mm, page_isolation: remove bogus tests for isolated pages
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
1da177e4 65
7ee3d4e8 66#include <asm/sections.h>
1da177e4 67#include <asm/tlbflush.h>
ac924c60 68#include <asm/div64.h>
1da177e4
LT
69#include "internal.h"
70
c8e251fa
CS
71/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 73#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 74
72812019
LS
75#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76DEFINE_PER_CPU(int, numa_node);
77EXPORT_PER_CPU_SYMBOL(numa_node);
78#endif
79
7aac7898
LS
80#ifdef CONFIG_HAVE_MEMORYLESS_NODES
81/*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 89int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
90#endif
91
1da177e4 92/*
13808910 93 * Array of node states.
1da177e4 94 */
13808910
CL
95nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98#ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100#ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
102#endif
103#ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
105#endif
106 [N_CPU] = { { [0] = 1UL } },
107#endif /* NUMA */
108};
109EXPORT_SYMBOL(node_states);
110
c3d5f5f0
JL
111/* Protect totalram_pages and zone->managed_pages */
112static DEFINE_SPINLOCK(managed_page_count_lock);
113
6c231b7b 114unsigned long totalram_pages __read_mostly;
cb45b0e9 115unsigned long totalreserve_pages __read_mostly;
e48322ab 116unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
117/*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123unsigned long dirty_balance_reserve __read_mostly;
124
1b76b02f 125int percpu_pagelist_fraction;
dcce284a 126gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 127
452aa699
RW
128#ifdef CONFIG_PM_SLEEP
129/*
130 * The following functions are used by the suspend/hibernate code to temporarily
131 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
132 * while devices are suspended. To avoid races with the suspend/hibernate code,
133 * they should always be called with pm_mutex held (gfp_allowed_mask also should
134 * only be modified with pm_mutex held, unless the suspend/hibernate code is
135 * guaranteed not to run in parallel with that modification).
136 */
c9e664f1
RW
137
138static gfp_t saved_gfp_mask;
139
140void pm_restore_gfp_mask(void)
452aa699
RW
141{
142 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
143 if (saved_gfp_mask) {
144 gfp_allowed_mask = saved_gfp_mask;
145 saved_gfp_mask = 0;
146 }
452aa699
RW
147}
148
c9e664f1 149void pm_restrict_gfp_mask(void)
452aa699 150{
452aa699 151 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
152 WARN_ON(saved_gfp_mask);
153 saved_gfp_mask = gfp_allowed_mask;
154 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 155}
f90ac398
MG
156
157bool pm_suspended_storage(void)
158{
159 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
160 return false;
161 return true;
162}
452aa699
RW
163#endif /* CONFIG_PM_SLEEP */
164
d9c23400
MG
165#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
166int pageblock_order __read_mostly;
167#endif
168
d98c7a09 169static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 170
1da177e4
LT
171/*
172 * results with 256, 32 in the lowmem_reserve sysctl:
173 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
174 * 1G machine -> (16M dma, 784M normal, 224M high)
175 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
176 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 177 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
178 *
179 * TBD: should special case ZONE_DMA32 machines here - in those we normally
180 * don't need any ZONE_NORMAL reservation
1da177e4 181 */
2f1b6248 182int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 183#ifdef CONFIG_ZONE_DMA
2f1b6248 184 256,
4b51d669 185#endif
fb0e7942 186#ifdef CONFIG_ZONE_DMA32
2f1b6248 187 256,
fb0e7942 188#endif
e53ef38d 189#ifdef CONFIG_HIGHMEM
2a1e274a 190 32,
e53ef38d 191#endif
2a1e274a 192 32,
2f1b6248 193};
1da177e4
LT
194
195EXPORT_SYMBOL(totalram_pages);
1da177e4 196
15ad7cdc 197static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 198#ifdef CONFIG_ZONE_DMA
2f1b6248 199 "DMA",
4b51d669 200#endif
fb0e7942 201#ifdef CONFIG_ZONE_DMA32
2f1b6248 202 "DMA32",
fb0e7942 203#endif
2f1b6248 204 "Normal",
e53ef38d 205#ifdef CONFIG_HIGHMEM
2a1e274a 206 "HighMem",
e53ef38d 207#endif
2a1e274a 208 "Movable",
2f1b6248
CL
209};
210
1da177e4 211int min_free_kbytes = 1024;
42aa83cb 212int user_min_free_kbytes = -1;
1da177e4 213
2c85f51d
JB
214static unsigned long __meminitdata nr_kernel_pages;
215static unsigned long __meminitdata nr_all_pages;
a3142c8e 216static unsigned long __meminitdata dma_reserve;
1da177e4 217
0ee332c1
TH
218#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
219static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
220static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
221static unsigned long __initdata required_kernelcore;
222static unsigned long __initdata required_movablecore;
223static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
224
225/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
226int movable_zone;
227EXPORT_SYMBOL(movable_zone);
228#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 229
418508c1
MS
230#if MAX_NUMNODES > 1
231int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 232int nr_online_nodes __read_mostly = 1;
418508c1 233EXPORT_SYMBOL(nr_node_ids);
62bc62a8 234EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
235#endif
236
9ef9acb0
MG
237int page_group_by_mobility_disabled __read_mostly;
238
3a80a7fa
MG
239#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
240static inline void reset_deferred_meminit(pg_data_t *pgdat)
241{
242 pgdat->first_deferred_pfn = ULONG_MAX;
243}
244
245/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 246static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 247{
ae026b2a 248 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
249 return true;
250
251 return false;
252}
253
7e18adb4
MG
254static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
255{
256 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
257 return true;
258
259 return false;
260}
261
3a80a7fa
MG
262/*
263 * Returns false when the remaining initialisation should be deferred until
264 * later in the boot cycle when it can be parallelised.
265 */
266static inline bool update_defer_init(pg_data_t *pgdat,
267 unsigned long pfn, unsigned long zone_end,
268 unsigned long *nr_initialised)
269{
270 /* Always populate low zones for address-contrained allocations */
271 if (zone_end < pgdat_end_pfn(pgdat))
272 return true;
273
274 /* Initialise at least 2G of the highest zone */
275 (*nr_initialised)++;
276 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
277 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
278 pgdat->first_deferred_pfn = pfn;
279 return false;
280 }
281
282 return true;
283}
284#else
285static inline void reset_deferred_meminit(pg_data_t *pgdat)
286{
287}
288
289static inline bool early_page_uninitialised(unsigned long pfn)
290{
291 return false;
292}
293
7e18adb4
MG
294static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
295{
296 return false;
297}
298
3a80a7fa
MG
299static inline bool update_defer_init(pg_data_t *pgdat,
300 unsigned long pfn, unsigned long zone_end,
301 unsigned long *nr_initialised)
302{
303 return true;
304}
305#endif
306
307
ee6f509c 308void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 309{
5d0f3f72
KM
310 if (unlikely(page_group_by_mobility_disabled &&
311 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
312 migratetype = MIGRATE_UNMOVABLE;
313
b2a0ac88
MG
314 set_pageblock_flags_group(page, (unsigned long)migratetype,
315 PB_migrate, PB_migrate_end);
316}
317
13e7444b 318#ifdef CONFIG_DEBUG_VM
c6a57e19 319static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 320{
bdc8cb98
DH
321 int ret = 0;
322 unsigned seq;
323 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 324 unsigned long sp, start_pfn;
c6a57e19 325
bdc8cb98
DH
326 do {
327 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
328 start_pfn = zone->zone_start_pfn;
329 sp = zone->spanned_pages;
108bcc96 330 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
331 ret = 1;
332 } while (zone_span_seqretry(zone, seq));
333
b5e6a5a2 334 if (ret)
613813e8
DH
335 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
336 pfn, zone_to_nid(zone), zone->name,
337 start_pfn, start_pfn + sp);
b5e6a5a2 338
bdc8cb98 339 return ret;
c6a57e19
DH
340}
341
342static int page_is_consistent(struct zone *zone, struct page *page)
343{
14e07298 344 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 345 return 0;
1da177e4 346 if (zone != page_zone(page))
c6a57e19
DH
347 return 0;
348
349 return 1;
350}
351/*
352 * Temporary debugging check for pages not lying within a given zone.
353 */
354static int bad_range(struct zone *zone, struct page *page)
355{
356 if (page_outside_zone_boundaries(zone, page))
1da177e4 357 return 1;
c6a57e19
DH
358 if (!page_is_consistent(zone, page))
359 return 1;
360
1da177e4
LT
361 return 0;
362}
13e7444b
NP
363#else
364static inline int bad_range(struct zone *zone, struct page *page)
365{
366 return 0;
367}
368#endif
369
d230dec1
KS
370static void bad_page(struct page *page, const char *reason,
371 unsigned long bad_flags)
1da177e4 372{
d936cf9b
HD
373 static unsigned long resume;
374 static unsigned long nr_shown;
375 static unsigned long nr_unshown;
376
2a7684a2
WF
377 /* Don't complain about poisoned pages */
378 if (PageHWPoison(page)) {
22b751c3 379 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
380 return;
381 }
382
d936cf9b
HD
383 /*
384 * Allow a burst of 60 reports, then keep quiet for that minute;
385 * or allow a steady drip of one report per second.
386 */
387 if (nr_shown == 60) {
388 if (time_before(jiffies, resume)) {
389 nr_unshown++;
390 goto out;
391 }
392 if (nr_unshown) {
1e9e6365
HD
393 printk(KERN_ALERT
394 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
395 nr_unshown);
396 nr_unshown = 0;
397 }
398 nr_shown = 0;
399 }
400 if (nr_shown++ == 0)
401 resume = jiffies + 60 * HZ;
402
1e9e6365 403 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 404 current->comm, page_to_pfn(page));
f0b791a3 405 dump_page_badflags(page, reason, bad_flags);
3dc14741 406
4f31888c 407 print_modules();
1da177e4 408 dump_stack();
d936cf9b 409out:
8cc3b392 410 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 411 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 412 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
413}
414
1da177e4
LT
415/*
416 * Higher-order pages are called "compound pages". They are structured thusly:
417 *
418 * The first PAGE_SIZE page is called the "head page".
419 *
420 * The remaining PAGE_SIZE pages are called "tail pages".
421 *
6416b9fa
WSH
422 * All pages have PG_compound set. All tail pages have their ->first_page
423 * pointing at the head page.
1da177e4 424 *
41d78ba5
HD
425 * The first tail page's ->lru.next holds the address of the compound page's
426 * put_page() function. Its ->lru.prev holds the order of allocation.
427 * This usage means that zero-order pages may not be compound.
1da177e4 428 */
d98c7a09
HD
429
430static void free_compound_page(struct page *page)
431{
d85f3385 432 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
433}
434
01ad1c08 435void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
436{
437 int i;
438 int nr_pages = 1 << order;
439
440 set_compound_page_dtor(page, free_compound_page);
441 set_compound_order(page, order);
442 __SetPageHead(page);
443 for (i = 1; i < nr_pages; i++) {
444 struct page *p = page + i;
58a84aa9 445 set_page_count(p, 0);
18229df5 446 p->first_page = page;
668f9abb
DR
447 /* Make sure p->first_page is always valid for PageTail() */
448 smp_wmb();
449 __SetPageTail(p);
18229df5
AW
450 }
451}
452
c0a32fc5
SG
453#ifdef CONFIG_DEBUG_PAGEALLOC
454unsigned int _debug_guardpage_minorder;
031bc574 455bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
456bool _debug_guardpage_enabled __read_mostly;
457
031bc574
JK
458static int __init early_debug_pagealloc(char *buf)
459{
460 if (!buf)
461 return -EINVAL;
462
463 if (strcmp(buf, "on") == 0)
464 _debug_pagealloc_enabled = true;
465
466 return 0;
467}
468early_param("debug_pagealloc", early_debug_pagealloc);
469
e30825f1
JK
470static bool need_debug_guardpage(void)
471{
031bc574
JK
472 /* If we don't use debug_pagealloc, we don't need guard page */
473 if (!debug_pagealloc_enabled())
474 return false;
475
e30825f1
JK
476 return true;
477}
478
479static void init_debug_guardpage(void)
480{
031bc574
JK
481 if (!debug_pagealloc_enabled())
482 return;
483
e30825f1
JK
484 _debug_guardpage_enabled = true;
485}
486
487struct page_ext_operations debug_guardpage_ops = {
488 .need = need_debug_guardpage,
489 .init = init_debug_guardpage,
490};
c0a32fc5
SG
491
492static int __init debug_guardpage_minorder_setup(char *buf)
493{
494 unsigned long res;
495
496 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
497 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
498 return 0;
499 }
500 _debug_guardpage_minorder = res;
501 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
502 return 0;
503}
504__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
505
2847cf95
JK
506static inline void set_page_guard(struct zone *zone, struct page *page,
507 unsigned int order, int migratetype)
c0a32fc5 508{
e30825f1
JK
509 struct page_ext *page_ext;
510
511 if (!debug_guardpage_enabled())
512 return;
513
514 page_ext = lookup_page_ext(page);
515 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
516
2847cf95
JK
517 INIT_LIST_HEAD(&page->lru);
518 set_page_private(page, order);
519 /* Guard pages are not available for any usage */
520 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
521}
522
2847cf95
JK
523static inline void clear_page_guard(struct zone *zone, struct page *page,
524 unsigned int order, int migratetype)
c0a32fc5 525{
e30825f1
JK
526 struct page_ext *page_ext;
527
528 if (!debug_guardpage_enabled())
529 return;
530
531 page_ext = lookup_page_ext(page);
532 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
533
2847cf95
JK
534 set_page_private(page, 0);
535 if (!is_migrate_isolate(migratetype))
536 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
537}
538#else
e30825f1 539struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
540static inline void set_page_guard(struct zone *zone, struct page *page,
541 unsigned int order, int migratetype) {}
542static inline void clear_page_guard(struct zone *zone, struct page *page,
543 unsigned int order, int migratetype) {}
c0a32fc5
SG
544#endif
545
7aeb09f9 546static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 547{
4c21e2f2 548 set_page_private(page, order);
676165a8 549 __SetPageBuddy(page);
1da177e4
LT
550}
551
552static inline void rmv_page_order(struct page *page)
553{
676165a8 554 __ClearPageBuddy(page);
4c21e2f2 555 set_page_private(page, 0);
1da177e4
LT
556}
557
1da177e4
LT
558/*
559 * This function checks whether a page is free && is the buddy
560 * we can do coalesce a page and its buddy if
13e7444b 561 * (a) the buddy is not in a hole &&
676165a8 562 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
563 * (c) a page and its buddy have the same order &&
564 * (d) a page and its buddy are in the same zone.
676165a8 565 *
cf6fe945
WSH
566 * For recording whether a page is in the buddy system, we set ->_mapcount
567 * PAGE_BUDDY_MAPCOUNT_VALUE.
568 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
569 * serialized by zone->lock.
1da177e4 570 *
676165a8 571 * For recording page's order, we use page_private(page).
1da177e4 572 */
cb2b95e1 573static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 574 unsigned int order)
1da177e4 575{
14e07298 576 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 577 return 0;
13e7444b 578
c0a32fc5 579 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
580 if (page_zone_id(page) != page_zone_id(buddy))
581 return 0;
582
4c5018ce
WY
583 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
584
c0a32fc5
SG
585 return 1;
586 }
587
cb2b95e1 588 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
589 /*
590 * zone check is done late to avoid uselessly
591 * calculating zone/node ids for pages that could
592 * never merge.
593 */
594 if (page_zone_id(page) != page_zone_id(buddy))
595 return 0;
596
4c5018ce
WY
597 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
598
6aa3001b 599 return 1;
676165a8 600 }
6aa3001b 601 return 0;
1da177e4
LT
602}
603
604/*
605 * Freeing function for a buddy system allocator.
606 *
607 * The concept of a buddy system is to maintain direct-mapped table
608 * (containing bit values) for memory blocks of various "orders".
609 * The bottom level table contains the map for the smallest allocatable
610 * units of memory (here, pages), and each level above it describes
611 * pairs of units from the levels below, hence, "buddies".
612 * At a high level, all that happens here is marking the table entry
613 * at the bottom level available, and propagating the changes upward
614 * as necessary, plus some accounting needed to play nicely with other
615 * parts of the VM system.
616 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
617 * free pages of length of (1 << order) and marked with _mapcount
618 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
619 * field.
1da177e4 620 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
621 * other. That is, if we allocate a small block, and both were
622 * free, the remainder of the region must be split into blocks.
1da177e4 623 * If a block is freed, and its buddy is also free, then this
5f63b720 624 * triggers coalescing into a block of larger size.
1da177e4 625 *
6d49e352 626 * -- nyc
1da177e4
LT
627 */
628
48db57f8 629static inline void __free_one_page(struct page *page,
dc4b0caf 630 unsigned long pfn,
ed0ae21d
MG
631 struct zone *zone, unsigned int order,
632 int migratetype)
1da177e4
LT
633{
634 unsigned long page_idx;
6dda9d55 635 unsigned long combined_idx;
43506fad 636 unsigned long uninitialized_var(buddy_idx);
6dda9d55 637 struct page *buddy;
3c605096 638 int max_order = MAX_ORDER;
1da177e4 639
d29bb978 640 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 641 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 642
ed0ae21d 643 VM_BUG_ON(migratetype == -1);
3c605096
JK
644 if (is_migrate_isolate(migratetype)) {
645 /*
646 * We restrict max order of merging to prevent merge
647 * between freepages on isolate pageblock and normal
648 * pageblock. Without this, pageblock isolation
649 * could cause incorrect freepage accounting.
650 */
651 max_order = min(MAX_ORDER, pageblock_order + 1);
652 } else {
8f82b55d 653 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 654 }
ed0ae21d 655
3c605096 656 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 657
309381fe
SL
658 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
659 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 660
3c605096 661 while (order < max_order - 1) {
43506fad
KC
662 buddy_idx = __find_buddy_index(page_idx, order);
663 buddy = page + (buddy_idx - page_idx);
cb2b95e1 664 if (!page_is_buddy(page, buddy, order))
3c82d0ce 665 break;
c0a32fc5
SG
666 /*
667 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
668 * merge with it and move up one order.
669 */
670 if (page_is_guard(buddy)) {
2847cf95 671 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
672 } else {
673 list_del(&buddy->lru);
674 zone->free_area[order].nr_free--;
675 rmv_page_order(buddy);
676 }
43506fad 677 combined_idx = buddy_idx & page_idx;
1da177e4
LT
678 page = page + (combined_idx - page_idx);
679 page_idx = combined_idx;
680 order++;
681 }
682 set_page_order(page, order);
6dda9d55
CZ
683
684 /*
685 * If this is not the largest possible page, check if the buddy
686 * of the next-highest order is free. If it is, it's possible
687 * that pages are being freed that will coalesce soon. In case,
688 * that is happening, add the free page to the tail of the list
689 * so it's less likely to be used soon and more likely to be merged
690 * as a higher order page
691 */
b7f50cfa 692 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 693 struct page *higher_page, *higher_buddy;
43506fad
KC
694 combined_idx = buddy_idx & page_idx;
695 higher_page = page + (combined_idx - page_idx);
696 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 697 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
698 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
699 list_add_tail(&page->lru,
700 &zone->free_area[order].free_list[migratetype]);
701 goto out;
702 }
703 }
704
705 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
706out:
1da177e4
LT
707 zone->free_area[order].nr_free++;
708}
709
224abf92 710static inline int free_pages_check(struct page *page)
1da177e4 711{
d230dec1 712 const char *bad_reason = NULL;
f0b791a3
DH
713 unsigned long bad_flags = 0;
714
715 if (unlikely(page_mapcount(page)))
716 bad_reason = "nonzero mapcount";
717 if (unlikely(page->mapping != NULL))
718 bad_reason = "non-NULL mapping";
719 if (unlikely(atomic_read(&page->_count) != 0))
720 bad_reason = "nonzero _count";
721 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
722 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
723 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
724 }
9edad6ea
JW
725#ifdef CONFIG_MEMCG
726 if (unlikely(page->mem_cgroup))
727 bad_reason = "page still charged to cgroup";
728#endif
f0b791a3
DH
729 if (unlikely(bad_reason)) {
730 bad_page(page, bad_reason, bad_flags);
79f4b7bf 731 return 1;
8cc3b392 732 }
90572890 733 page_cpupid_reset_last(page);
79f4b7bf
HD
734 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
735 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
736 return 0;
1da177e4
LT
737}
738
739/*
5f8dcc21 740 * Frees a number of pages from the PCP lists
1da177e4 741 * Assumes all pages on list are in same zone, and of same order.
207f36ee 742 * count is the number of pages to free.
1da177e4
LT
743 *
744 * If the zone was previously in an "all pages pinned" state then look to
745 * see if this freeing clears that state.
746 *
747 * And clear the zone's pages_scanned counter, to hold off the "all pages are
748 * pinned" detection logic.
749 */
5f8dcc21
MG
750static void free_pcppages_bulk(struct zone *zone, int count,
751 struct per_cpu_pages *pcp)
1da177e4 752{
5f8dcc21 753 int migratetype = 0;
a6f9edd6 754 int batch_free = 0;
72853e29 755 int to_free = count;
0d5d823a 756 unsigned long nr_scanned;
5f8dcc21 757
c54ad30c 758 spin_lock(&zone->lock);
0d5d823a
MG
759 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
760 if (nr_scanned)
761 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 762
72853e29 763 while (to_free) {
48db57f8 764 struct page *page;
5f8dcc21
MG
765 struct list_head *list;
766
767 /*
a6f9edd6
MG
768 * Remove pages from lists in a round-robin fashion. A
769 * batch_free count is maintained that is incremented when an
770 * empty list is encountered. This is so more pages are freed
771 * off fuller lists instead of spinning excessively around empty
772 * lists
5f8dcc21
MG
773 */
774 do {
a6f9edd6 775 batch_free++;
5f8dcc21
MG
776 if (++migratetype == MIGRATE_PCPTYPES)
777 migratetype = 0;
778 list = &pcp->lists[migratetype];
779 } while (list_empty(list));
48db57f8 780
1d16871d
NK
781 /* This is the only non-empty list. Free them all. */
782 if (batch_free == MIGRATE_PCPTYPES)
783 batch_free = to_free;
784
a6f9edd6 785 do {
770c8aaa
BZ
786 int mt; /* migratetype of the to-be-freed page */
787
a6f9edd6
MG
788 page = list_entry(list->prev, struct page, lru);
789 /* must delete as __free_one_page list manipulates */
790 list_del(&page->lru);
aa016d14 791
b12c4ad1 792 mt = get_freepage_migratetype(page);
aa016d14
VB
793 /* MIGRATE_ISOLATE page should not go to pcplists */
794 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
795 /* Pageblock could have been isolated meanwhile */
8f82b55d 796 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 797 mt = get_pageblock_migratetype(page);
51bb1a40 798
a7016235 799 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 800 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 801 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 802 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 803 }
c54ad30c 804 spin_unlock(&zone->lock);
1da177e4
LT
805}
806
dc4b0caf
MG
807static void free_one_page(struct zone *zone,
808 struct page *page, unsigned long pfn,
7aeb09f9 809 unsigned int order,
ed0ae21d 810 int migratetype)
1da177e4 811{
0d5d823a 812 unsigned long nr_scanned;
006d22d9 813 spin_lock(&zone->lock);
0d5d823a
MG
814 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
815 if (nr_scanned)
816 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 817
ad53f92e
JK
818 if (unlikely(has_isolate_pageblock(zone) ||
819 is_migrate_isolate(migratetype))) {
820 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 821 }
dc4b0caf 822 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 823 spin_unlock(&zone->lock);
48db57f8
NP
824}
825
81422f29
KS
826static int free_tail_pages_check(struct page *head_page, struct page *page)
827{
828 if (!IS_ENABLED(CONFIG_DEBUG_VM))
829 return 0;
830 if (unlikely(!PageTail(page))) {
831 bad_page(page, "PageTail not set", 0);
832 return 1;
833 }
834 if (unlikely(page->first_page != head_page)) {
835 bad_page(page, "first_page not consistent", 0);
836 return 1;
837 }
838 return 0;
839}
840
1e8ce83c
RH
841static void __meminit __init_single_page(struct page *page, unsigned long pfn,
842 unsigned long zone, int nid)
843{
1e8ce83c 844 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
845 init_page_count(page);
846 page_mapcount_reset(page);
847 page_cpupid_reset_last(page);
1e8ce83c 848
1e8ce83c
RH
849 INIT_LIST_HEAD(&page->lru);
850#ifdef WANT_PAGE_VIRTUAL
851 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
852 if (!is_highmem_idx(zone))
853 set_page_address(page, __va(pfn << PAGE_SHIFT));
854#endif
855}
856
857static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
858 int nid)
859{
860 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
861}
862
7e18adb4
MG
863#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
864static void init_reserved_page(unsigned long pfn)
865{
866 pg_data_t *pgdat;
867 int nid, zid;
868
869 if (!early_page_uninitialised(pfn))
870 return;
871
872 nid = early_pfn_to_nid(pfn);
873 pgdat = NODE_DATA(nid);
874
875 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
876 struct zone *zone = &pgdat->node_zones[zid];
877
878 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
879 break;
880 }
881 __init_single_pfn(pfn, zid, nid);
882}
883#else
884static inline void init_reserved_page(unsigned long pfn)
885{
886}
887#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
888
92923ca3
NZ
889/*
890 * Initialised pages do not have PageReserved set. This function is
891 * called for each range allocated by the bootmem allocator and
892 * marks the pages PageReserved. The remaining valid pages are later
893 * sent to the buddy page allocator.
