocator.
3400 */
3401struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3402{
3403 struct page *page;
3404 struct mem_cgroup *memcg = NULL;
3405
3406 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3407 return NULL;
3408 page = alloc_pages(gfp_mask, order);
3409 memcg_kmem_commit_charge(page, memcg, order);
3410 return page;
3411}
3412
3413struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3414{
3415 struct page *page;
3416 struct mem_cgroup *memcg = NULL;
3417
3418 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3419 return NULL;
3420 page = alloc_pages_node(nid, gfp_mask, order);
3421 memcg_kmem_commit_charge(page, memcg, order);
3422 return page;
3423}
3424
3425/*
3426 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3427 * alloc_kmem_pages.
6a1a0d3b 3428 */
52383431 3429void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
3430{
3431 memcg_kmem_uncharge_pages(page, order);
3432 __free_pages(page, order);
3433}
3434
52383431 3435void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3436{
3437 if (addr != 0) {
3438 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3439 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3440 }
3441}
3442
ee85c2e1
AK
3443static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3444{
3445 if (addr) {
3446 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3447 unsigned long used = addr + PAGE_ALIGN(size);
3448
3449 split_page(virt_to_page((void *)addr), order);
3450 while (used < alloc_end) {
3451 free_page(used);
3452 used += PAGE_SIZE;
3453 }
3454 }
3455 return (void *)addr;
3456}
3457
2be0ffe2
TT
3458/**
3459 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3460 * @size: the number of bytes to allocate
3461 * @gfp_mask: GFP flags for the allocation
3462 *
3463 * This function is similar to alloc_pages(), except that it allocates the
3464 * minimum number of pages to satisfy the request. alloc_pages() can only
3465 * allocate memory in power-of-two pages.
3466 *
3467 * This function is also limited by MAX_ORDER.
3468 *
3469 * Memory allocated by this function must be released by free_pages_exact().
3470 */
3471void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3472{
3473 unsigned int order = get_order(size);
3474 unsigned long addr;
3475
3476 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3477 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3478}
3479EXPORT_SYMBOL(alloc_pages_exact);
3480
ee85c2e1
AK
3481/**
3482 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3483 * pages on a node.
b5e6ab58 3484 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3485 * @size: the number of bytes to allocate
3486 * @gfp_mask: GFP flags for the allocation
3487 *
3488 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3489 * back.
3490 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3491 * but is not exact.
3492 */
e1931811 3493void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3494{
3495 unsigned order = get_order(size);
3496 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3497 if (!p)
3498 return NULL;
3499 return make_alloc_exact((unsigned long)page_address(p), order, size);
3500}
ee85c2e1 3501
2be0ffe2
TT
3502/**
3503 * free_pages_exact - release memory allocated via alloc_pages_exact()
3504 * @virt: the value returned by alloc_pages_exact.
3505 * @size: size of allocation, same value as passed to alloc_pages_exact().
3506 *
3507 * Release the memory allocated by a previous call to alloc_pages_exact.
3508 */
3509void free_pages_exact(void *virt, size_t size)
3510{
3511 unsigned long addr = (unsigned long)virt;
3512 unsigned long end = addr + PAGE_ALIGN(size);
3513
3514 while (addr < end) {
3515 free_page(addr);
3516 addr += PAGE_SIZE;
3517 }
3518}
3519EXPORT_SYMBOL(free_pages_exact);
3520
e0fb5815
ZY
3521/**
3522 * nr_free_zone_pages - count number of pages beyond high watermark
3523 * @offset: The zone index of the highest zone
3524 *
3525 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3526 * high watermark within all zones at or below a given zone index. For each
3527 * zone, the number of pages is calculated as:
834405c3 3528 * managed_pages - high_pages
e0fb5815 3529 */
ebec3862 3530static unsigned long nr_free_zone_pages(int offset)
1da177e4 3531{
dd1a239f 3532 struct zoneref *z;
54a6eb5c
MG
3533 struct zone *zone;
3534
e310fd43 3535 /* Just pick one node, since fallback list is circular */
ebec3862 3536 unsigned long sum = 0;
1da177e4 3537
0e88460d 3538 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3539
54a6eb5c 3540 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3541 unsigned long size = zone->managed_pages;
41858966 3542 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3543 if (size > high)
3544 sum += size - high;
1da177e4
LT
3545 }
3546
3547 return sum;
3548}
3549
e0fb5815
ZY
3550/**
3551 * nr_free_buffer_pages - count number of pages beyond high watermark
3552 *
3553 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3554 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3555 */
ebec3862 3556unsigned long nr_free_buffer_pages(void)
1da177e4 3557{
af4ca457 3558 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3559}
c2f1a551 3560EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3561
e0fb5815
ZY
3562/**
3563 * nr_free_pagecache_pages - count number of pages beyond high watermark
3564 *
3565 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3566 * high watermark within all zones.
1da177e4 3567 */
ebec3862 3568unsigned long nr_free_pagecache_pages(void)
1da177e4 3569{
2a1e274a 3570 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3571}
08e0f6a9
CL
3572
3573static inline void show_node(struct zone *zone)
1da177e4 3574{
e5adfffc 3575 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3576 printk("Node %d ", zone_to_nid(zone));
1da177e4 3577}
1da177e4 3578
1da177e4
LT
3579void si_meminfo(struct sysinfo *val)
3580{
3581 val->totalram = totalram_pages;
cc7452b6 3582 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3583 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3584 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3585 val->totalhigh = totalhigh_pages;
3586 val->freehigh = nr_free_highpages();
1da177e4
LT
3587 val->mem_unit = PAGE_SIZE;
3588}
3589
3590EXPORT_SYMBOL(si_meminfo);
3591
3592#ifdef CONFIG_NUMA
3593void si_meminfo_node(struct sysinfo *val, int nid)
3594{
cdd91a77
JL
3595 int zone_type; /* needs to be signed */
3596 unsigned long managed_pages = 0;
1da177e4
LT
3597 pg_data_t *pgdat = NODE_DATA(nid);
3598
cdd91a77
JL
3599 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3600 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3601 val->totalram = managed_pages;
cc7452b6 3602 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3603 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3604#ifdef CONFIG_HIGHMEM
b40da049 3605 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3606 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3607 NR_FREE_PAGES);
98d2b0eb
CL
3608#else
3609 val->totalhigh = 0;
3610 val->freehigh = 0;
3611#endif
1da177e4
LT
3612 val->mem_unit = PAGE_SIZE;
3613}
3614#endif
3615
ddd588b5 3616/*
7bf02ea2
DR
3617 * Determine whether the node should be displayed or not, depending on whether
3618 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3619 */
7bf02ea2 3620bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3621{
3622 bool ret = false;
cc9a6c87 3623 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3624
3625 if (!(flags & SHOW_MEM_FILTER_NODES))
3626 goto out;
3627
cc9a6c87 3628 do {
d26914d1 3629 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3630 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3631 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3632out:
3633 return ret;
3634}
3635
1da177e4
LT
3636#define K(x) ((x) << (PAGE_SHIFT-10))
3637
377e4f16
RV
3638static void show_migration_types(unsigned char type)
3639{
3640 static const char types[MIGRATE_TYPES] = {
3641 [MIGRATE_UNMOVABLE] = 'U',
3642 [MIGRATE_RECLAIMABLE] = 'E',
3643 [MIGRATE_MOVABLE] = 'M',
3644 [MIGRATE_RESERVE] = 'R',
3645#ifdef CONFIG_CMA
3646 [MIGRATE_CMA] = 'C',
3647#endif
194159fb 3648#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3649 [MIGRATE_ISOLATE] = 'I',
194159fb 3650#endif
377e4f16
RV
3651 };
3652 char tmp[MIGRATE_TYPES + 1];
3653 char *p = tmp;
3654 int i;
3655
3656 for (i = 0; i < MIGRATE_TYPES; i++) {
3657 if (type & (1 << i))
3658 *p++ = types[i];
3659 }
3660
3661 *p = '\0';
3662 printk("(%s) ", tmp);
3663}
3664
1da177e4
LT
3665/*
3666 * Show free area list (used inside shift_scroll-lock stuff)
3667 * We also calculate the percentage fragmentation. We do this by counting the
3668 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3669 *
3670 * Bits in @filter:
3671 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3672 * cpuset.
1da177e4 3673 */
7bf02ea2 3674void show_free_areas(unsigned int filter)
1da177e4 3675{
d1bfcdb8 3676 unsigned long free_pcp = 0;
c7241913 3677 int cpu;
1da177e4
LT
3678 struct zone *zone;
3679
ee99c71c 3680 for_each_populated_zone(zone) {
7bf02ea2 3681 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3682 continue;
d1bfcdb8 3683
761b0677
KK
3684 for_each_online_cpu(cpu)
3685 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3686 }
3687
a731286d
KM
3688 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3689 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3690 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3691 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3692 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3693 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3694 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3695 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3696 global_page_state(NR_ISOLATED_ANON),
3697 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3698 global_page_state(NR_INACTIVE_FILE),
a731286d 3699 global_page_state(NR_ISOLATED_FILE),
7b854121 3700 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3701 global_page_state(NR_FILE_DIRTY),
ce866b34 3702 global_page_state(NR_WRITEBACK),
fd39fc85 3703 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3704 global_page_state(NR_SLAB_RECLAIMABLE),
3705 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3706 global_page_state(NR_FILE_MAPPED),
4b02108a 3707 global_page_state(NR_SHMEM),
a25700a5 3708 global_page_state(NR_PAGETABLE),
d1ce749a 3709 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3710 global_page_state(NR_FREE_PAGES),
3711 free_pcp,
d1ce749a 3712 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3713
ee99c71c 3714 for_each_populated_zone(zone) {
1da177e4
LT
3715 int i;
3716
7bf02ea2 3717 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3718 continue;
d1bfcdb8
KK
3719
3720 free_pcp = 0;
3721 for_each_online_cpu(cpu)
3722 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3723
1da177e4
LT
3724 show_node(zone);
3725 printk("%s"
3726 " free:%lukB"
3727 " min:%lukB"
3728 " low:%lukB"
3729 " high:%lukB"
4f98a2fe
RR
3730 " active_anon:%lukB"
3731 " inactive_anon:%lukB"
3732 " active_file:%lukB"
3733 " inactive_file:%lukB"
7b854121 3734 " unevictable:%lukB"
a731286d
KM
3735 " isolated(anon):%lukB"
3736 " isolated(file):%lukB"
1da177e4 3737 " present:%lukB"
9feedc9d 3738 " managed:%lukB"
4a0aa73f
KM
3739 " mlocked:%lukB"
3740 " dirty:%lukB"
3741 " writeback:%lukB"
3742 " mapped:%lukB"
4b02108a 3743 " shmem:%lukB"
4a0aa73f
KM
3744 " slab_reclaimable:%lukB"
3745 " slab_unreclaimable:%lukB"
c6a7f572 3746 " kernel_stack:%lukB"
4a0aa73f
KM
3747 " pagetables:%lukB"
3748 " unstable:%lukB"
3749 " bounce:%lukB"
d1bfcdb8
KK
3750 " free_pcp:%lukB"
3751 " local_pcp:%ukB"
d1ce749a 3752 " free_cma:%lukB"
4a0aa73f 3753 " writeback_tmp:%lukB"
1da177e4
LT
3754 " pages_scanned:%lu"
3755 " all_unreclaimable? %s"
3756 "\n",
3757 zone->name,
88f5acf8 3758 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3759 K(min_wmark_pages(zone)),
3760 K(low_wmark_pages(zone)),
3761 K(high_wmark_pages(zone)),
4f98a2fe
RR
3762 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3763 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3764 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3765 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3766 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3767 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3768 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3769 K(zone->present_pages),
9feedc9d 3770 K(zone->managed_pages),
4a0aa73f
KM
3771 K(zone_page_state(zone, NR_MLOCK)),
3772 K(zone_page_state(zone, NR_FILE_DIRTY)),
3773 K(zone_page_state(zone, NR_WRITEBACK)),
3774 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3775 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3776 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3777 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3778 zone_page_state(zone, NR_KERNEL_STACK) *
3779 THREAD_SIZE / 1024,
4a0aa73f
KM
3780 K(zone_page_state(zone, NR_PAGETABLE)),
3781 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3782 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3783 K(free_pcp),
3784 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3785 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3786 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3787 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3788 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3789 );
3790 printk("lowmem_reserve[]:");
3791 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3792 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3793 printk("\n");
3794 }
3795
ee99c71c 3796 for_each_populated_zone(zone) {
b8af2941 3797 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3798 unsigned char types[MAX_ORDER];
1da177e4 3799
7bf02ea2 3800 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3801 continue;
1da177e4
LT
3802 show_node(zone);
3803 printk("%s: ", zone->name);
1da177e4
LT
3804
3805 spin_lock_irqsave(&zone->lock, flags);
3806 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3807 struct free_area *area = &zone->free_area[order];
3808 int type;
3809
3810 nr[order] = area->nr_free;
8f9de51a 3811 total += nr[order] << order;
377e4f16
RV
3812
3813 types[order] = 0;
3814 for (type = 0; type < MIGRATE_TYPES; type++) {
3815 if (!list_empty(&area->free_list[type]))
3816 types[order] |= 1 << type;
3817 }
1da177e4
LT
3818 }
3819 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3820 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3821 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3822 if (nr[order])
3823 show_migration_types(types[order]);
3824 }
1da177e4
LT
3825 printk("= %lukB\n", K(total));
3826 }
3827
949f7ec5
DR
3828 hugetlb_show_meminfo();
3829
e6f3602d
LW
3830 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3831
1da177e4
LT
3832 show_swap_cache_info();
3833}
3834
19770b32
MG
3835static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3836{
3837 zoneref->zone = zone;
3838 zoneref->zone_idx = zone_idx(zone);
3839}
3840
1da177e4
LT
3841/*
3842 * Builds allocation fallback zone lists.
1a93205b
CL
3843 *
3844 * Add all populated zones of a node to the zonelist.
1da177e4 3845 */
f0c0b2b8 3846static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3847 int nr_zones)
1da177e4 3848{
1a93205b 3849 struct zone *zone;
bc732f1d 3850 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3851
3852 do {
2f6726e5 3853 zone_type--;
070f8032 3854 zone = pgdat->node_zones + zone_type;
1a93205b 3855 if (populated_zone(zone)) {
dd1a239f
MG
3856 zoneref_set_zone(zone,
3857 &zonelist->_zonerefs[nr_zones++]);
070f8032 3858 check_highest_zone(zone_type);
1da177e4 3859 }
2f6726e5 3860 } while (zone_type);
bc732f1d 3861
070f8032 3862 return nr_zones;
1da177e4
LT
3863}
3864
f0c0b2b8
KH
3865
3866/*
3867 * zonelist_order:
3868 * 0 = automatic detection of better ordering.
