x86: consistently convert to byte registers for TEST w/ imm optimization
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
b3adc24a 2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
79dec6b7
JB
101/* This matches the C -> StaticRounding alias in the opcode table. */
102#define commutative staticrounding
103
6305a203
L
104/*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111typedef struct
112{
d3ce72d0
NC
113 const insn_template *start;
114 const insn_template *end;
6305a203
L
115}
116templates;
117
118/* 386 operand encoding bytes: see 386 book for details of this. */
119typedef struct
120{
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124}
125modrm_byte;
126
127/* x86-64 extension prefix. */
128typedef int rex_byte;
129
6305a203
L
130/* 386 opcode byte to code indirect addressing. */
131typedef struct
132{
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136}
137sib_byte;
138
6305a203
L
139/* x86 arch names, types and features */
140typedef struct
141{
142 const char *name; /* arch name */
8a2c8fef 143 unsigned int len; /* arch string length */
6305a203
L
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 146 unsigned int skip; /* show_arch should skip this. */
6305a203
L
147}
148arch_entry;
149
293f5f65
L
150/* Used to turn off indicated flags. */
151typedef struct
152{
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156}
157noarch_entry;
158
78f12dd3 159static void update_code_flag (int, int);
e3bb37b5
L
160static void set_code_flag (int);
161static void set_16bit_gcc_code_flag (int);
162static void set_intel_syntax (int);
1efbbeb4 163static void set_intel_mnemonic (int);
db51cc60 164static void set_allow_index_reg (int);
7bab8ab5 165static void set_check (int);
e3bb37b5 166static void set_cpu_arch (int);
6482c264 167#ifdef TE_PE
e3bb37b5 168static void pe_directive_secrel (int);
6482c264 169#endif
e3bb37b5
L
170static void signed_cons (int);
171static char *output_invalid (int c);
ee86248c
JB
172static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
a7619375 176static int i386_att_operand (char *);
e3bb37b5 177static int i386_intel_operand (char *, int);
ee86248c
JB
178static int i386_intel_simplify (expressionS *);
179static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
180static const reg_entry *parse_register (char *, char **);
181static char *parse_insn (char *, char *);
182static char *parse_operands (char *, const char *);
183static void swap_operands (void);
4d456e3d 184static void swap_2_operands (int, int);
48bcea9f 185static enum flag_code i386_addressing_mode (void);
e3bb37b5
L
186static void optimize_imm (void);
187static void optimize_disp (void);
83b16ac6 188static const insn_template *match_template (char);
e3bb37b5
L
189static int check_string (void);
190static int process_suffix (void);
191static int check_byte_reg (void);
192static int check_long_reg (void);
193static int check_qword_reg (void);
194static int check_word_reg (void);
195static int finalize_imm (void);
196static int process_operands (void);
197static const seg_entry *build_modrm_byte (void);
198static void output_insn (void);
199static void output_imm (fragS *, offsetT);
200static void output_disp (fragS *, offsetT);
29b0f896 201#ifndef I386COFF
e3bb37b5 202static void s_bss (int);
252b5132 203#endif
17d4e2a2
L
204#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
205static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
206
207/* GNU_PROPERTY_X86_ISA_1_USED. */
208static unsigned int x86_isa_1_used;
209/* GNU_PROPERTY_X86_FEATURE_2_USED. */
210static unsigned int x86_feature_2_used;
211/* Generate x86 used ISA and feature properties. */
212static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 213#endif
252b5132 214
a847613f 215static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 216
43234a1e
L
217/* This struct describes rounding control and SAE in the instruction. */
218struct RC_Operation
219{
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229};
230
231static struct RC_Operation rc_op;
232
233/* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236struct Mask_Operation
237{
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242};
243
244static struct Mask_Operation mask_op;
245
246/* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248struct Broadcast_Operation
249{
8e6e0792 250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
4a1b91ea
L
255
256 /* Number of bytes to broadcast. */
257 int bytes;
43234a1e
L
258};
259
260static struct Broadcast_Operation broadcast_op;
261
c0f3af97
L
262/* VEX prefix. */
263typedef struct
264{
43234a1e
L
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
c0f3af97
L
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270} vex_prefix;
271
252b5132 272/* 'md_assemble ()' gathers together information and puts it into a
47926f60 273 i386_insn. */
252b5132 274
520dc8e8
AM
275union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
a65babc9
L
282enum i386_error
283 {
86e026a4 284 operand_size_mismatch,
a65babc9
L
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
a65babc9
L
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
6c30d220
L
292 unsupported,
293 invalid_vsib_address,
7bab8ab5 294 invalid_vector_register_set,
43234a1e
L
295 unsupported_vector_index_register,
296 unsupported_broadcast,
43234a1e
L
297 broadcast_needed,
298 unsupported_masking,
299 mask_not_on_destination,
300 no_default_mask,
301 unsupported_rc_sae,
302 rc_sae_operand_not_last_imm,
303 invalid_register_operand,
a65babc9
L
304 };
305
252b5132
RH
306struct _i386_insn
307 {
47926f60 308 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 309 insn_template tm;
252b5132 310
7d5e4556
L
311 /* SUFFIX holds the instruction size suffix for byte, word, dword
312 or qword, if given. */
252b5132
RH
313 char suffix;
314
47926f60 315 /* OPERANDS gives the number of given operands. */
252b5132
RH
316 unsigned int operands;
317
318 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
319 of given register, displacement, memory operands and immediate
47926f60 320 operands. */
252b5132
RH
321 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
322
323 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 324 use OP[i] for the corresponding operand. */
40fb9820 325 i386_operand_type types[MAX_OPERANDS];
252b5132 326
520dc8e8
AM
327 /* Displacement expression, immediate expression, or register for each
328 operand. */
329 union i386_op op[MAX_OPERANDS];
252b5132 330
3e73aa7c
JH
331 /* Flags for operands. */
332 unsigned int flags[MAX_OPERANDS];
333#define Operand_PCrel 1
c48dadc9 334#define Operand_Mem 2
3e73aa7c 335
252b5132 336 /* Relocation type for operand */
f86103b7 337 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 338
252b5132
RH
339 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
340 the base index byte below. */
341 const reg_entry *base_reg;
342 const reg_entry *index_reg;
343 unsigned int log2_scale_factor;
344
345 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 346 explicit segment overrides are given. */
ce8a8b2f 347 const seg_entry *seg[2];
252b5132 348
8325cc63
JB
349 /* Copied first memory operand string, for re-checking. */
350 char *memop1_string;
351
252b5132
RH
352 /* PREFIX holds all the given prefix opcodes (usually null).