894 */
7e18adb4 895void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
896{
897 unsigned long start_pfn = PFN_DOWN(start);
898 unsigned long end_pfn = PFN_UP(end);
899
7e18adb4
MG
900 for (; start_pfn < end_pfn; start_pfn++) {
901 if (pfn_valid(start_pfn)) {
902 struct page *page = pfn_to_page(start_pfn);
903
904 init_reserved_page(start_pfn);
905 SetPageReserved(page);
906 }
907 }
92923ca3
NZ
908}
909
ec95f53a 910static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 911{
81422f29
KS
912 bool compound = PageCompound(page);
913 int i, bad = 0;
1da177e4 914
ab1f306f 915 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 916 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 917
b413d48a 918 trace_mm_page_free(page, order);
b1eeab67 919 kmemcheck_free_shadow(page, order);
b8c73fc2 920 kasan_free_pages(page, order);
b1eeab67 921
8dd60a3a
AA
922 if (PageAnon(page))
923 page->mapping = NULL;
81422f29
KS
924 bad += free_pages_check(page);
925 for (i = 1; i < (1 << order); i++) {
926 if (compound)
927 bad += free_tail_pages_check(page, page + i);
8dd60a3a 928 bad += free_pages_check(page + i);
81422f29 929 }
8cc3b392 930 if (bad)
ec95f53a 931 return false;
689bcebf 932
48c96a36
JK
933 reset_page_owner(page, order);
934
3ac7fe5a 935 if (!PageHighMem(page)) {
b8af2941
PK
936 debug_check_no_locks_freed(page_address(page),
937 PAGE_SIZE << order);
3ac7fe5a
TG
938 debug_check_no_obj_freed(page_address(page),
939 PAGE_SIZE << order);
940 }
dafb1367 941 arch_free_page(page, order);
48db57f8 942 kernel_map_pages(page, 1 << order, 0);
dafb1367 943
ec95f53a
KM
944 return true;
945}
946
947static void __free_pages_ok(struct page *page, unsigned int order)
948{
949 unsigned long flags;
95e34412 950 int migratetype;
dc4b0caf 951 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
952
953 if (!free_pages_prepare(page, order))
954 return;
955
cfc47a28 956 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 957 local_irq_save(flags);
f8891e5e 958 __count_vm_events(PGFREE, 1 << order);
95e34412 959 set_freepage_migratetype(page, migratetype);
dc4b0caf 960 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 961 local_irq_restore(flags);
1da177e4
LT
962}
963
0e1cc95b 964static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 965 unsigned long pfn, unsigned int order)
a226f6c8 966{
c3993076 967 unsigned int nr_pages = 1 << order;
e2d0bd2b 968 struct page *p = page;
c3993076 969 unsigned int loop;
a226f6c8 970
e2d0bd2b
YL
971 prefetchw(p);
972 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
973 prefetchw(p + 1);
c3993076
JW
974 __ClearPageReserved(p);
975 set_page_count(p, 0);
a226f6c8 976 }
e2d0bd2b
YL
977 __ClearPageReserved(p);
978 set_page_count(p, 0);
c3993076 979
e2d0bd2b 980 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
981 set_page_refcounted(page);
982 __free_pages(page, order);
a226f6c8
DH
983}
984
75a592a4
MG
985#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
986 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 987
75a592a4
MG
988static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
989
990int __meminit early_pfn_to_nid(unsigned long pfn)
991{
7ace9917 992 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
993 int nid;
994
7ace9917 995 spin_lock(&early_pfn_lock);
75a592a4 996 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
997 if (nid < 0)
998 nid = 0;
999 spin_unlock(&early_pfn_lock);
1000
1001 return nid;
75a592a4
MG
1002}
1003#endif
1004
1005#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1006static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1007 struct mminit_pfnnid_cache *state)
1008{
1009 int nid;
1010
1011 nid = __early_pfn_to_nid(pfn, state);
1012 if (nid >= 0 && nid != node)
1013 return false;
1014 return true;
1015}
1016
1017/* Only safe to use early in boot when initialisation is single-threaded */
1018static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1019{
1020 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1021}
1022
1023#else
1024
1025static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1026{
1027 return true;
1028}
1029static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1030 struct mminit_pfnnid_cache *state)
1031{
1032 return true;
1033}
1034#endif
1035
1036
0e1cc95b 1037void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1038 unsigned int order)
1039{
1040 if (early_page_uninitialised(pfn))
1041 return;
1042 return __free_pages_boot_core(page, pfn, order);
1043}
1044
7e18adb4 1045#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1046static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1047 unsigned long pfn, int nr_pages)
1048{
1049 int i;
1050
1051 if (!page)
1052 return;
1053
1054 /* Free a large naturally-aligned chunk if possible */
1055 if (nr_pages == MAX_ORDER_NR_PAGES &&
1056 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1057 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1058 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1059 return;
1060 }
1061
1062 for (i = 0; i < nr_pages; i++, page++, pfn++)
1063 __free_pages_boot_core(page, pfn, 0);
1064}
1065
d3cd131d
NS
1066/* Completion tracking for deferred_init_memmap() threads */
1067static atomic_t pgdat_init_n_undone __initdata;
1068static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1069
1070static inline void __init pgdat_init_report_one_done(void)
1071{
1072 if (atomic_dec_and_test(&pgdat_init_n_undone))
1073 complete(&pgdat_init_all_done_comp);
1074}
0e1cc95b 1075
7e18adb4 1076/* Initialise remaining memory on a node */
0e1cc95b 1077static int __init deferred_init_memmap(void *data)
7e18adb4 1078{
0e1cc95b
MG
1079 pg_data_t *pgdat = data;
1080 int nid = pgdat->node_id;
7e18adb4
MG
1081 struct mminit_pfnnid_cache nid_init_state = { };
1082 unsigned long start = jiffies;
1083 unsigned long nr_pages = 0;
1084 unsigned long walk_start, walk_end;
1085 int i, zid;
1086 struct zone *zone;
7e18adb4 1087 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1088 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1089
0e1cc95b 1090 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1091 pgdat_init_report_one_done();
0e1cc95b
MG
1092 return 0;
1093 }
1094
1095 /* Bind memory initialisation thread to a local node if possible */
1096 if (!cpumask_empty(cpumask))
1097 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1098
1099 /* Sanity check boundaries */
1100 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1101 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1102 pgdat->first_deferred_pfn = ULONG_MAX;
1103
1104 /* Only the highest zone is deferred so find it */
1105 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1106 zone = pgdat->node_zones + zid;
1107 if (first_init_pfn < zone_end_pfn(zone))
1108 break;
1109 }
1110
1111 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1112 unsigned long pfn, end_pfn;
54608c3f 1113 struct page *page = NULL;
a4de83dd
MG
1114 struct page *free_base_page = NULL;
1115 unsigned long free_base_pfn = 0;
1116 int nr_to_free = 0;
7e18adb4
MG
1117
1118 end_pfn = min(walk_end, zone_end_pfn(zone));
1119 pfn = first_init_pfn;
1120 if (pfn < walk_start)
1121 pfn = walk_start;
1122 if (pfn < zone->zone_start_pfn)
1123 pfn = zone->zone_start_pfn;
1124
1125 for (; pfn < end_pfn; pfn++) {
54608c3f 1126 if (!pfn_valid_within(pfn))
a4de83dd 1127 goto free_range;
7e18adb4 1128
54608c3f
MG
1129 /*
1130 * Ensure pfn_valid is checked every
1131 * MAX_ORDER_NR_PAGES for memory holes
1132 */
1133 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1134 if (!pfn_valid(pfn)) {
1135 page = NULL;
a4de83dd 1136 goto free_range;
54608c3f
MG
1137 }
1138 }
1139
1140 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1141 page = NULL;
a4de83dd 1142 goto free_range;
54608c3f
MG
1143 }
1144
1145 /* Minimise pfn page lookups and scheduler checks */
1146 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1147 page++;
1148 } else {
a4de83dd
MG
1149 nr_pages += nr_to_free;
1150 deferred_free_range(free_base_page,
1151 free_base_pfn, nr_to_free);
1152 free_base_page = NULL;
1153 free_base_pfn = nr_to_free = 0;
1154
54608c3f
MG
1155 page = pfn_to_page(pfn);
1156 cond_resched();
1157 }
7e18adb4
MG
1158
1159 if (page->flags) {
1160 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1161 goto free_range;
7e18adb4
MG
1162 }
1163
1164 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1165 if (!free_base_page) {
1166 free_base_page = page;
1167 free_base_pfn = pfn;
1168 nr_to_free = 0;
1169 }
1170 nr_to_free++;
1171
1172 /* Where possible, batch up pages for a single free */
1173 continue;
1174free_range:
1175 /* Free the current block of pages to allocator */
1176 nr_pages += nr_to_free;
1177 deferred_free_range(free_base_page, free_base_pfn,
1178 nr_to_free);
1179 free_base_page = NULL;
1180 free_base_pfn = nr_to_free = 0;
7e18adb4 1181 }
a4de83dd 1182
7e18adb4
MG
1183 first_init_pfn = max(end_pfn, first_init_pfn);
1184 }
1185
1186 /* Sanity check that the next zone really is unpopulated */
1187 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1188
0e1cc95b 1189 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1190 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1191
1192 pgdat_init_report_one_done();
0e1cc95b
MG
1193 return 0;
1194}
1195
1196void __init page_alloc_init_late(void)
1197{
1198 int nid;
1199
d3cd131d
NS
1200 /* There will be num_node_state(N_MEMORY) threads */
1201 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1202 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1203 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1204 }
1205
1206 /* Block until all are initialised */
d3cd131d 1207 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1208
1209 /* Reinit limits that are based on free pages after the kernel is up */
1210 files_maxfiles_init();
7e18adb4
MG
1211}
1212#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1213
47118af0 1214#ifdef CONFIG_CMA
9cf510a5 1215/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1216void __init init_cma_reserved_pageblock(struct page *page)
1217{
1218 unsigned i = pageblock_nr_pages;
1219 struct page *p = page;
1220
1221 do {
1222 __ClearPageReserved(p);
1223 set_page_count(p, 0);
1224 } while (++p, --i);
1225
47118af0 1226 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1227
1228 if (pageblock_order >= MAX_ORDER) {
1229 i = pageblock_nr_pages;
1230 p = page;
1231 do {
1232 set_page_refcounted(p);
1233 __free_pages(p, MAX_ORDER - 1);
1234 p += MAX_ORDER_NR_PAGES;
1235 } while (i -= MAX_ORDER_NR_PAGES);
1236 } else {
1237 set_page_refcounted(page);
1238 __free_pages(page, pageblock_order);
1239 }
1240
3dcc0571 1241 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1242}
1243#endif
1da177e4
LT
1244
1245/*
1246 * The order of subdivision here is critical for the IO subsystem.
1247 * Please do not alter this order without good reasons and regression
1248 * testing. Specifically, as large blocks of memory are subdivided,
1249 * the order in which smaller blocks are delivered depends on the order
1250 * they're subdivided in this function. This is the primary factor
1251 * influencing the order in which pages are delivered to the IO
1252 * subsystem according to empirical testing, and this is also justified
1253 * by considering the behavior of a buddy system containing a single
1254 * large block of memory acted on by a series of small allocations.
1255 * This behavior is a critical factor in sglist merging's success.
1256 *
6d49e352 1257 * -- nyc
1da177e4 1258 */
085cc7d5 1259static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1260 int low, int high, struct free_area *area,
1261 int migratetype)
1da177e4
LT
1262{
1263 unsigned long size = 1 << high;
1264
1265 while (high > low) {
1266 area--;
1267 high--;
1268 size >>= 1;
309381fe 1269 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1270
2847cf95 1271 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1272 debug_guardpage_enabled() &&
2847cf95 1273 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1274 /*
1275 * Mark as guard pages (or page), that will allow to
1276 * merge back to allocator when buddy will be freed.
1277 * Corresponding page table entries will not be touched,
1278 * pages will stay not present in virtual address space
1279 */
2847cf95 1280 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1281 continue;
1282 }
b2a0ac88 1283 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1284 area->nr_free++;
1285 set_page_order(&page[size], high);
1286 }
1da177e4
LT
1287}
1288
1da177e4
LT
1289/*
1290 * This page is about to be returned from the page allocator
1291 */
2a7684a2 1292static inline int check_new_page(struct page *page)
1da177e4 1293{
d230dec1 1294 const char *bad_reason = NULL;
f0b791a3
DH
1295 unsigned long bad_flags = 0;
1296
1297 if (unlikely(page_mapcount(page)))
1298 bad_reason = "nonzero mapcount";
1299 if (unlikely(page->mapping != NULL))
1300 bad_reason = "non-NULL mapping";
1301 if (unlikely(atomic_read(&page->_count) != 0))
1302 bad_reason = "nonzero _count";
f4c18e6f
NH
1303 if (unlikely(page->flags & __PG_HWPOISON)) {
1304 bad_reason = "HWPoisoned (hardware-corrupted)";
1305 bad_flags = __PG_HWPOISON;
1306 }
f0b791a3
DH
1307 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1308 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1309 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1310 }
9edad6ea
JW
1311#ifdef CONFIG_MEMCG
1312 if (unlikely(page->mem_cgroup))
1313 bad_reason = "page still charged to cgroup";
1314#endif
f0b791a3
DH
1315 if (unlikely(bad_reason)) {
1316 bad_page(page, bad_reason, bad_flags);
689bcebf 1317 return 1;
8cc3b392 1318 }
2a7684a2
WF
1319 return 0;
1320}
1321
75379191
VB
1322static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1323 int alloc_flags)
2a7684a2
WF
1324{
1325 int i;
1326
1327 for (i = 0; i < (1 << order); i++) {
1328 struct page *p = page + i;
1329 if (unlikely(check_new_page(p)))
1330 return 1;
1331 }
689bcebf 1332
4c21e2f2 1333 set_page_private(page, 0);
7835e98b 1334 set_page_refcounted(page);
cc102509
NP
1335
1336 arch_alloc_page(page, order);
1da177e4 1337 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1338 kasan_alloc_pages(page, order);
17cf4406
NP
1339
1340 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1341 for (i = 0; i < (1 << order); i++)
1342 clear_highpage(page + i);
17cf4406
NP
1343
1344 if (order && (gfp_flags & __GFP_COMP))
1345 prep_compound_page(page, order);
1346
48c96a36
JK
1347 set_page_owner(page, order, gfp_flags);
1348
75379191 1349 /*
2f064f34 1350 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1351 * allocate the page. The expectation is that the caller is taking
1352 * steps that will free more memory. The caller should avoid the page
1353 * being used for !PFMEMALLOC purposes.
1354 */
2f064f34
MH
1355 if (alloc_flags & ALLOC_NO_WATERMARKS)
1356 set_page_pfmemalloc(page);
1357 else
1358 clear_page_pfmemalloc(page);
75379191 1359
689bcebf 1360 return 0;
1da177e4
LT
1361}
1362
56fd56b8
MG
1363/*
1364 * Go through the free lists for the given migratetype and remove
1365 * the smallest available page from the freelists
1366 */
728ec980
MG
1367static inline
1368struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1369 int migratetype)
1370{
1371 unsigned int current_order;
b8af2941 1372 struct free_area *area;
56fd56b8
MG
1373 struct page *page;
1374
1375 /* Find a page of the appropriate size in the preferred list */
1376 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1377 area = &(zone->free_area[current_order]);
1378 if (list_empty(&area->free_list[migratetype]))
1379 continue;
1380
1381 page = list_entry(area->free_list[migratetype].next,
1382 struct page, lru);
1383 list_del(&page->lru);
1384 rmv_page_order(page);
1385 area->nr_free--;
56fd56b8 1386 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 1387 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
1388 return page;
1389 }
1390
1391 return NULL;
1392}
1393
1394
b2a0ac88
MG
1395/*
1396 * This array describes the order lists are fallen back to when
1397 * the free lists for the desirable migrate type are depleted
1398 */
47118af0
MN
1399static int fallbacks[MIGRATE_TYPES][4] = {
1400 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1401 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
dc67647b 1402 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
47118af0 1403#ifdef CONFIG_CMA
47118af0 1404 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
47118af0 1405#endif
6d4a4916 1406 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1407#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1408 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1409#endif
b2a0ac88
MG
1410};
1411
dc67647b
JK
1412#ifdef CONFIG_CMA
1413static struct page *__rmqueue_cma_fallback(struct zone *zone,
1414 unsigned int order)
1415{
1416 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1417}
1418#else
1419static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1420 unsigned int order) { return NULL; }
1421#endif
1422
c361be55
MG
1423/*
1424 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1425 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1426 * boundary. If alignment is required, use move_freepages_block()
1427 */
435b405c 1428int move_freepages(struct zone *zone,
b69a7288
AB
1429 struct page *start_page, struct page *end_page,
1430 int migratetype)
c361be55
MG
1431{
1432 struct page *page;
1433 unsigned long order;
d100313f 1434 int pages_moved = 0;
c361be55
MG
1435
1436#ifndef CONFIG_HOLES_IN_ZONE
1437 /*
1438 * page_zone is not safe to call in this context when
1439 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1440 * anyway as we check zone boundaries in move_freepages_block().
1441 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1442 * grouping pages by mobility
c361be55 1443 */
97ee4ba7 1444 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1445#endif
1446
1447 for (page = start_page; page <= end_page;) {
344c790e 1448 /* Make sure we are not inadvertently changing nodes */
309381fe 1449 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1450
c361be55
MG
1451 if (!pfn_valid_within(page_to_pfn(page))) {
1452 page++;
1453 continue;
1454 }
1455
1456 if (!PageBuddy(page)) {
1457 page++;
1458 continue;
1459 }
1460
1461 order = page_order(page);
84be48d8
KS
1462 list_move(&page->lru,
1463 &zone->free_area[order].free_list[migratetype]);
95e34412 1464 set_freepage_migratetype(page, migratetype);
c361be55 1465 page += 1 << order;
d100313f 1466 pages_moved += 1 << order;
c361be55
MG
1467 }
1468
d100313f 1469 return pages_moved;
c361be55
MG
1470}
1471
ee6f509c 1472int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1473 int migratetype)
c361be55
MG
1474{
1475 unsigned long start_pfn, end_pfn;
1476 struct page *start_page, *end_page;
1477
1478 start_pfn = page_to_pfn(page);
d9c23400 1479 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1480 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1481 end_page = start_page + pageblock_nr_pages - 1;
1482 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1483
1484 /* Do not cross zone boundaries */
108bcc96 1485 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1486 start_page = page;
108bcc96 1487 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1488 return 0;
1489
1490 return move_freepages(zone, start_page, end_page, migratetype);
1491}
1492
2f66a68f
MG
1493static void change_pageblock_range(struct page *pageblock_page,
1494 int start_order, int migratetype)
1495{
1496 int nr_pageblocks = 1 << (start_order - pageblock_order);
1497
1498 while (nr_pageblocks--) {
1499 set_pageblock_migratetype(pageblock_page, migratetype);
1500 pageblock_page += pageblock_nr_pages;
1501 }
1502}
1503
fef903ef 1504/*
9c0415eb
VB
1505 * When we are falling back to another migratetype during allocation, try to
1506 * steal extra free pages from the same pageblocks to satisfy further
1507 * allocations, instead of polluting multiple pageblocks.
1508 *
1509 * If we are stealing a relatively large buddy page, it is likely there will
1510 * be more free pages in the pageblock, so try to steal them all. For
1511 * reclaimable and unmovable allocations, we steal regardless of page size,
1512 * as fragmentation caused by those allocations polluting movable pageblocks
1513 * is worse than movable allocations stealing from unmovable and reclaimable
1514 * pageblocks.
fef903ef 1515 */
4eb7dce6
JK
1516static bool can_steal_fallback(unsigned int order, int start_mt)
1517{
1518 /*
1519 * Leaving this order check is intended, although there is
1520 * relaxed order check in next check. The reason is that
1521 * we can actually steal whole pageblock if this condition met,
1522 * but, below check doesn't guarantee it and that is just heuristic
1523 * so could be changed anytime.
1524 */
1525 if (order >= pageblock_order)
1526 return true;
1527
1528 if (order >= pageblock_order / 2 ||
1529 start_mt == MIGRATE_RECLAIMABLE ||
1530 start_mt == MIGRATE_UNMOVABLE ||
1531 page_group_by_mobility_disabled)
1532 return true;
1533
1534 return false;
1535}
1536
1537/*
1538 * This function implements actual steal behaviour. If order is large enough,
1539 * we can steal whole pageblock. If not, we first move freepages in this
1540 * pageblock and check whether half of pages are moved or not. If half of
1541 * pages are moved, we can change migratetype of pageblock and permanently
1542 * use it's pages as requested migratetype in the future.
1543 */
1544static void steal_suitable_fallback(struct zone *zone, struct page *page,
1545 int start_type)
fef903ef
SB
1546{
1547 int current_order = page_order(page);
4eb7dce6 1548 int pages;
fef903ef 1549
fef903ef
SB
1550 /* Take ownership for orders >= pageblock_order */
1551 if (current_order >= pageblock_order) {
1552 change_pageblock_range(page, current_order, start_type);
3a1086fb 1553 return;
fef903ef
SB
1554 }
1555
4eb7dce6 1556 pages = move_freepages_block(zone, page, start_type);
fef903ef 1557
4eb7dce6
JK
1558 /* Claim the whole block if over half of it is free */
1559 if (pages >= (1 << (pageblock_order-1)) ||
1560 page_group_by_mobility_disabled)
1561 set_pageblock_migratetype(page, start_type);
1562}
1563
2149cdae
JK
1564/*
1565 * Check whether there is a suitable fallback freepage with requested order.
1566 * If only_stealable is true, this function returns fallback_mt only if
1567 * we can steal other freepages all together. This would help to reduce
1568 * fragmentation due to mixed migratetype pages in one pageblock.
1569 */
1570int find_suitable_fallback(struct free_area *area, unsigned int order,
1571 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1572{
1573 int i;
1574 int fallback_mt;
1575
1576 if (area->nr_free == 0)
1577 return -1;
1578
1579 *can_steal = false;
1580 for (i = 0;; i++) {
1581 fallback_mt = fallbacks[migratetype][i];
1582 if (fallback_mt == MIGRATE_RESERVE)
1583 break;
1584
1585 if (list_empty(&area->free_list[fallback_mt]))
1586 continue;
fef903ef 1587
4eb7dce6
JK
1588 if (can_steal_fallback(order, migratetype))
1589 *can_steal = true;
1590
2149cdae
JK
1591 if (!only_stealable)
1592 return fallback_mt;
1593
1594 if (*can_steal)
1595 return fallback_mt;
fef903ef 1596 }
4eb7dce6
JK
1597
1598 return -1;
fef903ef
SB
1599}
1600
b2a0ac88 1601/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1602static inline struct page *
7aeb09f9 1603__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1604{
b8af2941 1605 struct free_area *area;
7aeb09f9 1606 unsigned int current_order;
b2a0ac88 1607 struct page *page;
4eb7dce6
JK
1608 int fallback_mt;
1609 bool can_steal;
b2a0ac88
MG
1610
1611 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1612 for (current_order = MAX_ORDER-1;
1613 current_order >= order && current_order <= MAX_ORDER-1;
1614 --current_order) {
4eb7dce6
JK
1615 area = &(zone->free_area[current_order]);
1616 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1617 start_migratetype, false, &can_steal);
4eb7dce6
JK
1618 if (fallback_mt == -1)
1619 continue;
b2a0ac88 1620
4eb7dce6
JK
1621 page = list_entry(area->free_list[fallback_mt].next,
1622 struct page, lru);
1623 if (can_steal)
1624 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1625
4eb7dce6
JK
1626 /* Remove the page from the freelists */
1627 area->nr_free--;
1628 list_del(&page->lru);
1629 rmv_page_order(page);
3a1086fb 1630
4eb7dce6
JK
1631 expand(zone, page, order, current_order, area,
1632 start_migratetype);
1633 /*
1634 * The freepage_migratetype may differ from pageblock's
1635 * migratetype depending on the decisions in
1636 * try_to_steal_freepages(). This is OK as long as it
1637 * does not differ for MIGRATE_CMA pageblocks. For CMA
1638 * we need to make sure unallocated pages flushed from
1639 * pcp lists are returned to the correct freelist.
1640 */
1641 set_freepage_migratetype(page, start_migratetype);
e0fff1bd 1642
4eb7dce6
JK
1643 trace_mm_page_alloc_extfrag(page, order, current_order,
1644 start_migratetype, fallback_mt);
e0fff1bd 1645
4eb7dce6 1646 return page;
b2a0ac88
MG
1647 }
1648
728ec980 1649 return NULL;
b2a0ac88
MG
1650}
1651
56fd56b8 1652/*
1da177e4
LT
1653 * Do the hard work of removing an element from the buddy allocator.
1654 * Call me with the zone->lock already held.
1655 */
b2a0ac88
MG
1656static struct page *__rmqueue(struct zone *zone, unsigned int order,
1657 int migratetype)
1da177e4 1658{
1da177e4
LT
1659 struct page *page;
1660
728ec980 1661retry_reserve:
56fd56b8 1662 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1663
728ec980 1664 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
dc67647b
JK
1665 if (migratetype == MIGRATE_MOVABLE)
1666 page = __rmqueue_cma_fallback(zone, order);
1667
1668 if (!page)
1669 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1670
728ec980
MG
1671 /*
1672 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1673 * is used because __rmqueue_smallest is an inline function
1674 * and we want just one call site
1675 */
1676 if (!page) {
1677 migratetype = MIGRATE_RESERVE;
1678 goto retry_reserve;
1679 }
1680 }
1681
0d3d062a 1682 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1683 return page;
1da177e4
LT
1684}
1685
5f63b720 1686/*
1da177e4
LT
1687 * Obtain a specified number of elements from the buddy allocator, all under
1688 * a single hold of the lock, for efficiency. Add them to the supplied list.
1689 * Returns the number of new pages which were placed at *list.
1690 */
5f63b720 1691static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1692 unsigned long count, struct list_head *list,
b745bc85 1693 int migratetype, bool cold)
1da177e4 1694{
5bcc9f86 1695 int i;
5f63b720 1696
c54ad30c 1697 spin_lock(&zone->lock);
1da177e4 1698 for (i = 0; i < count; ++i) {
b2a0ac88 1699 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1700 if (unlikely(page == NULL))
1da177e4 1701 break;
81eabcbe
MG
1702
1703 /*
1704 * Split buddy pages returned by expand() are received here
1705 * in physical page order. The page is added to the callers and
1706 * list and the list head then moves forward. From the callers
1707 * perspective, the linked list is ordered by page number in
1708 * some conditions. This is useful for IO devices that can
1709 * merge IO requests if the physical pages are ordered
1710 * properly.
1711 */
b745bc85 1712 if (likely(!cold))
e084b2d9
MG
1713 list_add(&page->lru, list);
1714 else
1715 list_add_tail(&page->lru, list);
81eabcbe 1716 list = &page->lru;
5bcc9f86 1717 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1718 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1719 -(1 << order));
1da177e4 1720 }
f2260e6b 1721 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1722 spin_unlock(&zone->lock);
085cc7d5 1723 return i;
1da177e4
LT
1724}
1725
4ae7c039 1726#ifdef CONFIG_NUMA
8fce4d8e 1727/*
4037d452
CL
1728 * Called from the vmstat counter updater to drain pagesets of this
1729 * currently executing processor on remote nodes after they have
1730 * expired.
1731 *
879336c3
CL
1732 * Note that this function must be called with the thread pinned to
1733 * a single processor.
8fce4d8e 1734 */
4037d452 1735void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1736{
4ae7c039 1737 unsigned long flags;
7be12fc9 1738 int to_drain, batch;
4ae7c039 1739
4037d452 1740 local_irq_save(flags);
4db0c3c2 1741 batch = READ_ONCE(pcp->batch);
7be12fc9 1742 to_drain = min(pcp->count, batch);
2a13515c
KM
1743 if (to_drain > 0) {
1744 free_pcppages_bulk(zone, to_drain, pcp);
1745 pcp->count -= to_drain;
1746 }
4037d452 1747 local_irq_restore(flags);
4ae7c039
CL
1748}
1749#endif
1750
9f8f2172 1751/*
93481ff0 1752 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1753 *
1754 * The processor must either be the current processor and the
1755 * thread pinned to the current processor or a processor that
1756 * is not online.
1757 */
93481ff0 1758static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1759{
c54ad30c 1760 unsigned long flags;
93481ff0
VB
1761 struct per_cpu_pageset *pset;
1762 struct per_cpu_pages *pcp;
1da177e4 1763
93481ff0
VB
1764 local_irq_save(flags);
1765 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1766
93481ff0
VB
1767 pcp = &pset->pcp;
1768 if (pcp->count) {
1769 free_pcppages_bulk(zone, pcp->count, pcp);
1770 pcp->count = 0;
1771 }
1772 local_irq_restore(flags);
1773}
3dfa5721 1774
93481ff0
VB
1775/*
1776 * Drain pcplists of all zones on the indicated processor.
1777 *
1778 * The processor must either be the current processor and the
1779 * thread pinned to the current processor or a processor that
1780 * is not online.
1781 */
1782static void drain_pages(unsigned int cpu)
1783{
1784 struct zone *zone;
1785
1786 for_each_populated_zone(zone) {
1787 drain_pages_zone(cpu, zone);
1da177e4
LT
1788 }
1789}
1da177e4 1790
9f8f2172
CL
1791/*
1792 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1793 *
1794 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1795 * the single zone's pages.
9f8f2172 1796 */
93481ff0 1797void drain_local_pages(struct zone *zone)
9f8f2172 1798{
93481ff0
VB
1799 int cpu = smp_processor_id();
1800
1801 if (zone)
1802 drain_pages_zone(cpu, zone);
1803 else
1804 drain_pages(cpu);
9f8f2172
CL
1805}
1806
1807/*
74046494
GBY
1808 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1809 *
93481ff0
VB
1810 * When zone parameter is non-NULL, spill just the single zone's pages.
1811 *
74046494
GBY
1812 * Note that this code is protected against sending an IPI to an offline
1813 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1814 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1815 * nothing keeps CPUs from showing up after we populated the cpumask and
1816 * before the call to on_each_cpu_mask().