3869 * 1 = order by ([node] distance, -zonetype)
3870 * 2 = order by (-zonetype, [node] distance)
3871 *
3872 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3873 * the same zonelist. So only NUMA can configure this param.
3874 */
3875#define ZONELIST_ORDER_DEFAULT 0
3876#define ZONELIST_ORDER_NODE 1
3877#define ZONELIST_ORDER_ZONE 2
3878
3879/* zonelist order in the kernel.
3880 * set_zonelist_order() will set this to NODE or ZONE.
3881 */
3882static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3883static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3884
3885
1da177e4 3886#ifdef CONFIG_NUMA
f0c0b2b8
KH
3887/* The value user specified ....changed by config */
3888static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3889/* string for sysctl */
3890#define NUMA_ZONELIST_ORDER_LEN 16
3891char numa_zonelist_order[16] = "default";
3892
3893/*
3894 * interface for configure zonelist ordering.
3895 * command line option "numa_zonelist_order"
3896 * = "[dD]efault - default, automatic configuration.
3897 * = "[nN]ode - order by node locality, then by zone within node
3898 * = "[zZ]one - order by zone, then by locality within zone
3899 */
3900
3901static int __parse_numa_zonelist_order(char *s)
3902{
3903 if (*s == 'd' || *s == 'D') {
3904 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3905 } else if (*s == 'n' || *s == 'N') {
3906 user_zonelist_order = ZONELIST_ORDER_NODE;
3907 } else if (*s == 'z' || *s == 'Z') {
3908 user_zonelist_order = ZONELIST_ORDER_ZONE;
3909 } else {
3910 printk(KERN_WARNING
3911 "Ignoring invalid numa_zonelist_order value: "
3912 "%s\n", s);
3913 return -EINVAL;
3914 }
3915 return 0;
3916}
3917
3918static __init int setup_numa_zonelist_order(char *s)
3919{
ecb256f8
VL
3920 int ret;
3921
3922 if (!s)
3923 return 0;
3924
3925 ret = __parse_numa_zonelist_order(s);
3926 if (ret == 0)
3927 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3928
3929 return ret;
f0c0b2b8
KH
3930}
3931early_param("numa_zonelist_order", setup_numa_zonelist_order);
3932
3933/*
3934 * sysctl handler for numa_zonelist_order
3935 */
cccad5b9 3936int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3937 void __user *buffer, size_t *length,
f0c0b2b8
KH
3938 loff_t *ppos)
3939{
3940 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3941 int ret;
443c6f14 3942 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3943
443c6f14 3944 mutex_lock(&zl_order_mutex);
dacbde09
CG
3945 if (write) {
3946 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3947 ret = -EINVAL;
3948 goto out;
3949 }
3950 strcpy(saved_string, (char *)table->data);
3951 }
8d65af78 3952 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3953 if (ret)
443c6f14 3954 goto out;
f0c0b2b8
KH
3955 if (write) {
3956 int oldval = user_zonelist_order;
dacbde09
CG
3957
3958 ret = __parse_numa_zonelist_order((char *)table->data);
3959 if (ret) {
f0c0b2b8
KH
3960 /*
3961 * bogus value. restore saved string
3962 */
dacbde09 3963 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3964 NUMA_ZONELIST_ORDER_LEN);
3965 user_zonelist_order = oldval;
4eaf3f64
HL
3966 } else if (oldval != user_zonelist_order) {
3967 mutex_lock(&zonelists_mutex);
9adb62a5 3968 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3969 mutex_unlock(&zonelists_mutex);
3970 }
f0c0b2b8 3971 }
443c6f14
AK
3972out:
3973 mutex_unlock(&zl_order_mutex);
3974 return ret;
f0c0b2b8
KH
3975}
3976
3977
62bc62a8 3978#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3979static int node_load[MAX_NUMNODES];
3980
1da177e4 3981/**
4dc3b16b 3982 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3983 * @node: node whose fallback list we're appending
3984 * @used_node_mask: nodemask_t of already used nodes
3985 *
3986 * We use a number of factors to determine which is the next node that should
3987 * appear on a given node's fallback list. The node should not have appeared
3988 * already in @node's fallback list, and it should be the next closest node
3989 * according to the distance array (which contains arbitrary distance values
3990 * from each node to each node in the system), and should also prefer nodes
3991 * with no CPUs, since presumably they'll have very little allocation pressure
3992 * on them otherwise.
3993 * It returns -1 if no node is found.
3994 */
f0c0b2b8 3995static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3996{
4cf808eb 3997 int n, val;
1da177e4 3998 int min_val = INT_MAX;
00ef2d2f 3999 int best_node = NUMA_NO_NODE;
a70f7302 4000 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4001
4cf808eb
LT
4002 /* Use the local node if we haven't already */
4003 if (!node_isset(node, *used_node_mask)) {
4004 node_set(node, *used_node_mask);
4005 return node;
4006 }
1da177e4 4007
4b0ef1fe 4008 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4009
4010 /* Don't want a node to appear more than once */
4011 if (node_isset(n, *used_node_mask))
4012 continue;
4013
1da177e4
LT
4014 /* Use the distance array to find the distance */
4015 val = node_distance(node, n);
4016
4cf808eb
LT
4017 /* Penalize nodes under us ("prefer the next node") */
4018 val += (n < node);
4019
1da177e4 4020 /* Give preference to headless and unused nodes */
a70f7302
RR
4021 tmp = cpumask_of_node(n);
4022 if (!cpumask_empty(tmp))
1da177e4
LT
4023 val += PENALTY_FOR_NODE_WITH_CPUS;
4024
4025 /* Slight preference for less loaded node */
4026 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4027 val += node_load[n];
4028
4029 if (val < min_val) {
4030 min_val = val;
4031 best_node = n;
4032 }
4033 }
4034
4035 if (best_node >= 0)
4036 node_set(best_node, *used_node_mask);
4037
4038 return best_node;
4039}
4040
f0c0b2b8
KH
4041
4042/*
4043 * Build zonelists ordered by node and zones within node.
4044 * This results in maximum locality--normal zone overflows into local
4045 * DMA zone, if any--but risks exhausting DMA zone.
4046 */
4047static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4048{
f0c0b2b8 4049 int j;
1da177e4 4050 struct zonelist *zonelist;
f0c0b2b8 4051
54a6eb5c 4052 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4053 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4054 ;
bc732f1d 4055 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4056 zonelist->_zonerefs[j].zone = NULL;
4057 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4058}
4059
523b9458
CL
4060/*
4061 * Build gfp_thisnode zonelists
4062 */
4063static void build_thisnode_zonelists(pg_data_t *pgdat)
4064{
523b9458
CL
4065 int j;
4066 struct zonelist *zonelist;
4067
54a6eb5c 4068 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4069 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4070 zonelist->_zonerefs[j].zone = NULL;
4071 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4072}
4073
f0c0b2b8
KH
4074/*
4075 * Build zonelists ordered by zone and nodes within zones.
4076 * This results in conserving DMA zone[s] until all Normal memory is
4077 * exhausted, but results in overflowing to remote node while memory
4078 * may still exist in local DMA zone.
4079 */
4080static int node_order[MAX_NUMNODES];
4081
4082static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4083{
f0c0b2b8
KH
4084 int pos, j, node;
4085 int zone_type; /* needs to be signed */
4086 struct zone *z;
4087 struct zonelist *zonelist;
4088
54a6eb5c
MG
4089 zonelist = &pgdat->node_zonelists[0];
4090 pos = 0;
4091 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4092 for (j = 0; j < nr_nodes; j++) {
4093 node = node_order[j];
4094 z = &NODE_DATA(node)->node_zones[zone_type];
4095 if (populated_zone(z)) {
dd1a239f
MG
4096 zoneref_set_zone(z,
4097 &zonelist->_zonerefs[pos++]);
54a6eb5c 4098 check_highest_zone(zone_type);
f0c0b2b8
KH
4099 }
4100 }
f0c0b2b8 4101 }
dd1a239f
MG
4102 zonelist->_zonerefs[pos].zone = NULL;
4103 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4104}
4105
3193913c
MG
4106#if defined(CONFIG_64BIT)
4107/*
4108 * Devices that require DMA32/DMA are relatively rare and do not justify a
4109 * penalty to every machine in case the specialised case applies. Default
4110 * to Node-ordering on 64-bit NUMA machines
4111 */
4112static int default_zonelist_order(void)
4113{
4114 return ZONELIST_ORDER_NODE;
4115}
4116#else
4117/*
4118 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4119 * by the kernel. If processes running on node 0 deplete the low memory zone
4120 * then reclaim will occur more frequency increasing stalls and potentially
4121 * be easier to OOM if a large percentage of the zone is under writeback or
4122 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4123 * Hence, default to zone ordering on 32-bit.
4124 */
f0c0b2b8
KH
4125static int default_zonelist_order(void)
4126{
f0c0b2b8
KH
4127 return ZONELIST_ORDER_ZONE;
4128}
3193913c 4129#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4130
4131static void set_zonelist_order(void)
4132{
4133 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4134 current_zonelist_order = default_zonelist_order();
4135 else
4136 current_zonelist_order = user_zonelist_order;
4137}
4138
4139static void build_zonelists(pg_data_t *pgdat)
4140{
4141 int j, node, load;
4142 enum zone_type i;
1da177e4 4143 nodemask_t used_mask;
f0c0b2b8
KH
4144 int local_node, prev_node;
4145 struct zonelist *zonelist;
4146 int order = current_zonelist_order;
1da177e4
LT
4147
4148 /* initialize zonelists */
523b9458 4149 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4150 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4151 zonelist->_zonerefs[0].zone = NULL;
4152 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4153 }
4154
4155 /* NUMA-aware ordering of nodes */
4156 local_node = pgdat->node_id;
62bc62a8 4157 load = nr_online_nodes;
1da177e4
LT
4158 prev_node = local_node;
4159 nodes_clear(used_mask);
f0c0b2b8 4160
f0c0b2b8
KH
4161 memset(node_order, 0, sizeof(node_order));
4162 j = 0;
4163
1da177e4
LT
4164 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4165 /*
4166 * We don't want to pressure a particular node.
4167 * So adding penalty to the first node in same
4168 * distance group to make it round-robin.
4169 */
957f822a
DR
4170 if (node_distance(local_node, node) !=
4171 node_distance(local_node, prev_node))
f0c0b2b8
KH
4172 node_load[node] = load;
4173
1da177e4
LT
4174 prev_node = node;
4175 load--;
f0c0b2b8
KH
4176 if (order == ZONELIST_ORDER_NODE)
4177 build_zonelists_in_node_order(pgdat, node);
4178 else
4179 node_order[j++] = node; /* remember order */
4180 }
1da177e4 4181
f0c0b2b8
KH
4182 if (order == ZONELIST_ORDER_ZONE) {
4183 /* calculate node order -- i.e., DMA last! */
4184 build_zonelists_in_zone_order(pgdat, j);
1da177e4 4185 }
523b9458
CL
4186
4187 build_thisnode_zonelists(pgdat);
1da177e4
LT
4188}
4189
9276b1bc 4190/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 4191static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 4192{
54a6eb5c
MG
4193 struct zonelist *zonelist;
4194 struct zonelist_cache *zlc;
dd1a239f 4195 struct zoneref *z;
9276b1bc 4196
54a6eb5c
MG
4197 zonelist = &pgdat->node_zonelists[0];
4198 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4199 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
4200 for (z = zonelist->_zonerefs; z->zone; z++)
4201 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
4202}
4203
7aac7898
LS
4204#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4205/*
4206 * Return node id of node used for "local" allocations.
4207 * I.e., first node id of first zone in arg node's generic zonelist.
4208 * Used for initializing percpu 'numa_mem', which is used primarily
4209 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4210 */
4211int local_memory_node(int node)
4212{
4213 struct zone *zone;
4214
4215 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4216 gfp_zone(GFP_KERNEL),
4217 NULL,
4218 &zone);
4219 return zone->node;
4220}
4221#endif
f0c0b2b8 4222
1da177e4
LT
4223#else /* CONFIG_NUMA */
4224
f0c0b2b8
KH
4225static void set_zonelist_order(void)
4226{
4227 current_zonelist_order = ZONELIST_ORDER_ZONE;
4228}
4229
4230static void build_zonelists(pg_data_t *pgdat)
1da177e4 4231{
19655d34 4232 int node, local_node;
54a6eb5c
MG
4233 enum zone_type j;
4234 struct zonelist *zonelist;
1da177e4
LT
4235
4236 local_node = pgdat->node_id;
1da177e4 4237
54a6eb5c 4238 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4239 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4240
54a6eb5c
MG
4241 /*
4242 * Now we build the zonelist so that it contains the zones
4243 * of all the other nodes.
4244 * We don't want to pressure a particular node, so when
4245 * building the zones for node N, we make sure that the
4246 * zones coming right after the local ones are those from
4247 * node N+1 (modulo N)
4248 */
4249 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4250 if (!node_online(node))
4251 continue;
bc732f1d 4252 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4253 }
54a6eb5c
MG
4254 for (node = 0; node < local_node; node++) {
4255 if (!node_online(node))
4256 continue;
bc732f1d 4257 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4258 }
4259
dd1a239f
MG
4260 zonelist->_zonerefs[j].zone = NULL;
4261 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4262}
4263
9276b1bc 4264/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 4265static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 4266{
54a6eb5c 4267 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
4268}
4269
1da177e4
LT
4270#endif /* CONFIG_NUMA */
4271
99dcc3e5
CL
4272/*
4273 * Boot pageset table. One per cpu which is going to be used for all
4274 * zones and all nodes. The parameters will be set in such a way
4275 * that an item put on a list will immediately be handed over to
4276 * the buddy list. This is safe since pageset manipulation is done
4277 * with interrupts disabled.
4278 *
4279 * The boot_pagesets must be kept even after bootup is complete for
4280 * unused processors and/or zones. They do play a role for bootstrapping
4281 * hotplugged processors.
4282 *
4283 * zoneinfo_show() and maybe other functions do
4284 * not check if the processor is online before following the pageset pointer.
4285 * Other parts of the kernel may not check if the zone is available.
4286 */
4287static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4288static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4289static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4290
4eaf3f64
HL
4291/*
4292 * Global mutex to protect against size modification of zonelists
4293 * as well as to serialize pageset setup for the new populated zone.
