mm: meminit: make __early_pfn_to_nid SMP-safe and introduce meminit_pfn_in_nid
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 72#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 73
72812019
LS
74#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75DEFINE_PER_CPU(int, numa_node);
76EXPORT_PER_CPU_SYMBOL(numa_node);
77#endif
78
7aac7898
LS
79#ifdef CONFIG_HAVE_MEMORYLESS_NODES
80/*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 88int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
89#endif
90
1da177e4 91/*
13808910 92 * Array of node states.
1da177e4 93 */
13808910
CL
94nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97#ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99#ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
101#endif
102#ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
104#endif
105 [N_CPU] = { { [0] = 1UL } },
106#endif /* NUMA */
107};
108EXPORT_SYMBOL(node_states);
109
c3d5f5f0
JL
110/* Protect totalram_pages and zone->managed_pages */
111static DEFINE_SPINLOCK(managed_page_count_lock);
112
6c231b7b 113unsigned long totalram_pages __read_mostly;
cb45b0e9 114unsigned long totalreserve_pages __read_mostly;
e48322ab 115unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
116/*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122unsigned long dirty_balance_reserve __read_mostly;
123
1b76b02f 124int percpu_pagelist_fraction;
dcce284a 125gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 126
452aa699
RW
127#ifdef CONFIG_PM_SLEEP
128/*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
c9e664f1
RW
136
137static gfp_t saved_gfp_mask;
138
139void pm_restore_gfp_mask(void)
452aa699
RW
140{
141 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
145 }
452aa699
RW
146}
147
c9e664f1 148void pm_restrict_gfp_mask(void)
452aa699 149{
452aa699 150 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 154}
f90ac398
MG
155
156bool pm_suspended_storage(void)
157{
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
161}
452aa699
RW
162#endif /* CONFIG_PM_SLEEP */
163
d9c23400
MG
164#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165int pageblock_order __read_mostly;
166#endif
167
d98c7a09 168static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 169
1da177e4
LT
170/*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
1da177e4 180 */
2f1b6248 181int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 182#ifdef CONFIG_ZONE_DMA
2f1b6248 183 256,
4b51d669 184#endif
fb0e7942 185#ifdef CONFIG_ZONE_DMA32
2f1b6248 186 256,
fb0e7942 187#endif
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 32,
e53ef38d 190#endif
2a1e274a 191 32,
2f1b6248 192};
1da177e4
LT
193
194EXPORT_SYMBOL(totalram_pages);
1da177e4 195
15ad7cdc 196static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 197#ifdef CONFIG_ZONE_DMA
2f1b6248 198 "DMA",
4b51d669 199#endif
fb0e7942 200#ifdef CONFIG_ZONE_DMA32
2f1b6248 201 "DMA32",
fb0e7942 202#endif
2f1b6248 203 "Normal",
e53ef38d 204#ifdef CONFIG_HIGHMEM
2a1e274a 205 "HighMem",
e53ef38d 206#endif
2a1e274a 207 "Movable",
2f1b6248
CL
208};
209
1da177e4 210int min_free_kbytes = 1024;
42aa83cb 211int user_min_free_kbytes = -1;
1da177e4 212
2c85f51d
JB
213static unsigned long __meminitdata nr_kernel_pages;
214static unsigned long __meminitdata nr_all_pages;
a3142c8e 215static unsigned long __meminitdata dma_reserve;
1da177e4 216
0ee332c1
TH
217#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220static unsigned long __initdata required_kernelcore;
221static unsigned long __initdata required_movablecore;
222static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225int movable_zone;
226EXPORT_SYMBOL(movable_zone);
227#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 228
418508c1
MS
229#if MAX_NUMNODES > 1
230int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 231int nr_online_nodes __read_mostly = 1;
418508c1 232EXPORT_SYMBOL(nr_node_ids);
62bc62a8 233EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
234#endif
235
9ef9acb0
MG
236int page_group_by_mobility_disabled __read_mostly;
237
ee6f509c 238void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 239{
5d0f3f72
KM
240 if (unlikely(page_group_by_mobility_disabled &&
241 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
242 migratetype = MIGRATE_UNMOVABLE;
243
b2a0ac88
MG
244 set_pageblock_flags_group(page, (unsigned long)migratetype,
245 PB_migrate, PB_migrate_end);
246}
247
13e7444b 248#ifdef CONFIG_DEBUG_VM
c6a57e19 249static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 250{
bdc8cb98
DH
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 254 unsigned long sp, start_pfn;
c6a57e19 255
bdc8cb98
DH
256 do {
257 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
108bcc96 260 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
b5e6a5a2 264 if (ret)
613813e8
DH
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
b5e6a5a2 268
bdc8cb98 269 return ret;
c6a57e19
DH
270}
271
272static int page_is_consistent(struct zone *zone, struct page *page)
273{
14e07298 274 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 275 return 0;
1da177e4 276 if (zone != page_zone(page))
c6a57e19
DH
277 return 0;
278
279 return 1;
280}
281/*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284static int bad_range(struct zone *zone, struct page *page)
285{
286 if (page_outside_zone_boundaries(zone, page))
1da177e4 287 return 1;
c6a57e19
DH
288 if (!page_is_consistent(zone, page))
289 return 1;
290
1da177e4
LT
291 return 0;
292}
13e7444b
NP
293#else
294static inline int bad_range(struct zone *zone, struct page *page)
295{
296 return 0;
297}
298#endif
299
d230dec1
KS
300static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
1da177e4 302{
d936cf9b
HD
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
2a7684a2
WF
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
22b751c3 309 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
310 return;
311 }
312
d936cf9b
HD
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
1e9e6365
HD
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
1e9e6365 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 334 current->comm, page_to_pfn(page));
f0b791a3 335 dump_page_badflags(page, reason, bad_flags);
3dc14741 336
4f31888c 337 print_modules();
1da177e4 338 dump_stack();
d936cf9b 339out:
8cc3b392 340 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 341 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
343}
344
1da177e4
LT
345/*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
6416b9fa
WSH
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
1da177e4 354 *
41d78ba5
HD
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
1da177e4 358 */
d98c7a09
HD
359
360static void free_compound_page(struct page *page)
361{
d85f3385 362 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
363}
364
01ad1c08 365void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
366{
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
58a84aa9 375 set_page_count(p, 0);
18229df5 376 p->first_page = page;
668f9abb
DR
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
18229df5
AW
380 }
381}
382
c0a32fc5
SG
383#ifdef CONFIG_DEBUG_PAGEALLOC
384unsigned int _debug_guardpage_minorder;
031bc574 385bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
386bool _debug_guardpage_enabled __read_mostly;
387
031bc574
JK
388static int __init early_debug_pagealloc(char *buf)
389{
390 if (!buf)
391 return -EINVAL;
392
393 if (strcmp(buf, "on") == 0)
394 _debug_pagealloc_enabled = true;
395
396 return 0;
397}
398early_param("debug_pagealloc", early_debug_pagealloc);
399
e30825f1
JK
400static bool need_debug_guardpage(void)
401{
031bc574
JK
402 /* If we don't use debug_pagealloc, we don't need guard page */
403 if (!debug_pagealloc_enabled())
404 return false;
405
e30825f1
JK
406 return true;
407}
408
409static void init_debug_guardpage(void)
410{
031bc574
JK
411 if (!debug_pagealloc_enabled())
412 return;
413
e30825f1
JK
414 _debug_guardpage_enabled = true;
415}
416
417struct page_ext_operations debug_guardpage_ops = {
418 .need = need_debug_guardpage,
419 .init = init_debug_guardpage,
420};
c0a32fc5
SG
421
422static int __init debug_guardpage_minorder_setup(char *buf)
423{
424 unsigned long res;
425
426 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
427 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
428 return 0;
429 }
430 _debug_guardpage_minorder = res;
431 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
432 return 0;
433}
434__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
435
2847cf95
JK
436static inline void set_page_guard(struct zone *zone, struct page *page,
437 unsigned int order, int migratetype)
c0a32fc5 438{
e30825f1
JK
439 struct page_ext *page_ext;
440
441 if (!debug_guardpage_enabled())
442 return;
443
444 page_ext = lookup_page_ext(page);
445 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
446
2847cf95
JK
447 INIT_LIST_HEAD(&page->lru);
448 set_page_private(page, order);
449 /* Guard pages are not available for any usage */
450 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
451}
452
2847cf95
JK
453static inline void clear_page_guard(struct zone *zone, struct page *page,
454 unsigned int order, int migratetype)
c0a32fc5 455{
e30825f1
JK
456 struct page_ext *page_ext;
457
458 if (!debug_guardpage_enabled())
459 return;
460
461 page_ext = lookup_page_ext(page);
462 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
463
2847cf95
JK
464 set_page_private(page, 0);
465 if (!is_migrate_isolate(migratetype))
466 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
467}
468#else
e30825f1 469struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
470static inline void set_page_guard(struct zone *zone, struct page *page,
471 unsigned int order, int migratetype) {}
472static inline void clear_page_guard(struct zone *zone, struct page *page,
473 unsigned int order, int migratetype) {}
c0a32fc5
SG
474#endif
475
7aeb09f9 476static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 477{
4c21e2f2 478 set_page_private(page, order);
676165a8 479 __SetPageBuddy(page);
1da177e4
LT
480}
481
482static inline void rmv_page_order(struct page *page)
483{
676165a8 484 __ClearPageBuddy(page);
4c21e2f2 485 set_page_private(page, 0);
1da177e4
LT
486}
487
1da177e4
LT
488/*
489 * This function checks whether a page is free && is the buddy
490 * we can do coalesce a page and its buddy if
13e7444b 491 * (a) the buddy is not in a hole &&
676165a8 492 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
493 * (c) a page and its buddy have the same order &&
494 * (d) a page and its buddy are in the same zone.
676165a8 495 *
cf6fe945
WSH
496 * For recording whether a page is in the buddy system, we set ->_mapcount
497 * PAGE_BUDDY_MAPCOUNT_VALUE.
498 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
499 * serialized by zone->lock.
1da177e4 500 *
676165a8 501 * For recording page's order, we use page_private(page).
1da177e4 502 */
cb2b95e1 503static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 504 unsigned int order)
1da177e4 505{
14e07298 506 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 507 return 0;
13e7444b 508
c0a32fc5 509 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
510 if (page_zone_id(page) != page_zone_id(buddy))
511 return 0;
512
4c5018ce
WY
513 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
514
c0a32fc5
SG
515 return 1;
516 }
517
cb2b95e1 518 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
519 /*
520 * zone check is done late to avoid uselessly
521 * calculating zone/node ids for pages that could
522 * never merge.
523 */
524 if (page_zone_id(page) != page_zone_id(buddy))
525 return 0;
526
4c5018ce
WY
527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528
6aa3001b 529 return 1;
676165a8 530 }
6aa3001b 531 return 0;
1da177e4
LT
532}
533
534/*
535 * Freeing function for a buddy system allocator.
536 *
537 * The concept of a buddy system is to maintain direct-mapped table
538 * (containing bit values) for memory blocks of various "orders".
539 * The bottom level table contains the map for the smallest allocatable
540 * units of memory (here, pages), and each level above it describes
541 * pairs of units from the levels below, hence, "buddies".
542 * At a high level, all that happens here is marking the table entry
543 * at the bottom level available, and propagating the changes upward
544 * as necessary, plus some accounting needed to play nicely with other
545 * parts of the VM system.
546 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
547 * free pages of length of (1 << order) and marked with _mapcount
548 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
549 * field.
1da177e4 550 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
551 * other. That is, if we allocate a small block, and both were
552 * free, the remainder of the region must be split into blocks.
1da177e4 553 * If a block is freed, and its buddy is also free, then this
5f63b720 554 * triggers coalescing into a block of larger size.
1da177e4 555 *
6d49e352 556 * -- nyc
1da177e4
LT
557 */
558
48db57f8 559static inline void __free_one_page(struct page *page,
dc4b0caf 560 unsigned long pfn,
ed0ae21d
MG
561 struct zone *zone, unsigned int order,
562 int migratetype)
1da177e4
LT
563{
564 unsigned long page_idx;
6dda9d55 565 unsigned long combined_idx;
43506fad 566 unsigned long uninitialized_var(buddy_idx);
6dda9d55 567 struct page *buddy;
3c605096 568 int max_order = MAX_ORDER;
1da177e4 569
d29bb978 570 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 571 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 572
ed0ae21d 573 VM_BUG_ON(migratetype == -1);
3c605096
JK
574 if (is_migrate_isolate(migratetype)) {
575 /*
576 * We restrict max order of merging to prevent merge
577 * between freepages on isolate pageblock and normal
578 * pageblock. Without this, pageblock isolation
579 * could cause incorrect freepage accounting.
580 */
581 max_order = min(MAX_ORDER, pageblock_order + 1);
582 } else {
8f82b55d 583 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 584 }
ed0ae21d 585
3c605096 586 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 587
309381fe
SL
588 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
589 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 590
3c605096 591 while (order < max_order - 1) {
43506fad
KC
592 buddy_idx = __find_buddy_index(page_idx, order);
593 buddy = page + (buddy_idx - page_idx);
cb2b95e1 594 if (!page_is_buddy(page, buddy, order))
3c82d0ce 595 break;
c0a32fc5
SG
596 /*
597 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
598 * merge with it and move up one order.
599 */
600 if (page_is_guard(buddy)) {
2847cf95 601 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
602 } else {
603 list_del(&buddy->lru);
604 zone->free_area[order].nr_free--;
605 rmv_page_order(buddy);
606 }
43506fad 607 combined_idx = buddy_idx & page_idx;
1da177e4
LT
608 page = page + (combined_idx - page_idx);
609 page_idx = combined_idx;
610 order++;
611 }
612 set_page_order(page, order);
6dda9d55
CZ
613
614 /*
615 * If this is not the largest possible page, check if the buddy
616 * of the next-highest order is free. If it is, it's possible
617 * that pages are being freed that will coalesce soon. In case,
618 * that is happening, add the free page to the tail of the list
619 * so it's less likely to be used soon and more likely to be merged
620 * as a higher order page
621 */
b7f50cfa 622 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 623 struct page *higher_page, *higher_buddy;
43506fad
KC
624 combined_idx = buddy_idx & page_idx;
625 higher_page = page + (combined_idx - page_idx);
626 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 627 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
628 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
629 list_add_tail(&page->lru,
630 &zone->free_area[order].free_list[migratetype]);
631 goto out;
632 }
633 }
634
635 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
636out:
1da177e4
LT
637 zone->free_area[order].nr_free++;
638}
639
224abf92 640static inline int free_pages_check(struct page *page)
1da177e4 641{
d230dec1 642 const char *bad_reason = NULL;
f0b791a3
DH
643 unsigned long bad_flags = 0;
644
645 if (unlikely(page_mapcount(page)))
646 bad_reason = "nonzero mapcount";
647 if (unlikely(page->mapping != NULL))
648 bad_reason = "non-NULL mapping";
649 if (unlikely(atomic_read(&page->_count) != 0))
650 bad_reason = "nonzero _count";
651 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
652 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
653 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
654 }
9edad6ea
JW
655#ifdef CONFIG_MEMCG
656 if (unlikely(page->mem_cgroup))
657 bad_reason = "page still charged to cgroup";
658#endif
f0b791a3
DH
659 if (unlikely(bad_reason)) {
660 bad_page(page, bad_reason, bad_flags);
79f4b7bf 661 return 1;
8cc3b392 662 }
90572890 663 page_cpupid_reset_last(page);
79f4b7bf
HD
664 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
665 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
666 return 0;
1da177e4
LT
667}
668
669/*
5f8dcc21 670 * Frees a number of pages from the PCP lists
1da177e4 671 * Assumes all pages on list are in same zone, and of same order.
207f36ee 672 * count is the number of pages to free.
1da177e4
LT
673 *
674 * If the zone was previously in an "all pages pinned" state then look to
675 * see if this freeing clears that state.
676 *
677 * And clear the zone's pages_scanned counter, to hold off the "all pages are
678 * pinned" detection logic.
679 */
5f8dcc21
MG
680static void free_pcppages_bulk(struct zone *zone, int count,
681 struct per_cpu_pages *pcp)
1da177e4 682{
5f8dcc21 683 int migratetype = 0;
a6f9edd6 684 int batch_free = 0;
72853e29 685 int to_free = count;
0d5d823a 686 unsigned long nr_scanned;
5f8dcc21 687
c54ad30c 688 spin_lock(&zone->lock);
0d5d823a
MG
689 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
690 if (nr_scanned)
691 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 692
72853e29 693 while (to_free) {
48db57f8 694 struct page *page;
5f8dcc21
MG
695 struct list_head *list;
696
697 /*
a6f9edd6
MG
698 * Remove pages from lists in a round-robin fashion. A
699 * batch_free count is maintained that is incremented when an
700 * empty list is encountered. This is so more pages are freed
701 * off fuller lists instead of spinning excessively around empty
702 * lists
5f8dcc21
MG
703 */
704 do {
a6f9edd6 705 batch_free++;
5f8dcc21
MG
706 if (++migratetype == MIGRATE_PCPTYPES)
707 migratetype = 0;
708 list = &pcp->lists[migratetype];
709 } while (list_empty(list));
48db57f8 710
1d16871d
NK
711 /* This is the only non-empty list. Free them all. */
712 if (batch_free == MIGRATE_PCPTYPES)
713 batch_free = to_free;
714
a6f9edd6 715 do {
770c8aaa
BZ
716 int mt; /* migratetype of the to-be-freed page */
717
a6f9edd6
MG
718 page = list_entry(list->prev, struct page, lru);
719 /* must delete as __free_one_page list manipulates */
720 list_del(&page->lru);
b12c4ad1 721 mt = get_freepage_migratetype(page);
8f82b55d 722 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 723 mt = get_pageblock_migratetype(page);
51bb1a40 724
a7016235 725 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 726 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 727 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 728 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 729 }
c54ad30c 730 spin_unlock(&zone->lock);
1da177e4
LT
731}
732
dc4b0caf
MG
733static void free_one_page(struct zone *zone,
734 struct page *page, unsigned long pfn,
7aeb09f9 735 unsigned int order,
ed0ae21d 736 int migratetype)
1da177e4 737{
0d5d823a 738 unsigned long nr_scanned;
006d22d9 739 spin_lock(&zone->lock);
0d5d823a
MG
740 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
741 if (nr_scanned)
742 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 743
ad53f92e
JK
744 if (unlikely(has_isolate_pageblock(zone) ||
745 is_migrate_isolate(migratetype))) {
746 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 747 }
dc4b0caf 748 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 749 spin_unlock(&zone->lock);
48db57f8
NP
750}
751
81422f29
KS
752static int free_tail_pages_check(struct page *head_page, struct page *page)
753{
754 if (!IS_ENABLED(CONFIG_DEBUG_VM))
755 return 0;
756 if (unlikely(!PageTail(page))) {
757 bad_page(page, "PageTail not set", 0);
758 return 1;
759 }
760 if (unlikely(page->first_page != head_page)) {
761 bad_page(page, "first_page not consistent", 0);
762 return 1;
763 }
764 return 0;
765}
766
1e8ce83c
RH
767static void __meminit __init_single_page(struct page *page, unsigned long pfn,
768 unsigned long zone, int nid)
769{
770 struct zone *z = &NODE_DATA(nid)->node_zones[zone];
771
772 set_page_links(page, zone, nid, pfn);
773 mminit_verify_page_links(page, zone, nid, pfn);
774 init_page_count(page);
775 page_mapcount_reset(page);
776 page_cpupid_reset_last(page);
1e8ce83c
RH
777
778 /*
779 * Mark the block movable so that blocks are reserved for
780 * movable at startup. This will force kernel allocations
781 * to reserve their blocks rather than leaking throughout
782 * the address space during boot when many long-lived
783 * kernel allocations are made. Later some blocks near
784 * the start are marked MIGRATE_RESERVE by
785 * setup_zone_migrate_reserve()
786 *
787 * bitmap is created for zone's valid pfn range. but memmap
788 * can be created for invalid pages (for alignment)
789 * check here not to call set_pageblock_migratetype() against
790 * pfn out of zone.
791 */
792 if ((z->zone_start_pfn <= pfn)
793 && (pfn < zone_end_pfn(z))
794 && !(pfn & (pageblock_nr_pages - 1)))
795 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
796
797 INIT_LIST_HEAD(&page->lru);
798#ifdef WANT_PAGE_VIRTUAL
799 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
800 if (!is_highmem_idx(zone))
801 set_page_address(page, __va(pfn << PAGE_SHIFT));
802#endif
803}
804
805static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
806 int nid)
807{
808 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
809}
810
92923ca3
NZ
811/*
812 * Initialised pages do not have PageReserved set. This function is
813 * called for each range allocated by the bootmem allocator and
814 * marks the pages PageReserved. The remaining valid pages are later
815 * sent to the buddy page allocator.
816 */
817void reserve_bootmem_region(unsigned long start, unsigned long end)
818{
819 unsigned long start_pfn = PFN_DOWN(start);
820 unsigned long end_pfn = PFN_UP(end);
821
822 for (; start_pfn < end_pfn; start_pfn++)
823 if (pfn_valid(start_pfn))
824 SetPageReserved(pfn_to_page(start_pfn));
825}
826
ec95f53a 827static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 828{
81422f29
KS
829 bool compound = PageCompound(page);
830 int i, bad = 0;
1da177e4 831
ab1f306f 832 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 833 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 834
b413d48a 835 trace_mm_page_free(page, order);
b1eeab67 836 kmemcheck_free_shadow(page, order);
b8c73fc2 837 kasan_free_pages(page, order);
b1eeab67 838
8dd60a3a
AA
839 if (PageAnon(page))
840 page->mapping = NULL;
81422f29
KS
841 bad += free_pages_check(page);
842 for (i = 1; i < (1 << order); i++) {
843 if (compound)
844 bad += free_tail_pages_check(page, page + i);
8dd60a3a 845 bad += free_pages_check(page + i);
81422f29 846 }
8cc3b392 847 if (bad)
ec95f53a 848 return false;
689bcebf 849
48c96a36
JK
850 reset_page_owner(page, order);
851
3ac7fe5a 852 if (!PageHighMem(page)) {
b8af2941
PK
853 debug_check_no_locks_freed(page_address(page),
854 PAGE_SIZE << order);
3ac7fe5a
TG
855 debug_check_no_obj_freed(page_address(page),
856 PAGE_SIZE << order);
857 }
dafb1367 858 arch_free_page(page, order);
48db57f8 859 kernel_map_pages(page, 1 << order, 0);
dafb1367 860
ec95f53a
KM
861 return true;
862}
863
864static void __free_pages_ok(struct page *page, unsigned int order)
865{
866 unsigned long flags;
95e34412 867 int migratetype;
dc4b0caf 868 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
869
870 if (!free_pages_prepare(page, order))
871 return;
872
cfc47a28 873 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 874 local_irq_save(flags);
f8891e5e 875 __count_vm_events(PGFREE, 1 << order);
95e34412 876 set_freepage_migratetype(page, migratetype);
dc4b0caf 877 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 878 local_irq_restore(flags);
1da177e4
LT
879}
880
d70ddd7a
MG
881void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
882 unsigned int order)
a226f6c8 883{
c3993076 884 unsigned int nr_pages = 1 << order;
e2d0bd2b 885 struct page *p = page;
c3993076 886 unsigned int loop;
a226f6c8 887
e2d0bd2b
YL
888 prefetchw(p);
889 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
890 prefetchw(p + 1);
c3993076
JW
891 __ClearPageReserved(p);
892 set_page_count(p, 0);
a226f6c8 893 }
e2d0bd2b
YL
894 __ClearPageReserved(p);
895 set_page_count(p, 0);
c3993076 896
e2d0bd2b 897 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
898 set_page_refcounted(page);
899 __free_pages(page, order);
a226f6c8
DH
900}
901
47118af0 902#ifdef CONFIG_CMA
9cf510a5 903/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
904void __init init_cma_reserved_pageblock(struct page *page)
905{
906 unsigned i = pageblock_nr_pages;
907 struct page *p = page;
908
909 do {
910 __ClearPageReserved(p);
911 set_page_count(p, 0);
912 } while (++p, --i);
913
47118af0 914 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
915
916 if (pageblock_order >= MAX_ORDER) {
917 i = pageblock_nr_pages;
918 p = page;
919 do {
920 set_page_refcounted(p);
921 __free_pages(p, MAX_ORDER - 1);
922 p += MAX_ORDER_NR_PAGES;
923 } while (i -= MAX_ORDER_NR_PAGES);
924 } else {
925 set_page_refcounted(page);
926 __free_pages(page, pageblock_order);
927 }
928
3dcc0571 929 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
930}
931#endif
1da177e4
LT
932
933/*
934 * The order of subdivision here is critical for the IO subsystem.
935 * Please do not alter this order without good reasons and regression
936 * testing. Specifically, as large blocks of memory are subdivided,
937 * the order in which smaller blocks are delivered depends on the order
938 * they're subdivided in this function. This is the primary factor
939 * influencing the order in which pages are delivered to the IO
940 * subsystem according to empirical testing, and this is also justified
941 * by considering the behavior of a buddy system containing a single
942 * large block of memory acted on by a series of small allocations.
943 * This behavior is a critical factor in sglist merging's success.
944 *
6d49e352 945 * -- nyc
1da177e4 946 */
085cc7d5 947static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
948 int low, int high, struct free_area *area,
949 int migratetype)
1da177e4
LT
950{
951 unsigned long size = 1 << high;
952
953 while (high > low) {
954 area--;
955 high--;
956 size >>= 1;
309381fe 957 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 958
2847cf95 959 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 960 debug_guardpage_enabled() &&
2847cf95 961 high < debug_guardpage_minorder()) {
c0a32fc5
SG
962 /*
963 * Mark as guard pages (or page), that will allow to
964 * merge back to allocator when buddy will be freed.
