[MIPS] Add Loongson 3A2000/3A3000 proccessor support.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
219d1afa 2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9
TS
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
0a44bf69 38#include "elf-vxworks.h"
2f0c68f2 39#include "dwarf2.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
9ab066b4
RS
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
ead49a57 57/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
b15e6682
AO
75struct mips_got_entry
76{
3dff0dd1 77 /* One input bfd that needs the GOT entry. */
b15e6682 78 bfd *abfd;
f4416af6
AO
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 90 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
f4416af6
AO
93 struct mips_elf_link_hash_entry *h;
94 } d;
0f20cc35 95
9ab066b4
RS
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
0f20cc35
DJ
98 unsigned char tls_type;
99
9ab066b4
RS
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
b15e6682 104 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
b15e6682
AO
108};
109
13db6b44
RS
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
c224138d
RS
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
13db6b44 142 relocations against a given section. */
c224138d
RS
143struct mips_got_page_entry
144{
13db6b44
RS
145 /* The section that these entries are based on. */
146 asection *sec;
c224138d
RS
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
f0abc2a1 153/* This structure is used to hold .got information when linking. */
b49e97c9
TS
154
155struct mips_got_info
156{
b49e97c9
TS
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
23cc69b6
RS
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
0f20cc35
DJ
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
c224138d 166 /* The number of local .got entries, eventually including page entries. */
b49e97c9 167 unsigned int local_gotno;
c224138d
RS
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
ab361d49
RS
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
cb22ccf4
KCY
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
b15e6682
AO
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
13db6b44
RS
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
c224138d
RS
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
f4416af6
AO
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
d7206569 187/* Structure passed when merging bfds' gots. */
f4416af6
AO
188
189struct mips_elf_got_per_bfd_arg
190{
f4416af6
AO
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
c224138d
RS
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
0f20cc35
DJ
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
f4416af6
AO
212};
213
ab361d49
RS
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
f4416af6 216
ab361d49 217struct mips_elf_traverse_got_arg
f4416af6 218{
ab361d49 219 struct bfd_link_info *info;
f4416af6
AO
220 struct mips_got_info *g;
221 int value;
0f20cc35
DJ
222};
223
f0abc2a1
AM
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
f0abc2a1
AM
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
68bfbfcc 234 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 235
d5eaccd7
RS
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
4dfe6ac6 239 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 240
634835ae
RS
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
861fb55a
DJ
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
296#define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298#define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300#define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 302
b49e97c9
TS
303/* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306struct mips_elf_hash_sort_data
307{
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
0f20cc35
DJ
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
55f8b9d2 313 bfd_size_type min_got_dynindx;
f4416af6
AO
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 316 with dynamic relocations pointing to it from non-primary GOTs). */
55f8b9d2 317 bfd_size_type max_unref_got_dynindx;
e17b0c35
MR
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
b49e97c9 322 symbol without a GOT entry. */
55f8b9d2 323 bfd_size_type max_non_got_dynindx;
b49e97c9
TS
324};
325
1bbce132
MR
326/* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331struct plt_entry
332{
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350};
351
b49e97c9
TS
352/* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355struct mips_elf_link_hash_entry
356{
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
861fb55a
DJ
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
b49e97c9
TS
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
b49e97c9
TS
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
b49e97c9
TS
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
7c5fcef7 380
634835ae
RS
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
6ccf4795
RS
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
71782a75
RS
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
861fb55a
DJ
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
71782a75
RS
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
861fb55a
DJ
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
1bbce132
MR
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
b49e97c9
TS
419};
420
421/* MIPS ELF linker hash table. */
422
423struct mips_elf_link_hash_table
424{
425 struct elf_link_hash_table root;
861fb55a 426
b49e97c9
TS
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
861fb55a 429
b49e97c9
TS
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
861fb55a 432
e6aea42d
MR
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 435 bfd_boolean use_rld_obj_head;
861fb55a 436
b4082c70
DD
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
861fb55a 439
b49e97c9 440 /* This is set if we see any mips16 stub sections. */
b34976b6 441 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
833794fc
MR
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
8b10b0b3
MR
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
0a44bf69
RS
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
861fb55a 454
0e53d9da
AN
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
861fb55a 457
0a44bf69
RS
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
0a44bf69 460 asection *srelplt2;
4e41d0d7 461 asection *sstubs;
861fb55a 462
a8028dd0
RS
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
861fb55a 465
d222d210
RS
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
861fb55a 470 /* The size of the PLT header in bytes. */
0a44bf69 471 bfd_vma plt_header_size;
861fb55a 472
1bbce132
MR
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
861fb55a 487
33bb52fb
RS
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
861fb55a 490
5108fc1b
RS
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
861fb55a
DJ
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
1bbce132
MR
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
519};
520
4dfe6ac6
NC
521/* Get the MIPS ELF linker hash table from a link_info structure. */
522
523#define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
861fb55a 527/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
528struct mips_htab_traverse_info
529{
861fb55a
DJ
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
b49e97c9
TS
536};
537
6ae68ba3
MR
538/* MIPS ELF private object data. */
539
540struct mips_elf_obj_tdata
541{
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
ee227692 547
b60bf9be
CF
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
351cdf24
MF
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
ee227692
RS
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
698600e4
AM
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
6ae68ba3
MR
573};
574
575/* Get MIPS ELF private object data from BFD's tdata. */
576
577#define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
0f20cc35
DJ
580#define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 593 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 608
b49e97c9
TS
609/* Structure used to pass information to mips_elf_output_extsym. */
610
611struct extsym_info
612{
9e4aeb93
RS
613 bfd *abfd;
614 struct bfd_link_info *info;
b49e97c9
TS
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
b34976b6 617 bfd_boolean failed;
b49e97c9
TS
618};
619
8dc1a139 620/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
621
622static const char * const mips_elf_dynsym_rtproc_names[] =
623{
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628};
629
630/* These structures are used to generate the .compact_rel section on
8dc1a139 631 IRIX5. */
b49e97c9
TS
632
633typedef struct
634{
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641} Elf32_compact_rel;
642
643typedef struct
644{
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651} Elf32_External_compact_rel;
652
653typedef struct
654{
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661} Elf32_crinfo;
662
663typedef struct
664{
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670} Elf32_crinfo2;
671
672typedef struct
673{
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677} Elf32_External_crinfo;
678
679typedef struct
680{
681 bfd_byte info[4];
682 bfd_byte konst[4];
683} Elf32_External_crinfo2;
684
685/* These are the constants used to swap the bitfields in a crinfo. */
686
687#define CRINFO_CTYPE (0x1)
688#define CRINFO_CTYPE_SH (31)
689#define CRINFO_RTYPE (0xf)
690#define CRINFO_RTYPE_SH (27)
691#define CRINFO_DIST2TO (0xff)
692#define CRINFO_DIST2TO_SH (19)
693#define CRINFO_RELVADDR (0x7ffff)
694#define CRINFO_RELVADDR_SH (0)
695
696/* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699#define CRF_MIPS_LONG 1
700#define CRF_MIPS_SHORT 0
701
702/* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712#define CRT_MIPS_REL32 0xa
713#define CRT_MIPS_WORD 0xb
714#define CRT_MIPS_GPHI_LO 0xc
715#define CRT_MIPS_JMPAD 0xd
716
717#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721\f
722/* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725typedef struct runtime_pdr {
ae9a127f
NC
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
b49e97c9 735 long reserved;
ae9a127f 736 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
737} RPDR, *pRPDR;
738#define cbRPDR sizeof (RPDR)
739#define rpdNil ((pRPDR) 0)
740\f
b15e6682 741static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
b34976b6 744static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 745 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
746static bfd_vma mips_elf_high
747 (bfd_vma);
b34976b6 748static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
f4416af6 752static bfd_vma mips_elf_adjust_gp
9719ad41 753 (bfd *, struct mips_got_info *, bfd *);
f4416af6 754
b49e97c9
TS
755/* This will be used when we sort the dynamic relocation records. */
756static bfd *reldyn_sorting_bfd;
757
6d30f5b2
NC
758/* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760#define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
cd8d5a82
CF
764/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767#define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773#define JALR_TO_BAL_P(abfd) 1
774
38a7df63
CF
775/* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778#define JR_TO_B_P(abfd) 1
779
861fb55a
DJ
780/* True if ABFD is a PIC object. */
781#define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
351cdf24
MF
784/* Nonzero if ABFD is using the O32 ABI. */
785#define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
b49e97c9 788/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
789#define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
4a14403c 792/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 793#define ABI_64_P(abfd) \
141ff970 794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 795
4a14403c
TS
796/* Nonzero if ABFD is using NewABI conventions. */
797#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
e8faf7d1
MR
799/* Nonzero if ABFD has microMIPS code. */
800#define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
7361da2c
AB
803/* Nonzero if ABFD is MIPS R6. */
804#define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
4a14403c 808/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
809#define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
b49e97c9
TS
812/* Whether we are trying to be compatible with IRIX at all. */
813#define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816/* The name of the options section. */
817#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 819
cc2e31b9
RS
820/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
351cdf24
MF
825/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
943284cc
DJ
829/* Whether the section is readonly. */
830#define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
b49e97c9 834/* The name of the stub section. */
ca07892d 835#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
836
837/* The size of an external REL relocation. */
838#define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
0a44bf69
RS
841/* The size of an external RELA relocation. */
842#define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
b49e97c9
TS
845/* The size of an external dynamic table entry. */
846#define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849/* The size of a GOT entry. */
850#define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
b4082c70
DD
853/* The size of the .rld_map section. */
854#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
b49e97c9
TS
857/* The size of a symbol-table entry. */
858#define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861/* The default alignment for sections, as a power of two. */
862#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 863 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
864
865/* Get word-sized data. */
866#define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869/* Put out word-sized data. */
870#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
07d6d2b8
AM
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
b49e97c9
TS
873 : bfd_put_32 (abfd, val, ptr))
874
861fb55a
DJ
875/* The opcode for word-sized loads (LW or LD). */
876#define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
b49e97c9 879/* Add a dynamic symbol table-entry. */
9719ad41 880#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 881 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
882
883#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
0aa13fee 884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
b49e97c9 885
0a44bf69
RS
886/* The name of the dynamic relocation section. */
887#define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
b49e97c9
TS
890/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 893#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 894
51e38d68
RS
895/* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
f4416af6 901/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
902#define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
904
905/* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
0a44bf69 907#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 908
6a691779 909/* Instructions which appear in a stub. */
3d6746ca
DD
910#define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
07d6d2b8 913 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 914#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca 915#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
a18a2a34 916#define STUB_JALR 0x0320f809 /* jalr ra,t9 */
5108fc1b
RS
917#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
919#define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
1bbce132
MR
924/* Likewise for the microMIPS ASE. */
925#define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 930#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
931#define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 934#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
935#define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937#define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939#define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
5108fc1b
RS
944#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
946#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
948#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
950
951/* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
07d6d2b8
AM
954#define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
b49e97c9
TS
957 : "/usr/lib/libc.so.1")
958
959#ifdef BFD64
ee6423ed
AO
960#define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
962#define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964#define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966#define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968#else
ee6423ed 969#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
970#define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972#define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974#define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976#endif
977\f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012#define FN_STUB ".mips16.fn."
1013#define CALL_STUB ".mips16.call."
1014#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1015
1016#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1019\f
861fb55a 1020/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1021static const bfd_vma mips_o32_exec_plt0_entry[] =
1022{
861fb55a
DJ
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1027 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031};
1032
1033/* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1035static const bfd_vma mips_n32_exec_plt0_entry[] =
1036{
861fb55a
DJ
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1041 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045};
1046
1047/* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1049static const bfd_vma mips_n64_exec_plt0_entry[] =
1050{
861fb55a
DJ
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1055 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059};
1060
1bbce132
MR
1061/* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068{
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078};
1079
833794fc
MR
1080/* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083{
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1088 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092};
1093
1bbce132 1094/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1095static const bfd_vma mips_exec_plt_entry[] =
1096{
861fb55a
DJ
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101};
1102
7361da2c
AB
1103/* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106static const bfd_vma mipsr6_exec_plt_entry[] =
1107{
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112};
1113
1bbce132
MR
1114/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117static const bfd_vma mips16_o32_exec_plt_entry[] =
1118{
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126};
1127
1128/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130static const bfd_vma micromips_o32_exec_plt_entry[] =
1131{
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136};
1137
833794fc
MR
1138/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140{
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145};
1146
0a44bf69 1147/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1148static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149{
0a44bf69
RS
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156};
1157
1158/* The format of subsequent PLT entries. */
6d30f5b2
NC
1159static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160{
0a44bf69
RS
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169};
1170
1171/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1172static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173{
0a44bf69
RS
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180};
1181
1182/* The format of subsequent PLT entries. */
6d30f5b2
NC
1183static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184{
0a44bf69
RS
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187};
1188\f
d21911ea
MR
1189/* microMIPS 32-bit opcode helper installer. */
1190
1191static void
1192bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193{
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
07d6d2b8 1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
d21911ea
MR
1196}
1197
1198/* microMIPS 32-bit opcode helper retriever. */
1199
1200static bfd_vma
1201bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202{
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204}
1205\f
b49e97c9
TS
1206/* Look up an entry in a MIPS ELF linker hash table. */
1207
1208#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213/* Traverse a MIPS ELF linker hash table. */
1214
1215#define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
9719ad41 1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1219 (info)))
1220
0f20cc35
DJ
1221/* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224#define TP_OFFSET 0x7000
1225#define DTP_OFFSET 0x8000
1226
1227static bfd_vma
1228dtprel_base (struct bfd_link_info *info)
1229{
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234}
1235
1236static bfd_vma
1237tprel_base (struct bfd_link_info *info)
1238{
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243}
1244
b49e97c9
TS
1245/* Create an entry in a MIPS ELF linker hash table. */
1246
1247static struct bfd_hash_entry *
9719ad41
RS
1248mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1250{
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
9719ad41
RS
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
b49e97c9
TS
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
9719ad41 1265 if (ret != NULL)
b49e97c9
TS
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
861fb55a 1272 ret->la25_stub = 0;
b49e97c9 1273 ret->possibly_dynamic_relocs = 0;
b49e97c9 1274 ret->fn_stub = NULL;
b49e97c9
TS
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
634835ae 1277 ret->global_got_area = GGA_NONE;
6ccf4795 1278 ret->got_only_for_calls = TRUE;
71782a75 1279 ret->readonly_reloc = FALSE;
861fb55a 1280 ret->has_static_relocs = FALSE;
71782a75
RS
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
861fb55a 1283 ret->has_nonpic_branches = FALSE;
33bb52fb 1284 ret->needs_lazy_stub = FALSE;
1bbce132 1285 ret->use_plt_entry = FALSE;
b49e97c9
TS
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289}
f0abc2a1 1290
6ae68ba3
MR
1291/* Allocate MIPS ELF private object data. */
1292
1293bfd_boolean
1294_bfd_mips_elf_mkobject (bfd *abfd)
1295{
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298}
1299
f0abc2a1 1300bfd_boolean
9719ad41 1301_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1302{
f592407e
AM
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1307
f592407e
AM
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
f0abc2a1
AM
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315}
b49e97c9
TS
1316\f
1317/* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
b34976b6 1320bfd_boolean
9719ad41
RS
1321_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
b49e97c9
TS
1323{
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
9719ad41 1326 char *ext_hdr;
b49e97c9
TS
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
9719ad41 1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
9719ad41 1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1336 swap->external_hdr_size))
b49e97c9
TS
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344#define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1350 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
9719ad41 1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1370#undef READ
1371
1372 debug->fdr = NULL;
b49e97c9 1373
b34976b6 1374 return TRUE;
b49e97c9
TS
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
b34976b6 1401 return FALSE;
b49e97c9
TS
1402}
1403\f
1404/* Swap RPDR (runtime procedure table entry) for output. */
1405
1406static void
9719ad41 1407ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1408{
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1420}
1421
1422/* Create a runtime procedure table from the .mdebug section. */
1423
b34976b6 1424static bfd_boolean
9719ad41
RS
1425mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
b49e97c9
TS
1428{
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
9719ad41 1433 void *rtproc;
b49e97c9
TS
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
9719ad41 1460 epdr = bfd_malloc (size * count);
b49e97c9
TS
1461 if (epdr == NULL)
1462 goto error_return;
1463
9719ad41 1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
9719ad41 1468 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
9719ad41 1473 sv = bfd_malloc (size * count);
b49e97c9
TS
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
9719ad41 1479 esym = bfd_malloc (size * count);
b49e97c9
TS
1480 if (esym == NULL)
1481 goto error_return;
1482
9719ad41 1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1484 goto error_return;
1485
1486 count = hdr->issMax;
9719ad41 1487 ss = bfd_malloc (count);
b49e97c9
TS
1488 if (ss == NULL)
1489 goto error_return;
f075ee0c 1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
9719ad41
RS
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
9719ad41 1514 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
9719ad41 1523 erp = rtproc;
b49e97c9
TS
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
eea6121a 1538 s->size = size;
9719ad41 1539 s->contents = rtproc;
b49e97c9
TS
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
8423293d 1543 s->map_head.link_order = NULL;
b49e97c9
TS
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
b34976b6 1556 return TRUE;
b49e97c9
TS
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
b34976b6 1569 return FALSE;
b49e97c9 1570}
738e5348 1571\f
861fb55a
DJ
1572/* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575static bfd_boolean
1576mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580{
a848a227 1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
861fb55a
DJ
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1584 char *name;
1585 bfd_boolean res;
861fb55a 1586
a848a227 1587 if (micromips_p)
df58fc94
RS
1588 value |= 1;
1589
861fb55a 1590 /* Create a new symbol. */
e1fa0163 1591 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1592 bh = NULL;
e1fa0163
NC
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
861fb55a
DJ
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
a848a227
MR
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
861fb55a
DJ
1607 return TRUE;
1608}
1609
738e5348
RS
1610/* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614static bfd_boolean
1615mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618{
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
e1fa0163 1621 char *name;
738e5348
RS
1622 asection *s;
1623 bfd_vma value;
e1fa0163 1624 bfd_boolean res;
738e5348
RS
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
e1fa0163 1633 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1634 bh = NULL;
e1fa0163
NC
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
738e5348
RS
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649}
1650
1651/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654static bfd_boolean
1655section_allows_mips16_refs_p (asection *section)
1656{
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664}
1665
1666/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670static unsigned long
cb4437b8
MR
1671mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
502e814e 1673 const Elf_Internal_Rela *relocs,
738e5348
RS
1674 const Elf_Internal_Rela *relend)
1675{
cb4437b8 1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1677 const Elf_Internal_Rela *rel;
1678
cb4437b8
MR
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691}
b49e97c9
TS
1692
1693/* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
861fb55a
DJ
1696static void
1697mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
b49e97c9 1699{
738e5348
RS
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
b49e97c9
TS
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
07d6d2b8
AM
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
eea6121a 1715 h->fn_stub->size = 0;
b49e97c9
TS
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1719 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1720 }
1721
1722 if (h->call_stub != NULL
30c09090 1723 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
eea6121a 1728 h->call_stub->size = 0;
b49e97c9
TS
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1732 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1733 }
1734
1735 if (h->call_fp_stub != NULL
30c09090 1736 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
eea6121a 1741 h->call_fp_stub->size = 0;
b49e97c9
TS
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1746 }
861fb55a
DJ
1747}
1748
1749/* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751static hashval_t
1752mips_elf_la25_stub_hash (const void *entry_)
1753{
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759}
1760
1761static int
1762mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763{
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772}
1773
1774/* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778bfd_boolean
1779_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782{
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1786 if (htab == NULL)
1787 return FALSE;
1788
861fb55a
DJ
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796}
1797
1798/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
861fb55a
DJ
1803
1804static bfd_boolean
1805mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806{
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
f02cb058 1811 && !bfd_is_und_section (h->root.root.u.def.section)
8f0c309a
CLT
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816}
1817
8f0c309a
CLT
1818/* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821static bfd_vma
1822mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824{
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836}
1837
861fb55a
DJ
1838/* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842static bfd_boolean
1843mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845{
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1852 if (htab == NULL)
1853 return FALSE;
861fb55a
DJ
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
8f0c309a 1862 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883}
1884
1885/* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889static bfd_boolean
1890mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892{
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1897 if (htab == NULL)
1898 return FALSE;
861fb55a
DJ
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920}
1921
1922/* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925static bfd_boolean
1926mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928{
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
861fb55a
DJ
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1943 if (htab == NULL)
1944 return FALSE;
1945
861fb55a
DJ
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
8f0c309a
CLT
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
fe152e64
MR
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
8f0c309a
CLT
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
861fb55a
DJ
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976}
1977
1978/* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981static bfd_boolean
1982mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983{
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 1987 if (!bfd_link_relocatable (hti->info))
861fb55a 1988 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1989
861fb55a
DJ
1990 if (mips_elf_local_pic_function_p (h))
1991 {
ba85c43e
NC
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
861fb55a
DJ
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
0e1862bb 2002 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
b34976b6 2013 return TRUE;
b49e97c9
TS
2014}
2015\f
d6f16593
MR
2016/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
07d6d2b8 2025 | Immediate 15:0 |
d6f16593
MR
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
07d6d2b8
AM
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
d6f16593
MR
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
07d6d2b8
AM
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
d6f16593
MR
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
738e5348
RS
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
d6f16593
MR
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
738e5348
RS
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
c9775dde
MR
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
738e5348
RS
2104
2105static inline bfd_boolean
2106mips16_reloc_p (int r_type)
2107{
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
d0f13682
CLT
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
c9775dde 2123 case R_MIPS16_PC16_S1:
738e5348
RS
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129}
2130
df58fc94
RS
2131/* Check if a microMIPS reloc. */
2132
2133static inline bfd_boolean
2134micromips_reloc_p (unsigned int r_type)
2135{
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137}
2138
2139/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143static inline bfd_boolean
2144micromips_reloc_shuffle_p (unsigned int r_type)
2145{
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149}
2150
738e5348
RS
2151static inline bfd_boolean
2152got16_reloc_p (int r_type)
2153{
df58fc94
RS
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2157}
2158
2159static inline bfd_boolean
2160call16_reloc_p (int r_type)
2161{
df58fc94
RS
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165}
2166
2167static inline bfd_boolean
2168got_disp_reloc_p (unsigned int r_type)
2169{
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171}
2172
2173static inline bfd_boolean
2174got_page_reloc_p (unsigned int r_type)
2175{
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177}
2178
df58fc94
RS
2179static inline bfd_boolean
2180got_lo16_reloc_p (unsigned int r_type)
2181{
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183}
2184
2185static inline bfd_boolean
2186call_hi16_reloc_p (unsigned int r_type)
2187{
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189}
2190
2191static inline bfd_boolean
2192call_lo16_reloc_p (unsigned int r_type)
2193{
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2195}
2196
2197static inline bfd_boolean
2198hi16_reloc_p (int r_type)
2199{
df58fc94
RS
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
7361da2c
AB
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
738e5348 2204}
d6f16593 2205
738e5348
RS
2206static inline bfd_boolean
2207lo16_reloc_p (int r_type)
2208{
df58fc94
RS
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
7361da2c
AB
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
738e5348
RS
2213}
2214
2215static inline bfd_boolean
2216mips16_call_reloc_p (int r_type)
2217{
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219}
d6f16593 2220
38a7df63
CF
2221static inline bfd_boolean
2222jal_reloc_p (int r_type)
2223{
df58fc94
RS
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227}
2228
99aefae6
MR
2229static inline bfd_boolean
2230b_reloc_p (int r_type)
2231{
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
c9775dde 2235 || r_type == R_MIPS_GNU_REL16_S2
9d862524
MR
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
99aefae6
MR
2240}
2241
7361da2c
AB
2242static inline bfd_boolean
2243aligned_pcrel_reloc_p (int r_type)
2244{
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247}
2248
9d862524
MR
2249static inline bfd_boolean
2250branch_reloc_p (int r_type)
2251{
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257}
2258
c9775dde
MR
2259static inline bfd_boolean
2260mips16_branch_reloc_p (int r_type)
2261{
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264}
2265
df58fc94
RS
2266static inline bfd_boolean
2267micromips_branch_reloc_p (int r_type)
2268{
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273}
2274
2275static inline bfd_boolean
2276tls_gd_reloc_p (unsigned int r_type)
2277{
d0f13682
CLT
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2281}
2282
2283static inline bfd_boolean
2284tls_ldm_reloc_p (unsigned int r_type)
2285{
d0f13682
CLT
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2289}
2290
2291static inline bfd_boolean
2292tls_gottprel_reloc_p (unsigned int r_type)
2293{
d0f13682
CLT
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2297}
2298
d6f16593 2299void
df58fc94
RS
2300_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2302{
df58fc94 2303 bfd_vma first, second, val;
d6f16593 2304
df58fc94 2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2306 return;
2307
df58fc94
RS
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2316 else
df58fc94
RS
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2319 bfd_put_32 (abfd, val, data);
2320}
2321
2322void
df58fc94
RS
2323_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2325{
df58fc94 2326 bfd_vma first, second, val;
d6f16593 2327
df58fc94 2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
df58fc94 2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2333 {
df58fc94
RS
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2341 }
2342 else
2343 {
df58fc94
RS
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
d6f16593 2347 }
df58fc94
RS
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
d6f16593
MR
2350}
2351
b49e97c9 2352bfd_reloc_status_type
9719ad41
RS
2353_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2356{
2357 bfd_vma relocation;
a7ebbfdf 2358 bfd_signed_vma val;
30ac9238 2359 bfd_reloc_status_type status;
b49e97c9
TS
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
07515404 2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2370 return bfd_reloc_outofrange;
2371
b49e97c9 2372 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2373 val = reloc_entry->addend;
2374
30ac9238 2375 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2376
b49e97c9 2377 /* Adjust val for the final section location and GP value. If we
1049f94e 2378 are producing relocatable output, we don't want to do this for
b49e97c9 2379 an external symbol. */
1049f94e 2380 if (! relocatable
b49e97c9
TS
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
a7ebbfdf
TS
2384 if (reloc_entry->howto->partial_inplace)
2385 {
30ac9238
RS
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
a7ebbfdf
TS
2391 }
2392 else
2393 reloc_entry->addend = val;
b49e97c9 2394
1049f94e 2395 if (relocatable)
b49e97c9 2396 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2397
2398 return bfd_reloc_ok;
2399}
2400
2401/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406struct mips_hi16
2407{
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412};
2413
2414/* FIXME: This should not be a static variable. */
2415
2416static struct mips_hi16 *mips_hi16_list;
2417
2418/* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427bfd_reloc_status_type
2428_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432{
2433 struct mips_hi16 *n;
2434
07515404 2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452}
2453
738e5348 2454/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458bfd_reloc_status_type
2459_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462{
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473}
2474
2475/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479bfd_reloc_status_type
2480_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483{
2484 bfd_vma vallo;
d6f16593 2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2486
07515404 2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2488 return bfd_reloc_outofrange;
2489
df58fc94 2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2491 location);
df58fc94
RS
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
d6f16593 2495
30ac9238
RS
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
738e5348
RS
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
30ac9238
RS
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532}
2533
2534/* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538bfd_reloc_status_type
2539_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543{
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
07515404 2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
d6f16593
MR
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
30ac9238
RS
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
df58fc94
RS
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
30ac9238 2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2594 location);
df58fc94
RS
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
d6f16593 2597
30ac9238
RS
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2604
2605 return bfd_reloc_ok;
2606}
2607\f
2608/* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611static void
9719ad41
RS
2612bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
b49e97c9
TS
2614{
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617}
2618
2619static void
9719ad41
RS
2620bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
b49e97c9
TS
2622{
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625}
2626
2627static void
9719ad41
RS
2628bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
b49e97c9
TS
2630{
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637}
2638
2639static void
9719ad41
RS
2640bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
b49e97c9
TS
2642{
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652}
b49e97c9
TS
2653\f
2654/* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658void
9719ad41
RS
2659bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
b49e97c9
TS
2661{
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668}
2669
2670void
9719ad41
RS
2671bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
b49e97c9
TS
2673{
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680}
2681
2682/* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688void
9719ad41
RS
2689bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2691{
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699}
2700
2701void
9719ad41
RS
2702bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
b49e97c9
TS
2704{
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712}
2713
2714/* Swap in an options header. */
2715
2716void
9719ad41
RS
2717bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
b49e97c9
TS
2719{
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724}
2725
2726/* Swap out an options header. */
2727
2728void
9719ad41
RS
2729bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
b49e97c9
TS
2731{
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736}
351cdf24
MF
2737
2738/* Swap in an abiflags structure. */
2739
2740void
2741bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744{
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756}
2757
2758/* Swap out an abiflags structure. */
2759
2760void
2761bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764{
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776}
b49e97c9
TS
2777\f
2778/* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781static int
9719ad41 2782sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2783{
947216bf
AM
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
6870500c 2786 int diff;
b49e97c9 2787
947216bf
AM
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2790
6870500c
RS
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
b49e97c9
TS
2800}
2801
f4416af6
AO
2802/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804static int
7e3102a7
AM
2805sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2807{
7e3102a7 2808#ifdef BFD64
f4416af6
AO
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
6870500c
RS
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
7e3102a7
AM
2827#else
2828 abort ();
2829#endif
f4416af6
AO
2830}
2831
2832
b49e97c9
TS
2833/* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
b34976b6 2847static bfd_boolean
9719ad41 2848mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2849{
9719ad41 2850 struct extsym_info *einfo = data;
b34976b6 2851 bfd_boolean strip;
b49e97c9
TS
2852 asection *sec, *output_section;
2853
b49e97c9 2854 if (h->root.indx == -2)
b34976b6 2855 strip = FALSE;
f5385ebf 2856 else if ((h->root.def_dynamic
77cfaee6
AM
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
b34976b6 2861 strip = TRUE;
b49e97c9
TS
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
b34976b6
AM
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
b49e97c9 2868 else
b34976b6 2869 strip = FALSE;
b49e97c9
TS
2870
2871 if (strip)
b34976b6 2872 return TRUE;
b49e97c9
TS
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
07d6d2b8 2890 special symbols. */
b49e97c9
TS
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
b49e97c9
TS
2906 else
2907 h->esym.asym.sc = scUndefined;
2908 }
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2912 else
2913 {
2914 const char *name;
2915
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2918
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2923 else
2924 {
2925 name = bfd_section_name (output_section->owner, output_section);
2926
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2944 else
2945 h->esym.asym.sc = scAbs;
2946 }
2947 }
2948
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2951 }
2952
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2957 {
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2962
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
33bb52fb 2972 else
b49e97c9
TS
2973 {
2974 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2975
2976 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2978
33bb52fb 2979 if (hd->needs_lazy_stub)
b49e97c9 2980 {
1bbce132
MR
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2986 if (sec == NULL)
2987 h->esym.asym.value = 0;
2988 else
2989 {
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
1bbce132 2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
2993 + sec->output_offset
2994 + output_section->vma);
2995 else
2996 h->esym.asym.value = 0;
2997 }
b49e97c9
TS
2998 }
2999 }
3000
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3003 &h->esym))
3004 {
b34976b6
AM
3005 einfo->failed = TRUE;
3006 return FALSE;
b49e97c9
TS
3007 }
3008
b34976b6 3009 return TRUE;
b49e97c9
TS
3010}
3011
3012/* A comparison routine used to sort .gptab entries. */
3013
3014static int
9719ad41 3015gptab_compare (const void *p1, const void *p2)
b49e97c9 3016{
9719ad41
RS
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
b49e97c9
TS
3019
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3021}
3022\f
b15e6682 3023/* Functions to manage the got entry hash table. */
f4416af6
AO
3024
3025/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3026 hash number. */
3027
3028static INLINE hashval_t
9719ad41 3029mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3030{
3031#ifdef BFD64
3032 return addr + (addr >> 32);
3033#else
3034 return addr;
3035#endif
3036}
3037
f4416af6 3038static hashval_t
d9bf376d 3039mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3040{
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3042
e641e783 3043 return (entry->symndx
9ab066b4
RS
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
f4416af6
AO
3050}
3051
3052static int
3dff0dd1 3053mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3054{
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3057
e641e783 3058 return (e1->symndx == e2->symndx
9ab066b4
RS
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3065}
c224138d 3066
13db6b44
RS
3067static hashval_t
3068mips_got_page_ref_hash (const void *ref_)
3069{
3070 const struct mips_got_page_ref *ref;
3071
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3077}
3078
3079static int
3080mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3081{
3082 const struct mips_got_page_ref *ref1, *ref2;
3083
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3091}
3092
c224138d
RS
3093static hashval_t
3094mips_got_page_entry_hash (const void *entry_)
3095{
3096 const struct mips_got_page_entry *entry;
3097
3098 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3099 return entry->sec->id;
c224138d
RS
3100}
3101
3102static int
3103mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3104{
3105 const struct mips_got_page_entry *entry1, *entry2;
3106
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3109 return entry1->sec == entry2->sec;
c224138d 3110}
b15e6682 3111\f
3dff0dd1 3112/* Create and return a new mips_got_info structure. */
5334aa52
RS
3113
3114static struct mips_got_info *
3dff0dd1 3115mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3116{
3117 struct mips_got_info *g;
3118
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3120 if (g == NULL)
3121 return NULL;
3122
3dff0dd1
RS
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3125 if (g->got_entries == NULL)
3126 return NULL;
3127
13db6b44
RS
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
5334aa52
RS
3131 return NULL;
3132
3133 return g;
3134}
3135
ee227692
RS
3136/* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3138
3139static struct mips_got_info *
3140mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3141{
3142 struct mips_elf_obj_tdata *tdata;
3143
3144 if (!is_mips_elf (abfd))
3145 return NULL;
3146
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3dff0dd1 3149 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3150 return tdata->got;
3151}
3152
d7206569
RS
3153/* Record that ABFD should use output GOT G. */
3154
3155static void
3156mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3157{
3158 struct mips_elf_obj_tdata *tdata;
3159
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3162 if (tdata->got)
3163 {
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
13db6b44
RS
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3170 }
3171 tdata->got = g;
3172}
3173
0a44bf69
RS
3174/* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
f4416af6
AO
3177
3178static asection *
0a44bf69 3179mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3180{
0a44bf69 3181 const char *dname;
f4416af6 3182 asection *sreloc;
0a44bf69 3183 bfd *dynobj;
f4416af6 3184
0a44bf69
RS
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3187 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3188 if (sreloc == NULL && create_p)
3189 {
3d4d4302
AM
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3191 (SEC_ALLOC
3192 | SEC_LOAD
3193 | SEC_HAS_CONTENTS
3194 | SEC_IN_MEMORY
3195 | SEC_LINKER_CREATED
3196 | SEC_READONLY));
f4416af6 3197 if (sreloc == NULL
f4416af6 3198 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3200 return NULL;
3201 }
3202 return sreloc;
3203}
3204
e641e783
RS
3205/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3206
3207static int
3208mips_elf_reloc_tls_type (unsigned int r_type)
3209{
3210 if (tls_gd_reloc_p (r_type))
3211 return GOT_TLS_GD;
3212
3213 if (tls_ldm_reloc_p (r_type))
3214 return GOT_TLS_LDM;
3215
3216 if (tls_gottprel_reloc_p (r_type))
3217 return GOT_TLS_IE;
3218
9ab066b4 3219 return GOT_TLS_NONE;
e641e783
RS
3220}
3221
3222/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3223
3224static int
3225mips_tls_got_entries (unsigned int type)
3226{
3227 switch (type)
3228 {
3229 case GOT_TLS_GD:
3230 case GOT_TLS_LDM:
3231 return 2;
3232
3233 case GOT_TLS_IE:
3234 return 1;
3235
9ab066b4 3236 case GOT_TLS_NONE:
e641e783
RS
3237 return 0;
3238 }
3239 abort ();
3240}
3241
0f20cc35
DJ
3242/* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3244 is NULL). */
3245
3246static int
3247mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3249{
3250 int indx = 0;
0f20cc35
DJ
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253
1cb83cac
MR
3254 if (h != NULL
3255 && h->dynindx != -1
3256 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3257 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3258 indx = h->dynindx;
3259
9143e72c 3260 if ((bfd_link_dll (info) || indx != 0)
0f20cc35
DJ
3261 && (h == NULL
3262 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3263 || h->root.type != bfd_link_hash_undefweak))
3264 need_relocs = TRUE;
3265
3266 if (!need_relocs)
e641e783 3267 return 0;
0f20cc35 3268
9ab066b4 3269 switch (tls_type)
0f20cc35 3270 {
e641e783
RS
3271 case GOT_TLS_GD:
3272 return indx != 0 ? 2 : 1;
0f20cc35 3273
e641e783
RS
3274 case GOT_TLS_IE:
3275 return 1;
0f20cc35 3276
e641e783 3277 case GOT_TLS_LDM:
9143e72c 3278 return bfd_link_dll (info) ? 1 : 0;
0f20cc35 3279
e641e783
RS
3280 default:
3281 return 0;
3282 }
0f20cc35
DJ
3283}
3284
ab361d49
RS
3285/* Add the number of GOT entries and TLS relocations required by ENTRY
3286 to G. */
0f20cc35 3287
ab361d49
RS
3288static void
3289mips_elf_count_got_entry (struct bfd_link_info *info,
3290 struct mips_got_info *g,
3291 struct mips_got_entry *entry)
0f20cc35 3292{
9ab066b4 3293 if (entry->tls_type)
ab361d49 3294 {
9ab066b4
RS
3295 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3296 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3297 entry->symndx < 0
3298 ? &entry->d.h->root : NULL);
3299 }
3300 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3301 g->local_gotno += 1;
3302 else
3303 g->global_gotno += 1;
0f20cc35
DJ
3304}
3305
0f20cc35
DJ
3306/* Output a simple dynamic relocation into SRELOC. */
3307
3308static void
3309mips_elf_output_dynamic_relocation (bfd *output_bfd,
3310 asection *sreloc,
861fb55a 3311 unsigned long reloc_index,
0f20cc35
DJ
3312 unsigned long indx,
3313 int r_type,
3314 bfd_vma offset)
3315{
3316 Elf_Internal_Rela rel[3];
3317
3318 memset (rel, 0, sizeof (rel));
3319
3320 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3321 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3322
3323 if (ABI_64_P (output_bfd))
3324 {
3325 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3326 (output_bfd, &rel[0],
3327 (sreloc->contents
861fb55a 3328 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3329 }
3330 else
3331 bfd_elf32_swap_reloc_out
3332 (output_bfd, &rel[0],
3333 (sreloc->contents
861fb55a 3334 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3335}
3336
3337/* Initialize a set of TLS GOT entries for one symbol. */
3338
3339static void
9ab066b4
RS
3340mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3341 struct mips_got_entry *entry,
0f20cc35
DJ
3342 struct mips_elf_link_hash_entry *h,
3343 bfd_vma value)
3344{
1cb83cac 3345 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
23cc69b6 3346 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3347 int indx;
3348 asection *sreloc, *sgot;
9ab066b4 3349 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3350 bfd_boolean need_relocs = FALSE;
3351
23cc69b6 3352 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3353 if (htab == NULL)
3354 return;
3355
ce558b89 3356 sgot = htab->root.sgot;
0f20cc35
DJ
3357
3358 indx = 0;
1cb83cac
MR
3359 if (h != NULL
3360 && h->root.dynindx != -1
3361 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3362 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3363 indx = h->root.dynindx;
0f20cc35 3364
9ab066b4 3365 if (entry->tls_initialized)
0f20cc35
DJ
3366 return;
3367
9143e72c 3368 if ((bfd_link_dll (info) || indx != 0)
0f20cc35
DJ
3369 && (h == NULL
3370 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3371 || h->root.type != bfd_link_hash_undefweak))
3372 need_relocs = TRUE;
3373
3374 /* MINUS_ONE means the symbol is not defined in this object. It may not
3375 be defined at all; assume that the value doesn't matter in that
3376 case. Otherwise complain if we would use the value. */
3377 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3378 || h->root.root.type == bfd_link_hash_undefweak);
3379
3380 /* Emit necessary relocations. */
0a44bf69 3381 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3382 got_offset = entry->gotidx;
0f20cc35 3383
9ab066b4 3384 switch (entry->tls_type)
0f20cc35 3385 {
e641e783
RS
3386 case GOT_TLS_GD:
3387 /* General Dynamic. */
3388 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3389
3390 if (need_relocs)
3391 {
3392 mips_elf_output_dynamic_relocation
861fb55a 3393 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3394 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3395 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3396
3397 if (indx)
3398 mips_elf_output_dynamic_relocation
861fb55a 3399 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3400 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3401 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3402 else
3403 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3404 sgot->contents + got_offset2);
0f20cc35
DJ
3405 }
3406 else
3407 {
3408 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3409 sgot->contents + got_offset);
0f20cc35 3410 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3411 sgot->contents + got_offset2);
0f20cc35 3412 }
e641e783 3413 break;
0f20cc35 3414
e641e783
RS
3415 case GOT_TLS_IE:
3416 /* Initial Exec model. */
0f20cc35
DJ
3417 if (need_relocs)
3418 {
3419 if (indx == 0)
3420 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3421 sgot->contents + got_offset);
0f20cc35
DJ
3422 else
3423 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3424 sgot->contents + got_offset);
0f20cc35
DJ
3425
3426 mips_elf_output_dynamic_relocation
861fb55a 3427 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3428 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3429 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3430 }
3431 else
3432 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3433 sgot->contents + got_offset);
3434 break;
0f20cc35 3435
e641e783 3436 case GOT_TLS_LDM:
0f20cc35
DJ
3437 /* The initial offset is zero, and the LD offsets will include the
3438 bias by DTP_OFFSET. */
3439 MIPS_ELF_PUT_WORD (abfd, 0,
3440 sgot->contents + got_offset
3441 + MIPS_ELF_GOT_SIZE (abfd));
3442
9143e72c 3443 if (!bfd_link_dll (info))
0f20cc35
DJ
3444 MIPS_ELF_PUT_WORD (abfd, 1,
3445 sgot->contents + got_offset);
3446 else
3447 mips_elf_output_dynamic_relocation
861fb55a 3448 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3449 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3450 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3451 break;
3452
3453 default:
3454 abort ();
0f20cc35
DJ
3455 }
3456
9ab066b4 3457 entry->tls_initialized = TRUE;
e641e783 3458}
0f20cc35 3459
0a44bf69
RS
3460/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3461 for global symbol H. .got.plt comes before the GOT, so the offset
3462 will be negative. */
3463
3464static bfd_vma
3465mips_elf_gotplt_index (struct bfd_link_info *info,
3466 struct elf_link_hash_entry *h)
3467{
1bbce132 3468 bfd_vma got_address, got_value;
0a44bf69
RS
3469 struct mips_elf_link_hash_table *htab;
3470
3471 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3472 BFD_ASSERT (htab != NULL);
3473
1bbce132
MR
3474 BFD_ASSERT (h->plt.plist != NULL);
3475 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3476
3477 /* Calculate the address of the associated .got.plt entry. */
ce558b89
AM
3478 got_address = (htab->root.sgotplt->output_section->vma
3479 + htab->root.sgotplt->output_offset
1bbce132
MR
3480 + (h->plt.plist->gotplt_index
3481 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3482
3483 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3484 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3485 + htab->root.hgot->root.u.def.section->output_offset
3486 + htab->root.hgot->root.u.def.value);
3487
3488 return got_address - got_value;
3489}
3490
5c18022e 3491/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3492 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3493 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3494 offset can be found. */
b49e97c9
TS
3495
3496static bfd_vma
9719ad41 3497mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3498 bfd_vma value, unsigned long r_symndx,
0f20cc35 3499 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3500{
a8028dd0 3501 struct mips_elf_link_hash_table *htab;
b15e6682 3502 struct mips_got_entry *entry;
b49e97c9 3503
a8028dd0 3504 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3505 BFD_ASSERT (htab != NULL);
3506
a8028dd0
RS
3507 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3508 r_symndx, h, r_type);
0f20cc35 3509 if (!entry)
b15e6682 3510 return MINUS_ONE;
0f20cc35 3511
e641e783 3512 if (entry->tls_type)
9ab066b4
RS
3513 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3514 return entry->gotidx;
b49e97c9
TS
3515}
3516
13fbec83 3517/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3518
3519static bfd_vma
13fbec83
RS
3520mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3521 struct elf_link_hash_entry *h)
3522{
3523 struct mips_elf_link_hash_table *htab;
3524 long global_got_dynindx;
3525 struct mips_got_info *g;
3526 bfd_vma got_index;
3527
3528 htab = mips_elf_hash_table (info);
3529 BFD_ASSERT (htab != NULL);
3530
3531 global_got_dynindx = 0;
3532 if (htab->global_gotsym != NULL)
3533 global_got_dynindx = htab->global_gotsym->dynindx;
3534
3535 /* Once we determine the global GOT entry with the lowest dynamic
3536 symbol table index, we must put all dynamic symbols with greater
3537 indices into the primary GOT. That makes it easy to calculate the
3538 GOT offset. */
3539 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3540 g = mips_elf_bfd_got (obfd, FALSE);
3541 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3542 * MIPS_ELF_GOT_SIZE (obfd));
ce558b89 3543 BFD_ASSERT (got_index < htab->root.sgot->size);
13fbec83
RS
3544
3545 return got_index;
3546}
3547
3548/* Return the GOT index for the global symbol indicated by H, which is
3549 referenced by a relocation of type R_TYPE in IBFD. */
3550
3551static bfd_vma
3552mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3553 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3554{
a8028dd0 3555 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3556 struct mips_got_info *g;
3557 struct mips_got_entry lookup, *entry;
3558 bfd_vma gotidx;
b49e97c9 3559
a8028dd0 3560 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3561 BFD_ASSERT (htab != NULL);
3562
6c42ddb9
RS
3563 g = mips_elf_bfd_got (ibfd, FALSE);
3564 BFD_ASSERT (g);
f4416af6 3565
6c42ddb9
RS
3566 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3567 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3568 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3569
6c42ddb9
RS
3570 lookup.abfd = ibfd;
3571 lookup.symndx = -1;
3572 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3573 entry = htab_find (g->got_entries, &lookup);
3574 BFD_ASSERT (entry);
0f20cc35 3575
6c42ddb9 3576 gotidx = entry->gotidx;
ce558b89 3577 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
f4416af6 3578
6c42ddb9 3579 if (lookup.tls_type)
0f20cc35 3580 {
0f20cc35
DJ
3581 bfd_vma value = MINUS_ONE;
3582
3583 if ((h->root.type == bfd_link_hash_defined
3584 || h->root.type == bfd_link_hash_defweak)
3585 && h->root.u.def.section->output_section)
3586 value = (h->root.u.def.value
3587 + h->root.u.def.section->output_offset
3588 + h->root.u.def.section->output_section->vma);
3589
9ab066b4 3590 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3591 }
6c42ddb9 3592 return gotidx;
b49e97c9
TS
3593}
3594
5c18022e
RS
3595/* Find a GOT page entry that points to within 32KB of VALUE. These
3596 entries are supposed to be placed at small offsets in the GOT, i.e.,
3597 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3598 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3599 offset of the GOT entry from VALUE. */
b49e97c9
TS
3600
3601static bfd_vma
9719ad41 3602mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3603 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3604{
91d6fa6a 3605 bfd_vma page, got_index;
b15e6682 3606 struct mips_got_entry *entry;
b49e97c9 3607
0a44bf69 3608 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3609 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3610 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3611
b15e6682
AO
3612 if (!entry)
3613 return MINUS_ONE;
143d77c5 3614
91d6fa6a 3615 got_index = entry->gotidx;
b49e97c9
TS
3616
3617 if (offsetp)
f4416af6 3618 *offsetp = value - entry->d.address;
b49e97c9 3619
91d6fa6a 3620 return got_index;
b49e97c9
TS
3621}
3622
738e5348 3623/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3624 EXTERNAL is true if the relocation was originally against a global
3625 symbol that binds locally. */
b49e97c9
TS
3626
3627static bfd_vma
9719ad41 3628mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3629 bfd_vma value, bfd_boolean external)
b49e97c9 3630{
b15e6682 3631 struct mips_got_entry *entry;
b49e97c9 3632
0a44bf69
RS
3633 /* GOT16 relocations against local symbols are followed by a LO16
3634 relocation; those against global symbols are not. Thus if the
3635 symbol was originally local, the GOT16 relocation should load the
3636 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3637 if (! external)
0a44bf69 3638 value = mips_elf_high (value) << 16;
b49e97c9 3639
738e5348
RS
3640 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3641 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3642 same in all cases. */
a8028dd0
RS
3643 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3644 NULL, R_MIPS_GOT16);
b15e6682
AO
3645 if (entry)
3646 return entry->gotidx;
3647 else
3648 return MINUS_ONE;
b49e97c9
TS
3649}
3650
3651/* Returns the offset for the entry at the INDEXth position
3652 in the GOT. */
3653
3654static bfd_vma
a8028dd0 3655mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3656 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3657{
a8028dd0 3658 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3659 asection *sgot;
3660 bfd_vma gp;
3661
a8028dd0 3662 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3663 BFD_ASSERT (htab != NULL);
3664
ce558b89 3665 sgot = htab->root.sgot;
f4416af6 3666 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3667 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3668
91d6fa6a 3669 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3670}
3671
0a44bf69
RS
3672/* Create and return a local GOT entry for VALUE, which was calculated
3673 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3674 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3675 instead. */
b49e97c9 3676
b15e6682 3677static struct mips_got_entry *
0a44bf69 3678mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3679 bfd *ibfd, bfd_vma value,
5c18022e 3680 unsigned long r_symndx,
0f20cc35
DJ
3681 struct mips_elf_link_hash_entry *h,
3682 int r_type)
b49e97c9 3683{
ebc53538
RS
3684 struct mips_got_entry lookup, *entry;
3685 void **loc;
f4416af6 3686 struct mips_got_info *g;
0a44bf69 3687 struct mips_elf_link_hash_table *htab;
6c42ddb9 3688 bfd_vma gotidx;
0a44bf69
RS
3689
3690 htab = mips_elf_hash_table (info);
4dfe6ac6 3691 BFD_ASSERT (htab != NULL);
b15e6682 3692
d7206569 3693 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3694 if (g == NULL)
3695 {
d7206569 3696 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3697 BFD_ASSERT (g != NULL);
3698 }
b15e6682 3699
020d7251
RS
3700 /* This function shouldn't be called for symbols that live in the global
3701 area of the GOT. */
3702 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3703
ebc53538
RS
3704 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3705 if (lookup.tls_type)
3706 {
3707 lookup.abfd = ibfd;
df58fc94 3708 if (tls_ldm_reloc_p (r_type))
0f20cc35 3709 {
ebc53538
RS
3710 lookup.symndx = 0;
3711 lookup.d.addend = 0;
0f20cc35
DJ
3712 }
3713 else if (h == NULL)
3714 {
ebc53538
RS
3715 lookup.symndx = r_symndx;
3716 lookup.d.addend = 0;
0f20cc35
DJ
3717 }
3718 else
ebc53538
RS
3719 {
3720 lookup.symndx = -1;
3721 lookup.d.h = h;
3722 }
0f20cc35 3723
ebc53538
RS
3724 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3725 BFD_ASSERT (entry);
0f20cc35 3726
6c42ddb9 3727 gotidx = entry->gotidx;
ce558b89 3728 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
6c42ddb9 3729
ebc53538 3730 return entry;
0f20cc35
DJ
3731 }
3732
ebc53538
RS
3733 lookup.abfd = NULL;
3734 lookup.symndx = -1;
3735 lookup.d.address = value;
3736 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3737 if (!loc)
b15e6682 3738 return NULL;
143d77c5 3739
ebc53538
RS
3740 entry = (struct mips_got_entry *) *loc;
3741 if (entry)
3742 return entry;
b15e6682 3743
cb22ccf4 3744 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3745 {
3746 /* We didn't allocate enough space in the GOT. */
4eca0228 3747 _bfd_error_handler
b49e97c9
TS
3748 (_("not enough GOT space for local GOT entries"));
3749 bfd_set_error (bfd_error_bad_value);
b15e6682 3750 return NULL;
b49e97c9
TS
3751 }
3752
ebc53538
RS
3753 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3754 if (!entry)
3755 return NULL;
3756
cb22ccf4
KCY
3757 if (got16_reloc_p (r_type)
3758 || call16_reloc_p (r_type)
3759 || got_page_reloc_p (r_type)
3760 || got_disp_reloc_p (r_type))
3761 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3762 else
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3764
ebc53538
RS
3765 *entry = lookup;
3766 *loc = entry;
3767
ce558b89 3768 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
b15e6682 3769
5c18022e 3770 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3771 if (htab->is_vxworks)
3772 {
3773 Elf_Internal_Rela outrel;
5c18022e 3774 asection *s;
91d6fa6a 3775 bfd_byte *rloc;
0a44bf69 3776 bfd_vma got_address;
0a44bf69
RS
3777
3778 s = mips_elf_rel_dyn_section (info, FALSE);
ce558b89
AM
3779 got_address = (htab->root.sgot->output_section->vma
3780 + htab->root.sgot->output_offset
ebc53538 3781 + entry->gotidx);
0a44bf69 3782
91d6fa6a 3783 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3784 outrel.r_offset = got_address;
5c18022e
RS
3785 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3786 outrel.r_addend = value;
91d6fa6a 3787 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3788 }
3789
ebc53538 3790 return entry;
b49e97c9
TS
3791}
3792
d4596a51
RS
3793/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3794 The number might be exact or a worst-case estimate, depending on how
3795 much information is available to elf_backend_omit_section_dynsym at
3796 the current linking stage. */
3797
3798static bfd_size_type
3799count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3800{
3801 bfd_size_type count;
3802
3803 count = 0;
0e1862bb
L
3804 if (bfd_link_pic (info)
3805 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3806 {
3807 asection *p;
3808 const struct elf_backend_data *bed;
3809
3810 bed = get_elf_backend_data (output_bfd);
3811 for (p = output_bfd->sections; p ; p = p->next)
3812 if ((p->flags & SEC_EXCLUDE) == 0
3813 && (p->flags & SEC_ALLOC) != 0
7f923b7f 3814 && elf_hash_table (info)->dynamic_relocs
d4596a51
RS
3815 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3816 ++count;
3817 }
3818 return count;
3819}
3820
b49e97c9 3821/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3822 appear towards the end. */
b49e97c9 3823
b34976b6 3824static bfd_boolean
d4596a51 3825mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3826{
a8028dd0 3827 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3828 struct mips_elf_hash_sort_data hsd;
3829 struct mips_got_info *g;
b49e97c9 3830
a8028dd0 3831 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3832 BFD_ASSERT (htab != NULL);
3833
0f8c4b60 3834 if (htab->root.dynsymcount == 0)
17a80fa8
MR
3835 return TRUE;
3836
a8028dd0 3837 g = htab->got_info;
d4596a51
RS
3838 if (g == NULL)
3839 return TRUE;
f4416af6 3840
b49e97c9 3841 hsd.low = NULL;
23cc69b6
RS
3842 hsd.max_unref_got_dynindx
3843 = hsd.min_got_dynindx
0f8c4b60 3844 = (htab->root.dynsymcount - g->reloc_only_gotno);
e17b0c35
MR
3845 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3846 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3847 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3848 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
0f8c4b60 3849 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
b49e97c9
TS
3850
3851 /* There should have been enough room in the symbol table to
44c410de 3852 accommodate both the GOT and non-GOT symbols. */
e17b0c35 3853 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
b49e97c9 3854 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
55f8b9d2 3855 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
0f8c4b60 3856 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
b49e97c9
TS
3857
3858 /* Now we know which dynamic symbol has the lowest dynamic symbol
3859 table index in the GOT. */
d222d210 3860 htab->global_gotsym = hsd.low;
b49e97c9 3861
b34976b6 3862 return TRUE;
b49e97c9
TS
3863}
3864
3865/* If H needs a GOT entry, assign it the highest available dynamic
3866 index. Otherwise, assign it the lowest available dynamic
3867 index. */
3868
b34976b6 3869static bfd_boolean
9719ad41 3870mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3871{
9719ad41 3872 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3873
b49e97c9
TS
3874 /* Symbols without dynamic symbol table entries aren't interesting
3875 at all. */
3876 if (h->root.dynindx == -1)
b34976b6 3877 return TRUE;
b49e97c9 3878
634835ae 3879 switch (h->global_got_area)
f4416af6 3880 {
634835ae 3881 case GGA_NONE:
e17b0c35
MR
3882 if (h->root.forced_local)
3883 h->root.dynindx = hsd->max_local_dynindx++;
3884 else
3885 h->root.dynindx = hsd->max_non_got_dynindx++;
634835ae 3886 break;
0f20cc35 3887
634835ae 3888 case GGA_NORMAL:
b49e97c9
TS
3889 h->root.dynindx = --hsd->min_got_dynindx;
3890 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3891 break;
3892
3893 case GGA_RELOC_ONLY:
634835ae
RS
3894 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3895 hsd->low = (struct elf_link_hash_entry *) h;
3896 h->root.dynindx = hsd->max_unref_got_dynindx++;
3897 break;
b49e97c9
TS
3898 }
3899
b34976b6 3900 return TRUE;
b49e97c9
TS
3901}
3902
ee227692
RS
3903/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3904 (which is owned by the caller and shouldn't be added to the
3905 hash table directly). */
3906
3907static bfd_boolean
3908mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3909 struct mips_got_entry *lookup)
3910{
3911 struct mips_elf_link_hash_table *htab;
3912 struct mips_got_entry *entry;
3913 struct mips_got_info *g;
3914 void **loc, **bfd_loc;
3915
3916 /* Make sure there's a slot for this entry in the master GOT. */
3917 htab = mips_elf_hash_table (info);
3918 g = htab->got_info;
3919 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3920 if (!loc)
3921 return FALSE;
3922
3923 /* Populate the entry if it isn't already. */
3924 entry = (struct mips_got_entry *) *loc;
3925 if (!entry)
3926 {
3927 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3928 if (!entry)
3929 return FALSE;
3930
9ab066b4 3931 lookup->tls_initialized = FALSE;
ee227692
RS
3932 lookup->gotidx = -1;
3933 *entry = *lookup;
3934 *loc = entry;
3935 }
3936
3937 /* Reuse the same GOT entry for the BFD's GOT. */
3938 g = mips_elf_bfd_got (abfd, TRUE);
3939 if (!g)
3940 return FALSE;
3941
3942 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3943 if (!bfd_loc)
3944 return FALSE;
3945
3946 if (!*bfd_loc)
3947 *bfd_loc = entry;
3948 return TRUE;
3949}
3950
e641e783
RS
3951/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3952 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3953 using the GOT entry for calls. */
b49e97c9 3954
b34976b6 3955static bfd_boolean
9719ad41
RS
3956mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3957 bfd *abfd, struct bfd_link_info *info,
e641e783 3958 bfd_boolean for_call, int r_type)
b49e97c9 3959{
a8028dd0 3960 struct mips_elf_link_hash_table *htab;
634835ae 3961 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
3962 struct mips_got_entry entry;
3963 unsigned char tls_type;
a8028dd0
RS
3964
3965 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3966 BFD_ASSERT (htab != NULL);
3967
634835ae 3968 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3969 if (!for_call)
3970 hmips->got_only_for_calls = FALSE;
f4416af6 3971
b49e97c9
TS
3972 /* A global symbol in the GOT must also be in the dynamic symbol
3973 table. */
7c5fcef7
L
3974 if (h->dynindx == -1)
3975 {
3976 switch (ELF_ST_VISIBILITY (h->other))
3977 {
3978 case STV_INTERNAL:
3979 case STV_HIDDEN:
33bb52fb 3980 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3981 break;
3982 }
c152c796 3983 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3984 return FALSE;
7c5fcef7 3985 }
b49e97c9 3986
ee227692 3987 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 3988 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 3989 hmips->global_got_area = GGA_NORMAL;
86324f90 3990
f4416af6
AO
3991 entry.abfd = abfd;
3992 entry.symndx = -1;
3993 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
3994 entry.tls_type = tls_type;
3995 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 3996}
f4416af6 3997
e641e783
RS
3998/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3999 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
4000
4001static bfd_boolean
9719ad41 4002mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 4003 struct bfd_link_info *info, int r_type)
f4416af6 4004{
a8028dd0
RS
4005 struct mips_elf_link_hash_table *htab;
4006 struct mips_got_info *g;
ee227692 4007 struct mips_got_entry entry;
f4416af6 4008
a8028dd0 4009 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4010 BFD_ASSERT (htab != NULL);
4011
a8028dd0
RS
4012 g = htab->got_info;
4013 BFD_ASSERT (g != NULL);
4014
f4416af6
AO
4015 entry.abfd = abfd;
4016 entry.symndx = symndx;
4017 entry.d.addend = addend;
e641e783 4018 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 4019 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 4020}
c224138d 4021
13db6b44
RS
4022/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4023 H is the symbol's hash table entry, or null if SYMNDX is local
4024 to ABFD. */
c224138d
RS
4025
4026static bfd_boolean
13db6b44
RS
4027mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4028 long symndx, struct elf_link_hash_entry *h,
4029 bfd_signed_vma addend)
c224138d 4030{
a8028dd0 4031 struct mips_elf_link_hash_table *htab;
ee227692 4032 struct mips_got_info *g1, *g2;
13db6b44 4033 struct mips_got_page_ref lookup, *entry;
ee227692 4034 void **loc, **bfd_loc;
c224138d 4035
a8028dd0 4036 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4037 BFD_ASSERT (htab != NULL);
4038
ee227692
RS
4039 g1 = htab->got_info;
4040 BFD_ASSERT (g1 != NULL);
a8028dd0 4041
13db6b44
RS
4042 if (h)
4043 {
4044 lookup.symndx = -1;
4045 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4046 }
4047 else
4048 {
4049 lookup.symndx = symndx;
4050 lookup.u.abfd = abfd;
4051 }
4052 lookup.addend = addend;
4053 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4054 if (loc == NULL)
4055 return FALSE;
4056
13db6b44 4057 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4058 if (!entry)
4059 {
4060 entry = bfd_alloc (abfd, sizeof (*entry));
4061 if (!entry)
4062 return FALSE;
4063
13db6b44 4064 *entry = lookup;
c224138d
RS
4065 *loc = entry;
4066 }
4067
ee227692
RS
4068 /* Add the same entry to the BFD's GOT. */
4069 g2 = mips_elf_bfd_got (abfd, TRUE);
4070 if (!g2)
4071 return FALSE;
4072
13db6b44 4073 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4074 if (!bfd_loc)
4075 return FALSE;
4076
4077 if (!*bfd_loc)
4078 *bfd_loc = entry;
4079
c224138d
RS
4080 return TRUE;
4081}
33bb52fb
RS
4082
4083/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4084
4085static void
4086mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4087 unsigned int n)
4088{
4089 asection *s;
4090 struct mips_elf_link_hash_table *htab;
4091
4092 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4093 BFD_ASSERT (htab != NULL);
4094
33bb52fb
RS
4095 s = mips_elf_rel_dyn_section (info, FALSE);
4096 BFD_ASSERT (s != NULL);
4097
4098 if (htab->is_vxworks)
4099 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4100 else
4101 {
4102 if (s->size == 0)
4103 {
4104 /* Make room for a null element. */
4105 s->size += MIPS_ELF_REL_SIZE (abfd);
4106 ++s->reloc_count;
4107 }
4108 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4109 }
4110}
4111\f
476366af
RS
4112/* A htab_traverse callback for GOT entries, with DATA pointing to a
4113 mips_elf_traverse_got_arg structure. Count the number of GOT
4114 entries and TLS relocs. Set DATA->value to true if we need
4115 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4116
4117static int
4118mips_elf_check_recreate_got (void **entryp, void *data)
4119{
4120 struct mips_got_entry *entry;
476366af 4121 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4122
4123 entry = (struct mips_got_entry *) *entryp;
476366af 4124 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4125 if (entry->abfd != NULL && entry->symndx == -1)
4126 {
4127 struct mips_elf_link_hash_entry *h;
4128
4129 h = entry->d.h;
4130 if (h->root.root.type == bfd_link_hash_indirect
4131 || h->root.root.type == bfd_link_hash_warning)
4132 {
476366af 4133 arg->value = TRUE;
33bb52fb
RS
4134 return 0;
4135 }
4136 }
476366af 4137 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4138 return 1;
4139}
4140
476366af
RS
4141/* A htab_traverse callback for GOT entries, with DATA pointing to a
4142 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4143 converting entries for indirect and warning symbols into entries
4144 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4145
4146static int
4147mips_elf_recreate_got (void **entryp, void *data)
4148{
72e7511a 4149 struct mips_got_entry new_entry, *entry;
476366af 4150 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4151 void **slot;
4152
33bb52fb 4153 entry = (struct mips_got_entry *) *entryp;
476366af 4154 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4155 if (entry->abfd != NULL
4156 && entry->symndx == -1
4157 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4158 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4159 {
4160 struct mips_elf_link_hash_entry *h;
4161
72e7511a
RS
4162 new_entry = *entry;
4163 entry = &new_entry;
33bb52fb 4164 h = entry->d.h;
72e7511a 4165 do
634835ae
RS
4166 {
4167 BFD_ASSERT (h->global_got_area == GGA_NONE);
4168 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4169 }
72e7511a
RS
4170 while (h->root.root.type == bfd_link_hash_indirect
4171 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4172 entry->d.h = h;
4173 }
476366af 4174 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4175 if (slot == NULL)
4176 {
476366af 4177 arg->g = NULL;
33bb52fb
RS
4178 return 0;
4179 }
4180 if (*slot == NULL)
72e7511a
RS
4181 {
4182 if (entry == &new_entry)
4183 {
4184 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4185 if (!entry)
4186 {
476366af 4187 arg->g = NULL;
72e7511a
RS
4188 return 0;
4189 }
4190 *entry = new_entry;
4191 }
4192 *slot = entry;
476366af 4193 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4194 }
33bb52fb
RS
4195 return 1;
4196}
4197
13db6b44
RS
4198/* Return the maximum number of GOT page entries required for RANGE. */
4199
4200static bfd_vma
4201mips_elf_pages_for_range (const struct mips_got_page_range *range)
4202{
4203 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4204}
4205
4206/* Record that G requires a page entry that can reach SEC + ADDEND. */
4207
4208static bfd_boolean
b75d42bc 4209mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4210 asection *sec, bfd_signed_vma addend)
4211{
b75d42bc 4212 struct mips_got_info *g = arg->g;
13db6b44
RS
4213 struct mips_got_page_entry lookup, *entry;
4214 struct mips_got_page_range **range_ptr, *range;
4215 bfd_vma old_pages, new_pages;
4216 void **loc;
4217
4218 /* Find the mips_got_page_entry hash table entry for this section. */
4219 lookup.sec = sec;
4220 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4221 if (loc == NULL)
4222 return FALSE;
4223
4224 /* Create a mips_got_page_entry if this is the first time we've
4225 seen the section. */
4226 entry = (struct mips_got_page_entry *) *loc;
4227 if (!entry)
4228 {
b75d42bc 4229 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4230 if (!entry)
4231 return FALSE;
4232
4233 entry->sec = sec;
4234 *loc = entry;
4235 }
4236
4237 /* Skip over ranges whose maximum extent cannot share a page entry
4238 with ADDEND. */
4239 range_ptr = &entry->ranges;
4240 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4241 range_ptr = &(*range_ptr)->next;
4242
4243 /* If we scanned to the end of the list, or found a range whose
4244 minimum extent cannot share a page entry with ADDEND, create
4245 a new singleton range. */
4246 range = *range_ptr;
4247 if (!range || addend < range->min_addend - 0xffff)
4248 {
b75d42bc 4249 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4250 if (!range)
4251 return FALSE;
4252
4253 range->next = *range_ptr;
4254 range->min_addend = addend;
4255 range->max_addend = addend;
4256
4257 *range_ptr = range;
4258 entry->num_pages++;
4259 g->page_gotno++;
4260 return TRUE;
4261 }
4262
4263 /* Remember how many pages the old range contributed. */
4264 old_pages = mips_elf_pages_for_range (range);
4265
4266 /* Update the ranges. */
4267 if (addend < range->min_addend)
4268 range->min_addend = addend;
4269 else if (addend > range->max_addend)
4270 {
4271 if (range->next && addend >= range->next->min_addend - 0xffff)
4272 {
4273 old_pages += mips_elf_pages_for_range (range->next);
4274 range->max_addend = range->next->max_addend;
4275 range->next = range->next->next;
4276 }
4277 else
4278 range->max_addend = addend;
4279 }
4280
4281 /* Record any change in the total estimate. */
4282 new_pages = mips_elf_pages_for_range (range);
4283 if (old_pages != new_pages)
4284 {
4285 entry->num_pages += new_pages - old_pages;
4286 g->page_gotno += new_pages - old_pages;
4287 }
4288
4289 return TRUE;
4290}
4291
4292/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4293 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4294 whether the page reference described by *REFP needs a GOT page entry,
4295 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4296
4297static bfd_boolean
4298mips_elf_resolve_got_page_ref (void **refp, void *data)
4299{
4300 struct mips_got_page_ref *ref;
4301 struct mips_elf_traverse_got_arg *arg;
4302 struct mips_elf_link_hash_table *htab;
4303 asection *sec;
4304 bfd_vma addend;
4305
4306 ref = (struct mips_got_page_ref *) *refp;
4307 arg = (struct mips_elf_traverse_got_arg *) data;
4308 htab = mips_elf_hash_table (arg->info);
4309
4310 if (ref->symndx < 0)
4311 {
4312 struct mips_elf_link_hash_entry *h;
4313
4314 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4315 h = ref->u.h;
4316 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4317 return 1;
4318
4319 /* Ignore undefined symbols; we'll issue an error later if
4320 appropriate. */
4321 if (!((h->root.root.type == bfd_link_hash_defined
4322 || h->root.root.type == bfd_link_hash_defweak)
4323 && h->root.root.u.def.section))
4324 return 1;
4325
4326 sec = h->root.root.u.def.section;
4327 addend = h->root.root.u.def.value + ref->addend;
4328 }
4329 else
4330 {
4331 Elf_Internal_Sym *isym;
4332
4333 /* Read in the symbol. */
4334 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4335 ref->symndx);
4336 if (isym == NULL)
4337 {
4338 arg->g = NULL;
4339 return 0;
4340 }
4341
4342 /* Get the associated input section. */
4343 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4344 if (sec == NULL)
4345 {
4346 arg->g = NULL;
4347 return 0;
4348 }
4349
4350 /* If this is a mergable section, work out the section and offset
4351 of the merged data. For section symbols, the addend specifies
4352 of the offset _of_ the first byte in the data, otherwise it
4353 specifies the offset _from_ the first byte. */
4354 if (sec->flags & SEC_MERGE)
4355 {
4356 void *secinfo;
4357
4358 secinfo = elf_section_data (sec)->sec_info;
4359 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4360 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4361 isym->st_value + ref->addend);
4362 else
4363 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4364 isym->st_value) + ref->addend;
4365 }
4366 else
4367 addend = isym->st_value + ref->addend;
4368 }
b75d42bc 4369 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4370 {
4371 arg->g = NULL;
4372 return 0;
4373 }
4374 return 1;
4375}
4376
33bb52fb 4377/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4378 replace them with entries for the target symbol. Convert g->got_page_refs
4379 into got_page_entry structures and estimate the number of page entries
4380 that they require. */
33bb52fb
RS
4381
4382static bfd_boolean
476366af
RS
4383mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4384 struct mips_got_info *g)
33bb52fb 4385{
476366af
RS
4386 struct mips_elf_traverse_got_arg tga;
4387 struct mips_got_info oldg;
4388
4389 oldg = *g;
33bb52fb 4390
476366af
RS
4391 tga.info = info;
4392 tga.g = g;
4393 tga.value = FALSE;
4394 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4395 if (tga.value)
33bb52fb 4396 {
476366af
RS
4397 *g = oldg;
4398 g->got_entries = htab_create (htab_size (oldg.got_entries),
4399 mips_elf_got_entry_hash,
4400 mips_elf_got_entry_eq, NULL);
4401 if (!g->got_entries)
33bb52fb
RS
4402 return FALSE;
4403
476366af
RS
4404 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4405 if (!tga.g)
4406 return FALSE;
4407
4408 htab_delete (oldg.got_entries);
33bb52fb 4409 }
13db6b44
RS
4410
4411 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4412 mips_got_page_entry_eq, NULL);
4413 if (g->got_page_entries == NULL)
4414 return FALSE;
4415
4416 tga.info = info;
4417 tga.g = g;
4418 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4419
33bb52fb
RS
4420 return TRUE;
4421}
4422
c5d6fa44
RS
4423/* Return true if a GOT entry for H should live in the local rather than
4424 global GOT area. */
4425
4426static bfd_boolean
4427mips_use_local_got_p (struct bfd_link_info *info,
4428 struct mips_elf_link_hash_entry *h)
4429{
4430 /* Symbols that aren't in the dynamic symbol table must live in the
4431 local GOT. This includes symbols that are completely undefined
4432 and which therefore don't bind locally. We'll report undefined
4433 symbols later if appropriate. */
4434 if (h->root.dynindx == -1)
4435 return TRUE;
4436
4437 /* Symbols that bind locally can (and in the case of forced-local
4438 symbols, must) live in the local GOT. */
4439 if (h->got_only_for_calls
4440 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4441 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4442 return TRUE;
4443
4444 /* If this is an executable that must provide a definition of the symbol,
4445 either though PLTs or copy relocations, then that address should go in
4446 the local rather than global GOT. */
0e1862bb 4447 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4448 return TRUE;
4449
4450 return FALSE;
4451}
4452
6c42ddb9
RS
4453/* A mips_elf_link_hash_traverse callback for which DATA points to the
4454 link_info structure. Decide whether the hash entry needs an entry in
4455 the global part of the primary GOT, setting global_got_area accordingly.