353 PREFIXES is the number of prefix opcodes. */
354 unsigned int prefixes;
355 unsigned char prefix[MAX_PREFIXES];
356
6f2f06be
JB
357 /* The operand to a branch insn indicates an absolute branch. */
358 bfd_boolean jumpabsolute;
359
b4a3a7b4
L
360 /* Has MMX register operands. */
361 bfd_boolean has_regmmx;
362
363 /* Has XMM register operands. */
364 bfd_boolean has_regxmm;
365
366 /* Has YMM register operands. */
367 bfd_boolean has_regymm;
368
369 /* Has ZMM register operands. */
370 bfd_boolean has_regzmm;
371
e379e5f3
L
372 /* Has GOTPC or TLS relocation. */
373 bfd_boolean has_gotpc_tls_reloc;
374
252b5132 375 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 376 addressing modes of this insn are encoded. */
252b5132 377 modrm_byte rm;
3e73aa7c 378 rex_byte rex;
43234a1e 379 rex_byte vrex;
252b5132 380 sib_byte sib;
c0f3af97 381 vex_prefix vex;
b6169b20 382
43234a1e
L
383 /* Masking attributes. */
384 struct Mask_Operation *mask;
385
386 /* Rounding control and SAE attributes. */
387 struct RC_Operation *rounding;
388
389 /* Broadcasting attributes. */
390 struct Broadcast_Operation *broadcast;
391
392 /* Compressed disp8*N attribute. */
393 unsigned int memshift;
394
86fa6981
L
395 /* Prefer load or store in encoding. */
396 enum
397 {
398 dir_encoding_default = 0,
399 dir_encoding_load,
64c49ab3
JB
400 dir_encoding_store,
401 dir_encoding_swap
86fa6981 402 } dir_encoding;
891edac4 403
a501d77e
L
404 /* Prefer 8bit or 32bit displacement in encoding. */
405 enum
406 {
407 disp_encoding_default = 0,
408 disp_encoding_8bit,
409 disp_encoding_32bit
410 } disp_encoding;
f8a5c266 411
6b6b6807
L
412 /* Prefer the REX byte in encoding. */
413 bfd_boolean rex_encoding;
414
b6f8c7c4
L
415 /* Disable instruction size optimization. */
416 bfd_boolean no_optimize;
417
86fa6981
L
418 /* How to encode vector instructions. */
419 enum
420 {
421 vex_encoding_default = 0,
422 vex_encoding_vex2,
423 vex_encoding_vex3,
424 vex_encoding_evex
425 } vec_encoding;
426
d5de92cf
L
427 /* REP prefix. */
428 const char *rep_prefix;
429
165de32a
L
430 /* HLE prefix. */
431 const char *hle_prefix;
42164a71 432
7e8b059b
L
433 /* Have BND prefix. */
434 const char *bnd_prefix;
435
04ef582a
L
436 /* Have NOTRACK prefix. */
437 const char *notrack_prefix;
438
891edac4 439 /* Error message. */
a65babc9 440 enum i386_error error;
252b5132
RH
441 };
442
443typedef struct _i386_insn i386_insn;
444
43234a1e
L
445/* Link RC type with corresponding string, that'll be looked for in
446 asm. */
447struct RC_name
448{
449 enum rc_type type;
450 const char *name;
451 unsigned int len;
452};
453
454static const struct RC_name RC_NamesTable[] =
455{
456 { rne, STRING_COMMA_LEN ("rn-sae") },
457 { rd, STRING_COMMA_LEN ("rd-sae") },
458 { ru, STRING_COMMA_LEN ("ru-sae") },
459 { rz, STRING_COMMA_LEN ("rz-sae") },
460 { saeonly, STRING_COMMA_LEN ("sae") },
461};
462
252b5132
RH
463/* List of chars besides those in app.c:symbol_chars that can start an
464 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 465const char extra_symbol_chars[] = "*%-([{}"
252b5132 466#ifdef LEX_AT
32137342
NC
467 "@"
468#endif
469#ifdef LEX_QM
470 "?"
252b5132 471#endif
32137342 472 ;
252b5132 473
29b0f896
AM
474#if (defined (TE_I386AIX) \
475 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 476 && !defined (TE_GNU) \
29b0f896 477 && !defined (TE_LINUX) \
8d63c93e 478 && !defined (TE_NACL) \
29b0f896 479 && !defined (TE_FreeBSD) \
5b806d27 480 && !defined (TE_DragonFly) \
29b0f896 481 && !defined (TE_NetBSD)))
252b5132 482/* This array holds the chars that always start a comment. If the
b3b91714
AM
483 pre-processor is disabled, these aren't very useful. The option
484 --divide will remove '/' from this list. */
485const char *i386_comment_chars = "#/";
486#define SVR4_COMMENT_CHARS 1
252b5132 487#define PREFIX_SEPARATOR '\\'
252b5132 488
b3b91714
AM
489#else
490const char *i386_comment_chars = "#";
491#define PREFIX_SEPARATOR '/'
492#endif
493
252b5132
RH
494/* This array holds the chars that only start a comment at the beginning of
495 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
496 .line and .file directives will appear in the pre-processed output.
497 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 498 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
499 #NO_APP at the beginning of its output.
500 Also note that comments started like this one will always work if
252b5132 501 '/' isn't otherwise defined. */
b3b91714 502const char line_comment_chars[] = "#/";
252b5132 503
63a0b638 504const char line_separator_chars[] = ";";
252b5132 505
ce8a8b2f
AM
506/* Chars that can be used to separate mant from exp in floating point
507 nums. */
252b5132
RH
508const char EXP_CHARS[] = "eE";
509
ce8a8b2f
AM
510/* Chars that mean this number is a floating point constant
511 As in 0f12.456
512 or 0d1.2345e12. */
252b5132
RH
513const char FLT_CHARS[] = "fFdDxX";
514
ce8a8b2f 515/* Tables for lexical analysis. */
252b5132
RH
516static char mnemonic_chars[256];
517static char register_chars[256];
518static char operand_chars[256];
519static char identifier_chars[256];
520static char digit_chars[256];
521
ce8a8b2f 522/* Lexical macros. */
252b5132
RH
523#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
524#define is_operand_char(x) (operand_chars[(unsigned char) x])
525#define is_register_char(x) (register_chars[(unsigned char) x])
526#define is_space_char(x) ((x) == ' ')
527#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
528#define is_digit_char(x) (digit_chars[(unsigned char) x])
529
0234cb7c 530/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
531static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
532
533/* md_assemble() always leaves the strings it's passed unaltered. To
534 effect this we maintain a stack of saved characters that we've smashed
535 with '\0's (indicating end of strings for various sub-fields of the
47926f60 536 assembler instruction). */
252b5132 537static char save_stack[32];
ce8a8b2f 538static char *save_stack_p;
252b5132
RH
539#define END_STRING_AND_SAVE(s) \
540 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
541#define RESTORE_END_STRING(s) \
542 do { *(s) = *--save_stack_p; } while (0)
543
47926f60 544/* The instruction we're assembling. */
252b5132
RH
545static i386_insn i;
546
547/* Possible templates for current insn. */
548static const templates *current_templates;
549
31b2323c
L
550/* Per instruction expressionS buffers: max displacements & immediates. */
551static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
552static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 553
47926f60 554/* Current operand we are working on. */
ee86248c 555static int this_operand = -1;
252b5132 556
3e73aa7c
JH
557/* We support four different modes. FLAG_CODE variable is used to distinguish
558 these. */
559
560enum flag_code {
561 CODE_32BIT,
562 CODE_16BIT,
563 CODE_64BIT };
564
565static enum flag_code flag_code;
4fa24527 566static unsigned int object_64bit;
862be3fb 567static unsigned int disallow_64bit_reloc;
3e73aa7c 568static int use_rela_relocations = 0;
e379e5f3
L
569/* __tls_get_addr/___tls_get_addr symbol for TLS. */
570static const char *tls_get_addr;
3e73aa7c 571
7af8ed2d
NC