9f8f2172 1817 */
93481ff0 1818void drain_all_pages(struct zone *zone)
9f8f2172 1819{
74046494 1820 int cpu;
74046494
GBY
1821
1822 /*
1823 * Allocate in the BSS so we wont require allocation in
1824 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1825 */
1826 static cpumask_t cpus_with_pcps;
1827
1828 /*
1829 * We don't care about racing with CPU hotplug event
1830 * as offline notification will cause the notified
1831 * cpu to drain that CPU pcps and on_each_cpu_mask
1832 * disables preemption as part of its processing
1833 */
1834 for_each_online_cpu(cpu) {
93481ff0
VB
1835 struct per_cpu_pageset *pcp;
1836 struct zone *z;
74046494 1837 bool has_pcps = false;
93481ff0
VB
1838
1839 if (zone) {
74046494 1840 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1841 if (pcp->pcp.count)
74046494 1842 has_pcps = true;
93481ff0
VB
1843 } else {
1844 for_each_populated_zone(z) {
1845 pcp = per_cpu_ptr(z->pageset, cpu);
1846 if (pcp->pcp.count) {
1847 has_pcps = true;
1848 break;
1849 }
74046494
GBY
1850 }
1851 }
93481ff0 1852
74046494
GBY
1853 if (has_pcps)
1854 cpumask_set_cpu(cpu, &cpus_with_pcps);
1855 else
1856 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1857 }
93481ff0
VB
1858 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1859 zone, 1);
9f8f2172
CL
1860}
1861
296699de 1862#ifdef CONFIG_HIBERNATION
1da177e4
LT
1863
1864void mark_free_pages(struct zone *zone)
1865{
f623f0db
RW
1866 unsigned long pfn, max_zone_pfn;
1867 unsigned long flags;
7aeb09f9 1868 unsigned int order, t;
1da177e4
LT
1869 struct list_head *curr;
1870
8080fc03 1871 if (zone_is_empty(zone))
1da177e4
LT
1872 return;
1873
1874 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1875
108bcc96 1876 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1877 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1878 if (pfn_valid(pfn)) {
1879 struct page *page = pfn_to_page(pfn);
1880
7be98234
RW
1881 if (!swsusp_page_is_forbidden(page))
1882 swsusp_unset_page_free(page);
f623f0db 1883 }
1da177e4 1884
b2a0ac88
MG
1885 for_each_migratetype_order(order, t) {
1886 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1887 unsigned long i;
1da177e4 1888
f623f0db
RW
1889 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1890 for (i = 0; i < (1UL << order); i++)
7be98234 1891 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1892 }
b2a0ac88 1893 }
1da177e4
LT
1894 spin_unlock_irqrestore(&zone->lock, flags);
1895}
e2c55dc8 1896#endif /* CONFIG_PM */
1da177e4 1897
1da177e4
LT
1898/*
1899 * Free a 0-order page
b745bc85 1900 * cold == true ? free a cold page : free a hot page
1da177e4 1901 */
b745bc85 1902void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1903{
1904 struct zone *zone = page_zone(page);
1905 struct per_cpu_pages *pcp;
1906 unsigned long flags;
dc4b0caf 1907 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1908 int migratetype;
1da177e4 1909
ec95f53a 1910 if (!free_pages_prepare(page, 0))
689bcebf
HD
1911 return;
1912
dc4b0caf 1913 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1914 set_freepage_migratetype(page, migratetype);
1da177e4 1915 local_irq_save(flags);
f8891e5e 1916 __count_vm_event(PGFREE);
da456f14 1917
5f8dcc21
MG
1918 /*
1919 * We only track unmovable, reclaimable and movable on pcp lists.
1920 * Free ISOLATE pages back to the allocator because they are being
1921 * offlined but treat RESERVE as movable pages so we can get those
1922 * areas back if necessary. Otherwise, we may have to free
1923 * excessively into the page allocator
1924 */
1925 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1926 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1927 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1928 goto out;
1929 }
1930 migratetype = MIGRATE_MOVABLE;
1931 }
1932
99dcc3e5 1933 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1934 if (!cold)
5f8dcc21 1935 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1936 else
1937 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1938 pcp->count++;
48db57f8 1939 if (pcp->count >= pcp->high) {
4db0c3c2 1940 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
1941 free_pcppages_bulk(zone, batch, pcp);
1942 pcp->count -= batch;
48db57f8 1943 }
5f8dcc21
MG
1944
1945out:
1da177e4 1946 local_irq_restore(flags);
1da177e4
LT
1947}
1948
cc59850e
KK
1949/*
1950 * Free a list of 0-order pages
1951 */
b745bc85 1952void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1953{
1954 struct page *page, *next;
1955
1956 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1957 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1958 free_hot_cold_page(page, cold);
1959 }
1960}
1961
8dfcc9ba
NP
1962/*
1963 * split_page takes a non-compound higher-order page, and splits it into
1964 * n (1<<order) sub-pages: page[0..n]
1965 * Each sub-page must be freed individually.
1966 *
1967 * Note: this is probably too low level an operation for use in drivers.
1968 * Please consult with lkml before using this in your driver.
1969 */
1970void split_page(struct page *page, unsigned int order)
1971{
1972 int i;
e2cfc911 1973 gfp_t gfp_mask;
8dfcc9ba 1974
309381fe
SL
1975 VM_BUG_ON_PAGE(PageCompound(page), page);
1976 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1977
1978#ifdef CONFIG_KMEMCHECK
1979 /*
1980 * Split shadow pages too, because free(page[0]) would
1981 * otherwise free the whole shadow.
1982 */
1983 if (kmemcheck_page_is_tracked(page))
1984 split_page(virt_to_page(page[0].shadow), order);
1985#endif
1986
e2cfc911
JK
1987 gfp_mask = get_page_owner_gfp(page);
1988 set_page_owner(page, 0, gfp_mask);
48c96a36 1989 for (i = 1; i < (1 << order); i++) {
7835e98b 1990 set_page_refcounted(page + i);
e2cfc911 1991 set_page_owner(page + i, 0, gfp_mask);
48c96a36 1992 }
8dfcc9ba 1993}
5853ff23 1994EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1995
3c605096 1996int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1997{
748446bb
MG
1998 unsigned long watermark;
1999 struct zone *zone;
2139cbe6 2000 int mt;
748446bb
MG
2001
2002 BUG_ON(!PageBuddy(page));
2003
2004 zone = page_zone(page);
2e30abd1 2005 mt = get_pageblock_migratetype(page);
748446bb 2006
194159fb 2007 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2008 /* Obey watermarks as if the page was being allocated */
2009 watermark = low_wmark_pages(zone) + (1 << order);
2010 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2011 return 0;
2012
8fb74b9f 2013 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2014 }
748446bb
MG
2015
2016 /* Remove page from free list */
2017 list_del(&page->lru);
2018 zone->free_area[order].nr_free--;
2019 rmv_page_order(page);
2139cbe6 2020
e2cfc911 2021 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2022
8fb74b9f 2023 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2024 if (order >= pageblock_order - 1) {
2025 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2026 for (; page < endpage; page += pageblock_nr_pages) {
2027 int mt = get_pageblock_migratetype(page);
194159fb 2028 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2029 set_pageblock_migratetype(page,
2030 MIGRATE_MOVABLE);
2031 }
748446bb
MG
2032 }
2033
f3a14ced 2034
8fb74b9f 2035 return 1UL << order;
1fb3f8ca
MG
2036}
2037
2038/*
2039 * Similar to split_page except the page is already free. As this is only
2040 * being used for migration, the migratetype of the block also changes.
2041 * As this is called with interrupts disabled, the caller is responsible
2042 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2043 * are enabled.
2044 *
2045 * Note: this is probably too low level an operation for use in drivers.
2046 * Please consult with lkml before using this in your driver.
2047 */
2048int split_free_page(struct page *page)
2049{
2050 unsigned int order;
2051 int nr_pages;
2052
1fb3f8ca
MG
2053 order = page_order(page);
2054
8fb74b9f 2055 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2056 if (!nr_pages)
2057 return 0;
2058
2059 /* Split into individual pages */
2060 set_page_refcounted(page);
2061 split_page(page, order);
2062 return nr_pages;
748446bb
MG
2063}
2064
1da177e4 2065/*
75379191 2066 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2067 */
0a15c3e9
MG
2068static inline
2069struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
2070 struct zone *zone, unsigned int order,
2071 gfp_t gfp_flags, int migratetype)
1da177e4
LT
2072{
2073 unsigned long flags;
689bcebf 2074 struct page *page;
b745bc85 2075 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2076
48db57f8 2077 if (likely(order == 0)) {
1da177e4 2078 struct per_cpu_pages *pcp;
5f8dcc21 2079 struct list_head *list;
1da177e4 2080
1da177e4 2081 local_irq_save(flags);
99dcc3e5
CL
2082 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2083 list = &pcp->lists[migratetype];
5f8dcc21 2084 if (list_empty(list)) {
535131e6 2085 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2086 pcp->batch, list,
e084b2d9 2087 migratetype, cold);
5f8dcc21 2088 if (unlikely(list_empty(list)))
6fb332fa 2089 goto failed;
535131e6 2090 }
b92a6edd 2091
5f8dcc21
MG
2092 if (cold)
2093 page = list_entry(list->prev, struct page, lru);
2094 else
2095 page = list_entry(list->next, struct page, lru);
2096
b92a6edd
MG
2097 list_del(&page->lru);
2098 pcp->count--;
7fb1d9fc 2099 } else {
dab48dab
AM
2100 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2101 /*
2102 * __GFP_NOFAIL is not to be used in new code.
2103 *
2104 * All __GFP_NOFAIL callers should be fixed so that they
2105 * properly detect and handle allocation failures.
2106 *
2107 * We most definitely don't want callers attempting to
4923abf9 2108 * allocate greater than order-1 page units with
dab48dab
AM
2109 * __GFP_NOFAIL.
2110 */
4923abf9 2111 WARN_ON_ONCE(order > 1);
dab48dab 2112 }
1da177e4 2113 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 2114 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2115 spin_unlock(&zone->lock);
2116 if (!page)
2117 goto failed;
d1ce749a 2118 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 2119 get_freepage_migratetype(page));
1da177e4
LT
2120 }
2121
3a025760 2122 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2123 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2124 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2125 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2126
f8891e5e 2127 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2128 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2129 local_irq_restore(flags);
1da177e4 2130
309381fe 2131 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2132 return page;
a74609fa
NP
2133
2134failed:
2135 local_irq_restore(flags);
a74609fa 2136 return NULL;
1da177e4
LT
2137}
2138
933e312e
AM
2139#ifdef CONFIG_FAIL_PAGE_ALLOC
2140
b2588c4b 2141static struct {
933e312e
AM
2142 struct fault_attr attr;
2143
2144 u32 ignore_gfp_highmem;
2145 u32 ignore_gfp_wait;
54114994 2146 u32 min_order;
933e312e
AM
2147} fail_page_alloc = {
2148 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
2149 .ignore_gfp_wait = 1,
2150 .ignore_gfp_highmem = 1,
54114994 2151 .min_order = 1,
933e312e
AM
2152};
2153
2154static int __init setup_fail_page_alloc(char *str)
2155{
2156 return setup_fault_attr(&fail_page_alloc.attr, str);
2157}
2158__setup("fail_page_alloc=", setup_fail_page_alloc);
2159
deaf386e 2160static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2161{
54114994 2162 if (order < fail_page_alloc.min_order)
deaf386e 2163 return false;
933e312e 2164 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2165 return false;
933e312e 2166 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2167 return false;
933e312e 2168 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 2169 return false;
933e312e
AM
2170
2171 return should_fail(&fail_page_alloc.attr, 1 << order);
2172}
2173
2174#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2175
2176static int __init fail_page_alloc_debugfs(void)
2177{
f4ae40a6 2178 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2179 struct dentry *dir;
933e312e 2180
dd48c085
AM
2181 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2182 &fail_page_alloc.attr);
2183 if (IS_ERR(dir))
2184 return PTR_ERR(dir);
933e312e 2185
b2588c4b
AM
2186 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2187 &fail_page_alloc.ignore_gfp_wait))
2188 goto fail;
2189 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2190 &fail_page_alloc.ignore_gfp_highmem))
2191 goto fail;
2192 if (!debugfs_create_u32("min-order", mode, dir,
2193 &fail_page_alloc.min_order))
2194 goto fail;
2195
2196 return 0;
2197fail:
dd48c085 2198 debugfs_remove_recursive(dir);
933e312e 2199
b2588c4b 2200 return -ENOMEM;
933e312e
AM
2201}
2202
2203late_initcall(fail_page_alloc_debugfs);
2204
2205#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2206
2207#else /* CONFIG_FAIL_PAGE_ALLOC */
2208
deaf386e 2209static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2210{
deaf386e 2211 return false;
933e312e
AM
2212}
2213
2214#endif /* CONFIG_FAIL_PAGE_ALLOC */
2215
1da177e4 2216/*
88f5acf8 2217 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
2218 * of the allocation.
2219 */
7aeb09f9
MG
2220static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2221 unsigned long mark, int classzone_idx, int alloc_flags,
2222 long free_pages)
1da177e4 2223{
26086de3 2224 /* free_pages may go negative - that's OK */
d23ad423 2225 long min = mark;
1da177e4 2226 int o;
026b0814 2227 long free_cma = 0;
1da177e4 2228
df0a6daa 2229 free_pages -= (1 << order) - 1;
7fb1d9fc 2230 if (alloc_flags & ALLOC_HIGH)
1da177e4 2231 min -= min / 2;
7fb1d9fc 2232 if (alloc_flags & ALLOC_HARDER)
1da177e4 2233 min -= min / 4;
d95ea5d1
BZ
2234#ifdef CONFIG_CMA
2235 /* If allocation can't use CMA areas don't use free CMA pages */
2236 if (!(alloc_flags & ALLOC_CMA))
026b0814 2237 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2238#endif
026b0814 2239
3484b2de 2240 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2241 return false;
1da177e4
LT
2242 for (o = 0; o < order; o++) {
2243 /* At the next order, this order's pages become unavailable */
2244 free_pages -= z->free_area[o].nr_free << o;
2245
2246 /* Require fewer higher order pages to be free */
2247 min >>= 1;
2248
2249 if (free_pages <= min)
88f5acf8 2250 return false;
1da177e4 2251 }
88f5acf8
MG
2252 return true;
2253}
2254
7aeb09f9 2255bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2256 int classzone_idx, int alloc_flags)
2257{
2258 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2259 zone_page_state(z, NR_FREE_PAGES));
2260}
2261
7aeb09f9
MG
2262bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2263 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
2264{
2265 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2266
2267 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2268 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2269
2270 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2271 free_pages);
1da177e4
LT
2272}
2273
9276b1bc
PJ
2274#ifdef CONFIG_NUMA
2275/*
2276 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
2277 * skip over zones that are not allowed by the cpuset, or that have
2278 * been recently (in last second) found to be nearly full. See further
2279 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 2280 * that have to skip over a lot of full or unallowed zones.
9276b1bc 2281 *
a1aeb65a 2282 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 2283 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 2284 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
2285 *
2286 * If the zonelist cache is not available for this zonelist, does
2287 * nothing and returns NULL.
2288 *
2289 * If the fullzones BITMAP in the zonelist cache is stale (more than
2290 * a second since last zap'd) then we zap it out (clear its bits.)
2291 *
2292 * We hold off even calling zlc_setup, until after we've checked the
2293 * first zone in the zonelist, on the theory that most allocations will
2294 * be satisfied from that first zone, so best to examine that zone as
2295 * quickly as we can.
2296 */
2297static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2298{
2299 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2300 nodemask_t *allowednodes; /* zonelist_cache approximation */
2301
2302 zlc = zonelist->zlcache_ptr;
2303 if (!zlc)
2304 return NULL;
2305
f05111f5 2306 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
2307 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2308 zlc->last_full_zap = jiffies;
2309 }
2310
2311 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2312 &cpuset_current_mems_allowed :
4b0ef1fe 2313 &node_states[N_MEMORY];
9276b1bc
PJ
2314 return allowednodes;
2315}
2316
2317/*
2318 * Given 'z' scanning a zonelist, run a couple of quick checks to see
2319 * if it is worth looking at further for free memory:
2320 * 1) Check that the zone isn't thought to be full (doesn't have its
2321 * bit set in the zonelist_cache fullzones BITMAP).
2322 * 2) Check that the zones node (obtained from the zonelist_cache
2323 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2324 * Return true (non-zero) if zone is worth looking at further, or
2325 * else return false (zero) if it is not.
2326 *
2327 * This check -ignores- the distinction between various watermarks,
2328 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2329 * found to be full for any variation of these watermarks, it will
2330 * be considered full for up to one second by all requests, unless
2331 * we are so low on memory on all allowed nodes that we are forced
2332 * into the second scan of the zonelist.
2333 *
2334 * In the second scan we ignore this zonelist cache and exactly
2335 * apply the watermarks to all zones, even it is slower to do so.
2336 * We are low on memory in the second scan, and should leave no stone
2337 * unturned looking for a free page.
2338 */
dd1a239f 2339static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2340 nodemask_t *allowednodes)
2341{
2342 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2343 int i; /* index of *z in zonelist zones */
2344 int n; /* node that zone *z is on */
2345
2346 zlc = zonelist->zlcache_ptr;
2347 if (!zlc)
2348 return 1;
2349
dd1a239f 2350 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2351 n = zlc->z_to_n[i];
2352
2353 /* This zone is worth trying if it is allowed but not full */
2354 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2355}
2356
2357/*
2358 * Given 'z' scanning a zonelist, set the corresponding bit in
2359 * zlc->fullzones, so that subsequent attempts to allocate a page
2360 * from that zone don't waste time re-examining it.
2361 */
dd1a239f 2362static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2363{
2364 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2365 int i; /* index of *z in zonelist zones */
2366
2367 zlc = zonelist->zlcache_ptr;
2368 if (!zlc)
2369 return;
2370
dd1a239f 2371 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2372
2373 set_bit(i, zlc->fullzones);
2374}
2375
76d3fbf8
MG
2376/*
2377 * clear all zones full, called after direct reclaim makes progress so that
2378 * a zone that was recently full is not skipped over for up to a second
2379 */
2380static void zlc_clear_zones_full(struct zonelist *zonelist)
2381{
2382 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2383
2384 zlc = zonelist->zlcache_ptr;
2385 if (!zlc)
2386 return;
2387
2388 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2389}
2390
81c0a2bb
JW
2391static bool zone_local(struct zone *local_zone, struct zone *zone)
2392{
fff4068c 2393 return local_zone->node == zone->node;
81c0a2bb
JW
2394}
2395
957f822a
DR
2396static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2397{
5f7a75ac
MG
2398 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2399 RECLAIM_DISTANCE;
957f822a
DR
2400}
2401
9276b1bc
PJ
2402#else /* CONFIG_NUMA */
2403
2404static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2405{
2406 return NULL;
2407}
2408
dd1a239f 2409static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2410 nodemask_t *allowednodes)
2411{
2412 return 1;
2413}
2414
dd1a239f 2415static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2416{
2417}
76d3fbf8
MG
2418
2419static void zlc_clear_zones_full(struct zonelist *zonelist)
2420{
2421}
957f822a 2422
81c0a2bb
JW
2423static bool zone_local(struct zone *local_zone, struct zone *zone)
2424{
2425 return true;
2426}
2427
957f822a
DR
2428static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2429{
2430 return true;
2431}
2432
9276b1bc
PJ
2433#endif /* CONFIG_NUMA */
2434
4ffeaf35
MG
2435static void reset_alloc_batches(struct zone *preferred_zone)
2436{
2437 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2438
2439 do {
2440 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2441 high_wmark_pages(zone) - low_wmark_pages(zone) -
2442 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2443 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2444 } while (zone++ != preferred_zone);
2445}
2446
7fb1d9fc 2447/*
0798e519 2448 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2449 * a page.
2450 */
2451static struct page *
a9263751
VB
2452get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2453 const struct alloc_context *ac)
753ee728 2454{
a9263751 2455 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2456 struct zoneref *z;
7fb1d9fc 2457 struct page *page = NULL;
5117f45d 2458 struct zone *zone;
9276b1bc
PJ
2459 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2460 int zlc_active = 0; /* set if using zonelist_cache */
2461 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2462 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2463 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2464 int nr_fair_skipped = 0;
2465 bool zonelist_rescan;
54a6eb5c 2466
9276b1bc 2467zonelist_scan:
4ffeaf35
MG
2468 zonelist_rescan = false;
2469
7fb1d9fc 2470 /*
9276b1bc 2471 * Scan zonelist, looking for a zone with enough free.
344736f2 2472 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2473 */
a9263751
VB
2474 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2475 ac->nodemask) {
e085dbc5
JW
2476 unsigned long mark;
2477
e5adfffc 2478 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2479 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2480 continue;
664eedde
MG
2481 if (cpusets_enabled() &&
2482 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2483 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2484 continue;
81c0a2bb
JW
2485 /*
2486 * Distribute pages in proportion to the individual
2487 * zone size to ensure fair page aging. The zone a
2488 * page was allocated in should have no effect on the
2489 * time the page has in memory before being reclaimed.
81c0a2bb 2490 */
3a025760 2491 if (alloc_flags & ALLOC_FAIR) {
a9263751 2492 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2493 break;
57054651 2494 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2495 nr_fair_skipped++;
3a025760 2496 continue;
4ffeaf35 2497 }
81c0a2bb 2498 }
a756cf59
JW
2499 /*
2500 * When allocating a page cache page for writing, we
2501 * want to get it from a zone that is within its dirty
2502 * limit, such that no single zone holds more than its
2503 * proportional share of globally allowed dirty pages.
2504 * The dirty limits take into account the zone's
2505 * lowmem reserves and high watermark so that kswapd
2506 * should be able to balance it without having to
2507 * write pages from its LRU list.
2508 *
2509 * This may look like it could increase pressure on
2510 * lower zones by failing allocations in higher zones
2511 * before they are full. But the pages that do spill
2512 * over are limited as the lower zones are protected
2513 * by this very same mechanism. It should not become
2514 * a practical burden to them.
2515 *
2516 * XXX: For now, allow allocations to potentially
2517 * exceed the per-zone dirty limit in the slowpath
2518 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2519 * which is important when on a NUMA setup the allowed
2520 * zones are together not big enough to reach the
2521 * global limit. The proper fix for these situations
2522 * will require awareness of zones in the
2523 * dirty-throttling and the flusher threads.
2524 */
a6e21b14 2525 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2526 continue;
7fb1d9fc 2527
e085dbc5
JW
2528 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2529 if (!zone_watermark_ok(zone, order, mark,
a9263751 2530 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2531 int ret;
2532
5dab2911
MG
2533 /* Checked here to keep the fast path fast */
2534 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2535 if (alloc_flags & ALLOC_NO_WATERMARKS)
2536 goto try_this_zone;
2537
e5adfffc
KS
2538 if (IS_ENABLED(CONFIG_NUMA) &&
2539 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2540 /*
2541 * we do zlc_setup if there are multiple nodes
2542 * and before considering the first zone allowed
2543 * by the cpuset.
2544 */
2545 allowednodes = zlc_setup(zonelist, alloc_flags);
2546 zlc_active = 1;
2547 did_zlc_setup = 1;
2548 }
2549
957f822a 2550 if (zone_reclaim_mode == 0 ||
a9263751 2551 !zone_allows_reclaim(ac->preferred_zone, zone))
fa5e084e
MG
2552 goto this_zone_full;
2553
cd38b115
MG
2554 /*
2555 * As we may have just activated ZLC, check if the first
2556 * eligible zone has failed zone_reclaim recently.
2557 */
e5adfffc 2558 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2559 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2560 continue;
2561
fa5e084e
MG
2562 ret = zone_reclaim(zone, gfp_mask, order);
2563 switch (ret) {
2564 case ZONE_RECLAIM_NOSCAN:
2565 /* did not scan */
cd38b115 2566 continue;
fa5e084e
MG
2567 case ZONE_RECLAIM_FULL:
2568 /* scanned but unreclaimable */
cd38b115 2569 continue;
fa5e084e
MG
2570 default:
2571 /* did we reclaim enough */
fed2719e 2572 if (zone_watermark_ok(zone, order, mark,
a9263751 2573 ac->classzone_idx, alloc_flags))
fed2719e
MG
2574 goto try_this_zone;
2575
2576 /*
2577 * Failed to reclaim enough to meet watermark.
2578 * Only mark the zone full if checking the min
2579 * watermark or if we failed to reclaim just
2580 * 1<<order pages or else the page allocator
2581 * fastpath will prematurely mark zones full
2582 * when the watermark is between the low and
2583 * min watermarks.
2584 */
2585 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2586 ret == ZONE_RECLAIM_SOME)
9276b1bc 2587 goto this_zone_full;
fed2719e
MG
2588
2589 continue;
0798e519 2590 }
7fb1d9fc
RS
2591 }
2592
fa5e084e 2593try_this_zone:
a9263751
VB
2594 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2595 gfp_mask, ac->migratetype);
75379191
VB
2596 if (page) {
2597 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2598 goto try_this_zone;
2599 return page;
2600 }
9276b1bc 2601this_zone_full:
65bb3719 2602 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2603 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2604 }
9276b1bc 2605
4ffeaf35
MG
2606 /*
2607 * The first pass makes sure allocations are spread fairly within the
2608 * local node. However, the local node might have free pages left
2609 * after the fairness batches are exhausted, and remote zones haven't
2610 * even been considered yet. Try once more without fairness, and
2611 * include remote zones now, before entering the slowpath and waking
2612 * kswapd: prefer spilling to a remote zone over swapping locally.
2613 */
2614 if (alloc_flags & ALLOC_FAIR) {
2615 alloc_flags &= ~ALLOC_FAIR;
2616 if (nr_fair_skipped) {
2617 zonelist_rescan = true;
a9263751 2618 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2619 }
2620 if (nr_online_nodes > 1)
2621 zonelist_rescan = true;
2622 }
2623
2624 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2625 /* Disable zlc cache for second zonelist scan */
2626 zlc_active = 0;
2627 zonelist_rescan = true;
2628 }
2629
2630 if (zonelist_rescan)
2631 goto zonelist_scan;
2632
2633 return NULL;
753ee728
MH
2634}
2635
29423e77
DR
2636/*
2637 * Large machines with many possible nodes should not always dump per-node
2638 * meminfo in irq context.
2639 */
2640static inline bool should_suppress_show_mem(void)
2641{
2642 bool ret = false;
2643
2644#if NODES_SHIFT > 8
2645 ret = in_interrupt();
2646#endif
2647 return ret;
2648}
2649
a238ab5b
DH
2650static DEFINE_RATELIMIT_STATE(nopage_rs,
2651 DEFAULT_RATELIMIT_INTERVAL,
2652 DEFAULT_RATELIMIT_BURST);
2653
2654void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2655{
a238ab5b
DH
2656 unsigned int filter = SHOW_MEM_FILTER_NODES;
2657
c0a32fc5
SG
2658 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2659 debug_guardpage_minorder() > 0)
a238ab5b
DH
2660 return;
2661
2662 /*
2663 * This documents exceptions given to allocations in certain
2664 * contexts that are allowed to allocate outside current's set
2665 * of allowed nodes.
2666 */
2667 if (!(gfp_mask & __GFP_NOMEMALLOC))
2668 if (test_thread_flag(TIF_MEMDIE) ||
2669 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2670 filter &= ~SHOW_MEM_FILTER_NODES;
2671 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2672 filter &= ~SHOW_MEM_FILTER_NODES;
2673
2674 if (fmt) {
3ee9a4f0
JP
2675 struct va_format vaf;
2676 va_list args;
2677
a238ab5b 2678 va_start(args, fmt);
3ee9a4f0
JP
2679
2680 vaf.fmt = fmt;
2681 vaf.va = &args;
2682
2683 pr_warn("%pV", &vaf);
2684
a238ab5b
DH
2685 va_end(args);
2686 }
2687
3ee9a4f0
JP
2688 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2689 current->comm, order, gfp_mask);
a238ab5b
DH
2690
2691 dump_stack();
2692 if (!should_suppress_show_mem())
2693 show_mem(filter);
2694}
2695
11e33f6a
MG
2696static inline struct page *
2697__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2698 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2699{
6e0fc46d
DR
2700 struct oom_control oc = {
2701 .zonelist = ac->zonelist,
2702 .nodemask = ac->nodemask,
2703 .gfp_mask = gfp_mask,
2704 .order = order,
6e0fc46d 2705 };
11e33f6a
MG
2706 struct page *page;
2707
9879de73
JW
2708 *did_some_progress = 0;
2709
9879de73 2710 /*
dc56401f
JW
2711 * Acquire the oom lock. If that fails, somebody else is
2712 * making progress for us.