4456 Count the number of global symbols that are in the primary GOT only
4457 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4458
4459static int
d4596a51 4460mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4461{
020d7251 4462 struct bfd_link_info *info;
6ccf4795 4463 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4464 struct mips_got_info *g;
4465
020d7251 4466 info = (struct bfd_link_info *) data;
6ccf4795
RS
4467 htab = mips_elf_hash_table (info);
4468 g = htab->got_info;
d4596a51 4469 if (h->global_got_area != GGA_NONE)
33bb52fb 4470 {
020d7251 4471 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4472 local or global GOT. */
4473 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4474 /* The symbol belongs in the local GOT. We no longer need this
4475 entry if it was only used for relocations; those relocations
4476 will be against the null or section symbol instead of H. */
4477 h->global_got_area = GGA_NONE;
6ccf4795
RS
4478 else if (htab->is_vxworks
4479 && h->got_only_for_calls
1bbce132 4480 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4481 /* On VxWorks, calls can refer directly to the .got.plt entry;
4482 they don't need entries in the regular GOT. .got.plt entries
4483 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4484 h->global_got_area = GGA_NONE;
6c42ddb9 4485 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4486 {
6c42ddb9 4487 g->reloc_only_gotno++;
23cc69b6 4488 g->global_gotno++;
23cc69b6 4489 }
33bb52fb
RS
4490 }
4491 return 1;
4492}
f4416af6 4493\f
d7206569
RS
4494/* A htab_traverse callback for GOT entries. Add each one to the GOT
4495 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4496
4497static int
d7206569 4498mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4499{
d7206569
RS
4500 struct mips_got_entry *entry;
4501 struct mips_elf_traverse_got_arg *arg;
4502 void **slot;
f4416af6 4503
d7206569
RS
4504 entry = (struct mips_got_entry *) *entryp;
4505 arg = (struct mips_elf_traverse_got_arg *) data;
4506 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4507 if (!slot)
f4416af6 4508 {
d7206569
RS
4509 arg->g = NULL;
4510 return 0;
f4416af6 4511 }
d7206569 4512 if (!*slot)
c224138d 4513 {
d7206569
RS
4514 *slot = entry;
4515 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4516 }
f4416af6
AO
4517 return 1;
4518}
4519
d7206569
RS
4520/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4521 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4522
4523static int
d7206569 4524mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4525{
d7206569
RS
4526 struct mips_got_page_entry *entry;
4527 struct mips_elf_traverse_got_arg *arg;
4528 void **slot;
c224138d 4529
d7206569
RS
4530 entry = (struct mips_got_page_entry *) *entryp;
4531 arg = (struct mips_elf_traverse_got_arg *) data;
4532 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4533 if (!slot)
c224138d 4534 {
d7206569 4535 arg->g = NULL;
c224138d
RS
4536 return 0;
4537 }
d7206569
RS
4538 if (!*slot)
4539 {
4540 *slot = entry;
4541 arg->g->page_gotno += entry->num_pages;
4542 }
c224138d
RS
4543 return 1;
4544}
4545
d7206569
RS
4546/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4547 this would lead to overflow, 1 if they were merged successfully,
4548 and 0 if a merge failed due to lack of memory. (These values are chosen
4549 so that nonnegative return values can be returned by a htab_traverse
4550 callback.) */
c224138d
RS
4551
4552static int
d7206569 4553mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4554 struct mips_got_info *to,
4555 struct mips_elf_got_per_bfd_arg *arg)
4556{
d7206569 4557 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4558 unsigned int estimate;
4559
4560 /* Work out how many page entries we would need for the combined GOT. */
4561 estimate = arg->max_pages;
4562 if (estimate >= from->page_gotno + to->page_gotno)
4563 estimate = from->page_gotno + to->page_gotno;
4564
e2ece73c 4565 /* And conservatively estimate how many local and TLS entries
c224138d 4566 would be needed. */
e2ece73c
RS
4567 estimate += from->local_gotno + to->local_gotno;
4568 estimate += from->tls_gotno + to->tls_gotno;
4569
17214937
RS
4570 /* If we're merging with the primary got, any TLS relocations will
4571 come after the full set of global entries. Otherwise estimate those
e2ece73c 4572 conservatively as well. */
17214937 4573 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4574 estimate += arg->global_count;
4575 else
4576 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4577
4578 /* Bail out if the combined GOT might be too big. */
4579 if (estimate > arg->max_count)
4580 return -1;
4581
c224138d 4582 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4583 tga.info = arg->info;
4584 tga.g = to;
4585 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4586 if (!tga.g)
c224138d
RS
4587 return 0;
4588
d7206569
RS
4589 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4590 if (!tga.g)
c224138d
RS
4591 return 0;
4592
d7206569 4593 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4594 return 1;
4595}
4596
d7206569 4597/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4598 as possible of the primary got, since it doesn't require explicit
4599 dynamic relocations, but don't use bfds that would reference global
4600 symbols out of the addressable range. Failing the primary got,
4601 attempt to merge with the current got, or finish the current got
4602 and then make make the new got current. */
4603
d7206569
RS
4604static bfd_boolean
4605mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4606 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4607{
c224138d
RS
4608 unsigned int estimate;
4609 int result;
4610
476366af 4611 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4612 return FALSE;
4613
c224138d
RS
4614 /* Work out the number of page, local and TLS entries. */
4615 estimate = arg->max_pages;
4616 if (estimate > g->page_gotno)
4617 estimate = g->page_gotno;
4618 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4619
4620 /* We place TLS GOT entries after both locals and globals. The globals
4621 for the primary GOT may overflow the normal GOT size limit, so be
4622 sure not to merge a GOT which requires TLS with the primary GOT in that
4623 case. This doesn't affect non-primary GOTs. */
c224138d 4624 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4625
c224138d 4626 if (estimate <= arg->max_count)
f4416af6 4627 {
c224138d
RS
4628 /* If we don't have a primary GOT, use it as
4629 a starting point for the primary GOT. */
4630 if (!arg->primary)
4631 {
d7206569
RS
4632 arg->primary = g;
4633 return TRUE;
c224138d 4634 }
f4416af6 4635
c224138d 4636 /* Try merging with the primary GOT. */
d7206569 4637 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4638 if (result >= 0)
4639 return result;
f4416af6 4640 }
c224138d 4641
f4416af6 4642 /* If we can merge with the last-created got, do it. */
c224138d 4643 if (arg->current)
f4416af6 4644 {
d7206569 4645 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4646 if (result >= 0)
4647 return result;
f4416af6 4648 }
c224138d 4649
f4416af6
AO
4650 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4651 fits; if it turns out that it doesn't, we'll get relocation
4652 overflows anyway. */
c224138d
RS
4653 g->next = arg->current;
4654 arg->current = g;
0f20cc35 4655
d7206569 4656 return TRUE;
0f20cc35
DJ
4657}
4658
72e7511a
RS
4659/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4660 to GOTIDX, duplicating the entry if it has already been assigned
4661 an index in a different GOT. */
4662
4663static bfd_boolean
4664mips_elf_set_gotidx (void **entryp, long gotidx)
4665{
4666 struct mips_got_entry *entry;
4667
4668 entry = (struct mips_got_entry *) *entryp;
4669 if (entry->gotidx > 0)
4670 {
4671 struct mips_got_entry *new_entry;
4672
4673 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4674 if (!new_entry)
4675 return FALSE;
4676
4677 *new_entry = *entry;
4678 *entryp = new_entry;
4679 entry = new_entry;
4680 }
4681 entry->gotidx = gotidx;
4682 return TRUE;
4683}
4684
4685/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4686 mips_elf_traverse_got_arg in which DATA->value is the size of one
4687 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4688
4689static int
72e7511a 4690mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4691{
72e7511a
RS
4692 struct mips_got_entry *entry;
4693 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4694
4695 /* We're only interested in TLS symbols. */
72e7511a 4696 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4697 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4698 return 1;
4699
72e7511a 4700 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4701 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4702 {
6c42ddb9
RS
4703 arg->g = NULL;
4704 return 0;
f4416af6
AO
4705 }
4706
ead49a57 4707 /* Account for the entries we've just allocated. */
9ab066b4 4708 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4709 return 1;
4710}
4711
ab361d49
RS
4712/* A htab_traverse callback for GOT entries, where DATA points to a
4713 mips_elf_traverse_got_arg. Set the global_got_area of each global
4714 symbol to DATA->value. */
f4416af6 4715
f4416af6 4716static int
ab361d49 4717mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4718{
ab361d49
RS
4719 struct mips_got_entry *entry;
4720 struct mips_elf_traverse_got_arg *arg;
f4416af6 4721
ab361d49
RS
4722 entry = (struct mips_got_entry *) *entryp;
4723 arg = (struct mips_elf_traverse_got_arg *) data;
4724 if (entry->abfd != NULL
4725 && entry->symndx == -1
4726 && entry->d.h->global_got_area != GGA_NONE)
4727 entry->d.h->global_got_area = arg->value;
4728 return 1;
4729}
4730
4731/* A htab_traverse callback for secondary GOT entries, where DATA points
4732 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4733 and record the number of relocations they require. DATA->value is
72e7511a 4734 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4735
4736static int
4737mips_elf_set_global_gotidx (void **entryp, void *data)
4738{
4739 struct mips_got_entry *entry;
4740 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4741
ab361d49
RS
4742 entry = (struct mips_got_entry *) *entryp;
4743 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4744 if (entry->abfd != NULL
4745 && entry->symndx == -1
4746 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4747 {
cb22ccf4 4748 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4749 {
4750 arg->g = NULL;
4751 return 0;
4752 }
cb22ccf4 4753 arg->g->assigned_low_gotno += 1;
72e7511a 4754
0e1862bb 4755 if (bfd_link_pic (arg->info)
ab361d49
RS
4756 || (elf_hash_table (arg->info)->dynamic_sections_created
4757 && entry->d.h->root.def_dynamic
4758 && !entry->d.h->root.def_regular))
4759 arg->g->relocs += 1;
f4416af6
AO
4760 }
4761
4762 return 1;
4763}
4764
33bb52fb
RS
4765/* A htab_traverse callback for GOT entries for which DATA is the
4766 bfd_link_info. Forbid any global symbols from having traditional
4767 lazy-binding stubs. */
4768
0626d451 4769static int
33bb52fb 4770mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4771{
33bb52fb
RS
4772 struct bfd_link_info *info;
4773 struct mips_elf_link_hash_table *htab;
4774 struct mips_got_entry *entry;
0626d451 4775
33bb52fb
RS
4776 entry = (struct mips_got_entry *) *entryp;
4777 info = (struct bfd_link_info *) data;
4778 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4779 BFD_ASSERT (htab != NULL);
4780
0626d451
RS
4781 if (entry->abfd != NULL
4782 && entry->symndx == -1
33bb52fb 4783 && entry->d.h->needs_lazy_stub)
f4416af6 4784 {
33bb52fb
RS
4785 entry->d.h->needs_lazy_stub = FALSE;
4786 htab->lazy_stub_count--;
f4416af6 4787 }
143d77c5 4788
f4416af6
AO
4789 return 1;
4790}
4791
f4416af6
AO
4792/* Return the offset of an input bfd IBFD's GOT from the beginning of
4793 the primary GOT. */
4794static bfd_vma
9719ad41 4795mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4796{
d7206569 4797 if (!g->next)
f4416af6
AO
4798 return 0;
4799
d7206569 4800 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4801 if (! g)
4802 return 0;
4803
4804 BFD_ASSERT (g->next);
4805
4806 g = g->next;
143d77c5 4807
0f20cc35
DJ
4808 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4809 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4810}
4811
4812/* Turn a single GOT that is too big for 16-bit addressing into
4813 a sequence of GOTs, each one 16-bit addressable. */
4814
4815static bfd_boolean
9719ad41 4816mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4817 asection *got, bfd_size_type pages)
f4416af6 4818{
a8028dd0 4819 struct mips_elf_link_hash_table *htab;
f4416af6 4820 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4821 struct mips_elf_traverse_got_arg tga;
a8028dd0 4822 struct mips_got_info *g, *gg;
33bb52fb 4823 unsigned int assign, needed_relocs;
d7206569 4824 bfd *dynobj, *ibfd;
f4416af6 4825
33bb52fb 4826 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4827 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4828 BFD_ASSERT (htab != NULL);
4829
a8028dd0 4830 g = htab->got_info;
f4416af6 4831
f4416af6
AO
4832 got_per_bfd_arg.obfd = abfd;
4833 got_per_bfd_arg.info = info;
f4416af6
AO
4834 got_per_bfd_arg.current = NULL;
4835 got_per_bfd_arg.primary = NULL;
0a44bf69 4836 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4837 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4838 - htab->reserved_gotno);
c224138d 4839 got_per_bfd_arg.max_pages = pages;
0f20cc35 4840 /* The number of globals that will be included in the primary GOT.
ab361d49 4841 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4842 information. */
4843 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4844
4845 /* Try to merge the GOTs of input bfds together, as long as they
4846 don't seem to exceed the maximum GOT size, choosing one of them
4847 to be the primary GOT. */
c72f2fb2 4848 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4849 {
4850 gg = mips_elf_bfd_got (ibfd, FALSE);
4851 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4852 return FALSE;
4853 }
f4416af6 4854
0f20cc35 4855 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4856 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4857 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4858 else
4859 g->next = got_per_bfd_arg.primary;
4860 g->next->next = got_per_bfd_arg.current;
4861
4862 /* GG is now the master GOT, and G is the primary GOT. */
4863 gg = g;
4864 g = g->next;
4865
4866 /* Map the output bfd to the primary got. That's what we're going
4867 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4868 didn't mark in check_relocs, and we want a quick way to find it.
4869 We can't just use gg->next because we're going to reverse the
4870 list. */
d7206569 4871 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4872
634835ae
RS
4873 /* Every symbol that is referenced in a dynamic relocation must be
4874 present in the primary GOT, so arrange for them to appear after
4875 those that are actually referenced. */
23cc69b6 4876 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4877 g->global_gotno = gg->global_gotno;
f4416af6 4878
ab361d49
RS
4879 tga.info = info;
4880 tga.value = GGA_RELOC_ONLY;
4881 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4882 tga.value = GGA_NORMAL;
4883 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4884
4885 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4886 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4887 entries in each GOT. We can then compute the end of a GOT by
4888 adding local_gotno to global_gotno. We reverse the list and make
4889 it circular since then we'll be able to quickly compute the
4890 beginning of a GOT, by computing the end of its predecessor. To
4891 avoid special cases for the primary GOT, while still preserving
4892 assertions that are valid for both single- and multi-got links,
4893 we arrange for the main got struct to have the right number of
4894 global entries, but set its local_gotno such that the initial
4895 offset of the primary GOT is zero. Remember that the primary GOT
4896 will become the last item in the circular linked list, so it
4897 points back to the master GOT. */
4898 gg->local_gotno = -g->global_gotno;
4899 gg->global_gotno = g->global_gotno;
0f20cc35 4900 gg->tls_gotno = 0;
f4416af6
AO
4901 assign = 0;
4902 gg->next = gg;
4903
4904 do
4905 {
4906 struct mips_got_info *gn;
4907
861fb55a 4908 assign += htab->reserved_gotno;
cb22ccf4 4909 g->assigned_low_gotno = assign;
c224138d
RS
4910 g->local_gotno += assign;
4911 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4912 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4913 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4914
ead49a57
RS
4915 /* Take g out of the direct list, and push it onto the reversed
4916 list that gg points to. g->next is guaranteed to be nonnull after
4917 this operation, as required by mips_elf_initialize_tls_index. */
4918 gn = g->next;
4919 g->next = gg->next;
4920 gg->next = g;
4921
0f20cc35
DJ
4922 /* Set up any TLS entries. We always place the TLS entries after
4923 all non-TLS entries. */
4924 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4925 tga.g = g;
4926 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4927 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4928 if (!tga.g)
4929 return FALSE;
1fd20d70 4930 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4931
ead49a57 4932 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4933 g = gn;
0626d451 4934
33bb52fb
RS
4935 /* Forbid global symbols in every non-primary GOT from having
4936 lazy-binding stubs. */
0626d451 4937 if (g)
33bb52fb 4938 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4939 }
4940 while (g);
4941
59b08994 4942 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4943
4944 needed_relocs = 0;
33bb52fb
RS
4945 for (g = gg->next; g && g->next != gg; g = g->next)
4946 {
4947 unsigned int save_assign;
4948
ab361d49
RS
4949 /* Assign offsets to global GOT entries and count how many
4950 relocations they need. */
cb22ccf4
KCY
4951 save_assign = g->assigned_low_gotno;
4952 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
4953 tga.info = info;
4954 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4955 tga.g = g;
4956 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
4957 if (!tga.g)
4958 return FALSE;
cb22ccf4
KCY
4959 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4960 g->assigned_low_gotno = save_assign;
72e7511a 4961
0e1862bb 4962 if (bfd_link_pic (info))
33bb52fb 4963 {
cb22ccf4
KCY
4964 g->relocs += g->local_gotno - g->assigned_low_gotno;
4965 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
4966 + g->next->global_gotno
4967 + g->next->tls_gotno
861fb55a 4968 + htab->reserved_gotno);
33bb52fb 4969 }
ab361d49 4970 needed_relocs += g->relocs;
33bb52fb 4971 }
ab361d49 4972 needed_relocs += g->relocs;
33bb52fb
RS
4973
4974 if (needed_relocs)
4975 mips_elf_allocate_dynamic_relocations (dynobj, info,
4976 needed_relocs);
143d77c5 4977
f4416af6
AO
4978 return TRUE;
4979}
143d77c5 4980
b49e97c9
TS
4981\f
4982/* Returns the first relocation of type r_type found, beginning with
4983 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4984
4985static const Elf_Internal_Rela *
9719ad41
RS
4986mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4987 const Elf_Internal_Rela *relocation,
4988 const Elf_Internal_Rela *relend)
b49e97c9 4989{
c000e262
TS
4990 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4991
b49e97c9
TS
4992 while (relocation < relend)
4993 {
c000e262
TS
4994 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4995 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4996 return relocation;
4997
4998 ++relocation;
4999 }
5000
5001 /* We didn't find it. */
b49e97c9
TS
5002 return NULL;
5003}
5004
020d7251 5005/* Return whether an input relocation is against a local symbol. */
b49e97c9 5006
b34976b6 5007static bfd_boolean
9719ad41
RS
5008mips_elf_local_relocation_p (bfd *input_bfd,
5009 const Elf_Internal_Rela *relocation,
020d7251 5010 asection **local_sections)
b49e97c9
TS
5011{
5012 unsigned long r_symndx;
5013 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
5014 size_t extsymoff;
5015
5016 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5017 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5018 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5019
5020 if (r_symndx < extsymoff)
b34976b6 5021 return TRUE;
b49e97c9 5022 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 5023 return TRUE;
b49e97c9 5024
b34976b6 5025 return FALSE;
b49e97c9
TS
5026}
5027\f
5028/* Sign-extend VALUE, which has the indicated number of BITS. */
5029
a7ebbfdf 5030bfd_vma
9719ad41 5031_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5032{
5033 if (value & ((bfd_vma) 1 << (bits - 1)))
5034 /* VALUE is negative. */
5035 value |= ((bfd_vma) - 1) << bits;
5036
5037 return value;
5038}
5039
5040/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5041 range expressible by a signed number with the indicated number of
b49e97c9
TS
5042 BITS. */
5043
b34976b6 5044static bfd_boolean
9719ad41 5045mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5046{
5047 bfd_signed_vma svalue = (bfd_signed_vma) value;
5048
5049 if (svalue > (1 << (bits - 1)) - 1)
5050 /* The value is too big. */
b34976b6 5051 return TRUE;
b49e97c9
TS
5052 else if (svalue < -(1 << (bits - 1)))
5053 /* The value is too small. */
b34976b6 5054 return TRUE;
b49e97c9
TS
5055
5056 /* All is well. */
b34976b6 5057 return FALSE;
b49e97c9
TS
5058}
5059
5060/* Calculate the %high function. */
5061
5062static bfd_vma
9719ad41 5063mips_elf_high (bfd_vma value)
b49e97c9
TS
5064{
5065 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5066}
5067
5068/* Calculate the %higher function. */
5069
5070static bfd_vma
9719ad41 5071mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5072{
5073#ifdef BFD64
5074 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5075#else
5076 abort ();
c5ae1840 5077 return MINUS_ONE;
b49e97c9
TS
5078#endif
5079}
5080
5081/* Calculate the %highest function. */
5082
5083static bfd_vma
9719ad41 5084mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5085{
5086#ifdef BFD64
b15e6682 5087 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5088#else
5089 abort ();
c5ae1840 5090 return MINUS_ONE;
b49e97c9
TS
5091#endif
5092}
5093\f
5094/* Create the .compact_rel section. */
5095
b34976b6 5096static bfd_boolean
9719ad41
RS
5097mips_elf_create_compact_rel_section
5098 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5099{
5100 flagword flags;
5101 register asection *s;
5102
3d4d4302 5103 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5104 {
5105 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5106 | SEC_READONLY);
5107
3d4d4302 5108 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5109 if (s == NULL
b49e97c9
TS
5110 || ! bfd_set_section_alignment (abfd, s,
5111 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5112 return FALSE;
b49e97c9 5113
eea6121a 5114 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5115 }
5116
b34976b6 5117 return TRUE;
b49e97c9
TS
5118}
5119
5120/* Create the .got section to hold the global offset table. */
5121
b34976b6 5122static bfd_boolean
23cc69b6 5123mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5124{
5125 flagword flags;
5126 register asection *s;
5127 struct elf_link_hash_entry *h;
14a793b2 5128 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5129 struct mips_elf_link_hash_table *htab;
5130
5131 htab = mips_elf_hash_table (info);
4dfe6ac6 5132 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5133
5134 /* This function may be called more than once. */
ce558b89 5135 if (htab->root.sgot)
23cc69b6 5136 return TRUE;
b49e97c9
TS
5137
5138 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5139 | SEC_LINKER_CREATED);
5140
72b4917c
TS
5141 /* We have to use an alignment of 2**4 here because this is hardcoded
5142 in the function stub generation and in the linker script. */
87e0a731 5143 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5144 if (s == NULL
72b4917c 5145 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 5146 return FALSE;
ce558b89 5147 htab->root.sgot = s;
b49e97c9
TS
5148
5149 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5150 linker script because we don't want to define the symbol if we
5151 are not creating a global offset table. */
14a793b2 5152 bh = NULL;
b49e97c9
TS
5153 if (! (_bfd_generic_link_add_one_symbol
5154 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5155 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5156 return FALSE;
14a793b2
AM
5157
5158 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5159 h->non_elf = 0;
5160 h->def_regular = 1;
b49e97c9 5161 h->type = STT_OBJECT;
2f9efdfc 5162 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5163 elf_hash_table (info)->hgot = h;
b49e97c9 5164
0e1862bb 5165 if (bfd_link_pic (info)
c152c796 5166 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5167 return FALSE;
b49e97c9 5168
3dff0dd1 5169 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5170 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5171 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5172
861fb55a 5173 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5174 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5175 SEC_ALLOC | SEC_LOAD
5176 | SEC_HAS_CONTENTS
5177 | SEC_IN_MEMORY
5178 | SEC_LINKER_CREATED);
861fb55a
DJ
5179 if (s == NULL)
5180 return FALSE;
ce558b89 5181 htab->root.sgotplt = s;
0a44bf69 5182
b34976b6 5183 return TRUE;
b49e97c9 5184}
b49e97c9 5185\f
0a44bf69
RS
5186/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5187 __GOTT_INDEX__ symbols. These symbols are only special for
5188 shared objects; they are not used in executables. */
5189
5190static bfd_boolean
5191is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5192{
5193 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5194 && bfd_link_pic (info)
0a44bf69
RS
5195 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5196 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5197}
861fb55a
DJ
5198
5199/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5200 require an la25 stub. See also mips_elf_local_pic_function_p,
5201 which determines whether the destination function ever requires a
5202 stub. */
5203
5204static bfd_boolean
8f0c309a
CLT
5205mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5206 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5207{
5208 /* We specifically ignore branches and jumps from EF_PIC objects,
5209 where the onus is on the compiler or programmer to perform any
5210 necessary initialization of $25. Sometimes such initialization
5211 is unnecessary; for example, -mno-shared functions do not use
5212 the incoming value of $25, and may therefore be called directly. */
5213 if (PIC_OBJECT_P (input_bfd))
5214 return FALSE;
5215
5216 switch (r_type)
5217 {
5218 case R_MIPS_26:
5219 case R_MIPS_PC16:
7361da2c
AB
5220 case R_MIPS_PC21_S2:
5221 case R_MIPS_PC26_S2:
df58fc94
RS
5222 case R_MICROMIPS_26_S1:
5223 case R_MICROMIPS_PC7_S1:
5224 case R_MICROMIPS_PC10_S1:
5225 case R_MICROMIPS_PC16_S1:
5226 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5227 return TRUE;
5228
8f0c309a
CLT
5229 case R_MIPS16_26:
5230 return !target_is_16_bit_code_p;
5231
861fb55a
DJ
5232 default:
5233 return FALSE;
5234 }
5235}
0a44bf69 5236\f
b49e97c9
TS
5237/* Calculate the value produced by the RELOCATION (which comes from
5238 the INPUT_BFD). The ADDEND is the addend to use for this
5239 RELOCATION; RELOCATION->R_ADDEND is ignored.
5240
5241 The result of the relocation calculation is stored in VALUEP.
38a7df63 5242 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5243 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5244
5245 This function returns bfd_reloc_continue if the caller need take no
5246 further action regarding this relocation, bfd_reloc_notsupported if
5247 something goes dramatically wrong, bfd_reloc_overflow if an
5248 overflow occurs, and bfd_reloc_ok to indicate success. */
5249
5250static bfd_reloc_status_type
9719ad41
RS
5251mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5252 asection *input_section,
5253 struct bfd_link_info *info,
5254 const Elf_Internal_Rela *relocation,
5255 bfd_vma addend, reloc_howto_type *howto,
5256 Elf_Internal_Sym *local_syms,
5257 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5258 const char **namep,
5259 bfd_boolean *cross_mode_jump_p,
9719ad41 5260 bfd_boolean save_addend)
b49e97c9
TS
5261{
5262 /* The eventual value we will return. */
5263 bfd_vma value;
5264 /* The address of the symbol against which the relocation is
5265 occurring. */
5266 bfd_vma symbol = 0;
5267 /* The final GP value to be used for the relocatable, executable, or
5268 shared object file being produced. */
0a61c8c2 5269 bfd_vma gp;
b49e97c9
TS
5270 /* The place (section offset or address) of the storage unit being
5271 relocated. */
5272 bfd_vma p;
5273 /* The value of GP used to create the relocatable object. */
0a61c8c2 5274 bfd_vma gp0;
b49e97c9
TS
5275 /* The offset into the global offset table at which the address of
5276 the relocation entry symbol, adjusted by the addend, resides
5277 during execution. */
5278 bfd_vma g = MINUS_ONE;
5279 /* The section in which the symbol referenced by the relocation is
5280 located. */
5281 asection *sec = NULL;
5282 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5283 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5284 symbol. */
b34976b6 5285 bfd_boolean local_p, was_local_p;
77434823
MR
5286 /* TRUE if the symbol referred to by this relocation is a section
5287 symbol. */
5288 bfd_boolean section_p = FALSE;
b34976b6
AM
5289 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5290 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5291 /* TRUE if the symbol referred to by this relocation is
5292 "__gnu_local_gp". */
5293 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5294 Elf_Internal_Shdr *symtab_hdr;
5295 size_t extsymoff;
5296 unsigned long r_symndx;
5297 int r_type;
b34976b6 5298 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5299 relocation value. */
b34976b6
AM
5300 bfd_boolean overflowed_p;
5301 /* TRUE if this relocation refers to a MIPS16 function. */
5302 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5303 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5304 struct mips_elf_link_hash_table *htab;
5305 bfd *dynobj;
ad951203 5306 bfd_boolean resolved_to_zero;
0a44bf69
RS
5307
5308 dynobj = elf_hash_table (info)->dynobj;
5309 htab = mips_elf_hash_table (info);
4dfe6ac6 5310 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5311
5312 /* Parse the relocation. */
5313 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5314 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5315 p = (input_section->output_section->vma
5316 + input_section->output_offset
5317 + relocation->r_offset);
5318
5319 /* Assume that there will be no overflow. */
b34976b6 5320 overflowed_p = FALSE;
b49e97c9
TS
5321
5322 /* Figure out whether or not the symbol is local, and get the offset
5323 used in the array of hash table entries. */
5324 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5325 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5326 local_sections);
bce03d3d 5327 was_local_p = local_p;
b49e97c9
TS
5328 if (! elf_bad_symtab (input_bfd))
5329 extsymoff = symtab_hdr->sh_info;
5330 else
5331 {
5332 /* The symbol table does not follow the rule that local symbols
5333 must come before globals. */
5334 extsymoff = 0;
5335 }
5336
5337 /* Figure out the value of the symbol. */
5338 if (local_p)
5339 {
9d862524 5340 bfd_boolean micromips_p = MICROMIPS_P (abfd);
b49e97c9
TS
5341 Elf_Internal_Sym *sym;
5342
5343 sym = local_syms + r_symndx;
5344 sec = local_sections[r_symndx];
5345
77434823
MR
5346 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5347
b49e97c9 5348 symbol = sec->output_section->vma + sec->output_offset;
77434823 5349 if (!section_p || (sec->flags & SEC_MERGE))
b49e97c9 5350 symbol += sym->st_value;
77434823 5351 if ((sec->flags & SEC_MERGE) && section_p)
d4df96e6
L
5352 {
5353 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5354 addend -= symbol;
5355 addend += sec->output_section->vma + sec->output_offset;
5356 }
b49e97c9 5357
df58fc94
RS
5358 /* MIPS16/microMIPS text labels should be treated as odd. */
5359 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5360 ++symbol;
5361
5362 /* Record the name of this symbol, for our caller. */
5363 *namep = bfd_elf_string_from_elf_section (input_bfd,
5364 symtab_hdr->sh_link,
5365 sym->st_name);
ceab86af 5366 if (*namep == NULL || **namep == '\0')
b49e97c9
TS
5367 *namep = bfd_section_name (input_bfd, sec);
5368
9d862524 5369 /* For relocations against a section symbol and ones against no
07d6d2b8 5370 symbol (absolute relocations) infer the ISA mode from the addend. */
9d862524
MR
5371 if (section_p || r_symndx == STN_UNDEF)
5372 {
5373 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5374 target_is_micromips_code_p = (addend & 1) && micromips_p;
5375 }
5376 /* For relocations against an absolute symbol infer the ISA mode
07d6d2b8 5377 from the value of the symbol plus addend. */
9d862524
MR
5378 else if (bfd_is_abs_section (sec))
5379 {
5380 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5381 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5382 }
5383 /* Otherwise just use the regular symbol annotation available. */
5384 else
5385 {
5386 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5387 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5388 }
b49e97c9
TS
5389 }
5390 else
5391 {
560e09e9
NC
5392 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5393
b49e97c9
TS
5394 /* For global symbols we look up the symbol in the hash-table. */
5395 h = ((struct mips_elf_link_hash_entry *)
5396 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5397 /* Find the real hash-table entry for this symbol. */
5398 while (h->root.root.type == bfd_link_hash_indirect
5399 || h->root.root.type == bfd_link_hash_warning)
5400 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5401
5402 /* Record the name of this symbol, for our caller. */
5403 *namep = h->root.root.root.string;
5404
5405 /* See if this is the special _gp_disp symbol. Note that such a
5406 symbol must always be a global symbol. */
560e09e9 5407 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5408 && ! NEWABI_P (input_bfd))
5409 {
5410 /* Relocations against _gp_disp are permitted only with
5411 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5412 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5413 return bfd_reloc_notsupported;
5414
b34976b6 5415 gp_disp_p = TRUE;
b49e97c9 5416 }
bbe506e8
TS
5417 /* See if this is the special _gp symbol. Note that such a
5418 symbol must always be a global symbol. */
5419 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5420 gnu_local_gp_p = TRUE;
5421
5422
b49e97c9
TS
5423 /* If this symbol is defined, calculate its address. Note that
5424 _gp_disp is a magic symbol, always implicitly defined by the
5425 linker, so it's inappropriate to check to see whether or not
5426 its defined. */
5427 else if ((h->root.root.type == bfd_link_hash_defined
5428 || h->root.root.type == bfd_link_hash_defweak)
5429 && h->root.root.u.def.section)
5430 {
5431 sec = h->root.root.u.def.section;
5432 if (sec->output_section)
5433 symbol = (h->root.root.u.def.value
5434 + sec->output_section->vma
5435 + sec->output_offset);
5436 else
5437 symbol = h->root.root.u.def.value;
5438 }
5439 else if (h->root.root.type == bfd_link_hash_undefweak)
5440 /* We allow relocations against undefined weak symbols, giving
5441 it the value zero, so that you can undefined weak functions
5442 and check to see if they exist by looking at their
5443 addresses. */
5444 symbol = 0;
59c2e50f 5445 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5446 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5447 symbol = 0;
a4d0f181
TS
5448 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5449 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5450 {
5451 /* If this is a dynamic link, we should have created a
5452 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
de194d85 5453 in _bfd_mips_elf_create_dynamic_sections.
b49e97c9
TS
5454 Otherwise, we should define the symbol with a value of 0.
5455 FIXME: It should probably get into the symbol table
5456 somehow as well. */
0e1862bb 5457 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5458 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5459 symbol = 0;
5460 }
5e2b0d47
NC
5461 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5462 {
5463 /* This is an optional symbol - an Irix specific extension to the
5464 ELF spec. Ignore it for now.
5465 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5466 than simply ignoring them, but we do not handle this for now.
5467 For information see the "64-bit ELF Object File Specification"
5468 which is available from here:
5469 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5470 symbol = 0;
5471 }
b49e97c9
TS
5472 else
5473 {
dfb93f11
JC
5474 bfd_boolean reject_undefined
5475 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5476 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5477
1a72702b
AM
5478 (*info->callbacks->undefined_symbol)
5479 (info, h->root.root.root.string, input_bfd,
dfb93f11
JC
5480 input_section, relocation->r_offset, reject_undefined);
5481
5482 if (reject_undefined)
5483 return bfd_reloc_undefined;
5484
5485 symbol = 0;
b49e97c9
TS
5486 }
5487
30c09090 5488 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5489 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5490 }
5491
738e5348
RS
5492 /* If this is a reference to a 16-bit function with a stub, we need
5493 to redirect the relocation to the stub unless:
5494
5495 (a) the relocation is for a MIPS16 JAL;
5496
5497 (b) the relocation is for a MIPS16 PIC call, and there are no
5498 non-MIPS16 uses of the GOT slot; or
5499
5500 (c) the section allows direct references to MIPS16 functions. */
5501 if (r_type != R_MIPS16_26
0e1862bb 5502 && !bfd_link_relocatable (info)
738e5348
RS
5503 && ((h != NULL
5504 && h->fn_stub != NULL
5505 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5506 || (local_p
698600e4
AM
5507 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5508 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5509 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5510 {
5511 /* This is a 32- or 64-bit call to a 16-bit function. We should
5512 have already noticed that we were going to need the
5513 stub. */
5514 if (local_p)
8f0c309a 5515 {
698600e4 5516 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5517 value = 0;
5518 }
b49e97c9
TS
5519 else
5520 {
5521 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5522 if (h->la25_stub)
5523 {
5524 /* If a LA25 header for the stub itself exists, point to the
5525 prepended LUI/ADDIU sequence. */
5526 sec = h->la25_stub->stub_section;
5527 value = h->la25_stub->offset;
5528 }
5529 else
5530 {
5531 sec = h->fn_stub;
5532 value = 0;
5533 }
b49e97c9
TS
5534 }
5535
8f0c309a 5536 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5537 /* The target is 16-bit, but the stub isn't. */
5538 target_is_16_bit_code_p = FALSE;
b49e97c9 5539 }
1bbce132
MR
5540 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5541 to a standard MIPS function, we need to redirect the call to the stub.
