mm/page_alloc: move freepage counting logic to __free_one_page()
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
268bb0ce 56#include <linux/prefetch.h>
6e543d57 57#include <linux/mm_inline.h>
041d3a8c 58#include <linux/migrate.h>
c0a32fc5 59#include <linux/page-debug-flags.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
1da177e4 62
7ee3d4e8 63#include <asm/sections.h>
1da177e4 64#include <asm/tlbflush.h>
ac924c60 65#include <asm/div64.h>
1da177e4
LT
66#include "internal.h"
67
c8e251fa
CS
68/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 70#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 71
72812019
LS
72#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73DEFINE_PER_CPU(int, numa_node);
74EXPORT_PER_CPU_SYMBOL(numa_node);
75#endif
76
7aac7898
LS
77#ifdef CONFIG_HAVE_MEMORYLESS_NODES
78/*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 86int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
42aa83cb 208int user_min_free_kbytes = -1;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2 263 if (ret)
613813e8
DH
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
b5e6a5a2 267
bdc8cb98 268 return ret;
c6a57e19
DH
269}
270
271static int page_is_consistent(struct zone *zone, struct page *page)
272{
14e07298 273 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 274 return 0;
1da177e4 275 if (zone != page_zone(page))
c6a57e19
DH
276 return 0;
277
278 return 1;
279}
280/*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283static int bad_range(struct zone *zone, struct page *page)
284{
285 if (page_outside_zone_boundaries(zone, page))
1da177e4 286 return 1;
c6a57e19
DH
287 if (!page_is_consistent(zone, page))
288 return 1;
289
1da177e4
LT
290 return 0;
291}
13e7444b
NP
292#else
293static inline int bad_range(struct zone *zone, struct page *page)
294{
295 return 0;
296}
297#endif
298
d230dec1
KS
299static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
1da177e4 301{
d936cf9b
HD
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
2a7684a2
WF
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
22b751c3 308 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
309 return;
310 }
311
d936cf9b
HD
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
1e9e6365
HD
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
1e9e6365 332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 333 current->comm, page_to_pfn(page));
f0b791a3 334 dump_page_badflags(page, reason, bad_flags);
3dc14741 335
4f31888c 336 print_modules();
1da177e4 337 dump_stack();
d936cf9b 338out:
8cc3b392 339 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 340 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
342}
343
1da177e4
LT
344/*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
6416b9fa
WSH
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
1da177e4 353 *
41d78ba5
HD
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
1da177e4 357 */
d98c7a09
HD
358
359static void free_compound_page(struct page *page)
360{
d85f3385 361 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
362}
363
01ad1c08 364void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
365{
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
58a84aa9 374 set_page_count(p, 0);
18229df5 375 p->first_page = page;
668f9abb
DR
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
18229df5
AW
379 }
380}
381
59ff4216 382/* update __split_huge_page_refcount if you change this function */
8cc3b392 383static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
384{
385 int i;
386 int nr_pages = 1 << order;
8cc3b392 387 int bad = 0;
1da177e4 388
0bb2c763 389 if (unlikely(compound_order(page) != order)) {
f0b791a3 390 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
391 bad++;
392 }
1da177e4 393
6d777953 394 __ClearPageHead(page);
8cc3b392 395
18229df5
AW
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
1da177e4 398
f0b791a3
DH
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
404 bad++;
405 }
d85f3385 406 __ClearPageTail(p);
1da177e4 407 }
8cc3b392
HD
408
409 return bad;
1da177e4 410}
1da177e4 411
7aeb09f9
MG
412static inline void prep_zero_page(struct page *page, unsigned int order,
413 gfp_t gfp_flags)
17cf4406
NP
414{
415 int i;
416
6626c5d5
AM
417 /*
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 */
725d704e 421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
422 for (i = 0; i < (1 << order); i++)
423 clear_highpage(page + i);
424}
425
c0a32fc5
SG
426#ifdef CONFIG_DEBUG_PAGEALLOC
427unsigned int _debug_guardpage_minorder;
428
429static int __init debug_guardpage_minorder_setup(char *buf)
430{
431 unsigned long res;
432
433 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
434 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
435 return 0;
436 }
437 _debug_guardpage_minorder = res;
438 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
439 return 0;
440}
441__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
442
443static inline void set_page_guard_flag(struct page *page)
444{
445 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
446}
447
448static inline void clear_page_guard_flag(struct page *page)
449{
450 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
451}
452#else
453static inline void set_page_guard_flag(struct page *page) { }
454static inline void clear_page_guard_flag(struct page *page) { }
455#endif
456
7aeb09f9 457static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 458{
4c21e2f2 459 set_page_private(page, order);
676165a8 460 __SetPageBuddy(page);
1da177e4
LT
461}
462
463static inline void rmv_page_order(struct page *page)
464{
676165a8 465 __ClearPageBuddy(page);
4c21e2f2 466 set_page_private(page, 0);
1da177e4
LT
467}
468
469/*
470 * Locate the struct page for both the matching buddy in our
471 * pair (buddy1) and the combined O(n+1) page they form (page).
472 *
473 * 1) Any buddy B1 will have an order O twin B2 which satisfies
474 * the following equation:
475 * B2 = B1 ^ (1 << O)
476 * For example, if the starting buddy (buddy2) is #8 its order
477 * 1 buddy is #10:
478 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
479 *
480 * 2) Any buddy B will have an order O+1 parent P which
481 * satisfies the following equation:
482 * P = B & ~(1 << O)
483 *
d6e05edc 484 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 485 */
1da177e4 486static inline unsigned long
43506fad 487__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 488{
43506fad 489 return page_idx ^ (1 << order);
1da177e4
LT
490}
491
492/*
493 * This function checks whether a page is free && is the buddy
494 * we can do coalesce a page and its buddy if
13e7444b 495 * (a) the buddy is not in a hole &&
676165a8 496 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
497 * (c) a page and its buddy have the same order &&
498 * (d) a page and its buddy are in the same zone.
676165a8 499 *
cf6fe945
WSH
500 * For recording whether a page is in the buddy system, we set ->_mapcount
501 * PAGE_BUDDY_MAPCOUNT_VALUE.
502 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
503 * serialized by zone->lock.
1da177e4 504 *
676165a8 505 * For recording page's order, we use page_private(page).
1da177e4 506 */
cb2b95e1 507static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 508 unsigned int order)
1da177e4 509{
14e07298 510 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 511 return 0;
13e7444b 512
c0a32fc5 513 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 514 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
515
516 if (page_zone_id(page) != page_zone_id(buddy))
517 return 0;
518
c0a32fc5
SG
519 return 1;
520 }
521
cb2b95e1 522 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 523 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
524
525 /*
526 * zone check is done late to avoid uselessly
527 * calculating zone/node ids for pages that could
528 * never merge.
529 */
530 if (page_zone_id(page) != page_zone_id(buddy))
531 return 0;
532
6aa3001b 533 return 1;
676165a8 534 }
6aa3001b 535 return 0;
1da177e4
LT
536}
537
538/*
539 * Freeing function for a buddy system allocator.
540 *
541 * The concept of a buddy system is to maintain direct-mapped table
542 * (containing bit values) for memory blocks of various "orders".
543 * The bottom level table contains the map for the smallest allocatable
544 * units of memory (here, pages), and each level above it describes
545 * pairs of units from the levels below, hence, "buddies".
546 * At a high level, all that happens here is marking the table entry
547 * at the bottom level available, and propagating the changes upward
548 * as necessary, plus some accounting needed to play nicely with other
549 * parts of the VM system.
550 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
551 * free pages of length of (1 << order) and marked with _mapcount
552 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
553 * field.
1da177e4 554 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
555 * other. That is, if we allocate a small block, and both were
556 * free, the remainder of the region must be split into blocks.
1da177e4 557 * If a block is freed, and its buddy is also free, then this
5f63b720 558 * triggers coalescing into a block of larger size.
1da177e4 559 *
6d49e352 560 * -- nyc
1da177e4
LT
561 */
562
48db57f8 563static inline void __free_one_page(struct page *page,
dc4b0caf 564 unsigned long pfn,
ed0ae21d
MG
565 struct zone *zone, unsigned int order,
566 int migratetype)
1da177e4
LT
567{
568 unsigned long page_idx;
6dda9d55 569 unsigned long combined_idx;
43506fad 570 unsigned long uninitialized_var(buddy_idx);
6dda9d55 571 struct page *buddy;
1da177e4 572
d29bb978
CS
573 VM_BUG_ON(!zone_is_initialized(zone));
574
224abf92 575 if (unlikely(PageCompound(page)))
8cc3b392
HD
576 if (unlikely(destroy_compound_page(page, order)))
577 return;
1da177e4 578
ed0ae21d 579 VM_BUG_ON(migratetype == -1);
8f82b55d
JK
580 if (!is_migrate_isolate(migratetype))
581 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 582
dc4b0caf 583 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 584
309381fe
SL
585 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
586 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 587
1da177e4 588 while (order < MAX_ORDER-1) {
43506fad
KC
589 buddy_idx = __find_buddy_index(page_idx, order);
590 buddy = page + (buddy_idx - page_idx);
cb2b95e1 591 if (!page_is_buddy(page, buddy, order))
3c82d0ce 592 break;
c0a32fc5
SG
593 /*
594 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
595 * merge with it and move up one order.
596 */
597 if (page_is_guard(buddy)) {
598 clear_page_guard_flag(buddy);
599 set_page_private(page, 0);
d1ce749a
BZ
600 __mod_zone_freepage_state(zone, 1 << order,
601 migratetype);
c0a32fc5
SG
602 } else {
603 list_del(&buddy->lru);
604 zone->free_area[order].nr_free--;
605 rmv_page_order(buddy);
606 }
43506fad 607 combined_idx = buddy_idx & page_idx;
1da177e4
LT
608 page = page + (combined_idx - page_idx);
609 page_idx = combined_idx;
610 order++;
611 }
612 set_page_order(page, order);
6dda9d55
CZ
613
614 /*
615 * If this is not the largest possible page, check if the buddy
616 * of the next-highest order is free. If it is, it's possible
617 * that pages are being freed that will coalesce soon. In case,
618 * that is happening, add the free page to the tail of the list
619 * so it's less likely to be used soon and more likely to be merged
620 * as a higher order page
621 */
b7f50cfa 622 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 623 struct page *higher_page, *higher_buddy;
43506fad
KC
624 combined_idx = buddy_idx & page_idx;
625 higher_page = page + (combined_idx - page_idx);
626 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 627 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
628 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
629 list_add_tail(&page->lru,
630 &zone->free_area[order].free_list[migratetype]);
631 goto out;
632 }
633 }
634
635 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
636out:
1da177e4
LT
637 zone->free_area[order].nr_free++;
638}
639
224abf92 640static inline int free_pages_check(struct page *page)
1da177e4 641{
d230dec1 642 const char *bad_reason = NULL;
f0b791a3
DH
643 unsigned long bad_flags = 0;
644
645 if (unlikely(page_mapcount(page)))
646 bad_reason = "nonzero mapcount";
647 if (unlikely(page->mapping != NULL))
648 bad_reason = "non-NULL mapping";
649 if (unlikely(atomic_read(&page->_count) != 0))
650 bad_reason = "nonzero _count";
651 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
652 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
653 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
654 }
655 if (unlikely(mem_cgroup_bad_page_check(page)))
656 bad_reason = "cgroup check failed";
657 if (unlikely(bad_reason)) {
658 bad_page(page, bad_reason, bad_flags);
79f4b7bf 659 return 1;
8cc3b392 660 }
90572890 661 page_cpupid_reset_last(page);
79f4b7bf
HD
662 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
663 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
664 return 0;
1da177e4
LT
665}
666
667/*
5f8dcc21 668 * Frees a number of pages from the PCP lists
1da177e4 669 * Assumes all pages on list are in same zone, and of same order.
207f36ee 670 * count is the number of pages to free.
1da177e4
LT
671 *
672 * If the zone was previously in an "all pages pinned" state then look to
673 * see if this freeing clears that state.
674 *
675 * And clear the zone's pages_scanned counter, to hold off the "all pages are
676 * pinned" detection logic.
677 */
5f8dcc21
MG
678static void free_pcppages_bulk(struct zone *zone, int count,
679 struct per_cpu_pages *pcp)
1da177e4 680{
5f8dcc21 681 int migratetype = 0;
a6f9edd6 682 int batch_free = 0;
72853e29 683 int to_free = count;
0d5d823a 684 unsigned long nr_scanned;
5f8dcc21 685
c54ad30c 686 spin_lock(&zone->lock);
0d5d823a
MG
687 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
688 if (nr_scanned)
689 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 690
72853e29 691 while (to_free) {
48db57f8 692 struct page *page;
5f8dcc21
MG
693 struct list_head *list;
694
695 /*
a6f9edd6
MG
696 * Remove pages from lists in a round-robin fashion. A
697 * batch_free count is maintained that is incremented when an
698 * empty list is encountered. This is so more pages are freed
699 * off fuller lists instead of spinning excessively around empty
700 * lists
5f8dcc21
MG
701 */
702 do {
a6f9edd6 703 batch_free++;
5f8dcc21
MG
704 if (++migratetype == MIGRATE_PCPTYPES)
705 migratetype = 0;
706 list = &pcp->lists[migratetype];
707 } while (list_empty(list));
48db57f8 708
1d16871d
NK
709 /* This is the only non-empty list. Free them all. */
710 if (batch_free == MIGRATE_PCPTYPES)
711 batch_free = to_free;
712
a6f9edd6 713 do {
770c8aaa
BZ
714 int mt; /* migratetype of the to-be-freed page */
715
a6f9edd6
MG
716 page = list_entry(list->prev, struct page, lru);
717 /* must delete as __free_one_page list manipulates */
718 list_del(&page->lru);
b12c4ad1 719 mt = get_freepage_migratetype(page);
8f82b55d 720 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 721 mt = get_pageblock_migratetype(page);
51bb1a40 722
a7016235 723 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 724 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 725 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 726 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 727 }
c54ad30c 728 spin_unlock(&zone->lock);
1da177e4
LT
729}
730
dc4b0caf
MG
731static void free_one_page(struct zone *zone,
732 struct page *page, unsigned long pfn,
7aeb09f9 733 unsigned int order,
ed0ae21d 734 int migratetype)
1da177e4 735{
0d5d823a 736 unsigned long nr_scanned;
006d22d9 737 spin_lock(&zone->lock);
0d5d823a
MG
738 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
739 if (nr_scanned)
740 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 741
ad53f92e
JK
742 if (unlikely(has_isolate_pageblock(zone) ||
743 is_migrate_isolate(migratetype))) {
744 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 745 }
dc4b0caf 746 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 747 spin_unlock(&zone->lock);
48db57f8
NP
748}
749
ec95f53a 750static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 751{
1da177e4 752 int i;
8cc3b392 753 int bad = 0;
1da177e4 754
b413d48a 755 trace_mm_page_free(page, order);
b1eeab67
VN
756 kmemcheck_free_shadow(page, order);
757
8dd60a3a
AA
758 if (PageAnon(page))
759 page->mapping = NULL;
760 for (i = 0; i < (1 << order); i++)
761 bad += free_pages_check(page + i);
8cc3b392 762 if (bad)
ec95f53a 763 return false;
689bcebf 764
3ac7fe5a 765 if (!PageHighMem(page)) {
b8af2941
PK
766 debug_check_no_locks_freed(page_address(page),
767 PAGE_SIZE << order);
3ac7fe5a
TG
768 debug_check_no_obj_freed(page_address(page),
769 PAGE_SIZE << order);
770 }
dafb1367 771 arch_free_page(page, order);
48db57f8 772 kernel_map_pages(page, 1 << order, 0);
dafb1367 773
ec95f53a
KM
774 return true;
775}
776
777static void __free_pages_ok(struct page *page, unsigned int order)
778{
779 unsigned long flags;
95e34412 780 int migratetype;
dc4b0caf 781 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
782
783 if (!free_pages_prepare(page, order))
784 return;
785
cfc47a28 786 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 787 local_irq_save(flags);
f8891e5e 788 __count_vm_events(PGFREE, 1 << order);
95e34412 789 set_freepage_migratetype(page, migratetype);
dc4b0caf 790 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 791 local_irq_restore(flags);
1da177e4
LT
792}
793
170a5a7e 794void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 795{
c3993076 796 unsigned int nr_pages = 1 << order;
e2d0bd2b 797 struct page *p = page;
c3993076 798 unsigned int loop;
a226f6c8 799
e2d0bd2b
YL
800 prefetchw(p);
801 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
802 prefetchw(p + 1);
c3993076
JW
803 __ClearPageReserved(p);
804 set_page_count(p, 0);
a226f6c8 805 }
e2d0bd2b
YL
806 __ClearPageReserved(p);
807 set_page_count(p, 0);
c3993076 808
e2d0bd2b 809 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
810 set_page_refcounted(page);
811 __free_pages(page, order);
a226f6c8
DH
812}
813
47118af0 814#ifdef CONFIG_CMA
9cf510a5 815/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
816void __init init_cma_reserved_pageblock(struct page *page)
817{
818 unsigned i = pageblock_nr_pages;
819 struct page *p = page;
820
821 do {
822 __ClearPageReserved(p);
823 set_page_count(p, 0);
824 } while (++p, --i);
825
47118af0 826 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
827
828 if (pageblock_order >= MAX_ORDER) {
829 i = pageblock_nr_pages;
830 p = page;
831 do {
832 set_page_refcounted(p);
833 __free_pages(p, MAX_ORDER - 1);
834 p += MAX_ORDER_NR_PAGES;
835 } while (i -= MAX_ORDER_NR_PAGES);
836 } else {
837 set_page_refcounted(page);
838 __free_pages(page, pageblock_order);
839 }
840
3dcc0571 841 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
842}
843#endif
1da177e4
LT
844
845/*
846 * The order of subdivision here is critical for the IO subsystem.
847 * Please do not alter this order without good reasons and regression
848 * testing. Specifically, as large blocks of memory are subdivided,
849 * the order in which smaller blocks are delivered depends on the order
850 * they're subdivided in this function. This is the primary factor
851 * influencing the order in which pages are delivered to the IO
852 * subsystem according to empirical testing, and this is also justified
853 * by considering the behavior of a buddy system containing a single
854 * large block of memory acted on by a series of small allocations.
855 * This behavior is a critical factor in sglist merging's success.
856 *
6d49e352 857 * -- nyc
1da177e4 858 */
085cc7d5 859static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
860 int low, int high, struct free_area *area,
861 int migratetype)
1da177e4
LT
862{
863 unsigned long size = 1 << high;
864
865 while (high > low) {
866 area--;
867 high--;
868 size >>= 1;
309381fe 869 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5
SG
870
871#ifdef CONFIG_DEBUG_PAGEALLOC
872 if (high < debug_guardpage_minorder()) {
873 /*
874 * Mark as guard pages (or page), that will allow to
875 * merge back to allocator when buddy will be freed.
876 * Corresponding page table entries will not be touched,
877 * pages will stay not present in virtual address space
878 */
879 INIT_LIST_HEAD(&page[size].lru);
880 set_page_guard_flag(&page[size]);
881 set_page_private(&page[size], high);
882 /* Guard pages are not available for any usage */
d1ce749a
BZ
883 __mod_zone_freepage_state(zone, -(1 << high),
884 migratetype);
c0a32fc5
SG
885 continue;
886 }
887#endif
b2a0ac88 888 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
889 area->nr_free++;
890 set_page_order(&page[size], high);
891 }
1da177e4
LT
892}
893
1da177e4
LT
894/*
895 * This page is about to be returned from the page allocator
896 */
2a7684a2 897static inline int check_new_page(struct page *page)
1da177e4 898{
d230dec1 899 const char *bad_reason = NULL;
f0b791a3
DH
900 unsigned long bad_flags = 0;
901
902 if (unlikely(page_mapcount(page)))
903 bad_reason = "nonzero mapcount";
904 if (unlikely(page->mapping != NULL))
905 bad_reason = "non-NULL mapping";
906 if (unlikely(atomic_read(&page->_count) != 0))
907 bad_reason = "nonzero _count";
908 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
909 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
910 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
911 }
912 if (unlikely(mem_cgroup_bad_page_check(page)))
913 bad_reason = "cgroup check failed";
914 if (unlikely(bad_reason)) {
915 bad_page(page, bad_reason, bad_flags);
689bcebf 916 return 1;
8cc3b392 917 }
2a7684a2
WF
918 return 0;
919}
920
7aeb09f9 921static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
2a7684a2
WF
922{
923 int i;
924
925 for (i = 0; i < (1 << order); i++) {
926 struct page *p = page + i;
927 if (unlikely(check_new_page(p)))
928 return 1;
929 }
689bcebf 930
4c21e2f2 931 set_page_private(page, 0);
7835e98b 932 set_page_refcounted(page);
cc102509
NP
933
934 arch_alloc_page(page, order);
1da177e4 935 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
936
937 if (gfp_flags & __GFP_ZERO)
938 prep_zero_page(page, order, gfp_flags);
939
940 if (order && (gfp_flags & __GFP_COMP))
941 prep_compound_page(page, order);
942
689bcebf 943 return 0;
1da177e4
LT
944}
945
56fd56b8
MG
946/*
947 * Go through the free lists for the given migratetype and remove
948 * the smallest available page from the freelists
949 */
728ec980
MG
950static inline
951struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
952 int migratetype)
953{
954 unsigned int current_order;
b8af2941 955 struct free_area *area;
56fd56b8
MG
956 struct page *page;
957
958 /* Find a page of the appropriate size in the preferred list */
959 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
960 area = &(zone->free_area[current_order]);
961 if (list_empty(&area->free_list[migratetype]))
962 continue;
963
964 page = list_entry(area->free_list[migratetype].next,
965 struct page, lru);
966 list_del(&page->lru);
967 rmv_page_order(page);
968 area->nr_free--;
56fd56b8 969 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 970 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
971 return page;
972 }
973
974 return NULL;
975}
976
977
b2a0ac88
MG
978/*
979 * This array describes the order lists are fallen back to when
980 * the free lists for the desirable migrate type are depleted
981 */
47118af0
MN
982static int fallbacks[MIGRATE_TYPES][4] = {
983 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
984 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
985#ifdef CONFIG_CMA
986 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
987 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
988#else
989 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
990#endif
6d4a4916 991 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 992#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 993 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 994#endif
b2a0ac88
MG
995};
996
c361be55
MG
997/*
998 * Move the free pages in a range to the free lists of the requested type.
d9c23400 999 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1000 * boundary. If alignment is required, use move_freepages_block()
1001 */
435b405c 1002int move_freepages(struct zone *zone,
b69a7288
AB
1003 struct page *start_page, struct page *end_page,
1004 int migratetype)
c361be55
MG
1005{
1006 struct page *page;
1007 unsigned long order;
d100313f 1008 int pages_moved = 0;
c361be55
MG
1009
1010#ifndef CONFIG_HOLES_IN_ZONE
1011 /*
1012 * page_zone is not safe to call in this context when
1013 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1014 * anyway as we check zone boundaries in move_freepages_block().
1015 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1016 * grouping pages by mobility
c361be55 1017 */
97ee4ba7 1018 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1019#endif
1020
1021 for (page = start_page; page <= end_page;) {
344c790e 1022 /* Make sure we are not inadvertently changing nodes */
309381fe 1023 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1024
c361be55
MG
1025 if (!pfn_valid_within(page_to_pfn(page))) {
1026 page++;
1027 continue;
1028 }
1029
1030 if (!PageBuddy(page)) {
1031 page++;
1032 continue;
1033 }
1034
1035 order = page_order(page);
84be48d8
KS
1036 list_move(&page->lru,
1037 &zone->free_area[order].free_list[migratetype]);
95e34412 1038 set_freepage_migratetype(page, migratetype);
c361be55 1039 page += 1 << order;
d100313f 1040 pages_moved += 1 << order;
c361be55
MG
1041 }
1042
d100313f 1043 return pages_moved;
c361be55
MG
1044}
1045
ee6f509c 1046int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1047 int migratetype)
c361be55
MG
1048{
1049 unsigned long start_pfn, end_pfn;
1050 struct page *start_page, *end_page;
1051
1052 start_pfn = page_to_pfn(page);
d9c23400 1053 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1054 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1055 end_page = start_page + pageblock_nr_pages - 1;
1056 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1057
1058 /* Do not cross zone boundaries */
108bcc96 1059 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1060 start_page = page;
108bcc96 1061 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1062 return 0;
1063
1064 return move_freepages(zone, start_page, end_page, migratetype);
1065}
1066
2f66a68f
MG
1067static void change_pageblock_range(struct page *pageblock_page,
1068 int start_order, int migratetype)
1069{
1070 int nr_pageblocks = 1 << (start_order - pageblock_order);
1071
1072 while (nr_pageblocks--) {
1073 set_pageblock_migratetype(pageblock_page, migratetype);
1074 pageblock_page += pageblock_nr_pages;
1075 }
1076}
1077
fef903ef
SB
1078/*
1079 * If breaking a large block of pages, move all free pages to the preferred
1080 * allocation list. If falling back for a reclaimable kernel allocation, be
1081 * more aggressive about taking ownership of free pages.
1082 *
1083 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1084 * nor move CMA pages to different free lists. We don't want unmovable pages
1085 * to be allocated from MIGRATE_CMA areas.
1086 *
1087 * Returns the new migratetype of the pageblock (or the same old migratetype
1088 * if it was unchanged).