9879de73 2713 */
dc56401f 2714 if (!mutex_trylock(&oom_lock)) {
9879de73 2715 *did_some_progress = 1;
11e33f6a 2716 schedule_timeout_uninterruptible(1);
1da177e4
LT
2717 return NULL;
2718 }
6b1de916 2719
11e33f6a
MG
2720 /*
2721 * Go through the zonelist yet one more time, keep very high watermark
2722 * here, this is only to catch a parallel oom killing, we must fail if
2723 * we're still under heavy pressure.
2724 */
a9263751
VB
2725 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2726 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2727 if (page)
11e33f6a
MG
2728 goto out;
2729
4365a567 2730 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2731 /* Coredumps can quickly deplete all memory reserves */
2732 if (current->flags & PF_DUMPCORE)
2733 goto out;
4365a567
KH
2734 /* The OOM killer will not help higher order allocs */
2735 if (order > PAGE_ALLOC_COSTLY_ORDER)
2736 goto out;
03668b3c 2737 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2738 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2739 goto out;
9083905a 2740 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2741 if (!(gfp_mask & __GFP_FS)) {
2742 /*
2743 * XXX: Page reclaim didn't yield anything,
2744 * and the OOM killer can't be invoked, but
9083905a 2745 * keep looping as per tradition.
cc873177
JW
2746 */
2747 *did_some_progress = 1;
9879de73 2748 goto out;
cc873177 2749 }
9083905a
JW
2750 if (pm_suspended_storage())
2751 goto out;
4167e9b2 2752 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2753 if (gfp_mask & __GFP_THISNODE)
2754 goto out;
2755 }
11e33f6a 2756 /* Exhausted what can be done so it's blamo time */
6e0fc46d 2757 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
c32b3cbe 2758 *did_some_progress = 1;
11e33f6a 2759out:
dc56401f 2760 mutex_unlock(&oom_lock);
11e33f6a
MG
2761 return page;
2762}
2763
56de7263
MG
2764#ifdef CONFIG_COMPACTION
2765/* Try memory compaction for high-order allocations before reclaim */
2766static struct page *
2767__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2768 int alloc_flags, const struct alloc_context *ac,
2769 enum migrate_mode mode, int *contended_compaction,
2770 bool *deferred_compaction)
56de7263 2771{
53853e2d 2772 unsigned long compact_result;
98dd3b48 2773 struct page *page;
53853e2d
VB
2774
2775 if (!order)
66199712 2776 return NULL;
66199712 2777
c06b1fca 2778 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2779 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2780 mode, contended_compaction);
c06b1fca 2781 current->flags &= ~PF_MEMALLOC;
56de7263 2782
98dd3b48
VB
2783 switch (compact_result) {
2784 case COMPACT_DEFERRED:
53853e2d 2785 *deferred_compaction = true;
98dd3b48
VB
2786 /* fall-through */
2787 case COMPACT_SKIPPED:
2788 return NULL;
2789 default:
2790 break;
2791 }
53853e2d 2792
98dd3b48
VB
2793 /*
2794 * At least in one zone compaction wasn't deferred or skipped, so let's
2795 * count a compaction stall
2796 */
2797 count_vm_event(COMPACTSTALL);
8fb74b9f 2798
a9263751
VB
2799 page = get_page_from_freelist(gfp_mask, order,
2800 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2801
98dd3b48
VB
2802 if (page) {
2803 struct zone *zone = page_zone(page);
53853e2d 2804
98dd3b48
VB
2805 zone->compact_blockskip_flush = false;
2806 compaction_defer_reset(zone, order, true);
2807 count_vm_event(COMPACTSUCCESS);
2808 return page;
2809 }
56de7263 2810
98dd3b48
VB
2811 /*
2812 * It's bad if compaction run occurs and fails. The most likely reason
2813 * is that pages exist, but not enough to satisfy watermarks.
2814 */
2815 count_vm_event(COMPACTFAIL);
66199712 2816
98dd3b48 2817 cond_resched();
56de7263
MG
2818
2819 return NULL;
2820}
2821#else
2822static inline struct page *
2823__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2824 int alloc_flags, const struct alloc_context *ac,
2825 enum migrate_mode mode, int *contended_compaction,
2826 bool *deferred_compaction)
56de7263
MG
2827{
2828 return NULL;
2829}
2830#endif /* CONFIG_COMPACTION */
2831
bba90710
MS
2832/* Perform direct synchronous page reclaim */
2833static int
a9263751
VB
2834__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2835 const struct alloc_context *ac)
11e33f6a 2836{
11e33f6a 2837 struct reclaim_state reclaim_state;
bba90710 2838 int progress;
11e33f6a
MG
2839
2840 cond_resched();
2841
2842 /* We now go into synchronous reclaim */
2843 cpuset_memory_pressure_bump();
c06b1fca 2844 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2845 lockdep_set_current_reclaim_state(gfp_mask);
2846 reclaim_state.reclaimed_slab = 0;
c06b1fca 2847 current->reclaim_state = &reclaim_state;
11e33f6a 2848
a9263751
VB
2849 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2850 ac->nodemask);
11e33f6a 2851
c06b1fca 2852 current->reclaim_state = NULL;
11e33f6a 2853 lockdep_clear_current_reclaim_state();
c06b1fca 2854 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2855
2856 cond_resched();
2857
bba90710
MS
2858 return progress;
2859}
2860
2861/* The really slow allocator path where we enter direct reclaim */
2862static inline struct page *
2863__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2864 int alloc_flags, const struct alloc_context *ac,
2865 unsigned long *did_some_progress)
bba90710
MS
2866{
2867 struct page *page = NULL;
2868 bool drained = false;
2869
a9263751 2870 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2871 if (unlikely(!(*did_some_progress)))
2872 return NULL;
11e33f6a 2873
76d3fbf8 2874 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2875 if (IS_ENABLED(CONFIG_NUMA))
a9263751 2876 zlc_clear_zones_full(ac->zonelist);
76d3fbf8 2877
9ee493ce 2878retry:
a9263751
VB
2879 page = get_page_from_freelist(gfp_mask, order,
2880 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2881
2882 /*
2883 * If an allocation failed after direct reclaim, it could be because
2884 * pages are pinned on the per-cpu lists. Drain them and try again
2885 */
2886 if (!page && !drained) {
93481ff0 2887 drain_all_pages(NULL);
9ee493ce
MG
2888 drained = true;
2889 goto retry;
2890 }
2891
11e33f6a
MG
2892 return page;
2893}
2894
1da177e4 2895/*
11e33f6a
MG
2896 * This is called in the allocator slow-path if the allocation request is of
2897 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2898 */
11e33f6a
MG
2899static inline struct page *
2900__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2901 const struct alloc_context *ac)
11e33f6a
MG
2902{
2903 struct page *page;
2904
2905 do {
a9263751
VB
2906 page = get_page_from_freelist(gfp_mask, order,
2907 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2908
2909 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2910 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2911 HZ/50);
11e33f6a
MG
2912 } while (!page && (gfp_mask & __GFP_NOFAIL));
2913
2914 return page;
2915}
2916
a9263751 2917static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2918{
2919 struct zoneref *z;
2920 struct zone *zone;
2921
a9263751
VB
2922 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2923 ac->high_zoneidx, ac->nodemask)
2924 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2925}
2926
341ce06f
PZ
2927static inline int
2928gfp_to_alloc_flags(gfp_t gfp_mask)
2929{
341ce06f 2930 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2931 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2932
a56f57ff 2933 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2934 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2935
341ce06f
PZ
2936 /*
2937 * The caller may dip into page reserves a bit more if the caller
2938 * cannot run direct reclaim, or if the caller has realtime scheduling
2939 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2940 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2941 */
e6223a3b 2942 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2943
b104a35d 2944 if (atomic) {
5c3240d9 2945 /*
b104a35d
DR
2946 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2947 * if it can't schedule.
5c3240d9 2948 */
b104a35d 2949 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2950 alloc_flags |= ALLOC_HARDER;
523b9458 2951 /*
b104a35d 2952 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2953 * comment for __cpuset_node_allowed().
523b9458 2954 */
341ce06f 2955 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2956 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2957 alloc_flags |= ALLOC_HARDER;
2958
b37f1dd0
MG
2959 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2960 if (gfp_mask & __GFP_MEMALLOC)
2961 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2962 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2963 alloc_flags |= ALLOC_NO_WATERMARKS;
2964 else if (!in_interrupt() &&
2965 ((current->flags & PF_MEMALLOC) ||
2966 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2967 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2968 }
d95ea5d1 2969#ifdef CONFIG_CMA
43e7a34d 2970 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2971 alloc_flags |= ALLOC_CMA;
2972#endif
341ce06f
PZ
2973 return alloc_flags;
2974}
2975
072bb0aa
MG
2976bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2977{
b37f1dd0 2978 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2979}
2980
11e33f6a
MG
2981static inline struct page *
2982__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2983 struct alloc_context *ac)
11e33f6a
MG
2984{
2985 const gfp_t wait = gfp_mask & __GFP_WAIT;
2986 struct page *page = NULL;
2987 int alloc_flags;
2988 unsigned long pages_reclaimed = 0;
2989 unsigned long did_some_progress;
e0b9daeb 2990 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2991 bool deferred_compaction = false;
1f9efdef 2992 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2993
72807a74
MG
2994 /*
2995 * In the slowpath, we sanity check order to avoid ever trying to
2996 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2997 * be using allocators in order of preference for an area that is
2998 * too large.
2999 */
1fc28b70
MG
3000 if (order >= MAX_ORDER) {
3001 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3002 return NULL;
1fc28b70 3003 }
1da177e4 3004
952f3b51 3005 /*
4167e9b2
DR
3006 * If this allocation cannot block and it is for a specific node, then
3007 * fail early. There's no need to wakeup kswapd or retry for a
3008 * speculative node-specific allocation.
952f3b51 3009 */
4167e9b2 3010 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
952f3b51
CL
3011 goto nopage;
3012
9879de73 3013retry:
3a025760 3014 if (!(gfp_mask & __GFP_NO_KSWAPD))
a9263751 3015 wake_all_kswapds(order, ac);
1da177e4 3016
9bf2229f 3017 /*
7fb1d9fc
RS
3018 * OK, we're below the kswapd watermark and have kicked background
3019 * reclaim. Now things get more complex, so set up alloc_flags according
3020 * to how we want to proceed.
9bf2229f 3021 */
341ce06f 3022 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3023
f33261d7
DR
3024 /*
3025 * Find the true preferred zone if the allocation is unconstrained by
3026 * cpusets.
3027 */
a9263751 3028 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3029 struct zoneref *preferred_zoneref;
a9263751
VB
3030 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3031 ac->high_zoneidx, NULL, &ac->preferred_zone);
3032 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3033 }
f33261d7 3034
341ce06f 3035 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3036 page = get_page_from_freelist(gfp_mask, order,
3037 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3038 if (page)
3039 goto got_pg;
1da177e4 3040
11e33f6a 3041 /* Allocate without watermarks if the context allows */
341ce06f 3042 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3043 /*
3044 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3045 * the allocation is high priority and these type of
3046 * allocations are system rather than user orientated
3047 */
a9263751
VB
3048 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3049
3050 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 3051
cfd19c5a 3052 if (page) {
341ce06f 3053 goto got_pg;
cfd19c5a 3054 }
1da177e4
LT
3055 }
3056
3057 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
3058 if (!wait) {
3059 /*
3060 * All existing users of the deprecated __GFP_NOFAIL are
3061 * blockable, so warn of any new users that actually allow this
3062 * type of allocation to fail.
3063 */
3064 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3065 goto nopage;
aed0a0e3 3066 }
1da177e4 3067
341ce06f 3068 /* Avoid recursion of direct reclaim */
c06b1fca 3069 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
3070 goto nopage;
3071
6583bb64
DR
3072 /* Avoid allocations with no watermarks from looping endlessly */
3073 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3074 goto nopage;
3075
77f1fe6b
MG
3076 /*
3077 * Try direct compaction. The first pass is asynchronous. Subsequent
3078 * attempts after direct reclaim are synchronous
3079 */
a9263751
VB
3080 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3081 migration_mode,
3082 &contended_compaction,
53853e2d 3083 &deferred_compaction);
56de7263
MG
3084 if (page)
3085 goto got_pg;
75f30861 3086
1f9efdef
VB
3087 /* Checks for THP-specific high-order allocations */
3088 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
3089 /*
3090 * If compaction is deferred for high-order allocations, it is
3091 * because sync compaction recently failed. If this is the case
3092 * and the caller requested a THP allocation, we do not want
3093 * to heavily disrupt the system, so we fail the allocation
3094 * instead of entering direct reclaim.
3095 */
3096 if (deferred_compaction)
3097 goto nopage;
3098
3099 /*
3100 * In all zones where compaction was attempted (and not
3101 * deferred or skipped), lock contention has been detected.
3102 * For THP allocation we do not want to disrupt the others
3103 * so we fallback to base pages instead.
3104 */
3105 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3106 goto nopage;
3107
3108 /*
3109 * If compaction was aborted due to need_resched(), we do not
3110 * want to further increase allocation latency, unless it is
3111 * khugepaged trying to collapse.
3112 */
3113 if (contended_compaction == COMPACT_CONTENDED_SCHED
3114 && !(current->flags & PF_KTHREAD))
3115 goto nopage;
3116 }
66199712 3117
8fe78048
DR
3118 /*
3119 * It can become very expensive to allocate transparent hugepages at
3120 * fault, so use asynchronous memory compaction for THP unless it is
3121 * khugepaged trying to collapse.
3122 */
3123 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
3124 (current->flags & PF_KTHREAD))
3125 migration_mode = MIGRATE_SYNC_LIGHT;
3126
11e33f6a 3127 /* Try direct reclaim and then allocating */
a9263751
VB
3128 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3129 &did_some_progress);
11e33f6a
MG
3130 if (page)
3131 goto got_pg;
1da177e4 3132
9083905a
JW
3133 /* Do not loop if specifically requested */
3134 if (gfp_mask & __GFP_NORETRY)
3135 goto noretry;
3136
3137 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3138 pages_reclaimed += did_some_progress;
9083905a
JW
3139 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3140 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3141 /* Wait for some write requests to complete then retry */
a9263751 3142 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3143 goto retry;
1da177e4
LT
3144 }
3145
9083905a
JW
3146 /* Reclaim has failed us, start killing things */
3147 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3148 if (page)
3149 goto got_pg;
3150
3151 /* Retry as long as the OOM killer is making progress */
3152 if (did_some_progress)
3153 goto retry;
3154
3155noretry:
3156 /*
3157 * High-order allocations do not necessarily loop after
3158 * direct reclaim and reclaim/compaction depends on compaction
3159 * being called after reclaim so call directly if necessary
3160 */
3161 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3162 ac, migration_mode,
3163 &contended_compaction,
3164 &deferred_compaction);
3165 if (page)
3166 goto got_pg;
1da177e4 3167nopage:
a238ab5b 3168 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3169got_pg:
072bb0aa 3170 return page;
1da177e4 3171}
11e33f6a
MG
3172
3173/*
3174 * This is the 'heart' of the zoned buddy allocator.
3175 */
3176struct page *
3177__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3178 struct zonelist *zonelist, nodemask_t *nodemask)
3179{
d8846374 3180 struct zoneref *preferred_zoneref;
cc9a6c87 3181 struct page *page = NULL;
cc9a6c87 3182 unsigned int cpuset_mems_cookie;
3a025760 3183 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3184 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3185 struct alloc_context ac = {
3186 .high_zoneidx = gfp_zone(gfp_mask),
3187 .nodemask = nodemask,
3188 .migratetype = gfpflags_to_migratetype(gfp_mask),
3189 };
11e33f6a 3190
dcce284a
BH
3191 gfp_mask &= gfp_allowed_mask;
3192
11e33f6a
MG
3193 lockdep_trace_alloc(gfp_mask);
3194
3195 might_sleep_if(gfp_mask & __GFP_WAIT);
3196
3197 if (should_fail_alloc_page(gfp_mask, order))
3198 return NULL;
3199
3200 /*
3201 * Check the zones suitable for the gfp_mask contain at least one
3202 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3203 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3204 */
3205 if (unlikely(!zonelist->_zonerefs->zone))
3206 return NULL;
3207
a9263751 3208 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3209 alloc_flags |= ALLOC_CMA;
3210
cc9a6c87 3211retry_cpuset:
d26914d1 3212 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3213
a9263751
VB
3214 /* We set it here, as __alloc_pages_slowpath might have changed it */
3215 ac.zonelist = zonelist;
5117f45d 3216 /* The preferred zone is used for statistics later */
a9263751
VB
3217 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3218 ac.nodemask ? : &cpuset_current_mems_allowed,
3219 &ac.preferred_zone);
3220 if (!ac.preferred_zone)
cc9a6c87 3221 goto out;
a9263751 3222 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3223
3224 /* First allocation attempt */
91fbdc0f 3225 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3226 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3227 if (unlikely(!page)) {
3228 /*
3229 * Runtime PM, block IO and its error handling path
3230 * can deadlock because I/O on the device might not
3231 * complete.
3232 */
91fbdc0f
AM
3233 alloc_mask = memalloc_noio_flags(gfp_mask);
3234
a9263751 3235 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3236 }
11e33f6a 3237
23f086f9
XQ
3238 if (kmemcheck_enabled && page)
3239 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3240
a9263751 3241 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3242
3243out:
3244 /*
3245 * When updating a task's mems_allowed, it is possible to race with
3246 * parallel threads in such a way that an allocation can fail while
3247 * the mask is being updated. If a page allocation is about to fail,
3248 * check if the cpuset changed during allocation and if so, retry.
3249 */
d26914d1 3250 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3251 goto retry_cpuset;
3252
11e33f6a 3253 return page;
1da177e4 3254}
d239171e 3255EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3256
3257/*
3258 * Common helper functions.
3259 */
920c7a5d 3260unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3261{
945a1113
AM
3262 struct page *page;
3263
3264 /*
3265 * __get_free_pages() returns a 32-bit address, which cannot represent
3266 * a highmem page
3267 */
3268 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3269
1da177e4
LT
3270 page = alloc_pages(gfp_mask, order);
3271 if (!page)
3272 return 0;
3273 return (unsigned long) page_address(page);
3274}
1da177e4
LT
3275EXPORT_SYMBOL(__get_free_pages);
3276
920c7a5d 3277unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3278{
945a1113 3279 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3280}
1da177e4
LT
3281EXPORT_SYMBOL(get_zeroed_page);
3282
920c7a5d 3283void __free_pages(struct page *page, unsigned int order)
1da177e4 3284{
b5810039 3285 if (put_page_testzero(page)) {
1da177e4 3286 if (order == 0)
b745bc85 3287 free_hot_cold_page(page, false);
1da177e4
LT
3288 else
3289 __free_pages_ok(page, order);
3290 }
3291}
3292
3293EXPORT_SYMBOL(__free_pages);
3294
920c7a5d 3295void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3296{
3297 if (addr != 0) {
725d704e 3298 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3299 __free_pages(virt_to_page((void *)addr), order);
3300 }
3301}
3302
3303EXPORT_SYMBOL(free_pages);
3304
b63ae8ca
AD
3305/*
3306 * Page Fragment:
3307 * An arbitrary-length arbitrary-offset area of memory which resides
3308 * within a 0 or higher order page. Multiple fragments within that page
3309 * are individually refcounted, in the page's reference counter.
3310 *
3311 * The page_frag functions below provide a simple allocation framework for
3312 * page fragments. This is used by the network stack and network device
3313 * drivers to provide a backing region of memory for use as either an
3314 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3315 */
3316static struct page *__page_frag_refill(struct page_frag_cache *nc,
3317 gfp_t gfp_mask)
3318{
3319 struct page *page = NULL;
3320 gfp_t gfp = gfp_mask;
3321
3322#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3323 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3324 __GFP_NOMEMALLOC;
3325 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3326 PAGE_FRAG_CACHE_MAX_ORDER);
3327 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3328#endif
3329 if (unlikely(!page))
3330 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3331
3332 nc->va = page ? page_address(page) : NULL;
3333
3334 return page;
3335}
3336
3337void *__alloc_page_frag(struct page_frag_cache *nc,
3338 unsigned int fragsz, gfp_t gfp_mask)
3339{
3340 unsigned int size = PAGE_SIZE;
3341 struct page *page;
3342 int offset;
3343
3344 if (unlikely(!nc->va)) {
3345refill:
3346 page = __page_frag_refill(nc, gfp_mask);
3347 if (!page)
3348 return NULL;
3349
3350#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3351 /* if size can vary use size else just use PAGE_SIZE */
3352 size = nc->size;
3353#endif
3354 /* Even if we own the page, we do not use atomic_set().
3355 * This would break get_page_unless_zero() users.
3356 */
3357 atomic_add(size - 1, &page->_count);
3358
3359 /* reset page count bias and offset to start of new frag */
2f064f34 3360 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3361 nc->pagecnt_bias = size;
3362 nc->offset = size;
3363 }
3364
3365 offset = nc->offset - fragsz;
3366 if (unlikely(offset < 0)) {
3367 page = virt_to_page(nc->va);
3368
3369 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3370 goto refill;
3371
3372#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3373 /* if size can vary use size else just use PAGE_SIZE */
3374 size = nc->size;
3375#endif
3376 /* OK, page count is 0, we can safely set it */
3377 atomic_set(&page->_count, size);
3378
3379 /* reset page count bias and offset to start of new frag */
3380 nc->pagecnt_bias = size;
3381 offset = size - fragsz;
3382 }
3383
3384 nc->pagecnt_bias--;
3385 nc->offset = offset;
3386
3387 return nc->va + offset;
3388}
3389EXPORT_SYMBOL(__alloc_page_frag);
3390
3391/*
3392 * Frees a page fragment allocated out of either a compound or order 0 page.
3393 */
3394void __free_page_frag(void *addr)
3395{
3396 struct page *page = virt_to_head_page(addr);
3397
3398 if (unlikely(put_page_testzero(page)))
3399 __free_pages_ok(page, compound_order(page));
3400}
3401EXPORT_SYMBOL(__free_page_frag);
3402
6a1a0d3b 3403/*
52383431
VD
3404 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3405 * of the current memory cgroup.
6a1a0d3b 3406 *
52383431
VD
3407 * It should be used when the caller would like to use kmalloc, but since the
3408 * allocation is large, it has to fall back to the page allocator.
3409 */
3410struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3411{
3412 struct page *page;
3413 struct mem_cgroup *memcg = NULL;
3414
3415 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3416 return NULL;
3417 page = alloc_pages(gfp_mask, order);
3418 memcg_kmem_commit_charge(page, memcg, order);
3419 return page;
3420}
3421
3422struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3423{
3424 struct page *page;
3425 struct mem_cgroup *memcg = NULL;
3426
3427 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3428 return NULL;
3429 page = alloc_pages_node(nid, gfp_mask, order);
3430 memcg_kmem_commit_charge(page, memcg, order);
3431 return page;
3432}
3433
3434/*
3435 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3436 * alloc_kmem_pages.
6a1a0d3b 3437 */
52383431 3438void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
3439{
3440 memcg_kmem_uncharge_pages(page, order);
3441 __free_pages(page, order);
3442}
3443
52383431 3444void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3445{
3446 if (addr != 0) {
3447 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3448 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3449 }
3450}
3451
ee85c2e1
AK
3452static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3453{
3454 if (addr) {
3455 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3456 unsigned long used = addr + PAGE_ALIGN(size);
3457
3458 split_page(virt_to_page((void *)addr), order);
3459 while (used < alloc_end) {
3460 free_page(used);
3461 used += PAGE_SIZE;
3462 }
3463 }
3464 return (void *)addr;
3465}
3466
2be0ffe2
TT
3467/**
3468 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3469 * @size: the number of bytes to allocate
3470 * @gfp_mask: GFP flags for the allocation
3471 *
3472 * This function is similar to alloc_pages(), except that it allocates the
3473 * minimum number of pages to satisfy the request. alloc_pages() can only
3474 * allocate memory in power-of-two pages.
3475 *
3476 * This function is also limited by MAX_ORDER.
3477 *
3478 * Memory allocated by this function must be released by free_pages_exact().
3479 */
3480void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3481{
3482 unsigned int order = get_order(size);
3483 unsigned long addr;
3484
3485 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3486 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3487}
3488EXPORT_SYMBOL(alloc_pages_exact);
3489
ee85c2e1
AK
3490/**
3491 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3492 * pages on a node.
b5e6ab58 3493 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3494 * @size: the number of bytes to allocate
3495 * @gfp_mask: GFP flags for the allocation
3496 *
3497 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3498 * back.
3499 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3500 * but is not exact.
3501 */
e1931811 3502void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3503{
3504 unsigned order = get_order(size);
3505 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3506 if (!p)
3507 return NULL;
3508 return make_alloc_exact((unsigned long)page_address(p), order, size);
3509}
ee85c2e1 3510
2be0ffe2
TT
3511/**
3512 * free_pages_exact - release memory allocated via alloc_pages_exact()
3513 * @virt: the value returned by alloc_pages_exact.
3514 * @size: size of allocation, same value as passed to alloc_pages_exact().
3515 *
3516 * Release the memory allocated by a previous call to alloc_pages_exact.
3517 */
3518void free_pages_exact(void *virt, size_t size)
3519{
3520 unsigned long addr = (unsigned long)virt;
3521 unsigned long end = addr + PAGE_ALIGN(size);
3522
3523 while (addr < end) {
3524 free_page(addr);
3525 addr += PAGE_SIZE;
3526 }
3527}
3528EXPORT_SYMBOL(free_pages_exact);
3529
e0fb5815
ZY
3530/**
3531 * nr_free_zone_pages - count number of pages beyond high watermark
3532 * @offset: The zone index of the highest zone
3533 *
3534 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3535 * high watermark within all zones at or below a given zone index. For each
3536 * zone, the number of pages is calculated as:
834405c3 3537 * managed_pages - high_pages
e0fb5815 3538 */
ebec3862 3539static unsigned long nr_free_zone_pages(int offset)
1da177e4 3540{
dd1a239f 3541 struct zoneref *z;
54a6eb5c
MG
3542 struct zone *zone;
3543
e310fd43 3544 /* Just pick one node, since fallback list is circular */
ebec3862 3545 unsigned long sum = 0;
1da177e4 3546
0e88460d 3547 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3548
54a6eb5c 3549 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3550 unsigned long size = zone->managed_pages;
41858966 3551 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3552 if (size > high)
3553 sum += size - high;
1da177e4
LT
3554 }
3555
3556 return sum;
3557}
3558
e0fb5815
ZY
3559/**
3560 * nr_free_buffer_pages - count number of pages beyond high watermark
3561 *
3562 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3563 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3564 */
ebec3862 3565unsigned long nr_free_buffer_pages(void)
1da177e4 3566{
af4ca457 3567 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3568}
c2f1a551 3569EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3570
e0fb5815
ZY
3571/**
3572 * nr_free_pagecache_pages - count number of pages beyond high watermark
3573 *
3574 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3575 * high watermark within all zones.