572#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
573 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
574 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
575
351f65ca
L
576/* The ELF ABI to use. */
577enum x86_elf_abi
578{
579 I386_ABI,
7f56bc95
L
580 X86_64_ABI,
581 X86_64_X32_ABI
351f65ca
L
582};
583
584static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 585#endif
351f65ca 586
167ad85b
TG
587#if defined (TE_PE) || defined (TE_PEP)
588/* Use big object file format. */
589static int use_big_obj = 0;
590#endif
591
8dcea932
L
592#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
593/* 1 if generating code for a shared library. */
594static int shared = 0;
595#endif
596
47926f60
KH
597/* 1 for intel syntax,
598 0 if att syntax. */
599static int intel_syntax = 0;
252b5132 600
e89c5eaa
L
601/* 1 for Intel64 ISA,
602 0 if AMD64 ISA. */
603static int intel64;
604
1efbbeb4
L
605/* 1 for intel mnemonic,
606 0 if att mnemonic. */
607static int intel_mnemonic = !SYSV386_COMPAT;
608
a60de03c
JB
609/* 1 if pseudo registers are permitted. */
610static int allow_pseudo_reg = 0;
611
47926f60
KH
612/* 1 if register prefix % not required. */
613static int allow_naked_reg = 0;
252b5132 614
33eaf5de 615/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
616 instructions supporting it, even if this prefix wasn't specified
617 explicitly. */
618static int add_bnd_prefix = 0;
619
ba104c83 620/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
621static int allow_index_reg = 0;
622
d022bddd
IT
623/* 1 if the assembler should ignore LOCK prefix, even if it was
624 specified explicitly. */
625static int omit_lock_prefix = 0;
626
e4e00185
AS
627/* 1 if the assembler should encode lfence, mfence, and sfence as
628 "lock addl $0, (%{re}sp)". */
629static int avoid_fence = 0;
630
e379e5f3
L
631/* Type of the previous instruction. */
632static struct
633 {
634 segT seg;
635 const char *file;
636 const char *name;
637 unsigned int line;
638 enum last_insn_kind
639 {
640 last_insn_other = 0,
641 last_insn_directive,
642 last_insn_prefix
643 } kind;
644 } last_insn;
645
0cb4071e
L
646/* 1 if the assembler should generate relax relocations. */
647
648static int generate_relax_relocations
649 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
650
7bab8ab5 651static enum check_kind
daf50ae7 652 {
7bab8ab5
JB
653 check_none = 0,
654 check_warning,
655 check_error
daf50ae7 656 }
7bab8ab5 657sse_check, operand_check = check_warning;
daf50ae7 658
e379e5f3
L
659/* Non-zero if branches should be aligned within power of 2 boundary. */
660static int align_branch_power = 0;
661
662/* Types of branches to align. */
663enum align_branch_kind
664 {
665 align_branch_none = 0,
666 align_branch_jcc = 1,
667 align_branch_fused = 2,
668 align_branch_jmp = 3,
669 align_branch_call = 4,
670 align_branch_indirect = 5,
671 align_branch_ret = 6
672 };
673
674/* Type bits of branches to align. */
675enum align_branch_bit
676 {
677 align_branch_jcc_bit = 1 << align_branch_jcc,
678 align_branch_fused_bit = 1 << align_branch_fused,
679 align_branch_jmp_bit = 1 << align_branch_jmp,
680 align_branch_call_bit = 1 << align_branch_call,
681 align_branch_indirect_bit = 1 << align_branch_indirect,
682 align_branch_ret_bit = 1 << align_branch_ret
683 };
684
685static unsigned int align_branch = (align_branch_jcc_bit
686 | align_branch_fused_bit
687 | align_branch_jmp_bit);
688
689/* The maximum padding size for fused jcc. CMP like instruction can
690 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
691 prefixes. */
692#define MAX_FUSED_JCC_PADDING_SIZE 20
693
694/* The maximum number of prefixes added for an instruction. */
695static unsigned int align_branch_prefix_size = 5;
696
b6f8c7c4
L
697/* Optimization:
698 1. Clear the REX_W bit with register operand if possible.
699 2. Above plus use 128bit vector instruction to clear the full vector
700 register.
701 */
702static int optimize = 0;
703
704/* Optimization:
705 1. Clear the REX_W bit with register operand if possible.
706 2. Above plus use 128bit vector instruction to clear the full vector
707 register.
708 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
709 "testb $imm7,%r8".
710 */
711static int optimize_for_space = 0;
712
2ca3ace5
L
713/* Register prefix used for error message. */
714static const char *register_prefix = "%";
715
47926f60
KH
716/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
717 leave, push, and pop instructions so that gcc has the same stack
718 frame as in 32 bit mode. */
719static char stackop_size = '\0';
eecb386c 720
12b55ccc
L
721/* Non-zero to optimize code alignment. */
722int optimize_align_code = 1;
723
47926f60
KH
724/* Non-zero to quieten some warnings. */
725static int quiet_warnings = 0;
a38cf1db 726
47926f60
KH
727/* CPU name. */
728static const char *cpu_arch_name = NULL;
6305a203 729static char *cpu_sub_arch_name = NULL;
a38cf1db 730
47926f60 731/* CPU feature flags. */
40fb9820
L
732static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
733
ccc9c027
L
734/* If we have selected a cpu we are generating instructions for. */
735static int cpu_arch_tune_set = 0;
736
9103f4f4 737/* Cpu we are generating instructions for. */
fbf3f584 738enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
739
740/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 741static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 742
ccc9c027 743/* CPU instruction set architecture used. */
fbf3f584 744enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 745
9103f4f4 746/* CPU feature flags of instruction set architecture used. */
fbf3f584 747i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 748
fddf5b5b
AM
749/* If set, conditional jumps are not automatically promoted to handle
750 larger than a byte offset. */
751static unsigned int no_cond_jump_promotion = 0;
752
c0f3af97
L
753/* Encode SSE instructions with VEX prefix. */
754static unsigned int sse2avx;
755
539f890d
L
756/* Encode scalar AVX instructions with specific vector length. */
757static enum
758 {
759 vex128 = 0,
760 vex256
761 } avxscalar;
762
03751133
L
763/* Encode VEX WIG instructions with specific vex.w. */
764static enum
765 {
766 vexw0 = 0,
767 vexw1
768 } vexwig;
769
43234a1e
L
770/* Encode scalar EVEX LIG instructions with specific vector length. */
771static enum
772 {
773 evexl128 = 0,
774 evexl256,
775 evexl512
776 } evexlig;
777
778/* Encode EVEX WIG instructions with specific evex.w. */
779static enum
780 {
781 evexw0 = 0,
782 evexw1
783 } evexwig;
784
d3d3c6db
IT
785/* Value to encode in EVEX RC bits, for SAE-only instructions. */
786static enum rc_type evexrcig = rne;
787
29b0f896 788/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 789static symbolS *GOT_symbol;
29b0f896 790
a4447b93
RH
791/* The dwarf2 return column, adjusted for 32 or 64 bit. */
792unsigned int x86_dwarf2_return_column;
793
794/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
795int x86_cie_data_alignment;
796
252b5132 797/* Interface to relax_segment.
fddf5b5b
AM
798 There are 3 major relax states for 386 jump insns because the
799 different types of jumps add different sizes to frags when we're
e379e5f3
L
800 figuring out what sort of jump to choose to reach a given label.