4294 */
4295DEFINE_MUTEX(zonelists_mutex);
4296
9b1a4d38 4297/* return values int ....just for stop_machine() */
4ed7e022 4298static int __build_all_zonelists(void *data)
1da177e4 4299{
6811378e 4300 int nid;
99dcc3e5 4301 int cpu;
9adb62a5 4302 pg_data_t *self = data;
9276b1bc 4303
7f9cfb31
BL
4304#ifdef CONFIG_NUMA
4305 memset(node_load, 0, sizeof(node_load));
4306#endif
9adb62a5
JL
4307
4308 if (self && !node_online(self->node_id)) {
4309 build_zonelists(self);
4310 build_zonelist_cache(self);
4311 }
4312
9276b1bc 4313 for_each_online_node(nid) {
7ea1530a
CL
4314 pg_data_t *pgdat = NODE_DATA(nid);
4315
4316 build_zonelists(pgdat);
4317 build_zonelist_cache(pgdat);
9276b1bc 4318 }
99dcc3e5
CL
4319
4320 /*
4321 * Initialize the boot_pagesets that are going to be used
4322 * for bootstrapping processors. The real pagesets for
4323 * each zone will be allocated later when the per cpu
4324 * allocator is available.
4325 *
4326 * boot_pagesets are used also for bootstrapping offline
4327 * cpus if the system is already booted because the pagesets
4328 * are needed to initialize allocators on a specific cpu too.
4329 * F.e. the percpu allocator needs the page allocator which
4330 * needs the percpu allocator in order to allocate its pagesets
4331 * (a chicken-egg dilemma).
4332 */
7aac7898 4333 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4334 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4335
7aac7898
LS
4336#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4337 /*
4338 * We now know the "local memory node" for each node--
4339 * i.e., the node of the first zone in the generic zonelist.
4340 * Set up numa_mem percpu variable for on-line cpus. During
4341 * boot, only the boot cpu should be on-line; we'll init the
4342 * secondary cpus' numa_mem as they come on-line. During
4343 * node/memory hotplug, we'll fixup all on-line cpus.
4344 */
4345 if (cpu_online(cpu))
4346 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4347#endif
4348 }
4349
6811378e
YG
4350 return 0;
4351}
4352
061f67bc
RV
4353static noinline void __init
4354build_all_zonelists_init(void)
4355{
4356 __build_all_zonelists(NULL);
4357 mminit_verify_zonelist();
4358 cpuset_init_current_mems_allowed();
4359}
4360
4eaf3f64
HL
4361/*
4362 * Called with zonelists_mutex held always
4363 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4364 *
4365 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4366 * [we're only called with non-NULL zone through __meminit paths] and
4367 * (2) call of __init annotated helper build_all_zonelists_init
4368 * [protected by SYSTEM_BOOTING].
4eaf3f64 4369 */
9adb62a5 4370void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4371{
f0c0b2b8
KH
4372 set_zonelist_order();
4373
6811378e 4374 if (system_state == SYSTEM_BOOTING) {
061f67bc 4375 build_all_zonelists_init();
6811378e 4376 } else {
e9959f0f 4377#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4378 if (zone)
4379 setup_zone_pageset(zone);
e9959f0f 4380#endif
dd1895e2
CS
4381 /* we have to stop all cpus to guarantee there is no user
4382 of zonelist */
9adb62a5 4383 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4384 /* cpuset refresh routine should be here */
4385 }
bd1e22b8 4386 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4387 /*
4388 * Disable grouping by mobility if the number of pages in the
4389 * system is too low to allow the mechanism to work. It would be
4390 * more accurate, but expensive to check per-zone. This check is
4391 * made on memory-hotadd so a system can start with mobility
4392 * disabled and enable it later
4393 */
d9c23400 4394 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4395 page_group_by_mobility_disabled = 1;
4396 else
4397 page_group_by_mobility_disabled = 0;
4398
f88dfff5 4399 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4400 "Total pages: %ld\n",
62bc62a8 4401 nr_online_nodes,
f0c0b2b8 4402 zonelist_order_name[current_zonelist_order],
9ef9acb0 4403 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4404 vm_total_pages);
4405#ifdef CONFIG_NUMA
f88dfff5 4406 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4407#endif
1da177e4
LT
4408}
4409
4410/*
4411 * Helper functions to size the waitqueue hash table.
4412 * Essentially these want to choose hash table sizes sufficiently
4413 * large so that collisions trying to wait on pages are rare.
4414 * But in fact, the number of active page waitqueues on typical
4415 * systems is ridiculously low, less than 200. So this is even
4416 * conservative, even though it seems large.
4417 *
4418 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4419 * waitqueues, i.e. the size of the waitq table given the number of pages.
4420 */
4421#define PAGES_PER_WAITQUEUE 256
4422
cca448fe 4423#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4424static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4425{
4426 unsigned long size = 1;
4427
4428 pages /= PAGES_PER_WAITQUEUE;
4429
4430 while (size < pages)
4431 size <<= 1;
4432
4433 /*
4434 * Once we have dozens or even hundreds of threads sleeping
4435 * on IO we've got bigger problems than wait queue collision.
4436 * Limit the size of the wait table to a reasonable size.
4437 */
4438 size = min(size, 4096UL);
4439
4440 return max(size, 4UL);
4441}
cca448fe
YG
4442#else
4443/*
4444 * A zone's size might be changed by hot-add, so it is not possible to determine
4445 * a suitable size for its wait_table. So we use the maximum size now.
4446 *
4447 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4448 *
4449 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4450 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4451 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4452 *
4453 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4454 * or more by the traditional way. (See above). It equals:
4455 *
4456 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4457 * ia64(16K page size) : = ( 8G + 4M)byte.
4458 * powerpc (64K page size) : = (32G +16M)byte.
4459 */
4460static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4461{
4462 return 4096UL;
4463}
4464#endif
1da177e4
LT
4465
4466/*
4467 * This is an integer logarithm so that shifts can be used later
4468 * to extract the more random high bits from the multiplicative
4469 * hash function before the remainder is taken.
4470 */
4471static inline unsigned long wait_table_bits(unsigned long size)
4472{
4473 return ffz(~size);
4474}
4475
6d3163ce
AH
4476/*
4477 * Check if a pageblock contains reserved pages
4478 */
4479static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4480{
4481 unsigned long pfn;
4482
4483 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4484 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4485 return 1;
4486 }
4487 return 0;
4488}
4489
56fd56b8 4490/*
d9c23400 4491 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4492 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4493 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4494 * higher will lead to a bigger reserve which will get freed as contiguous
4495 * blocks as reclaim kicks in
4496 */
4497static void setup_zone_migrate_reserve(struct zone *zone)
4498{
6d3163ce 4499 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4500 struct page *page;
78986a67
MG
4501 unsigned long block_migratetype;
4502 int reserve;
943dca1a 4503 int old_reserve;
56fd56b8 4504
d0215638
MH
4505 /*
4506 * Get the start pfn, end pfn and the number of blocks to reserve
4507 * We have to be careful to be aligned to pageblock_nr_pages to
4508 * make sure that we always check pfn_valid for the first page in
4509 * the block.
4510 */
56fd56b8 4511 start_pfn = zone->zone_start_pfn;
108bcc96 4512 end_pfn = zone_end_pfn(zone);
d0215638 4513 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4514 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4515 pageblock_order;
56fd56b8 4516
78986a67
MG
4517 /*
4518 * Reserve blocks are generally in place to help high-order atomic
4519 * allocations that are short-lived. A min_free_kbytes value that
4520 * would result in more than 2 reserve blocks for atomic allocations
4521 * is assumed to be in place to help anti-fragmentation for the
4522 * future allocation of hugepages at runtime.
4523 */
4524 reserve = min(2, reserve);
943dca1a
YI
4525 old_reserve = zone->nr_migrate_reserve_block;
4526
4527 /* When memory hot-add, we almost always need to do nothing */
4528 if (reserve == old_reserve)
4529 return;
4530 zone->nr_migrate_reserve_block = reserve;
78986a67 4531
d9c23400 4532 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
7e18adb4
MG
4533 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4534 return;
4535
56fd56b8
MG
4536 if (!pfn_valid(pfn))
4537 continue;
4538 page = pfn_to_page(pfn);
4539
344c790e
AL
4540 /* Watch out for overlapping nodes */
4541 if (page_to_nid(page) != zone_to_nid(zone))
4542 continue;
4543
56fd56b8
MG
4544 block_migratetype = get_pageblock_migratetype(page);
4545
938929f1
MG
4546 /* Only test what is necessary when the reserves are not met */
4547 if (reserve > 0) {
4548 /*
4549 * Blocks with reserved pages will never free, skip
4550 * them.
4551 */
4552 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4553 if (pageblock_is_reserved(pfn, block_end_pfn))
4554 continue;
56fd56b8 4555
938929f1
MG
4556 /* If this block is reserved, account for it */
4557 if (block_migratetype == MIGRATE_RESERVE) {
4558 reserve--;
4559 continue;
4560 }
4561
4562 /* Suitable for reserving if this block is movable */
4563 if (block_migratetype == MIGRATE_MOVABLE) {
4564 set_pageblock_migratetype(page,
4565 MIGRATE_RESERVE);
4566 move_freepages_block(zone, page,
4567 MIGRATE_RESERVE);
4568 reserve--;
4569 continue;
4570 }
943dca1a
YI
4571 } else if (!old_reserve) {
4572 /*
4573 * At boot time we don't need to scan the whole zone
4574 * for turning off MIGRATE_RESERVE.
4575 */
4576 break;
56fd56b8
MG
4577 }
4578
4579 /*
4580 * If the reserve is met and this is a previous reserved block,
4581 * take it back
4582 */
4583 if (block_migratetype == MIGRATE_RESERVE) {
4584 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4585 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4586 }
4587 }
4588}
ac0e5b7a 4589
1da177e4
LT
4590/*
4591 * Initially all pages are reserved - free ones are freed
4592 * up by free_all_bootmem() once the early boot process is
4593 * done. Non-atomic initialization, single-pass.
4594 */
c09b4240 4595void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4596 unsigned long start_pfn, enum memmap_context context)
1da177e4 4597{
3a80a7fa 4598 pg_data_t *pgdat = NODE_DATA(nid);
29751f69
AW
4599 unsigned long end_pfn = start_pfn + size;
4600 unsigned long pfn;
86051ca5 4601 struct zone *z;
3a80a7fa 4602 unsigned long nr_initialised = 0;
1da177e4 4603
22b31eec
HD
4604 if (highest_memmap_pfn < end_pfn - 1)
4605 highest_memmap_pfn = end_pfn - 1;
4606
3a80a7fa 4607 z = &pgdat->node_zones[zone];
cbe8dd4a 4608 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4609 /*
4610 * There can be holes in boot-time mem_map[]s
4611 * handed to this function. They do not
4612 * exist on hotplugged memory.
4613 */
4614 if (context == MEMMAP_EARLY) {
4615 if (!early_pfn_valid(pfn))
4616 continue;
4617 if (!early_pfn_in_nid(pfn, nid))
4618 continue;
3a80a7fa
MG
4619 if (!update_defer_init(pgdat, pfn, end_pfn,
4620 &nr_initialised))
4621 break;
a2f3aa02 4622 }
ac5d2539
MG
4623
4624 /*
4625 * Mark the block movable so that blocks are reserved for
4626 * movable at startup. This will force kernel allocations
4627 * to reserve their blocks rather than leaking throughout
4628 * the address space during boot when many long-lived
4629 * kernel allocations are made. Later some blocks near
4630 * the start are marked MIGRATE_RESERVE by
4631 * setup_zone_migrate_reserve()
4632 *
4633 * bitmap is created for zone's valid pfn range. but memmap
4634 * can be created for invalid pages (for alignment)
4635 * check here not to call set_pageblock_migratetype() against
4636 * pfn out of zone.
4637 */
4638 if (!(pfn & (pageblock_nr_pages - 1))) {
4639 struct page *page = pfn_to_page(pfn);
4640
4641 __init_single_page(page, pfn, zone, nid);
4642 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4643 } else {
4644 __init_single_pfn(pfn, zone, nid);
4645 }
1da177e4
LT
4646 }
4647}
4648
1e548deb 4649static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4650{
7aeb09f9 4651 unsigned int order, t;
b2a0ac88
MG
4652 for_each_migratetype_order(order, t) {
4653 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4654 zone->free_area[order].nr_free = 0;
4655 }
4656}
4657
4658#ifndef __HAVE_ARCH_MEMMAP_INIT
4659#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4660 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4661#endif
4662
7cd2b0a3 4663static int zone_batchsize(struct zone *zone)
e7c8d5c9 4664{
3a6be87f 4665#ifdef CONFIG_MMU
e7c8d5c9
CL
4666 int batch;
4667
4668 /*
4669 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4670 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4671 *
4672 * OK, so we don't know how big the cache is. So guess.
4673 */
b40da049 4674 batch = zone->managed_pages / 1024;
ba56e91c
SR
4675 if (batch * PAGE_SIZE > 512 * 1024)
4676 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4677 batch /= 4; /* We effectively *= 4 below */
4678 if (batch < 1)
4679 batch = 1;
4680
4681 /*
0ceaacc9
NP
4682 * Clamp the batch to a 2^n - 1 value. Having a power
4683 * of 2 value was found to be more likely to have
4684 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4685 *
0ceaacc9
NP
4686 * For example if 2 tasks are alternately allocating
4687 * batches of pages, one task can end up with a lot
4688 * of pages of one half of the possible page colors
4689 * and the other with pages of the other colors.
e7c8d5c9 4690 */
9155203a 4691 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4692
e7c8d5c9 4693 return batch;
3a6be87f
DH
4694
4695#else
4696 /* The deferral and batching of frees should be suppressed under NOMMU
4697 * conditions.
4698 *
4699 * The problem is that NOMMU needs to be able to allocate large chunks
4700 * of contiguous memory as there's no hardware page translation to
4701 * assemble apparent contiguous memory from discontiguous pages.
4702 *
4703 * Queueing large contiguous runs of pages for batching, however,
4704 * causes the pages to actually be freed in smaller chunks. As there
4705 * can be a significant delay between the individual batches being
4706 * recycled, this leads to the once large chunks of space being
4707 * fragmented and becoming unavailable for high-order allocations.
4708 */
4709 return 0;
4710#endif
e7c8d5c9
CL
4711}
4712
8d7a8fa9
CS
4713/*
4714 * pcp->high and pcp->batch values are related and dependent on one another:
4715 * ->batch must never be higher then ->high.
4716 * The following function updates them in a safe manner without read side
4717 * locking.
4718 *
4719 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4720 * those fields changing asynchronously (acording the the above rule).
4721 *
4722 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4723 * outside of boot time (or some other assurance that no concurrent updaters
4724 * exist).
4725 */
4726static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4727 unsigned long batch)
4728{
4729 /* start with a fail safe value for batch */
4730 pcp->batch = 1;
4731 smp_wmb();
4732
4733 /* Update high, then batch, in order */
4734 pcp->high = high;
4735 smp_wmb();
4736
4737 pcp->batch = batch;
4738}
4739
3664033c 4740/* a companion to pageset_set_high() */
4008bab7
CS
4741static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4742{
8d7a8fa9 4743 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4744}
4745
88c90dbc 4746static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4747{
4748 struct per_cpu_pages *pcp;
5f8dcc21 4749 int migratetype;
2caaad41 4750
1c6fe946
MD
4751 memset(p, 0, sizeof(*p));
4752
3dfa5721 4753 pcp = &p->pcp;
2caaad41 4754 pcp->count = 0;
5f8dcc21
MG
4755 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4756 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4757}
4758
88c90dbc
CS
4759static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4760{
4761 pageset_init(p);
4762 pageset_set_batch(p, batch);
4763}
4764
8ad4b1fb 4765/*
3664033c 4766 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4767 * to the value high for the pageset p.