1089 */
1090static int try_to_steal_freepages(struct zone *zone, struct page *page,
1091 int start_type, int fallback_type)
1092{
1093 int current_order = page_order(page);
1094
0cbef29a
KM
1095 /*
1096 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1097 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1098 * is set to CMA so it is returned to the correct freelist in case
1099 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1100 */
fef903ef
SB
1101 if (is_migrate_cma(fallback_type))
1102 return fallback_type;
1103
1104 /* Take ownership for orders >= pageblock_order */
1105 if (current_order >= pageblock_order) {
1106 change_pageblock_range(page, current_order, start_type);
1107 return start_type;
1108 }
1109
1110 if (current_order >= pageblock_order / 2 ||
1111 start_type == MIGRATE_RECLAIMABLE ||
1112 page_group_by_mobility_disabled) {
1113 int pages;
1114
1115 pages = move_freepages_block(zone, page, start_type);
1116
1117 /* Claim the whole block if over half of it is free */
1118 if (pages >= (1 << (pageblock_order-1)) ||
1119 page_group_by_mobility_disabled) {
1120
1121 set_pageblock_migratetype(page, start_type);
1122 return start_type;
1123 }
1124
1125 }
1126
1127 return fallback_type;
1128}
1129
b2a0ac88 1130/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1131static inline struct page *
7aeb09f9 1132__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1133{
b8af2941 1134 struct free_area *area;
7aeb09f9 1135 unsigned int current_order;
b2a0ac88 1136 struct page *page;
fef903ef 1137 int migratetype, new_type, i;
b2a0ac88
MG
1138
1139 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1140 for (current_order = MAX_ORDER-1;
1141 current_order >= order && current_order <= MAX_ORDER-1;
1142 --current_order) {
6d4a4916 1143 for (i = 0;; i++) {
b2a0ac88
MG
1144 migratetype = fallbacks[start_migratetype][i];
1145
56fd56b8
MG
1146 /* MIGRATE_RESERVE handled later if necessary */
1147 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1148 break;
e010487d 1149
b2a0ac88
MG
1150 area = &(zone->free_area[current_order]);
1151 if (list_empty(&area->free_list[migratetype]))
1152 continue;
1153
1154 page = list_entry(area->free_list[migratetype].next,
1155 struct page, lru);
1156 area->nr_free--;
1157
fef903ef
SB
1158 new_type = try_to_steal_freepages(zone, page,
1159 start_migratetype,
1160 migratetype);
b2a0ac88
MG
1161
1162 /* Remove the page from the freelists */
1163 list_del(&page->lru);
1164 rmv_page_order(page);
b2a0ac88 1165
47118af0 1166 expand(zone, page, order, current_order, area,
0cbef29a 1167 new_type);
5bcc9f86
VB
1168 /* The freepage_migratetype may differ from pageblock's
1169 * migratetype depending on the decisions in
1170 * try_to_steal_freepages. This is OK as long as it does
1171 * not differ for MIGRATE_CMA type.
1172 */
1173 set_freepage_migratetype(page, new_type);
e0fff1bd 1174
52c8f6a5
KM
1175 trace_mm_page_alloc_extfrag(page, order, current_order,
1176 start_migratetype, migratetype, new_type);
e0fff1bd 1177
b2a0ac88
MG
1178 return page;
1179 }
1180 }
1181
728ec980 1182 return NULL;
b2a0ac88
MG
1183}
1184
56fd56b8 1185/*
1da177e4
LT
1186 * Do the hard work of removing an element from the buddy allocator.
1187 * Call me with the zone->lock already held.
1188 */
b2a0ac88
MG
1189static struct page *__rmqueue(struct zone *zone, unsigned int order,
1190 int migratetype)
1da177e4 1191{
1da177e4
LT
1192 struct page *page;
1193
728ec980 1194retry_reserve:
56fd56b8 1195 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1196
728ec980 1197 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1198 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1199
728ec980
MG
1200 /*
1201 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1202 * is used because __rmqueue_smallest is an inline function
1203 * and we want just one call site
1204 */
1205 if (!page) {
1206 migratetype = MIGRATE_RESERVE;
1207 goto retry_reserve;
1208 }
1209 }
1210
0d3d062a 1211 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1212 return page;
1da177e4
LT
1213}
1214
5f63b720 1215/*
1da177e4
LT
1216 * Obtain a specified number of elements from the buddy allocator, all under
1217 * a single hold of the lock, for efficiency. Add them to the supplied list.
1218 * Returns the number of new pages which were placed at *list.
1219 */
5f63b720 1220static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1221 unsigned long count, struct list_head *list,
b745bc85 1222 int migratetype, bool cold)
1da177e4 1223{
5bcc9f86 1224 int i;
5f63b720 1225
c54ad30c 1226 spin_lock(&zone->lock);
1da177e4 1227 for (i = 0; i < count; ++i) {
b2a0ac88 1228 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1229 if (unlikely(page == NULL))
1da177e4 1230 break;
81eabcbe
MG
1231
1232 /*
1233 * Split buddy pages returned by expand() are received here
1234 * in physical page order. The page is added to the callers and
1235 * list and the list head then moves forward. From the callers
1236 * perspective, the linked list is ordered by page number in
1237 * some conditions. This is useful for IO devices that can
1238 * merge IO requests if the physical pages are ordered
1239 * properly.
1240 */
b745bc85 1241 if (likely(!cold))
e084b2d9
MG
1242 list_add(&page->lru, list);
1243 else
1244 list_add_tail(&page->lru, list);
81eabcbe 1245 list = &page->lru;
5bcc9f86 1246 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1247 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1248 -(1 << order));
1da177e4 1249 }
f2260e6b 1250 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1251 spin_unlock(&zone->lock);
085cc7d5 1252 return i;
1da177e4
LT
1253}
1254
4ae7c039 1255#ifdef CONFIG_NUMA
8fce4d8e 1256/*
4037d452
CL
1257 * Called from the vmstat counter updater to drain pagesets of this
1258 * currently executing processor on remote nodes after they have
1259 * expired.
1260 *
879336c3
CL
1261 * Note that this function must be called with the thread pinned to
1262 * a single processor.
8fce4d8e 1263 */
4037d452 1264void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1265{
4ae7c039 1266 unsigned long flags;
7be12fc9 1267 int to_drain, batch;
4ae7c039 1268
4037d452 1269 local_irq_save(flags);
998d39cb 1270 batch = ACCESS_ONCE(pcp->batch);
7be12fc9 1271 to_drain = min(pcp->count, batch);
2a13515c
KM
1272 if (to_drain > 0) {
1273 free_pcppages_bulk(zone, to_drain, pcp);
1274 pcp->count -= to_drain;
1275 }
4037d452 1276 local_irq_restore(flags);
4ae7c039
CL
1277}
1278#endif
1279
9f8f2172
CL
1280/*
1281 * Drain pages of the indicated processor.
1282 *
1283 * The processor must either be the current processor and the
1284 * thread pinned to the current processor or a processor that
1285 * is not online.
1286 */
1287static void drain_pages(unsigned int cpu)
1da177e4 1288{
c54ad30c 1289 unsigned long flags;
1da177e4 1290 struct zone *zone;
1da177e4 1291
ee99c71c 1292 for_each_populated_zone(zone) {
1da177e4 1293 struct per_cpu_pageset *pset;
3dfa5721 1294 struct per_cpu_pages *pcp;
1da177e4 1295
99dcc3e5
CL
1296 local_irq_save(flags);
1297 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1298
1299 pcp = &pset->pcp;
2ff754fa
DR
1300 if (pcp->count) {
1301 free_pcppages_bulk(zone, pcp->count, pcp);
1302 pcp->count = 0;
1303 }
3dfa5721 1304 local_irq_restore(flags);
1da177e4
LT
1305 }
1306}
1da177e4 1307
9f8f2172
CL
1308/*
1309 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1310 */
1311void drain_local_pages(void *arg)
1312{
1313 drain_pages(smp_processor_id());
1314}
1315
1316/*
74046494
GBY
1317 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1318 *
1319 * Note that this code is protected against sending an IPI to an offline
1320 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1321 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1322 * nothing keeps CPUs from showing up after we populated the cpumask and
1323 * before the call to on_each_cpu_mask().
9f8f2172
CL
1324 */
1325void drain_all_pages(void)
1326{
74046494
GBY
1327 int cpu;
1328 struct per_cpu_pageset *pcp;
1329 struct zone *zone;
1330
1331 /*
1332 * Allocate in the BSS so we wont require allocation in
1333 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1334 */
1335 static cpumask_t cpus_with_pcps;
1336
1337 /*
1338 * We don't care about racing with CPU hotplug event
1339 * as offline notification will cause the notified
1340 * cpu to drain that CPU pcps and on_each_cpu_mask
1341 * disables preemption as part of its processing
1342 */
1343 for_each_online_cpu(cpu) {
1344 bool has_pcps = false;
1345 for_each_populated_zone(zone) {
1346 pcp = per_cpu_ptr(zone->pageset, cpu);
1347 if (pcp->pcp.count) {
1348 has_pcps = true;
1349 break;
1350 }
1351 }
1352 if (has_pcps)
1353 cpumask_set_cpu(cpu, &cpus_with_pcps);
1354 else
1355 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1356 }
1357 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1358}
1359
296699de 1360#ifdef CONFIG_HIBERNATION
1da177e4
LT
1361
1362void mark_free_pages(struct zone *zone)
1363{
f623f0db
RW
1364 unsigned long pfn, max_zone_pfn;
1365 unsigned long flags;
7aeb09f9 1366 unsigned int order, t;
1da177e4
LT
1367 struct list_head *curr;
1368
8080fc03 1369 if (zone_is_empty(zone))
1da177e4
LT
1370 return;
1371
1372 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1373
108bcc96 1374 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1375 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1376 if (pfn_valid(pfn)) {
1377 struct page *page = pfn_to_page(pfn);
1378
7be98234
RW
1379 if (!swsusp_page_is_forbidden(page))
1380 swsusp_unset_page_free(page);
f623f0db 1381 }
1da177e4 1382
b2a0ac88
MG
1383 for_each_migratetype_order(order, t) {
1384 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1385 unsigned long i;
1da177e4 1386
f623f0db
RW
1387 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1388 for (i = 0; i < (1UL << order); i++)
7be98234 1389 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1390 }
b2a0ac88 1391 }
1da177e4
LT
1392 spin_unlock_irqrestore(&zone->lock, flags);
1393}
e2c55dc8 1394#endif /* CONFIG_PM */
1da177e4 1395
1da177e4
LT
1396/*
1397 * Free a 0-order page
b745bc85 1398 * cold == true ? free a cold page : free a hot page
1da177e4 1399 */
b745bc85 1400void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1401{
1402 struct zone *zone = page_zone(page);
1403 struct per_cpu_pages *pcp;
1404 unsigned long flags;
dc4b0caf 1405 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1406 int migratetype;
1da177e4 1407
ec95f53a 1408 if (!free_pages_prepare(page, 0))
689bcebf
HD
1409 return;
1410
dc4b0caf 1411 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1412 set_freepage_migratetype(page, migratetype);
1da177e4 1413 local_irq_save(flags);
f8891e5e 1414 __count_vm_event(PGFREE);
da456f14 1415
5f8dcc21
MG
1416 /*
1417 * We only track unmovable, reclaimable and movable on pcp lists.
1418 * Free ISOLATE pages back to the allocator because they are being
1419 * offlined but treat RESERVE as movable pages so we can get those
1420 * areas back if necessary. Otherwise, we may have to free
1421 * excessively into the page allocator
1422 */
1423 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1424 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1425 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1426 goto out;
1427 }
1428 migratetype = MIGRATE_MOVABLE;
1429 }
1430
99dcc3e5 1431 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1432 if (!cold)
5f8dcc21 1433 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1434 else
1435 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1436 pcp->count++;
48db57f8 1437 if (pcp->count >= pcp->high) {
998d39cb
CS
1438 unsigned long batch = ACCESS_ONCE(pcp->batch);
1439 free_pcppages_bulk(zone, batch, pcp);
1440 pcp->count -= batch;
48db57f8 1441 }
5f8dcc21
MG
1442
1443out:
1da177e4 1444 local_irq_restore(flags);
1da177e4
LT
1445}
1446
cc59850e
KK
1447/*
1448 * Free a list of 0-order pages
1449 */
b745bc85 1450void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1451{
1452 struct page *page, *next;
1453
1454 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1455 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1456 free_hot_cold_page(page, cold);
1457 }
1458}
1459
8dfcc9ba
NP
1460/*
1461 * split_page takes a non-compound higher-order page, and splits it into
1462 * n (1<<order) sub-pages: page[0..n]
1463 * Each sub-page must be freed individually.
1464 *
1465 * Note: this is probably too low level an operation for use in drivers.
1466 * Please consult with lkml before using this in your driver.
1467 */
1468void split_page(struct page *page, unsigned int order)
1469{
1470 int i;
1471
309381fe
SL
1472 VM_BUG_ON_PAGE(PageCompound(page), page);
1473 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1474
1475#ifdef CONFIG_KMEMCHECK
1476 /*
1477 * Split shadow pages too, because free(page[0]) would
1478 * otherwise free the whole shadow.
1479 */
1480 if (kmemcheck_page_is_tracked(page))
1481 split_page(virt_to_page(page[0].shadow), order);
1482#endif
1483
7835e98b
NP
1484 for (i = 1; i < (1 << order); i++)
1485 set_page_refcounted(page + i);
8dfcc9ba 1486}
5853ff23 1487EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1488
8fb74b9f 1489static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1490{
748446bb
MG
1491 unsigned long watermark;
1492 struct zone *zone;
2139cbe6 1493 int mt;
748446bb
MG
1494
1495 BUG_ON(!PageBuddy(page));
1496
1497 zone = page_zone(page);
2e30abd1 1498 mt = get_pageblock_migratetype(page);
748446bb 1499
194159fb 1500 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1501 /* Obey watermarks as if the page was being allocated */
1502 watermark = low_wmark_pages(zone) + (1 << order);
1503 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1504 return 0;
1505
8fb74b9f 1506 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1507 }
748446bb
MG
1508
1509 /* Remove page from free list */
1510 list_del(&page->lru);
1511 zone->free_area[order].nr_free--;
1512 rmv_page_order(page);
2139cbe6 1513
8fb74b9f 1514 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1515 if (order >= pageblock_order - 1) {
1516 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1517 for (; page < endpage; page += pageblock_nr_pages) {
1518 int mt = get_pageblock_migratetype(page);
194159fb 1519 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1520 set_pageblock_migratetype(page,
1521 MIGRATE_MOVABLE);
1522 }
748446bb
MG
1523 }
1524
8fb74b9f 1525 return 1UL << order;
1fb3f8ca
MG
1526}
1527
1528/*
1529 * Similar to split_page except the page is already free. As this is only
1530 * being used for migration, the migratetype of the block also changes.
1531 * As this is called with interrupts disabled, the caller is responsible
1532 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1533 * are enabled.
1534 *
1535 * Note: this is probably too low level an operation for use in drivers.
1536 * Please consult with lkml before using this in your driver.
1537 */
1538int split_free_page(struct page *page)
1539{
1540 unsigned int order;
1541 int nr_pages;
1542
1fb3f8ca
MG
1543 order = page_order(page);
1544
8fb74b9f 1545 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1546 if (!nr_pages)
1547 return 0;
1548
1549 /* Split into individual pages */
1550 set_page_refcounted(page);
1551 split_page(page, order);
1552 return nr_pages;
748446bb
MG
1553}
1554
1da177e4
LT
1555/*
1556 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1557 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1558 * or two.
1559 */
0a15c3e9
MG
1560static inline
1561struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1562 struct zone *zone, unsigned int order,
1563 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1564{
1565 unsigned long flags;
689bcebf 1566 struct page *page;
b745bc85 1567 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1568
689bcebf 1569again:
48db57f8 1570 if (likely(order == 0)) {
1da177e4 1571 struct per_cpu_pages *pcp;
5f8dcc21 1572 struct list_head *list;
1da177e4 1573
1da177e4 1574 local_irq_save(flags);
99dcc3e5
CL
1575 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1576 list = &pcp->lists[migratetype];
5f8dcc21 1577 if (list_empty(list)) {
535131e6 1578 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1579 pcp->batch, list,
e084b2d9 1580 migratetype, cold);
5f8dcc21 1581 if (unlikely(list_empty(list)))
6fb332fa 1582 goto failed;
535131e6 1583 }
b92a6edd 1584
5f8dcc21
MG
1585 if (cold)
1586 page = list_entry(list->prev, struct page, lru);
1587 else
1588 page = list_entry(list->next, struct page, lru);
1589
b92a6edd
MG
1590 list_del(&page->lru);
1591 pcp->count--;
7fb1d9fc 1592 } else {
dab48dab
AM
1593 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1594 /*
1595 * __GFP_NOFAIL is not to be used in new code.
1596 *
1597 * All __GFP_NOFAIL callers should be fixed so that they
1598 * properly detect and handle allocation failures.
1599 *
1600 * We most definitely don't want callers attempting to
4923abf9 1601 * allocate greater than order-1 page units with
dab48dab
AM
1602 * __GFP_NOFAIL.
1603 */
4923abf9 1604 WARN_ON_ONCE(order > 1);
dab48dab 1605 }
1da177e4 1606 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1607 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1608 spin_unlock(&zone->lock);
1609 if (!page)
1610 goto failed;
d1ce749a 1611 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1612 get_freepage_migratetype(page));
1da177e4
LT
1613 }
1614
3a025760 1615 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 1616 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
1617 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1618 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 1619
f8891e5e 1620 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1621 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1622 local_irq_restore(flags);
1da177e4 1623
309381fe 1624 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1625 if (prep_new_page(page, order, gfp_flags))
a74609fa 1626 goto again;
1da177e4 1627 return page;
a74609fa
NP
1628
1629failed:
1630 local_irq_restore(flags);
a74609fa 1631 return NULL;
1da177e4
LT
1632}
1633
933e312e
AM
1634#ifdef CONFIG_FAIL_PAGE_ALLOC
1635
b2588c4b 1636static struct {
933e312e
AM
1637 struct fault_attr attr;
1638
1639 u32 ignore_gfp_highmem;
1640 u32 ignore_gfp_wait;
54114994 1641 u32 min_order;
933e312e
AM
1642} fail_page_alloc = {
1643 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1644 .ignore_gfp_wait = 1,
1645 .ignore_gfp_highmem = 1,
54114994 1646 .min_order = 1,
933e312e
AM
1647};
1648
1649static int __init setup_fail_page_alloc(char *str)
1650{
1651 return setup_fault_attr(&fail_page_alloc.attr, str);
1652}
1653__setup("fail_page_alloc=", setup_fail_page_alloc);
1654
deaf386e 1655static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1656{
54114994 1657 if (order < fail_page_alloc.min_order)
deaf386e 1658 return false;
933e312e 1659 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1660 return false;
933e312e 1661 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1662 return false;
933e312e 1663 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1664 return false;
933e312e
AM
1665
1666 return should_fail(&fail_page_alloc.attr, 1 << order);
1667}
1668
1669#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1670
1671static int __init fail_page_alloc_debugfs(void)
1672{
f4ae40a6 1673 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1674 struct dentry *dir;
933e312e 1675
dd48c085
AM
1676 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1677 &fail_page_alloc.attr);
1678 if (IS_ERR(dir))
1679 return PTR_ERR(dir);
933e312e 1680
b2588c4b
AM
1681 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1682 &fail_page_alloc.ignore_gfp_wait))
1683 goto fail;
1684 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1685 &fail_page_alloc.ignore_gfp_highmem))
1686 goto fail;
1687 if (!debugfs_create_u32("min-order", mode, dir,
1688 &fail_page_alloc.min_order))
1689 goto fail;
1690
1691 return 0;
1692fail:
dd48c085 1693 debugfs_remove_recursive(dir);
933e312e 1694
b2588c4b 1695 return -ENOMEM;
933e312e
AM
1696}
1697
1698late_initcall(fail_page_alloc_debugfs);
1699
1700#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1701
1702#else /* CONFIG_FAIL_PAGE_ALLOC */
1703
deaf386e 1704static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1705{
deaf386e 1706 return false;
933e312e
AM
1707}
1708
1709#endif /* CONFIG_FAIL_PAGE_ALLOC */
1710
1da177e4 1711/*
88f5acf8 1712 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1713 * of the allocation.
1714 */
7aeb09f9
MG
1715static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1716 unsigned long mark, int classzone_idx, int alloc_flags,
1717 long free_pages)
1da177e4
LT
1718{
1719 /* free_pages my go negative - that's OK */
d23ad423 1720 long min = mark;
1da177e4 1721 int o;
026b0814 1722 long free_cma = 0;
1da177e4 1723
df0a6daa 1724 free_pages -= (1 << order) - 1;
7fb1d9fc 1725 if (alloc_flags & ALLOC_HIGH)
1da177e4 1726 min -= min / 2;
7fb1d9fc 1727 if (alloc_flags & ALLOC_HARDER)
1da177e4 1728 min -= min / 4;
d95ea5d1
BZ
1729#ifdef CONFIG_CMA
1730 /* If allocation can't use CMA areas don't use free CMA pages */
1731 if (!(alloc_flags & ALLOC_CMA))
026b0814 1732 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1733#endif
026b0814 1734
3484b2de 1735 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1736 return false;
1da177e4
LT
1737 for (o = 0; o < order; o++) {
1738 /* At the next order, this order's pages become unavailable */
1739 free_pages -= z->free_area[o].nr_free << o;
1740
1741 /* Require fewer higher order pages to be free */
1742 min >>= 1;
1743
1744 if (free_pages <= min)
88f5acf8 1745 return false;
1da177e4 1746 }
88f5acf8
MG
1747 return true;
1748}
1749
7aeb09f9 1750bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1751 int classzone_idx, int alloc_flags)
1752{
1753 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1754 zone_page_state(z, NR_FREE_PAGES));
1755}
1756
7aeb09f9
MG
1757bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1758 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1759{
1760 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1761
1762 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1763 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1764
1765 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1766 free_pages);
1da177e4
LT
1767}
1768
9276b1bc
PJ
1769#ifdef CONFIG_NUMA
1770/*
1771 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1772 * skip over zones that are not allowed by the cpuset, or that have
1773 * been recently (in last second) found to be nearly full. See further
1774 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1775 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1776 *
a1aeb65a 1777 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1778 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1779 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1780 *
1781 * If the zonelist cache is not available for this zonelist, does
1782 * nothing and returns NULL.
1783 *
1784 * If the fullzones BITMAP in the zonelist cache is stale (more than
1785 * a second since last zap'd) then we zap it out (clear its bits.)
1786 *
1787 * We hold off even calling zlc_setup, until after we've checked the
1788 * first zone in the zonelist, on the theory that most allocations will
1789 * be satisfied from that first zone, so best to examine that zone as
1790 * quickly as we can.
1791 */
1792static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1793{
1794 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1795 nodemask_t *allowednodes; /* zonelist_cache approximation */
1796
1797 zlc = zonelist->zlcache_ptr;
1798 if (!zlc)
1799 return NULL;
1800
f05111f5 1801 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1802 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1803 zlc->last_full_zap = jiffies;
1804 }
1805
1806 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1807 &cpuset_current_mems_allowed :
4b0ef1fe 1808 &node_states[N_MEMORY];
9276b1bc
PJ
1809 return allowednodes;
1810}
1811
1812/*
1813 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1814 * if it is worth looking at further for free memory:
1815 * 1) Check that the zone isn't thought to be full (doesn't have its
1816 * bit set in the zonelist_cache fullzones BITMAP).
1817 * 2) Check that the zones node (obtained from the zonelist_cache
1818 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1819 * Return true (non-zero) if zone is worth looking at further, or
1820 * else return false (zero) if it is not.
1821 *
1822 * This check -ignores- the distinction between various watermarks,
1823 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1824 * found to be full for any variation of these watermarks, it will
1825 * be considered full for up to one second by all requests, unless
1826 * we are so low on memory on all allowed nodes that we are forced
1827 * into the second scan of the zonelist.
1828 *
1829 * In the second scan we ignore this zonelist cache and exactly
1830 * apply the watermarks to all zones, even it is slower to do so.
1831 * We are low on memory in the second scan, and should leave no stone
1832 * unturned looking for a free page.
1833 */
dd1a239f 1834static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1835 nodemask_t *allowednodes)
1836{
1837 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1838 int i; /* index of *z in zonelist zones */
1839 int n; /* node that zone *z is on */
1840
1841 zlc = zonelist->zlcache_ptr;
1842 if (!zlc)
1843 return 1;
1844
dd1a239f 1845 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1846 n = zlc->z_to_n[i];
1847
1848 /* This zone is worth trying if it is allowed but not full */
1849 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1850}
1851
1852/*
1853 * Given 'z' scanning a zonelist, set the corresponding bit in
1854 * zlc->fullzones, so that subsequent attempts to allocate a page
1855 * from that zone don't waste time re-examining it.