801
802 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
803 branches which are handled by md_estimate_size_before_relax() and
804 i386_generic_table_relax_frag(). */
252b5132 805
47926f60 806/* Types. */
93c2a809
AM
807#define UNCOND_JUMP 0
808#define COND_JUMP 1
809#define COND_JUMP86 2
e379e5f3
L
810#define BRANCH_PADDING 3
811#define BRANCH_PREFIX 4
812#define FUSED_JCC_PADDING 5
fddf5b5b 813
47926f60 814/* Sizes. */
252b5132
RH
815#define CODE16 1
816#define SMALL 0
29b0f896 817#define SMALL16 (SMALL | CODE16)
252b5132 818#define BIG 2
29b0f896 819#define BIG16 (BIG | CODE16)
252b5132
RH
820
821#ifndef INLINE
822#ifdef __GNUC__
823#define INLINE __inline__
824#else
825#define INLINE
826#endif
827#endif
828
fddf5b5b
AM
829#define ENCODE_RELAX_STATE(type, size) \
830 ((relax_substateT) (((type) << 2) | (size)))
831#define TYPE_FROM_RELAX_STATE(s) \
832 ((s) >> 2)
833#define DISP_SIZE_FROM_RELAX_STATE(s) \
834 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
835
836/* This table is used by relax_frag to promote short jumps to long
837 ones where necessary. SMALL (short) jumps may be promoted to BIG
838 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
839 don't allow a short jump in a 32 bit code segment to be promoted to
840 a 16 bit offset jump because it's slower (requires data size
841 prefix), and doesn't work, unless the destination is in the bottom
842 64k of the code segment (The top 16 bits of eip are zeroed). */
843
844const relax_typeS md_relax_table[] =
845{
24eab124
AM
846 /* The fields are:
847 1) most positive reach of this state,
848 2) most negative reach of this state,
93c2a809 849 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 850 4) which index into the table to try if we can't fit into this one. */
252b5132 851
fddf5b5b 852 /* UNCOND_JUMP states. */
93c2a809
AM
853 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
855 /* dword jmp adds 4 bytes to frag:
856 0 extra opcode bytes, 4 displacement bytes. */
252b5132 857 {0, 0, 4, 0},
93c2a809
AM
858 /* word jmp adds 2 byte2 to frag:
859 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
860 {0, 0, 2, 0},
861
93c2a809
AM
862 /* COND_JUMP states. */
863 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
865 /* dword conditionals adds 5 bytes to frag:
866 1 extra opcode byte, 4 displacement bytes. */
867 {0, 0, 5, 0},
fddf5b5b 868 /* word conditionals add 3 bytes to frag:
93c2a809
AM
869 1 extra opcode byte, 2 displacement bytes. */
870 {0, 0, 3, 0},
871
872 /* COND_JUMP86 states. */
873 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
875 /* dword conditionals adds 5 bytes to frag:
876 1 extra opcode byte, 4 displacement bytes. */
877 {0, 0, 5, 0},
878 /* word conditionals add 4 bytes to frag:
879 1 displacement byte and a 3 byte long branch insn. */
880 {0, 0, 4, 0}
252b5132
RH
881};
882
9103f4f4
L
883static const arch_entry cpu_arch[] =
884{
89507696
JB
885 /* Do not replace the first two entries - i386_target_format()
886 relies on them being there in this order. */
8a2c8fef 887 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 888 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 889 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 890 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 891 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 892 CPU_NONE_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_I186_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_I286_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 898 CPU_I386_FLAGS, 0 },
8a2c8fef 899 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 900 CPU_I486_FLAGS, 0 },
8a2c8fef 901 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 902 CPU_I586_FLAGS, 0 },
8a2c8fef 903 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 904 CPU_I686_FLAGS, 0 },
8a2c8fef 905 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 906 CPU_I586_FLAGS, 0 },
8a2c8fef 907 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 908 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 909 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 910 CPU_P2_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 912 CPU_P3_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 914 CPU_P4_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 916 CPU_CORE_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 918 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 920 CPU_CORE_FLAGS, 1 },
8a2c8fef 921 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 922 CPU_CORE_FLAGS, 0 },
8a2c8fef 923 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 924 CPU_CORE2_FLAGS, 1 },
8a2c8fef 925 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 926 CPU_CORE2_FLAGS, 0 },
8a2c8fef 927 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 928 CPU_COREI7_FLAGS, 0 },
8a2c8fef 929 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 930 CPU_L1OM_FLAGS, 0 },
7a9068fe 931 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 932 CPU_K1OM_FLAGS, 0 },
81486035 933 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 934 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 935 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 936 CPU_K6_FLAGS, 0 },
8a2c8fef 937 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 938 CPU_K6_2_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 940 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 941 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 942 CPU_K8_FLAGS, 1 },
8a2c8fef 943 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 944 CPU_K8_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 946 CPU_K8_FLAGS, 0 },
8a2c8fef 947 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 948 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 949 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 950 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 951 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 952 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 953 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 954 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 955 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 956 CPU_BDVER4_FLAGS, 0 },
029f3522 957 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 958 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
959 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
960 CPU_ZNVER2_FLAGS, 0 },
7b458c12 961 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 962 CPU_BTVER1_FLAGS, 0 },
7b458c12 963 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 964 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 965 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_8087_FLAGS, 0 },
8a2c8fef 967 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_287_FLAGS, 0 },
8a2c8fef 969 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_387_FLAGS, 0 },
1848e567
L
971 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
972 CPU_687_FLAGS, 0 },
d871f3f4
L
973 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
974 CPU_CMOV_FLAGS, 0 },
975 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
976 CPU_FXSR_FLAGS, 0 },
8a2c8fef 977 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_MMX_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_SSE_FLAGS, 0 },
8a2c8fef 981 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_SSE2_FLAGS, 0 },
8a2c8fef 983 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_SSE3_FLAGS, 0 },
8a2c8fef 985 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 987 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 989 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 991 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 993 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_AVX_FLAGS, 0 },
6c30d220 995 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_AVX2_FLAGS, 0 },
43234a1e 997 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_AVX512F_FLAGS, 0 },
43234a1e 999 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_AVX512CD_FLAGS, 0 },
43234a1e 1001 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_AVX512ER_FLAGS, 0 },
43234a1e 1003 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 1005 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 1007 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 1009 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 1011 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_VMX_FLAGS, 0 },
8729a6f6 1013 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 1015 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_SMX_FLAGS, 0 },