1da177e4 3576 */
ebec3862 3577unsigned long nr_free_pagecache_pages(void)
1da177e4 3578{
2a1e274a 3579 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3580}
08e0f6a9
CL
3581
3582static inline void show_node(struct zone *zone)
1da177e4 3583{
e5adfffc 3584 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3585 printk("Node %d ", zone_to_nid(zone));
1da177e4 3586}
1da177e4 3587
1da177e4
LT
3588void si_meminfo(struct sysinfo *val)
3589{
3590 val->totalram = totalram_pages;
cc7452b6 3591 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3592 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3593 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3594 val->totalhigh = totalhigh_pages;
3595 val->freehigh = nr_free_highpages();
1da177e4
LT
3596 val->mem_unit = PAGE_SIZE;
3597}
3598
3599EXPORT_SYMBOL(si_meminfo);
3600
3601#ifdef CONFIG_NUMA
3602void si_meminfo_node(struct sysinfo *val, int nid)
3603{
cdd91a77
JL
3604 int zone_type; /* needs to be signed */
3605 unsigned long managed_pages = 0;
1da177e4
LT
3606 pg_data_t *pgdat = NODE_DATA(nid);
3607
cdd91a77
JL
3608 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3609 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3610 val->totalram = managed_pages;
cc7452b6 3611 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3612 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3613#ifdef CONFIG_HIGHMEM
b40da049 3614 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3615 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3616 NR_FREE_PAGES);
98d2b0eb
CL
3617#else
3618 val->totalhigh = 0;
3619 val->freehigh = 0;
3620#endif
1da177e4
LT
3621 val->mem_unit = PAGE_SIZE;
3622}
3623#endif
3624
ddd588b5 3625/*
7bf02ea2
DR
3626 * Determine whether the node should be displayed or not, depending on whether
3627 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3628 */
7bf02ea2 3629bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3630{
3631 bool ret = false;
cc9a6c87 3632 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3633
3634 if (!(flags & SHOW_MEM_FILTER_NODES))
3635 goto out;
3636
cc9a6c87 3637 do {
d26914d1 3638 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3639 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3640 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3641out:
3642 return ret;
3643}
3644
1da177e4
LT
3645#define K(x) ((x) << (PAGE_SHIFT-10))
3646
377e4f16
RV
3647static void show_migration_types(unsigned char type)
3648{
3649 static const char types[MIGRATE_TYPES] = {
3650 [MIGRATE_UNMOVABLE] = 'U',
3651 [MIGRATE_RECLAIMABLE] = 'E',
3652 [MIGRATE_MOVABLE] = 'M',
3653 [MIGRATE_RESERVE] = 'R',
3654#ifdef CONFIG_CMA
3655 [MIGRATE_CMA] = 'C',
3656#endif
194159fb 3657#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3658 [MIGRATE_ISOLATE] = 'I',
194159fb 3659#endif
377e4f16
RV
3660 };
3661 char tmp[MIGRATE_TYPES + 1];
3662 char *p = tmp;
3663 int i;
3664
3665 for (i = 0; i < MIGRATE_TYPES; i++) {
3666 if (type & (1 << i))
3667 *p++ = types[i];
3668 }
3669
3670 *p = '\0';
3671 printk("(%s) ", tmp);
3672}
3673
1da177e4
LT
3674/*
3675 * Show free area list (used inside shift_scroll-lock stuff)
3676 * We also calculate the percentage fragmentation. We do this by counting the
3677 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3678 *
3679 * Bits in @filter:
3680 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3681 * cpuset.
1da177e4 3682 */
7bf02ea2 3683void show_free_areas(unsigned int filter)
1da177e4 3684{
d1bfcdb8 3685 unsigned long free_pcp = 0;
c7241913 3686 int cpu;
1da177e4
LT
3687 struct zone *zone;
3688
ee99c71c 3689 for_each_populated_zone(zone) {
7bf02ea2 3690 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3691 continue;
d1bfcdb8 3692
761b0677
KK
3693 for_each_online_cpu(cpu)
3694 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3695 }
3696
a731286d
KM
3697 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3698 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3699 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3700 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3701 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3702 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3703 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3704 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3705 global_page_state(NR_ISOLATED_ANON),
3706 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3707 global_page_state(NR_INACTIVE_FILE),
a731286d 3708 global_page_state(NR_ISOLATED_FILE),
7b854121 3709 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3710 global_page_state(NR_FILE_DIRTY),
ce866b34 3711 global_page_state(NR_WRITEBACK),
fd39fc85 3712 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3713 global_page_state(NR_SLAB_RECLAIMABLE),
3714 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3715 global_page_state(NR_FILE_MAPPED),
4b02108a 3716 global_page_state(NR_SHMEM),
a25700a5 3717 global_page_state(NR_PAGETABLE),
d1ce749a 3718 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3719 global_page_state(NR_FREE_PAGES),
3720 free_pcp,
d1ce749a 3721 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3722
ee99c71c 3723 for_each_populated_zone(zone) {
1da177e4
LT
3724 int i;
3725
7bf02ea2 3726 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3727 continue;
d1bfcdb8
KK
3728
3729 free_pcp = 0;
3730 for_each_online_cpu(cpu)
3731 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3732
1da177e4
LT
3733 show_node(zone);
3734 printk("%s"
3735 " free:%lukB"
3736 " min:%lukB"
3737 " low:%lukB"
3738 " high:%lukB"
4f98a2fe
RR
3739 " active_anon:%lukB"
3740 " inactive_anon:%lukB"
3741 " active_file:%lukB"
3742 " inactive_file:%lukB"
7b854121 3743 " unevictable:%lukB"
a731286d
KM
3744 " isolated(anon):%lukB"
3745 " isolated(file):%lukB"
1da177e4 3746 " present:%lukB"
9feedc9d 3747 " managed:%lukB"
4a0aa73f
KM
3748 " mlocked:%lukB"
3749 " dirty:%lukB"
3750 " writeback:%lukB"
3751 " mapped:%lukB"
4b02108a 3752 " shmem:%lukB"
4a0aa73f
KM
3753 " slab_reclaimable:%lukB"
3754 " slab_unreclaimable:%lukB"
c6a7f572 3755 " kernel_stack:%lukB"
4a0aa73f
KM
3756 " pagetables:%lukB"
3757 " unstable:%lukB"
3758 " bounce:%lukB"
d1bfcdb8
KK
3759 " free_pcp:%lukB"
3760 " local_pcp:%ukB"
d1ce749a 3761 " free_cma:%lukB"
4a0aa73f 3762 " writeback_tmp:%lukB"
1da177e4
LT
3763 " pages_scanned:%lu"
3764 " all_unreclaimable? %s"
3765 "\n",
3766 zone->name,
88f5acf8 3767 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3768 K(min_wmark_pages(zone)),
3769 K(low_wmark_pages(zone)),
3770 K(high_wmark_pages(zone)),
4f98a2fe
RR
3771 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3772 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3773 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3774 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3775 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3776 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3777 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3778 K(zone->present_pages),
9feedc9d 3779 K(zone->managed_pages),
4a0aa73f
KM
3780 K(zone_page_state(zone, NR_MLOCK)),
3781 K(zone_page_state(zone, NR_FILE_DIRTY)),
3782 K(zone_page_state(zone, NR_WRITEBACK)),
3783 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3784 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3785 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3786 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3787 zone_page_state(zone, NR_KERNEL_STACK) *
3788 THREAD_SIZE / 1024,
4a0aa73f
KM
3789 K(zone_page_state(zone, NR_PAGETABLE)),
3790 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3791 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3792 K(free_pcp),
3793 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3794 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3795 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3796 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3797 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3798 );
3799 printk("lowmem_reserve[]:");
3800 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3801 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3802 printk("\n");
3803 }
3804
ee99c71c 3805 for_each_populated_zone(zone) {
b8af2941 3806 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3807 unsigned char types[MAX_ORDER];
1da177e4 3808
7bf02ea2 3809 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3810 continue;
1da177e4
LT
3811 show_node(zone);
3812 printk("%s: ", zone->name);
1da177e4
LT
3813
3814 spin_lock_irqsave(&zone->lock, flags);
3815 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3816 struct free_area *area = &zone->free_area[order];
3817 int type;
3818
3819 nr[order] = area->nr_free;
8f9de51a 3820 total += nr[order] << order;
377e4f16
RV
3821
3822 types[order] = 0;
3823 for (type = 0; type < MIGRATE_TYPES; type++) {
3824 if (!list_empty(&area->free_list[type]))
3825 types[order] |= 1 << type;
3826 }
1da177e4
LT
3827 }
3828 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3829 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3830 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3831 if (nr[order])
3832 show_migration_types(types[order]);
3833 }
1da177e4
LT
3834 printk("= %lukB\n", K(total));
3835 }
3836
949f7ec5
DR
3837 hugetlb_show_meminfo();
3838
e6f3602d
LW
3839 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3840
1da177e4
LT
3841 show_swap_cache_info();
3842}
3843
19770b32
MG
3844static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3845{
3846 zoneref->zone = zone;
3847 zoneref->zone_idx = zone_idx(zone);
3848}
3849
1da177e4
LT
3850/*
3851 * Builds allocation fallback zone lists.
1a93205b
CL
3852 *
3853 * Add all populated zones of a node to the zonelist.
1da177e4 3854 */
f0c0b2b8 3855static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3856 int nr_zones)
1da177e4 3857{
1a93205b 3858 struct zone *zone;
bc732f1d 3859 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3860
3861 do {
2f6726e5 3862 zone_type--;
070f8032 3863 zone = pgdat->node_zones + zone_type;
1a93205b 3864 if (populated_zone(zone)) {
dd1a239f
MG
3865 zoneref_set_zone(zone,
3866 &zonelist->_zonerefs[nr_zones++]);
070f8032 3867 check_highest_zone(zone_type);
1da177e4 3868 }
2f6726e5 3869 } while (zone_type);
bc732f1d 3870
070f8032 3871 return nr_zones;
1da177e4
LT
3872}
3873
f0c0b2b8
KH
3874
3875/*
3876 * zonelist_order:
3877 * 0 = automatic detection of better ordering.
3878 * 1 = order by ([node] distance, -zonetype)
3879 * 2 = order by (-zonetype, [node] distance)
3880 *
3881 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3882 * the same zonelist. So only NUMA can configure this param.
3883 */
3884#define ZONELIST_ORDER_DEFAULT 0
3885#define ZONELIST_ORDER_NODE 1
3886#define ZONELIST_ORDER_ZONE 2
3887
3888/* zonelist order in the kernel.
3889 * set_zonelist_order() will set this to NODE or ZONE.
3890 */
3891static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3892static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3893
3894
1da177e4 3895#ifdef CONFIG_NUMA
f0c0b2b8
KH
3896/* The value user specified ....changed by config */
3897static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3898/* string for sysctl */
3899#define NUMA_ZONELIST_ORDER_LEN 16
3900char numa_zonelist_order[16] = "default";
3901
3902/*
3903 * interface for configure zonelist ordering.
3904 * command line option "numa_zonelist_order"
3905 * = "[dD]efault - default, automatic configuration.
3906 * = "[nN]ode - order by node locality, then by zone within node
3907 * = "[zZ]one - order by zone, then by locality within zone
3908 */
3909
3910static int __parse_numa_zonelist_order(char *s)
3911{
3912 if (*s == 'd' || *s == 'D') {
3913 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3914 } else if (*s == 'n' || *s == 'N') {
3915 user_zonelist_order = ZONELIST_ORDER_NODE;
3916 } else if (*s == 'z' || *s == 'Z') {
3917 user_zonelist_order = ZONELIST_ORDER_ZONE;
3918 } else {
3919 printk(KERN_WARNING
3920 "Ignoring invalid numa_zonelist_order value: "
3921 "%s\n", s);
3922 return -EINVAL;
3923 }
3924 return 0;
3925}
3926
3927static __init int setup_numa_zonelist_order(char *s)
3928{
ecb256f8
VL
3929 int ret;
3930
3931 if (!s)
3932 return 0;
3933
3934 ret = __parse_numa_zonelist_order(s);
3935 if (ret == 0)
3936 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3937
3938 return ret;
f0c0b2b8
KH
3939}
3940early_param("numa_zonelist_order", setup_numa_zonelist_order);
3941
3942/*
3943 * sysctl handler for numa_zonelist_order
3944 */
cccad5b9 3945int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3946 void __user *buffer, size_t *length,
f0c0b2b8
KH
3947 loff_t *ppos)
3948{
3949 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3950 int ret;
443c6f14 3951 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3952
443c6f14 3953 mutex_lock(&zl_order_mutex);
dacbde09
CG
3954 if (write) {
3955 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3956 ret = -EINVAL;
3957 goto out;
3958 }
3959 strcpy(saved_string, (char *)table->data);
3960 }
8d65af78 3961 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3962 if (ret)
443c6f14 3963 goto out;
f0c0b2b8
KH
3964 if (write) {
3965 int oldval = user_zonelist_order;
dacbde09
CG
3966
3967 ret = __parse_numa_zonelist_order((char *)table->data);
3968 if (ret) {
f0c0b2b8
KH
3969 /*
3970 * bogus value. restore saved string
3971 */
dacbde09 3972 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3973 NUMA_ZONELIST_ORDER_LEN);
3974 user_zonelist_order = oldval;
4eaf3f64
HL
3975 } else if (oldval != user_zonelist_order) {
3976 mutex_lock(&zonelists_mutex);
9adb62a5 3977 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3978 mutex_unlock(&zonelists_mutex);
3979 }
f0c0b2b8 3980 }
443c6f14
AK
3981out:
3982 mutex_unlock(&zl_order_mutex);
3983 return ret;
f0c0b2b8
KH
3984}
3985
3986
62bc62a8 3987#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3988static int node_load[MAX_NUMNODES];
3989
1da177e4 3990/**
4dc3b16b 3991 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3992 * @node: node whose fallback list we're appending
3993 * @used_node_mask: nodemask_t of already used nodes
3994 *
3995 * We use a number of factors to determine which is the next node that should
3996 * appear on a given node's fallback list. The node should not have appeared
3997 * already in @node's fallback list, and it should be the next closest node
3998 * according to the distance array (which contains arbitrary distance values
3999 * from each node to each node in the system), and should also prefer nodes
4000 * with no CPUs, since presumably they'll have very little allocation pressure
4001 * on them otherwise.
4002 * It returns -1 if no node is found.
4003 */
f0c0b2b8 4004static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4005{
4cf808eb 4006 int n, val;
1da177e4 4007 int min_val = INT_MAX;
00ef2d2f 4008 int best_node = NUMA_NO_NODE;
a70f7302 4009 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4010
4cf808eb
LT
4011 /* Use the local node if we haven't already */
4012 if (!node_isset(node, *used_node_mask)) {
4013 node_set(node, *used_node_mask);
4014 return node;
4015 }
1da177e4 4016
4b0ef1fe 4017 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4018
4019 /* Don't want a node to appear more than once */
4020 if (node_isset(n, *used_node_mask))
4021 continue;
4022
1da177e4
LT
4023 /* Use the distance array to find the distance */
4024 val = node_distance(node, n);
4025
4cf808eb
LT
4026 /* Penalize nodes under us ("prefer the next node") */
4027 val += (n < node);
4028
1da177e4 4029 /* Give preference to headless and unused nodes */
a70f7302
RR
4030 tmp = cpumask_of_node(n);
4031 if (!cpumask_empty(tmp))
1da177e4
LT
4032 val += PENALTY_FOR_NODE_WITH_CPUS;
4033
4034 /* Slight preference for less loaded node */
4035 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4036 val += node_load[n];
4037
4038 if (val < min_val) {
4039 min_val = val;
4040 best_node = n;
4041 }
4042 }
4043
4044 if (best_node >= 0)
4045 node_set(best_node, *used_node_mask);
4046
4047 return best_node;
4048}
4049
f0c0b2b8
KH
4050
4051/*
4052 * Build zonelists ordered by node and zones within node.
4053 * This results in maximum locality--normal zone overflows into local
4054 * DMA zone, if any--but risks exhausting DMA zone.
4055 */
4056static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4057{
f0c0b2b8 4058 int j;
1da177e4 4059 struct zonelist *zonelist;
f0c0b2b8 4060
54a6eb5c 4061 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4062 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4063 ;
bc732f1d 4064 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4065 zonelist->_zonerefs[j].zone = NULL;
4066 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4067}
4068
523b9458
CL
4069/*
4070 * Build gfp_thisnode zonelists
4071 */
4072static void build_thisnode_zonelists(pg_data_t *pgdat)
4073{
523b9458
CL
4074 int j;
4075 struct zonelist *zonelist;
4076
54a6eb5c 4077 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4078 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4079 zonelist->_zonerefs[j].zone = NULL;
4080 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4081}
4082
f0c0b2b8
KH
4083/*
4084 * Build zonelists ordered by zone and nodes within zones.
4085 * This results in conserving DMA zone[s] until all Normal memory is
4086 * exhausted, but results in overflowing to remote node while memory
4087 * may still exist in local DMA zone.
4088 */
4089static int node_order[MAX_NUMNODES];
4090
4091static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4092{
f0c0b2b8
KH
4093 int pos, j, node;
4094 int zone_type; /* needs to be signed */
4095 struct zone *z;
4096 struct zonelist *zonelist;
4097
54a6eb5c
MG
4098 zonelist = &pgdat->node_zonelists[0];
4099 pos = 0;
4100 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4101 for (j = 0; j < nr_nodes; j++) {
4102 node = node_order[j];
4103 z = &NODE_DATA(node)->node_zones[zone_type];
4104 if (populated_zone(z)) {
dd1a239f
MG
4105 zoneref_set_zone(z,
4106 &zonelist->_zonerefs[pos++]);
54a6eb5c 4107 check_highest_zone(zone_type);
f0c0b2b8
KH
4108 }
4109 }
f0c0b2b8 4110 }
dd1a239f
MG
4111 zonelist->_zonerefs[pos].zone = NULL;
4112 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4113}
4114
3193913c
MG
4115#if defined(CONFIG_64BIT)
4116/*
4117 * Devices that require DMA32/DMA are relatively rare and do not justify a
4118 * penalty to every machine in case the specialised case applies. Default
4119 * to Node-ordering on 64-bit NUMA machines
4120 */
4121static int default_zonelist_order(void)
4122{
4123 return ZONELIST_ORDER_NODE;
4124}
4125#else
4126/*
4127 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4128 * by the kernel. If processes running on node 0 deplete the low memory zone
4129 * then reclaim will occur more frequency increasing stalls and potentially
4130 * be easier to OOM if a large percentage of the zone is under writeback or
4131 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4132 * Hence, default to zone ordering on 32-bit.
4133 */
f0c0b2b8
KH
4134static int default_zonelist_order(void)
4135{
f0c0b2b8
KH
4136 return ZONELIST_ORDER_ZONE;
4137}
3193913c 4138#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4139
4140static void set_zonelist_order(void)
4141{
4142 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4143 current_zonelist_order = default_zonelist_order();
4144 else
4145 current_zonelist_order = user_zonelist_order;
4146}
4147
4148static void build_zonelists(pg_data_t *pgdat)
4149{
4150 int j, node, load;
4151 enum zone_type i;
1da177e4 4152 nodemask_t used_mask;
f0c0b2b8
KH
4153 int local_node, prev_node;
4154 struct zonelist *zonelist;
4155 int order = current_zonelist_order;
1da177e4
LT
4156
4157 /* initialize zonelists */
523b9458 4158 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4159 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4160 zonelist->_zonerefs[0].zone = NULL;
4161 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4162 }
4163
4164 /* NUMA-aware ordering of nodes */
4165 local_node = pgdat->node_id;
62bc62a8 4166 load = nr_online_nodes;
1da177e4
LT
4167 prev_node = local_node;
4168 nodes_clear(used_mask);
f0c0b2b8 4169
f0c0b2b8
KH
4170 memset(node_order, 0, sizeof(node_order));
4171 j = 0;
4172
1da177e4
LT
4173 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4174 /*
4175 * We don't want to pressure a particular node.
4176 * So adding penalty to the first node in same
4177 * distance group to make it round-robin.
4178 */
957f822a
DR
4179 if (node_distance(local_node, node) !=
4180 node_distance(local_node, prev_node))
f0c0b2b8
KH
4181 node_load[node] = load;
4182
1da177e4
LT
4183 prev_node = node;
4184 load--;
f0c0b2b8
KH
4185 if (order == ZONELIST_ORDER_NODE)
4186 build_zonelists_in_node_order(pgdat, node);
4187 else
4188 node_order[j++] = node; /* remember order */
4189 }
1da177e4 4190
f0c0b2b8
KH
4191 if (order == ZONELIST_ORDER_ZONE) {
4192 /* calculate node order -- i.e., DMA last! */
4193 build_zonelists_in_zone_order(pgdat, j);
1da177e4 4194 }
523b9458
CL
4195
4196 build_thisnode_zonelists(pgdat);
1da177e4
LT
4197}
4198
9276b1bc 4199/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 4200static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 4201{
54a6eb5c
MG
4202 struct zonelist *zonelist;
4203 struct zonelist_cache *zlc;
dd1a239f 4204 struct zoneref *z;
9276b1bc 4205
54a6eb5c
MG
4206 zonelist = &pgdat->node_zonelists[0];
4207 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4208 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
4209 for (z = zonelist->_zonerefs; z->zone; z++)
4210 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
4211}
4212
7aac7898
LS
4213#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4214/*
4215 * Return node id of node used for "local" allocations.
4216 * I.e., first node id of first zone in arg node's generic zonelist.
4217 * Used for initializing percpu 'numa_mem', which is used primarily
4218 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4219 */
4220int local_memory_node(int node)
4221{
4222 struct zone *zone;
4223
4224 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4225 gfp_zone(GFP_KERNEL),
4226 NULL,
4227 &zone);
4228 return zone->node;
4229}
4230#endif
f0c0b2b8 4231
1da177e4
LT
4232#else /* CONFIG_NUMA */
4233
f0c0b2b8
KH
4234static void set_zonelist_order(void)
4235{
4236 current_zonelist_order = ZONELIST_ORDER_ZONE;
4237}
4238
4239static void build_zonelists(pg_data_t *pgdat)
1da177e4 4240{
19655d34 4241 int node, local_node;
54a6eb5c
MG
4242 enum zone_type j;
4243 struct zonelist *zonelist;
1da177e4
LT
4244
4245 local_node = pgdat->node_id;
1da177e4 4246
54a6eb5c 4247 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4248 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4249
54a6eb5c
MG
4250 /*
4251 * Now we build the zonelist so that it contains the zones
4252 * of all the other nodes.
4253 * We don't want to pressure a particular node, so when
4254 * building the zones for node N, we make sure that the
4255 * zones coming right after the local ones are those from
4256 * node N+1 (modulo N)
4257 */
4258 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4259 if (!node_online(node))
4260 continue;
bc732f1d 4261 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4262 }
54a6eb5c
MG
4263 for (node = 0; node < local_node; node++) {
4264 if (!node_online(node))
4265 continue;
bc732f1d 4266 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4267 }
4268
dd1a239f
MG
4269 zonelist->_zonerefs[j].zone = NULL;
4270 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4271}
4272
9276b1bc 4273/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 4274static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 4275{
54a6eb5c 4276 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
4277}
4278
1da177e4
LT
4279#endif /* CONFIG_NUMA */
4280
99dcc3e5
CL
4281/*
4282 * Boot pageset table. One per cpu which is going to be used for all
4283 * zones and all nodes. The parameters will be set in such a way
4284 * that an item put on a list will immediately be handed over to
4285 * the buddy list. This is safe since pageset manipulation is done
4286 * with interrupts disabled.
4287 *
4288 * The boot_pagesets must be kept even after bootup is complete for
4289 * unused processors and/or zones. They do play a role for bootstrapping
4290 * hotplugged processors.
4291 *
4292 * zoneinfo_show() and maybe other functions do
4293 * not check if the processor is online before following the pageset pointer.
4294 * Other parts of the kernel may not check if the zone is available.
4295 */
4296static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4297static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4298static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4299
4eaf3f64
HL
4300/*
4301 * Global mutex to protect against size modification of zonelists
4302 * as well as to serialize pageset setup for the new populated zone.
4303 */
4304DEFINE_MUTEX(zonelists_mutex);
4305
9b1a4d38 4306/* return values int ....just for stop_machine() */
4ed7e022 4307static int __build_all_zonelists(void *data)
1da177e4 4308{
6811378e 4309 int nid;
99dcc3e5 4310 int cpu;
9adb62a5 4311 pg_data_t *self = data;
9276b1bc 4312
7f9cfb31
BL
4313#ifdef CONFIG_NUMA
4314 memset(node_load, 0, sizeof(node_load));
4315#endif
9adb62a5
JL
4316
4317 if (self && !node_online(self->node_id)) {
4318 build_zonelists(self);
4319 build_zonelist_cache(self);
4320 }
4321
9276b1bc 4322 for_each_online_node(nid) {
7ea1530a
CL
4323 pg_data_t *pgdat = NODE_DATA(nid);
4324
4325 build_zonelists(pgdat);
4326 build_zonelist_cache(pgdat);
9276b1bc 4327 }
99dcc3e5
CL
4328
4329 /*
4330 * Initialize the boot_pagesets that are going to be used
4331 * for bootstrapping processors. The real pagesets for
4332 * each zone will be allocated later when the per cpu
4333 * allocator is available.
4334 *
4335 * boot_pagesets are used also for bootstrapping offline
4336 * cpus if the system is already booted because the pagesets
4337 * are needed to initialize allocators on a specific cpu too.
4338 * F.e. the percpu allocator needs the page allocator which
4339 * needs the percpu allocator in order to allocate its pagesets
4340 * (a chicken-egg dilemma).
4341 */
7aac7898 4342 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4343 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4344
7aac7898
LS
4345#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4346 /*
4347 * We now know the "local memory node" for each node--
4348 * i.e., the node of the first zone in the generic zonelist.
4349 * Set up numa_mem percpu variable for on-line cpus. During
4350 * boot, only the boot cpu should be on-line; we'll init the
4351 * secondary cpus' numa_mem as they come on-line. During
4352 * node/memory hotplug, we'll fixup all on-line cpus.
4353 */
4354 if (cpu_online(cpu))
4355 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4356#endif
4357 }
4358
6811378e
YG
4359 return 0;
4360}
4361
061f67bc
RV
4362static noinline void __init
4363build_all_zonelists_init(void)
4364{
4365 __build_all_zonelists(NULL);
4366 mminit_verify_zonelist();
4367 cpuset_init_current_mems_allowed();
4368}
4369
4eaf3f64
HL
4370/*
4371 * Called with zonelists_mutex held always
4372 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4373 *
4374 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4375 * [we're only called with non-NULL zone through __meminit paths] and
4376 * (2) call of __init annotated helper build_all_zonelists_init
4377 * [protected by SYSTEM_BOOTING].
4eaf3f64 4378 */
9adb62a5 4379void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4380{
f0c0b2b8
KH
4381 set_zonelist_order();
4382
6811378e 4383 if (system_state == SYSTEM_BOOTING) {
061f67bc 4384 build_all_zonelists_init();
6811378e 4385 } else {
e9959f0f 4386#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4387 if (zone)
4388 setup_zone_pageset(zone);
e9959f0f 4389#endif
dd1895e2
CS
4390 /* we have to stop all cpus to guarantee there is no user
4391 of zonelist */
9adb62a5 4392 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4393 /* cpuset refresh routine should be here */
4394 }
bd1e22b8 4395 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4396 /*
4397 * Disable grouping by mobility if the number of pages in the
4398 * system is too low to allow the mechanism to work. It would be
4399 * more accurate, but expensive to check per-zone. This check is
4400 * made on memory-hotadd so a system can start with mobility
4401 * disabled and enable it later
4402 */
d9c23400 4403 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4404 page_group_by_mobility_disabled = 1;
4405 else
4406 page_group_by_mobility_disabled = 0;
4407
f88dfff5 4408 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4409 "Total pages: %ld\n",
62bc62a8 4410 nr_online_nodes,
f0c0b2b8 4411 zonelist_order_name[current_zonelist_order],
9ef9acb0 4412 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4413 vm_total_pages);
4414#ifdef CONFIG_NUMA
f88dfff5 4415 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4416#endif
1da177e4
LT
4417}
4418
4419/*
4420 * Helper functions to size the waitqueue hash table.
4421 * Essentially these want to choose hash table sizes sufficiently
4422 * large so that collisions trying to wait on pages are rare.
4423 * But in fact, the number of active page waitqueues on typical
4424 * systems is ridiculously low, less than 200. So this is even
4425 * conservative, even though it seems large.
4426 *
4427 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4428 * waitqueues, i.e. the size of the waitq table given the number of pages.
