mm/page_alloc.c: change sysctl_lower_zone_reserve_ratio to sysctl_lowmem_reserve_rati...
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
1da177e4 65
7ee3d4e8 66#include <asm/sections.h>
1da177e4 67#include <asm/tlbflush.h>
ac924c60 68#include <asm/div64.h>
1da177e4
LT
69#include "internal.h"
70
c8e251fa
CS
71/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 73#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 74
72812019
LS
75#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76DEFINE_PER_CPU(int, numa_node);
77EXPORT_PER_CPU_SYMBOL(numa_node);
78#endif
79
7aac7898
LS
80#ifdef CONFIG_HAVE_MEMORYLESS_NODES
81/*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 89int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
90#endif
91
1da177e4 92/*
13808910 93 * Array of node states.
1da177e4 94 */
13808910
CL
95nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98#ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100#ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
102#endif
103#ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
105#endif
106 [N_CPU] = { { [0] = 1UL } },
107#endif /* NUMA */
108};
109EXPORT_SYMBOL(node_states);
110
c3d5f5f0
JL
111/* Protect totalram_pages and zone->managed_pages */
112static DEFINE_SPINLOCK(managed_page_count_lock);
113
6c231b7b 114unsigned long totalram_pages __read_mostly;
cb45b0e9 115unsigned long totalreserve_pages __read_mostly;
e48322ab 116unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
117/*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123unsigned long dirty_balance_reserve __read_mostly;
124
1b76b02f 125int percpu_pagelist_fraction;
dcce284a 126gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 127
bb14c2c7
VB
128/*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136static inline int get_pcppage_migratetype(struct page *page)
137{
138 return page->index;
139}
140
141static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142{
143 page->index = migratetype;
144}
145
452aa699
RW
146#ifdef CONFIG_PM_SLEEP
147/*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
c9e664f1
RW
155
156static gfp_t saved_gfp_mask;
157
158void pm_restore_gfp_mask(void)
452aa699
RW
159{
160 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
452aa699
RW
165}
166
c9e664f1 167void pm_restrict_gfp_mask(void)
452aa699 168{
452aa699 169 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
172 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 173}
f90ac398
MG
174
175bool pm_suspended_storage(void)
176{
177 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
178 return false;
179 return true;
180}
452aa699
RW
181#endif /* CONFIG_PM_SLEEP */
182
d9c23400
MG
183#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184int pageblock_order __read_mostly;
185#endif
186
d98c7a09 187static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 188
1da177e4
LT
189/*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
1da177e4 199 */
2f1b6248 200int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 201#ifdef CONFIG_ZONE_DMA
2f1b6248 202 256,
4b51d669 203#endif
fb0e7942 204#ifdef CONFIG_ZONE_DMA32
2f1b6248 205 256,
fb0e7942 206#endif
e53ef38d 207#ifdef CONFIG_HIGHMEM
2a1e274a 208 32,
e53ef38d 209#endif
2a1e274a 210 32,
2f1b6248 211};
1da177e4
LT
212
213EXPORT_SYMBOL(totalram_pages);
1da177e4 214
15ad7cdc 215static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 216#ifdef CONFIG_ZONE_DMA
2f1b6248 217 "DMA",
4b51d669 218#endif
fb0e7942 219#ifdef CONFIG_ZONE_DMA32
2f1b6248 220 "DMA32",
fb0e7942 221#endif
2f1b6248 222 "Normal",
e53ef38d 223#ifdef CONFIG_HIGHMEM
2a1e274a 224 "HighMem",
e53ef38d 225#endif
2a1e274a 226 "Movable",
2f1b6248
CL
227};
228
1da177e4 229int min_free_kbytes = 1024;
42aa83cb 230int user_min_free_kbytes = -1;
1da177e4 231
2c85f51d
JB
232static unsigned long __meminitdata nr_kernel_pages;
233static unsigned long __meminitdata nr_all_pages;
a3142c8e 234static unsigned long __meminitdata dma_reserve;
1da177e4 235
0ee332c1
TH
236#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
237static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
238static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
239static unsigned long __initdata required_kernelcore;
240static unsigned long __initdata required_movablecore;
241static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
242
243/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
244int movable_zone;
245EXPORT_SYMBOL(movable_zone);
246#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 247
418508c1
MS
248#if MAX_NUMNODES > 1
249int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 250int nr_online_nodes __read_mostly = 1;
418508c1 251EXPORT_SYMBOL(nr_node_ids);
62bc62a8 252EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
253#endif
254
9ef9acb0
MG
255int page_group_by_mobility_disabled __read_mostly;
256
3a80a7fa
MG
257#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
258static inline void reset_deferred_meminit(pg_data_t *pgdat)
259{
260 pgdat->first_deferred_pfn = ULONG_MAX;
261}
262
263/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 264static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 265{
ae026b2a 266 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
267 return true;
268
269 return false;
270}
271
7e18adb4
MG
272static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
273{
274 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
275 return true;
276
277 return false;
278}
279
3a80a7fa
MG
280/*
281 * Returns false when the remaining initialisation should be deferred until
282 * later in the boot cycle when it can be parallelised.
283 */
284static inline bool update_defer_init(pg_data_t *pgdat,
285 unsigned long pfn, unsigned long zone_end,
286 unsigned long *nr_initialised)
287{
288 /* Always populate low zones for address-contrained allocations */
289 if (zone_end < pgdat_end_pfn(pgdat))
290 return true;
291
292 /* Initialise at least 2G of the highest zone */
293 (*nr_initialised)++;
294 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
295 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
296 pgdat->first_deferred_pfn = pfn;
297 return false;
298 }
299
300 return true;
301}
302#else
303static inline void reset_deferred_meminit(pg_data_t *pgdat)
304{
305}
306
307static inline bool early_page_uninitialised(unsigned long pfn)
308{
309 return false;
310}
311
7e18adb4
MG
312static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
313{
314 return false;
315}
316
3a80a7fa
MG
317static inline bool update_defer_init(pg_data_t *pgdat,
318 unsigned long pfn, unsigned long zone_end,
319 unsigned long *nr_initialised)
320{
321 return true;
322}
323#endif
324
325
ee6f509c 326void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 327{
5d0f3f72
KM
328 if (unlikely(page_group_by_mobility_disabled &&
329 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
330 migratetype = MIGRATE_UNMOVABLE;
331
b2a0ac88
MG
332 set_pageblock_flags_group(page, (unsigned long)migratetype,
333 PB_migrate, PB_migrate_end);
334}
335
13e7444b 336#ifdef CONFIG_DEBUG_VM
c6a57e19 337static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 338{
bdc8cb98
DH
339 int ret = 0;
340 unsigned seq;
341 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 342 unsigned long sp, start_pfn;
c6a57e19 343
bdc8cb98
DH
344 do {
345 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
346 start_pfn = zone->zone_start_pfn;
347 sp = zone->spanned_pages;
108bcc96 348 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
349 ret = 1;
350 } while (zone_span_seqretry(zone, seq));
351
b5e6a5a2 352 if (ret)
613813e8
DH
353 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
354 pfn, zone_to_nid(zone), zone->name,
355 start_pfn, start_pfn + sp);
b5e6a5a2 356
bdc8cb98 357 return ret;
c6a57e19
DH
358}
359
360static int page_is_consistent(struct zone *zone, struct page *page)
361{
14e07298 362 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 363 return 0;
1da177e4 364 if (zone != page_zone(page))
c6a57e19
DH
365 return 0;
366
367 return 1;
368}
369/*
370 * Temporary debugging check for pages not lying within a given zone.
371 */
372static int bad_range(struct zone *zone, struct page *page)
373{
374 if (page_outside_zone_boundaries(zone, page))
1da177e4 375 return 1;
c6a57e19
DH
376 if (!page_is_consistent(zone, page))
377 return 1;
378
1da177e4
LT
379 return 0;
380}
13e7444b
NP
381#else
382static inline int bad_range(struct zone *zone, struct page *page)
383{
384 return 0;
385}
386#endif
387
d230dec1
KS
388static void bad_page(struct page *page, const char *reason,
389 unsigned long bad_flags)
1da177e4 390{
d936cf9b
HD
391 static unsigned long resume;
392 static unsigned long nr_shown;
393 static unsigned long nr_unshown;
394
2a7684a2
WF
395 /* Don't complain about poisoned pages */
396 if (PageHWPoison(page)) {
22b751c3 397 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
398 return;
399 }
400
d936cf9b
HD
401 /*
402 * Allow a burst of 60 reports, then keep quiet for that minute;
403 * or allow a steady drip of one report per second.
404 */
405 if (nr_shown == 60) {
406 if (time_before(jiffies, resume)) {
407 nr_unshown++;
408 goto out;
409 }
410 if (nr_unshown) {
1e9e6365
HD
411 printk(KERN_ALERT
412 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
413 nr_unshown);
414 nr_unshown = 0;
415 }
416 nr_shown = 0;
417 }
418 if (nr_shown++ == 0)
419 resume = jiffies + 60 * HZ;
420
1e9e6365 421 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 422 current->comm, page_to_pfn(page));
f0b791a3 423 dump_page_badflags(page, reason, bad_flags);
3dc14741 424
4f31888c 425 print_modules();
1da177e4 426 dump_stack();
d936cf9b 427out:
8cc3b392 428 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 429 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 430 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
431}
432
1da177e4
LT
433/*
434 * Higher-order pages are called "compound pages". They are structured thusly:
435 *
436 * The first PAGE_SIZE page is called the "head page".
437 *
438 * The remaining PAGE_SIZE pages are called "tail pages".
439 *
6416b9fa
WSH
440 * All pages have PG_compound set. All tail pages have their ->first_page
441 * pointing at the head page.
1da177e4 442 *
41d78ba5
HD
443 * The first tail page's ->lru.next holds the address of the compound page's
444 * put_page() function. Its ->lru.prev holds the order of allocation.
445 * This usage means that zero-order pages may not be compound.
1da177e4 446 */
d98c7a09
HD
447
448static void free_compound_page(struct page *page)
449{
d85f3385 450 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
451}
452
01ad1c08 453void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
454{
455 int i;
456 int nr_pages = 1 << order;
457
458 set_compound_page_dtor(page, free_compound_page);
459 set_compound_order(page, order);
460 __SetPageHead(page);
461 for (i = 1; i < nr_pages; i++) {
462 struct page *p = page + i;
58a84aa9 463 set_page_count(p, 0);
18229df5 464 p->first_page = page;
668f9abb
DR
465 /* Make sure p->first_page is always valid for PageTail() */
466 smp_wmb();
467 __SetPageTail(p);
18229df5
AW
468 }
469}
470
c0a32fc5
SG
471#ifdef CONFIG_DEBUG_PAGEALLOC
472unsigned int _debug_guardpage_minorder;
031bc574 473bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
474bool _debug_guardpage_enabled __read_mostly;
475
031bc574
JK
476static int __init early_debug_pagealloc(char *buf)
477{
478 if (!buf)
479 return -EINVAL;
480
481 if (strcmp(buf, "on") == 0)
482 _debug_pagealloc_enabled = true;
483
484 return 0;
485}
486early_param("debug_pagealloc", early_debug_pagealloc);
487
e30825f1
JK
488static bool need_debug_guardpage(void)
489{
031bc574
JK
490 /* If we don't use debug_pagealloc, we don't need guard page */
491 if (!debug_pagealloc_enabled())
492 return false;
493
e30825f1
JK
494 return true;
495}
496
497static void init_debug_guardpage(void)
498{
031bc574
JK
499 if (!debug_pagealloc_enabled())
500 return;
501
e30825f1
JK
502 _debug_guardpage_enabled = true;
503}
504
505struct page_ext_operations debug_guardpage_ops = {
506 .need = need_debug_guardpage,
507 .init = init_debug_guardpage,
508};
c0a32fc5
SG
509
510static int __init debug_guardpage_minorder_setup(char *buf)
511{
512 unsigned long res;
513
514 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
515 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
516 return 0;
517 }
518 _debug_guardpage_minorder = res;
519 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
520 return 0;
521}
522__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
523
2847cf95
JK
524static inline void set_page_guard(struct zone *zone, struct page *page,
525 unsigned int order, int migratetype)
c0a32fc5 526{
e30825f1
JK
527 struct page_ext *page_ext;
528
529 if (!debug_guardpage_enabled())
530 return;
531
532 page_ext = lookup_page_ext(page);
533 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
534
2847cf95
JK
535 INIT_LIST_HEAD(&page->lru);
536 set_page_private(page, order);
537 /* Guard pages are not available for any usage */
538 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
539}
540
2847cf95
JK
541static inline void clear_page_guard(struct zone *zone, struct page *page,
542 unsigned int order, int migratetype)
c0a32fc5 543{
e30825f1
JK
544 struct page_ext *page_ext;
545
546 if (!debug_guardpage_enabled())
547 return;
548
549 page_ext = lookup_page_ext(page);
550 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
551
2847cf95
JK
552 set_page_private(page, 0);
553 if (!is_migrate_isolate(migratetype))
554 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
555}
556#else
e30825f1 557struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
558static inline void set_page_guard(struct zone *zone, struct page *page,
559 unsigned int order, int migratetype) {}
560static inline void clear_page_guard(struct zone *zone, struct page *page,
561 unsigned int order, int migratetype) {}
c0a32fc5
SG
562#endif
563
7aeb09f9 564static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 565{
4c21e2f2 566 set_page_private(page, order);
676165a8 567 __SetPageBuddy(page);
1da177e4
LT
568}
569
570static inline void rmv_page_order(struct page *page)
571{
676165a8 572 __ClearPageBuddy(page);
4c21e2f2 573 set_page_private(page, 0);
1da177e4
LT
574}
575
1da177e4
LT
576/*
577 * This function checks whether a page is free && is the buddy
578 * we can do coalesce a page and its buddy if
13e7444b 579 * (a) the buddy is not in a hole &&
676165a8 580 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
581 * (c) a page and its buddy have the same order &&
582 * (d) a page and its buddy are in the same zone.
676165a8 583 *
cf6fe945
WSH
584 * For recording whether a page is in the buddy system, we set ->_mapcount
585 * PAGE_BUDDY_MAPCOUNT_VALUE.
586 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
587 * serialized by zone->lock.
1da177e4 588 *
676165a8 589 * For recording page's order, we use page_private(page).
1da177e4 590 */
cb2b95e1 591static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 592 unsigned int order)
1da177e4 593{
14e07298 594 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 595 return 0;
13e7444b 596
c0a32fc5 597 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
598 if (page_zone_id(page) != page_zone_id(buddy))
599 return 0;
600
4c5018ce
WY
601 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
602
c0a32fc5
SG
603 return 1;
604 }
605
cb2b95e1 606 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
607 /*
608 * zone check is done late to avoid uselessly
609 * calculating zone/node ids for pages that could
610 * never merge.
611 */
612 if (page_zone_id(page) != page_zone_id(buddy))
613 return 0;
614
4c5018ce
WY
615 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
616
6aa3001b 617 return 1;
676165a8 618 }
6aa3001b 619 return 0;
1da177e4
LT
620}
621
622/*
623 * Freeing function for a buddy system allocator.
624 *
625 * The concept of a buddy system is to maintain direct-mapped table
626 * (containing bit values) for memory blocks of various "orders".
627 * The bottom level table contains the map for the smallest allocatable
628 * units of memory (here, pages), and each level above it describes
629 * pairs of units from the levels below, hence, "buddies".
630 * At a high level, all that happens here is marking the table entry
631 * at the bottom level available, and propagating the changes upward
632 * as necessary, plus some accounting needed to play nicely with other
633 * parts of the VM system.
634 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
635 * free pages of length of (1 << order) and marked with _mapcount
636 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
637 * field.
1da177e4 638 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
639 * other. That is, if we allocate a small block, and both were
640 * free, the remainder of the region must be split into blocks.
1da177e4 641 * If a block is freed, and its buddy is also free, then this
5f63b720 642 * triggers coalescing into a block of larger size.
1da177e4 643 *
6d49e352 644 * -- nyc
1da177e4
LT
645 */
646
48db57f8 647static inline void __free_one_page(struct page *page,
dc4b0caf 648 unsigned long pfn,
ed0ae21d
MG
649 struct zone *zone, unsigned int order,
650 int migratetype)
1da177e4
LT
651{
652 unsigned long page_idx;
6dda9d55 653 unsigned long combined_idx;
43506fad 654 unsigned long uninitialized_var(buddy_idx);
6dda9d55 655 struct page *buddy;
3c605096 656 int max_order = MAX_ORDER;
1da177e4 657
d29bb978 658 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 659 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 660
ed0ae21d 661 VM_BUG_ON(migratetype == -1);
3c605096
JK
662 if (is_migrate_isolate(migratetype)) {
663 /*
664 * We restrict max order of merging to prevent merge
665 * between freepages on isolate pageblock and normal
666 * pageblock. Without this, pageblock isolation
667 * could cause incorrect freepage accounting.
668 */
669 max_order = min(MAX_ORDER, pageblock_order + 1);
670 } else {
8f82b55d 671 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 672 }
ed0ae21d 673
3c605096 674 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 675
309381fe
SL
676 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
677 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 678
3c605096 679 while (order < max_order - 1) {
43506fad
KC
680 buddy_idx = __find_buddy_index(page_idx, order);
681 buddy = page + (buddy_idx - page_idx);
cb2b95e1 682 if (!page_is_buddy(page, buddy, order))
3c82d0ce 683 break;
c0a32fc5
SG
684 /*
685 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
686 * merge with it and move up one order.
687 */
688 if (page_is_guard(buddy)) {
2847cf95 689 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
690 } else {
691 list_del(&buddy->lru);
692 zone->free_area[order].nr_free--;
693 rmv_page_order(buddy);
694 }
43506fad 695 combined_idx = buddy_idx & page_idx;
1da177e4
LT
696 page = page + (combined_idx - page_idx);
697 page_idx = combined_idx;
698 order++;
699 }
700 set_page_order(page, order);
6dda9d55
CZ
701
702 /*
703 * If this is not the largest possible page, check if the buddy
704 * of the next-highest order is free. If it is, it's possible
705 * that pages are being freed that will coalesce soon. In case,
706 * that is happening, add the free page to the tail of the list
707 * so it's less likely to be used soon and more likely to be merged
708 * as a higher order page
709 */
b7f50cfa 710 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 711 struct page *higher_page, *higher_buddy;
43506fad
KC
712 combined_idx = buddy_idx & page_idx;
713 higher_page = page + (combined_idx - page_idx);
714 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 715 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
716 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
717 list_add_tail(&page->lru,
718 &zone->free_area[order].free_list[migratetype]);
719 goto out;
720 }
721 }
722
723 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
724out:
1da177e4
LT
725 zone->free_area[order].nr_free++;
726}
727
224abf92 728static inline int free_pages_check(struct page *page)
1da177e4 729{
d230dec1 730 const char *bad_reason = NULL;
f0b791a3
DH
731 unsigned long bad_flags = 0;
732
733 if (unlikely(page_mapcount(page)))
734 bad_reason = "nonzero mapcount";
735 if (unlikely(page->mapping != NULL))
736 bad_reason = "non-NULL mapping";
737 if (unlikely(atomic_read(&page->_count) != 0))
738 bad_reason = "nonzero _count";
739 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
740 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
741 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
742 }
9edad6ea
JW
743#ifdef CONFIG_MEMCG
744 if (unlikely(page->mem_cgroup))
745 bad_reason = "page still charged to cgroup";
746#endif
f0b791a3
DH
747 if (unlikely(bad_reason)) {
748 bad_page(page, bad_reason, bad_flags);
79f4b7bf 749 return 1;
8cc3b392 750 }
90572890 751 page_cpupid_reset_last(page);
79f4b7bf
HD
752 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
753 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
754 return 0;
1da177e4
LT
755}
756
757/*
5f8dcc21 758 * Frees a number of pages from the PCP lists
1da177e4 759 * Assumes all pages on list are in same zone, and of same order.
207f36ee 760 * count is the number of pages to free.
1da177e4
LT
761 *
762 * If the zone was previously in an "all pages pinned" state then look to
763 * see if this freeing clears that state.
764 *
765 * And clear the zone's pages_scanned counter, to hold off the "all pages are
766 * pinned" detection logic.
767 */
5f8dcc21
MG
768static void free_pcppages_bulk(struct zone *zone, int count,
769 struct per_cpu_pages *pcp)
1da177e4 770{
5f8dcc21 771 int migratetype = 0;
a6f9edd6 772 int batch_free = 0;
72853e29 773 int to_free = count;
0d5d823a 774 unsigned long nr_scanned;
5f8dcc21 775
c54ad30c 776 spin_lock(&zone->lock);
0d5d823a
MG
777 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
778 if (nr_scanned)
779 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 780
72853e29 781 while (to_free) {
48db57f8 782 struct page *page;
5f8dcc21
MG
783 struct list_head *list;
784
785 /*
a6f9edd6
MG
786 * Remove pages from lists in a round-robin fashion. A
787 * batch_free count is maintained that is incremented when an
788 * empty list is encountered. This is so more pages are freed
789 * off fuller lists instead of spinning excessively around empty
790 * lists
5f8dcc21
MG
791 */
792 do {
a6f9edd6 793 batch_free++;
5f8dcc21
MG
794 if (++migratetype == MIGRATE_PCPTYPES)
795 migratetype = 0;
796 list = &pcp->lists[migratetype];
797 } while (list_empty(list));
48db57f8 798
1d16871d
NK
799 /* This is the only non-empty list. Free them all. */
800 if (batch_free == MIGRATE_PCPTYPES)
801 batch_free = to_free;
802
a6f9edd6 803 do {
770c8aaa
BZ
804 int mt; /* migratetype of the to-be-freed page */
805
a6f9edd6
MG
806 page = list_entry(list->prev, struct page, lru);
807 /* must delete as __free_one_page list manipulates */
808 list_del(&page->lru);
aa016d14 809
bb14c2c7 810 mt = get_pcppage_migratetype(page);
aa016d14
VB
811 /* MIGRATE_ISOLATE page should not go to pcplists */
812 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
813 /* Pageblock could have been isolated meanwhile */
8f82b55d 814 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 815 mt = get_pageblock_migratetype(page);
51bb1a40 816
a7016235 817 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 818 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 819 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 820 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 821 }
c54ad30c 822 spin_unlock(&zone->lock);
1da177e4
LT
823}
824
dc4b0caf
MG
825static void free_one_page(struct zone *zone,
826 struct page *page, unsigned long pfn,
7aeb09f9 827 unsigned int order,
ed0ae21d 828 int migratetype)
1da177e4 829{
0d5d823a 830 unsigned long nr_scanned;
006d22d9 831 spin_lock(&zone->lock);
0d5d823a
MG
832 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
833 if (nr_scanned)
834 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 835
ad53f92e
JK
836 if (unlikely(has_isolate_pageblock(zone) ||
837 is_migrate_isolate(migratetype))) {
838 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 839 }
dc4b0caf 840 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 841 spin_unlock(&zone->lock);
48db57f8
NP
842}
843
81422f29
KS
844static int free_tail_pages_check(struct page *head_page, struct page *page)
845{
846 if (!IS_ENABLED(CONFIG_DEBUG_VM))
847 return 0;
848 if (unlikely(!PageTail(page))) {
849 bad_page(page, "PageTail not set", 0);
850 return 1;
851 }
852 if (unlikely(page->first_page != head_page)) {
853 bad_page(page, "first_page not consistent", 0);
854 return 1;
855 }
856 return 0;
857}
858
1e8ce83c
RH
859static void __meminit __init_single_page(struct page *page, unsigned long pfn,
860 unsigned long zone, int nid)
861{
1e8ce83c 862 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
863 init_page_count(page);
864 page_mapcount_reset(page);
865 page_cpupid_reset_last(page);
1e8ce83c 866
1e8ce83c
RH
867 INIT_LIST_HEAD(&page->lru);
868#ifdef WANT_PAGE_VIRTUAL
869 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
870 if (!is_highmem_idx(zone))
871 set_page_address(page, __va(pfn << PAGE_SHIFT));
872#endif
873}
874
875static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
876 int nid)
877{
878 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
879}
880
7e18adb4
MG
881#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
882static void init_reserved_page(unsigned long pfn)
883{
884 pg_data_t *pgdat;
885 int nid, zid;
886
887 if (!early_page_uninitialised(pfn))
888 return;
889
890 nid = early_pfn_to_nid(pfn);
891 pgdat = NODE_DATA(nid);
892
893 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
894 struct zone *zone = &pgdat->node_zones[zid];
895
896 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
897 break;
898 }
899 __init_single_pfn(pfn, zid, nid);
900}
901#else
902static inline void init_reserved_page(unsigned long pfn)
903{
904}
905#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
906
92923ca3
NZ
907/*
908 * Initialised pages do not have PageReserved set. This function is
909 * called for each range allocated by the bootmem allocator and
910 * marks the pages PageReserved. The remaining valid pages are later
911 * sent to the buddy page allocator.