965 * Corresponding page table entries will not be touched,
966 * pages will stay not present in virtual address space
967 */
2847cf95 968 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
969 continue;
970 }
b2a0ac88 971 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
972 area->nr_free++;
973 set_page_order(&page[size], high);
974 }
1da177e4
LT
975}
976
1da177e4
LT
977/*
978 * This page is about to be returned from the page allocator
979 */
2a7684a2 980static inline int check_new_page(struct page *page)
1da177e4 981{
d230dec1 982 const char *bad_reason = NULL;
f0b791a3
DH
983 unsigned long bad_flags = 0;
984
985 if (unlikely(page_mapcount(page)))
986 bad_reason = "nonzero mapcount";
987 if (unlikely(page->mapping != NULL))
988 bad_reason = "non-NULL mapping";
989 if (unlikely(atomic_read(&page->_count) != 0))
990 bad_reason = "nonzero _count";
991 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
992 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
993 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
994 }
9edad6ea
JW
995#ifdef CONFIG_MEMCG
996 if (unlikely(page->mem_cgroup))
997 bad_reason = "page still charged to cgroup";
998#endif
f0b791a3
DH
999 if (unlikely(bad_reason)) {
1000 bad_page(page, bad_reason, bad_flags);
689bcebf 1001 return 1;
8cc3b392 1002 }
2a7684a2
WF
1003 return 0;
1004}
1005
75379191
VB
1006static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1007 int alloc_flags)
2a7684a2
WF
1008{
1009 int i;
1010
1011 for (i = 0; i < (1 << order); i++) {
1012 struct page *p = page + i;
1013 if (unlikely(check_new_page(p)))
1014 return 1;
1015 }
689bcebf 1016
4c21e2f2 1017 set_page_private(page, 0);
7835e98b 1018 set_page_refcounted(page);
cc102509
NP
1019
1020 arch_alloc_page(page, order);
1da177e4 1021 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1022 kasan_alloc_pages(page, order);
17cf4406
NP
1023
1024 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1025 for (i = 0; i < (1 << order); i++)
1026 clear_highpage(page + i);
17cf4406
NP
1027
1028 if (order && (gfp_flags & __GFP_COMP))
1029 prep_compound_page(page, order);
1030
48c96a36
JK
1031 set_page_owner(page, order, gfp_flags);
1032
75379191
VB
1033 /*
1034 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1035 * allocate the page. The expectation is that the caller is taking
1036 * steps that will free more memory. The caller should avoid the page
1037 * being used for !PFMEMALLOC purposes.
1038 */
1039 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1040
689bcebf 1041 return 0;
1da177e4
LT
1042}
1043
56fd56b8
MG
1044/*
1045 * Go through the free lists for the given migratetype and remove
1046 * the smallest available page from the freelists
1047 */
728ec980
MG
1048static inline
1049struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1050 int migratetype)
1051{
1052 unsigned int current_order;
b8af2941 1053 struct free_area *area;
56fd56b8
MG
1054 struct page *page;
1055
1056 /* Find a page of the appropriate size in the preferred list */
1057 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1058 area = &(zone->free_area[current_order]);
1059 if (list_empty(&area->free_list[migratetype]))
1060 continue;
1061
1062 page = list_entry(area->free_list[migratetype].next,
1063 struct page, lru);
1064 list_del(&page->lru);
1065 rmv_page_order(page);
1066 area->nr_free--;
56fd56b8 1067 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 1068 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
1069 return page;
1070 }
1071
1072 return NULL;
1073}
1074
1075
b2a0ac88
MG
1076/*
1077 * This array describes the order lists are fallen back to when
1078 * the free lists for the desirable migrate type are depleted
1079 */
47118af0
MN
1080static int fallbacks[MIGRATE_TYPES][4] = {
1081 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1082 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
dc67647b 1083 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
47118af0 1084#ifdef CONFIG_CMA
47118af0 1085 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
47118af0 1086#endif
6d4a4916 1087 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1088#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1089 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1090#endif
b2a0ac88
MG
1091};
1092
dc67647b
JK
1093#ifdef CONFIG_CMA
1094static struct page *__rmqueue_cma_fallback(struct zone *zone,
1095 unsigned int order)
1096{
1097 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1098}
1099#else
1100static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1101 unsigned int order) { return NULL; }
1102#endif
1103
c361be55
MG
1104/*
1105 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1106 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1107 * boundary. If alignment is required, use move_freepages_block()
1108 */
435b405c 1109int move_freepages(struct zone *zone,
b69a7288
AB
1110 struct page *start_page, struct page *end_page,
1111 int migratetype)
c361be55
MG
1112{
1113 struct page *page;
1114 unsigned long order;
d100313f 1115 int pages_moved = 0;
c361be55
MG
1116
1117#ifndef CONFIG_HOLES_IN_ZONE
1118 /*
1119 * page_zone is not safe to call in this context when
1120 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1121 * anyway as we check zone boundaries in move_freepages_block().
1122 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1123 * grouping pages by mobility
c361be55 1124 */
97ee4ba7 1125 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1126#endif
1127
1128 for (page = start_page; page <= end_page;) {
344c790e 1129 /* Make sure we are not inadvertently changing nodes */
309381fe 1130 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1131
c361be55
MG
1132 if (!pfn_valid_within(page_to_pfn(page))) {
1133 page++;
1134 continue;
1135 }
1136
1137 if (!PageBuddy(page)) {
1138 page++;
1139 continue;
1140 }
1141
1142 order = page_order(page);
84be48d8
KS
1143 list_move(&page->lru,
1144 &zone->free_area[order].free_list[migratetype]);
95e34412 1145 set_freepage_migratetype(page, migratetype);
c361be55 1146 page += 1 << order;
d100313f 1147 pages_moved += 1 << order;
c361be55
MG
1148 }
1149
d100313f 1150 return pages_moved;
c361be55
MG
1151}
1152
ee6f509c 1153int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1154 int migratetype)
c361be55
MG
1155{
1156 unsigned long start_pfn, end_pfn;
1157 struct page *start_page, *end_page;
1158
1159 start_pfn = page_to_pfn(page);
d9c23400 1160 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1161 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1162 end_page = start_page + pageblock_nr_pages - 1;
1163 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1164
1165 /* Do not cross zone boundaries */
108bcc96 1166 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1167 start_page = page;
108bcc96 1168 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1169 return 0;
1170
1171 return move_freepages(zone, start_page, end_page, migratetype);
1172}
1173
2f66a68f
MG
1174static void change_pageblock_range(struct page *pageblock_page,
1175 int start_order, int migratetype)
1176{
1177 int nr_pageblocks = 1 << (start_order - pageblock_order);
1178
1179 while (nr_pageblocks--) {
1180 set_pageblock_migratetype(pageblock_page, migratetype);
1181 pageblock_page += pageblock_nr_pages;
1182 }
1183}
1184
fef903ef 1185/*
9c0415eb
VB
1186 * When we are falling back to another migratetype during allocation, try to
1187 * steal extra free pages from the same pageblocks to satisfy further
1188 * allocations, instead of polluting multiple pageblocks.
1189 *
1190 * If we are stealing a relatively large buddy page, it is likely there will
1191 * be more free pages in the pageblock, so try to steal them all. For
1192 * reclaimable and unmovable allocations, we steal regardless of page size,
1193 * as fragmentation caused by those allocations polluting movable pageblocks
1194 * is worse than movable allocations stealing from unmovable and reclaimable
1195 * pageblocks.
fef903ef 1196 */
4eb7dce6
JK
1197static bool can_steal_fallback(unsigned int order, int start_mt)
1198{
1199 /*
1200 * Leaving this order check is intended, although there is
1201 * relaxed order check in next check. The reason is that
1202 * we can actually steal whole pageblock if this condition met,
1203 * but, below check doesn't guarantee it and that is just heuristic
1204 * so could be changed anytime.
1205 */
1206 if (order >= pageblock_order)
1207 return true;
1208
1209 if (order >= pageblock_order / 2 ||
1210 start_mt == MIGRATE_RECLAIMABLE ||
1211 start_mt == MIGRATE_UNMOVABLE ||
1212 page_group_by_mobility_disabled)
1213 return true;
1214
1215 return false;
1216}
1217
1218/*
1219 * This function implements actual steal behaviour. If order is large enough,
1220 * we can steal whole pageblock. If not, we first move freepages in this
1221 * pageblock and check whether half of pages are moved or not. If half of
1222 * pages are moved, we can change migratetype of pageblock and permanently
1223 * use it's pages as requested migratetype in the future.
1224 */
1225static void steal_suitable_fallback(struct zone *zone, struct page *page,
1226 int start_type)
fef903ef
SB
1227{
1228 int current_order = page_order(page);
4eb7dce6 1229 int pages;
fef903ef 1230
fef903ef
SB
1231 /* Take ownership for orders >= pageblock_order */
1232 if (current_order >= pageblock_order) {
1233 change_pageblock_range(page, current_order, start_type);
3a1086fb 1234 return;
fef903ef
SB
1235 }
1236
4eb7dce6 1237 pages = move_freepages_block(zone, page, start_type);
fef903ef 1238
4eb7dce6
JK
1239 /* Claim the whole block if over half of it is free */
1240 if (pages >= (1 << (pageblock_order-1)) ||
1241 page_group_by_mobility_disabled)
1242 set_pageblock_migratetype(page, start_type);
1243}
1244
2149cdae
JK
1245/*
1246 * Check whether there is a suitable fallback freepage with requested order.
1247 * If only_stealable is true, this function returns fallback_mt only if
1248 * we can steal other freepages all together. This would help to reduce
1249 * fragmentation due to mixed migratetype pages in one pageblock.
1250 */
1251int find_suitable_fallback(struct free_area *area, unsigned int order,
1252 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1253{
1254 int i;
1255 int fallback_mt;
1256
1257 if (area->nr_free == 0)
1258 return -1;
1259
1260 *can_steal = false;
1261 for (i = 0;; i++) {
1262 fallback_mt = fallbacks[migratetype][i];
1263 if (fallback_mt == MIGRATE_RESERVE)
1264 break;
1265
1266 if (list_empty(&area->free_list[fallback_mt]))
1267 continue;
fef903ef 1268
4eb7dce6
JK
1269 if (can_steal_fallback(order, migratetype))
1270 *can_steal = true;
1271
2149cdae
JK
1272 if (!only_stealable)
1273 return fallback_mt;
1274
1275 if (*can_steal)
1276 return fallback_mt;
fef903ef 1277 }
4eb7dce6
JK
1278
1279 return -1;
fef903ef
SB
1280}
1281
b2a0ac88 1282/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1283static inline struct page *
7aeb09f9 1284__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1285{
b8af2941 1286 struct free_area *area;
7aeb09f9 1287 unsigned int current_order;
b2a0ac88 1288 struct page *page;
4eb7dce6
JK
1289 int fallback_mt;
1290 bool can_steal;
b2a0ac88
MG
1291
1292 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1293 for (current_order = MAX_ORDER-1;
1294 current_order >= order && current_order <= MAX_ORDER-1;
1295 --current_order) {
4eb7dce6
JK
1296 area = &(zone->free_area[current_order]);
1297 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1298 start_migratetype, false, &can_steal);
4eb7dce6
JK
1299 if (fallback_mt == -1)
1300 continue;
b2a0ac88 1301
4eb7dce6
JK
1302 page = list_entry(area->free_list[fallback_mt].next,
1303 struct page, lru);
1304 if (can_steal)
1305 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1306
4eb7dce6
JK
1307 /* Remove the page from the freelists */
1308 area->nr_free--;
1309 list_del(&page->lru);
1310 rmv_page_order(page);
3a1086fb 1311
4eb7dce6
JK
1312 expand(zone, page, order, current_order, area,
1313 start_migratetype);
1314 /*
1315 * The freepage_migratetype may differ from pageblock's
1316 * migratetype depending on the decisions in
1317 * try_to_steal_freepages(). This is OK as long as it
1318 * does not differ for MIGRATE_CMA pageblocks. For CMA
1319 * we need to make sure unallocated pages flushed from
1320 * pcp lists are returned to the correct freelist.
1321 */
1322 set_freepage_migratetype(page, start_migratetype);
e0fff1bd 1323
4eb7dce6
JK
1324 trace_mm_page_alloc_extfrag(page, order, current_order,
1325 start_migratetype, fallback_mt);
e0fff1bd 1326
4eb7dce6 1327 return page;
b2a0ac88
MG
1328 }
1329
728ec980 1330 return NULL;
b2a0ac88
MG
1331}
1332
56fd56b8 1333/*
1da177e4
LT
1334 * Do the hard work of removing an element from the buddy allocator.
1335 * Call me with the zone->lock already held.
1336 */
b2a0ac88
MG
1337static struct page *__rmqueue(struct zone *zone, unsigned int order,
1338 int migratetype)
1da177e4 1339{
1da177e4
LT
1340 struct page *page;
1341
728ec980 1342retry_reserve:
56fd56b8 1343 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1344
728ec980 1345 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
dc67647b
JK
1346 if (migratetype == MIGRATE_MOVABLE)
1347 page = __rmqueue_cma_fallback(zone, order);
1348
1349 if (!page)
1350 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1351
728ec980
MG
1352 /*
1353 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1354 * is used because __rmqueue_smallest is an inline function
1355 * and we want just one call site
1356 */
1357 if (!page) {
1358 migratetype = MIGRATE_RESERVE;
1359 goto retry_reserve;
1360 }
1361 }
1362
0d3d062a 1363 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1364 return page;
1da177e4
LT
1365}
1366
5f63b720 1367/*
1da177e4
LT
1368 * Obtain a specified number of elements from the buddy allocator, all under
1369 * a single hold of the lock, for efficiency. Add them to the supplied list.
1370 * Returns the number of new pages which were placed at *list.
1371 */
5f63b720 1372static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1373 unsigned long count, struct list_head *list,
b745bc85 1374 int migratetype, bool cold)
1da177e4 1375{
5bcc9f86 1376 int i;
5f63b720 1377
c54ad30c 1378 spin_lock(&zone->lock);
1da177e4 1379 for (i = 0; i < count; ++i) {
b2a0ac88 1380 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1381 if (unlikely(page == NULL))
1da177e4 1382 break;
81eabcbe
MG
1383
1384 /*
1385 * Split buddy pages returned by expand() are received here
1386 * in physical page order. The page is added to the callers and
1387 * list and the list head then moves forward. From the callers
1388 * perspective, the linked list is ordered by page number in
1389 * some conditions. This is useful for IO devices that can
1390 * merge IO requests if the physical pages are ordered
1391 * properly.
1392 */
b745bc85 1393 if (likely(!cold))
e084b2d9
MG
1394 list_add(&page->lru, list);
1395 else
1396 list_add_tail(&page->lru, list);
81eabcbe 1397 list = &page->lru;
5bcc9f86 1398 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1399 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1400 -(1 << order));
1da177e4 1401 }
f2260e6b 1402 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1403 spin_unlock(&zone->lock);
085cc7d5 1404 return i;
1da177e4
LT
1405}
1406
4ae7c039 1407#ifdef CONFIG_NUMA
8fce4d8e 1408/*
4037d452
CL
1409 * Called from the vmstat counter updater to drain pagesets of this
1410 * currently executing processor on remote nodes after they have
1411 * expired.
1412 *
879336c3
CL
1413 * Note that this function must be called with the thread pinned to
1414 * a single processor.
8fce4d8e 1415 */
4037d452 1416void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1417{
4ae7c039 1418 unsigned long flags;
7be12fc9 1419 int to_drain, batch;
4ae7c039 1420
4037d452 1421 local_irq_save(flags);
4db0c3c2 1422 batch = READ_ONCE(pcp->batch);
7be12fc9 1423 to_drain = min(pcp->count, batch);
2a13515c
KM
1424 if (to_drain > 0) {
1425 free_pcppages_bulk(zone, to_drain, pcp);
1426 pcp->count -= to_drain;
1427 }
4037d452 1428 local_irq_restore(flags);
4ae7c039
CL
1429}
1430#endif
1431
9f8f2172 1432/*
93481ff0 1433 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1434 *
1435 * The processor must either be the current processor and the
1436 * thread pinned to the current processor or a processor that
1437 * is not online.
1438 */
93481ff0 1439static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1440{
c54ad30c 1441 unsigned long flags;
93481ff0
VB
1442 struct per_cpu_pageset *pset;
1443 struct per_cpu_pages *pcp;
1da177e4 1444
93481ff0
VB
1445 local_irq_save(flags);
1446 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1447
93481ff0
VB
1448 pcp = &pset->pcp;
1449 if (pcp->count) {
1450 free_pcppages_bulk(zone, pcp->count, pcp);
1451 pcp->count = 0;
1452 }
1453 local_irq_restore(flags);
1454}
3dfa5721 1455
93481ff0
VB
1456/*
1457 * Drain pcplists of all zones on the indicated processor.
1458 *
1459 * The processor must either be the current processor and the
1460 * thread pinned to the current processor or a processor that
1461 * is not online.
1462 */
1463static void drain_pages(unsigned int cpu)
1464{
1465 struct zone *zone;
1466
1467 for_each_populated_zone(zone) {
1468 drain_pages_zone(cpu, zone);
1da177e4
LT
1469 }
1470}
1da177e4 1471
9f8f2172
CL
1472/*
1473 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1474 *
1475 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1476 * the single zone's pages.
9f8f2172 1477 */
93481ff0 1478void drain_local_pages(struct zone *zone)
9f8f2172 1479{
93481ff0
VB
1480 int cpu = smp_processor_id();
1481
1482 if (zone)
1483 drain_pages_zone(cpu, zone);
1484 else
1485 drain_pages(cpu);
9f8f2172
CL
1486}
1487
1488/*
74046494
GBY
1489 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1490 *
93481ff0
VB
1491 * When zone parameter is non-NULL, spill just the single zone's pages.
1492 *
74046494
GBY
1493 * Note that this code is protected against sending an IPI to an offline
1494 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1495 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1496 * nothing keeps CPUs from showing up after we populated the cpumask and
1497 * before the call to on_each_cpu_mask().
9f8f2172 1498 */
93481ff0 1499void drain_all_pages(struct zone *zone)
9f8f2172 1500{
74046494 1501 int cpu;
74046494
GBY
1502
1503 /*
1504 * Allocate in the BSS so we wont require allocation in
1505 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1506 */
1507 static cpumask_t cpus_with_pcps;
1508
1509 /*
1510 * We don't care about racing with CPU hotplug event
1511 * as offline notification will cause the notified
1512 * cpu to drain that CPU pcps and on_each_cpu_mask
1513 * disables preemption as part of its processing
1514 */
1515 for_each_online_cpu(cpu) {
93481ff0
VB
1516 struct per_cpu_pageset *pcp;
1517 struct zone *z;
74046494 1518 bool has_pcps = false;
93481ff0
VB
1519
1520 if (zone) {
74046494 1521 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1522 if (pcp->pcp.count)
74046494 1523 has_pcps = true;
93481ff0
VB
1524 } else {
1525 for_each_populated_zone(z) {
1526 pcp = per_cpu_ptr(z->pageset, cpu);
1527 if (pcp->pcp.count) {
1528 has_pcps = true;
1529 break;
1530 }
74046494
GBY
1531 }
1532 }
93481ff0 1533
74046494
GBY
1534 if (has_pcps)
1535 cpumask_set_cpu(cpu, &cpus_with_pcps);
1536 else
1537 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1538 }
93481ff0
VB
1539 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1540 zone, 1);
9f8f2172
CL
1541}
1542
296699de 1543#ifdef CONFIG_HIBERNATION
1da177e4
LT
1544
1545void mark_free_pages(struct zone *zone)
1546{
f623f0db
RW
1547 unsigned long pfn, max_zone_pfn;
1548 unsigned long flags;
7aeb09f9 1549 unsigned int order, t;
1da177e4
LT
1550 struct list_head *curr;
1551
8080fc03 1552 if (zone_is_empty(zone))
1da177e4
LT
1553 return;
1554
1555 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1556
108bcc96 1557 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1558 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1559 if (pfn_valid(pfn)) {
1560 struct page *page = pfn_to_page(pfn);
1561
7be98234
RW
1562 if (!swsusp_page_is_forbidden(page))
1563 swsusp_unset_page_free(page);
f623f0db 1564 }
1da177e4 1565
b2a0ac88
MG
1566 for_each_migratetype_order(order, t) {
1567 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1568 unsigned long i;
1da177e4 1569
f623f0db
RW
1570 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1571 for (i = 0; i < (1UL << order); i++)
7be98234 1572 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1573 }
b2a0ac88 1574 }
1da177e4
LT
1575 spin_unlock_irqrestore(&zone->lock, flags);
1576}
e2c55dc8 1577#endif /* CONFIG_PM */
1da177e4 1578
1da177e4
LT
1579/*
1580 * Free a 0-order page
b745bc85 1581 * cold == true ? free a cold page : free a hot page
1da177e4 1582 */
b745bc85 1583void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1584{
1585 struct zone *zone = page_zone(page);
1586 struct per_cpu_pages *pcp;
1587 unsigned long flags;
dc4b0caf 1588 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1589 int migratetype;
1da177e4 1590
ec95f53a 1591 if (!free_pages_prepare(page, 0))
689bcebf
HD
1592 return;
1593
dc4b0caf 1594 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1595 set_freepage_migratetype(page, migratetype);
1da177e4 1596 local_irq_save(flags);
f8891e5e 1597 __count_vm_event(PGFREE);
da456f14 1598
5f8dcc21
MG
1599 /*
1600 * We only track unmovable, reclaimable and movable on pcp lists.
1601 * Free ISOLATE pages back to the allocator because they are being
1602 * offlined but treat RESERVE as movable pages so we can get those
1603 * areas back if necessary. Otherwise, we may have to free
1604 * excessively into the page allocator
1605 */
1606 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1607 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1608 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1609 goto out;
1610 }
1611 migratetype = MIGRATE_MOVABLE;
1612 }
1613
99dcc3e5 1614 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1615 if (!cold)
5f8dcc21 1616 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1617 else
1618 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1619 pcp->count++;
48db57f8 1620 if (pcp->count >= pcp->high) {
4db0c3c2 1621 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
1622 free_pcppages_bulk(zone, batch, pcp);
1623 pcp->count -= batch;
48db57f8 1624 }
5f8dcc21
MG
1625
1626out:
1da177e4 1627 local_irq_restore(flags);
1da177e4
LT
1628}
1629
cc59850e
KK
1630/*
1631 * Free a list of 0-order pages
1632 */
b745bc85 1633void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1634{
1635 struct page *page, *next;
1636
1637 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1638 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1639 free_hot_cold_page(page, cold);
1640 }
1641}
1642
8dfcc9ba
NP
1643/*
1644 * split_page takes a non-compound higher-order page, and splits it into
1645 * n (1<<order) sub-pages: page[0..n]
1646 * Each sub-page must be freed individually.
1647 *
1648 * Note: this is probably too low level an operation for use in drivers.
1649 * Please consult with lkml before using this in your driver.
1650 */
1651void split_page(struct page *page, unsigned int order)
1652{
1653 int i;
1654
309381fe
SL
1655 VM_BUG_ON_PAGE(PageCompound(page), page);
1656 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1657
1658#ifdef CONFIG_KMEMCHECK
1659 /*
1660 * Split shadow pages too, because free(page[0]) would
1661 * otherwise free the whole shadow.
1662 */
1663 if (kmemcheck_page_is_tracked(page))
1664 split_page(virt_to_page(page[0].shadow), order);
1665#endif
1666
48c96a36
JK
1667 set_page_owner(page, 0, 0);
1668 for (i = 1; i < (1 << order); i++) {
7835e98b 1669 set_page_refcounted(page + i);
48c96a36
JK
1670 set_page_owner(page + i, 0, 0);
1671 }
8dfcc9ba 1672}
5853ff23 1673EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1674
3c605096 1675int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1676{
748446bb
MG
1677 unsigned long watermark;
1678 struct zone *zone;
2139cbe6 1679 int mt;
748446bb
MG
1680
1681 BUG_ON(!PageBuddy(page));
1682
1683 zone = page_zone(page);
2e30abd1 1684 mt = get_pageblock_migratetype(page);
748446bb 1685
194159fb 1686 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1687 /* Obey watermarks as if the page was being allocated */
1688 watermark = low_wmark_pages(zone) + (1 << order);
1689 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1690 return 0;
1691
8fb74b9f 1692 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1693 }
748446bb
MG
1694
1695 /* Remove page from free list */
1696 list_del(&page->lru);
1697 zone->free_area[order].nr_free--;
1698 rmv_page_order(page);
2139cbe6 1699
8fb74b9f 1700 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1701 if (order >= pageblock_order - 1) {
1702 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1703 for (; page < endpage; page += pageblock_nr_pages) {
1704 int mt = get_pageblock_migratetype(page);
194159fb 1705 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1706 set_pageblock_migratetype(page,
1707 MIGRATE_MOVABLE);
1708 }
748446bb
MG
1709 }
1710
48c96a36 1711 set_page_owner(page, order, 0);
8fb74b9f 1712 return 1UL << order;
1fb3f8ca
MG
1713}
1714
1715/*
1716 * Similar to split_page except the page is already free. As this is only
1717 * being used for migration, the migratetype of the block also changes.
1718 * As this is called with interrupts disabled, the caller is responsible
1719 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1720 * are enabled.
1721 *
1722 * Note: this is probably too low level an operation for use in drivers.
1723 * Please consult with lkml before using this in your driver.
1724 */
1725int split_free_page(struct page *page)
1726{
1727 unsigned int order;
1728 int nr_pages;
1729
1fb3f8ca
MG
1730 order = page_order(page);
1731
8fb74b9f 1732 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1733 if (!nr_pages)
1734 return 0;
1735
1736 /* Split into individual pages */
1737 set_page_refcounted(page);
1738 split_page(page, order);
1739 return nr_pages;
748446bb
MG
1740}
1741
1da177e4 1742/*
75379191 1743 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 1744 */
0a15c3e9
MG
1745static inline
1746struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1747 struct zone *zone, unsigned int order,
1748 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1749{
1750 unsigned long flags;
689bcebf 1751 struct page *page;
b745bc85 1752 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1753
48db57f8 1754 if (likely(order == 0)) {
1da177e4 1755 struct per_cpu_pages *pcp;
5f8dcc21 1756 struct list_head *list;
1da177e4 1757
1da177e4 1758 local_irq_save(flags);
99dcc3e5
CL
1759 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1760 list = &pcp->lists[migratetype];
5f8dcc21 1761 if (list_empty(list)) {
535131e6 1762 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1763 pcp->batch, list,
e084b2d9 1764 migratetype, cold);
5f8dcc21 1765 if (unlikely(list_empty(list)))
6fb332fa 1766 goto failed;
535131e6 1767 }
b92a6edd 1768
5f8dcc21
MG
1769 if (cold)
1770 page = list_entry(list->prev, struct page, lru);
1771 else
1772 page = list_entry(list->next, struct page, lru);
1773
b92a6edd
MG
1774 list_del(&page->lru);
1775 pcp->count--;
7fb1d9fc 1776 } else {
dab48dab
AM
1777 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1778 /*
1779 * __GFP_NOFAIL is not to be used in new code.