5542 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5543 indirect calls should use an indirect stub instead. */
0e1862bb 5544 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5545 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5546 || (local_p
698600e4
AM
5547 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5548 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5549 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5550 {
b9d58d71 5551 if (local_p)
698600e4 5552 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5553 else
b49e97c9 5554 {
b9d58d71
TS
5555 /* If both call_stub and call_fp_stub are defined, we can figure
5556 out which one to use by checking which one appears in the input
5557 file. */
5558 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5559 {
b9d58d71 5560 asection *o;
68ffbac6 5561
b9d58d71
TS
5562 sec = NULL;
5563 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5564 {
b9d58d71
TS
5565 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5566 {
5567 sec = h->call_fp_stub;
5568 break;
5569 }
b49e97c9 5570 }
b9d58d71
TS
5571 if (sec == NULL)
5572 sec = h->call_stub;
b49e97c9 5573 }
b9d58d71 5574 else if (h->call_stub != NULL)
b49e97c9 5575 sec = h->call_stub;
b9d58d71
TS
5576 else
5577 sec = h->call_fp_stub;
07d6d2b8 5578 }
b49e97c9 5579
eea6121a 5580 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5581 symbol = sec->output_section->vma + sec->output_offset;
5582 }
861fb55a
DJ
5583 /* If this is a direct call to a PIC function, redirect to the
5584 non-PIC stub. */
5585 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5586 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5587 target_is_16_bit_code_p))
c7318def
MR
5588 {
5589 symbol = (h->la25_stub->stub_section->output_section->vma
5590 + h->la25_stub->stub_section->output_offset
5591 + h->la25_stub->offset);
5592 if (ELF_ST_IS_MICROMIPS (h->root.other))
5593 symbol |= 1;
5594 }
1bbce132
MR
5595 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5596 entry is used if a standard PLT entry has also been made. In this
5597 case the symbol will have been set by mips_elf_set_plt_sym_value
5598 to point to the standard PLT entry, so redirect to the compressed
5599 one. */
54806ffa
MR
5600 else if ((mips16_branch_reloc_p (r_type)
5601 || micromips_branch_reloc_p (r_type))
0e1862bb 5602 && !bfd_link_relocatable (info)
1bbce132
MR
5603 && h != NULL
5604 && h->use_plt_entry
5605 && h->root.plt.plist->comp_offset != MINUS_ONE
5606 && h->root.plt.plist->mips_offset != MINUS_ONE)
5607 {
5608 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5609
ce558b89 5610 sec = htab->root.splt;
1bbce132
MR
5611 symbol = (sec->output_section->vma
5612 + sec->output_offset
5613 + htab->plt_header_size
5614 + htab->plt_mips_offset
5615 + h->root.plt.plist->comp_offset
5616 + 1);
5617
5618 target_is_16_bit_code_p = !micromips_p;
5619 target_is_micromips_code_p = micromips_p;
5620 }
b49e97c9 5621
df58fc94 5622 /* Make sure MIPS16 and microMIPS are not used together. */
c9775dde 5623 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
df58fc94
RS
5624 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5625 {
4eca0228 5626 _bfd_error_handler
df58fc94
RS
5627 (_("MIPS16 and microMIPS functions cannot call each other"));
5628 return bfd_reloc_notsupported;
5629 }
5630
b49e97c9 5631 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5632 mode change. However, we can ignore calls to undefined weak symbols,
5633 which should never be executed at runtime. This exception is important
5634 because the assembly writer may have "known" that any definition of the
5635 symbol would be 16-bit code, and that direct jumps were therefore
5636 acceptable. */
0e1862bb 5637 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94 5638 && !(h && h->root.root.type == bfd_link_hash_undefweak)
9d862524
MR
5639 && ((mips16_branch_reloc_p (r_type)
5640 && !target_is_16_bit_code_p)
5641 || (micromips_branch_reloc_p (r_type)
df58fc94 5642 && !target_is_micromips_code_p)
9d862524
MR
5643 || ((branch_reloc_p (r_type)
5644 || r_type == R_MIPS_JALR)
df58fc94
RS
5645 && (target_is_16_bit_code_p
5646 || target_is_micromips_code_p))));
b49e97c9 5647
c5d6fa44 5648 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5649
0a61c8c2
RS
5650 gp0 = _bfd_get_gp_value (input_bfd);
5651 gp = _bfd_get_gp_value (abfd);
23cc69b6 5652 if (htab->got_info)
a8028dd0 5653 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5654
5655 if (gnu_local_gp_p)
5656 symbol = gp;
5657
df58fc94
RS
5658 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5659 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5660 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5661 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5662 {
df58fc94
RS
5663 r_type = (micromips_reloc_p (r_type)
5664 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5665 addend = 0;
5666 }
5667
ad951203
L
5668 resolved_to_zero = (h != NULL
5669 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5670 &h->root));
5671
e77760d2 5672 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5673 to need it, get it now. */
b49e97c9
TS
5674 switch (r_type)
5675 {
738e5348
RS
5676 case R_MIPS16_CALL16:
5677 case R_MIPS16_GOT16:
b49e97c9
TS
5678 case R_MIPS_CALL16:
5679 case R_MIPS_GOT16:
5680 case R_MIPS_GOT_DISP:
5681 case R_MIPS_GOT_HI16:
5682 case R_MIPS_CALL_HI16:
5683 case R_MIPS_GOT_LO16:
5684 case R_MIPS_CALL_LO16:
df58fc94
RS
5685 case R_MICROMIPS_CALL16:
5686 case R_MICROMIPS_GOT16:
5687 case R_MICROMIPS_GOT_DISP:
5688 case R_MICROMIPS_GOT_HI16:
5689 case R_MICROMIPS_CALL_HI16:
5690 case R_MICROMIPS_GOT_LO16:
5691 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5692 case R_MIPS_TLS_GD:
5693 case R_MIPS_TLS_GOTTPREL:
5694 case R_MIPS_TLS_LDM:
d0f13682
CLT
5695 case R_MIPS16_TLS_GD:
5696 case R_MIPS16_TLS_GOTTPREL:
5697 case R_MIPS16_TLS_LDM:
df58fc94
RS
5698 case R_MICROMIPS_TLS_GD:
5699 case R_MICROMIPS_TLS_GOTTPREL:
5700 case R_MICROMIPS_TLS_LDM:
b49e97c9 5701 /* Find the index into the GOT where this value is located. */
df58fc94 5702 if (tls_ldm_reloc_p (r_type))
0f20cc35 5703 {
0a44bf69 5704 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5705 0, 0, NULL, r_type);
0f20cc35
DJ
5706 if (g == MINUS_ONE)
5707 return bfd_reloc_outofrange;
5708 }
5709 else if (!local_p)
b49e97c9 5710 {
0a44bf69
RS
5711 /* On VxWorks, CALL relocations should refer to the .got.plt
5712 entry, which is initialized to point at the PLT stub. */
5713 if (htab->is_vxworks
df58fc94
RS
5714 && (call_hi16_reloc_p (r_type)
5715 || call_lo16_reloc_p (r_type)
738e5348 5716 || call16_reloc_p (r_type)))
0a44bf69
RS
5717 {
5718 BFD_ASSERT (addend == 0);
5719 BFD_ASSERT (h->root.needs_plt);
5720 g = mips_elf_gotplt_index (info, &h->root);
5721 }
5722 else
b49e97c9 5723 {
020d7251 5724 BFD_ASSERT (addend == 0);
13fbec83
RS
5725 g = mips_elf_global_got_index (abfd, info, input_bfd,
5726 &h->root, r_type);
e641e783 5727 if (!TLS_RELOC_P (r_type)
020d7251
RS
5728 && !elf_hash_table (info)->dynamic_sections_created)
5729 /* This is a static link. We must initialize the GOT entry. */
ce558b89 5730 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
b49e97c9
TS
5731 }
5732 }
0a44bf69 5733 else if (!htab->is_vxworks
738e5348 5734 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5735 /* The calculation below does not involve "g". */
b49e97c9
TS
5736 break;
5737 else
5738 {
5c18022e 5739 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5740 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5741 if (g == MINUS_ONE)
5742 return bfd_reloc_outofrange;
5743 }
5744
5745 /* Convert GOT indices to actual offsets. */
a8028dd0 5746 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5747 break;
b49e97c9
TS
5748 }
5749
0a44bf69
RS
5750 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5751 symbols are resolved by the loader. Add them to .rela.dyn. */
5752 if (h != NULL && is_gott_symbol (info, &h->root))
5753 {
5754 Elf_Internal_Rela outrel;
5755 bfd_byte *loc;
5756 asection *s;
5757
5758 s = mips_elf_rel_dyn_section (info, FALSE);
5759 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5760
5761 outrel.r_offset = (input_section->output_section->vma
5762 + input_section->output_offset
5763 + relocation->r_offset);
5764 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5765 outrel.r_addend = addend;
5766 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5767
5768 /* If we've written this relocation for a readonly section,
5769 we need to set DF_TEXTREL again, so that we do not delete the
5770 DT_TEXTREL tag. */
5771 if (MIPS_ELF_READONLY_SECTION (input_section))
5772 info->flags |= DF_TEXTREL;
5773
0a44bf69
RS
5774 *valuep = 0;
5775 return bfd_reloc_ok;
5776 }
5777
b49e97c9
TS
5778 /* Figure out what kind of relocation is being performed. */
5779 switch (r_type)
5780 {
5781 case R_MIPS_NONE:
5782 return bfd_reloc_continue;
5783
5784 case R_MIPS_16:
c3eb94b4
MF
5785 if (howto->partial_inplace)
5786 addend = _bfd_mips_elf_sign_extend (addend, 16);
5787 value = symbol + addend;
b49e97c9
TS
5788 overflowed_p = mips_elf_overflow_p (value, 16);
5789 break;
5790
5791 case R_MIPS_32:
5792 case R_MIPS_REL32:
5793 case R_MIPS_64:
0e1862bb 5794 if ((bfd_link_pic (info)
861fb55a 5795 || (htab->root.dynamic_sections_created
b49e97c9 5796 && h != NULL
f5385ebf 5797 && h->root.def_dynamic
861fb55a
DJ
5798 && !h->root.def_regular
5799 && !h->has_static_relocs))
cf35638d 5800 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5801 && (h == NULL
5802 || h->root.root.type != bfd_link_hash_undefweak
ad951203
L
5803 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5804 && !resolved_to_zero))
b49e97c9
TS
5805 && (input_section->flags & SEC_ALLOC) != 0)
5806 {
861fb55a 5807 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5808 where the symbol will end up. So, we create a relocation
5809 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5810 linker. We must do the same for executable references to
5811 shared library symbols, unless we've decided to use copy
5812 relocs or PLTs instead. */
b49e97c9
TS
5813 value = addend;
5814 if (!mips_elf_create_dynamic_relocation (abfd,
5815 info,
5816 relocation,
5817 h,
5818 sec,
5819 symbol,
5820 &value,
5821 input_section))
5822 return bfd_reloc_undefined;
5823 }
5824 else
5825 {
5826 if (r_type != R_MIPS_REL32)
5827 value = symbol + addend;
5828 else
5829 value = addend;
5830 }
5831 value &= howto->dst_mask;
092dcd75
CD
5832 break;
5833
5834 case R_MIPS_PC32:
5835 value = symbol + addend - p;
5836 value &= howto->dst_mask;
b49e97c9
TS
5837 break;
5838
b49e97c9
TS
5839 case R_MIPS16_26:
5840 /* The calculation for R_MIPS16_26 is just the same as for an
5841 R_MIPS_26. It's only the storage of the relocated field into
5842 the output file that's different. That's handled in
5843 mips_elf_perform_relocation. So, we just fall through to the
5844 R_MIPS_26 case here. */
5845 case R_MIPS_26:
df58fc94
RS
5846 case R_MICROMIPS_26_S1:
5847 {
5848 unsigned int shift;
5849
df58fc94
RS
5850 /* Shift is 2, unusually, for microMIPS JALX. */
5851 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5852
77434823 5853 if (howto->partial_inplace && !section_p)
df58fc94 5854 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
5855 else
5856 value = addend;
bc27bb05
MR
5857 value += symbol;
5858
9d862524
MR
5859 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5860 be the correct ISA mode selector except for weak undefined
5861 symbols. */
5862 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5863 && (*cross_mode_jump_p
5864 ? (value & 3) != (r_type == R_MIPS_26)
07d6d2b8 5865 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
bc27bb05
MR
5866 return bfd_reloc_outofrange;
5867
5868 value >>= shift;
77434823 5869 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
df58fc94
RS
5870 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5871 value &= howto->dst_mask;
5872 }
b49e97c9
TS
5873 break;
5874
0f20cc35 5875 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5876 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5877 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5878 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5879 & howto->dst_mask);
5880 break;
5881
5882 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5883 case R_MIPS_TLS_DTPREL32:
5884 case R_MIPS_TLS_DTPREL64:
d0f13682 5885 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5886 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5887 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5888 break;
5889
5890 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5891 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5892 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5893 value = (mips_elf_high (addend + symbol - tprel_base (info))
5894 & howto->dst_mask);
5895 break;
5896
5897 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5898 case R_MIPS_TLS_TPREL32:
5899 case R_MIPS_TLS_TPREL64:
5900 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5901 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5902 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5903 break;
5904
b49e97c9 5905 case R_MIPS_HI16:
d6f16593 5906 case R_MIPS16_HI16:
df58fc94 5907 case R_MICROMIPS_HI16:
b49e97c9
TS
5908 if (!gp_disp_p)
5909 {
5910 value = mips_elf_high (addend + symbol);
5911 value &= howto->dst_mask;
5912 }
5913 else
5914 {
d6f16593 5915 /* For MIPS16 ABI code we generate this sequence
07d6d2b8
AM
5916 0: li $v0,%hi(_gp_disp)
5917 4: addiupc $v1,%lo(_gp_disp)
5918 8: sll $v0,16
d6f16593
MR
5919 12: addu $v0,$v1
5920 14: move $gp,$v0
5921 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5922 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5923 ADDIUPC clears the low two bits of the instruction address,
5924 so the base is ($t9 + 4) & ~3. */
d6f16593 5925 if (r_type == R_MIPS16_HI16)
888b9c01 5926 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5927 /* The microMIPS .cpload sequence uses the same assembly
5928 instructions as the traditional psABI version, but the
5929 incoming $t9 has the low bit set. */
5930 else if (r_type == R_MICROMIPS_HI16)
5931 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5932 else
5933 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5934 }
5935 break;
5936
5937 case R_MIPS_LO16:
d6f16593 5938 case R_MIPS16_LO16:
df58fc94
RS
5939 case R_MICROMIPS_LO16:
5940 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5941 if (!gp_disp_p)
5942 value = (symbol + addend) & howto->dst_mask;
5943 else
5944 {
d6f16593
MR
5945 /* See the comment for R_MIPS16_HI16 above for the reason
5946 for this conditional. */
5947 if (r_type == R_MIPS16_LO16)
888b9c01 5948 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5949 else if (r_type == R_MICROMIPS_LO16
5950 || r_type == R_MICROMIPS_HI0_LO16)
5951 value = addend + gp - p + 3;
d6f16593
MR
5952 else
5953 value = addend + gp - p + 4;
b49e97c9 5954 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5955 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5956 _gp_disp are normally generated from the .cpload
5957 pseudo-op. It generates code that normally looks like
5958 this:
5959
5960 lui $gp,%hi(_gp_disp)
5961 addiu $gp,$gp,%lo(_gp_disp)
5962 addu $gp,$gp,$t9
5963
5964 Here $t9 holds the address of the function being called,
5965 as required by the MIPS ELF ABI. The R_MIPS_LO16
5966 relocation can easily overflow in this situation, but the
5967 R_MIPS_HI16 relocation will handle the overflow.
5968 Therefore, we consider this a bug in the MIPS ABI, and do
5969 not check for overflow here. */
5970 }
5971 break;
5972
5973 case R_MIPS_LITERAL:
df58fc94 5974 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5975 /* Because we don't merge literal sections, we can handle this
5976 just like R_MIPS_GPREL16. In the long run, we should merge
5977 shared literals, and then we will need to additional work
5978 here. */
5979
5980 /* Fall through. */
5981
5982 case R_MIPS16_GPREL:
5983 /* The R_MIPS16_GPREL performs the same calculation as
5984 R_MIPS_GPREL16, but stores the relocated bits in a different
5985 order. We don't need to do anything special here; the
5986 differences are handled in mips_elf_perform_relocation. */
5987 case R_MIPS_GPREL16:
df58fc94
RS
5988 case R_MICROMIPS_GPREL7_S2:
5989 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5990 /* Only sign-extend the addend if it was extracted from the
5991 instruction. If the addend was separate, leave it alone,
5992 otherwise we may lose significant bits. */
5993 if (howto->partial_inplace)
a7ebbfdf 5994 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5995 value = symbol + addend - gp;
5996 /* If the symbol was local, any earlier relocatable links will
5997 have adjusted its addend with the gp offset, so compensate
5998 for that now. Don't do it for symbols forced local in this
5999 link, though, since they won't have had the gp offset applied
6000 to them before. */
6001 if (was_local_p)
6002 value += gp0;
538baf8b
AB
6003 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6004 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
6005 break;
6006
738e5348
RS
6007 case R_MIPS16_GOT16:
6008 case R_MIPS16_CALL16:
b49e97c9
TS
6009 case R_MIPS_GOT16:
6010 case R_MIPS_CALL16:
df58fc94
RS
6011 case R_MICROMIPS_GOT16:
6012 case R_MICROMIPS_CALL16:
0a44bf69 6013 /* VxWorks does not have separate local and global semantics for
738e5348 6014 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 6015 if (!htab->is_vxworks && local_p)
b49e97c9 6016 {
5c18022e 6017 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 6018 symbol + addend, !was_local_p);
b49e97c9
TS
6019 if (value == MINUS_ONE)
6020 return bfd_reloc_outofrange;
6021 value
a8028dd0 6022 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6023 overflowed_p = mips_elf_overflow_p (value, 16);
6024 break;
6025 }
6026
6027 /* Fall through. */
6028
0f20cc35
DJ
6029 case R_MIPS_TLS_GD:
6030 case R_MIPS_TLS_GOTTPREL:
6031 case R_MIPS_TLS_LDM:
b49e97c9 6032 case R_MIPS_GOT_DISP:
d0f13682
CLT
6033 case R_MIPS16_TLS_GD:
6034 case R_MIPS16_TLS_GOTTPREL:
6035 case R_MIPS16_TLS_LDM:
df58fc94
RS
6036 case R_MICROMIPS_TLS_GD:
6037 case R_MICROMIPS_TLS_GOTTPREL:
6038 case R_MICROMIPS_TLS_LDM:
6039 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
6040 value = g;
6041 overflowed_p = mips_elf_overflow_p (value, 16);
6042 break;
6043
6044 case R_MIPS_GPREL32:
bce03d3d
AO
6045 value = (addend + symbol + gp0 - gp);
6046 if (!save_addend)
6047 value &= howto->dst_mask;
b49e97c9
TS
6048 break;
6049
6050 case R_MIPS_PC16:
bad36eac 6051 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
6052 if (howto->partial_inplace)
6053 addend = _bfd_mips_elf_sign_extend (addend, 18);
6054
9d862524 6055 /* No need to exclude weak undefined symbols here as they resolve
07d6d2b8
AM
6056 to 0 and never set `*cross_mode_jump_p', so this alignment check
6057 will never trigger for them. */
9d862524
MR
6058 if (*cross_mode_jump_p
6059 ? ((symbol + addend) & 3) != 1
6060 : ((symbol + addend) & 3) != 0)
c3eb94b4
MF
6061 return bfd_reloc_outofrange;
6062
6063 value = symbol + addend - p;
538baf8b
AB
6064 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6065 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
6066 value >>= howto->rightshift;
6067 value &= howto->dst_mask;
b49e97c9
TS
6068 break;
6069
c9775dde
MR
6070 case R_MIPS16_PC16_S1:
6071 if (howto->partial_inplace)
6072 addend = _bfd_mips_elf_sign_extend (addend, 17);
6073
6074 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
9d862524
MR
6075 && (*cross_mode_jump_p
6076 ? ((symbol + addend) & 3) != 0
6077 : ((symbol + addend) & 1) == 0))
c9775dde
MR
6078 return bfd_reloc_outofrange;
6079
6080 value = symbol + addend - p;
6081 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6082 overflowed_p = mips_elf_overflow_p (value, 17);
6083 value >>= howto->rightshift;
6084 value &= howto->dst_mask;
6085 break;
6086
7361da2c
AB
6087 case R_MIPS_PC21_S2:
6088 if (howto->partial_inplace)
6089 addend = _bfd_mips_elf_sign_extend (addend, 23);
6090
6091 if ((symbol + addend) & 3)
6092 return bfd_reloc_outofrange;
6093
6094 value = symbol + addend - p;
538baf8b
AB
6095 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6096 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
6097 value >>= howto->rightshift;
6098 value &= howto->dst_mask;
6099 break;
6100
6101 case R_MIPS_PC26_S2:
6102 if (howto->partial_inplace)
6103 addend = _bfd_mips_elf_sign_extend (addend, 28);
6104
6105 if ((symbol + addend) & 3)
6106 return bfd_reloc_outofrange;
6107
6108 value = symbol + addend - p;
538baf8b
AB
6109 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6110 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6111 value >>= howto->rightshift;
6112 value &= howto->dst_mask;
6113 break;
6114
6115 case R_MIPS_PC18_S3:
6116 if (howto->partial_inplace)
6117 addend = _bfd_mips_elf_sign_extend (addend, 21);
6118
6119 if ((symbol + addend) & 7)
6120 return bfd_reloc_outofrange;
6121
6122 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6123 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6124 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6125 value >>= howto->rightshift;
6126 value &= howto->dst_mask;
6127 break;
6128
6129 case R_MIPS_PC19_S2:
6130 if (howto->partial_inplace)
6131 addend = _bfd_mips_elf_sign_extend (addend, 21);
6132
6133 if ((symbol + addend) & 3)
6134 return bfd_reloc_outofrange;
6135
6136 value = symbol + addend - p;
538baf8b
AB
6137 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6138 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6139 value >>= howto->rightshift;
6140 value &= howto->dst_mask;
6141 break;
6142
6143 case R_MIPS_PCHI16:
6144 value = mips_elf_high (symbol + addend - p);
538baf8b
AB
6145 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6146 overflowed_p = mips_elf_overflow_p (value, 16);
7361da2c
AB
6147 value &= howto->dst_mask;
6148 break;
6149
6150 case R_MIPS_PCLO16:
6151 if (howto->partial_inplace)
6152 addend = _bfd_mips_elf_sign_extend (addend, 16);
6153 value = symbol + addend - p;
6154 value &= howto->dst_mask;
6155 break;
6156
df58fc94 6157 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6158 if (howto->partial_inplace)
6159 addend = _bfd_mips_elf_sign_extend (addend, 8);
9d862524
MR
6160
6161 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6162 && (*cross_mode_jump_p
6163 ? ((symbol + addend + 2) & 3) != 0
6164 : ((symbol + addend + 2) & 1) == 0))
6165 return bfd_reloc_outofrange;
6166
c3eb94b4 6167 value = symbol + addend - p;
538baf8b
AB
6168 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6169 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6170 value >>= howto->rightshift;
6171 value &= howto->dst_mask;
6172 break;
6173
6174 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6175 if (howto->partial_inplace)
6176 addend = _bfd_mips_elf_sign_extend (addend, 11);
9d862524
MR
6177
6178 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6179 && (*cross_mode_jump_p
6180 ? ((symbol + addend + 2) & 3) != 0
6181 : ((symbol + addend + 2) & 1) == 0))
6182 return bfd_reloc_outofrange;
6183
c3eb94b4 6184 value = symbol + addend - p;
538baf8b
AB
6185 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6186 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6187 value >>= howto->rightshift;
6188 value &= howto->dst_mask;
6189 break;
6190
6191 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6192 if (howto->partial_inplace)
6193 addend = _bfd_mips_elf_sign_extend (addend, 17);
9d862524
MR
6194
6195 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6196 && (*cross_mode_jump_p
6197 ? ((symbol + addend) & 3) != 0
6198 : ((symbol + addend) & 1) == 0))
6199 return bfd_reloc_outofrange;
6200
c3eb94b4 6201 value = symbol + addend - p;
538baf8b
AB
6202 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6203 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6204 value >>= howto->rightshift;
6205 value &= howto->dst_mask;
6206 break;
6207
6208 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6209 if (howto->partial_inplace)
6210 addend = _bfd_mips_elf_sign_extend (addend, 25);
6211 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6212 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6213 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6214 value >>= howto->rightshift;
6215 value &= howto->dst_mask;
6216 break;
6217
b49e97c9
TS
6218 case R_MIPS_GOT_HI16:
6219 case R_MIPS_CALL_HI16:
df58fc94
RS
6220 case R_MICROMIPS_GOT_HI16:
6221 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6222 /* We're allowed to handle these two relocations identically.
6223 The dynamic linker is allowed to handle the CALL relocations
6224 differently by creating a lazy evaluation stub. */
6225 value = g;
6226 value = mips_elf_high (value);
6227 value &= howto->dst_mask;
6228 break;
6229
6230 case R_MIPS_GOT_LO16:
6231 case R_MIPS_CALL_LO16:
df58fc94
RS
6232 case R_MICROMIPS_GOT_LO16:
6233 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6234 value = g & howto->dst_mask;
6235 break;
6236
6237 case R_MIPS_GOT_PAGE:
df58fc94 6238 case R_MICROMIPS_GOT_PAGE:
5c18022e 6239 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6240 if (value == MINUS_ONE)
6241 return bfd_reloc_outofrange;
a8028dd0 6242 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6243 overflowed_p = mips_elf_overflow_p (value, 16);
6244 break;
6245
6246 case R_MIPS_GOT_OFST:
df58fc94 6247 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6248 if (local_p)
5c18022e 6249 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6250 else
6251 value = addend;
b49e97c9
TS
6252 overflowed_p = mips_elf_overflow_p (value, 16);
6253 break;
6254
6255 case R_MIPS_SUB:
df58fc94 6256 case R_MICROMIPS_SUB:
b49e97c9
TS
6257 value = symbol - addend;
6258 value &= howto->dst_mask;
6259 break;
6260
6261 case R_MIPS_HIGHER:
df58fc94 6262 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6263 value = mips_elf_higher (addend + symbol);
6264 value &= howto->dst_mask;
6265 break;
6266
6267 case R_MIPS_HIGHEST:
df58fc94 6268 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6269 value = mips_elf_highest (addend + symbol);
6270 value &= howto->dst_mask;
6271 break;
6272
6273 case R_MIPS_SCN_DISP:
df58fc94 6274 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6275 value = symbol + addend - sec->output_offset;
6276 value &= howto->dst_mask;
6277 break;
6278
b49e97c9 6279 case R_MIPS_JALR:
df58fc94 6280 case R_MICROMIPS_JALR:
1367d393
ILT
6281 /* This relocation is only a hint. In some cases, we optimize
6282 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6283 when the symbol does not resolve locally. */
6284 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393 6285 return bfd_reloc_continue;
c1556ecd
MR
6286 /* We can't optimize cross-mode jumps either. */
6287 if (*cross_mode_jump_p)
6288 return bfd_reloc_continue;
1367d393 6289 value = symbol + addend;
c1556ecd
MR
6290 /* Neither we can non-instruction-aligned targets. */
6291 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6292 return bfd_reloc_continue;
1367d393 6293 break;
b49e97c9 6294
1367d393 6295 case R_MIPS_PJUMP:
b49e97c9
TS
6296 case R_MIPS_GNU_VTINHERIT:
6297 case R_MIPS_GNU_VTENTRY:
6298 /* We don't do anything with these at present. */
6299 return bfd_reloc_continue;
6300
6301 default:
6302 /* An unrecognized relocation type. */
6303 return bfd_reloc_notsupported;
6304 }
6305
6306 /* Store the VALUE for our caller. */
6307 *valuep = value;
6308 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6309}
6310
6311/* Obtain the field relocated by RELOCATION. */
6312
6313static bfd_vma
9719ad41
RS
6314mips_elf_obtain_contents (reloc_howto_type *howto,
6315 const Elf_Internal_Rela *relocation,
6316 bfd *input_bfd, bfd_byte *contents)
b49e97c9 6317{
6346d5ca 6318 bfd_vma x = 0;
b49e97c9 6319 bfd_byte *location = contents + relocation->r_offset;
6346d5ca 6320 unsigned int size = bfd_get_reloc_size (howto);
b49e97c9
TS
6321
6322 /* Obtain the bytes. */
6346d5ca
AM
6323 if (size != 0)
6324 x = bfd_get (8 * size, input_bfd, location);
b49e97c9 6325
b49e97c9
TS
6326 return x;
6327}
6328
6329/* It has been determined that the result of the RELOCATION is the
6330 VALUE. Use HOWTO to place VALUE into the output file at the
6331 appropriate position. The SECTION is the section to which the
68ffbac6 6332 relocation applies.
38a7df63 6333 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6334 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6335
b34976b6 6336 Returns FALSE if anything goes wrong. */
b49e97c9 6337
b34976b6 6338static bfd_boolean
9719ad41
RS
6339mips_elf_perform_relocation (struct bfd_link_info *info,
6340 reloc_howto_type *howto,
6341 const Elf_Internal_Rela *relocation,
6342 bfd_vma value, bfd *input_bfd,
6343 asection *input_section, bfd_byte *contents,
38a7df63 6344 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6345{
6346 bfd_vma x;
6347 bfd_byte *location;
6348 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6346d5ca 6349 unsigned int size;
b49e97c9
TS
6350
6351 /* Figure out where the relocation is occurring. */
6352 location = contents + relocation->r_offset;
6353
df58fc94 6354 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6355
b49e97c9
TS
6356 /* Obtain the current value. */
6357 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6358
6359 /* Clear the field we are setting. */
6360 x &= ~howto->dst_mask;
6361
b49e97c9
TS
6362 /* Set the field. */
6363 x |= (value & howto->dst_mask);
6364
a6ebf616 6365 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
9d862524
MR
6366 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6367 {
6368 bfd_vma opcode = x >> 26;
6369
6370 if (r_type == R_MIPS16_26 ? opcode == 0x7
6371 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6372 : opcode == 0x1d)
6373 {
6374 info->callbacks->einfo
2c1c9679 6375 (_("%X%H: unsupported JALX to the same ISA mode\n"),
9d862524
MR
6376 input_bfd, input_section, relocation->r_offset);
6377 return TRUE;
6378 }
6379 }
38a7df63 6380 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6381 {
b34976b6 6382 bfd_boolean ok;
b49e97c9
TS
6383 bfd_vma opcode = x >> 26;
6384 bfd_vma jalx_opcode;
6385
6386 /* Check to see if the opcode is already JAL or JALX. */
6387 if (r_type == R_MIPS16_26)
6388 {
6389 ok = ((opcode == 0x6) || (opcode == 0x7));
6390 jalx_opcode = 0x7;
6391 }
df58fc94
RS
6392 else if (r_type == R_MICROMIPS_26_S1)
6393 {
6394 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6395 jalx_opcode = 0x3c;
6396 }
b49e97c9
TS
6397 else
6398 {
6399 ok = ((opcode == 0x3) || (opcode == 0x1d));
6400 jalx_opcode = 0x1d;
6401 }
6402
3bdf9505 6403 /* If the opcode is not JAL or JALX, there's a problem. We cannot
07d6d2b8 6404 convert J or JALS to JALX. */
b49e97c9
TS
6405 if (!ok)
6406 {
5f68df25 6407 info->callbacks->einfo
2c1c9679 6408 (_("%X%H: unsupported jump between ISA modes; "
5f68df25
MR
6409 "consider recompiling with interlinking enabled\n"),
6410 input_bfd, input_section, relocation->r_offset);
6411 return TRUE;
b49e97c9
TS
6412 }
6413
6414 /* Make this the JALX opcode. */
6415 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6416 }
9d862524
MR
6417 else if (cross_mode_jump_p && b_reloc_p (r_type))
6418 {
a6ebf616
MR
6419 bfd_boolean ok = FALSE;
6420 bfd_vma opcode = x >> 16;
6421 bfd_vma jalx_opcode = 0;
70e65ca8 6422 bfd_vma sign_bit = 0;
a6ebf616
MR
6423 bfd_vma addr;
6424 bfd_vma dest;
6425
6426 if (r_type == R_MICROMIPS_PC16_S1)
6427 {
6428 ok = opcode == 0x4060;
6429 jalx_opcode = 0x3c;
70e65ca8 6430 sign_bit = 0x10000;
a6ebf616
MR
6431 value <<= 1;
6432 }
6433 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6434 {
6435 ok = opcode == 0x411;
6436 jalx_opcode = 0x1d;
70e65ca8 6437 sign_bit = 0x20000;
a6ebf616
MR
6438 value <<= 2;
6439 }
6440
8b10b0b3 6441 if (ok && !bfd_link_pic (info))
a6ebf616 6442 {
8b10b0b3
MR
6443 addr = (input_section->output_section->vma
6444 + input_section->output_offset
6445 + relocation->r_offset
6446 + 4);
70e65ca8
MR
6447 dest = (addr
6448 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
a6ebf616 6449
8b10b0b3
MR
6450 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6451 {
6452 info->callbacks->einfo
2c1c9679 6453 (_("%X%H: cannot convert branch between ISA modes "
8b10b0b3
MR
6454 "to JALX: relocation out of range\n"),
6455 input_bfd, input_section, relocation->r_offset);
6456 return TRUE;
6457 }
a6ebf616 6458
8b10b0b3
MR
6459 /* Make this the JALX opcode. */
6460 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6461 }
6462 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
a6ebf616
MR
6463 {
6464 info->callbacks->einfo
2c1c9679 6465 (_("%X%H: unsupported branch between ISA modes\n"),
a6ebf616
MR
6466 input_bfd, input_section, relocation->r_offset);
6467 return TRUE;
6468 }
9d862524 6469 }
b49e97c9 6470
38a7df63
CF
6471 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6472 range. */
0e1862bb 6473 if (!bfd_link_relocatable (info)
38a7df63 6474 && !cross_mode_jump_p
cd8d5a82
CF
6475 && ((JAL_TO_BAL_P (input_bfd)
6476 && r_type == R_MIPS_26
0e392101 6477 && (x >> 26) == 0x3) /* jal addr */
cd8d5a82
CF
6478 || (JALR_TO_BAL_P (input_bfd)
6479 && r_type == R_MIPS_JALR
0e392101 6480 && x == 0x0320f809) /* jalr t9 */
38a7df63
CF
6481 || (JR_TO_B_P (input_bfd)
6482 && r_type == R_MIPS_JALR
0e392101 6483 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
1367d393
ILT
6484 {
6485 bfd_vma addr;
6486 bfd_vma dest;
6487 bfd_signed_vma off;
6488
6489 addr = (input_section->output_section->vma
6490 + input_section->output_offset
6491 + relocation->r_offset
6492 + 4);
6493 if (r_type == R_MIPS_26)
6494 dest = (value << 2) | ((addr >> 28) << 28);
6495 else
6496 dest = value;
6497 off = dest - addr;
6498 if (off <= 0x1ffff && off >= -0x20000)
38a7df63 6499 {
0e392101 6500 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
38a7df63
CF
6501 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6502 else
6503 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6504 }
1367d393
ILT
6505 }
6506
b49e97c9 6507 /* Put the value into the output. */
6346d5ca
AM
6508 size = bfd_get_reloc_size (howto);
6509 if (size != 0)
6510 bfd_put (8 * size, input_bfd, x, location);
d6f16593 6511
0e1862bb 6512 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6513 location);
d6f16593 6514
b34976b6 6515 return TRUE;
b49e97c9 6516}
b49e97c9 6517\f
b49e97c9
TS
6518/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6519 is the original relocation, which is now being transformed into a
6520 dynamic relocation. The ADDENDP is adjusted if necessary; the
6521 caller should store the result in place of the original addend. */
6522
b34976b6 6523static bfd_boolean
9719ad41
RS
6524mips_elf_create_dynamic_relocation (bfd *output_bfd,
6525 struct bfd_link_info *info,
6526 const Elf_Internal_Rela *rel,
6527 struct mips_elf_link_hash_entry *h,
6528 asection *sec, bfd_vma symbol,
6529 bfd_vma *addendp, asection *input_section)
b49e97c9 6530{
947216bf 6531 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6532 asection *sreloc;
6533 bfd *dynobj;
6534 int r_type;
5d41f0b6
RS
6535 long indx;
6536 bfd_boolean defined_p;
0a44bf69 6537 struct mips_elf_link_hash_table *htab;
b49e97c9 6538
0a44bf69 6539 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6540 BFD_ASSERT (htab != NULL);
6541
b49e97c9
TS
6542 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6543 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6544 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6545 BFD_ASSERT (sreloc != NULL);
6546 BFD_ASSERT (sreloc->contents != NULL);
6547 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6548 < sreloc->size);
b49e97c9 6549
b49e97c9
TS
6550 outrel[0].r_offset =
6551 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6552 if (ABI_64_P (output_bfd))
6553 {
6554 outrel[1].r_offset =
6555 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6556 outrel[2].r_offset =
6557 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6558 }
b49e97c9 6559
c5ae1840 6560 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6561 /* The relocation field has been deleted. */
5d41f0b6
RS
6562 return TRUE;
6563
6564 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6565 {
6566 /* The relocation field has been converted into a relative value of
6567 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6568 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6569 *addendp += symbol;
5d41f0b6 6570 return TRUE;
0d591ff7 6571 }
b49e97c9 6572
5d41f0b6
RS
6573 /* We must now calculate the dynamic symbol table index to use
6574 in the relocation. */
d4a77f3f 6575 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6576 {
020d7251 6577 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6578 indx = h->root.dynindx;
6579 if (SGI_COMPAT (output_bfd))
6580 defined_p = h->root.def_regular;
6581 else
6582 /* ??? glibc's ld.so just adds the final GOT entry to the
6583 relocation field. It therefore treats relocs against
6584 defined symbols in the same way as relocs against
6585 undefined symbols. */
6586 defined_p = FALSE;
6587 }
b49e97c9
TS
6588 else
6589 {
5d41f0b6
RS
6590 if (sec != NULL && bfd_is_abs_section (sec))
6591 indx = 0;
6592 else if (sec == NULL || sec->owner == NULL)
fdd07405 6593 {
5d41f0b6
RS
6594 bfd_set_error (bfd_error_bad_value);
6595 return FALSE;
b49e97c9
TS
6596 }
6597 else
6598 {
5d41f0b6 6599 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6600 if (indx == 0)
6601 {
6602 asection *osec = htab->root.text_index_section;
6603 indx = elf_section_data (osec)->dynindx;
6604 }
5d41f0b6
RS
6605 if (indx == 0)
6606 abort ();
b49e97c9
TS
6607 }
6608
5d41f0b6
RS
6609 /* Instead of generating a relocation using the section
6610 symbol, we may as well make it a fully relative
6611 relocation. We want to avoid generating relocations to
6612 local symbols because we used to generate them
6613 incorrectly, without adding the original symbol value,
6614 which is mandated by the ABI for section symbols. In
6615 order to give dynamic loaders and applications time to
6616 phase out the incorrect use, we refrain from emitting
6617 section-relative relocations. It's not like they're
6618 useful, after all. This should be a bit more efficient
6619 as well. */
6620 /* ??? Although this behavior is compatible with glibc's ld.so,
6621 the ABI says that relocations against STN_UNDEF should have
6622 a symbol value of 0. Irix rld honors this, so relocations
6623 against STN_UNDEF have no effect. */
6624 if (!SGI_COMPAT (output_bfd))
6625 indx = 0;
6626 defined_p = TRUE;
b49e97c9
TS
6627 }
6628
5d41f0b6
RS
6629 /* If the relocation was previously an absolute relocation and
6630 this symbol will not be referred to by the relocation, we must
6631 adjust it by the value we give it in the dynamic symbol table.
6632 Otherwise leave the job up to the dynamic linker. */
6633 if (defined_p && r_type != R_MIPS_REL32)
6634 *addendp += symbol;
6635
0a44bf69
RS
6636 if (htab->is_vxworks)
6637 /* VxWorks uses non-relative relocations for this. */
6638 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6639 else
6640 /* The relocation is always an REL32 relocation because we don't
6641 know where the shared library will wind up at load-time. */
6642 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6643 R_MIPS_REL32);
6644
5d41f0b6
RS
6645 /* For strict adherence to the ABI specification, we should
6646 generate a R_MIPS_64 relocation record by itself before the
6647 _REL32/_64 record as well, such that the addend is read in as
6648 a 64-bit value (REL32 is a 32-bit relocation, after all).
6649 However, since none of the existing ELF64 MIPS dynamic
6650 loaders seems to care, we don't waste space with these
6651 artificial relocations. If this turns out to not be true,
6652 mips_elf_allocate_dynamic_relocation() should be tweaked so
6653 as to make room for a pair of dynamic relocations per
6654 invocation if ABI_64_P, and here we should generate an
6655 additional relocation record with R_MIPS_64 by itself for a
6656 NULL symbol before this relocation record. */
6657 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6658 ABI_64_P (output_bfd)
6659 ? R_MIPS_64
6660 : R_MIPS_NONE);
6661 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6662
6663 /* Adjust the output offset of the relocation to reference the
6664 correct location in the output file. */
6665 outrel[0].r_offset += (input_section->output_section->vma
6666 + input_section->output_offset);
6667 outrel[1].r_offset += (input_section->output_section->vma
6668 + input_section->output_offset);
6669 outrel[2].r_offset += (input_section->output_section->vma
6670 + input_section->output_offset);
6671
b49e97c9
TS
6672 /* Put the relocation back out. We have to use the special
6673 relocation outputter in the 64-bit case since the 64-bit
6674 relocation format is non-standard. */
6675 if (ABI_64_P (output_bfd))
6676 {
6677 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6678 (output_bfd, &outrel[0],
6679 (sreloc->contents
6680 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6681 }
0a44bf69
RS
6682 else if (htab->is_vxworks)
6683 {
6684 /* VxWorks uses RELA rather than REL dynamic relocations. */
6685 outrel[0].r_addend = *addendp;
6686 bfd_elf32_swap_reloca_out
6687 (output_bfd, &outrel[0],
6688 (sreloc->contents
6689 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6690 }
b49e97c9 6691 else
947216bf
AM
6692 bfd_elf32_swap_reloc_out
6693 (output_bfd, &outrel[0],
6694 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6695
b49e97c9
TS
6696 /* We've now added another relocation. */
6697 ++sreloc->reloc_count;
6698
6699 /* Make sure the output section is writable. The dynamic linker
6700 will be writing to it. */
6701 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6702 |= SHF_WRITE;
6703
6704 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6705 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6706 {
3d4d4302 6707 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6708 bfd_byte *cr;
6709
6710 if (scpt)
6711 {
6712 Elf32_crinfo cptrel;
6713
6714 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6715 cptrel.vaddr = (rel->r_offset
6716 + input_section->output_section->vma
6717 + input_section->output_offset);
6718 if (r_type == R_MIPS_REL32)
6719 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6720 else
6721 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6722 mips_elf_set_cr_dist2to (cptrel, 0);
6723 cptrel.konst = *addendp;
6724
6725 cr = (scpt->contents
6726 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6727 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6728 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6729 ((Elf32_External_crinfo *) cr
6730 + scpt->reloc_count));
6731 ++scpt->reloc_count;
6732 }
6733 }
6734
943284cc
DJ
6735 /* If we've written this relocation for a readonly section,
6736 we need to set DF_TEXTREL again, so that we do not delete the
6737 DT_TEXTREL tag. */
6738 if (MIPS_ELF_READONLY_SECTION (input_section))
6739 info->flags |= DF_TEXTREL;
6740
b34976b6 6741 return TRUE;
b49e97c9
TS
6742}
6743\f
b49e97c9
TS
6744/* Return the MACH for a MIPS e_flags value. */
6745
6746unsigned long
9719ad41 6747_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6748{
6749 switch (flags & EF_MIPS_MACH)
6750 {
6751 case E_MIPS_MACH_3900:
6752 return bfd_mach_mips3900;
6753
6754 case E_MIPS_MACH_4010:
6755 return bfd_mach_mips4010;
6756
6757 case E_MIPS_MACH_4100:
6758 return bfd_mach_mips4100;
6759
6760 case E_MIPS_MACH_4111:
6761 return bfd_mach_mips4111;
6762
00707a0e
RS
6763 case E_MIPS_MACH_4120:
6764 return bfd_mach_mips4120;
6765
b49e97c9
TS
6766 case E_MIPS_MACH_4650:
6767 return bfd_mach_mips4650;
6768
00707a0e
RS
6769 case E_MIPS_MACH_5400:
6770 return bfd_mach_mips5400;
6771
6772 case E_MIPS_MACH_5500:
6773 return bfd_mach_mips5500;
6774
e407c74b
NC
6775 case E_MIPS_MACH_5900:
6776 return bfd_mach_mips5900;
6777
0d2e43ed
ILT
6778 case E_MIPS_MACH_9000:
6779 return bfd_mach_mips9000;
6780
b49e97c9
TS
6781 case E_MIPS_MACH_SB1:
6782 return bfd_mach_mips_sb1;
6783
350cc38d
MS
6784 case E_MIPS_MACH_LS2E:
6785 return bfd_mach_mips_loongson_2e;
6786
6787 case E_MIPS_MACH_LS2F:
6788 return bfd_mach_mips_loongson_2f;
6789
ac8cb70f
CX
6790 case E_MIPS_MACH_GS464:
6791 return bfd_mach_mips_gs464;
fd503541 6792
bd782c07
CX
6793 case E_MIPS_MACH_GS464E:
6794 return bfd_mach_mips_gs464e;
6795
2c629856
N
6796 case E_MIPS_MACH_OCTEON3:
6797 return bfd_mach_mips_octeon3;
6798
432233b3
AP
6799 case E_MIPS_MACH_OCTEON2:
6800 return bfd_mach_mips_octeon2;
6801
6f179bd0
AN
6802 case E_MIPS_MACH_OCTEON:
6803 return bfd_mach_mips_octeon;
6804
52b6b6b9
JM
6805 case E_MIPS_MACH_XLR:
6806 return bfd_mach_mips_xlr;
6807
38bf472a
MR
6808 case E_MIPS_MACH_IAMR2:
6809 return bfd_mach_mips_interaptiv_mr2;
6810
b49e97c9
TS
6811 default:
6812 switch (flags & EF_MIPS_ARCH)
6813 {
6814 default:
6815 case E_MIPS_ARCH_1:
6816 return bfd_mach_mips3000;
b49e97c9
TS
6817
6818 case E_MIPS_ARCH_2:
6819 return bfd_mach_mips6000;
b49e97c9
TS
6820
6821 case E_MIPS_ARCH_3:
6822 return bfd_mach_mips4000;
b49e97c9
TS
6823
6824 case E_MIPS_ARCH_4:
6825 return bfd_mach_mips8000;
b49e97c9
TS
6826
6827 case E_MIPS_ARCH_5:
6828 return bfd_mach_mips5;
b49e97c9
TS
6829
6830 case E_MIPS_ARCH_32:
6831 return bfd_mach_mipsisa32;
b49e97c9
TS
6832
6833 case E_MIPS_ARCH_64:
6834 return bfd_mach_mipsisa64;
af7ee8bf
CD
6835
6836 case E_MIPS_ARCH_32R2:
6837 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6838
6839 case E_MIPS_ARCH_64R2:
6840 return bfd_mach_mipsisa64r2;
7361da2c
AB
6841
6842 case E_MIPS_ARCH_32R6:
6843 return bfd_mach_mipsisa32r6;
6844
6845 case E_MIPS_ARCH_64R6:
6846 return bfd_mach_mipsisa64r6;
b49e97c9
TS
6847 }
6848 }
6849
6850 return 0;
6851}
6852
6853/* Return printable name for ABI. */
6854
6855static INLINE char *
9719ad41 6856elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6857{
6858 flagword flags;
6859
6860 flags = elf_elfheader (abfd)->e_flags;
6861 switch (flags & EF_MIPS_ABI)
6862 {
6863 case 0:
6864 if (ABI_N32_P (abfd))
6865 return "N32";
6866 else if (ABI_64_P (abfd))
6867 return "64";
6868 else
6869 return "none";
6870 case E_MIPS_ABI_O32:
6871 return "O32";
6872 case E_MIPS_ABI_O64:
6873 return "O64";
6874 case E_MIPS_ABI_EABI32:
6875 return "EABI32";
6876 case E_MIPS_ABI_EABI64:
6877 return "EABI64";
6878 default:
6879 return "unknown abi";
6880 }
6881}
6882\f
6883/* MIPS ELF uses two common sections. One is the usual one, and the
6884 other is for small objects. All the small objects are kept
6885 together, and then referenced via the gp pointer, which yields
6886 faster assembler code. This is what we use for the small common
6887 section. This approach is copied from ecoff.c. */
6888static asection mips_elf_scom_section;
6889static asymbol mips_elf_scom_symbol;
6890static asymbol *mips_elf_scom_symbol_ptr;
6891
6892/* MIPS ELF also uses an acommon section, which represents an
6893 allocated common symbol which may be overridden by a
6894 definition in a shared library. */
6895static asection mips_elf_acom_section;
6896static asymbol mips_elf_acom_symbol;
6897static asymbol *mips_elf_acom_symbol_ptr;
6898
738e5348 6899/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6900
6901void
9719ad41 6902_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6903{
6904 elf_symbol_type *elfsym;
6905
738e5348 6906 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6907 elfsym = (elf_symbol_type *) asym;
6908 switch (elfsym->internal_elf_sym.st_shndx)
6909 {
6910 case SHN_MIPS_ACOMMON:
6911 /* This section is used in a dynamically linked executable file.
6912 It is an allocated common section. The dynamic linker can
6913 either resolve these symbols to something in a shared
6914 library, or it can just leave them here. For our purposes,
6915 we can consider these symbols to be in a new section. */
6916 if (mips_elf_acom_section.name == NULL)
6917 {
6918 /* Initialize the acommon section. */
6919 mips_elf_acom_section.name = ".acommon";
6920 mips_elf_acom_section.flags = SEC_ALLOC;
6921 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6922 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6923 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6924 mips_elf_acom_symbol.name = ".acommon";
6925 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6926 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6927 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6928 }
6929 asym->section = &mips_elf_acom_section;
6930 break;
6931
6932 case SHN_COMMON:
6933 /* Common symbols less than the GP size are automatically
6934 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6935 if (asym->value > elf_gp_size (abfd)
b59eed79 6936 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6937 || IRIX_COMPAT (abfd) == ict_irix6)
6938 break;
6939 /* Fall through. */
6940 case SHN_MIPS_SCOMMON:
6941 if (mips_elf_scom_section.name == NULL)
6942 {
6943 /* Initialize the small common section. */
6944 mips_elf_scom_section.name = ".scommon";
6945 mips_elf_scom_section.flags = SEC_IS_COMMON;
6946 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6947 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6948 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6949 mips_elf_scom_symbol.name = ".scommon";
6950 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6951 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6952 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6953 }
6954 asym->section = &mips_elf_scom_section;
6955 asym->value = elfsym->internal_elf_sym.st_size;
6956 break;
6957
6958 case SHN_MIPS_SUNDEFINED:
6959 asym->section = bfd_und_section_ptr;
6960 break;
6961
b49e97c9 6962 case SHN_MIPS_TEXT:
00b4930b
TS
6963 {
6964 asection *section = bfd_get_section_by_name (abfd, ".text");
6965
00b4930b
TS
6966 if (section != NULL)
6967 {
6968 asym->section = section;
6969 /* MIPS_TEXT is a bit special, the address is not an offset
de194d85 6970 to the base of the .text section. So subtract the section
00b4930b
TS
6971 base address to make it an offset. */
6972 asym->value -= section->vma;
6973 }
6974 }
b49e97c9
TS
6975 break;
6976
6977 case SHN_MIPS_DATA:
00b4930b
TS
6978 {
6979 asection *section = bfd_get_section_by_name (abfd, ".data");
6980
00b4930b
TS
6981 if (section != NULL)
6982 {
6983 asym->section = section;
6984 /* MIPS_DATA is a bit special, the address is not an offset
de194d85 6985 to the base of the .data section. So subtract the section
00b4930b
TS
6986 base address to make it an offset. */
6987 asym->value -= section->vma;
6988 }
6989 }
b49e97c9 6990 break;
b49e97c9 6991 }
738e5348 6992
df58fc94
RS
6993 /* If this is an odd-valued function symbol, assume it's a MIPS16
6994 or microMIPS one. */
738e5348
RS
6995 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6996 && (asym->value & 1) != 0)
6997 {
6998 asym->value--;
e8faf7d1 6999 if (MICROMIPS_P (abfd))
df58fc94
RS
7000 elfsym->internal_elf_sym.st_other
7001 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7002 else
7003 elfsym->internal_elf_sym.st_other
7004 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 7005 }
b49e97c9
TS
7006}
7007\f
8c946ed5
RS
7008/* Implement elf_backend_eh_frame_address_size. This differs from
7009 the default in the way it handles EABI64.
7010
7011 EABI64 was originally specified as an LP64 ABI, and that is what
7012 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7013 historically accepted the combination of -mabi=eabi and -mlong32,
7014 and this ILP32 variation has become semi-official over time.
7015 Both forms use elf32 and have pointer-sized FDE addresses.
7016
7017 If an EABI object was generated by GCC 4.0 or above, it will have
7018 an empty .gcc_compiled_longXX section, where XX is the size of longs
7019 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7020 have no special marking to distinguish them from LP64 objects.
7021
7022 We don't want users of the official LP64 ABI to be punished for the
7023 existence of the ILP32 variant, but at the same time, we don't want
7024 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7025 We therefore take the following approach:
7026
7027 - If ABFD contains a .gcc_compiled_longXX section, use it to
07d6d2b8 7028 determine the pointer size.
8c946ed5
RS
7029
7030 - Otherwise check the type of the first relocation. Assume that
07d6d2b8 7031 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
8c946ed5
RS
7032
7033 - Otherwise punt.
7034
7035 The second check is enough to detect LP64 objects generated by pre-4.0
7036 compilers because, in the kind of output generated by those compilers,
7037 the first relocation will be associated with either a CIE personality
7038 routine or an FDE start address. Furthermore, the compilers never
7039 used a special (non-pointer) encoding for this ABI.
7040
7041 Checking the relocation type should also be safe because there is no
7042 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7043 did so. */
7044
7045unsigned int
76c20d54 7046_bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
8c946ed5
RS
7047{
7048 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7049 return 8;
7050 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7051 {
7052 bfd_boolean long32_p, long64_p;
7053
7054 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7055 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7056 if (long32_p && long64_p)
7057 return 0;
7058 if (long32_p)
7059 return 4;
7060 if (long64_p)
7061 return 8;
7062
7063 if (sec->reloc_count > 0
7064 && elf_section_data (sec)->relocs != NULL
7065 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7066 == R_MIPS_64))
7067 return 8;
7068
7069 return 0;
7070 }
7071 return 4;
7072}
7073\f
174fd7f9
RS
7074/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7075 relocations against two unnamed section symbols to resolve to the
7076 same address. For example, if we have code like:
7077
7078 lw $4,%got_disp(.data)($gp)
7079 lw $25,%got_disp(.text)($gp)
7080 jalr $25
7081
7082 then the linker will resolve both relocations to .data and the program
7083 will jump there rather than to .text.
7084
7085 We can work around this problem by giving names to local section symbols.
7086 This is also what the MIPSpro tools do. */
7087
7088bfd_boolean
7089_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7090{
7091 return SGI_COMPAT (abfd);
7092}
7093\f
b49e97c9
TS
7094/* Work over a section just before writing it out. This routine is
7095 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7096 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7097 a better way. */
7098
b34976b6 7099bfd_boolean
9719ad41 7100_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
7101{
7102 if (hdr->sh_type == SHT_MIPS_REGINFO
7103 && hdr->sh_size > 0)
7104 {
7105 bfd_byte buf[4];
7106
b49e97c9
TS
7107 BFD_ASSERT (hdr->contents == NULL);
7108
2d6dda71
MR
7109 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7110 {
7111 _bfd_error_handler
2c1c9679 7112 (_("%pB: incorrect `.reginfo' section size; "
2dcf00ce
AM
7113 "expected %" PRIu64 ", got %" PRIu64),
7114 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7115 (uint64_t) hdr->sh_size);
2d6dda71
MR
7116 bfd_set_error (bfd_error_bad_value);
7117 return FALSE;
7118 }
7119
b49e97c9
TS
7120 if (bfd_seek (abfd,
7121 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7122 SEEK_SET) != 0)
b34976b6 7123 return FALSE;
b49e97c9 7124 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7125 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7126 return FALSE;
b49e97c9
TS
7127 }
7128
7129 if (hdr->sh_type == SHT_MIPS_OPTIONS
7130 && hdr->bfd_section != NULL
f0abc2a1
AM
7131 && mips_elf_section_data (hdr->bfd_section) != NULL
7132 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
7133 {
7134 bfd_byte *contents, *l, *lend;
7135
f0abc2a1
AM
7136 /* We stored the section contents in the tdata field in the
7137 set_section_contents routine. We save the section contents
7138 so that we don't have to read them again.
b49e97c9
TS
7139 At this point we know that elf_gp is set, so we can look
7140 through the section contents to see if there is an
7141 ODK_REGINFO structure. */
7142
f0abc2a1 7143 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
7144 l = contents;
7145 lend = contents + hdr->sh_size;
7146 while (l + sizeof (Elf_External_Options) <= lend)
7147 {
7148 Elf_Internal_Options intopt;
7149
7150 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7151 &intopt);
1bc8074d
MR
7152 if (intopt.size < sizeof (Elf_External_Options))
7153 {
4eca0228 7154 _bfd_error_handler
695344c0 7155 /* xgettext:c-format */
2c1c9679 7156 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7157 " its header"),
1bc8074d
MR
7158 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7159 break;
7160 }
b49e97c9
TS
7161 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7162 {
7163 bfd_byte buf[8];
7164
7165 if (bfd_seek (abfd,
7166 (hdr->sh_offset
7167 + (l - contents)
7168 + sizeof (Elf_External_Options)
7169 + (sizeof (Elf64_External_RegInfo) - 8)),
7170 SEEK_SET) != 0)
b34976b6 7171 return FALSE;
b49e97c9 7172 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 7173 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 7174 return FALSE;
b49e97c9
TS
7175 }
7176 else if (intopt.kind == ODK_REGINFO)
7177 {
7178 bfd_byte buf[4];
7179
7180 if (bfd_seek (abfd,
7181 (hdr->sh_offset
7182 + (l - contents)
7183 + sizeof (Elf_External_Options)
7184 + (sizeof (Elf32_External_RegInfo) - 4)),
7185 SEEK_SET) != 0)
b34976b6 7186 return FALSE;
b49e97c9 7187 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7188 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7189 return FALSE;
b49e97c9
TS
7190 }
7191 l += intopt.size;
7192 }
7193 }
7194
7195 if (hdr->bfd_section != NULL)
7196 {
7197 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7198
2d0f9ad9
JM
7199 /* .sbss is not handled specially here because the GNU/Linux
7200 prelinker can convert .sbss from NOBITS to PROGBITS and
7201 changing it back to NOBITS breaks the binary. The entry in
7202 _bfd_mips_elf_special_sections will ensure the correct flags
7203 are set on .sbss if BFD creates it without reading it from an
7204 input file, and without special handling here the flags set
7205 on it in an input file will be followed. */
b49e97c9
TS
7206 if (strcmp (name, ".sdata") == 0
7207 || strcmp (name, ".lit8") == 0
7208 || strcmp (name, ".lit4") == 0)
fd6f9d17 7209 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7210 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7211 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7212 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7213 hdr->sh_flags = 0;
b49e97c9
TS
7214 else if (strcmp (name, ".rtproc") == 0)
7215 {
7216 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7217 {
7218 unsigned int adjust;
7219
7220 adjust = hdr->sh_size % hdr->sh_addralign;
7221 if (adjust != 0)
7222 hdr->sh_size += hdr->sh_addralign - adjust;
7223 }
7224 }
7225 }
7226
b34976b6 7227 return TRUE;
b49e97c9
TS
7228}
7229
7230/* Handle a MIPS specific section when reading an object file. This
7231 is called when elfcode.h finds a section with an unknown type.