912 */
7e18adb4 913void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
914{
915 unsigned long start_pfn = PFN_DOWN(start);
916 unsigned long end_pfn = PFN_UP(end);
917
7e18adb4
MG
918 for (; start_pfn < end_pfn; start_pfn++) {
919 if (pfn_valid(start_pfn)) {
920 struct page *page = pfn_to_page(start_pfn);
921
922 init_reserved_page(start_pfn);
923 SetPageReserved(page);
924 }
925 }
92923ca3
NZ
926}
927
ec95f53a 928static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 929{
81422f29
KS
930 bool compound = PageCompound(page);
931 int i, bad = 0;
1da177e4 932
ab1f306f 933 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 934 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 935
b413d48a 936 trace_mm_page_free(page, order);
b1eeab67 937 kmemcheck_free_shadow(page, order);
b8c73fc2 938 kasan_free_pages(page, order);
b1eeab67 939
8dd60a3a
AA
940 if (PageAnon(page))
941 page->mapping = NULL;
81422f29
KS
942 bad += free_pages_check(page);
943 for (i = 1; i < (1 << order); i++) {
944 if (compound)
945 bad += free_tail_pages_check(page, page + i);
8dd60a3a 946 bad += free_pages_check(page + i);
81422f29 947 }
8cc3b392 948 if (bad)
ec95f53a 949 return false;
689bcebf 950
48c96a36
JK
951 reset_page_owner(page, order);
952
3ac7fe5a 953 if (!PageHighMem(page)) {
b8af2941
PK
954 debug_check_no_locks_freed(page_address(page),
955 PAGE_SIZE << order);
3ac7fe5a
TG
956 debug_check_no_obj_freed(page_address(page),
957 PAGE_SIZE << order);
958 }
dafb1367 959 arch_free_page(page, order);
48db57f8 960 kernel_map_pages(page, 1 << order, 0);
dafb1367 961
ec95f53a
KM
962 return true;
963}
964
965static void __free_pages_ok(struct page *page, unsigned int order)
966{
967 unsigned long flags;
95e34412 968 int migratetype;
dc4b0caf 969 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
970
971 if (!free_pages_prepare(page, order))
972 return;
973
cfc47a28 974 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 975 local_irq_save(flags);
f8891e5e 976 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 977 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 978 local_irq_restore(flags);
1da177e4
LT
979}
980
0e1cc95b 981static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 982 unsigned long pfn, unsigned int order)
a226f6c8 983{
c3993076 984 unsigned int nr_pages = 1 << order;
e2d0bd2b 985 struct page *p = page;
c3993076 986 unsigned int loop;
a226f6c8 987
e2d0bd2b
YL
988 prefetchw(p);
989 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
990 prefetchw(p + 1);
c3993076
JW
991 __ClearPageReserved(p);
992 set_page_count(p, 0);
a226f6c8 993 }
e2d0bd2b
YL
994 __ClearPageReserved(p);
995 set_page_count(p, 0);
c3993076 996
e2d0bd2b 997 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
998 set_page_refcounted(page);
999 __free_pages(page, order);
a226f6c8
DH
1000}
1001
75a592a4
MG
1002#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1003 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1004
75a592a4
MG
1005static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1006
1007int __meminit early_pfn_to_nid(unsigned long pfn)
1008{
7ace9917 1009 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1010 int nid;
1011
7ace9917 1012 spin_lock(&early_pfn_lock);
75a592a4 1013 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1014 if (nid < 0)
1015 nid = 0;
1016 spin_unlock(&early_pfn_lock);
1017
1018 return nid;
75a592a4
MG
1019}
1020#endif
1021
1022#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1023static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1024 struct mminit_pfnnid_cache *state)
1025{
1026 int nid;
1027
1028 nid = __early_pfn_to_nid(pfn, state);
1029 if (nid >= 0 && nid != node)
1030 return false;
1031 return true;
1032}
1033
1034/* Only safe to use early in boot when initialisation is single-threaded */
1035static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1036{
1037 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1038}
1039
1040#else
1041
1042static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1043{
1044 return true;
1045}
1046static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1047 struct mminit_pfnnid_cache *state)
1048{
1049 return true;
1050}
1051#endif
1052
1053
0e1cc95b 1054void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1055 unsigned int order)
1056{
1057 if (early_page_uninitialised(pfn))
1058 return;
1059 return __free_pages_boot_core(page, pfn, order);
1060}
1061
7e18adb4 1062#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1063static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1064 unsigned long pfn, int nr_pages)
1065{
1066 int i;
1067
1068 if (!page)
1069 return;
1070
1071 /* Free a large naturally-aligned chunk if possible */
1072 if (nr_pages == MAX_ORDER_NR_PAGES &&
1073 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1074 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1075 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1076 return;
1077 }
1078
1079 for (i = 0; i < nr_pages; i++, page++, pfn++)
1080 __free_pages_boot_core(page, pfn, 0);
1081}
1082
d3cd131d
NS
1083/* Completion tracking for deferred_init_memmap() threads */
1084static atomic_t pgdat_init_n_undone __initdata;
1085static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1086
1087static inline void __init pgdat_init_report_one_done(void)
1088{
1089 if (atomic_dec_and_test(&pgdat_init_n_undone))
1090 complete(&pgdat_init_all_done_comp);
1091}
0e1cc95b 1092
7e18adb4 1093/* Initialise remaining memory on a node */
0e1cc95b 1094static int __init deferred_init_memmap(void *data)
7e18adb4 1095{
0e1cc95b
MG
1096 pg_data_t *pgdat = data;
1097 int nid = pgdat->node_id;
7e18adb4
MG
1098 struct mminit_pfnnid_cache nid_init_state = { };
1099 unsigned long start = jiffies;
1100 unsigned long nr_pages = 0;
1101 unsigned long walk_start, walk_end;
1102 int i, zid;
1103 struct zone *zone;
7e18adb4 1104 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1105 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1106
0e1cc95b 1107 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1108 pgdat_init_report_one_done();
0e1cc95b
MG
1109 return 0;
1110 }
1111
1112 /* Bind memory initialisation thread to a local node if possible */
1113 if (!cpumask_empty(cpumask))
1114 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1115
1116 /* Sanity check boundaries */
1117 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1118 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1119 pgdat->first_deferred_pfn = ULONG_MAX;
1120
1121 /* Only the highest zone is deferred so find it */
1122 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1123 zone = pgdat->node_zones + zid;
1124 if (first_init_pfn < zone_end_pfn(zone))
1125 break;
1126 }
1127
1128 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1129 unsigned long pfn, end_pfn;
54608c3f 1130 struct page *page = NULL;
a4de83dd
MG
1131 struct page *free_base_page = NULL;
1132 unsigned long free_base_pfn = 0;
1133 int nr_to_free = 0;
7e18adb4
MG
1134
1135 end_pfn = min(walk_end, zone_end_pfn(zone));
1136 pfn = first_init_pfn;
1137 if (pfn < walk_start)
1138 pfn = walk_start;
1139 if (pfn < zone->zone_start_pfn)
1140 pfn = zone->zone_start_pfn;
1141
1142 for (; pfn < end_pfn; pfn++) {
54608c3f 1143 if (!pfn_valid_within(pfn))
a4de83dd 1144 goto free_range;
7e18adb4 1145
54608c3f
MG
1146 /*
1147 * Ensure pfn_valid is checked every
1148 * MAX_ORDER_NR_PAGES for memory holes
1149 */
1150 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1151 if (!pfn_valid(pfn)) {
1152 page = NULL;
a4de83dd 1153 goto free_range;
54608c3f
MG
1154 }
1155 }
1156
1157 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1158 page = NULL;
a4de83dd 1159 goto free_range;
54608c3f
MG
1160 }
1161
1162 /* Minimise pfn page lookups and scheduler checks */
1163 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1164 page++;
1165 } else {
a4de83dd
MG
1166 nr_pages += nr_to_free;
1167 deferred_free_range(free_base_page,
1168 free_base_pfn, nr_to_free);
1169 free_base_page = NULL;
1170 free_base_pfn = nr_to_free = 0;
1171
54608c3f
MG
1172 page = pfn_to_page(pfn);
1173 cond_resched();
1174 }
7e18adb4
MG
1175
1176 if (page->flags) {
1177 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1178 goto free_range;
7e18adb4
MG
1179 }
1180
1181 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1182 if (!free_base_page) {
1183 free_base_page = page;
1184 free_base_pfn = pfn;
1185 nr_to_free = 0;
1186 }
1187 nr_to_free++;
1188
1189 /* Where possible, batch up pages for a single free */
1190 continue;
1191free_range:
1192 /* Free the current block of pages to allocator */
1193 nr_pages += nr_to_free;
1194 deferred_free_range(free_base_page, free_base_pfn,
1195 nr_to_free);
1196 free_base_page = NULL;
1197 free_base_pfn = nr_to_free = 0;
7e18adb4 1198 }
a4de83dd 1199
7e18adb4
MG
1200 first_init_pfn = max(end_pfn, first_init_pfn);
1201 }
1202
1203 /* Sanity check that the next zone really is unpopulated */
1204 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1205
0e1cc95b 1206 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1207 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1208
1209 pgdat_init_report_one_done();
0e1cc95b
MG
1210 return 0;
1211}
1212
1213void __init page_alloc_init_late(void)
1214{
1215 int nid;
1216
d3cd131d
NS
1217 /* There will be num_node_state(N_MEMORY) threads */
1218 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1219 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1220 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1221 }
1222
1223 /* Block until all are initialised */
d3cd131d 1224 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1225
1226 /* Reinit limits that are based on free pages after the kernel is up */
1227 files_maxfiles_init();
7e18adb4
MG
1228}
1229#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1230
47118af0 1231#ifdef CONFIG_CMA
9cf510a5 1232/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1233void __init init_cma_reserved_pageblock(struct page *page)
1234{
1235 unsigned i = pageblock_nr_pages;
1236 struct page *p = page;
1237
1238 do {
1239 __ClearPageReserved(p);
1240 set_page_count(p, 0);
1241 } while (++p, --i);
1242
47118af0 1243 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1244
1245 if (pageblock_order >= MAX_ORDER) {
1246 i = pageblock_nr_pages;
1247 p = page;
1248 do {
1249 set_page_refcounted(p);
1250 __free_pages(p, MAX_ORDER - 1);
1251 p += MAX_ORDER_NR_PAGES;
1252 } while (i -= MAX_ORDER_NR_PAGES);
1253 } else {
1254 set_page_refcounted(page);
1255 __free_pages(page, pageblock_order);
1256 }
1257
3dcc0571 1258 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1259}
1260#endif
1da177e4
LT
1261
1262/*
1263 * The order of subdivision here is critical for the IO subsystem.
1264 * Please do not alter this order without good reasons and regression
1265 * testing. Specifically, as large blocks of memory are subdivided,
1266 * the order in which smaller blocks are delivered depends on the order
1267 * they're subdivided in this function. This is the primary factor
1268 * influencing the order in which pages are delivered to the IO
1269 * subsystem according to empirical testing, and this is also justified
1270 * by considering the behavior of a buddy system containing a single
1271 * large block of memory acted on by a series of small allocations.
1272 * This behavior is a critical factor in sglist merging's success.
1273 *
6d49e352 1274 * -- nyc
1da177e4 1275 */
085cc7d5 1276static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1277 int low, int high, struct free_area *area,
1278 int migratetype)
1da177e4
LT
1279{
1280 unsigned long size = 1 << high;
1281
1282 while (high > low) {
1283 area--;
1284 high--;
1285 size >>= 1;
309381fe 1286 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1287
2847cf95 1288 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1289 debug_guardpage_enabled() &&
2847cf95 1290 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1291 /*
1292 * Mark as guard pages (or page), that will allow to
1293 * merge back to allocator when buddy will be freed.
1294 * Corresponding page table entries will not be touched,
1295 * pages will stay not present in virtual address space
1296 */
2847cf95 1297 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1298 continue;
1299 }
b2a0ac88 1300 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1301 area->nr_free++;
1302 set_page_order(&page[size], high);
1303 }
1da177e4
LT
1304}
1305
1da177e4
LT
1306/*
1307 * This page is about to be returned from the page allocator
1308 */
2a7684a2 1309static inline int check_new_page(struct page *page)
1da177e4 1310{
d230dec1 1311 const char *bad_reason = NULL;
f0b791a3
DH
1312 unsigned long bad_flags = 0;
1313
1314 if (unlikely(page_mapcount(page)))
1315 bad_reason = "nonzero mapcount";
1316 if (unlikely(page->mapping != NULL))
1317 bad_reason = "non-NULL mapping";
1318 if (unlikely(atomic_read(&page->_count) != 0))
1319 bad_reason = "nonzero _count";
f4c18e6f
NH
1320 if (unlikely(page->flags & __PG_HWPOISON)) {
1321 bad_reason = "HWPoisoned (hardware-corrupted)";
1322 bad_flags = __PG_HWPOISON;
1323 }
f0b791a3
DH
1324 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1325 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1326 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1327 }
9edad6ea
JW
1328#ifdef CONFIG_MEMCG
1329 if (unlikely(page->mem_cgroup))
1330 bad_reason = "page still charged to cgroup";
1331#endif
f0b791a3
DH
1332 if (unlikely(bad_reason)) {
1333 bad_page(page, bad_reason, bad_flags);
689bcebf 1334 return 1;
8cc3b392 1335 }
2a7684a2
WF
1336 return 0;
1337}
1338
75379191
VB
1339static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1340 int alloc_flags)
2a7684a2
WF
1341{
1342 int i;
1343
1344 for (i = 0; i < (1 << order); i++) {
1345 struct page *p = page + i;
1346 if (unlikely(check_new_page(p)))
1347 return 1;
1348 }
689bcebf 1349
4c21e2f2 1350 set_page_private(page, 0);
7835e98b 1351 set_page_refcounted(page);
cc102509
NP
1352
1353 arch_alloc_page(page, order);
1da177e4 1354 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1355 kasan_alloc_pages(page, order);
17cf4406
NP
1356
1357 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1358 for (i = 0; i < (1 << order); i++)
1359 clear_highpage(page + i);
17cf4406
NP
1360
1361 if (order && (gfp_flags & __GFP_COMP))
1362 prep_compound_page(page, order);
1363
48c96a36
JK
1364 set_page_owner(page, order, gfp_flags);
1365
75379191 1366 /*
2f064f34 1367 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1368 * allocate the page. The expectation is that the caller is taking
1369 * steps that will free more memory. The caller should avoid the page
1370 * being used for !PFMEMALLOC purposes.
1371 */
2f064f34
MH
1372 if (alloc_flags & ALLOC_NO_WATERMARKS)
1373 set_page_pfmemalloc(page);
1374 else
1375 clear_page_pfmemalloc(page);
75379191 1376
689bcebf 1377 return 0;
1da177e4
LT
1378}
1379
56fd56b8
MG
1380/*
1381 * Go through the free lists for the given migratetype and remove
1382 * the smallest available page from the freelists
1383 */
728ec980
MG
1384static inline
1385struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1386 int migratetype)
1387{
1388 unsigned int current_order;
b8af2941 1389 struct free_area *area;
56fd56b8
MG
1390 struct page *page;
1391
1392 /* Find a page of the appropriate size in the preferred list */
1393 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1394 area = &(zone->free_area[current_order]);
1395 if (list_empty(&area->free_list[migratetype]))
1396 continue;
1397
1398 page = list_entry(area->free_list[migratetype].next,
1399 struct page, lru);
1400 list_del(&page->lru);
1401 rmv_page_order(page);
1402 area->nr_free--;
56fd56b8 1403 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1404 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1405 return page;
1406 }
1407
1408 return NULL;
1409}
1410
1411
b2a0ac88
MG
1412/*
1413 * This array describes the order lists are fallen back to when
1414 * the free lists for the desirable migrate type are depleted
1415 */
47118af0
MN
1416static int fallbacks[MIGRATE_TYPES][4] = {
1417 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1418 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
dc67647b 1419 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
47118af0 1420#ifdef CONFIG_CMA
47118af0 1421 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
47118af0 1422#endif
6d4a4916 1423 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1424#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1425 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1426#endif
b2a0ac88
MG
1427};
1428
dc67647b
JK
1429#ifdef CONFIG_CMA
1430static struct page *__rmqueue_cma_fallback(struct zone *zone,
1431 unsigned int order)
1432{
1433 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1434}
1435#else
1436static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1437 unsigned int order) { return NULL; }
1438#endif
1439
c361be55
MG
1440/*
1441 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1442 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1443 * boundary. If alignment is required, use move_freepages_block()
1444 */
435b405c 1445int move_freepages(struct zone *zone,
b69a7288
AB
1446 struct page *start_page, struct page *end_page,
1447 int migratetype)
c361be55
MG
1448{
1449 struct page *page;
1450 unsigned long order;
d100313f 1451 int pages_moved = 0;
c361be55
MG
1452
1453#ifndef CONFIG_HOLES_IN_ZONE
1454 /*
1455 * page_zone is not safe to call in this context when
1456 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1457 * anyway as we check zone boundaries in move_freepages_block().
1458 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1459 * grouping pages by mobility
c361be55 1460 */
97ee4ba7 1461 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1462#endif
1463
1464 for (page = start_page; page <= end_page;) {
344c790e 1465 /* Make sure we are not inadvertently changing nodes */
309381fe 1466 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1467
c361be55
MG
1468 if (!pfn_valid_within(page_to_pfn(page))) {
1469 page++;
1470 continue;
1471 }
1472
1473 if (!PageBuddy(page)) {
1474 page++;
1475 continue;
1476 }
1477
1478 order = page_order(page);
84be48d8
KS
1479 list_move(&page->lru,
1480 &zone->free_area[order].free_list[migratetype]);
c361be55 1481 page += 1 << order;
d100313f 1482 pages_moved += 1 << order;
c361be55
MG
1483 }
1484
d100313f 1485 return pages_moved;
c361be55
MG
1486}
1487
ee6f509c 1488int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1489 int migratetype)
c361be55
MG
1490{
1491 unsigned long start_pfn, end_pfn;
1492 struct page *start_page, *end_page;
1493
1494 start_pfn = page_to_pfn(page);
d9c23400 1495 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1496 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1497 end_page = start_page + pageblock_nr_pages - 1;
1498 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1499
1500 /* Do not cross zone boundaries */
108bcc96 1501 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1502 start_page = page;
108bcc96 1503 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1504 return 0;
1505
1506 return move_freepages(zone, start_page, end_page, migratetype);
1507}
1508
2f66a68f
MG
1509static void change_pageblock_range(struct page *pageblock_page,
1510 int start_order, int migratetype)
1511{
1512 int nr_pageblocks = 1 << (start_order - pageblock_order);
1513
1514 while (nr_pageblocks--) {
1515 set_pageblock_migratetype(pageblock_page, migratetype);
1516 pageblock_page += pageblock_nr_pages;
1517 }
1518}
1519
fef903ef 1520/*
9c0415eb
VB
1521 * When we are falling back to another migratetype during allocation, try to
1522 * steal extra free pages from the same pageblocks to satisfy further
1523 * allocations, instead of polluting multiple pageblocks.
1524 *
1525 * If we are stealing a relatively large buddy page, it is likely there will
1526 * be more free pages in the pageblock, so try to steal them all. For
1527 * reclaimable and unmovable allocations, we steal regardless of page size,
1528 * as fragmentation caused by those allocations polluting movable pageblocks
1529 * is worse than movable allocations stealing from unmovable and reclaimable
1530 * pageblocks.
fef903ef 1531 */
4eb7dce6
JK
1532static bool can_steal_fallback(unsigned int order, int start_mt)
1533{
1534 /*
1535 * Leaving this order check is intended, although there is
1536 * relaxed order check in next check. The reason is that
1537 * we can actually steal whole pageblock if this condition met,
1538 * but, below check doesn't guarantee it and that is just heuristic
1539 * so could be changed anytime.
1540 */
1541 if (order >= pageblock_order)
1542 return true;
1543
1544 if (order >= pageblock_order / 2 ||
1545 start_mt == MIGRATE_RECLAIMABLE ||
1546 start_mt == MIGRATE_UNMOVABLE ||
1547 page_group_by_mobility_disabled)
1548 return true;
1549
1550 return false;
1551}
1552
1553/*
1554 * This function implements actual steal behaviour. If order is large enough,
1555 * we can steal whole pageblock. If not, we first move freepages in this
1556 * pageblock and check whether half of pages are moved or not. If half of
1557 * pages are moved, we can change migratetype of pageblock and permanently
1558 * use it's pages as requested migratetype in the future.
1559 */
1560static void steal_suitable_fallback(struct zone *zone, struct page *page,
1561 int start_type)
fef903ef
SB
1562{
1563 int current_order = page_order(page);
4eb7dce6 1564 int pages;
fef903ef 1565
fef903ef
SB
1566 /* Take ownership for orders >= pageblock_order */
1567 if (current_order >= pageblock_order) {
1568 change_pageblock_range(page, current_order, start_type);
3a1086fb 1569 return;
fef903ef
SB
1570 }
1571
4eb7dce6 1572 pages = move_freepages_block(zone, page, start_type);
fef903ef 1573
4eb7dce6
JK
1574 /* Claim the whole block if over half of it is free */
1575 if (pages >= (1 << (pageblock_order-1)) ||
1576 page_group_by_mobility_disabled)
1577 set_pageblock_migratetype(page, start_type);
1578}
1579
2149cdae
JK
1580/*
1581 * Check whether there is a suitable fallback freepage with requested order.
1582 * If only_stealable is true, this function returns fallback_mt only if
1583 * we can steal other freepages all together. This would help to reduce
1584 * fragmentation due to mixed migratetype pages in one pageblock.
1585 */
1586int find_suitable_fallback(struct free_area *area, unsigned int order,
1587 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1588{
1589 int i;
1590 int fallback_mt;
1591
1592 if (area->nr_free == 0)
1593 return -1;
1594
1595 *can_steal = false;
1596 for (i = 0;; i++) {
1597 fallback_mt = fallbacks[migratetype][i];
1598 if (fallback_mt == MIGRATE_RESERVE)
1599 break;
1600
1601 if (list_empty(&area->free_list[fallback_mt]))
1602 continue;
fef903ef 1603
4eb7dce6
JK
1604 if (can_steal_fallback(order, migratetype))
1605 *can_steal = true;
1606
2149cdae
JK
1607 if (!only_stealable)
1608 return fallback_mt;
1609
1610 if (*can_steal)
1611 return fallback_mt;
fef903ef 1612 }
4eb7dce6
JK
1613
1614 return -1;
fef903ef
SB
1615}
1616
b2a0ac88 1617/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1618static inline struct page *
7aeb09f9 1619__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1620{
b8af2941 1621 struct free_area *area;
7aeb09f9 1622 unsigned int current_order;
b2a0ac88 1623 struct page *page;
4eb7dce6
JK
1624 int fallback_mt;
1625 bool can_steal;
b2a0ac88
MG
1626
1627 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1628 for (current_order = MAX_ORDER-1;
1629 current_order >= order && current_order <= MAX_ORDER-1;
1630 --current_order) {
4eb7dce6
JK
1631 area = &(zone->free_area[current_order]);
1632 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1633 start_migratetype, false, &can_steal);
4eb7dce6
JK
1634 if (fallback_mt == -1)
1635 continue;
b2a0ac88 1636
4eb7dce6
JK
1637 page = list_entry(area->free_list[fallback_mt].next,
1638 struct page, lru);
1639 if (can_steal)
1640 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1641
4eb7dce6
JK
1642 /* Remove the page from the freelists */
1643 area->nr_free--;
1644 list_del(&page->lru);
1645 rmv_page_order(page);
3a1086fb 1646
4eb7dce6
JK
1647 expand(zone, page, order, current_order, area,
1648 start_migratetype);
1649 /*
bb14c2c7 1650 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1651 * migratetype depending on the decisions in
bb14c2c7
VB
1652 * find_suitable_fallback(). This is OK as long as it does not
1653 * differ for MIGRATE_CMA pageblocks. Those can be used as
1654 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1655 */
bb14c2c7 1656 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1657
4eb7dce6
JK
1658 trace_mm_page_alloc_extfrag(page, order, current_order,
1659 start_migratetype, fallback_mt);
e0fff1bd 1660
4eb7dce6 1661 return page;
b2a0ac88
MG
1662 }
1663
728ec980 1664 return NULL;
b2a0ac88
MG
1665}
1666
56fd56b8 1667/*
1da177e4
LT
1668 * Do the hard work of removing an element from the buddy allocator.
1669 * Call me with the zone->lock already held.
1670 */
b2a0ac88
MG
1671static struct page *__rmqueue(struct zone *zone, unsigned int order,
1672 int migratetype)
1da177e4 1673{
1da177e4
LT
1674 struct page *page;
1675
728ec980 1676retry_reserve:
56fd56b8 1677 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1678
728ec980 1679 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
dc67647b
JK
1680 if (migratetype == MIGRATE_MOVABLE)
1681 page = __rmqueue_cma_fallback(zone, order);
1682
1683 if (!page)
1684 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1685
728ec980
MG
1686 /*
1687 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1688 * is used because __rmqueue_smallest is an inline function
1689 * and we want just one call site
1690 */
1691 if (!page) {
1692 migratetype = MIGRATE_RESERVE;
1693 goto retry_reserve;
1694 }
1695 }
1696
0d3d062a 1697 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1698 return page;
1da177e4
LT
1699}
1700
5f63b720 1701/*
1da177e4
LT
1702 * Obtain a specified number of elements from the buddy allocator, all under
1703 * a single hold of the lock, for efficiency. Add them to the supplied list.
1704 * Returns the number of new pages which were placed at *list.
1705 */
5f63b720 1706static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1707 unsigned long count, struct list_head *list,
b745bc85 1708 int migratetype, bool cold)
1da177e4 1709{
5bcc9f86 1710 int i;
5f63b720 1711
c54ad30c 1712 spin_lock(&zone->lock);
1da177e4 1713 for (i = 0; i < count; ++i) {
b2a0ac88 1714 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1715 if (unlikely(page == NULL))
1da177e4 1716 break;
81eabcbe
MG
1717
1718 /*
1719 * Split buddy pages returned by expand() are received here
1720 * in physical page order. The page is added to the callers and
1721 * list and the list head then moves forward. From the callers
1722 * perspective, the linked list is ordered by page number in
1723 * some conditions. This is useful for IO devices that can
1724 * merge IO requests if the physical pages are ordered
1725 * properly.
1726 */
b745bc85 1727 if (likely(!cold))
e084b2d9
MG
1728 list_add(&page->lru, list);
1729 else
1730 list_add_tail(&page->lru, list);
81eabcbe 1731 list = &page->lru;
bb14c2c7 1732 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1733 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1734 -(1 << order));
1da177e4 1735 }
f2260e6b 1736 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1737 spin_unlock(&zone->lock);
085cc7d5 1738 return i;
1da177e4
LT
1739}
1740
4ae7c039 1741#ifdef CONFIG_NUMA
8fce4d8e 1742/*
4037d452
CL
1743 * Called from the vmstat counter updater to drain pagesets of this
1744 * currently executing processor on remote nodes after they have
1745 * expired.
1746 *
879336c3
CL
1747 * Note that this function must be called with the thread pinned to
1748 * a single processor.
8fce4d8e 1749 */
4037d452 1750void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1751{
4ae7c039 1752 unsigned long flags;
7be12fc9 1753 int to_drain, batch;
4ae7c039 1754
4037d452 1755 local_irq_save(flags);
4db0c3c2 1756 batch = READ_ONCE(pcp->batch);
7be12fc9 1757 to_drain = min(pcp->count, batch);
2a13515c
KM
1758 if (to_drain > 0) {
1759 free_pcppages_bulk(zone, to_drain, pcp);
1760 pcp->count -= to_drain;
1761 }
4037d452 1762 local_irq_restore(flags);
4ae7c039
CL
1763}
1764#endif
1765
9f8f2172 1766/*
93481ff0 1767 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1768 *
1769 * The processor must either be the current processor and the
1770 * thread pinned to the current processor or a processor that
1771 * is not online.
1772 */
93481ff0 1773static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1774{
c54ad30c 1775 unsigned long flags;
93481ff0
VB
1776 struct per_cpu_pageset *pset;
1777 struct per_cpu_pages *pcp;
1da177e4 1778
93481ff0
VB
1779 local_irq_save(flags);
1780 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1781
93481ff0
VB
1782 pcp = &pset->pcp;
1783 if (pcp->count) {
1784 free_pcppages_bulk(zone, pcp->count, pcp);
1785 pcp->count = 0;
1786 }
1787 local_irq_restore(flags);
1788}
3dfa5721 1789
93481ff0
VB
1790/*
1791 * Drain pcplists of all zones on the indicated processor.
1792 *
1793 * The processor must either be the current processor and the
1794 * thread pinned to the current processor or a processor that
1795 * is not online.
1796 */
1797static void drain_pages(unsigned int cpu)
1798{
1799 struct zone *zone;
1800
1801 for_each_populated_zone(zone) {
1802 drain_pages_zone(cpu, zone);
1da177e4
LT
1803 }
1804}
1da177e4 1805
9f8f2172
CL
1806/*
1807 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1808 *
1809 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1810 * the single zone's pages.
9f8f2172 1811 */
93481ff0 1812void drain_local_pages(struct zone *zone)
9f8f2172 1813{
93481ff0
VB
1814 int cpu = smp_processor_id();
1815
1816 if (zone)
1817 drain_pages_zone(cpu, zone);
1818 else
1819 drain_pages(cpu);
9f8f2172
CL
1820}
1821
1822/*
74046494
GBY
1823 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1824 *
93481ff0
VB
1825 * When zone parameter is non-NULL, spill just the single zone's pages.
1826 *
74046494
GBY
1827 * Note that this code is protected against sending an IPI to an offline
1828 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1829 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1830 * nothing keeps CPUs from showing up after we populated the cpumask and
1831 * before the call to on_each_cpu_mask().