4768 */
3664033c 4769static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4770 unsigned long high)
4771{
8d7a8fa9
CS
4772 unsigned long batch = max(1UL, high / 4);
4773 if ((high / 4) > (PAGE_SHIFT * 8))
4774 batch = PAGE_SHIFT * 8;
8ad4b1fb 4775
8d7a8fa9 4776 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4777}
4778
7cd2b0a3
DR
4779static void pageset_set_high_and_batch(struct zone *zone,
4780 struct per_cpu_pageset *pcp)
56cef2b8 4781{
56cef2b8 4782 if (percpu_pagelist_fraction)
3664033c 4783 pageset_set_high(pcp,
56cef2b8
CS
4784 (zone->managed_pages /
4785 percpu_pagelist_fraction));
4786 else
4787 pageset_set_batch(pcp, zone_batchsize(zone));
4788}
4789
169f6c19
CS
4790static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4791{
4792 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4793
4794 pageset_init(pcp);
4795 pageset_set_high_and_batch(zone, pcp);
4796}
4797
4ed7e022 4798static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4799{
4800 int cpu;
319774e2 4801 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4802 for_each_possible_cpu(cpu)
4803 zone_pageset_init(zone, cpu);
319774e2
WF
4804}
4805
2caaad41 4806/*
99dcc3e5
CL
4807 * Allocate per cpu pagesets and initialize them.
4808 * Before this call only boot pagesets were available.
e7c8d5c9 4809 */
99dcc3e5 4810void __init setup_per_cpu_pageset(void)
e7c8d5c9 4811{
99dcc3e5 4812 struct zone *zone;
e7c8d5c9 4813
319774e2
WF
4814 for_each_populated_zone(zone)
4815 setup_zone_pageset(zone);
e7c8d5c9
CL
4816}
4817
577a32f6 4818static noinline __init_refok
cca448fe 4819int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4820{
4821 int i;
cca448fe 4822 size_t alloc_size;
ed8ece2e
DH
4823
4824 /*
4825 * The per-page waitqueue mechanism uses hashed waitqueues
4826 * per zone.
4827 */
02b694de
YG
4828 zone->wait_table_hash_nr_entries =
4829 wait_table_hash_nr_entries(zone_size_pages);
4830 zone->wait_table_bits =
4831 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4832 alloc_size = zone->wait_table_hash_nr_entries
4833 * sizeof(wait_queue_head_t);
4834
cd94b9db 4835 if (!slab_is_available()) {
cca448fe 4836 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4837 memblock_virt_alloc_node_nopanic(
4838 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4839 } else {
4840 /*
4841 * This case means that a zone whose size was 0 gets new memory
4842 * via memory hot-add.
4843 * But it may be the case that a new node was hot-added. In
4844 * this case vmalloc() will not be able to use this new node's
4845 * memory - this wait_table must be initialized to use this new
4846 * node itself as well.
4847 * To use this new node's memory, further consideration will be
4848 * necessary.
4849 */
8691f3a7 4850 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4851 }
4852 if (!zone->wait_table)
4853 return -ENOMEM;
ed8ece2e 4854
b8af2941 4855 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4856 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4857
4858 return 0;
ed8ece2e
DH
4859}
4860
c09b4240 4861static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4862{
99dcc3e5
CL
4863 /*
4864 * per cpu subsystem is not up at this point. The following code
4865 * relies on the ability of the linker to provide the
4866 * offset of a (static) per cpu variable into the per cpu area.
4867 */
4868 zone->pageset = &boot_pageset;
ed8ece2e 4869
b38a8725 4870 if (populated_zone(zone))
99dcc3e5
CL
4871 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4872 zone->name, zone->present_pages,
4873 zone_batchsize(zone));
ed8ece2e
DH
4874}
4875
4ed7e022 4876int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4877 unsigned long zone_start_pfn,
a2f3aa02
DH
4878 unsigned long size,
4879 enum memmap_context context)
ed8ece2e
DH
4880{
4881 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4882 int ret;
4883 ret = zone_wait_table_init(zone, size);
4884 if (ret)
4885 return ret;
ed8ece2e
DH
4886 pgdat->nr_zones = zone_idx(zone) + 1;
4887
ed8ece2e
DH
4888 zone->zone_start_pfn = zone_start_pfn;
4889
708614e6
MG
4890 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4891 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4892 pgdat->node_id,
4893 (unsigned long)zone_idx(zone),
4894 zone_start_pfn, (zone_start_pfn + size));
4895
1e548deb 4896 zone_init_free_lists(zone);
718127cc
YG
4897
4898 return 0;
ed8ece2e
DH
4899}
4900
0ee332c1 4901#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4902#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4903
c713216d
MG
4904/*
4905 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4906 */
8a942fde
MG
4907int __meminit __early_pfn_to_nid(unsigned long pfn,
4908 struct mminit_pfnnid_cache *state)
c713216d 4909{
c13291a5 4910 unsigned long start_pfn, end_pfn;
e76b63f8 4911 int nid;
7c243c71 4912
8a942fde
MG
4913 if (state->last_start <= pfn && pfn < state->last_end)
4914 return state->last_nid;
c713216d 4915
e76b63f8
YL
4916 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4917 if (nid != -1) {
8a942fde
MG
4918 state->last_start = start_pfn;
4919 state->last_end = end_pfn;
4920 state->last_nid = nid;
e76b63f8
YL
4921 }
4922
4923 return nid;
c713216d
MG
4924}
4925#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4926
c713216d 4927/**
6782832e 4928 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4929 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4930 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4931 *
7d018176
ZZ
4932 * If an architecture guarantees that all ranges registered contain no holes
4933 * and may be freed, this this function may be used instead of calling
4934 * memblock_free_early_nid() manually.
c713216d 4935 */
c13291a5 4936void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4937{
c13291a5
TH
4938 unsigned long start_pfn, end_pfn;
4939 int i, this_nid;
edbe7d23 4940
c13291a5
TH
4941 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4942 start_pfn = min(start_pfn, max_low_pfn);
4943 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4944
c13291a5 4945 if (start_pfn < end_pfn)
6782832e
SS
4946 memblock_free_early_nid(PFN_PHYS(start_pfn),
4947 (end_pfn - start_pfn) << PAGE_SHIFT,
4948 this_nid);
edbe7d23 4949 }
edbe7d23 4950}
edbe7d23 4951
c713216d
MG
4952/**
4953 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4954 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4955 *
7d018176
ZZ
4956 * If an architecture guarantees that all ranges registered contain no holes and may
4957 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4958 */
4959void __init sparse_memory_present_with_active_regions(int nid)
4960{
c13291a5
TH
4961 unsigned long start_pfn, end_pfn;
4962 int i, this_nid;
c713216d 4963
c13291a5
TH
4964 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4965 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4966}
4967
4968/**
4969 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4970 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4971 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4972 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4973 *
4974 * It returns the start and end page frame of a node based on information
7d018176 4975 * provided by memblock_set_node(). If called for a node
c713216d 4976 * with no available memory, a warning is printed and the start and end
88ca3b94 4977 * PFNs will be 0.
c713216d 4978 */
a3142c8e 4979void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4980 unsigned long *start_pfn, unsigned long *end_pfn)
4981{
c13291a5 4982 unsigned long this_start_pfn, this_end_pfn;
c713216d 4983 int i;
c13291a5 4984
c713216d
MG
4985 *start_pfn = -1UL;
4986 *end_pfn = 0;
4987
c13291a5
TH
4988 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4989 *start_pfn = min(*start_pfn, this_start_pfn);
4990 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4991 }
4992
633c0666 4993 if (*start_pfn == -1UL)
c713216d 4994 *start_pfn = 0;
c713216d
MG
4995}
4996
2a1e274a
MG
4997/*
4998 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4999 * assumption is made that zones within a node are ordered in monotonic
5000 * increasing memory addresses so that the "highest" populated zone is used
5001 */
b69a7288 5002static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5003{
5004 int zone_index;
5005 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5006 if (zone_index == ZONE_MOVABLE)
5007 continue;
5008
5009 if (arch_zone_highest_possible_pfn[zone_index] >
5010 arch_zone_lowest_possible_pfn[zone_index])
5011 break;
5012 }
5013
5014 VM_BUG_ON(zone_index == -1);
5015 movable_zone = zone_index;
5016}
5017
5018/*
5019 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5020 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5021 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5022 * in each node depending on the size of each node and how evenly kernelcore
5023 * is distributed. This helper function adjusts the zone ranges
5024 * provided by the architecture for a given node by using the end of the
5025 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5026 * zones within a node are in order of monotonic increases memory addresses
5027 */
b69a7288 5028static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5029 unsigned long zone_type,
5030 unsigned long node_start_pfn,
5031 unsigned long node_end_pfn,
5032 unsigned long *zone_start_pfn,
5033 unsigned long *zone_end_pfn)
5034{
5035 /* Only adjust if ZONE_MOVABLE is on this node */
5036 if (zone_movable_pfn[nid]) {
5037 /* Size ZONE_MOVABLE */
5038 if (zone_type == ZONE_MOVABLE) {
5039 *zone_start_pfn = zone_movable_pfn[nid];
5040 *zone_end_pfn = min(node_end_pfn,
5041 arch_zone_highest_possible_pfn[movable_zone]);
5042
5043 /* Adjust for ZONE_MOVABLE starting within this range */
5044 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5045 *zone_end_pfn > zone_movable_pfn[nid]) {
5046 *zone_end_pfn = zone_movable_pfn[nid];
5047
5048 /* Check if this whole range is within ZONE_MOVABLE */
5049 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5050 *zone_start_pfn = *zone_end_pfn;
5051 }
5052}
5053
c713216d
MG
5054/*
5055 * Return the number of pages a zone spans in a node, including holes
5056 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5057 */
6ea6e688 5058static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5059 unsigned long zone_type,
7960aedd
ZY
5060 unsigned long node_start_pfn,
5061 unsigned long node_end_pfn,
c713216d
MG
5062 unsigned long *ignored)
5063{
c713216d
MG
5064 unsigned long zone_start_pfn, zone_end_pfn;
5065
f9126ab9
XQ
5066 /* When hotadd a new node, the node should be empty */
5067 if (!node_start_pfn && !node_end_pfn)
5068 return 0;
5069
7960aedd 5070 /* Get the start and end of the zone */
c713216d
MG
5071 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5072 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5073 adjust_zone_range_for_zone_movable(nid, zone_type,
5074 node_start_pfn, node_end_pfn,
5075 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
5076
5077 /* Check that this node has pages within the zone's required range */
5078 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5079 return 0;
5080
5081 /* Move the zone boundaries inside the node if necessary */
5082 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5083 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5084
5085 /* Return the spanned pages */
5086 return zone_end_pfn - zone_start_pfn;
5087}
5088
5089/*
5090 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5091 * then all holes in the requested range will be accounted for.
c713216d 5092 */
32996250 5093unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5094 unsigned long range_start_pfn,
5095 unsigned long range_end_pfn)
5096{
96e907d1
TH
5097 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5098 unsigned long start_pfn, end_pfn;
5099 int i;
c713216d 5100
96e907d1
TH
5101 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5102 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5103 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5104 nr_absent -= end_pfn - start_pfn;
c713216d 5105 }
96e907d1 5106 return nr_absent;
c713216d
MG
5107}
5108
5109/**
5110 * absent_pages_in_range - Return number of page frames in holes within a range
5111 * @start_pfn: The start PFN to start searching for holes
5112 * @end_pfn: The end PFN to stop searching for holes
5113 *
88ca3b94 5114 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5115 */
5116unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5117 unsigned long end_pfn)
5118{
5119 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5120}
5121
5122/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5123static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5124 unsigned long zone_type,
7960aedd
ZY
5125 unsigned long node_start_pfn,
5126 unsigned long node_end_pfn,
c713216d
MG
5127 unsigned long *ignored)
5128{
96e907d1
TH
5129 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5130 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
5131 unsigned long zone_start_pfn, zone_end_pfn;
5132
f9126ab9
XQ
5133 /* When hotadd a new node, the node should be empty */
5134 if (!node_start_pfn && !node_end_pfn)
5135 return 0;
5136
96e907d1
TH
5137 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5138 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5139
2a1e274a
MG
5140 adjust_zone_range_for_zone_movable(nid, zone_type,
5141 node_start_pfn, node_end_pfn,
5142 &zone_start_pfn, &zone_end_pfn);
9c7cd687 5143 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 5144}
0e0b864e 5145
0ee332c1 5146#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5147static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5148 unsigned long zone_type,
7960aedd
ZY
5149 unsigned long node_start_pfn,
5150 unsigned long node_end_pfn,
c713216d
MG
5151 unsigned long *zones_size)
5152{
5153 return zones_size[zone_type];
5154}
5155
6ea6e688 5156static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5157 unsigned long zone_type,
7960aedd
ZY
5158 unsigned long node_start_pfn,
5159 unsigned long node_end_pfn,
c713216d
MG
5160 unsigned long *zholes_size)
5161{
5162 if (!zholes_size)
5163 return 0;
5164
5165 return zholes_size[zone_type];
5166}
20e6926d 5167
0ee332c1 5168#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5169
a3142c8e 5170static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5171 unsigned long node_start_pfn,
5172 unsigned long node_end_pfn,
5173 unsigned long *zones_size,
5174 unsigned long *zholes_size)
c713216d 5175{
febd5949 5176 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5177 enum zone_type i;
5178
febd5949
GZ
5179 for (i = 0; i < MAX_NR_ZONES; i++) {
5180 struct zone *zone = pgdat->node_zones + i;
5181 unsigned long size, real_size;
c713216d 5182
febd5949
GZ
5183 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5184 node_start_pfn,
5185 node_end_pfn,
5186 zones_size);
5187 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5188 node_start_pfn, node_end_pfn,
5189 zholes_size);
febd5949
GZ
5190 zone->spanned_pages = size;
5191 zone->present_pages = real_size;
5192
5193 totalpages += size;
5194 realtotalpages += real_size;
5195 }
5196
5197 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5198 pgdat->node_present_pages = realtotalpages;
5199 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5200 realtotalpages);
5201}
5202
835c134e
MG
5203#ifndef CONFIG_SPARSEMEM
5204/*
5205 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5206 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5207 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5208 * round what is now in bits to nearest long in bits, then return it in
5209 * bytes.