1856 */
dd1a239f 1857static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1858{
1859 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1860 int i; /* index of *z in zonelist zones */
1861
1862 zlc = zonelist->zlcache_ptr;
1863 if (!zlc)
1864 return;
1865
dd1a239f 1866 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1867
1868 set_bit(i, zlc->fullzones);
1869}
1870
76d3fbf8
MG
1871/*
1872 * clear all zones full, called after direct reclaim makes progress so that
1873 * a zone that was recently full is not skipped over for up to a second
1874 */
1875static void zlc_clear_zones_full(struct zonelist *zonelist)
1876{
1877 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1878
1879 zlc = zonelist->zlcache_ptr;
1880 if (!zlc)
1881 return;
1882
1883 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1884}
1885
81c0a2bb
JW
1886static bool zone_local(struct zone *local_zone, struct zone *zone)
1887{
fff4068c 1888 return local_zone->node == zone->node;
81c0a2bb
JW
1889}
1890
957f822a
DR
1891static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1892{
5f7a75ac
MG
1893 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1894 RECLAIM_DISTANCE;
957f822a
DR
1895}
1896
9276b1bc
PJ
1897#else /* CONFIG_NUMA */
1898
1899static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1900{
1901 return NULL;
1902}
1903
dd1a239f 1904static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1905 nodemask_t *allowednodes)
1906{
1907 return 1;
1908}
1909
dd1a239f 1910static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1911{
1912}
76d3fbf8
MG
1913
1914static void zlc_clear_zones_full(struct zonelist *zonelist)
1915{
1916}
957f822a 1917
81c0a2bb
JW
1918static bool zone_local(struct zone *local_zone, struct zone *zone)
1919{
1920 return true;
1921}
1922
957f822a
DR
1923static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1924{
1925 return true;
1926}
1927
9276b1bc
PJ
1928#endif /* CONFIG_NUMA */
1929
4ffeaf35
MG
1930static void reset_alloc_batches(struct zone *preferred_zone)
1931{
1932 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1933
1934 do {
1935 mod_zone_page_state(zone, NR_ALLOC_BATCH,
1936 high_wmark_pages(zone) - low_wmark_pages(zone) -
1937 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 1938 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
1939 } while (zone++ != preferred_zone);
1940}
1941
7fb1d9fc 1942/*
0798e519 1943 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1944 * a page.
1945 */
1946static struct page *
19770b32 1947get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1948 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
d8846374 1949 struct zone *preferred_zone, int classzone_idx, int migratetype)
753ee728 1950{
dd1a239f 1951 struct zoneref *z;
7fb1d9fc 1952 struct page *page = NULL;
5117f45d 1953 struct zone *zone;
9276b1bc
PJ
1954 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1955 int zlc_active = 0; /* set if using zonelist_cache */
1956 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
1957 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1958 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
1959 int nr_fair_skipped = 0;
1960 bool zonelist_rescan;
54a6eb5c 1961
9276b1bc 1962zonelist_scan:
4ffeaf35
MG
1963 zonelist_rescan = false;
1964
7fb1d9fc 1965 /*
9276b1bc 1966 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1967 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1968 */
19770b32
MG
1969 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1970 high_zoneidx, nodemask) {
e085dbc5
JW
1971 unsigned long mark;
1972
e5adfffc 1973 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1974 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1975 continue;
664eedde
MG
1976 if (cpusets_enabled() &&
1977 (alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1978 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1979 continue;
81c0a2bb
JW
1980 /*
1981 * Distribute pages in proportion to the individual
1982 * zone size to ensure fair page aging. The zone a
1983 * page was allocated in should have no effect on the
1984 * time the page has in memory before being reclaimed.
81c0a2bb 1985 */
3a025760 1986 if (alloc_flags & ALLOC_FAIR) {
fff4068c 1987 if (!zone_local(preferred_zone, zone))
f7b5d647 1988 break;
57054651 1989 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 1990 nr_fair_skipped++;
3a025760 1991 continue;
4ffeaf35 1992 }
81c0a2bb 1993 }
a756cf59
JW
1994 /*
1995 * When allocating a page cache page for writing, we
1996 * want to get it from a zone that is within its dirty
1997 * limit, such that no single zone holds more than its
1998 * proportional share of globally allowed dirty pages.
1999 * The dirty limits take into account the zone's
2000 * lowmem reserves and high watermark so that kswapd
2001 * should be able to balance it without having to
2002 * write pages from its LRU list.
2003 *
2004 * This may look like it could increase pressure on
2005 * lower zones by failing allocations in higher zones
2006 * before they are full. But the pages that do spill
2007 * over are limited as the lower zones are protected
2008 * by this very same mechanism. It should not become
2009 * a practical burden to them.
2010 *
2011 * XXX: For now, allow allocations to potentially
2012 * exceed the per-zone dirty limit in the slowpath
2013 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2014 * which is important when on a NUMA setup the allowed
2015 * zones are together not big enough to reach the
2016 * global limit. The proper fix for these situations
2017 * will require awareness of zones in the
2018 * dirty-throttling and the flusher threads.
2019 */
a6e21b14 2020 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2021 continue;
7fb1d9fc 2022
e085dbc5
JW
2023 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2024 if (!zone_watermark_ok(zone, order, mark,
2025 classzone_idx, alloc_flags)) {
fa5e084e
MG
2026 int ret;
2027
5dab2911
MG
2028 /* Checked here to keep the fast path fast */
2029 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2030 if (alloc_flags & ALLOC_NO_WATERMARKS)
2031 goto try_this_zone;
2032
e5adfffc
KS
2033 if (IS_ENABLED(CONFIG_NUMA) &&
2034 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2035 /*
2036 * we do zlc_setup if there are multiple nodes
2037 * and before considering the first zone allowed
2038 * by the cpuset.
2039 */
2040 allowednodes = zlc_setup(zonelist, alloc_flags);
2041 zlc_active = 1;
2042 did_zlc_setup = 1;
2043 }
2044
957f822a
DR
2045 if (zone_reclaim_mode == 0 ||
2046 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
2047 goto this_zone_full;
2048
cd38b115
MG
2049 /*
2050 * As we may have just activated ZLC, check if the first
2051 * eligible zone has failed zone_reclaim recently.
2052 */
e5adfffc 2053 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2054 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2055 continue;
2056
fa5e084e
MG
2057 ret = zone_reclaim(zone, gfp_mask, order);
2058 switch (ret) {
2059 case ZONE_RECLAIM_NOSCAN:
2060 /* did not scan */
cd38b115 2061 continue;
fa5e084e
MG
2062 case ZONE_RECLAIM_FULL:
2063 /* scanned but unreclaimable */
cd38b115 2064 continue;
fa5e084e
MG
2065 default:
2066 /* did we reclaim enough */
fed2719e 2067 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2068 classzone_idx, alloc_flags))
fed2719e
MG
2069 goto try_this_zone;
2070
2071 /*
2072 * Failed to reclaim enough to meet watermark.
2073 * Only mark the zone full if checking the min
2074 * watermark or if we failed to reclaim just
2075 * 1<<order pages or else the page allocator
2076 * fastpath will prematurely mark zones full
2077 * when the watermark is between the low and
2078 * min watermarks.
2079 */
2080 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2081 ret == ZONE_RECLAIM_SOME)
9276b1bc 2082 goto this_zone_full;
fed2719e
MG
2083
2084 continue;
0798e519 2085 }
7fb1d9fc
RS
2086 }
2087
fa5e084e 2088try_this_zone:
3dd28266
MG
2089 page = buffered_rmqueue(preferred_zone, zone, order,
2090 gfp_mask, migratetype);
0798e519 2091 if (page)
7fb1d9fc 2092 break;
9276b1bc 2093this_zone_full:
65bb3719 2094 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2095 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2096 }
9276b1bc 2097
4ffeaf35 2098 if (page) {
b121186a
AS
2099 /*
2100 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2101 * necessary to allocate the page. The expectation is
2102 * that the caller is taking steps that will free more
2103 * memory. The caller should avoid the page being used
2104 * for !PFMEMALLOC purposes.
2105 */
2106 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
4ffeaf35
MG
2107 return page;
2108 }
b121186a 2109
4ffeaf35
MG
2110 /*
2111 * The first pass makes sure allocations are spread fairly within the
2112 * local node. However, the local node might have free pages left
2113 * after the fairness batches are exhausted, and remote zones haven't
2114 * even been considered yet. Try once more without fairness, and
2115 * include remote zones now, before entering the slowpath and waking
2116 * kswapd: prefer spilling to a remote zone over swapping locally.
2117 */
2118 if (alloc_flags & ALLOC_FAIR) {
2119 alloc_flags &= ~ALLOC_FAIR;
2120 if (nr_fair_skipped) {
2121 zonelist_rescan = true;
2122 reset_alloc_batches(preferred_zone);
2123 }
2124 if (nr_online_nodes > 1)
2125 zonelist_rescan = true;
2126 }
2127
2128 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2129 /* Disable zlc cache for second zonelist scan */
2130 zlc_active = 0;
2131 zonelist_rescan = true;
2132 }
2133
2134 if (zonelist_rescan)
2135 goto zonelist_scan;
2136
2137 return NULL;
753ee728
MH
2138}
2139
29423e77
DR
2140/*
2141 * Large machines with many possible nodes should not always dump per-node
2142 * meminfo in irq context.
2143 */
2144static inline bool should_suppress_show_mem(void)
2145{
2146 bool ret = false;
2147
2148#if NODES_SHIFT > 8
2149 ret = in_interrupt();
2150#endif
2151 return ret;
2152}
2153
a238ab5b
DH
2154static DEFINE_RATELIMIT_STATE(nopage_rs,
2155 DEFAULT_RATELIMIT_INTERVAL,
2156 DEFAULT_RATELIMIT_BURST);
2157
2158void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2159{
a238ab5b
DH
2160 unsigned int filter = SHOW_MEM_FILTER_NODES;
2161
c0a32fc5
SG
2162 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2163 debug_guardpage_minorder() > 0)
a238ab5b
DH
2164 return;
2165
2166 /*
2167 * This documents exceptions given to allocations in certain
2168 * contexts that are allowed to allocate outside current's set
2169 * of allowed nodes.
2170 */
2171 if (!(gfp_mask & __GFP_NOMEMALLOC))
2172 if (test_thread_flag(TIF_MEMDIE) ||
2173 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2174 filter &= ~SHOW_MEM_FILTER_NODES;
2175 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2176 filter &= ~SHOW_MEM_FILTER_NODES;
2177
2178 if (fmt) {
3ee9a4f0
JP
2179 struct va_format vaf;
2180 va_list args;
2181
a238ab5b 2182 va_start(args, fmt);
3ee9a4f0
JP
2183
2184 vaf.fmt = fmt;
2185 vaf.va = &args;
2186
2187 pr_warn("%pV", &vaf);
2188
a238ab5b
DH
2189 va_end(args);
2190 }
2191
3ee9a4f0
JP
2192 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2193 current->comm, order, gfp_mask);
a238ab5b
DH
2194
2195 dump_stack();
2196 if (!should_suppress_show_mem())
2197 show_mem(filter);
2198}
2199
11e33f6a
MG
2200static inline int
2201should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2202 unsigned long did_some_progress,
11e33f6a 2203 unsigned long pages_reclaimed)
1da177e4 2204{
11e33f6a
MG
2205 /* Do not loop if specifically requested */
2206 if (gfp_mask & __GFP_NORETRY)
2207 return 0;
1da177e4 2208
f90ac398
MG
2209 /* Always retry if specifically requested */
2210 if (gfp_mask & __GFP_NOFAIL)
2211 return 1;
2212
2213 /*
2214 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2215 * making forward progress without invoking OOM. Suspend also disables
2216 * storage devices so kswapd will not help. Bail if we are suspending.
2217 */
2218 if (!did_some_progress && pm_suspended_storage())
2219 return 0;
2220
11e33f6a
MG
2221 /*
2222 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2223 * means __GFP_NOFAIL, but that may not be true in other
2224 * implementations.
2225 */
2226 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2227 return 1;
2228
2229 /*
2230 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2231 * specified, then we retry until we no longer reclaim any pages
2232 * (above), or we've reclaimed an order of pages at least as
2233 * large as the allocation's order. In both cases, if the
2234 * allocation still fails, we stop retrying.
2235 */
2236 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2237 return 1;
cf40bd16 2238
11e33f6a
MG
2239 return 0;
2240}
933e312e 2241
11e33f6a
MG
2242static inline struct page *
2243__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2244 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2245 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2246 int classzone_idx, int migratetype)
11e33f6a
MG
2247{
2248 struct page *page;
2249
e972a070
DR
2250 /* Acquire the per-zone oom lock for each zone */
2251 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
11e33f6a 2252 schedule_timeout_uninterruptible(1);
1da177e4
LT
2253 return NULL;
2254 }
6b1de916 2255
5695be14
MH
2256 /*
2257 * PM-freezer should be notified that there might be an OOM killer on
2258 * its way to kill and wake somebody up. This is too early and we might
2259 * end up not killing anything but false positives are acceptable.
2260 * See freeze_processes.
2261 */
2262 note_oom_kill();
2263
11e33f6a
MG
2264 /*
2265 * Go through the zonelist yet one more time, keep very high watermark
2266 * here, this is only to catch a parallel oom killing, we must fail if
2267 * we're still under heavy pressure.
2268 */
2269 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2270 order, zonelist, high_zoneidx,
5117f45d 2271 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
d8846374 2272 preferred_zone, classzone_idx, migratetype);
7fb1d9fc 2273 if (page)
11e33f6a
MG
2274 goto out;
2275
4365a567
KH
2276 if (!(gfp_mask & __GFP_NOFAIL)) {
2277 /* The OOM killer will not help higher order allocs */
2278 if (order > PAGE_ALLOC_COSTLY_ORDER)
2279 goto out;
03668b3c
DR
2280 /* The OOM killer does not needlessly kill tasks for lowmem */
2281 if (high_zoneidx < ZONE_NORMAL)
2282 goto out;
4365a567
KH
2283 /*
2284 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2285 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2286 * The caller should handle page allocation failure by itself if
2287 * it specifies __GFP_THISNODE.
2288 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2289 */
2290 if (gfp_mask & __GFP_THISNODE)
2291 goto out;
2292 }
11e33f6a 2293 /* Exhausted what can be done so it's blamo time */
08ab9b10 2294 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2295
2296out:
e972a070 2297 oom_zonelist_unlock(zonelist, gfp_mask);
11e33f6a
MG
2298 return page;
2299}
2300
56de7263
MG
2301#ifdef CONFIG_COMPACTION
2302/* Try memory compaction for high-order allocations before reclaim */
2303static struct page *
2304__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2305 struct zonelist *zonelist, enum zone_type high_zoneidx,
2306 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2307 int classzone_idx, int migratetype, enum migrate_mode mode,
1f9efdef 2308 int *contended_compaction, bool *deferred_compaction)
56de7263 2309{
53853e2d
VB
2310 struct zone *last_compact_zone = NULL;
2311 unsigned long compact_result;
98dd3b48 2312 struct page *page;
53853e2d
VB
2313
2314 if (!order)
66199712 2315 return NULL;
66199712 2316
c06b1fca 2317 current->flags |= PF_MEMALLOC;
53853e2d 2318 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
e0b9daeb 2319 nodemask, mode,
53853e2d
VB
2320 contended_compaction,
2321 &last_compact_zone);
c06b1fca 2322 current->flags &= ~PF_MEMALLOC;
56de7263 2323
98dd3b48
VB
2324 switch (compact_result) {
2325 case COMPACT_DEFERRED:
53853e2d 2326 *deferred_compaction = true;
98dd3b48
VB
2327 /* fall-through */
2328 case COMPACT_SKIPPED:
2329 return NULL;
2330 default:
2331 break;
2332 }
53853e2d 2333
98dd3b48
VB
2334 /*
2335 * At least in one zone compaction wasn't deferred or skipped, so let's
2336 * count a compaction stall
2337 */
2338 count_vm_event(COMPACTSTALL);
8fb74b9f 2339
98dd3b48
VB
2340 /* Page migration frees to the PCP lists but we want merging */
2341 drain_pages(get_cpu());
2342 put_cpu();
56de7263 2343
98dd3b48
VB
2344 page = get_page_from_freelist(gfp_mask, nodemask,
2345 order, zonelist, high_zoneidx,
2346 alloc_flags & ~ALLOC_NO_WATERMARKS,
2347 preferred_zone, classzone_idx, migratetype);
53853e2d 2348
98dd3b48
VB
2349 if (page) {
2350 struct zone *zone = page_zone(page);
53853e2d 2351
98dd3b48
VB
2352 zone->compact_blockskip_flush = false;
2353 compaction_defer_reset(zone, order, true);
2354 count_vm_event(COMPACTSUCCESS);
2355 return page;
2356 }
56de7263 2357
98dd3b48
VB
2358 /*
2359 * last_compact_zone is where try_to_compact_pages thought allocation
2360 * should succeed, so it did not defer compaction. But here we know
2361 * that it didn't succeed, so we do the defer.
2362 */
2363 if (last_compact_zone && mode != MIGRATE_ASYNC)
2364 defer_compaction(last_compact_zone, order);
53853e2d 2365
98dd3b48
VB
2366 /*
2367 * It's bad if compaction run occurs and fails. The most likely reason
2368 * is that pages exist, but not enough to satisfy watermarks.
2369 */
2370 count_vm_event(COMPACTFAIL);
66199712 2371
98dd3b48 2372 cond_resched();
56de7263
MG
2373
2374 return NULL;
2375}
2376#else
2377static inline struct page *
2378__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2379 struct zonelist *zonelist, enum zone_type high_zoneidx,
2380 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
53853e2d 2381 int classzone_idx, int migratetype, enum migrate_mode mode,
1f9efdef 2382 int *contended_compaction, bool *deferred_compaction)
56de7263
MG
2383{
2384 return NULL;
2385}
2386#endif /* CONFIG_COMPACTION */
2387
bba90710
MS
2388/* Perform direct synchronous page reclaim */
2389static int
2390__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2391 nodemask_t *nodemask)
11e33f6a 2392{
11e33f6a 2393 struct reclaim_state reclaim_state;
bba90710 2394 int progress;
11e33f6a
MG
2395
2396 cond_resched();
2397
2398 /* We now go into synchronous reclaim */
2399 cpuset_memory_pressure_bump();
c06b1fca 2400 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2401 lockdep_set_current_reclaim_state(gfp_mask);
2402 reclaim_state.reclaimed_slab = 0;
c06b1fca 2403 current->reclaim_state = &reclaim_state;
11e33f6a 2404
bba90710 2405 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2406
c06b1fca 2407 current->reclaim_state = NULL;
11e33f6a 2408 lockdep_clear_current_reclaim_state();
c06b1fca 2409 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2410
2411 cond_resched();
2412
bba90710
MS
2413 return progress;
2414}
2415
2416/* The really slow allocator path where we enter direct reclaim */
2417static inline struct page *
2418__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2419 struct zonelist *zonelist, enum zone_type high_zoneidx,
2420 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2421 int classzone_idx, int migratetype, unsigned long *did_some_progress)
bba90710
MS
2422{
2423 struct page *page = NULL;
2424 bool drained = false;
2425
2426 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2427 nodemask);
9ee493ce
MG
2428 if (unlikely(!(*did_some_progress)))
2429 return NULL;
11e33f6a 2430
76d3fbf8 2431 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2432 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2433 zlc_clear_zones_full(zonelist);
2434
9ee493ce
MG
2435retry:
2436 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2437 zonelist, high_zoneidx,
cfd19c5a 2438 alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374
MG
2439 preferred_zone, classzone_idx,
2440 migratetype);
9ee493ce
MG
2441
2442 /*
2443 * If an allocation failed after direct reclaim, it could be because
2444 * pages are pinned on the per-cpu lists. Drain them and try again
2445 */
2446 if (!page && !drained) {
2447 drain_all_pages();
2448 drained = true;
2449 goto retry;
2450 }
2451
11e33f6a
MG
2452 return page;
2453}
2454
1da177e4 2455/*
11e33f6a
MG
2456 * This is called in the allocator slow-path if the allocation request is of
2457 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2458 */
11e33f6a
MG
2459static inline struct page *
2460__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2461 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2462 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2463 int classzone_idx, int migratetype)
11e33f6a
MG
2464{
2465 struct page *page;
2466
2467 do {
2468 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2469 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
d8846374 2470 preferred_zone, classzone_idx, migratetype);
11e33f6a
MG
2471
2472 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2473 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2474 } while (!page && (gfp_mask & __GFP_NOFAIL));
2475
2476 return page;
2477}
2478
3a025760
JW
2479static void wake_all_kswapds(unsigned int order,
2480 struct zonelist *zonelist,
2481 enum zone_type high_zoneidx,
7ade3c99
WY
2482 struct zone *preferred_zone,
2483 nodemask_t *nodemask)
3a025760
JW
2484{
2485 struct zoneref *z;
2486 struct zone *zone;
2487
7ade3c99
WY
2488 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2489 high_zoneidx, nodemask)
3a025760
JW
2490 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2491}
2492
341ce06f
PZ
2493static inline int
2494gfp_to_alloc_flags(gfp_t gfp_mask)
2495{
341ce06f 2496 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2497 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2498
a56f57ff 2499 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2500 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2501
341ce06f
PZ
2502 /*
2503 * The caller may dip into page reserves a bit more if the caller
2504 * cannot run direct reclaim, or if the caller has realtime scheduling
2505 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2506 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2507 */
e6223a3b 2508 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2509
b104a35d 2510 if (atomic) {
5c3240d9 2511 /*
b104a35d
DR
2512 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2513 * if it can't schedule.
5c3240d9 2514 */
b104a35d 2515 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2516 alloc_flags |= ALLOC_HARDER;
523b9458 2517 /*
b104a35d
DR
2518 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2519 * comment for __cpuset_node_allowed_softwall().
523b9458 2520 */
341ce06f 2521 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2522 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2523 alloc_flags |= ALLOC_HARDER;
2524
b37f1dd0
MG
2525 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2526 if (gfp_mask & __GFP_MEMALLOC)
2527 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2528 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2529 alloc_flags |= ALLOC_NO_WATERMARKS;
2530 else if (!in_interrupt() &&
2531 ((current->flags & PF_MEMALLOC) ||
2532 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2533 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2534 }
d95ea5d1 2535#ifdef CONFIG_CMA
43e7a34d 2536 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2537 alloc_flags |= ALLOC_CMA;
2538#endif
341ce06f
PZ
2539 return alloc_flags;
2540}
2541
072bb0aa
MG
2542bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2543{
b37f1dd0 2544 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2545}
2546
11e33f6a
MG
2547static inline struct page *
2548__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2549 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2550 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2551 int classzone_idx, int migratetype)
11e33f6a
MG
2552{
2553 const gfp_t wait = gfp_mask & __GFP_WAIT;
2554 struct page *page = NULL;
2555 int alloc_flags;
2556 unsigned long pages_reclaimed = 0;
2557 unsigned long did_some_progress;
e0b9daeb 2558 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2559 bool deferred_compaction = false;
1f9efdef 2560 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2561
72807a74
MG
2562 /*
2563 * In the slowpath, we sanity check order to avoid ever trying to
2564 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2565 * be using allocators in order of preference for an area that is
2566 * too large.
2567 */
1fc28b70
MG
2568 if (order >= MAX_ORDER) {
2569 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2570 return NULL;
1fc28b70 2571 }
1da177e4 2572
952f3b51
CL
2573 /*
2574 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2575 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2576 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2577 * using a larger set of nodes after it has established that the
2578 * allowed per node queues are empty and that nodes are
2579 * over allocated.
2580 */
3a025760
JW
2581 if (IS_ENABLED(CONFIG_NUMA) &&
2582 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2583 goto nopage;
2584
cc4a6851 2585restart:
3a025760 2586 if (!(gfp_mask & __GFP_NO_KSWAPD))
7ade3c99
WY
2587 wake_all_kswapds(order, zonelist, high_zoneidx,
2588 preferred_zone, nodemask);
1da177e4 2589
9bf2229f 2590 /*
7fb1d9fc
RS
2591 * OK, we're below the kswapd watermark and have kicked background
2592 * reclaim. Now things get more complex, so set up alloc_flags according
2593 * to how we want to proceed.
9bf2229f 2594 */
341ce06f 2595 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2596
f33261d7
DR
2597 /*
2598 * Find the true preferred zone if the allocation is unconstrained by
2599 * cpusets.
2600 */
d8846374
MG
2601 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2602 struct zoneref *preferred_zoneref;
2603 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2604 NULL, &preferred_zone);
2605 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2606 }
f33261d7 2607
cfa54a0f 2608rebalance:
341ce06f 2609 /* This is the last chance, in general, before the goto nopage. */
19770b32 2610 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f 2611 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374 2612 preferred_zone, classzone_idx, migratetype);
7fb1d9fc
RS
2613 if (page)
2614 goto got_pg;
1da177e4 2615
11e33f6a 2616 /* Allocate without watermarks if the context allows */
341ce06f 2617 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2618 /*
2619 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2620 * the allocation is high priority and these type of
2621 * allocations are system rather than user orientated
2622 */
2623 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2624
341ce06f
PZ
2625 page = __alloc_pages_high_priority(gfp_mask, order,
2626 zonelist, high_zoneidx, nodemask,
d8846374 2627 preferred_zone, classzone_idx, migratetype);
cfd19c5a 2628 if (page) {
341ce06f 2629 goto got_pg;
cfd19c5a 2630 }
1da177e4
LT
2631 }
2632
2633 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2634 if (!wait) {
2635 /*
2636 * All existing users of the deprecated __GFP_NOFAIL are
2637 * blockable, so warn of any new users that actually allow this
2638 * type of allocation to fail.