7232 This routine supports both the 32-bit and 64-bit ELF ABI.
7233
7234 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7235 how to. */
7236
b34976b6 7237bfd_boolean
6dc132d9
L
7238_bfd_mips_elf_section_from_shdr (bfd *abfd,
7239 Elf_Internal_Shdr *hdr,
7240 const char *name,
7241 int shindex)
b49e97c9
TS
7242{
7243 flagword flags = 0;
7244
7245 /* There ought to be a place to keep ELF backend specific flags, but
7246 at the moment there isn't one. We just keep track of the
7247 sections by their name, instead. Fortunately, the ABI gives
7248 suggested names for all the MIPS specific sections, so we will
7249 probably get away with this. */
7250 switch (hdr->sh_type)
7251 {
7252 case SHT_MIPS_LIBLIST:
7253 if (strcmp (name, ".liblist") != 0)
b34976b6 7254 return FALSE;
b49e97c9
TS
7255 break;
7256 case SHT_MIPS_MSYM:
7257 if (strcmp (name, ".msym") != 0)
b34976b6 7258 return FALSE;
b49e97c9
TS
7259 break;
7260 case SHT_MIPS_CONFLICT:
7261 if (strcmp (name, ".conflict") != 0)
b34976b6 7262 return FALSE;
b49e97c9
TS
7263 break;
7264 case SHT_MIPS_GPTAB:
0112cd26 7265 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7266 return FALSE;
b49e97c9
TS
7267 break;
7268 case SHT_MIPS_UCODE:
7269 if (strcmp (name, ".ucode") != 0)
b34976b6 7270 return FALSE;
b49e97c9
TS
7271 break;
7272 case SHT_MIPS_DEBUG:
7273 if (strcmp (name, ".mdebug") != 0)
b34976b6 7274 return FALSE;
b49e97c9
TS
7275 flags = SEC_DEBUGGING;
7276 break;
7277 case SHT_MIPS_REGINFO:
7278 if (strcmp (name, ".reginfo") != 0
7279 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7280 return FALSE;
b49e97c9
TS
7281 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7282 break;
7283 case SHT_MIPS_IFACE:
7284 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7285 return FALSE;
b49e97c9
TS
7286 break;
7287 case SHT_MIPS_CONTENT:
0112cd26 7288 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7289 return FALSE;
b49e97c9
TS
7290 break;
7291 case SHT_MIPS_OPTIONS:
cc2e31b9 7292 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7293 return FALSE;
b49e97c9 7294 break;
351cdf24
MF
7295 case SHT_MIPS_ABIFLAGS:
7296 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7297 return FALSE;
7298 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7299 break;
b49e97c9 7300 case SHT_MIPS_DWARF:
1b315056 7301 if (! CONST_STRNEQ (name, ".debug_")
07d6d2b8 7302 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7303 return FALSE;
b49e97c9
TS
7304 break;
7305 case SHT_MIPS_SYMBOL_LIB:
7306 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7307 return FALSE;
b49e97c9
TS
7308 break;
7309 case SHT_MIPS_EVENTS:
0112cd26
NC
7310 if (! CONST_STRNEQ (name, ".MIPS.events")
7311 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7312 return FALSE;
b49e97c9
TS
7313 break;
7314 default:
cc2e31b9 7315 break;
b49e97c9
TS
7316 }
7317
6dc132d9 7318 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7319 return FALSE;
b49e97c9
TS
7320
7321 if (flags)
7322 {
7323 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7324 (bfd_get_section_flags (abfd,
7325 hdr->bfd_section)
7326 | flags)))
b34976b6 7327 return FALSE;
b49e97c9
TS
7328 }
7329
351cdf24
MF
7330 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7331 {
7332 Elf_External_ABIFlags_v0 ext;
7333
7334 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7335 &ext, 0, sizeof ext))
7336 return FALSE;
7337 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7338 &mips_elf_tdata (abfd)->abiflags);
7339 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7340 return FALSE;
7341 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7342 }
7343
b49e97c9
TS
7344 /* FIXME: We should record sh_info for a .gptab section. */
7345
7346 /* For a .reginfo section, set the gp value in the tdata information
7347 from the contents of this section. We need the gp value while
7348 processing relocs, so we just get it now. The .reginfo section
7349 is not used in the 64-bit MIPS ELF ABI. */
7350 if (hdr->sh_type == SHT_MIPS_REGINFO)
7351 {
7352 Elf32_External_RegInfo ext;
7353 Elf32_RegInfo s;
7354
9719ad41
RS
7355 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7356 &ext, 0, sizeof ext))
b34976b6 7357 return FALSE;
b49e97c9
TS
7358 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7359 elf_gp (abfd) = s.ri_gp_value;
7360 }
7361
7362 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7363 set the gp value based on what we find. We may see both
7364 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7365 they should agree. */
7366 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7367 {
7368 bfd_byte *contents, *l, *lend;
7369
9719ad41 7370 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7371 if (contents == NULL)
b34976b6 7372 return FALSE;
b49e97c9 7373 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7374 0, hdr->sh_size))
b49e97c9
TS
7375 {
7376 free (contents);
b34976b6 7377 return FALSE;
b49e97c9
TS
7378 }
7379 l = contents;
7380 lend = contents + hdr->sh_size;
7381 while (l + sizeof (Elf_External_Options) <= lend)
7382 {
7383 Elf_Internal_Options intopt;
7384
7385 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7386 &intopt);
1bc8074d
MR
7387 if (intopt.size < sizeof (Elf_External_Options))
7388 {
4eca0228 7389 _bfd_error_handler
695344c0 7390 /* xgettext:c-format */
2c1c9679 7391 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7392 " its header"),
1bc8074d
MR
7393 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7394 break;
7395 }
b49e97c9
TS
7396 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7397 {
7398 Elf64_Internal_RegInfo intreg;
7399
7400 bfd_mips_elf64_swap_reginfo_in
7401 (abfd,
7402 ((Elf64_External_RegInfo *)
7403 (l + sizeof (Elf_External_Options))),
7404 &intreg);
7405 elf_gp (abfd) = intreg.ri_gp_value;
7406 }
7407 else if (intopt.kind == ODK_REGINFO)
7408 {
7409 Elf32_RegInfo intreg;
7410
7411 bfd_mips_elf32_swap_reginfo_in
7412 (abfd,
7413 ((Elf32_External_RegInfo *)
7414 (l + sizeof (Elf_External_Options))),
7415 &intreg);
7416 elf_gp (abfd) = intreg.ri_gp_value;
7417 }
7418 l += intopt.size;
7419 }
7420 free (contents);
7421 }
7422
b34976b6 7423 return TRUE;
b49e97c9
TS
7424}
7425
7426/* Set the correct type for a MIPS ELF section. We do this by the
7427 section name, which is a hack, but ought to work. This routine is
7428 used by both the 32-bit and the 64-bit ABI. */
7429
b34976b6 7430bfd_boolean
9719ad41 7431_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7432{
0414f35b 7433 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
7434
7435 if (strcmp (name, ".liblist") == 0)
7436 {
7437 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7438 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7439 /* The sh_link field is set in final_write_processing. */
7440 }
7441 else if (strcmp (name, ".conflict") == 0)
7442 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7443 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7444 {
7445 hdr->sh_type = SHT_MIPS_GPTAB;
7446 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7447 /* The sh_info field is set in final_write_processing. */
7448 }
7449 else if (strcmp (name, ".ucode") == 0)
7450 hdr->sh_type = SHT_MIPS_UCODE;
7451 else if (strcmp (name, ".mdebug") == 0)
7452 {
7453 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7454 /* In a shared object on IRIX 5.3, the .mdebug section has an
07d6d2b8 7455 entsize of 0. FIXME: Does this matter? */
b49e97c9
TS
7456 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7457 hdr->sh_entsize = 0;
7458 else
7459 hdr->sh_entsize = 1;
7460 }
7461 else if (strcmp (name, ".reginfo") == 0)
7462 {
7463 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7464 /* In a shared object on IRIX 5.3, the .reginfo section has an
07d6d2b8 7465 entsize of 0x18. FIXME: Does this matter? */
b49e97c9
TS
7466 if (SGI_COMPAT (abfd))
7467 {
7468 if ((abfd->flags & DYNAMIC) != 0)
7469 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7470 else
7471 hdr->sh_entsize = 1;
7472 }
7473 else
7474 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7475 }
7476 else if (SGI_COMPAT (abfd)
7477 && (strcmp (name, ".hash") == 0
7478 || strcmp (name, ".dynamic") == 0
7479 || strcmp (name, ".dynstr") == 0))
7480 {
7481 if (SGI_COMPAT (abfd))
7482 hdr->sh_entsize = 0;
7483#if 0
8dc1a139 7484 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7485 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7486#endif
7487 }
7488 else if (strcmp (name, ".got") == 0
7489 || strcmp (name, ".srdata") == 0
7490 || strcmp (name, ".sdata") == 0
7491 || strcmp (name, ".sbss") == 0
7492 || strcmp (name, ".lit4") == 0
7493 || strcmp (name, ".lit8") == 0)
7494 hdr->sh_flags |= SHF_MIPS_GPREL;
7495 else if (strcmp (name, ".MIPS.interfaces") == 0)
7496 {
7497 hdr->sh_type = SHT_MIPS_IFACE;
7498 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7499 }
0112cd26 7500 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7501 {
7502 hdr->sh_type = SHT_MIPS_CONTENT;
7503 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7504 /* The sh_info field is set in final_write_processing. */
7505 }
cc2e31b9 7506 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7507 {
7508 hdr->sh_type = SHT_MIPS_OPTIONS;
7509 hdr->sh_entsize = 1;
7510 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7511 }
351cdf24
MF
7512 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7513 {
7514 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7515 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7516 }
1b315056 7517 else if (CONST_STRNEQ (name, ".debug_")
07d6d2b8 7518 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7519 {
7520 hdr->sh_type = SHT_MIPS_DWARF;
7521
7522 /* Irix facilities such as libexc expect a single .debug_frame
7523 per executable, the system ones have NOSTRIP set and the linker
7524 doesn't merge sections with different flags so ... */
7525 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7526 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7527 }
b49e97c9
TS
7528 else if (strcmp (name, ".MIPS.symlib") == 0)
7529 {
7530 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7531 /* The sh_link and sh_info fields are set in
07d6d2b8 7532 final_write_processing. */
b49e97c9 7533 }
0112cd26
NC
7534 else if (CONST_STRNEQ (name, ".MIPS.events")
7535 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7536 {
7537 hdr->sh_type = SHT_MIPS_EVENTS;
7538 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7539 /* The sh_link field is set in final_write_processing. */
7540 }
7541 else if (strcmp (name, ".msym") == 0)
7542 {
7543 hdr->sh_type = SHT_MIPS_MSYM;
7544 hdr->sh_flags |= SHF_ALLOC;
7545 hdr->sh_entsize = 8;
7546 }
7547
7a79a000
TS
7548 /* The generic elf_fake_sections will set up REL_HDR using the default
7549 kind of relocations. We used to set up a second header for the
7550 non-default kind of relocations here, but only NewABI would use
7551 these, and the IRIX ld doesn't like resulting empty RELA sections.
7552 Thus we create those header only on demand now. */
b49e97c9 7553
b34976b6 7554 return TRUE;
b49e97c9
TS
7555}
7556
7557/* Given a BFD section, try to locate the corresponding ELF section
7558 index. This is used by both the 32-bit and the 64-bit ABI.
7559 Actually, it's not clear to me that the 64-bit ABI supports these,
7560 but for non-PIC objects we will certainly want support for at least
7561 the .scommon section. */
7562
b34976b6 7563bfd_boolean
9719ad41
RS
7564_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7565 asection *sec, int *retval)
b49e97c9
TS
7566{
7567 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7568 {
7569 *retval = SHN_MIPS_SCOMMON;
b34976b6 7570 return TRUE;
b49e97c9
TS
7571 }
7572 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7573 {
7574 *retval = SHN_MIPS_ACOMMON;
b34976b6 7575 return TRUE;
b49e97c9 7576 }
b34976b6 7577 return FALSE;
b49e97c9
TS
7578}
7579\f
7580/* Hook called by the linker routine which adds symbols from an object
7581 file. We must handle the special MIPS section numbers here. */
7582
b34976b6 7583bfd_boolean
9719ad41 7584_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7585 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7586 flagword *flagsp ATTRIBUTE_UNUSED,
7587 asection **secp, bfd_vma *valp)
b49e97c9
TS
7588{
7589 if (SGI_COMPAT (abfd)
7590 && (abfd->flags & DYNAMIC) != 0
7591 && strcmp (*namep, "_rld_new_interface") == 0)
7592 {
8dc1a139 7593 /* Skip IRIX5 rld entry name. */
b49e97c9 7594 *namep = NULL;
b34976b6 7595 return TRUE;
b49e97c9
TS
7596 }
7597
eedecc07
DD
7598 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7599 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7600 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7601 a magic symbol resolved by the linker, we ignore this bogus definition
7602 of _gp_disp. New ABI objects do not suffer from this problem so this
7603 is not done for them. */
7604 if (!NEWABI_P(abfd)
7605 && (sym->st_shndx == SHN_ABS)
7606 && (strcmp (*namep, "_gp_disp") == 0))
7607 {
7608 *namep = NULL;
7609 return TRUE;
7610 }
7611
b49e97c9
TS
7612 switch (sym->st_shndx)
7613 {
7614 case SHN_COMMON:
7615 /* Common symbols less than the GP size are automatically
7616 treated as SHN_MIPS_SCOMMON symbols. */
7617 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7618 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7619 || IRIX_COMPAT (abfd) == ict_irix6)
7620 break;
7621 /* Fall through. */
7622 case SHN_MIPS_SCOMMON:
7623 *secp = bfd_make_section_old_way (abfd, ".scommon");
7624 (*secp)->flags |= SEC_IS_COMMON;
7625 *valp = sym->st_size;
7626 break;
7627
7628 case SHN_MIPS_TEXT:
7629 /* This section is used in a shared object. */
698600e4 7630 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7631 {
7632 asymbol *elf_text_symbol;
7633 asection *elf_text_section;
7634 bfd_size_type amt = sizeof (asection);
7635
7636 elf_text_section = bfd_zalloc (abfd, amt);
7637 if (elf_text_section == NULL)
b34976b6 7638 return FALSE;
b49e97c9
TS
7639
7640 amt = sizeof (asymbol);
7641 elf_text_symbol = bfd_zalloc (abfd, amt);
7642 if (elf_text_symbol == NULL)
b34976b6 7643 return FALSE;
b49e97c9
TS
7644
7645 /* Initialize the section. */
7646
698600e4
AM
7647 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7648 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7649
7650 elf_text_section->symbol = elf_text_symbol;
698600e4 7651 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7652
7653 elf_text_section->name = ".text";
7654 elf_text_section->flags = SEC_NO_FLAGS;
7655 elf_text_section->output_section = NULL;
7656 elf_text_section->owner = abfd;
7657 elf_text_symbol->name = ".text";
7658 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7659 elf_text_symbol->section = elf_text_section;
7660 }
7661 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7662 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7663 so I took it out. */
698600e4 7664 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7665 break;
7666
7667 case SHN_MIPS_ACOMMON:
7668 /* Fall through. XXX Can we treat this as allocated data? */
7669 case SHN_MIPS_DATA:
7670 /* This section is used in a shared object. */
698600e4 7671 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7672 {
7673 asymbol *elf_data_symbol;
7674 asection *elf_data_section;
7675 bfd_size_type amt = sizeof (asection);
7676
7677 elf_data_section = bfd_zalloc (abfd, amt);
7678 if (elf_data_section == NULL)
b34976b6 7679 return FALSE;
b49e97c9
TS
7680
7681 amt = sizeof (asymbol);
7682 elf_data_symbol = bfd_zalloc (abfd, amt);
7683 if (elf_data_symbol == NULL)
b34976b6 7684 return FALSE;
b49e97c9
TS
7685
7686 /* Initialize the section. */
7687
698600e4
AM
7688 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7689 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7690
7691 elf_data_section->symbol = elf_data_symbol;
698600e4 7692 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7693
7694 elf_data_section->name = ".data";
7695 elf_data_section->flags = SEC_NO_FLAGS;
7696 elf_data_section->output_section = NULL;
7697 elf_data_section->owner = abfd;
7698 elf_data_symbol->name = ".data";
7699 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7700 elf_data_symbol->section = elf_data_section;
7701 }
7702 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7703 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7704 so I took it out. */
698600e4 7705 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7706 break;
7707
7708 case SHN_MIPS_SUNDEFINED:
7709 *secp = bfd_und_section_ptr;
7710 break;
7711 }
7712
7713 if (SGI_COMPAT (abfd)
0e1862bb 7714 && ! bfd_link_pic (info)
f13a99db 7715 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7716 && strcmp (*namep, "__rld_obj_head") == 0)
7717 {
7718 struct elf_link_hash_entry *h;
14a793b2 7719 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7720
7721 /* Mark __rld_obj_head as dynamic. */
14a793b2 7722 bh = NULL;
b49e97c9 7723 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7724 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7725 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7726 return FALSE;
14a793b2
AM
7727
7728 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7729 h->non_elf = 0;
7730 h->def_regular = 1;
b49e97c9
TS
7731 h->type = STT_OBJECT;
7732
c152c796 7733 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7734 return FALSE;
b49e97c9 7735
b34976b6 7736 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7737 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7738 }
7739
7740 /* If this is a mips16 text symbol, add 1 to the value to make it
7741 odd. This will cause something like .word SYM to come up with
7742 the right value when it is loaded into the PC. */
df58fc94 7743 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7744 ++*valp;
7745
b34976b6 7746 return TRUE;
b49e97c9
TS
7747}
7748
7749/* This hook function is called before the linker writes out a global
7750 symbol. We mark symbols as small common if appropriate. This is
7751 also where we undo the increment of the value for a mips16 symbol. */
7752
6e0b88f1 7753int
9719ad41
RS
7754_bfd_mips_elf_link_output_symbol_hook
7755 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7756 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7757 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7758{
7759 /* If we see a common symbol, which implies a relocatable link, then
7760 if a symbol was small common in an input file, mark it as small
7761 common in the output file. */
7762 if (sym->st_shndx == SHN_COMMON
7763 && strcmp (input_sec->name, ".scommon") == 0)
7764 sym->st_shndx = SHN_MIPS_SCOMMON;
7765
df58fc94 7766 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7767 sym->st_value &= ~1;
b49e97c9 7768
6e0b88f1 7769 return 1;
b49e97c9
TS
7770}
7771\f
7772/* Functions for the dynamic linker. */
7773
7774/* Create dynamic sections when linking against a dynamic object. */
7775
b34976b6 7776bfd_boolean
9719ad41 7777_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7778{
7779 struct elf_link_hash_entry *h;
14a793b2 7780 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7781 flagword flags;
7782 register asection *s;
7783 const char * const *namep;
0a44bf69 7784 struct mips_elf_link_hash_table *htab;
b49e97c9 7785
0a44bf69 7786 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7787 BFD_ASSERT (htab != NULL);
7788
b49e97c9
TS
7789 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7790 | SEC_LINKER_CREATED | SEC_READONLY);
7791
0a44bf69
RS
7792 /* The psABI requires a read-only .dynamic section, but the VxWorks
7793 EABI doesn't. */
7794 if (!htab->is_vxworks)
b49e97c9 7795 {
3d4d4302 7796 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7797 if (s != NULL)
7798 {
7799 if (! bfd_set_section_flags (abfd, s, flags))
7800 return FALSE;
7801 }
b49e97c9
TS
7802 }
7803
7804 /* We need to create .got section. */
23cc69b6 7805 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7806 return FALSE;
7807
0a44bf69 7808 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7809 return FALSE;
b49e97c9 7810
b49e97c9 7811 /* Create .stub section. */
3d4d4302
AM
7812 s = bfd_make_section_anyway_with_flags (abfd,
7813 MIPS_ELF_STUB_SECTION_NAME (abfd),
7814 flags | SEC_CODE);
4e41d0d7
RS
7815 if (s == NULL
7816 || ! bfd_set_section_alignment (abfd, s,
7817 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7818 return FALSE;
7819 htab->sstubs = s;
b49e97c9 7820
e6aea42d 7821 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 7822 && bfd_link_executable (info)
3d4d4302 7823 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7824 {
3d4d4302
AM
7825 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7826 flags &~ (flagword) SEC_READONLY);
b49e97c9 7827 if (s == NULL
b49e97c9
TS
7828 || ! bfd_set_section_alignment (abfd, s,
7829 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7830 return FALSE;
b49e97c9
TS
7831 }
7832
7833 /* On IRIX5, we adjust add some additional symbols and change the
7834 alignments of several sections. There is no ABI documentation
7835 indicating that this is necessary on IRIX6, nor any evidence that
7836 the linker takes such action. */
7837 if (IRIX_COMPAT (abfd) == ict_irix5)
7838 {
7839 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7840 {
14a793b2 7841 bh = NULL;
b49e97c9 7842 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7843 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7844 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7845 return FALSE;
14a793b2
AM
7846
7847 h = (struct elf_link_hash_entry *) bh;
12f09816 7848 h->mark = 1;
f5385ebf
AM
7849 h->non_elf = 0;
7850 h->def_regular = 1;
b49e97c9
TS
7851 h->type = STT_SECTION;
7852
c152c796 7853 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7854 return FALSE;
b49e97c9
TS
7855 }
7856
7857 /* We need to create a .compact_rel section. */
7858 if (SGI_COMPAT (abfd))
7859 {
7860 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7861 return FALSE;
b49e97c9
TS
7862 }
7863
44c410de 7864 /* Change alignments of some sections. */
3d4d4302 7865 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7866 if (s != NULL)
a253d456
NC
7867 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7868
3d4d4302 7869 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7870 if (s != NULL)
a253d456
NC
7871 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7872
3d4d4302 7873 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7874 if (s != NULL)
a253d456
NC
7875 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7876
3d4d4302 7877 /* ??? */
b49e97c9
TS
7878 s = bfd_get_section_by_name (abfd, ".reginfo");
7879 if (s != NULL)
a253d456
NC
7880 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7881
3d4d4302 7882 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7883 if (s != NULL)
a253d456 7884 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7885 }
7886
0e1862bb 7887 if (bfd_link_executable (info))
b49e97c9 7888 {
14a793b2
AM
7889 const char *name;
7890
7891 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7892 bh = NULL;
7893 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7894 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7895 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7896 return FALSE;
14a793b2
AM
7897
7898 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7899 h->non_elf = 0;
7900 h->def_regular = 1;
b49e97c9
TS
7901 h->type = STT_SECTION;
7902
c152c796 7903 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7904 return FALSE;
b49e97c9
TS
7905
7906 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7907 {
7908 /* __rld_map is a four byte word located in the .data section
7909 and is filled in by the rtld to contain a pointer to
7910 the _r_debug structure. Its symbol value will be set in
7911 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7912 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7913 BFD_ASSERT (s != NULL);
14a793b2 7914
0abfb97a
L
7915 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7916 bh = NULL;
7917 if (!(_bfd_generic_link_add_one_symbol
7918 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7919 get_elf_backend_data (abfd)->collect, &bh)))
7920 return FALSE;
b49e97c9 7921
0abfb97a
L
7922 h = (struct elf_link_hash_entry *) bh;
7923 h->non_elf = 0;
7924 h->def_regular = 1;
7925 h->type = STT_OBJECT;
7926
7927 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7928 return FALSE;
b4082c70 7929 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7930 }
7931 }
7932
861fb55a 7933 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 7934 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
7935 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7936 return FALSE;
7937
1bbce132
MR
7938 /* Do the usual VxWorks handling. */
7939 if (htab->is_vxworks
7940 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7941 return FALSE;
0a44bf69 7942
b34976b6 7943 return TRUE;
b49e97c9
TS
7944}
7945\f
c224138d
RS
7946/* Return true if relocation REL against section SEC is a REL rather than
7947 RELA relocation. RELOCS is the first relocation in the section and
7948 ABFD is the bfd that contains SEC. */
7949
7950static bfd_boolean
7951mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7952 const Elf_Internal_Rela *relocs,
7953 const Elf_Internal_Rela *rel)
7954{
7955 Elf_Internal_Shdr *rel_hdr;
7956 const struct elf_backend_data *bed;
7957
d4730f92
BS
7958 /* To determine which flavor of relocation this is, we depend on the
7959 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7960 rel_hdr = elf_section_data (sec)->rel.hdr;
7961 if (rel_hdr == NULL)
7962 return FALSE;
c224138d 7963 bed = get_elf_backend_data (abfd);
d4730f92
BS
7964 return ((size_t) (rel - relocs)
7965 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7966}
7967
7968/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7969 HOWTO is the relocation's howto and CONTENTS points to the contents
7970 of the section that REL is against. */
7971
7972static bfd_vma
7973mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7974 reloc_howto_type *howto, bfd_byte *contents)
7975{
7976 bfd_byte *location;
7977 unsigned int r_type;
7978 bfd_vma addend;
17c6c9d9 7979 bfd_vma bytes;
c224138d
RS
7980
7981 r_type = ELF_R_TYPE (abfd, rel->r_info);
7982 location = contents + rel->r_offset;
7983
7984 /* Get the addend, which is stored in the input file. */
df58fc94 7985 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 7986 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7987 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 7988
17c6c9d9
MR
7989 addend = bytes & howto->src_mask;
7990
7991 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7992 accordingly. */
7993 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7994 addend <<= 1;
7995
7996 return addend;
c224138d
RS
7997}
7998
7999/* REL is a relocation in ABFD that needs a partnering LO16 relocation
8000 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8001 and update *ADDEND with the final addend. Return true on success
8002 or false if the LO16 could not be found. RELEND is the exclusive
8003 upper bound on the relocations for REL's section. */
8004
8005static bfd_boolean
8006mips_elf_add_lo16_rel_addend (bfd *abfd,
8007 const Elf_Internal_Rela *rel,
8008 const Elf_Internal_Rela *relend,
8009 bfd_byte *contents, bfd_vma *addend)
8010{
8011 unsigned int r_type, lo16_type;
8012 const Elf_Internal_Rela *lo16_relocation;
8013 reloc_howto_type *lo16_howto;
8014 bfd_vma l;
8015
8016 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 8017 if (mips16_reloc_p (r_type))
c224138d 8018 lo16_type = R_MIPS16_LO16;
df58fc94
RS
8019 else if (micromips_reloc_p (r_type))
8020 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
8021 else if (r_type == R_MIPS_PCHI16)
8022 lo16_type = R_MIPS_PCLO16;
c224138d
RS
8023 else
8024 lo16_type = R_MIPS_LO16;
8025
8026 /* The combined value is the sum of the HI16 addend, left-shifted by
8027 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8028 code does a `lui' of the HI16 value, and then an `addiu' of the
8029 LO16 value.)
8030
8031 Scan ahead to find a matching LO16 relocation.
8032
8033 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8034 be immediately following. However, for the IRIX6 ABI, the next
8035 relocation may be a composed relocation consisting of several
8036 relocations for the same address. In that case, the R_MIPS_LO16
8037 relocation may occur as one of these. We permit a similar
8038 extension in general, as that is useful for GCC.
8039
8040 In some cases GCC dead code elimination removes the LO16 but keeps
8041 the corresponding HI16. This is strictly speaking a violation of
8042 the ABI but not immediately harmful. */
8043 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8044 if (lo16_relocation == NULL)
8045 return FALSE;
8046
8047 /* Obtain the addend kept there. */
8048 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8049 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8050
8051 l <<= lo16_howto->rightshift;
8052 l = _bfd_mips_elf_sign_extend (l, 16);
8053
8054 *addend <<= 16;
8055 *addend += l;
8056 return TRUE;
8057}
8058
8059/* Try to read the contents of section SEC in bfd ABFD. Return true and
8060 store the contents in *CONTENTS on success. Assume that *CONTENTS
8061 already holds the contents if it is nonull on entry. */
8062
8063static bfd_boolean
8064mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8065{
8066 if (*contents)
8067 return TRUE;
8068
8069 /* Get cached copy if it exists. */
8070 if (elf_section_data (sec)->this_hdr.contents != NULL)
8071 {
8072 *contents = elf_section_data (sec)->this_hdr.contents;
8073 return TRUE;
8074 }
8075
8076 return bfd_malloc_and_get_section (abfd, sec, contents);
8077}
8078
1bbce132
MR
8079/* Make a new PLT record to keep internal data. */
8080
8081static struct plt_entry *
8082mips_elf_make_plt_record (bfd *abfd)
8083{
8084 struct plt_entry *entry;
8085
8086 entry = bfd_zalloc (abfd, sizeof (*entry));
8087 if (entry == NULL)
8088 return NULL;
8089
8090 entry->stub_offset = MINUS_ONE;
8091 entry->mips_offset = MINUS_ONE;
8092 entry->comp_offset = MINUS_ONE;
8093 entry->gotplt_index = MINUS_ONE;
8094 return entry;
8095}
8096
b49e97c9 8097/* Look through the relocs for a section during the first phase, and
1bbce132
MR
8098 allocate space in the global offset table and record the need for
8099 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 8100
b34976b6 8101bfd_boolean
9719ad41
RS
8102_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8103 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
8104{
8105 const char *name;
8106 bfd *dynobj;
8107 Elf_Internal_Shdr *symtab_hdr;
8108 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
8109 size_t extsymoff;
8110 const Elf_Internal_Rela *rel;
8111 const Elf_Internal_Rela *rel_end;
b49e97c9 8112 asection *sreloc;
9c5bfbb7 8113 const struct elf_backend_data *bed;
0a44bf69 8114 struct mips_elf_link_hash_table *htab;
c224138d
RS
8115 bfd_byte *contents;
8116 bfd_vma addend;
8117 reloc_howto_type *howto;
b49e97c9 8118
0e1862bb 8119 if (bfd_link_relocatable (info))
b34976b6 8120 return TRUE;
b49e97c9 8121
0a44bf69 8122 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8123 BFD_ASSERT (htab != NULL);
8124
b49e97c9
TS
8125 dynobj = elf_hash_table (info)->dynobj;
8126 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8127 sym_hashes = elf_sym_hashes (abfd);
8128 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8129
738e5348 8130 bed = get_elf_backend_data (abfd);
056bafd4 8131 rel_end = relocs + sec->reloc_count;
738e5348 8132
b49e97c9
TS
8133 /* Check for the mips16 stub sections. */
8134
8135 name = bfd_get_section_name (abfd, sec);
b9d58d71 8136 if (FN_STUB_P (name))
b49e97c9
TS
8137 {
8138 unsigned long r_symndx;
8139
8140 /* Look at the relocation information to figure out which symbol
07d6d2b8 8141 this is for. */
b49e97c9 8142
cb4437b8 8143 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8144 if (r_symndx == 0)
8145 {
4eca0228 8146 _bfd_error_handler
695344c0 8147 /* xgettext:c-format */
2c1c9679 8148 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8149 " stub section `%s'"),
8150 abfd, name);
8151 bfd_set_error (bfd_error_bad_value);
8152 return FALSE;
8153 }
b49e97c9
TS
8154
8155 if (r_symndx < extsymoff
8156 || sym_hashes[r_symndx - extsymoff] == NULL)
8157 {
8158 asection *o;
8159
8160 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8161 needed if there is some relocation in this BFD, other
8162 than a 16 bit function call, which refers to this symbol. */
b49e97c9
TS
8163 for (o = abfd->sections; o != NULL; o = o->next)
8164 {
8165 Elf_Internal_Rela *sec_relocs;
8166 const Elf_Internal_Rela *r, *rend;
8167
8168 /* We can ignore stub sections when looking for relocs. */
8169 if ((o->flags & SEC_RELOC) == 0
8170 || o->reloc_count == 0
738e5348 8171 || section_allows_mips16_refs_p (o))
b49e97c9
TS
8172 continue;
8173
45d6a902 8174 sec_relocs
9719ad41 8175 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8176 info->keep_memory);
b49e97c9 8177 if (sec_relocs == NULL)
b34976b6 8178 return FALSE;
b49e97c9
TS
8179
8180 rend = sec_relocs + o->reloc_count;
8181 for (r = sec_relocs; r < rend; r++)
8182 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 8183 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
8184 break;
8185
6cdc0ccc 8186 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
8187 free (sec_relocs);
8188
8189 if (r < rend)
8190 break;
8191 }
8192
8193 if (o == NULL)
8194 {
8195 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8196 not need it. Since this function is called before
8197 the linker maps input sections to output sections, we
8198 can easily discard it by setting the SEC_EXCLUDE
8199 flag. */
b49e97c9 8200 sec->flags |= SEC_EXCLUDE;
b34976b6 8201 return TRUE;
b49e97c9
TS
8202 }
8203
8204 /* Record this stub in an array of local symbol stubs for
07d6d2b8 8205 this BFD. */
698600e4 8206 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8207 {
8208 unsigned long symcount;
8209 asection **n;
8210 bfd_size_type amt;
8211
8212 if (elf_bad_symtab (abfd))
8213 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8214 else
8215 symcount = symtab_hdr->sh_info;
8216 amt = symcount * sizeof (asection *);
9719ad41 8217 n = bfd_zalloc (abfd, amt);
b49e97c9 8218 if (n == NULL)
b34976b6 8219 return FALSE;
698600e4 8220 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8221 }
8222
b9d58d71 8223 sec->flags |= SEC_KEEP;
698600e4 8224 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8225
8226 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8227 That flag is used to see whether we need to look through
8228 the global symbol table for stubs. We don't need to set
8229 it here, because we just have a local stub. */
b49e97c9
TS
8230 }
8231 else
8232 {
8233 struct mips_elf_link_hash_entry *h;
8234
8235 h = ((struct mips_elf_link_hash_entry *)
8236 sym_hashes[r_symndx - extsymoff]);
8237
973a3492
L
8238 while (h->root.root.type == bfd_link_hash_indirect
8239 || h->root.root.type == bfd_link_hash_warning)
8240 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8241
b49e97c9
TS
8242 /* H is the symbol this stub is for. */
8243
b9d58d71
TS
8244 /* If we already have an appropriate stub for this function, we
8245 don't need another one, so we can discard this one. Since
8246 this function is called before the linker maps input sections
8247 to output sections, we can easily discard it by setting the
8248 SEC_EXCLUDE flag. */
8249 if (h->fn_stub != NULL)
8250 {
8251 sec->flags |= SEC_EXCLUDE;
8252 return TRUE;
8253 }
8254
8255 sec->flags |= SEC_KEEP;
b49e97c9 8256 h->fn_stub = sec;
b34976b6 8257 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8258 }
8259 }
b9d58d71 8260 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8261 {
8262 unsigned long r_symndx;
8263 struct mips_elf_link_hash_entry *h;
8264 asection **loc;
8265
8266 /* Look at the relocation information to figure out which symbol
07d6d2b8 8267 this is for. */
b49e97c9 8268
cb4437b8 8269 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8270 if (r_symndx == 0)
8271 {
4eca0228 8272 _bfd_error_handler
695344c0 8273 /* xgettext:c-format */
2c1c9679 8274 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8275 " stub section `%s'"),
8276 abfd, name);
8277 bfd_set_error (bfd_error_bad_value);
8278 return FALSE;
8279 }
b49e97c9
TS
8280
8281 if (r_symndx < extsymoff
8282 || sym_hashes[r_symndx - extsymoff] == NULL)
8283 {
b9d58d71 8284 asection *o;
b49e97c9 8285
b9d58d71 8286 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8287 needed if there is some relocation (R_MIPS16_26) in this BFD
8288 that refers to this symbol. */
b9d58d71
TS
8289 for (o = abfd->sections; o != NULL; o = o->next)
8290 {
8291 Elf_Internal_Rela *sec_relocs;
8292 const Elf_Internal_Rela *r, *rend;
8293
8294 /* We can ignore stub sections when looking for relocs. */
8295 if ((o->flags & SEC_RELOC) == 0
8296 || o->reloc_count == 0
738e5348 8297 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8298 continue;
8299
8300 sec_relocs
8301 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8302 info->keep_memory);
8303 if (sec_relocs == NULL)
8304 return FALSE;
8305
8306 rend = sec_relocs + o->reloc_count;
8307 for (r = sec_relocs; r < rend; r++)
8308 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8309 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8310 break;
8311
8312 if (elf_section_data (o)->relocs != sec_relocs)
8313 free (sec_relocs);
8314
8315 if (r < rend)
8316 break;
8317 }
8318
8319 if (o == NULL)
8320 {
8321 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8322 not need it. Since this function is called before
8323 the linker maps input sections to output sections, we
8324 can easily discard it by setting the SEC_EXCLUDE
8325 flag. */
b9d58d71
TS
8326 sec->flags |= SEC_EXCLUDE;
8327 return TRUE;
8328 }
8329
8330 /* Record this stub in an array of local symbol call_stubs for
07d6d2b8 8331 this BFD. */
698600e4 8332 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8333 {
8334 unsigned long symcount;
8335 asection **n;
8336 bfd_size_type amt;
8337
8338 if (elf_bad_symtab (abfd))
8339 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8340 else
8341 symcount = symtab_hdr->sh_info;
8342 amt = symcount * sizeof (asection *);
8343 n = bfd_zalloc (abfd, amt);
8344 if (n == NULL)
8345 return FALSE;
698600e4 8346 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8347 }
b49e97c9 8348
b9d58d71 8349 sec->flags |= SEC_KEEP;
698600e4 8350 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8351
b9d58d71 8352 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8353 That flag is used to see whether we need to look through
8354 the global symbol table for stubs. We don't need to set
8355 it here, because we just have a local stub. */
b9d58d71 8356 }
b49e97c9 8357 else
b49e97c9 8358 {
b9d58d71
TS
8359 h = ((struct mips_elf_link_hash_entry *)
8360 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8361
b9d58d71 8362 /* H is the symbol this stub is for. */
68ffbac6 8363
b9d58d71
TS
8364 if (CALL_FP_STUB_P (name))
8365 loc = &h->call_fp_stub;
8366 else
8367 loc = &h->call_stub;
68ffbac6 8368
b9d58d71
TS
8369 /* If we already have an appropriate stub for this function, we
8370 don't need another one, so we can discard this one. Since
8371 this function is called before the linker maps input sections
8372 to output sections, we can easily discard it by setting the
8373 SEC_EXCLUDE flag. */
8374 if (*loc != NULL)
8375 {
8376 sec->flags |= SEC_EXCLUDE;
8377 return TRUE;
8378 }
b49e97c9 8379
b9d58d71
TS
8380 sec->flags |= SEC_KEEP;
8381 *loc = sec;
8382 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8383 }
b49e97c9
TS
8384 }
8385
b49e97c9 8386 sreloc = NULL;
c224138d 8387 contents = NULL;
b49e97c9
TS
8388 for (rel = relocs; rel < rel_end; ++rel)
8389 {
8390 unsigned long r_symndx;
8391 unsigned int r_type;
8392 struct elf_link_hash_entry *h;
861fb55a 8393 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8394 bfd_boolean call_reloc_p;
8395 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8396
8397 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8398 r_type = ELF_R_TYPE (abfd, rel->r_info);
8399
8400 if (r_symndx < extsymoff)
8401 h = NULL;
8402 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8403 {
4eca0228 8404 _bfd_error_handler
695344c0 8405 /* xgettext:c-format */
2c1c9679 8406 (_("%pB: malformed reloc detected for section %s"),
d003868e 8407 abfd, name);
b49e97c9 8408 bfd_set_error (bfd_error_bad_value);
b34976b6 8409 return FALSE;
b49e97c9
TS
8410 }
8411 else
8412 {
8413 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8414 if (h != NULL)
8415 {
8416 while (h->root.type == bfd_link_hash_indirect
8417 || h->root.type == bfd_link_hash_warning)
8418 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831 8419 }
861fb55a 8420 }
b49e97c9 8421
861fb55a
DJ
8422 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8423 relocation into a dynamic one. */
8424 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8425
8426 /* Set CALL_RELOC_P to true if the relocation is for a call,
8427 and if pointer equality therefore doesn't matter. */
8428 call_reloc_p = FALSE;
8429
8430 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8431 into account when deciding how to define the symbol.
8432 Relocations in nonallocatable sections such as .pdr and
8433 .debug* should have no effect. */
8434 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8435
861fb55a
DJ
8436 switch (r_type)
8437 {
861fb55a
DJ
8438 case R_MIPS_CALL16:
8439 case R_MIPS_CALL_HI16:
8440 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8441 case R_MIPS16_CALL16:
8442 case R_MICROMIPS_CALL16:
8443 case R_MICROMIPS_CALL_HI16:
8444 case R_MICROMIPS_CALL_LO16:
8445 call_reloc_p = TRUE;
8446 /* Fall through. */
8447
8448 case R_MIPS_GOT16:
861fb55a
DJ
8449 case R_MIPS_GOT_HI16:
8450 case R_MIPS_GOT_LO16:
8451 case R_MIPS_GOT_PAGE:
8452 case R_MIPS_GOT_OFST:
8453 case R_MIPS_GOT_DISP:
8454 case R_MIPS_TLS_GOTTPREL:
8455 case R_MIPS_TLS_GD:
8456 case R_MIPS_TLS_LDM:
d0f13682 8457 case R_MIPS16_GOT16:
d0f13682
CLT
8458 case R_MIPS16_TLS_GOTTPREL:
8459 case R_MIPS16_TLS_GD:
8460 case R_MIPS16_TLS_LDM:
df58fc94 8461 case R_MICROMIPS_GOT16:
df58fc94
RS
8462 case R_MICROMIPS_GOT_HI16:
8463 case R_MICROMIPS_GOT_LO16:
8464 case R_MICROMIPS_GOT_PAGE:
8465 case R_MICROMIPS_GOT_OFST:
8466 case R_MICROMIPS_GOT_DISP:
8467 case R_MICROMIPS_TLS_GOTTPREL:
8468 case R_MICROMIPS_TLS_GD:
8469 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8470 if (dynobj == NULL)
8471 elf_hash_table (info)->dynobj = dynobj = abfd;
8472 if (!mips_elf_create_got_section (dynobj, info))
8473 return FALSE;
0e1862bb 8474 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8475 {
4eca0228 8476 _bfd_error_handler
695344c0 8477 /* xgettext:c-format */
2dcf00ce
AM
8478 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8479 abfd, (uint64_t) rel->r_offset);
861fb55a
DJ
8480 bfd_set_error (bfd_error_bad_value);
8481 return FALSE;
b49e97c9 8482 }
c5d6fa44 8483 can_make_dynamic_p = TRUE;
861fb55a 8484 break;
b49e97c9 8485
c5d6fa44 8486 case R_MIPS_NONE:
99da6b5f 8487 case R_MIPS_JALR:
df58fc94 8488 case R_MICROMIPS_JALR:
c5d6fa44
RS
8489 /* These relocations have empty fields and are purely there to
8490 provide link information. The symbol value doesn't matter. */
8491 constrain_symbol_p = FALSE;
8492 break;
8493
8494 case R_MIPS_GPREL16:
8495 case R_MIPS_GPREL32:
8496 case R_MIPS16_GPREL:
8497 case R_MICROMIPS_GPREL16:
8498 /* GP-relative relocations always resolve to a definition in a
8499 regular input file, ignoring the one-definition rule. This is
8500 important for the GP setup sequence in NewABI code, which
8501 always resolves to a local function even if other relocations
8502 against the symbol wouldn't. */
8503 constrain_symbol_p = FALSE;
99da6b5f
AN
8504 break;
8505
861fb55a
DJ
8506 case R_MIPS_32:
8507 case R_MIPS_REL32:
8508 case R_MIPS_64:
8509 /* In VxWorks executables, references to external symbols
8510 must be handled using copy relocs or PLT entries; it is not
8511 possible to convert this relocation into a dynamic one.
8512
8513 For executables that use PLTs and copy-relocs, we have a
8514 choice between converting the relocation into a dynamic
8515 one or using copy relocations or PLT entries. It is
8516 usually better to do the former, unless the relocation is
8517 against a read-only section. */
0e1862bb 8518 if ((bfd_link_pic (info)
861fb55a
DJ
8519 || (h != NULL
8520 && !htab->is_vxworks
8521 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8522 && !(!info->nocopyreloc
8523 && !PIC_OBJECT_P (abfd)
8524 && MIPS_ELF_READONLY_SECTION (sec))))
8525 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8526 {
861fb55a 8527 can_make_dynamic_p = TRUE;
b49e97c9
TS
8528 if (dynobj == NULL)
8529 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8530 }
c5d6fa44 8531 break;
b49e97c9 8532
861fb55a
DJ
8533 case R_MIPS_26:
8534 case R_MIPS_PC16:
7361da2c
AB
8535 case R_MIPS_PC21_S2:
8536 case R_MIPS_PC26_S2:
861fb55a 8537 case R_MIPS16_26:
c9775dde 8538 case R_MIPS16_PC16_S1:
df58fc94
RS
8539 case R_MICROMIPS_26_S1:
8540 case R_MICROMIPS_PC7_S1:
8541 case R_MICROMIPS_PC10_S1:
8542 case R_MICROMIPS_PC16_S1:
8543 case R_MICROMIPS_PC23_S2:
c5d6fa44 8544 call_reloc_p = TRUE;
861fb55a 8545 break;
b49e97c9
TS
8546 }
8547
0a44bf69
RS
8548 if (h)
8549 {
c5d6fa44
RS
8550 if (constrain_symbol_p)
8551 {
8552 if (!can_make_dynamic_p)
8553 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8554
8555 if (!call_reloc_p)
8556 h->pointer_equality_needed = 1;
8557
8558 /* We must not create a stub for a symbol that has
8559 relocations related to taking the function's address.
8560 This doesn't apply to VxWorks, where CALL relocs refer
8561 to a .got.plt entry instead of a normal .got entry. */
8562 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8563 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8564 }
8565
0a44bf69
RS
8566 /* Relocations against the special VxWorks __GOTT_BASE__ and
8567 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8568 room for them in .rela.dyn. */
8569 if (is_gott_symbol (info, h))
8570 {
8571 if (sreloc == NULL)
8572 {
8573 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8574 if (sreloc == NULL)
8575 return FALSE;
8576 }
8577 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8578 if (MIPS_ELF_READONLY_SECTION (sec))
8579 /* We tell the dynamic linker that there are
8580 relocations against the text segment. */
8581 info->flags |= DF_TEXTREL;
0a44bf69
RS
8582 }
8583 }
df58fc94
RS
8584 else if (call_lo16_reloc_p (r_type)
8585 || got_lo16_reloc_p (r_type)
8586 || got_disp_reloc_p (r_type)
738e5348 8587 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8588 {
8589 /* We may need a local GOT entry for this relocation. We
8590 don't count R_MIPS_GOT_PAGE because we can estimate the
8591 maximum number of pages needed by looking at the size of
738e5348
RS
8592 the segment. Similar comments apply to R_MIPS*_GOT16 and
8593 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8594 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8595 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8596 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8597 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8598 rel->r_addend, info, r_type))
f4416af6 8599 return FALSE;
b49e97c9
TS
8600 }
8601
8f0c309a
CLT
8602 if (h != NULL
8603 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8604 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8605 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8606
b49e97c9
TS
8607 switch (r_type)
8608 {
8609 case R_MIPS_CALL16:
738e5348 8610 case R_MIPS16_CALL16:
df58fc94 8611 case R_MICROMIPS_CALL16:
b49e97c9
TS
8612 if (h == NULL)
8613 {
4eca0228 8614 _bfd_error_handler
695344c0 8615 /* xgettext:c-format */
2dcf00ce
AM
8616 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8617 abfd, (uint64_t) rel->r_offset);
b49e97c9 8618 bfd_set_error (bfd_error_bad_value);
b34976b6 8619 return FALSE;
b49e97c9
TS
8620 }
8621 /* Fall through. */
8622
8623 case R_MIPS_CALL_HI16:
8624 case R_MIPS_CALL_LO16:
df58fc94
RS
8625 case R_MICROMIPS_CALL_HI16:
8626 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8627 if (h != NULL)
8628 {
6ccf4795
RS
8629 /* Make sure there is room in the regular GOT to hold the
8630 function's address. We may eliminate it in favour of
8631 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8632 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8633 r_type))
b34976b6 8634 return FALSE;
b49e97c9
TS
8635
8636 /* We need a stub, not a plt entry for the undefined
8637 function. But we record it as if it needs plt. See
c152c796 8638 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8639 h->needs_plt = 1;
b49e97c9
TS
8640 h->type = STT_FUNC;
8641 }
8642 break;
8643
0fdc1bf1 8644 case R_MIPS_GOT_PAGE:
df58fc94 8645 case R_MICROMIPS_GOT_PAGE:
738e5348 8646 case R_MIPS16_GOT16:
b49e97c9
TS
8647 case R_MIPS_GOT16:
8648 case R_MIPS_GOT_HI16:
8649 case R_MIPS_GOT_LO16:
df58fc94
RS
8650 case R_MICROMIPS_GOT16:
8651 case R_MICROMIPS_GOT_HI16:
8652 case R_MICROMIPS_GOT_LO16:
8653 if (!h || got_page_reloc_p (r_type))
c224138d 8654 {
3a3b6725
DJ
8655 /* This relocation needs (or may need, if h != NULL) a
8656 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8657 know for sure until we know whether the symbol is
8658 preemptible. */
c224138d
RS
8659 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8660 {
8661 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8662 return FALSE;
8663 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8664 addend = mips_elf_read_rel_addend (abfd, rel,
8665 howto, contents);
9684f078 8666 if (got16_reloc_p (r_type))
c224138d
RS
8667 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8668 contents, &addend);
8669 else
8670 addend <<= howto->rightshift;
8671 }
8672 else
8673 addend = rel->r_addend;
13db6b44
RS
8674 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8675 h, addend))
c224138d 8676 return FALSE;
13db6b44
RS
8677
8678 if (h)
8679 {
8680 struct mips_elf_link_hash_entry *hmips =
8681 (struct mips_elf_link_hash_entry *) h;
8682
8683 /* This symbol is definitely not overridable. */
8684 if (hmips->root.def_regular
0e1862bb 8685 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8686 && ! hmips->root.forced_local))
8687 h = NULL;
8688 }
c224138d 8689 }
13db6b44
RS
8690 /* If this is a global, overridable symbol, GOT_PAGE will
8691 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8692 /* Fall through. */
8693
b49e97c9 8694 case R_MIPS_GOT_DISP:
df58fc94 8695 case R_MICROMIPS_GOT_DISP:
6ccf4795 8696 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8697 FALSE, r_type))
b34976b6 8698 return FALSE;
b49e97c9
TS
8699 break;
8700
0f20cc35 8701 case R_MIPS_TLS_GOTTPREL:
d0f13682 8702 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8703 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8704 if (bfd_link_pic (info))
0f20cc35
DJ
8705 info->flags |= DF_STATIC_TLS;
8706 /* Fall through */
8707
8708 case R_MIPS_TLS_LDM:
d0f13682 8709 case R_MIPS16_TLS_LDM:
df58fc94
RS
8710 case R_MICROMIPS_TLS_LDM:
8711 if (tls_ldm_reloc_p (r_type))
0f20cc35 8712 {
cf35638d 8713 r_symndx = STN_UNDEF;
0f20cc35
DJ
8714 h = NULL;
8715 }
8716 /* Fall through */
8717
8718 case R_MIPS_TLS_GD:
d0f13682 8719 case R_MIPS16_TLS_GD:
df58fc94 8720 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8721 /* This symbol requires a global offset table entry, or two
8722 for TLS GD relocations. */
e641e783
RS
8723 if (h != NULL)
8724 {
8725 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8726 FALSE, r_type))
8727 return FALSE;
8728 }
8729 else
8730 {
8731 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8732 rel->r_addend,
8733 info, r_type))
8734 return FALSE;
8735 }
0f20cc35
DJ
8736 break;
8737
b49e97c9
TS
8738 case R_MIPS_32:
8739 case R_MIPS_REL32:
8740 case R_MIPS_64:
0a44bf69
RS
8741 /* In VxWorks executables, references to external symbols
8742 are handled using copy relocs or PLT stubs, so there's
8743 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8744 if (can_make_dynamic_p)
b49e97c9
TS
8745 {
8746 if (sreloc == NULL)
8747 {
0a44bf69 8748 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8749 if (sreloc == NULL)
f4416af6 8750 return FALSE;
b49e97c9 8751 }
0e1862bb 8752 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
8753 {
8754 /* When creating a shared object, we must copy these
8755 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8756 relocs. Make room for this reloc in .rel(a).dyn. */
8757 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8758 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8759 /* We tell the dynamic linker that there are
8760 relocations against the text segment. */
8761 info->flags |= DF_TEXTREL;
8762 }
b49e97c9
TS
8763 else
8764 {
8765 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8766
9a59ad6b
DJ
8767 /* For a shared object, we must copy this relocation
8768 unless the symbol turns out to be undefined and
8769 weak with non-default visibility, in which case
8770 it will be left as zero.
8771
8772 We could elide R_MIPS_REL32 for locally binding symbols
8773 in shared libraries, but do not yet do so.
8774
8775 For an executable, we only need to copy this
8776 reloc if the symbol is defined in a dynamic
8777 object. */
b49e97c9
TS
8778 hmips = (struct mips_elf_link_hash_entry *) h;
8779 ++hmips->possibly_dynamic_relocs;
943284cc 8780 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8781 /* We need it to tell the dynamic linker if there
8782 are relocations against the text segment. */
8783 hmips->readonly_reloc = TRUE;
b49e97c9 8784 }
b49e97c9
TS
8785 }
8786
8787 if (SGI_COMPAT (abfd))
8788 mips_elf_hash_table (info)->compact_rel_size +=
8789 sizeof (Elf32_External_crinfo);
8790 break;
8791
8792 case R_MIPS_26:
8793 case R_MIPS_GPREL16:
8794 case R_MIPS_LITERAL:
8795 case R_MIPS_GPREL32:
df58fc94
RS
8796 case R_MICROMIPS_26_S1:
8797 case R_MICROMIPS_GPREL16:
8798 case R_MICROMIPS_LITERAL:
8799 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8800 if (SGI_COMPAT (abfd))
8801 mips_elf_hash_table (info)->compact_rel_size +=
8802 sizeof (Elf32_External_crinfo);
8803 break;
8804
8805 /* This relocation describes the C++ object vtable hierarchy.
8806 Reconstruct it for later use during GC. */
8807 case R_MIPS_GNU_VTINHERIT:
c152c796 8808 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8809 return FALSE;
b49e97c9
TS
8810 break;
8811
8812 /* This relocation describes which C++ vtable entries are actually
8813 used. Record for later use during GC. */
8814 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8815 BFD_ASSERT (h != NULL);
8816 if (h != NULL
8817 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8818 return FALSE;
b49e97c9
TS
8819 break;
8820
8821 default:
8822 break;
8823 }
8824
1bbce132 8825 /* Record the need for a PLT entry. At this point we don't know
07d6d2b8
AM
8826 yet if we are going to create a PLT in the first place, but
8827 we only record whether the relocation requires a standard MIPS
8828 or a compressed code entry anyway. If we don't make a PLT after
8829 all, then we'll just ignore these arrangements. Likewise if
8830 a PLT entry is not created because the symbol is satisfied
8831 locally. */
1bbce132 8832 if (h != NULL
54806ffa
MR
8833 && (branch_reloc_p (r_type)
8834 || mips16_branch_reloc_p (r_type)
8835 || micromips_branch_reloc_p (r_type))
1bbce132
MR
8836 && !SYMBOL_CALLS_LOCAL (info, h))
8837 {
8838 if (h->plt.plist == NULL)
8839 h->plt.plist = mips_elf_make_plt_record (abfd);
8840 if (h->plt.plist == NULL)
8841 return FALSE;
8842
54806ffa 8843 if (branch_reloc_p (r_type))
1bbce132
MR
8844 h->plt.plist->need_mips = TRUE;
8845 else
8846 h->plt.plist->need_comp = TRUE;
8847 }
8848
738e5348
RS
8849 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8850 if there is one. We only need to handle global symbols here;
8851 we decide whether to keep or delete stubs for local symbols
8852 when processing the stub's relocations. */
b49e97c9 8853 if (h != NULL
738e5348
RS
8854 && !mips16_call_reloc_p (r_type)
8855 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8856 {
8857 struct mips_elf_link_hash_entry *mh;
8858
8859 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8860 mh->need_fn_stub = TRUE;
b49e97c9 8861 }
861fb55a
DJ
8862
8863 /* Refuse some position-dependent relocations when creating a
8864 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8865 not PIC, but we can create dynamic relocations and the result
8866 will be fine. Also do not refuse R_MIPS_LO16, which can be
8867 combined with R_MIPS_GOT16. */
0e1862bb 8868 if (bfd_link_pic (info))
861fb55a
DJ
8869 {
8870 switch (r_type)
8871 {
8872 case R_MIPS16_HI16:
8873 case R_MIPS_HI16:
8874 case R_MIPS_HIGHER:
8875 case R_MIPS_HIGHEST:
df58fc94
RS
8876 case R_MICROMIPS_HI16:
8877 case R_MICROMIPS_HIGHER:
8878 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8879 /* Don't refuse a high part relocation if it's against
8880 no symbol (e.g. part of a compound relocation). */
cf35638d 8881 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8882 break;
8883
8884 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8885 and has a special meaning. */
8886 if (!NEWABI_P (abfd) && h != NULL
8887 && strcmp (h->root.root.string, "_gp_disp") == 0)
8888 break;
8889
0fc1eb3c
RS
8890 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8891 if (is_gott_symbol (info, h))
8892 break;
8893
861fb55a
DJ
8894 /* FALLTHROUGH */
8895
8896 case R_MIPS16_26:
8897 case R_MIPS_26:
df58fc94 8898 case R_MICROMIPS_26_S1:
861fb55a 8899 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
4eca0228 8900 _bfd_error_handler
695344c0 8901 /* xgettext:c-format */
871b3ab2 8902 (_("%pB: relocation %s against `%s' can not be used"
63a5468a 8903 " when making a shared object; recompile with -fPIC"),
861fb55a
DJ
8904 abfd, howto->name,
8905 (h) ? h->root.root.string : "a local symbol");
8906 bfd_set_error (bfd_error_bad_value);
8907 return FALSE;
8908 default:
8909 break;
8910 }
8911 }
b49e97c9
TS
8912 }
8913
b34976b6 8914 return TRUE;
b49e97c9
TS
8915}
8916\f
9a59ad6b
DJ
8917/* Allocate space for global sym dynamic relocs. */
8918
8919static bfd_boolean
8920allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8921{
8922 struct bfd_link_info *info = inf;
8923 bfd *dynobj;
8924 struct mips_elf_link_hash_entry *hmips;
8925 struct mips_elf_link_hash_table *htab;
8926
8927 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8928 BFD_ASSERT (htab != NULL);
8929
9a59ad6b
DJ
8930 dynobj = elf_hash_table (info)->dynobj;
8931 hmips = (struct mips_elf_link_hash_entry *) h;
8932
8933 /* VxWorks executables are handled elsewhere; we only need to
8934 allocate relocations in shared objects. */
0e1862bb 8935 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
8936 return TRUE;
8937
7686d77d
AM
8938 /* Ignore indirect symbols. All relocations against such symbols
8939 will be redirected to the target symbol. */
8940 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8941 return TRUE;
8942
9a59ad6b
DJ
8943 /* If this symbol is defined in a dynamic object, or we are creating
8944 a shared library, we will need to copy any R_MIPS_32 or
8945 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 8946 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
8947 && hmips->possibly_dynamic_relocs != 0
8948 && (h->root.type == bfd_link_hash_defweak
625ef6dc 8949 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 8950 || bfd_link_pic (info)))
9a59ad6b
DJ
8951 {
8952 bfd_boolean do_copy = TRUE;
8953
8954 if (h->root.type == bfd_link_hash_undefweak)
8955 {
262e07d0
MR
8956 /* Do not copy relocations for undefined weak symbols that
8957 we are not going to export. */
8958 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9a59ad6b
DJ
8959 do_copy = FALSE;
8960
8961 /* Make sure undefined weak symbols are output as a dynamic
8962 symbol in PIEs. */
8963 else if (h->dynindx == -1 && !h->forced_local)
8964 {
8965 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8966 return FALSE;
8967 }
8968 }
8969
8970 if (do_copy)
8971 {
aff469fa 8972 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8973 the SVR4 psABI requires it to have a dynamic symbol table
8974 index greater that DT_MIPS_GOTSYM if there are dynamic
8975 relocations against it.
8976
8977 VxWorks does not enforce the same mapping between the GOT
8978 and the symbol table, so the same requirement does not
8979 apply there. */
6ccf4795
RS
8980 if (!htab->is_vxworks)
8981 {
8982 if (hmips->global_got_area > GGA_RELOC_ONLY)
8983 hmips->global_got_area = GGA_RELOC_ONLY;
8984 hmips->got_only_for_calls = FALSE;
8985 }
aff469fa 8986
9a59ad6b
DJ
8987 mips_elf_allocate_dynamic_relocations
8988 (dynobj, info, hmips->possibly_dynamic_relocs);
8989 if (hmips->readonly_reloc)
8990 /* We tell the dynamic linker that there are relocations
8991 against the text segment. */
8992 info->flags |= DF_TEXTREL;
8993 }
8994 }
8995
8996 return TRUE;
8997}
8998
b49e97c9
TS
8999/* Adjust a symbol defined by a dynamic object and referenced by a
9000 regular object. The current definition is in some section of the
9001 dynamic object, but we're not including those sections. We have to
9002 change the definition to something the rest of the link can
9003 understand. */
9004
b34976b6 9005bfd_boolean
9719ad41
RS
9006_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9007 struct elf_link_hash_entry *h)
b49e97c9
TS
9008{
9009 bfd *dynobj;
9010 struct mips_elf_link_hash_entry *hmips;
5108fc1b 9011 struct mips_elf_link_hash_table *htab;
5474d94f 9012 asection *s, *srel;
b49e97c9 9013
5108fc1b 9014 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9015 BFD_ASSERT (htab != NULL);
9016
b49e97c9 9017 dynobj = elf_hash_table (info)->dynobj;
861fb55a 9018 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
9019
9020 /* Make sure we know what is going on here. */
9021 BFD_ASSERT (dynobj != NULL
f5385ebf 9022 && (h->needs_plt
60d67dc8 9023 || h->is_weakalias
f5385ebf
AM
9024 || (h->def_dynamic
9025 && h->ref_regular
9026 && !h->def_regular)));
b49e97c9 9027
b49e97c9 9028 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9029
861fb55a
DJ
9030 /* If there are call relocations against an externally-defined symbol,
9031 see whether we can create a MIPS lazy-binding stub for it. We can
9032 only do this if all references to the function are through call
9033 relocations, and in that case, the traditional lazy-binding stubs
9034 are much more efficient than PLT entries.