9f8f2172 1832 */
93481ff0 1833void drain_all_pages(struct zone *zone)
9f8f2172 1834{
74046494 1835 int cpu;
74046494
GBY
1836
1837 /*
1838 * Allocate in the BSS so we wont require allocation in
1839 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1840 */
1841 static cpumask_t cpus_with_pcps;
1842
1843 /*
1844 * We don't care about racing with CPU hotplug event
1845 * as offline notification will cause the notified
1846 * cpu to drain that CPU pcps and on_each_cpu_mask
1847 * disables preemption as part of its processing
1848 */
1849 for_each_online_cpu(cpu) {
93481ff0
VB
1850 struct per_cpu_pageset *pcp;
1851 struct zone *z;
74046494 1852 bool has_pcps = false;
93481ff0
VB
1853
1854 if (zone) {
74046494 1855 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1856 if (pcp->pcp.count)
74046494 1857 has_pcps = true;
93481ff0
VB
1858 } else {
1859 for_each_populated_zone(z) {
1860 pcp = per_cpu_ptr(z->pageset, cpu);
1861 if (pcp->pcp.count) {
1862 has_pcps = true;
1863 break;
1864 }
74046494
GBY
1865 }
1866 }
93481ff0 1867
74046494
GBY
1868 if (has_pcps)
1869 cpumask_set_cpu(cpu, &cpus_with_pcps);
1870 else
1871 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1872 }
93481ff0
VB
1873 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1874 zone, 1);
9f8f2172
CL
1875}
1876
296699de 1877#ifdef CONFIG_HIBERNATION
1da177e4
LT
1878
1879void mark_free_pages(struct zone *zone)
1880{
f623f0db
RW
1881 unsigned long pfn, max_zone_pfn;
1882 unsigned long flags;
7aeb09f9 1883 unsigned int order, t;
1da177e4
LT
1884 struct list_head *curr;
1885
8080fc03 1886 if (zone_is_empty(zone))
1da177e4
LT
1887 return;
1888
1889 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1890
108bcc96 1891 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1892 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1893 if (pfn_valid(pfn)) {
1894 struct page *page = pfn_to_page(pfn);
1895
7be98234
RW
1896 if (!swsusp_page_is_forbidden(page))
1897 swsusp_unset_page_free(page);
f623f0db 1898 }
1da177e4 1899
b2a0ac88
MG
1900 for_each_migratetype_order(order, t) {
1901 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1902 unsigned long i;
1da177e4 1903
f623f0db
RW
1904 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1905 for (i = 0; i < (1UL << order); i++)
7be98234 1906 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1907 }
b2a0ac88 1908 }
1da177e4
LT
1909 spin_unlock_irqrestore(&zone->lock, flags);
1910}
e2c55dc8 1911#endif /* CONFIG_PM */
1da177e4 1912
1da177e4
LT
1913/*
1914 * Free a 0-order page
b745bc85 1915 * cold == true ? free a cold page : free a hot page
1da177e4 1916 */
b745bc85 1917void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1918{
1919 struct zone *zone = page_zone(page);
1920 struct per_cpu_pages *pcp;
1921 unsigned long flags;
dc4b0caf 1922 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1923 int migratetype;
1da177e4 1924
ec95f53a 1925 if (!free_pages_prepare(page, 0))
689bcebf
HD
1926 return;
1927
dc4b0caf 1928 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 1929 set_pcppage_migratetype(page, migratetype);
1da177e4 1930 local_irq_save(flags);
f8891e5e 1931 __count_vm_event(PGFREE);
da456f14 1932
5f8dcc21
MG
1933 /*
1934 * We only track unmovable, reclaimable and movable on pcp lists.
1935 * Free ISOLATE pages back to the allocator because they are being
1936 * offlined but treat RESERVE as movable pages so we can get those
1937 * areas back if necessary. Otherwise, we may have to free
1938 * excessively into the page allocator
1939 */
1940 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1941 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1942 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1943 goto out;
1944 }
1945 migratetype = MIGRATE_MOVABLE;
1946 }
1947
99dcc3e5 1948 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1949 if (!cold)
5f8dcc21 1950 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1951 else
1952 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1953 pcp->count++;
48db57f8 1954 if (pcp->count >= pcp->high) {
4db0c3c2 1955 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
1956 free_pcppages_bulk(zone, batch, pcp);
1957 pcp->count -= batch;
48db57f8 1958 }
5f8dcc21
MG
1959
1960out:
1da177e4 1961 local_irq_restore(flags);
1da177e4
LT
1962}
1963
cc59850e
KK
1964/*
1965 * Free a list of 0-order pages
1966 */
b745bc85 1967void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1968{
1969 struct page *page, *next;
1970
1971 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1972 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1973 free_hot_cold_page(page, cold);
1974 }
1975}
1976
8dfcc9ba
NP
1977/*
1978 * split_page takes a non-compound higher-order page, and splits it into
1979 * n (1<<order) sub-pages: page[0..n]
1980 * Each sub-page must be freed individually.
1981 *
1982 * Note: this is probably too low level an operation for use in drivers.
1983 * Please consult with lkml before using this in your driver.
1984 */
1985void split_page(struct page *page, unsigned int order)
1986{
1987 int i;
e2cfc911 1988 gfp_t gfp_mask;
8dfcc9ba 1989
309381fe
SL
1990 VM_BUG_ON_PAGE(PageCompound(page), page);
1991 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1992
1993#ifdef CONFIG_KMEMCHECK
1994 /*
1995 * Split shadow pages too, because free(page[0]) would
1996 * otherwise free the whole shadow.
1997 */
1998 if (kmemcheck_page_is_tracked(page))
1999 split_page(virt_to_page(page[0].shadow), order);
2000#endif
2001
e2cfc911
JK
2002 gfp_mask = get_page_owner_gfp(page);
2003 set_page_owner(page, 0, gfp_mask);
48c96a36 2004 for (i = 1; i < (1 << order); i++) {
7835e98b 2005 set_page_refcounted(page + i);
e2cfc911 2006 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2007 }
8dfcc9ba 2008}
5853ff23 2009EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2010
3c605096 2011int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2012{
748446bb
MG
2013 unsigned long watermark;
2014 struct zone *zone;
2139cbe6 2015 int mt;
748446bb
MG
2016
2017 BUG_ON(!PageBuddy(page));
2018
2019 zone = page_zone(page);
2e30abd1 2020 mt = get_pageblock_migratetype(page);
748446bb 2021
194159fb 2022 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2023 /* Obey watermarks as if the page was being allocated */
2024 watermark = low_wmark_pages(zone) + (1 << order);
2025 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2026 return 0;
2027
8fb74b9f 2028 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2029 }
748446bb
MG
2030
2031 /* Remove page from free list */
2032 list_del(&page->lru);
2033 zone->free_area[order].nr_free--;
2034 rmv_page_order(page);
2139cbe6 2035
e2cfc911 2036 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2037
8fb74b9f 2038 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2039 if (order >= pageblock_order - 1) {
2040 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2041 for (; page < endpage; page += pageblock_nr_pages) {
2042 int mt = get_pageblock_migratetype(page);
194159fb 2043 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2044 set_pageblock_migratetype(page,
2045 MIGRATE_MOVABLE);
2046 }
748446bb
MG
2047 }
2048
f3a14ced 2049
8fb74b9f 2050 return 1UL << order;
1fb3f8ca
MG
2051}
2052
2053/*
2054 * Similar to split_page except the page is already free. As this is only
2055 * being used for migration, the migratetype of the block also changes.
2056 * As this is called with interrupts disabled, the caller is responsible
2057 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2058 * are enabled.
2059 *
2060 * Note: this is probably too low level an operation for use in drivers.
2061 * Please consult with lkml before using this in your driver.
2062 */
2063int split_free_page(struct page *page)
2064{
2065 unsigned int order;
2066 int nr_pages;
2067
1fb3f8ca
MG
2068 order = page_order(page);
2069
8fb74b9f 2070 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2071 if (!nr_pages)
2072 return 0;
2073
2074 /* Split into individual pages */
2075 set_page_refcounted(page);
2076 split_page(page, order);
2077 return nr_pages;
748446bb
MG
2078}
2079
1da177e4 2080/*
75379191 2081 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2082 */
0a15c3e9
MG
2083static inline
2084struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
2085 struct zone *zone, unsigned int order,
2086 gfp_t gfp_flags, int migratetype)
1da177e4
LT
2087{
2088 unsigned long flags;
689bcebf 2089 struct page *page;
b745bc85 2090 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2091
48db57f8 2092 if (likely(order == 0)) {
1da177e4 2093 struct per_cpu_pages *pcp;
5f8dcc21 2094 struct list_head *list;
1da177e4 2095
1da177e4 2096 local_irq_save(flags);
99dcc3e5
CL
2097 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2098 list = &pcp->lists[migratetype];
5f8dcc21 2099 if (list_empty(list)) {
535131e6 2100 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2101 pcp->batch, list,
e084b2d9 2102 migratetype, cold);
5f8dcc21 2103 if (unlikely(list_empty(list)))
6fb332fa 2104 goto failed;
535131e6 2105 }
b92a6edd 2106
5f8dcc21
MG
2107 if (cold)
2108 page = list_entry(list->prev, struct page, lru);
2109 else
2110 page = list_entry(list->next, struct page, lru);
2111
b92a6edd
MG
2112 list_del(&page->lru);
2113 pcp->count--;
7fb1d9fc 2114 } else {
dab48dab
AM
2115 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2116 /*
2117 * __GFP_NOFAIL is not to be used in new code.
2118 *
2119 * All __GFP_NOFAIL callers should be fixed so that they
2120 * properly detect and handle allocation failures.
2121 *
2122 * We most definitely don't want callers attempting to
4923abf9 2123 * allocate greater than order-1 page units with
dab48dab
AM
2124 * __GFP_NOFAIL.
2125 */
4923abf9 2126 WARN_ON_ONCE(order > 1);
dab48dab 2127 }
1da177e4 2128 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 2129 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2130 spin_unlock(&zone->lock);
2131 if (!page)
2132 goto failed;
d1ce749a 2133 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2134 get_pcppage_migratetype(page));
1da177e4
LT
2135 }
2136
3a025760 2137 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2138 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2139 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2140 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2141
f8891e5e 2142 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2143 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2144 local_irq_restore(flags);
1da177e4 2145
309381fe 2146 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2147 return page;
a74609fa
NP
2148
2149failed:
2150 local_irq_restore(flags);
a74609fa 2151 return NULL;
1da177e4
LT
2152}
2153
933e312e
AM
2154#ifdef CONFIG_FAIL_PAGE_ALLOC
2155
b2588c4b 2156static struct {
933e312e
AM
2157 struct fault_attr attr;
2158
2159 u32 ignore_gfp_highmem;
2160 u32 ignore_gfp_wait;
54114994 2161 u32 min_order;
933e312e
AM
2162} fail_page_alloc = {
2163 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
2164 .ignore_gfp_wait = 1,
2165 .ignore_gfp_highmem = 1,
54114994 2166 .min_order = 1,
933e312e
AM
2167};
2168
2169static int __init setup_fail_page_alloc(char *str)
2170{
2171 return setup_fault_attr(&fail_page_alloc.attr, str);
2172}
2173__setup("fail_page_alloc=", setup_fail_page_alloc);
2174
deaf386e 2175static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2176{
54114994 2177 if (order < fail_page_alloc.min_order)
deaf386e 2178 return false;
933e312e 2179 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2180 return false;
933e312e 2181 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2182 return false;
933e312e 2183 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 2184 return false;
933e312e
AM
2185
2186 return should_fail(&fail_page_alloc.attr, 1 << order);
2187}
2188
2189#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2190
2191static int __init fail_page_alloc_debugfs(void)
2192{
f4ae40a6 2193 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2194 struct dentry *dir;
933e312e 2195
dd48c085
AM
2196 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2197 &fail_page_alloc.attr);
2198 if (IS_ERR(dir))
2199 return PTR_ERR(dir);
933e312e 2200
b2588c4b
AM
2201 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2202 &fail_page_alloc.ignore_gfp_wait))
2203 goto fail;
2204 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2205 &fail_page_alloc.ignore_gfp_highmem))
2206 goto fail;
2207 if (!debugfs_create_u32("min-order", mode, dir,
2208 &fail_page_alloc.min_order))
2209 goto fail;
2210
2211 return 0;
2212fail:
dd48c085 2213 debugfs_remove_recursive(dir);
933e312e 2214
b2588c4b 2215 return -ENOMEM;
933e312e
AM
2216}
2217
2218late_initcall(fail_page_alloc_debugfs);
2219
2220#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2221
2222#else /* CONFIG_FAIL_PAGE_ALLOC */
2223
deaf386e 2224static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2225{
deaf386e 2226 return false;
933e312e
AM
2227}
2228
2229#endif /* CONFIG_FAIL_PAGE_ALLOC */
2230
1da177e4 2231/*
88f5acf8 2232 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
2233 * of the allocation.
2234 */
7aeb09f9
MG
2235static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2236 unsigned long mark, int classzone_idx, int alloc_flags,
2237 long free_pages)
1da177e4 2238{
26086de3 2239 /* free_pages may go negative - that's OK */
d23ad423 2240 long min = mark;
1da177e4 2241 int o;
026b0814 2242 long free_cma = 0;
1da177e4 2243
df0a6daa 2244 free_pages -= (1 << order) - 1;
7fb1d9fc 2245 if (alloc_flags & ALLOC_HIGH)
1da177e4 2246 min -= min / 2;
7fb1d9fc 2247 if (alloc_flags & ALLOC_HARDER)
1da177e4 2248 min -= min / 4;
d95ea5d1
BZ
2249#ifdef CONFIG_CMA
2250 /* If allocation can't use CMA areas don't use free CMA pages */
2251 if (!(alloc_flags & ALLOC_CMA))
026b0814 2252 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2253#endif
026b0814 2254
3484b2de 2255 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2256 return false;
1da177e4
LT
2257 for (o = 0; o < order; o++) {
2258 /* At the next order, this order's pages become unavailable */
2259 free_pages -= z->free_area[o].nr_free << o;
2260
2261 /* Require fewer higher order pages to be free */
2262 min >>= 1;
2263
2264 if (free_pages <= min)
88f5acf8 2265 return false;
1da177e4 2266 }
88f5acf8
MG
2267 return true;
2268}
2269
7aeb09f9 2270bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2271 int classzone_idx, int alloc_flags)
2272{
2273 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2274 zone_page_state(z, NR_FREE_PAGES));
2275}
2276
7aeb09f9
MG
2277bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2278 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
2279{
2280 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2281
2282 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2283 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2284
2285 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2286 free_pages);
1da177e4
LT
2287}
2288
9276b1bc
PJ
2289#ifdef CONFIG_NUMA
2290/*
2291 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
2292 * skip over zones that are not allowed by the cpuset, or that have
2293 * been recently (in last second) found to be nearly full. See further
2294 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 2295 * that have to skip over a lot of full or unallowed zones.
9276b1bc 2296 *
a1aeb65a 2297 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 2298 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 2299 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
2300 *
2301 * If the zonelist cache is not available for this zonelist, does
2302 * nothing and returns NULL.
2303 *
2304 * If the fullzones BITMAP in the zonelist cache is stale (more than
2305 * a second since last zap'd) then we zap it out (clear its bits.)
2306 *
2307 * We hold off even calling zlc_setup, until after we've checked the
2308 * first zone in the zonelist, on the theory that most allocations will
2309 * be satisfied from that first zone, so best to examine that zone as
2310 * quickly as we can.
2311 */
2312static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2313{
2314 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2315 nodemask_t *allowednodes; /* zonelist_cache approximation */
2316
2317 zlc = zonelist->zlcache_ptr;
2318 if (!zlc)
2319 return NULL;
2320
f05111f5 2321 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
2322 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2323 zlc->last_full_zap = jiffies;
2324 }
2325
2326 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2327 &cpuset_current_mems_allowed :
4b0ef1fe 2328 &node_states[N_MEMORY];
9276b1bc
PJ
2329 return allowednodes;
2330}
2331
2332/*
2333 * Given 'z' scanning a zonelist, run a couple of quick checks to see
2334 * if it is worth looking at further for free memory:
2335 * 1) Check that the zone isn't thought to be full (doesn't have its
2336 * bit set in the zonelist_cache fullzones BITMAP).
2337 * 2) Check that the zones node (obtained from the zonelist_cache
2338 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2339 * Return true (non-zero) if zone is worth looking at further, or
2340 * else return false (zero) if it is not.
2341 *
2342 * This check -ignores- the distinction between various watermarks,
2343 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2344 * found to be full for any variation of these watermarks, it will
2345 * be considered full for up to one second by all requests, unless
2346 * we are so low on memory on all allowed nodes that we are forced
2347 * into the second scan of the zonelist.
2348 *
2349 * In the second scan we ignore this zonelist cache and exactly
2350 * apply the watermarks to all zones, even it is slower to do so.
2351 * We are low on memory in the second scan, and should leave no stone
2352 * unturned looking for a free page.
2353 */
dd1a239f 2354static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2355 nodemask_t *allowednodes)
2356{
2357 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2358 int i; /* index of *z in zonelist zones */
2359 int n; /* node that zone *z is on */
2360
2361 zlc = zonelist->zlcache_ptr;
2362 if (!zlc)
2363 return 1;
2364
dd1a239f 2365 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2366 n = zlc->z_to_n[i];
2367
2368 /* This zone is worth trying if it is allowed but not full */
2369 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2370}
2371
2372/*
2373 * Given 'z' scanning a zonelist, set the corresponding bit in
2374 * zlc->fullzones, so that subsequent attempts to allocate a page
2375 * from that zone don't waste time re-examining it.
2376 */
dd1a239f 2377static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2378{
2379 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2380 int i; /* index of *z in zonelist zones */
2381
2382 zlc = zonelist->zlcache_ptr;
2383 if (!zlc)
2384 return;
2385
dd1a239f 2386 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2387
2388 set_bit(i, zlc->fullzones);
2389}
2390
76d3fbf8
MG
2391/*
2392 * clear all zones full, called after direct reclaim makes progress so that
2393 * a zone that was recently full is not skipped over for up to a second
2394 */
2395static void zlc_clear_zones_full(struct zonelist *zonelist)
2396{
2397 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2398
2399 zlc = zonelist->zlcache_ptr;
2400 if (!zlc)
2401 return;
2402
2403 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2404}
2405
81c0a2bb
JW
2406static bool zone_local(struct zone *local_zone, struct zone *zone)
2407{
fff4068c 2408 return local_zone->node == zone->node;
81c0a2bb
JW
2409}
2410
957f822a
DR
2411static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2412{
5f7a75ac
MG
2413 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2414 RECLAIM_DISTANCE;
957f822a
DR
2415}
2416
9276b1bc
PJ
2417#else /* CONFIG_NUMA */
2418
2419static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2420{
2421 return NULL;
2422}
2423
dd1a239f 2424static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2425 nodemask_t *allowednodes)
2426{
2427 return 1;
2428}
2429
dd1a239f 2430static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2431{
2432}
76d3fbf8
MG
2433
2434static void zlc_clear_zones_full(struct zonelist *zonelist)
2435{
2436}
957f822a 2437
81c0a2bb
JW
2438static bool zone_local(struct zone *local_zone, struct zone *zone)
2439{
2440 return true;
2441}
2442
957f822a
DR
2443static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2444{
2445 return true;
2446}
2447
9276b1bc
PJ
2448#endif /* CONFIG_NUMA */
2449
4ffeaf35
MG
2450static void reset_alloc_batches(struct zone *preferred_zone)
2451{
2452 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2453
2454 do {
2455 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2456 high_wmark_pages(zone) - low_wmark_pages(zone) -
2457 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2458 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2459 } while (zone++ != preferred_zone);
2460}
2461
7fb1d9fc 2462/*
0798e519 2463 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2464 * a page.
2465 */
2466static struct page *
a9263751
VB
2467get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2468 const struct alloc_context *ac)
753ee728 2469{
a9263751 2470 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2471 struct zoneref *z;
7fb1d9fc 2472 struct page *page = NULL;
5117f45d 2473 struct zone *zone;
9276b1bc
PJ
2474 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2475 int zlc_active = 0; /* set if using zonelist_cache */
2476 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2477 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2478 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2479 int nr_fair_skipped = 0;
2480 bool zonelist_rescan;
54a6eb5c 2481
9276b1bc 2482zonelist_scan:
4ffeaf35
MG
2483 zonelist_rescan = false;
2484
7fb1d9fc 2485 /*
9276b1bc 2486 * Scan zonelist, looking for a zone with enough free.
344736f2 2487 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2488 */
a9263751
VB
2489 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2490 ac->nodemask) {
e085dbc5
JW
2491 unsigned long mark;
2492
e5adfffc 2493 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2494 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2495 continue;
664eedde
MG
2496 if (cpusets_enabled() &&
2497 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2498 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2499 continue;
81c0a2bb
JW
2500 /*
2501 * Distribute pages in proportion to the individual
2502 * zone size to ensure fair page aging. The zone a
2503 * page was allocated in should have no effect on the
2504 * time the page has in memory before being reclaimed.
81c0a2bb 2505 */
3a025760 2506 if (alloc_flags & ALLOC_FAIR) {
a9263751 2507 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2508 break;
57054651 2509 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2510 nr_fair_skipped++;
3a025760 2511 continue;
4ffeaf35 2512 }
81c0a2bb 2513 }
a756cf59
JW
2514 /*
2515 * When allocating a page cache page for writing, we
2516 * want to get it from a zone that is within its dirty
2517 * limit, such that no single zone holds more than its
2518 * proportional share of globally allowed dirty pages.
2519 * The dirty limits take into account the zone's
2520 * lowmem reserves and high watermark so that kswapd
2521 * should be able to balance it without having to
2522 * write pages from its LRU list.
2523 *
2524 * This may look like it could increase pressure on
2525 * lower zones by failing allocations in higher zones
2526 * before they are full. But the pages that do spill
2527 * over are limited as the lower zones are protected
2528 * by this very same mechanism. It should not become
2529 * a practical burden to them.
2530 *
2531 * XXX: For now, allow allocations to potentially
2532 * exceed the per-zone dirty limit in the slowpath
2533 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2534 * which is important when on a NUMA setup the allowed
2535 * zones are together not big enough to reach the
2536 * global limit. The proper fix for these situations
2537 * will require awareness of zones in the
2538 * dirty-throttling and the flusher threads.
2539 */
a6e21b14 2540 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2541 continue;
7fb1d9fc 2542
e085dbc5
JW
2543 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2544 if (!zone_watermark_ok(zone, order, mark,
a9263751 2545 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2546 int ret;
2547
5dab2911
MG
2548 /* Checked here to keep the fast path fast */
2549 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2550 if (alloc_flags & ALLOC_NO_WATERMARKS)
2551 goto try_this_zone;
2552
e5adfffc
KS
2553 if (IS_ENABLED(CONFIG_NUMA) &&
2554 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2555 /*
2556 * we do zlc_setup if there are multiple nodes
2557 * and before considering the first zone allowed
2558 * by the cpuset.
2559 */
2560 allowednodes = zlc_setup(zonelist, alloc_flags);
2561 zlc_active = 1;
2562 did_zlc_setup = 1;
2563 }
2564
957f822a 2565 if (zone_reclaim_mode == 0 ||
a9263751 2566 !zone_allows_reclaim(ac->preferred_zone, zone))
fa5e084e
MG
2567 goto this_zone_full;
2568
cd38b115
MG
2569 /*
2570 * As we may have just activated ZLC, check if the first
2571 * eligible zone has failed zone_reclaim recently.
2572 */
e5adfffc 2573 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2574 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2575 continue;
2576
fa5e084e
MG
2577 ret = zone_reclaim(zone, gfp_mask, order);
2578 switch (ret) {
2579 case ZONE_RECLAIM_NOSCAN:
2580 /* did not scan */
cd38b115 2581 continue;
fa5e084e
MG
2582 case ZONE_RECLAIM_FULL:
2583 /* scanned but unreclaimable */
cd38b115 2584 continue;
fa5e084e
MG
2585 default:
2586 /* did we reclaim enough */
fed2719e 2587 if (zone_watermark_ok(zone, order, mark,
a9263751 2588 ac->classzone_idx, alloc_flags))
fed2719e
MG
2589 goto try_this_zone;
2590
2591 /*
2592 * Failed to reclaim enough to meet watermark.
2593 * Only mark the zone full if checking the min
2594 * watermark or if we failed to reclaim just
2595 * 1<<order pages or else the page allocator
2596 * fastpath will prematurely mark zones full
2597 * when the watermark is between the low and
2598 * min watermarks.
2599 */
2600 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2601 ret == ZONE_RECLAIM_SOME)
9276b1bc 2602 goto this_zone_full;
fed2719e
MG
2603
2604 continue;
0798e519 2605 }
7fb1d9fc
RS
2606 }
2607
fa5e084e 2608try_this_zone:
a9263751
VB
2609 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2610 gfp_mask, ac->migratetype);
75379191
VB
2611 if (page) {
2612 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2613 goto try_this_zone;
2614 return page;
2615 }
9276b1bc 2616this_zone_full:
65bb3719 2617 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2618 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2619 }
9276b1bc 2620
4ffeaf35
MG
2621 /*
2622 * The first pass makes sure allocations are spread fairly within the
2623 * local node. However, the local node might have free pages left
2624 * after the fairness batches are exhausted, and remote zones haven't
2625 * even been considered yet. Try once more without fairness, and
2626 * include remote zones now, before entering the slowpath and waking
2627 * kswapd: prefer spilling to a remote zone over swapping locally.
2628 */
2629 if (alloc_flags & ALLOC_FAIR) {
2630 alloc_flags &= ~ALLOC_FAIR;
2631 if (nr_fair_skipped) {
2632 zonelist_rescan = true;
a9263751 2633 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2634 }
2635 if (nr_online_nodes > 1)
2636 zonelist_rescan = true;
2637 }
2638
2639 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2640 /* Disable zlc cache for second zonelist scan */
2641 zlc_active = 0;
2642 zonelist_rescan = true;
2643 }
2644
2645 if (zonelist_rescan)
2646 goto zonelist_scan;
2647
2648 return NULL;
753ee728
MH
2649}
2650
29423e77
DR
2651/*
2652 * Large machines with many possible nodes should not always dump per-node
2653 * meminfo in irq context.
2654 */
2655static inline bool should_suppress_show_mem(void)
2656{
2657 bool ret = false;
2658
2659#if NODES_SHIFT > 8
2660 ret = in_interrupt();
2661#endif
2662 return ret;
2663}
2664
a238ab5b
DH
2665static DEFINE_RATELIMIT_STATE(nopage_rs,
2666 DEFAULT_RATELIMIT_INTERVAL,
2667 DEFAULT_RATELIMIT_BURST);
2668
2669void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2670{
a238ab5b
DH
2671 unsigned int filter = SHOW_MEM_FILTER_NODES;
2672
c0a32fc5
SG
2673 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2674 debug_guardpage_minorder() > 0)
a238ab5b
DH
2675 return;
2676
2677 /*
2678 * This documents exceptions given to allocations in certain
2679 * contexts that are allowed to allocate outside current's set
2680 * of allowed nodes.
2681 */
2682 if (!(gfp_mask & __GFP_NOMEMALLOC))
2683 if (test_thread_flag(TIF_MEMDIE) ||
2684 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2685 filter &= ~SHOW_MEM_FILTER_NODES;
2686 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2687 filter &= ~SHOW_MEM_FILTER_NODES;
2688
2689 if (fmt) {
3ee9a4f0
JP
2690 struct va_format vaf;
2691 va_list args;
2692
a238ab5b 2693 va_start(args, fmt);
3ee9a4f0
JP
2694
2695 vaf.fmt = fmt;
2696 vaf.va = &args;
2697
2698 pr_warn("%pV", &vaf);
2699
a238ab5b
DH
2700 va_end(args);
2701 }
2702
3ee9a4f0
JP
2703 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2704 current->comm, order, gfp_mask);
a238ab5b
DH
2705
2706 dump_stack();
2707 if (!should_suppress_show_mem())
2708 show_mem(filter);
2709}
2710
11e33f6a
MG
2711static inline struct page *
2712__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2713 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2714{
6e0fc46d
DR
2715 struct oom_control oc = {
2716 .zonelist = ac->zonelist,
2717 .nodemask = ac->nodemask,
2718 .gfp_mask = gfp_mask,
2719 .order = order,
6e0fc46d 2720 };
11e33f6a
MG
2721 struct page *page;
2722
9879de73
JW
2723 *did_some_progress = 0;
2724
9879de73 2725 /*
dc56401f
JW
2726 * Acquire the oom lock. If that fails, somebody else is
2727 * making progress for us.
9879de73 2728 */
dc56401f 2729 if (!mutex_trylock(&oom_lock)) {
9879de73 2730 *did_some_progress = 1;
11e33f6a 2731 schedule_timeout_uninterruptible(1);
1da177e4
LT
2732 return NULL;
2733 }
6b1de916 2734
11e33f6a
MG
2735 /*
2736 * Go through the zonelist yet one more time, keep very high watermark
2737 * here, this is only to catch a parallel oom killing, we must fail if
2738 * we're still under heavy pressure.