2639 */
2640 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2641 goto nopage;
aed0a0e3 2642 }
1da177e4 2643
341ce06f 2644 /* Avoid recursion of direct reclaim */
c06b1fca 2645 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2646 goto nopage;
2647
6583bb64
DR
2648 /* Avoid allocations with no watermarks from looping endlessly */
2649 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2650 goto nopage;
2651
77f1fe6b
MG
2652 /*
2653 * Try direct compaction. The first pass is asynchronous. Subsequent
2654 * attempts after direct reclaim are synchronous
2655 */
e0b9daeb
DR
2656 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2657 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2658 preferred_zone,
2659 classzone_idx, migratetype,
e0b9daeb 2660 migration_mode, &contended_compaction,
53853e2d 2661 &deferred_compaction);
56de7263
MG
2662 if (page)
2663 goto got_pg;
75f30861 2664
1f9efdef
VB
2665 /* Checks for THP-specific high-order allocations */
2666 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2667 /*
2668 * If compaction is deferred for high-order allocations, it is
2669 * because sync compaction recently failed. If this is the case
2670 * and the caller requested a THP allocation, we do not want
2671 * to heavily disrupt the system, so we fail the allocation
2672 * instead of entering direct reclaim.
2673 */
2674 if (deferred_compaction)
2675 goto nopage;
2676
2677 /*
2678 * In all zones where compaction was attempted (and not
2679 * deferred or skipped), lock contention has been detected.
2680 * For THP allocation we do not want to disrupt the others
2681 * so we fallback to base pages instead.
2682 */
2683 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2684 goto nopage;
2685
2686 /*
2687 * If compaction was aborted due to need_resched(), we do not
2688 * want to further increase allocation latency, unless it is
2689 * khugepaged trying to collapse.
2690 */
2691 if (contended_compaction == COMPACT_CONTENDED_SCHED
2692 && !(current->flags & PF_KTHREAD))
2693 goto nopage;
2694 }
66199712 2695
8fe78048
DR
2696 /*
2697 * It can become very expensive to allocate transparent hugepages at
2698 * fault, so use asynchronous memory compaction for THP unless it is
2699 * khugepaged trying to collapse.
2700 */
2701 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2702 (current->flags & PF_KTHREAD))
2703 migration_mode = MIGRATE_SYNC_LIGHT;
2704
11e33f6a
MG
2705 /* Try direct reclaim and then allocating */
2706 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2707 zonelist, high_zoneidx,
2708 nodemask,
5117f45d 2709 alloc_flags, preferred_zone,
d8846374
MG
2710 classzone_idx, migratetype,
2711 &did_some_progress);
11e33f6a
MG
2712 if (page)
2713 goto got_pg;
1da177e4 2714
e33c3b5e 2715 /*
11e33f6a
MG
2716 * If we failed to make any progress reclaiming, then we are
2717 * running out of options and have to consider going OOM
e33c3b5e 2718 */
11e33f6a 2719 if (!did_some_progress) {
b9921ecd 2720 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2721 if (oom_killer_disabled)
2722 goto nopage;
29fd66d2
DR
2723 /* Coredumps can quickly deplete all memory reserves */
2724 if ((current->flags & PF_DUMPCORE) &&
2725 !(gfp_mask & __GFP_NOFAIL))
2726 goto nopage;
11e33f6a
MG
2727 page = __alloc_pages_may_oom(gfp_mask, order,
2728 zonelist, high_zoneidx,
3dd28266 2729 nodemask, preferred_zone,
d8846374 2730 classzone_idx, migratetype);
11e33f6a
MG
2731 if (page)
2732 goto got_pg;
1da177e4 2733
03668b3c
DR
2734 if (!(gfp_mask & __GFP_NOFAIL)) {
2735 /*
2736 * The oom killer is not called for high-order
2737 * allocations that may fail, so if no progress
2738 * is being made, there are no other options and
2739 * retrying is unlikely to help.
2740 */
2741 if (order > PAGE_ALLOC_COSTLY_ORDER)
2742 goto nopage;
2743 /*
2744 * The oom killer is not called for lowmem
2745 * allocations to prevent needlessly killing
2746 * innocent tasks.
2747 */
2748 if (high_zoneidx < ZONE_NORMAL)
2749 goto nopage;
2750 }
e2c55dc8 2751
ff0ceb9d
DR
2752 goto restart;
2753 }
1da177e4
LT
2754 }
2755
11e33f6a 2756 /* Check if we should retry the allocation */
a41f24ea 2757 pages_reclaimed += did_some_progress;
f90ac398
MG
2758 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2759 pages_reclaimed)) {
11e33f6a 2760 /* Wait for some write requests to complete then retry */
0e093d99 2761 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2762 goto rebalance;
3e7d3449
MG
2763 } else {
2764 /*
2765 * High-order allocations do not necessarily loop after
2766 * direct reclaim and reclaim/compaction depends on compaction
2767 * being called after reclaim so call directly if necessary
2768 */
e0b9daeb
DR
2769 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2770 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2771 preferred_zone,
2772 classzone_idx, migratetype,
e0b9daeb 2773 migration_mode, &contended_compaction,
53853e2d 2774 &deferred_compaction);
3e7d3449
MG
2775 if (page)
2776 goto got_pg;
1da177e4
LT
2777 }
2778
2779nopage:
a238ab5b 2780 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2781 return page;
1da177e4 2782got_pg:
b1eeab67
VN
2783 if (kmemcheck_enabled)
2784 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2785
072bb0aa 2786 return page;
1da177e4 2787}
11e33f6a
MG
2788
2789/*
2790 * This is the 'heart' of the zoned buddy allocator.
2791 */
2792struct page *
2793__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2794 struct zonelist *zonelist, nodemask_t *nodemask)
2795{
2796 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2797 struct zone *preferred_zone;
d8846374 2798 struct zoneref *preferred_zoneref;
cc9a6c87 2799 struct page *page = NULL;
43e7a34d 2800 int migratetype = gfpflags_to_migratetype(gfp_mask);
cc9a6c87 2801 unsigned int cpuset_mems_cookie;
3a025760 2802 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
d8846374 2803 int classzone_idx;
11e33f6a 2804
dcce284a
BH
2805 gfp_mask &= gfp_allowed_mask;
2806
11e33f6a
MG
2807 lockdep_trace_alloc(gfp_mask);
2808
2809 might_sleep_if(gfp_mask & __GFP_WAIT);
2810
2811 if (should_fail_alloc_page(gfp_mask, order))
2812 return NULL;
2813
2814 /*
2815 * Check the zones suitable for the gfp_mask contain at least one
2816 * valid zone. It's possible to have an empty zonelist as a result
2817 * of GFP_THISNODE and a memoryless node
2818 */
2819 if (unlikely(!zonelist->_zonerefs->zone))
2820 return NULL;
2821
21bb9bd1
VB
2822 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2823 alloc_flags |= ALLOC_CMA;
2824
cc9a6c87 2825retry_cpuset:
d26914d1 2826 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2827
5117f45d 2828 /* The preferred zone is used for statistics later */
d8846374 2829 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
f33261d7
DR
2830 nodemask ? : &cpuset_current_mems_allowed,
2831 &preferred_zone);
cc9a6c87
MG
2832 if (!preferred_zone)
2833 goto out;
d8846374 2834 classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
2835
2836 /* First allocation attempt */
11e33f6a 2837 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2838 zonelist, high_zoneidx, alloc_flags,
d8846374 2839 preferred_zone, classzone_idx, migratetype);
21caf2fc
ML
2840 if (unlikely(!page)) {
2841 /*
2842 * Runtime PM, block IO and its error handling path
2843 * can deadlock because I/O on the device might not
2844 * complete.
2845 */
2846 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2847 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2848 zonelist, high_zoneidx, nodemask,
d8846374 2849 preferred_zone, classzone_idx, migratetype);
21caf2fc 2850 }
11e33f6a 2851
4b4f278c 2852 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2853
2854out:
2855 /*
2856 * When updating a task's mems_allowed, it is possible to race with
2857 * parallel threads in such a way that an allocation can fail while
2858 * the mask is being updated. If a page allocation is about to fail,
2859 * check if the cpuset changed during allocation and if so, retry.
2860 */
d26914d1 2861 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2862 goto retry_cpuset;
2863
11e33f6a 2864 return page;
1da177e4 2865}
d239171e 2866EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2867
2868/*
2869 * Common helper functions.
2870 */
920c7a5d 2871unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2872{
945a1113
AM
2873 struct page *page;
2874
2875 /*
2876 * __get_free_pages() returns a 32-bit address, which cannot represent
2877 * a highmem page
2878 */
2879 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2880
1da177e4
LT
2881 page = alloc_pages(gfp_mask, order);
2882 if (!page)
2883 return 0;
2884 return (unsigned long) page_address(page);
2885}
1da177e4
LT
2886EXPORT_SYMBOL(__get_free_pages);
2887
920c7a5d 2888unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2889{
945a1113 2890 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2891}
1da177e4
LT
2892EXPORT_SYMBOL(get_zeroed_page);
2893
920c7a5d 2894void __free_pages(struct page *page, unsigned int order)
1da177e4 2895{
b5810039 2896 if (put_page_testzero(page)) {
1da177e4 2897 if (order == 0)
b745bc85 2898 free_hot_cold_page(page, false);
1da177e4
LT
2899 else
2900 __free_pages_ok(page, order);
2901 }
2902}
2903
2904EXPORT_SYMBOL(__free_pages);
2905
920c7a5d 2906void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2907{
2908 if (addr != 0) {
725d704e 2909 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2910 __free_pages(virt_to_page((void *)addr), order);
2911 }
2912}
2913
2914EXPORT_SYMBOL(free_pages);
2915
6a1a0d3b 2916/*
52383431
VD
2917 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2918 * of the current memory cgroup.
6a1a0d3b 2919 *
52383431
VD
2920 * It should be used when the caller would like to use kmalloc, but since the
2921 * allocation is large, it has to fall back to the page allocator.
2922 */
2923struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2924{
2925 struct page *page;
2926 struct mem_cgroup *memcg = NULL;
2927
2928 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2929 return NULL;
2930 page = alloc_pages(gfp_mask, order);
2931 memcg_kmem_commit_charge(page, memcg, order);
2932 return page;
2933}
2934
2935struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2936{
2937 struct page *page;
2938 struct mem_cgroup *memcg = NULL;
2939
2940 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2941 return NULL;
2942 page = alloc_pages_node(nid, gfp_mask, order);
2943 memcg_kmem_commit_charge(page, memcg, order);
2944 return page;
2945}
2946
2947/*
2948 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2949 * alloc_kmem_pages.
6a1a0d3b 2950 */
52383431 2951void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2952{
2953 memcg_kmem_uncharge_pages(page, order);
2954 __free_pages(page, order);
2955}
2956
52383431 2957void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2958{
2959 if (addr != 0) {
2960 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2961 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2962 }
2963}
2964
ee85c2e1
AK
2965static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2966{
2967 if (addr) {
2968 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2969 unsigned long used = addr + PAGE_ALIGN(size);
2970
2971 split_page(virt_to_page((void *)addr), order);
2972 while (used < alloc_end) {
2973 free_page(used);
2974 used += PAGE_SIZE;
2975 }
2976 }
2977 return (void *)addr;
2978}
2979
2be0ffe2
TT
2980/**
2981 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2982 * @size: the number of bytes to allocate
2983 * @gfp_mask: GFP flags for the allocation
2984 *
2985 * This function is similar to alloc_pages(), except that it allocates the
2986 * minimum number of pages to satisfy the request. alloc_pages() can only
2987 * allocate memory in power-of-two pages.
2988 *
2989 * This function is also limited by MAX_ORDER.
2990 *
2991 * Memory allocated by this function must be released by free_pages_exact().
2992 */
2993void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2994{
2995 unsigned int order = get_order(size);
2996 unsigned long addr;
2997
2998 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2999 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3000}
3001EXPORT_SYMBOL(alloc_pages_exact);
3002
ee85c2e1
AK
3003/**
3004 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3005 * pages on a node.
b5e6ab58 3006 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3007 * @size: the number of bytes to allocate
3008 * @gfp_mask: GFP flags for the allocation
3009 *
3010 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3011 * back.
3012 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3013 * but is not exact.
3014 */
e1931811 3015void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3016{
3017 unsigned order = get_order(size);
3018 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3019 if (!p)
3020 return NULL;
3021 return make_alloc_exact((unsigned long)page_address(p), order, size);
3022}
ee85c2e1 3023
2be0ffe2
TT
3024/**
3025 * free_pages_exact - release memory allocated via alloc_pages_exact()
3026 * @virt: the value returned by alloc_pages_exact.
3027 * @size: size of allocation, same value as passed to alloc_pages_exact().
3028 *
3029 * Release the memory allocated by a previous call to alloc_pages_exact.
3030 */
3031void free_pages_exact(void *virt, size_t size)
3032{
3033 unsigned long addr = (unsigned long)virt;
3034 unsigned long end = addr + PAGE_ALIGN(size);
3035
3036 while (addr < end) {
3037 free_page(addr);
3038 addr += PAGE_SIZE;
3039 }
3040}
3041EXPORT_SYMBOL(free_pages_exact);
3042
e0fb5815
ZY
3043/**
3044 * nr_free_zone_pages - count number of pages beyond high watermark
3045 * @offset: The zone index of the highest zone
3046 *
3047 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3048 * high watermark within all zones at or below a given zone index. For each
3049 * zone, the number of pages is calculated as:
834405c3 3050 * managed_pages - high_pages
e0fb5815 3051 */
ebec3862 3052static unsigned long nr_free_zone_pages(int offset)
1da177e4 3053{
dd1a239f 3054 struct zoneref *z;
54a6eb5c
MG
3055 struct zone *zone;
3056
e310fd43 3057 /* Just pick one node, since fallback list is circular */
ebec3862 3058 unsigned long sum = 0;
1da177e4 3059
0e88460d 3060 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3061
54a6eb5c 3062 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3063 unsigned long size = zone->managed_pages;
41858966 3064 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3065 if (size > high)
3066 sum += size - high;
1da177e4
LT
3067 }
3068
3069 return sum;
3070}
3071
e0fb5815
ZY
3072/**
3073 * nr_free_buffer_pages - count number of pages beyond high watermark
3074 *
3075 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3076 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3077 */
ebec3862 3078unsigned long nr_free_buffer_pages(void)
1da177e4 3079{
af4ca457 3080 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3081}
c2f1a551 3082EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3083
e0fb5815
ZY
3084/**
3085 * nr_free_pagecache_pages - count number of pages beyond high watermark
3086 *
3087 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3088 * high watermark within all zones.
1da177e4 3089 */
ebec3862 3090unsigned long nr_free_pagecache_pages(void)
1da177e4 3091{
2a1e274a 3092 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3093}
08e0f6a9
CL
3094
3095static inline void show_node(struct zone *zone)
1da177e4 3096{
e5adfffc 3097 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3098 printk("Node %d ", zone_to_nid(zone));
1da177e4 3099}
1da177e4 3100
1da177e4
LT
3101void si_meminfo(struct sysinfo *val)
3102{
3103 val->totalram = totalram_pages;
cc7452b6 3104 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3105 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3106 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3107 val->totalhigh = totalhigh_pages;
3108 val->freehigh = nr_free_highpages();
1da177e4
LT
3109 val->mem_unit = PAGE_SIZE;
3110}
3111
3112EXPORT_SYMBOL(si_meminfo);
3113
3114#ifdef CONFIG_NUMA
3115void si_meminfo_node(struct sysinfo *val, int nid)
3116{
cdd91a77
JL
3117 int zone_type; /* needs to be signed */
3118 unsigned long managed_pages = 0;
1da177e4
LT
3119 pg_data_t *pgdat = NODE_DATA(nid);
3120
cdd91a77
JL
3121 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3122 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3123 val->totalram = managed_pages;
cc7452b6 3124 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3125 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3126#ifdef CONFIG_HIGHMEM
b40da049 3127 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3128 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3129 NR_FREE_PAGES);
98d2b0eb
CL
3130#else
3131 val->totalhigh = 0;
3132 val->freehigh = 0;
3133#endif
1da177e4
LT
3134 val->mem_unit = PAGE_SIZE;
3135}
3136#endif
3137
ddd588b5 3138/*
7bf02ea2
DR
3139 * Determine whether the node should be displayed or not, depending on whether
3140 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3141 */
7bf02ea2 3142bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3143{
3144 bool ret = false;
cc9a6c87 3145 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3146
3147 if (!(flags & SHOW_MEM_FILTER_NODES))
3148 goto out;
3149
cc9a6c87 3150 do {
d26914d1 3151 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3152 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3153 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3154out:
3155 return ret;
3156}
3157
1da177e4
LT
3158#define K(x) ((x) << (PAGE_SHIFT-10))
3159
377e4f16
RV
3160static void show_migration_types(unsigned char type)
3161{
3162 static const char types[MIGRATE_TYPES] = {
3163 [MIGRATE_UNMOVABLE] = 'U',
3164 [MIGRATE_RECLAIMABLE] = 'E',
3165 [MIGRATE_MOVABLE] = 'M',
3166 [MIGRATE_RESERVE] = 'R',
3167#ifdef CONFIG_CMA
3168 [MIGRATE_CMA] = 'C',
3169#endif
194159fb 3170#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3171 [MIGRATE_ISOLATE] = 'I',
194159fb 3172#endif
377e4f16
RV
3173 };
3174 char tmp[MIGRATE_TYPES + 1];
3175 char *p = tmp;
3176 int i;
3177
3178 for (i = 0; i < MIGRATE_TYPES; i++) {
3179 if (type & (1 << i))
3180 *p++ = types[i];
3181 }
3182
3183 *p = '\0';
3184 printk("(%s) ", tmp);
3185}
3186
1da177e4
LT
3187/*
3188 * Show free area list (used inside shift_scroll-lock stuff)
3189 * We also calculate the percentage fragmentation. We do this by counting the
3190 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3191 * Suppresses nodes that are not allowed by current's cpuset if
3192 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3193 */
7bf02ea2 3194void show_free_areas(unsigned int filter)
1da177e4 3195{
c7241913 3196 int cpu;
1da177e4
LT
3197 struct zone *zone;
3198
ee99c71c 3199 for_each_populated_zone(zone) {
7bf02ea2 3200 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3201 continue;
c7241913
JS
3202 show_node(zone);
3203 printk("%s per-cpu:\n", zone->name);
1da177e4 3204
6b482c67 3205 for_each_online_cpu(cpu) {
1da177e4
LT
3206 struct per_cpu_pageset *pageset;
3207
99dcc3e5 3208 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3209
3dfa5721
CL
3210 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3211 cpu, pageset->pcp.high,
3212 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3213 }
3214 }
3215
a731286d
KM
3216 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3217 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3218 " unevictable:%lu"
b76146ed 3219 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3220 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3221 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3222 " free_cma:%lu\n",
4f98a2fe 3223 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3224 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3225 global_page_state(NR_ISOLATED_ANON),
3226 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3227 global_page_state(NR_INACTIVE_FILE),
a731286d 3228 global_page_state(NR_ISOLATED_FILE),
7b854121 3229 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3230 global_page_state(NR_FILE_DIRTY),
ce866b34 3231 global_page_state(NR_WRITEBACK),
fd39fc85 3232 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3233 global_page_state(NR_FREE_PAGES),
3701b033
KM
3234 global_page_state(NR_SLAB_RECLAIMABLE),
3235 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3236 global_page_state(NR_FILE_MAPPED),
4b02108a 3237 global_page_state(NR_SHMEM),
a25700a5 3238 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3239 global_page_state(NR_BOUNCE),
3240 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3241
ee99c71c 3242 for_each_populated_zone(zone) {
1da177e4
LT
3243 int i;
3244
7bf02ea2 3245 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3246 continue;
1da177e4
LT
3247 show_node(zone);
3248 printk("%s"
3249 " free:%lukB"
3250 " min:%lukB"
3251 " low:%lukB"
3252 " high:%lukB"
4f98a2fe
RR
3253 " active_anon:%lukB"
3254 " inactive_anon:%lukB"
3255 " active_file:%lukB"
3256 " inactive_file:%lukB"
7b854121 3257 " unevictable:%lukB"
a731286d
KM
3258 " isolated(anon):%lukB"
3259 " isolated(file):%lukB"
1da177e4 3260 " present:%lukB"
9feedc9d 3261 " managed:%lukB"
4a0aa73f
KM
3262 " mlocked:%lukB"
3263 " dirty:%lukB"
3264 " writeback:%lukB"
3265 " mapped:%lukB"
4b02108a 3266 " shmem:%lukB"
4a0aa73f
KM
3267 " slab_reclaimable:%lukB"
3268 " slab_unreclaimable:%lukB"
c6a7f572 3269 " kernel_stack:%lukB"
4a0aa73f
KM
3270 " pagetables:%lukB"
3271 " unstable:%lukB"
3272 " bounce:%lukB"
d1ce749a 3273 " free_cma:%lukB"
4a0aa73f 3274 " writeback_tmp:%lukB"
1da177e4
LT
3275 " pages_scanned:%lu"
3276 " all_unreclaimable? %s"
3277 "\n",
3278 zone->name,
88f5acf8 3279 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3280 K(min_wmark_pages(zone)),
3281 K(low_wmark_pages(zone)),
3282 K(high_wmark_pages(zone)),
4f98a2fe
RR
3283 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3284 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3285 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3286 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3287 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3288 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3289 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3290 K(zone->present_pages),
9feedc9d 3291 K(zone->managed_pages),
4a0aa73f
KM
3292 K(zone_page_state(zone, NR_MLOCK)),
3293 K(zone_page_state(zone, NR_FILE_DIRTY)),
3294 K(zone_page_state(zone, NR_WRITEBACK)),
3295 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3296 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3297 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3298 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3299 zone_page_state(zone, NR_KERNEL_STACK) *
3300 THREAD_SIZE / 1024,
4a0aa73f
KM
3301 K(zone_page_state(zone, NR_PAGETABLE)),
3302 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3303 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3304 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3305 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3306 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3307 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3308 );
3309 printk("lowmem_reserve[]:");
3310 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3311 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3312 printk("\n");
3313 }
3314
ee99c71c 3315 for_each_populated_zone(zone) {
b8af2941 3316 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3317 unsigned char types[MAX_ORDER];
1da177e4 3318
7bf02ea2 3319 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3320 continue;
1da177e4
LT
3321 show_node(zone);
3322 printk("%s: ", zone->name);
1da177e4
LT
3323
3324 spin_lock_irqsave(&zone->lock, flags);
3325 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3326 struct free_area *area = &zone->free_area[order];
3327 int type;
3328
3329 nr[order] = area->nr_free;
8f9de51a 3330 total += nr[order] << order;
377e4f16
RV
3331
3332 types[order] = 0;
3333 for (type = 0; type < MIGRATE_TYPES; type++) {
3334 if (!list_empty(&area->free_list[type]))
3335 types[order] |= 1 << type;
3336 }
1da177e4
LT
3337 }
3338 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3339 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3340 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3341 if (nr[order])
3342 show_migration_types(types[order]);
3343 }
1da177e4
LT
3344 printk("= %lukB\n", K(total));
3345 }
3346
949f7ec5
DR
3347 hugetlb_show_meminfo();
3348
e6f3602d
LW
3349 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3350
1da177e4
LT
3351 show_swap_cache_info();
3352}
3353
19770b32
MG
3354static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3355{
3356 zoneref->zone = zone;
3357 zoneref->zone_idx = zone_idx(zone);
3358}
3359
1da177e4
LT
3360/*
3361 * Builds allocation fallback zone lists.
1a93205b
CL
3362 *
3363 * Add all populated zones of a node to the zonelist.
1da177e4 3364 */
f0c0b2b8 3365static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3366 int nr_zones)
1da177e4 3367{
1a93205b 3368 struct zone *zone;
bc732f1d 3369 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3370
3371 do {
2f6726e5 3372 zone_type--;
070f8032 3373 zone = pgdat->node_zones + zone_type;
1a93205b 3374 if (populated_zone(zone)) {
dd1a239f
MG
3375 zoneref_set_zone(zone,
3376 &zonelist->_zonerefs[nr_zones++]);
070f8032 3377 check_highest_zone(zone_type);
1da177e4 3378 }
2f6726e5 3379 } while (zone_type);
bc732f1d 3380
070f8032 3381 return nr_zones;
1da177e4
LT
3382}
3383
f0c0b2b8
KH
3384
3385/*
3386 * zonelist_order:
3387 * 0 = automatic detection of better ordering.
3388 * 1 = order by ([node] distance, -zonetype)
3389 * 2 = order by (-zonetype, [node] distance)
3390 *
3391 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3392 * the same zonelist. So only NUMA can configure this param.
3393 */
3394#define ZONELIST_ORDER_DEFAULT 0
3395#define ZONELIST_ORDER_NODE 1
3396#define ZONELIST_ORDER_ZONE 2
3397
3398/* zonelist order in the kernel.
3399 * set_zonelist_order() will set this to NODE or ZONE.
3400 */
3401static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3402static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3403
3404
1da177e4 3405#ifdef CONFIG_NUMA
f0c0b2b8
KH
3406/* The value user specified ....changed by config */
3407static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3408/* string for sysctl */
3409#define NUMA_ZONELIST_ORDER_LEN 16
3410char numa_zonelist_order[16] = "default";
3411
3412/*
3413 * interface for configure zonelist ordering.
3414 * command line option "numa_zonelist_order"
3415 * = "[dD]efault - default, automatic configuration.