9035
9036 Traditional stubs are only available on SVR4 psABI-based systems;
9037 VxWorks always uses PLTs instead. */
9038 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
9039 {
9040 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 9041 return TRUE;
b49e97c9
TS
9042
9043 /* If this symbol is not defined in a regular file, then set
9044 the symbol to the stub location. This is required to make
9045 function pointers compare as equal between the normal
9046 executable and the shared library. */
4b8377e7
MR
9047 if (!h->def_regular
9048 && !bfd_is_abs_section (htab->sstubs->output_section))
b49e97c9 9049 {
33bb52fb
RS
9050 hmips->needs_lazy_stub = TRUE;
9051 htab->lazy_stub_count++;
b34976b6 9052 return TRUE;
b49e97c9
TS
9053 }
9054 }
861fb55a
DJ
9055 /* As above, VxWorks requires PLT entries for externally-defined
9056 functions that are only accessed through call relocations.
b49e97c9 9057
861fb55a
DJ
9058 Both VxWorks and non-VxWorks targets also need PLT entries if there
9059 are static-only relocations against an externally-defined function.
9060 This can technically occur for shared libraries if there are
9061 branches to the symbol, although it is unlikely that this will be
9062 used in practice due to the short ranges involved. It can occur
9063 for any relative or absolute relocation in executables; in that
9064 case, the PLT entry becomes the function's canonical address. */
9065 else if (((h->needs_plt && !hmips->no_fn_stub)
9066 || (h->type == STT_FUNC && hmips->has_static_relocs))
9067 && htab->use_plts_and_copy_relocs
9068 && !SYMBOL_CALLS_LOCAL (info, h)
9069 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9070 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9071 {
1bbce132
MR
9072 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9073 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9074
9075 /* If this is the first symbol to need a PLT entry, then make some
07d6d2b8
AM
9076 basic setup. Also work out PLT entry sizes. We'll need them
9077 for PLT offset calculations. */
1bbce132 9078 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a 9079 {
ce558b89 9080 BFD_ASSERT (htab->root.sgotplt->size == 0);
1bbce132 9081 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9082
861fb55a
DJ
9083 /* If we're using the PLT additions to the psABI, each PLT
9084 entry is 16 bytes and the PLT0 entry is 32 bytes.
9085 Encourage better cache usage by aligning. We do this
9086 lazily to avoid pessimizing traditional objects. */
9087 if (!htab->is_vxworks
ce558b89 9088 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
861fb55a 9089 return FALSE;
0a44bf69 9090
861fb55a
DJ
9091 /* Make sure that .got.plt is word-aligned. We do this lazily
9092 for the same reason as above. */
ce558b89 9093 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
861fb55a
DJ
9094 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9095 return FALSE;
0a44bf69 9096
861fb55a
DJ
9097 /* On non-VxWorks targets, the first two entries in .got.plt
9098 are reserved. */
9099 if (!htab->is_vxworks)
1bbce132
MR
9100 htab->plt_got_index
9101 += (get_elf_backend_data (dynobj)->got_header_size
9102 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9103
861fb55a
DJ
9104 /* On VxWorks, also allocate room for the header's
9105 .rela.plt.unloaded entries. */
0e1862bb 9106 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9107 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9108
9109 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9110 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9111 htab->plt_mips_entry_size
9112 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9113 else if (htab->is_vxworks)
9114 htab->plt_mips_entry_size
9115 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9116 else if (newabi_p)
9117 htab->plt_mips_entry_size
9118 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9119 else if (!micromips_p)
1bbce132
MR
9120 {
9121 htab->plt_mips_entry_size
9122 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9123 htab->plt_comp_entry_size
833794fc
MR
9124 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9125 }
9126 else if (htab->insn32)
9127 {
9128 htab->plt_mips_entry_size
9129 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9130 htab->plt_comp_entry_size
9131 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9132 }
9133 else
9134 {
9135 htab->plt_mips_entry_size
9136 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9137 htab->plt_comp_entry_size
833794fc 9138 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9139 }
0a44bf69
RS
9140 }
9141
1bbce132
MR
9142 if (h->plt.plist == NULL)
9143 h->plt.plist = mips_elf_make_plt_record (dynobj);
9144 if (h->plt.plist == NULL)
9145 return FALSE;
9146
9147 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
07d6d2b8 9148 n32 or n64, so always use a standard entry there.
1bbce132 9149
07d6d2b8
AM
9150 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9151 all MIPS16 calls will go via that stub, and there is no benefit
9152 to having a MIPS16 entry. And in the case of call_stub a
9153 standard entry actually has to be used as the stub ends with a J
9154 instruction. */
1bbce132
MR
9155 if (newabi_p
9156 || htab->is_vxworks
9157 || hmips->call_stub
9158 || hmips->call_fp_stub)
9159 {
9160 h->plt.plist->need_mips = TRUE;
9161 h->plt.plist->need_comp = FALSE;
9162 }
9163
9164 /* Otherwise, if there are no direct calls to the function, we
07d6d2b8
AM
9165 have a free choice of whether to use standard or compressed
9166 entries. Prefer microMIPS entries if the object is known to
9167 contain microMIPS code, so that it becomes possible to create
9168 pure microMIPS binaries. Prefer standard entries otherwise,
9169 because MIPS16 ones are no smaller and are usually slower. */
1bbce132
MR
9170 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9171 {
9172 if (micromips_p)
9173 h->plt.plist->need_comp = TRUE;
9174 else
9175 h->plt.plist->need_mips = TRUE;
9176 }
9177
9178 if (h->plt.plist->need_mips)
9179 {
9180 h->plt.plist->mips_offset = htab->plt_mips_offset;
9181 htab->plt_mips_offset += htab->plt_mips_entry_size;
9182 }
9183 if (h->plt.plist->need_comp)
9184 {
9185 h->plt.plist->comp_offset = htab->plt_comp_offset;
9186 htab->plt_comp_offset += htab->plt_comp_entry_size;
9187 }
9188
9189 /* Reserve the corresponding .got.plt entry now too. */
9190 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9191
9192 /* If the output file has no definition of the symbol, set the
861fb55a 9193 symbol's value to the address of the stub. */
0e1862bb 9194 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9195 hmips->use_plt_entry = TRUE;
0a44bf69 9196
1bbce132 9197 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
ce558b89
AM
9198 htab->root.srelplt->size += (htab->is_vxworks
9199 ? MIPS_ELF_RELA_SIZE (dynobj)
9200 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9201
9202 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9203 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9204 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9205
861fb55a
DJ
9206 /* All relocations against this symbol that could have been made
9207 dynamic will now refer to the PLT entry instead. */
9208 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9209
0a44bf69
RS
9210 return TRUE;
9211 }
9212
9213 /* If this is a weak symbol, and there is a real definition, the
9214 processor independent code will have arranged for us to see the
9215 real definition first, and we can just use the same value. */
60d67dc8 9216 if (h->is_weakalias)
0a44bf69 9217 {
60d67dc8
AM
9218 struct elf_link_hash_entry *def = weakdef (h);
9219 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9220 h->root.u.def.section = def->root.u.def.section;
9221 h->root.u.def.value = def->root.u.def.value;
0a44bf69
RS
9222 return TRUE;
9223 }
9224
861fb55a
DJ
9225 /* Otherwise, there is nothing further to do for symbols defined
9226 in regular objects. */
9227 if (h->def_regular)
0a44bf69
RS
9228 return TRUE;
9229
861fb55a
DJ
9230 /* There's also nothing more to do if we'll convert all relocations
9231 against this symbol into dynamic relocations. */
9232 if (!hmips->has_static_relocs)
9233 return TRUE;
9234
9235 /* We're now relying on copy relocations. Complain if we have
9236 some that we can't convert. */
0e1862bb 9237 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a 9238 {
4eca0228
AM
9239 _bfd_error_handler (_("non-dynamic relocations refer to "
9240 "dynamic symbol %s"),
9241 h->root.root.string);
861fb55a
DJ
9242 bfd_set_error (bfd_error_bad_value);
9243 return FALSE;
9244 }
9245
0a44bf69
RS
9246 /* We must allocate the symbol in our .dynbss section, which will
9247 become part of the .bss section of the executable. There will be
9248 an entry for this symbol in the .dynsym section. The dynamic
9249 object will contain position independent code, so all references
9250 from the dynamic object to this symbol will go through the global
9251 offset table. The dynamic linker will use the .dynsym entry to
9252 determine the address it must put in the global offset table, so
9253 both the dynamic object and the regular object will refer to the
9254 same memory location for the variable. */
9255
5474d94f
AM
9256 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9257 {
9258 s = htab->root.sdynrelro;
9259 srel = htab->root.sreldynrelro;
9260 }
9261 else
9262 {
9263 s = htab->root.sdynbss;
9264 srel = htab->root.srelbss;
9265 }
0a44bf69
RS
9266 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9267 {
861fb55a 9268 if (htab->is_vxworks)
5474d94f 9269 srel->size += sizeof (Elf32_External_Rela);
861fb55a
DJ
9270 else
9271 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9272 h->needs_copy = 1;
9273 }
9274
861fb55a
DJ
9275 /* All relocations against this symbol that could have been made
9276 dynamic will now refer to the local copy instead. */
9277 hmips->possibly_dynamic_relocs = 0;
9278
5474d94f 9279 return _bfd_elf_adjust_dynamic_copy (info, h, s);
0a44bf69 9280}
b49e97c9
TS
9281\f
9282/* This function is called after all the input files have been read,
9283 and the input sections have been assigned to output sections. We
9284 check for any mips16 stub sections that we can discard. */
9285
b34976b6 9286bfd_boolean
9719ad41
RS
9287_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9288 struct bfd_link_info *info)
b49e97c9 9289{
351cdf24 9290 asection *sect;
0a44bf69 9291 struct mips_elf_link_hash_table *htab;
861fb55a 9292 struct mips_htab_traverse_info hti;
0a44bf69
RS
9293
9294 htab = mips_elf_hash_table (info);
4dfe6ac6 9295 BFD_ASSERT (htab != NULL);
f4416af6 9296
b49e97c9 9297 /* The .reginfo section has a fixed size. */
351cdf24
MF
9298 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9299 if (sect != NULL)
6798f8bf
MR
9300 {
9301 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9302 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9303 }
351cdf24
MF
9304
9305 /* The .MIPS.abiflags section has a fixed size. */
9306 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9307 if (sect != NULL)
6798f8bf
MR
9308 {
9309 bfd_set_section_size (output_bfd, sect,
9310 sizeof (Elf_External_ABIFlags_v0));
9311 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9312 }
b49e97c9 9313
861fb55a
DJ
9314 hti.info = info;
9315 hti.output_bfd = output_bfd;
9316 hti.error = FALSE;
9317 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9318 mips_elf_check_symbols, &hti);
9319 if (hti.error)
9320 return FALSE;
f4416af6 9321
33bb52fb
RS
9322 return TRUE;
9323}
9324
9325/* If the link uses a GOT, lay it out and work out its size. */
9326
9327static bfd_boolean
9328mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9329{
9330 bfd *dynobj;
9331 asection *s;
9332 struct mips_got_info *g;
33bb52fb
RS
9333 bfd_size_type loadable_size = 0;
9334 bfd_size_type page_gotno;
d7206569 9335 bfd *ibfd;
ab361d49 9336 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9337 struct mips_elf_link_hash_table *htab;
9338
9339 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9340 BFD_ASSERT (htab != NULL);
9341
ce558b89 9342 s = htab->root.sgot;
f4416af6 9343 if (s == NULL)
b34976b6 9344 return TRUE;
b49e97c9 9345
33bb52fb 9346 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9347 g = htab->got_info;
9348
861fb55a
DJ
9349 /* Allocate room for the reserved entries. VxWorks always reserves
9350 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9351 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9352 if (htab->is_vxworks)
9353 htab->reserved_gotno = 3;
9354 else
9355 htab->reserved_gotno = 2;
9356 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9357 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9358
6c42ddb9
RS
9359 /* Decide which symbols need to go in the global part of the GOT and
9360 count the number of reloc-only GOT symbols. */
020d7251 9361 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9362
13db6b44
RS
9363 if (!mips_elf_resolve_final_got_entries (info, g))
9364 return FALSE;
9365
33bb52fb
RS
9366 /* Calculate the total loadable size of the output. That
9367 will give us the maximum number of GOT_PAGE entries
9368 required. */
c72f2fb2 9369 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9370 {
9371 asection *subsection;
5108fc1b 9372
d7206569 9373 for (subsection = ibfd->sections;
33bb52fb
RS
9374 subsection;
9375 subsection = subsection->next)
9376 {
9377 if ((subsection->flags & SEC_ALLOC) == 0)
9378 continue;
9379 loadable_size += ((subsection->size + 0xf)
9380 &~ (bfd_size_type) 0xf);
9381 }
9382 }
f4416af6 9383
0a44bf69 9384 if (htab->is_vxworks)
738e5348 9385 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9386 relocations against local symbols evaluate to "G", and the EABI does
9387 not include R_MIPS_GOT_PAGE. */
c224138d 9388 page_gotno = 0;
0a44bf69
RS
9389 else
9390 /* Assume there are two loadable segments consisting of contiguous
9391 sections. Is 5 enough? */
c224138d
RS
9392 page_gotno = (loadable_size >> 16) + 5;
9393
13db6b44 9394 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9395 conservative. */
9396 if (page_gotno > g->page_gotno)
9397 page_gotno = g->page_gotno;
f4416af6 9398
c224138d 9399 g->local_gotno += page_gotno;
cb22ccf4 9400 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9401
ab361d49
RS
9402 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9403 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9404 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9405
0a44bf69
RS
9406 /* VxWorks does not support multiple GOTs. It initializes $gp to
9407 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9408 dynamic loader. */
57093f5e 9409 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9410 {
a8028dd0 9411 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9412 return FALSE;
9413 }
9414 else
9415 {
d7206569
RS
9416 /* Record that all bfds use G. This also has the effect of freeing
9417 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9418 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9419 if (mips_elf_bfd_got (ibfd, FALSE))
9420 mips_elf_replace_bfd_got (ibfd, g);
9421 mips_elf_replace_bfd_got (output_bfd, g);
9422
33bb52fb 9423 /* Set up TLS entries. */
0f20cc35 9424 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9425 tga.info = info;
9426 tga.g = g;
9427 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9428 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9429 if (!tga.g)
9430 return FALSE;
1fd20d70
RS
9431 BFD_ASSERT (g->tls_assigned_gotno
9432 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9433
57093f5e 9434 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9435 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9436 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9437
33bb52fb 9438 /* Allocate room for the TLS relocations. */
ab361d49
RS
9439 if (g->relocs)
9440 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9441 }
b49e97c9 9442
b34976b6 9443 return TRUE;
b49e97c9
TS
9444}
9445
33bb52fb
RS
9446/* Estimate the size of the .MIPS.stubs section. */
9447
9448static void
9449mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9450{
9451 struct mips_elf_link_hash_table *htab;
9452 bfd_size_type dynsymcount;
9453
9454 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9455 BFD_ASSERT (htab != NULL);
9456
33bb52fb
RS
9457 if (htab->lazy_stub_count == 0)
9458 return;
9459
9460 /* IRIX rld assumes that a function stub isn't at the end of the .text
9461 section, so add a dummy entry to the end. */
9462 htab->lazy_stub_count++;
9463
9464 /* Get a worst-case estimate of the number of dynamic symbols needed.
9465 At this point, dynsymcount does not account for section symbols
9466 and count_section_dynsyms may overestimate the number that will
9467 be needed. */
9468 dynsymcount = (elf_hash_table (info)->dynsymcount
9469 + count_section_dynsyms (output_bfd, info));
9470
1bbce132
MR
9471 /* Determine the size of one stub entry. There's no disadvantage
9472 from using microMIPS code here, so for the sake of pure-microMIPS
9473 binaries we prefer it whenever there's any microMIPS code in
9474 output produced at all. This has a benefit of stubs being
833794fc
MR
9475 shorter by 4 bytes each too, unless in the insn32 mode. */
9476 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9477 htab->function_stub_size = (dynsymcount > 0x10000
9478 ? MIPS_FUNCTION_STUB_BIG_SIZE
9479 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9480 else if (htab->insn32)
9481 htab->function_stub_size = (dynsymcount > 0x10000
9482 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9483 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9484 else
9485 htab->function_stub_size = (dynsymcount > 0x10000
9486 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9487 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9488
9489 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9490}
9491
1bbce132
MR
9492/* A mips_elf_link_hash_traverse callback for which DATA points to a
9493 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9494 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9495
9496static bfd_boolean
af924177 9497mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9498{
1bbce132 9499 struct mips_htab_traverse_info *hti = data;
33bb52fb 9500 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9501 struct bfd_link_info *info;
9502 bfd *output_bfd;
9503
9504 info = hti->info;
9505 output_bfd = hti->output_bfd;
9506 htab = mips_elf_hash_table (info);
9507 BFD_ASSERT (htab != NULL);
33bb52fb 9508
33bb52fb
RS
9509 if (h->needs_lazy_stub)
9510 {
1bbce132
MR
9511 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9512 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9513 bfd_vma isa_bit = micromips_p;
9514
9515 BFD_ASSERT (htab->root.dynobj != NULL);
9516 if (h->root.plt.plist == NULL)
9517 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9518 if (h->root.plt.plist == NULL)
9519 {
9520 hti->error = TRUE;
9521 return FALSE;
9522 }
33bb52fb 9523 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9524 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9525 h->root.plt.plist->stub_offset = htab->sstubs->size;
9526 h->root.other = other;
33bb52fb
RS
9527 htab->sstubs->size += htab->function_stub_size;
9528 }
9529 return TRUE;
9530}
9531
9532/* Allocate offsets in the stubs section to each symbol that needs one.
9533 Set the final size of the .MIPS.stub section. */
9534
1bbce132 9535static bfd_boolean
33bb52fb
RS
9536mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9537{
1bbce132
MR
9538 bfd *output_bfd = info->output_bfd;
9539 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9540 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9541 bfd_vma isa_bit = micromips_p;
33bb52fb 9542 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9543 struct mips_htab_traverse_info hti;
9544 struct elf_link_hash_entry *h;
9545 bfd *dynobj;
33bb52fb
RS
9546
9547 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9548 BFD_ASSERT (htab != NULL);
9549
33bb52fb 9550 if (htab->lazy_stub_count == 0)
1bbce132 9551 return TRUE;
33bb52fb
RS
9552
9553 htab->sstubs->size = 0;
1bbce132
MR
9554 hti.info = info;
9555 hti.output_bfd = output_bfd;
9556 hti.error = FALSE;
9557 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9558 if (hti.error)
9559 return FALSE;
33bb52fb
RS
9560 htab->sstubs->size += htab->function_stub_size;
9561 BFD_ASSERT (htab->sstubs->size
9562 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9563
9564 dynobj = elf_hash_table (info)->dynobj;
9565 BFD_ASSERT (dynobj != NULL);
9566 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9567 if (h == NULL)
9568 return FALSE;
9569 h->root.u.def.value = isa_bit;
9570 h->other = other;
9571 h->type = STT_FUNC;
9572
9573 return TRUE;
9574}
9575
9576/* A mips_elf_link_hash_traverse callback for which DATA points to a
9577 bfd_link_info. If H uses the address of a PLT entry as the value
9578 of the symbol, then set the entry in the symbol table now. Prefer
9579 a standard MIPS PLT entry. */
9580
9581static bfd_boolean
9582mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9583{
9584 struct bfd_link_info *info = data;
9585 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9586 struct mips_elf_link_hash_table *htab;
9587 unsigned int other;
9588 bfd_vma isa_bit;
9589 bfd_vma val;
9590
9591 htab = mips_elf_hash_table (info);
9592 BFD_ASSERT (htab != NULL);
9593
9594 if (h->use_plt_entry)
9595 {
9596 BFD_ASSERT (h->root.plt.plist != NULL);
9597 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9598 || h->root.plt.plist->comp_offset != MINUS_ONE);
9599
9600 val = htab->plt_header_size;
9601 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9602 {
9603 isa_bit = 0;
9604 val += h->root.plt.plist->mips_offset;
9605 other = 0;
9606 }
9607 else
9608 {
9609 isa_bit = 1;
9610 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9611 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9612 }
9613 val += isa_bit;
9614 /* For VxWorks, point at the PLT load stub rather than the lazy
07d6d2b8
AM
9615 resolution stub; this stub will become the canonical function
9616 address. */
1bbce132
MR
9617 if (htab->is_vxworks)
9618 val += 8;
9619
ce558b89 9620 h->root.root.u.def.section = htab->root.splt;
1bbce132
MR
9621 h->root.root.u.def.value = val;
9622 h->root.other = other;
9623 }
9624
9625 return TRUE;
33bb52fb
RS
9626}
9627
b49e97c9
TS
9628/* Set the sizes of the dynamic sections. */
9629
b34976b6 9630bfd_boolean
9719ad41
RS
9631_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9632 struct bfd_link_info *info)
b49e97c9
TS
9633{
9634 bfd *dynobj;
861fb55a 9635 asection *s, *sreldyn;
b34976b6 9636 bfd_boolean reltext;
0a44bf69 9637 struct mips_elf_link_hash_table *htab;
b49e97c9 9638
0a44bf69 9639 htab = mips_elf_hash_table (info);
4dfe6ac6 9640 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9641 dynobj = elf_hash_table (info)->dynobj;
9642 BFD_ASSERT (dynobj != NULL);
9643
9644 if (elf_hash_table (info)->dynamic_sections_created)
9645 {
9646 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9647 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9648 {
3d4d4302 9649 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9650 BFD_ASSERT (s != NULL);
eea6121a 9651 s->size
b49e97c9
TS
9652 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9653 s->contents
9654 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9655 }
861fb55a 9656
1bbce132 9657 /* Figure out the size of the PLT header if we know that we
07d6d2b8
AM
9658 are using it. For the sake of cache alignment always use
9659 a standard header whenever any standard entries are present
9660 even if microMIPS entries are present as well. This also
9661 lets the microMIPS header rely on the value of $v0 only set
9662 by microMIPS entries, for a small size reduction.
1bbce132 9663
07d6d2b8
AM
9664 Set symbol table entry values for symbols that use the
9665 address of their PLT entry now that we can calculate it.
1bbce132 9666
07d6d2b8
AM
9667 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9668 haven't already in _bfd_elf_create_dynamic_sections. */
ce558b89 9669 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9670 {
1bbce132
MR
9671 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9672 && !htab->plt_mips_offset);
9673 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9674 bfd_vma isa_bit = micromips_p;
861fb55a 9675 struct elf_link_hash_entry *h;
1bbce132 9676 bfd_vma size;
861fb55a
DJ
9677
9678 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
9679 BFD_ASSERT (htab->root.sgotplt->size == 0);
9680 BFD_ASSERT (htab->root.splt->size == 0);
1bbce132 9681
0e1862bb 9682 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9683 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9684 else if (htab->is_vxworks)
9685 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9686 else if (ABI_64_P (output_bfd))
9687 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9688 else if (ABI_N32_P (output_bfd))
9689 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9690 else if (!micromips_p)
9691 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9692 else if (htab->insn32)
9693 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9694 else
9695 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9696
1bbce132
MR
9697 htab->plt_header_is_comp = micromips_p;
9698 htab->plt_header_size = size;
ce558b89
AM
9699 htab->root.splt->size = (size
9700 + htab->plt_mips_offset
9701 + htab->plt_comp_offset);
9702 htab->root.sgotplt->size = (htab->plt_got_index
9703 * MIPS_ELF_GOT_SIZE (dynobj));
1bbce132
MR
9704
9705 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9706
9707 if (htab->root.hplt == NULL)
9708 {
ce558b89 9709 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
1bbce132
MR
9710 "_PROCEDURE_LINKAGE_TABLE_");
9711 htab->root.hplt = h;
9712 if (h == NULL)
9713 return FALSE;
9714 }
9715
9716 h = htab->root.hplt;
9717 h->root.u.def.value = isa_bit;
9718 h->other = other;
861fb55a
DJ
9719 h->type = STT_FUNC;
9720 }
9721 }
4e41d0d7 9722
9a59ad6b 9723 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9724 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9725
33bb52fb
RS
9726 mips_elf_estimate_stub_size (output_bfd, info);
9727
9728 if (!mips_elf_lay_out_got (output_bfd, info))
9729 return FALSE;
9730
9731 mips_elf_lay_out_lazy_stubs (info);
9732
b49e97c9
TS
9733 /* The check_relocs and adjust_dynamic_symbol entry points have
9734 determined the sizes of the various dynamic sections. Allocate
9735 memory for them. */
b34976b6 9736 reltext = FALSE;
b49e97c9
TS
9737 for (s = dynobj->sections; s != NULL; s = s->next)
9738 {
9739 const char *name;
b49e97c9
TS
9740
9741 /* It's OK to base decisions on the section name, because none
9742 of the dynobj section names depend upon the input files. */
9743 name = bfd_get_section_name (dynobj, s);
9744
9745 if ((s->flags & SEC_LINKER_CREATED) == 0)
9746 continue;
9747
0112cd26 9748 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9749 {
c456f082 9750 if (s->size != 0)
b49e97c9
TS
9751 {
9752 const char *outname;
9753 asection *target;
9754
9755 /* If this relocation section applies to a read only
07d6d2b8
AM
9756 section, then we probably need a DT_TEXTREL entry.
9757 If the relocation section is .rel(a).dyn, we always
9758 assert a DT_TEXTREL entry rather than testing whether
9759 there exists a relocation to a read only section or
9760 not. */
b49e97c9
TS
9761 outname = bfd_get_section_name (output_bfd,
9762 s->output_section);
9763 target = bfd_get_section_by_name (output_bfd, outname + 4);
9764 if ((target != NULL
9765 && (target->flags & SEC_READONLY) != 0
9766 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9767 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9768 reltext = TRUE;
b49e97c9
TS
9769
9770 /* We use the reloc_count field as a counter if we need
9771 to copy relocs into the output file. */
0a44bf69 9772 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9773 s->reloc_count = 0;
f4416af6
AO
9774
9775 /* If combreloc is enabled, elf_link_sort_relocs() will
9776 sort relocations, but in a different way than we do,
9777 and before we're done creating relocations. Also, it
9778 will move them around between input sections'
9779 relocation's contents, so our sorting would be
9780 broken, so don't let it run. */
9781 info->combreloc = 0;
b49e97c9
TS
9782 }
9783 }
0e1862bb 9784 else if (bfd_link_executable (info)
b49e97c9 9785 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9786 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9787 {
5108fc1b 9788 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9789 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9790 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9791 }
9792 else if (SGI_COMPAT (output_bfd)
0112cd26 9793 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9794 s->size += mips_elf_hash_table (info)->compact_rel_size;
ce558b89 9795 else if (s == htab->root.splt)
861fb55a
DJ
9796 {
9797 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9798 room for an extra nop to fill the delay slot. This is
9799 for CPUs without load interlocking. */
9800 if (! LOAD_INTERLOCKS_P (output_bfd)
9801 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9802 s->size += 4;
9803 }
0112cd26 9804 else if (! CONST_STRNEQ (name, ".init")
ce558b89
AM
9805 && s != htab->root.sgot
9806 && s != htab->root.sgotplt
861fb55a 9807 && s != htab->sstubs
5474d94f
AM
9808 && s != htab->root.sdynbss
9809 && s != htab->root.sdynrelro)
b49e97c9
TS
9810 {
9811 /* It's not one of our sections, so don't allocate space. */
9812 continue;
9813 }
9814
c456f082 9815 if (s->size == 0)
b49e97c9 9816 {
8423293d 9817 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9818 continue;
9819 }
9820
c456f082
AM
9821 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9822 continue;
9823
b49e97c9 9824 /* Allocate memory for the section contents. */
eea6121a 9825 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9826 if (s->contents == NULL)
b49e97c9
TS
9827 {
9828 bfd_set_error (bfd_error_no_memory);
b34976b6 9829 return FALSE;
b49e97c9
TS
9830 }
9831 }
9832
9833 if (elf_hash_table (info)->dynamic_sections_created)
9834 {
9835 /* Add some entries to the .dynamic section. We fill in the
9836 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9837 must add the entries now so that we get the correct size for
5750dcec 9838 the .dynamic section. */
af5978fb
RS
9839
9840 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9841 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9842 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9843 may only look at the first one they see. */
0e1862bb 9844 if (!bfd_link_pic (info)
af5978fb
RS
9845 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9846 return FALSE;
b49e97c9 9847
0e1862bb 9848 if (bfd_link_executable (info)
a5499fa4
MF
9849 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9850 return FALSE;
9851
5750dcec
DJ
9852 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9853 used by the debugger. */
0e1862bb 9854 if (bfd_link_executable (info)
5750dcec
DJ
9855 && !SGI_COMPAT (output_bfd)
9856 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9857 return FALSE;
9858
0a44bf69 9859 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9860 info->flags |= DF_TEXTREL;
9861
9862 if ((info->flags & DF_TEXTREL) != 0)
9863 {
9864 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9865 return FALSE;
943284cc
DJ
9866
9867 /* Clear the DF_TEXTREL flag. It will be set again if we
9868 write out an actual text relocation; we may not, because
9869 at this point we do not know whether e.g. any .eh_frame
9870 absolute relocations have been converted to PC-relative. */
9871 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9872 }
9873
9874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9875 return FALSE;
b49e97c9 9876
861fb55a 9877 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9878 if (htab->is_vxworks)
b49e97c9 9879 {
0a44bf69
RS
9880 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9881 use any of the DT_MIPS_* tags. */
861fb55a 9882 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9883 {
9884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9885 return FALSE;
b49e97c9 9886
0a44bf69
RS
9887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9888 return FALSE;
b49e97c9 9889
0a44bf69
RS
9890 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9891 return FALSE;
9892 }
b49e97c9 9893 }
0a44bf69
RS
9894 else
9895 {
db841b6f
MR
9896 if (sreldyn && sreldyn->size > 0
9897 && !bfd_is_abs_section (sreldyn->output_section))
0a44bf69
RS
9898 {
9899 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9900 return FALSE;
b49e97c9 9901
0a44bf69
RS
9902 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9903 return FALSE;
b49e97c9 9904
0a44bf69
RS
9905 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9906 return FALSE;
9907 }
b49e97c9 9908
0a44bf69
RS
9909 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9910 return FALSE;
b49e97c9 9911
0a44bf69
RS
9912 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9913 return FALSE;
b49e97c9 9914
0a44bf69
RS
9915 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9916 return FALSE;
b49e97c9 9917
0a44bf69
RS
9918 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9919 return FALSE;
b49e97c9 9920
0a44bf69
RS
9921 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9922 return FALSE;
b49e97c9 9923
0a44bf69
RS
9924 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9925 return FALSE;
b49e97c9 9926
0a44bf69
RS
9927 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9928 return FALSE;
9929
9930 if (IRIX_COMPAT (dynobj) == ict_irix5
9931 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9932 return FALSE;
9933
9934 if (IRIX_COMPAT (dynobj) == ict_irix6
9935 && (bfd_get_section_by_name
af0edeb8 9936 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
9937 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9938 return FALSE;
9939 }
ce558b89 9940 if (htab->root.splt->size > 0)
861fb55a
DJ
9941 {
9942 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9943 return FALSE;
9944
9945 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9946 return FALSE;
9947
9948 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9949 return FALSE;
9950
9951 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9952 return FALSE;
9953 }
7a2b07ff
NS
9954 if (htab->is_vxworks
9955 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9956 return FALSE;
b49e97c9
TS
9957 }
9958
b34976b6 9959 return TRUE;
b49e97c9
TS
9960}
9961\f
81d43bff
RS
9962/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9963 Adjust its R_ADDEND field so that it is correct for the output file.
9964 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9965 and sections respectively; both use symbol indexes. */
9966
9967static void
9968mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9969 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9970 asection **local_sections, Elf_Internal_Rela *rel)
9971{
9972 unsigned int r_type, r_symndx;
9973 Elf_Internal_Sym *sym;
9974 asection *sec;
9975
020d7251 9976 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9977 {
9978 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9979 if (gprel16_reloc_p (r_type)
81d43bff 9980 || r_type == R_MIPS_GPREL32
df58fc94 9981 || literal_reloc_p (r_type))
81d43bff
RS
9982 {
9983 rel->r_addend += _bfd_get_gp_value (input_bfd);
9984 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9985 }
9986
9987 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9988 sym = local_syms + r_symndx;
9989
9990 /* Adjust REL's addend to account for section merging. */
0e1862bb 9991 if (!bfd_link_relocatable (info))
81d43bff
RS
9992 {
9993 sec = local_sections[r_symndx];
9994 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9995 }
9996
9997 /* This would normally be done by the rela_normal code in elflink.c. */
9998 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9999 rel->r_addend += local_sections[r_symndx]->output_offset;
10000 }
10001}
10002
545fd46b
MR
10003/* Handle relocations against symbols from removed linkonce sections,
10004 or sections discarded by a linker script. We use this wrapper around
10005 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10006 on 64-bit ELF targets. In this case for any relocation handled, which
10007 always be the first in a triplet, the remaining two have to be processed
10008 together with the first, even if they are R_MIPS_NONE. It is the symbol
10009 index referred by the first reloc that applies to all the three and the
10010 remaining two never refer to an object symbol. And it is the final
10011 relocation (the last non-null one) that determines the output field of
10012 the whole relocation so retrieve the corresponding howto structure for
10013 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10014
10015 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10016 and therefore requires to be pasted in a loop. It also defines a block
10017 and does not protect any of its arguments, hence the extra brackets. */
10018
10019static void
10020mips_reloc_against_discarded_section (bfd *output_bfd,
10021 struct bfd_link_info *info,
10022 bfd *input_bfd, asection *input_section,
10023 Elf_Internal_Rela **rel,
10024 const Elf_Internal_Rela **relend,
10025 bfd_boolean rel_reloc,
10026 reloc_howto_type *howto,
10027 bfd_byte *contents)
10028{
10029 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10030 int count = bed->s->int_rels_per_ext_rel;
10031 unsigned int r_type;
10032 int i;
10033
10034 for (i = count - 1; i > 0; i--)
10035 {
10036 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10037 if (r_type != R_MIPS_NONE)
10038 {
10039 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10040 break;
10041 }
10042 }
10043 do
10044 {
10045 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10046 (*rel), count, (*relend),
10047 howto, i, contents);
10048 }
10049 while (0);
10050}
10051
b49e97c9
TS
10052/* Relocate a MIPS ELF section. */
10053
b34976b6 10054bfd_boolean
9719ad41
RS
10055_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10056 bfd *input_bfd, asection *input_section,
10057 bfd_byte *contents, Elf_Internal_Rela *relocs,
10058 Elf_Internal_Sym *local_syms,
10059 asection **local_sections)
b49e97c9
TS
10060{
10061 Elf_Internal_Rela *rel;
10062 const Elf_Internal_Rela *relend;
10063 bfd_vma addend = 0;
b34976b6 10064 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9 10065
056bafd4 10066 relend = relocs + input_section->reloc_count;
b49e97c9
TS
10067 for (rel = relocs; rel < relend; ++rel)
10068 {
10069 const char *name;
c9adbffe 10070 bfd_vma value = 0;
b49e97c9 10071 reloc_howto_type *howto;
ad3d9127 10072 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10073 /* TRUE if the relocation is a RELA relocation, rather than a
07d6d2b8 10074 REL relocation. */
b34976b6 10075 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10076 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10077 const char *msg;
ab96bf03
AM
10078 unsigned long r_symndx;
10079 asection *sec;
749b8d9d
L
10080 Elf_Internal_Shdr *symtab_hdr;
10081 struct elf_link_hash_entry *h;
d4730f92 10082 bfd_boolean rel_reloc;
b49e97c9 10083
d4730f92
BS
10084 rel_reloc = (NEWABI_P (input_bfd)
10085 && mips_elf_rel_relocation_p (input_bfd, input_section,
10086 relocs, rel));
b49e97c9 10087 /* Find the relocation howto for this relocation. */
d4730f92 10088 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10089
10090 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10091 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10092 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10093 {
10094 sec = local_sections[r_symndx];
10095 h = NULL;
10096 }
ab96bf03
AM
10097 else
10098 {
ab96bf03 10099 unsigned long extsymoff;
ab96bf03 10100
ab96bf03
AM
10101 extsymoff = 0;
10102 if (!elf_bad_symtab (input_bfd))
10103 extsymoff = symtab_hdr->sh_info;
10104 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10105 while (h->root.type == bfd_link_hash_indirect
10106 || h->root.type == bfd_link_hash_warning)
10107 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10108
10109 sec = NULL;
10110 if (h->root.type == bfd_link_hash_defined
10111 || h->root.type == bfd_link_hash_defweak)
10112 sec = h->root.u.def.section;
10113 }
10114
dbaa2011 10115 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10116 {
10117 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10118 input_section, &rel, &relend,
10119 rel_reloc, howto, contents);
10120 continue;
10121 }
ab96bf03 10122
4a14403c 10123 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10124 {
10125 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10126 64-bit code, but make sure all their addresses are in the
10127 lowermost or uppermost 32-bit section of the 64-bit address
10128 space. Thus, when they use an R_MIPS_64 they mean what is
10129 usually meant by R_MIPS_32, with the exception that the
10130 stored value is sign-extended to 64 bits. */
b34976b6 10131 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10132
10133 /* On big-endian systems, we need to lie about the position
10134 of the reloc. */
10135 if (bfd_big_endian (input_bfd))
10136 rel->r_offset += 4;
10137 }
b49e97c9
TS
10138
10139 if (!use_saved_addend_p)
10140 {
b49e97c9
TS
10141 /* If these relocations were originally of the REL variety,
10142 we must pull the addend out of the field that will be
10143 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10144 RELA relocation. */
10145 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10146 relocs, rel))
b49e97c9 10147 {
b34976b6 10148 rela_relocation_p = FALSE;
c224138d
RS
10149 addend = mips_elf_read_rel_addend (input_bfd, rel,
10150 howto, contents);
738e5348
RS
10151 if (hi16_reloc_p (r_type)
10152 || (got16_reloc_p (r_type)
b49e97c9 10153 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10154 local_sections)))
b49e97c9 10155 {
c224138d
RS
10156 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10157 contents, &addend))
749b8d9d 10158 {
749b8d9d
L
10159 if (h)
10160 name = h->root.root.string;
10161 else
10162 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10163 local_syms + r_symndx,
10164 sec);
4eca0228 10165 _bfd_error_handler
695344c0 10166 /* xgettext:c-format */
2c1c9679 10167 (_("%pB: can't find matching LO16 reloc against `%s'"
2dcf00ce 10168 " for %s at %#" PRIx64 " in section `%pA'"),
c08bb8dd 10169 input_bfd, name,
2dcf00ce 10170 howto->name, (uint64_t) rel->r_offset, input_section);
749b8d9d 10171 }
b49e97c9 10172 }
30ac9238
RS
10173 else
10174 addend <<= howto->rightshift;
b49e97c9
TS
10175 }
10176 else
10177 addend = rel->r_addend;
81d43bff
RS
10178 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10179 local_syms, local_sections, rel);
b49e97c9
TS
10180 }
10181
0e1862bb 10182 if (bfd_link_relocatable (info))
b49e97c9 10183 {
4a14403c 10184 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10185 && bfd_big_endian (input_bfd))
10186 rel->r_offset -= 4;
10187
81d43bff 10188 if (!rela_relocation_p && rel->r_addend)
5a659663 10189 {
81d43bff 10190 addend += rel->r_addend;
738e5348 10191 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10192 addend = mips_elf_high (addend);
10193 else if (r_type == R_MIPS_HIGHER)
10194 addend = mips_elf_higher (addend);
10195 else if (r_type == R_MIPS_HIGHEST)
10196 addend = mips_elf_highest (addend);
30ac9238
RS
10197 else
10198 addend >>= howto->rightshift;
b49e97c9 10199
30ac9238
RS
10200 /* We use the source mask, rather than the destination
10201 mask because the place to which we are writing will be
10202 source of the addend in the final link. */
b49e97c9
TS
10203 addend &= howto->src_mask;
10204
5a659663 10205 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10206 /* See the comment above about using R_MIPS_64 in the 32-bit
10207 ABI. Here, we need to update the addend. It would be
10208 possible to get away with just using the R_MIPS_32 reloc
10209 but for endianness. */
10210 {
10211 bfd_vma sign_bits;
10212 bfd_vma low_bits;
10213 bfd_vma high_bits;
10214
10215 if (addend & ((bfd_vma) 1 << 31))
10216#ifdef BFD64
10217 sign_bits = ((bfd_vma) 1 << 32) - 1;
10218#else
10219 sign_bits = -1;
10220#endif
10221 else
10222 sign_bits = 0;
10223
10224 /* If we don't know that we have a 64-bit type,
10225 do two separate stores. */
10226 if (bfd_big_endian (input_bfd))
10227 {
10228 /* Store the sign-bits (which are most significant)
10229 first. */
10230 low_bits = sign_bits;
10231 high_bits = addend;
10232 }
10233 else
10234 {
10235 low_bits = addend;
10236 high_bits = sign_bits;
10237 }
10238 bfd_put_32 (input_bfd, low_bits,
10239 contents + rel->r_offset);
10240 bfd_put_32 (input_bfd, high_bits,
10241 contents + rel->r_offset + 4);
10242 continue;
10243 }
10244
10245 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10246 input_bfd, input_section,
b34976b6
AM
10247 contents, FALSE))
10248 return FALSE;
b49e97c9
TS
10249 }
10250
10251 /* Go on to the next relocation. */
10252 continue;
10253 }
10254
10255 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10256 relocations for the same offset. In that case we are
10257 supposed to treat the output of each relocation as the addend
10258 for the next. */
10259 if (rel + 1 < relend
10260 && rel->r_offset == rel[1].r_offset
10261 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10262 use_saved_addend_p = TRUE;
b49e97c9 10263 else
b34976b6 10264 use_saved_addend_p = FALSE;
b49e97c9
TS
10265
10266 /* Figure out what value we are supposed to relocate. */
10267 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10268 input_section, info, rel,
10269 addend, howto, local_syms,
10270 local_sections, &value,
38a7df63 10271 &name, &cross_mode_jump_p,
bce03d3d 10272 use_saved_addend_p))
b49e97c9
TS
10273 {
10274 case bfd_reloc_continue:
10275 /* There's nothing to do. */
10276 continue;
10277
10278 case bfd_reloc_undefined:
10279 /* mips_elf_calculate_relocation already called the
10280 undefined_symbol callback. There's no real point in
10281 trying to perform the relocation at this point, so we
10282 just skip ahead to the next relocation. */
10283 continue;
10284
10285 case bfd_reloc_notsupported:
10286 msg = _("internal error: unsupported relocation error");
10287 info->callbacks->warning
10288 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10289 return FALSE;
b49e97c9
TS
10290
10291 case bfd_reloc_overflow:
10292 if (use_saved_addend_p)
10293 /* Ignore overflow until we reach the last relocation for
10294 a given location. */
10295 ;
10296 else
10297 {
0e53d9da
AN
10298 struct mips_elf_link_hash_table *htab;
10299
10300 htab = mips_elf_hash_table (info);
4dfe6ac6 10301 BFD_ASSERT (htab != NULL);
b49e97c9 10302 BFD_ASSERT (name != NULL);
0e53d9da 10303 if (!htab->small_data_overflow_reported
9684f078 10304 && (gprel16_reloc_p (howto->type)
df58fc94 10305 || literal_reloc_p (howto->type)))
0e53d9da 10306 {
91d6fa6a
NC
10307 msg = _("small-data section exceeds 64KB;"
10308 " lower small-data size limit (see option -G)");
0e53d9da
AN
10309
10310 htab->small_data_overflow_reported = TRUE;
10311 (*info->callbacks->einfo) ("%P: %s\n", msg);
10312 }
1a72702b
AM
10313 (*info->callbacks->reloc_overflow)
10314 (info, NULL, name, howto->name, (bfd_vma) 0,
10315 input_bfd, input_section, rel->r_offset);
b49e97c9
TS
10316 }
10317 break;
10318
10319 case bfd_reloc_ok:
10320 break;
10321
df58fc94 10322 case bfd_reloc_outofrange:
7db9a74e 10323 msg = NULL;
df58fc94 10324 if (jal_reloc_p (howto->type))
9d862524 10325 msg = (cross_mode_jump_p
2c1c9679 10326 ? _("cannot convert a jump to JALX "
9d862524
MR
10327 "for a non-word-aligned address")
10328 : (howto->type == R_MIPS16_26
2c1c9679
AM
10329 ? _("jump to a non-word-aligned address")
10330 : _("jump to a non-instruction-aligned address")));
99aefae6 10331 else if (b_reloc_p (howto->type))
a6ebf616 10332 msg = (cross_mode_jump_p
2c1c9679 10333 ? _("cannot convert a branch to JALX "
a6ebf616 10334 "for a non-word-aligned address")
2c1c9679 10335 : _("branch to a non-instruction-aligned address"));
7db9a74e
MR
10336 else if (aligned_pcrel_reloc_p (howto->type))
10337 msg = _("PC-relative load from unaligned address");
10338 if (msg)
df58fc94 10339 {
de341542 10340 info->callbacks->einfo
ed53407e
MR
10341 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10342 break;
7361da2c 10343 }
df58fc94
RS
10344 /* Fall through. */
10345
b49e97c9
TS
10346 default:
10347 abort ();
10348 break;
10349 }
10350
10351 /* If we've got another relocation for the address, keep going
10352 until we reach the last one. */
10353 if (use_saved_addend_p)
10354 {
10355 addend = value;
10356 continue;
10357 }
10358
4a14403c 10359 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10360 /* See the comment above about using R_MIPS_64 in the 32-bit
10361 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10362 that calculated the right value. Now, however, we
10363 sign-extend the 32-bit result to 64-bits, and store it as a
10364 64-bit value. We are especially generous here in that we
10365 go to extreme lengths to support this usage on systems with
10366 only a 32-bit VMA. */
10367 {
10368 bfd_vma sign_bits;
10369 bfd_vma low_bits;
10370 bfd_vma high_bits;
10371
10372 if (value & ((bfd_vma) 1 << 31))
10373#ifdef BFD64
10374 sign_bits = ((bfd_vma) 1 << 32) - 1;
10375#else
10376 sign_bits = -1;
10377#endif
10378 else
10379 sign_bits = 0;
10380
10381 /* If we don't know that we have a 64-bit type,
10382 do two separate stores. */
10383 if (bfd_big_endian (input_bfd))
10384 {
10385 /* Undo what we did above. */
10386 rel->r_offset -= 4;
10387 /* Store the sign-bits (which are most significant)
10388 first. */
10389 low_bits = sign_bits;
10390 high_bits = value;
10391 }
10392 else
10393 {
10394 low_bits = value;
10395 high_bits = sign_bits;
10396 }
10397 bfd_put_32 (input_bfd, low_bits,
10398 contents + rel->r_offset);
10399 bfd_put_32 (input_bfd, high_bits,
10400 contents + rel->r_offset + 4);
10401 continue;
10402 }
10403
10404 /* Actually perform the relocation. */
10405 if (! mips_elf_perform_relocation (info, howto, rel, value,
10406 input_bfd, input_section,
38a7df63 10407 contents, cross_mode_jump_p))
b34976b6 10408 return FALSE;
b49e97c9
TS
10409 }
10410
b34976b6 10411 return TRUE;
b49e97c9
TS
10412}
10413\f
861fb55a
DJ
10414/* A function that iterates over each entry in la25_stubs and fills
10415 in the code for each one. DATA points to a mips_htab_traverse_info. */
10416
10417static int
10418mips_elf_create_la25_stub (void **slot, void *data)
10419{
10420 struct mips_htab_traverse_info *hti;
10421 struct mips_elf_link_hash_table *htab;
10422 struct mips_elf_la25_stub *stub;
10423 asection *s;
10424 bfd_byte *loc;
10425 bfd_vma offset, target, target_high, target_low;
10426
10427 stub = (struct mips_elf_la25_stub *) *slot;
10428 hti = (struct mips_htab_traverse_info *) data;
10429 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10430 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10431
10432 /* Create the section contents, if we haven't already. */
10433 s = stub->stub_section;
10434 loc = s->contents;
10435 if (loc == NULL)
10436 {
10437 loc = bfd_malloc (s->size);
10438 if (loc == NULL)
10439 {
10440 hti->error = TRUE;
10441 return FALSE;
10442 }
10443 s->contents = loc;
10444 }
10445
10446 /* Work out where in the section this stub should go. */
10447 offset = stub->offset;
10448
10449 /* Work out the target address. */
8f0c309a
CLT
10450 target = mips_elf_get_la25_target (stub, &s);
10451 target += s->output_section->vma + s->output_offset;
10452
861fb55a
DJ
10453 target_high = ((target + 0x8000) >> 16) & 0xffff;
10454 target_low = (target & 0xffff);
10455
10456 if (stub->stub_section != htab->strampoline)
10457 {
df58fc94 10458 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10459 of the section and write the two instructions at the end. */
10460 memset (loc, 0, offset);
10461 loc += offset;
df58fc94
RS
10462 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10463 {
d21911ea
MR
10464 bfd_put_micromips_32 (hti->output_bfd,
10465 LA25_LUI_MICROMIPS (target_high),
10466 loc);
10467 bfd_put_micromips_32 (hti->output_bfd,
10468 LA25_ADDIU_MICROMIPS (target_low),
10469 loc + 4);
df58fc94
RS
10470 }
10471 else
10472 {
10473 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10474 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10475 }
861fb55a
DJ
10476 }
10477 else
10478 {
10479 /* This is trampoline. */
10480 loc += offset;
df58fc94
RS
10481 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10482 {
d21911ea
MR
10483 bfd_put_micromips_32 (hti->output_bfd,
10484 LA25_LUI_MICROMIPS (target_high), loc);
10485 bfd_put_micromips_32 (hti->output_bfd,
10486 LA25_J_MICROMIPS (target), loc + 4);
10487 bfd_put_micromips_32 (hti->output_bfd,
10488 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10489 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10490 }
10491 else
10492 {
10493 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10494 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10495 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10496 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10497 }
861fb55a
DJ
10498 }
10499 return TRUE;
10500}
10501
b49e97c9
TS
10502/* If NAME is one of the special IRIX6 symbols defined by the linker,
10503 adjust it appropriately now. */
10504
10505static void
9719ad41
RS
10506mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10507 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10508{
10509 /* The linker script takes care of providing names and values for
10510 these, but we must place them into the right sections. */
10511 static const char* const text_section_symbols[] = {
10512 "_ftext",
10513 "_etext",
10514 "__dso_displacement",
10515 "__elf_header",
10516 "__program_header_table",
10517 NULL
10518 };
10519
10520 static const char* const data_section_symbols[] = {
10521 "_fdata",
10522 "_edata",
10523 "_end",
10524 "_fbss",
10525 NULL
10526 };
10527
10528 const char* const *p;
10529 int i;
10530
10531 for (i = 0; i < 2; ++i)
10532 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10533 *p;
10534 ++p)
10535 if (strcmp (*p, name) == 0)
10536 {
10537 /* All of these symbols are given type STT_SECTION by the
10538 IRIX6 linker. */
10539 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10540 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10541
10542 /* The IRIX linker puts these symbols in special sections. */
10543 if (i == 0)
10544 sym->st_shndx = SHN_MIPS_TEXT;
10545 else
10546 sym->st_shndx = SHN_MIPS_DATA;
10547
10548 break;
10549 }
10550}
10551
10552/* Finish up dynamic symbol handling. We set the contents of various
10553 dynamic sections here. */
10554
b34976b6 10555bfd_boolean
9719ad41
RS
10556_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10557 struct bfd_link_info *info,
10558 struct elf_link_hash_entry *h,
10559 Elf_Internal_Sym *sym)
b49e97c9
TS
10560{
10561 bfd *dynobj;
b49e97c9 10562 asection *sgot;
f4416af6 10563 struct mips_got_info *g, *gg;
b49e97c9 10564 const char *name;
3d6746ca 10565 int idx;
5108fc1b 10566 struct mips_elf_link_hash_table *htab;
738e5348 10567 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10568
5108fc1b 10569 htab = mips_elf_hash_table (info);
4dfe6ac6 10570 BFD_ASSERT (htab != NULL);
b49e97c9 10571 dynobj = elf_hash_table (info)->dynobj;
738e5348 10572 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10573
861fb55a
DJ
10574 BFD_ASSERT (!htab->is_vxworks);
10575
1bbce132
MR
10576 if (h->plt.plist != NULL
10577 && (h->plt.plist->mips_offset != MINUS_ONE
10578 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10579 {
10580 /* We've decided to create a PLT entry for this symbol. */
10581 bfd_byte *loc;
1bbce132 10582 bfd_vma header_address, got_address;
861fb55a 10583 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10584 bfd_vma got_index;
10585 bfd_vma isa_bit;
10586
10587 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10588
10589 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10590 BFD_ASSERT (h->dynindx != -1);
ce558b89 10591 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 10592 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10593 BFD_ASSERT (!h->def_regular);
10594
10595 /* Calculate the address of the PLT header. */
1bbce132 10596 isa_bit = htab->plt_header_is_comp;
ce558b89
AM
10597 header_address = (htab->root.splt->output_section->vma
10598 + htab->root.splt->output_offset + isa_bit);
861fb55a
DJ
10599
10600 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
10601 got_address = (htab->root.sgotplt->output_section->vma
10602 + htab->root.sgotplt->output_offset
1bbce132
MR
10603 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10604
861fb55a
DJ
10605 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10606 got_address_low = got_address & 0xffff;
10607
789ff5b6
MR
10608 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10609 cannot be loaded in two instructions. */
10610 if (ABI_64_P (output_bfd)
10611 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10612 {
10613 _bfd_error_handler
10614 /* xgettext:c-format */
10615 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10616 "supported; consider using `-Ttext-segment=...'"),
10617 output_bfd,
10618 htab->root.sgotplt->output_section,
10619 (int64_t) got_address);
10620 bfd_set_error (bfd_error_no_error);
10621 return FALSE;
10622 }
10623
861fb55a 10624 /* Initially point the .got.plt entry at the PLT header. */
6a382bce
MR
10625 loc = (htab->root.sgotplt->contents
10626 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10627 if (ABI_64_P (output_bfd))
10628 bfd_put_64 (output_bfd, header_address, loc);
10629 else
10630 bfd_put_32 (output_bfd, header_address, loc);
10631
1bbce132 10632 /* Now handle the PLT itself. First the standard entry (the order
07d6d2b8 10633 does not matter, we just have to pick one). */
1bbce132
MR
10634 if (h->plt.plist->mips_offset != MINUS_ONE)
10635 {
10636 const bfd_vma *plt_entry;
10637 bfd_vma plt_offset;
861fb55a 10638
1bbce132 10639 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10640
ce558b89 10641 BFD_ASSERT (plt_offset <= htab->root.splt->size);
6d30f5b2 10642
1bbce132 10643 /* Find out where the .plt entry should go. */
ce558b89 10644 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10645
10646 /* Pick the load opcode. */
10647 load = MIPS_ELF_LOAD_WORD (output_bfd);
10648
10649 /* Fill in the PLT entry itself. */
7361da2c
AB
10650
10651 if (MIPSR6_P (output_bfd))
10652 plt_entry = mipsr6_exec_plt_entry;
10653 else
10654 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10655 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10656 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10657 loc + 4);
10658
10659 if (! LOAD_INTERLOCKS_P (output_bfd))
10660 {
10661 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10662 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10663 }
10664 else
10665 {
10666 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10667 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10668 loc + 12);
10669 }
6d30f5b2 10670 }
1bbce132
MR
10671
10672 /* Now the compressed entry. They come after any standard ones. */
10673 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10674 {
1bbce132
MR
10675 bfd_vma plt_offset;
10676
10677 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10678 + h->plt.plist->comp_offset);
10679
ce558b89 10680 BFD_ASSERT (plt_offset <= htab->root.splt->size);
1bbce132
MR
10681
10682 /* Find out where the .plt entry should go. */
ce558b89 10683 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10684
10685 /* Fill in the PLT entry itself. */
833794fc
MR
10686 if (!MICROMIPS_P (output_bfd))
10687 {
10688 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10689
10690 bfd_put_16 (output_bfd, plt_entry[0], loc);
10691 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10692 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10693 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10694 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10695 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10696 bfd_put_32 (output_bfd, got_address, loc + 12);
10697 }
10698 else if (htab->insn32)
10699 {
10700 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10701
10702 bfd_put_16 (output_bfd, plt_entry[0], loc);
10703 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10704 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10705 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10706 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10707 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10708 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10709 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10710 }
10711 else
1bbce132
MR
10712 {
10713 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10714 bfd_signed_vma gotpc_offset;
10715 bfd_vma loc_address;
10716
10717 BFD_ASSERT (got_address % 4 == 0);
10718
ce558b89
AM
10719 loc_address = (htab->root.splt->output_section->vma
10720 + htab->root.splt->output_offset + plt_offset);
1bbce132
MR
10721 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10722
10723 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10724 if (gotpc_offset + 0x1000000 >= 0x2000000)
10725 {
4eca0228 10726 _bfd_error_handler
695344c0 10727 /* xgettext:c-format */
2dcf00ce 10728 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
1bbce132
MR
10729 "beyond the range of ADDIUPC"),
10730 output_bfd,
ce558b89 10731 htab->root.sgotplt->output_section,
2dcf00ce 10732 (int64_t) gotpc_offset,
c08bb8dd 10733 htab->root.splt->output_section);
1bbce132
MR
10734 bfd_set_error (bfd_error_no_error);
10735 return FALSE;
10736 }
10737 bfd_put_16 (output_bfd,
10738 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10739 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10740 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10741 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10742 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10743 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10744 }
6d30f5b2 10745 }
861fb55a
DJ
10746
10747 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 10748 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
1bbce132 10749 got_index - 2, h->dynindx,
861fb55a
DJ
10750 R_MIPS_JUMP_SLOT, got_address);
10751
10752 /* We distinguish between PLT entries and lazy-binding stubs by
10753 giving the former an st_other value of STO_MIPS_PLT. Set the
10754 flag and leave the value if there are any relocations in the
10755 binary where pointer equality matters. */
10756 sym->st_shndx = SHN_UNDEF;
10757 if (h->pointer_equality_needed)
1bbce132 10758 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 10759 else
1bbce132
MR
10760 {
10761 sym->st_value = 0;
10762 sym->st_other = 0;
10763 }
861fb55a 10764 }
1bbce132
MR
10765
10766 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 10767 {
861fb55a 10768 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
10769 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10770 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10771 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 10772 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
10773 bfd_vma isa_bit = micromips_p;
10774 bfd_vma stub_big_size;
10775
833794fc 10776 if (!micromips_p)
1bbce132 10777 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
10778 else if (htab->insn32)
10779 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10780 else
10781 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
10782
10783 /* This symbol has a stub. Set it up. */
10784
10785 BFD_ASSERT (h->dynindx != -1);
10786
1bbce132 10787 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
10788
10789 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
10790 sign extension at runtime in the stub, resulting in a negative
10791 index value. */
10792 if (h->dynindx & ~0x7fffffff)
b34976b6 10793 return FALSE;
b49e97c9
TS
10794
10795 /* Fill the stub. */
1bbce132
MR
10796 if (micromips_p)
10797 {
10798 idx = 0;
10799 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10800 stub + idx);
10801 idx += 4;
833794fc
MR
10802 if (htab->insn32)
10803 {
10804 bfd_put_micromips_32 (output_bfd,
40fc1451 10805 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
10806 idx += 4;
10807 }
10808 else
10809 {
10810 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10811 idx += 2;
10812 }
1bbce132
MR
10813 if (stub_size == stub_big_size)
10814 {
10815 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10816
10817 bfd_put_micromips_32 (output_bfd,
10818 STUB_LUI_MICROMIPS (dynindx_hi),
10819 stub + idx);
10820 idx += 4;
10821 }
833794fc
MR
10822 if (htab->insn32)
10823 {
10824 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10825 stub + idx);
10826 idx += 4;
10827 }
10828 else
10829 {