2739 */
a9263751
VB
2740 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2741 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2742 if (page)
11e33f6a
MG
2743 goto out;
2744
4365a567 2745 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2746 /* Coredumps can quickly deplete all memory reserves */
2747 if (current->flags & PF_DUMPCORE)
2748 goto out;
4365a567
KH
2749 /* The OOM killer will not help higher order allocs */
2750 if (order > PAGE_ALLOC_COSTLY_ORDER)
2751 goto out;
03668b3c 2752 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2753 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2754 goto out;
9083905a 2755 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2756 if (!(gfp_mask & __GFP_FS)) {
2757 /*
2758 * XXX: Page reclaim didn't yield anything,
2759 * and the OOM killer can't be invoked, but
9083905a 2760 * keep looping as per tradition.
cc873177
JW
2761 */
2762 *did_some_progress = 1;
9879de73 2763 goto out;
cc873177 2764 }
9083905a
JW
2765 if (pm_suspended_storage())
2766 goto out;
4167e9b2 2767 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2768 if (gfp_mask & __GFP_THISNODE)
2769 goto out;
2770 }
11e33f6a 2771 /* Exhausted what can be done so it's blamo time */
6e0fc46d 2772 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
c32b3cbe 2773 *did_some_progress = 1;
11e33f6a 2774out:
dc56401f 2775 mutex_unlock(&oom_lock);
11e33f6a
MG
2776 return page;
2777}
2778
56de7263
MG
2779#ifdef CONFIG_COMPACTION
2780/* Try memory compaction for high-order allocations before reclaim */
2781static struct page *
2782__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2783 int alloc_flags, const struct alloc_context *ac,
2784 enum migrate_mode mode, int *contended_compaction,
2785 bool *deferred_compaction)
56de7263 2786{
53853e2d 2787 unsigned long compact_result;
98dd3b48 2788 struct page *page;
53853e2d
VB
2789
2790 if (!order)
66199712 2791 return NULL;
66199712 2792
c06b1fca 2793 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2794 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2795 mode, contended_compaction);
c06b1fca 2796 current->flags &= ~PF_MEMALLOC;
56de7263 2797
98dd3b48
VB
2798 switch (compact_result) {
2799 case COMPACT_DEFERRED:
53853e2d 2800 *deferred_compaction = true;
98dd3b48
VB
2801 /* fall-through */
2802 case COMPACT_SKIPPED:
2803 return NULL;
2804 default:
2805 break;
2806 }
53853e2d 2807
98dd3b48
VB
2808 /*
2809 * At least in one zone compaction wasn't deferred or skipped, so let's
2810 * count a compaction stall
2811 */
2812 count_vm_event(COMPACTSTALL);
8fb74b9f 2813
a9263751
VB
2814 page = get_page_from_freelist(gfp_mask, order,
2815 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2816
98dd3b48
VB
2817 if (page) {
2818 struct zone *zone = page_zone(page);
53853e2d 2819
98dd3b48
VB
2820 zone->compact_blockskip_flush = false;
2821 compaction_defer_reset(zone, order, true);
2822 count_vm_event(COMPACTSUCCESS);
2823 return page;
2824 }
56de7263 2825
98dd3b48
VB
2826 /*
2827 * It's bad if compaction run occurs and fails. The most likely reason
2828 * is that pages exist, but not enough to satisfy watermarks.
2829 */
2830 count_vm_event(COMPACTFAIL);
66199712 2831
98dd3b48 2832 cond_resched();
56de7263
MG
2833
2834 return NULL;
2835}
2836#else
2837static inline struct page *
2838__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2839 int alloc_flags, const struct alloc_context *ac,
2840 enum migrate_mode mode, int *contended_compaction,
2841 bool *deferred_compaction)
56de7263
MG
2842{
2843 return NULL;
2844}
2845#endif /* CONFIG_COMPACTION */
2846
bba90710
MS
2847/* Perform direct synchronous page reclaim */
2848static int
a9263751
VB
2849__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2850 const struct alloc_context *ac)
11e33f6a 2851{
11e33f6a 2852 struct reclaim_state reclaim_state;
bba90710 2853 int progress;
11e33f6a
MG
2854
2855 cond_resched();
2856
2857 /* We now go into synchronous reclaim */
2858 cpuset_memory_pressure_bump();
c06b1fca 2859 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2860 lockdep_set_current_reclaim_state(gfp_mask);
2861 reclaim_state.reclaimed_slab = 0;
c06b1fca 2862 current->reclaim_state = &reclaim_state;
11e33f6a 2863
a9263751
VB
2864 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2865 ac->nodemask);
11e33f6a 2866
c06b1fca 2867 current->reclaim_state = NULL;
11e33f6a 2868 lockdep_clear_current_reclaim_state();
c06b1fca 2869 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2870
2871 cond_resched();
2872
bba90710
MS
2873 return progress;
2874}
2875
2876/* The really slow allocator path where we enter direct reclaim */
2877static inline struct page *
2878__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2879 int alloc_flags, const struct alloc_context *ac,
2880 unsigned long *did_some_progress)
bba90710
MS
2881{
2882 struct page *page = NULL;
2883 bool drained = false;
2884
a9263751 2885 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2886 if (unlikely(!(*did_some_progress)))
2887 return NULL;
11e33f6a 2888
76d3fbf8 2889 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2890 if (IS_ENABLED(CONFIG_NUMA))
a9263751 2891 zlc_clear_zones_full(ac->zonelist);
76d3fbf8 2892
9ee493ce 2893retry:
a9263751
VB
2894 page = get_page_from_freelist(gfp_mask, order,
2895 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2896
2897 /*
2898 * If an allocation failed after direct reclaim, it could be because
2899 * pages are pinned on the per-cpu lists. Drain them and try again
2900 */
2901 if (!page && !drained) {
93481ff0 2902 drain_all_pages(NULL);
9ee493ce
MG
2903 drained = true;
2904 goto retry;
2905 }
2906
11e33f6a
MG
2907 return page;
2908}
2909
1da177e4 2910/*
11e33f6a
MG
2911 * This is called in the allocator slow-path if the allocation request is of
2912 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2913 */
11e33f6a
MG
2914static inline struct page *
2915__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2916 const struct alloc_context *ac)
11e33f6a
MG
2917{
2918 struct page *page;
2919
2920 do {
a9263751
VB
2921 page = get_page_from_freelist(gfp_mask, order,
2922 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2923
2924 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2925 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2926 HZ/50);
11e33f6a
MG
2927 } while (!page && (gfp_mask & __GFP_NOFAIL));
2928
2929 return page;
2930}
2931
a9263751 2932static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2933{
2934 struct zoneref *z;
2935 struct zone *zone;
2936
a9263751
VB
2937 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2938 ac->high_zoneidx, ac->nodemask)
2939 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2940}
2941
341ce06f
PZ
2942static inline int
2943gfp_to_alloc_flags(gfp_t gfp_mask)
2944{
341ce06f 2945 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2946 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2947
a56f57ff 2948 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2949 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2950
341ce06f
PZ
2951 /*
2952 * The caller may dip into page reserves a bit more if the caller
2953 * cannot run direct reclaim, or if the caller has realtime scheduling
2954 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2955 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2956 */
e6223a3b 2957 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2958
b104a35d 2959 if (atomic) {
5c3240d9 2960 /*
b104a35d
DR
2961 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2962 * if it can't schedule.
5c3240d9 2963 */
b104a35d 2964 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2965 alloc_flags |= ALLOC_HARDER;
523b9458 2966 /*
b104a35d 2967 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2968 * comment for __cpuset_node_allowed().
523b9458 2969 */
341ce06f 2970 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2971 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2972 alloc_flags |= ALLOC_HARDER;
2973
b37f1dd0
MG
2974 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2975 if (gfp_mask & __GFP_MEMALLOC)
2976 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2977 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2978 alloc_flags |= ALLOC_NO_WATERMARKS;
2979 else if (!in_interrupt() &&
2980 ((current->flags & PF_MEMALLOC) ||
2981 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2982 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2983 }
d95ea5d1 2984#ifdef CONFIG_CMA
43e7a34d 2985 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2986 alloc_flags |= ALLOC_CMA;
2987#endif
341ce06f
PZ
2988 return alloc_flags;
2989}
2990
072bb0aa
MG
2991bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2992{
b37f1dd0 2993 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2994}
2995
11e33f6a
MG
2996static inline struct page *
2997__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2998 struct alloc_context *ac)
11e33f6a
MG
2999{
3000 const gfp_t wait = gfp_mask & __GFP_WAIT;
3001 struct page *page = NULL;
3002 int alloc_flags;
3003 unsigned long pages_reclaimed = 0;
3004 unsigned long did_some_progress;
e0b9daeb 3005 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3006 bool deferred_compaction = false;
1f9efdef 3007 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3008
72807a74
MG
3009 /*
3010 * In the slowpath, we sanity check order to avoid ever trying to
3011 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3012 * be using allocators in order of preference for an area that is
3013 * too large.
3014 */
1fc28b70
MG
3015 if (order >= MAX_ORDER) {
3016 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3017 return NULL;
1fc28b70 3018 }
1da177e4 3019
952f3b51 3020 /*
4167e9b2
DR
3021 * If this allocation cannot block and it is for a specific node, then
3022 * fail early. There's no need to wakeup kswapd or retry for a
3023 * speculative node-specific allocation.
952f3b51 3024 */
4167e9b2 3025 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
952f3b51
CL
3026 goto nopage;
3027
9879de73 3028retry:
3a025760 3029 if (!(gfp_mask & __GFP_NO_KSWAPD))
a9263751 3030 wake_all_kswapds(order, ac);
1da177e4 3031
9bf2229f 3032 /*
7fb1d9fc
RS
3033 * OK, we're below the kswapd watermark and have kicked background
3034 * reclaim. Now things get more complex, so set up alloc_flags according
3035 * to how we want to proceed.
9bf2229f 3036 */
341ce06f 3037 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3038
f33261d7
DR
3039 /*
3040 * Find the true preferred zone if the allocation is unconstrained by
3041 * cpusets.
3042 */
a9263751 3043 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3044 struct zoneref *preferred_zoneref;
a9263751
VB
3045 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3046 ac->high_zoneidx, NULL, &ac->preferred_zone);
3047 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3048 }
f33261d7 3049
341ce06f 3050 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3051 page = get_page_from_freelist(gfp_mask, order,
3052 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3053 if (page)
3054 goto got_pg;
1da177e4 3055
11e33f6a 3056 /* Allocate without watermarks if the context allows */
341ce06f 3057 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3058 /*
3059 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3060 * the allocation is high priority and these type of
3061 * allocations are system rather than user orientated
3062 */
a9263751
VB
3063 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3064
3065 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 3066
cfd19c5a 3067 if (page) {
341ce06f 3068 goto got_pg;
cfd19c5a 3069 }
1da177e4
LT
3070 }
3071
3072 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
3073 if (!wait) {
3074 /*
3075 * All existing users of the deprecated __GFP_NOFAIL are
3076 * blockable, so warn of any new users that actually allow this
3077 * type of allocation to fail.
3078 */
3079 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3080 goto nopage;
aed0a0e3 3081 }
1da177e4 3082
341ce06f 3083 /* Avoid recursion of direct reclaim */
c06b1fca 3084 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
3085 goto nopage;
3086
6583bb64
DR
3087 /* Avoid allocations with no watermarks from looping endlessly */
3088 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3089 goto nopage;
3090
77f1fe6b
MG
3091 /*
3092 * Try direct compaction. The first pass is asynchronous. Subsequent
3093 * attempts after direct reclaim are synchronous
3094 */
a9263751
VB
3095 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3096 migration_mode,
3097 &contended_compaction,
53853e2d 3098 &deferred_compaction);
56de7263
MG
3099 if (page)
3100 goto got_pg;
75f30861 3101
1f9efdef
VB
3102 /* Checks for THP-specific high-order allocations */
3103 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
3104 /*
3105 * If compaction is deferred for high-order allocations, it is
3106 * because sync compaction recently failed. If this is the case
3107 * and the caller requested a THP allocation, we do not want
3108 * to heavily disrupt the system, so we fail the allocation
3109 * instead of entering direct reclaim.
3110 */
3111 if (deferred_compaction)
3112 goto nopage;
3113
3114 /*
3115 * In all zones where compaction was attempted (and not
3116 * deferred or skipped), lock contention has been detected.
3117 * For THP allocation we do not want to disrupt the others
3118 * so we fallback to base pages instead.
3119 */
3120 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3121 goto nopage;
3122
3123 /*
3124 * If compaction was aborted due to need_resched(), we do not
3125 * want to further increase allocation latency, unless it is
3126 * khugepaged trying to collapse.
3127 */
3128 if (contended_compaction == COMPACT_CONTENDED_SCHED
3129 && !(current->flags & PF_KTHREAD))
3130 goto nopage;
3131 }
66199712 3132
8fe78048
DR
3133 /*
3134 * It can become very expensive to allocate transparent hugepages at
3135 * fault, so use asynchronous memory compaction for THP unless it is
3136 * khugepaged trying to collapse.
3137 */
3138 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
3139 (current->flags & PF_KTHREAD))
3140 migration_mode = MIGRATE_SYNC_LIGHT;
3141
11e33f6a 3142 /* Try direct reclaim and then allocating */
a9263751
VB
3143 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3144 &did_some_progress);
11e33f6a
MG
3145 if (page)
3146 goto got_pg;
1da177e4 3147
9083905a
JW
3148 /* Do not loop if specifically requested */
3149 if (gfp_mask & __GFP_NORETRY)
3150 goto noretry;
3151
3152 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3153 pages_reclaimed += did_some_progress;
9083905a
JW
3154 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3155 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3156 /* Wait for some write requests to complete then retry */
a9263751 3157 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3158 goto retry;
1da177e4
LT
3159 }
3160
9083905a
JW
3161 /* Reclaim has failed us, start killing things */
3162 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3163 if (page)
3164 goto got_pg;
3165
3166 /* Retry as long as the OOM killer is making progress */
3167 if (did_some_progress)
3168 goto retry;
3169
3170noretry:
3171 /*
3172 * High-order allocations do not necessarily loop after
3173 * direct reclaim and reclaim/compaction depends on compaction
3174 * being called after reclaim so call directly if necessary
3175 */
3176 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3177 ac, migration_mode,
3178 &contended_compaction,
3179 &deferred_compaction);
3180 if (page)
3181 goto got_pg;
1da177e4 3182nopage:
a238ab5b 3183 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3184got_pg:
072bb0aa 3185 return page;
1da177e4 3186}
11e33f6a
MG
3187
3188/*
3189 * This is the 'heart' of the zoned buddy allocator.
3190 */
3191struct page *
3192__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3193 struct zonelist *zonelist, nodemask_t *nodemask)
3194{
d8846374 3195 struct zoneref *preferred_zoneref;
cc9a6c87 3196 struct page *page = NULL;
cc9a6c87 3197 unsigned int cpuset_mems_cookie;
3a025760 3198 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3199 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3200 struct alloc_context ac = {
3201 .high_zoneidx = gfp_zone(gfp_mask),
3202 .nodemask = nodemask,
3203 .migratetype = gfpflags_to_migratetype(gfp_mask),
3204 };
11e33f6a 3205
dcce284a
BH
3206 gfp_mask &= gfp_allowed_mask;
3207
11e33f6a
MG
3208 lockdep_trace_alloc(gfp_mask);
3209
3210 might_sleep_if(gfp_mask & __GFP_WAIT);
3211
3212 if (should_fail_alloc_page(gfp_mask, order))
3213 return NULL;
3214
3215 /*
3216 * Check the zones suitable for the gfp_mask contain at least one
3217 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3218 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3219 */
3220 if (unlikely(!zonelist->_zonerefs->zone))
3221 return NULL;
3222
a9263751 3223 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3224 alloc_flags |= ALLOC_CMA;
3225
cc9a6c87 3226retry_cpuset:
d26914d1 3227 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3228
a9263751
VB
3229 /* We set it here, as __alloc_pages_slowpath might have changed it */
3230 ac.zonelist = zonelist;
5117f45d 3231 /* The preferred zone is used for statistics later */
a9263751
VB
3232 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3233 ac.nodemask ? : &cpuset_current_mems_allowed,
3234 &ac.preferred_zone);
3235 if (!ac.preferred_zone)
cc9a6c87 3236 goto out;
a9263751 3237 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3238
3239 /* First allocation attempt */
91fbdc0f 3240 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3241 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3242 if (unlikely(!page)) {
3243 /*
3244 * Runtime PM, block IO and its error handling path
3245 * can deadlock because I/O on the device might not
3246 * complete.
3247 */
91fbdc0f
AM
3248 alloc_mask = memalloc_noio_flags(gfp_mask);
3249
a9263751 3250 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3251 }
11e33f6a 3252
23f086f9
XQ
3253 if (kmemcheck_enabled && page)
3254 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3255
a9263751 3256 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3257
3258out:
3259 /*
3260 * When updating a task's mems_allowed, it is possible to race with
3261 * parallel threads in such a way that an allocation can fail while
3262 * the mask is being updated. If a page allocation is about to fail,
3263 * check if the cpuset changed during allocation and if so, retry.
3264 */
d26914d1 3265 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3266 goto retry_cpuset;
3267
11e33f6a 3268 return page;
1da177e4 3269}
d239171e 3270EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3271
3272/*
3273 * Common helper functions.
3274 */
920c7a5d 3275unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3276{
945a1113
AM
3277 struct page *page;
3278
3279 /*
3280 * __get_free_pages() returns a 32-bit address, which cannot represent
3281 * a highmem page
3282 */
3283 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3284
1da177e4
LT
3285 page = alloc_pages(gfp_mask, order);
3286 if (!page)
3287 return 0;
3288 return (unsigned long) page_address(page);
3289}
1da177e4
LT
3290EXPORT_SYMBOL(__get_free_pages);
3291
920c7a5d 3292unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3293{
945a1113 3294 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3295}
1da177e4
LT
3296EXPORT_SYMBOL(get_zeroed_page);
3297
920c7a5d 3298void __free_pages(struct page *page, unsigned int order)
1da177e4 3299{
b5810039 3300 if (put_page_testzero(page)) {
1da177e4 3301 if (order == 0)
b745bc85 3302 free_hot_cold_page(page, false);
1da177e4
LT
3303 else
3304 __free_pages_ok(page, order);
3305 }
3306}
3307
3308EXPORT_SYMBOL(__free_pages);
3309
920c7a5d 3310void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3311{
3312 if (addr != 0) {
725d704e 3313 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3314 __free_pages(virt_to_page((void *)addr), order);
3315 }
3316}
3317
3318EXPORT_SYMBOL(free_pages);
3319
b63ae8ca
AD
3320/*
3321 * Page Fragment:
3322 * An arbitrary-length arbitrary-offset area of memory which resides
3323 * within a 0 or higher order page. Multiple fragments within that page
3324 * are individually refcounted, in the page's reference counter.
3325 *
3326 * The page_frag functions below provide a simple allocation framework for
3327 * page fragments. This is used by the network stack and network device
3328 * drivers to provide a backing region of memory for use as either an
3329 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3330 */
3331static struct page *__page_frag_refill(struct page_frag_cache *nc,
3332 gfp_t gfp_mask)
3333{
3334 struct page *page = NULL;
3335 gfp_t gfp = gfp_mask;
3336
3337#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3338 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3339 __GFP_NOMEMALLOC;
3340 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3341 PAGE_FRAG_CACHE_MAX_ORDER);
3342 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3343#endif
3344 if (unlikely(!page))
3345 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3346
3347 nc->va = page ? page_address(page) : NULL;
3348
3349 return page;
3350}
3351
3352void *__alloc_page_frag(struct page_frag_cache *nc,
3353 unsigned int fragsz, gfp_t gfp_mask)
3354{
3355 unsigned int size = PAGE_SIZE;
3356 struct page *page;
3357 int offset;
3358
3359 if (unlikely(!nc->va)) {
3360refill:
3361 page = __page_frag_refill(nc, gfp_mask);
3362 if (!page)
3363 return NULL;
3364
3365#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3366 /* if size can vary use size else just use PAGE_SIZE */
3367 size = nc->size;
3368#endif
3369 /* Even if we own the page, we do not use atomic_set().
3370 * This would break get_page_unless_zero() users.
3371 */
3372 atomic_add(size - 1, &page->_count);
3373
3374 /* reset page count bias and offset to start of new frag */
2f064f34 3375 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3376 nc->pagecnt_bias = size;
3377 nc->offset = size;
3378 }
3379
3380 offset = nc->offset - fragsz;
3381 if (unlikely(offset < 0)) {
3382 page = virt_to_page(nc->va);
3383
3384 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3385 goto refill;
3386
3387#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3388 /* if size can vary use size else just use PAGE_SIZE */
3389 size = nc->size;
3390#endif
3391 /* OK, page count is 0, we can safely set it */
3392 atomic_set(&page->_count, size);
3393
3394 /* reset page count bias and offset to start of new frag */
3395 nc->pagecnt_bias = size;
3396 offset = size - fragsz;
3397 }
3398
3399 nc->pagecnt_bias--;
3400 nc->offset = offset;
3401
3402 return nc->va + offset;
3403}
3404EXPORT_SYMBOL(__alloc_page_frag);
3405
3406/*
3407 * Frees a page fragment allocated out of either a compound or order 0 page.
3408 */
3409void __free_page_frag(void *addr)
3410{
3411 struct page *page = virt_to_head_page(addr);
3412
3413 if (unlikely(put_page_testzero(page)))
3414 __free_pages_ok(page, compound_order(page));
3415}
3416EXPORT_SYMBOL(__free_page_frag);
3417
6a1a0d3b 3418/*
52383431
VD
3419 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3420 * of the current memory cgroup.
6a1a0d3b 3421 *
52383431
VD
3422 * It should be used when the caller would like to use kmalloc, but since the
3423 * allocation is large, it has to fall back to the page allocator.
3424 */
3425struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3426{
3427 struct page *page;
3428 struct mem_cgroup *memcg = NULL;
3429
3430 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3431 return NULL;
3432 page = alloc_pages(gfp_mask, order);
3433 memcg_kmem_commit_charge(page, memcg, order);
3434 return page;
3435}
3436
3437struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3438{
3439 struct page *page;
3440 struct mem_cgroup *memcg = NULL;
3441
3442 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3443 return NULL;
3444 page = alloc_pages_node(nid, gfp_mask, order);
3445 memcg_kmem_commit_charge(page, memcg, order);
3446 return page;
3447}
3448
3449/*
3450 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3451 * alloc_kmem_pages.
6a1a0d3b 3452 */
52383431 3453void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
3454{
3455 memcg_kmem_uncharge_pages(page, order);
3456 __free_pages(page, order);
3457}
3458
52383431 3459void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3460{
3461 if (addr != 0) {
3462 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3463 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3464 }
3465}
3466
ee85c2e1
AK
3467static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3468{
3469 if (addr) {
3470 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3471 unsigned long used = addr + PAGE_ALIGN(size);
3472
3473 split_page(virt_to_page((void *)addr), order);
3474 while (used < alloc_end) {
3475 free_page(used);
3476 used += PAGE_SIZE;
3477 }
3478 }
3479 return (void *)addr;
3480}
3481
2be0ffe2
TT
3482/**
3483 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3484 * @size: the number of bytes to allocate
3485 * @gfp_mask: GFP flags for the allocation
3486 *
3487 * This function is similar to alloc_pages(), except that it allocates the
3488 * minimum number of pages to satisfy the request. alloc_pages() can only
3489 * allocate memory in power-of-two pages.
3490 *
3491 * This function is also limited by MAX_ORDER.
3492 *
3493 * Memory allocated by this function must be released by free_pages_exact().
3494 */
3495void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3496{
3497 unsigned int order = get_order(size);
3498 unsigned long addr;
3499
3500 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3501 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3502}
3503EXPORT_SYMBOL(alloc_pages_exact);
3504
ee85c2e1
AK
3505/**
3506 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3507 * pages on a node.
b5e6ab58 3508 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3509 * @size: the number of bytes to allocate
3510 * @gfp_mask: GFP flags for the allocation
3511 *
3512 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3513 * back.
ee85c2e1 3514 */
e1931811 3515void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3516{
3517 unsigned order = get_order(size);
3518 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3519 if (!p)
3520 return NULL;
3521 return make_alloc_exact((unsigned long)page_address(p), order, size);
3522}
ee85c2e1 3523
2be0ffe2
TT
3524/**
3525 * free_pages_exact - release memory allocated via alloc_pages_exact()
3526 * @virt: the value returned by alloc_pages_exact.
3527 * @size: size of allocation, same value as passed to alloc_pages_exact().
3528 *
3529 * Release the memory allocated by a previous call to alloc_pages_exact.
3530 */
3531void free_pages_exact(void *virt, size_t size)
3532{
3533 unsigned long addr = (unsigned long)virt;
3534 unsigned long end = addr + PAGE_ALIGN(size);
3535
3536 while (addr < end) {
3537 free_page(addr);
3538 addr += PAGE_SIZE;
3539 }
3540}
3541EXPORT_SYMBOL(free_pages_exact);
3542
e0fb5815
ZY
3543/**
3544 * nr_free_zone_pages - count number of pages beyond high watermark
3545 * @offset: The zone index of the highest zone
3546 *
3547 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3548 * high watermark within all zones at or below a given zone index. For each
3549 * zone, the number of pages is calculated as:
834405c3 3550 * managed_pages - high_pages
e0fb5815 3551 */
ebec3862 3552static unsigned long nr_free_zone_pages(int offset)
1da177e4 3553{
dd1a239f 3554 struct zoneref *z;
54a6eb5c
MG
3555 struct zone *zone;
3556
e310fd43 3557 /* Just pick one node, since fallback list is circular */
ebec3862 3558 unsigned long sum = 0;
1da177e4 3559
0e88460d 3560 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3561
54a6eb5c 3562 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3563 unsigned long size = zone->managed_pages;
41858966 3564 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3565 if (size > high)
3566 sum += size - high;
1da177e4
LT
3567 }
3568
3569 return sum;
3570}
3571
e0fb5815
ZY
3572/**
3573 * nr_free_buffer_pages - count number of pages beyond high watermark
3574 *
3575 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3576 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3577 */
ebec3862 3578unsigned long nr_free_buffer_pages(void)
1da177e4 3579{
af4ca457 3580 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3581}
c2f1a551 3582EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3583
e0fb5815
ZY
3584/**
3585 * nr_free_pagecache_pages - count number of pages beyond high watermark
3586 *
3587 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3588 * high watermark within all zones.