3416 * = "[nN]ode - order by node locality, then by zone within node
3417 * = "[zZ]one - order by zone, then by locality within zone
3418 */
3419
3420static int __parse_numa_zonelist_order(char *s)
3421{
3422 if (*s == 'd' || *s == 'D') {
3423 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3424 } else if (*s == 'n' || *s == 'N') {
3425 user_zonelist_order = ZONELIST_ORDER_NODE;
3426 } else if (*s == 'z' || *s == 'Z') {
3427 user_zonelist_order = ZONELIST_ORDER_ZONE;
3428 } else {
3429 printk(KERN_WARNING
3430 "Ignoring invalid numa_zonelist_order value: "
3431 "%s\n", s);
3432 return -EINVAL;
3433 }
3434 return 0;
3435}
3436
3437static __init int setup_numa_zonelist_order(char *s)
3438{
ecb256f8
VL
3439 int ret;
3440
3441 if (!s)
3442 return 0;
3443
3444 ret = __parse_numa_zonelist_order(s);
3445 if (ret == 0)
3446 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3447
3448 return ret;
f0c0b2b8
KH
3449}
3450early_param("numa_zonelist_order", setup_numa_zonelist_order);
3451
3452/*
3453 * sysctl handler for numa_zonelist_order
3454 */
cccad5b9 3455int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3456 void __user *buffer, size_t *length,
f0c0b2b8
KH
3457 loff_t *ppos)
3458{
3459 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3460 int ret;
443c6f14 3461 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3462
443c6f14 3463 mutex_lock(&zl_order_mutex);
dacbde09
CG
3464 if (write) {
3465 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3466 ret = -EINVAL;
3467 goto out;
3468 }
3469 strcpy(saved_string, (char *)table->data);
3470 }
8d65af78 3471 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3472 if (ret)
443c6f14 3473 goto out;
f0c0b2b8
KH
3474 if (write) {
3475 int oldval = user_zonelist_order;
dacbde09
CG
3476
3477 ret = __parse_numa_zonelist_order((char *)table->data);
3478 if (ret) {
f0c0b2b8
KH
3479 /*
3480 * bogus value. restore saved string
3481 */
dacbde09 3482 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3483 NUMA_ZONELIST_ORDER_LEN);
3484 user_zonelist_order = oldval;
4eaf3f64
HL
3485 } else if (oldval != user_zonelist_order) {
3486 mutex_lock(&zonelists_mutex);
9adb62a5 3487 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3488 mutex_unlock(&zonelists_mutex);
3489 }
f0c0b2b8 3490 }
443c6f14
AK
3491out:
3492 mutex_unlock(&zl_order_mutex);
3493 return ret;
f0c0b2b8
KH
3494}
3495
3496
62bc62a8 3497#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3498static int node_load[MAX_NUMNODES];
3499
1da177e4 3500/**
4dc3b16b 3501 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3502 * @node: node whose fallback list we're appending
3503 * @used_node_mask: nodemask_t of already used nodes
3504 *
3505 * We use a number of factors to determine which is the next node that should
3506 * appear on a given node's fallback list. The node should not have appeared
3507 * already in @node's fallback list, and it should be the next closest node
3508 * according to the distance array (which contains arbitrary distance values
3509 * from each node to each node in the system), and should also prefer nodes
3510 * with no CPUs, since presumably they'll have very little allocation pressure
3511 * on them otherwise.
3512 * It returns -1 if no node is found.
3513 */
f0c0b2b8 3514static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3515{
4cf808eb 3516 int n, val;
1da177e4 3517 int min_val = INT_MAX;
00ef2d2f 3518 int best_node = NUMA_NO_NODE;
a70f7302 3519 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3520
4cf808eb
LT
3521 /* Use the local node if we haven't already */
3522 if (!node_isset(node, *used_node_mask)) {
3523 node_set(node, *used_node_mask);
3524 return node;
3525 }
1da177e4 3526
4b0ef1fe 3527 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3528
3529 /* Don't want a node to appear more than once */
3530 if (node_isset(n, *used_node_mask))
3531 continue;
3532
1da177e4
LT
3533 /* Use the distance array to find the distance */
3534 val = node_distance(node, n);
3535
4cf808eb
LT
3536 /* Penalize nodes under us ("prefer the next node") */
3537 val += (n < node);
3538
1da177e4 3539 /* Give preference to headless and unused nodes */
a70f7302
RR
3540 tmp = cpumask_of_node(n);
3541 if (!cpumask_empty(tmp))
1da177e4
LT
3542 val += PENALTY_FOR_NODE_WITH_CPUS;
3543
3544 /* Slight preference for less loaded node */
3545 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3546 val += node_load[n];
3547
3548 if (val < min_val) {
3549 min_val = val;
3550 best_node = n;
3551 }
3552 }
3553
3554 if (best_node >= 0)
3555 node_set(best_node, *used_node_mask);
3556
3557 return best_node;
3558}
3559
f0c0b2b8
KH
3560
3561/*
3562 * Build zonelists ordered by node and zones within node.
3563 * This results in maximum locality--normal zone overflows into local
3564 * DMA zone, if any--but risks exhausting DMA zone.
3565 */
3566static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3567{
f0c0b2b8 3568 int j;
1da177e4 3569 struct zonelist *zonelist;
f0c0b2b8 3570
54a6eb5c 3571 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3572 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3573 ;
bc732f1d 3574 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3575 zonelist->_zonerefs[j].zone = NULL;
3576 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3577}
3578
523b9458
CL
3579/*
3580 * Build gfp_thisnode zonelists
3581 */
3582static void build_thisnode_zonelists(pg_data_t *pgdat)
3583{
523b9458
CL
3584 int j;
3585 struct zonelist *zonelist;
3586
54a6eb5c 3587 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3588 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3589 zonelist->_zonerefs[j].zone = NULL;
3590 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3591}
3592
f0c0b2b8
KH
3593/*
3594 * Build zonelists ordered by zone and nodes within zones.
3595 * This results in conserving DMA zone[s] until all Normal memory is
3596 * exhausted, but results in overflowing to remote node while memory
3597 * may still exist in local DMA zone.
3598 */
3599static int node_order[MAX_NUMNODES];
3600
3601static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3602{
f0c0b2b8
KH
3603 int pos, j, node;
3604 int zone_type; /* needs to be signed */
3605 struct zone *z;
3606 struct zonelist *zonelist;
3607
54a6eb5c
MG
3608 zonelist = &pgdat->node_zonelists[0];
3609 pos = 0;
3610 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3611 for (j = 0; j < nr_nodes; j++) {
3612 node = node_order[j];
3613 z = &NODE_DATA(node)->node_zones[zone_type];
3614 if (populated_zone(z)) {
dd1a239f
MG
3615 zoneref_set_zone(z,
3616 &zonelist->_zonerefs[pos++]);
54a6eb5c 3617 check_highest_zone(zone_type);
f0c0b2b8
KH
3618 }
3619 }
f0c0b2b8 3620 }
dd1a239f
MG
3621 zonelist->_zonerefs[pos].zone = NULL;
3622 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3623}
3624
3193913c
MG
3625#if defined(CONFIG_64BIT)
3626/*
3627 * Devices that require DMA32/DMA are relatively rare and do not justify a
3628 * penalty to every machine in case the specialised case applies. Default
3629 * to Node-ordering on 64-bit NUMA machines
3630 */
3631static int default_zonelist_order(void)
3632{
3633 return ZONELIST_ORDER_NODE;
3634}
3635#else
3636/*
3637 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3638 * by the kernel. If processes running on node 0 deplete the low memory zone
3639 * then reclaim will occur more frequency increasing stalls and potentially
3640 * be easier to OOM if a large percentage of the zone is under writeback or
3641 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3642 * Hence, default to zone ordering on 32-bit.
3643 */
f0c0b2b8
KH
3644static int default_zonelist_order(void)
3645{
f0c0b2b8
KH
3646 return ZONELIST_ORDER_ZONE;
3647}
3193913c 3648#endif /* CONFIG_64BIT */
f0c0b2b8
KH
3649
3650static void set_zonelist_order(void)
3651{
3652 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3653 current_zonelist_order = default_zonelist_order();
3654 else
3655 current_zonelist_order = user_zonelist_order;
3656}
3657
3658static void build_zonelists(pg_data_t *pgdat)
3659{
3660 int j, node, load;
3661 enum zone_type i;
1da177e4 3662 nodemask_t used_mask;
f0c0b2b8
KH
3663 int local_node, prev_node;
3664 struct zonelist *zonelist;
3665 int order = current_zonelist_order;
1da177e4
LT
3666
3667 /* initialize zonelists */
523b9458 3668 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3669 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3670 zonelist->_zonerefs[0].zone = NULL;
3671 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3672 }
3673
3674 /* NUMA-aware ordering of nodes */
3675 local_node = pgdat->node_id;
62bc62a8 3676 load = nr_online_nodes;
1da177e4
LT
3677 prev_node = local_node;
3678 nodes_clear(used_mask);
f0c0b2b8 3679
f0c0b2b8
KH
3680 memset(node_order, 0, sizeof(node_order));
3681 j = 0;
3682
1da177e4
LT
3683 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3684 /*
3685 * We don't want to pressure a particular node.
3686 * So adding penalty to the first node in same
3687 * distance group to make it round-robin.
3688 */
957f822a
DR
3689 if (node_distance(local_node, node) !=
3690 node_distance(local_node, prev_node))
f0c0b2b8
KH
3691 node_load[node] = load;
3692
1da177e4
LT
3693 prev_node = node;
3694 load--;
f0c0b2b8
KH
3695 if (order == ZONELIST_ORDER_NODE)
3696 build_zonelists_in_node_order(pgdat, node);
3697 else
3698 node_order[j++] = node; /* remember order */
3699 }
1da177e4 3700
f0c0b2b8
KH
3701 if (order == ZONELIST_ORDER_ZONE) {
3702 /* calculate node order -- i.e., DMA last! */
3703 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3704 }
523b9458
CL
3705
3706 build_thisnode_zonelists(pgdat);
1da177e4
LT
3707}
3708
9276b1bc 3709/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3710static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3711{
54a6eb5c
MG
3712 struct zonelist *zonelist;
3713 struct zonelist_cache *zlc;
dd1a239f 3714 struct zoneref *z;
9276b1bc 3715
54a6eb5c
MG
3716 zonelist = &pgdat->node_zonelists[0];
3717 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3718 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3719 for (z = zonelist->_zonerefs; z->zone; z++)
3720 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3721}
3722
7aac7898
LS
3723#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3724/*
3725 * Return node id of node used for "local" allocations.
3726 * I.e., first node id of first zone in arg node's generic zonelist.
3727 * Used for initializing percpu 'numa_mem', which is used primarily
3728 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3729 */
3730int local_memory_node(int node)
3731{
3732 struct zone *zone;
3733
3734 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3735 gfp_zone(GFP_KERNEL),
3736 NULL,
3737 &zone);
3738 return zone->node;
3739}
3740#endif
f0c0b2b8 3741
1da177e4
LT
3742#else /* CONFIG_NUMA */
3743
f0c0b2b8
KH
3744static void set_zonelist_order(void)
3745{
3746 current_zonelist_order = ZONELIST_ORDER_ZONE;
3747}
3748
3749static void build_zonelists(pg_data_t *pgdat)
1da177e4 3750{
19655d34 3751 int node, local_node;
54a6eb5c
MG
3752 enum zone_type j;
3753 struct zonelist *zonelist;
1da177e4
LT
3754
3755 local_node = pgdat->node_id;
1da177e4 3756
54a6eb5c 3757 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3758 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3759
54a6eb5c
MG
3760 /*
3761 * Now we build the zonelist so that it contains the zones
3762 * of all the other nodes.
3763 * We don't want to pressure a particular node, so when
3764 * building the zones for node N, we make sure that the
3765 * zones coming right after the local ones are those from
3766 * node N+1 (modulo N)
3767 */
3768 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3769 if (!node_online(node))
3770 continue;
bc732f1d 3771 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3772 }
54a6eb5c
MG
3773 for (node = 0; node < local_node; node++) {
3774 if (!node_online(node))
3775 continue;
bc732f1d 3776 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3777 }
3778
dd1a239f
MG
3779 zonelist->_zonerefs[j].zone = NULL;
3780 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3781}
3782
9276b1bc 3783/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3784static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3785{
54a6eb5c 3786 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3787}
3788
1da177e4
LT
3789#endif /* CONFIG_NUMA */
3790
99dcc3e5
CL
3791/*
3792 * Boot pageset table. One per cpu which is going to be used for all
3793 * zones and all nodes. The parameters will be set in such a way
3794 * that an item put on a list will immediately be handed over to
3795 * the buddy list. This is safe since pageset manipulation is done
3796 * with interrupts disabled.
3797 *
3798 * The boot_pagesets must be kept even after bootup is complete for
3799 * unused processors and/or zones. They do play a role for bootstrapping
3800 * hotplugged processors.
3801 *
3802 * zoneinfo_show() and maybe other functions do
3803 * not check if the processor is online before following the pageset pointer.
3804 * Other parts of the kernel may not check if the zone is available.
3805 */
3806static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3807static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3808static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3809
4eaf3f64
HL
3810/*
3811 * Global mutex to protect against size modification of zonelists
3812 * as well as to serialize pageset setup for the new populated zone.
3813 */
3814DEFINE_MUTEX(zonelists_mutex);
3815
9b1a4d38 3816/* return values int ....just for stop_machine() */
4ed7e022 3817static int __build_all_zonelists(void *data)
1da177e4 3818{
6811378e 3819 int nid;
99dcc3e5 3820 int cpu;
9adb62a5 3821 pg_data_t *self = data;
9276b1bc 3822
7f9cfb31
BL
3823#ifdef CONFIG_NUMA
3824 memset(node_load, 0, sizeof(node_load));
3825#endif
9adb62a5
JL
3826
3827 if (self && !node_online(self->node_id)) {
3828 build_zonelists(self);
3829 build_zonelist_cache(self);
3830 }
3831
9276b1bc 3832 for_each_online_node(nid) {
7ea1530a
CL
3833 pg_data_t *pgdat = NODE_DATA(nid);
3834
3835 build_zonelists(pgdat);
3836 build_zonelist_cache(pgdat);
9276b1bc 3837 }
99dcc3e5
CL
3838
3839 /*
3840 * Initialize the boot_pagesets that are going to be used
3841 * for bootstrapping processors. The real pagesets for
3842 * each zone will be allocated later when the per cpu
3843 * allocator is available.
3844 *
3845 * boot_pagesets are used also for bootstrapping offline
3846 * cpus if the system is already booted because the pagesets
3847 * are needed to initialize allocators on a specific cpu too.
3848 * F.e. the percpu allocator needs the page allocator which
3849 * needs the percpu allocator in order to allocate its pagesets
3850 * (a chicken-egg dilemma).
3851 */
7aac7898 3852 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3853 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3854
7aac7898
LS
3855#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3856 /*
3857 * We now know the "local memory node" for each node--
3858 * i.e., the node of the first zone in the generic zonelist.
3859 * Set up numa_mem percpu variable for on-line cpus. During
3860 * boot, only the boot cpu should be on-line; we'll init the
3861 * secondary cpus' numa_mem as they come on-line. During
3862 * node/memory hotplug, we'll fixup all on-line cpus.
3863 */
3864 if (cpu_online(cpu))
3865 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3866#endif
3867 }
3868
6811378e
YG
3869 return 0;
3870}
3871
4eaf3f64
HL
3872/*
3873 * Called with zonelists_mutex held always
3874 * unless system_state == SYSTEM_BOOTING.
3875 */
9adb62a5 3876void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3877{
f0c0b2b8
KH
3878 set_zonelist_order();
3879
6811378e 3880 if (system_state == SYSTEM_BOOTING) {
423b41d7 3881 __build_all_zonelists(NULL);
68ad8df4 3882 mminit_verify_zonelist();
6811378e
YG
3883 cpuset_init_current_mems_allowed();
3884 } else {
e9959f0f 3885#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3886 if (zone)
3887 setup_zone_pageset(zone);
e9959f0f 3888#endif
dd1895e2
CS
3889 /* we have to stop all cpus to guarantee there is no user
3890 of zonelist */
9adb62a5 3891 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3892 /* cpuset refresh routine should be here */
3893 }
bd1e22b8 3894 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3895 /*
3896 * Disable grouping by mobility if the number of pages in the
3897 * system is too low to allow the mechanism to work. It would be
3898 * more accurate, but expensive to check per-zone. This check is
3899 * made on memory-hotadd so a system can start with mobility
3900 * disabled and enable it later
3901 */
d9c23400 3902 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3903 page_group_by_mobility_disabled = 1;
3904 else
3905 page_group_by_mobility_disabled = 0;
3906
3907 printk("Built %i zonelists in %s order, mobility grouping %s. "
3908 "Total pages: %ld\n",
62bc62a8 3909 nr_online_nodes,
f0c0b2b8 3910 zonelist_order_name[current_zonelist_order],
9ef9acb0 3911 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3912 vm_total_pages);
3913#ifdef CONFIG_NUMA
3914 printk("Policy zone: %s\n", zone_names[policy_zone]);
3915#endif
1da177e4
LT
3916}
3917
3918/*
3919 * Helper functions to size the waitqueue hash table.
3920 * Essentially these want to choose hash table sizes sufficiently
3921 * large so that collisions trying to wait on pages are rare.
3922 * But in fact, the number of active page waitqueues on typical
3923 * systems is ridiculously low, less than 200. So this is even
3924 * conservative, even though it seems large.
3925 *
3926 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3927 * waitqueues, i.e. the size of the waitq table given the number of pages.
3928 */
3929#define PAGES_PER_WAITQUEUE 256
3930
cca448fe 3931#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3932static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3933{
3934 unsigned long size = 1;
3935
3936 pages /= PAGES_PER_WAITQUEUE;
3937
3938 while (size < pages)
3939 size <<= 1;
3940
3941 /*
3942 * Once we have dozens or even hundreds of threads sleeping
3943 * on IO we've got bigger problems than wait queue collision.
3944 * Limit the size of the wait table to a reasonable size.
3945 */
3946 size = min(size, 4096UL);
3947
3948 return max(size, 4UL);
3949}
cca448fe
YG
3950#else
3951/*
3952 * A zone's size might be changed by hot-add, so it is not possible to determine
3953 * a suitable size for its wait_table. So we use the maximum size now.
3954 *
3955 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3956 *
3957 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3958 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3959 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3960 *
3961 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3962 * or more by the traditional way. (See above). It equals:
3963 *
3964 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3965 * ia64(16K page size) : = ( 8G + 4M)byte.
3966 * powerpc (64K page size) : = (32G +16M)byte.
3967 */
3968static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3969{
3970 return 4096UL;
3971}
3972#endif
1da177e4
LT
3973
3974/*
3975 * This is an integer logarithm so that shifts can be used later
3976 * to extract the more random high bits from the multiplicative
3977 * hash function before the remainder is taken.
3978 */
3979static inline unsigned long wait_table_bits(unsigned long size)
3980{
3981 return ffz(~size);
3982}
3983
6d3163ce
AH
3984/*
3985 * Check if a pageblock contains reserved pages
3986 */
3987static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3988{
3989 unsigned long pfn;
3990
3991 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3992 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3993 return 1;
3994 }
3995 return 0;
3996}
3997
56fd56b8 3998/*
d9c23400 3999 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4000 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4001 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4002 * higher will lead to a bigger reserve which will get freed as contiguous
4003 * blocks as reclaim kicks in
4004 */
4005static void setup_zone_migrate_reserve(struct zone *zone)
4006{
6d3163ce 4007 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4008 struct page *page;
78986a67
MG
4009 unsigned long block_migratetype;
4010 int reserve;
943dca1a 4011 int old_reserve;
56fd56b8 4012
d0215638
MH
4013 /*
4014 * Get the start pfn, end pfn and the number of blocks to reserve
4015 * We have to be careful to be aligned to pageblock_nr_pages to
4016 * make sure that we always check pfn_valid for the first page in
4017 * the block.
4018 */
56fd56b8 4019 start_pfn = zone->zone_start_pfn;
108bcc96 4020 end_pfn = zone_end_pfn(zone);
d0215638 4021 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4022 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4023 pageblock_order;
56fd56b8 4024
78986a67
MG
4025 /*
4026 * Reserve blocks are generally in place to help high-order atomic
4027 * allocations that are short-lived. A min_free_kbytes value that
4028 * would result in more than 2 reserve blocks for atomic allocations
4029 * is assumed to be in place to help anti-fragmentation for the
4030 * future allocation of hugepages at runtime.
4031 */
4032 reserve = min(2, reserve);
943dca1a
YI
4033 old_reserve = zone->nr_migrate_reserve_block;
4034
4035 /* When memory hot-add, we almost always need to do nothing */
4036 if (reserve == old_reserve)
4037 return;
4038 zone->nr_migrate_reserve_block = reserve;
78986a67 4039
d9c23400 4040 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4041 if (!pfn_valid(pfn))
4042 continue;
4043 page = pfn_to_page(pfn);
4044
344c790e
AL
4045 /* Watch out for overlapping nodes */
4046 if (page_to_nid(page) != zone_to_nid(zone))
4047 continue;
4048
56fd56b8
MG
4049 block_migratetype = get_pageblock_migratetype(page);
4050
938929f1
MG
4051 /* Only test what is necessary when the reserves are not met */
4052 if (reserve > 0) {
4053 /*
4054 * Blocks with reserved pages will never free, skip
4055 * them.
4056 */
4057 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4058 if (pageblock_is_reserved(pfn, block_end_pfn))
4059 continue;
56fd56b8 4060
938929f1
MG
4061 /* If this block is reserved, account for it */
4062 if (block_migratetype == MIGRATE_RESERVE) {
4063 reserve--;
4064 continue;
4065 }
4066
4067 /* Suitable for reserving if this block is movable */
4068 if (block_migratetype == MIGRATE_MOVABLE) {
4069 set_pageblock_migratetype(page,
4070 MIGRATE_RESERVE);
4071 move_freepages_block(zone, page,
4072 MIGRATE_RESERVE);
4073 reserve--;
4074 continue;
4075 }
943dca1a
YI
4076 } else if (!old_reserve) {
4077 /*
4078 * At boot time we don't need to scan the whole zone
4079 * for turning off MIGRATE_RESERVE.
4080 */
4081 break;
56fd56b8
MG
4082 }
4083
4084 /*
4085 * If the reserve is met and this is a previous reserved block,
4086 * take it back
4087 */
4088 if (block_migratetype == MIGRATE_RESERVE) {
4089 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4090 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4091 }
4092 }
4093}
ac0e5b7a 4094
1da177e4
LT
4095/*
4096 * Initially all pages are reserved - free ones are freed
4097 * up by free_all_bootmem() once the early boot process is
4098 * done. Non-atomic initialization, single-pass.
4099 */
c09b4240 4100void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4101 unsigned long start_pfn, enum memmap_context context)
1da177e4 4102{
1da177e4 4103 struct page *page;
29751f69
AW
4104 unsigned long end_pfn = start_pfn + size;
4105 unsigned long pfn;
86051ca5 4106 struct zone *z;
1da177e4 4107
22b31eec
HD
4108 if (highest_memmap_pfn < end_pfn - 1)
4109 highest_memmap_pfn = end_pfn - 1;
4110
86051ca5 4111 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4112 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4113 /*
4114 * There can be holes in boot-time mem_map[]s
4115 * handed to this function. They do not
4116 * exist on hotplugged memory.
4117 */
4118 if (context == MEMMAP_EARLY) {
4119 if (!early_pfn_valid(pfn))
4120 continue;
4121 if (!early_pfn_in_nid(pfn, nid))
4122 continue;
4123 }
d41dee36
AW
4124 page = pfn_to_page(pfn);
4125 set_page_links(page, zone, nid, pfn);
708614e6 4126 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4127 init_page_count(page);
22b751c3 4128 page_mapcount_reset(page);
90572890 4129 page_cpupid_reset_last(page);
1da177e4 4130 SetPageReserved(page);
b2a0ac88
MG
4131 /*
4132 * Mark the block movable so that blocks are reserved for
4133 * movable at startup. This will force kernel allocations
4134 * to reserve their blocks rather than leaking throughout
4135 * the address space during boot when many long-lived
56fd56b8
MG
4136 * kernel allocations are made. Later some blocks near
4137 * the start are marked MIGRATE_RESERVE by
4138 * setup_zone_migrate_reserve()
86051ca5
KH
4139 *
4140 * bitmap is created for zone's valid pfn range. but memmap
4141 * can be created for invalid pages (for alignment)
4142 * check here not to call set_pageblock_migratetype() against
4143 * pfn out of zone.
b2a0ac88 4144 */
86051ca5 4145 if ((z->zone_start_pfn <= pfn)
108bcc96 4146 && (pfn < zone_end_pfn(z))
86051ca5 4147 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4148 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4149
1da177e4
LT
4150 INIT_LIST_HEAD(&page->lru);
4151#ifdef WANT_PAGE_VIRTUAL
4152 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4153 if (!is_highmem_idx(zone))
3212c6be 4154 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4155#endif
1da177e4
LT
4156 }
4157}
4158
1e548deb 4159static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4160{
7aeb09f9 4161 unsigned int order, t;
b2a0ac88
MG
4162 for_each_migratetype_order(order, t) {
4163 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4164 zone->free_area[order].nr_free = 0;
4165 }
4166}
4167
4168#ifndef __HAVE_ARCH_MEMMAP_INIT
4169#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4170 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4171#endif
4172
7cd2b0a3 4173static int zone_batchsize(struct zone *zone)
e7c8d5c9 4174{
3a6be87f 4175#ifdef CONFIG_MMU
e7c8d5c9
CL
4176 int batch;
4177
4178 /*
4179 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4180 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4181 *
4182 * OK, so we don't know how big the cache is. So guess.