5210 */
7c45512d 5211static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5212{
5213 unsigned long usemapsize;
5214
7c45512d 5215 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5216 usemapsize = roundup(zonesize, pageblock_nr_pages);
5217 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5218 usemapsize *= NR_PAGEBLOCK_BITS;
5219 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5220
5221 return usemapsize / 8;
5222}
5223
5224static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5225 struct zone *zone,
5226 unsigned long zone_start_pfn,
5227 unsigned long zonesize)
835c134e 5228{
7c45512d 5229 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5230 zone->pageblock_flags = NULL;
58a01a45 5231 if (usemapsize)
6782832e
SS
5232 zone->pageblock_flags =
5233 memblock_virt_alloc_node_nopanic(usemapsize,
5234 pgdat->node_id);
835c134e
MG
5235}
5236#else
7c45512d
LT
5237static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5238 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5239#endif /* CONFIG_SPARSEMEM */
5240
d9c23400 5241#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5242
d9c23400 5243/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5244void __paginginit set_pageblock_order(void)
d9c23400 5245{
955c1cd7
AM
5246 unsigned int order;
5247
d9c23400
MG
5248 /* Check that pageblock_nr_pages has not already been setup */
5249 if (pageblock_order)
5250 return;
5251
955c1cd7
AM
5252 if (HPAGE_SHIFT > PAGE_SHIFT)
5253 order = HUGETLB_PAGE_ORDER;
5254 else
5255 order = MAX_ORDER - 1;
5256
d9c23400
MG
5257 /*
5258 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5259 * This value may be variable depending on boot parameters on IA64 and
5260 * powerpc.
d9c23400
MG
5261 */
5262 pageblock_order = order;
5263}
5264#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5265
ba72cb8c
MG
5266/*
5267 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5268 * is unused as pageblock_order is set at compile-time. See
5269 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5270 * the kernel config
ba72cb8c 5271 */
15ca220e 5272void __paginginit set_pageblock_order(void)
ba72cb8c 5273{
ba72cb8c 5274}
d9c23400
MG
5275
5276#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5277
01cefaef
JL
5278static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5279 unsigned long present_pages)
5280{
5281 unsigned long pages = spanned_pages;
5282
5283 /*
5284 * Provide a more accurate estimation if there are holes within
5285 * the zone and SPARSEMEM is in use. If there are holes within the
5286 * zone, each populated memory region may cost us one or two extra
5287 * memmap pages due to alignment because memmap pages for each
5288 * populated regions may not naturally algined on page boundary.
5289 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5290 */
5291 if (spanned_pages > present_pages + (present_pages >> 4) &&
5292 IS_ENABLED(CONFIG_SPARSEMEM))
5293 pages = present_pages;
5294
5295 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5296}
5297
1da177e4
LT
5298/*
5299 * Set up the zone data structures:
5300 * - mark all pages reserved
5301 * - mark all memory queues empty
5302 * - clear the memory bitmaps
6527af5d
MK
5303 *
5304 * NOTE: pgdat should get zeroed by caller.
1da177e4 5305 */
7f3eb55b 5306static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5307{
2f1b6248 5308 enum zone_type j;
ed8ece2e 5309 int nid = pgdat->node_id;
1da177e4 5310 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 5311 int ret;
1da177e4 5312
208d54e5 5313 pgdat_resize_init(pgdat);
8177a420
AA
5314#ifdef CONFIG_NUMA_BALANCING
5315 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5316 pgdat->numabalancing_migrate_nr_pages = 0;
5317 pgdat->numabalancing_migrate_next_window = jiffies;
5318#endif
1da177e4 5319 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5320 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5321 pgdat_page_ext_init(pgdat);
5f63b720 5322
1da177e4
LT
5323 for (j = 0; j < MAX_NR_ZONES; j++) {
5324 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5325 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 5326
febd5949
GZ
5327 size = zone->spanned_pages;
5328 realsize = freesize = zone->present_pages;
1da177e4 5329
0e0b864e 5330 /*
9feedc9d 5331 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5332 * is used by this zone for memmap. This affects the watermark
5333 * and per-cpu initialisations
5334 */
01cefaef 5335 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5336 if (!is_highmem_idx(j)) {
5337 if (freesize >= memmap_pages) {
5338 freesize -= memmap_pages;
5339 if (memmap_pages)
5340 printk(KERN_DEBUG
5341 " %s zone: %lu pages used for memmap\n",
5342 zone_names[j], memmap_pages);
5343 } else
5344 printk(KERN_WARNING
5345 " %s zone: %lu pages exceeds freesize %lu\n",
5346 zone_names[j], memmap_pages, freesize);
5347 }
0e0b864e 5348
6267276f 5349 /* Account for reserved pages */
9feedc9d
JL
5350 if (j == 0 && freesize > dma_reserve) {
5351 freesize -= dma_reserve;
d903ef9f 5352 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5353 zone_names[0], dma_reserve);
0e0b864e
MG
5354 }
5355
98d2b0eb 5356 if (!is_highmem_idx(j))
9feedc9d 5357 nr_kernel_pages += freesize;
01cefaef
JL
5358 /* Charge for highmem memmap if there are enough kernel pages */
5359 else if (nr_kernel_pages > memmap_pages * 2)
5360 nr_kernel_pages -= memmap_pages;
9feedc9d 5361 nr_all_pages += freesize;
1da177e4 5362
9feedc9d
JL
5363 /*
5364 * Set an approximate value for lowmem here, it will be adjusted
5365 * when the bootmem allocator frees pages into the buddy system.
5366 * And all highmem pages will be managed by the buddy system.
5367 */
5368 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5369#ifdef CONFIG_NUMA
d5f541ed 5370 zone->node = nid;
9feedc9d 5371 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5372 / 100;
9feedc9d 5373 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5374#endif
1da177e4
LT
5375 zone->name = zone_names[j];
5376 spin_lock_init(&zone->lock);
5377 spin_lock_init(&zone->lru_lock);
bdc8cb98 5378 zone_seqlock_init(zone);
1da177e4 5379 zone->zone_pgdat = pgdat;
ed8ece2e 5380 zone_pcp_init(zone);
81c0a2bb
JW
5381
5382 /* For bootup, initialized properly in watermark setup */
5383 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5384
bea8c150 5385 lruvec_init(&zone->lruvec);
1da177e4
LT
5386 if (!size)
5387 continue;
5388
955c1cd7 5389 set_pageblock_order();
7c45512d 5390 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
5391 ret = init_currently_empty_zone(zone, zone_start_pfn,
5392 size, MEMMAP_EARLY);
718127cc 5393 BUG_ON(ret);
76cdd58e 5394 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5395 zone_start_pfn += size;
1da177e4
LT
5396 }
5397}
5398
577a32f6 5399static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5400{
1da177e4
LT
5401 /* Skip empty nodes */
5402 if (!pgdat->node_spanned_pages)
5403 return;
5404
d41dee36 5405#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
5406 /* ia64 gets its own node_mem_map, before this, without bootmem */
5407 if (!pgdat->node_mem_map) {
e984bb43 5408 unsigned long size, start, end;
d41dee36
AW
5409 struct page *map;
5410
e984bb43
BP
5411 /*
5412 * The zone's endpoints aren't required to be MAX_ORDER
5413 * aligned but the node_mem_map endpoints must be in order
5414 * for the buddy allocator to function correctly.
5415 */
5416 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 5417 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5418 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5419 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5420 map = alloc_remap(pgdat->node_id, size);
5421 if (!map)
6782832e
SS
5422 map = memblock_virt_alloc_node_nopanic(size,
5423 pgdat->node_id);
e984bb43 5424 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 5425 }
12d810c1 5426#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5427 /*
5428 * With no DISCONTIG, the global mem_map is just set as node 0's
5429 */
c713216d 5430 if (pgdat == NODE_DATA(0)) {
1da177e4 5431 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 5432#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5433 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 5434 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 5435#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5436 }
1da177e4 5437#endif
d41dee36 5438#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5439}
5440
9109fb7b
JW
5441void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5442 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5443{
9109fb7b 5444 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5445 unsigned long start_pfn = 0;
5446 unsigned long end_pfn = 0;
9109fb7b 5447
88fdf75d 5448 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5449 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5450
3a80a7fa 5451 reset_deferred_meminit(pgdat);
1da177e4
LT
5452 pgdat->node_id = nid;
5453 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5454#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5455 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a
JG
5456 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5457 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5458#endif
5459 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5460 zones_size, zholes_size);
1da177e4
LT
5461
5462 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5463#ifdef CONFIG_FLAT_NODE_MEM_MAP
5464 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5465 nid, (unsigned long)pgdat,
5466 (unsigned long)pgdat->node_mem_map);
5467#endif
1da177e4 5468
7f3eb55b 5469 free_area_init_core(pgdat);
1da177e4
LT
5470}
5471
0ee332c1 5472#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5473
5474#if MAX_NUMNODES > 1
5475/*
5476 * Figure out the number of possible node ids.
5477 */
f9872caf 5478void __init setup_nr_node_ids(void)
418508c1 5479{
904a9553 5480 unsigned int highest;
418508c1 5481
904a9553 5482 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5483 nr_node_ids = highest + 1;
5484}
418508c1
MS
5485#endif
5486
1e01979c
TH
5487/**
5488 * node_map_pfn_alignment - determine the maximum internode alignment
5489 *
5490 * This function should be called after node map is populated and sorted.
5491 * It calculates the maximum power of two alignment which can distinguish
5492 * all the nodes.
5493 *
5494 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5495 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5496 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5497 * shifted, 1GiB is enough and this function will indicate so.
5498 *
5499 * This is used to test whether pfn -> nid mapping of the chosen memory
5500 * model has fine enough granularity to avoid incorrect mapping for the
5501 * populated node map.
5502 *
5503 * Returns the determined alignment in pfn's. 0 if there is no alignment
5504 * requirement (single node).
5505 */
5506unsigned long __init node_map_pfn_alignment(void)
5507{
5508 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5509 unsigned long start, end, mask;
1e01979c 5510 int last_nid = -1;
c13291a5 5511 int i, nid;
1e01979c 5512
c13291a5 5513 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5514 if (!start || last_nid < 0 || last_nid == nid) {
5515 last_nid = nid;
5516 last_end = end;
5517 continue;
5518 }
5519
5520 /*
5521 * Start with a mask granular enough to pin-point to the
5522 * start pfn and tick off bits one-by-one until it becomes
5523 * too coarse to separate the current node from the last.
5524 */
5525 mask = ~((1 << __ffs(start)) - 1);
5526 while (mask && last_end <= (start & (mask << 1)))
5527 mask <<= 1;
5528
5529 /* accumulate all internode masks */
5530 accl_mask |= mask;
5531 }
5532
5533 /* convert mask to number of pages */
5534 return ~accl_mask + 1;
5535}
5536
a6af2bc3 5537/* Find the lowest pfn for a node */
b69a7288 5538static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5539{
a6af2bc3 5540 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5541 unsigned long start_pfn;
5542 int i;
1abbfb41 5543
c13291a5
TH
5544 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5545 min_pfn = min(min_pfn, start_pfn);
c713216d 5546
a6af2bc3
MG
5547 if (min_pfn == ULONG_MAX) {
5548 printk(KERN_WARNING
2bc0d261 5549 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5550 return 0;
5551 }
5552
5553 return min_pfn;
c713216d
MG
5554}
5555
5556/**
5557 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5558 *
5559 * It returns the minimum PFN based on information provided via
7d018176 5560 * memblock_set_node().
c713216d
MG
5561 */
5562unsigned long __init find_min_pfn_with_active_regions(void)
5563{
5564 return find_min_pfn_for_node(MAX_NUMNODES);
5565}
5566
37b07e41
LS
5567/*
5568 * early_calculate_totalpages()
5569 * Sum pages in active regions for movable zone.
4b0ef1fe 5570 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5571 */
484f51f8 5572static unsigned long __init early_calculate_totalpages(void)
7e63efef 5573{
7e63efef 5574 unsigned long totalpages = 0;
c13291a5
TH
5575 unsigned long start_pfn, end_pfn;
5576 int i, nid;
5577
5578 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5579 unsigned long pages = end_pfn - start_pfn;
7e63efef 5580
37b07e41
LS
5581 totalpages += pages;
5582 if (pages)
4b0ef1fe 5583 node_set_state(nid, N_MEMORY);
37b07e41 5584 }
b8af2941 5585 return totalpages;
7e63efef
MG
5586}
5587
2a1e274a
MG
5588/*
5589 * Find the PFN the Movable zone begins in each node. Kernel memory
5590 * is spread evenly between nodes as long as the nodes have enough
5591 * memory. When they don't, some nodes will have more kernelcore than
5592 * others
5593 */
b224ef85 5594static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5595{
5596 int i, nid;
5597 unsigned long usable_startpfn;
5598 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5599 /* save the state before borrow the nodemask */
4b0ef1fe 5600 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5601 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5602 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5603 struct memblock_region *r;
b2f3eebe
TC
5604
5605 /* Need to find movable_zone earlier when movable_node is specified. */
5606 find_usable_zone_for_movable();
5607
5608 /*
5609 * If movable_node is specified, ignore kernelcore and movablecore
5610 * options.
5611 */
5612 if (movable_node_is_enabled()) {
136199f0
EM
5613 for_each_memblock(memory, r) {
5614 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5615 continue;
5616
136199f0 5617 nid = r->nid;
b2f3eebe 5618
136199f0 5619 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5620 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5621 min(usable_startpfn, zone_movable_pfn[nid]) :
5622 usable_startpfn;
5623 }
5624
5625 goto out2;
5626 }
2a1e274a 5627
7e63efef 5628 /*
b2f3eebe 5629 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5630 * kernelcore that corresponds so that memory usable for
5631 * any allocation type is evenly spread. If both kernelcore
5632 * and movablecore are specified, then the value of kernelcore
5633 * will be used for required_kernelcore if it's greater than
5634 * what movablecore would have allowed.