1da177e4 3589 */
ebec3862 3590unsigned long nr_free_pagecache_pages(void)
1da177e4 3591{
2a1e274a 3592 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3593}
08e0f6a9
CL
3594
3595static inline void show_node(struct zone *zone)
1da177e4 3596{
e5adfffc 3597 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3598 printk("Node %d ", zone_to_nid(zone));
1da177e4 3599}
1da177e4 3600
1da177e4
LT
3601void si_meminfo(struct sysinfo *val)
3602{
3603 val->totalram = totalram_pages;
cc7452b6 3604 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3605 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3606 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3607 val->totalhigh = totalhigh_pages;
3608 val->freehigh = nr_free_highpages();
1da177e4
LT
3609 val->mem_unit = PAGE_SIZE;
3610}
3611
3612EXPORT_SYMBOL(si_meminfo);
3613
3614#ifdef CONFIG_NUMA
3615void si_meminfo_node(struct sysinfo *val, int nid)
3616{
cdd91a77
JL
3617 int zone_type; /* needs to be signed */
3618 unsigned long managed_pages = 0;
1da177e4
LT
3619 pg_data_t *pgdat = NODE_DATA(nid);
3620
cdd91a77
JL
3621 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3622 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3623 val->totalram = managed_pages;
cc7452b6 3624 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3625 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3626#ifdef CONFIG_HIGHMEM
b40da049 3627 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3628 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3629 NR_FREE_PAGES);
98d2b0eb
CL
3630#else
3631 val->totalhigh = 0;
3632 val->freehigh = 0;
3633#endif
1da177e4
LT
3634 val->mem_unit = PAGE_SIZE;
3635}
3636#endif
3637
ddd588b5 3638/*
7bf02ea2
DR
3639 * Determine whether the node should be displayed or not, depending on whether
3640 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3641 */
7bf02ea2 3642bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3643{
3644 bool ret = false;
cc9a6c87 3645 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3646
3647 if (!(flags & SHOW_MEM_FILTER_NODES))
3648 goto out;
3649
cc9a6c87 3650 do {
d26914d1 3651 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3652 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3653 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3654out:
3655 return ret;
3656}
3657
1da177e4
LT
3658#define K(x) ((x) << (PAGE_SHIFT-10))
3659
377e4f16
RV
3660static void show_migration_types(unsigned char type)
3661{
3662 static const char types[MIGRATE_TYPES] = {
3663 [MIGRATE_UNMOVABLE] = 'U',
3664 [MIGRATE_RECLAIMABLE] = 'E',
3665 [MIGRATE_MOVABLE] = 'M',
3666 [MIGRATE_RESERVE] = 'R',
3667#ifdef CONFIG_CMA
3668 [MIGRATE_CMA] = 'C',
3669#endif
194159fb 3670#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3671 [MIGRATE_ISOLATE] = 'I',
194159fb 3672#endif
377e4f16
RV
3673 };
3674 char tmp[MIGRATE_TYPES + 1];
3675 char *p = tmp;
3676 int i;
3677
3678 for (i = 0; i < MIGRATE_TYPES; i++) {
3679 if (type & (1 << i))
3680 *p++ = types[i];
3681 }
3682
3683 *p = '\0';
3684 printk("(%s) ", tmp);
3685}
3686
1da177e4
LT
3687/*
3688 * Show free area list (used inside shift_scroll-lock stuff)
3689 * We also calculate the percentage fragmentation. We do this by counting the
3690 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3691 *
3692 * Bits in @filter:
3693 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3694 * cpuset.
1da177e4 3695 */
7bf02ea2 3696void show_free_areas(unsigned int filter)
1da177e4 3697{
d1bfcdb8 3698 unsigned long free_pcp = 0;
c7241913 3699 int cpu;
1da177e4
LT
3700 struct zone *zone;
3701
ee99c71c 3702 for_each_populated_zone(zone) {
7bf02ea2 3703 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3704 continue;
d1bfcdb8 3705
761b0677
KK
3706 for_each_online_cpu(cpu)
3707 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3708 }
3709
a731286d
KM
3710 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3711 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3712 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3713 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3714 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3715 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3716 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3717 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3718 global_page_state(NR_ISOLATED_ANON),
3719 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3720 global_page_state(NR_INACTIVE_FILE),
a731286d 3721 global_page_state(NR_ISOLATED_FILE),
7b854121 3722 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3723 global_page_state(NR_FILE_DIRTY),
ce866b34 3724 global_page_state(NR_WRITEBACK),
fd39fc85 3725 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3726 global_page_state(NR_SLAB_RECLAIMABLE),
3727 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3728 global_page_state(NR_FILE_MAPPED),
4b02108a 3729 global_page_state(NR_SHMEM),
a25700a5 3730 global_page_state(NR_PAGETABLE),
d1ce749a 3731 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3732 global_page_state(NR_FREE_PAGES),
3733 free_pcp,
d1ce749a 3734 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3735
ee99c71c 3736 for_each_populated_zone(zone) {
1da177e4
LT
3737 int i;
3738
7bf02ea2 3739 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3740 continue;
d1bfcdb8
KK
3741
3742 free_pcp = 0;
3743 for_each_online_cpu(cpu)
3744 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3745
1da177e4
LT
3746 show_node(zone);
3747 printk("%s"
3748 " free:%lukB"
3749 " min:%lukB"
3750 " low:%lukB"
3751 " high:%lukB"
4f98a2fe
RR
3752 " active_anon:%lukB"
3753 " inactive_anon:%lukB"
3754 " active_file:%lukB"
3755 " inactive_file:%lukB"
7b854121 3756 " unevictable:%lukB"
a731286d
KM
3757 " isolated(anon):%lukB"
3758 " isolated(file):%lukB"
1da177e4 3759 " present:%lukB"
9feedc9d 3760 " managed:%lukB"
4a0aa73f
KM
3761 " mlocked:%lukB"
3762 " dirty:%lukB"
3763 " writeback:%lukB"
3764 " mapped:%lukB"
4b02108a 3765 " shmem:%lukB"
4a0aa73f
KM
3766 " slab_reclaimable:%lukB"
3767 " slab_unreclaimable:%lukB"
c6a7f572 3768 " kernel_stack:%lukB"
4a0aa73f
KM
3769 " pagetables:%lukB"
3770 " unstable:%lukB"
3771 " bounce:%lukB"
d1bfcdb8
KK
3772 " free_pcp:%lukB"
3773 " local_pcp:%ukB"
d1ce749a 3774 " free_cma:%lukB"
4a0aa73f 3775 " writeback_tmp:%lukB"
1da177e4
LT
3776 " pages_scanned:%lu"
3777 " all_unreclaimable? %s"
3778 "\n",
3779 zone->name,
88f5acf8 3780 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3781 K(min_wmark_pages(zone)),
3782 K(low_wmark_pages(zone)),
3783 K(high_wmark_pages(zone)),
4f98a2fe
RR
3784 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3785 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3786 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3787 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3788 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3789 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3790 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3791 K(zone->present_pages),
9feedc9d 3792 K(zone->managed_pages),
4a0aa73f
KM
3793 K(zone_page_state(zone, NR_MLOCK)),
3794 K(zone_page_state(zone, NR_FILE_DIRTY)),
3795 K(zone_page_state(zone, NR_WRITEBACK)),
3796 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3797 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3798 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3799 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3800 zone_page_state(zone, NR_KERNEL_STACK) *
3801 THREAD_SIZE / 1024,
4a0aa73f
KM
3802 K(zone_page_state(zone, NR_PAGETABLE)),
3803 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3804 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3805 K(free_pcp),
3806 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3807 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3808 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3809 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3810 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3811 );
3812 printk("lowmem_reserve[]:");
3813 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3814 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3815 printk("\n");
3816 }
3817
ee99c71c 3818 for_each_populated_zone(zone) {
b8af2941 3819 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3820 unsigned char types[MAX_ORDER];
1da177e4 3821
7bf02ea2 3822 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3823 continue;
1da177e4
LT
3824 show_node(zone);
3825 printk("%s: ", zone->name);
1da177e4
LT
3826
3827 spin_lock_irqsave(&zone->lock, flags);
3828 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3829 struct free_area *area = &zone->free_area[order];
3830 int type;
3831
3832 nr[order] = area->nr_free;
8f9de51a 3833 total += nr[order] << order;
377e4f16
RV
3834
3835 types[order] = 0;
3836 for (type = 0; type < MIGRATE_TYPES; type++) {
3837 if (!list_empty(&area->free_list[type]))
3838 types[order] |= 1 << type;
3839 }
1da177e4
LT
3840 }
3841 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3842 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3843 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3844 if (nr[order])
3845 show_migration_types(types[order]);
3846 }
1da177e4
LT
3847 printk("= %lukB\n", K(total));
3848 }
3849
949f7ec5
DR
3850 hugetlb_show_meminfo();
3851
e6f3602d
LW
3852 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3853
1da177e4
LT
3854 show_swap_cache_info();
3855}
3856
19770b32
MG
3857static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3858{
3859 zoneref->zone = zone;
3860 zoneref->zone_idx = zone_idx(zone);
3861}
3862
1da177e4
LT
3863/*
3864 * Builds allocation fallback zone lists.
1a93205b
CL
3865 *
3866 * Add all populated zones of a node to the zonelist.
1da177e4 3867 */
f0c0b2b8 3868static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3869 int nr_zones)
1da177e4 3870{
1a93205b 3871 struct zone *zone;
bc732f1d 3872 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3873
3874 do {
2f6726e5 3875 zone_type--;
070f8032 3876 zone = pgdat->node_zones + zone_type;
1a93205b 3877 if (populated_zone(zone)) {
dd1a239f
MG
3878 zoneref_set_zone(zone,
3879 &zonelist->_zonerefs[nr_zones++]);
070f8032 3880 check_highest_zone(zone_type);
1da177e4 3881 }
2f6726e5 3882 } while (zone_type);
bc732f1d 3883
070f8032 3884 return nr_zones;
1da177e4
LT
3885}
3886
f0c0b2b8
KH
3887
3888/*
3889 * zonelist_order:
3890 * 0 = automatic detection of better ordering.
3891 * 1 = order by ([node] distance, -zonetype)
3892 * 2 = order by (-zonetype, [node] distance)
3893 *
3894 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3895 * the same zonelist. So only NUMA can configure this param.
3896 */
3897#define ZONELIST_ORDER_DEFAULT 0
3898#define ZONELIST_ORDER_NODE 1
3899#define ZONELIST_ORDER_ZONE 2
3900
3901/* zonelist order in the kernel.
3902 * set_zonelist_order() will set this to NODE or ZONE.
3903 */
3904static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3905static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3906
3907
1da177e4 3908#ifdef CONFIG_NUMA
f0c0b2b8
KH
3909/* The value user specified ....changed by config */
3910static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3911/* string for sysctl */
3912#define NUMA_ZONELIST_ORDER_LEN 16
3913char numa_zonelist_order[16] = "default";
3914
3915/*
3916 * interface for configure zonelist ordering.
3917 * command line option "numa_zonelist_order"
3918 * = "[dD]efault - default, automatic configuration.
3919 * = "[nN]ode - order by node locality, then by zone within node
3920 * = "[zZ]one - order by zone, then by locality within zone
3921 */
3922
3923static int __parse_numa_zonelist_order(char *s)
3924{
3925 if (*s == 'd' || *s == 'D') {
3926 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3927 } else if (*s == 'n' || *s == 'N') {
3928 user_zonelist_order = ZONELIST_ORDER_NODE;
3929 } else if (*s == 'z' || *s == 'Z') {
3930 user_zonelist_order = ZONELIST_ORDER_ZONE;
3931 } else {
3932 printk(KERN_WARNING
3933 "Ignoring invalid numa_zonelist_order value: "
3934 "%s\n", s);
3935 return -EINVAL;
3936 }
3937 return 0;
3938}
3939
3940static __init int setup_numa_zonelist_order(char *s)
3941{
ecb256f8
VL
3942 int ret;
3943
3944 if (!s)
3945 return 0;
3946
3947 ret = __parse_numa_zonelist_order(s);
3948 if (ret == 0)
3949 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3950
3951 return ret;
f0c0b2b8
KH
3952}
3953early_param("numa_zonelist_order", setup_numa_zonelist_order);
3954
3955/*
3956 * sysctl handler for numa_zonelist_order
3957 */
cccad5b9 3958int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3959 void __user *buffer, size_t *length,
f0c0b2b8
KH
3960 loff_t *ppos)
3961{
3962 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3963 int ret;
443c6f14 3964 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3965
443c6f14 3966 mutex_lock(&zl_order_mutex);
dacbde09
CG
3967 if (write) {
3968 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3969 ret = -EINVAL;
3970 goto out;
3971 }
3972 strcpy(saved_string, (char *)table->data);
3973 }
8d65af78 3974 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3975 if (ret)
443c6f14 3976 goto out;
f0c0b2b8
KH
3977 if (write) {
3978 int oldval = user_zonelist_order;
dacbde09
CG
3979
3980 ret = __parse_numa_zonelist_order((char *)table->data);
3981 if (ret) {
f0c0b2b8
KH
3982 /*
3983 * bogus value. restore saved string
3984 */
dacbde09 3985 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3986 NUMA_ZONELIST_ORDER_LEN);
3987 user_zonelist_order = oldval;
4eaf3f64
HL
3988 } else if (oldval != user_zonelist_order) {
3989 mutex_lock(&zonelists_mutex);
9adb62a5 3990 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3991 mutex_unlock(&zonelists_mutex);
3992 }
f0c0b2b8 3993 }
443c6f14
AK
3994out:
3995 mutex_unlock(&zl_order_mutex);
3996 return ret;
f0c0b2b8
KH
3997}
3998
3999
62bc62a8 4000#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4001static int node_load[MAX_NUMNODES];
4002
1da177e4 4003/**
4dc3b16b 4004 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4005 * @node: node whose fallback list we're appending
4006 * @used_node_mask: nodemask_t of already used nodes
4007 *
4008 * We use a number of factors to determine which is the next node that should
4009 * appear on a given node's fallback list. The node should not have appeared
4010 * already in @node's fallback list, and it should be the next closest node
4011 * according to the distance array (which contains arbitrary distance values
4012 * from each node to each node in the system), and should also prefer nodes
4013 * with no CPUs, since presumably they'll have very little allocation pressure
4014 * on them otherwise.
4015 * It returns -1 if no node is found.
4016 */
f0c0b2b8 4017static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4018{
4cf808eb 4019 int n, val;
1da177e4 4020 int min_val = INT_MAX;
00ef2d2f 4021 int best_node = NUMA_NO_NODE;
a70f7302 4022 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4023
4cf808eb
LT
4024 /* Use the local node if we haven't already */
4025 if (!node_isset(node, *used_node_mask)) {
4026 node_set(node, *used_node_mask);
4027 return node;
4028 }
1da177e4 4029
4b0ef1fe 4030 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4031
4032 /* Don't want a node to appear more than once */
4033 if (node_isset(n, *used_node_mask))
4034 continue;
4035
1da177e4
LT
4036 /* Use the distance array to find the distance */
4037 val = node_distance(node, n);
4038
4cf808eb
LT
4039 /* Penalize nodes under us ("prefer the next node") */
4040 val += (n < node);
4041
1da177e4 4042 /* Give preference to headless and unused nodes */
a70f7302
RR
4043 tmp = cpumask_of_node(n);
4044 if (!cpumask_empty(tmp))
1da177e4
LT
4045 val += PENALTY_FOR_NODE_WITH_CPUS;
4046
4047 /* Slight preference for less loaded node */
4048 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4049 val += node_load[n];
4050
4051 if (val < min_val) {
4052 min_val = val;
4053 best_node = n;
4054 }
4055 }
4056
4057 if (best_node >= 0)
4058 node_set(best_node, *used_node_mask);
4059
4060 return best_node;
4061}
4062
f0c0b2b8
KH
4063
4064/*
4065 * Build zonelists ordered by node and zones within node.
4066 * This results in maximum locality--normal zone overflows into local
4067 * DMA zone, if any--but risks exhausting DMA zone.
4068 */
4069static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4070{
f0c0b2b8 4071 int j;
1da177e4 4072 struct zonelist *zonelist;
f0c0b2b8 4073
54a6eb5c 4074 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4075 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4076 ;
bc732f1d 4077 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4078 zonelist->_zonerefs[j].zone = NULL;
4079 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4080}
4081
523b9458
CL
4082/*
4083 * Build gfp_thisnode zonelists
4084 */
4085static void build_thisnode_zonelists(pg_data_t *pgdat)
4086{
523b9458
CL
4087 int j;
4088 struct zonelist *zonelist;
4089
54a6eb5c 4090 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4091 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4092 zonelist->_zonerefs[j].zone = NULL;
4093 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4094}
4095
f0c0b2b8
KH
4096/*
4097 * Build zonelists ordered by zone and nodes within zones.
4098 * This results in conserving DMA zone[s] until all Normal memory is
4099 * exhausted, but results in overflowing to remote node while memory
4100 * may still exist in local DMA zone.
4101 */
4102static int node_order[MAX_NUMNODES];
4103
4104static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4105{
f0c0b2b8
KH
4106 int pos, j, node;
4107 int zone_type; /* needs to be signed */
4108 struct zone *z;
4109 struct zonelist *zonelist;
4110
54a6eb5c
MG
4111 zonelist = &pgdat->node_zonelists[0];
4112 pos = 0;
4113 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4114 for (j = 0; j < nr_nodes; j++) {
4115 node = node_order[j];
4116 z = &NODE_DATA(node)->node_zones[zone_type];
4117 if (populated_zone(z)) {
dd1a239f
MG
4118 zoneref_set_zone(z,
4119 &zonelist->_zonerefs[pos++]);
54a6eb5c 4120 check_highest_zone(zone_type);
f0c0b2b8
KH
4121 }
4122 }
f0c0b2b8 4123 }
dd1a239f
MG
4124 zonelist->_zonerefs[pos].zone = NULL;
4125 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4126}
4127
3193913c
MG
4128#if defined(CONFIG_64BIT)
4129/*
4130 * Devices that require DMA32/DMA are relatively rare and do not justify a
4131 * penalty to every machine in case the specialised case applies. Default
4132 * to Node-ordering on 64-bit NUMA machines
4133 */
4134static int default_zonelist_order(void)
4135{
4136 return ZONELIST_ORDER_NODE;
4137}
4138#else
4139/*
4140 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4141 * by the kernel. If processes running on node 0 deplete the low memory zone
4142 * then reclaim will occur more frequency increasing stalls and potentially
4143 * be easier to OOM if a large percentage of the zone is under writeback or
4144 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4145 * Hence, default to zone ordering on 32-bit.
4146 */
f0c0b2b8
KH
4147static int default_zonelist_order(void)
4148{
f0c0b2b8
KH
4149 return ZONELIST_ORDER_ZONE;
4150}
3193913c 4151#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4152
4153static void set_zonelist_order(void)
4154{
4155 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4156 current_zonelist_order = default_zonelist_order();
4157 else
4158 current_zonelist_order = user_zonelist_order;
4159}
4160
4161static void build_zonelists(pg_data_t *pgdat)
4162{
4163 int j, node, load;
4164 enum zone_type i;
1da177e4 4165 nodemask_t used_mask;
f0c0b2b8
KH
4166 int local_node, prev_node;
4167 struct zonelist *zonelist;
4168 int order = current_zonelist_order;
1da177e4
LT
4169
4170 /* initialize zonelists */
523b9458 4171 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4172 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4173 zonelist->_zonerefs[0].zone = NULL;
4174 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4175 }
4176
4177 /* NUMA-aware ordering of nodes */
4178 local_node = pgdat->node_id;
62bc62a8 4179 load = nr_online_nodes;
1da177e4
LT
4180 prev_node = local_node;
4181 nodes_clear(used_mask);
f0c0b2b8 4182
f0c0b2b8
KH
4183 memset(node_order, 0, sizeof(node_order));
4184 j = 0;
4185
1da177e4
LT
4186 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4187 /*
4188 * We don't want to pressure a particular node.
4189 * So adding penalty to the first node in same
4190 * distance group to make it round-robin.
4191 */
957f822a
DR
4192 if (node_distance(local_node, node) !=
4193 node_distance(local_node, prev_node))
f0c0b2b8
KH
4194 node_load[node] = load;
4195
1da177e4
LT
4196 prev_node = node;
4197 load--;
f0c0b2b8
KH
4198 if (order == ZONELIST_ORDER_NODE)
4199 build_zonelists_in_node_order(pgdat, node);
4200 else
4201 node_order[j++] = node; /* remember order */
4202 }
1da177e4 4203
f0c0b2b8
KH
4204 if (order == ZONELIST_ORDER_ZONE) {
4205 /* calculate node order -- i.e., DMA last! */
4206 build_zonelists_in_zone_order(pgdat, j);
1da177e4 4207 }
523b9458
CL
4208
4209 build_thisnode_zonelists(pgdat);
1da177e4
LT
4210}
4211
9276b1bc 4212/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 4213static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 4214{
54a6eb5c
MG
4215 struct zonelist *zonelist;
4216 struct zonelist_cache *zlc;
dd1a239f 4217 struct zoneref *z;
9276b1bc 4218
54a6eb5c
MG
4219 zonelist = &pgdat->node_zonelists[0];
4220 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4221 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
4222 for (z = zonelist->_zonerefs; z->zone; z++)
4223 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
4224}
4225
7aac7898
LS
4226#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4227/*
4228 * Return node id of node used for "local" allocations.
4229 * I.e., first node id of first zone in arg node's generic zonelist.
4230 * Used for initializing percpu 'numa_mem', which is used primarily
4231 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4232 */
4233int local_memory_node(int node)
4234{
4235 struct zone *zone;
4236
4237 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4238 gfp_zone(GFP_KERNEL),
4239 NULL,
4240 &zone);
4241 return zone->node;
4242}
4243#endif
f0c0b2b8 4244
1da177e4
LT
4245#else /* CONFIG_NUMA */
4246
f0c0b2b8
KH
4247static void set_zonelist_order(void)
4248{
4249 current_zonelist_order = ZONELIST_ORDER_ZONE;
4250}
4251
4252static void build_zonelists(pg_data_t *pgdat)
1da177e4 4253{
19655d34 4254 int node, local_node;
54a6eb5c
MG
4255 enum zone_type j;
4256 struct zonelist *zonelist;
1da177e4
LT
4257
4258 local_node = pgdat->node_id;
1da177e4 4259
54a6eb5c 4260 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4261 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4262
54a6eb5c
MG
4263 /*
4264 * Now we build the zonelist so that it contains the zones
4265 * of all the other nodes.
4266 * We don't want to pressure a particular node, so when
4267 * building the zones for node N, we make sure that the
4268 * zones coming right after the local ones are those from
4269 * node N+1 (modulo N)
4270 */
4271 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4272 if (!node_online(node))
4273 continue;
bc732f1d 4274 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4275 }
54a6eb5c
MG
4276 for (node = 0; node < local_node; node++) {
4277 if (!node_online(node))
4278 continue;
bc732f1d 4279 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4280 }
4281
dd1a239f
MG
4282 zonelist->_zonerefs[j].zone = NULL;
4283 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4284}
4285
9276b1bc 4286/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 4287static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 4288{
54a6eb5c 4289 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
4290}
4291
1da177e4
LT
4292#endif /* CONFIG_NUMA */
4293
99dcc3e5
CL
4294/*
4295 * Boot pageset table. One per cpu which is going to be used for all
4296 * zones and all nodes. The parameters will be set in such a way
4297 * that an item put on a list will immediately be handed over to
4298 * the buddy list. This is safe since pageset manipulation is done
4299 * with interrupts disabled.
4300 *
4301 * The boot_pagesets must be kept even after bootup is complete for
4302 * unused processors and/or zones. They do play a role for bootstrapping
4303 * hotplugged processors.
4304 *
4305 * zoneinfo_show() and maybe other functions do
4306 * not check if the processor is online before following the pageset pointer.
4307 * Other parts of the kernel may not check if the zone is available.
4308 */
4309static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4310static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4311static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4312
4eaf3f64
HL
4313/*
4314 * Global mutex to protect against size modification of zonelists
4315 * as well as to serialize pageset setup for the new populated zone.
4316 */
4317DEFINE_MUTEX(zonelists_mutex);
4318
9b1a4d38 4319/* return values int ....just for stop_machine() */
4ed7e022 4320static int __build_all_zonelists(void *data)
1da177e4 4321{
6811378e 4322 int nid;
99dcc3e5 4323 int cpu;
9adb62a5 4324 pg_data_t *self = data;
9276b1bc 4325
7f9cfb31
BL
4326#ifdef CONFIG_NUMA
4327 memset(node_load, 0, sizeof(node_load));
4328#endif
9adb62a5
JL
4329
4330 if (self && !node_online(self->node_id)) {
4331 build_zonelists(self);
4332 build_zonelist_cache(self);
4333 }
4334
9276b1bc 4335 for_each_online_node(nid) {
7ea1530a
CL
4336 pg_data_t *pgdat = NODE_DATA(nid);
4337
4338 build_zonelists(pgdat);
4339 build_zonelist_cache(pgdat);
9276b1bc 4340 }
99dcc3e5
CL
4341
4342 /*
4343 * Initialize the boot_pagesets that are going to be used
4344 * for bootstrapping processors. The real pagesets for
4345 * each zone will be allocated later when the per cpu
4346 * allocator is available.
4347 *
4348 * boot_pagesets are used also for bootstrapping offline
4349 * cpus if the system is already booted because the pagesets
4350 * are needed to initialize allocators on a specific cpu too.
4351 * F.e. the percpu allocator needs the page allocator which
4352 * needs the percpu allocator in order to allocate its pagesets
4353 * (a chicken-egg dilemma).
4354 */
7aac7898 4355 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4356 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4357
7aac7898
LS
4358#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4359 /*
4360 * We now know the "local memory node" for each node--
4361 * i.e., the node of the first zone in the generic zonelist.
4362 * Set up numa_mem percpu variable for on-line cpus. During
4363 * boot, only the boot cpu should be on-line; we'll init the
4364 * secondary cpus' numa_mem as they come on-line. During
4365 * node/memory hotplug, we'll fixup all on-line cpus.
4366 */
4367 if (cpu_online(cpu))
4368 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4369#endif
4370 }
4371
6811378e
YG
4372 return 0;
4373}
4374
061f67bc
RV
4375static noinline void __init
4376build_all_zonelists_init(void)
4377{
4378 __build_all_zonelists(NULL);
4379 mminit_verify_zonelist();
4380 cpuset_init_current_mems_allowed();
4381}
4382
4eaf3f64
HL
4383/*
4384 * Called with zonelists_mutex held always
4385 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4386 *
4387 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4388 * [we're only called with non-NULL zone through __meminit paths] and
4389 * (2) call of __init annotated helper build_all_zonelists_init
4390 * [protected by SYSTEM_BOOTING].
4eaf3f64 4391 */
9adb62a5 4392void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4393{
f0c0b2b8
KH
4394 set_zonelist_order();
4395
6811378e 4396 if (system_state == SYSTEM_BOOTING) {
061f67bc 4397 build_all_zonelists_init();
6811378e 4398 } else {
e9959f0f 4399#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4400 if (zone)
4401 setup_zone_pageset(zone);
e9959f0f 4402#endif
dd1895e2
CS
4403 /* we have to stop all cpus to guarantee there is no user
4404 of zonelist */
9adb62a5 4405 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4406 /* cpuset refresh routine should be here */
4407 }
bd1e22b8 4408 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4409 /*
4410 * Disable grouping by mobility if the number of pages in the
4411 * system is too low to allow the mechanism to work. It would be
4412 * more accurate, but expensive to check per-zone. This check is
4413 * made on memory-hotadd so a system can start with mobility
4414 * disabled and enable it later
4415 */
d9c23400 4416 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4417 page_group_by_mobility_disabled = 1;
4418 else
4419 page_group_by_mobility_disabled = 0;
4420
f88dfff5 4421 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4422 "Total pages: %ld\n",
62bc62a8 4423 nr_online_nodes,
f0c0b2b8 4424 zonelist_order_name[current_zonelist_order],
9ef9acb0 4425 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4426 vm_total_pages);
4427#ifdef CONFIG_NUMA
f88dfff5 4428 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4429#endif
1da177e4
LT
4430}
4431
4432/*
4433 * Helper functions to size the waitqueue hash table.
4434 * Essentially these want to choose hash table sizes sufficiently
4435 * large so that collisions trying to wait on pages are rare.
4436 * But in fact, the number of active page waitqueues on typical
4437 * systems is ridiculously low, less than 200. So this is even
4438 * conservative, even though it seems large.
4439 *
4440 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4441 * waitqueues, i.e. the size of the waitq table given the number of pages.
4442 */
4443#define PAGES_PER_WAITQUEUE 256
4444
cca448fe 4445#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4446static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4447{
4448 unsigned long size = 1;
4449
4450 pages /= PAGES_PER_WAITQUEUE;
4451
4452 while (size < pages)
4453 size <<= 1;
4454
4455 /*
4456 * Once we have dozens or even hundreds of threads sleeping
4457 * on IO we've got bigger problems than wait queue collision.
4458 * Limit the size of the wait table to a reasonable size.