10830 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10831 idx += 2;
10832 }
1bbce132
MR
10833
10834 /* If a large stub is not required and sign extension is not a
10835 problem, then use legacy code in the stub. */
10836 if (stub_size == stub_big_size)
10837 bfd_put_micromips_32 (output_bfd,
10838 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10839 stub + idx);
10840 else if (h->dynindx & ~0x7fff)
10841 bfd_put_micromips_32 (output_bfd,
10842 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10843 stub + idx);
10844 else
10845 bfd_put_micromips_32 (output_bfd,
10846 STUB_LI16S_MICROMIPS (output_bfd,
10847 h->dynindx),
10848 stub + idx);
10849 }
3d6746ca 10850 else
1bbce132
MR
10851 {
10852 idx = 0;
10853 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10854 idx += 4;
40fc1451 10855 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
10856 idx += 4;
10857 if (stub_size == stub_big_size)
10858 {
10859 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10860 stub + idx);
10861 idx += 4;
10862 }
10863 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10864 idx += 4;
10865
10866 /* If a large stub is not required and sign extension is not a
10867 problem, then use legacy code in the stub. */
10868 if (stub_size == stub_big_size)
10869 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10870 stub + idx);
10871 else if (h->dynindx & ~0x7fff)
10872 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10873 stub + idx);
10874 else
10875 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10876 stub + idx);
10877 }
5108fc1b 10878
1bbce132
MR
10879 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10880 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10881 stub, stub_size);
b49e97c9 10882
1bbce132 10883 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
10884 only for the referenced symbol. */
10885 sym->st_shndx = SHN_UNDEF;
10886
10887 /* The run-time linker uses the st_value field of the symbol
10888 to reset the global offset table entry for this external
10889 to its stub address when unlinking a shared object. */
4e41d0d7
RS
10890 sym->st_value = (htab->sstubs->output_section->vma
10891 + htab->sstubs->output_offset
1bbce132
MR
10892 + h->plt.plist->stub_offset
10893 + isa_bit);
10894 sym->st_other = other;
b49e97c9
TS
10895 }
10896
738e5348
RS
10897 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10898 refer to the stub, since only the stub uses the standard calling
10899 conventions. */
10900 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10901 {
10902 BFD_ASSERT (hmips->need_fn_stub);
10903 sym->st_value = (hmips->fn_stub->output_section->vma
10904 + hmips->fn_stub->output_offset);
10905 sym->st_size = hmips->fn_stub->size;
10906 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10907 }
10908
b49e97c9 10909 BFD_ASSERT (h->dynindx != -1
f5385ebf 10910 || h->forced_local);
b49e97c9 10911
ce558b89 10912 sgot = htab->root.sgot;
a8028dd0 10913 g = htab->got_info;
b49e97c9
TS
10914 BFD_ASSERT (g != NULL);
10915
10916 /* Run through the global symbol table, creating GOT entries for all
10917 the symbols that need them. */
020d7251 10918 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
10919 {
10920 bfd_vma offset;
10921 bfd_vma value;
10922
6eaa6adc 10923 value = sym->st_value;
13fbec83 10924 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
10925 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10926 }
10927
e641e783 10928 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
10929 {
10930 struct mips_got_entry e, *p;
0626d451 10931 bfd_vma entry;
f4416af6 10932 bfd_vma offset;
f4416af6
AO
10933
10934 gg = g;
10935
10936 e.abfd = output_bfd;
10937 e.symndx = -1;
738e5348 10938 e.d.h = hmips;
9ab066b4 10939 e.tls_type = GOT_TLS_NONE;
143d77c5 10940
f4416af6
AO
10941 for (g = g->next; g->next != gg; g = g->next)
10942 {
10943 if (g->got_entries
10944 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10945 &e)))
10946 {
10947 offset = p->gotidx;
ce558b89 10948 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
0e1862bb 10949 if (bfd_link_pic (info)
0626d451
RS
10950 || (elf_hash_table (info)->dynamic_sections_created
10951 && p->d.h != NULL
f5385ebf
AM
10952 && p->d.h->root.def_dynamic
10953 && !p->d.h->root.def_regular))
0626d451
RS
10954 {
10955 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10956 the various compatibility problems, it's easier to mock
10957 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10958 mips_elf_create_dynamic_relocation to calculate the
10959 appropriate addend. */
10960 Elf_Internal_Rela rel[3];
10961
10962 memset (rel, 0, sizeof (rel));
10963 if (ABI_64_P (output_bfd))
10964 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10965 else
10966 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10967 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10968
10969 entry = 0;
10970 if (! (mips_elf_create_dynamic_relocation
10971 (output_bfd, info, rel,
10972 e.d.h, NULL, sym->st_value, &entry, sgot)))
10973 return FALSE;
10974 }
10975 else
10976 entry = sym->st_value;
10977 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10978 }
10979 }
10980 }
10981
b49e97c9
TS
10982 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10983 name = h->root.root.string;
9637f6ef 10984 if (h == elf_hash_table (info)->hdynamic
22edb2f1 10985 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10986 sym->st_shndx = SHN_ABS;
10987 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10988 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10989 {
10990 sym->st_shndx = SHN_ABS;
10991 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10992 sym->st_value = 1;
10993 }
b49e97c9
TS
10994 else if (SGI_COMPAT (output_bfd))
10995 {
10996 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10997 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10998 {
10999 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11000 sym->st_other = STO_PROTECTED;
11001 sym->st_value = 0;
11002 sym->st_shndx = SHN_MIPS_DATA;
11003 }
11004 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11005 {
11006 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11007 sym->st_other = STO_PROTECTED;
11008 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11009 sym->st_shndx = SHN_ABS;
11010 }
11011 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11012 {
11013 if (h->type == STT_FUNC)
11014 sym->st_shndx = SHN_MIPS_TEXT;
11015 else if (h->type == STT_OBJECT)
11016 sym->st_shndx = SHN_MIPS_DATA;
11017 }
11018 }
11019
861fb55a
DJ
11020 /* Emit a copy reloc, if needed. */
11021 if (h->needs_copy)
11022 {
11023 asection *s;
11024 bfd_vma symval;
11025
11026 BFD_ASSERT (h->dynindx != -1);
11027 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11028
11029 s = mips_elf_rel_dyn_section (info, FALSE);
11030 symval = (h->root.u.def.section->output_section->vma
11031 + h->root.u.def.section->output_offset
11032 + h->root.u.def.value);
11033 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11034 h->dynindx, R_MIPS_COPY, symval);
11035 }
11036
b49e97c9
TS
11037 /* Handle the IRIX6-specific symbols. */
11038 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11039 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11040
cbf8d970
MR
11041 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11042 to treat compressed symbols like any other. */
30c09090 11043 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
11044 {
11045 BFD_ASSERT (sym->st_value & 1);
11046 sym->st_other -= STO_MIPS16;
11047 }
cbf8d970
MR
11048 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11049 {
11050 BFD_ASSERT (sym->st_value & 1);
11051 sym->st_other -= STO_MICROMIPS;
11052 }
b49e97c9 11053
b34976b6 11054 return TRUE;
b49e97c9
TS
11055}
11056
0a44bf69
RS
11057/* Likewise, for VxWorks. */
11058
11059bfd_boolean
11060_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11061 struct bfd_link_info *info,
11062 struct elf_link_hash_entry *h,
11063 Elf_Internal_Sym *sym)
11064{
11065 bfd *dynobj;
11066 asection *sgot;
11067 struct mips_got_info *g;
11068 struct mips_elf_link_hash_table *htab;
020d7251 11069 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
11070
11071 htab = mips_elf_hash_table (info);
4dfe6ac6 11072 BFD_ASSERT (htab != NULL);
0a44bf69 11073 dynobj = elf_hash_table (info)->dynobj;
020d7251 11074 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 11075
1bbce132 11076 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 11077 {
6d79d2ed 11078 bfd_byte *loc;
1bbce132 11079 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
11080 Elf_Internal_Rela rel;
11081 static const bfd_vma *plt_entry;
1bbce132
MR
11082 bfd_vma gotplt_index;
11083 bfd_vma plt_offset;
11084
11085 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11086 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11087
11088 BFD_ASSERT (h->dynindx != -1);
ce558b89 11089 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 11090 BFD_ASSERT (gotplt_index != MINUS_ONE);
ce558b89 11091 BFD_ASSERT (plt_offset <= htab->root.splt->size);
0a44bf69
RS
11092
11093 /* Calculate the address of the .plt entry. */
ce558b89
AM
11094 plt_address = (htab->root.splt->output_section->vma
11095 + htab->root.splt->output_offset
1bbce132 11096 + plt_offset);
0a44bf69
RS
11097
11098 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
11099 got_address = (htab->root.sgotplt->output_section->vma
11100 + htab->root.sgotplt->output_offset
1bbce132 11101 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11102
11103 /* Calculate the offset of the .got.plt entry from
11104 _GLOBAL_OFFSET_TABLE_. */
11105 got_offset = mips_elf_gotplt_index (info, h);
11106
11107 /* Calculate the offset for the branch at the start of the PLT
11108 entry. The branch jumps to the beginning of .plt. */
1bbce132 11109 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11110
11111 /* Fill in the initial value of the .got.plt entry. */
11112 bfd_put_32 (output_bfd, plt_address,
ce558b89 11113 (htab->root.sgotplt->contents
1bbce132 11114 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11115
11116 /* Find out where the .plt entry should go. */
ce558b89 11117 loc = htab->root.splt->contents + plt_offset;
0a44bf69 11118
0e1862bb 11119 if (bfd_link_pic (info))
0a44bf69
RS
11120 {
11121 plt_entry = mips_vxworks_shared_plt_entry;
11122 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11123 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11124 }
11125 else
11126 {
11127 bfd_vma got_address_high, got_address_low;
11128
11129 plt_entry = mips_vxworks_exec_plt_entry;
11130 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11131 got_address_low = got_address & 0xffff;
11132
11133 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11134 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11135 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11136 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11137 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11138 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11139 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11140 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11141
11142 loc = (htab->srelplt2->contents
1bbce132 11143 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11144
11145 /* Emit a relocation for the .got.plt entry. */
11146 rel.r_offset = got_address;
11147 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11148 rel.r_addend = plt_offset;
0a44bf69
RS
11149 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11150
11151 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11152 loc += sizeof (Elf32_External_Rela);
11153 rel.r_offset = plt_address + 8;
11154 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11155 rel.r_addend = got_offset;
11156 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11157
11158 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11159 loc += sizeof (Elf32_External_Rela);
11160 rel.r_offset += 4;
11161 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11162 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11163 }
11164
11165 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11166 loc = (htab->root.srelplt->contents
1bbce132 11167 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11168 rel.r_offset = got_address;
11169 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11170 rel.r_addend = 0;
11171 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11172
11173 if (!h->def_regular)
11174 sym->st_shndx = SHN_UNDEF;
11175 }
11176
11177 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11178
ce558b89 11179 sgot = htab->root.sgot;
a8028dd0 11180 g = htab->got_info;
0a44bf69
RS
11181 BFD_ASSERT (g != NULL);
11182
11183 /* See if this symbol has an entry in the GOT. */
020d7251 11184 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11185 {
11186 bfd_vma offset;
11187 Elf_Internal_Rela outrel;
11188 bfd_byte *loc;
11189 asection *s;
11190
11191 /* Install the symbol value in the GOT. */
13fbec83 11192 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11193 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11194
11195 /* Add a dynamic relocation for it. */
11196 s = mips_elf_rel_dyn_section (info, FALSE);
11197 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11198 outrel.r_offset = (sgot->output_section->vma
11199 + sgot->output_offset
11200 + offset);
11201 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11202 outrel.r_addend = 0;
11203 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11204 }
11205
11206 /* Emit a copy reloc, if needed. */
11207 if (h->needs_copy)
11208 {
11209 Elf_Internal_Rela rel;
5474d94f
AM
11210 asection *srel;
11211 bfd_byte *loc;
0a44bf69
RS
11212
11213 BFD_ASSERT (h->dynindx != -1);
11214
11215 rel.r_offset = (h->root.u.def.section->output_section->vma
11216 + h->root.u.def.section->output_offset
11217 + h->root.u.def.value);
11218 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11219 rel.r_addend = 0;
afbf7e8e 11220 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
11221 srel = htab->root.sreldynrelro;
11222 else
11223 srel = htab->root.srelbss;
11224 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11225 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11226 ++srel->reloc_count;
0a44bf69
RS
11227 }
11228
df58fc94
RS
11229 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11230 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11231 sym->st_value &= ~1;
11232
11233 return TRUE;
11234}
11235
861fb55a
DJ
11236/* Write out a plt0 entry to the beginning of .plt. */
11237
1bbce132 11238static bfd_boolean
861fb55a
DJ
11239mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11240{
11241 bfd_byte *loc;
11242 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11243 static const bfd_vma *plt_entry;
11244 struct mips_elf_link_hash_table *htab;
11245
11246 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11247 BFD_ASSERT (htab != NULL);
11248
861fb55a
DJ
11249 if (ABI_64_P (output_bfd))
11250 plt_entry = mips_n64_exec_plt0_entry;
11251 else if (ABI_N32_P (output_bfd))
11252 plt_entry = mips_n32_exec_plt0_entry;
833794fc 11253 else if (!htab->plt_header_is_comp)
861fb55a 11254 plt_entry = mips_o32_exec_plt0_entry;
833794fc
MR
11255 else if (htab->insn32)
11256 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11257 else
11258 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11259
11260 /* Calculate the value of .got.plt. */
ce558b89
AM
11261 gotplt_value = (htab->root.sgotplt->output_section->vma
11262 + htab->root.sgotplt->output_offset);
861fb55a
DJ
11263 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11264 gotplt_value_low = gotplt_value & 0xffff;
11265
11266 /* The PLT sequence is not safe for N64 if .got.plt's address can
11267 not be loaded in two instructions. */
789ff5b6
MR
11268 if (ABI_64_P (output_bfd)
11269 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11270 {
11271 _bfd_error_handler
11272 /* xgettext:c-format */
11273 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11274 "supported; consider using `-Ttext-segment=...'"),
11275 output_bfd,
11276 htab->root.sgotplt->output_section,
11277 (int64_t) gotplt_value);
11278 bfd_set_error (bfd_error_no_error);
11279 return FALSE;
11280 }
861fb55a
DJ
11281
11282 /* Install the PLT header. */
ce558b89 11283 loc = htab->root.splt->contents;
1bbce132
MR
11284 if (plt_entry == micromips_o32_exec_plt0_entry)
11285 {
11286 bfd_vma gotpc_offset;
11287 bfd_vma loc_address;
11288 size_t i;
11289
11290 BFD_ASSERT (gotplt_value % 4 == 0);
11291
ce558b89
AM
11292 loc_address = (htab->root.splt->output_section->vma
11293 + htab->root.splt->output_offset);
1bbce132
MR
11294 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11295
11296 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11297 if (gotpc_offset + 0x1000000 >= 0x2000000)
11298 {
4eca0228 11299 _bfd_error_handler
695344c0 11300 /* xgettext:c-format */
2dcf00ce
AM
11301 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11302 "beyond the range of ADDIUPC"),
1bbce132 11303 output_bfd,
ce558b89 11304 htab->root.sgotplt->output_section,
2dcf00ce 11305 (int64_t) gotpc_offset,
c08bb8dd 11306 htab->root.splt->output_section);
1bbce132
MR
11307 bfd_set_error (bfd_error_no_error);
11308 return FALSE;
11309 }
11310 bfd_put_16 (output_bfd,
11311 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11312 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11313 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11314 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11315 }
833794fc
MR
11316 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11317 {
11318 size_t i;
11319
11320 bfd_put_16 (output_bfd, plt_entry[0], loc);
11321 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11322 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11323 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11324 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11325 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11326 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11327 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11328 }
1bbce132
MR
11329 else
11330 {
11331 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11332 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11333 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11334 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11335 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11336 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11337 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11338 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11339 }
11340
11341 return TRUE;
861fb55a
DJ
11342}
11343
0a44bf69
RS
11344/* Install the PLT header for a VxWorks executable and finalize the
11345 contents of .rela.plt.unloaded. */
11346
11347static void
11348mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11349{
11350 Elf_Internal_Rela rela;
11351 bfd_byte *loc;
11352 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11353 static const bfd_vma *plt_entry;
11354 struct mips_elf_link_hash_table *htab;
11355
11356 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11357 BFD_ASSERT (htab != NULL);
11358
0a44bf69
RS
11359 plt_entry = mips_vxworks_exec_plt0_entry;
11360
11361 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11362 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11363 + htab->root.hgot->root.u.def.section->output_offset
11364 + htab->root.hgot->root.u.def.value);
11365
11366 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11367 got_value_low = got_value & 0xffff;
11368
11369 /* Calculate the address of the PLT header. */
ce558b89
AM
11370 plt_address = (htab->root.splt->output_section->vma
11371 + htab->root.splt->output_offset);
0a44bf69
RS
11372
11373 /* Install the PLT header. */
ce558b89 11374 loc = htab->root.splt->contents;
0a44bf69
RS
11375 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11376 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11377 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11378 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11379 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11380 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11381
11382 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11383 loc = htab->srelplt2->contents;
11384 rela.r_offset = plt_address;
11385 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11386 rela.r_addend = 0;
11387 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11388 loc += sizeof (Elf32_External_Rela);
11389
11390 /* Output the relocation for the following addiu of
11391 %lo(_GLOBAL_OFFSET_TABLE_). */
11392 rela.r_offset += 4;
11393 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11394 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11395 loc += sizeof (Elf32_External_Rela);
11396
11397 /* Fix up the remaining relocations. They may have the wrong
11398 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11399 in which symbols were output. */
11400 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11401 {
11402 Elf_Internal_Rela rel;
11403
11404 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11405 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11406 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11407 loc += sizeof (Elf32_External_Rela);
11408
11409 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11410 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11411 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11412 loc += sizeof (Elf32_External_Rela);
11413
11414 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11415 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11416 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11417 loc += sizeof (Elf32_External_Rela);
11418 }
11419}
11420
11421/* Install the PLT header for a VxWorks shared library. */
11422
11423static void
11424mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11425{
11426 unsigned int i;
11427 struct mips_elf_link_hash_table *htab;
11428
11429 htab = mips_elf_hash_table (info);
4dfe6ac6 11430 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11431
11432 /* We just need to copy the entry byte-by-byte. */
11433 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11434 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
ce558b89 11435 htab->root.splt->contents + i * 4);
0a44bf69
RS
11436}
11437
b49e97c9
TS
11438/* Finish up the dynamic sections. */
11439
b34976b6 11440bfd_boolean
9719ad41
RS
11441_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11442 struct bfd_link_info *info)
b49e97c9
TS
11443{
11444 bfd *dynobj;
11445 asection *sdyn;
11446 asection *sgot;
f4416af6 11447 struct mips_got_info *gg, *g;
0a44bf69 11448 struct mips_elf_link_hash_table *htab;
b49e97c9 11449
0a44bf69 11450 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11451 BFD_ASSERT (htab != NULL);
11452
b49e97c9
TS
11453 dynobj = elf_hash_table (info)->dynobj;
11454
3d4d4302 11455 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11456
ce558b89 11457 sgot = htab->root.sgot;
23cc69b6 11458 gg = htab->got_info;
b49e97c9
TS
11459
11460 if (elf_hash_table (info)->dynamic_sections_created)
11461 {
11462 bfd_byte *b;
943284cc 11463 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11464
11465 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11466 BFD_ASSERT (gg != NULL);
11467
d7206569 11468 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11469 BFD_ASSERT (g != NULL);
11470
11471 for (b = sdyn->contents;
eea6121a 11472 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11473 b += MIPS_ELF_DYN_SIZE (dynobj))
11474 {
11475 Elf_Internal_Dyn dyn;
11476 const char *name;
11477 size_t elemsize;
11478 asection *s;
b34976b6 11479 bfd_boolean swap_out_p;
b49e97c9
TS
11480
11481 /* Read in the current dynamic entry. */
11482 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11483
11484 /* Assume that we're going to modify it and write it out. */
b34976b6 11485 swap_out_p = TRUE;
b49e97c9
TS
11486
11487 switch (dyn.d_tag)
11488 {
11489 case DT_RELENT:
b49e97c9
TS
11490 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11491 break;
11492
0a44bf69
RS
11493 case DT_RELAENT:
11494 BFD_ASSERT (htab->is_vxworks);
11495 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11496 break;
11497
b49e97c9
TS
11498 case DT_STRSZ:
11499 /* Rewrite DT_STRSZ. */
11500 dyn.d_un.d_val =
11501 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11502 break;
11503
11504 case DT_PLTGOT:
ce558b89 11505 s = htab->root.sgot;
861fb55a
DJ
11506 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11507 break;
11508
11509 case DT_MIPS_PLTGOT:
ce558b89 11510 s = htab->root.sgotplt;
861fb55a 11511 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11512 break;
11513
11514 case DT_MIPS_RLD_VERSION:
11515 dyn.d_un.d_val = 1; /* XXX */
11516 break;
11517
11518 case DT_MIPS_FLAGS:
11519 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11520 break;
11521
b49e97c9 11522 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11523 {
11524 time_t t;
11525 time (&t);
11526 dyn.d_un.d_val = t;
11527 }
b49e97c9
TS
11528 break;
11529
11530 case DT_MIPS_ICHECKSUM:
11531 /* XXX FIXME: */
b34976b6 11532 swap_out_p = FALSE;
b49e97c9
TS
11533 break;
11534
11535 case DT_MIPS_IVERSION:
11536 /* XXX FIXME: */
b34976b6 11537 swap_out_p = FALSE;
b49e97c9
TS
11538 break;
11539
11540 case DT_MIPS_BASE_ADDRESS:
11541 s = output_bfd->sections;
11542 BFD_ASSERT (s != NULL);
11543 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11544 break;
11545
11546 case DT_MIPS_LOCAL_GOTNO:
11547 dyn.d_un.d_val = g->local_gotno;
11548 break;
11549
11550 case DT_MIPS_UNREFEXTNO:
11551 /* The index into the dynamic symbol table which is the
11552 entry of the first external symbol that is not
11553 referenced within the same object. */
11554 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11555 break;
11556
11557 case DT_MIPS_GOTSYM:
d222d210 11558 if (htab->global_gotsym)
b49e97c9 11559 {
d222d210 11560 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11561 break;
11562 }
11563 /* In case if we don't have global got symbols we default
11564 to setting DT_MIPS_GOTSYM to the same value as
1a0670f3
AM
11565 DT_MIPS_SYMTABNO. */
11566 /* Fall through. */
b49e97c9
TS
11567
11568 case DT_MIPS_SYMTABNO:
11569 name = ".dynsym";
11570 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11571 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11572
131e2f8e
MF
11573 if (s != NULL)
11574 dyn.d_un.d_val = s->size / elemsize;
11575 else
11576 dyn.d_un.d_val = 0;
b49e97c9
TS
11577 break;
11578
11579 case DT_MIPS_HIPAGENO:
861fb55a 11580 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11581 break;
11582
11583 case DT_MIPS_RLD_MAP:
b4082c70
DD
11584 {
11585 struct elf_link_hash_entry *h;
11586 h = mips_elf_hash_table (info)->rld_symbol;
11587 if (!h)
11588 {
11589 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11590 swap_out_p = FALSE;
11591 break;
11592 }
11593 s = h->root.u.def.section;
a5499fa4
MF
11594
11595 /* The MIPS_RLD_MAP tag stores the absolute address of the
11596 debug pointer. */
b4082c70
DD
11597 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11598 + h->root.u.def.value);
11599 }
b49e97c9
TS
11600 break;
11601
a5499fa4
MF
11602 case DT_MIPS_RLD_MAP_REL:
11603 {
11604 struct elf_link_hash_entry *h;
11605 bfd_vma dt_addr, rld_addr;
11606 h = mips_elf_hash_table (info)->rld_symbol;
11607 if (!h)
11608 {
11609 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11610 swap_out_p = FALSE;
11611 break;
11612 }
11613 s = h->root.u.def.section;
11614
11615 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11616 pointer, relative to the address of the tag. */
11617 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11618 + (b - sdyn->contents));
a5499fa4
MF
11619 rld_addr = (s->output_section->vma + s->output_offset
11620 + h->root.u.def.value);
11621 dyn.d_un.d_ptr = rld_addr - dt_addr;
11622 }
11623 break;
11624
b49e97c9
TS
11625 case DT_MIPS_OPTIONS:
11626 s = (bfd_get_section_by_name
11627 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11628 dyn.d_un.d_ptr = s->vma;
11629 break;
11630
0a44bf69 11631 case DT_PLTREL:
861fb55a
DJ
11632 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11633 if (htab->is_vxworks)
11634 dyn.d_un.d_val = DT_RELA;
11635 else
11636 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11637 break;
11638
11639 case DT_PLTRELSZ:
861fb55a 11640 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89 11641 dyn.d_un.d_val = htab->root.srelplt->size;
0a44bf69
RS
11642 break;
11643
11644 case DT_JMPREL:
861fb55a 11645 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
11646 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11647 + htab->root.srelplt->output_offset);
0a44bf69
RS
11648 break;
11649
943284cc
DJ
11650 case DT_TEXTREL:
11651 /* If we didn't need any text relocations after all, delete
11652 the dynamic tag. */
11653 if (!(info->flags & DF_TEXTREL))
11654 {
11655 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11656 swap_out_p = FALSE;
11657 }
11658 break;
11659
11660 case DT_FLAGS:
11661 /* If we didn't need any text relocations after all, clear
11662 DF_TEXTREL from DT_FLAGS. */
11663 if (!(info->flags & DF_TEXTREL))
11664 dyn.d_un.d_val &= ~DF_TEXTREL;
11665 else
11666 swap_out_p = FALSE;
11667 break;
11668
b49e97c9 11669 default:
b34976b6 11670 swap_out_p = FALSE;
7a2b07ff
NS
11671 if (htab->is_vxworks
11672 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11673 swap_out_p = TRUE;
b49e97c9
TS
11674 break;
11675 }
11676
943284cc 11677 if (swap_out_p || dyn_skipped)
b49e97c9 11678 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
11679 (dynobj, &dyn, b - dyn_skipped);
11680
11681 if (dyn_to_skip)
11682 {
11683 dyn_skipped += dyn_to_skip;
11684 dyn_to_skip = 0;
11685 }
b49e97c9 11686 }
943284cc
DJ
11687
11688 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11689 if (dyn_skipped > 0)
11690 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
11691 }
11692
b55fd4d4
DJ
11693 if (sgot != NULL && sgot->size > 0
11694 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 11695 {
0a44bf69
RS
11696 if (htab->is_vxworks)
11697 {
11698 /* The first entry of the global offset table points to the
11699 ".dynamic" section. The second is initialized by the
11700 loader and contains the shared library identifier.
11701 The third is also initialized by the loader and points
11702 to the lazy resolution stub. */
11703 MIPS_ELF_PUT_WORD (output_bfd,
11704 sdyn->output_offset + sdyn->output_section->vma,
11705 sgot->contents);
11706 MIPS_ELF_PUT_WORD (output_bfd, 0,
11707 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11708 MIPS_ELF_PUT_WORD (output_bfd, 0,
11709 sgot->contents
11710 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11711 }
11712 else
11713 {
11714 /* The first entry of the global offset table will be filled at
11715 runtime. The second entry will be used by some runtime loaders.
11716 This isn't the case of IRIX rld. */
11717 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 11718 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
11719 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11720 }
b49e97c9 11721
54938e2a
TS
11722 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11723 = MIPS_ELF_GOT_SIZE (output_bfd);
11724 }
b49e97c9 11725
f4416af6
AO
11726 /* Generate dynamic relocations for the non-primary gots. */
11727 if (gg != NULL && gg->next)
11728 {
11729 Elf_Internal_Rela rel[3];
11730 bfd_vma addend = 0;
11731
11732 memset (rel, 0, sizeof (rel));
11733 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11734
11735 for (g = gg->next; g->next != gg; g = g->next)
11736 {
91d6fa6a 11737 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 11738 + g->next->tls_gotno;
f4416af6 11739
9719ad41 11740 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 11741 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
11742 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11743 sgot->contents
91d6fa6a 11744 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 11745
0e1862bb 11746 if (! bfd_link_pic (info))
f4416af6
AO
11747 continue;
11748
cb22ccf4 11749 for (; got_index < g->local_gotno; got_index++)
f4416af6 11750 {
cb22ccf4
KCY
11751 if (got_index >= g->assigned_low_gotno
11752 && got_index <= g->assigned_high_gotno)
11753 continue;
11754
f4416af6 11755 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 11756 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
11757 if (!(mips_elf_create_dynamic_relocation
11758 (output_bfd, info, rel, NULL,
11759 bfd_abs_section_ptr,
11760 0, &addend, sgot)))
11761 return FALSE;
11762 BFD_ASSERT (addend == 0);
11763 }
11764 }
11765 }
11766
3133ddbf
DJ
11767 /* The generation of dynamic relocations for the non-primary gots
11768 adds more dynamic relocations. We cannot count them until
11769 here. */
11770
11771 if (elf_hash_table (info)->dynamic_sections_created)
11772 {
11773 bfd_byte *b;
11774 bfd_boolean swap_out_p;
11775
11776 BFD_ASSERT (sdyn != NULL);
11777
11778 for (b = sdyn->contents;
11779 b < sdyn->contents + sdyn->size;
11780 b += MIPS_ELF_DYN_SIZE (dynobj))
11781 {
11782 Elf_Internal_Dyn dyn;
11783 asection *s;
11784
11785 /* Read in the current dynamic entry. */
11786 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11787
11788 /* Assume that we're going to modify it and write it out. */
11789 swap_out_p = TRUE;
11790
11791 switch (dyn.d_tag)
11792 {
11793 case DT_RELSZ:
11794 /* Reduce DT_RELSZ to account for any relocations we
11795 decided not to make. This is for the n64 irix rld,
11796 which doesn't seem to apply any relocations if there
11797 are trailing null entries. */
0a44bf69 11798 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
11799 dyn.d_un.d_val = (s->reloc_count
11800 * (ABI_64_P (output_bfd)
11801 ? sizeof (Elf64_Mips_External_Rel)
11802 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
11803 /* Adjust the section size too. Tools like the prelinker
11804 can reasonably expect the values to the same. */
db841b6f 11805 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
bcfdf036
RS
11806 elf_section_data (s->output_section)->this_hdr.sh_size
11807 = dyn.d_un.d_val;
3133ddbf
DJ
11808 break;
11809
11810 default:
11811 swap_out_p = FALSE;
11812 break;
11813 }
11814
11815 if (swap_out_p)
11816 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11817 (dynobj, &dyn, b);
11818 }
11819 }
11820
b49e97c9 11821 {
b49e97c9
TS
11822 asection *s;
11823 Elf32_compact_rel cpt;
11824
b49e97c9
TS
11825 if (SGI_COMPAT (output_bfd))
11826 {
11827 /* Write .compact_rel section out. */
3d4d4302 11828 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
11829 if (s != NULL)
11830 {
11831 cpt.id1 = 1;
11832 cpt.num = s->reloc_count;
11833 cpt.id2 = 2;
11834 cpt.offset = (s->output_section->filepos
11835 + sizeof (Elf32_External_compact_rel));
11836 cpt.reserved0 = 0;
11837 cpt.reserved1 = 0;
11838 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11839 ((Elf32_External_compact_rel *)
11840 s->contents));
11841
11842 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 11843 if (htab->sstubs != NULL)
b49e97c9
TS
11844 {
11845 file_ptr dummy_offset;
11846
4e41d0d7
RS
11847 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11848 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11849 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 11850 htab->function_stub_size);
b49e97c9
TS
11851 }
11852 }
11853 }
11854
0a44bf69
RS
11855 /* The psABI says that the dynamic relocations must be sorted in
11856 increasing order of r_symndx. The VxWorks EABI doesn't require
11857 this, and because the code below handles REL rather than RELA
11858 relocations, using it for VxWorks would be outright harmful. */
11859 if (!htab->is_vxworks)
b49e97c9 11860 {
0a44bf69
RS
11861 s = mips_elf_rel_dyn_section (info, FALSE);
11862 if (s != NULL
11863 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11864 {
11865 reldyn_sorting_bfd = output_bfd;
b49e97c9 11866
0a44bf69
RS
11867 if (ABI_64_P (output_bfd))
11868 qsort ((Elf64_External_Rel *) s->contents + 1,
11869 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11870 sort_dynamic_relocs_64);
11871 else
11872 qsort ((Elf32_External_Rel *) s->contents + 1,
11873 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11874 sort_dynamic_relocs);
11875 }
b49e97c9 11876 }
b49e97c9
TS
11877 }
11878
ce558b89 11879 if (htab->root.splt && htab->root.splt->size > 0)
0a44bf69 11880 {
861fb55a
DJ
11881 if (htab->is_vxworks)
11882 {
0e1862bb 11883 if (bfd_link_pic (info))
861fb55a
DJ
11884 mips_vxworks_finish_shared_plt (output_bfd, info);
11885 else
11886 mips_vxworks_finish_exec_plt (output_bfd, info);
11887 }
0a44bf69 11888 else
861fb55a 11889 {
0e1862bb 11890 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
11891 if (!mips_finish_exec_plt (output_bfd, info))
11892 return FALSE;
861fb55a 11893 }
0a44bf69 11894 }
b34976b6 11895 return TRUE;
b49e97c9
TS
11896}
11897
b49e97c9 11898
64543e1a
RS
11899/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11900
11901static void
9719ad41 11902mips_set_isa_flags (bfd *abfd)
b49e97c9 11903{
64543e1a 11904 flagword val;
b49e97c9
TS
11905
11906 switch (bfd_get_mach (abfd))
11907 {
11908 default:
11909 case bfd_mach_mips3000:
11910 val = E_MIPS_ARCH_1;
11911 break;
11912
11913 case bfd_mach_mips3900:
11914 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11915 break;
11916
11917 case bfd_mach_mips6000:
11918 val = E_MIPS_ARCH_2;
11919 break;
11920
b417536f
MR
11921 case bfd_mach_mips4010:
11922 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11923 break;
11924
b49e97c9
TS
11925 case bfd_mach_mips4000:
11926 case bfd_mach_mips4300:
11927 case bfd_mach_mips4400:
11928 case bfd_mach_mips4600:
11929 val = E_MIPS_ARCH_3;
11930 break;
11931
b49e97c9
TS
11932 case bfd_mach_mips4100:
11933 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11934 break;
11935
11936 case bfd_mach_mips4111:
11937 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11938 break;
11939
00707a0e
RS
11940 case bfd_mach_mips4120:
11941 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11942 break;
11943
b49e97c9
TS
11944 case bfd_mach_mips4650:
11945 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11946 break;
11947
00707a0e
RS
11948 case bfd_mach_mips5400:
11949 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11950 break;
11951
11952 case bfd_mach_mips5500:
11953 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11954 break;
11955
e407c74b
NC
11956 case bfd_mach_mips5900:
11957 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11958 break;
11959
0d2e43ed
ILT
11960 case bfd_mach_mips9000:
11961 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11962 break;
11963
b49e97c9 11964 case bfd_mach_mips5000:
5a7ea749 11965 case bfd_mach_mips7000:
b49e97c9
TS
11966 case bfd_mach_mips8000:
11967 case bfd_mach_mips10000:
11968 case bfd_mach_mips12000:
3aa3176b
TS
11969 case bfd_mach_mips14000:
11970 case bfd_mach_mips16000:
b49e97c9
TS
11971 val = E_MIPS_ARCH_4;
11972 break;
11973
11974 case bfd_mach_mips5:
11975 val = E_MIPS_ARCH_5;
11976 break;
11977
350cc38d
MS
11978 case bfd_mach_mips_loongson_2e:
11979 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11980 break;
11981
11982 case bfd_mach_mips_loongson_2f:
11983 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11984 break;
11985
b49e97c9
TS
11986 case bfd_mach_mips_sb1:
11987 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11988 break;
11989
ac8cb70f
CX
11990 case bfd_mach_mips_gs464:
11991 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
d051516a
NC
11992 break;
11993
bd782c07
CX
11994 case bfd_mach_mips_gs464e:
11995 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
11996 break;
11997
6f179bd0 11998 case bfd_mach_mips_octeon:
dd6a37e7 11999 case bfd_mach_mips_octeonp:
6f179bd0
AN
12000 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12001 break;
12002
2c629856
N
12003 case bfd_mach_mips_octeon3:
12004 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12005 break;
12006
52b6b6b9
JM
12007 case bfd_mach_mips_xlr:
12008 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12009 break;
12010
432233b3
AP
12011 case bfd_mach_mips_octeon2:
12012 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12013 break;
12014
b49e97c9
TS
12015 case bfd_mach_mipsisa32:
12016 val = E_MIPS_ARCH_32;
12017 break;
12018
12019 case bfd_mach_mipsisa64:
12020 val = E_MIPS_ARCH_64;
af7ee8bf
CD
12021 break;
12022
12023 case bfd_mach_mipsisa32r2:
ae52f483
AB
12024 case bfd_mach_mipsisa32r3:
12025 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
12026 val = E_MIPS_ARCH_32R2;
12027 break;
5f74bc13 12028
38bf472a
MR
12029 case bfd_mach_mips_interaptiv_mr2:
12030 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12031 break;
12032
5f74bc13 12033 case bfd_mach_mipsisa64r2:
ae52f483
AB
12034 case bfd_mach_mipsisa64r3:
12035 case bfd_mach_mipsisa64r5:
5f74bc13
CD
12036 val = E_MIPS_ARCH_64R2;
12037 break;
7361da2c
AB
12038
12039 case bfd_mach_mipsisa32r6:
12040 val = E_MIPS_ARCH_32R6;
12041 break;
12042
12043 case bfd_mach_mipsisa64r6:
12044 val = E_MIPS_ARCH_64R6;
12045 break;
b49e97c9 12046 }
b49e97c9
TS
12047 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12048 elf_elfheader (abfd)->e_flags |= val;
12049
64543e1a
RS
12050}
12051
12052
28dbcedc
AM
12053/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12054 Don't do so for code sections. We want to keep ordering of HI16/LO16
12055 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12056 relocs to be sorted. */
12057
12058bfd_boolean
12059_bfd_mips_elf_sort_relocs_p (asection *sec)
12060{
12061 return (sec->flags & SEC_CODE) == 0;
12062}
12063
12064
64543e1a
RS
12065/* The final processing done just before writing out a MIPS ELF object
12066 file. This gets the MIPS architecture right based on the machine
12067 number. This is used by both the 32-bit and the 64-bit ABI. */
12068
12069void
9719ad41
RS
12070_bfd_mips_elf_final_write_processing (bfd *abfd,
12071 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
12072{
12073 unsigned int i;
12074 Elf_Internal_Shdr **hdrpp;
12075 const char *name;
12076 asection *sec;
12077
12078 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12079 is nonzero. This is for compatibility with old objects, which used
12080 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12081 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12082 mips_set_isa_flags (abfd);
12083
b49e97c9
TS
12084 /* Set the sh_info field for .gptab sections and other appropriate
12085 info for each special section. */
12086 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12087 i < elf_numsections (abfd);
12088 i++, hdrpp++)
12089 {
12090 switch ((*hdrpp)->sh_type)
12091 {
12092 case SHT_MIPS_MSYM:
12093 case SHT_MIPS_LIBLIST:
12094 sec = bfd_get_section_by_name (abfd, ".dynstr");
12095 if (sec != NULL)
12096 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12097 break;
12098
12099 case SHT_MIPS_GPTAB:
12100 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12101 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12102 BFD_ASSERT (name != NULL
0112cd26 12103 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12104 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12105 BFD_ASSERT (sec != NULL);
12106 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12107 break;
12108
12109 case SHT_MIPS_CONTENT:
12110 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12111 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12112 BFD_ASSERT (name != NULL
0112cd26 12113 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12114 sec = bfd_get_section_by_name (abfd,
12115 name + sizeof ".MIPS.content" - 1);
12116 BFD_ASSERT (sec != NULL);
12117 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12118 break;
12119
12120 case SHT_MIPS_SYMBOL_LIB:
12121 sec = bfd_get_section_by_name (abfd, ".dynsym");
12122 if (sec != NULL)
12123 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12124 sec = bfd_get_section_by_name (abfd, ".liblist");
12125 if (sec != NULL)
12126 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12127 break;
12128
12129 case SHT_MIPS_EVENTS:
12130 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12131 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12132 BFD_ASSERT (name != NULL);
0112cd26 12133 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12134 sec = bfd_get_section_by_name (abfd,
12135 name + sizeof ".MIPS.events" - 1);
12136 else
12137 {
0112cd26 12138 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12139 sec = bfd_get_section_by_name (abfd,
12140 (name
12141 + sizeof ".MIPS.post_rel" - 1));
12142 }
12143 BFD_ASSERT (sec != NULL);
12144 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12145 break;
12146
12147 }
12148 }
12149}
12150\f
8dc1a139 12151/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12152 segments. */
12153
12154int
a6b96beb
AM
12155_bfd_mips_elf_additional_program_headers (bfd *abfd,
12156 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12157{
12158 asection *s;
12159 int ret = 0;
12160
12161 /* See if we need a PT_MIPS_REGINFO segment. */
12162 s = bfd_get_section_by_name (abfd, ".reginfo");
12163 if (s && (s->flags & SEC_LOAD))
12164 ++ret;
12165
351cdf24
MF
12166 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12167 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12168 ++ret;
12169
b49e97c9
TS
12170 /* See if we need a PT_MIPS_OPTIONS segment. */
12171 if (IRIX_COMPAT (abfd) == ict_irix6
12172 && bfd_get_section_by_name (abfd,
12173 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12174 ++ret;
12175
12176 /* See if we need a PT_MIPS_RTPROC segment. */
12177 if (IRIX_COMPAT (abfd) == ict_irix5
12178 && bfd_get_section_by_name (abfd, ".dynamic")
12179 && bfd_get_section_by_name (abfd, ".mdebug"))
12180 ++ret;
12181
98c904a8
RS
12182 /* Allocate a PT_NULL header in dynamic objects. See
12183 _bfd_mips_elf_modify_segment_map for details. */
12184 if (!SGI_COMPAT (abfd)
12185 && bfd_get_section_by_name (abfd, ".dynamic"))
12186 ++ret;
12187
b49e97c9
TS
12188 return ret;
12189}
12190
8dc1a139 12191/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12192
b34976b6 12193bfd_boolean
9719ad41 12194_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12195 struct bfd_link_info *info)
b49e97c9
TS
12196{
12197 asection *s;
12198 struct elf_segment_map *m, **pm;
12199 bfd_size_type amt;
12200
12201 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12202 segment. */
12203 s = bfd_get_section_by_name (abfd, ".reginfo");
12204 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12205 {
12bd6957 12206 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12207 if (m->p_type == PT_MIPS_REGINFO)
12208 break;
12209 if (m == NULL)
12210 {
12211 amt = sizeof *m;
9719ad41 12212 m = bfd_zalloc (abfd, amt);
b49e97c9 12213 if (m == NULL)
b34976b6 12214 return FALSE;
b49e97c9
TS
12215
12216 m->p_type = PT_MIPS_REGINFO;
12217 m->count = 1;
12218 m->sections[0] = s;
12219
12220 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12221 pm = &elf_seg_map (abfd);
b49e97c9
TS
12222 while (*pm != NULL
12223 && ((*pm)->p_type == PT_PHDR
12224 || (*pm)->p_type == PT_INTERP))
12225 pm = &(*pm)->next;
12226
12227 m->next = *pm;
12228 *pm = m;
12229 }
12230 }
12231
351cdf24
MF
12232 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12233 segment. */
12234 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12235 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12236 {
12237 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12238 if (m->p_type == PT_MIPS_ABIFLAGS)
12239 break;
12240 if (m == NULL)
12241 {
12242 amt = sizeof *m;
12243 m = bfd_zalloc (abfd, amt);
12244 if (m == NULL)
12245 return FALSE;
12246
12247 m->p_type = PT_MIPS_ABIFLAGS;
12248 m->count = 1;
12249 m->sections[0] = s;
12250
12251 /* We want to put it after the PHDR and INTERP segments. */
12252 pm = &elf_seg_map (abfd);
12253 while (*pm != NULL
12254 && ((*pm)->p_type == PT_PHDR
12255 || (*pm)->p_type == PT_INTERP))
12256 pm = &(*pm)->next;
12257
12258 m->next = *pm;
12259 *pm = m;
12260 }
12261 }
12262
b49e97c9
TS
12263 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12264 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12265 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12266 table. */
c1fd6598
AO
12267 if (NEWABI_P (abfd)
12268 /* On non-IRIX6 new abi, we'll have already created a segment
12269 for this section, so don't create another. I'm not sure this
12270 is not also the case for IRIX 6, but I can't test it right
12271 now. */
12272 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12273 {
12274 for (s = abfd->sections; s; s = s->next)
12275 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12276 break;
12277
12278 if (s)
12279 {
12280 struct elf_segment_map *options_segment;
12281
12bd6957 12282 pm = &elf_seg_map (abfd);
98a8deaf
RS
12283 while (*pm != NULL
12284 && ((*pm)->p_type == PT_PHDR
12285 || (*pm)->p_type == PT_INTERP))
12286 pm = &(*pm)->next;
b49e97c9 12287
8ded5a0f
AM
12288 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12289 {
12290 amt = sizeof (struct elf_segment_map);
12291 options_segment = bfd_zalloc (abfd, amt);
12292 options_segment->next = *pm;
12293 options_segment->p_type = PT_MIPS_OPTIONS;
12294 options_segment->p_flags = PF_R;
12295 options_segment->p_flags_valid = TRUE;
12296 options_segment->count = 1;
12297 options_segment->sections[0] = s;
12298 *pm = options_segment;
12299 }
b49e97c9
TS
12300 }
12301 }
12302 else
12303 {
12304 if (IRIX_COMPAT (abfd) == ict_irix5)
12305 {
12306 /* If there are .dynamic and .mdebug sections, we make a room
12307 for the RTPROC header. FIXME: Rewrite without section names. */
12308 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12309 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12310 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12311 {
12bd6957 12312 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12313 if (m->p_type == PT_MIPS_RTPROC)
12314 break;
12315 if (m == NULL)
12316 {
12317 amt = sizeof *m;
9719ad41 12318 m = bfd_zalloc (abfd, amt);
b49e97c9 12319 if (m == NULL)
b34976b6 12320 return FALSE;
b49e97c9
TS
12321
12322 m->p_type = PT_MIPS_RTPROC;
12323
12324 s = bfd_get_section_by_name (abfd, ".rtproc");
12325 if (s == NULL)
12326 {
12327 m->count = 0;
12328 m->p_flags = 0;
12329 m->p_flags_valid = 1;
12330 }
12331 else
12332 {
12333 m->count = 1;
12334 m->sections[0] = s;
12335 }
12336
12337 /* We want to put it after the DYNAMIC segment. */
12bd6957 12338 pm = &elf_seg_map (abfd);
b49e97c9
TS
12339 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12340 pm = &(*pm)->next;
12341 if (*pm != NULL)
12342 pm = &(*pm)->next;
12343
12344 m->next = *pm;
12345 *pm = m;
12346 }
12347 }
12348 }
8dc1a139 12349 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12350 .dynstr, .dynsym, and .hash sections, and everything in
12351 between. */
12bd6957 12352 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12353 pm = &(*pm)->next)
12354 if ((*pm)->p_type == PT_DYNAMIC)
12355 break;
12356 m = *pm;
f6f62d6f
RS
12357 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12358 glibc's dynamic linker has traditionally derived the number of
12359 tags from the p_filesz field, and sometimes allocates stack
12360 arrays of that size. An overly-big PT_DYNAMIC segment can
12361 be actively harmful in such cases. Making PT_DYNAMIC contain
12362 other sections can also make life hard for the prelinker,
12363 which might move one of the other sections to a different
12364 PT_LOAD segment. */
12365 if (SGI_COMPAT (abfd)
12366 && m != NULL
12367 && m->count == 1
12368 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12369 {
12370 static const char *sec_names[] =
12371 {
12372 ".dynamic", ".dynstr", ".dynsym", ".hash"
12373 };
12374 bfd_vma low, high;
12375 unsigned int i, c;
12376 struct elf_segment_map *n;
12377
792b4a53 12378 low = ~(bfd_vma) 0;
b49e97c9
TS
12379 high = 0;
12380 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12381 {
12382 s = bfd_get_section_by_name (abfd, sec_names[i]);
12383 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12384 {
12385 bfd_size_type sz;
12386
12387 if (low > s->vma)
12388 low = s->vma;
eea6121a 12389 sz = s->size;
b49e97c9
TS
12390 if (high < s->vma + sz)
12391 high = s->vma + sz;
12392 }
12393 }
12394
12395 c = 0;
12396 for (s = abfd->sections; s != NULL; s = s->next)
12397 if ((s->flags & SEC_LOAD) != 0
12398 && s->vma >= low
eea6121a 12399 && s->vma + s->size <= high)
b49e97c9
TS
12400 ++c;
12401
12402 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12403 n = bfd_zalloc (abfd, amt);
b49e97c9 12404 if (n == NULL)
b34976b6 12405 return FALSE;
b49e97c9
TS
12406 *n = *m;
12407 n->count = c;
12408
12409 i = 0;
12410 for (s = abfd->sections; s != NULL; s = s->next)
12411 {
12412 if ((s->flags & SEC_LOAD) != 0
12413 && s->vma >= low
eea6121a 12414 && s->vma + s->size <= high)
b49e97c9
TS
12415 {
12416 n->sections[i] = s;
12417 ++i;
12418 }
12419 }
12420
12421 *pm = n;
12422 }
12423 }
12424
98c904a8
RS
12425 /* Allocate a spare program header in dynamic objects so that tools
12426 like the prelinker can add an extra PT_LOAD entry.
12427
12428 If the prelinker needs to make room for a new PT_LOAD entry, its
12429 standard procedure is to move the first (read-only) sections into
12430 the new (writable) segment. However, the MIPS ABI requires
12431 .dynamic to be in a read-only segment, and the section will often
12432 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12433
12434 Although the prelinker could in principle move .dynamic to a
12435 writable segment, it seems better to allocate a spare program
12436 header instead, and avoid the need to move any sections.
12437 There is a long tradition of allocating spare dynamic tags,
12438 so allocating a spare program header seems like a natural
7c8b76cc
JM
12439 extension.
12440
12441 If INFO is NULL, we may be copying an already prelinked binary
12442 with objcopy or strip, so do not add this header. */
12443 if (info != NULL
12444 && !SGI_COMPAT (abfd)
98c904a8
RS
12445 && bfd_get_section_by_name (abfd, ".dynamic"))
12446 {
12bd6957 12447 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12448 if ((*pm)->p_type == PT_NULL)
12449 break;
12450 if (*pm == NULL)
12451 {
12452 m = bfd_zalloc (abfd, sizeof (*m));
12453 if (m == NULL)
12454 return FALSE;
12455
12456 m->p_type = PT_NULL;
12457 *pm = m;
12458 }
12459 }
12460
b34976b6 12461 return TRUE;
b49e97c9
TS
12462}
12463\f
12464/* Return the section that should be marked against GC for a given
12465 relocation. */
12466
12467asection *
9719ad41 12468_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12469 struct bfd_link_info *info,
9719ad41
RS
12470 Elf_Internal_Rela *rel,
12471 struct elf_link_hash_entry *h,
12472 Elf_Internal_Sym *sym)
b49e97c9
TS
12473{
12474 /* ??? Do mips16 stub sections need to be handled special? */
12475
12476 if (h != NULL)
07adf181
AM
12477 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12478 {
12479 case R_MIPS_GNU_VTINHERIT:
12480 case R_MIPS_GNU_VTENTRY:
12481 return NULL;
12482 }
b49e97c9 12483
07adf181 12484 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12485}
12486
351cdf24
MF
12487/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12488
12489bfd_boolean
12490_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12491 elf_gc_mark_hook_fn gc_mark_hook)
12492{
12493 bfd *sub;
12494
12495 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12496
12497 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12498 {
12499 asection *o;
12500
12501 if (! is_mips_elf (sub))
12502 continue;
12503
12504 for (o = sub->sections; o != NULL; o = o->next)
12505 if (!o->gc_mark
12506 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12507 (bfd_get_section_name (sub, o)))
12508 {
12509 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12510 return FALSE;
12511 }
12512 }
12513
12514 return TRUE;
12515}
b49e97c9
TS
12516\f
12517/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12518 hiding the old indirect symbol. Process additional relocation
12519 information. Also called for weakdefs, in which case we just let
12520 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12521
12522void
fcfa13d2 12523_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12524 struct elf_link_hash_entry *dir,
12525 struct elf_link_hash_entry *ind)
b49e97c9
TS
12526{
12527 struct mips_elf_link_hash_entry *dirmips, *indmips;
12528
fcfa13d2 12529 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12530
861fb55a
DJ
12531 dirmips = (struct mips_elf_link_hash_entry *) dir;
12532 indmips = (struct mips_elf_link_hash_entry *) ind;
12533 /* Any absolute non-dynamic relocations against an indirect or weak
12534 definition will be against the target symbol. */
12535 if (indmips->has_static_relocs)
12536 dirmips->has_static_relocs = TRUE;
12537
b49e97c9
TS
12538 if (ind->root.type != bfd_link_hash_indirect)
12539 return;
12540
b49e97c9
TS
12541 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12542 if (indmips->readonly_reloc)
b34976b6 12543 dirmips->readonly_reloc = TRUE;
b49e97c9 12544 if (indmips->no_fn_stub)
b34976b6 12545 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12546 if (indmips->fn_stub)
12547 {
12548 dirmips->fn_stub = indmips->fn_stub;
12549 indmips->fn_stub = NULL;
12550 }
12551 if (indmips->need_fn_stub)
12552 {
12553 dirmips->need_fn_stub = TRUE;
12554 indmips->need_fn_stub = FALSE;
12555 }
12556 if (indmips->call_stub)
12557 {
12558 dirmips->call_stub = indmips->call_stub;
12559 indmips->call_stub = NULL;
12560 }
12561 if (indmips->call_fp_stub)
12562 {
12563 dirmips->call_fp_stub = indmips->call_fp_stub;
12564 indmips->call_fp_stub = NULL;
12565 }
634835ae
RS
12566 if (indmips->global_got_area < dirmips->global_got_area)
12567 dirmips->global_got_area = indmips->global_got_area;
12568 if (indmips->global_got_area < GGA_NONE)
12569 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12570 if (indmips->has_nonpic_branches)
12571 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12572}
b49e97c9 12573\f
d01414a5
TS
12574#define PDR_SIZE 32
12575
b34976b6 12576bfd_boolean
9719ad41
RS
12577_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12578 struct bfd_link_info *info)
d01414a5
TS
12579{
12580 asection *o;
b34976b6 12581 bfd_boolean ret = FALSE;
d01414a5
TS
12582 unsigned char *tdata;
12583 size_t i, skip;
12584
12585 o = bfd_get_section_by_name (abfd, ".pdr");
12586 if (! o)
b34976b6 12587 return FALSE;
eea6121a 12588 if (o->size == 0)
b34976b6 12589 return FALSE;
eea6121a 12590 if (o->size % PDR_SIZE != 0)
b34976b6 12591 return FALSE;
d01414a5
TS
12592 if (o->output_section != NULL
12593 && bfd_is_abs_section (o->output_section))
b34976b6 12594 return FALSE;
d01414a5 12595
eea6121a 12596 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12597 if (! tdata)
b34976b6 12598 return FALSE;
d01414a5 12599
9719ad41 12600 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12601 info->keep_memory);
d01414a5
TS
12602 if (!cookie->rels)
12603 {
12604 free (tdata);
b34976b6 12605 return FALSE;
d01414a5
TS
12606 }
12607
12608 cookie->rel = cookie->rels;
12609 cookie->relend = cookie->rels + o->reloc_count;
12610
eea6121a 12611 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12612 {
c152c796 12613 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12614 {
12615 tdata[i] = 1;
12616 skip ++;
12617 }
12618 }
12619
12620 if (skip != 0)
12621 {
f0abc2a1 12622 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12623 if (o->rawsize == 0)
12624 o->rawsize = o->size;
eea6121a 12625 o->size -= skip * PDR_SIZE;
b34976b6 12626 ret = TRUE;
d01414a5
TS
12627 }
12628 else
12629 free (tdata);
12630
12631 if (! info->keep_memory)
12632 free (cookie->rels);
12633
12634 return ret;
12635}
12636
b34976b6 12637bfd_boolean
9719ad41 12638_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
12639{
12640 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
12641 return TRUE;
12642 return FALSE;
53bfd6b4 12643}
d01414a5 12644
b34976b6 12645bfd_boolean
c7b8f16e
JB
12646_bfd_mips_elf_write_section (bfd *output_bfd,
12647 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
07d6d2b8 12648 asection *sec, bfd_byte *contents)
d01414a5
TS
12649{
12650 bfd_byte *to, *from, *end;
12651 int i;
12652
12653 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 12654 return FALSE;
d01414a5 12655
f0abc2a1 12656 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 12657 return FALSE;
d01414a5
TS
12658
12659 to = contents;
eea6121a 12660 end = contents + sec->size;
d01414a5
TS
12661 for (from = contents, i = 0;
12662 from < end;
12663 from += PDR_SIZE, i++)
12664 {
f0abc2a1 12665 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
12666 continue;
12667 if (to != from)
12668 memcpy (to, from, PDR_SIZE);
12669 to += PDR_SIZE;
12670 }
12671 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 12672 sec->output_offset, sec->size);
b34976b6 12673 return TRUE;
d01414a5 12674}
53bfd6b4 12675\f
df58fc94
RS
12676/* microMIPS code retains local labels for linker relaxation. Omit them
12677 from output by default for clarity. */
12678
12679bfd_boolean
12680_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12681{
12682 return _bfd_elf_is_local_label_name (abfd, sym->name);
12683}
12684
b49e97c9
TS
12685/* MIPS ELF uses a special find_nearest_line routine in order the
12686 handle the ECOFF debugging information. */
12687
12688struct mips_elf_find_line
12689{
12690 struct ecoff_debug_info d;
12691 struct ecoff_find_line i;
12692};
12693
b34976b6 12694bfd_boolean
fb167eb2
AM
12695_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12696 asection *section, bfd_vma offset,
9719ad41
RS
12697 const char **filename_ptr,
12698 const char **functionname_ptr,
fb167eb2
AM
12699 unsigned int *line_ptr,
12700 unsigned int *discriminator_ptr)
b49e97c9
TS
12701{
12702 asection *msec;
12703
fb167eb2 12704 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 12705 filename_ptr, functionname_ptr,
fb167eb2
AM
12706 line_ptr, discriminator_ptr,
12707 dwarf_debug_sections,
12708 ABI_64_P (abfd) ? 8 : 0,
46d09186
NC
12709 &elf_tdata (abfd)->dwarf2_find_line_info)
12710 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12711 filename_ptr, functionname_ptr,
12712 line_ptr))
12713 {
12714 /* PR 22789: If the function name or filename was not found through
12715 the debug information, then try an ordinary lookup instead. */
12716 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12717 || (filename_ptr != NULL && *filename_ptr == NULL))
12718 {
12719 /* Do not override already discovered names. */
12720 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12721 functionname_ptr = NULL;
b49e97c9 12722
46d09186
NC
12723 if (filename_ptr != NULL && *filename_ptr != NULL)
12724 filename_ptr = NULL;
12725
12726 _bfd_elf_find_function (abfd, symbols, section, offset,
12727 filename_ptr, functionname_ptr);
12728 }
12729
12730 return TRUE;
12731 }
b49e97c9
TS
12732
12733 msec = bfd_get_section_by_name (abfd, ".mdebug");
12734 if (msec != NULL)
12735 {
12736 flagword origflags;
12737 struct mips_elf_find_line *fi;
12738 const struct ecoff_debug_swap * const swap =
12739 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12740
12741 /* If we are called during a link, mips_elf_final_link may have
12742 cleared the SEC_HAS_CONTENTS field. We force it back on here
12743 if appropriate (which it normally will be). */
12744 origflags = msec->flags;
12745 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12746 msec->flags |= SEC_HAS_CONTENTS;
12747
698600e4 12748 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
12749 if (fi == NULL)
12750 {
12751 bfd_size_type external_fdr_size;
12752 char *fraw_src;
12753 char *fraw_end;
12754 struct fdr *fdr_ptr;
12755 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12756
9719ad41 12757 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
12758 if (fi == NULL)
12759 {
12760 msec->flags = origflags;
b34976b6 12761 return FALSE;
b49e97c9
TS
12762 }
12763
12764 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12765 {
12766 msec->flags = origflags;
b34976b6 12767 return FALSE;
b49e97c9
TS
12768 }
12769
12770 /* Swap in the FDR information. */
12771 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 12772 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
12773 if (fi->d.fdr == NULL)
12774 {
12775 msec->flags = origflags;
b34976b6 12776 return FALSE;
b49e97c9
TS
12777 }
12778 external_fdr_size = swap->external_fdr_size;
12779 fdr_ptr = fi->d.fdr;
12780 fraw_src = (char *) fi->d.external_fdr;
12781 fraw_end = (fraw_src
12782 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12783 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 12784 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 12785
698600e4 12786 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
12787
12788 /* Note that we don't bother to ever free this information.