4429 */
4430#define PAGES_PER_WAITQUEUE 256
4431
cca448fe 4432#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4433static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4434{
4435 unsigned long size = 1;
4436
4437 pages /= PAGES_PER_WAITQUEUE;
4438
4439 while (size < pages)
4440 size <<= 1;
4441
4442 /*
4443 * Once we have dozens or even hundreds of threads sleeping
4444 * on IO we've got bigger problems than wait queue collision.
4445 * Limit the size of the wait table to a reasonable size.
4446 */
4447 size = min(size, 4096UL);
4448
4449 return max(size, 4UL);
4450}
cca448fe
YG
4451#else
4452/*
4453 * A zone's size might be changed by hot-add, so it is not possible to determine
4454 * a suitable size for its wait_table. So we use the maximum size now.
4455 *
4456 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4457 *
4458 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4459 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4460 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4461 *
4462 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4463 * or more by the traditional way. (See above). It equals:
4464 *
4465 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4466 * ia64(16K page size) : = ( 8G + 4M)byte.
4467 * powerpc (64K page size) : = (32G +16M)byte.
4468 */
4469static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4470{
4471 return 4096UL;
4472}
4473#endif
1da177e4
LT
4474
4475/*
4476 * This is an integer logarithm so that shifts can be used later
4477 * to extract the more random high bits from the multiplicative
4478 * hash function before the remainder is taken.
4479 */
4480static inline unsigned long wait_table_bits(unsigned long size)
4481{
4482 return ffz(~size);
4483}
4484
6d3163ce
AH
4485/*
4486 * Check if a pageblock contains reserved pages
4487 */
4488static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4489{
4490 unsigned long pfn;
4491
4492 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4493 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4494 return 1;
4495 }
4496 return 0;
4497}
4498
56fd56b8 4499/*
d9c23400 4500 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4501 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4502 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4503 * higher will lead to a bigger reserve which will get freed as contiguous
4504 * blocks as reclaim kicks in
4505 */
4506static void setup_zone_migrate_reserve(struct zone *zone)
4507{
6d3163ce 4508 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4509 struct page *page;
78986a67
MG
4510 unsigned long block_migratetype;
4511 int reserve;
943dca1a 4512 int old_reserve;
56fd56b8 4513
d0215638
MH
4514 /*
4515 * Get the start pfn, end pfn and the number of blocks to reserve
4516 * We have to be careful to be aligned to pageblock_nr_pages to
4517 * make sure that we always check pfn_valid for the first page in
4518 * the block.
4519 */
56fd56b8 4520 start_pfn = zone->zone_start_pfn;
108bcc96 4521 end_pfn = zone_end_pfn(zone);
d0215638 4522 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4523 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4524 pageblock_order;
56fd56b8 4525
78986a67
MG
4526 /*
4527 * Reserve blocks are generally in place to help high-order atomic
4528 * allocations that are short-lived. A min_free_kbytes value that
4529 * would result in more than 2 reserve blocks for atomic allocations
4530 * is assumed to be in place to help anti-fragmentation for the
4531 * future allocation of hugepages at runtime.
4532 */
4533 reserve = min(2, reserve);
943dca1a
YI
4534 old_reserve = zone->nr_migrate_reserve_block;
4535
4536 /* When memory hot-add, we almost always need to do nothing */
4537 if (reserve == old_reserve)
4538 return;
4539 zone->nr_migrate_reserve_block = reserve;
78986a67 4540
d9c23400 4541 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
7e18adb4
MG
4542 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4543 return;
4544
56fd56b8
MG
4545 if (!pfn_valid(pfn))
4546 continue;
4547 page = pfn_to_page(pfn);
4548
344c790e
AL
4549 /* Watch out for overlapping nodes */
4550 if (page_to_nid(page) != zone_to_nid(zone))
4551 continue;
4552
56fd56b8
MG
4553 block_migratetype = get_pageblock_migratetype(page);
4554
938929f1
MG
4555 /* Only test what is necessary when the reserves are not met */
4556 if (reserve > 0) {
4557 /*
4558 * Blocks with reserved pages will never free, skip
4559 * them.
4560 */
4561 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4562 if (pageblock_is_reserved(pfn, block_end_pfn))
4563 continue;
56fd56b8 4564
938929f1
MG
4565 /* If this block is reserved, account for it */
4566 if (block_migratetype == MIGRATE_RESERVE) {
4567 reserve--;
4568 continue;
4569 }
4570
4571 /* Suitable for reserving if this block is movable */
4572 if (block_migratetype == MIGRATE_MOVABLE) {
4573 set_pageblock_migratetype(page,
4574 MIGRATE_RESERVE);
4575 move_freepages_block(zone, page,
4576 MIGRATE_RESERVE);
4577 reserve--;
4578 continue;
4579 }
943dca1a
YI
4580 } else if (!old_reserve) {
4581 /*
4582 * At boot time we don't need to scan the whole zone
4583 * for turning off MIGRATE_RESERVE.
4584 */
4585 break;
56fd56b8
MG
4586 }
4587
4588 /*
4589 * If the reserve is met and this is a previous reserved block,
4590 * take it back
4591 */
4592 if (block_migratetype == MIGRATE_RESERVE) {
4593 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4594 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4595 }
4596 }
4597}
ac0e5b7a 4598
1da177e4
LT
4599/*
4600 * Initially all pages are reserved - free ones are freed
4601 * up by free_all_bootmem() once the early boot process is
4602 * done. Non-atomic initialization, single-pass.
4603 */
c09b4240 4604void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4605 unsigned long start_pfn, enum memmap_context context)
1da177e4 4606{
3a80a7fa 4607 pg_data_t *pgdat = NODE_DATA(nid);
29751f69
AW
4608 unsigned long end_pfn = start_pfn + size;
4609 unsigned long pfn;
86051ca5 4610 struct zone *z;
3a80a7fa 4611 unsigned long nr_initialised = 0;
1da177e4 4612
22b31eec
HD
4613 if (highest_memmap_pfn < end_pfn - 1)
4614 highest_memmap_pfn = end_pfn - 1;
4615
3a80a7fa 4616 z = &pgdat->node_zones[zone];
cbe8dd4a 4617 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4618 /*
4619 * There can be holes in boot-time mem_map[]s
4620 * handed to this function. They do not
4621 * exist on hotplugged memory.
4622 */
4623 if (context == MEMMAP_EARLY) {
4624 if (!early_pfn_valid(pfn))
4625 continue;
4626 if (!early_pfn_in_nid(pfn, nid))
4627 continue;
3a80a7fa
MG
4628 if (!update_defer_init(pgdat, pfn, end_pfn,
4629 &nr_initialised))
4630 break;
a2f3aa02 4631 }
ac5d2539
MG
4632
4633 /*
4634 * Mark the block movable so that blocks are reserved for
4635 * movable at startup. This will force kernel allocations
4636 * to reserve their blocks rather than leaking throughout
4637 * the address space during boot when many long-lived
4638 * kernel allocations are made. Later some blocks near
4639 * the start are marked MIGRATE_RESERVE by
4640 * setup_zone_migrate_reserve()
4641 *
4642 * bitmap is created for zone's valid pfn range. but memmap
4643 * can be created for invalid pages (for alignment)
4644 * check here not to call set_pageblock_migratetype() against
4645 * pfn out of zone.
4646 */
4647 if (!(pfn & (pageblock_nr_pages - 1))) {
4648 struct page *page = pfn_to_page(pfn);
4649
4650 __init_single_page(page, pfn, zone, nid);
4651 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4652 } else {
4653 __init_single_pfn(pfn, zone, nid);
4654 }
1da177e4
LT
4655 }
4656}
4657
1e548deb 4658static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4659{
7aeb09f9 4660 unsigned int order, t;
b2a0ac88
MG
4661 for_each_migratetype_order(order, t) {
4662 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4663 zone->free_area[order].nr_free = 0;
4664 }
4665}
4666
4667#ifndef __HAVE_ARCH_MEMMAP_INIT
4668#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4669 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4670#endif
4671
7cd2b0a3 4672static int zone_batchsize(struct zone *zone)
e7c8d5c9 4673{
3a6be87f 4674#ifdef CONFIG_MMU
e7c8d5c9
CL
4675 int batch;
4676
4677 /*
4678 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4679 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4680 *
4681 * OK, so we don't know how big the cache is. So guess.
4682 */
b40da049 4683 batch = zone->managed_pages / 1024;
ba56e91c
SR
4684 if (batch * PAGE_SIZE > 512 * 1024)
4685 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4686 batch /= 4; /* We effectively *= 4 below */
4687 if (batch < 1)
4688 batch = 1;
4689
4690 /*
0ceaacc9
NP
4691 * Clamp the batch to a 2^n - 1 value. Having a power
4692 * of 2 value was found to be more likely to have
4693 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4694 *
0ceaacc9
NP
4695 * For example if 2 tasks are alternately allocating
4696 * batches of pages, one task can end up with a lot
4697 * of pages of one half of the possible page colors
4698 * and the other with pages of the other colors.
e7c8d5c9 4699 */
9155203a 4700 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4701
e7c8d5c9 4702 return batch;
3a6be87f
DH
4703
4704#else
4705 /* The deferral and batching of frees should be suppressed under NOMMU
4706 * conditions.
4707 *
4708 * The problem is that NOMMU needs to be able to allocate large chunks
4709 * of contiguous memory as there's no hardware page translation to
4710 * assemble apparent contiguous memory from discontiguous pages.
4711 *
4712 * Queueing large contiguous runs of pages for batching, however,
4713 * causes the pages to actually be freed in smaller chunks. As there
4714 * can be a significant delay between the individual batches being
4715 * recycled, this leads to the once large chunks of space being
4716 * fragmented and becoming unavailable for high-order allocations.
4717 */
4718 return 0;
4719#endif
e7c8d5c9
CL
4720}
4721
8d7a8fa9
CS
4722/*
4723 * pcp->high and pcp->batch values are related and dependent on one another:
4724 * ->batch must never be higher then ->high.
4725 * The following function updates them in a safe manner without read side
4726 * locking.
4727 *
4728 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4729 * those fields changing asynchronously (acording the the above rule).
4730 *
4731 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4732 * outside of boot time (or some other assurance that no concurrent updaters
4733 * exist).
4734 */
4735static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4736 unsigned long batch)
4737{
4738 /* start with a fail safe value for batch */
4739 pcp->batch = 1;
4740 smp_wmb();
4741
4742 /* Update high, then batch, in order */
4743 pcp->high = high;
4744 smp_wmb();
4745
4746 pcp->batch = batch;
4747}
4748
3664033c 4749/* a companion to pageset_set_high() */
4008bab7
CS
4750static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4751{
8d7a8fa9 4752 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4753}
4754
88c90dbc 4755static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4756{
4757 struct per_cpu_pages *pcp;
5f8dcc21 4758 int migratetype;
2caaad41 4759
1c6fe946
MD
4760 memset(p, 0, sizeof(*p));
4761
3dfa5721 4762 pcp = &p->pcp;
2caaad41 4763 pcp->count = 0;
5f8dcc21
MG
4764 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4765 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4766}
4767
88c90dbc
CS
4768static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4769{
4770 pageset_init(p);
4771 pageset_set_batch(p, batch);
4772}
4773
8ad4b1fb 4774/*
3664033c 4775 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4776 * to the value high for the pageset p.
4777 */
3664033c 4778static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4779 unsigned long high)
4780{
8d7a8fa9
CS
4781 unsigned long batch = max(1UL, high / 4);
4782 if ((high / 4) > (PAGE_SHIFT * 8))
4783 batch = PAGE_SHIFT * 8;
8ad4b1fb 4784
8d7a8fa9 4785 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4786}
4787
7cd2b0a3
DR
4788static void pageset_set_high_and_batch(struct zone *zone,
4789 struct per_cpu_pageset *pcp)
56cef2b8 4790{
56cef2b8 4791 if (percpu_pagelist_fraction)
3664033c 4792 pageset_set_high(pcp,
56cef2b8
CS
4793 (zone->managed_pages /
4794 percpu_pagelist_fraction));
4795 else
4796 pageset_set_batch(pcp, zone_batchsize(zone));
4797}
4798
169f6c19
CS
4799static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4800{
4801 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4802
4803 pageset_init(pcp);
4804 pageset_set_high_and_batch(zone, pcp);
4805}
4806
4ed7e022 4807static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4808{
4809 int cpu;
319774e2 4810 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4811 for_each_possible_cpu(cpu)
4812 zone_pageset_init(zone, cpu);
319774e2
WF
4813}
4814
2caaad41 4815/*
99dcc3e5
CL
4816 * Allocate per cpu pagesets and initialize them.
4817 * Before this call only boot pagesets were available.
e7c8d5c9 4818 */
99dcc3e5 4819void __init setup_per_cpu_pageset(void)
e7c8d5c9 4820{
99dcc3e5 4821 struct zone *zone;
e7c8d5c9 4822
319774e2
WF
4823 for_each_populated_zone(zone)
4824 setup_zone_pageset(zone);
e7c8d5c9
CL
4825}
4826
577a32f6 4827static noinline __init_refok
cca448fe 4828int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4829{
4830 int i;
cca448fe 4831 size_t alloc_size;
ed8ece2e
DH
4832
4833 /*
4834 * The per-page waitqueue mechanism uses hashed waitqueues
4835 * per zone.
4836 */
02b694de
YG
4837 zone->wait_table_hash_nr_entries =
4838 wait_table_hash_nr_entries(zone_size_pages);
4839 zone->wait_table_bits =
4840 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4841 alloc_size = zone->wait_table_hash_nr_entries
4842 * sizeof(wait_queue_head_t);
4843
cd94b9db 4844 if (!slab_is_available()) {
cca448fe 4845 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4846 memblock_virt_alloc_node_nopanic(
4847 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4848 } else {
4849 /*
4850 * This case means that a zone whose size was 0 gets new memory
4851 * via memory hot-add.
4852 * But it may be the case that a new node was hot-added. In
4853 * this case vmalloc() will not be able to use this new node's
4854 * memory - this wait_table must be initialized to use this new
4855 * node itself as well.
4856 * To use this new node's memory, further consideration will be
4857 * necessary.
4858 */
8691f3a7 4859 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4860 }
4861 if (!zone->wait_table)
4862 return -ENOMEM;
ed8ece2e 4863
b8af2941 4864 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4865 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4866
4867 return 0;
ed8ece2e
DH
4868}
4869
c09b4240 4870static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4871{
99dcc3e5
CL
4872 /*
4873 * per cpu subsystem is not up at this point. The following code
4874 * relies on the ability of the linker to provide the
4875 * offset of a (static) per cpu variable into the per cpu area.
4876 */
4877 zone->pageset = &boot_pageset;
ed8ece2e 4878
b38a8725 4879 if (populated_zone(zone))
99dcc3e5
CL
4880 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4881 zone->name, zone->present_pages,
4882 zone_batchsize(zone));
ed8ece2e
DH
4883}
4884
4ed7e022 4885int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4886 unsigned long zone_start_pfn,
a2f3aa02
DH
4887 unsigned long size,
4888 enum memmap_context context)
ed8ece2e
DH
4889{
4890 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4891 int ret;
4892 ret = zone_wait_table_init(zone, size);
4893 if (ret)
4894 return ret;
ed8ece2e
DH
4895 pgdat->nr_zones = zone_idx(zone) + 1;
4896
ed8ece2e
DH
4897 zone->zone_start_pfn = zone_start_pfn;
4898
708614e6
MG
4899 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4900 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4901 pgdat->node_id,
4902 (unsigned long)zone_idx(zone),
4903 zone_start_pfn, (zone_start_pfn + size));
4904
1e548deb 4905 zone_init_free_lists(zone);
718127cc
YG
4906
4907 return 0;
ed8ece2e
DH
4908}
4909
0ee332c1 4910#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4911#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4912
c713216d
MG
4913/*
4914 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4915 */
8a942fde
MG
4916int __meminit __early_pfn_to_nid(unsigned long pfn,
4917 struct mminit_pfnnid_cache *state)
c713216d 4918{
c13291a5 4919 unsigned long start_pfn, end_pfn;
e76b63f8 4920 int nid;
7c243c71 4921
8a942fde
MG
4922 if (state->last_start <= pfn && pfn < state->last_end)
4923 return state->last_nid;
c713216d 4924
e76b63f8
YL
4925 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4926 if (nid != -1) {
8a942fde
MG
4927 state->last_start = start_pfn;
4928 state->last_end = end_pfn;
4929 state->last_nid = nid;
e76b63f8
YL
4930 }
4931
4932 return nid;
c713216d
MG
4933}
4934#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4935
c713216d 4936/**
6782832e 4937 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4938 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4939 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4940 *
7d018176
ZZ
4941 * If an architecture guarantees that all ranges registered contain no holes
4942 * and may be freed, this this function may be used instead of calling
4943 * memblock_free_early_nid() manually.
c713216d 4944 */
c13291a5 4945void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4946{
c13291a5
TH
4947 unsigned long start_pfn, end_pfn;
4948 int i, this_nid;
edbe7d23 4949
c13291a5
TH
4950 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4951 start_pfn = min(start_pfn, max_low_pfn);
4952 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4953
c13291a5 4954 if (start_pfn < end_pfn)
6782832e
SS
4955 memblock_free_early_nid(PFN_PHYS(start_pfn),
4956 (end_pfn - start_pfn) << PAGE_SHIFT,
4957 this_nid);
edbe7d23 4958 }
edbe7d23 4959}
edbe7d23 4960
c713216d
MG
4961/**
4962 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4963 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4964 *
7d018176
ZZ
4965 * If an architecture guarantees that all ranges registered contain no holes and may
4966 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4967 */
4968void __init sparse_memory_present_with_active_regions(int nid)
4969{
c13291a5
TH
4970 unsigned long start_pfn, end_pfn;
4971 int i, this_nid;
c713216d 4972
c13291a5
TH
4973 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4974 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4975}
4976
4977/**
4978 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4979 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4980 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4981 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4982 *
4983 * It returns the start and end page frame of a node based on information
7d018176 4984 * provided by memblock_set_node(). If called for a node
c713216d 4985 * with no available memory, a warning is printed and the start and end
88ca3b94 4986 * PFNs will be 0.
c713216d 4987 */
a3142c8e 4988void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4989 unsigned long *start_pfn, unsigned long *end_pfn)
4990{
c13291a5 4991 unsigned long this_start_pfn, this_end_pfn;
c713216d 4992 int i;
c13291a5 4993
c713216d
MG
4994 *start_pfn = -1UL;
4995 *end_pfn = 0;
4996
c13291a5
TH
4997 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4998 *start_pfn = min(*start_pfn, this_start_pfn);
4999 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5000 }
5001
633c0666 5002 if (*start_pfn == -1UL)
c713216d 5003 *start_pfn = 0;
c713216d
MG
5004}
5005
2a1e274a
MG
5006/*
5007 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5008 * assumption is made that zones within a node are ordered in monotonic
5009 * increasing memory addresses so that the "highest" populated zone is used
5010 */
b69a7288 5011static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5012{
5013 int zone_index;
5014 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5015 if (zone_index == ZONE_MOVABLE)
5016 continue;
5017
5018 if (arch_zone_highest_possible_pfn[zone_index] >
5019 arch_zone_lowest_possible_pfn[zone_index])
5020 break;
5021 }
5022
5023 VM_BUG_ON(zone_index == -1);
5024 movable_zone = zone_index;
5025}
5026
5027/*
5028 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5029 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5030 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5031 * in each node depending on the size of each node and how evenly kernelcore
5032 * is distributed. This helper function adjusts the zone ranges
5033 * provided by the architecture for a given node by using the end of the
5034 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5035 * zones within a node are in order of monotonic increases memory addresses
5036 */
b69a7288 5037static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5038 unsigned long zone_type,
5039 unsigned long node_start_pfn,
5040 unsigned long node_end_pfn,
5041 unsigned long *zone_start_pfn,
5042 unsigned long *zone_end_pfn)
5043{
5044 /* Only adjust if ZONE_MOVABLE is on this node */
5045 if (zone_movable_pfn[nid]) {
5046 /* Size ZONE_MOVABLE */
5047 if (zone_type == ZONE_MOVABLE) {
5048 *zone_start_pfn = zone_movable_pfn[nid];
5049 *zone_end_pfn = min(node_end_pfn,
5050 arch_zone_highest_possible_pfn[movable_zone]);
5051
5052 /* Adjust for ZONE_MOVABLE starting within this range */
5053 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5054 *zone_end_pfn > zone_movable_pfn[nid]) {
5055 *zone_end_pfn = zone_movable_pfn[nid];
5056
5057 /* Check if this whole range is within ZONE_MOVABLE */
5058 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5059 *zone_start_pfn = *zone_end_pfn;
5060 }
5061}
5062
c713216d
MG
5063/*
5064 * Return the number of pages a zone spans in a node, including holes
5065 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5066 */
6ea6e688 5067static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5068 unsigned long zone_type,
7960aedd
ZY
5069 unsigned long node_start_pfn,
5070 unsigned long node_end_pfn,
c713216d
MG
5071 unsigned long *ignored)
5072{
c713216d
MG
5073 unsigned long zone_start_pfn, zone_end_pfn;
5074
f9126ab9
XQ
5075 /* When hotadd a new node, the node should be empty */
5076 if (!node_start_pfn && !node_end_pfn)
5077 return 0;
5078
7960aedd 5079 /* Get the start and end of the zone */
c713216d
MG
5080 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5081 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5082 adjust_zone_range_for_zone_movable(nid, zone_type,
5083 node_start_pfn, node_end_pfn,
5084 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
5085
5086 /* Check that this node has pages within the zone's required range */
5087 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5088 return 0;
5089
5090 /* Move the zone boundaries inside the node if necessary */
5091 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5092 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5093
5094 /* Return the spanned pages */
5095 return zone_end_pfn - zone_start_pfn;
5096}
5097
5098/*
5099 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5100 * then all holes in the requested range will be accounted for.
c713216d 5101 */
32996250 5102unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5103 unsigned long range_start_pfn,
5104 unsigned long range_end_pfn)
5105{
96e907d1
TH
5106 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5107 unsigned long start_pfn, end_pfn;
5108 int i;
c713216d 5109
96e907d1
TH
5110 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5111 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5112 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5113 nr_absent -= end_pfn - start_pfn;
c713216d 5114 }
96e907d1 5115 return nr_absent;
c713216d
MG
5116}
5117
5118/**
5119 * absent_pages_in_range - Return number of page frames in holes within a range
5120 * @start_pfn: The start PFN to start searching for holes
5121 * @end_pfn: The end PFN to stop searching for holes
5122 *
88ca3b94 5123 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5124 */
5125unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5126 unsigned long end_pfn)
5127{
5128 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5129}
5130
5131/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5132static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5133 unsigned long zone_type,
7960aedd
ZY
5134 unsigned long node_start_pfn,
5135 unsigned long node_end_pfn,
c713216d
MG
5136 unsigned long *ignored)
5137{
96e907d1
TH
5138 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5139 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
5140 unsigned long zone_start_pfn, zone_end_pfn;
5141
f9126ab9
XQ
5142 /* When hotadd a new node, the node should be empty */
5143 if (!node_start_pfn && !node_end_pfn)
5144 return 0;
5145
96e907d1
TH
5146 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5147 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5148
2a1e274a
MG
5149 adjust_zone_range_for_zone_movable(nid, zone_type,
5150 node_start_pfn, node_end_pfn,
5151 &zone_start_pfn, &zone_end_pfn);
9c7cd687 5152 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 5153}
0e0b864e 5154
0ee332c1 5155#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5156static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5157 unsigned long zone_type,
7960aedd
ZY
5158 unsigned long node_start_pfn,
5159 unsigned long node_end_pfn,
c713216d
MG
5160 unsigned long *zones_size)
5161{
5162 return zones_size[zone_type];
5163}
5164
6ea6e688 5165static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5166 unsigned long zone_type,
7960aedd
ZY
5167 unsigned long node_start_pfn,
5168 unsigned long node_end_pfn,
c713216d
MG
5169 unsigned long *zholes_size)
5170{
5171 if (!zholes_size)
5172 return 0;
5173
5174 return zholes_size[zone_type];
5175}
20e6926d 5176
0ee332c1 5177#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5178
a3142c8e 5179static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5180 unsigned long node_start_pfn,
5181 unsigned long node_end_pfn,
5182 unsigned long *zones_size,
5183 unsigned long *zholes_size)
c713216d 5184{
febd5949 5185 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5186 enum zone_type i;
5187
febd5949
GZ
5188 for (i = 0; i < MAX_NR_ZONES; i++) {
5189 struct zone *zone = pgdat->node_zones + i;
5190 unsigned long size, real_size;
c713216d 5191
febd5949
GZ
5192 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5193 node_start_pfn,
5194 node_end_pfn,
5195 zones_size);
5196 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5197 node_start_pfn, node_end_pfn,
5198 zholes_size);
febd5949
GZ
5199 zone->spanned_pages = size;
5200 zone->present_pages = real_size;
5201
5202 totalpages += size;
5203 realtotalpages += real_size;
5204 }
5205
5206 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5207 pgdat->node_present_pages = realtotalpages;
5208 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5209 realtotalpages);
5210}
5211
835c134e
MG
5212#ifndef CONFIG_SPARSEMEM
5213/*
5214 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5215 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5216 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5217 * round what is now in bits to nearest long in bits, then return it in
5218 * bytes.
5219 */
7c45512d 5220static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5221{
5222 unsigned long usemapsize;
5223
7c45512d 5224 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5225 usemapsize = roundup(zonesize, pageblock_nr_pages);
5226 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5227 usemapsize *= NR_PAGEBLOCK_BITS;
5228 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5229
5230 return usemapsize / 8;
5231}
5232
5233static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5234 struct zone *zone,
5235 unsigned long zone_start_pfn,
5236 unsigned long zonesize)
835c134e 5237{
7c45512d 5238 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5239 zone->pageblock_flags = NULL;
58a01a45 5240 if (usemapsize)
6782832e
SS
5241 zone->pageblock_flags =
5242 memblock_virt_alloc_node_nopanic(usemapsize,
5243 pgdat->node_id);
835c134e
MG
5244}
5245#else
7c45512d
LT
5246static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5247 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5248#endif /* CONFIG_SPARSEMEM */
5249
d9c23400 5250#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5251
d9c23400 5252/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5253void __paginginit set_pageblock_order(void)
d9c23400 5254{
955c1cd7
AM
5255 unsigned int order;
5256
d9c23400
MG
5257 /* Check that pageblock_nr_pages has not already been setup */
5258 if (pageblock_order)
5259 return;
5260
955c1cd7
AM
5261 if (HPAGE_SHIFT > PAGE_SHIFT)
5262 order = HUGETLB_PAGE_ORDER;
5263 else
5264 order = MAX_ORDER - 1;
5265
d9c23400
MG
5266 /*
5267 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5268 * This value may be variable depending on boot parameters on IA64 and
5269 * powerpc.
d9c23400
MG
5270 */
5271 pageblock_order = order;
5272}
5273#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5274
ba72cb8c
MG
5275/*
5276 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5277 * is unused as pageblock_order is set at compile-time. See
5278 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5279 * the kernel config
ba72cb8c 5280 */
15ca220e 5281void __paginginit set_pageblock_order(void)
ba72cb8c 5282{
ba72cb8c 5283}
d9c23400
MG
5284
5285#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5286
01cefaef
JL
5287static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5288 unsigned long present_pages)
5289{
5290 unsigned long pages = spanned_pages;
5291
5292 /*
5293 * Provide a more accurate estimation if there are holes within
5294 * the zone and SPARSEMEM is in use. If there are holes within the
5295 * zone, each populated memory region may cost us one or two extra
5296 * memmap pages due to alignment because memmap pages for each
5297 * populated regions may not naturally algined on page boundary.
5298 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5299 */
5300 if (spanned_pages > present_pages + (present_pages >> 4) &&
5301 IS_ENABLED(CONFIG_SPARSEMEM))
5302 pages = present_pages;
5303
5304 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5305}
5306
1da177e4
LT
5307/*
5308 * Set up the zone data structures:
5309 * - mark all pages reserved
5310 * - mark all memory queues empty
5311 * - clear the memory bitmaps
6527af5d
MK
5312 *
5313 * NOTE: pgdat should get zeroed by caller.