4459 */
4460 size = min(size, 4096UL);
4461
4462 return max(size, 4UL);
4463}
cca448fe
YG
4464#else
4465/*
4466 * A zone's size might be changed by hot-add, so it is not possible to determine
4467 * a suitable size for its wait_table. So we use the maximum size now.
4468 *
4469 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4470 *
4471 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4472 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4473 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4474 *
4475 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4476 * or more by the traditional way. (See above). It equals:
4477 *
4478 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4479 * ia64(16K page size) : = ( 8G + 4M)byte.
4480 * powerpc (64K page size) : = (32G +16M)byte.
4481 */
4482static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4483{
4484 return 4096UL;
4485}
4486#endif
1da177e4
LT
4487
4488/*
4489 * This is an integer logarithm so that shifts can be used later
4490 * to extract the more random high bits from the multiplicative
4491 * hash function before the remainder is taken.
4492 */
4493static inline unsigned long wait_table_bits(unsigned long size)
4494{
4495 return ffz(~size);
4496}
4497
6d3163ce
AH
4498/*
4499 * Check if a pageblock contains reserved pages
4500 */
4501static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4502{
4503 unsigned long pfn;
4504
4505 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4506 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4507 return 1;
4508 }
4509 return 0;
4510}
4511
56fd56b8 4512/*
d9c23400 4513 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4514 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4515 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4516 * higher will lead to a bigger reserve which will get freed as contiguous
4517 * blocks as reclaim kicks in
4518 */
4519static void setup_zone_migrate_reserve(struct zone *zone)
4520{
6d3163ce 4521 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4522 struct page *page;
78986a67
MG
4523 unsigned long block_migratetype;
4524 int reserve;
943dca1a 4525 int old_reserve;
56fd56b8 4526
d0215638
MH
4527 /*
4528 * Get the start pfn, end pfn and the number of blocks to reserve
4529 * We have to be careful to be aligned to pageblock_nr_pages to
4530 * make sure that we always check pfn_valid for the first page in
4531 * the block.
4532 */
56fd56b8 4533 start_pfn = zone->zone_start_pfn;
108bcc96 4534 end_pfn = zone_end_pfn(zone);
d0215638 4535 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4536 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4537 pageblock_order;
56fd56b8 4538
78986a67
MG
4539 /*
4540 * Reserve blocks are generally in place to help high-order atomic
4541 * allocations that are short-lived. A min_free_kbytes value that
4542 * would result in more than 2 reserve blocks for atomic allocations
4543 * is assumed to be in place to help anti-fragmentation for the
4544 * future allocation of hugepages at runtime.
4545 */
4546 reserve = min(2, reserve);
943dca1a
YI
4547 old_reserve = zone->nr_migrate_reserve_block;
4548
4549 /* When memory hot-add, we almost always need to do nothing */
4550 if (reserve == old_reserve)
4551 return;
4552 zone->nr_migrate_reserve_block = reserve;
78986a67 4553
d9c23400 4554 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
7e18adb4
MG
4555 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4556 return;
4557
56fd56b8
MG
4558 if (!pfn_valid(pfn))
4559 continue;
4560 page = pfn_to_page(pfn);
4561
344c790e
AL
4562 /* Watch out for overlapping nodes */
4563 if (page_to_nid(page) != zone_to_nid(zone))
4564 continue;
4565
56fd56b8
MG
4566 block_migratetype = get_pageblock_migratetype(page);
4567
938929f1
MG
4568 /* Only test what is necessary when the reserves are not met */
4569 if (reserve > 0) {
4570 /*
4571 * Blocks with reserved pages will never free, skip
4572 * them.
4573 */
4574 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4575 if (pageblock_is_reserved(pfn, block_end_pfn))
4576 continue;
56fd56b8 4577
938929f1
MG
4578 /* If this block is reserved, account for it */
4579 if (block_migratetype == MIGRATE_RESERVE) {
4580 reserve--;
4581 continue;
4582 }
4583
4584 /* Suitable for reserving if this block is movable */
4585 if (block_migratetype == MIGRATE_MOVABLE) {
4586 set_pageblock_migratetype(page,
4587 MIGRATE_RESERVE);
4588 move_freepages_block(zone, page,
4589 MIGRATE_RESERVE);
4590 reserve--;
4591 continue;
4592 }
943dca1a
YI
4593 } else if (!old_reserve) {
4594 /*
4595 * At boot time we don't need to scan the whole zone
4596 * for turning off MIGRATE_RESERVE.
4597 */
4598 break;
56fd56b8
MG
4599 }
4600
4601 /*
4602 * If the reserve is met and this is a previous reserved block,
4603 * take it back
4604 */
4605 if (block_migratetype == MIGRATE_RESERVE) {
4606 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4607 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4608 }
4609 }
4610}
ac0e5b7a 4611
1da177e4
LT
4612/*
4613 * Initially all pages are reserved - free ones are freed
4614 * up by free_all_bootmem() once the early boot process is
4615 * done. Non-atomic initialization, single-pass.
4616 */
c09b4240 4617void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4618 unsigned long start_pfn, enum memmap_context context)
1da177e4 4619{
3a80a7fa 4620 pg_data_t *pgdat = NODE_DATA(nid);
29751f69
AW
4621 unsigned long end_pfn = start_pfn + size;
4622 unsigned long pfn;
86051ca5 4623 struct zone *z;
3a80a7fa 4624 unsigned long nr_initialised = 0;
1da177e4 4625
22b31eec
HD
4626 if (highest_memmap_pfn < end_pfn - 1)
4627 highest_memmap_pfn = end_pfn - 1;
4628
3a80a7fa 4629 z = &pgdat->node_zones[zone];
cbe8dd4a 4630 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4631 /*
4632 * There can be holes in boot-time mem_map[]s
4633 * handed to this function. They do not
4634 * exist on hotplugged memory.
4635 */
4636 if (context == MEMMAP_EARLY) {
4637 if (!early_pfn_valid(pfn))
4638 continue;
4639 if (!early_pfn_in_nid(pfn, nid))
4640 continue;
3a80a7fa
MG
4641 if (!update_defer_init(pgdat, pfn, end_pfn,
4642 &nr_initialised))
4643 break;
a2f3aa02 4644 }
ac5d2539
MG
4645
4646 /*
4647 * Mark the block movable so that blocks are reserved for
4648 * movable at startup. This will force kernel allocations
4649 * to reserve their blocks rather than leaking throughout
4650 * the address space during boot when many long-lived
4651 * kernel allocations are made. Later some blocks near
4652 * the start are marked MIGRATE_RESERVE by
4653 * setup_zone_migrate_reserve()
4654 *
4655 * bitmap is created for zone's valid pfn range. but memmap
4656 * can be created for invalid pages (for alignment)
4657 * check here not to call set_pageblock_migratetype() against
4658 * pfn out of zone.
4659 */
4660 if (!(pfn & (pageblock_nr_pages - 1))) {
4661 struct page *page = pfn_to_page(pfn);
4662
4663 __init_single_page(page, pfn, zone, nid);
4664 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4665 } else {
4666 __init_single_pfn(pfn, zone, nid);
4667 }
1da177e4
LT
4668 }
4669}
4670
1e548deb 4671static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4672{
7aeb09f9 4673 unsigned int order, t;
b2a0ac88
MG
4674 for_each_migratetype_order(order, t) {
4675 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4676 zone->free_area[order].nr_free = 0;
4677 }
4678}
4679
4680#ifndef __HAVE_ARCH_MEMMAP_INIT
4681#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4682 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4683#endif
4684
7cd2b0a3 4685static int zone_batchsize(struct zone *zone)
e7c8d5c9 4686{
3a6be87f 4687#ifdef CONFIG_MMU
e7c8d5c9
CL
4688 int batch;
4689
4690 /*
4691 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4692 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4693 *
4694 * OK, so we don't know how big the cache is. So guess.
4695 */
b40da049 4696 batch = zone->managed_pages / 1024;
ba56e91c
SR
4697 if (batch * PAGE_SIZE > 512 * 1024)
4698 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4699 batch /= 4; /* We effectively *= 4 below */
4700 if (batch < 1)
4701 batch = 1;
4702
4703 /*
0ceaacc9
NP
4704 * Clamp the batch to a 2^n - 1 value. Having a power
4705 * of 2 value was found to be more likely to have
4706 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4707 *
0ceaacc9
NP
4708 * For example if 2 tasks are alternately allocating
4709 * batches of pages, one task can end up with a lot
4710 * of pages of one half of the possible page colors
4711 * and the other with pages of the other colors.
e7c8d5c9 4712 */
9155203a 4713 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4714
e7c8d5c9 4715 return batch;
3a6be87f
DH
4716
4717#else
4718 /* The deferral and batching of frees should be suppressed under NOMMU
4719 * conditions.
4720 *
4721 * The problem is that NOMMU needs to be able to allocate large chunks
4722 * of contiguous memory as there's no hardware page translation to
4723 * assemble apparent contiguous memory from discontiguous pages.
4724 *
4725 * Queueing large contiguous runs of pages for batching, however,
4726 * causes the pages to actually be freed in smaller chunks. As there
4727 * can be a significant delay between the individual batches being
4728 * recycled, this leads to the once large chunks of space being
4729 * fragmented and becoming unavailable for high-order allocations.
4730 */
4731 return 0;
4732#endif
e7c8d5c9
CL
4733}
4734
8d7a8fa9
CS
4735/*
4736 * pcp->high and pcp->batch values are related and dependent on one another:
4737 * ->batch must never be higher then ->high.
4738 * The following function updates them in a safe manner without read side
4739 * locking.
4740 *
4741 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4742 * those fields changing asynchronously (acording the the above rule).
4743 *
4744 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4745 * outside of boot time (or some other assurance that no concurrent updaters
4746 * exist).
4747 */
4748static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4749 unsigned long batch)
4750{
4751 /* start with a fail safe value for batch */
4752 pcp->batch = 1;
4753 smp_wmb();
4754
4755 /* Update high, then batch, in order */
4756 pcp->high = high;
4757 smp_wmb();
4758
4759 pcp->batch = batch;
4760}
4761
3664033c 4762/* a companion to pageset_set_high() */
4008bab7
CS
4763static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4764{
8d7a8fa9 4765 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4766}
4767
88c90dbc 4768static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4769{
4770 struct per_cpu_pages *pcp;
5f8dcc21 4771 int migratetype;
2caaad41 4772
1c6fe946
MD
4773 memset(p, 0, sizeof(*p));
4774
3dfa5721 4775 pcp = &p->pcp;
2caaad41 4776 pcp->count = 0;
5f8dcc21
MG
4777 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4778 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4779}
4780
88c90dbc
CS
4781static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4782{
4783 pageset_init(p);
4784 pageset_set_batch(p, batch);
4785}
4786
8ad4b1fb 4787/*
3664033c 4788 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4789 * to the value high for the pageset p.
4790 */
3664033c 4791static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4792 unsigned long high)
4793{
8d7a8fa9
CS
4794 unsigned long batch = max(1UL, high / 4);
4795 if ((high / 4) > (PAGE_SHIFT * 8))
4796 batch = PAGE_SHIFT * 8;
8ad4b1fb 4797
8d7a8fa9 4798 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4799}
4800
7cd2b0a3
DR
4801static void pageset_set_high_and_batch(struct zone *zone,
4802 struct per_cpu_pageset *pcp)
56cef2b8 4803{
56cef2b8 4804 if (percpu_pagelist_fraction)
3664033c 4805 pageset_set_high(pcp,
56cef2b8
CS
4806 (zone->managed_pages /
4807 percpu_pagelist_fraction));
4808 else
4809 pageset_set_batch(pcp, zone_batchsize(zone));
4810}
4811
169f6c19
CS
4812static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4813{
4814 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4815
4816 pageset_init(pcp);
4817 pageset_set_high_and_batch(zone, pcp);
4818}
4819
4ed7e022 4820static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4821{
4822 int cpu;
319774e2 4823 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4824 for_each_possible_cpu(cpu)
4825 zone_pageset_init(zone, cpu);
319774e2
WF
4826}
4827
2caaad41 4828/*
99dcc3e5
CL
4829 * Allocate per cpu pagesets and initialize them.
4830 * Before this call only boot pagesets were available.
e7c8d5c9 4831 */
99dcc3e5 4832void __init setup_per_cpu_pageset(void)
e7c8d5c9 4833{
99dcc3e5 4834 struct zone *zone;
e7c8d5c9 4835
319774e2
WF
4836 for_each_populated_zone(zone)
4837 setup_zone_pageset(zone);
e7c8d5c9
CL
4838}
4839
577a32f6 4840static noinline __init_refok
cca448fe 4841int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4842{
4843 int i;
cca448fe 4844 size_t alloc_size;
ed8ece2e
DH
4845
4846 /*
4847 * The per-page waitqueue mechanism uses hashed waitqueues
4848 * per zone.
4849 */
02b694de
YG
4850 zone->wait_table_hash_nr_entries =
4851 wait_table_hash_nr_entries(zone_size_pages);
4852 zone->wait_table_bits =
4853 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4854 alloc_size = zone->wait_table_hash_nr_entries
4855 * sizeof(wait_queue_head_t);
4856
cd94b9db 4857 if (!slab_is_available()) {
cca448fe 4858 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4859 memblock_virt_alloc_node_nopanic(
4860 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4861 } else {
4862 /*
4863 * This case means that a zone whose size was 0 gets new memory
4864 * via memory hot-add.
4865 * But it may be the case that a new node was hot-added. In
4866 * this case vmalloc() will not be able to use this new node's
4867 * memory - this wait_table must be initialized to use this new
4868 * node itself as well.
4869 * To use this new node's memory, further consideration will be
4870 * necessary.
4871 */
8691f3a7 4872 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4873 }
4874 if (!zone->wait_table)
4875 return -ENOMEM;
ed8ece2e 4876
b8af2941 4877 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4878 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4879
4880 return 0;
ed8ece2e
DH
4881}
4882
c09b4240 4883static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4884{
99dcc3e5
CL
4885 /*
4886 * per cpu subsystem is not up at this point. The following code
4887 * relies on the ability of the linker to provide the
4888 * offset of a (static) per cpu variable into the per cpu area.
4889 */
4890 zone->pageset = &boot_pageset;
ed8ece2e 4891
b38a8725 4892 if (populated_zone(zone))
99dcc3e5
CL
4893 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4894 zone->name, zone->present_pages,
4895 zone_batchsize(zone));
ed8ece2e
DH
4896}
4897
4ed7e022 4898int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4899 unsigned long zone_start_pfn,
a2f3aa02
DH
4900 unsigned long size,
4901 enum memmap_context context)
ed8ece2e
DH
4902{
4903 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4904 int ret;
4905 ret = zone_wait_table_init(zone, size);
4906 if (ret)
4907 return ret;
ed8ece2e
DH
4908 pgdat->nr_zones = zone_idx(zone) + 1;
4909
ed8ece2e
DH
4910 zone->zone_start_pfn = zone_start_pfn;
4911
708614e6
MG
4912 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4913 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4914 pgdat->node_id,
4915 (unsigned long)zone_idx(zone),
4916 zone_start_pfn, (zone_start_pfn + size));
4917
1e548deb 4918 zone_init_free_lists(zone);
718127cc
YG
4919
4920 return 0;
ed8ece2e
DH
4921}
4922
0ee332c1 4923#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4924#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4925
c713216d
MG
4926/*
4927 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4928 */
8a942fde
MG
4929int __meminit __early_pfn_to_nid(unsigned long pfn,
4930 struct mminit_pfnnid_cache *state)
c713216d 4931{
c13291a5 4932 unsigned long start_pfn, end_pfn;
e76b63f8 4933 int nid;
7c243c71 4934
8a942fde
MG
4935 if (state->last_start <= pfn && pfn < state->last_end)
4936 return state->last_nid;
c713216d 4937
e76b63f8
YL
4938 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4939 if (nid != -1) {
8a942fde
MG
4940 state->last_start = start_pfn;
4941 state->last_end = end_pfn;
4942 state->last_nid = nid;
e76b63f8
YL
4943 }
4944
4945 return nid;
c713216d
MG
4946}
4947#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4948
c713216d 4949/**
6782832e 4950 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4951 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4952 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4953 *
7d018176
ZZ
4954 * If an architecture guarantees that all ranges registered contain no holes
4955 * and may be freed, this this function may be used instead of calling
4956 * memblock_free_early_nid() manually.
c713216d 4957 */
c13291a5 4958void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4959{
c13291a5
TH
4960 unsigned long start_pfn, end_pfn;
4961 int i, this_nid;
edbe7d23 4962
c13291a5
TH
4963 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4964 start_pfn = min(start_pfn, max_low_pfn);
4965 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4966
c13291a5 4967 if (start_pfn < end_pfn)
6782832e
SS
4968 memblock_free_early_nid(PFN_PHYS(start_pfn),
4969 (end_pfn - start_pfn) << PAGE_SHIFT,
4970 this_nid);
edbe7d23 4971 }
edbe7d23 4972}
edbe7d23 4973
c713216d
MG
4974/**
4975 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4976 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4977 *
7d018176
ZZ
4978 * If an architecture guarantees that all ranges registered contain no holes and may
4979 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4980 */
4981void __init sparse_memory_present_with_active_regions(int nid)
4982{
c13291a5
TH
4983 unsigned long start_pfn, end_pfn;
4984 int i, this_nid;
c713216d 4985
c13291a5
TH
4986 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4987 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4988}
4989
4990/**
4991 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4992 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4993 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4994 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4995 *
4996 * It returns the start and end page frame of a node based on information
7d018176 4997 * provided by memblock_set_node(). If called for a node
c713216d 4998 * with no available memory, a warning is printed and the start and end
88ca3b94 4999 * PFNs will be 0.
c713216d 5000 */
a3142c8e 5001void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5002 unsigned long *start_pfn, unsigned long *end_pfn)
5003{
c13291a5 5004 unsigned long this_start_pfn, this_end_pfn;
c713216d 5005 int i;
c13291a5 5006
c713216d
MG
5007 *start_pfn = -1UL;
5008 *end_pfn = 0;
5009
c13291a5
TH
5010 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5011 *start_pfn = min(*start_pfn, this_start_pfn);
5012 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5013 }
5014
633c0666 5015 if (*start_pfn == -1UL)
c713216d 5016 *start_pfn = 0;
c713216d
MG
5017}
5018
2a1e274a
MG
5019/*
5020 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5021 * assumption is made that zones within a node are ordered in monotonic
5022 * increasing memory addresses so that the "highest" populated zone is used
5023 */
b69a7288 5024static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5025{
5026 int zone_index;
5027 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5028 if (zone_index == ZONE_MOVABLE)
5029 continue;
5030
5031 if (arch_zone_highest_possible_pfn[zone_index] >
5032 arch_zone_lowest_possible_pfn[zone_index])
5033 break;
5034 }
5035
5036 VM_BUG_ON(zone_index == -1);
5037 movable_zone = zone_index;
5038}
5039
5040/*
5041 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5042 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5043 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5044 * in each node depending on the size of each node and how evenly kernelcore
5045 * is distributed. This helper function adjusts the zone ranges
5046 * provided by the architecture for a given node by using the end of the
5047 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5048 * zones within a node are in order of monotonic increases memory addresses
5049 */
b69a7288 5050static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5051 unsigned long zone_type,
5052 unsigned long node_start_pfn,
5053 unsigned long node_end_pfn,
5054 unsigned long *zone_start_pfn,
5055 unsigned long *zone_end_pfn)
5056{
5057 /* Only adjust if ZONE_MOVABLE is on this node */
5058 if (zone_movable_pfn[nid]) {
5059 /* Size ZONE_MOVABLE */
5060 if (zone_type == ZONE_MOVABLE) {
5061 *zone_start_pfn = zone_movable_pfn[nid];
5062 *zone_end_pfn = min(node_end_pfn,
5063 arch_zone_highest_possible_pfn[movable_zone]);
5064
5065 /* Adjust for ZONE_MOVABLE starting within this range */
5066 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5067 *zone_end_pfn > zone_movable_pfn[nid]) {
5068 *zone_end_pfn = zone_movable_pfn[nid];
5069
5070 /* Check if this whole range is within ZONE_MOVABLE */
5071 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5072 *zone_start_pfn = *zone_end_pfn;
5073 }
5074}
5075
c713216d
MG
5076/*
5077 * Return the number of pages a zone spans in a node, including holes
5078 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5079 */
6ea6e688 5080static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5081 unsigned long zone_type,
7960aedd
ZY
5082 unsigned long node_start_pfn,
5083 unsigned long node_end_pfn,
c713216d
MG
5084 unsigned long *ignored)
5085{
c713216d
MG
5086 unsigned long zone_start_pfn, zone_end_pfn;
5087
f9126ab9
XQ
5088 /* When hotadd a new node, the node should be empty */
5089 if (!node_start_pfn && !node_end_pfn)
5090 return 0;
5091
7960aedd 5092 /* Get the start and end of the zone */
c713216d
MG
5093 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5094 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5095 adjust_zone_range_for_zone_movable(nid, zone_type,
5096 node_start_pfn, node_end_pfn,
5097 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
5098
5099 /* Check that this node has pages within the zone's required range */
5100 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5101 return 0;
5102
5103 /* Move the zone boundaries inside the node if necessary */
5104 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5105 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5106
5107 /* Return the spanned pages */
5108 return zone_end_pfn - zone_start_pfn;
5109}
5110
5111/*
5112 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5113 * then all holes in the requested range will be accounted for.
c713216d 5114 */
32996250 5115unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5116 unsigned long range_start_pfn,
5117 unsigned long range_end_pfn)
5118{
96e907d1
TH
5119 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5120 unsigned long start_pfn, end_pfn;
5121 int i;
c713216d 5122
96e907d1
TH
5123 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5124 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5125 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5126 nr_absent -= end_pfn - start_pfn;
c713216d 5127 }
96e907d1 5128 return nr_absent;
c713216d
MG
5129}
5130
5131/**
5132 * absent_pages_in_range - Return number of page frames in holes within a range
5133 * @start_pfn: The start PFN to start searching for holes
5134 * @end_pfn: The end PFN to stop searching for holes
5135 *
88ca3b94 5136 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5137 */
5138unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5139 unsigned long end_pfn)
5140{
5141 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5142}
5143
5144/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5145static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5146 unsigned long zone_type,
7960aedd
ZY
5147 unsigned long node_start_pfn,
5148 unsigned long node_end_pfn,
c713216d
MG
5149 unsigned long *ignored)
5150{
96e907d1
TH
5151 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5152 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
5153 unsigned long zone_start_pfn, zone_end_pfn;
5154
f9126ab9
XQ
5155 /* When hotadd a new node, the node should be empty */
5156 if (!node_start_pfn && !node_end_pfn)
5157 return 0;
5158
96e907d1
TH
5159 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5160 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5161
2a1e274a
MG
5162 adjust_zone_range_for_zone_movable(nid, zone_type,
5163 node_start_pfn, node_end_pfn,
5164 &zone_start_pfn, &zone_end_pfn);
9c7cd687 5165 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 5166}
0e0b864e 5167
0ee332c1 5168#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5169static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5170 unsigned long zone_type,
7960aedd
ZY
5171 unsigned long node_start_pfn,
5172 unsigned long node_end_pfn,
c713216d
MG
5173 unsigned long *zones_size)
5174{
5175 return zones_size[zone_type];
5176}
5177
6ea6e688 5178static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5179 unsigned long zone_type,
7960aedd
ZY
5180 unsigned long node_start_pfn,
5181 unsigned long node_end_pfn,
c713216d
MG
5182 unsigned long *zholes_size)
5183{
5184 if (!zholes_size)
5185 return 0;
5186
5187 return zholes_size[zone_type];
5188}
20e6926d 5189
0ee332c1 5190#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5191
a3142c8e 5192static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5193 unsigned long node_start_pfn,
5194 unsigned long node_end_pfn,
5195 unsigned long *zones_size,
5196 unsigned long *zholes_size)
c713216d 5197{
febd5949 5198 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5199 enum zone_type i;
5200
febd5949
GZ
5201 for (i = 0; i < MAX_NR_ZONES; i++) {
5202 struct zone *zone = pgdat->node_zones + i;
5203 unsigned long size, real_size;
c713216d 5204
febd5949
GZ
5205 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5206 node_start_pfn,
5207 node_end_pfn,
5208 zones_size);
5209 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5210 node_start_pfn, node_end_pfn,
5211 zholes_size);
febd5949
GZ
5212 zone->spanned_pages = size;
5213 zone->present_pages = real_size;
5214
5215 totalpages += size;
5216 realtotalpages += real_size;
5217 }
5218
5219 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5220 pgdat->node_present_pages = realtotalpages;
5221 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5222 realtotalpages);
5223}
5224
835c134e
MG
5225#ifndef CONFIG_SPARSEMEM
5226/*
5227 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5228 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5229 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5230 * round what is now in bits to nearest long in bits, then return it in
5231 * bytes.
5232 */
7c45512d 5233static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5234{
5235 unsigned long usemapsize;
5236
7c45512d 5237 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5238 usemapsize = roundup(zonesize, pageblock_nr_pages);
5239 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5240 usemapsize *= NR_PAGEBLOCK_BITS;
5241 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5242
5243 return usemapsize / 8;
5244}
5245
5246static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5247 struct zone *zone,
5248 unsigned long zone_start_pfn,
5249 unsigned long zonesize)
835c134e 5250{
7c45512d 5251 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5252 zone->pageblock_flags = NULL;
58a01a45 5253 if (usemapsize)
6782832e
SS
5254 zone->pageblock_flags =
5255 memblock_virt_alloc_node_nopanic(usemapsize,
5256 pgdat->node_id);
835c134e
MG
5257}
5258#else
7c45512d
LT
5259static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5260 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5261#endif /* CONFIG_SPARSEMEM */
5262
d9c23400 5263#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5264
d9c23400 5265/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5266void __paginginit set_pageblock_order(void)
d9c23400 5267{
955c1cd7
AM
5268 unsigned int order;
5269
d9c23400
MG
5270 /* Check that pageblock_nr_pages has not already been setup */
5271 if (pageblock_order)
5272 return;
5273
955c1cd7
AM
5274 if (HPAGE_SHIFT > PAGE_SHIFT)
5275 order = HUGETLB_PAGE_ORDER;
5276 else
5277 order = MAX_ORDER - 1;
5278
d9c23400
MG
5279 /*
5280 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5281 * This value may be variable depending on boot parameters on IA64 and
5282 * powerpc.
d9c23400
MG
5283 */
5284 pageblock_order = order;
5285}
5286#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5287
ba72cb8c
MG
5288/*
5289 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5290 * is unused as pageblock_order is set at compile-time. See
5291 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5292 * the kernel config
ba72cb8c 5293 */
15ca220e 5294void __paginginit set_pageblock_order(void)
ba72cb8c 5295{
ba72cb8c 5296}
d9c23400
MG
5297
5298#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5299
01cefaef
JL
5300static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5301 unsigned long present_pages)
5302{
5303 unsigned long pages = spanned_pages;
5304
5305 /*
5306 * Provide a more accurate estimation if there are holes within
5307 * the zone and SPARSEMEM is in use. If there are holes within the
5308 * zone, each populated memory region may cost us one or two extra
5309 * memmap pages due to alignment because memmap pages for each
5310 * populated regions may not naturally algined on page boundary.
5311 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5312 */
5313 if (spanned_pages > present_pages + (present_pages >> 4) &&
5314 IS_ENABLED(CONFIG_SPARSEMEM))
5315 pages = present_pages;
5316
5317 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5318}
5319
1da177e4
LT
5320/*
5321 * Set up the zone data structures:
5322 * - mark all pages reserved
5323 * - mark all memory queues empty
5324 * - clear the memory bitmaps
6527af5d
MK
5325 *
5326 * NOTE: pgdat should get zeroed by caller.