8a2c8fef 1017 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 1019 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 1021 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 1022 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 1023 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 1025 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_AES_FLAGS, 0 },
8a2c8fef 1027 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 1029 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 1030 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 1031 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 1032 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 1033 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 1035 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_F16C_FLAGS, 0 },
6c30d220 1037 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_BMI2_FLAGS, 0 },
8a2c8fef 1039 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 1040 CPU_FMA_FLAGS, 0 },
8a2c8fef 1041 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 1042 CPU_FMA4_FLAGS, 0 },
8a2c8fef 1043 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 1044 CPU_XOP_FLAGS, 0 },
8a2c8fef 1045 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 1046 CPU_LWP_FLAGS, 0 },
8a2c8fef 1047 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 1048 CPU_MOVBE_FLAGS, 0 },
60aa667e 1049 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 1050 CPU_CX16_FLAGS, 0 },
8a2c8fef 1051 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 1052 CPU_EPT_FLAGS, 0 },
6c30d220 1053 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 1054 CPU_LZCNT_FLAGS, 0 },
42164a71 1055 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 1056 CPU_HLE_FLAGS, 0 },
42164a71 1057 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_RTM_FLAGS, 0 },
6c30d220 1059 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 1060 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 1061 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 1062 CPU_CLFLUSH_FLAGS, 0 },
22109423 1063 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 1064 CPU_NOP_FLAGS, 0 },
8a2c8fef 1065 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 1066 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 1067 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 1068 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1069 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1070 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1071 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1072 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1073 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1074 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1075 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1076 CPU_SVME_FLAGS, 1 },
8a2c8fef 1077 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1078 CPU_SVME_FLAGS, 0 },
8a2c8fef 1079 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1080 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1081 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1082 CPU_ABM_FLAGS, 0 },
87973e9f 1083 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1084 CPU_BMI_FLAGS, 0 },
2a2a0f38 1085 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1086 CPU_TBM_FLAGS, 0 },
e2e1fcde 1087 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1088 CPU_ADX_FLAGS, 0 },
e2e1fcde 1089 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1090 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1091 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1092 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1093 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1094 CPU_SMAP_FLAGS, 0 },
7e8b059b 1095 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1096 CPU_MPX_FLAGS, 0 },
a0046408 1097 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1098 CPU_SHA_FLAGS, 0 },
963f3586 1099 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1100 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1101 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1102 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1103 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1104 CPU_SE1_FLAGS, 0 },
c5e7287a 1105 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1106 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1107 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1108 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1109 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1110 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1111 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1112 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1113 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1114 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1115 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1116 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1117 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1118 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1119 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1120 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1121 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1122 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1123 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1124 CPU_CLZERO_FLAGS, 0 },
9916071f 1125 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1126 CPU_MWAITX_FLAGS, 0 },
8eab4136 1127 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1128 CPU_OSPKE_FLAGS, 0 },
8bc52696 1129 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1130 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1131 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1132 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1133 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1134 CPU_IBT_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1136 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1137 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1138 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1139 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1140 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1141 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1142 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1143 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1144 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1145 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1146 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1147 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1148 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1149 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1150 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1151 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1152 CPU_MOVDIRI_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1154 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1155 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1156 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1157 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1158 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1159 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1160 CPU_ENQCMD_FLAGS, 0 },
142861df
JB
1161 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1162 CPU_RDPRU_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1164 CPU_MCOMMIT_FLAGS, 0 },
293f5f65
L
1165};
1166
1167static const noarch_entry cpu_noarch[] =
1168{
1169 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1170 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1171 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1172 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1173 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1174 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1175 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1176 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1177 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1178 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1179 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1180 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1181 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1183 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1184 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1185 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1186 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1194 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1195 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1196 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1197 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1198 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1199 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1200 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1201 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1202 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1203 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1204 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1205 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1206 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1207};