1780 *
1781 * All __GFP_NOFAIL callers should be fixed so that they
1782 * properly detect and handle allocation failures.
1783 *
1784 * We most definitely don't want callers attempting to
4923abf9 1785 * allocate greater than order-1 page units with
dab48dab
AM
1786 * __GFP_NOFAIL.
1787 */
4923abf9 1788 WARN_ON_ONCE(order > 1);
dab48dab 1789 }
1da177e4 1790 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1791 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1792 spin_unlock(&zone->lock);
1793 if (!page)
1794 goto failed;
d1ce749a 1795 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1796 get_freepage_migratetype(page));
1da177e4
LT
1797 }
1798
3a025760 1799 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 1800 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
1801 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1802 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 1803
f8891e5e 1804 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1805 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1806 local_irq_restore(flags);
1da177e4 1807
309381fe 1808 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1809 return page;
a74609fa
NP
1810
1811failed:
1812 local_irq_restore(flags);
a74609fa 1813 return NULL;
1da177e4
LT
1814}
1815
933e312e
AM
1816#ifdef CONFIG_FAIL_PAGE_ALLOC
1817
b2588c4b 1818static struct {
933e312e
AM
1819 struct fault_attr attr;
1820
1821 u32 ignore_gfp_highmem;
1822 u32 ignore_gfp_wait;
54114994 1823 u32 min_order;
933e312e
AM
1824} fail_page_alloc = {
1825 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1826 .ignore_gfp_wait = 1,
1827 .ignore_gfp_highmem = 1,
54114994 1828 .min_order = 1,
933e312e
AM
1829};
1830
1831static int __init setup_fail_page_alloc(char *str)
1832{
1833 return setup_fault_attr(&fail_page_alloc.attr, str);
1834}
1835__setup("fail_page_alloc=", setup_fail_page_alloc);
1836
deaf386e 1837static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1838{
54114994 1839 if (order < fail_page_alloc.min_order)
deaf386e 1840 return false;
933e312e 1841 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1842 return false;
933e312e 1843 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1844 return false;
933e312e 1845 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1846 return false;
933e312e
AM
1847
1848 return should_fail(&fail_page_alloc.attr, 1 << order);
1849}
1850
1851#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1852
1853static int __init fail_page_alloc_debugfs(void)
1854{
f4ae40a6 1855 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1856 struct dentry *dir;
933e312e 1857
dd48c085
AM
1858 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1859 &fail_page_alloc.attr);
1860 if (IS_ERR(dir))
1861 return PTR_ERR(dir);
933e312e 1862
b2588c4b
AM
1863 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1864 &fail_page_alloc.ignore_gfp_wait))
1865 goto fail;
1866 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1867 &fail_page_alloc.ignore_gfp_highmem))
1868 goto fail;
1869 if (!debugfs_create_u32("min-order", mode, dir,
1870 &fail_page_alloc.min_order))
1871 goto fail;
1872
1873 return 0;
1874fail:
dd48c085 1875 debugfs_remove_recursive(dir);
933e312e 1876
b2588c4b 1877 return -ENOMEM;
933e312e
AM
1878}
1879
1880late_initcall(fail_page_alloc_debugfs);
1881
1882#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1883
1884#else /* CONFIG_FAIL_PAGE_ALLOC */
1885
deaf386e 1886static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1887{
deaf386e 1888 return false;
933e312e
AM
1889}
1890
1891#endif /* CONFIG_FAIL_PAGE_ALLOC */
1892
1da177e4 1893/*
88f5acf8 1894 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1895 * of the allocation.
1896 */
7aeb09f9
MG
1897static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1898 unsigned long mark, int classzone_idx, int alloc_flags,
1899 long free_pages)
1da177e4 1900{
26086de3 1901 /* free_pages may go negative - that's OK */
d23ad423 1902 long min = mark;
1da177e4 1903 int o;
026b0814 1904 long free_cma = 0;
1da177e4 1905
df0a6daa 1906 free_pages -= (1 << order) - 1;
7fb1d9fc 1907 if (alloc_flags & ALLOC_HIGH)
1da177e4 1908 min -= min / 2;
7fb1d9fc 1909 if (alloc_flags & ALLOC_HARDER)
1da177e4 1910 min -= min / 4;
d95ea5d1
BZ
1911#ifdef CONFIG_CMA
1912 /* If allocation can't use CMA areas don't use free CMA pages */
1913 if (!(alloc_flags & ALLOC_CMA))
026b0814 1914 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1915#endif
026b0814 1916
3484b2de 1917 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1918 return false;
1da177e4
LT
1919 for (o = 0; o < order; o++) {
1920 /* At the next order, this order's pages become unavailable */
1921 free_pages -= z->free_area[o].nr_free << o;
1922
1923 /* Require fewer higher order pages to be free */
1924 min >>= 1;
1925
1926 if (free_pages <= min)
88f5acf8 1927 return false;
1da177e4 1928 }
88f5acf8
MG
1929 return true;
1930}
1931
7aeb09f9 1932bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1933 int classzone_idx, int alloc_flags)
1934{
1935 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1936 zone_page_state(z, NR_FREE_PAGES));
1937}
1938
7aeb09f9
MG
1939bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1940 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1941{
1942 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1943
1944 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1945 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1946
1947 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1948 free_pages);
1da177e4
LT
1949}
1950
9276b1bc
PJ
1951#ifdef CONFIG_NUMA
1952/*
1953 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1954 * skip over zones that are not allowed by the cpuset, or that have
1955 * been recently (in last second) found to be nearly full. See further
1956 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1957 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1958 *
a1aeb65a 1959 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1960 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1961 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1962 *
1963 * If the zonelist cache is not available for this zonelist, does
1964 * nothing and returns NULL.
1965 *
1966 * If the fullzones BITMAP in the zonelist cache is stale (more than
1967 * a second since last zap'd) then we zap it out (clear its bits.)
1968 *
1969 * We hold off even calling zlc_setup, until after we've checked the
1970 * first zone in the zonelist, on the theory that most allocations will
1971 * be satisfied from that first zone, so best to examine that zone as
1972 * quickly as we can.
1973 */
1974static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1975{
1976 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1977 nodemask_t *allowednodes; /* zonelist_cache approximation */
1978
1979 zlc = zonelist->zlcache_ptr;
1980 if (!zlc)
1981 return NULL;
1982
f05111f5 1983 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1984 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1985 zlc->last_full_zap = jiffies;
1986 }
1987
1988 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1989 &cpuset_current_mems_allowed :
4b0ef1fe 1990 &node_states[N_MEMORY];
9276b1bc
PJ
1991 return allowednodes;
1992}
1993
1994/*
1995 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1996 * if it is worth looking at further for free memory:
1997 * 1) Check that the zone isn't thought to be full (doesn't have its
1998 * bit set in the zonelist_cache fullzones BITMAP).
1999 * 2) Check that the zones node (obtained from the zonelist_cache
2000 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2001 * Return true (non-zero) if zone is worth looking at further, or
2002 * else return false (zero) if it is not.
2003 *
2004 * This check -ignores- the distinction between various watermarks,
2005 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2006 * found to be full for any variation of these watermarks, it will
2007 * be considered full for up to one second by all requests, unless
2008 * we are so low on memory on all allowed nodes that we are forced
2009 * into the second scan of the zonelist.
2010 *
2011 * In the second scan we ignore this zonelist cache and exactly
2012 * apply the watermarks to all zones, even it is slower to do so.
2013 * We are low on memory in the second scan, and should leave no stone
2014 * unturned looking for a free page.
2015 */
dd1a239f 2016static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2017 nodemask_t *allowednodes)
2018{
2019 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2020 int i; /* index of *z in zonelist zones */
2021 int n; /* node that zone *z is on */
2022
2023 zlc = zonelist->zlcache_ptr;
2024 if (!zlc)
2025 return 1;
2026
dd1a239f 2027 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2028 n = zlc->z_to_n[i];
2029
2030 /* This zone is worth trying if it is allowed but not full */
2031 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2032}
2033
2034/*
2035 * Given 'z' scanning a zonelist, set the corresponding bit in
2036 * zlc->fullzones, so that subsequent attempts to allocate a page
2037 * from that zone don't waste time re-examining it.
2038 */
dd1a239f 2039static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2040{
2041 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2042 int i; /* index of *z in zonelist zones */
2043
2044 zlc = zonelist->zlcache_ptr;
2045 if (!zlc)
2046 return;
2047
dd1a239f 2048 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2049
2050 set_bit(i, zlc->fullzones);
2051}
2052
76d3fbf8
MG
2053/*
2054 * clear all zones full, called after direct reclaim makes progress so that
2055 * a zone that was recently full is not skipped over for up to a second
2056 */
2057static void zlc_clear_zones_full(struct zonelist *zonelist)
2058{
2059 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2060
2061 zlc = zonelist->zlcache_ptr;
2062 if (!zlc)
2063 return;
2064
2065 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2066}
2067
81c0a2bb
JW
2068static bool zone_local(struct zone *local_zone, struct zone *zone)
2069{
fff4068c 2070 return local_zone->node == zone->node;
81c0a2bb
JW
2071}
2072
957f822a
DR
2073static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2074{
5f7a75ac
MG
2075 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2076 RECLAIM_DISTANCE;
957f822a
DR
2077}
2078
9276b1bc
PJ
2079#else /* CONFIG_NUMA */
2080
2081static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2082{
2083 return NULL;
2084}
2085
dd1a239f 2086static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2087 nodemask_t *allowednodes)
2088{
2089 return 1;
2090}
2091
dd1a239f 2092static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2093{
2094}
76d3fbf8
MG
2095
2096static void zlc_clear_zones_full(struct zonelist *zonelist)
2097{
2098}
957f822a 2099
81c0a2bb
JW
2100static bool zone_local(struct zone *local_zone, struct zone *zone)
2101{
2102 return true;
2103}
2104
957f822a
DR
2105static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2106{
2107 return true;
2108}
2109
9276b1bc
PJ
2110#endif /* CONFIG_NUMA */
2111
4ffeaf35
MG
2112static void reset_alloc_batches(struct zone *preferred_zone)
2113{
2114 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2115
2116 do {
2117 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2118 high_wmark_pages(zone) - low_wmark_pages(zone) -
2119 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2120 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2121 } while (zone++ != preferred_zone);
2122}
2123
7fb1d9fc 2124/*
0798e519 2125 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2126 * a page.
2127 */
2128static struct page *
a9263751
VB
2129get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2130 const struct alloc_context *ac)
753ee728 2131{
a9263751 2132 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2133 struct zoneref *z;
7fb1d9fc 2134 struct page *page = NULL;
5117f45d 2135 struct zone *zone;
9276b1bc
PJ
2136 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2137 int zlc_active = 0; /* set if using zonelist_cache */
2138 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2139 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2140 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2141 int nr_fair_skipped = 0;
2142 bool zonelist_rescan;
54a6eb5c 2143
9276b1bc 2144zonelist_scan:
4ffeaf35
MG
2145 zonelist_rescan = false;
2146
7fb1d9fc 2147 /*
9276b1bc 2148 * Scan zonelist, looking for a zone with enough free.
344736f2 2149 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2150 */
a9263751
VB
2151 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2152 ac->nodemask) {
e085dbc5
JW
2153 unsigned long mark;
2154
e5adfffc 2155 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2156 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2157 continue;
664eedde
MG
2158 if (cpusets_enabled() &&
2159 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2160 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2161 continue;
81c0a2bb
JW
2162 /*
2163 * Distribute pages in proportion to the individual
2164 * zone size to ensure fair page aging. The zone a
2165 * page was allocated in should have no effect on the
2166 * time the page has in memory before being reclaimed.
81c0a2bb 2167 */
3a025760 2168 if (alloc_flags & ALLOC_FAIR) {
a9263751 2169 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2170 break;
57054651 2171 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2172 nr_fair_skipped++;
3a025760 2173 continue;
4ffeaf35 2174 }
81c0a2bb 2175 }
a756cf59
JW
2176 /*
2177 * When allocating a page cache page for writing, we
2178 * want to get it from a zone that is within its dirty
2179 * limit, such that no single zone holds more than its
2180 * proportional share of globally allowed dirty pages.
2181 * The dirty limits take into account the zone's
2182 * lowmem reserves and high watermark so that kswapd
2183 * should be able to balance it without having to
2184 * write pages from its LRU list.
2185 *
2186 * This may look like it could increase pressure on
2187 * lower zones by failing allocations in higher zones
2188 * before they are full. But the pages that do spill
2189 * over are limited as the lower zones are protected
2190 * by this very same mechanism. It should not become
2191 * a practical burden to them.
2192 *
2193 * XXX: For now, allow allocations to potentially
2194 * exceed the per-zone dirty limit in the slowpath
2195 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2196 * which is important when on a NUMA setup the allowed
2197 * zones are together not big enough to reach the
2198 * global limit. The proper fix for these situations
2199 * will require awareness of zones in the
2200 * dirty-throttling and the flusher threads.
2201 */
a6e21b14 2202 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2203 continue;
7fb1d9fc 2204
e085dbc5
JW
2205 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2206 if (!zone_watermark_ok(zone, order, mark,
a9263751 2207 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2208 int ret;
2209
5dab2911
MG
2210 /* Checked here to keep the fast path fast */
2211 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2212 if (alloc_flags & ALLOC_NO_WATERMARKS)
2213 goto try_this_zone;
2214
e5adfffc
KS
2215 if (IS_ENABLED(CONFIG_NUMA) &&
2216 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2217 /*
2218 * we do zlc_setup if there are multiple nodes
2219 * and before considering the first zone allowed
2220 * by the cpuset.
2221 */
2222 allowednodes = zlc_setup(zonelist, alloc_flags);
2223 zlc_active = 1;
2224 did_zlc_setup = 1;
2225 }
2226
957f822a 2227 if (zone_reclaim_mode == 0 ||
a9263751 2228 !zone_allows_reclaim(ac->preferred_zone, zone))
fa5e084e
MG
2229 goto this_zone_full;
2230
cd38b115
MG
2231 /*
2232 * As we may have just activated ZLC, check if the first
2233 * eligible zone has failed zone_reclaim recently.
2234 */
e5adfffc 2235 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2236 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2237 continue;
2238
fa5e084e
MG
2239 ret = zone_reclaim(zone, gfp_mask, order);
2240 switch (ret) {
2241 case ZONE_RECLAIM_NOSCAN:
2242 /* did not scan */
cd38b115 2243 continue;
fa5e084e
MG
2244 case ZONE_RECLAIM_FULL:
2245 /* scanned but unreclaimable */
cd38b115 2246 continue;
fa5e084e
MG
2247 default:
2248 /* did we reclaim enough */
fed2719e 2249 if (zone_watermark_ok(zone, order, mark,
a9263751 2250 ac->classzone_idx, alloc_flags))
fed2719e
MG
2251 goto try_this_zone;
2252
2253 /*
2254 * Failed to reclaim enough to meet watermark.
2255 * Only mark the zone full if checking the min
2256 * watermark or if we failed to reclaim just
2257 * 1<<order pages or else the page allocator
2258 * fastpath will prematurely mark zones full
2259 * when the watermark is between the low and
2260 * min watermarks.
2261 */
2262 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2263 ret == ZONE_RECLAIM_SOME)
9276b1bc 2264 goto this_zone_full;
fed2719e
MG
2265
2266 continue;
0798e519 2267 }
7fb1d9fc
RS
2268 }
2269
fa5e084e 2270try_this_zone:
a9263751
VB
2271 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2272 gfp_mask, ac->migratetype);
75379191
VB
2273 if (page) {
2274 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2275 goto try_this_zone;
2276 return page;
2277 }
9276b1bc 2278this_zone_full:
65bb3719 2279 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2280 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2281 }
9276b1bc 2282
4ffeaf35
MG
2283 /*
2284 * The first pass makes sure allocations are spread fairly within the
2285 * local node. However, the local node might have free pages left
2286 * after the fairness batches are exhausted, and remote zones haven't
2287 * even been considered yet. Try once more without fairness, and
2288 * include remote zones now, before entering the slowpath and waking
2289 * kswapd: prefer spilling to a remote zone over swapping locally.
2290 */
2291 if (alloc_flags & ALLOC_FAIR) {
2292 alloc_flags &= ~ALLOC_FAIR;
2293 if (nr_fair_skipped) {
2294 zonelist_rescan = true;
a9263751 2295 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2296 }
2297 if (nr_online_nodes > 1)
2298 zonelist_rescan = true;
2299 }
2300
2301 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2302 /* Disable zlc cache for second zonelist scan */
2303 zlc_active = 0;
2304 zonelist_rescan = true;
2305 }
2306
2307 if (zonelist_rescan)
2308 goto zonelist_scan;
2309
2310 return NULL;
753ee728
MH
2311}
2312
29423e77
DR
2313/*
2314 * Large machines with many possible nodes should not always dump per-node
2315 * meminfo in irq context.
2316 */
2317static inline bool should_suppress_show_mem(void)
2318{
2319 bool ret = false;
2320
2321#if NODES_SHIFT > 8
2322 ret = in_interrupt();
2323#endif
2324 return ret;
2325}
2326
a238ab5b
DH
2327static DEFINE_RATELIMIT_STATE(nopage_rs,
2328 DEFAULT_RATELIMIT_INTERVAL,
2329 DEFAULT_RATELIMIT_BURST);
2330
2331void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2332{
a238ab5b
DH
2333 unsigned int filter = SHOW_MEM_FILTER_NODES;
2334
c0a32fc5
SG
2335 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2336 debug_guardpage_minorder() > 0)
a238ab5b
DH
2337 return;
2338
2339 /*
2340 * This documents exceptions given to allocations in certain
2341 * contexts that are allowed to allocate outside current's set
2342 * of allowed nodes.
2343 */
2344 if (!(gfp_mask & __GFP_NOMEMALLOC))
2345 if (test_thread_flag(TIF_MEMDIE) ||
2346 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2347 filter &= ~SHOW_MEM_FILTER_NODES;
2348 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2349 filter &= ~SHOW_MEM_FILTER_NODES;
2350
2351 if (fmt) {
3ee9a4f0
JP
2352 struct va_format vaf;
2353 va_list args;
2354
a238ab5b 2355 va_start(args, fmt);
3ee9a4f0
JP
2356
2357 vaf.fmt = fmt;
2358 vaf.va = &args;
2359
2360 pr_warn("%pV", &vaf);
2361
a238ab5b
DH
2362 va_end(args);
2363 }
2364
3ee9a4f0
JP
2365 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2366 current->comm, order, gfp_mask);
a238ab5b
DH
2367
2368 dump_stack();
2369 if (!should_suppress_show_mem())
2370 show_mem(filter);
2371}
2372
11e33f6a
MG
2373static inline struct page *
2374__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2375 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a
MG
2376{
2377 struct page *page;
2378
9879de73
JW
2379 *did_some_progress = 0;
2380
9879de73 2381 /*
dc56401f
JW
2382 * Acquire the oom lock. If that fails, somebody else is
2383 * making progress for us.
9879de73 2384 */
dc56401f 2385 if (!mutex_trylock(&oom_lock)) {
9879de73 2386 *did_some_progress = 1;
11e33f6a 2387 schedule_timeout_uninterruptible(1);
1da177e4
LT
2388 return NULL;
2389 }
6b1de916 2390
11e33f6a
MG
2391 /*
2392 * Go through the zonelist yet one more time, keep very high watermark
2393 * here, this is only to catch a parallel oom killing, we must fail if
2394 * we're still under heavy pressure.
2395 */
a9263751
VB
2396 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2397 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2398 if (page)
11e33f6a
MG
2399 goto out;
2400
4365a567 2401 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2402 /* Coredumps can quickly deplete all memory reserves */
2403 if (current->flags & PF_DUMPCORE)
2404 goto out;
4365a567
KH
2405 /* The OOM killer will not help higher order allocs */
2406 if (order > PAGE_ALLOC_COSTLY_ORDER)
2407 goto out;
03668b3c 2408 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2409 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2410 goto out;
9083905a 2411 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2412 if (!(gfp_mask & __GFP_FS)) {
2413 /*
2414 * XXX: Page reclaim didn't yield anything,
2415 * and the OOM killer can't be invoked, but
9083905a 2416 * keep looping as per tradition.
cc873177
JW
2417 */
2418 *did_some_progress = 1;
9879de73 2419 goto out;
cc873177 2420 }
9083905a
JW
2421 if (pm_suspended_storage())
2422 goto out;
4167e9b2 2423 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2424 if (gfp_mask & __GFP_THISNODE)
2425 goto out;
2426 }
11e33f6a 2427 /* Exhausted what can be done so it's blamo time */
e009d5dc
MH
2428 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2429 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
c32b3cbe 2430 *did_some_progress = 1;
11e33f6a 2431out:
dc56401f 2432 mutex_unlock(&oom_lock);
11e33f6a
MG
2433 return page;
2434}
2435
56de7263
MG
2436#ifdef CONFIG_COMPACTION
2437/* Try memory compaction for high-order allocations before reclaim */
2438static struct page *
2439__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2440 int alloc_flags, const struct alloc_context *ac,
2441 enum migrate_mode mode, int *contended_compaction,
2442 bool *deferred_compaction)
56de7263 2443{
53853e2d 2444 unsigned long compact_result;
98dd3b48 2445 struct page *page;
53853e2d
VB
2446
2447 if (!order)
66199712 2448 return NULL;
66199712 2449
c06b1fca 2450 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2451 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2452 mode, contended_compaction);
c06b1fca 2453 current->flags &= ~PF_MEMALLOC;
56de7263 2454
98dd3b48
VB
2455 switch (compact_result) {
2456 case COMPACT_DEFERRED:
53853e2d 2457 *deferred_compaction = true;
98dd3b48
VB
2458 /* fall-through */
2459 case COMPACT_SKIPPED:
2460 return NULL;
2461 default:
2462 break;
2463 }
53853e2d 2464
98dd3b48
VB
2465 /*
2466 * At least in one zone compaction wasn't deferred or skipped, so let's
2467 * count a compaction stall
2468 */
2469 count_vm_event(COMPACTSTALL);
8fb74b9f 2470
a9263751
VB
2471 page = get_page_from_freelist(gfp_mask, order,
2472 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2473
98dd3b48
VB
2474 if (page) {
2475 struct zone *zone = page_zone(page);
53853e2d 2476
98dd3b48
VB
2477 zone->compact_blockskip_flush = false;
2478 compaction_defer_reset(zone, order, true);
2479 count_vm_event(COMPACTSUCCESS);
2480 return page;
2481 }
56de7263 2482
98dd3b48
VB
2483 /*
2484 * It's bad if compaction run occurs and fails. The most likely reason
2485 * is that pages exist, but not enough to satisfy watermarks.
2486 */
2487 count_vm_event(COMPACTFAIL);
66199712 2488
98dd3b48 2489 cond_resched();
56de7263
MG
2490
2491 return NULL;
2492}
2493#else
2494static inline struct page *
2495__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2496 int alloc_flags, const struct alloc_context *ac,
2497 enum migrate_mode mode, int *contended_compaction,
2498 bool *deferred_compaction)
56de7263
MG
2499{
2500 return NULL;
2501}
2502#endif /* CONFIG_COMPACTION */
2503
bba90710
MS
2504/* Perform direct synchronous page reclaim */
2505static int
a9263751
VB
2506__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2507 const struct alloc_context *ac)
11e33f6a 2508{
11e33f6a 2509 struct reclaim_state reclaim_state;
bba90710 2510 int progress;
11e33f6a
MG
2511
2512 cond_resched();
2513
2514 /* We now go into synchronous reclaim */
2515 cpuset_memory_pressure_bump();
c06b1fca 2516 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2517 lockdep_set_current_reclaim_state(gfp_mask);
2518 reclaim_state.reclaimed_slab = 0;
c06b1fca 2519 current->reclaim_state = &reclaim_state;
11e33f6a 2520
a9263751
VB
2521 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2522 ac->nodemask);
11e33f6a 2523
c06b1fca 2524 current->reclaim_state = NULL;
11e33f6a 2525 lockdep_clear_current_reclaim_state();
c06b1fca 2526 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2527
2528 cond_resched();
2529
bba90710
MS
2530 return progress;
2531}
2532
2533/* The really slow allocator path where we enter direct reclaim */
2534static inline struct page *
2535__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2536 int alloc_flags, const struct alloc_context *ac,
2537 unsigned long *did_some_progress)
bba90710
MS
2538{
2539 struct page *page = NULL;
2540 bool drained = false;
2541
a9263751 2542 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2543 if (unlikely(!(*did_some_progress)))
2544 return NULL;
11e33f6a 2545
76d3fbf8 2546 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2547 if (IS_ENABLED(CONFIG_NUMA))
a9263751 2548 zlc_clear_zones_full(ac->zonelist);
76d3fbf8 2549
9ee493ce 2550retry:
a9263751
VB
2551 page = get_page_from_freelist(gfp_mask, order,
2552 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2553
2554 /*
2555 * If an allocation failed after direct reclaim, it could be because
2556 * pages are pinned on the per-cpu lists. Drain them and try again
2557 */
2558 if (!page && !drained) {
93481ff0 2559 drain_all_pages(NULL);
9ee493ce
MG
2560 drained = true;
2561 goto retry;
2562 }
2563
11e33f6a
MG
2564 return page;
2565}
2566
1da177e4 2567/*
11e33f6a
MG
2568 * This is called in the allocator slow-path if the allocation request is of
2569 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2570 */
11e33f6a
MG
2571static inline struct page *
2572__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2573 const struct alloc_context *ac)
11e33f6a
MG
2574{
2575 struct page *page;
2576
2577 do {
a9263751
VB
2578 page = get_page_from_freelist(gfp_mask, order,
2579 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2580
2581 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2582 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2583 HZ/50);
11e33f6a
MG
2584 } while (!page && (gfp_mask & __GFP_NOFAIL));
2585
2586 return page;
2587}
2588
a9263751 2589static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2590{
2591 struct zoneref *z;
2592 struct zone *zone;
2593
a9263751
VB
2594 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2595 ac->high_zoneidx, ac->nodemask)
2596 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2597}
2598
341ce06f
PZ
2599static inline int
2600gfp_to_alloc_flags(gfp_t gfp_mask)
2601{
341ce06f 2602 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2603 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2604
a56f57ff 2605 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2606 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2607
341ce06f
PZ
2608 /*
2609 * The caller may dip into page reserves a bit more if the caller
2610 * cannot run direct reclaim, or if the caller has realtime scheduling
2611 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2612 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2613 */
e6223a3b 2614 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2615
b104a35d 2616 if (atomic) {
5c3240d9 2617 /*
b104a35d
DR
2618 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2619 * if it can't schedule.