4183 */
b40da049 4184 batch = zone->managed_pages / 1024;
ba56e91c
SR
4185 if (batch * PAGE_SIZE > 512 * 1024)
4186 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4187 batch /= 4; /* We effectively *= 4 below */
4188 if (batch < 1)
4189 batch = 1;
4190
4191 /*
0ceaacc9
NP
4192 * Clamp the batch to a 2^n - 1 value. Having a power
4193 * of 2 value was found to be more likely to have
4194 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4195 *
0ceaacc9
NP
4196 * For example if 2 tasks are alternately allocating
4197 * batches of pages, one task can end up with a lot
4198 * of pages of one half of the possible page colors
4199 * and the other with pages of the other colors.
e7c8d5c9 4200 */
9155203a 4201 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4202
e7c8d5c9 4203 return batch;
3a6be87f
DH
4204
4205#else
4206 /* The deferral and batching of frees should be suppressed under NOMMU
4207 * conditions.
4208 *
4209 * The problem is that NOMMU needs to be able to allocate large chunks
4210 * of contiguous memory as there's no hardware page translation to
4211 * assemble apparent contiguous memory from discontiguous pages.
4212 *
4213 * Queueing large contiguous runs of pages for batching, however,
4214 * causes the pages to actually be freed in smaller chunks. As there
4215 * can be a significant delay between the individual batches being
4216 * recycled, this leads to the once large chunks of space being
4217 * fragmented and becoming unavailable for high-order allocations.
4218 */
4219 return 0;
4220#endif
e7c8d5c9
CL
4221}
4222
8d7a8fa9
CS
4223/*
4224 * pcp->high and pcp->batch values are related and dependent on one another:
4225 * ->batch must never be higher then ->high.
4226 * The following function updates them in a safe manner without read side
4227 * locking.
4228 *
4229 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4230 * those fields changing asynchronously (acording the the above rule).
4231 *
4232 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4233 * outside of boot time (or some other assurance that no concurrent updaters
4234 * exist).
4235 */
4236static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4237 unsigned long batch)
4238{
4239 /* start with a fail safe value for batch */
4240 pcp->batch = 1;
4241 smp_wmb();
4242
4243 /* Update high, then batch, in order */
4244 pcp->high = high;
4245 smp_wmb();
4246
4247 pcp->batch = batch;
4248}
4249
3664033c 4250/* a companion to pageset_set_high() */
4008bab7
CS
4251static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4252{
8d7a8fa9 4253 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4254}
4255
88c90dbc 4256static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4257{
4258 struct per_cpu_pages *pcp;
5f8dcc21 4259 int migratetype;
2caaad41 4260
1c6fe946
MD
4261 memset(p, 0, sizeof(*p));
4262
3dfa5721 4263 pcp = &p->pcp;
2caaad41 4264 pcp->count = 0;
5f8dcc21
MG
4265 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4266 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4267}
4268
88c90dbc
CS
4269static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4270{
4271 pageset_init(p);
4272 pageset_set_batch(p, batch);
4273}
4274
8ad4b1fb 4275/*
3664033c 4276 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4277 * to the value high for the pageset p.
4278 */
3664033c 4279static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4280 unsigned long high)
4281{
8d7a8fa9
CS
4282 unsigned long batch = max(1UL, high / 4);
4283 if ((high / 4) > (PAGE_SHIFT * 8))
4284 batch = PAGE_SHIFT * 8;
8ad4b1fb 4285
8d7a8fa9 4286 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4287}
4288
7cd2b0a3
DR
4289static void pageset_set_high_and_batch(struct zone *zone,
4290 struct per_cpu_pageset *pcp)
56cef2b8 4291{
56cef2b8 4292 if (percpu_pagelist_fraction)
3664033c 4293 pageset_set_high(pcp,
56cef2b8
CS
4294 (zone->managed_pages /
4295 percpu_pagelist_fraction));
4296 else
4297 pageset_set_batch(pcp, zone_batchsize(zone));
4298}
4299
169f6c19
CS
4300static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4301{
4302 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4303
4304 pageset_init(pcp);
4305 pageset_set_high_and_batch(zone, pcp);
4306}
4307
4ed7e022 4308static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4309{
4310 int cpu;
319774e2 4311 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4312 for_each_possible_cpu(cpu)
4313 zone_pageset_init(zone, cpu);
319774e2
WF
4314}
4315
2caaad41 4316/*
99dcc3e5
CL
4317 * Allocate per cpu pagesets and initialize them.
4318 * Before this call only boot pagesets were available.
e7c8d5c9 4319 */
99dcc3e5 4320void __init setup_per_cpu_pageset(void)
e7c8d5c9 4321{
99dcc3e5 4322 struct zone *zone;
e7c8d5c9 4323
319774e2
WF
4324 for_each_populated_zone(zone)
4325 setup_zone_pageset(zone);
e7c8d5c9
CL
4326}
4327
577a32f6 4328static noinline __init_refok
cca448fe 4329int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4330{
4331 int i;
cca448fe 4332 size_t alloc_size;
ed8ece2e
DH
4333
4334 /*
4335 * The per-page waitqueue mechanism uses hashed waitqueues
4336 * per zone.
4337 */
02b694de
YG
4338 zone->wait_table_hash_nr_entries =
4339 wait_table_hash_nr_entries(zone_size_pages);
4340 zone->wait_table_bits =
4341 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4342 alloc_size = zone->wait_table_hash_nr_entries
4343 * sizeof(wait_queue_head_t);
4344
cd94b9db 4345 if (!slab_is_available()) {
cca448fe 4346 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4347 memblock_virt_alloc_node_nopanic(
4348 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4349 } else {
4350 /*
4351 * This case means that a zone whose size was 0 gets new memory
4352 * via memory hot-add.
4353 * But it may be the case that a new node was hot-added. In
4354 * this case vmalloc() will not be able to use this new node's
4355 * memory - this wait_table must be initialized to use this new
4356 * node itself as well.
4357 * To use this new node's memory, further consideration will be
4358 * necessary.
4359 */
8691f3a7 4360 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4361 }
4362 if (!zone->wait_table)
4363 return -ENOMEM;
ed8ece2e 4364
b8af2941 4365 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4366 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4367
4368 return 0;
ed8ece2e
DH
4369}
4370
c09b4240 4371static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4372{
99dcc3e5
CL
4373 /*
4374 * per cpu subsystem is not up at this point. The following code
4375 * relies on the ability of the linker to provide the
4376 * offset of a (static) per cpu variable into the per cpu area.
4377 */
4378 zone->pageset = &boot_pageset;
ed8ece2e 4379
b38a8725 4380 if (populated_zone(zone))
99dcc3e5
CL
4381 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4382 zone->name, zone->present_pages,
4383 zone_batchsize(zone));
ed8ece2e
DH
4384}
4385
4ed7e022 4386int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4387 unsigned long zone_start_pfn,
a2f3aa02
DH
4388 unsigned long size,
4389 enum memmap_context context)
ed8ece2e
DH
4390{
4391 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4392 int ret;
4393 ret = zone_wait_table_init(zone, size);
4394 if (ret)
4395 return ret;
ed8ece2e
DH
4396 pgdat->nr_zones = zone_idx(zone) + 1;
4397
ed8ece2e
DH
4398 zone->zone_start_pfn = zone_start_pfn;
4399
708614e6
MG
4400 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4401 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4402 pgdat->node_id,
4403 (unsigned long)zone_idx(zone),
4404 zone_start_pfn, (zone_start_pfn + size));
4405
1e548deb 4406 zone_init_free_lists(zone);
718127cc
YG
4407
4408 return 0;
ed8ece2e
DH
4409}
4410
0ee332c1 4411#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4412#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4413/*
4414 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4415 */
f2dbcfa7 4416int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4417{
c13291a5 4418 unsigned long start_pfn, end_pfn;
e76b63f8 4419 int nid;
7c243c71
RA
4420 /*
4421 * NOTE: The following SMP-unsafe globals are only used early in boot
4422 * when the kernel is running single-threaded.
4423 */
4424 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4425 static int __meminitdata last_nid;
4426
4427 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4428 return last_nid;
c713216d 4429
e76b63f8
YL
4430 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4431 if (nid != -1) {
4432 last_start_pfn = start_pfn;
4433 last_end_pfn = end_pfn;
4434 last_nid = nid;
4435 }
4436
4437 return nid;
c713216d
MG
4438}
4439#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4440
f2dbcfa7
KH
4441int __meminit early_pfn_to_nid(unsigned long pfn)
4442{
cc2559bc
KH
4443 int nid;
4444
4445 nid = __early_pfn_to_nid(pfn);
4446 if (nid >= 0)
4447 return nid;
4448 /* just returns 0 */
4449 return 0;
f2dbcfa7
KH
4450}
4451
cc2559bc
KH
4452#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4453bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4454{
4455 int nid;
4456
4457 nid = __early_pfn_to_nid(pfn);
4458 if (nid >= 0 && nid != node)
4459 return false;
4460 return true;
4461}
4462#endif
f2dbcfa7 4463
c713216d 4464/**
6782832e 4465 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4466 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4467 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4468 *
7d018176
ZZ
4469 * If an architecture guarantees that all ranges registered contain no holes
4470 * and may be freed, this this function may be used instead of calling
4471 * memblock_free_early_nid() manually.
c713216d 4472 */
c13291a5 4473void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4474{
c13291a5
TH
4475 unsigned long start_pfn, end_pfn;
4476 int i, this_nid;
edbe7d23 4477
c13291a5
TH
4478 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4479 start_pfn = min(start_pfn, max_low_pfn);
4480 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4481
c13291a5 4482 if (start_pfn < end_pfn)
6782832e
SS
4483 memblock_free_early_nid(PFN_PHYS(start_pfn),
4484 (end_pfn - start_pfn) << PAGE_SHIFT,
4485 this_nid);
edbe7d23 4486 }
edbe7d23 4487}
edbe7d23 4488
c713216d
MG
4489/**
4490 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4491 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4492 *
7d018176
ZZ
4493 * If an architecture guarantees that all ranges registered contain no holes and may
4494 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4495 */
4496void __init sparse_memory_present_with_active_regions(int nid)
4497{
c13291a5
TH
4498 unsigned long start_pfn, end_pfn;
4499 int i, this_nid;
c713216d 4500
c13291a5
TH
4501 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4502 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4503}
4504
4505/**
4506 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4507 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4508 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4509 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4510 *
4511 * It returns the start and end page frame of a node based on information
7d018176 4512 * provided by memblock_set_node(). If called for a node
c713216d 4513 * with no available memory, a warning is printed and the start and end
88ca3b94 4514 * PFNs will be 0.
c713216d 4515 */
a3142c8e 4516void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4517 unsigned long *start_pfn, unsigned long *end_pfn)
4518{
c13291a5 4519 unsigned long this_start_pfn, this_end_pfn;
c713216d 4520 int i;
c13291a5 4521
c713216d
MG
4522 *start_pfn = -1UL;
4523 *end_pfn = 0;
4524
c13291a5
TH
4525 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4526 *start_pfn = min(*start_pfn, this_start_pfn);
4527 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4528 }
4529
633c0666 4530 if (*start_pfn == -1UL)
c713216d 4531 *start_pfn = 0;
c713216d
MG
4532}
4533
2a1e274a
MG
4534/*
4535 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4536 * assumption is made that zones within a node are ordered in monotonic
4537 * increasing memory addresses so that the "highest" populated zone is used
4538 */
b69a7288 4539static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4540{
4541 int zone_index;
4542 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4543 if (zone_index == ZONE_MOVABLE)
4544 continue;
4545
4546 if (arch_zone_highest_possible_pfn[zone_index] >
4547 arch_zone_lowest_possible_pfn[zone_index])
4548 break;
4549 }
4550
4551 VM_BUG_ON(zone_index == -1);
4552 movable_zone = zone_index;
4553}
4554
4555/*
4556 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4557 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4558 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4559 * in each node depending on the size of each node and how evenly kernelcore
4560 * is distributed. This helper function adjusts the zone ranges
4561 * provided by the architecture for a given node by using the end of the
4562 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4563 * zones within a node are in order of monotonic increases memory addresses
4564 */
b69a7288 4565static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4566 unsigned long zone_type,
4567 unsigned long node_start_pfn,
4568 unsigned long node_end_pfn,
4569 unsigned long *zone_start_pfn,
4570 unsigned long *zone_end_pfn)
4571{
4572 /* Only adjust if ZONE_MOVABLE is on this node */
4573 if (zone_movable_pfn[nid]) {
4574 /* Size ZONE_MOVABLE */
4575 if (zone_type == ZONE_MOVABLE) {
4576 *zone_start_pfn = zone_movable_pfn[nid];
4577 *zone_end_pfn = min(node_end_pfn,
4578 arch_zone_highest_possible_pfn[movable_zone]);
4579
4580 /* Adjust for ZONE_MOVABLE starting within this range */
4581 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4582 *zone_end_pfn > zone_movable_pfn[nid]) {
4583 *zone_end_pfn = zone_movable_pfn[nid];
4584
4585 /* Check if this whole range is within ZONE_MOVABLE */
4586 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4587 *zone_start_pfn = *zone_end_pfn;
4588 }
4589}
4590
c713216d
MG
4591/*
4592 * Return the number of pages a zone spans in a node, including holes
4593 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4594 */
6ea6e688 4595static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4596 unsigned long zone_type,
7960aedd
ZY
4597 unsigned long node_start_pfn,
4598 unsigned long node_end_pfn,
c713216d
MG
4599 unsigned long *ignored)
4600{
c713216d
MG
4601 unsigned long zone_start_pfn, zone_end_pfn;
4602
7960aedd 4603 /* Get the start and end of the zone */
c713216d
MG
4604 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4605 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4606 adjust_zone_range_for_zone_movable(nid, zone_type,
4607 node_start_pfn, node_end_pfn,
4608 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4609
4610 /* Check that this node has pages within the zone's required range */
4611 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4612 return 0;
4613
4614 /* Move the zone boundaries inside the node if necessary */
4615 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4616 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4617
4618 /* Return the spanned pages */
4619 return zone_end_pfn - zone_start_pfn;
4620}
4621
4622/*
4623 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4624 * then all holes in the requested range will be accounted for.
c713216d 4625 */
32996250 4626unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4627 unsigned long range_start_pfn,
4628 unsigned long range_end_pfn)
4629{
96e907d1
TH
4630 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4631 unsigned long start_pfn, end_pfn;
4632 int i;
c713216d 4633
96e907d1
TH
4634 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4635 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4636 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4637 nr_absent -= end_pfn - start_pfn;
c713216d 4638 }
96e907d1 4639 return nr_absent;
c713216d
MG
4640}
4641
4642/**
4643 * absent_pages_in_range - Return number of page frames in holes within a range
4644 * @start_pfn: The start PFN to start searching for holes
4645 * @end_pfn: The end PFN to stop searching for holes
4646 *
88ca3b94 4647 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4648 */
4649unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4650 unsigned long end_pfn)
4651{
4652 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4653}
4654
4655/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4656static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4657 unsigned long zone_type,
7960aedd
ZY
4658 unsigned long node_start_pfn,
4659 unsigned long node_end_pfn,
c713216d
MG
4660 unsigned long *ignored)
4661{
96e907d1
TH
4662 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4663 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4664 unsigned long zone_start_pfn, zone_end_pfn;
4665
96e907d1
TH
4666 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4667 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4668
2a1e274a
MG
4669 adjust_zone_range_for_zone_movable(nid, zone_type,
4670 node_start_pfn, node_end_pfn,
4671 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4672 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4673}
0e0b864e 4674
0ee332c1 4675#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4676static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4677 unsigned long zone_type,
7960aedd
ZY
4678 unsigned long node_start_pfn,
4679 unsigned long node_end_pfn,
c713216d
MG
4680 unsigned long *zones_size)
4681{
4682 return zones_size[zone_type];
4683}
4684
6ea6e688 4685static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4686 unsigned long zone_type,
7960aedd
ZY
4687 unsigned long node_start_pfn,
4688 unsigned long node_end_pfn,
c713216d
MG
4689 unsigned long *zholes_size)
4690{
4691 if (!zholes_size)
4692 return 0;
4693
4694 return zholes_size[zone_type];
4695}
20e6926d 4696
0ee332c1 4697#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4698
a3142c8e 4699static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4700 unsigned long node_start_pfn,
4701 unsigned long node_end_pfn,
4702 unsigned long *zones_size,
4703 unsigned long *zholes_size)
c713216d
MG
4704{
4705 unsigned long realtotalpages, totalpages = 0;
4706 enum zone_type i;
4707
4708 for (i = 0; i < MAX_NR_ZONES; i++)
4709 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4710 node_start_pfn,
4711 node_end_pfn,
4712 zones_size);
c713216d
MG
4713 pgdat->node_spanned_pages = totalpages;
4714
4715 realtotalpages = totalpages;
4716 for (i = 0; i < MAX_NR_ZONES; i++)
4717 realtotalpages -=
4718 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4719 node_start_pfn, node_end_pfn,
4720 zholes_size);
c713216d
MG
4721 pgdat->node_present_pages = realtotalpages;
4722 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4723 realtotalpages);
4724}
4725
835c134e
MG
4726#ifndef CONFIG_SPARSEMEM
4727/*
4728 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4729 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4730 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4731 * round what is now in bits to nearest long in bits, then return it in
4732 * bytes.
4733 */
7c45512d 4734static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4735{
4736 unsigned long usemapsize;
4737
7c45512d 4738 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4739 usemapsize = roundup(zonesize, pageblock_nr_pages);
4740 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4741 usemapsize *= NR_PAGEBLOCK_BITS;
4742 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4743
4744 return usemapsize / 8;
4745}
4746
4747static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4748 struct zone *zone,
4749 unsigned long zone_start_pfn,
4750 unsigned long zonesize)
835c134e 4751{
7c45512d 4752 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4753 zone->pageblock_flags = NULL;
58a01a45 4754 if (usemapsize)
6782832e
SS
4755 zone->pageblock_flags =
4756 memblock_virt_alloc_node_nopanic(usemapsize,
4757 pgdat->node_id);
835c134e
MG
4758}
4759#else
7c45512d
LT
4760static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4761 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4762#endif /* CONFIG_SPARSEMEM */
4763
d9c23400 4764#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4765
d9c23400 4766/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4767void __paginginit set_pageblock_order(void)
d9c23400 4768{
955c1cd7
AM
4769 unsigned int order;
4770
d9c23400
MG
4771 /* Check that pageblock_nr_pages has not already been setup */
4772 if (pageblock_order)
4773 return;
4774
955c1cd7
AM
4775 if (HPAGE_SHIFT > PAGE_SHIFT)
4776 order = HUGETLB_PAGE_ORDER;
4777 else
4778 order = MAX_ORDER - 1;
4779
d9c23400
MG
4780 /*
4781 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4782 * This value may be variable depending on boot parameters on IA64 and
4783 * powerpc.
d9c23400
MG
4784 */
4785 pageblock_order = order;
4786}
4787#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4788
ba72cb8c
MG
4789/*
4790 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4791 * is unused as pageblock_order is set at compile-time. See
4792 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4793 * the kernel config
ba72cb8c 4794 */
15ca220e 4795void __paginginit set_pageblock_order(void)
ba72cb8c 4796{
ba72cb8c 4797}
d9c23400
MG
4798
4799#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4800
01cefaef
JL
4801static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4802 unsigned long present_pages)
4803{
4804 unsigned long pages = spanned_pages;
4805
4806 /*
4807 * Provide a more accurate estimation if there are holes within
4808 * the zone and SPARSEMEM is in use. If there are holes within the
4809 * zone, each populated memory region may cost us one or two extra
4810 * memmap pages due to alignment because memmap pages for each
4811 * populated regions may not naturally algined on page boundary.
4812 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4813 */
4814 if (spanned_pages > present_pages + (present_pages >> 4) &&
4815 IS_ENABLED(CONFIG_SPARSEMEM))
4816 pages = present_pages;
4817
4818 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4819}
4820
1da177e4
LT
4821/*
4822 * Set up the zone data structures:
4823 * - mark all pages reserved
4824 * - mark all memory queues empty
4825 * - clear the memory bitmaps
6527af5d
MK
4826 *
4827 * NOTE: pgdat should get zeroed by caller.
1da177e4 4828 */
b5a0e011 4829static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4830 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4831 unsigned long *zones_size, unsigned long *zholes_size)
4832{
2f1b6248 4833 enum zone_type j;
ed8ece2e 4834 int nid = pgdat->node_id;
1da177e4 4835 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4836 int ret;
1da177e4 4837
208d54e5 4838 pgdat_resize_init(pgdat);
8177a420
AA
4839#ifdef CONFIG_NUMA_BALANCING
4840 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4841 pgdat->numabalancing_migrate_nr_pages = 0;
4842 pgdat->numabalancing_migrate_next_window = jiffies;
4843#endif
1da177e4 4844 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4845 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4846 pgdat_page_cgroup_init(pgdat);
5f63b720 4847
1da177e4
LT
4848 for (j = 0; j < MAX_NR_ZONES; j++) {
4849 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4850 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4851
7960aedd
ZY
4852 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4853 node_end_pfn, zones_size);
9feedc9d 4854 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4855 node_start_pfn,
4856 node_end_pfn,
c713216d 4857 zholes_size);
1da177e4 4858
0e0b864e 4859 /*
9feedc9d 4860 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4861 * is used by this zone for memmap. This affects the watermark
4862 * and per-cpu initialisations
4863 */
01cefaef 4864 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4865 if (freesize >= memmap_pages) {
4866 freesize -= memmap_pages;
5594c8c8
YL
4867 if (memmap_pages)
4868 printk(KERN_DEBUG
4869 " %s zone: %lu pages used for memmap\n",
4870 zone_names[j], memmap_pages);
0e0b864e
MG
4871 } else
4872 printk(KERN_WARNING
9feedc9d
JL
4873 " %s zone: %lu pages exceeds freesize %lu\n",
4874 zone_names[j], memmap_pages, freesize);
0e0b864e 4875
6267276f 4876 /* Account for reserved pages */
9feedc9d
JL
4877 if (j == 0 && freesize > dma_reserve) {
4878 freesize -= dma_reserve;
d903ef9f 4879 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4880 zone_names[0], dma_reserve);
0e0b864e
MG
4881 }
4882
98d2b0eb 4883 if (!is_highmem_idx(j))
9feedc9d 4884 nr_kernel_pages += freesize;
01cefaef
JL
4885 /* Charge for highmem memmap if there are enough kernel pages */
4886 else if (nr_kernel_pages > memmap_pages * 2)
4887 nr_kernel_pages -= memmap_pages;
9feedc9d 4888 nr_all_pages += freesize;
1da177e4
LT
4889
4890 zone->spanned_pages = size;
306f2e9e 4891 zone->present_pages = realsize;
9feedc9d
JL
4892 /*
4893 * Set an approximate value for lowmem here, it will be adjusted
4894 * when the bootmem allocator frees pages into the buddy system.
4895 * And all highmem pages will be managed by the buddy system.
4896 */
4897 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4898#ifdef CONFIG_NUMA
d5f541ed 4899 zone->node = nid;
9feedc9d 4900 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4901 / 100;
9feedc9d 4902 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4903#endif
1da177e4
LT
4904 zone->name = zone_names[j];
4905 spin_lock_init(&zone->lock);
4906 spin_lock_init(&zone->lru_lock);
bdc8cb98 4907 zone_seqlock_init(zone);
1da177e4 4908 zone->zone_pgdat = pgdat;
ed8ece2e 4909 zone_pcp_init(zone);
81c0a2bb
JW
4910
4911 /* For bootup, initialized properly in watermark setup */
4912 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4913
bea8c150 4914 lruvec_init(&zone->lruvec);
1da177e4
LT
4915 if (!size)
4916 continue;
4917
955c1cd7 4918 set_pageblock_order();
7c45512d 4919 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4920 ret = init_currently_empty_zone(zone, zone_start_pfn,
4921 size, MEMMAP_EARLY);
718127cc 4922 BUG_ON(ret);
76cdd58e 4923 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4924 zone_start_pfn += size;
1da177e4
LT
4925 }
4926}
4927
577a32f6 4928static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4929{
1da177e4
LT
4930 /* Skip empty nodes */
4931 if (!pgdat->node_spanned_pages)
4932 return;
4933
d41dee36 4934#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4935 /* ia64 gets its own node_mem_map, before this, without bootmem */
4936 if (!pgdat->node_mem_map) {
e984bb43 4937 unsigned long size, start, end;
d41dee36
AW
4938 struct page *map;
4939
e984bb43
BP
4940 /*
4941 * The zone's endpoints aren't required to be MAX_ORDER
4942 * aligned but the node_mem_map endpoints must be in order
4943 * for the buddy allocator to function correctly.