1208
704209c0 1209#ifdef I386COFF
a6c24e68
NC
1210/* Like s_lcomm_internal in gas/read.c but the alignment string
1211 is allowed to be optional. */
1212
1213static symbolS *
1214pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1215{
1216 addressT align = 0;
1217
1218 SKIP_WHITESPACE ();
1219
7ab9ffdd 1220 if (needs_align
a6c24e68
NC
1221 && *input_line_pointer == ',')
1222 {
1223 align = parse_align (needs_align - 1);
7ab9ffdd 1224
a6c24e68
NC
1225 if (align == (addressT) -1)
1226 return NULL;
1227 }
1228 else
1229 {
1230 if (size >= 8)
1231 align = 3;
1232 else if (size >= 4)
1233 align = 2;
1234 else if (size >= 2)
1235 align = 1;
1236 else
1237 align = 0;
1238 }
1239
1240 bss_alloc (symbolP, size, align);
1241 return symbolP;
1242}
1243
704209c0 1244static void
a6c24e68
NC
1245pe_lcomm (int needs_align)
1246{
1247 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1248}
704209c0 1249#endif
a6c24e68 1250
29b0f896
AM
1251const pseudo_typeS md_pseudo_table[] =
1252{
1253#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1254 {"align", s_align_bytes, 0},
1255#else
1256 {"align", s_align_ptwo, 0},
1257#endif
1258 {"arch", set_cpu_arch, 0},
1259#ifndef I386COFF
1260 {"bss", s_bss, 0},
a6c24e68
NC
1261#else
1262 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1263#endif
1264 {"ffloat", float_cons, 'f'},
1265 {"dfloat", float_cons, 'd'},
1266 {"tfloat", float_cons, 'x'},
1267 {"value", cons, 2},
d182319b 1268 {"slong", signed_cons, 4},
29b0f896
AM
1269 {"noopt", s_ignore, 0},
1270 {"optim", s_ignore, 0},
1271 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1272 {"code16", set_code_flag, CODE_16BIT},
1273 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1274#ifdef BFD64
29b0f896 1275 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1276#endif
29b0f896
AM
1277 {"intel_syntax", set_intel_syntax, 1},
1278 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1279 {"intel_mnemonic", set_intel_mnemonic, 1},
1280 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1281 {"allow_index_reg", set_allow_index_reg, 1},
1282 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1283 {"sse_check", set_check, 0},
1284 {"operand_check", set_check, 1},
3b22753a
L
1285#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1286 {"largecomm", handle_large_common, 0},
07a53e5c 1287#else
68d20676 1288 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1289 {"loc", dwarf2_directive_loc, 0},
1290 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1291#endif
6482c264
NC
1292#ifdef TE_PE
1293 {"secrel32", pe_directive_secrel, 0},
1294#endif
29b0f896
AM
1295 {0, 0, 0}
1296};
1297
1298/* For interface with expression (). */
1299extern char *input_line_pointer;
1300
1301/* Hash table for instruction mnemonic lookup. */
1302static struct hash_control *op_hash;
1303
1304/* Hash table for register lookup. */
1305static struct hash_control *reg_hash;
1306\f
ce8a8b2f
AM
1307 /* Various efficient no-op patterns for aligning code labels.
1308 Note: Don't try to assemble the instructions in the comments.
1309 0L and 0w are not legal. */
62a02d25
L
1310static const unsigned char f32_1[] =
1311 {0x90}; /* nop */
1312static const unsigned char f32_2[] =
1313 {0x66,0x90}; /* xchg %ax,%ax */
1314static const unsigned char f32_3[] =
1315 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1316static const unsigned char f32_4[] =
1317 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1318static const unsigned char f32_6[] =
1319 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1320static const unsigned char f32_7[] =
1321 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1322static const unsigned char f16_3[] =
3ae729d5 1323 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1324static const unsigned char f16_4[] =
3ae729d5
L
1325 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1326static const unsigned char jump_disp8[] =
1327 {0xeb}; /* jmp disp8 */
1328static const unsigned char jump32_disp32[] =
1329 {0xe9}; /* jmp disp32 */
1330static const unsigned char jump16_disp32[] =
1331 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1332/* 32-bit NOPs patterns. */
1333static const unsigned char *const f32_patt[] = {
3ae729d5 1334 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1335};
1336/* 16-bit NOPs patterns. */
1337static const unsigned char *const f16_patt[] = {
3ae729d5 1338 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1339};
1340/* nopl (%[re]ax) */
1341static const unsigned char alt_3[] =
1342 {0x0f,0x1f,0x00};
1343/* nopl 0(%[re]ax) */
1344static const unsigned char alt_4[] =
1345 {0x0f,0x1f,0x40,0x00};
1346/* nopl 0(%[re]ax,%[re]ax,1) */
1347static const unsigned char alt_5[] =
1348 {0x0f,0x1f,0x44,0x00,0x00};
1349/* nopw 0(%[re]ax,%[re]ax,1) */
1350static const unsigned char alt_6[] =
1351 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1352/* nopl 0L(%[re]ax) */
1353static const unsigned char alt_7[] =
1354 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1355/* nopl 0L(%[re]ax,%[re]ax,1) */
1356static const unsigned char alt_8[] =
1357 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1358/* nopw 0L(%[re]ax,%[re]ax,1) */
1359static const unsigned char alt_9[] =
1360 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1361/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1362static const unsigned char alt_10[] =
1363 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1364/* data16 nopw %cs:0L(%eax,%eax,1) */
1365static const unsigned char alt_11[] =
1366 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1367/* 32-bit and 64-bit NOPs patterns. */
1368static const unsigned char *const alt_patt[] = {
1369 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1370 alt_9, alt_10, alt_11
62a02d25
L
1371};
1372
1373/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1374 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1375
1376static void
1377i386_output_nops (char *where, const unsigned char *const *patt,
1378 int count, int max_single_nop_size)
1379
1380{
3ae729d5
L
1381 /* Place the longer NOP first. */
1382 int last;
1383 int offset;
3076e594
NC
1384 const unsigned char *nops;
1385
1386 if (max_single_nop_size < 1)
1387 {
1388 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1389 max_single_nop_size);
1390 return;
1391 }
1392
1393 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1394
1395 /* Use the smaller one if the requsted one isn't available. */
1396 if (nops == NULL)
62a02d25 1397 {
3ae729d5
L
1398 max_single_nop_size--;
1399 nops = patt[max_single_nop_size - 1];
62a02d25
L
1400 }
1401
3ae729d5
L
1402 last = count % max_single_nop_size;
1403
1404 count -= last;
1405 for (offset = 0; offset < count; offset += max_single_nop_size)
1406 memcpy (where + offset, nops, max_single_nop_size);
1407
1408 if (last)
1409 {
1410 nops = patt[last - 1];
1411 if (nops == NULL)
1412 {
1413 /* Use the smaller one plus one-byte NOP if the needed one
1414 isn't available. */
1415 last--;
1416 nops = patt[last - 1];
1417 memcpy (where + offset, nops, last);
1418 where[offset + last] = *patt[0];
1419 }
1420 else
1421 memcpy (where + offset, nops, last);
1422 }
62a02d25
L
1423}
1424
3ae729d5
L
1425static INLINE int
1426fits_in_imm7 (offsetT num)
1427{
1428 return (num & 0x7f) == num;
1429}
1430
1431static INLINE int
1432fits_in_imm31 (offsetT num)
1433{
1434 return (num & 0x7fffffff) == num;
1435}
62a02d25
L
1436
1437/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1438 single NOP instruction LIMIT. */
1439
1440void
3ae729d5 1441i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1442{
3ae729d5 1443 const unsigned char *const *patt = NULL;
62a02d25 1444 int max_single_nop_size;
3ae729d5
L
1445 /* Maximum number of NOPs before switching to jump over NOPs. */
1446 int max_number_of_nops;
62a02d25 1447
3ae729d5 1448 switch (fragP->fr_type)
62a02d25 1449 {
3ae729d5
L
1450 case rs_fill_nop:
1451 case rs_align_code:
1452 break;
e379e5f3
L
1453 case rs_machine_dependent:
1454 /* Allow NOP padding for jumps and calls. */
1455 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1456 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1457 break;
1458 /* Fall through. */
3ae729d5 1459 default:
62a02d25
L
1460 return;
1461 }
1462
ccc9c027
L
1463 /* We need to decide which NOP sequence to use for 32bit and