5c3240d9 2620 */
b104a35d 2621 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2622 alloc_flags |= ALLOC_HARDER;
523b9458 2623 /*
b104a35d 2624 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2625 * comment for __cpuset_node_allowed().
523b9458 2626 */
341ce06f 2627 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2628 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2629 alloc_flags |= ALLOC_HARDER;
2630
b37f1dd0
MG
2631 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2632 if (gfp_mask & __GFP_MEMALLOC)
2633 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2634 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2635 alloc_flags |= ALLOC_NO_WATERMARKS;
2636 else if (!in_interrupt() &&
2637 ((current->flags & PF_MEMALLOC) ||
2638 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2639 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2640 }
d95ea5d1 2641#ifdef CONFIG_CMA
43e7a34d 2642 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2643 alloc_flags |= ALLOC_CMA;
2644#endif
341ce06f
PZ
2645 return alloc_flags;
2646}
2647
072bb0aa
MG
2648bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2649{
b37f1dd0 2650 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2651}
2652
11e33f6a
MG
2653static inline struct page *
2654__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2655 struct alloc_context *ac)
11e33f6a
MG
2656{
2657 const gfp_t wait = gfp_mask & __GFP_WAIT;
2658 struct page *page = NULL;
2659 int alloc_flags;
2660 unsigned long pages_reclaimed = 0;
2661 unsigned long did_some_progress;
e0b9daeb 2662 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2663 bool deferred_compaction = false;
1f9efdef 2664 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2665
72807a74
MG
2666 /*
2667 * In the slowpath, we sanity check order to avoid ever trying to
2668 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2669 * be using allocators in order of preference for an area that is
2670 * too large.
2671 */
1fc28b70
MG
2672 if (order >= MAX_ORDER) {
2673 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2674 return NULL;
1fc28b70 2675 }
1da177e4 2676
952f3b51 2677 /*
4167e9b2
DR
2678 * If this allocation cannot block and it is for a specific node, then
2679 * fail early. There's no need to wakeup kswapd or retry for a
2680 * speculative node-specific allocation.
952f3b51 2681 */
4167e9b2 2682 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
952f3b51
CL
2683 goto nopage;
2684
9879de73 2685retry:
3a025760 2686 if (!(gfp_mask & __GFP_NO_KSWAPD))
a9263751 2687 wake_all_kswapds(order, ac);
1da177e4 2688
9bf2229f 2689 /*
7fb1d9fc
RS
2690 * OK, we're below the kswapd watermark and have kicked background
2691 * reclaim. Now things get more complex, so set up alloc_flags according
2692 * to how we want to proceed.
9bf2229f 2693 */
341ce06f 2694 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2695
f33261d7
DR
2696 /*
2697 * Find the true preferred zone if the allocation is unconstrained by
2698 * cpusets.
2699 */
a9263751 2700 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 2701 struct zoneref *preferred_zoneref;
a9263751
VB
2702 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2703 ac->high_zoneidx, NULL, &ac->preferred_zone);
2704 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 2705 }
f33261d7 2706
341ce06f 2707 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
2708 page = get_page_from_freelist(gfp_mask, order,
2709 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
2710 if (page)
2711 goto got_pg;
1da177e4 2712
11e33f6a 2713 /* Allocate without watermarks if the context allows */
341ce06f 2714 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2715 /*
2716 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2717 * the allocation is high priority and these type of
2718 * allocations are system rather than user orientated
2719 */
a9263751
VB
2720 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2721
2722 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 2723
cfd19c5a 2724 if (page) {
341ce06f 2725 goto got_pg;
cfd19c5a 2726 }
1da177e4
LT
2727 }
2728
2729 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2730 if (!wait) {
2731 /*
2732 * All existing users of the deprecated __GFP_NOFAIL are
2733 * blockable, so warn of any new users that actually allow this
2734 * type of allocation to fail.
2735 */
2736 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2737 goto nopage;
aed0a0e3 2738 }
1da177e4 2739
341ce06f 2740 /* Avoid recursion of direct reclaim */
c06b1fca 2741 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2742 goto nopage;
2743
6583bb64
DR
2744 /* Avoid allocations with no watermarks from looping endlessly */
2745 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2746 goto nopage;
2747
77f1fe6b
MG
2748 /*
2749 * Try direct compaction. The first pass is asynchronous. Subsequent
2750 * attempts after direct reclaim are synchronous
2751 */
a9263751
VB
2752 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2753 migration_mode,
2754 &contended_compaction,
53853e2d 2755 &deferred_compaction);
56de7263
MG
2756 if (page)
2757 goto got_pg;
75f30861 2758
1f9efdef
VB
2759 /* Checks for THP-specific high-order allocations */
2760 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2761 /*
2762 * If compaction is deferred for high-order allocations, it is
2763 * because sync compaction recently failed. If this is the case
2764 * and the caller requested a THP allocation, we do not want
2765 * to heavily disrupt the system, so we fail the allocation
2766 * instead of entering direct reclaim.
2767 */
2768 if (deferred_compaction)
2769 goto nopage;
2770
2771 /*
2772 * In all zones where compaction was attempted (and not
2773 * deferred or skipped), lock contention has been detected.
2774 * For THP allocation we do not want to disrupt the others
2775 * so we fallback to base pages instead.
2776 */
2777 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2778 goto nopage;
2779
2780 /*
2781 * If compaction was aborted due to need_resched(), we do not
2782 * want to further increase allocation latency, unless it is
2783 * khugepaged trying to collapse.
2784 */
2785 if (contended_compaction == COMPACT_CONTENDED_SCHED
2786 && !(current->flags & PF_KTHREAD))
2787 goto nopage;
2788 }
66199712 2789
8fe78048
DR
2790 /*
2791 * It can become very expensive to allocate transparent hugepages at
2792 * fault, so use asynchronous memory compaction for THP unless it is
2793 * khugepaged trying to collapse.
2794 */
2795 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2796 (current->flags & PF_KTHREAD))
2797 migration_mode = MIGRATE_SYNC_LIGHT;
2798
11e33f6a 2799 /* Try direct reclaim and then allocating */
a9263751
VB
2800 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2801 &did_some_progress);
11e33f6a
MG
2802 if (page)
2803 goto got_pg;
1da177e4 2804
9083905a
JW
2805 /* Do not loop if specifically requested */
2806 if (gfp_mask & __GFP_NORETRY)
2807 goto noretry;
2808
2809 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 2810 pages_reclaimed += did_some_progress;
9083905a
JW
2811 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
2812 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 2813 /* Wait for some write requests to complete then retry */
a9263751 2814 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 2815 goto retry;
1da177e4
LT
2816 }
2817
9083905a
JW
2818 /* Reclaim has failed us, start killing things */
2819 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
2820 if (page)
2821 goto got_pg;
2822
2823 /* Retry as long as the OOM killer is making progress */
2824 if (did_some_progress)
2825 goto retry;
2826
2827noretry:
2828 /*
2829 * High-order allocations do not necessarily loop after
2830 * direct reclaim and reclaim/compaction depends on compaction
2831 * being called after reclaim so call directly if necessary
2832 */
2833 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
2834 ac, migration_mode,
2835 &contended_compaction,
2836 &deferred_compaction);
2837 if (page)
2838 goto got_pg;
1da177e4 2839nopage:
a238ab5b 2840 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 2841got_pg:
072bb0aa 2842 return page;
1da177e4 2843}
11e33f6a
MG
2844
2845/*
2846 * This is the 'heart' of the zoned buddy allocator.
2847 */
2848struct page *
2849__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2850 struct zonelist *zonelist, nodemask_t *nodemask)
2851{
d8846374 2852 struct zoneref *preferred_zoneref;
cc9a6c87 2853 struct page *page = NULL;
cc9a6c87 2854 unsigned int cpuset_mems_cookie;
3a025760 2855 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 2856 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
2857 struct alloc_context ac = {
2858 .high_zoneidx = gfp_zone(gfp_mask),
2859 .nodemask = nodemask,
2860 .migratetype = gfpflags_to_migratetype(gfp_mask),
2861 };
11e33f6a 2862
dcce284a
BH
2863 gfp_mask &= gfp_allowed_mask;
2864
11e33f6a
MG
2865 lockdep_trace_alloc(gfp_mask);
2866
2867 might_sleep_if(gfp_mask & __GFP_WAIT);
2868
2869 if (should_fail_alloc_page(gfp_mask, order))
2870 return NULL;
2871
2872 /*
2873 * Check the zones suitable for the gfp_mask contain at least one
2874 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 2875 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
2876 */
2877 if (unlikely(!zonelist->_zonerefs->zone))
2878 return NULL;
2879
a9263751 2880 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
2881 alloc_flags |= ALLOC_CMA;
2882
cc9a6c87 2883retry_cpuset:
d26914d1 2884 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2885
a9263751
VB
2886 /* We set it here, as __alloc_pages_slowpath might have changed it */
2887 ac.zonelist = zonelist;
5117f45d 2888 /* The preferred zone is used for statistics later */
a9263751
VB
2889 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2890 ac.nodemask ? : &cpuset_current_mems_allowed,
2891 &ac.preferred_zone);
2892 if (!ac.preferred_zone)
cc9a6c87 2893 goto out;
a9263751 2894 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
2895
2896 /* First allocation attempt */
91fbdc0f 2897 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 2898 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
2899 if (unlikely(!page)) {
2900 /*
2901 * Runtime PM, block IO and its error handling path
2902 * can deadlock because I/O on the device might not
2903 * complete.
2904 */
91fbdc0f
AM
2905 alloc_mask = memalloc_noio_flags(gfp_mask);
2906
a9263751 2907 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 2908 }
11e33f6a 2909
23f086f9
XQ
2910 if (kmemcheck_enabled && page)
2911 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2912
a9263751 2913 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
2914
2915out:
2916 /*
2917 * When updating a task's mems_allowed, it is possible to race with
2918 * parallel threads in such a way that an allocation can fail while
2919 * the mask is being updated. If a page allocation is about to fail,
2920 * check if the cpuset changed during allocation and if so, retry.
2921 */
d26914d1 2922 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2923 goto retry_cpuset;
2924
11e33f6a 2925 return page;
1da177e4 2926}
d239171e 2927EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2928
2929/*
2930 * Common helper functions.
2931 */
920c7a5d 2932unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2933{
945a1113
AM
2934 struct page *page;
2935
2936 /*
2937 * __get_free_pages() returns a 32-bit address, which cannot represent
2938 * a highmem page
2939 */
2940 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2941
1da177e4
LT
2942 page = alloc_pages(gfp_mask, order);
2943 if (!page)
2944 return 0;
2945 return (unsigned long) page_address(page);
2946}
1da177e4
LT
2947EXPORT_SYMBOL(__get_free_pages);
2948
920c7a5d 2949unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2950{
945a1113 2951 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2952}
1da177e4
LT
2953EXPORT_SYMBOL(get_zeroed_page);
2954
920c7a5d 2955void __free_pages(struct page *page, unsigned int order)
1da177e4 2956{
b5810039 2957 if (put_page_testzero(page)) {
1da177e4 2958 if (order == 0)
b745bc85 2959 free_hot_cold_page(page, false);
1da177e4
LT
2960 else
2961 __free_pages_ok(page, order);
2962 }
2963}
2964
2965EXPORT_SYMBOL(__free_pages);
2966
920c7a5d 2967void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2968{
2969 if (addr != 0) {
725d704e 2970 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2971 __free_pages(virt_to_page((void *)addr), order);
2972 }
2973}
2974
2975EXPORT_SYMBOL(free_pages);
2976
b63ae8ca
AD
2977/*
2978 * Page Fragment:
2979 * An arbitrary-length arbitrary-offset area of memory which resides
2980 * within a 0 or higher order page. Multiple fragments within that page
2981 * are individually refcounted, in the page's reference counter.
2982 *
2983 * The page_frag functions below provide a simple allocation framework for
2984 * page fragments. This is used by the network stack and network device
2985 * drivers to provide a backing region of memory for use as either an
2986 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
2987 */
2988static struct page *__page_frag_refill(struct page_frag_cache *nc,
2989 gfp_t gfp_mask)
2990{
2991 struct page *page = NULL;
2992 gfp_t gfp = gfp_mask;
2993
2994#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
2995 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
2996 __GFP_NOMEMALLOC;
2997 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
2998 PAGE_FRAG_CACHE_MAX_ORDER);
2999 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3000#endif
3001 if (unlikely(!page))
3002 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3003
3004 nc->va = page ? page_address(page) : NULL;
3005
3006 return page;
3007}
3008
3009void *__alloc_page_frag(struct page_frag_cache *nc,
3010 unsigned int fragsz, gfp_t gfp_mask)
3011{
3012 unsigned int size = PAGE_SIZE;
3013 struct page *page;
3014 int offset;
3015
3016 if (unlikely(!nc->va)) {
3017refill:
3018 page = __page_frag_refill(nc, gfp_mask);
3019 if (!page)
3020 return NULL;
3021
3022#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3023 /* if size can vary use size else just use PAGE_SIZE */
3024 size = nc->size;
3025#endif
3026 /* Even if we own the page, we do not use atomic_set().
3027 * This would break get_page_unless_zero() users.
3028 */
3029 atomic_add(size - 1, &page->_count);
3030
3031 /* reset page count bias and offset to start of new frag */
3032 nc->pfmemalloc = page->pfmemalloc;
3033 nc->pagecnt_bias = size;
3034 nc->offset = size;
3035 }
3036
3037 offset = nc->offset - fragsz;
3038 if (unlikely(offset < 0)) {
3039 page = virt_to_page(nc->va);
3040
3041 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3042 goto refill;
3043
3044#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3045 /* if size can vary use size else just use PAGE_SIZE */
3046 size = nc->size;
3047#endif
3048 /* OK, page count is 0, we can safely set it */
3049 atomic_set(&page->_count, size);
3050
3051 /* reset page count bias and offset to start of new frag */
3052 nc->pagecnt_bias = size;
3053 offset = size - fragsz;
3054 }
3055
3056 nc->pagecnt_bias--;
3057 nc->offset = offset;
3058
3059 return nc->va + offset;
3060}
3061EXPORT_SYMBOL(__alloc_page_frag);
3062
3063/*
3064 * Frees a page fragment allocated out of either a compound or order 0 page.
3065 */
3066void __free_page_frag(void *addr)
3067{
3068 struct page *page = virt_to_head_page(addr);
3069
3070 if (unlikely(put_page_testzero(page)))
3071 __free_pages_ok(page, compound_order(page));
3072}
3073EXPORT_SYMBOL(__free_page_frag);
3074
6a1a0d3b 3075/*
52383431
VD
3076 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3077 * of the current memory cgroup.
6a1a0d3b 3078 *
52383431
VD
3079 * It should be used when the caller would like to use kmalloc, but since the
3080 * allocation is large, it has to fall back to the page allocator.
3081 */
3082struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3083{
3084 struct page *page;
3085 struct mem_cgroup *memcg = NULL;
3086
3087 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3088 return NULL;
3089 page = alloc_pages(gfp_mask, order);
3090 memcg_kmem_commit_charge(page, memcg, order);
3091 return page;
3092}
3093
3094struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3095{
3096 struct page *page;
3097 struct mem_cgroup *memcg = NULL;
3098
3099 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3100 return NULL;
3101 page = alloc_pages_node(nid, gfp_mask, order);
3102 memcg_kmem_commit_charge(page, memcg, order);
3103 return page;
3104}
3105
3106/*
3107 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3108 * alloc_kmem_pages.
6a1a0d3b 3109 */
52383431 3110void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
3111{
3112 memcg_kmem_uncharge_pages(page, order);
3113 __free_pages(page, order);
3114}
3115
52383431 3116void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3117{
3118 if (addr != 0) {
3119 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3120 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3121 }
3122}
3123
ee85c2e1
AK
3124static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3125{
3126 if (addr) {
3127 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3128 unsigned long used = addr + PAGE_ALIGN(size);
3129
3130 split_page(virt_to_page((void *)addr), order);
3131 while (used < alloc_end) {
3132 free_page(used);
3133 used += PAGE_SIZE;
3134 }
3135 }
3136 return (void *)addr;
3137}
3138
2be0ffe2
TT
3139/**
3140 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3141 * @size: the number of bytes to allocate
3142 * @gfp_mask: GFP flags for the allocation
3143 *
3144 * This function is similar to alloc_pages(), except that it allocates the
3145 * minimum number of pages to satisfy the request. alloc_pages() can only
3146 * allocate memory in power-of-two pages.
3147 *
3148 * This function is also limited by MAX_ORDER.
3149 *
3150 * Memory allocated by this function must be released by free_pages_exact().
3151 */
3152void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3153{
3154 unsigned int order = get_order(size);
3155 unsigned long addr;
3156
3157 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3158 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3159}
3160EXPORT_SYMBOL(alloc_pages_exact);
3161
ee85c2e1
AK
3162/**
3163 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3164 * pages on a node.
b5e6ab58 3165 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3166 * @size: the number of bytes to allocate
3167 * @gfp_mask: GFP flags for the allocation
3168 *
3169 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3170 * back.
3171 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3172 * but is not exact.
3173 */
e1931811 3174void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3175{
3176 unsigned order = get_order(size);
3177 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3178 if (!p)
3179 return NULL;
3180 return make_alloc_exact((unsigned long)page_address(p), order, size);
3181}
ee85c2e1 3182
2be0ffe2
TT
3183/**
3184 * free_pages_exact - release memory allocated via alloc_pages_exact()
3185 * @virt: the value returned by alloc_pages_exact.
3186 * @size: size of allocation, same value as passed to alloc_pages_exact().
3187 *
3188 * Release the memory allocated by a previous call to alloc_pages_exact.
3189 */
3190void free_pages_exact(void *virt, size_t size)
3191{
3192 unsigned long addr = (unsigned long)virt;
3193 unsigned long end = addr + PAGE_ALIGN(size);
3194
3195 while (addr < end) {
3196 free_page(addr);
3197 addr += PAGE_SIZE;
3198 }
3199}
3200EXPORT_SYMBOL(free_pages_exact);
3201
e0fb5815
ZY
3202/**
3203 * nr_free_zone_pages - count number of pages beyond high watermark
3204 * @offset: The zone index of the highest zone
3205 *
3206 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3207 * high watermark within all zones at or below a given zone index. For each
3208 * zone, the number of pages is calculated as:
834405c3 3209 * managed_pages - high_pages
e0fb5815 3210 */
ebec3862 3211static unsigned long nr_free_zone_pages(int offset)
1da177e4 3212{
dd1a239f 3213 struct zoneref *z;
54a6eb5c
MG
3214 struct zone *zone;
3215
e310fd43 3216 /* Just pick one node, since fallback list is circular */
ebec3862 3217 unsigned long sum = 0;
1da177e4 3218
0e88460d 3219 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3220
54a6eb5c 3221 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3222 unsigned long size = zone->managed_pages;
41858966 3223 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3224 if (size > high)
3225 sum += size - high;
1da177e4
LT
3226 }
3227
3228 return sum;
3229}
3230
e0fb5815
ZY
3231/**
3232 * nr_free_buffer_pages - count number of pages beyond high watermark
3233 *
3234 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3235 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3236 */
ebec3862 3237unsigned long nr_free_buffer_pages(void)
1da177e4 3238{
af4ca457 3239 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3240}
c2f1a551 3241EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3242
e0fb5815
ZY
3243/**
3244 * nr_free_pagecache_pages - count number of pages beyond high watermark
3245 *
3246 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3247 * high watermark within all zones.
1da177e4 3248 */
ebec3862 3249unsigned long nr_free_pagecache_pages(void)
1da177e4 3250{
2a1e274a 3251 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3252}
08e0f6a9
CL
3253
3254static inline void show_node(struct zone *zone)
1da177e4 3255{
e5adfffc 3256 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3257 printk("Node %d ", zone_to_nid(zone));
1da177e4 3258}
1da177e4 3259
1da177e4
LT
3260void si_meminfo(struct sysinfo *val)
3261{
3262 val->totalram = totalram_pages;
cc7452b6 3263 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3264 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3265 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3266 val->totalhigh = totalhigh_pages;
3267 val->freehigh = nr_free_highpages();
1da177e4
LT
3268 val->mem_unit = PAGE_SIZE;
3269}
3270
3271EXPORT_SYMBOL(si_meminfo);
3272
3273#ifdef CONFIG_NUMA
3274void si_meminfo_node(struct sysinfo *val, int nid)
3275{
cdd91a77
JL
3276 int zone_type; /* needs to be signed */
3277 unsigned long managed_pages = 0;
1da177e4
LT
3278 pg_data_t *pgdat = NODE_DATA(nid);
3279
cdd91a77
JL
3280 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3281 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3282 val->totalram = managed_pages;
cc7452b6 3283 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3284 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3285#ifdef CONFIG_HIGHMEM
b40da049 3286 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3287 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3288 NR_FREE_PAGES);
98d2b0eb
CL
3289#else
3290 val->totalhigh = 0;
3291 val->freehigh = 0;
3292#endif
1da177e4
LT
3293 val->mem_unit = PAGE_SIZE;
3294}
3295#endif
3296
ddd588b5 3297/*
7bf02ea2
DR
3298 * Determine whether the node should be displayed or not, depending on whether
3299 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3300 */
7bf02ea2 3301bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3302{
3303 bool ret = false;
cc9a6c87 3304 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3305
3306 if (!(flags & SHOW_MEM_FILTER_NODES))
3307 goto out;
3308
cc9a6c87 3309 do {
d26914d1 3310 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3311 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3312 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3313out:
3314 return ret;
3315}
3316
1da177e4
LT
3317#define K(x) ((x) << (PAGE_SHIFT-10))
3318
377e4f16
RV
3319static void show_migration_types(unsigned char type)
3320{
3321 static const char types[MIGRATE_TYPES] = {
3322 [MIGRATE_UNMOVABLE] = 'U',
3323 [MIGRATE_RECLAIMABLE] = 'E',
3324 [MIGRATE_MOVABLE] = 'M',
3325 [MIGRATE_RESERVE] = 'R',
3326#ifdef CONFIG_CMA
3327 [MIGRATE_CMA] = 'C',
3328#endif
194159fb 3329#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3330 [MIGRATE_ISOLATE] = 'I',
194159fb 3331#endif
377e4f16
RV
3332 };
3333 char tmp[MIGRATE_TYPES + 1];
3334 char *p = tmp;
3335 int i;
3336
3337 for (i = 0; i < MIGRATE_TYPES; i++) {
3338 if (type & (1 << i))
3339 *p++ = types[i];
3340 }
3341
3342 *p = '\0';
3343 printk("(%s) ", tmp);
3344}
3345
1da177e4
LT
3346/*
3347 * Show free area list (used inside shift_scroll-lock stuff)
3348 * We also calculate the percentage fragmentation. We do this by counting the
3349 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3350 *
3351 * Bits in @filter:
3352 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3353 * cpuset.
1da177e4 3354 */
7bf02ea2 3355void show_free_areas(unsigned int filter)
1da177e4 3356{
d1bfcdb8 3357 unsigned long free_pcp = 0;
c7241913 3358 int cpu;
1da177e4
LT
3359 struct zone *zone;
3360
ee99c71c 3361 for_each_populated_zone(zone) {
7bf02ea2 3362 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3363 continue;
d1bfcdb8 3364
761b0677
KK
3365 for_each_online_cpu(cpu)
3366 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3367 }
3368
a731286d
KM
3369 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3370 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3371 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3372 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3373 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3374 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3375 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3376 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3377 global_page_state(NR_ISOLATED_ANON),
3378 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3379 global_page_state(NR_INACTIVE_FILE),
a731286d 3380 global_page_state(NR_ISOLATED_FILE),
7b854121 3381 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3382 global_page_state(NR_FILE_DIRTY),
ce866b34 3383 global_page_state(NR_WRITEBACK),
fd39fc85 3384 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3385 global_page_state(NR_SLAB_RECLAIMABLE),
3386 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3387 global_page_state(NR_FILE_MAPPED),
4b02108a 3388 global_page_state(NR_SHMEM),
a25700a5 3389 global_page_state(NR_PAGETABLE),
d1ce749a 3390 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3391 global_page_state(NR_FREE_PAGES),
3392 free_pcp,
d1ce749a 3393 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3394
ee99c71c 3395 for_each_populated_zone(zone) {
1da177e4
LT
3396 int i;
3397
7bf02ea2 3398 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3399 continue;
d1bfcdb8
KK
3400
3401 free_pcp = 0;
3402 for_each_online_cpu(cpu)
3403 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3404
1da177e4
LT
3405 show_node(zone);
3406 printk("%s"
3407 " free:%lukB"
3408 " min:%lukB"
3409 " low:%lukB"
3410 " high:%lukB"
4f98a2fe
RR
3411 " active_anon:%lukB"
3412 " inactive_anon:%lukB"
3413 " active_file:%lukB"
3414 " inactive_file:%lukB"
7b854121 3415 " unevictable:%lukB"
a731286d
KM
3416 " isolated(anon):%lukB"
3417 " isolated(file):%lukB"
1da177e4 3418 " present:%lukB"
9feedc9d 3419 " managed:%lukB"
4a0aa73f
KM
3420 " mlocked:%lukB"
3421 " dirty:%lukB"
3422 " writeback:%lukB"
3423 " mapped:%lukB"
4b02108a 3424 " shmem:%lukB"
4a0aa73f
KM
3425 " slab_reclaimable:%lukB"
3426 " slab_unreclaimable:%lukB"
c6a7f572 3427 " kernel_stack:%lukB"
4a0aa73f
KM
3428 " pagetables:%lukB"
3429 " unstable:%lukB"
3430 " bounce:%lukB"
d1bfcdb8
KK
3431 " free_pcp:%lukB"
3432 " local_pcp:%ukB"
d1ce749a 3433 " free_cma:%lukB"
4a0aa73f 3434 " writeback_tmp:%lukB"
1da177e4
LT
3435 " pages_scanned:%lu"
3436 " all_unreclaimable? %s"
3437 "\n",
3438 zone->name,
88f5acf8 3439 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3440 K(min_wmark_pages(zone)),
3441 K(low_wmark_pages(zone)),
3442 K(high_wmark_pages(zone)),
4f98a2fe
RR
3443 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3444 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3445 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3446 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3447 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3448 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3449 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3450 K(zone->present_pages),
9feedc9d 3451 K(zone->managed_pages),
4a0aa73f
KM
3452 K(zone_page_state(zone, NR_MLOCK)),
3453 K(zone_page_state(zone, NR_FILE_DIRTY)),
3454 K(zone_page_state(zone, NR_WRITEBACK)),
3455 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3456 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3457 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3458 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3459 zone_page_state(zone, NR_KERNEL_STACK) *
3460 THREAD_SIZE / 1024,
4a0aa73f
KM
3461 K(zone_page_state(zone, NR_PAGETABLE)),
3462 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3463 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3464 K(free_pcp),
3465 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3466 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3467 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3468 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3469 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3470 );
3471 printk("lowmem_reserve[]:");
3472 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3473 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3474 printk("\n");
3475 }
3476
ee99c71c 3477 for_each_populated_zone(zone) {
b8af2941 3478 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3479 unsigned char types[MAX_ORDER];
1da177e4 3480
7bf02ea2 3481 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3482 continue;
1da177e4
LT
3483 show_node(zone);
3484 printk("%s: ", zone->name);
1da177e4
LT
3485
3486 spin_lock_irqsave(&zone->lock, flags);
3487 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3488 struct free_area *area = &zone->free_area[order];
3489 int type;
3490
3491 nr[order] = area->nr_free;
8f9de51a 3492 total += nr[order] << order;
377e4f16
RV
3493
3494 types[order] = 0;
3495 for (type = 0; type < MIGRATE_TYPES; type++) {
3496 if (!list_empty(&area->free_list[type]))
3497 types[order] |= 1 << type;
3498 }
1da177e4
LT
3499 }
3500 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3501 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3502 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3503 if (nr[order])
3504 show_migration_types(types[order]);
3505 }
1da177e4
LT
3506 printk("= %lukB\n", K(total));
3507 }
3508
949f7ec5
DR
3509 hugetlb_show_meminfo();
3510
e6f3602d
LW
3511 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3512
1da177e4
LT
3513 show_swap_cache_info();
3514}
3515
19770b32
MG
3516static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3517{
3518 zoneref->zone = zone;
3519 zoneref->zone_idx = zone_idx(zone);
3520}
3521
1da177e4
LT
3522/*
3523 * Builds allocation fallback zone lists.