5635 */
5636 if (required_movablecore) {
7e63efef
MG
5637 unsigned long corepages;
5638
5639 /*
5640 * Round-up so that ZONE_MOVABLE is at least as large as what
5641 * was requested by the user
5642 */
5643 required_movablecore =
5644 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5645 corepages = totalpages - required_movablecore;
5646
5647 required_kernelcore = max(required_kernelcore, corepages);
5648 }
5649
20e6926d
YL
5650 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5651 if (!required_kernelcore)
66918dcd 5652 goto out;
2a1e274a
MG
5653
5654 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5655 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5656
5657restart:
5658 /* Spread kernelcore memory as evenly as possible throughout nodes */
5659 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5660 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5661 unsigned long start_pfn, end_pfn;
5662
2a1e274a
MG
5663 /*
5664 * Recalculate kernelcore_node if the division per node
5665 * now exceeds what is necessary to satisfy the requested
5666 * amount of memory for the kernel
5667 */
5668 if (required_kernelcore < kernelcore_node)
5669 kernelcore_node = required_kernelcore / usable_nodes;
5670
5671 /*
5672 * As the map is walked, we track how much memory is usable
5673 * by the kernel using kernelcore_remaining. When it is
5674 * 0, the rest of the node is usable by ZONE_MOVABLE
5675 */
5676 kernelcore_remaining = kernelcore_node;
5677
5678 /* Go through each range of PFNs within this node */
c13291a5 5679 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5680 unsigned long size_pages;
5681
c13291a5 5682 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5683 if (start_pfn >= end_pfn)
5684 continue;
5685
5686 /* Account for what is only usable for kernelcore */
5687 if (start_pfn < usable_startpfn) {
5688 unsigned long kernel_pages;
5689 kernel_pages = min(end_pfn, usable_startpfn)
5690 - start_pfn;
5691
5692 kernelcore_remaining -= min(kernel_pages,
5693 kernelcore_remaining);
5694 required_kernelcore -= min(kernel_pages,
5695 required_kernelcore);
5696
5697 /* Continue if range is now fully accounted */
5698 if (end_pfn <= usable_startpfn) {
5699
5700 /*
5701 * Push zone_movable_pfn to the end so
5702 * that if we have to rebalance
5703 * kernelcore across nodes, we will
5704 * not double account here
5705 */
5706 zone_movable_pfn[nid] = end_pfn;
5707 continue;
5708 }
5709 start_pfn = usable_startpfn;
5710 }
5711
5712 /*
5713 * The usable PFN range for ZONE_MOVABLE is from
5714 * start_pfn->end_pfn. Calculate size_pages as the
5715 * number of pages used as kernelcore
5716 */
5717 size_pages = end_pfn - start_pfn;
5718 if (size_pages > kernelcore_remaining)
5719 size_pages = kernelcore_remaining;
5720 zone_movable_pfn[nid] = start_pfn + size_pages;
5721
5722 /*
5723 * Some kernelcore has been met, update counts and
5724 * break if the kernelcore for this node has been
b8af2941 5725 * satisfied
2a1e274a
MG
5726 */
5727 required_kernelcore -= min(required_kernelcore,
5728 size_pages);
5729 kernelcore_remaining -= size_pages;
5730 if (!kernelcore_remaining)
5731 break;
5732 }
5733 }
5734
5735 /*
5736 * If there is still required_kernelcore, we do another pass with one
5737 * less node in the count. This will push zone_movable_pfn[nid] further
5738 * along on the nodes that still have memory until kernelcore is
b8af2941 5739 * satisfied
2a1e274a
MG
5740 */
5741 usable_nodes--;
5742 if (usable_nodes && required_kernelcore > usable_nodes)
5743 goto restart;
5744
b2f3eebe 5745out2:
2a1e274a
MG
5746 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5747 for (nid = 0; nid < MAX_NUMNODES; nid++)
5748 zone_movable_pfn[nid] =
5749 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5750
20e6926d 5751out:
66918dcd 5752 /* restore the node_state */
4b0ef1fe 5753 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5754}
5755
4b0ef1fe
LJ
5756/* Any regular or high memory on that node ? */
5757static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5758{
37b07e41
LS
5759 enum zone_type zone_type;
5760
4b0ef1fe
LJ
5761 if (N_MEMORY == N_NORMAL_MEMORY)
5762 return;
5763
5764 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5765 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5766 if (populated_zone(zone)) {
4b0ef1fe
LJ
5767 node_set_state(nid, N_HIGH_MEMORY);
5768 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5769 zone_type <= ZONE_NORMAL)
5770 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5771 break;
5772 }
37b07e41 5773 }
37b07e41
LS
5774}
5775
c713216d
MG
5776/**
5777 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5778 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5779 *
5780 * This will call free_area_init_node() for each active node in the system.
7d018176 5781 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5782 * zone in each node and their holes is calculated. If the maximum PFN
5783 * between two adjacent zones match, it is assumed that the zone is empty.
5784 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5785 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5786 * starts where the previous one ended. For example, ZONE_DMA32 starts
5787 * at arch_max_dma_pfn.
5788 */
5789void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5790{
c13291a5
TH
5791 unsigned long start_pfn, end_pfn;
5792 int i, nid;
a6af2bc3 5793
c713216d
MG
5794 /* Record where the zone boundaries are */
5795 memset(arch_zone_lowest_possible_pfn, 0,
5796 sizeof(arch_zone_lowest_possible_pfn));
5797 memset(arch_zone_highest_possible_pfn, 0,
5798 sizeof(arch_zone_highest_possible_pfn));
5799 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5800 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5801 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5802 if (i == ZONE_MOVABLE)
5803 continue;
c713216d
MG
5804 arch_zone_lowest_possible_pfn[i] =
5805 arch_zone_highest_possible_pfn[i-1];
5806 arch_zone_highest_possible_pfn[i] =
5807 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5808 }
2a1e274a
MG
5809 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5810 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5811
5812 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5813 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5814 find_zone_movable_pfns_for_nodes();
c713216d 5815
c713216d 5816 /* Print out the zone ranges */
f88dfff5 5817 pr_info("Zone ranges:\n");
2a1e274a
MG
5818 for (i = 0; i < MAX_NR_ZONES; i++) {
5819 if (i == ZONE_MOVABLE)
5820 continue;
f88dfff5 5821 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5822 if (arch_zone_lowest_possible_pfn[i] ==
5823 arch_zone_highest_possible_pfn[i])
f88dfff5 5824 pr_cont("empty\n");
72f0ba02 5825 else
8d29e18a
JG
5826 pr_cont("[mem %#018Lx-%#018Lx]\n",
5827 (u64)arch_zone_lowest_possible_pfn[i]
5828 << PAGE_SHIFT,
5829 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5830 << PAGE_SHIFT) - 1);
2a1e274a
MG
5831 }
5832
5833 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5834 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5835 for (i = 0; i < MAX_NUMNODES; i++) {
5836 if (zone_movable_pfn[i])
8d29e18a
JG
5837 pr_info(" Node %d: %#018Lx\n", i,
5838 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5839 }
c713216d 5840
f2d52fe5 5841 /* Print out the early node map */
f88dfff5 5842 pr_info("Early memory node ranges\n");
c13291a5 5843 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5844 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5845 (u64)start_pfn << PAGE_SHIFT,
5846 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5847
5848 /* Initialise every node */
708614e6 5849 mminit_verify_pageflags_layout();
8ef82866 5850 setup_nr_node_ids();
c713216d
MG
5851 for_each_online_node(nid) {
5852 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5853 free_area_init_node(nid, NULL,
c713216d 5854 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5855
5856 /* Any memory on that node */
5857 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5858 node_set_state(nid, N_MEMORY);
5859 check_for_memory(pgdat, nid);
c713216d
MG
5860 }
5861}
2a1e274a 5862
7e63efef 5863static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5864{
5865 unsigned long long coremem;
5866 if (!p)
5867 return -EINVAL;
5868
5869 coremem = memparse(p, &p);
7e63efef 5870 *core = coremem >> PAGE_SHIFT;
2a1e274a 5871
7e63efef 5872 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5873 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5874
5875 return 0;
5876}
ed7ed365 5877
7e63efef
MG
5878/*
5879 * kernelcore=size sets the amount of memory for use for allocations that
5880 * cannot be reclaimed or migrated.
5881 */
5882static int __init cmdline_parse_kernelcore(char *p)
5883{
5884 return cmdline_parse_core(p, &required_kernelcore);
5885}
5886
5887/*
5888 * movablecore=size sets the amount of memory for use for allocations that
5889 * can be reclaimed or migrated.
5890 */
5891static int __init cmdline_parse_movablecore(char *p)
5892{
5893 return cmdline_parse_core(p, &required_movablecore);
5894}
5895
ed7ed365 5896early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5897early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5898
0ee332c1 5899#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5900
c3d5f5f0
JL
5901void adjust_managed_page_count(struct page *page, long count)
5902{
5903 spin_lock(&managed_page_count_lock);
5904 page_zone(page)->managed_pages += count;
5905 totalram_pages += count;
3dcc0571
JL
5906#ifdef CONFIG_HIGHMEM
5907 if (PageHighMem(page))
5908 totalhigh_pages += count;
5909#endif
c3d5f5f0
JL
5910 spin_unlock(&managed_page_count_lock);
5911}
3dcc0571 5912EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5913
11199692 5914unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5915{
11199692
JL
5916 void *pos;
5917 unsigned long pages = 0;
69afade7 5918
11199692
JL
5919 start = (void *)PAGE_ALIGN((unsigned long)start);
5920 end = (void *)((unsigned long)end & PAGE_MASK);
5921 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5922 if ((unsigned int)poison <= 0xFF)
11199692
JL
5923 memset(pos, poison, PAGE_SIZE);
5924 free_reserved_page(virt_to_page(pos));
69afade7
JL
5925 }
5926
5927 if (pages && s)
11199692 5928 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5929 s, pages << (PAGE_SHIFT - 10), start, end);
5930
5931 return pages;
5932}
11199692 5933EXPORT_SYMBOL(free_reserved_area);
69afade7 5934
cfa11e08
JL
5935#ifdef CONFIG_HIGHMEM
5936void free_highmem_page(struct page *page)
5937{
5938 __free_reserved_page(page);
5939 totalram_pages++;
7b4b2a0d 5940 page_zone(page)->managed_pages++;
cfa11e08
JL
5941 totalhigh_pages++;
5942}
5943#endif
5944
7ee3d4e8
JL
5945
5946void __init mem_init_print_info(const char *str)
5947{
5948 unsigned long physpages, codesize, datasize, rosize, bss_size;
5949 unsigned long init_code_size, init_data_size;
5950
5951 physpages = get_num_physpages();
5952 codesize = _etext - _stext;
5953 datasize = _edata - _sdata;
5954 rosize = __end_rodata - __start_rodata;
5955 bss_size = __bss_stop - __bss_start;
5956 init_data_size = __init_end - __init_begin;
5957 init_code_size = _einittext - _sinittext;
5958
5959 /*
5960 * Detect special cases and adjust section sizes accordingly:
5961 * 1) .init.* may be embedded into .data sections
5962 * 2) .init.text.* may be out of [__init_begin, __init_end],
5963 * please refer to arch/tile/kernel/vmlinux.lds.S.
5964 * 3) .rodata.* may be embedded into .text or .data sections.
5965 */
5966#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5967 do { \
5968 if (start <= pos && pos < end && size > adj) \
5969 size -= adj; \
5970 } while (0)
7ee3d4e8
JL
5971
5972 adj_init_size(__init_begin, __init_end, init_data_size,
5973 _sinittext, init_code_size);
5974 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5975 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5976 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5977 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5978
5979#undef adj_init_size
5980
f88dfff5 5981 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5982 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5983 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5984#ifdef CONFIG_HIGHMEM
5985 ", %luK highmem"
5986#endif
5987 "%s%s)\n",
5988 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5989 codesize >> 10, datasize >> 10, rosize >> 10,
5990 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5991 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5992 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5993#ifdef CONFIG_HIGHMEM
5994 totalhigh_pages << (PAGE_SHIFT-10),
5995#endif
5996 str ? ", " : "", str ? str : "");
5997}
5998
0e0b864e 5999/**
88ca3b94
RD
6000 * set_dma_reserve - set the specified number of pages reserved in the first zone
6001 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
6002 *
6003 * The per-cpu batchsize and zone watermarks are determined by present_pages.
6004 * In the DMA zone, a significant percentage may be consumed by kernel image
6005 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6006 * function may optionally be used to account for unfreeable pages in the
6007 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6008 * smaller per-cpu batchsize.
0e0b864e
MG
6009 */
6010void __init set_dma_reserve(unsigned long new_dma_reserve)
6011{
6012 dma_reserve = new_dma_reserve;
6013}
6014
1da177e4
LT
6015void __init free_area_init(unsigned long *zones_size)
6016{
9109fb7b 6017 free_area_init_node(0, zones_size,
1da177e4
LT
6018 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6019}
1da177e4 6020
1da177e4
LT
6021static int page_alloc_cpu_notify(struct notifier_block *self,
6022 unsigned long action, void *hcpu)
6023{
6024 int cpu = (unsigned long)hcpu;
1da177e4 6025
8bb78442 6026 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6027 lru_add_drain_cpu(cpu);
9f8f2172
CL
6028 drain_pages(cpu);
6029
6030 /*
6031 * Spill the event counters of the dead processor
6032 * into the current processors event counters.
6033 * This artificially elevates the count of the current
6034 * processor.
6035 */
f8891e5e 6036 vm_events_fold_cpu(cpu);
9f8f2172
CL
6037
6038 /*
6039 * Zero the differential counters of the dead processor
6040 * so that the vm statistics are consistent.
6041 *
6042 * This is only okay since the processor is dead and cannot
6043 * race with what we are doing.
6044 */
2bb921e5 6045 cpu_vm_stats_fold(cpu);
1da177e4
LT
6046 }
6047 return NOTIFY_OK;
6048}
1da177e4
LT
6049
6050void __init page_alloc_init(void)
6051{
6052 hotcpu_notifier(page_alloc_cpu_notify, 0);
6053}
6054
cb45b0e9
HA
6055/*
6056 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
6057 * or min_free_kbytes changes.
6058 */
6059static void calculate_totalreserve_pages(void)
6060{
6061 struct pglist_data *pgdat;
6062 unsigned long reserve_pages = 0;
2f6726e5 6063 enum zone_type i, j;
cb45b0e9
HA
6064
6065 for_each_online_pgdat(pgdat) {
6066 for (i = 0; i < MAX_NR_ZONES; i++) {
6067 struct zone *zone = pgdat->node_zones + i;
3484b2de 6068 long max = 0;
cb45b0e9
HA
6069
6070 /* Find valid and maximum lowmem_reserve in the zone */
6071 for (j = i; j < MAX_NR_ZONES; j++) {
6072 if (zone->lowmem_reserve[j] > max)
6073 max = zone->lowmem_reserve[j];
6074 }
6075
41858966
MG
6076 /* we treat the high watermark as reserved pages. */
6077 max += high_wmark_pages(zone);
cb45b0e9 6078
b40da049
JL
6079 if (max > zone->managed_pages)
6080 max = zone->managed_pages;
cb45b0e9 6081 reserve_pages += max;
ab8fabd4
JW
6082 /*
6083 * Lowmem reserves are not available to
6084 * GFP_HIGHUSER page cache allocations and
6085 * kswapd tries to balance zones to their high
6086 * watermark. As a result, neither should be
6087 * regarded as dirtyable memory, to prevent a
6088 * situation where reclaim has to clean pages
6089 * in order to balance the zones.
6090 */
6091 zone->dirty_balance_reserve = max;
cb45b0e9
HA
6092 }
6093 }
ab8fabd4 6094 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
6095 totalreserve_pages = reserve_pages;
6096}
6097
1da177e4
LT
6098/*
6099 * setup_per_zone_lowmem_reserve - called whenever
6100 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
6101 * has a correct pages reserved value, so an adequate number of
6102 * pages are left in the zone after a successful __alloc_pages().