07d6d2b8
AM
12789 find_nearest_line is either called all the time, as in
12790 objdump -l, so the information should be saved, or it is
12791 rarely called, as in ld error messages, so the memory
12792 wasted is unimportant. Still, it would probably be a
12793 good idea for free_cached_info to throw it away. */
b49e97c9
TS
12794 }
12795
12796 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12797 &fi->i, filename_ptr, functionname_ptr,
12798 line_ptr))
12799 {
12800 msec->flags = origflags;
b34976b6 12801 return TRUE;
b49e97c9
TS
12802 }
12803
12804 msec->flags = origflags;
12805 }
12806
12807 /* Fall back on the generic ELF find_nearest_line routine. */
12808
fb167eb2 12809 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12810 filename_ptr, functionname_ptr,
fb167eb2 12811 line_ptr, discriminator_ptr);
b49e97c9 12812}
4ab527b0
FF
12813
12814bfd_boolean
12815_bfd_mips_elf_find_inliner_info (bfd *abfd,
12816 const char **filename_ptr,
12817 const char **functionname_ptr,
12818 unsigned int *line_ptr)
12819{
12820 bfd_boolean found;
12821 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12822 functionname_ptr, line_ptr,
12823 & elf_tdata (abfd)->dwarf2_find_line_info);
12824 return found;
12825}
12826
b49e97c9
TS
12827\f
12828/* When are writing out the .options or .MIPS.options section,
12829 remember the bytes we are writing out, so that we can install the
12830 GP value in the section_processing routine. */
12831
b34976b6 12832bfd_boolean
9719ad41
RS
12833_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12834 const void *location,
12835 file_ptr offset, bfd_size_type count)
b49e97c9 12836{
cc2e31b9 12837 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
12838 {
12839 bfd_byte *c;
12840
12841 if (elf_section_data (section) == NULL)
12842 {
12843 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 12844 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 12845 if (elf_section_data (section) == NULL)
b34976b6 12846 return FALSE;
b49e97c9 12847 }
f0abc2a1 12848 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
12849 if (c == NULL)
12850 {
eea6121a 12851 c = bfd_zalloc (abfd, section->size);
b49e97c9 12852 if (c == NULL)
b34976b6 12853 return FALSE;
f0abc2a1 12854 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
12855 }
12856
9719ad41 12857 memcpy (c + offset, location, count);
b49e97c9
TS
12858 }
12859
12860 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12861 count);
12862}
12863
12864/* This is almost identical to bfd_generic_get_... except that some
12865 MIPS relocations need to be handled specially. Sigh. */
12866
12867bfd_byte *
9719ad41
RS
12868_bfd_elf_mips_get_relocated_section_contents
12869 (bfd *abfd,
12870 struct bfd_link_info *link_info,
12871 struct bfd_link_order *link_order,
12872 bfd_byte *data,
12873 bfd_boolean relocatable,
12874 asymbol **symbols)
b49e97c9
TS
12875{
12876 /* Get enough memory to hold the stuff */
12877 bfd *input_bfd = link_order->u.indirect.section->owner;
12878 asection *input_section = link_order->u.indirect.section;
eea6121a 12879 bfd_size_type sz;
b49e97c9
TS
12880
12881 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12882 arelent **reloc_vector = NULL;
12883 long reloc_count;
12884
12885 if (reloc_size < 0)
12886 goto error_return;
12887
9719ad41 12888 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
12889 if (reloc_vector == NULL && reloc_size != 0)
12890 goto error_return;
12891
12892 /* read in the section */
eea6121a
AM
12893 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12894 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
12895 goto error_return;
12896
b49e97c9
TS
12897 reloc_count = bfd_canonicalize_reloc (input_bfd,
12898 input_section,
12899 reloc_vector,
12900 symbols);
12901 if (reloc_count < 0)
12902 goto error_return;
12903
12904 if (reloc_count > 0)
12905 {
12906 arelent **parent;
12907 /* for mips */
12908 int gp_found;
12909 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12910
12911 {
12912 struct bfd_hash_entry *h;
12913 struct bfd_link_hash_entry *lh;
12914 /* Skip all this stuff if we aren't mixing formats. */
12915 if (abfd && input_bfd
12916 && abfd->xvec == input_bfd->xvec)
12917 lh = 0;
12918 else
12919 {
b34976b6 12920 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
12921 lh = (struct bfd_link_hash_entry *) h;
12922 }
12923 lookup:
12924 if (lh)
12925 {
12926 switch (lh->type)
12927 {
12928 case bfd_link_hash_undefined:
12929 case bfd_link_hash_undefweak:
12930 case bfd_link_hash_common:
12931 gp_found = 0;
12932 break;
12933 case bfd_link_hash_defined:
12934 case bfd_link_hash_defweak:
12935 gp_found = 1;
12936 gp = lh->u.def.value;
12937 break;
12938 case bfd_link_hash_indirect:
12939 case bfd_link_hash_warning:
12940 lh = lh->u.i.link;
12941 /* @@FIXME ignoring warning for now */
12942 goto lookup;
12943 case bfd_link_hash_new:
12944 default:
12945 abort ();
12946 }
12947 }
12948 else
12949 gp_found = 0;
12950 }
12951 /* end mips */
9719ad41 12952 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 12953 {
9719ad41 12954 char *error_message = NULL;
b49e97c9
TS
12955 bfd_reloc_status_type r;
12956
12957 /* Specific to MIPS: Deal with relocation types that require
12958 knowing the gp of the output bfd. */
12959 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 12960
8236346f
EC
12961 /* If we've managed to find the gp and have a special
12962 function for the relocation then go ahead, else default
12963 to the generic handling. */
12964 if (gp_found
12965 && (*parent)->howto->special_function
12966 == _bfd_mips_elf32_gprel16_reloc)
12967 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12968 input_section, relocatable,
12969 data, gp);
12970 else
86324f90 12971 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
12972 input_section,
12973 relocatable ? abfd : NULL,
12974 &error_message);
b49e97c9 12975
1049f94e 12976 if (relocatable)
b49e97c9
TS
12977 {
12978 asection *os = input_section->output_section;
12979
12980 /* A partial link, so keep the relocs */
12981 os->orelocation[os->reloc_count] = *parent;
12982 os->reloc_count++;
12983 }
12984
12985 if (r != bfd_reloc_ok)
12986 {
12987 switch (r)
12988 {
12989 case bfd_reloc_undefined:
1a72702b
AM
12990 (*link_info->callbacks->undefined_symbol)
12991 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12992 input_bfd, input_section, (*parent)->address, TRUE);
b49e97c9
TS
12993 break;
12994 case bfd_reloc_dangerous:
9719ad41 12995 BFD_ASSERT (error_message != NULL);
1a72702b
AM
12996 (*link_info->callbacks->reloc_dangerous)
12997 (link_info, error_message,
12998 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
12999 break;
13000 case bfd_reloc_overflow:
1a72702b
AM
13001 (*link_info->callbacks->reloc_overflow)
13002 (link_info, NULL,
13003 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13004 (*parent)->howto->name, (*parent)->addend,
13005 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13006 break;
13007 case bfd_reloc_outofrange:
13008 default:
13009 abort ();
13010 break;
13011 }
13012
13013 }
13014 }
13015 }
13016 if (reloc_vector != NULL)
13017 free (reloc_vector);
13018 return data;
13019
13020error_return:
13021 if (reloc_vector != NULL)
13022 free (reloc_vector);
13023 return NULL;
13024}
13025\f
df58fc94
RS
13026static bfd_boolean
13027mips_elf_relax_delete_bytes (bfd *abfd,
13028 asection *sec, bfd_vma addr, int count)
13029{
13030 Elf_Internal_Shdr *symtab_hdr;
13031 unsigned int sec_shndx;
13032 bfd_byte *contents;
13033 Elf_Internal_Rela *irel, *irelend;
13034 Elf_Internal_Sym *isym;
13035 Elf_Internal_Sym *isymend;
13036 struct elf_link_hash_entry **sym_hashes;
13037 struct elf_link_hash_entry **end_hashes;
13038 struct elf_link_hash_entry **start_hashes;
13039 unsigned int symcount;
13040
13041 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13042 contents = elf_section_data (sec)->this_hdr.contents;
13043
13044 irel = elf_section_data (sec)->relocs;
13045 irelend = irel + sec->reloc_count;
13046
13047 /* Actually delete the bytes. */
13048 memmove (contents + addr, contents + addr + count,
13049 (size_t) (sec->size - addr - count));
13050 sec->size -= count;
13051
13052 /* Adjust all the relocs. */
13053 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13054 {
13055 /* Get the new reloc address. */
13056 if (irel->r_offset > addr)
13057 irel->r_offset -= count;
13058 }
13059
13060 BFD_ASSERT (addr % 2 == 0);
13061 BFD_ASSERT (count % 2 == 0);
13062
13063 /* Adjust the local symbols defined in this section. */
13064 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13065 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13066 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13067 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13068 isym->st_value -= count;
13069
13070 /* Now adjust the global symbols defined in this section. */
13071 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13072 - symtab_hdr->sh_info);
13073 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13074 end_hashes = sym_hashes + symcount;
13075
13076 for (; sym_hashes < end_hashes; sym_hashes++)
13077 {
13078 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13079
13080 if ((sym_hash->root.type == bfd_link_hash_defined
13081 || sym_hash->root.type == bfd_link_hash_defweak)
13082 && sym_hash->root.u.def.section == sec)
13083 {
2309ddf2 13084 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13085
df58fc94
RS
13086 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13087 value &= MINUS_TWO;
13088 if (value > addr)
13089 sym_hash->root.u.def.value -= count;
13090 }
13091 }
13092
13093 return TRUE;
13094}
13095
13096
13097/* Opcodes needed for microMIPS relaxation as found in
13098 opcodes/micromips-opc.c. */
13099
13100struct opcode_descriptor {
13101 unsigned long match;
13102 unsigned long mask;
13103};
13104
13105/* The $ra register aka $31. */
13106
13107#define RA 31
13108
13109/* 32-bit instruction format register fields. */
13110
13111#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13112#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13113
13114/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13115
13116#define OP16_VALID_REG(r) \
13117 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13118
13119
13120/* 32-bit and 16-bit branches. */
13121
13122static const struct opcode_descriptor b_insns_32[] = {
13123 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13124 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13125 { 0, 0 } /* End marker for find_match(). */
13126};
13127
13128static const struct opcode_descriptor bc_insn_32 =
13129 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13130
13131static const struct opcode_descriptor bz_insn_32 =
13132 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13133
13134static const struct opcode_descriptor bzal_insn_32 =
13135 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13136
13137static const struct opcode_descriptor beq_insn_32 =
13138 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13139
13140static const struct opcode_descriptor b_insn_16 =
13141 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13142
13143static const struct opcode_descriptor bz_insn_16 =
c088dedf 13144 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13145
13146
13147/* 32-bit and 16-bit branch EQ and NE zero. */
13148
13149/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13150 eq and second the ne. This convention is used when replacing a
13151 32-bit BEQ/BNE with the 16-bit version. */
13152
13153#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13154
13155static const struct opcode_descriptor bz_rs_insns_32[] = {
13156 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13157 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13158 { 0, 0 } /* End marker for find_match(). */
13159};
13160
13161static const struct opcode_descriptor bz_rt_insns_32[] = {
13162 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13163 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13164 { 0, 0 } /* End marker for find_match(). */
13165};
13166
13167static const struct opcode_descriptor bzc_insns_32[] = {
13168 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13169 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13170 { 0, 0 } /* End marker for find_match(). */
13171};
13172
13173static const struct opcode_descriptor bz_insns_16[] = {
13174 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13175 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13176 { 0, 0 } /* End marker for find_match(). */
13177};
13178
13179/* Switch between a 5-bit register index and its 3-bit shorthand. */
13180
e67f83e5 13181#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13182#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13183
13184
13185/* 32-bit instructions with a delay slot. */
13186
13187static const struct opcode_descriptor jal_insn_32_bd16 =
13188 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13189
13190static const struct opcode_descriptor jal_insn_32_bd32 =
13191 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13192
13193static const struct opcode_descriptor jal_x_insn_32_bd32 =
13194 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13195
13196static const struct opcode_descriptor j_insn_32 =
13197 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13198
13199static const struct opcode_descriptor jalr_insn_32 =
13200 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13201
13202/* This table can be compacted, because no opcode replacement is made. */
13203
13204static const struct opcode_descriptor ds_insns_32_bd16[] = {
13205 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13206
13207 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13208 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13209
13210 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13211 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13212 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13213 { 0, 0 } /* End marker for find_match(). */
13214};
13215
13216/* This table can be compacted, because no opcode replacement is made. */
13217
13218static const struct opcode_descriptor ds_insns_32_bd32[] = {
13219 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13220
13221 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13222 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13223 { 0, 0 } /* End marker for find_match(). */
13224};
13225
13226
13227/* 16-bit instructions with a delay slot. */
13228
13229static const struct opcode_descriptor jalr_insn_16_bd16 =
13230 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13231
13232static const struct opcode_descriptor jalr_insn_16_bd32 =
13233 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13234
13235static const struct opcode_descriptor jr_insn_16 =
13236 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13237
13238#define JR16_REG(opcode) ((opcode) & 0x1f)
13239
13240/* This table can be compacted, because no opcode replacement is made. */
13241
13242static const struct opcode_descriptor ds_insns_16_bd16[] = {
13243 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13244
13245 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13246 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13247 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13248 { 0, 0 } /* End marker for find_match(). */
13249};
13250
13251
13252/* LUI instruction. */
13253
13254static const struct opcode_descriptor lui_insn =
13255 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13256
13257
13258/* ADDIU instruction. */
13259
13260static const struct opcode_descriptor addiu_insn =
13261 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13262
13263static const struct opcode_descriptor addiupc_insn =
13264 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13265
13266#define ADDIUPC_REG_FIELD(r) \
13267 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13268
13269
13270/* Relaxable instructions in a JAL delay slot: MOVE. */
13271
13272/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13273 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13274#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13275#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13276
13277#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13278#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13279
13280static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13281 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13282 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13283 { 0, 0 } /* End marker for find_match(). */
13284};
13285
13286static const struct opcode_descriptor move_insn_16 =
13287 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13288
13289
13290/* NOP instructions. */
13291
13292static const struct opcode_descriptor nop_insn_32 =
13293 { /* "nop", "", */ 0x00000000, 0xffffffff };
13294
13295static const struct opcode_descriptor nop_insn_16 =
13296 { /* "nop", "", */ 0x0c00, 0xffff };
13297
13298
13299/* Instruction match support. */
13300
13301#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13302
13303static int
13304find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13305{
13306 unsigned long indx;
13307
13308 for (indx = 0; insn[indx].mask != 0; indx++)
13309 if (MATCH (opcode, insn[indx]))
13310 return indx;
13311
13312 return -1;
13313}
13314
13315
13316/* Branch and delay slot decoding support. */
13317
13318/* If PTR points to what *might* be a 16-bit branch or jump, then
13319 return the minimum length of its delay slot, otherwise return 0.
13320 Non-zero results are not definitive as we might be checking against
13321 the second half of another instruction. */
13322
13323static int
13324check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13325{
13326 unsigned long opcode;
13327 int bdsize;
13328
13329 opcode = bfd_get_16 (abfd, ptr);
13330 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13331 /* 16-bit branch/jump with a 32-bit delay slot. */
13332 bdsize = 4;
13333 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13334 || find_match (opcode, ds_insns_16_bd16) >= 0)
13335 /* 16-bit branch/jump with a 16-bit delay slot. */
13336 bdsize = 2;
13337 else
13338 /* No delay slot. */
13339 bdsize = 0;
13340
13341 return bdsize;
13342}
13343
13344/* If PTR points to what *might* be a 32-bit branch or jump, then
13345 return the minimum length of its delay slot, otherwise return 0.
13346 Non-zero results are not definitive as we might be checking against
13347 the second half of another instruction. */
13348
13349static int
13350check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13351{
13352 unsigned long opcode;
13353 int bdsize;
13354
d21911ea 13355 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13356 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13357 /* 32-bit branch/jump with a 32-bit delay slot. */
13358 bdsize = 4;
13359 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13360 /* 32-bit branch/jump with a 16-bit delay slot. */
13361 bdsize = 2;
13362 else
13363 /* No delay slot. */
13364 bdsize = 0;
13365
13366 return bdsize;
13367}
13368
13369/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13370 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13371
13372static bfd_boolean
13373check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13374{
13375 unsigned long opcode;
13376
13377 opcode = bfd_get_16 (abfd, ptr);
13378 if (MATCH (opcode, b_insn_16)
13379 /* B16 */
13380 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13381 /* JR16 */
13382 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13383 /* BEQZ16, BNEZ16 */
13384 || (MATCH (opcode, jalr_insn_16_bd32)
13385 /* JALR16 */
13386 && reg != JR16_REG (opcode) && reg != RA))
13387 return TRUE;
13388
13389 return FALSE;
13390}
13391
13392/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13393 then return TRUE, otherwise FALSE. */
13394
f41e5fcc 13395static bfd_boolean
df58fc94
RS
13396check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13397{
13398 unsigned long opcode;
13399
d21911ea 13400 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13401 if (MATCH (opcode, j_insn_32)
13402 /* J */
13403 || MATCH (opcode, bc_insn_32)
13404 /* BC1F, BC1T, BC2F, BC2T */
13405 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13406 /* JAL, JALX */
13407 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13408 /* BGEZ, BGTZ, BLEZ, BLTZ */
13409 || (MATCH (opcode, bzal_insn_32)
13410 /* BGEZAL, BLTZAL */
13411 && reg != OP32_SREG (opcode) && reg != RA)
13412 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13413 /* JALR, JALR.HB, BEQ, BNE */
13414 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13415 return TRUE;
13416
13417 return FALSE;
13418}
13419
80cab405
MR
13420/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13421 IRELEND) at OFFSET indicate that there must be a compact branch there,
13422 then return TRUE, otherwise FALSE. */
df58fc94
RS
13423
13424static bfd_boolean
80cab405
MR
13425check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13426 const Elf_Internal_Rela *internal_relocs,
13427 const Elf_Internal_Rela *irelend)
df58fc94 13428{
80cab405
MR
13429 const Elf_Internal_Rela *irel;
13430 unsigned long opcode;
13431
d21911ea 13432 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13433 if (find_match (opcode, bzc_insns_32) < 0)
13434 return FALSE;
df58fc94
RS
13435
13436 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13437 if (irel->r_offset == offset
13438 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13439 return TRUE;
13440
df58fc94
RS
13441 return FALSE;
13442}
80cab405
MR
13443
13444/* Bitsize checking. */
13445#define IS_BITSIZE(val, N) \
13446 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13447 - (1ULL << ((N) - 1))) == (val))
13448
df58fc94
RS
13449\f
13450bfd_boolean
13451_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13452 struct bfd_link_info *link_info,
13453 bfd_boolean *again)
13454{
833794fc 13455 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13456 Elf_Internal_Shdr *symtab_hdr;
13457 Elf_Internal_Rela *internal_relocs;
13458 Elf_Internal_Rela *irel, *irelend;
13459 bfd_byte *contents = NULL;
13460 Elf_Internal_Sym *isymbuf = NULL;
13461
13462 /* Assume nothing changes. */
13463 *again = FALSE;
13464
13465 /* We don't have to do anything for a relocatable link, if
13466 this section does not have relocs, or if this is not a
13467 code section. */
13468
0e1862bb 13469 if (bfd_link_relocatable (link_info)
df58fc94
RS
13470 || (sec->flags & SEC_RELOC) == 0
13471 || sec->reloc_count == 0
13472 || (sec->flags & SEC_CODE) == 0)
13473 return TRUE;
13474
13475 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13476
13477 /* Get a copy of the native relocations. */
13478 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13479 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13480 link_info->keep_memory));
13481 if (internal_relocs == NULL)
13482 goto error_return;
13483
13484 /* Walk through them looking for relaxing opportunities. */
13485 irelend = internal_relocs + sec->reloc_count;
13486 for (irel = internal_relocs; irel < irelend; irel++)
13487 {
13488 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13489 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13490 bfd_boolean target_is_micromips_code_p;
13491 unsigned long opcode;
13492 bfd_vma symval;
13493 bfd_vma pcrval;
2309ddf2 13494 bfd_byte *ptr;
df58fc94
RS
13495 int fndopc;
13496
13497 /* The number of bytes to delete for relaxation and from where
07d6d2b8 13498 to delete these bytes starting at irel->r_offset. */
df58fc94
RS
13499 int delcnt = 0;
13500 int deloff = 0;
13501
13502 /* If this isn't something that can be relaxed, then ignore
07d6d2b8 13503 this reloc. */
df58fc94
RS
13504 if (r_type != R_MICROMIPS_HI16
13505 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13506 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13507 continue;
13508
13509 /* Get the section contents if we haven't done so already. */
13510 if (contents == NULL)
13511 {
13512 /* Get cached copy if it exists. */
13513 if (elf_section_data (sec)->this_hdr.contents != NULL)
13514 contents = elf_section_data (sec)->this_hdr.contents;
13515 /* Go get them off disk. */
13516 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13517 goto error_return;
13518 }
2309ddf2 13519 ptr = contents + irel->r_offset;
df58fc94
RS
13520
13521 /* Read this BFD's local symbols if we haven't done so already. */
13522 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13523 {
13524 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13525 if (isymbuf == NULL)
13526 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13527 symtab_hdr->sh_info, 0,
13528 NULL, NULL, NULL);
13529 if (isymbuf == NULL)
13530 goto error_return;
13531 }
13532
13533 /* Get the value of the symbol referred to by the reloc. */
13534 if (r_symndx < symtab_hdr->sh_info)
13535 {
13536 /* A local symbol. */
13537 Elf_Internal_Sym *isym;
13538 asection *sym_sec;
13539
13540 isym = isymbuf + r_symndx;
13541 if (isym->st_shndx == SHN_UNDEF)
13542 sym_sec = bfd_und_section_ptr;
13543 else if (isym->st_shndx == SHN_ABS)
13544 sym_sec = bfd_abs_section_ptr;
13545 else if (isym->st_shndx == SHN_COMMON)
13546 sym_sec = bfd_com_section_ptr;
13547 else
13548 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13549 symval = (isym->st_value
13550 + sym_sec->output_section->vma
13551 + sym_sec->output_offset);
13552 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13553 }
13554 else
13555 {
13556 unsigned long indx;
13557 struct elf_link_hash_entry *h;
13558
13559 /* An external symbol. */
13560 indx = r_symndx - symtab_hdr->sh_info;
13561 h = elf_sym_hashes (abfd)[indx];
13562 BFD_ASSERT (h != NULL);
13563
13564 if (h->root.type != bfd_link_hash_defined
13565 && h->root.type != bfd_link_hash_defweak)
13566 /* This appears to be a reference to an undefined
13567 symbol. Just ignore it -- it will be caught by the
13568 regular reloc processing. */
13569 continue;
13570
13571 symval = (h->root.u.def.value
13572 + h->root.u.def.section->output_section->vma
13573 + h->root.u.def.section->output_offset);
13574 target_is_micromips_code_p = (!h->needs_plt
13575 && ELF_ST_IS_MICROMIPS (h->other));
13576 }
13577
13578
13579 /* For simplicity of coding, we are going to modify the
07d6d2b8
AM
13580 section contents, the section relocs, and the BFD symbol
13581 table. We must tell the rest of the code not to free up this
13582 information. It would be possible to instead create a table
13583 of changes which have to be made, as is done in coff-mips.c;
13584 that would be more work, but would require less memory when
13585 the linker is run. */
df58fc94
RS
13586
13587 /* Only 32-bit instructions relaxed. */
13588 if (irel->r_offset + 4 > sec->size)
13589 continue;
13590
d21911ea 13591 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13592
13593 /* This is the pc-relative distance from the instruction the
07d6d2b8 13594 relocation is applied to, to the symbol referred. */
df58fc94
RS
13595 pcrval = (symval
13596 - (sec->output_section->vma + sec->output_offset)
13597 - irel->r_offset);
13598
13599 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
07d6d2b8
AM
13600 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13601 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
df58fc94 13602
07d6d2b8 13603 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
df58fc94 13604
07d6d2b8
AM
13605 where pcrval has first to be adjusted to apply against the LO16
13606 location (we make the adjustment later on, when we have figured
13607 out the offset). */
df58fc94
RS
13608 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13609 {
80cab405 13610 bfd_boolean bzc = FALSE;
df58fc94
RS
13611 unsigned long nextopc;
13612 unsigned long reg;
13613 bfd_vma offset;
13614
13615 /* Give up if the previous reloc was a HI16 against this symbol
13616 too. */
13617 if (irel > internal_relocs
13618 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13619 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13620 continue;
13621
13622 /* Or if the next reloc is not a LO16 against this symbol. */
13623 if (irel + 1 >= irelend
13624 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13625 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13626 continue;
13627
13628 /* Or if the second next reloc is a LO16 against this symbol too. */
13629 if (irel + 2 >= irelend
13630 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13631 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13632 continue;
13633
80cab405
MR
13634 /* See if the LUI instruction *might* be in a branch delay slot.
13635 We check whether what looks like a 16-bit branch or jump is
13636 actually an immediate argument to a compact branch, and let
13637 it through if so. */
df58fc94 13638 if (irel->r_offset >= 2
2309ddf2 13639 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13640 && !(irel->r_offset >= 4
80cab405
MR
13641 && (bzc = check_relocated_bzc (abfd,
13642 ptr - 4, irel->r_offset - 4,
13643 internal_relocs, irelend))))
df58fc94
RS
13644 continue;
13645 if (irel->r_offset >= 4
80cab405 13646 && !bzc
2309ddf2 13647 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13648 continue;
13649
13650 reg = OP32_SREG (opcode);
13651
13652 /* We only relax adjacent instructions or ones separated with
13653 a branch or jump that has a delay slot. The branch or jump
13654 must not fiddle with the register used to hold the address.
13655 Subtract 4 for the LUI itself. */
13656 offset = irel[1].r_offset - irel[0].r_offset;
13657 switch (offset - 4)
13658 {
13659 case 0:
13660 break;
13661 case 2:
2309ddf2 13662 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
13663 break;
13664 continue;
13665 case 4:
2309ddf2 13666 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
13667 break;
13668 continue;
13669 default:
13670 continue;
13671 }
13672
d21911ea 13673 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
13674
13675 /* Give up unless the same register is used with both
13676 relocations. */
13677 if (OP32_SREG (nextopc) != reg)
13678 continue;
13679
13680 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13681 and rounding up to take masking of the two LSBs into account. */
13682 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13683
13684 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13685 if (IS_BITSIZE (symval, 16))
13686 {
13687 /* Fix the relocation's type. */
13688 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13689
13690 /* Instructions using R_MICROMIPS_LO16 have the base or
07d6d2b8
AM
13691 source register in bits 20:16. This register becomes $0
13692 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
df58fc94
RS
13693 nextopc &= ~0x001f0000;
13694 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13695 contents + irel[1].r_offset);
13696 }
13697
13698 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13699 We add 4 to take LUI deletion into account while checking
13700 the PC-relative distance. */
13701 else if (symval % 4 == 0
13702 && IS_BITSIZE (pcrval + 4, 25)
13703 && MATCH (nextopc, addiu_insn)
13704 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13705 && OP16_VALID_REG (OP32_TREG (nextopc)))
13706 {
13707 /* Fix the relocation's type. */
13708 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13709
13710 /* Replace ADDIU with the ADDIUPC version. */
13711 nextopc = (addiupc_insn.match
13712 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13713
d21911ea
MR
13714 bfd_put_micromips_32 (abfd, nextopc,
13715 contents + irel[1].r_offset);
df58fc94
RS
13716 }
13717
13718 /* Can't do anything, give up, sigh... */
13719 else
13720 continue;
13721
13722 /* Fix the relocation's type. */
13723 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13724
13725 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13726 delcnt = 4;
13727 deloff = 0;
13728 }
13729
13730 /* Compact branch relaxation -- due to the multitude of macros
07d6d2b8
AM
13731 employed by the compiler/assembler, compact branches are not
13732 always generated. Obviously, this can/will be fixed elsewhere,
13733 but there is no drawback in double checking it here. */
df58fc94
RS
13734 else if (r_type == R_MICROMIPS_PC16_S1
13735 && irel->r_offset + 5 < sec->size
13736 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13737 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
13738 && ((!insn32
13739 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13740 nop_insn_16) ? 2 : 0))
13741 || (irel->r_offset + 7 < sec->size
13742 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13743 ptr + 4),
13744 nop_insn_32) ? 4 : 0))))
df58fc94
RS
13745 {
13746 unsigned long reg;
13747
13748 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13749
13750 /* Replace BEQZ/BNEZ with the compact version. */
13751 opcode = (bzc_insns_32[fndopc].match
13752 | BZC32_REG_FIELD (reg)
13753 | (opcode & 0xffff)); /* Addend value. */
13754
d21911ea 13755 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 13756
833794fc
MR
13757 /* Delete the delay slot NOP: two or four bytes from
13758 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
13759 deloff = 4;
13760 }
13761
13762 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
07d6d2b8 13763 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13764 else if (!insn32
13765 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13766 && IS_BITSIZE (pcrval - 2, 11)
13767 && find_match (opcode, b_insns_32) >= 0)
13768 {
13769 /* Fix the relocation's type. */
13770 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13771
a8685210 13772 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13773 bfd_put_16 (abfd,
13774 (b_insn_16.match
13775 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 13776 ptr);
df58fc94
RS
13777
13778 /* Delete 2 bytes from irel->r_offset + 2. */
13779 delcnt = 2;
13780 deloff = 2;
13781 }
13782
13783 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
07d6d2b8 13784 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13785 else if (!insn32
13786 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13787 && IS_BITSIZE (pcrval - 2, 8)
13788 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13789 && OP16_VALID_REG (OP32_SREG (opcode)))
13790 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13791 && OP16_VALID_REG (OP32_TREG (opcode)))))
13792 {
13793 unsigned long reg;
13794
13795 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13796
13797 /* Fix the relocation's type. */
13798 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13799
a8685210 13800 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13801 bfd_put_16 (abfd,
13802 (bz_insns_16[fndopc].match
13803 | BZ16_REG_FIELD (reg)
13804 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 13805 ptr);
df58fc94
RS
13806
13807 /* Delete 2 bytes from irel->r_offset + 2. */
13808 delcnt = 2;
13809 deloff = 2;
13810 }
13811
13812 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
13813 else if (!insn32
13814 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
13815 && target_is_micromips_code_p
13816 && irel->r_offset + 7 < sec->size
13817 && MATCH (opcode, jal_insn_32_bd32))
13818 {
13819 unsigned long n32opc;
13820 bfd_boolean relaxed = FALSE;
13821
d21911ea 13822 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
13823
13824 if (MATCH (n32opc, nop_insn_32))
13825 {
13826 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 13827 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
13828
13829 relaxed = TRUE;
13830 }
13831 else if (find_match (n32opc, move_insns_32) >= 0)
13832 {
13833 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13834 bfd_put_16 (abfd,
13835 (move_insn_16.match
13836 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13837 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 13838 ptr + 4);
df58fc94
RS
13839
13840 relaxed = TRUE;
13841 }
13842 /* Other 32-bit instructions relaxable to 16-bit
13843 instructions will be handled here later. */
13844
13845 if (relaxed)
13846 {
13847 /* JAL with 32-bit delay slot that is changed to a JALS
07d6d2b8 13848 with 16-bit delay slot. */
d21911ea 13849 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
13850
13851 /* Delete 2 bytes from irel->r_offset + 6. */
13852 delcnt = 2;
13853 deloff = 6;
13854 }
13855 }
13856
13857 if (delcnt != 0)
13858 {
13859 /* Note that we've changed the relocs, section contents, etc. */
13860 elf_section_data (sec)->relocs = internal_relocs;
13861 elf_section_data (sec)->this_hdr.contents = contents;
13862 symtab_hdr->contents = (unsigned char *) isymbuf;
13863
13864 /* Delete bytes depending on the delcnt and deloff. */
13865 if (!mips_elf_relax_delete_bytes (abfd, sec,
13866 irel->r_offset + deloff, delcnt))
13867 goto error_return;
13868
13869 /* That will change things, so we should relax again.
13870 Note that this is not required, and it may be slow. */
13871 *again = TRUE;
13872 }
13873 }
13874
13875 if (isymbuf != NULL
13876 && symtab_hdr->contents != (unsigned char *) isymbuf)
13877 {
13878 if (! link_info->keep_memory)
13879 free (isymbuf);
13880 else
13881 {
13882 /* Cache the symbols for elf_link_input_bfd. */
13883 symtab_hdr->contents = (unsigned char *) isymbuf;
13884 }
13885 }
13886
13887 if (contents != NULL
13888 && elf_section_data (sec)->this_hdr.contents != contents)
13889 {
13890 if (! link_info->keep_memory)
13891 free (contents);
13892 else
13893 {
13894 /* Cache the section contents for elf_link_input_bfd. */
13895 elf_section_data (sec)->this_hdr.contents = contents;
13896 }
13897 }
13898
13899 if (internal_relocs != NULL
13900 && elf_section_data (sec)->relocs != internal_relocs)
13901 free (internal_relocs);
13902
13903 return TRUE;
13904
13905 error_return:
13906 if (isymbuf != NULL
13907 && symtab_hdr->contents != (unsigned char *) isymbuf)
13908 free (isymbuf);
13909 if (contents != NULL
13910 && elf_section_data (sec)->this_hdr.contents != contents)
13911 free (contents);
13912 if (internal_relocs != NULL
13913 && elf_section_data (sec)->relocs != internal_relocs)
13914 free (internal_relocs);
13915
13916 return FALSE;
13917}
13918\f
b49e97c9
TS
13919/* Create a MIPS ELF linker hash table. */
13920
13921struct bfd_link_hash_table *
9719ad41 13922_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
13923{
13924 struct mips_elf_link_hash_table *ret;
13925 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13926
7bf52ea2 13927 ret = bfd_zmalloc (amt);
9719ad41 13928 if (ret == NULL)
b49e97c9
TS
13929 return NULL;
13930
66eb6687
AM
13931 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13932 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
13933 sizeof (struct mips_elf_link_hash_entry),
13934 MIPS_ELF_DATA))
b49e97c9 13935 {
e2d34d7d 13936 free (ret);
b49e97c9
TS
13937 return NULL;
13938 }
1bbce132
MR
13939 ret->root.init_plt_refcount.plist = NULL;
13940 ret->root.init_plt_offset.plist = NULL;
b49e97c9 13941
b49e97c9
TS
13942 return &ret->root.root;
13943}
0a44bf69
RS
13944
13945/* Likewise, but indicate that the target is VxWorks. */
13946
13947struct bfd_link_hash_table *
13948_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13949{
13950 struct bfd_link_hash_table *ret;
13951
13952 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13953 if (ret)
13954 {
13955 struct mips_elf_link_hash_table *htab;
13956
13957 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
13958 htab->use_plts_and_copy_relocs = TRUE;
13959 htab->is_vxworks = TRUE;
0a44bf69
RS
13960 }
13961 return ret;
13962}
861fb55a
DJ
13963
13964/* A function that the linker calls if we are allowed to use PLTs
13965 and copy relocs. */
13966
13967void
13968_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13969{
13970 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13971}
833794fc
MR
13972
13973/* A function that the linker calls to select between all or only
8b10b0b3
MR
13974 32-bit microMIPS instructions, and between making or ignoring
13975 branch relocation checks for invalid transitions between ISA modes. */
833794fc
MR
13976
13977void
8b10b0b3
MR
13978_bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13979 bfd_boolean ignore_branch_isa)
833794fc 13980{
8b10b0b3
MR
13981 mips_elf_hash_table (info)->insn32 = insn32;
13982 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
833794fc 13983}
b49e97c9 13984\f
c97c330b
MF
13985/* Structure for saying that BFD machine EXTENSION extends BASE. */
13986
13987struct mips_mach_extension
13988{
13989 unsigned long extension, base;
13990};
13991
13992
13993/* An array describing how BFD machines relate to one another. The entries
13994 are ordered topologically with MIPS I extensions listed last. */
13995
13996static const struct mips_mach_extension mips_mach_extensions[] =
13997{
13998 /* MIPS64r2 extensions. */
13999 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14000 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14001 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14002 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
bd782c07 14003 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
ac8cb70f 14004 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
c97c330b
MF
14005
14006 /* MIPS64 extensions. */
14007 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14008 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14009 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14010
14011 /* MIPS V extensions. */
14012 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14013
14014 /* R10000 extensions. */
14015 { bfd_mach_mips12000, bfd_mach_mips10000 },
14016 { bfd_mach_mips14000, bfd_mach_mips10000 },
14017 { bfd_mach_mips16000, bfd_mach_mips10000 },
14018
14019 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14020 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14021 better to allow vr5400 and vr5500 code to be merged anyway, since
14022 many libraries will just use the core ISA. Perhaps we could add
14023 some sort of ASE flag if this ever proves a problem. */
14024 { bfd_mach_mips5500, bfd_mach_mips5400 },
14025 { bfd_mach_mips5400, bfd_mach_mips5000 },
14026
14027 /* MIPS IV extensions. */
14028 { bfd_mach_mips5, bfd_mach_mips8000 },
14029 { bfd_mach_mips10000, bfd_mach_mips8000 },
14030 { bfd_mach_mips5000, bfd_mach_mips8000 },
14031 { bfd_mach_mips7000, bfd_mach_mips8000 },
14032 { bfd_mach_mips9000, bfd_mach_mips8000 },
14033
14034 /* VR4100 extensions. */
14035 { bfd_mach_mips4120, bfd_mach_mips4100 },
14036 { bfd_mach_mips4111, bfd_mach_mips4100 },
14037
14038 /* MIPS III extensions. */
14039 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14040 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14041 { bfd_mach_mips8000, bfd_mach_mips4000 },
14042 { bfd_mach_mips4650, bfd_mach_mips4000 },
14043 { bfd_mach_mips4600, bfd_mach_mips4000 },
14044 { bfd_mach_mips4400, bfd_mach_mips4000 },
14045 { bfd_mach_mips4300, bfd_mach_mips4000 },
14046 { bfd_mach_mips4100, bfd_mach_mips4000 },
c97c330b
MF
14047 { bfd_mach_mips5900, bfd_mach_mips4000 },
14048
38bf472a
MR
14049 /* MIPS32r3 extensions. */
14050 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14051
14052 /* MIPS32r2 extensions. */
14053 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14054
c97c330b
MF
14055 /* MIPS32 extensions. */
14056 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14057
14058 /* MIPS II extensions. */
14059 { bfd_mach_mips4000, bfd_mach_mips6000 },
14060 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
b417536f 14061 { bfd_mach_mips4010, bfd_mach_mips6000 },
c97c330b
MF
14062
14063 /* MIPS I extensions. */
14064 { bfd_mach_mips6000, bfd_mach_mips3000 },
14065 { bfd_mach_mips3900, bfd_mach_mips3000 }
14066};
14067
14068/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14069
14070static bfd_boolean
14071mips_mach_extends_p (unsigned long base, unsigned long extension)
14072{
14073 size_t i;
14074
14075 if (extension == base)
14076 return TRUE;
14077
14078 if (base == bfd_mach_mipsisa32
14079 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14080 return TRUE;
14081
14082 if (base == bfd_mach_mipsisa32r2
14083 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14084 return TRUE;
14085
14086 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14087 if (extension == mips_mach_extensions[i].extension)
14088 {
14089 extension = mips_mach_extensions[i].base;
14090 if (extension == base)
14091 return TRUE;
14092 }
14093
14094 return FALSE;
14095}
14096
14097/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14098
14099static unsigned long
14100bfd_mips_isa_ext_mach (unsigned int isa_ext)
14101{
14102 switch (isa_ext)
14103 {
07d6d2b8
AM
14104 case AFL_EXT_3900: return bfd_mach_mips3900;
14105 case AFL_EXT_4010: return bfd_mach_mips4010;
14106 case AFL_EXT_4100: return bfd_mach_mips4100;
14107 case AFL_EXT_4111: return bfd_mach_mips4111;
14108 case AFL_EXT_4120: return bfd_mach_mips4120;
14109 case AFL_EXT_4650: return bfd_mach_mips4650;
14110 case AFL_EXT_5400: return bfd_mach_mips5400;
14111 case AFL_EXT_5500: return bfd_mach_mips5500;
14112 case AFL_EXT_5900: return bfd_mach_mips5900;
14113 case AFL_EXT_10000: return bfd_mach_mips10000;
c97c330b
MF
14114 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14115 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
07d6d2b8 14116 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
c97c330b
MF
14117 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14118 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14119 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
07d6d2b8
AM
14120 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14121 default: return bfd_mach_mips3000;
c97c330b
MF
14122 }
14123}
14124
351cdf24
MF
14125/* Return the .MIPS.abiflags value representing each ISA Extension. */
14126
14127unsigned int
14128bfd_mips_isa_ext (bfd *abfd)
14129{
14130 switch (bfd_get_mach (abfd))
14131 {
07d6d2b8
AM
14132 case bfd_mach_mips3900: return AFL_EXT_3900;
14133 case bfd_mach_mips4010: return AFL_EXT_4010;
14134 case bfd_mach_mips4100: return AFL_EXT_4100;
14135 case bfd_mach_mips4111: return AFL_EXT_4111;
14136 case bfd_mach_mips4120: return AFL_EXT_4120;
14137 case bfd_mach_mips4650: return AFL_EXT_4650;
14138 case bfd_mach_mips5400: return AFL_EXT_5400;
14139 case bfd_mach_mips5500: return AFL_EXT_5500;
14140 case bfd_mach_mips5900: return AFL_EXT_5900;
14141 case bfd_mach_mips10000: return AFL_EXT_10000;
c97c330b
MF
14142 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14143 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
07d6d2b8
AM
14144 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14145 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14146 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14147 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14148 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14149 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
38bf472a
MR
14150 case bfd_mach_mips_interaptiv_mr2:
14151 return AFL_EXT_INTERAPTIV_MR2;
07d6d2b8 14152 default: return 0;
c97c330b
MF
14153 }
14154}
14155
14156/* Encode ISA level and revision as a single value. */
14157#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14158
14159/* Decode a single value into level and revision. */
14160#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14161#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14162
14163/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14164
14165static void
14166update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14167{
c97c330b 14168 int new_isa = 0;
351cdf24
MF
14169 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14170 {
c97c330b
MF
14171 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14172 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14173 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14174 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14175 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14176 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14177 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14178 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14179 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14180 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14181 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24 14182 default:
4eca0228 14183 _bfd_error_handler
695344c0 14184 /* xgettext:c-format */
2c1c9679 14185 (_("%pB: unknown architecture %s"),
351cdf24
MF
14186 abfd, bfd_printable_name (abfd));
14187 }
14188
c97c330b
MF
14189 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14190 {
14191 abiflags->isa_level = ISA_LEVEL (new_isa);
14192 abiflags->isa_rev = ISA_REV (new_isa);
14193 }
14194
14195 /* Update the isa_ext if ABFD describes a further extension. */
14196 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14197 bfd_get_mach (abfd)))
14198 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14199}
14200
14201/* Return true if the given ELF header flags describe a 32-bit binary. */
14202
14203static bfd_boolean
14204mips_32bit_flags_p (flagword flags)
14205{
14206 return ((flags & EF_MIPS_32BITMODE) != 0
14207 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14208 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14209 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14210 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14211 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14212 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14213 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14214}
14215
14216/* Infer the content of the ABI flags based on the elf header. */
14217
14218static void
14219infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14220{
14221 obj_attribute *in_attr;
14222
14223 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14224 update_mips_abiflags_isa (abfd, abiflags);
14225
14226 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14227 abiflags->gpr_size = AFL_REG_32;
14228 else
14229 abiflags->gpr_size = AFL_REG_64;
14230
14231 abiflags->cpr1_size = AFL_REG_NONE;
14232
14233 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14234 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14235
14236 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14237 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14238 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14239 && abiflags->gpr_size == AFL_REG_32))
14240 abiflags->cpr1_size = AFL_REG_32;
14241 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14242 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14243 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14244 abiflags->cpr1_size = AFL_REG_64;
14245
14246 abiflags->cpr2_size = AFL_REG_NONE;
14247
14248 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14249 abiflags->ases |= AFL_ASE_MDMX;
14250 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14251 abiflags->ases |= AFL_ASE_MIPS16;
14252 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14253 abiflags->ases |= AFL_ASE_MICROMIPS;
14254
14255 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14256 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14257 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14258 && abiflags->isa_level >= 32
bdc6c06e 14259 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
351cdf24
MF
14260 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14261}
14262
b49e97c9
TS
14263/* We need to use a special link routine to handle the .reginfo and
14264 the .mdebug sections. We need to merge all instances of these
14265 sections together, not write them all out sequentially. */
14266
b34976b6 14267bfd_boolean
9719ad41 14268_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14269{
b49e97c9
TS
14270 asection *o;
14271 struct bfd_link_order *p;
14272 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14273 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14274 Elf32_RegInfo reginfo;
14275 struct ecoff_debug_info debug;
861fb55a 14276 struct mips_htab_traverse_info hti;
7a2a6943
NC
14277 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14278 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14279 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14280 void *mdebug_handle = NULL;
b49e97c9
TS
14281 asection *s;
14282 EXTR esym;
14283 unsigned int i;
14284 bfd_size_type amt;
0a44bf69 14285 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14286
14287 static const char * const secname[] =
14288 {
14289 ".text", ".init", ".fini", ".data",
14290 ".rodata", ".sdata", ".sbss", ".bss"
14291 };
14292 static const int sc[] =
14293 {
14294 scText, scInit, scFini, scData,
14295 scRData, scSData, scSBss, scBss
14296 };
14297
0a44bf69 14298 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14299 BFD_ASSERT (htab != NULL);
14300
64575f78
MR
14301 /* Sort the dynamic symbols so that those with GOT entries come after
14302 those without. */
d4596a51
RS
14303 if (!mips_elf_sort_hash_table (abfd, info))
14304 return FALSE;
b49e97c9 14305
861fb55a
DJ
14306 /* Create any scheduled LA25 stubs. */
14307 hti.info = info;
14308 hti.output_bfd = abfd;
14309 hti.error = FALSE;
14310 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14311 if (hti.error)
14312 return FALSE;
14313
b49e97c9
TS
14314 /* Get a value for the GP register. */
14315 if (elf_gp (abfd) == 0)
14316 {
14317 struct bfd_link_hash_entry *h;
14318
b34976b6 14319 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14320 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14321 elf_gp (abfd) = (h->u.def.value
14322 + h->u.def.section->output_section->vma
14323 + h->u.def.section->output_offset);
0a44bf69
RS
14324 else if (htab->is_vxworks
14325 && (h = bfd_link_hash_lookup (info->hash,
14326 "_GLOBAL_OFFSET_TABLE_",
14327 FALSE, FALSE, TRUE))
14328 && h->type == bfd_link_hash_defined)
14329 elf_gp (abfd) = (h->u.def.section->output_section->vma
14330 + h->u.def.section->output_offset
14331 + h->u.def.value);
0e1862bb 14332 else if (bfd_link_relocatable (info))
b49e97c9
TS
14333 {
14334 bfd_vma lo = MINUS_ONE;
14335
14336 /* Find the GP-relative section with the lowest offset. */
9719ad41 14337 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14338 if (o->vma < lo
14339 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14340 lo = o->vma;
14341
14342 /* And calculate GP relative to that. */
0a44bf69 14343 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14344 }
14345 else
14346 {
14347 /* If the relocate_section function needs to do a reloc
14348 involving the GP value, it should make a reloc_dangerous
14349 callback to warn that GP is not defined. */
14350 }
14351 }
14352
14353 /* Go through the sections and collect the .reginfo and .mdebug
14354 information. */
351cdf24 14355 abiflags_sec = NULL;
b49e97c9
TS
14356 reginfo_sec = NULL;
14357 mdebug_sec = NULL;
14358 gptab_data_sec = NULL;
14359 gptab_bss_sec = NULL;
9719ad41 14360 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14361 {
351cdf24
MF
14362 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14363 {
14364 /* We have found the .MIPS.abiflags section in the output file.
14365 Look through all the link_orders comprising it and remove them.
14366 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14367 for (p = o->map_head.link_order; p != NULL; p = p->next)
14368 {
14369 asection *input_section;
14370
14371 if (p->type != bfd_indirect_link_order)
14372 {
14373 if (p->type == bfd_data_link_order)
14374 continue;
14375 abort ();
14376 }
14377
14378 input_section = p->u.indirect.section;
14379
14380 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14381 elf_link_input_bfd ignores this section. */
14382 input_section->flags &= ~SEC_HAS_CONTENTS;
14383 }
14384
14385 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14386 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14387
14388 /* Skip this section later on (I don't think this currently
14389 matters, but someday it might). */
14390 o->map_head.link_order = NULL;
14391
14392 abiflags_sec = o;
14393 }
14394
b49e97c9
TS
14395 if (strcmp (o->name, ".reginfo") == 0)
14396 {
14397 memset (&reginfo, 0, sizeof reginfo);
14398
14399 /* We have found the .reginfo section in the output file.
14400 Look through all the link_orders comprising it and merge
14401 the information together. */
8423293d 14402 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14403 {
14404 asection *input_section;
14405 bfd *input_bfd;
14406 Elf32_External_RegInfo ext;
14407 Elf32_RegInfo sub;
6798f8bf 14408 bfd_size_type sz;
b49e97c9
TS
14409
14410 if (p->type != bfd_indirect_link_order)
14411 {
14412 if (p->type == bfd_data_link_order)
14413 continue;
14414 abort ();
14415 }
14416
14417 input_section = p->u.indirect.section;
14418 input_bfd = input_section->owner;
14419
6798f8bf
MR
14420 sz = (input_section->size < sizeof (ext)
14421 ? input_section->size : sizeof (ext));
14422 memset (&ext, 0, sizeof (ext));
b49e97c9 14423 if (! bfd_get_section_contents (input_bfd, input_section,
6798f8bf 14424 &ext, 0, sz))
b34976b6 14425 return FALSE;
b49e97c9
TS
14426
14427 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14428
14429 reginfo.ri_gprmask |= sub.ri_gprmask;
14430 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14431 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14432 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14433 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14434
14435 /* ri_gp_value is set by the function
1c5e4ee9 14436 `_bfd_mips_elf_section_processing' when the section is
b49e97c9
TS
14437 finally written out. */
14438
14439 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14440 elf_link_input_bfd ignores this section. */
14441 input_section->flags &= ~SEC_HAS_CONTENTS;
14442 }
14443
14444 /* Size has been set in _bfd_mips_elf_always_size_sections. */
b248d650 14445 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14446
14447 /* Skip this section later on (I don't think this currently
14448 matters, but someday it might). */
8423293d 14449 o->map_head.link_order = NULL;
b49e97c9
TS
14450
14451 reginfo_sec = o;
14452 }
14453
14454 if (strcmp (o->name, ".mdebug") == 0)
14455 {
14456 struct extsym_info einfo;
14457 bfd_vma last;
14458
14459 /* We have found the .mdebug section in the output file.