1a93205b
CL
3524 *
3525 * Add all populated zones of a node to the zonelist.
1da177e4 3526 */
f0c0b2b8 3527static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3528 int nr_zones)
1da177e4 3529{
1a93205b 3530 struct zone *zone;
bc732f1d 3531 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3532
3533 do {
2f6726e5 3534 zone_type--;
070f8032 3535 zone = pgdat->node_zones + zone_type;
1a93205b 3536 if (populated_zone(zone)) {
dd1a239f
MG
3537 zoneref_set_zone(zone,
3538 &zonelist->_zonerefs[nr_zones++]);
070f8032 3539 check_highest_zone(zone_type);
1da177e4 3540 }
2f6726e5 3541 } while (zone_type);
bc732f1d 3542
070f8032 3543 return nr_zones;
1da177e4
LT
3544}
3545
f0c0b2b8
KH
3546
3547/*
3548 * zonelist_order:
3549 * 0 = automatic detection of better ordering.
3550 * 1 = order by ([node] distance, -zonetype)
3551 * 2 = order by (-zonetype, [node] distance)
3552 *
3553 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3554 * the same zonelist. So only NUMA can configure this param.
3555 */
3556#define ZONELIST_ORDER_DEFAULT 0
3557#define ZONELIST_ORDER_NODE 1
3558#define ZONELIST_ORDER_ZONE 2
3559
3560/* zonelist order in the kernel.
3561 * set_zonelist_order() will set this to NODE or ZONE.
3562 */
3563static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3564static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3565
3566
1da177e4 3567#ifdef CONFIG_NUMA
f0c0b2b8
KH
3568/* The value user specified ....changed by config */
3569static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3570/* string for sysctl */
3571#define NUMA_ZONELIST_ORDER_LEN 16
3572char numa_zonelist_order[16] = "default";
3573
3574/*
3575 * interface for configure zonelist ordering.
3576 * command line option "numa_zonelist_order"
3577 * = "[dD]efault - default, automatic configuration.
3578 * = "[nN]ode - order by node locality, then by zone within node
3579 * = "[zZ]one - order by zone, then by locality within zone
3580 */
3581
3582static int __parse_numa_zonelist_order(char *s)
3583{
3584 if (*s == 'd' || *s == 'D') {
3585 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3586 } else if (*s == 'n' || *s == 'N') {
3587 user_zonelist_order = ZONELIST_ORDER_NODE;
3588 } else if (*s == 'z' || *s == 'Z') {
3589 user_zonelist_order = ZONELIST_ORDER_ZONE;
3590 } else {
3591 printk(KERN_WARNING
3592 "Ignoring invalid numa_zonelist_order value: "
3593 "%s\n", s);
3594 return -EINVAL;
3595 }
3596 return 0;
3597}
3598
3599static __init int setup_numa_zonelist_order(char *s)
3600{
ecb256f8
VL
3601 int ret;
3602
3603 if (!s)
3604 return 0;
3605
3606 ret = __parse_numa_zonelist_order(s);
3607 if (ret == 0)
3608 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3609
3610 return ret;
f0c0b2b8
KH
3611}
3612early_param("numa_zonelist_order", setup_numa_zonelist_order);
3613
3614/*
3615 * sysctl handler for numa_zonelist_order
3616 */
cccad5b9 3617int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3618 void __user *buffer, size_t *length,
f0c0b2b8
KH
3619 loff_t *ppos)
3620{
3621 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3622 int ret;
443c6f14 3623 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3624
443c6f14 3625 mutex_lock(&zl_order_mutex);
dacbde09
CG
3626 if (write) {
3627 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3628 ret = -EINVAL;
3629 goto out;
3630 }
3631 strcpy(saved_string, (char *)table->data);
3632 }
8d65af78 3633 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3634 if (ret)
443c6f14 3635 goto out;
f0c0b2b8
KH
3636 if (write) {
3637 int oldval = user_zonelist_order;
dacbde09
CG
3638
3639 ret = __parse_numa_zonelist_order((char *)table->data);
3640 if (ret) {
f0c0b2b8
KH
3641 /*
3642 * bogus value. restore saved string
3643 */
dacbde09 3644 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3645 NUMA_ZONELIST_ORDER_LEN);
3646 user_zonelist_order = oldval;
4eaf3f64
HL
3647 } else if (oldval != user_zonelist_order) {
3648 mutex_lock(&zonelists_mutex);
9adb62a5 3649 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3650 mutex_unlock(&zonelists_mutex);
3651 }
f0c0b2b8 3652 }
443c6f14
AK
3653out:
3654 mutex_unlock(&zl_order_mutex);
3655 return ret;
f0c0b2b8
KH
3656}
3657
3658
62bc62a8 3659#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3660static int node_load[MAX_NUMNODES];
3661
1da177e4 3662/**
4dc3b16b 3663 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3664 * @node: node whose fallback list we're appending
3665 * @used_node_mask: nodemask_t of already used nodes
3666 *
3667 * We use a number of factors to determine which is the next node that should
3668 * appear on a given node's fallback list. The node should not have appeared
3669 * already in @node's fallback list, and it should be the next closest node
3670 * according to the distance array (which contains arbitrary distance values
3671 * from each node to each node in the system), and should also prefer nodes
3672 * with no CPUs, since presumably they'll have very little allocation pressure
3673 * on them otherwise.
3674 * It returns -1 if no node is found.
3675 */
f0c0b2b8 3676static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3677{
4cf808eb 3678 int n, val;
1da177e4 3679 int min_val = INT_MAX;
00ef2d2f 3680 int best_node = NUMA_NO_NODE;
a70f7302 3681 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3682
4cf808eb
LT
3683 /* Use the local node if we haven't already */
3684 if (!node_isset(node, *used_node_mask)) {
3685 node_set(node, *used_node_mask);
3686 return node;
3687 }
1da177e4 3688
4b0ef1fe 3689 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3690
3691 /* Don't want a node to appear more than once */
3692 if (node_isset(n, *used_node_mask))
3693 continue;
3694
1da177e4
LT
3695 /* Use the distance array to find the distance */
3696 val = node_distance(node, n);
3697
4cf808eb
LT
3698 /* Penalize nodes under us ("prefer the next node") */
3699 val += (n < node);
3700
1da177e4 3701 /* Give preference to headless and unused nodes */
a70f7302
RR
3702 tmp = cpumask_of_node(n);
3703 if (!cpumask_empty(tmp))
1da177e4
LT
3704 val += PENALTY_FOR_NODE_WITH_CPUS;
3705
3706 /* Slight preference for less loaded node */
3707 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3708 val += node_load[n];
3709
3710 if (val < min_val) {
3711 min_val = val;
3712 best_node = n;
3713 }
3714 }
3715
3716 if (best_node >= 0)
3717 node_set(best_node, *used_node_mask);
3718
3719 return best_node;
3720}
3721
f0c0b2b8
KH
3722
3723/*
3724 * Build zonelists ordered by node and zones within node.
3725 * This results in maximum locality--normal zone overflows into local
3726 * DMA zone, if any--but risks exhausting DMA zone.
3727 */
3728static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3729{
f0c0b2b8 3730 int j;
1da177e4 3731 struct zonelist *zonelist;
f0c0b2b8 3732
54a6eb5c 3733 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3734 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3735 ;
bc732f1d 3736 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3737 zonelist->_zonerefs[j].zone = NULL;
3738 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3739}
3740
523b9458
CL
3741/*
3742 * Build gfp_thisnode zonelists
3743 */
3744static void build_thisnode_zonelists(pg_data_t *pgdat)
3745{
523b9458
CL
3746 int j;
3747 struct zonelist *zonelist;
3748
54a6eb5c 3749 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3750 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3751 zonelist->_zonerefs[j].zone = NULL;
3752 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3753}
3754
f0c0b2b8
KH
3755/*
3756 * Build zonelists ordered by zone and nodes within zones.
3757 * This results in conserving DMA zone[s] until all Normal memory is
3758 * exhausted, but results in overflowing to remote node while memory
3759 * may still exist in local DMA zone.
3760 */
3761static int node_order[MAX_NUMNODES];
3762
3763static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3764{
f0c0b2b8
KH
3765 int pos, j, node;
3766 int zone_type; /* needs to be signed */
3767 struct zone *z;
3768 struct zonelist *zonelist;
3769
54a6eb5c
MG
3770 zonelist = &pgdat->node_zonelists[0];
3771 pos = 0;
3772 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3773 for (j = 0; j < nr_nodes; j++) {
3774 node = node_order[j];
3775 z = &NODE_DATA(node)->node_zones[zone_type];
3776 if (populated_zone(z)) {
dd1a239f
MG
3777 zoneref_set_zone(z,
3778 &zonelist->_zonerefs[pos++]);
54a6eb5c 3779 check_highest_zone(zone_type);
f0c0b2b8
KH
3780 }
3781 }
f0c0b2b8 3782 }
dd1a239f
MG
3783 zonelist->_zonerefs[pos].zone = NULL;
3784 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3785}
3786
3193913c
MG
3787#if defined(CONFIG_64BIT)
3788/*
3789 * Devices that require DMA32/DMA are relatively rare and do not justify a
3790 * penalty to every machine in case the specialised case applies. Default
3791 * to Node-ordering on 64-bit NUMA machines
3792 */
3793static int default_zonelist_order(void)
3794{
3795 return ZONELIST_ORDER_NODE;
3796}
3797#else
3798/*
3799 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3800 * by the kernel. If processes running on node 0 deplete the low memory zone
3801 * then reclaim will occur more frequency increasing stalls and potentially
3802 * be easier to OOM if a large percentage of the zone is under writeback or
3803 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3804 * Hence, default to zone ordering on 32-bit.
3805 */
f0c0b2b8
KH
3806static int default_zonelist_order(void)
3807{
f0c0b2b8
KH
3808 return ZONELIST_ORDER_ZONE;
3809}
3193913c 3810#endif /* CONFIG_64BIT */
f0c0b2b8
KH
3811
3812static void set_zonelist_order(void)
3813{
3814 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3815 current_zonelist_order = default_zonelist_order();
3816 else
3817 current_zonelist_order = user_zonelist_order;
3818}
3819
3820static void build_zonelists(pg_data_t *pgdat)
3821{
3822 int j, node, load;
3823 enum zone_type i;
1da177e4 3824 nodemask_t used_mask;
f0c0b2b8
KH
3825 int local_node, prev_node;
3826 struct zonelist *zonelist;
3827 int order = current_zonelist_order;
1da177e4
LT
3828
3829 /* initialize zonelists */
523b9458 3830 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3831 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3832 zonelist->_zonerefs[0].zone = NULL;
3833 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3834 }
3835
3836 /* NUMA-aware ordering of nodes */
3837 local_node = pgdat->node_id;
62bc62a8 3838 load = nr_online_nodes;
1da177e4
LT
3839 prev_node = local_node;
3840 nodes_clear(used_mask);
f0c0b2b8 3841
f0c0b2b8
KH
3842 memset(node_order, 0, sizeof(node_order));
3843 j = 0;
3844
1da177e4
LT
3845 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3846 /*
3847 * We don't want to pressure a particular node.
3848 * So adding penalty to the first node in same
3849 * distance group to make it round-robin.
3850 */
957f822a
DR
3851 if (node_distance(local_node, node) !=
3852 node_distance(local_node, prev_node))
f0c0b2b8
KH
3853 node_load[node] = load;
3854
1da177e4
LT
3855 prev_node = node;
3856 load--;
f0c0b2b8
KH
3857 if (order == ZONELIST_ORDER_NODE)
3858 build_zonelists_in_node_order(pgdat, node);
3859 else
3860 node_order[j++] = node; /* remember order */
3861 }
1da177e4 3862
f0c0b2b8
KH
3863 if (order == ZONELIST_ORDER_ZONE) {
3864 /* calculate node order -- i.e., DMA last! */
3865 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3866 }
523b9458
CL
3867
3868 build_thisnode_zonelists(pgdat);
1da177e4
LT
3869}
3870
9276b1bc 3871/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3872static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3873{
54a6eb5c
MG
3874 struct zonelist *zonelist;
3875 struct zonelist_cache *zlc;
dd1a239f 3876 struct zoneref *z;
9276b1bc 3877
54a6eb5c
MG
3878 zonelist = &pgdat->node_zonelists[0];
3879 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3880 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3881 for (z = zonelist->_zonerefs; z->zone; z++)
3882 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3883}
3884
7aac7898
LS
3885#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3886/*
3887 * Return node id of node used for "local" allocations.
3888 * I.e., first node id of first zone in arg node's generic zonelist.
3889 * Used for initializing percpu 'numa_mem', which is used primarily
3890 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3891 */
3892int local_memory_node(int node)
3893{
3894 struct zone *zone;
3895
3896 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3897 gfp_zone(GFP_KERNEL),
3898 NULL,
3899 &zone);
3900 return zone->node;
3901}
3902#endif
f0c0b2b8 3903
1da177e4
LT
3904#else /* CONFIG_NUMA */
3905
f0c0b2b8
KH
3906static void set_zonelist_order(void)
3907{
3908 current_zonelist_order = ZONELIST_ORDER_ZONE;
3909}
3910
3911static void build_zonelists(pg_data_t *pgdat)
1da177e4 3912{
19655d34 3913 int node, local_node;
54a6eb5c
MG
3914 enum zone_type j;
3915 struct zonelist *zonelist;
1da177e4
LT
3916
3917 local_node = pgdat->node_id;
1da177e4 3918
54a6eb5c 3919 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3920 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3921
54a6eb5c
MG
3922 /*
3923 * Now we build the zonelist so that it contains the zones
3924 * of all the other nodes.
3925 * We don't want to pressure a particular node, so when
3926 * building the zones for node N, we make sure that the
3927 * zones coming right after the local ones are those from
3928 * node N+1 (modulo N)
3929 */
3930 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3931 if (!node_online(node))
3932 continue;
bc732f1d 3933 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3934 }
54a6eb5c
MG
3935 for (node = 0; node < local_node; node++) {
3936 if (!node_online(node))
3937 continue;
bc732f1d 3938 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3939 }
3940
dd1a239f
MG
3941 zonelist->_zonerefs[j].zone = NULL;
3942 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3943}
3944
9276b1bc 3945/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3946static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3947{
54a6eb5c 3948 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3949}
3950
1da177e4
LT
3951#endif /* CONFIG_NUMA */
3952
99dcc3e5
CL
3953/*
3954 * Boot pageset table. One per cpu which is going to be used for all
3955 * zones and all nodes. The parameters will be set in such a way
3956 * that an item put on a list will immediately be handed over to
3957 * the buddy list. This is safe since pageset manipulation is done
3958 * with interrupts disabled.
3959 *
3960 * The boot_pagesets must be kept even after bootup is complete for
3961 * unused processors and/or zones. They do play a role for bootstrapping
3962 * hotplugged processors.
3963 *
3964 * zoneinfo_show() and maybe other functions do
3965 * not check if the processor is online before following the pageset pointer.
3966 * Other parts of the kernel may not check if the zone is available.
3967 */
3968static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3969static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3970static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3971
4eaf3f64
HL
3972/*
3973 * Global mutex to protect against size modification of zonelists
3974 * as well as to serialize pageset setup for the new populated zone.
3975 */
3976DEFINE_MUTEX(zonelists_mutex);
3977
9b1a4d38 3978/* return values int ....just for stop_machine() */
4ed7e022 3979static int __build_all_zonelists(void *data)
1da177e4 3980{
6811378e 3981 int nid;
99dcc3e5 3982 int cpu;
9adb62a5 3983 pg_data_t *self = data;
9276b1bc 3984
7f9cfb31
BL
3985#ifdef CONFIG_NUMA
3986 memset(node_load, 0, sizeof(node_load));
3987#endif
9adb62a5
JL
3988
3989 if (self && !node_online(self->node_id)) {
3990 build_zonelists(self);
3991 build_zonelist_cache(self);
3992 }
3993
9276b1bc 3994 for_each_online_node(nid) {
7ea1530a
CL
3995 pg_data_t *pgdat = NODE_DATA(nid);
3996
3997 build_zonelists(pgdat);
3998 build_zonelist_cache(pgdat);
9276b1bc 3999 }
99dcc3e5
CL
4000
4001 /*
4002 * Initialize the boot_pagesets that are going to be used
4003 * for bootstrapping processors. The real pagesets for
4004 * each zone will be allocated later when the per cpu
4005 * allocator is available.
4006 *
4007 * boot_pagesets are used also for bootstrapping offline
4008 * cpus if the system is already booted because the pagesets
4009 * are needed to initialize allocators on a specific cpu too.
4010 * F.e. the percpu allocator needs the page allocator which
4011 * needs the percpu allocator in order to allocate its pagesets
4012 * (a chicken-egg dilemma).
4013 */
7aac7898 4014 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4015 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4016
7aac7898
LS
4017#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4018 /*
4019 * We now know the "local memory node" for each node--
4020 * i.e., the node of the first zone in the generic zonelist.
4021 * Set up numa_mem percpu variable for on-line cpus. During
4022 * boot, only the boot cpu should be on-line; we'll init the
4023 * secondary cpus' numa_mem as they come on-line. During
4024 * node/memory hotplug, we'll fixup all on-line cpus.
4025 */
4026 if (cpu_online(cpu))
4027 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4028#endif
4029 }
4030
6811378e
YG
4031 return 0;
4032}
4033
061f67bc
RV
4034static noinline void __init
4035build_all_zonelists_init(void)
4036{
4037 __build_all_zonelists(NULL);
4038 mminit_verify_zonelist();
4039 cpuset_init_current_mems_allowed();
4040}
4041
4eaf3f64
HL
4042/*
4043 * Called with zonelists_mutex held always
4044 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4045 *
4046 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4047 * [we're only called with non-NULL zone through __meminit paths] and
4048 * (2) call of __init annotated helper build_all_zonelists_init
4049 * [protected by SYSTEM_BOOTING].
4eaf3f64 4050 */
9adb62a5 4051void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4052{
f0c0b2b8
KH
4053 set_zonelist_order();
4054
6811378e 4055 if (system_state == SYSTEM_BOOTING) {
061f67bc 4056 build_all_zonelists_init();
6811378e 4057 } else {
e9959f0f 4058#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4059 if (zone)
4060 setup_zone_pageset(zone);
e9959f0f 4061#endif
dd1895e2
CS
4062 /* we have to stop all cpus to guarantee there is no user
4063 of zonelist */
9adb62a5 4064 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4065 /* cpuset refresh routine should be here */
4066 }
bd1e22b8 4067 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4068 /*
4069 * Disable grouping by mobility if the number of pages in the
4070 * system is too low to allow the mechanism to work. It would be
4071 * more accurate, but expensive to check per-zone. This check is
4072 * made on memory-hotadd so a system can start with mobility
4073 * disabled and enable it later
4074 */
d9c23400 4075 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4076 page_group_by_mobility_disabled = 1;
4077 else
4078 page_group_by_mobility_disabled = 0;
4079
f88dfff5 4080 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4081 "Total pages: %ld\n",
62bc62a8 4082 nr_online_nodes,
f0c0b2b8 4083 zonelist_order_name[current_zonelist_order],
9ef9acb0 4084 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4085 vm_total_pages);
4086#ifdef CONFIG_NUMA
f88dfff5 4087 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4088#endif
1da177e4
LT
4089}
4090
4091/*
4092 * Helper functions to size the waitqueue hash table.
4093 * Essentially these want to choose hash table sizes sufficiently
4094 * large so that collisions trying to wait on pages are rare.
4095 * But in fact, the number of active page waitqueues on typical
4096 * systems is ridiculously low, less than 200. So this is even
4097 * conservative, even though it seems large.
4098 *
4099 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4100 * waitqueues, i.e. the size of the waitq table given the number of pages.
4101 */
4102#define PAGES_PER_WAITQUEUE 256
4103
cca448fe 4104#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4105static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4106{
4107 unsigned long size = 1;
4108
4109 pages /= PAGES_PER_WAITQUEUE;
4110
4111 while (size < pages)
4112 size <<= 1;
4113
4114 /*
4115 * Once we have dozens or even hundreds of threads sleeping
4116 * on IO we've got bigger problems than wait queue collision.
4117 * Limit the size of the wait table to a reasonable size.
4118 */
4119 size = min(size, 4096UL);
4120
4121 return max(size, 4UL);
4122}
cca448fe
YG
4123#else
4124/*
4125 * A zone's size might be changed by hot-add, so it is not possible to determine
4126 * a suitable size for its wait_table. So we use the maximum size now.
4127 *
4128 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4129 *
4130 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4131 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4132 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4133 *
4134 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4135 * or more by the traditional way. (See above). It equals:
4136 *
4137 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4138 * ia64(16K page size) : = ( 8G + 4M)byte.
4139 * powerpc (64K page size) : = (32G +16M)byte.
4140 */
4141static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4142{
4143 return 4096UL;
4144}
4145#endif
1da177e4
LT
4146
4147/*
4148 * This is an integer logarithm so that shifts can be used later
4149 * to extract the more random high bits from the multiplicative
4150 * hash function before the remainder is taken.
4151 */
4152static inline unsigned long wait_table_bits(unsigned long size)
4153{
4154 return ffz(~size);
4155}
4156
6d3163ce
AH
4157/*
4158 * Check if a pageblock contains reserved pages
4159 */
4160static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4161{
4162 unsigned long pfn;
4163
4164 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4165 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4166 return 1;
4167 }
4168 return 0;
4169}
4170
56fd56b8 4171/*
d9c23400 4172 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4173 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4174 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4175 * higher will lead to a bigger reserve which will get freed as contiguous
4176 * blocks as reclaim kicks in
4177 */
4178static void setup_zone_migrate_reserve(struct zone *zone)
4179{
6d3163ce 4180 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4181 struct page *page;
78986a67
MG
4182 unsigned long block_migratetype;
4183 int reserve;
943dca1a 4184 int old_reserve;
56fd56b8 4185
d0215638
MH
4186 /*
4187 * Get the start pfn, end pfn and the number of blocks to reserve
4188 * We have to be careful to be aligned to pageblock_nr_pages to
4189 * make sure that we always check pfn_valid for the first page in
4190 * the block.
4191 */
56fd56b8 4192 start_pfn = zone->zone_start_pfn;
108bcc96 4193 end_pfn = zone_end_pfn(zone);
d0215638 4194 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4195 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4196 pageblock_order;
56fd56b8 4197
78986a67
MG
4198 /*
4199 * Reserve blocks are generally in place to help high-order atomic
4200 * allocations that are short-lived. A min_free_kbytes value that
4201 * would result in more than 2 reserve blocks for atomic allocations
4202 * is assumed to be in place to help anti-fragmentation for the
4203 * future allocation of hugepages at runtime.
4204 */
4205 reserve = min(2, reserve);
943dca1a
YI
4206 old_reserve = zone->nr_migrate_reserve_block;
4207
4208 /* When memory hot-add, we almost always need to do nothing */
4209 if (reserve == old_reserve)
4210 return;
4211 zone->nr_migrate_reserve_block = reserve;
78986a67 4212
d9c23400 4213 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4214 if (!pfn_valid(pfn))
4215 continue;
4216 page = pfn_to_page(pfn);
4217
344c790e
AL
4218 /* Watch out for overlapping nodes */
4219 if (page_to_nid(page) != zone_to_nid(zone))
4220 continue;
4221
56fd56b8
MG
4222 block_migratetype = get_pageblock_migratetype(page);
4223
938929f1
MG
4224 /* Only test what is necessary when the reserves are not met */
4225 if (reserve > 0) {
4226 /*
4227 * Blocks with reserved pages will never free, skip
4228 * them.
4229 */
4230 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4231 if (pageblock_is_reserved(pfn, block_end_pfn))
4232 continue;
56fd56b8 4233
938929f1
MG
4234 /* If this block is reserved, account for it */
4235 if (block_migratetype == MIGRATE_RESERVE) {
4236 reserve--;
4237 continue;
4238 }
4239
4240 /* Suitable for reserving if this block is movable */
4241 if (block_migratetype == MIGRATE_MOVABLE) {
4242 set_pageblock_migratetype(page,
4243 MIGRATE_RESERVE);
4244 move_freepages_block(zone, page,
4245 MIGRATE_RESERVE);
4246 reserve--;
4247 continue;
4248 }
943dca1a
YI
4249 } else if (!old_reserve) {
4250 /*
4251 * At boot time we don't need to scan the whole zone
4252 * for turning off MIGRATE_RESERVE.