1da177e4 5327 */
7f3eb55b 5328static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5329{
2f1b6248 5330 enum zone_type j;
ed8ece2e 5331 int nid = pgdat->node_id;
1da177e4 5332 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 5333 int ret;
1da177e4 5334
208d54e5 5335 pgdat_resize_init(pgdat);
8177a420
AA
5336#ifdef CONFIG_NUMA_BALANCING
5337 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5338 pgdat->numabalancing_migrate_nr_pages = 0;
5339 pgdat->numabalancing_migrate_next_window = jiffies;
5340#endif
1da177e4 5341 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5342 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5343 pgdat_page_ext_init(pgdat);
5f63b720 5344
1da177e4
LT
5345 for (j = 0; j < MAX_NR_ZONES; j++) {
5346 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5347 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 5348
febd5949
GZ
5349 size = zone->spanned_pages;
5350 realsize = freesize = zone->present_pages;
1da177e4 5351
0e0b864e 5352 /*
9feedc9d 5353 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5354 * is used by this zone for memmap. This affects the watermark
5355 * and per-cpu initialisations
5356 */
01cefaef 5357 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5358 if (!is_highmem_idx(j)) {
5359 if (freesize >= memmap_pages) {
5360 freesize -= memmap_pages;
5361 if (memmap_pages)
5362 printk(KERN_DEBUG
5363 " %s zone: %lu pages used for memmap\n",
5364 zone_names[j], memmap_pages);
5365 } else
5366 printk(KERN_WARNING
5367 " %s zone: %lu pages exceeds freesize %lu\n",
5368 zone_names[j], memmap_pages, freesize);
5369 }
0e0b864e 5370
6267276f 5371 /* Account for reserved pages */
9feedc9d
JL
5372 if (j == 0 && freesize > dma_reserve) {
5373 freesize -= dma_reserve;
d903ef9f 5374 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5375 zone_names[0], dma_reserve);
0e0b864e
MG
5376 }
5377
98d2b0eb 5378 if (!is_highmem_idx(j))
9feedc9d 5379 nr_kernel_pages += freesize;
01cefaef
JL
5380 /* Charge for highmem memmap if there are enough kernel pages */
5381 else if (nr_kernel_pages > memmap_pages * 2)
5382 nr_kernel_pages -= memmap_pages;
9feedc9d 5383 nr_all_pages += freesize;
1da177e4 5384
9feedc9d
JL
5385 /*
5386 * Set an approximate value for lowmem here, it will be adjusted
5387 * when the bootmem allocator frees pages into the buddy system.
5388 * And all highmem pages will be managed by the buddy system.
5389 */
5390 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5391#ifdef CONFIG_NUMA
d5f541ed 5392 zone->node = nid;
9feedc9d 5393 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5394 / 100;
9feedc9d 5395 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5396#endif
1da177e4
LT
5397 zone->name = zone_names[j];
5398 spin_lock_init(&zone->lock);
5399 spin_lock_init(&zone->lru_lock);
bdc8cb98 5400 zone_seqlock_init(zone);
1da177e4 5401 zone->zone_pgdat = pgdat;
ed8ece2e 5402 zone_pcp_init(zone);
81c0a2bb
JW
5403
5404 /* For bootup, initialized properly in watermark setup */
5405 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5406
bea8c150 5407 lruvec_init(&zone->lruvec);
1da177e4
LT
5408 if (!size)
5409 continue;
5410
955c1cd7 5411 set_pageblock_order();
7c45512d 5412 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
5413 ret = init_currently_empty_zone(zone, zone_start_pfn,
5414 size, MEMMAP_EARLY);
718127cc 5415 BUG_ON(ret);
76cdd58e 5416 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5417 zone_start_pfn += size;
1da177e4
LT
5418 }
5419}
5420
577a32f6 5421static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5422{
1da177e4
LT
5423 /* Skip empty nodes */
5424 if (!pgdat->node_spanned_pages)
5425 return;
5426
d41dee36 5427#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
5428 /* ia64 gets its own node_mem_map, before this, without bootmem */
5429 if (!pgdat->node_mem_map) {
e984bb43 5430 unsigned long size, start, end;
d41dee36
AW
5431 struct page *map;
5432
e984bb43
BP
5433 /*
5434 * The zone's endpoints aren't required to be MAX_ORDER
5435 * aligned but the node_mem_map endpoints must be in order
5436 * for the buddy allocator to function correctly.
5437 */
5438 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 5439 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5440 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5441 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5442 map = alloc_remap(pgdat->node_id, size);
5443 if (!map)
6782832e
SS
5444 map = memblock_virt_alloc_node_nopanic(size,
5445 pgdat->node_id);
e984bb43 5446 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 5447 }
12d810c1 5448#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5449 /*
5450 * With no DISCONTIG, the global mem_map is just set as node 0's
5451 */
c713216d 5452 if (pgdat == NODE_DATA(0)) {
1da177e4 5453 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 5454#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5455 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 5456 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 5457#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5458 }
1da177e4 5459#endif
d41dee36 5460#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5461}
5462
9109fb7b
JW
5463void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5464 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5465{
9109fb7b 5466 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5467 unsigned long start_pfn = 0;
5468 unsigned long end_pfn = 0;
9109fb7b 5469
88fdf75d 5470 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5471 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5472
3a80a7fa 5473 reset_deferred_meminit(pgdat);
1da177e4
LT
5474 pgdat->node_id = nid;
5475 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5476#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5477 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a
JG
5478 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5479 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5480#endif
5481 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5482 zones_size, zholes_size);
1da177e4
LT
5483
5484 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5485#ifdef CONFIG_FLAT_NODE_MEM_MAP
5486 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5487 nid, (unsigned long)pgdat,
5488 (unsigned long)pgdat->node_mem_map);
5489#endif
1da177e4 5490
7f3eb55b 5491 free_area_init_core(pgdat);
1da177e4
LT
5492}
5493
0ee332c1 5494#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5495
5496#if MAX_NUMNODES > 1
5497/*
5498 * Figure out the number of possible node ids.
5499 */
f9872caf 5500void __init setup_nr_node_ids(void)
418508c1 5501{
904a9553 5502 unsigned int highest;
418508c1 5503
904a9553 5504 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5505 nr_node_ids = highest + 1;
5506}
418508c1
MS
5507#endif
5508
1e01979c
TH
5509/**
5510 * node_map_pfn_alignment - determine the maximum internode alignment
5511 *
5512 * This function should be called after node map is populated and sorted.
5513 * It calculates the maximum power of two alignment which can distinguish
5514 * all the nodes.
5515 *
5516 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5517 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5518 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5519 * shifted, 1GiB is enough and this function will indicate so.
5520 *
5521 * This is used to test whether pfn -> nid mapping of the chosen memory
5522 * model has fine enough granularity to avoid incorrect mapping for the
5523 * populated node map.
5524 *
5525 * Returns the determined alignment in pfn's. 0 if there is no alignment
5526 * requirement (single node).
5527 */
5528unsigned long __init node_map_pfn_alignment(void)
5529{
5530 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5531 unsigned long start, end, mask;
1e01979c 5532 int last_nid = -1;
c13291a5 5533 int i, nid;
1e01979c 5534
c13291a5 5535 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5536 if (!start || last_nid < 0 || last_nid == nid) {
5537 last_nid = nid;
5538 last_end = end;
5539 continue;
5540 }
5541
5542 /*
5543 * Start with a mask granular enough to pin-point to the
5544 * start pfn and tick off bits one-by-one until it becomes
5545 * too coarse to separate the current node from the last.
5546 */
5547 mask = ~((1 << __ffs(start)) - 1);
5548 while (mask && last_end <= (start & (mask << 1)))
5549 mask <<= 1;
5550
5551 /* accumulate all internode masks */
5552 accl_mask |= mask;
5553 }
5554
5555 /* convert mask to number of pages */
5556 return ~accl_mask + 1;
5557}
5558
a6af2bc3 5559/* Find the lowest pfn for a node */
b69a7288 5560static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5561{
a6af2bc3 5562 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5563 unsigned long start_pfn;
5564 int i;
1abbfb41 5565
c13291a5
TH
5566 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5567 min_pfn = min(min_pfn, start_pfn);
c713216d 5568
a6af2bc3
MG
5569 if (min_pfn == ULONG_MAX) {
5570 printk(KERN_WARNING
2bc0d261 5571 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5572 return 0;
5573 }
5574
5575 return min_pfn;
c713216d
MG
5576}
5577
5578/**
5579 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5580 *
5581 * It returns the minimum PFN based on information provided via
7d018176 5582 * memblock_set_node().
c713216d
MG
5583 */
5584unsigned long __init find_min_pfn_with_active_regions(void)
5585{
5586 return find_min_pfn_for_node(MAX_NUMNODES);
5587}
5588
37b07e41
LS
5589/*
5590 * early_calculate_totalpages()
5591 * Sum pages in active regions for movable zone.
4b0ef1fe 5592 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5593 */
484f51f8 5594static unsigned long __init early_calculate_totalpages(void)
7e63efef 5595{
7e63efef 5596 unsigned long totalpages = 0;
c13291a5
TH
5597 unsigned long start_pfn, end_pfn;
5598 int i, nid;
5599
5600 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5601 unsigned long pages = end_pfn - start_pfn;
7e63efef 5602
37b07e41
LS
5603 totalpages += pages;
5604 if (pages)
4b0ef1fe 5605 node_set_state(nid, N_MEMORY);
37b07e41 5606 }
b8af2941 5607 return totalpages;
7e63efef
MG
5608}
5609
2a1e274a
MG
5610/*
5611 * Find the PFN the Movable zone begins in each node. Kernel memory
5612 * is spread evenly between nodes as long as the nodes have enough
5613 * memory. When they don't, some nodes will have more kernelcore than
5614 * others
5615 */
b224ef85 5616static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5617{
5618 int i, nid;
5619 unsigned long usable_startpfn;
5620 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5621 /* save the state before borrow the nodemask */
4b0ef1fe 5622 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5623 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5624 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5625 struct memblock_region *r;
b2f3eebe
TC
5626
5627 /* Need to find movable_zone earlier when movable_node is specified. */
5628 find_usable_zone_for_movable();
5629
5630 /*
5631 * If movable_node is specified, ignore kernelcore and movablecore
5632 * options.
5633 */
5634 if (movable_node_is_enabled()) {
136199f0
EM
5635 for_each_memblock(memory, r) {
5636 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5637 continue;
5638
136199f0 5639 nid = r->nid;
b2f3eebe 5640
136199f0 5641 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5642 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5643 min(usable_startpfn, zone_movable_pfn[nid]) :
5644 usable_startpfn;
5645 }
5646
5647 goto out2;
5648 }
2a1e274a 5649
7e63efef 5650 /*
b2f3eebe 5651 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5652 * kernelcore that corresponds so that memory usable for
5653 * any allocation type is evenly spread. If both kernelcore
5654 * and movablecore are specified, then the value of kernelcore
5655 * will be used for required_kernelcore if it's greater than
5656 * what movablecore would have allowed.
5657 */
5658 if (required_movablecore) {
7e63efef
MG
5659 unsigned long corepages;
5660
5661 /*
5662 * Round-up so that ZONE_MOVABLE is at least as large as what
5663 * was requested by the user
5664 */
5665 required_movablecore =
5666 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5667 corepages = totalpages - required_movablecore;
5668
5669 required_kernelcore = max(required_kernelcore, corepages);
5670 }
5671
20e6926d
YL
5672 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5673 if (!required_kernelcore)
66918dcd 5674 goto out;
2a1e274a
MG
5675
5676 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5677 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5678
5679restart:
5680 /* Spread kernelcore memory as evenly as possible throughout nodes */
5681 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5682 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5683 unsigned long start_pfn, end_pfn;
5684
2a1e274a
MG
5685 /*
5686 * Recalculate kernelcore_node if the division per node
5687 * now exceeds what is necessary to satisfy the requested
5688 * amount of memory for the kernel
5689 */
5690 if (required_kernelcore < kernelcore_node)
5691 kernelcore_node = required_kernelcore / usable_nodes;
5692
5693 /*
5694 * As the map is walked, we track how much memory is usable
5695 * by the kernel using kernelcore_remaining. When it is
5696 * 0, the rest of the node is usable by ZONE_MOVABLE
5697 */
5698 kernelcore_remaining = kernelcore_node;
5699
5700 /* Go through each range of PFNs within this node */
c13291a5 5701 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5702 unsigned long size_pages;
5703
c13291a5 5704 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5705 if (start_pfn >= end_pfn)
5706 continue;
5707
5708 /* Account for what is only usable for kernelcore */
5709 if (start_pfn < usable_startpfn) {
5710 unsigned long kernel_pages;
5711 kernel_pages = min(end_pfn, usable_startpfn)
5712 - start_pfn;
5713
5714 kernelcore_remaining -= min(kernel_pages,
5715 kernelcore_remaining);
5716 required_kernelcore -= min(kernel_pages,
5717 required_kernelcore);
5718
5719 /* Continue if range is now fully accounted */
5720 if (end_pfn <= usable_startpfn) {
5721
5722 /*
5723 * Push zone_movable_pfn to the end so
5724 * that if we have to rebalance
5725 * kernelcore across nodes, we will
5726 * not double account here
5727 */
5728 zone_movable_pfn[nid] = end_pfn;
5729 continue;
5730 }
5731 start_pfn = usable_startpfn;
5732 }
5733
5734 /*
5735 * The usable PFN range for ZONE_MOVABLE is from
5736 * start_pfn->end_pfn. Calculate size_pages as the
5737 * number of pages used as kernelcore
5738 */
5739 size_pages = end_pfn - start_pfn;
5740 if (size_pages > kernelcore_remaining)
5741 size_pages = kernelcore_remaining;
5742 zone_movable_pfn[nid] = start_pfn + size_pages;
5743
5744 /*
5745 * Some kernelcore has been met, update counts and
5746 * break if the kernelcore for this node has been
b8af2941 5747 * satisfied
2a1e274a
MG
5748 */
5749 required_kernelcore -= min(required_kernelcore,
5750 size_pages);
5751 kernelcore_remaining -= size_pages;
5752 if (!kernelcore_remaining)
5753 break;
5754 }
5755 }
5756
5757 /*
5758 * If there is still required_kernelcore, we do another pass with one
5759 * less node in the count. This will push zone_movable_pfn[nid] further
5760 * along on the nodes that still have memory until kernelcore is
b8af2941 5761 * satisfied
2a1e274a
MG
5762 */
5763 usable_nodes--;
5764 if (usable_nodes && required_kernelcore > usable_nodes)
5765 goto restart;
5766
b2f3eebe 5767out2:
2a1e274a
MG
5768 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5769 for (nid = 0; nid < MAX_NUMNODES; nid++)
5770 zone_movable_pfn[nid] =
5771 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5772
20e6926d 5773out:
66918dcd 5774 /* restore the node_state */
4b0ef1fe 5775 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5776}
5777
4b0ef1fe
LJ
5778/* Any regular or high memory on that node ? */
5779static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5780{
37b07e41
LS
5781 enum zone_type zone_type;
5782
4b0ef1fe
LJ
5783 if (N_MEMORY == N_NORMAL_MEMORY)
5784 return;
5785
5786 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5787 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5788 if (populated_zone(zone)) {
4b0ef1fe
LJ
5789 node_set_state(nid, N_HIGH_MEMORY);
5790 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5791 zone_type <= ZONE_NORMAL)
5792 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5793 break;
5794 }
37b07e41 5795 }
37b07e41
LS
5796}
5797
c713216d
MG
5798/**
5799 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5800 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5801 *
5802 * This will call free_area_init_node() for each active node in the system.
7d018176 5803 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5804 * zone in each node and their holes is calculated. If the maximum PFN
5805 * between two adjacent zones match, it is assumed that the zone is empty.
5806 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5807 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5808 * starts where the previous one ended. For example, ZONE_DMA32 starts
5809 * at arch_max_dma_pfn.
5810 */
5811void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5812{
c13291a5
TH
5813 unsigned long start_pfn, end_pfn;
5814 int i, nid;
a6af2bc3 5815
c713216d
MG
5816 /* Record where the zone boundaries are */
5817 memset(arch_zone_lowest_possible_pfn, 0,
5818 sizeof(arch_zone_lowest_possible_pfn));
5819 memset(arch_zone_highest_possible_pfn, 0,
5820 sizeof(arch_zone_highest_possible_pfn));
5821 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5822 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5823 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5824 if (i == ZONE_MOVABLE)
5825 continue;
c713216d
MG
5826 arch_zone_lowest_possible_pfn[i] =
5827 arch_zone_highest_possible_pfn[i-1];
5828 arch_zone_highest_possible_pfn[i] =
5829 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5830 }
2a1e274a
MG
5831 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5832 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5833
5834 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5835 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5836 find_zone_movable_pfns_for_nodes();
c713216d 5837
c713216d 5838 /* Print out the zone ranges */
f88dfff5 5839 pr_info("Zone ranges:\n");
2a1e274a
MG
5840 for (i = 0; i < MAX_NR_ZONES; i++) {
5841 if (i == ZONE_MOVABLE)
5842 continue;
f88dfff5 5843 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5844 if (arch_zone_lowest_possible_pfn[i] ==
5845 arch_zone_highest_possible_pfn[i])
f88dfff5 5846 pr_cont("empty\n");
72f0ba02 5847 else
8d29e18a
JG
5848 pr_cont("[mem %#018Lx-%#018Lx]\n",
5849 (u64)arch_zone_lowest_possible_pfn[i]
5850 << PAGE_SHIFT,
5851 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5852 << PAGE_SHIFT) - 1);
2a1e274a
MG
5853 }
5854
5855 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5856 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5857 for (i = 0; i < MAX_NUMNODES; i++) {
5858 if (zone_movable_pfn[i])
8d29e18a
JG
5859 pr_info(" Node %d: %#018Lx\n", i,
5860 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5861 }
c713216d 5862
f2d52fe5 5863 /* Print out the early node map */
f88dfff5 5864 pr_info("Early memory node ranges\n");
c13291a5 5865 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5866 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5867 (u64)start_pfn << PAGE_SHIFT,
5868 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5869
5870 /* Initialise every node */
708614e6 5871 mminit_verify_pageflags_layout();
8ef82866 5872 setup_nr_node_ids();
c713216d
MG
5873 for_each_online_node(nid) {
5874 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5875 free_area_init_node(nid, NULL,
c713216d 5876 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5877
5878 /* Any memory on that node */
5879 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5880 node_set_state(nid, N_MEMORY);
5881 check_for_memory(pgdat, nid);
c713216d
MG
5882 }
5883}
2a1e274a 5884
7e63efef 5885static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5886{
5887 unsigned long long coremem;
5888 if (!p)
5889 return -EINVAL;
5890
5891 coremem = memparse(p, &p);
7e63efef 5892 *core = coremem >> PAGE_SHIFT;
2a1e274a 5893
7e63efef 5894 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5895 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5896
5897 return 0;
5898}
ed7ed365 5899
7e63efef
MG
5900/*
5901 * kernelcore=size sets the amount of memory for use for allocations that
5902 * cannot be reclaimed or migrated.
5903 */
5904static int __init cmdline_parse_kernelcore(char *p)
5905{
5906 return cmdline_parse_core(p, &required_kernelcore);
5907}
5908
5909/*
5910 * movablecore=size sets the amount of memory for use for allocations that
5911 * can be reclaimed or migrated.
5912 */
5913static int __init cmdline_parse_movablecore(char *p)
5914{
5915 return cmdline_parse_core(p, &required_movablecore);
5916}
5917
ed7ed365 5918early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5919early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5920
0ee332c1 5921#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5922
c3d5f5f0
JL
5923void adjust_managed_page_count(struct page *page, long count)
5924{
5925 spin_lock(&managed_page_count_lock);
5926 page_zone(page)->managed_pages += count;
5927 totalram_pages += count;
3dcc0571
JL
5928#ifdef CONFIG_HIGHMEM
5929 if (PageHighMem(page))
5930 totalhigh_pages += count;
5931#endif
c3d5f5f0
JL
5932 spin_unlock(&managed_page_count_lock);
5933}
3dcc0571 5934EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5935
11199692 5936unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5937{
11199692
JL
5938 void *pos;
5939 unsigned long pages = 0;
69afade7 5940
11199692
JL
5941 start = (void *)PAGE_ALIGN((unsigned long)start);
5942 end = (void *)((unsigned long)end & PAGE_MASK);
5943 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5944 if ((unsigned int)poison <= 0xFF)
11199692
JL
5945 memset(pos, poison, PAGE_SIZE);
5946 free_reserved_page(virt_to_page(pos));
69afade7
JL
5947 }
5948
5949 if (pages && s)
11199692 5950 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5951 s, pages << (PAGE_SHIFT - 10), start, end);
5952
5953 return pages;
5954}
11199692 5955EXPORT_SYMBOL(free_reserved_area);
69afade7 5956
cfa11e08
JL
5957#ifdef CONFIG_HIGHMEM
5958void free_highmem_page(struct page *page)
5959{
5960 __free_reserved_page(page);
5961 totalram_pages++;
7b4b2a0d 5962 page_zone(page)->managed_pages++;
cfa11e08
JL
5963 totalhigh_pages++;
5964}
5965#endif
5966
7ee3d4e8
JL
5967
5968void __init mem_init_print_info(const char *str)
5969{
5970 unsigned long physpages, codesize, datasize, rosize, bss_size;
5971 unsigned long init_code_size, init_data_size;
5972
5973 physpages = get_num_physpages();
5974 codesize = _etext - _stext;
5975 datasize = _edata - _sdata;
5976 rosize = __end_rodata - __start_rodata;
5977 bss_size = __bss_stop - __bss_start;
5978 init_data_size = __init_end - __init_begin;
5979 init_code_size = _einittext - _sinittext;
5980
5981 /*
5982 * Detect special cases and adjust section sizes accordingly:
5983 * 1) .init.* may be embedded into .data sections
5984 * 2) .init.text.* may be out of [__init_begin, __init_end],
5985 * please refer to arch/tile/kernel/vmlinux.lds.S.
5986 * 3) .rodata.* may be embedded into .text or .data sections.
5987 */
5988#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5989 do { \
5990 if (start <= pos && pos < end && size > adj) \
5991 size -= adj; \
5992 } while (0)
7ee3d4e8
JL
5993
5994 adj_init_size(__init_begin, __init_end, init_data_size,
5995 _sinittext, init_code_size);
5996 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5997 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5998 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5999 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6000
6001#undef adj_init_size
6002
f88dfff5 6003 pr_info("Memory: %luK/%luK available "
7ee3d4e8 6004 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 6005 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
6006#ifdef CONFIG_HIGHMEM
6007 ", %luK highmem"
6008#endif
6009 "%s%s)\n",
6010 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
6011 codesize >> 10, datasize >> 10, rosize >> 10,
6012 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
6013 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
6014 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
6015#ifdef CONFIG_HIGHMEM
6016 totalhigh_pages << (PAGE_SHIFT-10),
6017#endif
6018 str ? ", " : "", str ? str : "");
6019}
6020
0e0b864e 6021/**
88ca3b94
RD
6022 * set_dma_reserve - set the specified number of pages reserved in the first zone
6023 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6024 *
013110a7 6025 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6026 * In the DMA zone, a significant percentage may be consumed by kernel image
6027 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6028 * function may optionally be used to account for unfreeable pages in the
6029 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6030 * smaller per-cpu batchsize.
0e0b864e
MG
6031 */
6032void __init set_dma_reserve(unsigned long new_dma_reserve)
6033{
6034 dma_reserve = new_dma_reserve;
6035}
6036
1da177e4
LT
6037void __init free_area_init(unsigned long *zones_size)
6038{
9109fb7b 6039 free_area_init_node(0, zones_size,
1da177e4
LT
6040 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6041}
1da177e4 6042
1da177e4
LT
6043static int page_alloc_cpu_notify(struct notifier_block *self,
6044 unsigned long action, void *hcpu)
6045{
6046 int cpu = (unsigned long)hcpu;
1da177e4 6047
8bb78442 6048 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6049 lru_add_drain_cpu(cpu);
9f8f2172
CL
6050 drain_pages(cpu);
6051
6052 /*
6053 * Spill the event counters of the dead processor
6054 * into the current processors event counters.
6055 * This artificially elevates the count of the current
6056 * processor.
6057 */
f8891e5e 6058 vm_events_fold_cpu(cpu);
9f8f2172
CL
6059
6060 /*
6061 * Zero the differential counters of the dead processor
6062 * so that the vm statistics are consistent.
6063 *
6064 * This is only okay since the processor is dead and cannot
6065 * race with what we are doing.
6066 */
2bb921e5 6067 cpu_vm_stats_fold(cpu);
1da177e4
LT
6068 }
6069 return NOTIFY_OK;
6070}
1da177e4
LT
6071
6072void __init page_alloc_init(void)
6073{
6074 hotcpu_notifier(page_alloc_cpu_notify, 0);
6075}
6076
cb45b0e9 6077/*
34b10060 6078 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6079 * or min_free_kbytes changes.
6080 */
6081static void calculate_totalreserve_pages(void)
6082{
6083 struct pglist_data *pgdat;
6084 unsigned long reserve_pages = 0;
2f6726e5 6085 enum zone_type i, j;
cb45b0e9
HA
6086
6087 for_each_online_pgdat(pgdat) {
6088 for (i = 0; i < MAX_NR_ZONES; i++) {
6089 struct zone *zone = pgdat->node_zones + i;
3484b2de 6090 long max = 0;
cb45b0e9
HA
6091
6092 /* Find valid and maximum lowmem_reserve in the zone */
6093 for (j = i; j < MAX_NR_ZONES; j++) {
6094 if (zone->lowmem_reserve[j] > max)
6095 max = zone->lowmem_reserve[j];
6096 }
6097
41858966
MG
6098 /* we treat the high watermark as reserved pages. */
6099 max += high_wmark_pages(zone);
cb45b0e9 6100
b40da049
JL
6101 if (max > zone->managed_pages)
6102 max = zone->managed_pages;
cb45b0e9 6103 reserve_pages += max;
ab8fabd4
JW
6104 /*
6105 * Lowmem reserves are not available to
6106 * GFP_HIGHUSER page cache allocations and
6107 * kswapd tries to balance zones to their high
6108 * watermark. As a result, neither should be
6109 * regarded as dirtyable memory, to prevent a
6110 * situation where reclaim has to clean pages
6111 * in order to balance the zones.
6112 */
6113 zone->dirty_balance_reserve = max;
cb45b0e9
HA
6114 }
6115 }
ab8fabd4 6116 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
6117 totalreserve_pages = reserve_pages;
6118}
6119
1da177e4
LT
6120/*
6121 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6122 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6123 * has a correct pages reserved value, so an adequate number of
6124 * pages are left in the zone after a successful __alloc_pages().
6125 */
6126static void setup_per_zone_lowmem_reserve(void)
6127{
6128 struct pglist_data *pgdat;
2f6726e5 6129 enum zone_type j, idx;
1da177e4 6130
ec936fc5 6131 for_each_online_pgdat(pgdat) {
1da177e4
LT
6132 for (j = 0; j < MAX_NR_ZONES; j++) {
6133 struct zone *zone = pgdat->node_zones + j;
b40da049 6134 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6135
6136 zone->lowmem_reserve[j] = 0;
6137
2f6726e5
CL
6138 idx = j;
6139 while (idx) {
1da177e4
LT
6140 struct zone *lower_zone;
6141
2f6726e5
CL
6142 idx--;
6143
1da177e4
LT
6144 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6145 sysctl_lowmem_reserve_ratio[idx] = 1;
6146
6147 lower_zone = pgdat->node_zones + idx;
b40da049 6148 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6149 sysctl_lowmem_reserve_ratio[idx];
b40da049 6150 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6151 }
6152 }
6153 }
cb45b0e9
HA
6154
6155 /* update totalreserve_pages */
6156 calculate_totalreserve_pages();
1da177e4
LT
6157}
6158
cfd3da1e 6159static void __setup_per_zone_wmarks(void)
1da177e4
LT
6160{
6161 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6162 unsigned long lowmem_pages = 0;
6163 struct zone *zone;
6164 unsigned long flags;
6165
6166 /* Calculate total number of !ZONE_HIGHMEM pages */
6167 for_each_zone(zone) {
6168 if (!is_highmem(zone))
b40da049 6169 lowmem_pages += zone->managed_pages;
1da177e4
LT
6170 }
6171
6172 for_each_zone(zone) {
ac924c60
AM
6173 u64 tmp;
6174
1125b4e3 6175 spin_lock_irqsave(&zone->lock, flags);
b40da049 6176 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6177 do_div(tmp, lowmem_pages);
1da177e4
LT
6178 if (is_highmem(zone)) {
6179 /*
669ed175
NP
6180 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6181 * need highmem pages, so cap pages_min to a small
6182 * value here.