1da177e4 5314 */
7f3eb55b 5315static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5316{
2f1b6248 5317 enum zone_type j;
ed8ece2e 5318 int nid = pgdat->node_id;
1da177e4 5319 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 5320 int ret;
1da177e4 5321
208d54e5 5322 pgdat_resize_init(pgdat);
8177a420
AA
5323#ifdef CONFIG_NUMA_BALANCING
5324 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5325 pgdat->numabalancing_migrate_nr_pages = 0;
5326 pgdat->numabalancing_migrate_next_window = jiffies;
5327#endif
1da177e4 5328 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5329 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5330 pgdat_page_ext_init(pgdat);
5f63b720 5331
1da177e4
LT
5332 for (j = 0; j < MAX_NR_ZONES; j++) {
5333 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5334 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 5335
febd5949
GZ
5336 size = zone->spanned_pages;
5337 realsize = freesize = zone->present_pages;
1da177e4 5338
0e0b864e 5339 /*
9feedc9d 5340 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5341 * is used by this zone for memmap. This affects the watermark
5342 * and per-cpu initialisations
5343 */
01cefaef 5344 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5345 if (!is_highmem_idx(j)) {
5346 if (freesize >= memmap_pages) {
5347 freesize -= memmap_pages;
5348 if (memmap_pages)
5349 printk(KERN_DEBUG
5350 " %s zone: %lu pages used for memmap\n",
5351 zone_names[j], memmap_pages);
5352 } else
5353 printk(KERN_WARNING
5354 " %s zone: %lu pages exceeds freesize %lu\n",
5355 zone_names[j], memmap_pages, freesize);
5356 }
0e0b864e 5357
6267276f 5358 /* Account for reserved pages */
9feedc9d
JL
5359 if (j == 0 && freesize > dma_reserve) {
5360 freesize -= dma_reserve;
d903ef9f 5361 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5362 zone_names[0], dma_reserve);
0e0b864e
MG
5363 }
5364
98d2b0eb 5365 if (!is_highmem_idx(j))
9feedc9d 5366 nr_kernel_pages += freesize;
01cefaef
JL
5367 /* Charge for highmem memmap if there are enough kernel pages */
5368 else if (nr_kernel_pages > memmap_pages * 2)
5369 nr_kernel_pages -= memmap_pages;
9feedc9d 5370 nr_all_pages += freesize;
1da177e4 5371
9feedc9d
JL
5372 /*
5373 * Set an approximate value for lowmem here, it will be adjusted
5374 * when the bootmem allocator frees pages into the buddy system.
5375 * And all highmem pages will be managed by the buddy system.
5376 */
5377 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5378#ifdef CONFIG_NUMA
d5f541ed 5379 zone->node = nid;
9feedc9d 5380 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5381 / 100;
9feedc9d 5382 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5383#endif
1da177e4
LT
5384 zone->name = zone_names[j];
5385 spin_lock_init(&zone->lock);
5386 spin_lock_init(&zone->lru_lock);
bdc8cb98 5387 zone_seqlock_init(zone);
1da177e4 5388 zone->zone_pgdat = pgdat;
ed8ece2e 5389 zone_pcp_init(zone);
81c0a2bb
JW
5390
5391 /* For bootup, initialized properly in watermark setup */
5392 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5393
bea8c150 5394 lruvec_init(&zone->lruvec);
1da177e4
LT
5395 if (!size)
5396 continue;
5397
955c1cd7 5398 set_pageblock_order();
7c45512d 5399 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
5400 ret = init_currently_empty_zone(zone, zone_start_pfn,
5401 size, MEMMAP_EARLY);
718127cc 5402 BUG_ON(ret);
76cdd58e 5403 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5404 zone_start_pfn += size;
1da177e4
LT
5405 }
5406}
5407
577a32f6 5408static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5409{
1da177e4
LT
5410 /* Skip empty nodes */
5411 if (!pgdat->node_spanned_pages)
5412 return;
5413
d41dee36 5414#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
5415 /* ia64 gets its own node_mem_map, before this, without bootmem */
5416 if (!pgdat->node_mem_map) {
e984bb43 5417 unsigned long size, start, end;
d41dee36
AW
5418 struct page *map;
5419
e984bb43
BP
5420 /*
5421 * The zone's endpoints aren't required to be MAX_ORDER
5422 * aligned but the node_mem_map endpoints must be in order
5423 * for the buddy allocator to function correctly.
5424 */
5425 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 5426 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5427 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5428 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5429 map = alloc_remap(pgdat->node_id, size);
5430 if (!map)
6782832e
SS
5431 map = memblock_virt_alloc_node_nopanic(size,
5432 pgdat->node_id);
e984bb43 5433 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 5434 }
12d810c1 5435#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5436 /*
5437 * With no DISCONTIG, the global mem_map is just set as node 0's
5438 */
c713216d 5439 if (pgdat == NODE_DATA(0)) {
1da177e4 5440 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 5441#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5442 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 5443 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 5444#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5445 }
1da177e4 5446#endif
d41dee36 5447#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5448}
5449
9109fb7b
JW
5450void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5451 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5452{
9109fb7b 5453 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5454 unsigned long start_pfn = 0;
5455 unsigned long end_pfn = 0;
9109fb7b 5456
88fdf75d 5457 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5458 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5459
3a80a7fa 5460 reset_deferred_meminit(pgdat);
1da177e4
LT
5461 pgdat->node_id = nid;
5462 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5463#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5464 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a
JG
5465 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5466 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5467#endif
5468 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5469 zones_size, zholes_size);
1da177e4
LT
5470
5471 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5472#ifdef CONFIG_FLAT_NODE_MEM_MAP
5473 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5474 nid, (unsigned long)pgdat,
5475 (unsigned long)pgdat->node_mem_map);
5476#endif
1da177e4 5477
7f3eb55b 5478 free_area_init_core(pgdat);
1da177e4
LT
5479}
5480
0ee332c1 5481#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5482
5483#if MAX_NUMNODES > 1
5484/*
5485 * Figure out the number of possible node ids.
5486 */
f9872caf 5487void __init setup_nr_node_ids(void)
418508c1 5488{
904a9553 5489 unsigned int highest;
418508c1 5490
904a9553 5491 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5492 nr_node_ids = highest + 1;
5493}
418508c1
MS
5494#endif
5495
1e01979c
TH
5496/**
5497 * node_map_pfn_alignment - determine the maximum internode alignment
5498 *
5499 * This function should be called after node map is populated and sorted.
5500 * It calculates the maximum power of two alignment which can distinguish
5501 * all the nodes.
5502 *
5503 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5504 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5505 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5506 * shifted, 1GiB is enough and this function will indicate so.
5507 *
5508 * This is used to test whether pfn -> nid mapping of the chosen memory
5509 * model has fine enough granularity to avoid incorrect mapping for the
5510 * populated node map.
5511 *
5512 * Returns the determined alignment in pfn's. 0 if there is no alignment
5513 * requirement (single node).
5514 */
5515unsigned long __init node_map_pfn_alignment(void)
5516{
5517 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5518 unsigned long start, end, mask;
1e01979c 5519 int last_nid = -1;
c13291a5 5520 int i, nid;
1e01979c 5521
c13291a5 5522 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5523 if (!start || last_nid < 0 || last_nid == nid) {
5524 last_nid = nid;
5525 last_end = end;
5526 continue;
5527 }
5528
5529 /*
5530 * Start with a mask granular enough to pin-point to the
5531 * start pfn and tick off bits one-by-one until it becomes
5532 * too coarse to separate the current node from the last.
5533 */
5534 mask = ~((1 << __ffs(start)) - 1);
5535 while (mask && last_end <= (start & (mask << 1)))
5536 mask <<= 1;
5537
5538 /* accumulate all internode masks */
5539 accl_mask |= mask;
5540 }
5541
5542 /* convert mask to number of pages */
5543 return ~accl_mask + 1;
5544}
5545
a6af2bc3 5546/* Find the lowest pfn for a node */
b69a7288 5547static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5548{
a6af2bc3 5549 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5550 unsigned long start_pfn;
5551 int i;
1abbfb41 5552
c13291a5
TH
5553 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5554 min_pfn = min(min_pfn, start_pfn);
c713216d 5555
a6af2bc3
MG
5556 if (min_pfn == ULONG_MAX) {
5557 printk(KERN_WARNING
2bc0d261 5558 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5559 return 0;
5560 }
5561
5562 return min_pfn;
c713216d
MG
5563}
5564
5565/**
5566 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5567 *
5568 * It returns the minimum PFN based on information provided via
7d018176 5569 * memblock_set_node().
c713216d
MG
5570 */
5571unsigned long __init find_min_pfn_with_active_regions(void)
5572{
5573 return find_min_pfn_for_node(MAX_NUMNODES);
5574}
5575
37b07e41
LS
5576/*
5577 * early_calculate_totalpages()
5578 * Sum pages in active regions for movable zone.
4b0ef1fe 5579 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5580 */
484f51f8 5581static unsigned long __init early_calculate_totalpages(void)
7e63efef 5582{
7e63efef 5583 unsigned long totalpages = 0;
c13291a5
TH
5584 unsigned long start_pfn, end_pfn;
5585 int i, nid;
5586
5587 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5588 unsigned long pages = end_pfn - start_pfn;
7e63efef 5589
37b07e41
LS
5590 totalpages += pages;
5591 if (pages)
4b0ef1fe 5592 node_set_state(nid, N_MEMORY);
37b07e41 5593 }
b8af2941 5594 return totalpages;
7e63efef
MG
5595}
5596
2a1e274a
MG
5597/*
5598 * Find the PFN the Movable zone begins in each node. Kernel memory
5599 * is spread evenly between nodes as long as the nodes have enough
5600 * memory. When they don't, some nodes will have more kernelcore than
5601 * others
5602 */
b224ef85 5603static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5604{
5605 int i, nid;
5606 unsigned long usable_startpfn;
5607 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5608 /* save the state before borrow the nodemask */
4b0ef1fe 5609 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5610 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5611 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5612 struct memblock_region *r;
b2f3eebe
TC
5613
5614 /* Need to find movable_zone earlier when movable_node is specified. */
5615 find_usable_zone_for_movable();
5616
5617 /*
5618 * If movable_node is specified, ignore kernelcore and movablecore
5619 * options.
5620 */
5621 if (movable_node_is_enabled()) {
136199f0
EM
5622 for_each_memblock(memory, r) {
5623 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5624 continue;
5625
136199f0 5626 nid = r->nid;
b2f3eebe 5627
136199f0 5628 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5629 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5630 min(usable_startpfn, zone_movable_pfn[nid]) :
5631 usable_startpfn;
5632 }
5633
5634 goto out2;
5635 }
2a1e274a 5636
7e63efef 5637 /*
b2f3eebe 5638 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5639 * kernelcore that corresponds so that memory usable for
5640 * any allocation type is evenly spread. If both kernelcore
5641 * and movablecore are specified, then the value of kernelcore
5642 * will be used for required_kernelcore if it's greater than
5643 * what movablecore would have allowed.
5644 */
5645 if (required_movablecore) {
7e63efef
MG
5646 unsigned long corepages;
5647
5648 /*
5649 * Round-up so that ZONE_MOVABLE is at least as large as what
5650 * was requested by the user
5651 */
5652 required_movablecore =
5653 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5654 corepages = totalpages - required_movablecore;
5655
5656 required_kernelcore = max(required_kernelcore, corepages);
5657 }
5658
20e6926d
YL
5659 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5660 if (!required_kernelcore)
66918dcd 5661 goto out;
2a1e274a
MG
5662
5663 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5664 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5665
5666restart:
5667 /* Spread kernelcore memory as evenly as possible throughout nodes */
5668 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5669 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5670 unsigned long start_pfn, end_pfn;
5671
2a1e274a
MG
5672 /*
5673 * Recalculate kernelcore_node if the division per node
5674 * now exceeds what is necessary to satisfy the requested
5675 * amount of memory for the kernel
5676 */
5677 if (required_kernelcore < kernelcore_node)
5678 kernelcore_node = required_kernelcore / usable_nodes;
5679
5680 /*
5681 * As the map is walked, we track how much memory is usable
5682 * by the kernel using kernelcore_remaining. When it is
5683 * 0, the rest of the node is usable by ZONE_MOVABLE
5684 */
5685 kernelcore_remaining = kernelcore_node;
5686
5687 /* Go through each range of PFNs within this node */
c13291a5 5688 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5689 unsigned long size_pages;
5690
c13291a5 5691 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5692 if (start_pfn >= end_pfn)
5693 continue;
5694
5695 /* Account for what is only usable for kernelcore */
5696 if (start_pfn < usable_startpfn) {
5697 unsigned long kernel_pages;
5698 kernel_pages = min(end_pfn, usable_startpfn)
5699 - start_pfn;
5700
5701 kernelcore_remaining -= min(kernel_pages,
5702 kernelcore_remaining);
5703 required_kernelcore -= min(kernel_pages,
5704 required_kernelcore);
5705
5706 /* Continue if range is now fully accounted */
5707 if (end_pfn <= usable_startpfn) {
5708
5709 /*
5710 * Push zone_movable_pfn to the end so
5711 * that if we have to rebalance
5712 * kernelcore across nodes, we will
5713 * not double account here
5714 */
5715 zone_movable_pfn[nid] = end_pfn;
5716 continue;
5717 }
5718 start_pfn = usable_startpfn;
5719 }
5720
5721 /*
5722 * The usable PFN range for ZONE_MOVABLE is from
5723 * start_pfn->end_pfn. Calculate size_pages as the
5724 * number of pages used as kernelcore
5725 */
5726 size_pages = end_pfn - start_pfn;
5727 if (size_pages > kernelcore_remaining)
5728 size_pages = kernelcore_remaining;
5729 zone_movable_pfn[nid] = start_pfn + size_pages;
5730
5731 /*
5732 * Some kernelcore has been met, update counts and
5733 * break if the kernelcore for this node has been
b8af2941 5734 * satisfied
2a1e274a
MG
5735 */
5736 required_kernelcore -= min(required_kernelcore,
5737 size_pages);
5738 kernelcore_remaining -= size_pages;
5739 if (!kernelcore_remaining)
5740 break;
5741 }
5742 }
5743
5744 /*
5745 * If there is still required_kernelcore, we do another pass with one
5746 * less node in the count. This will push zone_movable_pfn[nid] further
5747 * along on the nodes that still have memory until kernelcore is
b8af2941 5748 * satisfied
2a1e274a
MG
5749 */
5750 usable_nodes--;
5751 if (usable_nodes && required_kernelcore > usable_nodes)
5752 goto restart;
5753
b2f3eebe 5754out2:
2a1e274a
MG
5755 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5756 for (nid = 0; nid < MAX_NUMNODES; nid++)
5757 zone_movable_pfn[nid] =
5758 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5759
20e6926d 5760out:
66918dcd 5761 /* restore the node_state */
4b0ef1fe 5762 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5763}
5764
4b0ef1fe
LJ
5765/* Any regular or high memory on that node ? */
5766static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5767{
37b07e41
LS
5768 enum zone_type zone_type;
5769
4b0ef1fe
LJ
5770 if (N_MEMORY == N_NORMAL_MEMORY)
5771 return;
5772
5773 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5774 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5775 if (populated_zone(zone)) {
4b0ef1fe
LJ
5776 node_set_state(nid, N_HIGH_MEMORY);
5777 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5778 zone_type <= ZONE_NORMAL)
5779 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5780 break;
5781 }
37b07e41 5782 }
37b07e41
LS
5783}
5784
c713216d
MG
5785/**
5786 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5787 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5788 *
5789 * This will call free_area_init_node() for each active node in the system.
7d018176 5790 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5791 * zone in each node and their holes is calculated. If the maximum PFN
5792 * between two adjacent zones match, it is assumed that the zone is empty.
5793 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5794 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5795 * starts where the previous one ended. For example, ZONE_DMA32 starts
5796 * at arch_max_dma_pfn.
5797 */
5798void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5799{
c13291a5
TH
5800 unsigned long start_pfn, end_pfn;
5801 int i, nid;
a6af2bc3 5802
c713216d
MG
5803 /* Record where the zone boundaries are */
5804 memset(arch_zone_lowest_possible_pfn, 0,
5805 sizeof(arch_zone_lowest_possible_pfn));
5806 memset(arch_zone_highest_possible_pfn, 0,
5807 sizeof(arch_zone_highest_possible_pfn));
5808 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5809 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5810 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5811 if (i == ZONE_MOVABLE)
5812 continue;
c713216d
MG
5813 arch_zone_lowest_possible_pfn[i] =
5814 arch_zone_highest_possible_pfn[i-1];
5815 arch_zone_highest_possible_pfn[i] =
5816 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5817 }
2a1e274a
MG
5818 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5819 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5820
5821 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5822 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5823 find_zone_movable_pfns_for_nodes();
c713216d 5824
c713216d 5825 /* Print out the zone ranges */
f88dfff5 5826 pr_info("Zone ranges:\n");
2a1e274a
MG
5827 for (i = 0; i < MAX_NR_ZONES; i++) {
5828 if (i == ZONE_MOVABLE)
5829 continue;
f88dfff5 5830 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5831 if (arch_zone_lowest_possible_pfn[i] ==
5832 arch_zone_highest_possible_pfn[i])
f88dfff5 5833 pr_cont("empty\n");
72f0ba02 5834 else
8d29e18a
JG
5835 pr_cont("[mem %#018Lx-%#018Lx]\n",
5836 (u64)arch_zone_lowest_possible_pfn[i]
5837 << PAGE_SHIFT,
5838 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5839 << PAGE_SHIFT) - 1);
2a1e274a
MG
5840 }
5841
5842 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5843 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5844 for (i = 0; i < MAX_NUMNODES; i++) {
5845 if (zone_movable_pfn[i])
8d29e18a
JG
5846 pr_info(" Node %d: %#018Lx\n", i,
5847 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5848 }
c713216d 5849
f2d52fe5 5850 /* Print out the early node map */
f88dfff5 5851 pr_info("Early memory node ranges\n");
c13291a5 5852 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5853 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5854 (u64)start_pfn << PAGE_SHIFT,
5855 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5856
5857 /* Initialise every node */
708614e6 5858 mminit_verify_pageflags_layout();
8ef82866 5859 setup_nr_node_ids();
c713216d
MG
5860 for_each_online_node(nid) {
5861 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5862 free_area_init_node(nid, NULL,
c713216d 5863 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5864
5865 /* Any memory on that node */
5866 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5867 node_set_state(nid, N_MEMORY);
5868 check_for_memory(pgdat, nid);
c713216d
MG
5869 }
5870}
2a1e274a 5871
7e63efef 5872static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5873{
5874 unsigned long long coremem;
5875 if (!p)
5876 return -EINVAL;
5877
5878 coremem = memparse(p, &p);
7e63efef 5879 *core = coremem >> PAGE_SHIFT;
2a1e274a 5880
7e63efef 5881 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5882 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5883
5884 return 0;
5885}
ed7ed365 5886
7e63efef
MG
5887/*
5888 * kernelcore=size sets the amount of memory for use for allocations that
5889 * cannot be reclaimed or migrated.
5890 */
5891static int __init cmdline_parse_kernelcore(char *p)
5892{
5893 return cmdline_parse_core(p, &required_kernelcore);
5894}
5895
5896/*
5897 * movablecore=size sets the amount of memory for use for allocations that
5898 * can be reclaimed or migrated.
5899 */
5900static int __init cmdline_parse_movablecore(char *p)
5901{
5902 return cmdline_parse_core(p, &required_movablecore);
5903}
5904
ed7ed365 5905early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5906early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5907
0ee332c1 5908#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5909
c3d5f5f0
JL
5910void adjust_managed_page_count(struct page *page, long count)
5911{
5912 spin_lock(&managed_page_count_lock);
5913 page_zone(page)->managed_pages += count;
5914 totalram_pages += count;
3dcc0571
JL
5915#ifdef CONFIG_HIGHMEM
5916 if (PageHighMem(page))
5917 totalhigh_pages += count;
5918#endif
c3d5f5f0
JL
5919 spin_unlock(&managed_page_count_lock);
5920}
3dcc0571 5921EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5922
11199692 5923unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5924{
11199692
JL
5925 void *pos;
5926 unsigned long pages = 0;
69afade7 5927
11199692
JL
5928 start = (void *)PAGE_ALIGN((unsigned long)start);
5929 end = (void *)((unsigned long)end & PAGE_MASK);
5930 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5931 if ((unsigned int)poison <= 0xFF)
11199692
JL
5932 memset(pos, poison, PAGE_SIZE);
5933 free_reserved_page(virt_to_page(pos));
69afade7
JL
5934 }
5935
5936 if (pages && s)
11199692 5937 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5938 s, pages << (PAGE_SHIFT - 10), start, end);
5939
5940 return pages;
5941}
11199692 5942EXPORT_SYMBOL(free_reserved_area);
69afade7 5943
cfa11e08
JL
5944#ifdef CONFIG_HIGHMEM
5945void free_highmem_page(struct page *page)
5946{
5947 __free_reserved_page(page);
5948 totalram_pages++;
7b4b2a0d 5949 page_zone(page)->managed_pages++;
cfa11e08
JL
5950 totalhigh_pages++;
5951}
5952#endif
5953
7ee3d4e8
JL
5954
5955void __init mem_init_print_info(const char *str)
5956{
5957 unsigned long physpages, codesize, datasize, rosize, bss_size;
5958 unsigned long init_code_size, init_data_size;
5959
5960 physpages = get_num_physpages();
5961 codesize = _etext - _stext;
5962 datasize = _edata - _sdata;
5963 rosize = __end_rodata - __start_rodata;
5964 bss_size = __bss_stop - __bss_start;
5965 init_data_size = __init_end - __init_begin;
5966 init_code_size = _einittext - _sinittext;
5967
5968 /*
5969 * Detect special cases and adjust section sizes accordingly:
5970 * 1) .init.* may be embedded into .data sections
5971 * 2) .init.text.* may be out of [__init_begin, __init_end],
5972 * please refer to arch/tile/kernel/vmlinux.lds.S.
5973 * 3) .rodata.* may be embedded into .text or .data sections.
5974 */
5975#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5976 do { \
5977 if (start <= pos && pos < end && size > adj) \
5978 size -= adj; \
5979 } while (0)
7ee3d4e8
JL
5980
5981 adj_init_size(__init_begin, __init_end, init_data_size,
5982 _sinittext, init_code_size);
5983 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5984 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5985 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5986 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5987
5988#undef adj_init_size
5989
f88dfff5 5990 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5991 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5992 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5993#ifdef CONFIG_HIGHMEM
5994 ", %luK highmem"
5995#endif
5996 "%s%s)\n",
5997 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5998 codesize >> 10, datasize >> 10, rosize >> 10,
5999 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
6000 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
6001 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
6002#ifdef CONFIG_HIGHMEM
6003 totalhigh_pages << (PAGE_SHIFT-10),
6004#endif
6005 str ? ", " : "", str ? str : "");
6006}
6007
0e0b864e 6008/**
88ca3b94
RD
6009 * set_dma_reserve - set the specified number of pages reserved in the first zone
6010 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
6011 *
6012 * The per-cpu batchsize and zone watermarks are determined by present_pages.
6013 * In the DMA zone, a significant percentage may be consumed by kernel image
6014 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6015 * function may optionally be used to account for unfreeable pages in the
6016 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6017 * smaller per-cpu batchsize.
0e0b864e
MG
6018 */
6019void __init set_dma_reserve(unsigned long new_dma_reserve)
6020{
6021 dma_reserve = new_dma_reserve;
6022}
6023
1da177e4
LT
6024void __init free_area_init(unsigned long *zones_size)
6025{
9109fb7b 6026 free_area_init_node(0, zones_size,
1da177e4
LT
6027 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6028}
1da177e4 6029
1da177e4
LT
6030static int page_alloc_cpu_notify(struct notifier_block *self,
6031 unsigned long action, void *hcpu)
6032{
6033 int cpu = (unsigned long)hcpu;
1da177e4 6034
8bb78442 6035 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6036 lru_add_drain_cpu(cpu);
9f8f2172
CL
6037 drain_pages(cpu);
6038
6039 /*
6040 * Spill the event counters of the dead processor
6041 * into the current processors event counters.
6042 * This artificially elevates the count of the current
6043 * processor.
6044 */
f8891e5e 6045 vm_events_fold_cpu(cpu);
9f8f2172
CL
6046
6047 /*
6048 * Zero the differential counters of the dead processor
6049 * so that the vm statistics are consistent.
6050 *
6051 * This is only okay since the processor is dead and cannot
6052 * race with what we are doing.
6053 */
2bb921e5 6054 cpu_vm_stats_fold(cpu);
1da177e4
LT
6055 }
6056 return NOTIFY_OK;
6057}
1da177e4
LT
6058
6059void __init page_alloc_init(void)
6060{
6061 hotcpu_notifier(page_alloc_cpu_notify, 0);
6062}
6063
cb45b0e9
HA
6064/*
6065 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
6066 * or min_free_kbytes changes.
6067 */
6068static void calculate_totalreserve_pages(void)
6069{
6070 struct pglist_data *pgdat;
6071 unsigned long reserve_pages = 0;
2f6726e5 6072 enum zone_type i, j;
cb45b0e9
HA
6073
6074 for_each_online_pgdat(pgdat) {
6075 for (i = 0; i < MAX_NR_ZONES; i++) {
6076 struct zone *zone = pgdat->node_zones + i;
3484b2de 6077 long max = 0;
cb45b0e9
HA
6078
6079 /* Find valid and maximum lowmem_reserve in the zone */
6080 for (j = i; j < MAX_NR_ZONES; j++) {
6081 if (zone->lowmem_reserve[j] > max)
6082 max = zone->lowmem_reserve[j];
6083 }
6084
41858966
MG
6085 /* we treat the high watermark as reserved pages. */
6086 max += high_wmark_pages(zone);
cb45b0e9 6087
b40da049
JL
6088 if (max > zone->managed_pages)
6089 max = zone->managed_pages;
cb45b0e9 6090 reserve_pages += max;
ab8fabd4
JW
6091 /*
6092 * Lowmem reserves are not available to
6093 * GFP_HIGHUSER page cache allocations and
6094 * kswapd tries to balance zones to their high
6095 * watermark. As a result, neither should be
6096 * regarded as dirtyable memory, to prevent a
6097 * situation where reclaim has to clean pages
6098 * in order to balance the zones.
6099 */
6100 zone->dirty_balance_reserve = max;
cb45b0e9
HA
6101 }
6102 }
ab8fabd4 6103 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
6104 totalreserve_pages = reserve_pages;
6105}
6106
1da177e4
LT
6107/*
6108 * setup_per_zone_lowmem_reserve - called whenever
6109 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
6110 * has a correct pages reserved value, so an adequate number of
6111 * pages are left in the zone after a successful __alloc_pages().
6112 */
6113static void setup_per_zone_lowmem_reserve(void)
6114{
6115 struct pglist_data *pgdat;
2f6726e5 6116 enum zone_type j, idx;
1da177e4 6117
ec936fc5 6118 for_each_online_pgdat(pgdat) {
1da177e4
LT
6119 for (j = 0; j < MAX_NR_ZONES; j++) {
6120 struct zone *zone = pgdat->node_zones + j;
b40da049 6121 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6122
6123 zone->lowmem_reserve[j] = 0;
6124
2f6726e5
CL
6125 idx = j;
6126 while (idx) {
1da177e4
LT
6127 struct zone *lower_zone;
6128
2f6726e5
CL
6129 idx--;
6130
1da177e4
LT
6131 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6132 sysctl_lowmem_reserve_ratio[idx] = 1;
6133
6134 lower_zone = pgdat->node_zones + idx;
b40da049 6135 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6136 sysctl_lowmem_reserve_ratio[idx];
b40da049 6137 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6138 }
6139 }
6140 }
cb45b0e9
HA
6141
6142 /* update totalreserve_pages */
6143 calculate_totalreserve_pages();
1da177e4
LT
6144}
6145
cfd3da1e 6146static void __setup_per_zone_wmarks(void)
1da177e4
LT
6147{
6148 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6149 unsigned long lowmem_pages = 0;
6150 struct zone *zone;
6151 unsigned long flags;
6152
6153 /* Calculate total number of !ZONE_HIGHMEM pages */
6154 for_each_zone(zone) {
6155 if (!is_highmem(zone))
b40da049 6156 lowmem_pages += zone->managed_pages;
1da177e4
LT
6157 }
6158
6159 for_each_zone(zone) {
ac924c60
AM
6160 u64 tmp;
6161
1125b4e3 6162 spin_lock_irqsave(&zone->lock, flags);
b40da049 6163 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6164 do_div(tmp, lowmem_pages);
1da177e4
LT
6165 if (is_highmem(zone)) {
6166 /*
669ed175
NP
6167 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6168 * need highmem pages, so cap pages_min to a small
6169 * value here.