4944 */
4945 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4946 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4947 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4948 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4949 map = alloc_remap(pgdat->node_id, size);
4950 if (!map)
6782832e
SS
4951 map = memblock_virt_alloc_node_nopanic(size,
4952 pgdat->node_id);
e984bb43 4953 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4954 }
12d810c1 4955#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4956 /*
4957 * With no DISCONTIG, the global mem_map is just set as node 0's
4958 */
c713216d 4959 if (pgdat == NODE_DATA(0)) {
1da177e4 4960 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4961#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4962 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4963 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4964#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4965 }
1da177e4 4966#endif
d41dee36 4967#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4968}
4969
9109fb7b
JW
4970void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4971 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4972{
9109fb7b 4973 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4974 unsigned long start_pfn = 0;
4975 unsigned long end_pfn = 0;
9109fb7b 4976
88fdf75d 4977 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4978 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4979
1da177e4
LT
4980 pgdat->node_id = nid;
4981 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
4982#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4983 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8b375f64
LC
4984 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
4985 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
4986#endif
4987 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4988 zones_size, zholes_size);
1da177e4
LT
4989
4990 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4991#ifdef CONFIG_FLAT_NODE_MEM_MAP
4992 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4993 nid, (unsigned long)pgdat,
4994 (unsigned long)pgdat->node_mem_map);
4995#endif
1da177e4 4996
7960aedd
ZY
4997 free_area_init_core(pgdat, start_pfn, end_pfn,
4998 zones_size, zholes_size);
1da177e4
LT
4999}
5000
0ee332c1 5001#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5002
5003#if MAX_NUMNODES > 1
5004/*
5005 * Figure out the number of possible node ids.
5006 */
f9872caf 5007void __init setup_nr_node_ids(void)
418508c1
MS
5008{
5009 unsigned int node;
5010 unsigned int highest = 0;
5011
5012 for_each_node_mask(node, node_possible_map)
5013 highest = node;
5014 nr_node_ids = highest + 1;
5015}
418508c1
MS
5016#endif
5017
1e01979c
TH
5018/**
5019 * node_map_pfn_alignment - determine the maximum internode alignment
5020 *
5021 * This function should be called after node map is populated and sorted.
5022 * It calculates the maximum power of two alignment which can distinguish
5023 * all the nodes.
5024 *
5025 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5026 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5027 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5028 * shifted, 1GiB is enough and this function will indicate so.
5029 *
5030 * This is used to test whether pfn -> nid mapping of the chosen memory
5031 * model has fine enough granularity to avoid incorrect mapping for the
5032 * populated node map.
5033 *
5034 * Returns the determined alignment in pfn's. 0 if there is no alignment
5035 * requirement (single node).
5036 */
5037unsigned long __init node_map_pfn_alignment(void)
5038{
5039 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5040 unsigned long start, end, mask;
1e01979c 5041 int last_nid = -1;
c13291a5 5042 int i, nid;
1e01979c 5043
c13291a5 5044 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5045 if (!start || last_nid < 0 || last_nid == nid) {
5046 last_nid = nid;
5047 last_end = end;
5048 continue;
5049 }
5050
5051 /*
5052 * Start with a mask granular enough to pin-point to the
5053 * start pfn and tick off bits one-by-one until it becomes
5054 * too coarse to separate the current node from the last.
5055 */
5056 mask = ~((1 << __ffs(start)) - 1);
5057 while (mask && last_end <= (start & (mask << 1)))
5058 mask <<= 1;
5059
5060 /* accumulate all internode masks */
5061 accl_mask |= mask;
5062 }
5063
5064 /* convert mask to number of pages */
5065 return ~accl_mask + 1;
5066}
5067
a6af2bc3 5068/* Find the lowest pfn for a node */
b69a7288 5069static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5070{
a6af2bc3 5071 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5072 unsigned long start_pfn;
5073 int i;
1abbfb41 5074
c13291a5
TH
5075 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5076 min_pfn = min(min_pfn, start_pfn);
c713216d 5077
a6af2bc3
MG
5078 if (min_pfn == ULONG_MAX) {
5079 printk(KERN_WARNING
2bc0d261 5080 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5081 return 0;
5082 }
5083
5084 return min_pfn;
c713216d
MG
5085}
5086
5087/**
5088 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5089 *
5090 * It returns the minimum PFN based on information provided via
7d018176 5091 * memblock_set_node().
c713216d
MG
5092 */
5093unsigned long __init find_min_pfn_with_active_regions(void)
5094{
5095 return find_min_pfn_for_node(MAX_NUMNODES);
5096}
5097
37b07e41
LS
5098/*
5099 * early_calculate_totalpages()
5100 * Sum pages in active regions for movable zone.
4b0ef1fe 5101 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5102 */
484f51f8 5103static unsigned long __init early_calculate_totalpages(void)
7e63efef 5104{
7e63efef 5105 unsigned long totalpages = 0;
c13291a5
TH
5106 unsigned long start_pfn, end_pfn;
5107 int i, nid;
5108
5109 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5110 unsigned long pages = end_pfn - start_pfn;
7e63efef 5111
37b07e41
LS
5112 totalpages += pages;
5113 if (pages)
4b0ef1fe 5114 node_set_state(nid, N_MEMORY);
37b07e41 5115 }
b8af2941 5116 return totalpages;
7e63efef
MG
5117}
5118
2a1e274a
MG
5119/*
5120 * Find the PFN the Movable zone begins in each node. Kernel memory
5121 * is spread evenly between nodes as long as the nodes have enough
5122 * memory. When they don't, some nodes will have more kernelcore than
5123 * others
5124 */
b224ef85 5125static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5126{
5127 int i, nid;
5128 unsigned long usable_startpfn;
5129 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5130 /* save the state before borrow the nodemask */
4b0ef1fe 5131 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5132 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5133 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5134 struct memblock_region *r;
b2f3eebe
TC
5135
5136 /* Need to find movable_zone earlier when movable_node is specified. */
5137 find_usable_zone_for_movable();
5138
5139 /*
5140 * If movable_node is specified, ignore kernelcore and movablecore
5141 * options.
5142 */
5143 if (movable_node_is_enabled()) {
136199f0
EM
5144 for_each_memblock(memory, r) {
5145 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5146 continue;
5147
136199f0 5148 nid = r->nid;
b2f3eebe 5149
136199f0 5150 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5151 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5152 min(usable_startpfn, zone_movable_pfn[nid]) :
5153 usable_startpfn;
5154 }
5155
5156 goto out2;
5157 }
2a1e274a 5158
7e63efef 5159 /*
b2f3eebe 5160 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5161 * kernelcore that corresponds so that memory usable for
5162 * any allocation type is evenly spread. If both kernelcore
5163 * and movablecore are specified, then the value of kernelcore
5164 * will be used for required_kernelcore if it's greater than
5165 * what movablecore would have allowed.
5166 */
5167 if (required_movablecore) {
7e63efef
MG
5168 unsigned long corepages;
5169
5170 /*
5171 * Round-up so that ZONE_MOVABLE is at least as large as what
5172 * was requested by the user
5173 */
5174 required_movablecore =
5175 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5176 corepages = totalpages - required_movablecore;
5177
5178 required_kernelcore = max(required_kernelcore, corepages);
5179 }
5180
20e6926d
YL
5181 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5182 if (!required_kernelcore)
66918dcd 5183 goto out;
2a1e274a
MG
5184
5185 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5186 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5187
5188restart:
5189 /* Spread kernelcore memory as evenly as possible throughout nodes */
5190 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5191 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5192 unsigned long start_pfn, end_pfn;
5193
2a1e274a
MG
5194 /*
5195 * Recalculate kernelcore_node if the division per node
5196 * now exceeds what is necessary to satisfy the requested
5197 * amount of memory for the kernel
5198 */
5199 if (required_kernelcore < kernelcore_node)
5200 kernelcore_node = required_kernelcore / usable_nodes;
5201
5202 /*
5203 * As the map is walked, we track how much memory is usable
5204 * by the kernel using kernelcore_remaining. When it is
5205 * 0, the rest of the node is usable by ZONE_MOVABLE
5206 */
5207 kernelcore_remaining = kernelcore_node;
5208
5209 /* Go through each range of PFNs within this node */
c13291a5 5210 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5211 unsigned long size_pages;
5212
c13291a5 5213 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5214 if (start_pfn >= end_pfn)
5215 continue;
5216
5217 /* Account for what is only usable for kernelcore */
5218 if (start_pfn < usable_startpfn) {
5219 unsigned long kernel_pages;
5220 kernel_pages = min(end_pfn, usable_startpfn)
5221 - start_pfn;
5222
5223 kernelcore_remaining -= min(kernel_pages,
5224 kernelcore_remaining);
5225 required_kernelcore -= min(kernel_pages,
5226 required_kernelcore);
5227
5228 /* Continue if range is now fully accounted */
5229 if (end_pfn <= usable_startpfn) {
5230
5231 /*
5232 * Push zone_movable_pfn to the end so
5233 * that if we have to rebalance
5234 * kernelcore across nodes, we will
5235 * not double account here
5236 */
5237 zone_movable_pfn[nid] = end_pfn;
5238 continue;
5239 }
5240 start_pfn = usable_startpfn;
5241 }
5242
5243 /*
5244 * The usable PFN range for ZONE_MOVABLE is from
5245 * start_pfn->end_pfn. Calculate size_pages as the
5246 * number of pages used as kernelcore
5247 */
5248 size_pages = end_pfn - start_pfn;
5249 if (size_pages > kernelcore_remaining)
5250 size_pages = kernelcore_remaining;
5251 zone_movable_pfn[nid] = start_pfn + size_pages;
5252
5253 /*
5254 * Some kernelcore has been met, update counts and
5255 * break if the kernelcore for this node has been
b8af2941 5256 * satisfied
2a1e274a
MG
5257 */
5258 required_kernelcore -= min(required_kernelcore,
5259 size_pages);
5260 kernelcore_remaining -= size_pages;
5261 if (!kernelcore_remaining)
5262 break;
5263 }
5264 }
5265
5266 /*
5267 * If there is still required_kernelcore, we do another pass with one
5268 * less node in the count. This will push zone_movable_pfn[nid] further
5269 * along on the nodes that still have memory until kernelcore is
b8af2941 5270 * satisfied
2a1e274a
MG
5271 */
5272 usable_nodes--;
5273 if (usable_nodes && required_kernelcore > usable_nodes)
5274 goto restart;
5275
b2f3eebe 5276out2:
2a1e274a
MG
5277 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5278 for (nid = 0; nid < MAX_NUMNODES; nid++)
5279 zone_movable_pfn[nid] =
5280 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5281
20e6926d 5282out:
66918dcd 5283 /* restore the node_state */
4b0ef1fe 5284 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5285}
5286
4b0ef1fe
LJ
5287/* Any regular or high memory on that node ? */
5288static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5289{
37b07e41
LS
5290 enum zone_type zone_type;
5291
4b0ef1fe
LJ
5292 if (N_MEMORY == N_NORMAL_MEMORY)
5293 return;
5294
5295 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5296 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5297 if (populated_zone(zone)) {
4b0ef1fe
LJ
5298 node_set_state(nid, N_HIGH_MEMORY);
5299 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5300 zone_type <= ZONE_NORMAL)
5301 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5302 break;
5303 }
37b07e41 5304 }
37b07e41
LS
5305}
5306
c713216d
MG
5307/**
5308 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5309 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5310 *
5311 * This will call free_area_init_node() for each active node in the system.
7d018176 5312 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5313 * zone in each node and their holes is calculated. If the maximum PFN
5314 * between two adjacent zones match, it is assumed that the zone is empty.
5315 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5316 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5317 * starts where the previous one ended. For example, ZONE_DMA32 starts
5318 * at arch_max_dma_pfn.
5319 */
5320void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5321{
c13291a5
TH
5322 unsigned long start_pfn, end_pfn;
5323 int i, nid;
a6af2bc3 5324
c713216d
MG
5325 /* Record where the zone boundaries are */
5326 memset(arch_zone_lowest_possible_pfn, 0,
5327 sizeof(arch_zone_lowest_possible_pfn));
5328 memset(arch_zone_highest_possible_pfn, 0,
5329 sizeof(arch_zone_highest_possible_pfn));
5330 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5331 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5332 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5333 if (i == ZONE_MOVABLE)
5334 continue;
c713216d
MG
5335 arch_zone_lowest_possible_pfn[i] =
5336 arch_zone_highest_possible_pfn[i-1];
5337 arch_zone_highest_possible_pfn[i] =
5338 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5339 }
2a1e274a
MG
5340 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5341 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5342
5343 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5344 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5345 find_zone_movable_pfns_for_nodes();
c713216d 5346
c713216d 5347 /* Print out the zone ranges */
a62e2f4f 5348 printk("Zone ranges:\n");
2a1e274a
MG
5349 for (i = 0; i < MAX_NR_ZONES; i++) {
5350 if (i == ZONE_MOVABLE)
5351 continue;
155cbfc8 5352 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5353 if (arch_zone_lowest_possible_pfn[i] ==
5354 arch_zone_highest_possible_pfn[i])
155cbfc8 5355 printk(KERN_CONT "empty\n");
72f0ba02 5356 else
a62e2f4f
BH
5357 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5358 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5359 (arch_zone_highest_possible_pfn[i]
5360 << PAGE_SHIFT) - 1);
2a1e274a
MG
5361 }
5362
5363 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5364 printk("Movable zone start for each node\n");
2a1e274a
MG
5365 for (i = 0; i < MAX_NUMNODES; i++) {
5366 if (zone_movable_pfn[i])
a62e2f4f
BH
5367 printk(" Node %d: %#010lx\n", i,
5368 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5369 }
c713216d 5370
f2d52fe5 5371 /* Print out the early node map */
a62e2f4f 5372 printk("Early memory node ranges\n");
c13291a5 5373 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5374 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5375 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5376
5377 /* Initialise every node */
708614e6 5378 mminit_verify_pageflags_layout();
8ef82866 5379 setup_nr_node_ids();
c713216d
MG
5380 for_each_online_node(nid) {
5381 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5382 free_area_init_node(nid, NULL,
c713216d 5383 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5384
5385 /* Any memory on that node */
5386 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5387 node_set_state(nid, N_MEMORY);
5388 check_for_memory(pgdat, nid);
c713216d
MG
5389 }
5390}
2a1e274a 5391
7e63efef 5392static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5393{
5394 unsigned long long coremem;
5395 if (!p)
5396 return -EINVAL;
5397
5398 coremem = memparse(p, &p);
7e63efef 5399 *core = coremem >> PAGE_SHIFT;
2a1e274a 5400
7e63efef 5401 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5402 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5403
5404 return 0;
5405}
ed7ed365 5406
7e63efef
MG
5407/*
5408 * kernelcore=size sets the amount of memory for use for allocations that
5409 * cannot be reclaimed or migrated.
5410 */
5411static int __init cmdline_parse_kernelcore(char *p)
5412{
5413 return cmdline_parse_core(p, &required_kernelcore);
5414}
5415
5416/*
5417 * movablecore=size sets the amount of memory for use for allocations that
5418 * can be reclaimed or migrated.
5419 */
5420static int __init cmdline_parse_movablecore(char *p)
5421{
5422 return cmdline_parse_core(p, &required_movablecore);
5423}
5424
ed7ed365 5425early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5426early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5427
0ee332c1 5428#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5429
c3d5f5f0
JL
5430void adjust_managed_page_count(struct page *page, long count)
5431{
5432 spin_lock(&managed_page_count_lock);
5433 page_zone(page)->managed_pages += count;
5434 totalram_pages += count;
3dcc0571
JL
5435#ifdef CONFIG_HIGHMEM
5436 if (PageHighMem(page))
5437 totalhigh_pages += count;
5438#endif
c3d5f5f0
JL
5439 spin_unlock(&managed_page_count_lock);
5440}
3dcc0571 5441EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5442
11199692 5443unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5444{
11199692
JL
5445 void *pos;
5446 unsigned long pages = 0;
69afade7 5447
11199692
JL
5448 start = (void *)PAGE_ALIGN((unsigned long)start);
5449 end = (void *)((unsigned long)end & PAGE_MASK);
5450 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5451 if ((unsigned int)poison <= 0xFF)
11199692
JL
5452 memset(pos, poison, PAGE_SIZE);
5453 free_reserved_page(virt_to_page(pos));
69afade7
JL
5454 }
5455
5456 if (pages && s)
11199692 5457 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5458 s, pages << (PAGE_SHIFT - 10), start, end);
5459
5460 return pages;
5461}
11199692 5462EXPORT_SYMBOL(free_reserved_area);
69afade7 5463
cfa11e08
JL
5464#ifdef CONFIG_HIGHMEM
5465void free_highmem_page(struct page *page)
5466{
5467 __free_reserved_page(page);
5468 totalram_pages++;
7b4b2a0d 5469 page_zone(page)->managed_pages++;
cfa11e08
JL
5470 totalhigh_pages++;
5471}
5472#endif
5473
7ee3d4e8
JL
5474
5475void __init mem_init_print_info(const char *str)
5476{
5477 unsigned long physpages, codesize, datasize, rosize, bss_size;
5478 unsigned long init_code_size, init_data_size;
5479
5480 physpages = get_num_physpages();
5481 codesize = _etext - _stext;
5482 datasize = _edata - _sdata;
5483 rosize = __end_rodata - __start_rodata;
5484 bss_size = __bss_stop - __bss_start;
5485 init_data_size = __init_end - __init_begin;
5486 init_code_size = _einittext - _sinittext;
5487
5488 /*
5489 * Detect special cases and adjust section sizes accordingly:
5490 * 1) .init.* may be embedded into .data sections
5491 * 2) .init.text.* may be out of [__init_begin, __init_end],
5492 * please refer to arch/tile/kernel/vmlinux.lds.S.
5493 * 3) .rodata.* may be embedded into .text or .data sections.
5494 */
5495#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5496 do { \
5497 if (start <= pos && pos < end && size > adj) \
5498 size -= adj; \
5499 } while (0)
7ee3d4e8
JL
5500
5501 adj_init_size(__init_begin, __init_end, init_data_size,
5502 _sinittext, init_code_size);
5503 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5504 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5505 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5506 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5507
5508#undef adj_init_size
5509
5510 printk("Memory: %luK/%luK available "
5511 "(%luK kernel code, %luK rwdata, %luK rodata, "
5512 "%luK init, %luK bss, %luK reserved"
5513#ifdef CONFIG_HIGHMEM
5514 ", %luK highmem"
5515#endif
5516 "%s%s)\n",
5517 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5518 codesize >> 10, datasize >> 10, rosize >> 10,
5519 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5520 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5521#ifdef CONFIG_HIGHMEM
5522 totalhigh_pages << (PAGE_SHIFT-10),
5523#endif
5524 str ? ", " : "", str ? str : "");
5525}
5526
0e0b864e 5527/**
88ca3b94
RD
5528 * set_dma_reserve - set the specified number of pages reserved in the first zone
5529 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5530 *
5531 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5532 * In the DMA zone, a significant percentage may be consumed by kernel image
5533 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5534 * function may optionally be used to account for unfreeable pages in the
5535 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5536 * smaller per-cpu batchsize.
0e0b864e
MG
5537 */
5538void __init set_dma_reserve(unsigned long new_dma_reserve)
5539{
5540 dma_reserve = new_dma_reserve;
5541}
5542
1da177e4
LT
5543void __init free_area_init(unsigned long *zones_size)
5544{
9109fb7b 5545 free_area_init_node(0, zones_size,
1da177e4
LT
5546 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5547}
1da177e4 5548
1da177e4
LT
5549static int page_alloc_cpu_notify(struct notifier_block *self,
5550 unsigned long action, void *hcpu)
5551{
5552 int cpu = (unsigned long)hcpu;
1da177e4 5553
8bb78442 5554 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5555 lru_add_drain_cpu(cpu);
9f8f2172
CL
5556 drain_pages(cpu);
5557
5558 /*
5559 * Spill the event counters of the dead processor
5560 * into the current processors event counters.
5561 * This artificially elevates the count of the current
5562 * processor.
5563 */
f8891e5e 5564 vm_events_fold_cpu(cpu);
9f8f2172
CL
5565
5566 /*
5567 * Zero the differential counters of the dead processor
5568 * so that the vm statistics are consistent.
5569 *
5570 * This is only okay since the processor is dead and cannot
5571 * race with what we are doing.
5572 */
2bb921e5 5573 cpu_vm_stats_fold(cpu);
1da177e4
LT
5574 }
5575 return NOTIFY_OK;
5576}
1da177e4
LT
5577
5578void __init page_alloc_init(void)
5579{
5580 hotcpu_notifier(page_alloc_cpu_notify, 0);
5581}
5582
cb45b0e9
HA
5583/*
5584 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5585 * or min_free_kbytes changes.
5586 */
5587static void calculate_totalreserve_pages(void)
5588{
5589 struct pglist_data *pgdat;
5590 unsigned long reserve_pages = 0;
2f6726e5 5591 enum zone_type i, j;
cb45b0e9
HA
5592
5593 for_each_online_pgdat(pgdat) {
5594 for (i = 0; i < MAX_NR_ZONES; i++) {
5595 struct zone *zone = pgdat->node_zones + i;
3484b2de 5596 long max = 0;
cb45b0e9
HA
5597
5598 /* Find valid and maximum lowmem_reserve in the zone */
5599 for (j = i; j < MAX_NR_ZONES; j++) {
5600 if (zone->lowmem_reserve[j] > max)
5601 max = zone->lowmem_reserve[j];
5602 }
5603
41858966
MG
5604 /* we treat the high watermark as reserved pages. */
5605 max += high_wmark_pages(zone);
cb45b0e9 5606
b40da049
JL
5607 if (max > zone->managed_pages)
5608 max = zone->managed_pages;
cb45b0e9 5609 reserve_pages += max;
ab8fabd4
JW
5610 /*
5611 * Lowmem reserves are not available to
5612 * GFP_HIGHUSER page cache allocations and
5613 * kswapd tries to balance zones to their high
5614 * watermark. As a result, neither should be
5615 * regarded as dirtyable memory, to prevent a
5616 * situation where reclaim has to clean pages
5617 * in order to balance the zones.
5618 */
5619 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5620 }
5621 }
ab8fabd4 5622 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5623 totalreserve_pages = reserve_pages;
5624}
5625
1da177e4
LT
5626/*
5627 * setup_per_zone_lowmem_reserve - called whenever
5628 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5629 * has a correct pages reserved value, so an adequate number of
5630 * pages are left in the zone after a successful __alloc_pages().
5631 */
5632static void setup_per_zone_lowmem_reserve(void)
5633{
5634 struct pglist_data *pgdat;
2f6726e5 5635 enum zone_type j, idx;
1da177e4 5636
ec936fc5 5637 for_each_online_pgdat(pgdat) {
1da177e4
LT
5638 for (j = 0; j < MAX_NR_ZONES; j++) {
5639 struct zone *zone = pgdat->node_zones + j;
b40da049 5640 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5641
5642 zone->lowmem_reserve[j] = 0;
5643
2f6726e5
CL
5644 idx = j;
5645 while (idx) {
1da177e4
LT
5646 struct zone *lower_zone;
5647
2f6726e5
CL
5648 idx--;
5649
1da177e4
LT
5650 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5651 sysctl_lowmem_reserve_ratio[idx] = 1;
5652
5653 lower_zone = pgdat->node_zones + idx;
b40da049 5654 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5655 sysctl_lowmem_reserve_ratio[idx];
b40da049 5656 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5657 }
5658 }
5659 }
cb45b0e9
HA
5660
5661 /* update totalreserve_pages */
5662 calculate_totalreserve_pages();
1da177e4
LT
5663}
5664
cfd3da1e 5665static void __setup_per_zone_wmarks(void)
1da177e4
LT
5666{
5667 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5668 unsigned long lowmem_pages = 0;
5669 struct zone *zone;
5670 unsigned long flags;
5671
5672 /* Calculate total number of !ZONE_HIGHMEM pages */
5673 for_each_zone(zone) {
5674 if (!is_highmem(zone))
b40da049 5675 lowmem_pages += zone->managed_pages;
1da177e4
LT
5676 }
5677
5678 for_each_zone(zone) {
ac924c60
AM
5679 u64 tmp;
5680
1125b4e3 5681 spin_lock_irqsave(&zone->lock, flags);
b40da049 5682 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5683 do_div(tmp, lowmem_pages);
1da177e4
LT
5684 if (is_highmem(zone)) {
5685 /*
669ed175
NP
5686 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5687 * need highmem pages, so cap pages_min to a small
5688 * value here.
5689 *
41858966 5690 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5691 * deltas controls asynch page reclaim, and so should
5692 * not be capped for highmem.
1da177e4 5693 */
90ae8d67 5694 unsigned long min_pages;
1da177e4 5695
b40da049 5696 min_pages = zone->managed_pages / 1024;
90ae8d67 5697 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5698 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5699 } else {
669ed175
NP
5700 /*
5701 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5702 * proportionate to the zone's size.
5703 */
41858966 5704 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5705 }
5706
41858966
MG
5707 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5708 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5709
81c0a2bb 5710 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
5711 high_wmark_pages(zone) - low_wmark_pages(zone) -
5712 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 5713
56fd56b8 5714 setup_zone_migrate_reserve(zone);
1125b4e3 5715 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5716 }
cb45b0e9
HA
5717
5718 /* update totalreserve_pages */
5719 calculate_totalreserve_pages();
1da177e4
LT
5720}
5721
cfd3da1e
MG
5722/**
5723 * setup_per_zone_wmarks - called when min_free_kbytes changes
5724 * or when memory is hot-{added|removed}
5725 *
5726 * Ensures that the watermark[min,low,high] values for each zone are set
5727 * correctly with respect to min_free_kbytes.
5728 */
5729void setup_per_zone_wmarks(void)
5730{
5731 mutex_lock(&zonelists_mutex);
5732 __setup_per_zone_wmarks();
5733 mutex_unlock(&zonelists_mutex);
5734}
5735
55a4462a 5736/*
556adecb
RR
5737 * The inactive anon list should be small enough that the VM never has to
5738 * do too much work, but large enough that each inactive page has a chance
5739 * to be referenced again before it is swapped out.
5740 *
5741 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5742 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5743 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5744 * the anonymous pages are kept on the inactive list.