4253 */
4254 break;
56fd56b8
MG
4255 }
4256
4257 /*
4258 * If the reserve is met and this is a previous reserved block,
4259 * take it back
4260 */
4261 if (block_migratetype == MIGRATE_RESERVE) {
4262 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4263 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4264 }
4265 }
4266}
ac0e5b7a 4267
1da177e4
LT
4268/*
4269 * Initially all pages are reserved - free ones are freed
4270 * up by free_all_bootmem() once the early boot process is
4271 * done. Non-atomic initialization, single-pass.
4272 */
c09b4240 4273void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4274 unsigned long start_pfn, enum memmap_context context)
1da177e4 4275{
29751f69
AW
4276 unsigned long end_pfn = start_pfn + size;
4277 unsigned long pfn;
86051ca5 4278 struct zone *z;
1da177e4 4279
22b31eec
HD
4280 if (highest_memmap_pfn < end_pfn - 1)
4281 highest_memmap_pfn = end_pfn - 1;
4282
86051ca5 4283 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4284 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4285 /*
4286 * There can be holes in boot-time mem_map[]s
4287 * handed to this function. They do not
4288 * exist on hotplugged memory.
4289 */
4290 if (context == MEMMAP_EARLY) {
4291 if (!early_pfn_valid(pfn))
4292 continue;
4293 if (!early_pfn_in_nid(pfn, nid))
4294 continue;
4295 }
1e8ce83c 4296 __init_single_pfn(pfn, zone, nid);
1da177e4
LT
4297 }
4298}
4299
1e548deb 4300static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4301{
7aeb09f9 4302 unsigned int order, t;
b2a0ac88
MG
4303 for_each_migratetype_order(order, t) {
4304 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4305 zone->free_area[order].nr_free = 0;
4306 }
4307}
4308
4309#ifndef __HAVE_ARCH_MEMMAP_INIT
4310#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4311 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4312#endif
4313
7cd2b0a3 4314static int zone_batchsize(struct zone *zone)
e7c8d5c9 4315{
3a6be87f 4316#ifdef CONFIG_MMU
e7c8d5c9
CL
4317 int batch;
4318
4319 /*
4320 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4321 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4322 *
4323 * OK, so we don't know how big the cache is. So guess.
4324 */
b40da049 4325 batch = zone->managed_pages / 1024;
ba56e91c
SR
4326 if (batch * PAGE_SIZE > 512 * 1024)
4327 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4328 batch /= 4; /* We effectively *= 4 below */
4329 if (batch < 1)
4330 batch = 1;
4331
4332 /*
0ceaacc9
NP
4333 * Clamp the batch to a 2^n - 1 value. Having a power
4334 * of 2 value was found to be more likely to have
4335 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4336 *
0ceaacc9
NP
4337 * For example if 2 tasks are alternately allocating
4338 * batches of pages, one task can end up with a lot
4339 * of pages of one half of the possible page colors
4340 * and the other with pages of the other colors.
e7c8d5c9 4341 */
9155203a 4342 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4343
e7c8d5c9 4344 return batch;
3a6be87f
DH
4345
4346#else
4347 /* The deferral and batching of frees should be suppressed under NOMMU
4348 * conditions.
4349 *
4350 * The problem is that NOMMU needs to be able to allocate large chunks
4351 * of contiguous memory as there's no hardware page translation to
4352 * assemble apparent contiguous memory from discontiguous pages.
4353 *
4354 * Queueing large contiguous runs of pages for batching, however,
4355 * causes the pages to actually be freed in smaller chunks. As there
4356 * can be a significant delay between the individual batches being
4357 * recycled, this leads to the once large chunks of space being
4358 * fragmented and becoming unavailable for high-order allocations.
4359 */
4360 return 0;
4361#endif
e7c8d5c9
CL
4362}
4363
8d7a8fa9
CS
4364/*
4365 * pcp->high and pcp->batch values are related and dependent on one another:
4366 * ->batch must never be higher then ->high.
4367 * The following function updates them in a safe manner without read side
4368 * locking.
4369 *
4370 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4371 * those fields changing asynchronously (acording the the above rule).
4372 *
4373 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4374 * outside of boot time (or some other assurance that no concurrent updaters
4375 * exist).
4376 */
4377static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4378 unsigned long batch)
4379{
4380 /* start with a fail safe value for batch */
4381 pcp->batch = 1;
4382 smp_wmb();
4383
4384 /* Update high, then batch, in order */
4385 pcp->high = high;
4386 smp_wmb();
4387
4388 pcp->batch = batch;
4389}
4390
3664033c 4391/* a companion to pageset_set_high() */
4008bab7
CS
4392static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4393{
8d7a8fa9 4394 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4395}
4396
88c90dbc 4397static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4398{
4399 struct per_cpu_pages *pcp;
5f8dcc21 4400 int migratetype;
2caaad41 4401
1c6fe946
MD
4402 memset(p, 0, sizeof(*p));
4403
3dfa5721 4404 pcp = &p->pcp;
2caaad41 4405 pcp->count = 0;
5f8dcc21
MG
4406 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4407 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4408}
4409
88c90dbc
CS
4410static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4411{
4412 pageset_init(p);
4413 pageset_set_batch(p, batch);
4414}
4415
8ad4b1fb 4416/*
3664033c 4417 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4418 * to the value high for the pageset p.
4419 */
3664033c 4420static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4421 unsigned long high)
4422{
8d7a8fa9
CS
4423 unsigned long batch = max(1UL, high / 4);
4424 if ((high / 4) > (PAGE_SHIFT * 8))
4425 batch = PAGE_SHIFT * 8;
8ad4b1fb 4426
8d7a8fa9 4427 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4428}
4429
7cd2b0a3
DR
4430static void pageset_set_high_and_batch(struct zone *zone,
4431 struct per_cpu_pageset *pcp)
56cef2b8 4432{
56cef2b8 4433 if (percpu_pagelist_fraction)
3664033c 4434 pageset_set_high(pcp,
56cef2b8
CS
4435 (zone->managed_pages /
4436 percpu_pagelist_fraction));
4437 else
4438 pageset_set_batch(pcp, zone_batchsize(zone));
4439}
4440
169f6c19
CS
4441static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4442{
4443 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4444
4445 pageset_init(pcp);
4446 pageset_set_high_and_batch(zone, pcp);
4447}
4448
4ed7e022 4449static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4450{
4451 int cpu;
319774e2 4452 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4453 for_each_possible_cpu(cpu)
4454 zone_pageset_init(zone, cpu);
319774e2
WF
4455}
4456
2caaad41 4457/*
99dcc3e5
CL
4458 * Allocate per cpu pagesets and initialize them.
4459 * Before this call only boot pagesets were available.
e7c8d5c9 4460 */
99dcc3e5 4461void __init setup_per_cpu_pageset(void)
e7c8d5c9 4462{
99dcc3e5 4463 struct zone *zone;
e7c8d5c9 4464
319774e2
WF
4465 for_each_populated_zone(zone)
4466 setup_zone_pageset(zone);
e7c8d5c9
CL
4467}
4468
577a32f6 4469static noinline __init_refok
cca448fe 4470int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4471{
4472 int i;
cca448fe 4473 size_t alloc_size;
ed8ece2e
DH
4474
4475 /*
4476 * The per-page waitqueue mechanism uses hashed waitqueues
4477 * per zone.
4478 */
02b694de
YG
4479 zone->wait_table_hash_nr_entries =
4480 wait_table_hash_nr_entries(zone_size_pages);
4481 zone->wait_table_bits =
4482 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4483 alloc_size = zone->wait_table_hash_nr_entries
4484 * sizeof(wait_queue_head_t);
4485
cd94b9db 4486 if (!slab_is_available()) {
cca448fe 4487 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4488 memblock_virt_alloc_node_nopanic(
4489 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4490 } else {
4491 /*
4492 * This case means that a zone whose size was 0 gets new memory
4493 * via memory hot-add.
4494 * But it may be the case that a new node was hot-added. In
4495 * this case vmalloc() will not be able to use this new node's
4496 * memory - this wait_table must be initialized to use this new
4497 * node itself as well.
4498 * To use this new node's memory, further consideration will be
4499 * necessary.
4500 */
8691f3a7 4501 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4502 }
4503 if (!zone->wait_table)
4504 return -ENOMEM;
ed8ece2e 4505
b8af2941 4506 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4507 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4508
4509 return 0;
ed8ece2e
DH
4510}
4511
c09b4240 4512static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4513{
99dcc3e5
CL
4514 /*
4515 * per cpu subsystem is not up at this point. The following code
4516 * relies on the ability of the linker to provide the
4517 * offset of a (static) per cpu variable into the per cpu area.
4518 */
4519 zone->pageset = &boot_pageset;
ed8ece2e 4520
b38a8725 4521 if (populated_zone(zone))
99dcc3e5
CL
4522 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4523 zone->name, zone->present_pages,
4524 zone_batchsize(zone));
ed8ece2e
DH
4525}
4526
4ed7e022 4527int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4528 unsigned long zone_start_pfn,
a2f3aa02
DH
4529 unsigned long size,
4530 enum memmap_context context)
ed8ece2e
DH
4531{
4532 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4533 int ret;
4534 ret = zone_wait_table_init(zone, size);
4535 if (ret)
4536 return ret;
ed8ece2e
DH
4537 pgdat->nr_zones = zone_idx(zone) + 1;
4538
ed8ece2e
DH
4539 zone->zone_start_pfn = zone_start_pfn;
4540
708614e6
MG
4541 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4542 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4543 pgdat->node_id,
4544 (unsigned long)zone_idx(zone),
4545 zone_start_pfn, (zone_start_pfn + size));
4546
1e548deb 4547 zone_init_free_lists(zone);
718127cc
YG
4548
4549 return 0;
ed8ece2e
DH
4550}
4551
0ee332c1 4552#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4553#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4554
c713216d
MG
4555/*
4556 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4557 */
8a942fde
MG
4558int __meminit __early_pfn_to_nid(unsigned long pfn,
4559 struct mminit_pfnnid_cache *state)
c713216d 4560{
c13291a5 4561 unsigned long start_pfn, end_pfn;
e76b63f8 4562 int nid;
7c243c71 4563
8a942fde
MG
4564 if (state->last_start <= pfn && pfn < state->last_end)
4565 return state->last_nid;
c713216d 4566
e76b63f8
YL
4567 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4568 if (nid != -1) {
8a942fde
MG
4569 state->last_start = start_pfn;
4570 state->last_end = end_pfn;
4571 state->last_nid = nid;
e76b63f8
YL
4572 }
4573
4574 return nid;
c713216d
MG
4575}
4576#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4577
8a942fde
MG
4578static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
4579
4580/* Only safe to use early in boot when initialisation is single-threaded */
f2dbcfa7
KH
4581int __meminit early_pfn_to_nid(unsigned long pfn)
4582{
cc2559bc
KH
4583 int nid;
4584
8a942fde
MG
4585 /* The system will behave unpredictably otherwise */
4586 BUG_ON(system_state != SYSTEM_BOOTING);
4587
4588 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
cc2559bc
KH
4589 if (nid >= 0)
4590 return nid;
4591 /* just returns 0 */
4592 return 0;
f2dbcfa7
KH
4593}
4594
cc2559bc 4595#ifdef CONFIG_NODES_SPAN_OTHER_NODES
8a942fde
MG
4596bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
4597 struct mminit_pfnnid_cache *state)
cc2559bc
KH
4598{
4599 int nid;
4600
8a942fde 4601 nid = __early_pfn_to_nid(pfn, state);
cc2559bc
KH
4602 if (nid >= 0 && nid != node)
4603 return false;
4604 return true;
4605}
8a942fde
MG
4606
4607/* Only safe to use early in boot when initialisation is single-threaded */
4608bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4609{
4610 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
4611}
4612
cc2559bc 4613#endif
f2dbcfa7 4614
c713216d 4615/**
6782832e 4616 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4617 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4618 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4619 *
7d018176
ZZ
4620 * If an architecture guarantees that all ranges registered contain no holes
4621 * and may be freed, this this function may be used instead of calling
4622 * memblock_free_early_nid() manually.
c713216d 4623 */
c13291a5 4624void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4625{
c13291a5
TH
4626 unsigned long start_pfn, end_pfn;
4627 int i, this_nid;
edbe7d23 4628
c13291a5
TH
4629 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4630 start_pfn = min(start_pfn, max_low_pfn);
4631 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4632
c13291a5 4633 if (start_pfn < end_pfn)
6782832e
SS
4634 memblock_free_early_nid(PFN_PHYS(start_pfn),
4635 (end_pfn - start_pfn) << PAGE_SHIFT,
4636 this_nid);
edbe7d23 4637 }
edbe7d23 4638}
edbe7d23 4639
c713216d
MG
4640/**
4641 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4642 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4643 *
7d018176
ZZ
4644 * If an architecture guarantees that all ranges registered contain no holes and may
4645 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4646 */
4647void __init sparse_memory_present_with_active_regions(int nid)
4648{
c13291a5
TH
4649 unsigned long start_pfn, end_pfn;
4650 int i, this_nid;
c713216d 4651
c13291a5
TH
4652 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4653 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4654}
4655
4656/**
4657 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4658 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4659 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4660 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4661 *
4662 * It returns the start and end page frame of a node based on information
7d018176 4663 * provided by memblock_set_node(). If called for a node
c713216d 4664 * with no available memory, a warning is printed and the start and end
88ca3b94 4665 * PFNs will be 0.
c713216d 4666 */
a3142c8e 4667void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4668 unsigned long *start_pfn, unsigned long *end_pfn)
4669{
c13291a5 4670 unsigned long this_start_pfn, this_end_pfn;
c713216d 4671 int i;
c13291a5 4672
c713216d
MG
4673 *start_pfn = -1UL;
4674 *end_pfn = 0;
4675
c13291a5
TH
4676 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4677 *start_pfn = min(*start_pfn, this_start_pfn);
4678 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4679 }
4680
633c0666 4681 if (*start_pfn == -1UL)
c713216d 4682 *start_pfn = 0;
c713216d
MG
4683}
4684
2a1e274a
MG
4685/*
4686 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4687 * assumption is made that zones within a node are ordered in monotonic
4688 * increasing memory addresses so that the "highest" populated zone is used
4689 */
b69a7288 4690static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4691{
4692 int zone_index;
4693 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4694 if (zone_index == ZONE_MOVABLE)
4695 continue;
4696
4697 if (arch_zone_highest_possible_pfn[zone_index] >
4698 arch_zone_lowest_possible_pfn[zone_index])
4699 break;
4700 }
4701
4702 VM_BUG_ON(zone_index == -1);
4703 movable_zone = zone_index;
4704}
4705
4706/*
4707 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4708 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4709 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4710 * in each node depending on the size of each node and how evenly kernelcore
4711 * is distributed. This helper function adjusts the zone ranges
4712 * provided by the architecture for a given node by using the end of the
4713 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4714 * zones within a node are in order of monotonic increases memory addresses
4715 */
b69a7288 4716static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4717 unsigned long zone_type,
4718 unsigned long node_start_pfn,
4719 unsigned long node_end_pfn,
4720 unsigned long *zone_start_pfn,
4721 unsigned long *zone_end_pfn)
4722{
4723 /* Only adjust if ZONE_MOVABLE is on this node */
4724 if (zone_movable_pfn[nid]) {
4725 /* Size ZONE_MOVABLE */
4726 if (zone_type == ZONE_MOVABLE) {
4727 *zone_start_pfn = zone_movable_pfn[nid];
4728 *zone_end_pfn = min(node_end_pfn,
4729 arch_zone_highest_possible_pfn[movable_zone]);
4730
4731 /* Adjust for ZONE_MOVABLE starting within this range */
4732 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4733 *zone_end_pfn > zone_movable_pfn[nid]) {
4734 *zone_end_pfn = zone_movable_pfn[nid];
4735
4736 /* Check if this whole range is within ZONE_MOVABLE */
4737 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4738 *zone_start_pfn = *zone_end_pfn;
4739 }
4740}
4741
c713216d
MG
4742/*
4743 * Return the number of pages a zone spans in a node, including holes
4744 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4745 */
6ea6e688 4746static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4747 unsigned long zone_type,
7960aedd
ZY
4748 unsigned long node_start_pfn,
4749 unsigned long node_end_pfn,
c713216d
MG
4750 unsigned long *ignored)
4751{
c713216d
MG
4752 unsigned long zone_start_pfn, zone_end_pfn;
4753
7960aedd 4754 /* Get the start and end of the zone */
c713216d
MG
4755 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4756 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4757 adjust_zone_range_for_zone_movable(nid, zone_type,
4758 node_start_pfn, node_end_pfn,
4759 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4760
4761 /* Check that this node has pages within the zone's required range */
4762 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4763 return 0;
4764
4765 /* Move the zone boundaries inside the node if necessary */
4766 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4767 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4768
4769 /* Return the spanned pages */
4770 return zone_end_pfn - zone_start_pfn;
4771}
4772
4773/*
4774 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4775 * then all holes in the requested range will be accounted for.
c713216d 4776 */
32996250 4777unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4778 unsigned long range_start_pfn,
4779 unsigned long range_end_pfn)
4780{
96e907d1
TH
4781 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4782 unsigned long start_pfn, end_pfn;
4783 int i;
c713216d 4784
96e907d1
TH
4785 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4786 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4787 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4788 nr_absent -= end_pfn - start_pfn;
c713216d 4789 }
96e907d1 4790 return nr_absent;
c713216d
MG
4791}
4792
4793/**
4794 * absent_pages_in_range - Return number of page frames in holes within a range
4795 * @start_pfn: The start PFN to start searching for holes
4796 * @end_pfn: The end PFN to stop searching for holes
4797 *
88ca3b94 4798 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4799 */
4800unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4801 unsigned long end_pfn)
4802{
4803 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4804}
4805
4806/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4807static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4808 unsigned long zone_type,
7960aedd
ZY
4809 unsigned long node_start_pfn,
4810 unsigned long node_end_pfn,
c713216d
MG
4811 unsigned long *ignored)
4812{
96e907d1
TH
4813 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4814 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4815 unsigned long zone_start_pfn, zone_end_pfn;
4816
96e907d1
TH
4817 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4818 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4819
2a1e274a
MG
4820 adjust_zone_range_for_zone_movable(nid, zone_type,
4821 node_start_pfn, node_end_pfn,
4822 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4823 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4824}
0e0b864e 4825
0ee332c1 4826#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4827static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4828 unsigned long zone_type,
7960aedd
ZY
4829 unsigned long node_start_pfn,
4830 unsigned long node_end_pfn,
c713216d
MG
4831 unsigned long *zones_size)
4832{
4833 return zones_size[zone_type];
4834}
4835
6ea6e688 4836static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4837 unsigned long zone_type,
7960aedd
ZY
4838 unsigned long node_start_pfn,
4839 unsigned long node_end_pfn,
c713216d
MG
4840 unsigned long *zholes_size)
4841{
4842 if (!zholes_size)
4843 return 0;
4844
4845 return zholes_size[zone_type];
4846}
20e6926d 4847
0ee332c1 4848#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4849
a3142c8e 4850static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4851 unsigned long node_start_pfn,
4852 unsigned long node_end_pfn,
4853 unsigned long *zones_size,
4854 unsigned long *zholes_size)
c713216d 4855{
febd5949 4856 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
4857 enum zone_type i;
4858
febd5949
GZ
4859 for (i = 0; i < MAX_NR_ZONES; i++) {
4860 struct zone *zone = pgdat->node_zones + i;
4861 unsigned long size, real_size;
c713216d 4862
febd5949
GZ
4863 size = zone_spanned_pages_in_node(pgdat->node_id, i,
4864 node_start_pfn,
4865 node_end_pfn,
4866 zones_size);
4867 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4868 node_start_pfn, node_end_pfn,
4869 zholes_size);
febd5949
GZ
4870 zone->spanned_pages = size;
4871 zone->present_pages = real_size;
4872
4873 totalpages += size;
4874 realtotalpages += real_size;
4875 }
4876
4877 pgdat->node_spanned_pages = totalpages;
c713216d
MG
4878 pgdat->node_present_pages = realtotalpages;
4879 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4880 realtotalpages);
4881}
4882
835c134e
MG
4883#ifndef CONFIG_SPARSEMEM
4884/*
4885 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4886 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4887 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4888 * round what is now in bits to nearest long in bits, then return it in
4889 * bytes.
4890 */
7c45512d 4891static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4892{
4893 unsigned long usemapsize;
4894
7c45512d 4895 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4896 usemapsize = roundup(zonesize, pageblock_nr_pages);
4897 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4898 usemapsize *= NR_PAGEBLOCK_BITS;
4899 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4900
4901 return usemapsize / 8;
4902}
4903
4904static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4905 struct zone *zone,
4906 unsigned long zone_start_pfn,
4907 unsigned long zonesize)
835c134e 4908{
7c45512d 4909 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4910 zone->pageblock_flags = NULL;
58a01a45 4911 if (usemapsize)
6782832e
SS
4912 zone->pageblock_flags =
4913 memblock_virt_alloc_node_nopanic(usemapsize,
4914 pgdat->node_id);
835c134e
MG
4915}
4916#else
7c45512d
LT
4917static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4918 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4919#endif /* CONFIG_SPARSEMEM */
4920
d9c23400 4921#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4922
d9c23400 4923/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4924void __paginginit set_pageblock_order(void)
d9c23400 4925{
955c1cd7
AM
4926 unsigned int order;
4927
d9c23400
MG
4928 /* Check that pageblock_nr_pages has not already been setup */
4929 if (pageblock_order)
4930 return;
4931
955c1cd7
AM
4932 if (HPAGE_SHIFT > PAGE_SHIFT)
4933 order = HUGETLB_PAGE_ORDER;
4934 else
4935 order = MAX_ORDER - 1;
4936
d9c23400
MG
4937 /*
4938 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4939 * This value may be variable depending on boot parameters on IA64 and
4940 * powerpc.
d9c23400
MG
4941 */
4942 pageblock_order = order;
4943}
4944#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4945
ba72cb8c
MG
4946/*
4947 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4948 * is unused as pageblock_order is set at compile-time. See
4949 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4950 * the kernel config
ba72cb8c 4951 */
15ca220e 4952void __paginginit set_pageblock_order(void)
ba72cb8c 4953{
ba72cb8c 4954}
d9c23400
MG
4955
4956#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4957
01cefaef
JL
4958static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4959 unsigned long present_pages)
4960{
4961 unsigned long pages = spanned_pages;
4962
4963 /*
4964 * Provide a more accurate estimation if there are holes within
4965 * the zone and SPARSEMEM is in use. If there are holes within the
4966 * zone, each populated memory region may cost us one or two extra
4967 * memmap pages due to alignment because memmap pages for each
4968 * populated regions may not naturally algined on page boundary.
4969 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4970 */
4971 if (spanned_pages > present_pages + (present_pages >> 4) &&
4972 IS_ENABLED(CONFIG_SPARSEMEM))
4973 pages = present_pages;
4974
4975 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4976}
4977
1da177e4
LT
4978/*
4979 * Set up the zone data structures:
4980 * - mark all pages reserved
4981 * - mark all memory queues empty
4982 * - clear the memory bitmaps
6527af5d
MK
4983 *
4984 * NOTE: pgdat should get zeroed by caller.
1da177e4 4985 */
b5a0e011 4986static void __paginginit free_area_init_core(struct pglist_data *pgdat,
febd5949 4987 unsigned long node_start_pfn, unsigned long node_end_pfn)
1da177e4 4988{
2f1b6248 4989 enum zone_type j;
ed8ece2e 4990 int nid = pgdat->node_id;
1da177e4 4991 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4992 int ret;
1da177e4 4993
208d54e5 4994 pgdat_resize_init(pgdat);
8177a420
AA
4995#ifdef CONFIG_NUMA_BALANCING
4996 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4997 pgdat->numabalancing_migrate_nr_pages = 0;
4998 pgdat->numabalancing_migrate_next_window = jiffies;
4999#endif
1da177e4 5000 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5001 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5002 pgdat_page_ext_init(pgdat);
5f63b720 5003
1da177e4
LT
5004 for (j = 0; j < MAX_NR_ZONES; j++) {
5005 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5006 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 5007
febd5949
GZ
5008 size = zone->spanned_pages;
5009 realsize = freesize = zone->present_pages;
1da177e4 5010
0e0b864e 5011 /*
9feedc9d 5012 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5013 * is used by this zone for memmap. This affects the watermark
5014 * and per-cpu initialisations
5015 */
01cefaef 5016 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5017 if (!is_highmem_idx(j)) {
5018 if (freesize >= memmap_pages) {
5019 freesize -= memmap_pages;
5020 if (memmap_pages)
5021 printk(KERN_DEBUG
5022 " %s zone: %lu pages used for memmap\n",
5023 zone_names[j], memmap_pages);
5024 } else
5025 printk(KERN_WARNING
5026 " %s zone: %lu pages exceeds freesize %lu\n",
5027 zone_names[j], memmap_pages, freesize);
5028 }
0e0b864e 5029
6267276f 5030 /* Account for reserved pages */
9feedc9d
JL
5031 if (j == 0 && freesize > dma_reserve) {
5032 freesize -= dma_reserve;
d903ef9f 5033 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5034 zone_names[0], dma_reserve);
0e0b864e
MG
5035 }
5036
98d2b0eb 5037 if (!is_highmem_idx(j))
9feedc9d 5038 nr_kernel_pages += freesize;
01cefaef
JL
5039 /* Charge for highmem memmap if there are enough kernel pages */
5040 else if (nr_kernel_pages > memmap_pages * 2)
5041 nr_kernel_pages -= memmap_pages;
9feedc9d 5042 nr_all_pages += freesize;
1da177e4 5043
9feedc9d
JL
5044 /*
5045 * Set an approximate value for lowmem here, it will be adjusted
5046 * when the bootmem allocator frees pages into the buddy system.
5047 * And all highmem pages will be managed by the buddy system.