6183 *
41858966 6184 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6185 * deltas control asynch page reclaim, and so should
669ed175 6186 * not be capped for highmem.
1da177e4 6187 */
90ae8d67 6188 unsigned long min_pages;
1da177e4 6189
b40da049 6190 min_pages = zone->managed_pages / 1024;
90ae8d67 6191 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6192 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6193 } else {
669ed175
NP
6194 /*
6195 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6196 * proportionate to the zone's size.
6197 */
41858966 6198 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6199 }
6200
41858966
MG
6201 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6202 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6203
81c0a2bb 6204 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6205 high_wmark_pages(zone) - low_wmark_pages(zone) -
6206 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6207
56fd56b8 6208 setup_zone_migrate_reserve(zone);
1125b4e3 6209 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6210 }
cb45b0e9
HA
6211
6212 /* update totalreserve_pages */
6213 calculate_totalreserve_pages();
1da177e4
LT
6214}
6215
cfd3da1e
MG
6216/**
6217 * setup_per_zone_wmarks - called when min_free_kbytes changes
6218 * or when memory is hot-{added|removed}
6219 *
6220 * Ensures that the watermark[min,low,high] values for each zone are set
6221 * correctly with respect to min_free_kbytes.
6222 */
6223void setup_per_zone_wmarks(void)
6224{
6225 mutex_lock(&zonelists_mutex);
6226 __setup_per_zone_wmarks();
6227 mutex_unlock(&zonelists_mutex);
6228}
6229
55a4462a 6230/*
556adecb
RR
6231 * The inactive anon list should be small enough that the VM never has to
6232 * do too much work, but large enough that each inactive page has a chance
6233 * to be referenced again before it is swapped out.
6234 *
6235 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6236 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6237 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6238 * the anonymous pages are kept on the inactive list.
6239 *
6240 * total target max
6241 * memory ratio inactive anon
6242 * -------------------------------------
6243 * 10MB 1 5MB
6244 * 100MB 1 50MB
6245 * 1GB 3 250MB
6246 * 10GB 10 0.9GB
6247 * 100GB 31 3GB
6248 * 1TB 101 10GB
6249 * 10TB 320 32GB
6250 */
1b79acc9 6251static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6252{
96cb4df5 6253 unsigned int gb, ratio;
556adecb 6254
96cb4df5 6255 /* Zone size in gigabytes */
b40da049 6256 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6257 if (gb)
556adecb 6258 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6259 else
6260 ratio = 1;
556adecb 6261
96cb4df5
MK
6262 zone->inactive_ratio = ratio;
6263}
556adecb 6264
839a4fcc 6265static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6266{
6267 struct zone *zone;
6268
6269 for_each_zone(zone)
6270 calculate_zone_inactive_ratio(zone);
556adecb
RR
6271}
6272
1da177e4
LT
6273/*
6274 * Initialise min_free_kbytes.
6275 *
6276 * For small machines we want it small (128k min). For large machines
6277 * we want it large (64MB max). But it is not linear, because network
6278 * bandwidth does not increase linearly with machine size. We use
6279 *
b8af2941 6280 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6281 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6282 *
6283 * which yields
6284 *
6285 * 16MB: 512k
6286 * 32MB: 724k
6287 * 64MB: 1024k
6288 * 128MB: 1448k
6289 * 256MB: 2048k
6290 * 512MB: 2896k
6291 * 1024MB: 4096k
6292 * 2048MB: 5792k
6293 * 4096MB: 8192k
6294 * 8192MB: 11584k
6295 * 16384MB: 16384k
6296 */
1b79acc9 6297int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6298{
6299 unsigned long lowmem_kbytes;
5f12733e 6300 int new_min_free_kbytes;
1da177e4
LT
6301
6302 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6303 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6304
6305 if (new_min_free_kbytes > user_min_free_kbytes) {
6306 min_free_kbytes = new_min_free_kbytes;
6307 if (min_free_kbytes < 128)
6308 min_free_kbytes = 128;
6309 if (min_free_kbytes > 65536)
6310 min_free_kbytes = 65536;
6311 } else {
6312 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6313 new_min_free_kbytes, user_min_free_kbytes);
6314 }
bc75d33f 6315 setup_per_zone_wmarks();
a6cccdc3 6316 refresh_zone_stat_thresholds();
1da177e4 6317 setup_per_zone_lowmem_reserve();
556adecb 6318 setup_per_zone_inactive_ratio();
1da177e4
LT
6319 return 0;
6320}
bc75d33f 6321module_init(init_per_zone_wmark_min)
1da177e4
LT
6322
6323/*
b8af2941 6324 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6325 * that we can call two helper functions whenever min_free_kbytes
6326 * changes.
6327 */
cccad5b9 6328int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6329 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6330{
da8c757b
HP
6331 int rc;
6332
6333 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6334 if (rc)
6335 return rc;
6336
5f12733e
MH
6337 if (write) {
6338 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6339 setup_per_zone_wmarks();
5f12733e 6340 }
1da177e4
LT
6341 return 0;
6342}
6343
9614634f 6344#ifdef CONFIG_NUMA
cccad5b9 6345int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6346 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6347{
6348 struct zone *zone;
6349 int rc;
6350
8d65af78 6351 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6352 if (rc)
6353 return rc;
6354
6355 for_each_zone(zone)
b40da049 6356 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6357 sysctl_min_unmapped_ratio) / 100;
6358 return 0;
6359}
0ff38490 6360
cccad5b9 6361int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6362 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6363{
6364 struct zone *zone;
6365 int rc;
6366
8d65af78 6367 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6368 if (rc)
6369 return rc;
6370
6371 for_each_zone(zone)
b40da049 6372 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6373 sysctl_min_slab_ratio) / 100;
6374 return 0;
6375}
9614634f
CL
6376#endif
6377
1da177e4
LT
6378/*
6379 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6380 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6381 * whenever sysctl_lowmem_reserve_ratio changes.
6382 *
6383 * The reserve ratio obviously has absolutely no relation with the
41858966 6384 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6385 * if in function of the boot time zone sizes.
6386 */
cccad5b9 6387int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6388 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6389{
8d65af78 6390 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6391 setup_per_zone_lowmem_reserve();
6392 return 0;
6393}
6394
8ad4b1fb
RS
6395/*
6396 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6397 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6398 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6399 */
cccad5b9 6400int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6401 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6402{
6403 struct zone *zone;
7cd2b0a3 6404 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6405 int ret;
6406
7cd2b0a3
DR
6407 mutex_lock(&pcp_batch_high_lock);
6408 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6409
8d65af78 6410 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6411 if (!write || ret < 0)
6412 goto out;
6413
6414 /* Sanity checking to avoid pcp imbalance */
6415 if (percpu_pagelist_fraction &&
6416 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6417 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6418 ret = -EINVAL;
6419 goto out;
6420 }
6421
6422 /* No change? */
6423 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6424 goto out;
c8e251fa 6425
364df0eb 6426 for_each_populated_zone(zone) {
7cd2b0a3
DR
6427 unsigned int cpu;
6428
22a7f12b 6429 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6430 pageset_set_high_and_batch(zone,
6431 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6432 }
7cd2b0a3 6433out:
c8e251fa 6434 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6435 return ret;
8ad4b1fb
RS
6436}
6437
a9919c79 6438#ifdef CONFIG_NUMA
f034b5d4 6439int hashdist = HASHDIST_DEFAULT;
1da177e4 6440
1da177e4
LT
6441static int __init set_hashdist(char *str)
6442{
6443 if (!str)
6444 return 0;
6445 hashdist = simple_strtoul(str, &str, 0);
6446 return 1;
6447}
6448__setup("hashdist=", set_hashdist);
6449#endif
6450
6451/*
6452 * allocate a large system hash table from bootmem
6453 * - it is assumed that the hash table must contain an exact power-of-2
6454 * quantity of entries
6455 * - limit is the number of hash buckets, not the total allocation size
6456 */
6457void *__init alloc_large_system_hash(const char *tablename,
6458 unsigned long bucketsize,
6459 unsigned long numentries,
6460 int scale,
6461 int flags,
6462 unsigned int *_hash_shift,
6463 unsigned int *_hash_mask,
31fe62b9
TB
6464 unsigned long low_limit,
6465 unsigned long high_limit)
1da177e4 6466{
31fe62b9 6467 unsigned long long max = high_limit;
1da177e4
LT
6468 unsigned long log2qty, size;
6469 void *table = NULL;
6470
6471 /* allow the kernel cmdline to have a say */
6472 if (!numentries) {
6473 /* round applicable memory size up to nearest megabyte */
04903664 6474 numentries = nr_kernel_pages;
a7e83318
JZ
6475
6476 /* It isn't necessary when PAGE_SIZE >= 1MB */
6477 if (PAGE_SHIFT < 20)
6478 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6479
6480 /* limit to 1 bucket per 2^scale bytes of low memory */
6481 if (scale > PAGE_SHIFT)
6482 numentries >>= (scale - PAGE_SHIFT);
6483 else
6484 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6485
6486 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6487 if (unlikely(flags & HASH_SMALL)) {
6488 /* Makes no sense without HASH_EARLY */
6489 WARN_ON(!(flags & HASH_EARLY));
6490 if (!(numentries >> *_hash_shift)) {
6491 numentries = 1UL << *_hash_shift;
6492 BUG_ON(!numentries);
6493 }
6494 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6495 numentries = PAGE_SIZE / bucketsize;
1da177e4 6496 }
6e692ed3 6497 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6498
6499 /* limit allocation size to 1/16 total memory by default */
6500 if (max == 0) {
6501 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6502 do_div(max, bucketsize);
6503 }
074b8517 6504 max = min(max, 0x80000000ULL);
1da177e4 6505
31fe62b9
TB
6506 if (numentries < low_limit)
6507 numentries = low_limit;
1da177e4
LT
6508 if (numentries > max)
6509 numentries = max;
6510
f0d1b0b3 6511 log2qty = ilog2(numentries);
1da177e4
LT
6512
6513 do {
6514 size = bucketsize << log2qty;
6515 if (flags & HASH_EARLY)
6782832e 6516 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6517 else if (hashdist)
6518 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6519 else {
1037b83b
ED
6520 /*
6521 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6522 * some pages at the end of hash table which
6523 * alloc_pages_exact() automatically does
1037b83b 6524 */
264ef8a9 6525 if (get_order(size) < MAX_ORDER) {
a1dd268c 6526 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6527 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6528 }
1da177e4
LT
6529 }
6530 } while (!table && size > PAGE_SIZE && --log2qty);
6531
6532 if (!table)
6533 panic("Failed to allocate %s hash table\n", tablename);
6534
f241e660 6535 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6536 tablename,
f241e660 6537 (1UL << log2qty),
f0d1b0b3 6538 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6539 size);
6540
6541 if (_hash_shift)
6542 *_hash_shift = log2qty;
6543 if (_hash_mask)
6544 *_hash_mask = (1 << log2qty) - 1;
6545
6546 return table;
6547}
a117e66e 6548
835c134e
MG
6549/* Return a pointer to the bitmap storing bits affecting a block of pages */
6550static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6551 unsigned long pfn)
6552{
6553#ifdef CONFIG_SPARSEMEM
6554 return __pfn_to_section(pfn)->pageblock_flags;
6555#else
6556 return zone->pageblock_flags;
6557#endif /* CONFIG_SPARSEMEM */
6558}
6559
6560static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6561{
6562#ifdef CONFIG_SPARSEMEM
6563 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6564 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6565#else
c060f943 6566 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6567 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6568#endif /* CONFIG_SPARSEMEM */
6569}
6570
6571/**
1aab4d77 6572 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6573 * @page: The page within the block of interest
1aab4d77
RD
6574 * @pfn: The target page frame number
6575 * @end_bitidx: The last bit of interest to retrieve
6576 * @mask: mask of bits that the caller is interested in
6577 *
6578 * Return: pageblock_bits flags
835c134e 6579 */
dc4b0caf 6580unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6581 unsigned long end_bitidx,
6582 unsigned long mask)
835c134e
MG
6583{
6584 struct zone *zone;
6585 unsigned long *bitmap;
dc4b0caf 6586 unsigned long bitidx, word_bitidx;
e58469ba 6587 unsigned long word;
835c134e
MG
6588
6589 zone = page_zone(page);
835c134e
MG
6590 bitmap = get_pageblock_bitmap(zone, pfn);
6591 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6592 word_bitidx = bitidx / BITS_PER_LONG;
6593 bitidx &= (BITS_PER_LONG-1);
835c134e 6594
e58469ba
MG
6595 word = bitmap[word_bitidx];
6596 bitidx += end_bitidx;
6597 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6598}
6599
6600/**
dc4b0caf 6601 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6602 * @page: The page within the block of interest
835c134e 6603 * @flags: The flags to set
1aab4d77
RD
6604 * @pfn: The target page frame number
6605 * @end_bitidx: The last bit of interest
6606 * @mask: mask of bits that the caller is interested in
835c134e 6607 */
dc4b0caf
MG
6608void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6609 unsigned long pfn,
e58469ba
MG
6610 unsigned long end_bitidx,
6611 unsigned long mask)
835c134e
MG
6612{
6613 struct zone *zone;
6614 unsigned long *bitmap;
dc4b0caf 6615 unsigned long bitidx, word_bitidx;
e58469ba
MG
6616 unsigned long old_word, word;
6617
6618 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6619
6620 zone = page_zone(page);
835c134e
MG
6621 bitmap = get_pageblock_bitmap(zone, pfn);
6622 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6623 word_bitidx = bitidx / BITS_PER_LONG;
6624 bitidx &= (BITS_PER_LONG-1);
6625
309381fe 6626 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6627
e58469ba
MG
6628 bitidx += end_bitidx;
6629 mask <<= (BITS_PER_LONG - bitidx - 1);
6630 flags <<= (BITS_PER_LONG - bitidx - 1);
6631
4db0c3c2 6632 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6633 for (;;) {
6634 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6635 if (word == old_word)
6636 break;
6637 word = old_word;
6638 }
835c134e 6639}
a5d76b54
KH
6640
6641/*
80934513
MK
6642 * This function checks whether pageblock includes unmovable pages or not.
6643 * If @count is not zero, it is okay to include less @count unmovable pages
6644 *
b8af2941 6645 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6646 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6647 * expect this function should be exact.
a5d76b54 6648 */
b023f468
WC
6649bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6650 bool skip_hwpoisoned_pages)
49ac8255
KH
6651{
6652 unsigned long pfn, iter, found;
47118af0
MN
6653 int mt;
6654
49ac8255
KH
6655 /*
6656 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6657 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6658 */
6659 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6660 return false;
47118af0
MN
6661 mt = get_pageblock_migratetype(page);
6662 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6663 return false;
49ac8255
KH
6664
6665 pfn = page_to_pfn(page);
6666 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6667 unsigned long check = pfn + iter;
6668
29723fcc 6669 if (!pfn_valid_within(check))
49ac8255 6670 continue;
29723fcc 6671
49ac8255 6672 page = pfn_to_page(check);
c8721bbb
NH
6673
6674 /*
6675 * Hugepages are not in LRU lists, but they're movable.
6676 * We need not scan over tail pages bacause we don't
6677 * handle each tail page individually in migration.
6678 */
6679 if (PageHuge(page)) {
6680 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6681 continue;
6682 }
6683
97d255c8
MK
6684 /*
6685 * We can't use page_count without pin a page
6686 * because another CPU can free compound page.
6687 * This check already skips compound tails of THP
6688 * because their page->_count is zero at all time.
6689 */
6690 if (!atomic_read(&page->_count)) {
49ac8255
KH
6691 if (PageBuddy(page))
6692 iter += (1 << page_order(page)) - 1;
6693 continue;
6694 }
97d255c8 6695
b023f468
WC
6696 /*
6697 * The HWPoisoned page may be not in buddy system, and
6698 * page_count() is not 0.
6699 */
6700 if (skip_hwpoisoned_pages && PageHWPoison(page))
6701 continue;
6702
49ac8255
KH
6703 if (!PageLRU(page))
6704 found++;
6705 /*
6b4f7799
JW
6706 * If there are RECLAIMABLE pages, we need to check
6707 * it. But now, memory offline itself doesn't call
6708 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6709 */
6710 /*
6711 * If the page is not RAM, page_count()should be 0.
6712 * we don't need more check. This is an _used_ not-movable page.
6713 *
6714 * The problematic thing here is PG_reserved pages. PG_reserved
6715 * is set to both of a memory hole page and a _used_ kernel
6716 * page at boot.
6717 */
6718 if (found > count)
80934513 6719 return true;
49ac8255 6720 }
80934513 6721 return false;
49ac8255
KH
6722}
6723
6724bool is_pageblock_removable_nolock(struct page *page)
6725{
656a0706
MH
6726 struct zone *zone;
6727 unsigned long pfn;
687875fb
MH
6728
6729 /*
6730 * We have to be careful here because we are iterating over memory
6731 * sections which are not zone aware so we might end up outside of
6732 * the zone but still within the section.
656a0706
MH
6733 * We have to take care about the node as well. If the node is offline
6734 * its NODE_DATA will be NULL - see page_zone.
687875fb 6735 */
656a0706
MH
6736 if (!node_online(page_to_nid(page)))
6737 return false;
6738
6739 zone = page_zone(page);
6740 pfn = page_to_pfn(page);
108bcc96 6741 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6742 return false;
6743
b023f468 6744 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6745}
0c0e6195 6746
041d3a8c
MN
6747#ifdef CONFIG_CMA
6748
6749static unsigned long pfn_max_align_down(unsigned long pfn)
6750{
6751 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6752 pageblock_nr_pages) - 1);
6753}
6754
6755static unsigned long pfn_max_align_up(unsigned long pfn)
6756{
6757 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6758 pageblock_nr_pages));
6759}
6760
041d3a8c 6761/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6762static int __alloc_contig_migrate_range(struct compact_control *cc,
6763 unsigned long start, unsigned long end)
041d3a8c
MN
6764{
6765 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6766 unsigned long nr_reclaimed;
041d3a8c
MN
6767 unsigned long pfn = start;
6768 unsigned int tries = 0;
6769 int ret = 0;
6770
be49a6e1 6771 migrate_prep();
041d3a8c 6772
bb13ffeb 6773 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6774 if (fatal_signal_pending(current)) {
6775 ret = -EINTR;
6776 break;
6777 }
6778
bb13ffeb
MG
6779 if (list_empty(&cc->migratepages)) {
6780 cc->nr_migratepages = 0;
edc2ca61 6781 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6782 if (!pfn) {
6783 ret = -EINTR;
6784 break;
6785 }
6786 tries = 0;
6787 } else if (++tries == 5) {
6788 ret = ret < 0 ? ret : -EBUSY;
6789 break;
6790 }
6791
beb51eaa
MK
6792 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6793 &cc->migratepages);
6794 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6795
9c620e2b 6796 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6797 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6798 }
2a6f5124
SP
6799 if (ret < 0) {
6800 putback_movable_pages(&cc->migratepages);
6801 return ret;
6802 }
6803 return 0;
041d3a8c
MN
6804}
6805
6806/**
6807 * alloc_contig_range() -- tries to allocate given range of pages
6808 * @start: start PFN to allocate
6809 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6810 * @migratetype: migratetype of the underlaying pageblocks (either
6811 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6812 * in range must have the same migratetype and it must
6813 * be either of the two.
041d3a8c
MN
6814 *
6815 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6816 * aligned, however it's the caller's responsibility to guarantee that
6817 * we are the only thread that changes migrate type of pageblocks the
6818 * pages fall in.
6819 *
6820 * The PFN range must belong to a single zone.
6821 *
6822 * Returns zero on success or negative error code. On success all
6823 * pages which PFN is in [start, end) are allocated for the caller and
6824 * need to be freed with free_contig_range().
6825 */
0815f3d8
MN
6826int alloc_contig_range(unsigned long start, unsigned long end,
6827 unsigned migratetype)
041d3a8c 6828{
041d3a8c
MN
6829 unsigned long outer_start, outer_end;
6830 int ret = 0, order;
6831
bb13ffeb
MG
6832 struct compact_control cc = {
6833 .nr_migratepages = 0,
6834 .order = -1,
6835 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6836 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6837 .ignore_skip_hint = true,
6838 };
6839 INIT_LIST_HEAD(&cc.migratepages);
6840
041d3a8c
MN
6841 /*
6842 * What we do here is we mark all pageblocks in range as
6843 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6844 * have different sizes, and due to the way page allocator
6845 * work, we align the range to biggest of the two pages so
6846 * that page allocator won't try to merge buddies from
6847 * different pageblocks and change MIGRATE_ISOLATE to some
6848 * other migration type.
6849 *
6850 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6851 * migrate the pages from an unaligned range (ie. pages that
6852 * we are interested in). This will put all the pages in
6853 * range back to page allocator as MIGRATE_ISOLATE.
6854 *
6855 * When this is done, we take the pages in range from page
6856 * allocator removing them from the buddy system. This way
6857 * page allocator will never consider using them.
6858 *
6859 * This lets us mark the pageblocks back as
6860 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6861 * aligned range but not in the unaligned, original range are
6862 * put back to page allocator so that buddy can use them.
6863 */
6864
6865 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6866 pfn_max_align_up(end), migratetype,
6867 false);
041d3a8c 6868 if (ret)
86a595f9 6869 return ret;
041d3a8c 6870
bb13ffeb 6871 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6872 if (ret)
6873 goto done;
6874
6875 /*
6876 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6877 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6878 * more, all pages in [start, end) are free in page allocator.
6879 * What we are going to do is to allocate all pages from
6880 * [start, end) (that is remove them from page allocator).
6881 *
6882 * The only problem is that pages at the beginning and at the
6883 * end of interesting range may be not aligned with pages that
6884 * page allocator holds, ie. they can be part of higher order
6885 * pages. Because of this, we reserve the bigger range and
6886 * once this is done free the pages we are not interested in.
6887 *
6888 * We don't have to hold zone->lock here because the pages are
6889 * isolated thus they won't get removed from buddy.
6890 */
6891
6892 lru_add_drain_all();
510f5507 6893 drain_all_pages(cc.zone);
041d3a8c
MN
6894
6895 order = 0;
6896 outer_start = start;
6897 while (!PageBuddy(pfn_to_page(outer_start))) {
6898 if (++order >= MAX_ORDER) {
6899 ret = -EBUSY;
6900 goto done;
6901 }
6902 outer_start &= ~0UL << order;
6903 }
6904
6905 /* Make sure the range is really isolated. */
b023f468 6906 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6907 pr_info("%s: [%lx, %lx) PFNs busy\n",
6908 __func__, outer_start, end);
041d3a8c
MN
6909 ret = -EBUSY;
6910 goto done;
6911 }
6912
49f223a9 6913 /* Grab isolated pages from freelists. */
bb13ffeb 6914 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6915 if (!outer_end) {
6916 ret = -EBUSY;
6917 goto done;
6918 }
6919
6920 /* Free head and tail (if any) */
6921 if (start != outer_start)
6922 free_contig_range(outer_start, start - outer_start);
6923 if (end != outer_end)
6924 free_contig_range(end, outer_end - end);
6925
6926done:
6927 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6928 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6929 return ret;
6930}
6931
6932void free_contig_range(unsigned long pfn, unsigned nr_pages)
6933{
bcc2b02f
MS
6934 unsigned int count = 0;
6935
6936 for (; nr_pages--; pfn++) {
6937 struct page *page = pfn_to_page(pfn);
6938
6939 count += page_count(page) != 1;
6940 __free_page(page);
6941 }
6942 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6943}
6944#endif
6945
4ed7e022 6946#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6947/*
6948 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6949 * page high values need to be recalulated.
6950 */
4ed7e022
JL
6951void __meminit zone_pcp_update(struct zone *zone)
6952{
0a647f38 6953 unsigned cpu;
c8e251fa 6954 mutex_lock(&pcp_batch_high_lock);
0a647f38 6955 for_each_possible_cpu(cpu)
169f6c19
CS
6956 pageset_set_high_and_batch(zone,
6957 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6958 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6959}
6960#endif
6961
340175b7
JL
6962void zone_pcp_reset(struct zone *zone)
6963{
6964 unsigned long flags;
5a883813
MK
6965 int cpu;
6966 struct per_cpu_pageset *pset;
340175b7
JL
6967
6968 /* avoid races with drain_pages() */
6969 local_irq_save(flags);
6970 if (zone->pageset != &boot_pageset) {
5a883813
MK
6971 for_each_online_cpu(cpu) {
6972 pset = per_cpu_ptr(zone->pageset, cpu);
6973 drain_zonestat(zone, pset);
6974 }
340175b7
JL
6975 free_percpu(zone->pageset);
6976 zone->pageset = &boot_pageset;
6977 }
6978 local_irq_restore(flags);
6979}
6980
6dcd73d7 6981#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6982/*
6983 * All pages in the range must be isolated before calling this.
6984 */
6985void
6986__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6987{
6988 struct page *page;
6989 struct zone *zone;
7aeb09f9 6990 unsigned int order, i;
0c0e6195
KH
6991 unsigned long pfn;
6992 unsigned long flags;
6993 /* find the first valid pfn */
6994 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6995 if (pfn_valid(pfn))
6996 break;
6997 if (pfn == end_pfn)
6998 return;
6999 zone = page_zone(pfn_to_page(pfn));
7000 spin_lock_irqsave(&zone->lock, flags);
7001 pfn = start_pfn;
7002 while (pfn < end_pfn) {
7003 if (!pfn_valid(pfn)) {
7004 pfn++;
7005 continue;
7006 }
7007 page = pfn_to_page(pfn);
b023f468
WC
7008 /*
7009 * The HWPoisoned page may be not in buddy system, and
7010 * page_count() is not 0.
7011 */
7012 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7013 pfn++;
7014 SetPageReserved(page);
7015 continue;
7016 }
7017
0c0e6195
KH
7018 BUG_ON(page_count(page));
7019 BUG_ON(!PageBuddy(page));
7020 order = page_order(page);
7021#ifdef CONFIG_DEBUG_VM
7022 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7023 pfn, 1 << order, end_pfn);
7024#endif
7025 list_del(&page->lru);
7026 rmv_page_order(page);
7027 zone->free_area[order].nr_free--;
0c0e6195
KH
7028 for (i = 0; i < (1 << order); i++)
7029 SetPageReserved((page+i));
7030 pfn += (1 << order);
7031 }
7032 spin_unlock_irqrestore(&zone->lock, flags);
7033}
7034#endif
8d22ba1b
WF
7035
7036#ifdef CONFIG_MEMORY_FAILURE
7037bool is_free_buddy_page(struct page *page)
7038{
7039 struct zone *zone = page_zone(page);
7040 unsigned long pfn = page_to_pfn(page);
7041 unsigned long flags;
7aeb09f9 7042 unsigned int order;
8d22ba1b
WF
7043
7044 spin_lock_irqsave(&zone->lock, flags);
7045 for (order = 0; order < MAX_ORDER; order++) {
7046 struct page *page_head = page - (pfn & ((1 << order) - 1));
7047
7048 if (PageBuddy(page_head) && page_order(page_head) >= order)
7049 break;
7050 }
7051 spin_unlock_irqrestore(&zone->lock, flags);
7052
7053 return order < MAX_ORDER;
7054}
7055#endif
This page took 1.767654 seconds and 5 git commands to generate.