5745 *
5746 * total target max
5747 * memory ratio inactive anon
5748 * -------------------------------------
5749 * 10MB 1 5MB
5750 * 100MB 1 50MB
5751 * 1GB 3 250MB
5752 * 10GB 10 0.9GB
5753 * 100GB 31 3GB
5754 * 1TB 101 10GB
5755 * 10TB 320 32GB
5756 */
1b79acc9 5757static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5758{
96cb4df5 5759 unsigned int gb, ratio;
556adecb 5760
96cb4df5 5761 /* Zone size in gigabytes */
b40da049 5762 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5763 if (gb)
556adecb 5764 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5765 else
5766 ratio = 1;
556adecb 5767
96cb4df5
MK
5768 zone->inactive_ratio = ratio;
5769}
556adecb 5770
839a4fcc 5771static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5772{
5773 struct zone *zone;
5774
5775 for_each_zone(zone)
5776 calculate_zone_inactive_ratio(zone);
556adecb
RR
5777}
5778
1da177e4
LT
5779/*
5780 * Initialise min_free_kbytes.
5781 *
5782 * For small machines we want it small (128k min). For large machines
5783 * we want it large (64MB max). But it is not linear, because network
5784 * bandwidth does not increase linearly with machine size. We use
5785 *
b8af2941 5786 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5787 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5788 *
5789 * which yields
5790 *
5791 * 16MB: 512k
5792 * 32MB: 724k
5793 * 64MB: 1024k
5794 * 128MB: 1448k
5795 * 256MB: 2048k
5796 * 512MB: 2896k
5797 * 1024MB: 4096k
5798 * 2048MB: 5792k
5799 * 4096MB: 8192k
5800 * 8192MB: 11584k
5801 * 16384MB: 16384k
5802 */
1b79acc9 5803int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5804{
5805 unsigned long lowmem_kbytes;
5f12733e 5806 int new_min_free_kbytes;
1da177e4
LT
5807
5808 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5809 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5810
5811 if (new_min_free_kbytes > user_min_free_kbytes) {
5812 min_free_kbytes = new_min_free_kbytes;
5813 if (min_free_kbytes < 128)
5814 min_free_kbytes = 128;
5815 if (min_free_kbytes > 65536)
5816 min_free_kbytes = 65536;
5817 } else {
5818 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5819 new_min_free_kbytes, user_min_free_kbytes);
5820 }
bc75d33f 5821 setup_per_zone_wmarks();
a6cccdc3 5822 refresh_zone_stat_thresholds();
1da177e4 5823 setup_per_zone_lowmem_reserve();
556adecb 5824 setup_per_zone_inactive_ratio();
1da177e4
LT
5825 return 0;
5826}
bc75d33f 5827module_init(init_per_zone_wmark_min)
1da177e4
LT
5828
5829/*
b8af2941 5830 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5831 * that we can call two helper functions whenever min_free_kbytes
5832 * changes.
5833 */
cccad5b9 5834int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5835 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5836{
da8c757b
HP
5837 int rc;
5838
5839 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5840 if (rc)
5841 return rc;
5842
5f12733e
MH
5843 if (write) {
5844 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5845 setup_per_zone_wmarks();
5f12733e 5846 }
1da177e4
LT
5847 return 0;
5848}
5849
9614634f 5850#ifdef CONFIG_NUMA
cccad5b9 5851int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5852 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5853{
5854 struct zone *zone;
5855 int rc;
5856
8d65af78 5857 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5858 if (rc)
5859 return rc;
5860
5861 for_each_zone(zone)
b40da049 5862 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5863 sysctl_min_unmapped_ratio) / 100;
5864 return 0;
5865}
0ff38490 5866
cccad5b9 5867int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5868 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5869{
5870 struct zone *zone;
5871 int rc;
5872
8d65af78 5873 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5874 if (rc)
5875 return rc;
5876
5877 for_each_zone(zone)
b40da049 5878 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5879 sysctl_min_slab_ratio) / 100;
5880 return 0;
5881}
9614634f
CL
5882#endif
5883
1da177e4
LT
5884/*
5885 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5886 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5887 * whenever sysctl_lowmem_reserve_ratio changes.
5888 *
5889 * The reserve ratio obviously has absolutely no relation with the
41858966 5890 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5891 * if in function of the boot time zone sizes.
5892 */
cccad5b9 5893int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5894 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5895{
8d65af78 5896 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5897 setup_per_zone_lowmem_reserve();
5898 return 0;
5899}
5900
8ad4b1fb
RS
5901/*
5902 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5903 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5904 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5905 */
cccad5b9 5906int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5907 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5908{
5909 struct zone *zone;
7cd2b0a3 5910 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
5911 int ret;
5912
7cd2b0a3
DR
5913 mutex_lock(&pcp_batch_high_lock);
5914 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5915
8d65af78 5916 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5917 if (!write || ret < 0)
5918 goto out;
5919
5920 /* Sanity checking to avoid pcp imbalance */
5921 if (percpu_pagelist_fraction &&
5922 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5923 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5924 ret = -EINVAL;
5925 goto out;
5926 }
5927
5928 /* No change? */
5929 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5930 goto out;
c8e251fa 5931
364df0eb 5932 for_each_populated_zone(zone) {
7cd2b0a3
DR
5933 unsigned int cpu;
5934
22a7f12b 5935 for_each_possible_cpu(cpu)
7cd2b0a3
DR
5936 pageset_set_high_and_batch(zone,
5937 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 5938 }
7cd2b0a3 5939out:
c8e251fa 5940 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 5941 return ret;
8ad4b1fb
RS
5942}
5943
f034b5d4 5944int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5945
5946#ifdef CONFIG_NUMA
5947static int __init set_hashdist(char *str)
5948{
5949 if (!str)
5950 return 0;
5951 hashdist = simple_strtoul(str, &str, 0);
5952 return 1;
5953}
5954__setup("hashdist=", set_hashdist);
5955#endif
5956
5957/*
5958 * allocate a large system hash table from bootmem
5959 * - it is assumed that the hash table must contain an exact power-of-2
5960 * quantity of entries
5961 * - limit is the number of hash buckets, not the total allocation size
5962 */
5963void *__init alloc_large_system_hash(const char *tablename,
5964 unsigned long bucketsize,
5965 unsigned long numentries,
5966 int scale,
5967 int flags,
5968 unsigned int *_hash_shift,
5969 unsigned int *_hash_mask,
31fe62b9
TB
5970 unsigned long low_limit,
5971 unsigned long high_limit)
1da177e4 5972{
31fe62b9 5973 unsigned long long max = high_limit;
1da177e4
LT
5974 unsigned long log2qty, size;
5975 void *table = NULL;
5976
5977 /* allow the kernel cmdline to have a say */
5978 if (!numentries) {
5979 /* round applicable memory size up to nearest megabyte */
04903664 5980 numentries = nr_kernel_pages;
a7e83318
JZ
5981
5982 /* It isn't necessary when PAGE_SIZE >= 1MB */
5983 if (PAGE_SHIFT < 20)
5984 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5985
5986 /* limit to 1 bucket per 2^scale bytes of low memory */
5987 if (scale > PAGE_SHIFT)
5988 numentries >>= (scale - PAGE_SHIFT);
5989 else
5990 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5991
5992 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5993 if (unlikely(flags & HASH_SMALL)) {
5994 /* Makes no sense without HASH_EARLY */
5995 WARN_ON(!(flags & HASH_EARLY));
5996 if (!(numentries >> *_hash_shift)) {
5997 numentries = 1UL << *_hash_shift;
5998 BUG_ON(!numentries);
5999 }
6000 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6001 numentries = PAGE_SIZE / bucketsize;
1da177e4 6002 }
6e692ed3 6003 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6004
6005 /* limit allocation size to 1/16 total memory by default */
6006 if (max == 0) {
6007 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6008 do_div(max, bucketsize);
6009 }
074b8517 6010 max = min(max, 0x80000000ULL);
1da177e4 6011
31fe62b9
TB
6012 if (numentries < low_limit)
6013 numentries = low_limit;
1da177e4
LT
6014 if (numentries > max)
6015 numentries = max;
6016
f0d1b0b3 6017 log2qty = ilog2(numentries);
1da177e4
LT
6018
6019 do {
6020 size = bucketsize << log2qty;
6021 if (flags & HASH_EARLY)
6782832e 6022 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6023 else if (hashdist)
6024 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6025 else {
1037b83b
ED
6026 /*
6027 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6028 * some pages at the end of hash table which
6029 * alloc_pages_exact() automatically does
1037b83b 6030 */
264ef8a9 6031 if (get_order(size) < MAX_ORDER) {
a1dd268c 6032 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6033 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6034 }
1da177e4
LT
6035 }
6036 } while (!table && size > PAGE_SIZE && --log2qty);
6037
6038 if (!table)
6039 panic("Failed to allocate %s hash table\n", tablename);
6040
f241e660 6041 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6042 tablename,
f241e660 6043 (1UL << log2qty),
f0d1b0b3 6044 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6045 size);
6046
6047 if (_hash_shift)
6048 *_hash_shift = log2qty;
6049 if (_hash_mask)
6050 *_hash_mask = (1 << log2qty) - 1;
6051
6052 return table;
6053}
a117e66e 6054
835c134e
MG
6055/* Return a pointer to the bitmap storing bits affecting a block of pages */
6056static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6057 unsigned long pfn)
6058{
6059#ifdef CONFIG_SPARSEMEM
6060 return __pfn_to_section(pfn)->pageblock_flags;
6061#else
6062 return zone->pageblock_flags;
6063#endif /* CONFIG_SPARSEMEM */
6064}
6065
6066static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6067{
6068#ifdef CONFIG_SPARSEMEM
6069 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6070 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6071#else
c060f943 6072 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6073 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6074#endif /* CONFIG_SPARSEMEM */
6075}
6076
6077/**
1aab4d77 6078 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6079 * @page: The page within the block of interest
1aab4d77
RD
6080 * @pfn: The target page frame number
6081 * @end_bitidx: The last bit of interest to retrieve
6082 * @mask: mask of bits that the caller is interested in
6083 *
6084 * Return: pageblock_bits flags
835c134e 6085 */
dc4b0caf 6086unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6087 unsigned long end_bitidx,
6088 unsigned long mask)
835c134e
MG
6089{
6090 struct zone *zone;
6091 unsigned long *bitmap;
dc4b0caf 6092 unsigned long bitidx, word_bitidx;
e58469ba 6093 unsigned long word;
835c134e
MG
6094
6095 zone = page_zone(page);
835c134e
MG
6096 bitmap = get_pageblock_bitmap(zone, pfn);
6097 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6098 word_bitidx = bitidx / BITS_PER_LONG;
6099 bitidx &= (BITS_PER_LONG-1);
835c134e 6100
e58469ba
MG
6101 word = bitmap[word_bitidx];
6102 bitidx += end_bitidx;
6103 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6104}
6105
6106/**
dc4b0caf 6107 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6108 * @page: The page within the block of interest
835c134e 6109 * @flags: The flags to set
1aab4d77
RD
6110 * @pfn: The target page frame number
6111 * @end_bitidx: The last bit of interest
6112 * @mask: mask of bits that the caller is interested in
835c134e 6113 */
dc4b0caf
MG
6114void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6115 unsigned long pfn,
e58469ba
MG
6116 unsigned long end_bitidx,
6117 unsigned long mask)
835c134e
MG
6118{
6119 struct zone *zone;
6120 unsigned long *bitmap;
dc4b0caf 6121 unsigned long bitidx, word_bitidx;
e58469ba
MG
6122 unsigned long old_word, word;
6123
6124 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6125
6126 zone = page_zone(page);
835c134e
MG
6127 bitmap = get_pageblock_bitmap(zone, pfn);
6128 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6129 word_bitidx = bitidx / BITS_PER_LONG;
6130 bitidx &= (BITS_PER_LONG-1);
6131
309381fe 6132 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6133
e58469ba
MG
6134 bitidx += end_bitidx;
6135 mask <<= (BITS_PER_LONG - bitidx - 1);
6136 flags <<= (BITS_PER_LONG - bitidx - 1);
6137
6138 word = ACCESS_ONCE(bitmap[word_bitidx]);
6139 for (;;) {
6140 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6141 if (word == old_word)
6142 break;
6143 word = old_word;
6144 }
835c134e 6145}
a5d76b54
KH
6146
6147/*
80934513
MK
6148 * This function checks whether pageblock includes unmovable pages or not.
6149 * If @count is not zero, it is okay to include less @count unmovable pages
6150 *
b8af2941 6151 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6152 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6153 * expect this function should be exact.
a5d76b54 6154 */
b023f468
WC
6155bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6156 bool skip_hwpoisoned_pages)
49ac8255
KH
6157{
6158 unsigned long pfn, iter, found;
47118af0
MN
6159 int mt;
6160
49ac8255
KH
6161 /*
6162 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6163 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6164 */
6165 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6166 return false;
47118af0
MN
6167 mt = get_pageblock_migratetype(page);
6168 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6169 return false;
49ac8255
KH
6170
6171 pfn = page_to_pfn(page);
6172 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6173 unsigned long check = pfn + iter;
6174
29723fcc 6175 if (!pfn_valid_within(check))
49ac8255 6176 continue;
29723fcc 6177
49ac8255 6178 page = pfn_to_page(check);
c8721bbb
NH
6179
6180 /*
6181 * Hugepages are not in LRU lists, but they're movable.
6182 * We need not scan over tail pages bacause we don't
6183 * handle each tail page individually in migration.
6184 */
6185 if (PageHuge(page)) {
6186 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6187 continue;
6188 }
6189
97d255c8
MK
6190 /*
6191 * We can't use page_count without pin a page
6192 * because another CPU can free compound page.
6193 * This check already skips compound tails of THP
6194 * because their page->_count is zero at all time.
6195 */
6196 if (!atomic_read(&page->_count)) {
49ac8255
KH
6197 if (PageBuddy(page))
6198 iter += (1 << page_order(page)) - 1;
6199 continue;
6200 }
97d255c8 6201
b023f468
WC
6202 /*
6203 * The HWPoisoned page may be not in buddy system, and
6204 * page_count() is not 0.
6205 */
6206 if (skip_hwpoisoned_pages && PageHWPoison(page))
6207 continue;
6208
49ac8255
KH
6209 if (!PageLRU(page))
6210 found++;
6211 /*
6212 * If there are RECLAIMABLE pages, we need to check it.
6213 * But now, memory offline itself doesn't call shrink_slab()
6214 * and it still to be fixed.
6215 */
6216 /*
6217 * If the page is not RAM, page_count()should be 0.
6218 * we don't need more check. This is an _used_ not-movable page.
6219 *
6220 * The problematic thing here is PG_reserved pages. PG_reserved
6221 * is set to both of a memory hole page and a _used_ kernel
6222 * page at boot.
6223 */
6224 if (found > count)
80934513 6225 return true;
49ac8255 6226 }
80934513 6227 return false;
49ac8255
KH
6228}
6229
6230bool is_pageblock_removable_nolock(struct page *page)
6231{
656a0706
MH
6232 struct zone *zone;
6233 unsigned long pfn;
687875fb
MH
6234
6235 /*
6236 * We have to be careful here because we are iterating over memory
6237 * sections which are not zone aware so we might end up outside of
6238 * the zone but still within the section.
656a0706
MH
6239 * We have to take care about the node as well. If the node is offline
6240 * its NODE_DATA will be NULL - see page_zone.
687875fb 6241 */
656a0706
MH
6242 if (!node_online(page_to_nid(page)))
6243 return false;
6244
6245 zone = page_zone(page);
6246 pfn = page_to_pfn(page);
108bcc96 6247 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6248 return false;
6249
b023f468 6250 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6251}
0c0e6195 6252
041d3a8c
MN
6253#ifdef CONFIG_CMA
6254
6255static unsigned long pfn_max_align_down(unsigned long pfn)
6256{
6257 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6258 pageblock_nr_pages) - 1);
6259}
6260
6261static unsigned long pfn_max_align_up(unsigned long pfn)
6262{
6263 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6264 pageblock_nr_pages));
6265}
6266
041d3a8c 6267/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6268static int __alloc_contig_migrate_range(struct compact_control *cc,
6269 unsigned long start, unsigned long end)
041d3a8c
MN
6270{
6271 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6272 unsigned long nr_reclaimed;
041d3a8c
MN
6273 unsigned long pfn = start;
6274 unsigned int tries = 0;
6275 int ret = 0;
6276
be49a6e1 6277 migrate_prep();
041d3a8c 6278
bb13ffeb 6279 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6280 if (fatal_signal_pending(current)) {
6281 ret = -EINTR;
6282 break;
6283 }
6284
bb13ffeb
MG
6285 if (list_empty(&cc->migratepages)) {
6286 cc->nr_migratepages = 0;
edc2ca61 6287 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6288 if (!pfn) {
6289 ret = -EINTR;
6290 break;
6291 }
6292 tries = 0;
6293 } else if (++tries == 5) {
6294 ret = ret < 0 ? ret : -EBUSY;
6295 break;
6296 }
6297
beb51eaa
MK
6298 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6299 &cc->migratepages);
6300 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6301
9c620e2b 6302 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6303 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6304 }
2a6f5124
SP
6305 if (ret < 0) {
6306 putback_movable_pages(&cc->migratepages);
6307 return ret;
6308 }
6309 return 0;
041d3a8c
MN
6310}
6311
6312/**
6313 * alloc_contig_range() -- tries to allocate given range of pages
6314 * @start: start PFN to allocate
6315 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6316 * @migratetype: migratetype of the underlaying pageblocks (either
6317 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6318 * in range must have the same migratetype and it must
6319 * be either of the two.
041d3a8c
MN
6320 *
6321 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6322 * aligned, however it's the caller's responsibility to guarantee that
6323 * we are the only thread that changes migrate type of pageblocks the
6324 * pages fall in.
6325 *
6326 * The PFN range must belong to a single zone.
6327 *
6328 * Returns zero on success or negative error code. On success all
6329 * pages which PFN is in [start, end) are allocated for the caller and
6330 * need to be freed with free_contig_range().
6331 */
0815f3d8
MN
6332int alloc_contig_range(unsigned long start, unsigned long end,
6333 unsigned migratetype)
041d3a8c 6334{
041d3a8c
MN
6335 unsigned long outer_start, outer_end;
6336 int ret = 0, order;
6337
bb13ffeb
MG
6338 struct compact_control cc = {
6339 .nr_migratepages = 0,
6340 .order = -1,
6341 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6342 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6343 .ignore_skip_hint = true,
6344 };
6345 INIT_LIST_HEAD(&cc.migratepages);
6346
041d3a8c
MN
6347 /*
6348 * What we do here is we mark all pageblocks in range as
6349 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6350 * have different sizes, and due to the way page allocator
6351 * work, we align the range to biggest of the two pages so
6352 * that page allocator won't try to merge buddies from
6353 * different pageblocks and change MIGRATE_ISOLATE to some
6354 * other migration type.
6355 *
6356 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6357 * migrate the pages from an unaligned range (ie. pages that
6358 * we are interested in). This will put all the pages in
6359 * range back to page allocator as MIGRATE_ISOLATE.
6360 *
6361 * When this is done, we take the pages in range from page
6362 * allocator removing them from the buddy system. This way
6363 * page allocator will never consider using them.
6364 *
6365 * This lets us mark the pageblocks back as
6366 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6367 * aligned range but not in the unaligned, original range are
6368 * put back to page allocator so that buddy can use them.
6369 */
6370
6371 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6372 pfn_max_align_up(end), migratetype,
6373 false);
041d3a8c 6374 if (ret)
86a595f9 6375 return ret;
041d3a8c 6376
bb13ffeb 6377 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6378 if (ret)
6379 goto done;
6380
6381 /*
6382 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6383 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6384 * more, all pages in [start, end) are free in page allocator.
6385 * What we are going to do is to allocate all pages from
6386 * [start, end) (that is remove them from page allocator).
6387 *
6388 * The only problem is that pages at the beginning and at the
6389 * end of interesting range may be not aligned with pages that
6390 * page allocator holds, ie. they can be part of higher order
6391 * pages. Because of this, we reserve the bigger range and
6392 * once this is done free the pages we are not interested in.
6393 *
6394 * We don't have to hold zone->lock here because the pages are
6395 * isolated thus they won't get removed from buddy.
6396 */
6397
6398 lru_add_drain_all();
6399 drain_all_pages();
6400
6401 order = 0;
6402 outer_start = start;
6403 while (!PageBuddy(pfn_to_page(outer_start))) {
6404 if (++order >= MAX_ORDER) {
6405 ret = -EBUSY;
6406 goto done;
6407 }
6408 outer_start &= ~0UL << order;
6409 }
6410
6411 /* Make sure the range is really isolated. */
b023f468 6412 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6413 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6414 outer_start, end);
6415 ret = -EBUSY;
6416 goto done;
6417 }
6418
49f223a9
MS
6419
6420 /* Grab isolated pages from freelists. */
bb13ffeb 6421 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6422 if (!outer_end) {
6423 ret = -EBUSY;
6424 goto done;
6425 }
6426
6427 /* Free head and tail (if any) */
6428 if (start != outer_start)
6429 free_contig_range(outer_start, start - outer_start);
6430 if (end != outer_end)
6431 free_contig_range(end, outer_end - end);
6432
6433done:
6434 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6435 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6436 return ret;
6437}
6438
6439void free_contig_range(unsigned long pfn, unsigned nr_pages)
6440{
bcc2b02f
MS
6441 unsigned int count = 0;
6442
6443 for (; nr_pages--; pfn++) {
6444 struct page *page = pfn_to_page(pfn);
6445
6446 count += page_count(page) != 1;
6447 __free_page(page);
6448 }
6449 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6450}
6451#endif
6452
4ed7e022 6453#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6454/*
6455 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6456 * page high values need to be recalulated.
6457 */
4ed7e022
JL
6458void __meminit zone_pcp_update(struct zone *zone)
6459{
0a647f38 6460 unsigned cpu;
c8e251fa 6461 mutex_lock(&pcp_batch_high_lock);
0a647f38 6462 for_each_possible_cpu(cpu)
169f6c19
CS
6463 pageset_set_high_and_batch(zone,
6464 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6465 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6466}
6467#endif
6468
340175b7
JL
6469void zone_pcp_reset(struct zone *zone)
6470{
6471 unsigned long flags;
5a883813
MK
6472 int cpu;
6473 struct per_cpu_pageset *pset;
340175b7
JL
6474
6475 /* avoid races with drain_pages() */
6476 local_irq_save(flags);
6477 if (zone->pageset != &boot_pageset) {
5a883813
MK
6478 for_each_online_cpu(cpu) {
6479 pset = per_cpu_ptr(zone->pageset, cpu);
6480 drain_zonestat(zone, pset);
6481 }
340175b7
JL
6482 free_percpu(zone->pageset);
6483 zone->pageset = &boot_pageset;
6484 }
6485 local_irq_restore(flags);
6486}
6487
6dcd73d7 6488#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6489/*
6490 * All pages in the range must be isolated before calling this.
6491 */
6492void
6493__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6494{
6495 struct page *page;
6496 struct zone *zone;
7aeb09f9 6497 unsigned int order, i;
0c0e6195
KH
6498 unsigned long pfn;
6499 unsigned long flags;
6500 /* find the first valid pfn */
6501 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6502 if (pfn_valid(pfn))
6503 break;
6504 if (pfn == end_pfn)
6505 return;
6506 zone = page_zone(pfn_to_page(pfn));
6507 spin_lock_irqsave(&zone->lock, flags);
6508 pfn = start_pfn;
6509 while (pfn < end_pfn) {
6510 if (!pfn_valid(pfn)) {
6511 pfn++;
6512 continue;
6513 }
6514 page = pfn_to_page(pfn);
b023f468
WC
6515 /*
6516 * The HWPoisoned page may be not in buddy system, and
6517 * page_count() is not 0.
6518 */
6519 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6520 pfn++;
6521 SetPageReserved(page);
6522 continue;
6523 }
6524
0c0e6195
KH
6525 BUG_ON(page_count(page));
6526 BUG_ON(!PageBuddy(page));
6527 order = page_order(page);
6528#ifdef CONFIG_DEBUG_VM
6529 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6530 pfn, 1 << order, end_pfn);
6531#endif
6532 list_del(&page->lru);
6533 rmv_page_order(page);
6534 zone->free_area[order].nr_free--;
0c0e6195
KH
6535 for (i = 0; i < (1 << order); i++)
6536 SetPageReserved((page+i));
6537 pfn += (1 << order);
6538 }
6539 spin_unlock_irqrestore(&zone->lock, flags);
6540}
6541#endif
8d22ba1b
WF
6542
6543#ifdef CONFIG_MEMORY_FAILURE
6544bool is_free_buddy_page(struct page *page)
6545{
6546 struct zone *zone = page_zone(page);
6547 unsigned long pfn = page_to_pfn(page);
6548 unsigned long flags;
7aeb09f9 6549 unsigned int order;
8d22ba1b
WF
6550
6551 spin_lock_irqsave(&zone->lock, flags);
6552 for (order = 0; order < MAX_ORDER; order++) {
6553 struct page *page_head = page - (pfn & ((1 << order) - 1));
6554
6555 if (PageBuddy(page_head) && page_order(page_head) >= order)
6556 break;
6557 }
6558 spin_unlock_irqrestore(&zone->lock, flags);
6559
6560 return order < MAX_ORDER;
6561}
6562#endif
This page took 1.482091 seconds and 5 git commands to generate.