14460 Look through all the link_orders comprising it and merge
14461 the information together. */
14462 symhdr->magic = swap->sym_magic;
14463 /* FIXME: What should the version stamp be? */
14464 symhdr->vstamp = 0;
14465 symhdr->ilineMax = 0;
14466 symhdr->cbLine = 0;
14467 symhdr->idnMax = 0;
14468 symhdr->ipdMax = 0;
14469 symhdr->isymMax = 0;
14470 symhdr->ioptMax = 0;
14471 symhdr->iauxMax = 0;
14472 symhdr->issMax = 0;
14473 symhdr->issExtMax = 0;
14474 symhdr->ifdMax = 0;
14475 symhdr->crfd = 0;
14476 symhdr->iextMax = 0;
14477
14478 /* We accumulate the debugging information itself in the
14479 debug_info structure. */
14480 debug.line = NULL;
14481 debug.external_dnr = NULL;
14482 debug.external_pdr = NULL;
14483 debug.external_sym = NULL;
14484 debug.external_opt = NULL;
14485 debug.external_aux = NULL;
14486 debug.ss = NULL;
14487 debug.ssext = debug.ssext_end = NULL;
14488 debug.external_fdr = NULL;
14489 debug.external_rfd = NULL;
14490 debug.external_ext = debug.external_ext_end = NULL;
14491
14492 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14493 if (mdebug_handle == NULL)
b34976b6 14494 return FALSE;
b49e97c9
TS
14495
14496 esym.jmptbl = 0;
14497 esym.cobol_main = 0;
14498 esym.weakext = 0;
14499 esym.reserved = 0;
14500 esym.ifd = ifdNil;
14501 esym.asym.iss = issNil;
14502 esym.asym.st = stLocal;
14503 esym.asym.reserved = 0;
14504 esym.asym.index = indexNil;
14505 last = 0;
14506 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14507 {
14508 esym.asym.sc = sc[i];
14509 s = bfd_get_section_by_name (abfd, secname[i]);
14510 if (s != NULL)
14511 {
14512 esym.asym.value = s->vma;
eea6121a 14513 last = s->vma + s->size;
b49e97c9
TS
14514 }
14515 else
14516 esym.asym.value = last;
14517 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14518 secname[i], &esym))
b34976b6 14519 return FALSE;
b49e97c9
TS
14520 }
14521
8423293d 14522 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14523 {
14524 asection *input_section;
14525 bfd *input_bfd;
14526 const struct ecoff_debug_swap *input_swap;
14527 struct ecoff_debug_info input_debug;
14528 char *eraw_src;
14529 char *eraw_end;
14530
14531 if (p->type != bfd_indirect_link_order)
14532 {
14533 if (p->type == bfd_data_link_order)
14534 continue;
14535 abort ();
14536 }
14537
14538 input_section = p->u.indirect.section;
14539 input_bfd = input_section->owner;
14540
d5eaccd7 14541 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14542 {
14543 /* I don't know what a non MIPS ELF bfd would be
14544 doing with a .mdebug section, but I don't really
14545 want to deal with it. */
14546 continue;
14547 }
14548
14549 input_swap = (get_elf_backend_data (input_bfd)
14550 ->elf_backend_ecoff_debug_swap);
14551
eea6121a 14552 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14553
14554 /* The ECOFF linking code expects that we have already
14555 read in the debugging information and set up an
14556 ecoff_debug_info structure, so we do that now. */
14557 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14558 &input_debug))
b34976b6 14559 return FALSE;
b49e97c9
TS
14560
14561 if (! (bfd_ecoff_debug_accumulate
14562 (mdebug_handle, abfd, &debug, swap, input_bfd,
14563 &input_debug, input_swap, info)))
b34976b6 14564 return FALSE;
b49e97c9
TS
14565
14566 /* Loop through the external symbols. For each one with
14567 interesting information, try to find the symbol in
14568 the linker global hash table and save the information
14569 for the output external symbols. */
14570 eraw_src = input_debug.external_ext;
14571 eraw_end = (eraw_src
14572 + (input_debug.symbolic_header.iextMax
14573 * input_swap->external_ext_size));
14574 for (;
14575 eraw_src < eraw_end;
14576 eraw_src += input_swap->external_ext_size)
14577 {
14578 EXTR ext;
14579 const char *name;
14580 struct mips_elf_link_hash_entry *h;
14581
9719ad41 14582 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14583 if (ext.asym.sc == scNil
14584 || ext.asym.sc == scUndefined
14585 || ext.asym.sc == scSUndefined)
14586 continue;
14587
14588 name = input_debug.ssext + ext.asym.iss;
14589 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14590 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14591 if (h == NULL || h->esym.ifd != -2)
14592 continue;
14593
14594 if (ext.ifd != -1)
14595 {
14596 BFD_ASSERT (ext.ifd
14597 < input_debug.symbolic_header.ifdMax);
14598 ext.ifd = input_debug.ifdmap[ext.ifd];
14599 }
14600
14601 h->esym = ext;
14602 }
14603
14604 /* Free up the information we just read. */
14605 free (input_debug.line);
14606 free (input_debug.external_dnr);
14607 free (input_debug.external_pdr);
14608 free (input_debug.external_sym);
14609 free (input_debug.external_opt);
14610 free (input_debug.external_aux);
14611 free (input_debug.ss);
14612 free (input_debug.ssext);
14613 free (input_debug.external_fdr);
14614 free (input_debug.external_rfd);
14615 free (input_debug.external_ext);
14616
14617 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14618 elf_link_input_bfd ignores this section. */
14619 input_section->flags &= ~SEC_HAS_CONTENTS;
14620 }
14621
0e1862bb 14622 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14623 {
14624 /* Create .rtproc section. */
87e0a731 14625 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14626 if (rtproc_sec == NULL)
14627 {
14628 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14629 | SEC_LINKER_CREATED | SEC_READONLY);
14630
87e0a731
AM
14631 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14632 ".rtproc",
14633 flags);
b49e97c9 14634 if (rtproc_sec == NULL
b49e97c9 14635 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 14636 return FALSE;
b49e97c9
TS
14637 }
14638
14639 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14640 info, rtproc_sec,
14641 &debug))
b34976b6 14642 return FALSE;
b49e97c9
TS
14643 }
14644
14645 /* Build the external symbol information. */
14646 einfo.abfd = abfd;
14647 einfo.info = info;
14648 einfo.debug = &debug;
14649 einfo.swap = swap;
b34976b6 14650 einfo.failed = FALSE;
b49e97c9 14651 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 14652 mips_elf_output_extsym, &einfo);
b49e97c9 14653 if (einfo.failed)
b34976b6 14654 return FALSE;
b49e97c9
TS
14655
14656 /* Set the size of the .mdebug section. */
eea6121a 14657 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
14658
14659 /* Skip this section later on (I don't think this currently
14660 matters, but someday it might). */
8423293d 14661 o->map_head.link_order = NULL;
b49e97c9
TS
14662
14663 mdebug_sec = o;
14664 }
14665
0112cd26 14666 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
14667 {
14668 const char *subname;
14669 unsigned int c;
14670 Elf32_gptab *tab;
14671 Elf32_External_gptab *ext_tab;
14672 unsigned int j;
14673
14674 /* The .gptab.sdata and .gptab.sbss sections hold
14675 information describing how the small data area would
14676 change depending upon the -G switch. These sections
14677 not used in executables files. */
0e1862bb 14678 if (! bfd_link_relocatable (info))
b49e97c9 14679 {
8423293d 14680 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14681 {
14682 asection *input_section;
14683
14684 if (p->type != bfd_indirect_link_order)
14685 {
14686 if (p->type == bfd_data_link_order)
14687 continue;
14688 abort ();
14689 }
14690
14691 input_section = p->u.indirect.section;
14692
14693 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14694 elf_link_input_bfd ignores this section. */
14695 input_section->flags &= ~SEC_HAS_CONTENTS;
14696 }
14697
14698 /* Skip this section later on (I don't think this
14699 currently matters, but someday it might). */
8423293d 14700 o->map_head.link_order = NULL;
b49e97c9
TS
14701
14702 /* Really remove the section. */
5daa8fe7 14703 bfd_section_list_remove (abfd, o);
b49e97c9
TS
14704 --abfd->section_count;
14705
14706 continue;
14707 }
14708
14709 /* There is one gptab for initialized data, and one for
14710 uninitialized data. */
14711 if (strcmp (o->name, ".gptab.sdata") == 0)
14712 gptab_data_sec = o;
14713 else if (strcmp (o->name, ".gptab.sbss") == 0)
14714 gptab_bss_sec = o;
14715 else
14716 {
4eca0228 14717 _bfd_error_handler
695344c0 14718 /* xgettext:c-format */
871b3ab2 14719 (_("%pB: illegal section name `%pA'"), abfd, o);
b49e97c9 14720 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 14721 return FALSE;
b49e97c9
TS
14722 }
14723
14724 /* The linker script always combines .gptab.data and
14725 .gptab.sdata into .gptab.sdata, and likewise for
14726 .gptab.bss and .gptab.sbss. It is possible that there is
14727 no .sdata or .sbss section in the output file, in which
14728 case we must change the name of the output section. */
14729 subname = o->name + sizeof ".gptab" - 1;
14730 if (bfd_get_section_by_name (abfd, subname) == NULL)
14731 {
14732 if (o == gptab_data_sec)
14733 o->name = ".gptab.data";
14734 else
14735 o->name = ".gptab.bss";
14736 subname = o->name + sizeof ".gptab" - 1;
14737 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14738 }
14739
14740 /* Set up the first entry. */
14741 c = 1;
14742 amt = c * sizeof (Elf32_gptab);
9719ad41 14743 tab = bfd_malloc (amt);
b49e97c9 14744 if (tab == NULL)
b34976b6 14745 return FALSE;
b49e97c9
TS
14746 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14747 tab[0].gt_header.gt_unused = 0;
14748
14749 /* Combine the input sections. */
8423293d 14750 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14751 {
14752 asection *input_section;
14753 bfd *input_bfd;
14754 bfd_size_type size;
14755 unsigned long last;
14756 bfd_size_type gpentry;
14757
14758 if (p->type != bfd_indirect_link_order)
14759 {
14760 if (p->type == bfd_data_link_order)
14761 continue;
14762 abort ();
14763 }
14764
14765 input_section = p->u.indirect.section;
14766 input_bfd = input_section->owner;
14767
14768 /* Combine the gptab entries for this input section one
14769 by one. We know that the input gptab entries are
14770 sorted by ascending -G value. */
eea6121a 14771 size = input_section->size;
b49e97c9
TS
14772 last = 0;
14773 for (gpentry = sizeof (Elf32_External_gptab);
14774 gpentry < size;
14775 gpentry += sizeof (Elf32_External_gptab))
14776 {
14777 Elf32_External_gptab ext_gptab;
14778 Elf32_gptab int_gptab;
14779 unsigned long val;
14780 unsigned long add;
b34976b6 14781 bfd_boolean exact;
b49e97c9
TS
14782 unsigned int look;
14783
14784 if (! (bfd_get_section_contents
9719ad41
RS
14785 (input_bfd, input_section, &ext_gptab, gpentry,
14786 sizeof (Elf32_External_gptab))))
b49e97c9
TS
14787 {
14788 free (tab);
b34976b6 14789 return FALSE;
b49e97c9
TS
14790 }
14791
14792 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14793 &int_gptab);
14794 val = int_gptab.gt_entry.gt_g_value;
14795 add = int_gptab.gt_entry.gt_bytes - last;
14796
b34976b6 14797 exact = FALSE;
b49e97c9
TS
14798 for (look = 1; look < c; look++)
14799 {
14800 if (tab[look].gt_entry.gt_g_value >= val)
14801 tab[look].gt_entry.gt_bytes += add;
14802
14803 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 14804 exact = TRUE;
b49e97c9
TS
14805 }
14806
14807 if (! exact)
14808 {
14809 Elf32_gptab *new_tab;
14810 unsigned int max;
14811
14812 /* We need a new table entry. */
14813 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 14814 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
14815 if (new_tab == NULL)
14816 {
14817 free (tab);
b34976b6 14818 return FALSE;
b49e97c9
TS
14819 }
14820 tab = new_tab;
14821 tab[c].gt_entry.gt_g_value = val;
14822 tab[c].gt_entry.gt_bytes = add;
14823
14824 /* Merge in the size for the next smallest -G
14825 value, since that will be implied by this new
14826 value. */
14827 max = 0;
14828 for (look = 1; look < c; look++)
14829 {
14830 if (tab[look].gt_entry.gt_g_value < val
14831 && (max == 0
14832 || (tab[look].gt_entry.gt_g_value
14833 > tab[max].gt_entry.gt_g_value)))
14834 max = look;
14835 }
14836 if (max != 0)
14837 tab[c].gt_entry.gt_bytes +=
14838 tab[max].gt_entry.gt_bytes;
14839
14840 ++c;
14841 }
14842
14843 last = int_gptab.gt_entry.gt_bytes;
14844 }
14845
14846 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14847 elf_link_input_bfd ignores this section. */
14848 input_section->flags &= ~SEC_HAS_CONTENTS;
14849 }
14850
14851 /* The table must be sorted by -G value. */
14852 if (c > 2)
14853 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14854
14855 /* Swap out the table. */
14856 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 14857 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
14858 if (ext_tab == NULL)
14859 {
14860 free (tab);
b34976b6 14861 return FALSE;
b49e97c9
TS
14862 }
14863
14864 for (j = 0; j < c; j++)
14865 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14866 free (tab);
14867
eea6121a 14868 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
14869 o->contents = (bfd_byte *) ext_tab;
14870
14871 /* Skip this section later on (I don't think this currently
14872 matters, but someday it might). */
8423293d 14873 o->map_head.link_order = NULL;
b49e97c9
TS
14874 }
14875 }
14876
14877 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 14878 if (!bfd_elf_final_link (abfd, info))
b34976b6 14879 return FALSE;
b49e97c9
TS
14880
14881 /* Now write out the computed sections. */
14882
351cdf24
MF
14883 if (abiflags_sec != NULL)
14884 {
14885 Elf_External_ABIFlags_v0 ext;
14886 Elf_Internal_ABIFlags_v0 *abiflags;
14887
14888 abiflags = &mips_elf_tdata (abfd)->abiflags;
14889
14890 /* Set up the abiflags if no valid input sections were found. */
14891 if (!mips_elf_tdata (abfd)->abiflags_valid)
14892 {
14893 infer_mips_abiflags (abfd, abiflags);
14894 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14895 }
14896 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14897 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14898 return FALSE;
14899 }
14900
9719ad41 14901 if (reginfo_sec != NULL)
b49e97c9
TS
14902 {
14903 Elf32_External_RegInfo ext;
14904
14905 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 14906 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 14907 return FALSE;
b49e97c9
TS
14908 }
14909
9719ad41 14910 if (mdebug_sec != NULL)
b49e97c9
TS
14911 {
14912 BFD_ASSERT (abfd->output_has_begun);
14913 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14914 swap, info,
14915 mdebug_sec->filepos))
b34976b6 14916 return FALSE;
b49e97c9
TS
14917
14918 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14919 }
14920
9719ad41 14921 if (gptab_data_sec != NULL)
b49e97c9
TS
14922 {
14923 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14924 gptab_data_sec->contents,
eea6121a 14925 0, gptab_data_sec->size))
b34976b6 14926 return FALSE;
b49e97c9
TS
14927 }
14928
9719ad41 14929 if (gptab_bss_sec != NULL)
b49e97c9
TS
14930 {
14931 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14932 gptab_bss_sec->contents,
eea6121a 14933 0, gptab_bss_sec->size))
b34976b6 14934 return FALSE;
b49e97c9
TS
14935 }
14936
14937 if (SGI_COMPAT (abfd))
14938 {
14939 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14940 if (rtproc_sec != NULL)
14941 {
14942 if (! bfd_set_section_contents (abfd, rtproc_sec,
14943 rtproc_sec->contents,
eea6121a 14944 0, rtproc_sec->size))
b34976b6 14945 return FALSE;
b49e97c9
TS
14946 }
14947 }
14948
b34976b6 14949 return TRUE;
b49e97c9
TS
14950}
14951\f
b2e9744f
MR
14952/* Merge object file header flags from IBFD into OBFD. Raise an error
14953 if there are conflicting settings. */
14954
14955static bfd_boolean
50e03d47 14956mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
b2e9744f 14957{
50e03d47 14958 bfd *obfd = info->output_bfd;
b2e9744f
MR
14959 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14960 flagword old_flags;
14961 flagword new_flags;
14962 bfd_boolean ok;
14963
14964 new_flags = elf_elfheader (ibfd)->e_flags;
14965 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14966 old_flags = elf_elfheader (obfd)->e_flags;
14967
14968 /* Check flag compatibility. */
14969
14970 new_flags &= ~EF_MIPS_NOREORDER;
14971 old_flags &= ~EF_MIPS_NOREORDER;
14972
14973 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14974 doesn't seem to matter. */
14975 new_flags &= ~EF_MIPS_XGOT;
14976 old_flags &= ~EF_MIPS_XGOT;
14977
14978 /* MIPSpro generates ucode info in n64 objects. Again, we should
14979 just be able to ignore this. */
14980 new_flags &= ~EF_MIPS_UCODE;
14981 old_flags &= ~EF_MIPS_UCODE;
14982
14983 /* DSOs should only be linked with CPIC code. */
14984 if ((ibfd->flags & DYNAMIC) != 0)
14985 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14986
14987 if (new_flags == old_flags)
14988 return TRUE;
14989
14990 ok = TRUE;
14991
14992 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14993 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14994 {
4eca0228 14995 _bfd_error_handler
871b3ab2 14996 (_("%pB: warning: linking abicalls files with non-abicalls files"),
b2e9744f
MR
14997 ibfd);
14998 ok = TRUE;
14999 }
15000
15001 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15002 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15003 if (! (new_flags & EF_MIPS_PIC))
15004 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15005
15006 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15007 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15008
15009 /* Compare the ISAs. */
15010 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15011 {
4eca0228 15012 _bfd_error_handler
871b3ab2 15013 (_("%pB: linking 32-bit code with 64-bit code"),
b2e9744f
MR
15014 ibfd);
15015 ok = FALSE;
15016 }
15017 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15018 {
15019 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15020 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15021 {
15022 /* Copy the architecture info from IBFD to OBFD. Also copy
15023 the 32-bit flag (if set) so that we continue to recognise
15024 OBFD as a 32-bit binary. */
15025 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15026 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15027 elf_elfheader (obfd)->e_flags
15028 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15029
15030 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15031 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15032
15033 /* Copy across the ABI flags if OBFD doesn't use them
15034 and if that was what caused us to treat IBFD as 32-bit. */
15035 if ((old_flags & EF_MIPS_ABI) == 0
15036 && mips_32bit_flags_p (new_flags)
15037 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15038 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15039 }
15040 else
15041 {
15042 /* The ISAs aren't compatible. */
4eca0228 15043 _bfd_error_handler
695344c0 15044 /* xgettext:c-format */
871b3ab2 15045 (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15046 ibfd,
15047 bfd_printable_name (ibfd),
15048 bfd_printable_name (obfd));
15049 ok = FALSE;
15050 }
15051 }
15052
15053 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15054 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15055
15056 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15057 does set EI_CLASS differently from any 32-bit ABI. */
15058 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15059 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15060 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15061 {
15062 /* Only error if both are set (to different values). */
15063 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15064 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15065 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15066 {
4eca0228 15067 _bfd_error_handler
695344c0 15068 /* xgettext:c-format */
871b3ab2 15069 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15070 ibfd,
15071 elf_mips_abi_name (ibfd),
15072 elf_mips_abi_name (obfd));
15073 ok = FALSE;
15074 }
15075 new_flags &= ~EF_MIPS_ABI;
15076 old_flags &= ~EF_MIPS_ABI;
15077 }
15078
15079 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15080 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15081 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15082 {
15083 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15084 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15085 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15086 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15087 int micro_mis = old_m16 && new_micro;
15088 int m16_mis = old_micro && new_m16;
15089
15090 if (m16_mis || micro_mis)
15091 {
4eca0228 15092 _bfd_error_handler
695344c0 15093 /* xgettext:c-format */
871b3ab2 15094 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15095 ibfd,
15096 m16_mis ? "MIPS16" : "microMIPS",
15097 m16_mis ? "microMIPS" : "MIPS16");
15098 ok = FALSE;
15099 }
15100
15101 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15102
15103 new_flags &= ~ EF_MIPS_ARCH_ASE;
15104 old_flags &= ~ EF_MIPS_ARCH_ASE;
15105 }
15106
15107 /* Compare NaN encodings. */
15108 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15109 {
695344c0 15110 /* xgettext:c-format */
871b3ab2 15111 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15112 ibfd,
15113 (new_flags & EF_MIPS_NAN2008
15114 ? "-mnan=2008" : "-mnan=legacy"),
15115 (old_flags & EF_MIPS_NAN2008
15116 ? "-mnan=2008" : "-mnan=legacy"));
15117 ok = FALSE;
15118 new_flags &= ~EF_MIPS_NAN2008;
15119 old_flags &= ~EF_MIPS_NAN2008;
15120 }
15121
15122 /* Compare FP64 state. */
15123 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15124 {
695344c0 15125 /* xgettext:c-format */
871b3ab2 15126 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15127 ibfd,
15128 (new_flags & EF_MIPS_FP64
15129 ? "-mfp64" : "-mfp32"),
15130 (old_flags & EF_MIPS_FP64
15131 ? "-mfp64" : "-mfp32"));
15132 ok = FALSE;
15133 new_flags &= ~EF_MIPS_FP64;
15134 old_flags &= ~EF_MIPS_FP64;
15135 }
15136
15137 /* Warn about any other mismatches */
15138 if (new_flags != old_flags)
15139 {
695344c0 15140 /* xgettext:c-format */
4eca0228 15141 _bfd_error_handler
871b3ab2 15142 (_("%pB: uses different e_flags (%#x) fields than previous modules "
d42c267e
AM
15143 "(%#x)"),
15144 ibfd, new_flags, old_flags);
b2e9744f
MR
15145 ok = FALSE;
15146 }
15147
15148 return ok;
15149}
15150
2cf19d5c
JM
15151/* Merge object attributes from IBFD into OBFD. Raise an error if
15152 there are conflicting attributes. */
15153static bfd_boolean
50e03d47 15154mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
2cf19d5c 15155{
50e03d47 15156 bfd *obfd = info->output_bfd;
2cf19d5c
JM
15157 obj_attribute *in_attr;
15158 obj_attribute *out_attr;
6ae68ba3 15159 bfd *abi_fp_bfd;
b60bf9be 15160 bfd *abi_msa_bfd;
6ae68ba3
MR
15161
15162 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15163 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15164 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15165 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15166
b60bf9be
CF
15167 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15168 if (!abi_msa_bfd
15169 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15170 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15171
2cf19d5c
JM
15172 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15173 {
15174 /* This is the first object. Copy the attributes. */
15175 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15176
15177 /* Use the Tag_null value to indicate the attributes have been
15178 initialized. */
15179 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15180
15181 return TRUE;
15182 }
15183
15184 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15185 non-conflicting ones. */
2cf19d5c
JM
15186 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15187 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15188 {
757a636f 15189 int out_fp, in_fp;
6ae68ba3 15190
757a636f
RS
15191 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15192 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15193 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15194 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15195 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15196 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15197 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15198 || in_fp == Val_GNU_MIPS_ABI_FP_64
15199 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15200 {
15201 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15202 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15203 }
15204 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15205 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15206 || out_fp == Val_GNU_MIPS_ABI_FP_64
15207 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15208 /* Keep the current setting. */;
15209 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15210 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15211 {
15212 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15213 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15214 }
15215 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15216 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15217 /* Keep the current setting. */;
757a636f
RS
15218 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15219 {
15220 const char *out_string, *in_string;
6ae68ba3 15221
757a636f
RS
15222 out_string = _bfd_mips_fp_abi_string (out_fp);
15223 in_string = _bfd_mips_fp_abi_string (in_fp);
15224 /* First warn about cases involving unrecognised ABIs. */
15225 if (!out_string && !in_string)
695344c0 15226 /* xgettext:c-format */
757a636f 15227 _bfd_error_handler
2c1c9679 15228 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15229 "(set by %pB), %pB uses unknown floating point ABI %d"),
c08bb8dd 15230 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15231 else if (!out_string)
15232 _bfd_error_handler
695344c0 15233 /* xgettext:c-format */
2c1c9679 15234 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15235 "(set by %pB), %pB uses %s"),
c08bb8dd 15236 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15237 else if (!in_string)
15238 _bfd_error_handler
695344c0 15239 /* xgettext:c-format */
2c1c9679 15240 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15241 "%pB uses unknown floating point ABI %d"),
c08bb8dd 15242 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15243 else
15244 {
15245 /* If one of the bfds is soft-float, the other must be
15246 hard-float. The exact choice of hard-float ABI isn't
15247 really relevant to the error message. */
15248 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15249 out_string = "-mhard-float";
15250 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15251 in_string = "-mhard-float";
15252 _bfd_error_handler
695344c0 15253 /* xgettext:c-format */
2c1c9679 15254 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
c08bb8dd 15255 obfd, out_string, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15256 }
15257 }
2cf19d5c
JM
15258 }
15259
b60bf9be
CF
15260 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15261 non-conflicting ones. */
15262 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15263 {
15264 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15265 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15266 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15267 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15268 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15269 {
15270 case Val_GNU_MIPS_ABI_MSA_128:
15271 _bfd_error_handler
695344c0 15272 /* xgettext:c-format */
2c1c9679 15273 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15274 "%pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15275 obfd, "-mmsa", abi_msa_bfd,
15276 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15277 break;
15278
15279 default:
15280 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15281 {
15282 case Val_GNU_MIPS_ABI_MSA_128:
15283 _bfd_error_handler
695344c0 15284 /* xgettext:c-format */
2c1c9679 15285 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15286 "(set by %pB), %pB uses %s"),
c08bb8dd
AM
15287 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15288 abi_msa_bfd, ibfd, "-mmsa");
b60bf9be
CF
15289 break;
15290
15291 default:
15292 _bfd_error_handler
695344c0 15293 /* xgettext:c-format */
2c1c9679 15294 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15295 "(set by %pB), %pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15296 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15297 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15298 break;
15299 }
15300 }
15301 }
15302
2cf19d5c 15303 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15304 return _bfd_elf_merge_object_attributes (ibfd, info);
2cf19d5c
JM
15305}
15306
a3dc0a7f
MR
15307/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15308 there are conflicting settings. */
15309
15310static bfd_boolean
15311mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15312{
15313 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15314 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15315 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15316
15317 /* Update the output abiflags fp_abi using the computed fp_abi. */
15318 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15319
15320#define max(a, b) ((a) > (b) ? (a) : (b))
15321 /* Merge abiflags. */
15322 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15323 in_tdata->abiflags.isa_level);
15324 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15325 in_tdata->abiflags.isa_rev);
15326 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15327 in_tdata->abiflags.gpr_size);
15328 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15329 in_tdata->abiflags.cpr1_size);
15330 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15331 in_tdata->abiflags.cpr2_size);
15332#undef max
15333 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15334 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15335
15336 return TRUE;
15337}
15338
b49e97c9
TS
15339/* Merge backend specific data from an object file to the output
15340 object file when linking. */
15341
b34976b6 15342bfd_boolean
50e03d47 15343_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
b49e97c9 15344{
50e03d47 15345 bfd *obfd = info->output_bfd;
cf8502c1
MR
15346 struct mips_elf_obj_tdata *out_tdata;
15347 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15348 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15349 asection *sec;
d537eeb5 15350 bfd_boolean ok;
b49e97c9 15351
58238693 15352 /* Check if we have the same endianness. */
50e03d47 15353 if (! _bfd_generic_verify_endian_match (ibfd, info))
aa701218 15354 {
4eca0228 15355 _bfd_error_handler
871b3ab2 15356 (_("%pB: endianness incompatible with that of the selected emulation"),
d003868e 15357 ibfd);
aa701218
AO
15358 return FALSE;
15359 }
b49e97c9 15360
d5eaccd7 15361 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15362 return TRUE;
b49e97c9 15363
cf8502c1
MR
15364 in_tdata = mips_elf_tdata (ibfd);
15365 out_tdata = mips_elf_tdata (obfd);
15366
aa701218
AO
15367 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15368 {
4eca0228 15369 _bfd_error_handler
871b3ab2 15370 (_("%pB: ABI is incompatible with that of the selected emulation"),
d003868e 15371 ibfd);
aa701218
AO
15372 return FALSE;
15373 }
15374
23ba6f18
MR
15375 /* Check to see if the input BFD actually contains any sections. If not,
15376 then it has no attributes, and its flags may not have been initialized
15377 either, but it cannot actually cause any incompatibility. */
351cdf24
MF
15378 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15379 {
15380 /* Ignore synthetic sections and empty .text, .data and .bss sections
15381 which are automatically generated by gas. Also ignore fake
15382 (s)common sections, since merely defining a common symbol does
15383 not affect compatibility. */
15384 if ((sec->flags & SEC_IS_COMMON) == 0
15385 && strcmp (sec->name, ".reginfo")
15386 && strcmp (sec->name, ".mdebug")
15387 && (sec->size != 0
15388 || (strcmp (sec->name, ".text")
15389 && strcmp (sec->name, ".data")
15390 && strcmp (sec->name, ".bss"))))
15391 {
15392 null_input_bfd = FALSE;
15393 break;
15394 }
15395 }
15396 if (null_input_bfd)
15397 return TRUE;
15398
28d45e28 15399 /* Populate abiflags using existing information. */
23ba6f18
MR
15400 if (in_tdata->abiflags_valid)
15401 {
15402 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15403 Elf_Internal_ABIFlags_v0 in_abiflags;
15404 Elf_Internal_ABIFlags_v0 abiflags;
15405
15406 /* Set up the FP ABI attribute from the abiflags if it is not already
07d6d2b8 15407 set. */
23ba6f18 15408 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
07d6d2b8 15409 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15410
351cdf24 15411 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15412 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15413
15414 /* It is not possible to infer the correct ISA revision
07d6d2b8 15415 for R3 or R5 so drop down to R2 for the checks. */
351cdf24
MF
15416 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15417 in_abiflags.isa_rev = 2;
15418
c97c330b
MF
15419 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15420 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
4eca0228 15421 _bfd_error_handler
2c1c9679 15422 (_("%pB: warning: inconsistent ISA between e_flags and "
351cdf24
MF
15423 ".MIPS.abiflags"), ibfd);
15424 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15425 && in_abiflags.fp_abi != abiflags.fp_abi)
4eca0228 15426 _bfd_error_handler
2c1c9679 15427 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15428 ".MIPS.abiflags"), ibfd);
15429 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
4eca0228 15430 _bfd_error_handler
2c1c9679 15431 (_("%pB: warning: inconsistent ASEs between e_flags and "
351cdf24 15432 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15433 /* The isa_ext is allowed to be an extension of what can be inferred
15434 from e_flags. */
15435 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15436 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
4eca0228 15437 _bfd_error_handler
2c1c9679 15438 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
351cdf24
MF
15439 ".MIPS.abiflags"), ibfd);
15440 if (in_abiflags.flags2 != 0)
4eca0228 15441 _bfd_error_handler
2c1c9679 15442 (_("%pB: warning: unexpected flag in the flags2 field of "
351cdf24 15443 ".MIPS.abiflags (0x%lx)"), ibfd,
d42c267e 15444 in_abiflags.flags2);
351cdf24 15445 }
28d45e28
MR
15446 else
15447 {
15448 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15449 in_tdata->abiflags_valid = TRUE;
15450 }
15451
cf8502c1 15452 if (!out_tdata->abiflags_valid)
351cdf24
MF
15453 {
15454 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15455 out_tdata->abiflags = in_tdata->abiflags;
15456 out_tdata->abiflags_valid = TRUE;
351cdf24 15457 }
b49e97c9
TS
15458
15459 if (! elf_flags_init (obfd))
15460 {
b34976b6 15461 elf_flags_init (obfd) = TRUE;
351cdf24 15462 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15463 elf_elfheader (obfd)->e_ident[EI_CLASS]
15464 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15465
15466 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15467 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15468 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15469 bfd_get_mach (ibfd))))
b49e97c9
TS
15470 {
15471 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15472 bfd_get_mach (ibfd)))
b34976b6 15473 return FALSE;
351cdf24
MF
15474
15475 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15476 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15477 }
15478
d537eeb5 15479 ok = TRUE;
b49e97c9 15480 }
d537eeb5 15481 else
50e03d47 15482 ok = mips_elf_merge_obj_e_flags (ibfd, info);
d537eeb5 15483
50e03d47 15484 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
b49e97c9 15485
a3dc0a7f 15486 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15487
d537eeb5 15488 if (!ok)
b49e97c9
TS
15489 {
15490 bfd_set_error (bfd_error_bad_value);
b34976b6 15491 return FALSE;
b49e97c9
TS
15492 }
15493
b34976b6 15494 return TRUE;
b49e97c9
TS
15495}
15496
15497/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15498
b34976b6 15499bfd_boolean
9719ad41 15500_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15501{
15502 BFD_ASSERT (!elf_flags_init (abfd)
15503 || elf_elfheader (abfd)->e_flags == flags);
15504
15505 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15506 elf_flags_init (abfd) = TRUE;
15507 return TRUE;
b49e97c9
TS
15508}
15509
ad9563d6
CM
15510char *
15511_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15512{
15513 switch (dtag)
15514 {
15515 default: return "";
15516 case DT_MIPS_RLD_VERSION:
15517 return "MIPS_RLD_VERSION";
15518 case DT_MIPS_TIME_STAMP:
15519 return "MIPS_TIME_STAMP";
15520 case DT_MIPS_ICHECKSUM:
15521 return "MIPS_ICHECKSUM";
15522 case DT_MIPS_IVERSION:
15523 return "MIPS_IVERSION";
15524 case DT_MIPS_FLAGS:
15525 return "MIPS_FLAGS";
15526 case DT_MIPS_BASE_ADDRESS:
15527 return "MIPS_BASE_ADDRESS";
15528 case DT_MIPS_MSYM:
15529 return "MIPS_MSYM";
15530 case DT_MIPS_CONFLICT:
15531 return "MIPS_CONFLICT";
15532 case DT_MIPS_LIBLIST:
15533 return "MIPS_LIBLIST";
15534 case DT_MIPS_LOCAL_GOTNO:
15535 return "MIPS_LOCAL_GOTNO";
15536 case DT_MIPS_CONFLICTNO:
15537 return "MIPS_CONFLICTNO";
15538 case DT_MIPS_LIBLISTNO:
15539 return "MIPS_LIBLISTNO";
15540 case DT_MIPS_SYMTABNO:
15541 return "MIPS_SYMTABNO";
15542 case DT_MIPS_UNREFEXTNO:
15543 return "MIPS_UNREFEXTNO";
15544 case DT_MIPS_GOTSYM:
15545 return "MIPS_GOTSYM";
15546 case DT_MIPS_HIPAGENO:
15547 return "MIPS_HIPAGENO";
15548 case DT_MIPS_RLD_MAP:
15549 return "MIPS_RLD_MAP";
a5499fa4
MF
15550 case DT_MIPS_RLD_MAP_REL:
15551 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15552 case DT_MIPS_DELTA_CLASS:
15553 return "MIPS_DELTA_CLASS";
15554 case DT_MIPS_DELTA_CLASS_NO:
15555 return "MIPS_DELTA_CLASS_NO";
15556 case DT_MIPS_DELTA_INSTANCE:
15557 return "MIPS_DELTA_INSTANCE";
15558 case DT_MIPS_DELTA_INSTANCE_NO:
15559 return "MIPS_DELTA_INSTANCE_NO";
15560 case DT_MIPS_DELTA_RELOC:
15561 return "MIPS_DELTA_RELOC";
15562 case DT_MIPS_DELTA_RELOC_NO:
15563 return "MIPS_DELTA_RELOC_NO";
15564 case DT_MIPS_DELTA_SYM:
15565 return "MIPS_DELTA_SYM";
15566 case DT_MIPS_DELTA_SYM_NO:
15567 return "MIPS_DELTA_SYM_NO";
15568 case DT_MIPS_DELTA_CLASSSYM:
15569 return "MIPS_DELTA_CLASSSYM";
15570 case DT_MIPS_DELTA_CLASSSYM_NO:
15571 return "MIPS_DELTA_CLASSSYM_NO";
15572 case DT_MIPS_CXX_FLAGS:
15573 return "MIPS_CXX_FLAGS";
15574 case DT_MIPS_PIXIE_INIT:
15575 return "MIPS_PIXIE_INIT";
15576 case DT_MIPS_SYMBOL_LIB:
15577 return "MIPS_SYMBOL_LIB";
15578 case DT_MIPS_LOCALPAGE_GOTIDX:
15579 return "MIPS_LOCALPAGE_GOTIDX";
15580 case DT_MIPS_LOCAL_GOTIDX:
15581 return "MIPS_LOCAL_GOTIDX";
15582 case DT_MIPS_HIDDEN_GOTIDX:
15583 return "MIPS_HIDDEN_GOTIDX";
15584 case DT_MIPS_PROTECTED_GOTIDX:
15585 return "MIPS_PROTECTED_GOT_IDX";
15586 case DT_MIPS_OPTIONS:
15587 return "MIPS_OPTIONS";
15588 case DT_MIPS_INTERFACE:
15589 return "MIPS_INTERFACE";
15590 case DT_MIPS_DYNSTR_ALIGN:
15591 return "DT_MIPS_DYNSTR_ALIGN";
15592 case DT_MIPS_INTERFACE_SIZE:
15593 return "DT_MIPS_INTERFACE_SIZE";
15594 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15595 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15596 case DT_MIPS_PERF_SUFFIX:
15597 return "DT_MIPS_PERF_SUFFIX";
15598 case DT_MIPS_COMPACT_SIZE:
15599 return "DT_MIPS_COMPACT_SIZE";
15600 case DT_MIPS_GP_VALUE:
15601 return "DT_MIPS_GP_VALUE";
15602 case DT_MIPS_AUX_DYNAMIC:
15603 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15604 case DT_MIPS_PLTGOT:
15605 return "DT_MIPS_PLTGOT";
15606 case DT_MIPS_RWPLT:
15607 return "DT_MIPS_RWPLT";
ad9563d6
CM
15608 }
15609}
15610
757a636f
RS
15611/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15612 not known. */
15613
15614const char *
15615_bfd_mips_fp_abi_string (int fp)
15616{
15617 switch (fp)
15618 {
15619 /* These strings aren't translated because they're simply
15620 option lists. */
15621 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15622 return "-mdouble-float";
15623
15624 case Val_GNU_MIPS_ABI_FP_SINGLE:
15625 return "-msingle-float";
15626
15627 case Val_GNU_MIPS_ABI_FP_SOFT:
15628 return "-msoft-float";
15629
351cdf24
MF
15630 case Val_GNU_MIPS_ABI_FP_OLD_64:
15631 return _("-mips32r2 -mfp64 (12 callee-saved)");
15632
15633 case Val_GNU_MIPS_ABI_FP_XX:
15634 return "-mfpxx";
15635
757a636f 15636 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
15637 return "-mgp32 -mfp64";
15638
15639 case Val_GNU_MIPS_ABI_FP_64A:
15640 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
15641
15642 default:
15643 return 0;
15644 }
15645}
15646
351cdf24
MF
15647static void
15648print_mips_ases (FILE *file, unsigned int mask)
15649{
15650 if (mask & AFL_ASE_DSP)
15651 fputs ("\n\tDSP ASE", file);
15652 if (mask & AFL_ASE_DSPR2)
15653 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
15654 if (mask & AFL_ASE_DSPR3)
15655 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
15656 if (mask & AFL_ASE_EVA)
15657 fputs ("\n\tEnhanced VA Scheme", file);
15658 if (mask & AFL_ASE_MCU)
15659 fputs ("\n\tMCU (MicroController) ASE", file);
15660 if (mask & AFL_ASE_MDMX)
15661 fputs ("\n\tMDMX ASE", file);
15662 if (mask & AFL_ASE_MIPS3D)
15663 fputs ("\n\tMIPS-3D ASE", file);
15664 if (mask & AFL_ASE_MT)
15665 fputs ("\n\tMT ASE", file);
15666 if (mask & AFL_ASE_SMARTMIPS)
15667 fputs ("\n\tSmartMIPS ASE", file);
15668 if (mask & AFL_ASE_VIRT)
15669 fputs ("\n\tVZ ASE", file);
15670 if (mask & AFL_ASE_MSA)
15671 fputs ("\n\tMSA ASE", file);
15672 if (mask & AFL_ASE_MIPS16)
15673 fputs ("\n\tMIPS16 ASE", file);
15674 if (mask & AFL_ASE_MICROMIPS)
15675 fputs ("\n\tMICROMIPS ASE", file);
15676 if (mask & AFL_ASE_XPA)
15677 fputs ("\n\tXPA ASE", file);
25499ac7
MR
15678 if (mask & AFL_ASE_MIPS16E2)
15679 fputs ("\n\tMIPS16e2 ASE", file);
730c3174
SE
15680 if (mask & AFL_ASE_CRC)
15681 fputs ("\n\tCRC ASE", file);
6f20c942
FS
15682 if (mask & AFL_ASE_GINV)
15683 fputs ("\n\tGINV ASE", file);
8095d2f7
CX
15684 if (mask & AFL_ASE_LOONGSON_MMI)
15685 fputs ("\n\tLoongson MMI ASE", file);
716c08de
CX
15686 if (mask & AFL_ASE_LOONGSON_CAM)
15687 fputs ("\n\tLoongson CAM ASE", file);
bdc6c06e
CX
15688 if (mask & AFL_ASE_LOONGSON_EXT)
15689 fputs ("\n\tLoongson EXT ASE", file);
a693765e
CX
15690 if (mask & AFL_ASE_LOONGSON_EXT2)
15691 fputs ("\n\tLoongson EXT2 ASE", file);
351cdf24
MF
15692 if (mask == 0)
15693 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
15694 else if ((mask & ~AFL_ASE_MASK) != 0)
15695 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
15696}
15697
15698static void
15699print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15700{
15701 switch (isa_ext)
15702 {
15703 case 0:
15704 fputs (_("None"), file);
15705 break;
15706 case AFL_EXT_XLR:
15707 fputs ("RMI XLR", file);
15708 break;
2c629856
N
15709 case AFL_EXT_OCTEON3:
15710 fputs ("Cavium Networks Octeon3", file);
15711 break;
351cdf24
MF
15712 case AFL_EXT_OCTEON2:
15713 fputs ("Cavium Networks Octeon2", file);
15714 break;
15715 case AFL_EXT_OCTEONP:
15716 fputs ("Cavium Networks OcteonP", file);
15717 break;
351cdf24
MF
15718 case AFL_EXT_OCTEON:
15719 fputs ("Cavium Networks Octeon", file);
15720 break;
15721 case AFL_EXT_5900:
15722 fputs ("Toshiba R5900", file);
15723 break;
15724 case AFL_EXT_4650:
15725 fputs ("MIPS R4650", file);
15726 break;
15727 case AFL_EXT_4010:
15728 fputs ("LSI R4010", file);
15729 break;
15730 case AFL_EXT_4100:
15731 fputs ("NEC VR4100", file);
15732 break;
15733 case AFL_EXT_3900:
15734 fputs ("Toshiba R3900", file);
15735 break;
15736 case AFL_EXT_10000:
15737 fputs ("MIPS R10000", file);
15738 break;
15739 case AFL_EXT_SB1:
15740 fputs ("Broadcom SB-1", file);
15741 break;
15742 case AFL_EXT_4111:
15743 fputs ("NEC VR4111/VR4181", file);
15744 break;
15745 case AFL_EXT_4120:
15746 fputs ("NEC VR4120", file);
15747 break;
15748 case AFL_EXT_5400:
15749 fputs ("NEC VR5400", file);
15750 break;
15751 case AFL_EXT_5500:
15752 fputs ("NEC VR5500", file);
15753 break;
15754 case AFL_EXT_LOONGSON_2E:
15755 fputs ("ST Microelectronics Loongson 2E", file);
15756 break;
15757 case AFL_EXT_LOONGSON_2F:
15758 fputs ("ST Microelectronics Loongson 2F", file);
15759 break;
38bf472a
MR
15760 case AFL_EXT_INTERAPTIV_MR2:
15761 fputs ("Imagination interAptiv MR2", file);
15762 break;
351cdf24 15763 default:
00ac7aa0 15764 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
15765 break;
15766 }
15767}
15768
15769static void
15770print_mips_fp_abi_value (FILE *file, int val)
15771{
15772 switch (val)
15773 {
15774 case Val_GNU_MIPS_ABI_FP_ANY:
15775 fprintf (file, _("Hard or soft float\n"));
15776 break;
15777 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15778 fprintf (file, _("Hard float (double precision)\n"));
15779 break;
15780 case Val_GNU_MIPS_ABI_FP_SINGLE:
15781 fprintf (file, _("Hard float (single precision)\n"));
15782 break;
15783 case Val_GNU_MIPS_ABI_FP_SOFT:
15784 fprintf (file, _("Soft float\n"));
15785 break;
15786 case Val_GNU_MIPS_ABI_FP_OLD_64:
15787 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15788 break;
15789 case Val_GNU_MIPS_ABI_FP_XX:
15790 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15791 break;
15792 case Val_GNU_MIPS_ABI_FP_64:
15793 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15794 break;
15795 case Val_GNU_MIPS_ABI_FP_64A:
15796 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15797 break;
15798 default:
15799 fprintf (file, "??? (%d)\n", val);
15800 break;
15801 }
15802}
15803
15804static int
15805get_mips_reg_size (int reg_size)
15806{
15807 return (reg_size == AFL_REG_NONE) ? 0
15808 : (reg_size == AFL_REG_32) ? 32
15809 : (reg_size == AFL_REG_64) ? 64
15810 : (reg_size == AFL_REG_128) ? 128
15811 : -1;
15812}
15813
b34976b6 15814bfd_boolean
9719ad41 15815_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 15816{
9719ad41 15817 FILE *file = ptr;
b49e97c9
TS
15818
15819 BFD_ASSERT (abfd != NULL && ptr != NULL);
15820
15821 /* Print normal ELF private data. */
15822 _bfd_elf_print_private_bfd_data (abfd, ptr);
15823
15824 /* xgettext:c-format */
15825 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15826
15827 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15828 fprintf (file, _(" [abi=O32]"));
15829 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15830 fprintf (file, _(" [abi=O64]"));
15831 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15832 fprintf (file, _(" [abi=EABI32]"));
15833 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15834 fprintf (file, _(" [abi=EABI64]"));
15835 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15836 fprintf (file, _(" [abi unknown]"));
15837 else if (ABI_N32_P (abfd))
15838 fprintf (file, _(" [abi=N32]"));
15839 else if (ABI_64_P (abfd))
15840 fprintf (file, _(" [abi=64]"));
15841 else
15842 fprintf (file, _(" [no abi set]"));
15843
15844 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 15845 fprintf (file, " [mips1]");
b49e97c9 15846 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 15847 fprintf (file, " [mips2]");
b49e97c9 15848 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 15849 fprintf (file, " [mips3]");
b49e97c9 15850 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 15851 fprintf (file, " [mips4]");
b49e97c9 15852 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 15853 fprintf (file, " [mips5]");
b49e97c9 15854 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 15855 fprintf (file, " [mips32]");
b49e97c9 15856 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 15857 fprintf (file, " [mips64]");
af7ee8bf 15858 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 15859 fprintf (file, " [mips32r2]");
5f74bc13 15860 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 15861 fprintf (file, " [mips64r2]");
7361da2c
AB
15862 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15863 fprintf (file, " [mips32r6]");
15864 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15865 fprintf (file, " [mips64r6]");
b49e97c9
TS
15866 else
15867 fprintf (file, _(" [unknown ISA]"));
15868
40d32fc6 15869 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 15870 fprintf (file, " [mdmx]");
40d32fc6
CD
15871
15872 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 15873 fprintf (file, " [mips16]");
40d32fc6 15874
df58fc94
RS
15875 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15876 fprintf (file, " [micromips]");
15877
ba92f887
MR
15878 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15879 fprintf (file, " [nan2008]");
15880
5baf5e34 15881 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 15882 fprintf (file, " [old fp64]");
5baf5e34 15883
b49e97c9 15884 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 15885 fprintf (file, " [32bitmode]");
b49e97c9
TS
15886 else
15887 fprintf (file, _(" [not 32bitmode]"));
15888
c0e3f241 15889 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 15890 fprintf (file, " [noreorder]");
c0e3f241
CD
15891
15892 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 15893 fprintf (file, " [PIC]");
c0e3f241
CD
15894
15895 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 15896 fprintf (file, " [CPIC]");
c0e3f241
CD
15897
15898 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 15899 fprintf (file, " [XGOT]");
c0e3f241
CD
15900
15901 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 15902 fprintf (file, " [UCODE]");
c0e3f241 15903
b49e97c9
TS
15904 fputc ('\n', file);
15905
351cdf24
MF
15906 if (mips_elf_tdata (abfd)->abiflags_valid)
15907 {
15908 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15909 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15910 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15911 if (abiflags->isa_rev > 1)
15912 fprintf (file, "r%d", abiflags->isa_rev);
15913 fprintf (file, "\nGPR size: %d",
15914 get_mips_reg_size (abiflags->gpr_size));
15915 fprintf (file, "\nCPR1 size: %d",
15916 get_mips_reg_size (abiflags->cpr1_size));
15917 fprintf (file, "\nCPR2 size: %d",
15918 get_mips_reg_size (abiflags->cpr2_size));
15919 fputs ("\nFP ABI: ", file);
15920 print_mips_fp_abi_value (file, abiflags->fp_abi);
15921 fputs ("ISA Extension: ", file);
15922 print_mips_isa_ext (file, abiflags->isa_ext);
15923 fputs ("\nASEs:", file);
15924 print_mips_ases (file, abiflags->ases);
15925 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15926 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15927 fputc ('\n', file);
15928 }
15929
b34976b6 15930 return TRUE;
b49e97c9 15931}
2f89ff8d 15932
b35d266b 15933const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 15934{
07d6d2b8
AM
15935 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15936 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26 15937 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
07d6d2b8 15938 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26
NC
15939 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15940 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
07d6d2b8 15941 { NULL, 0, 0, 0, 0 }
2f89ff8d 15942};
5e2b0d47 15943
8992f0d7
TS
15944/* Merge non visibility st_other attributes. Ensure that the
15945 STO_OPTIONAL flag is copied into h->other, even if this is not a
15946 definiton of the symbol. */
5e2b0d47
NC
15947void
15948_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15949 const Elf_Internal_Sym *isym,
15950 bfd_boolean definition,
15951 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15952{
8992f0d7
TS
15953 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15954 {
15955 unsigned char other;
15956
15957 other = (definition ? isym->st_other : h->other);
15958 other &= ~ELF_ST_VISIBILITY (-1);
15959 h->other = other | ELF_ST_VISIBILITY (h->other);
15960 }
15961
15962 if (!definition
5e2b0d47
NC
15963 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15964 h->other |= STO_OPTIONAL;
15965}
12ac1cf5
NC
15966
15967/* Decide whether an undefined symbol is special and can be ignored.
15968 This is the case for OPTIONAL symbols on IRIX. */
15969bfd_boolean
15970_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15971{
15972 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15973}
e0764319
NC
15974
15975bfd_boolean
15976_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15977{
15978 return (sym->st_shndx == SHN_COMMON
15979 || sym->st_shndx == SHN_MIPS_ACOMMON
15980 || sym->st_shndx == SHN_MIPS_SCOMMON);
15981}
861fb55a
DJ
15982
15983/* Return address for Ith PLT stub in section PLT, for relocation REL
15984 or (bfd_vma) -1 if it should not be included. */
15985
15986bfd_vma
15987_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15988 const arelent *rel ATTRIBUTE_UNUSED)
15989{
15990 return (plt->vma
15991 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15992 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15993}
15994
1bbce132
MR
15995/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15996 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15997 and .got.plt and also the slots may be of a different size each we walk
15998 the PLT manually fetching instructions and matching them against known
15999 patterns. To make things easier standard MIPS slots, if any, always come
16000 first. As we don't create proper ELF symbols we use the UDATA.I member
16001 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16002 with the ST_OTHER member of the ELF symbol. */
16003
16004long
16005_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16006 long symcount ATTRIBUTE_UNUSED,
16007 asymbol **syms ATTRIBUTE_UNUSED,
16008 long dynsymcount, asymbol **dynsyms,
16009 asymbol **ret)
16010{
16011 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16012 static const char microsuffix[] = "@micromipsplt";
16013 static const char m16suffix[] = "@mips16plt";
16014 static const char mipssuffix[] = "@plt";
16015
16016 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16017 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16018 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16019 Elf_Internal_Shdr *hdr;
16020 bfd_byte *plt_data;
16021 bfd_vma plt_offset;
16022 unsigned int other;
16023 bfd_vma entry_size;
16024 bfd_vma plt0_size;
16025 asection *relplt;
16026 bfd_vma opcode;
16027 asection *plt;
16028 asymbol *send;
16029 size_t size;
16030 char *names;
16031 long counti;
16032 arelent *p;
16033 asymbol *s;
16034 char *nend;
16035 long count;
16036 long pi;
16037 long i;
16038 long n;
16039
16040 *ret = NULL;
16041
16042 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16043 return 0;
16044
16045 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16046 if (relplt == NULL)
16047 return 0;
16048
16049 hdr = &elf_section_data (relplt)->this_hdr;
16050 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16051 return 0;
16052
16053 plt = bfd_get_section_by_name (abfd, ".plt");
16054 if (plt == NULL)
16055 return 0;
16056
16057 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16058 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16059 return -1;
16060 p = relplt->relocation;
16061
16062 /* Calculating the exact amount of space required for symbols would
16063 require two passes over the PLT, so just pessimise assuming two
16064 PLT slots per relocation. */
16065 count = relplt->size / hdr->sh_entsize;
16066 counti = count * bed->s->int_rels_per_ext_rel;
16067 size = 2 * count * sizeof (asymbol);
16068 size += count * (sizeof (mipssuffix) +
16069 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16070 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16071 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16072
16073 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16074 size += sizeof (asymbol) + sizeof (pltname);
16075
16076 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16077 return -1;
16078
16079 if (plt->size < 16)
16080 return -1;
16081
16082 s = *ret = bfd_malloc (size);
16083 if (s == NULL)
16084 return -1;
16085 send = s + 2 * count + 1;
16086
16087 names = (char *) send;
16088 nend = (char *) s + size;
16089 n = 0;
16090
16091 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16092 if (opcode == 0x3302fffe)
16093 {
16094 if (!micromips_p)
16095 return -1;
16096 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16097 other = STO_MICROMIPS;
16098 }
833794fc
MR
16099 else if (opcode == 0x0398c1d0)
16100 {
16101 if (!micromips_p)
16102 return -1;
16103 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16104 other = STO_MICROMIPS;
16105 }
1bbce132
MR
16106 else
16107 {
16108 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16109 other = 0;
16110 }
16111
16112 s->the_bfd = abfd;
16113 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16114 s->section = plt;
16115 s->value = 0;
16116 s->name = names;
16117 s->udata.i = other;
16118 memcpy (names, pltname, sizeof (pltname));
16119 names += sizeof (pltname);
16120 ++s, ++n;
16121
16122 pi = 0;
16123 for (plt_offset = plt0_size;
16124 plt_offset + 8 <= plt->size && s < send;
16125 plt_offset += entry_size)
16126 {
16127 bfd_vma gotplt_addr;
16128 const char *suffix;
16129 bfd_vma gotplt_hi;
16130 bfd_vma gotplt_lo;
16131 size_t suffixlen;
16132
16133 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16134
16135 /* Check if the second word matches the expected MIPS16 instruction. */
16136 if (opcode == 0x651aeb00)
16137 {
16138 if (micromips_p)
16139 return -1;
16140 /* Truncated table??? */
16141 if (plt_offset + 16 > plt->size)
16142 break;
16143 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16144 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16145 suffixlen = sizeof (m16suffix);
16146 suffix = m16suffix;
16147 other = STO_MIPS16;
16148 }
833794fc 16149 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16150 else if (opcode == 0xff220000)
16151 {
16152 if (!micromips_p)
16153 return -1;
16154 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16155 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16156 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16157 gotplt_lo <<= 2;
16158 gotplt_addr = gotplt_hi + gotplt_lo;
16159 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16160 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16161 suffixlen = sizeof (microsuffix);
16162 suffix = microsuffix;
16163 other = STO_MICROMIPS;
16164 }
833794fc
MR
16165 /* Likewise the expected microMIPS instruction (insn32 mode). */
16166 else if ((opcode & 0xffff0000) == 0xff2f0000)
16167 {
16168 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16169 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16170 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16171 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16172 gotplt_addr = gotplt_hi + gotplt_lo;
16173 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16174 suffixlen = sizeof (microsuffix);
16175 suffix = microsuffix;
16176 other = STO_MICROMIPS;
16177 }
1bbce132
MR
16178 /* Otherwise assume standard MIPS code. */
16179 else
16180 {
16181 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16182 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16183 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16184 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16185 gotplt_addr = gotplt_hi + gotplt_lo;
16186 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16187 suffixlen = sizeof (mipssuffix);
16188 suffix = mipssuffix;
16189 other = 0;
16190 }
16191 /* Truncated table??? */
16192 if (plt_offset + entry_size > plt->size)
16193 break;
16194
16195 for (i = 0;
16196 i < count && p[pi].address != gotplt_addr;
16197 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16198
16199 if (i < count)
16200 {
16201 size_t namelen;
16202 size_t len;
16203
16204 *s = **p[pi].sym_ptr_ptr;
16205 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16206 we are defining a symbol, ensure one of them is set. */
16207 if ((s->flags & BSF_LOCAL) == 0)
16208 s->flags |= BSF_GLOBAL;
16209 s->flags |= BSF_SYNTHETIC;
16210 s->section = plt;
16211 s->value = plt_offset;
16212 s->name = names;
16213 s->udata.i = other;
16214
16215 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16216 namelen = len + suffixlen;
16217 if (names + namelen > nend)
16218 break;
16219
16220 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16221 names += len;
16222 memcpy (names, suffix, suffixlen);
16223 names += suffixlen;
16224
16225 ++s, ++n;
16226 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16227 }
16228 }
16229
16230 free (plt_data);
16231
16232 return n;
16233}
16234
5e7fc731
MR
16235/* Return the ABI flags associated with ABFD if available. */
16236
16237Elf_Internal_ABIFlags_v0 *
16238bfd_mips_elf_get_abiflags (bfd *abfd)
16239{
16240 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16241
16242 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16243}
16244
bb29b84d
MR
16245/* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16246 field. Taken from `libc-abis.h' generated at GNU libc build time.
16247 Using a MIPS_ prefix as other libc targets use different values. */
16248enum
16249{
16250 MIPS_LIBC_ABI_DEFAULT = 0,
16251 MIPS_LIBC_ABI_MIPS_PLT,
16252 MIPS_LIBC_ABI_UNIQUE,
16253 MIPS_LIBC_ABI_MIPS_O32_FP64,
16254 MIPS_LIBC_ABI_MAX
16255};
16256
861fb55a
DJ
16257void
16258_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16259{
16260 struct mips_elf_link_hash_table *htab;
16261 Elf_Internal_Ehdr *i_ehdrp;
16262
16263 i_ehdrp = elf_elfheader (abfd);
16264 if (link_info)
16265 {
16266 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
16267 BFD_ASSERT (htab != NULL);
16268
861fb55a 16269 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
bb29b84d 16270 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
861fb55a 16271 }
0af03126 16272
351cdf24
MF
16273 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16274 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
bb29b84d 16275 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
334cd8a7
MR
16276
16277 _bfd_elf_post_process_headers (abfd, link_info);
861fb55a 16278}
2f0c68f2
CM
16279
16280int
1ced1a5f
MR
16281_bfd_mips_elf_compact_eh_encoding
16282 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
2f0c68f2
CM
16283{
16284 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16285}
16286
16287/* Return the opcode for can't unwind. */
16288
16289int
1ced1a5f
MR
16290_bfd_mips_elf_cant_unwind_opcode
16291 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
2f0c68f2
CM
16292{
16293 return COMPACT_EH_CANT_UNWIND_OPCODE;
16294}
This page took 2.252376 seconds and 4 git commands to generate.