6103 */
6104static void setup_per_zone_lowmem_reserve(void)
6105{
6106 struct pglist_data *pgdat;
2f6726e5 6107 enum zone_type j, idx;
1da177e4 6108
ec936fc5 6109 for_each_online_pgdat(pgdat) {
1da177e4
LT
6110 for (j = 0; j < MAX_NR_ZONES; j++) {
6111 struct zone *zone = pgdat->node_zones + j;
b40da049 6112 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6113
6114 zone->lowmem_reserve[j] = 0;
6115
2f6726e5
CL
6116 idx = j;
6117 while (idx) {
1da177e4
LT
6118 struct zone *lower_zone;
6119
2f6726e5
CL
6120 idx--;
6121
1da177e4
LT
6122 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6123 sysctl_lowmem_reserve_ratio[idx] = 1;
6124
6125 lower_zone = pgdat->node_zones + idx;
b40da049 6126 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6127 sysctl_lowmem_reserve_ratio[idx];
b40da049 6128 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6129 }
6130 }
6131 }
cb45b0e9
HA
6132
6133 /* update totalreserve_pages */
6134 calculate_totalreserve_pages();
1da177e4
LT
6135}
6136
cfd3da1e 6137static void __setup_per_zone_wmarks(void)
1da177e4
LT
6138{
6139 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6140 unsigned long lowmem_pages = 0;
6141 struct zone *zone;
6142 unsigned long flags;
6143
6144 /* Calculate total number of !ZONE_HIGHMEM pages */
6145 for_each_zone(zone) {
6146 if (!is_highmem(zone))
b40da049 6147 lowmem_pages += zone->managed_pages;
1da177e4
LT
6148 }
6149
6150 for_each_zone(zone) {
ac924c60
AM
6151 u64 tmp;
6152
1125b4e3 6153 spin_lock_irqsave(&zone->lock, flags);
b40da049 6154 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6155 do_div(tmp, lowmem_pages);
1da177e4
LT
6156 if (is_highmem(zone)) {
6157 /*
669ed175
NP
6158 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6159 * need highmem pages, so cap pages_min to a small
6160 * value here.
6161 *
41858966 6162 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6163 * deltas control asynch page reclaim, and so should
669ed175 6164 * not be capped for highmem.
1da177e4 6165 */
90ae8d67 6166 unsigned long min_pages;
1da177e4 6167
b40da049 6168 min_pages = zone->managed_pages / 1024;
90ae8d67 6169 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6170 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6171 } else {
669ed175
NP
6172 /*
6173 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6174 * proportionate to the zone's size.
6175 */
41858966 6176 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6177 }
6178
41858966
MG
6179 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6180 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6181
81c0a2bb 6182 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6183 high_wmark_pages(zone) - low_wmark_pages(zone) -
6184 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6185
56fd56b8 6186 setup_zone_migrate_reserve(zone);
1125b4e3 6187 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6188 }
cb45b0e9
HA
6189
6190 /* update totalreserve_pages */
6191 calculate_totalreserve_pages();
1da177e4
LT
6192}
6193
cfd3da1e
MG
6194/**
6195 * setup_per_zone_wmarks - called when min_free_kbytes changes
6196 * or when memory is hot-{added|removed}
6197 *
6198 * Ensures that the watermark[min,low,high] values for each zone are set
6199 * correctly with respect to min_free_kbytes.
6200 */
6201void setup_per_zone_wmarks(void)
6202{
6203 mutex_lock(&zonelists_mutex);
6204 __setup_per_zone_wmarks();
6205 mutex_unlock(&zonelists_mutex);
6206}
6207
55a4462a 6208/*
556adecb
RR
6209 * The inactive anon list should be small enough that the VM never has to
6210 * do too much work, but large enough that each inactive page has a chance
6211 * to be referenced again before it is swapped out.
6212 *
6213 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6214 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6215 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6216 * the anonymous pages are kept on the inactive list.
6217 *
6218 * total target max
6219 * memory ratio inactive anon
6220 * -------------------------------------
6221 * 10MB 1 5MB
6222 * 100MB 1 50MB
6223 * 1GB 3 250MB
6224 * 10GB 10 0.9GB
6225 * 100GB 31 3GB
6226 * 1TB 101 10GB
6227 * 10TB 320 32GB
6228 */
1b79acc9 6229static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6230{
96cb4df5 6231 unsigned int gb, ratio;
556adecb 6232
96cb4df5 6233 /* Zone size in gigabytes */
b40da049 6234 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6235 if (gb)
556adecb 6236 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6237 else
6238 ratio = 1;
556adecb 6239
96cb4df5
MK
6240 zone->inactive_ratio = ratio;
6241}
556adecb 6242
839a4fcc 6243static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6244{
6245 struct zone *zone;
6246
6247 for_each_zone(zone)
6248 calculate_zone_inactive_ratio(zone);
556adecb
RR
6249}
6250
1da177e4
LT
6251/*
6252 * Initialise min_free_kbytes.
6253 *
6254 * For small machines we want it small (128k min). For large machines
6255 * we want it large (64MB max). But it is not linear, because network
6256 * bandwidth does not increase linearly with machine size. We use
6257 *
b8af2941 6258 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6259 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6260 *
6261 * which yields
6262 *
6263 * 16MB: 512k
6264 * 32MB: 724k
6265 * 64MB: 1024k
6266 * 128MB: 1448k
6267 * 256MB: 2048k
6268 * 512MB: 2896k
6269 * 1024MB: 4096k
6270 * 2048MB: 5792k
6271 * 4096MB: 8192k
6272 * 8192MB: 11584k
6273 * 16384MB: 16384k
6274 */
1b79acc9 6275int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6276{
6277 unsigned long lowmem_kbytes;
5f12733e 6278 int new_min_free_kbytes;
1da177e4
LT
6279
6280 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6281 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6282
6283 if (new_min_free_kbytes > user_min_free_kbytes) {
6284 min_free_kbytes = new_min_free_kbytes;
6285 if (min_free_kbytes < 128)
6286 min_free_kbytes = 128;
6287 if (min_free_kbytes > 65536)
6288 min_free_kbytes = 65536;
6289 } else {
6290 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6291 new_min_free_kbytes, user_min_free_kbytes);
6292 }
bc75d33f 6293 setup_per_zone_wmarks();
a6cccdc3 6294 refresh_zone_stat_thresholds();
1da177e4 6295 setup_per_zone_lowmem_reserve();
556adecb 6296 setup_per_zone_inactive_ratio();
1da177e4
LT
6297 return 0;
6298}
bc75d33f 6299module_init(init_per_zone_wmark_min)
1da177e4
LT
6300
6301/*
b8af2941 6302 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6303 * that we can call two helper functions whenever min_free_kbytes
6304 * changes.
6305 */
cccad5b9 6306int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6307 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6308{
da8c757b
HP
6309 int rc;
6310
6311 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6312 if (rc)
6313 return rc;
6314
5f12733e
MH
6315 if (write) {
6316 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6317 setup_per_zone_wmarks();
5f12733e 6318 }
1da177e4
LT
6319 return 0;
6320}
6321
9614634f 6322#ifdef CONFIG_NUMA
cccad5b9 6323int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6324 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6325{
6326 struct zone *zone;
6327 int rc;
6328
8d65af78 6329 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6330 if (rc)
6331 return rc;
6332
6333 for_each_zone(zone)
b40da049 6334 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6335 sysctl_min_unmapped_ratio) / 100;
6336 return 0;
6337}
0ff38490 6338
cccad5b9 6339int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6340 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6341{
6342 struct zone *zone;
6343 int rc;
6344
8d65af78 6345 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6346 if (rc)
6347 return rc;
6348
6349 for_each_zone(zone)
b40da049 6350 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6351 sysctl_min_slab_ratio) / 100;
6352 return 0;
6353}
9614634f
CL
6354#endif
6355
1da177e4
LT
6356/*
6357 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6358 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6359 * whenever sysctl_lowmem_reserve_ratio changes.
6360 *
6361 * The reserve ratio obviously has absolutely no relation with the
41858966 6362 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6363 * if in function of the boot time zone sizes.
6364 */
cccad5b9 6365int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6366 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6367{
8d65af78 6368 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6369 setup_per_zone_lowmem_reserve();
6370 return 0;
6371}
6372
8ad4b1fb
RS
6373/*
6374 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6375 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6376 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6377 */
cccad5b9 6378int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6379 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6380{
6381 struct zone *zone;
7cd2b0a3 6382 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6383 int ret;
6384
7cd2b0a3
DR
6385 mutex_lock(&pcp_batch_high_lock);
6386 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6387
8d65af78 6388 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6389 if (!write || ret < 0)
6390 goto out;
6391
6392 /* Sanity checking to avoid pcp imbalance */
6393 if (percpu_pagelist_fraction &&
6394 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6395 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6396 ret = -EINVAL;
6397 goto out;
6398 }
6399
6400 /* No change? */
6401 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6402 goto out;
c8e251fa 6403
364df0eb 6404 for_each_populated_zone(zone) {
7cd2b0a3
DR
6405 unsigned int cpu;
6406
22a7f12b 6407 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6408 pageset_set_high_and_batch(zone,
6409 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6410 }
7cd2b0a3 6411out:
c8e251fa 6412 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6413 return ret;
8ad4b1fb
RS
6414}
6415
a9919c79 6416#ifdef CONFIG_NUMA
f034b5d4 6417int hashdist = HASHDIST_DEFAULT;
1da177e4 6418
1da177e4
LT
6419static int __init set_hashdist(char *str)
6420{
6421 if (!str)
6422 return 0;
6423 hashdist = simple_strtoul(str, &str, 0);
6424 return 1;
6425}
6426__setup("hashdist=", set_hashdist);
6427#endif
6428
6429/*
6430 * allocate a large system hash table from bootmem
6431 * - it is assumed that the hash table must contain an exact power-of-2
6432 * quantity of entries
6433 * - limit is the number of hash buckets, not the total allocation size
6434 */
6435void *__init alloc_large_system_hash(const char *tablename,
6436 unsigned long bucketsize,
6437 unsigned long numentries,
6438 int scale,
6439 int flags,
6440 unsigned int *_hash_shift,
6441 unsigned int *_hash_mask,
31fe62b9
TB
6442 unsigned long low_limit,
6443 unsigned long high_limit)
1da177e4 6444{
31fe62b9 6445 unsigned long long max = high_limit;
1da177e4
LT
6446 unsigned long log2qty, size;
6447 void *table = NULL;
6448
6449 /* allow the kernel cmdline to have a say */
6450 if (!numentries) {
6451 /* round applicable memory size up to nearest megabyte */
04903664 6452 numentries = nr_kernel_pages;
a7e83318
JZ
6453
6454 /* It isn't necessary when PAGE_SIZE >= 1MB */
6455 if (PAGE_SHIFT < 20)
6456 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6457
6458 /* limit to 1 bucket per 2^scale bytes of low memory */
6459 if (scale > PAGE_SHIFT)
6460 numentries >>= (scale - PAGE_SHIFT);
6461 else
6462 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6463
6464 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6465 if (unlikely(flags & HASH_SMALL)) {
6466 /* Makes no sense without HASH_EARLY */
6467 WARN_ON(!(flags & HASH_EARLY));
6468 if (!(numentries >> *_hash_shift)) {
6469 numentries = 1UL << *_hash_shift;
6470 BUG_ON(!numentries);
6471 }
6472 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6473 numentries = PAGE_SIZE / bucketsize;
1da177e4 6474 }
6e692ed3 6475 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6476
6477 /* limit allocation size to 1/16 total memory by default */
6478 if (max == 0) {
6479 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6480 do_div(max, bucketsize);
6481 }
074b8517 6482 max = min(max, 0x80000000ULL);
1da177e4 6483
31fe62b9
TB
6484 if (numentries < low_limit)
6485 numentries = low_limit;
1da177e4
LT
6486 if (numentries > max)
6487 numentries = max;
6488
f0d1b0b3 6489 log2qty = ilog2(numentries);
1da177e4
LT
6490
6491 do {
6492 size = bucketsize << log2qty;
6493 if (flags & HASH_EARLY)
6782832e 6494 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6495 else if (hashdist)
6496 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6497 else {
1037b83b
ED
6498 /*
6499 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6500 * some pages at the end of hash table which
6501 * alloc_pages_exact() automatically does
1037b83b 6502 */
264ef8a9 6503 if (get_order(size) < MAX_ORDER) {
a1dd268c 6504 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6505 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6506 }
1da177e4
LT
6507 }
6508 } while (!table && size > PAGE_SIZE && --log2qty);
6509
6510 if (!table)
6511 panic("Failed to allocate %s hash table\n", tablename);
6512
f241e660 6513 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6514 tablename,
f241e660 6515 (1UL << log2qty),
f0d1b0b3 6516 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6517 size);
6518
6519 if (_hash_shift)
6520 *_hash_shift = log2qty;
6521 if (_hash_mask)
6522 *_hash_mask = (1 << log2qty) - 1;
6523
6524 return table;
6525}
a117e66e 6526
835c134e
MG
6527/* Return a pointer to the bitmap storing bits affecting a block of pages */
6528static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6529 unsigned long pfn)
6530{
6531#ifdef CONFIG_SPARSEMEM
6532 return __pfn_to_section(pfn)->pageblock_flags;
6533#else
6534 return zone->pageblock_flags;
6535#endif /* CONFIG_SPARSEMEM */
6536}
6537
6538static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6539{
6540#ifdef CONFIG_SPARSEMEM
6541 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6542 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6543#else
c060f943 6544 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6545 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6546#endif /* CONFIG_SPARSEMEM */
6547}
6548
6549/**
1aab4d77 6550 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6551 * @page: The page within the block of interest
1aab4d77
RD
6552 * @pfn: The target page frame number
6553 * @end_bitidx: The last bit of interest to retrieve
6554 * @mask: mask of bits that the caller is interested in
6555 *
6556 * Return: pageblock_bits flags
835c134e 6557 */
dc4b0caf 6558unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6559 unsigned long end_bitidx,
6560 unsigned long mask)
835c134e
MG
6561{
6562 struct zone *zone;
6563 unsigned long *bitmap;
dc4b0caf 6564 unsigned long bitidx, word_bitidx;
e58469ba 6565 unsigned long word;
835c134e
MG
6566
6567 zone = page_zone(page);
835c134e
MG
6568 bitmap = get_pageblock_bitmap(zone, pfn);
6569 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6570 word_bitidx = bitidx / BITS_PER_LONG;
6571 bitidx &= (BITS_PER_LONG-1);
835c134e 6572
e58469ba
MG
6573 word = bitmap[word_bitidx];
6574 bitidx += end_bitidx;
6575 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6576}
6577
6578/**
dc4b0caf 6579 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6580 * @page: The page within the block of interest
835c134e 6581 * @flags: The flags to set
1aab4d77
RD
6582 * @pfn: The target page frame number
6583 * @end_bitidx: The last bit of interest
6584 * @mask: mask of bits that the caller is interested in
835c134e 6585 */
dc4b0caf
MG
6586void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6587 unsigned long pfn,
e58469ba
MG
6588 unsigned long end_bitidx,
6589 unsigned long mask)
835c134e
MG
6590{
6591 struct zone *zone;
6592 unsigned long *bitmap;
dc4b0caf 6593 unsigned long bitidx, word_bitidx;
e58469ba
MG
6594 unsigned long old_word, word;
6595
6596 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6597
6598 zone = page_zone(page);
835c134e
MG
6599 bitmap = get_pageblock_bitmap(zone, pfn);
6600 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6601 word_bitidx = bitidx / BITS_PER_LONG;
6602 bitidx &= (BITS_PER_LONG-1);
6603
309381fe 6604 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6605
e58469ba
MG
6606 bitidx += end_bitidx;
6607 mask <<= (BITS_PER_LONG - bitidx - 1);
6608 flags <<= (BITS_PER_LONG - bitidx - 1);
6609
4db0c3c2 6610 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6611 for (;;) {
6612 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6613 if (word == old_word)
6614 break;
6615 word = old_word;
6616 }
835c134e 6617}
a5d76b54
KH
6618
6619/*
80934513
MK
6620 * This function checks whether pageblock includes unmovable pages or not.