5048 */
5049 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5050#ifdef CONFIG_NUMA
d5f541ed 5051 zone->node = nid;
9feedc9d 5052 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5053 / 100;
9feedc9d 5054 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5055#endif
1da177e4
LT
5056 zone->name = zone_names[j];
5057 spin_lock_init(&zone->lock);
5058 spin_lock_init(&zone->lru_lock);
bdc8cb98 5059 zone_seqlock_init(zone);
1da177e4 5060 zone->zone_pgdat = pgdat;
ed8ece2e 5061 zone_pcp_init(zone);
81c0a2bb
JW
5062
5063 /* For bootup, initialized properly in watermark setup */
5064 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5065
bea8c150 5066 lruvec_init(&zone->lruvec);
1da177e4
LT
5067 if (!size)
5068 continue;
5069
955c1cd7 5070 set_pageblock_order();
7c45512d 5071 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
5072 ret = init_currently_empty_zone(zone, zone_start_pfn,
5073 size, MEMMAP_EARLY);
718127cc 5074 BUG_ON(ret);
76cdd58e 5075 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5076 zone_start_pfn += size;
1da177e4
LT
5077 }
5078}
5079
577a32f6 5080static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5081{
1da177e4
LT
5082 /* Skip empty nodes */
5083 if (!pgdat->node_spanned_pages)
5084 return;
5085
d41dee36 5086#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
5087 /* ia64 gets its own node_mem_map, before this, without bootmem */
5088 if (!pgdat->node_mem_map) {
e984bb43 5089 unsigned long size, start, end;
d41dee36
AW
5090 struct page *map;
5091
e984bb43
BP
5092 /*
5093 * The zone's endpoints aren't required to be MAX_ORDER
5094 * aligned but the node_mem_map endpoints must be in order
5095 * for the buddy allocator to function correctly.
5096 */
5097 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 5098 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5099 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5100 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5101 map = alloc_remap(pgdat->node_id, size);
5102 if (!map)
6782832e
SS
5103 map = memblock_virt_alloc_node_nopanic(size,
5104 pgdat->node_id);
e984bb43 5105 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 5106 }
12d810c1 5107#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5108 /*
5109 * With no DISCONTIG, the global mem_map is just set as node 0's
5110 */
c713216d 5111 if (pgdat == NODE_DATA(0)) {
1da177e4 5112 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 5113#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5114 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 5115 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 5116#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5117 }
1da177e4 5118#endif
d41dee36 5119#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5120}
5121
9109fb7b
JW
5122void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5123 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5124{
9109fb7b 5125 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5126 unsigned long start_pfn = 0;
5127 unsigned long end_pfn = 0;
9109fb7b 5128
88fdf75d 5129 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5130 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5131
1da177e4
LT
5132 pgdat->node_id = nid;
5133 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5134#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5135 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a
JG
5136 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5137 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5138#endif
5139 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5140 zones_size, zholes_size);
1da177e4
LT
5141
5142 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5143#ifdef CONFIG_FLAT_NODE_MEM_MAP
5144 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5145 nid, (unsigned long)pgdat,
5146 (unsigned long)pgdat->node_mem_map);
5147#endif
1da177e4 5148
febd5949 5149 free_area_init_core(pgdat, start_pfn, end_pfn);
1da177e4
LT
5150}
5151
0ee332c1 5152#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5153
5154#if MAX_NUMNODES > 1
5155/*
5156 * Figure out the number of possible node ids.
5157 */
f9872caf 5158void __init setup_nr_node_ids(void)
418508c1
MS
5159{
5160 unsigned int node;
5161 unsigned int highest = 0;
5162
5163 for_each_node_mask(node, node_possible_map)
5164 highest = node;
5165 nr_node_ids = highest + 1;
5166}
418508c1
MS
5167#endif
5168
1e01979c
TH
5169/**
5170 * node_map_pfn_alignment - determine the maximum internode alignment
5171 *
5172 * This function should be called after node map is populated and sorted.
5173 * It calculates the maximum power of two alignment which can distinguish
5174 * all the nodes.
5175 *
5176 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5177 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5178 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5179 * shifted, 1GiB is enough and this function will indicate so.
5180 *
5181 * This is used to test whether pfn -> nid mapping of the chosen memory
5182 * model has fine enough granularity to avoid incorrect mapping for the
5183 * populated node map.
5184 *
5185 * Returns the determined alignment in pfn's. 0 if there is no alignment
5186 * requirement (single node).
5187 */
5188unsigned long __init node_map_pfn_alignment(void)
5189{
5190 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5191 unsigned long start, end, mask;
1e01979c 5192 int last_nid = -1;
c13291a5 5193 int i, nid;
1e01979c 5194
c13291a5 5195 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5196 if (!start || last_nid < 0 || last_nid == nid) {
5197 last_nid = nid;
5198 last_end = end;
5199 continue;
5200 }
5201
5202 /*
5203 * Start with a mask granular enough to pin-point to the
5204 * start pfn and tick off bits one-by-one until it becomes
5205 * too coarse to separate the current node from the last.
5206 */
5207 mask = ~((1 << __ffs(start)) - 1);
5208 while (mask && last_end <= (start & (mask << 1)))
5209 mask <<= 1;
5210
5211 /* accumulate all internode masks */
5212 accl_mask |= mask;
5213 }
5214
5215 /* convert mask to number of pages */
5216 return ~accl_mask + 1;
5217}
5218
a6af2bc3 5219/* Find the lowest pfn for a node */
b69a7288 5220static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5221{
a6af2bc3 5222 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5223 unsigned long start_pfn;
5224 int i;
1abbfb41 5225
c13291a5
TH
5226 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5227 min_pfn = min(min_pfn, start_pfn);
c713216d 5228
a6af2bc3
MG
5229 if (min_pfn == ULONG_MAX) {
5230 printk(KERN_WARNING
2bc0d261 5231 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5232 return 0;
5233 }
5234
5235 return min_pfn;
c713216d
MG
5236}
5237
5238/**
5239 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5240 *
5241 * It returns the minimum PFN based on information provided via
7d018176 5242 * memblock_set_node().
c713216d
MG
5243 */
5244unsigned long __init find_min_pfn_with_active_regions(void)
5245{
5246 return find_min_pfn_for_node(MAX_NUMNODES);
5247}
5248
37b07e41
LS
5249/*
5250 * early_calculate_totalpages()
5251 * Sum pages in active regions for movable zone.
4b0ef1fe 5252 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5253 */
484f51f8 5254static unsigned long __init early_calculate_totalpages(void)
7e63efef 5255{
7e63efef 5256 unsigned long totalpages = 0;
c13291a5
TH
5257 unsigned long start_pfn, end_pfn;
5258 int i, nid;
5259
5260 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5261 unsigned long pages = end_pfn - start_pfn;
7e63efef 5262
37b07e41
LS
5263 totalpages += pages;
5264 if (pages)
4b0ef1fe 5265 node_set_state(nid, N_MEMORY);
37b07e41 5266 }
b8af2941 5267 return totalpages;
7e63efef
MG
5268}
5269
2a1e274a
MG
5270/*
5271 * Find the PFN the Movable zone begins in each node. Kernel memory
5272 * is spread evenly between nodes as long as the nodes have enough
5273 * memory. When they don't, some nodes will have more kernelcore than
5274 * others
5275 */
b224ef85 5276static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5277{
5278 int i, nid;
5279 unsigned long usable_startpfn;
5280 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5281 /* save the state before borrow the nodemask */
4b0ef1fe 5282 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5283 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5284 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5285 struct memblock_region *r;
b2f3eebe
TC
5286
5287 /* Need to find movable_zone earlier when movable_node is specified. */
5288 find_usable_zone_for_movable();
5289
5290 /*
5291 * If movable_node is specified, ignore kernelcore and movablecore
5292 * options.
5293 */
5294 if (movable_node_is_enabled()) {
136199f0
EM
5295 for_each_memblock(memory, r) {
5296 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5297 continue;
5298
136199f0 5299 nid = r->nid;
b2f3eebe 5300
136199f0 5301 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5302 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5303 min(usable_startpfn, zone_movable_pfn[nid]) :
5304 usable_startpfn;
5305 }
5306
5307 goto out2;
5308 }
2a1e274a 5309
7e63efef 5310 /*
b2f3eebe 5311 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5312 * kernelcore that corresponds so that memory usable for
5313 * any allocation type is evenly spread. If both kernelcore
5314 * and movablecore are specified, then the value of kernelcore
5315 * will be used for required_kernelcore if it's greater than
5316 * what movablecore would have allowed.
5317 */
5318 if (required_movablecore) {
7e63efef
MG
5319 unsigned long corepages;
5320
5321 /*
5322 * Round-up so that ZONE_MOVABLE is at least as large as what
5323 * was requested by the user
5324 */
5325 required_movablecore =
5326 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5327 corepages = totalpages - required_movablecore;
5328
5329 required_kernelcore = max(required_kernelcore, corepages);
5330 }
5331
20e6926d
YL
5332 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5333 if (!required_kernelcore)
66918dcd 5334 goto out;
2a1e274a
MG
5335
5336 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5337 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5338
5339restart:
5340 /* Spread kernelcore memory as evenly as possible throughout nodes */
5341 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5342 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5343 unsigned long start_pfn, end_pfn;
5344
2a1e274a
MG
5345 /*
5346 * Recalculate kernelcore_node if the division per node
5347 * now exceeds what is necessary to satisfy the requested
5348 * amount of memory for the kernel
5349 */
5350 if (required_kernelcore < kernelcore_node)
5351 kernelcore_node = required_kernelcore / usable_nodes;
5352
5353 /*
5354 * As the map is walked, we track how much memory is usable
5355 * by the kernel using kernelcore_remaining. When it is
5356 * 0, the rest of the node is usable by ZONE_MOVABLE
5357 */
5358 kernelcore_remaining = kernelcore_node;
5359
5360 /* Go through each range of PFNs within this node */
c13291a5 5361 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5362 unsigned long size_pages;
5363
c13291a5 5364 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5365 if (start_pfn >= end_pfn)
5366 continue;
5367
5368 /* Account for what is only usable for kernelcore */
5369 if (start_pfn < usable_startpfn) {
5370 unsigned long kernel_pages;
5371 kernel_pages = min(end_pfn, usable_startpfn)
5372 - start_pfn;
5373
5374 kernelcore_remaining -= min(kernel_pages,
5375 kernelcore_remaining);
5376 required_kernelcore -= min(kernel_pages,
5377 required_kernelcore);
5378
5379 /* Continue if range is now fully accounted */
5380 if (end_pfn <= usable_startpfn) {
5381
5382 /*
5383 * Push zone_movable_pfn to the end so
5384 * that if we have to rebalance
5385 * kernelcore across nodes, we will
5386 * not double account here
5387 */
5388 zone_movable_pfn[nid] = end_pfn;
5389 continue;
5390 }
5391 start_pfn = usable_startpfn;
5392 }
5393
5394 /*
5395 * The usable PFN range for ZONE_MOVABLE is from
5396 * start_pfn->end_pfn. Calculate size_pages as the
5397 * number of pages used as kernelcore
5398 */
5399 size_pages = end_pfn - start_pfn;
5400 if (size_pages > kernelcore_remaining)
5401 size_pages = kernelcore_remaining;
5402 zone_movable_pfn[nid] = start_pfn + size_pages;
5403
5404 /*
5405 * Some kernelcore has been met, update counts and
5406 * break if the kernelcore for this node has been
b8af2941 5407 * satisfied
2a1e274a
MG
5408 */
5409 required_kernelcore -= min(required_kernelcore,
5410 size_pages);
5411 kernelcore_remaining -= size_pages;
5412 if (!kernelcore_remaining)
5413 break;
5414 }
5415 }
5416
5417 /*
5418 * If there is still required_kernelcore, we do another pass with one
5419 * less node in the count. This will push zone_movable_pfn[nid] further
5420 * along on the nodes that still have memory until kernelcore is
b8af2941 5421 * satisfied
2a1e274a
MG
5422 */
5423 usable_nodes--;
5424 if (usable_nodes && required_kernelcore > usable_nodes)
5425 goto restart;
5426
b2f3eebe 5427out2:
2a1e274a
MG
5428 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5429 for (nid = 0; nid < MAX_NUMNODES; nid++)
5430 zone_movable_pfn[nid] =
5431 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5432
20e6926d 5433out:
66918dcd 5434 /* restore the node_state */
4b0ef1fe 5435 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5436}
5437
4b0ef1fe
LJ
5438/* Any regular or high memory on that node ? */
5439static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5440{
37b07e41
LS
5441 enum zone_type zone_type;
5442
4b0ef1fe
LJ
5443 if (N_MEMORY == N_NORMAL_MEMORY)
5444 return;
5445
5446 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5447 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5448 if (populated_zone(zone)) {
4b0ef1fe
LJ
5449 node_set_state(nid, N_HIGH_MEMORY);
5450 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5451 zone_type <= ZONE_NORMAL)
5452 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5453 break;
5454 }
37b07e41 5455 }
37b07e41
LS
5456}
5457
c713216d
MG
5458/**
5459 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5460 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5461 *
5462 * This will call free_area_init_node() for each active node in the system.
7d018176 5463 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5464 * zone in each node and their holes is calculated. If the maximum PFN
5465 * between two adjacent zones match, it is assumed that the zone is empty.
5466 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5467 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5468 * starts where the previous one ended. For example, ZONE_DMA32 starts
5469 * at arch_max_dma_pfn.
5470 */
5471void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5472{
c13291a5
TH
5473 unsigned long start_pfn, end_pfn;
5474 int i, nid;
a6af2bc3 5475
c713216d
MG
5476 /* Record where the zone boundaries are */
5477 memset(arch_zone_lowest_possible_pfn, 0,
5478 sizeof(arch_zone_lowest_possible_pfn));
5479 memset(arch_zone_highest_possible_pfn, 0,
5480 sizeof(arch_zone_highest_possible_pfn));
5481 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5482 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5483 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5484 if (i == ZONE_MOVABLE)
5485 continue;
c713216d
MG
5486 arch_zone_lowest_possible_pfn[i] =
5487 arch_zone_highest_possible_pfn[i-1];
5488 arch_zone_highest_possible_pfn[i] =
5489 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5490 }
2a1e274a
MG
5491 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5492 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5493
5494 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5495 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5496 find_zone_movable_pfns_for_nodes();
c713216d 5497
c713216d 5498 /* Print out the zone ranges */
f88dfff5 5499 pr_info("Zone ranges:\n");
2a1e274a
MG
5500 for (i = 0; i < MAX_NR_ZONES; i++) {
5501 if (i == ZONE_MOVABLE)
5502 continue;
f88dfff5 5503 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5504 if (arch_zone_lowest_possible_pfn[i] ==
5505 arch_zone_highest_possible_pfn[i])
f88dfff5 5506 pr_cont("empty\n");
72f0ba02 5507 else
8d29e18a
JG
5508 pr_cont("[mem %#018Lx-%#018Lx]\n",
5509 (u64)arch_zone_lowest_possible_pfn[i]
5510 << PAGE_SHIFT,
5511 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5512 << PAGE_SHIFT) - 1);
2a1e274a
MG
5513 }
5514
5515 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5516 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5517 for (i = 0; i < MAX_NUMNODES; i++) {
5518 if (zone_movable_pfn[i])
8d29e18a
JG
5519 pr_info(" Node %d: %#018Lx\n", i,
5520 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5521 }
c713216d 5522
f2d52fe5 5523 /* Print out the early node map */
f88dfff5 5524 pr_info("Early memory node ranges\n");
c13291a5 5525 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5526 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5527 (u64)start_pfn << PAGE_SHIFT,
5528 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5529
5530 /* Initialise every node */
708614e6 5531 mminit_verify_pageflags_layout();
8ef82866 5532 setup_nr_node_ids();
c713216d
MG
5533 for_each_online_node(nid) {
5534 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5535 free_area_init_node(nid, NULL,
c713216d 5536 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5537
5538 /* Any memory on that node */
5539 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5540 node_set_state(nid, N_MEMORY);
5541 check_for_memory(pgdat, nid);
c713216d
MG
5542 }
5543}
2a1e274a 5544
7e63efef 5545static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5546{
5547 unsigned long long coremem;
5548 if (!p)
5549 return -EINVAL;
5550
5551 coremem = memparse(p, &p);
7e63efef 5552 *core = coremem >> PAGE_SHIFT;
2a1e274a 5553
7e63efef 5554 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5555 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5556
5557 return 0;
5558}
ed7ed365 5559
7e63efef
MG
5560/*
5561 * kernelcore=size sets the amount of memory for use for allocations that
5562 * cannot be reclaimed or migrated.
5563 */
5564static int __init cmdline_parse_kernelcore(char *p)
5565{
5566 return cmdline_parse_core(p, &required_kernelcore);
5567}
5568
5569/*
5570 * movablecore=size sets the amount of memory for use for allocations that
5571 * can be reclaimed or migrated.
5572 */
5573static int __init cmdline_parse_movablecore(char *p)
5574{
5575 return cmdline_parse_core(p, &required_movablecore);
5576}
5577
ed7ed365 5578early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5579early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5580
0ee332c1 5581#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5582
c3d5f5f0
JL
5583void adjust_managed_page_count(struct page *page, long count)
5584{
5585 spin_lock(&managed_page_count_lock);
5586 page_zone(page)->managed_pages += count;
5587 totalram_pages += count;
3dcc0571
JL
5588#ifdef CONFIG_HIGHMEM
5589 if (PageHighMem(page))
5590 totalhigh_pages += count;
5591#endif
c3d5f5f0
JL
5592 spin_unlock(&managed_page_count_lock);
5593}
3dcc0571 5594EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5595
11199692 5596unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5597{
11199692
JL
5598 void *pos;
5599 unsigned long pages = 0;
69afade7 5600
11199692
JL
5601 start = (void *)PAGE_ALIGN((unsigned long)start);
5602 end = (void *)((unsigned long)end & PAGE_MASK);
5603 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5604 if ((unsigned int)poison <= 0xFF)
11199692
JL
5605 memset(pos, poison, PAGE_SIZE);
5606 free_reserved_page(virt_to_page(pos));
69afade7
JL
5607 }
5608
5609 if (pages && s)
11199692 5610 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5611 s, pages << (PAGE_SHIFT - 10), start, end);
5612
5613 return pages;
5614}
11199692 5615EXPORT_SYMBOL(free_reserved_area);
69afade7 5616
cfa11e08
JL
5617#ifdef CONFIG_HIGHMEM
5618void free_highmem_page(struct page *page)
5619{
5620 __free_reserved_page(page);
5621 totalram_pages++;
7b4b2a0d 5622 page_zone(page)->managed_pages++;
cfa11e08
JL
5623 totalhigh_pages++;
5624}
5625#endif
5626
7ee3d4e8
JL
5627
5628void __init mem_init_print_info(const char *str)
5629{
5630 unsigned long physpages, codesize, datasize, rosize, bss_size;
5631 unsigned long init_code_size, init_data_size;
5632
5633 physpages = get_num_physpages();
5634 codesize = _etext - _stext;
5635 datasize = _edata - _sdata;
5636 rosize = __end_rodata - __start_rodata;
5637 bss_size = __bss_stop - __bss_start;
5638 init_data_size = __init_end - __init_begin;
5639 init_code_size = _einittext - _sinittext;
5640
5641 /*
5642 * Detect special cases and adjust section sizes accordingly:
5643 * 1) .init.* may be embedded into .data sections
5644 * 2) .init.text.* may be out of [__init_begin, __init_end],
5645 * please refer to arch/tile/kernel/vmlinux.lds.S.
5646 * 3) .rodata.* may be embedded into .text or .data sections.
5647 */
5648#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5649 do { \
5650 if (start <= pos && pos < end && size > adj) \
5651 size -= adj; \
5652 } while (0)
7ee3d4e8
JL
5653
5654 adj_init_size(__init_begin, __init_end, init_data_size,
5655 _sinittext, init_code_size);
5656 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5657 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5658 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5659 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5660
5661#undef adj_init_size
5662
f88dfff5 5663 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5664 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5665 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5666#ifdef CONFIG_HIGHMEM
5667 ", %luK highmem"
5668#endif
5669 "%s%s)\n",
5670 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5671 codesize >> 10, datasize >> 10, rosize >> 10,
5672 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5673 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5674 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5675#ifdef CONFIG_HIGHMEM
5676 totalhigh_pages << (PAGE_SHIFT-10),
5677#endif
5678 str ? ", " : "", str ? str : "");
5679}
5680
0e0b864e 5681/**
88ca3b94
RD
5682 * set_dma_reserve - set the specified number of pages reserved in the first zone
5683 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5684 *
5685 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5686 * In the DMA zone, a significant percentage may be consumed by kernel image
5687 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5688 * function may optionally be used to account for unfreeable pages in the
5689 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5690 * smaller per-cpu batchsize.
0e0b864e
MG
5691 */
5692void __init set_dma_reserve(unsigned long new_dma_reserve)
5693{
5694 dma_reserve = new_dma_reserve;
5695}
5696
1da177e4
LT
5697void __init free_area_init(unsigned long *zones_size)
5698{
9109fb7b 5699 free_area_init_node(0, zones_size,
1da177e4
LT
5700 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5701}
1da177e4 5702
1da177e4
LT
5703static int page_alloc_cpu_notify(struct notifier_block *self,
5704 unsigned long action, void *hcpu)
5705{
5706 int cpu = (unsigned long)hcpu;
1da177e4 5707
8bb78442 5708 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5709 lru_add_drain_cpu(cpu);
9f8f2172
CL
5710 drain_pages(cpu);
5711
5712 /*
5713 * Spill the event counters of the dead processor
5714 * into the current processors event counters.
5715 * This artificially elevates the count of the current
5716 * processor.
5717 */
f8891e5e 5718 vm_events_fold_cpu(cpu);
9f8f2172
CL
5719
5720 /*
5721 * Zero the differential counters of the dead processor
5722 * so that the vm statistics are consistent.
5723 *
5724 * This is only okay since the processor is dead and cannot
5725 * race with what we are doing.
5726 */
2bb921e5 5727 cpu_vm_stats_fold(cpu);
1da177e4
LT
5728 }
5729 return NOTIFY_OK;
5730}
1da177e4
LT
5731
5732void __init page_alloc_init(void)
5733{
5734 hotcpu_notifier(page_alloc_cpu_notify, 0);
5735}
5736
cb45b0e9
HA
5737/*
5738 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5739 * or min_free_kbytes changes.
5740 */
5741static void calculate_totalreserve_pages(void)
5742{
5743 struct pglist_data *pgdat;
5744 unsigned long reserve_pages = 0;
2f6726e5 5745 enum zone_type i, j;
cb45b0e9
HA
5746
5747 for_each_online_pgdat(pgdat) {
5748 for (i = 0; i < MAX_NR_ZONES; i++) {
5749 struct zone *zone = pgdat->node_zones + i;
3484b2de 5750 long max = 0;
cb45b0e9
HA
5751
5752 /* Find valid and maximum lowmem_reserve in the zone */
5753 for (j = i; j < MAX_NR_ZONES; j++) {
5754 if (zone->lowmem_reserve[j] > max)
5755 max = zone->lowmem_reserve[j];
5756 }
5757
41858966
MG
5758 /* we treat the high watermark as reserved pages. */
5759 max += high_wmark_pages(zone);
cb45b0e9 5760
b40da049
JL
5761 if (max > zone->managed_pages)
5762 max = zone->managed_pages;
cb45b0e9 5763 reserve_pages += max;
ab8fabd4
JW
5764 /*
5765 * Lowmem reserves are not available to
5766 * GFP_HIGHUSER page cache allocations and
5767 * kswapd tries to balance zones to their high
5768 * watermark. As a result, neither should be
5769 * regarded as dirtyable memory, to prevent a
5770 * situation where reclaim has to clean pages
5771 * in order to balance the zones.
5772 */
5773 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5774 }
5775 }
ab8fabd4 5776 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5777 totalreserve_pages = reserve_pages;
5778}
5779
1da177e4
LT
5780/*
5781 * setup_per_zone_lowmem_reserve - called whenever
5782 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5783 * has a correct pages reserved value, so an adequate number of
5784 * pages are left in the zone after a successful __alloc_pages().
5785 */
5786static void setup_per_zone_lowmem_reserve(void)
5787{
5788 struct pglist_data *pgdat;
2f6726e5 5789 enum zone_type j, idx;
1da177e4 5790
ec936fc5 5791 for_each_online_pgdat(pgdat) {
1da177e4
LT
5792 for (j = 0; j < MAX_NR_ZONES; j++) {
5793 struct zone *zone = pgdat->node_zones + j;
b40da049 5794 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5795
5796 zone->lowmem_reserve[j] = 0;
5797
2f6726e5
CL
5798 idx = j;
5799 while (idx) {
1da177e4
LT
5800 struct zone *lower_zone;
5801
2f6726e5
CL
5802 idx--;
5803
1da177e4
LT
5804 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5805 sysctl_lowmem_reserve_ratio[idx] = 1;
5806
5807 lower_zone = pgdat->node_zones + idx;
b40da049 5808 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5809 sysctl_lowmem_reserve_ratio[idx];
b40da049 5810 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5811 }
5812 }
5813 }
cb45b0e9
HA
5814
5815 /* update totalreserve_pages */
5816 calculate_totalreserve_pages();
1da177e4
LT
5817}
5818
cfd3da1e 5819static void __setup_per_zone_wmarks(void)
1da177e4
LT
5820{
5821 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5822 unsigned long lowmem_pages = 0;
5823 struct zone *zone;
5824 unsigned long flags;
5825
5826 /* Calculate total number of !ZONE_HIGHMEM pages */
5827 for_each_zone(zone) {
5828 if (!is_highmem(zone))
b40da049 5829 lowmem_pages += zone->managed_pages;
1da177e4
LT
5830 }
5831
5832 for_each_zone(zone) {
ac924c60
AM
5833 u64 tmp;
5834
1125b4e3 5835 spin_lock_irqsave(&zone->lock, flags);
b40da049 5836 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5837 do_div(tmp, lowmem_pages);
1da177e4
LT
5838 if (is_highmem(zone)) {
5839 /*
669ed175
NP
5840 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5841 * need highmem pages, so cap pages_min to a small
5842 * value here.
5843 *
41858966 5844 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 5845 * deltas control asynch page reclaim, and so should
669ed175 5846 * not be capped for highmem.
1da177e4 5847 */
90ae8d67 5848 unsigned long min_pages;
1da177e4 5849
b40da049 5850 min_pages = zone->managed_pages / 1024;
90ae8d67 5851 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5852 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5853 } else {
669ed175
NP
5854 /*
5855 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5856 * proportionate to the zone's size.