6170 *
41858966 6171 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6172 * deltas control asynch page reclaim, and so should
669ed175 6173 * not be capped for highmem.
1da177e4 6174 */
90ae8d67 6175 unsigned long min_pages;
1da177e4 6176
b40da049 6177 min_pages = zone->managed_pages / 1024;
90ae8d67 6178 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6179 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6180 } else {
669ed175
NP
6181 /*
6182 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6183 * proportionate to the zone's size.
6184 */
41858966 6185 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6186 }
6187
41858966
MG
6188 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6189 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6190
81c0a2bb 6191 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6192 high_wmark_pages(zone) - low_wmark_pages(zone) -
6193 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6194
56fd56b8 6195 setup_zone_migrate_reserve(zone);
1125b4e3 6196 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6197 }
cb45b0e9
HA
6198
6199 /* update totalreserve_pages */
6200 calculate_totalreserve_pages();
1da177e4
LT
6201}
6202
cfd3da1e
MG
6203/**
6204 * setup_per_zone_wmarks - called when min_free_kbytes changes
6205 * or when memory is hot-{added|removed}
6206 *
6207 * Ensures that the watermark[min,low,high] values for each zone are set
6208 * correctly with respect to min_free_kbytes.
6209 */
6210void setup_per_zone_wmarks(void)
6211{
6212 mutex_lock(&zonelists_mutex);
6213 __setup_per_zone_wmarks();
6214 mutex_unlock(&zonelists_mutex);
6215}
6216
55a4462a 6217/*
556adecb
RR
6218 * The inactive anon list should be small enough that the VM never has to
6219 * do too much work, but large enough that each inactive page has a chance
6220 * to be referenced again before it is swapped out.
6221 *
6222 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6223 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6224 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6225 * the anonymous pages are kept on the inactive list.
6226 *
6227 * total target max
6228 * memory ratio inactive anon
6229 * -------------------------------------
6230 * 10MB 1 5MB
6231 * 100MB 1 50MB
6232 * 1GB 3 250MB
6233 * 10GB 10 0.9GB
6234 * 100GB 31 3GB
6235 * 1TB 101 10GB
6236 * 10TB 320 32GB
6237 */
1b79acc9 6238static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6239{
96cb4df5 6240 unsigned int gb, ratio;
556adecb 6241
96cb4df5 6242 /* Zone size in gigabytes */
b40da049 6243 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6244 if (gb)
556adecb 6245 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6246 else
6247 ratio = 1;
556adecb 6248
96cb4df5
MK
6249 zone->inactive_ratio = ratio;
6250}
556adecb 6251
839a4fcc 6252static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6253{
6254 struct zone *zone;
6255
6256 for_each_zone(zone)
6257 calculate_zone_inactive_ratio(zone);
556adecb
RR
6258}
6259
1da177e4
LT
6260/*
6261 * Initialise min_free_kbytes.
6262 *
6263 * For small machines we want it small (128k min). For large machines
6264 * we want it large (64MB max). But it is not linear, because network
6265 * bandwidth does not increase linearly with machine size. We use
6266 *
b8af2941 6267 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6268 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6269 *
6270 * which yields
6271 *
6272 * 16MB: 512k
6273 * 32MB: 724k
6274 * 64MB: 1024k
6275 * 128MB: 1448k
6276 * 256MB: 2048k
6277 * 512MB: 2896k
6278 * 1024MB: 4096k
6279 * 2048MB: 5792k
6280 * 4096MB: 8192k
6281 * 8192MB: 11584k
6282 * 16384MB: 16384k
6283 */
1b79acc9 6284int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6285{
6286 unsigned long lowmem_kbytes;
5f12733e 6287 int new_min_free_kbytes;
1da177e4
LT
6288
6289 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6290 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6291
6292 if (new_min_free_kbytes > user_min_free_kbytes) {
6293 min_free_kbytes = new_min_free_kbytes;
6294 if (min_free_kbytes < 128)
6295 min_free_kbytes = 128;
6296 if (min_free_kbytes > 65536)
6297 min_free_kbytes = 65536;
6298 } else {
6299 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6300 new_min_free_kbytes, user_min_free_kbytes);
6301 }
bc75d33f 6302 setup_per_zone_wmarks();
a6cccdc3 6303 refresh_zone_stat_thresholds();
1da177e4 6304 setup_per_zone_lowmem_reserve();
556adecb 6305 setup_per_zone_inactive_ratio();
1da177e4
LT
6306 return 0;
6307}
bc75d33f 6308module_init(init_per_zone_wmark_min)
1da177e4
LT
6309
6310/*
b8af2941 6311 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6312 * that we can call two helper functions whenever min_free_kbytes
6313 * changes.
6314 */
cccad5b9 6315int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6316 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6317{
da8c757b
HP
6318 int rc;
6319
6320 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6321 if (rc)
6322 return rc;
6323
5f12733e
MH
6324 if (write) {
6325 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6326 setup_per_zone_wmarks();
5f12733e 6327 }
1da177e4
LT
6328 return 0;
6329}
6330
9614634f 6331#ifdef CONFIG_NUMA
cccad5b9 6332int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6333 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6334{
6335 struct zone *zone;
6336 int rc;
6337
8d65af78 6338 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6339 if (rc)
6340 return rc;
6341
6342 for_each_zone(zone)
b40da049 6343 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6344 sysctl_min_unmapped_ratio) / 100;
6345 return 0;
6346}
0ff38490 6347
cccad5b9 6348int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6349 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6350{
6351 struct zone *zone;
6352 int rc;
6353
8d65af78 6354 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6355 if (rc)
6356 return rc;
6357
6358 for_each_zone(zone)
b40da049 6359 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6360 sysctl_min_slab_ratio) / 100;
6361 return 0;
6362}
9614634f
CL
6363#endif
6364
1da177e4
LT
6365/*
6366 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6367 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6368 * whenever sysctl_lowmem_reserve_ratio changes.
6369 *
6370 * The reserve ratio obviously has absolutely no relation with the
41858966 6371 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6372 * if in function of the boot time zone sizes.
6373 */
cccad5b9 6374int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6375 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6376{
8d65af78 6377 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6378 setup_per_zone_lowmem_reserve();
6379 return 0;
6380}
6381
8ad4b1fb
RS
6382/*
6383 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6384 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6385 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6386 */
cccad5b9 6387int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6388 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6389{
6390 struct zone *zone;
7cd2b0a3 6391 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6392 int ret;
6393
7cd2b0a3
DR
6394 mutex_lock(&pcp_batch_high_lock);
6395 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6396
8d65af78 6397 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6398 if (!write || ret < 0)
6399 goto out;
6400
6401 /* Sanity checking to avoid pcp imbalance */
6402 if (percpu_pagelist_fraction &&
6403 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6404 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6405 ret = -EINVAL;
6406 goto out;
6407 }
6408
6409 /* No change? */
6410 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6411 goto out;
c8e251fa 6412
364df0eb 6413 for_each_populated_zone(zone) {
7cd2b0a3
DR
6414 unsigned int cpu;
6415
22a7f12b 6416 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6417 pageset_set_high_and_batch(zone,
6418 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6419 }
7cd2b0a3 6420out:
c8e251fa 6421 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6422 return ret;
8ad4b1fb
RS
6423}
6424
a9919c79 6425#ifdef CONFIG_NUMA
f034b5d4 6426int hashdist = HASHDIST_DEFAULT;
1da177e4 6427
1da177e4
LT
6428static int __init set_hashdist(char *str)
6429{
6430 if (!str)
6431 return 0;
6432 hashdist = simple_strtoul(str, &str, 0);
6433 return 1;
6434}
6435__setup("hashdist=", set_hashdist);
6436#endif
6437
6438/*
6439 * allocate a large system hash table from bootmem
6440 * - it is assumed that the hash table must contain an exact power-of-2
6441 * quantity of entries
6442 * - limit is the number of hash buckets, not the total allocation size
6443 */
6444void *__init alloc_large_system_hash(const char *tablename,
6445 unsigned long bucketsize,
6446 unsigned long numentries,
6447 int scale,
6448 int flags,
6449 unsigned int *_hash_shift,
6450 unsigned int *_hash_mask,
31fe62b9
TB
6451 unsigned long low_limit,
6452 unsigned long high_limit)
1da177e4 6453{
31fe62b9 6454 unsigned long long max = high_limit;
1da177e4
LT
6455 unsigned long log2qty, size;
6456 void *table = NULL;
6457
6458 /* allow the kernel cmdline to have a say */
6459 if (!numentries) {
6460 /* round applicable memory size up to nearest megabyte */
04903664 6461 numentries = nr_kernel_pages;
a7e83318
JZ
6462
6463 /* It isn't necessary when PAGE_SIZE >= 1MB */
6464 if (PAGE_SHIFT < 20)
6465 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6466
6467 /* limit to 1 bucket per 2^scale bytes of low memory */
6468 if (scale > PAGE_SHIFT)
6469 numentries >>= (scale - PAGE_SHIFT);
6470 else
6471 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6472
6473 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6474 if (unlikely(flags & HASH_SMALL)) {
6475 /* Makes no sense without HASH_EARLY */
6476 WARN_ON(!(flags & HASH_EARLY));
6477 if (!(numentries >> *_hash_shift)) {
6478 numentries = 1UL << *_hash_shift;
6479 BUG_ON(!numentries);
6480 }
6481 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6482 numentries = PAGE_SIZE / bucketsize;
1da177e4 6483 }
6e692ed3 6484 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6485
6486 /* limit allocation size to 1/16 total memory by default */
6487 if (max == 0) {
6488 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6489 do_div(max, bucketsize);
6490 }
074b8517 6491 max = min(max, 0x80000000ULL);
1da177e4 6492
31fe62b9
TB
6493 if (numentries < low_limit)
6494 numentries = low_limit;
1da177e4
LT
6495 if (numentries > max)
6496 numentries = max;
6497
f0d1b0b3 6498 log2qty = ilog2(numentries);
1da177e4
LT
6499
6500 do {
6501 size = bucketsize << log2qty;
6502 if (flags & HASH_EARLY)
6782832e 6503 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6504 else if (hashdist)
6505 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6506 else {
1037b83b
ED
6507 /*
6508 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6509 * some pages at the end of hash table which
6510 * alloc_pages_exact() automatically does
1037b83b 6511 */
264ef8a9 6512 if (get_order(size) < MAX_ORDER) {
a1dd268c 6513 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6514 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6515 }
1da177e4
LT
6516 }
6517 } while (!table && size > PAGE_SIZE && --log2qty);
6518
6519 if (!table)
6520 panic("Failed to allocate %s hash table\n", tablename);
6521
f241e660 6522 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6523 tablename,
f241e660 6524 (1UL << log2qty),
f0d1b0b3 6525 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6526 size);
6527
6528 if (_hash_shift)
6529 *_hash_shift = log2qty;
6530 if (_hash_mask)
6531 *_hash_mask = (1 << log2qty) - 1;
6532
6533 return table;
6534}
a117e66e 6535
835c134e
MG
6536/* Return a pointer to the bitmap storing bits affecting a block of pages */
6537static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6538 unsigned long pfn)
6539{
6540#ifdef CONFIG_SPARSEMEM
6541 return __pfn_to_section(pfn)->pageblock_flags;
6542#else
6543 return zone->pageblock_flags;
6544#endif /* CONFIG_SPARSEMEM */
6545}
6546
6547static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6548{
6549#ifdef CONFIG_SPARSEMEM
6550 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6551 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6552#else
c060f943 6553 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6554 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6555#endif /* CONFIG_SPARSEMEM */
6556}
6557
6558/**
1aab4d77 6559 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6560 * @page: The page within the block of interest
1aab4d77
RD
6561 * @pfn: The target page frame number
6562 * @end_bitidx: The last bit of interest to retrieve
6563 * @mask: mask of bits that the caller is interested in
6564 *
6565 * Return: pageblock_bits flags
835c134e 6566 */
dc4b0caf 6567unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6568 unsigned long end_bitidx,
6569 unsigned long mask)
835c134e
MG
6570{
6571 struct zone *zone;
6572 unsigned long *bitmap;
dc4b0caf 6573 unsigned long bitidx, word_bitidx;
e58469ba 6574 unsigned long word;
835c134e
MG
6575
6576 zone = page_zone(page);
835c134e
MG
6577 bitmap = get_pageblock_bitmap(zone, pfn);
6578 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6579 word_bitidx = bitidx / BITS_PER_LONG;
6580 bitidx &= (BITS_PER_LONG-1);
835c134e 6581
e58469ba
MG
6582 word = bitmap[word_bitidx];
6583 bitidx += end_bitidx;
6584 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6585}
6586
6587/**
dc4b0caf 6588 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6589 * @page: The page within the block of interest
835c134e 6590 * @flags: The flags to set
1aab4d77
RD
6591 * @pfn: The target page frame number
6592 * @end_bitidx: The last bit of interest
6593 * @mask: mask of bits that the caller is interested in
835c134e 6594 */
dc4b0caf
MG
6595void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6596 unsigned long pfn,
e58469ba
MG
6597 unsigned long end_bitidx,
6598 unsigned long mask)
835c134e
MG
6599{
6600 struct zone *zone;
6601 unsigned long *bitmap;
dc4b0caf 6602 unsigned long bitidx, word_bitidx;
e58469ba
MG
6603 unsigned long old_word, word;
6604
6605 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6606
6607 zone = page_zone(page);
835c134e
MG
6608 bitmap = get_pageblock_bitmap(zone, pfn);
6609 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6610 word_bitidx = bitidx / BITS_PER_LONG;
6611 bitidx &= (BITS_PER_LONG-1);
6612
309381fe 6613 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6614
e58469ba
MG
6615 bitidx += end_bitidx;
6616 mask <<= (BITS_PER_LONG - bitidx - 1);
6617 flags <<= (BITS_PER_LONG - bitidx - 1);
6618
4db0c3c2 6619 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6620 for (;;) {
6621 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6622 if (word == old_word)
6623 break;
6624 word = old_word;
6625 }
835c134e 6626}
a5d76b54
KH
6627
6628/*
80934513
MK
6629 * This function checks whether pageblock includes unmovable pages or not.
6630 * If @count is not zero, it is okay to include less @count unmovable pages
6631 *
b8af2941 6632 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6633 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6634 * expect this function should be exact.
a5d76b54 6635 */
b023f468
WC
6636bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6637 bool skip_hwpoisoned_pages)
49ac8255
KH
6638{
6639 unsigned long pfn, iter, found;
47118af0
MN
6640 int mt;
6641
49ac8255
KH
6642 /*
6643 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6644 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6645 */
6646 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6647 return false;
47118af0
MN
6648 mt = get_pageblock_migratetype(page);
6649 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6650 return false;
49ac8255
KH
6651
6652 pfn = page_to_pfn(page);
6653 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6654 unsigned long check = pfn + iter;
6655
29723fcc 6656 if (!pfn_valid_within(check))
49ac8255 6657 continue;
29723fcc 6658
49ac8255 6659 page = pfn_to_page(check);
c8721bbb
NH
6660
6661 /*
6662 * Hugepages are not in LRU lists, but they're movable.
6663 * We need not scan over tail pages bacause we don't
6664 * handle each tail page individually in migration.
6665 */
6666 if (PageHuge(page)) {
6667 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6668 continue;
6669 }
6670
97d255c8
MK
6671 /*
6672 * We can't use page_count without pin a page
6673 * because another CPU can free compound page.
6674 * This check already skips compound tails of THP
6675 * because their page->_count is zero at all time.
6676 */
6677 if (!atomic_read(&page->_count)) {
49ac8255
KH
6678 if (PageBuddy(page))
6679 iter += (1 << page_order(page)) - 1;
6680 continue;
6681 }
97d255c8 6682
b023f468
WC
6683 /*
6684 * The HWPoisoned page may be not in buddy system, and
6685 * page_count() is not 0.
6686 */
6687 if (skip_hwpoisoned_pages && PageHWPoison(page))
6688 continue;
6689
49ac8255
KH
6690 if (!PageLRU(page))
6691 found++;
6692 /*
6b4f7799
JW
6693 * If there are RECLAIMABLE pages, we need to check
6694 * it. But now, memory offline itself doesn't call
6695 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6696 */
6697 /*
6698 * If the page is not RAM, page_count()should be 0.
6699 * we don't need more check. This is an _used_ not-movable page.
6700 *
6701 * The problematic thing here is PG_reserved pages. PG_reserved
6702 * is set to both of a memory hole page and a _used_ kernel
6703 * page at boot.
6704 */
6705 if (found > count)
80934513 6706 return true;
49ac8255 6707 }
80934513 6708 return false;
49ac8255
KH
6709}
6710
6711bool is_pageblock_removable_nolock(struct page *page)
6712{
656a0706
MH
6713 struct zone *zone;
6714 unsigned long pfn;
687875fb
MH
6715
6716 /*
6717 * We have to be careful here because we are iterating over memory
6718 * sections which are not zone aware so we might end up outside of
6719 * the zone but still within the section.
656a0706
MH
6720 * We have to take care about the node as well. If the node is offline
6721 * its NODE_DATA will be NULL - see page_zone.
687875fb 6722 */
656a0706
MH
6723 if (!node_online(page_to_nid(page)))
6724 return false;
6725
6726 zone = page_zone(page);
6727 pfn = page_to_pfn(page);
108bcc96 6728 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6729 return false;
6730
b023f468 6731 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6732}
0c0e6195 6733
041d3a8c
MN
6734#ifdef CONFIG_CMA
6735
6736static unsigned long pfn_max_align_down(unsigned long pfn)
6737{
6738 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6739 pageblock_nr_pages) - 1);
6740}
6741
6742static unsigned long pfn_max_align_up(unsigned long pfn)
6743{
6744 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6745 pageblock_nr_pages));
6746}
6747
041d3a8c 6748/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6749static int __alloc_contig_migrate_range(struct compact_control *cc,
6750 unsigned long start, unsigned long end)
041d3a8c
MN
6751{
6752 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6753 unsigned long nr_reclaimed;
041d3a8c
MN
6754 unsigned long pfn = start;
6755 unsigned int tries = 0;
6756 int ret = 0;
6757
be49a6e1 6758 migrate_prep();
041d3a8c 6759
bb13ffeb 6760 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6761 if (fatal_signal_pending(current)) {
6762 ret = -EINTR;
6763 break;
6764 }
6765
bb13ffeb
MG
6766 if (list_empty(&cc->migratepages)) {
6767 cc->nr_migratepages = 0;
edc2ca61 6768 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6769 if (!pfn) {
6770 ret = -EINTR;
6771 break;
6772 }
6773 tries = 0;
6774 } else if (++tries == 5) {
6775 ret = ret < 0 ? ret : -EBUSY;
6776 break;
6777 }
6778
beb51eaa
MK
6779 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6780 &cc->migratepages);
6781 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6782
9c620e2b 6783 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6784 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6785 }
2a6f5124
SP
6786 if (ret < 0) {
6787 putback_movable_pages(&cc->migratepages);
6788 return ret;
6789 }
6790 return 0;
041d3a8c
MN
6791}
6792
6793/**
6794 * alloc_contig_range() -- tries to allocate given range of pages
6795 * @start: start PFN to allocate
6796 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6797 * @migratetype: migratetype of the underlaying pageblocks (either
6798 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6799 * in range must have the same migratetype and it must
6800 * be either of the two.
041d3a8c
MN
6801 *
6802 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6803 * aligned, however it's the caller's responsibility to guarantee that
6804 * we are the only thread that changes migrate type of pageblocks the
6805 * pages fall in.
6806 *
6807 * The PFN range must belong to a single zone.
6808 *
6809 * Returns zero on success or negative error code. On success all
6810 * pages which PFN is in [start, end) are allocated for the caller and
6811 * need to be freed with free_contig_range().
6812 */
0815f3d8
MN
6813int alloc_contig_range(unsigned long start, unsigned long end,
6814 unsigned migratetype)
041d3a8c 6815{
041d3a8c
MN
6816 unsigned long outer_start, outer_end;
6817 int ret = 0, order;
6818
bb13ffeb
MG
6819 struct compact_control cc = {
6820 .nr_migratepages = 0,
6821 .order = -1,
6822 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6823 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6824 .ignore_skip_hint = true,
6825 };
6826 INIT_LIST_HEAD(&cc.migratepages);
6827
041d3a8c
MN
6828 /*
6829 * What we do here is we mark all pageblocks in range as
6830 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6831 * have different sizes, and due to the way page allocator
6832 * work, we align the range to biggest of the two pages so
6833 * that page allocator won't try to merge buddies from
6834 * different pageblocks and change MIGRATE_ISOLATE to some
6835 * other migration type.
6836 *
6837 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6838 * migrate the pages from an unaligned range (ie. pages that
6839 * we are interested in). This will put all the pages in
6840 * range back to page allocator as MIGRATE_ISOLATE.
6841 *
6842 * When this is done, we take the pages in range from page
6843 * allocator removing them from the buddy system. This way
6844 * page allocator will never consider using them.
6845 *
6846 * This lets us mark the pageblocks back as
6847 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6848 * aligned range but not in the unaligned, original range are
6849 * put back to page allocator so that buddy can use them.
6850 */
6851
6852 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6853 pfn_max_align_up(end), migratetype,
6854 false);
041d3a8c 6855 if (ret)
86a595f9 6856 return ret;
041d3a8c 6857
bb13ffeb 6858 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6859 if (ret)
6860 goto done;
6861
6862 /*
6863 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6864 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6865 * more, all pages in [start, end) are free in page allocator.
6866 * What we are going to do is to allocate all pages from
6867 * [start, end) (that is remove them from page allocator).
6868 *
6869 * The only problem is that pages at the beginning and at the
6870 * end of interesting range may be not aligned with pages that
6871 * page allocator holds, ie. they can be part of higher order
6872 * pages. Because of this, we reserve the bigger range and
6873 * once this is done free the pages we are not interested in.
6874 *
6875 * We don't have to hold zone->lock here because the pages are
6876 * isolated thus they won't get removed from buddy.
6877 */
6878
6879 lru_add_drain_all();
510f5507 6880 drain_all_pages(cc.zone);
041d3a8c
MN
6881
6882 order = 0;
6883 outer_start = start;
6884 while (!PageBuddy(pfn_to_page(outer_start))) {
6885 if (++order >= MAX_ORDER) {
6886 ret = -EBUSY;
6887 goto done;
6888 }
6889 outer_start &= ~0UL << order;
6890 }
6891
6892 /* Make sure the range is really isolated. */
b023f468 6893 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6894 pr_info("%s: [%lx, %lx) PFNs busy\n",
6895 __func__, outer_start, end);
041d3a8c
MN
6896 ret = -EBUSY;
6897 goto done;
6898 }
6899
49f223a9 6900 /* Grab isolated pages from freelists. */
bb13ffeb 6901 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6902 if (!outer_end) {
6903 ret = -EBUSY;
6904 goto done;
6905 }
6906
6907 /* Free head and tail (if any) */
6908 if (start != outer_start)
6909 free_contig_range(outer_start, start - outer_start);
6910 if (end != outer_end)
6911 free_contig_range(end, outer_end - end);
6912
6913done:
6914 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6915 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6916 return ret;
6917}
6918
6919void free_contig_range(unsigned long pfn, unsigned nr_pages)
6920{
bcc2b02f
MS
6921 unsigned int count = 0;
6922
6923 for (; nr_pages--; pfn++) {
6924 struct page *page = pfn_to_page(pfn);
6925
6926 count += page_count(page) != 1;
6927 __free_page(page);
6928 }
6929 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6930}
6931#endif
6932
4ed7e022 6933#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6934/*
6935 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6936 * page high values need to be recalulated.
6937 */
4ed7e022
JL
6938void __meminit zone_pcp_update(struct zone *zone)
6939{
0a647f38 6940 unsigned cpu;
c8e251fa 6941 mutex_lock(&pcp_batch_high_lock);
0a647f38 6942 for_each_possible_cpu(cpu)
169f6c19
CS
6943 pageset_set_high_and_batch(zone,
6944 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6945 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6946}
6947#endif
6948
340175b7
JL
6949void zone_pcp_reset(struct zone *zone)
6950{
6951 unsigned long flags;
5a883813
MK
6952 int cpu;
6953 struct per_cpu_pageset *pset;
340175b7
JL
6954
6955 /* avoid races with drain_pages() */
6956 local_irq_save(flags);
6957 if (zone->pageset != &boot_pageset) {
5a883813
MK
6958 for_each_online_cpu(cpu) {
6959 pset = per_cpu_ptr(zone->pageset, cpu);
6960 drain_zonestat(zone, pset);
6961 }
340175b7
JL
6962 free_percpu(zone->pageset);
6963 zone->pageset = &boot_pageset;
6964 }
6965 local_irq_restore(flags);
6966}
6967
6dcd73d7 6968#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6969/*
6970 * All pages in the range must be isolated before calling this.
6971 */
6972void
6973__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6974{
6975 struct page *page;
6976 struct zone *zone;
7aeb09f9 6977 unsigned int order, i;
0c0e6195
KH
6978 unsigned long pfn;
6979 unsigned long flags;
6980 /* find the first valid pfn */
6981 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6982 if (pfn_valid(pfn))
6983 break;
6984 if (pfn == end_pfn)
6985 return;
6986 zone = page_zone(pfn_to_page(pfn));
6987 spin_lock_irqsave(&zone->lock, flags);
6988 pfn = start_pfn;
6989 while (pfn < end_pfn) {
6990 if (!pfn_valid(pfn)) {
6991 pfn++;
6992 continue;
6993 }
6994 page = pfn_to_page(pfn);
b023f468
WC
6995 /*
6996 * The HWPoisoned page may be not in buddy system, and
6997 * page_count() is not 0.
6998 */
6999 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7000 pfn++;
7001 SetPageReserved(page);
7002 continue;
7003 }
7004
0c0e6195
KH
7005 BUG_ON(page_count(page));
7006 BUG_ON(!PageBuddy(page));
7007 order = page_order(page);
7008#ifdef CONFIG_DEBUG_VM
7009 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7010 pfn, 1 << order, end_pfn);
7011#endif
7012 list_del(&page->lru);
7013 rmv_page_order(page);
7014 zone->free_area[order].nr_free--;
0c0e6195
KH
7015 for (i = 0; i < (1 << order); i++)
7016 SetPageReserved((page+i));
7017 pfn += (1 << order);
7018 }
7019 spin_unlock_irqrestore(&zone->lock, flags);
7020}
7021#endif
8d22ba1b
WF
7022
7023#ifdef CONFIG_MEMORY_FAILURE
7024bool is_free_buddy_page(struct page *page)
7025{
7026 struct zone *zone = page_zone(page);
7027 unsigned long pfn = page_to_pfn(page);
7028 unsigned long flags;
7aeb09f9 7029 unsigned int order;
8d22ba1b
WF
7030
7031 spin_lock_irqsave(&zone->lock, flags);
7032 for (order = 0; order < MAX_ORDER; order++) {
7033 struct page *page_head = page - (pfn & ((1 << order) - 1));
7034
7035 if (PageBuddy(page_head) && page_order(page_head) >= order)
7036 break;
7037 }
7038 spin_unlock_irqrestore(&zone->lock, flags);
7039
7040 return order < MAX_ORDER;
7041}
7042#endif
This page took 1.643 seconds and 5 git commands to generate.