6621 * If @count is not zero, it is okay to include less @count unmovable pages
6622 *
b8af2941 6623 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6624 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6625 * expect this function should be exact.
a5d76b54 6626 */
b023f468
WC
6627bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6628 bool skip_hwpoisoned_pages)
49ac8255
KH
6629{
6630 unsigned long pfn, iter, found;
47118af0
MN
6631 int mt;
6632
49ac8255
KH
6633 /*
6634 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6635 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6636 */
6637 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6638 return false;
47118af0
MN
6639 mt = get_pageblock_migratetype(page);
6640 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6641 return false;
49ac8255
KH
6642
6643 pfn = page_to_pfn(page);
6644 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6645 unsigned long check = pfn + iter;
6646
29723fcc 6647 if (!pfn_valid_within(check))
49ac8255 6648 continue;
29723fcc 6649
49ac8255 6650 page = pfn_to_page(check);
c8721bbb
NH
6651
6652 /*
6653 * Hugepages are not in LRU lists, but they're movable.
6654 * We need not scan over tail pages bacause we don't
6655 * handle each tail page individually in migration.
6656 */
6657 if (PageHuge(page)) {
6658 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6659 continue;
6660 }
6661
97d255c8
MK
6662 /*
6663 * We can't use page_count without pin a page
6664 * because another CPU can free compound page.
6665 * This check already skips compound tails of THP
6666 * because their page->_count is zero at all time.
6667 */
6668 if (!atomic_read(&page->_count)) {
49ac8255
KH
6669 if (PageBuddy(page))
6670 iter += (1 << page_order(page)) - 1;
6671 continue;
6672 }
97d255c8 6673
b023f468
WC
6674 /*
6675 * The HWPoisoned page may be not in buddy system, and
6676 * page_count() is not 0.
6677 */
6678 if (skip_hwpoisoned_pages && PageHWPoison(page))
6679 continue;
6680
49ac8255
KH
6681 if (!PageLRU(page))
6682 found++;
6683 /*
6b4f7799
JW
6684 * If there are RECLAIMABLE pages, we need to check
6685 * it. But now, memory offline itself doesn't call
6686 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6687 */
6688 /*
6689 * If the page is not RAM, page_count()should be 0.
6690 * we don't need more check. This is an _used_ not-movable page.
6691 *
6692 * The problematic thing here is PG_reserved pages. PG_reserved
6693 * is set to both of a memory hole page and a _used_ kernel
6694 * page at boot.
6695 */
6696 if (found > count)
80934513 6697 return true;
49ac8255 6698 }
80934513 6699 return false;
49ac8255
KH
6700}
6701
6702bool is_pageblock_removable_nolock(struct page *page)
6703{
656a0706
MH
6704 struct zone *zone;
6705 unsigned long pfn;
687875fb
MH
6706
6707 /*
6708 * We have to be careful here because we are iterating over memory
6709 * sections which are not zone aware so we might end up outside of
6710 * the zone but still within the section.
656a0706
MH
6711 * We have to take care about the node as well. If the node is offline
6712 * its NODE_DATA will be NULL - see page_zone.
687875fb 6713 */
656a0706
MH
6714 if (!node_online(page_to_nid(page)))
6715 return false;
6716
6717 zone = page_zone(page);
6718 pfn = page_to_pfn(page);
108bcc96 6719 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6720 return false;
6721
b023f468 6722 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6723}
0c0e6195 6724
041d3a8c
MN
6725#ifdef CONFIG_CMA
6726
6727static unsigned long pfn_max_align_down(unsigned long pfn)
6728{
6729 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6730 pageblock_nr_pages) - 1);
6731}
6732
6733static unsigned long pfn_max_align_up(unsigned long pfn)
6734{
6735 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6736 pageblock_nr_pages));
6737}
6738
041d3a8c 6739/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6740static int __alloc_contig_migrate_range(struct compact_control *cc,
6741 unsigned long start, unsigned long end)
041d3a8c
MN
6742{
6743 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6744 unsigned long nr_reclaimed;
041d3a8c
MN
6745 unsigned long pfn = start;
6746 unsigned int tries = 0;
6747 int ret = 0;
6748
be49a6e1 6749 migrate_prep();
041d3a8c 6750
bb13ffeb 6751 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6752 if (fatal_signal_pending(current)) {
6753 ret = -EINTR;
6754 break;
6755 }
6756
bb13ffeb
MG
6757 if (list_empty(&cc->migratepages)) {
6758 cc->nr_migratepages = 0;
edc2ca61 6759 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6760 if (!pfn) {
6761 ret = -EINTR;
6762 break;
6763 }
6764 tries = 0;
6765 } else if (++tries == 5) {
6766 ret = ret < 0 ? ret : -EBUSY;
6767 break;
6768 }
6769
beb51eaa
MK
6770 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6771 &cc->migratepages);
6772 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6773
9c620e2b 6774 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6775 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6776 }
2a6f5124
SP
6777 if (ret < 0) {
6778 putback_movable_pages(&cc->migratepages);
6779 return ret;
6780 }
6781 return 0;
041d3a8c
MN
6782}
6783
6784/**
6785 * alloc_contig_range() -- tries to allocate given range of pages
6786 * @start: start PFN to allocate
6787 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6788 * @migratetype: migratetype of the underlaying pageblocks (either
6789 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6790 * in range must have the same migratetype and it must
6791 * be either of the two.
041d3a8c
MN
6792 *
6793 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6794 * aligned, however it's the caller's responsibility to guarantee that
6795 * we are the only thread that changes migrate type of pageblocks the
6796 * pages fall in.
6797 *
6798 * The PFN range must belong to a single zone.
6799 *
6800 * Returns zero on success or negative error code. On success all
6801 * pages which PFN is in [start, end) are allocated for the caller and
6802 * need to be freed with free_contig_range().
6803 */
0815f3d8
MN
6804int alloc_contig_range(unsigned long start, unsigned long end,
6805 unsigned migratetype)
041d3a8c 6806{
041d3a8c
MN
6807 unsigned long outer_start, outer_end;
6808 int ret = 0, order;
6809
bb13ffeb
MG
6810 struct compact_control cc = {
6811 .nr_migratepages = 0,
6812 .order = -1,
6813 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6814 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6815 .ignore_skip_hint = true,
6816 };
6817 INIT_LIST_HEAD(&cc.migratepages);
6818
041d3a8c
MN
6819 /*
6820 * What we do here is we mark all pageblocks in range as
6821 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6822 * have different sizes, and due to the way page allocator
6823 * work, we align the range to biggest of the two pages so
6824 * that page allocator won't try to merge buddies from
6825 * different pageblocks and change MIGRATE_ISOLATE to some
6826 * other migration type.
6827 *
6828 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6829 * migrate the pages from an unaligned range (ie. pages that
6830 * we are interested in). This will put all the pages in
6831 * range back to page allocator as MIGRATE_ISOLATE.
6832 *
6833 * When this is done, we take the pages in range from page
6834 * allocator removing them from the buddy system. This way
6835 * page allocator will never consider using them.
6836 *
6837 * This lets us mark the pageblocks back as
6838 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6839 * aligned range but not in the unaligned, original range are
6840 * put back to page allocator so that buddy can use them.
6841 */
6842
6843 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6844 pfn_max_align_up(end), migratetype,
6845 false);
041d3a8c 6846 if (ret)
86a595f9 6847 return ret;
041d3a8c 6848
bb13ffeb 6849 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6850 if (ret)
6851 goto done;
6852
6853 /*
6854 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6855 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6856 * more, all pages in [start, end) are free in page allocator.
6857 * What we are going to do is to allocate all pages from
6858 * [start, end) (that is remove them from page allocator).
6859 *
6860 * The only problem is that pages at the beginning and at the
6861 * end of interesting range may be not aligned with pages that
6862 * page allocator holds, ie. they can be part of higher order
6863 * pages. Because of this, we reserve the bigger range and
6864 * once this is done free the pages we are not interested in.
6865 *
6866 * We don't have to hold zone->lock here because the pages are
6867 * isolated thus they won't get removed from buddy.
6868 */
6869
6870 lru_add_drain_all();
510f5507 6871 drain_all_pages(cc.zone);
041d3a8c
MN
6872
6873 order = 0;
6874 outer_start = start;
6875 while (!PageBuddy(pfn_to_page(outer_start))) {
6876 if (++order >= MAX_ORDER) {
6877 ret = -EBUSY;
6878 goto done;
6879 }
6880 outer_start &= ~0UL << order;
6881 }
6882
6883 /* Make sure the range is really isolated. */
b023f468 6884 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6885 pr_info("%s: [%lx, %lx) PFNs busy\n",
6886 __func__, outer_start, end);
041d3a8c
MN
6887 ret = -EBUSY;
6888 goto done;
6889 }
6890
49f223a9 6891 /* Grab isolated pages from freelists. */
bb13ffeb 6892 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6893 if (!outer_end) {
6894 ret = -EBUSY;
6895 goto done;
6896 }
6897
6898 /* Free head and tail (if any) */
6899 if (start != outer_start)
6900 free_contig_range(outer_start, start - outer_start);
6901 if (end != outer_end)
6902 free_contig_range(end, outer_end - end);
6903
6904done:
6905 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6906 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6907 return ret;
6908}
6909
6910void free_contig_range(unsigned long pfn, unsigned nr_pages)
6911{
bcc2b02f
MS
6912 unsigned int count = 0;
6913
6914 for (; nr_pages--; pfn++) {
6915 struct page *page = pfn_to_page(pfn);
6916
6917 count += page_count(page) != 1;
6918 __free_page(page);
6919 }
6920 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6921}
6922#endif
6923
4ed7e022 6924#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6925/*
6926 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6927 * page high values need to be recalulated.
6928 */
4ed7e022
JL
6929void __meminit zone_pcp_update(struct zone *zone)
6930{
0a647f38 6931 unsigned cpu;
c8e251fa 6932 mutex_lock(&pcp_batch_high_lock);
0a647f38 6933 for_each_possible_cpu(cpu)
169f6c19
CS
6934 pageset_set_high_and_batch(zone,
6935 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6936 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6937}
6938#endif
6939
340175b7
JL
6940void zone_pcp_reset(struct zone *zone)
6941{
6942 unsigned long flags;
5a883813
MK
6943 int cpu;
6944 struct per_cpu_pageset *pset;
340175b7
JL
6945
6946 /* avoid races with drain_pages() */
6947 local_irq_save(flags);
6948 if (zone->pageset != &boot_pageset) {
5a883813
MK
6949 for_each_online_cpu(cpu) {
6950 pset = per_cpu_ptr(zone->pageset, cpu);
6951 drain_zonestat(zone, pset);
6952 }
340175b7
JL
6953 free_percpu(zone->pageset);
6954 zone->pageset = &boot_pageset;
6955 }
6956 local_irq_restore(flags);
6957}
6958
6dcd73d7 6959#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6960/*
6961 * All pages in the range must be isolated before calling this.
6962 */
6963void
6964__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6965{
6966 struct page *page;
6967 struct zone *zone;
7aeb09f9 6968 unsigned int order, i;
0c0e6195
KH
6969 unsigned long pfn;
6970 unsigned long flags;
6971 /* find the first valid pfn */
6972 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6973 if (pfn_valid(pfn))
6974 break;
6975 if (pfn == end_pfn)
6976 return;
6977 zone = page_zone(pfn_to_page(pfn));
6978 spin_lock_irqsave(&zone->lock, flags);
6979 pfn = start_pfn;
6980 while (pfn < end_pfn) {
6981 if (!pfn_valid(pfn)) {
6982 pfn++;
6983 continue;
6984 }
6985 page = pfn_to_page(pfn);
b023f468
WC
6986 /*
6987 * The HWPoisoned page may be not in buddy system, and
6988 * page_count() is not 0.
6989 */
6990 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6991 pfn++;
6992 SetPageReserved(page);
6993 continue;
6994 }
6995
0c0e6195
KH
6996 BUG_ON(page_count(page));
6997 BUG_ON(!PageBuddy(page));
6998 order = page_order(page);
6999#ifdef CONFIG_DEBUG_VM
7000 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7001 pfn, 1 << order, end_pfn);
7002#endif
7003 list_del(&page->lru);
7004 rmv_page_order(page);
7005 zone->free_area[order].nr_free--;
0c0e6195
KH
7006 for (i = 0; i < (1 << order); i++)
7007 SetPageReserved((page+i));
7008 pfn += (1 << order);
7009 }
7010 spin_unlock_irqrestore(&zone->lock, flags);
7011}
7012#endif
8d22ba1b
WF
7013
7014#ifdef CONFIG_MEMORY_FAILURE
7015bool is_free_buddy_page(struct page *page)
7016{
7017 struct zone *zone = page_zone(page);
7018 unsigned long pfn = page_to_pfn(page);
7019 unsigned long flags;
7aeb09f9 7020 unsigned int order;
8d22ba1b
WF
7021
7022 spin_lock_irqsave(&zone->lock, flags);
7023 for (order = 0; order < MAX_ORDER; order++) {
7024 struct page *page_head = page - (pfn & ((1 << order) - 1));
7025
7026 if (PageBuddy(page_head) && page_order(page_head) >= order)
7027 break;
7028 }
7029 spin_unlock_irqrestore(&zone->lock, flags);
7030
7031 return order < MAX_ORDER;
7032}
7033#endif
This page took 1.651807 seconds and 5 git commands to generate.