5857 */
41858966 5858 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5859 }
5860
41858966
MG
5861 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5862 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5863
81c0a2bb 5864 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
5865 high_wmark_pages(zone) - low_wmark_pages(zone) -
5866 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 5867
56fd56b8 5868 setup_zone_migrate_reserve(zone);
1125b4e3 5869 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5870 }
cb45b0e9
HA
5871
5872 /* update totalreserve_pages */
5873 calculate_totalreserve_pages();
1da177e4
LT
5874}
5875
cfd3da1e
MG
5876/**
5877 * setup_per_zone_wmarks - called when min_free_kbytes changes
5878 * or when memory is hot-{added|removed}
5879 *
5880 * Ensures that the watermark[min,low,high] values for each zone are set
5881 * correctly with respect to min_free_kbytes.
5882 */
5883void setup_per_zone_wmarks(void)
5884{
5885 mutex_lock(&zonelists_mutex);
5886 __setup_per_zone_wmarks();
5887 mutex_unlock(&zonelists_mutex);
5888}
5889
55a4462a 5890/*
556adecb
RR
5891 * The inactive anon list should be small enough that the VM never has to
5892 * do too much work, but large enough that each inactive page has a chance
5893 * to be referenced again before it is swapped out.
5894 *
5895 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5896 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5897 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5898 * the anonymous pages are kept on the inactive list.
5899 *
5900 * total target max
5901 * memory ratio inactive anon
5902 * -------------------------------------
5903 * 10MB 1 5MB
5904 * 100MB 1 50MB
5905 * 1GB 3 250MB
5906 * 10GB 10 0.9GB
5907 * 100GB 31 3GB
5908 * 1TB 101 10GB
5909 * 10TB 320 32GB
5910 */
1b79acc9 5911static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5912{
96cb4df5 5913 unsigned int gb, ratio;
556adecb 5914
96cb4df5 5915 /* Zone size in gigabytes */
b40da049 5916 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5917 if (gb)
556adecb 5918 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5919 else
5920 ratio = 1;
556adecb 5921
96cb4df5
MK
5922 zone->inactive_ratio = ratio;
5923}
556adecb 5924
839a4fcc 5925static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5926{
5927 struct zone *zone;
5928
5929 for_each_zone(zone)
5930 calculate_zone_inactive_ratio(zone);
556adecb
RR
5931}
5932
1da177e4
LT
5933/*
5934 * Initialise min_free_kbytes.
5935 *
5936 * For small machines we want it small (128k min). For large machines
5937 * we want it large (64MB max). But it is not linear, because network
5938 * bandwidth does not increase linearly with machine size. We use
5939 *
b8af2941 5940 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5941 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5942 *
5943 * which yields
5944 *
5945 * 16MB: 512k
5946 * 32MB: 724k
5947 * 64MB: 1024k
5948 * 128MB: 1448k
5949 * 256MB: 2048k
5950 * 512MB: 2896k
5951 * 1024MB: 4096k
5952 * 2048MB: 5792k
5953 * 4096MB: 8192k
5954 * 8192MB: 11584k
5955 * 16384MB: 16384k
5956 */
1b79acc9 5957int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5958{
5959 unsigned long lowmem_kbytes;
5f12733e 5960 int new_min_free_kbytes;
1da177e4
LT
5961
5962 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5963 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5964
5965 if (new_min_free_kbytes > user_min_free_kbytes) {
5966 min_free_kbytes = new_min_free_kbytes;
5967 if (min_free_kbytes < 128)
5968 min_free_kbytes = 128;
5969 if (min_free_kbytes > 65536)
5970 min_free_kbytes = 65536;
5971 } else {
5972 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5973 new_min_free_kbytes, user_min_free_kbytes);
5974 }
bc75d33f 5975 setup_per_zone_wmarks();
a6cccdc3 5976 refresh_zone_stat_thresholds();
1da177e4 5977 setup_per_zone_lowmem_reserve();
556adecb 5978 setup_per_zone_inactive_ratio();
1da177e4
LT
5979 return 0;
5980}
bc75d33f 5981module_init(init_per_zone_wmark_min)
1da177e4
LT
5982
5983/*
b8af2941 5984 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5985 * that we can call two helper functions whenever min_free_kbytes
5986 * changes.
5987 */
cccad5b9 5988int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5989 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5990{
da8c757b
HP
5991 int rc;
5992
5993 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5994 if (rc)
5995 return rc;
5996
5f12733e
MH
5997 if (write) {
5998 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5999 setup_per_zone_wmarks();
5f12733e 6000 }
1da177e4
LT
6001 return 0;
6002}
6003
9614634f 6004#ifdef CONFIG_NUMA
cccad5b9 6005int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6006 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6007{
6008 struct zone *zone;
6009 int rc;
6010
8d65af78 6011 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6012 if (rc)
6013 return rc;
6014
6015 for_each_zone(zone)
b40da049 6016 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6017 sysctl_min_unmapped_ratio) / 100;
6018 return 0;
6019}
0ff38490 6020
cccad5b9 6021int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6022 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6023{
6024 struct zone *zone;
6025 int rc;
6026
8d65af78 6027 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6028 if (rc)
6029 return rc;
6030
6031 for_each_zone(zone)
b40da049 6032 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6033 sysctl_min_slab_ratio) / 100;
6034 return 0;
6035}
9614634f
CL
6036#endif
6037
1da177e4
LT
6038/*
6039 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6040 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6041 * whenever sysctl_lowmem_reserve_ratio changes.
6042 *
6043 * The reserve ratio obviously has absolutely no relation with the
41858966 6044 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6045 * if in function of the boot time zone sizes.
6046 */
cccad5b9 6047int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6048 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6049{
8d65af78 6050 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6051 setup_per_zone_lowmem_reserve();
6052 return 0;
6053}
6054
8ad4b1fb
RS
6055/*
6056 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6057 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6058 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6059 */
cccad5b9 6060int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6061 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6062{
6063 struct zone *zone;
7cd2b0a3 6064 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6065 int ret;
6066
7cd2b0a3
DR
6067 mutex_lock(&pcp_batch_high_lock);
6068 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6069
8d65af78 6070 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6071 if (!write || ret < 0)
6072 goto out;
6073
6074 /* Sanity checking to avoid pcp imbalance */
6075 if (percpu_pagelist_fraction &&
6076 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6077 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6078 ret = -EINVAL;
6079 goto out;
6080 }
6081
6082 /* No change? */
6083 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6084 goto out;
c8e251fa 6085
364df0eb 6086 for_each_populated_zone(zone) {
7cd2b0a3
DR
6087 unsigned int cpu;
6088
22a7f12b 6089 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6090 pageset_set_high_and_batch(zone,
6091 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6092 }
7cd2b0a3 6093out:
c8e251fa 6094 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6095 return ret;
8ad4b1fb
RS
6096}
6097
a9919c79 6098#ifdef CONFIG_NUMA
f034b5d4 6099int hashdist = HASHDIST_DEFAULT;
1da177e4 6100
1da177e4
LT
6101static int __init set_hashdist(char *str)
6102{
6103 if (!str)
6104 return 0;
6105 hashdist = simple_strtoul(str, &str, 0);
6106 return 1;
6107}
6108__setup("hashdist=", set_hashdist);
6109#endif
6110
6111/*
6112 * allocate a large system hash table from bootmem
6113 * - it is assumed that the hash table must contain an exact power-of-2
6114 * quantity of entries
6115 * - limit is the number of hash buckets, not the total allocation size
6116 */
6117void *__init alloc_large_system_hash(const char *tablename,
6118 unsigned long bucketsize,
6119 unsigned long numentries,
6120 int scale,
6121 int flags,
6122 unsigned int *_hash_shift,
6123 unsigned int *_hash_mask,
31fe62b9
TB
6124 unsigned long low_limit,
6125 unsigned long high_limit)
1da177e4 6126{
31fe62b9 6127 unsigned long long max = high_limit;
1da177e4
LT
6128 unsigned long log2qty, size;
6129 void *table = NULL;
6130
6131 /* allow the kernel cmdline to have a say */
6132 if (!numentries) {
6133 /* round applicable memory size up to nearest megabyte */
04903664 6134 numentries = nr_kernel_pages;
a7e83318
JZ
6135
6136 /* It isn't necessary when PAGE_SIZE >= 1MB */
6137 if (PAGE_SHIFT < 20)
6138 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6139
6140 /* limit to 1 bucket per 2^scale bytes of low memory */
6141 if (scale > PAGE_SHIFT)
6142 numentries >>= (scale - PAGE_SHIFT);
6143 else
6144 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6145
6146 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6147 if (unlikely(flags & HASH_SMALL)) {
6148 /* Makes no sense without HASH_EARLY */
6149 WARN_ON(!(flags & HASH_EARLY));
6150 if (!(numentries >> *_hash_shift)) {
6151 numentries = 1UL << *_hash_shift;
6152 BUG_ON(!numentries);
6153 }
6154 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6155 numentries = PAGE_SIZE / bucketsize;
1da177e4 6156 }
6e692ed3 6157 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6158
6159 /* limit allocation size to 1/16 total memory by default */
6160 if (max == 0) {
6161 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6162 do_div(max, bucketsize);
6163 }
074b8517 6164 max = min(max, 0x80000000ULL);
1da177e4 6165
31fe62b9
TB
6166 if (numentries < low_limit)
6167 numentries = low_limit;
1da177e4
LT
6168 if (numentries > max)
6169 numentries = max;
6170
f0d1b0b3 6171 log2qty = ilog2(numentries);
1da177e4
LT
6172
6173 do {
6174 size = bucketsize << log2qty;
6175 if (flags & HASH_EARLY)
6782832e 6176 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6177 else if (hashdist)
6178 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6179 else {
1037b83b
ED
6180 /*
6181 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6182 * some pages at the end of hash table which
6183 * alloc_pages_exact() automatically does
1037b83b 6184 */
264ef8a9 6185 if (get_order(size) < MAX_ORDER) {
a1dd268c 6186 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6187 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6188 }
1da177e4
LT
6189 }
6190 } while (!table && size > PAGE_SIZE && --log2qty);
6191
6192 if (!table)
6193 panic("Failed to allocate %s hash table\n", tablename);
6194
f241e660 6195 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6196 tablename,
f241e660 6197 (1UL << log2qty),
f0d1b0b3 6198 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6199 size);
6200
6201 if (_hash_shift)
6202 *_hash_shift = log2qty;
6203 if (_hash_mask)
6204 *_hash_mask = (1 << log2qty) - 1;
6205
6206 return table;
6207}
a117e66e 6208
835c134e
MG
6209/* Return a pointer to the bitmap storing bits affecting a block of pages */
6210static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6211 unsigned long pfn)
6212{
6213#ifdef CONFIG_SPARSEMEM
6214 return __pfn_to_section(pfn)->pageblock_flags;
6215#else
6216 return zone->pageblock_flags;
6217#endif /* CONFIG_SPARSEMEM */
6218}
6219
6220static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6221{
6222#ifdef CONFIG_SPARSEMEM
6223 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6224 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6225#else
c060f943 6226 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6227 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6228#endif /* CONFIG_SPARSEMEM */
6229}
6230
6231/**
1aab4d77 6232 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6233 * @page: The page within the block of interest
1aab4d77
RD
6234 * @pfn: The target page frame number
6235 * @end_bitidx: The last bit of interest to retrieve
6236 * @mask: mask of bits that the caller is interested in
6237 *
6238 * Return: pageblock_bits flags
835c134e 6239 */
dc4b0caf 6240unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6241 unsigned long end_bitidx,
6242 unsigned long mask)
835c134e
MG
6243{
6244 struct zone *zone;
6245 unsigned long *bitmap;
dc4b0caf 6246 unsigned long bitidx, word_bitidx;
e58469ba 6247 unsigned long word;
835c134e
MG
6248
6249 zone = page_zone(page);
835c134e
MG
6250 bitmap = get_pageblock_bitmap(zone, pfn);
6251 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6252 word_bitidx = bitidx / BITS_PER_LONG;
6253 bitidx &= (BITS_PER_LONG-1);
835c134e 6254
e58469ba
MG
6255 word = bitmap[word_bitidx];
6256 bitidx += end_bitidx;
6257 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6258}
6259
6260/**
dc4b0caf 6261 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6262 * @page: The page within the block of interest
835c134e 6263 * @flags: The flags to set
1aab4d77
RD
6264 * @pfn: The target page frame number
6265 * @end_bitidx: The last bit of interest
6266 * @mask: mask of bits that the caller is interested in
835c134e 6267 */
dc4b0caf
MG
6268void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6269 unsigned long pfn,
e58469ba
MG
6270 unsigned long end_bitidx,
6271 unsigned long mask)
835c134e
MG
6272{
6273 struct zone *zone;
6274 unsigned long *bitmap;
dc4b0caf 6275 unsigned long bitidx, word_bitidx;
e58469ba
MG
6276 unsigned long old_word, word;
6277
6278 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6279
6280 zone = page_zone(page);
835c134e
MG
6281 bitmap = get_pageblock_bitmap(zone, pfn);
6282 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6283 word_bitidx = bitidx / BITS_PER_LONG;
6284 bitidx &= (BITS_PER_LONG-1);
6285
309381fe 6286 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6287
e58469ba
MG
6288 bitidx += end_bitidx;
6289 mask <<= (BITS_PER_LONG - bitidx - 1);
6290 flags <<= (BITS_PER_LONG - bitidx - 1);
6291
4db0c3c2 6292 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6293 for (;;) {
6294 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6295 if (word == old_word)
6296 break;
6297 word = old_word;
6298 }
835c134e 6299}
a5d76b54
KH
6300
6301/*
80934513
MK
6302 * This function checks whether pageblock includes unmovable pages or not.
6303 * If @count is not zero, it is okay to include less @count unmovable pages
6304 *
b8af2941 6305 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6306 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6307 * expect this function should be exact.
a5d76b54 6308 */
b023f468
WC
6309bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6310 bool skip_hwpoisoned_pages)
49ac8255
KH
6311{
6312 unsigned long pfn, iter, found;
47118af0
MN
6313 int mt;
6314
49ac8255
KH
6315 /*
6316 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6317 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6318 */
6319 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6320 return false;
47118af0
MN
6321 mt = get_pageblock_migratetype(page);
6322 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6323 return false;
49ac8255
KH
6324
6325 pfn = page_to_pfn(page);
6326 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6327 unsigned long check = pfn + iter;
6328
29723fcc 6329 if (!pfn_valid_within(check))
49ac8255 6330 continue;
29723fcc 6331
49ac8255 6332 page = pfn_to_page(check);
c8721bbb
NH
6333
6334 /*
6335 * Hugepages are not in LRU lists, but they're movable.
6336 * We need not scan over tail pages bacause we don't
6337 * handle each tail page individually in migration.
6338 */
6339 if (PageHuge(page)) {
6340 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6341 continue;
6342 }
6343
97d255c8
MK
6344 /*
6345 * We can't use page_count without pin a page
6346 * because another CPU can free compound page.
6347 * This check already skips compound tails of THP
6348 * because their page->_count is zero at all time.
6349 */
6350 if (!atomic_read(&page->_count)) {
49ac8255
KH
6351 if (PageBuddy(page))
6352 iter += (1 << page_order(page)) - 1;
6353 continue;
6354 }
97d255c8 6355
b023f468
WC
6356 /*
6357 * The HWPoisoned page may be not in buddy system, and
6358 * page_count() is not 0.
6359 */
6360 if (skip_hwpoisoned_pages && PageHWPoison(page))
6361 continue;
6362
49ac8255
KH
6363 if (!PageLRU(page))
6364 found++;
6365 /*
6b4f7799
JW
6366 * If there are RECLAIMABLE pages, we need to check
6367 * it. But now, memory offline itself doesn't call
6368 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6369 */
6370 /*
6371 * If the page is not RAM, page_count()should be 0.
6372 * we don't need more check. This is an _used_ not-movable page.
6373 *
6374 * The problematic thing here is PG_reserved pages. PG_reserved
6375 * is set to both of a memory hole page and a _used_ kernel
6376 * page at boot.
6377 */
6378 if (found > count)
80934513 6379 return true;
49ac8255 6380 }
80934513 6381 return false;
49ac8255
KH
6382}
6383
6384bool is_pageblock_removable_nolock(struct page *page)
6385{
656a0706
MH
6386 struct zone *zone;
6387 unsigned long pfn;
687875fb
MH
6388
6389 /*
6390 * We have to be careful here because we are iterating over memory
6391 * sections which are not zone aware so we might end up outside of
6392 * the zone but still within the section.
656a0706
MH
6393 * We have to take care about the node as well. If the node is offline
6394 * its NODE_DATA will be NULL - see page_zone.
687875fb 6395 */
656a0706
MH
6396 if (!node_online(page_to_nid(page)))
6397 return false;
6398
6399 zone = page_zone(page);
6400 pfn = page_to_pfn(page);
108bcc96 6401 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6402 return false;
6403
b023f468 6404 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6405}
0c0e6195 6406
041d3a8c
MN
6407#ifdef CONFIG_CMA
6408
6409static unsigned long pfn_max_align_down(unsigned long pfn)
6410{
6411 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6412 pageblock_nr_pages) - 1);
6413}
6414
6415static unsigned long pfn_max_align_up(unsigned long pfn)
6416{
6417 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6418 pageblock_nr_pages));
6419}
6420
041d3a8c 6421/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6422static int __alloc_contig_migrate_range(struct compact_control *cc,
6423 unsigned long start, unsigned long end)
041d3a8c
MN
6424{
6425 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6426 unsigned long nr_reclaimed;
041d3a8c
MN
6427 unsigned long pfn = start;
6428 unsigned int tries = 0;
6429 int ret = 0;
6430
be49a6e1 6431 migrate_prep();
041d3a8c 6432
bb13ffeb 6433 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6434 if (fatal_signal_pending(current)) {
6435 ret = -EINTR;
6436 break;
6437 }
6438
bb13ffeb
MG
6439 if (list_empty(&cc->migratepages)) {
6440 cc->nr_migratepages = 0;
edc2ca61 6441 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6442 if (!pfn) {
6443 ret = -EINTR;
6444 break;
6445 }
6446 tries = 0;
6447 } else if (++tries == 5) {
6448 ret = ret < 0 ? ret : -EBUSY;
6449 break;
6450 }
6451
beb51eaa
MK
6452 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6453 &cc->migratepages);
6454 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6455
9c620e2b 6456 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6457 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6458 }
2a6f5124
SP
6459 if (ret < 0) {
6460 putback_movable_pages(&cc->migratepages);
6461 return ret;
6462 }
6463 return 0;
041d3a8c
MN
6464}
6465
6466/**
6467 * alloc_contig_range() -- tries to allocate given range of pages
6468 * @start: start PFN to allocate
6469 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6470 * @migratetype: migratetype of the underlaying pageblocks (either
6471 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6472 * in range must have the same migratetype and it must
6473 * be either of the two.
041d3a8c
MN
6474 *
6475 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6476 * aligned, however it's the caller's responsibility to guarantee that
6477 * we are the only thread that changes migrate type of pageblocks the
6478 * pages fall in.
6479 *
6480 * The PFN range must belong to a single zone.
6481 *
6482 * Returns zero on success or negative error code. On success all
6483 * pages which PFN is in [start, end) are allocated for the caller and
6484 * need to be freed with free_contig_range().
6485 */
0815f3d8
MN
6486int alloc_contig_range(unsigned long start, unsigned long end,
6487 unsigned migratetype)
041d3a8c 6488{
041d3a8c
MN
6489 unsigned long outer_start, outer_end;
6490 int ret = 0, order;
6491
bb13ffeb
MG
6492 struct compact_control cc = {
6493 .nr_migratepages = 0,
6494 .order = -1,
6495 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6496 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6497 .ignore_skip_hint = true,
6498 };
6499 INIT_LIST_HEAD(&cc.migratepages);
6500
041d3a8c
MN
6501 /*
6502 * What we do here is we mark all pageblocks in range as
6503 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6504 * have different sizes, and due to the way page allocator
6505 * work, we align the range to biggest of the two pages so
6506 * that page allocator won't try to merge buddies from
6507 * different pageblocks and change MIGRATE_ISOLATE to some
6508 * other migration type.
6509 *
6510 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6511 * migrate the pages from an unaligned range (ie. pages that
6512 * we are interested in). This will put all the pages in
6513 * range back to page allocator as MIGRATE_ISOLATE.
6514 *
6515 * When this is done, we take the pages in range from page
6516 * allocator removing them from the buddy system. This way
6517 * page allocator will never consider using them.
6518 *
6519 * This lets us mark the pageblocks back as
6520 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6521 * aligned range but not in the unaligned, original range are
6522 * put back to page allocator so that buddy can use them.
6523 */
6524
6525 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6526 pfn_max_align_up(end), migratetype,
6527 false);
041d3a8c 6528 if (ret)
86a595f9 6529 return ret;
041d3a8c 6530
bb13ffeb 6531 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6532 if (ret)
6533 goto done;
6534
6535 /*
6536 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6537 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6538 * more, all pages in [start, end) are free in page allocator.
6539 * What we are going to do is to allocate all pages from
6540 * [start, end) (that is remove them from page allocator).
6541 *
6542 * The only problem is that pages at the beginning and at the
6543 * end of interesting range may be not aligned with pages that
6544 * page allocator holds, ie. they can be part of higher order
6545 * pages. Because of this, we reserve the bigger range and
6546 * once this is done free the pages we are not interested in.
6547 *
6548 * We don't have to hold zone->lock here because the pages are
6549 * isolated thus they won't get removed from buddy.
6550 */
6551
6552 lru_add_drain_all();
510f5507 6553 drain_all_pages(cc.zone);
041d3a8c
MN
6554
6555 order = 0;
6556 outer_start = start;
6557 while (!PageBuddy(pfn_to_page(outer_start))) {
6558 if (++order >= MAX_ORDER) {
6559 ret = -EBUSY;
6560 goto done;
6561 }
6562 outer_start &= ~0UL << order;
6563 }
6564
6565 /* Make sure the range is really isolated. */
b023f468 6566 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6567 pr_info("%s: [%lx, %lx) PFNs busy\n",
6568 __func__, outer_start, end);
041d3a8c
MN
6569 ret = -EBUSY;
6570 goto done;
6571 }
6572
49f223a9 6573 /* Grab isolated pages from freelists. */
bb13ffeb 6574 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6575 if (!outer_end) {
6576 ret = -EBUSY;
6577 goto done;
6578 }
6579
6580 /* Free head and tail (if any) */
6581 if (start != outer_start)
6582 free_contig_range(outer_start, start - outer_start);
6583 if (end != outer_end)
6584 free_contig_range(end, outer_end - end);
6585
6586done:
6587 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6588 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6589 return ret;
6590}
6591
6592void free_contig_range(unsigned long pfn, unsigned nr_pages)
6593{
bcc2b02f
MS
6594 unsigned int count = 0;
6595
6596 for (; nr_pages--; pfn++) {
6597 struct page *page = pfn_to_page(pfn);
6598
6599 count += page_count(page) != 1;
6600 __free_page(page);
6601 }
6602 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6603}
6604#endif
6605
4ed7e022 6606#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6607/*
6608 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6609 * page high values need to be recalulated.
6610 */
4ed7e022
JL
6611void __meminit zone_pcp_update(struct zone *zone)
6612{
0a647f38 6613 unsigned cpu;
c8e251fa 6614 mutex_lock(&pcp_batch_high_lock);
0a647f38 6615 for_each_possible_cpu(cpu)
169f6c19
CS
6616 pageset_set_high_and_batch(zone,
6617 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6618 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6619}
6620#endif
6621
340175b7
JL
6622void zone_pcp_reset(struct zone *zone)
6623{
6624 unsigned long flags;
5a883813
MK
6625 int cpu;
6626 struct per_cpu_pageset *pset;
340175b7
JL
6627
6628 /* avoid races with drain_pages() */
6629 local_irq_save(flags);
6630 if (zone->pageset != &boot_pageset) {
5a883813
MK
6631 for_each_online_cpu(cpu) {
6632 pset = per_cpu_ptr(zone->pageset, cpu);
6633 drain_zonestat(zone, pset);
6634 }
340175b7
JL
6635 free_percpu(zone->pageset);
6636 zone->pageset = &boot_pageset;
6637 }
6638 local_irq_restore(flags);
6639}
6640
6dcd73d7 6641#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6642/*
6643 * All pages in the range must be isolated before calling this.
6644 */
6645void
6646__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6647{
6648 struct page *page;
6649 struct zone *zone;
7aeb09f9 6650 unsigned int order, i;
0c0e6195
KH
6651 unsigned long pfn;
6652 unsigned long flags;
6653 /* find the first valid pfn */
6654 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6655 if (pfn_valid(pfn))
6656 break;
6657 if (pfn == end_pfn)
6658 return;
6659 zone = page_zone(pfn_to_page(pfn));
6660 spin_lock_irqsave(&zone->lock, flags);
6661 pfn = start_pfn;
6662 while (pfn < end_pfn) {
6663 if (!pfn_valid(pfn)) {
6664 pfn++;
6665 continue;
6666 }
6667 page = pfn_to_page(pfn);
b023f468
WC
6668 /*
6669 * The HWPoisoned page may be not in buddy system, and
6670 * page_count() is not 0.
6671 */
6672 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6673 pfn++;
6674 SetPageReserved(page);
6675 continue;
6676 }
6677
0c0e6195
KH
6678 BUG_ON(page_count(page));
6679 BUG_ON(!PageBuddy(page));
6680 order = page_order(page);
6681#ifdef CONFIG_DEBUG_VM
6682 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6683 pfn, 1 << order, end_pfn);
6684#endif
6685 list_del(&page->lru);
6686 rmv_page_order(page);
6687 zone->free_area[order].nr_free--;
0c0e6195
KH
6688 for (i = 0; i < (1 << order); i++)
6689 SetPageReserved((page+i));
6690 pfn += (1 << order);
6691 }
6692 spin_unlock_irqrestore(&zone->lock, flags);
6693}
6694#endif
8d22ba1b
WF
6695
6696#ifdef CONFIG_MEMORY_FAILURE
6697bool is_free_buddy_page(struct page *page)
6698{
6699 struct zone *zone = page_zone(page);
6700 unsigned long pfn = page_to_pfn(page);
6701 unsigned long flags;
7aeb09f9 6702 unsigned int order;
8d22ba1b
WF
6703
6704 spin_lock_irqsave(&zone->lock, flags);
6705 for (order = 0; order < MAX_ORDER; order++) {
6706 struct page *page_head = page - (pfn & ((1 << order) - 1));
6707
6708 if (PageBuddy(page_head) && page_order(page_head) >= order)
6709 break;
6710 }
6711 spin_unlock_irqrestore(&zone->lock, flags);
6712
6713 return order < MAX_ORDER;
6714}
6715#endif
This page took 1.815563 seconds and 5 git commands to generate.