1464 64bit. When -mtune= is used:
4eed87de 1465
76bc74dc
L
1466 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1467 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1468 2. For the rest, alt_patt will be used.
1469
1470 When -mtune= isn't used, alt_patt will be used if
22109423 1471 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1472 be used.
ccc9c027
L
1473
1474 When -march= or .arch is used, we can't use anything beyond
1475 cpu_arch_isa_flags. */
1476
1477 if (flag_code == CODE_16BIT)
1478 {
3ae729d5
L
1479 patt = f16_patt;
1480 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1481 /* Limit number of NOPs to 2 in 16-bit mode. */
1482 max_number_of_nops = 2;
252b5132 1483 }
33fef721 1484 else
ccc9c027 1485 {
fbf3f584 1486 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1487 {
1488 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1489 switch (cpu_arch_tune)
1490 {
1491 case PROCESSOR_UNKNOWN:
1492 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1493 optimize with nops. */
1494 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1495 patt = alt_patt;
ccc9c027
L
1496 else
1497 patt = f32_patt;
1498 break;
ccc9c027
L
1499 case PROCESSOR_PENTIUM4:
1500 case PROCESSOR_NOCONA:
ef05d495 1501 case PROCESSOR_CORE:
76bc74dc 1502 case PROCESSOR_CORE2:
bd5295b2 1503 case PROCESSOR_COREI7:
3632d14b 1504 case PROCESSOR_L1OM:
7a9068fe 1505 case PROCESSOR_K1OM:
76bc74dc 1506 case PROCESSOR_GENERIC64:
ccc9c027
L
1507 case PROCESSOR_K6:
1508 case PROCESSOR_ATHLON:
1509 case PROCESSOR_K8:
4eed87de 1510 case PROCESSOR_AMDFAM10:
8aedb9fe 1511 case PROCESSOR_BD:
029f3522 1512 case PROCESSOR_ZNVER:
7b458c12 1513 case PROCESSOR_BT:
80b8656c 1514 patt = alt_patt;
ccc9c027 1515 break;
76bc74dc 1516 case PROCESSOR_I386:
ccc9c027
L
1517 case PROCESSOR_I486:
1518 case PROCESSOR_PENTIUM:
2dde1948 1519 case PROCESSOR_PENTIUMPRO:
81486035 1520 case PROCESSOR_IAMCU:
ccc9c027
L
1521 case PROCESSOR_GENERIC32:
1522 patt = f32_patt;
1523 break;
4eed87de 1524 }
ccc9c027
L
1525 }
1526 else
1527 {
fbf3f584 1528 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1529 {
1530 case PROCESSOR_UNKNOWN:
e6a14101 1531 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1532 PROCESSOR_UNKNOWN. */
1533 abort ();
1534 break;
1535
76bc74dc 1536 case PROCESSOR_I386:
ccc9c027
L
1537 case PROCESSOR_I486:
1538 case PROCESSOR_PENTIUM:
81486035 1539 case PROCESSOR_IAMCU:
ccc9c027
L
1540 case PROCESSOR_K6:
1541 case PROCESSOR_ATHLON:
1542 case PROCESSOR_K8:
4eed87de 1543 case PROCESSOR_AMDFAM10:
8aedb9fe 1544 case PROCESSOR_BD:
029f3522 1545 case PROCESSOR_ZNVER:
7b458c12 1546 case PROCESSOR_BT:
ccc9c027
L
1547 case PROCESSOR_GENERIC32:
1548 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1549 with nops. */
1550 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1551 patt = alt_patt;
ccc9c027
L
1552 else
1553 patt = f32_patt;
1554 break;
76bc74dc
L
1555 case PROCESSOR_PENTIUMPRO:
1556 case PROCESSOR_PENTIUM4:
1557 case PROCESSOR_NOCONA:
1558 case PROCESSOR_CORE:
ef05d495 1559 case PROCESSOR_CORE2:
bd5295b2 1560 case PROCESSOR_COREI7:
3632d14b 1561 case PROCESSOR_L1OM:
7a9068fe 1562 case PROCESSOR_K1OM:
22109423 1563 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1564 patt = alt_patt;
ccc9c027
L
1565 else
1566 patt = f32_patt;
1567 break;
1568 case PROCESSOR_GENERIC64:
80b8656c 1569 patt = alt_patt;
ccc9c027 1570 break;
4eed87de 1571 }
ccc9c027
L
1572 }
1573
76bc74dc
L
1574 if (patt == f32_patt)
1575 {
3ae729d5
L
1576 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1577 /* Limit number of NOPs to 2 for older processors. */
1578 max_number_of_nops = 2;
76bc74dc
L
1579 }
1580 else
1581 {
3ae729d5
L
1582 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1583 /* Limit number of NOPs to 7 for newer processors. */
1584 max_number_of_nops = 7;
1585 }
1586 }
1587
1588 if (limit == 0)
1589 limit = max_single_nop_size;
1590
1591 if (fragP->fr_type == rs_fill_nop)
1592 {
1593 /* Output NOPs for .nop directive. */
1594 if (limit > max_single_nop_size)
1595 {
1596 as_bad_where (fragP->fr_file, fragP->fr_line,
1597 _("invalid single nop size: %d "
1598 "(expect within [0, %d])"),
1599 limit, max_single_nop_size);
1600 return;
1601 }
1602 }
e379e5f3 1603 else if (fragP->fr_type != rs_machine_dependent)
3ae729d5
L
1604 fragP->fr_var = count;
1605
1606 if ((count / max_single_nop_size) > max_number_of_nops)
1607 {
1608 /* Generate jump over NOPs. */
1609 offsetT disp = count - 2;
1610 if (fits_in_imm7 (disp))
1611 {
1612 /* Use "jmp disp8" if possible. */
1613 count = disp;
1614 where[0] = jump_disp8[0];
1615 where[1] = count;
1616 where += 2;
1617 }
1618 else
1619 {
1620 unsigned int size_of_jump;
1621
1622 if (flag_code == CODE_16BIT)
1623 {
1624 where[0] = jump16_disp32[0];
1625 where[1] = jump16_disp32[1];
1626 size_of_jump = 2;
1627 }
1628 else
1629 {
1630 where[0] = jump32_disp32[0];
1631 size_of_jump = 1;
1632 }
1633
1634 count -= size_of_jump + 4;
1635 if (!fits_in_imm31 (count))
1636 {
1637 as_bad_where (fragP->fr_file, fragP->fr_line,
1638 _("jump over nop padding out of range"));
1639 return;
1640 }
1641
1642 md_number_to_chars (where + size_of_jump, count, 4);
1643 where += size_of_jump + 4;
76bc74dc 1644 }
ccc9c027 1645 }
3ae729d5
L
1646
1647 /* Generate multiple NOPs. */
1648 i386_output_nops (where, patt, count, limit);
252b5132
RH
1649}
1650
c6fb90c8 1651static INLINE int
0dfbf9d7 1652operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1653{
0dfbf9d7 1654 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1655 {
1656 case 3:
0dfbf9d7 1657 if (x->array[2])
c6fb90c8 1658 return 0;
1a0670f3 1659 /* Fall through. */
c6fb90c8 1660 case 2:
0dfbf9d7 1661 if (x->array[1])
c6fb90c8 1662 return 0;
1a0670f3 1663 /* Fall through. */
c6fb90c8 1664 case 1:
0dfbf9d7 1665 return !x->array[0];
c6fb90c8
L
1666 default:
1667 abort ();
1668 }
40fb9820
L
1669}
1670
c6fb90c8 1671static INLINE void
0dfbf9d7 1672operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1673{
0dfbf9d7 1674 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1675 {
1676 case 3:
0dfbf9d7 1677 x->array[2] = v;
1a0670f3 1678 /* Fall through. */
c6fb90c8 1679 case 2:
0dfbf9d7 1680 x->array[1] = v;
1a0670f3 1681 /* Fall through. */
c6fb90c8 1682 case 1:
0dfbf9d7 1683 x->array[0] = v;
1a0670f3 1684 /* Fall through. */
c6fb90c8
L
1685 break;
1686 default:
1687 abort ();
1688 }
bab6aec1
JB
1689
1690 x->bitfield.class = ClassNone;
75e5731b 1691 x->bitfield.instance = InstanceNone;
c6fb90c8 1692}
40fb9820 1693
c6fb90c8 1694static INLINE int
0dfbf9d7
L
1695operand_type_equal (const union i386_operand_type *x,
1696 const union i386_operand_type *y)
c6fb90c8 1697{
0dfbf9d7 1698 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1699 {
1700 case 3:
0dfbf9d7 1701 if (x->array[2] != y->array[2])
c6fb90c8 1702 return 0;
1a0670f3 1703 /* Fall through. */
c6fb90c8 1704 case 2:
0dfbf9d7 1705 if (x->array[1] != y->array[1])
c6fb90c8 1706 return 0;
1a0670f3 1707 /* Fall through. */
c6fb90c8 1708 case 1:
0dfbf9d7 1709 return x->array[0] == y->array[0];
c6fb90c8
L
1710 break;
1711 default:
1712 abort ();
1713 }
1714}
40fb9820 1715
0dfbf9d7
L
1716static INLINE int
1717cpu_flags_all_zero (const union i386_cpu_flags *x)
1718{
1719 switch (ARRAY_SIZE(x->array))
1720 {
53467f57
IT
1721 case 4:
1722 if (x->array[3])
1723 return 0;
1724 /* Fall through. */
0dfbf9d7
L
1725 case 3:
1726 if (x->array[2])
1727 return 0;
1a0670f3 1728 /* Fall through. */
0dfbf9d7
L
1729 case 2:
1730 if (x->array[1])
1731 return 0;
1a0670f3 1732 /* Fall through. */
0dfbf9d7
L
1733 case 1:
1734 return !x->array[0];
1735 default:
1736 abort ();
1737 }
1738}
1739
0dfbf9d7
L
1740static INLINE int
1741cpu_flags_equal (const union i386_cpu_flags *x,
1742 const union i386_cpu_flags *y)
1743{
1744 switch (ARRAY_SIZE(x->array))
1745 {
53467f57
IT
1746 case 4:
1747 if (x->array[3] != y->array[3])
1748 return 0;
1749 /* Fall through. */
0dfbf9d7
L
1750 case 3:
1751 if (x->array[2] != y->array[2])
1752 return 0;
1a0670f3 1753 /* Fall through. */
0dfbf9d7
L
1754 case 2:
1755 if (x->array[1] != y->array[1])
1756 return 0;
1a0670f3 1757 /* Fall through. */
0dfbf9d7
L
1758 case 1:
1759 return x->array[0] == y->array[0];
1760 break;
1761 default:
1762 abort ();
1763 }
1764}
c6fb90c8
L
1765
1766static INLINE int
1767cpu_flags_check_cpu64 (i386_cpu_flags f)
1768{
1769 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1770 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1771}
1772
c6fb90c8
L
1773static INLINE i386_cpu_flags
1774cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1775{
c6fb90c8
L
1776 switch (ARRAY_SIZE (x.array))
1777 {
53467f57
IT
1778 case 4:
1779 x.array [3] &= y.array [3];
1780 /* Fall through. */
c6fb90c8
L
1781 case 3:
1782 x.array [2] &= y.array [2];
1a0670f3 1783 /* Fall through. */
c6fb90c8
L
1784 case 2:
1785 x.array [1] &= y.array [1];
1a0670f3 1786 /* Fall through. */
c6fb90c8
L
1787 case 1:
1788 x.array [0] &= y.array [0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793 return x;
1794}
40fb9820 1795
c6fb90c8
L
1796static INLINE i386_cpu_flags
1797cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1798{
c6fb90c8 1799 switch (ARRAY_SIZE (x.array))
40fb9820 1800 {
53467f57
IT
1801 case 4:
1802 x.array [3] |= y.array [3];
1803 /* Fall through. */
c6fb90c8
L
1804 case 3:
1805 x.array [2] |= y.array [2];
1a0670f3 1806 /* Fall through. */
c6fb90c8
L
1807 case 2:
1808 x.array [1] |= y.array [1];
1a0670f3 1809 /* Fall through. */
c6fb90c8
L
1810 case 1:
1811 x.array [0] |= y.array [0];
40fb9820
L
1812 break;
1813 default:
1814 abort ();
1815 }
40fb9820
L
1816 return x;
1817}
1818
309d3373
JB
1819static INLINE i386_cpu_flags
1820cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1821{
1822 switch (ARRAY_SIZE (x.array))
1823 {
53467f57
IT
1824 case 4:
1825 x.array [3] &= ~y.array [3];
1826 /* Fall through. */
309d3373
JB
1827 case 3:
1828 x.array [2] &= ~y.array [2];
1a0670f3 1829 /* Fall through. */
309d3373
JB
1830 case 2:
1831 x.array [1] &= ~y.array [1];
1a0670f3 1832 /* Fall through. */
309d3373
JB
1833 case 1:
1834 x.array [0] &= ~y.array [0];
1835 break;
1836 default:
1837 abort ();
1838 }
1839 return x;
1840}
1841
c0f3af97
L
1842#define CPU_FLAGS_ARCH_MATCH 0x1
1843#define CPU_FLAGS_64BIT_MATCH 0x2
1844
c0f3af97 1845#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1846 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1847
1848/* Return CPU flags match bits. */
3629bb00 1849
40fb9820 1850static int
d3ce72d0 1851cpu_flags_match (const insn_template *t)
40fb9820 1852{
c0f3af97
L
1853 i386_cpu_flags x = t->cpu_flags;
1854 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1855
1856 x.bitfield.cpu64 = 0;
1857 x.bitfield.cpuno64 = 0;
1858
0dfbf9d7 1859 if (cpu_flags_all_zero (&x))
c0f3af97
L
1860 {
1861 /* This instruction is available on all archs. */
db12e14e 1862 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1863 }
3629bb00
L
1864 else
1865 {
c0f3af97 1866 /* This instruction is available only on some archs. */
3629bb00
L
1867 i386_cpu_flags cpu = cpu_arch_flags;
1868
ab592e75
JB
1869 /* AVX512VL is no standalone feature - match it and then strip it. */
1870 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1871 return match;
1872 x.bitfield.cpuavx512vl = 0;
1873
3629bb00 1874 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1875 if (!cpu_flags_all_zero (&cpu))
1876 {
a5ff0eb2
L
1877 if (x.bitfield.cpuavx)
1878 {
929f69fa 1879 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1880 if (cpu.bitfield.cpuavx
1881 && (!t->opcode_modifier.sse2avx || sse2avx)
1882 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1883 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1884 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1885 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1886 }
929f69fa
JB
1887 else if (x.bitfield.cpuavx512f)
1888 {
1889 /* We need to check a few extra flags with AVX512F. */
1890 if (cpu.bitfield.cpuavx512f
1891 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1892 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1893 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1894 match |= CPU_FLAGS_ARCH_MATCH;
1895 }
a5ff0eb2 1896 else
db12e14e 1897 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1898 }
3629bb00 1899 }
c0f3af97 1900 return match;
40fb9820
L
1901}
1902
c6fb90c8
L
1903static INLINE i386_operand_type
1904operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1905{
bab6aec1
JB
1906 if (x.bitfield.class != y.bitfield.class)
1907 x.bitfield.class = ClassNone;
75e5731b
JB
1908 if (x.bitfield.instance != y.bitfield.instance)
1909 x.bitfield.instance = InstanceNone;
bab6aec1 1910
c6fb90c8
L
1911 switch (ARRAY_SIZE (x.array))
1912 {
1913 case 3:
1914 x.array [2] &= y.array [2];
1a0670f3 1915 /* Fall through. */
c6fb90c8
L
1916 case 2:
1917 x.array [1] &= y.array [1];
1a0670f3 1918 /* Fall through. */
c6fb90c8
L
1919 case 1:
1920 x.array [0] &= y.array [0];
1921 break;
1922 default:
1923 abort ();
1924 }
1925 return x;
40fb9820
L
1926}
1927
73053c1f
JB
1928static INLINE i386_operand_type
1929operand_type_and_not (i386_operand_type x, i386_operand_type y)
1930{
bab6aec1 1931 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1932 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1933
73053c1f
JB
1934 switch (ARRAY_SIZE (x.array))
1935 {
1936 case 3:
1937 x.array [2] &= ~y.array [2];
1938 /* Fall through. */
1939 case 2:
1940 x.array [1] &= ~y.array [1];
1941 /* Fall through. */
1942 case 1:
1943 x.array [0] &= ~y.array [0];
1944 break;
1945 default:
1946 abort ();
1947 }
1948 return x;
1949}
1950
c6fb90c8
L
1951static INLINE i386_operand_type
1952operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1953{
bab6aec1
JB
1954 gas_assert (x.bitfield.class == ClassNone ||
1955 y.bitfield.class == ClassNone ||
1956 x.bitfield.class == y.bitfield.class);
75e5731b
JB
1957 gas_assert (x.bitfield.instance == InstanceNone ||
1958 y.bitfield.instance == InstanceNone ||
1959 x.bitfield.instance == y.bitfield.instance);
bab6aec1 1960
c6fb90c8 1961 switch (ARRAY_SIZE (x.array))
40fb9820 1962 {
c6fb90c8
L
1963 case 3:
1964 x.array [2] |= y.array [2];
1a0670f3 1965 /* Fall through. */
c6fb90c8
L
1966 case 2:
1967 x.array [1] |= y.array [1];
1a0670f3 1968 /* Fall through. */
c6fb90c8
L
1969 case 1:
1970 x.array [0] |= y.array [0];
40fb9820
L
1971 break;
1972 default:
1973 abort ();
1974 }
c6fb90c8
L
1975 return x;
1976}
40fb9820 1977
c6fb90c8
L
1978static INLINE i386_operand_type
1979operand_type_xor (i386_operand_type x, i386_operand_type y)
1980{
bab6aec1 1981 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1982 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1983
c6fb90c8
L
1984 switch (ARRAY_SIZE (x.array))
1985 {
1986 case 3:
1987 x.array [2] ^= y.array [2];
1a0670f3 1988 /* Fall through. */
c6fb90c8
L
1989 case 2:
1990 x.array [1] ^= y.array [1];
1a0670f3 1991 /* Fall through. */
c6fb90c8
L
1992 case 1:
1993 x.array [0] ^= y.array [0];
1994 break;
1995 default:
1996 abort ();
1997 }
40fb9820
L
1998 return x;
1999}
2000
40fb9820
L
2001static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2002static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2003static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2004static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
bab6aec1
JB
2005static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2006static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
40fb9820 2007static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 2008static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
2009static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2010static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2011static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2012static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2013static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2014static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2015static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2016static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2017static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2018
2019enum operand_type
2020{
2021 reg,
40fb9820
L
2022 imm,
2023 disp,
2024 anymem
2025};
2026
c6fb90c8 2027static INLINE int
40fb9820
L
2028operand_type_check (i386_operand_type t, enum operand_type c)
2029{
2030 switch (c)
2031 {
2032 case reg:
bab6aec1 2033 return t.bitfield.class == Reg;
40fb9820 2034
40fb9820
L
2035 case imm:
2036 return (t.bitfield.imm8
2037 || t.bitfield.imm8s
2038 || t.bitfield.imm16
2039 || t.bitfield.imm32
2040 || t.bitfield.imm32s
2041 || t.bitfield.imm64);
2042
2043 case disp:
2044 return (t.bitfield.disp8
2045 || t.bitfield.disp16
2046 || t.bitfield.disp32
2047 || t.bitfield.disp32s
2048 || t.bitfield.disp64);
2049
2050 case anymem:
2051 return (t.bitfield.disp8
2052 || t.bitfield.disp16
2053 || t.bitfield.disp32
2054 || t.bitfield.disp32s
2055 || t.bitfield.disp64
2056 || t.bitfield.baseindex);
2057
2058 default:
2059 abort ();
2060 }
2cfe26b6
AM
2061
2062 return 0;
40fb9820
L
2063}
2064
7a54636a
L
2065/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2066 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
2067
2068static INLINE int
7a54636a
L
2069match_operand_size (const insn_template *t, unsigned int wanted,
2070 unsigned int given)
5c07affc 2071{
3ac21baa
JB
2072 return !((i.types[given].bitfield.byte
2073 && !t->operand_types[wanted].bitfield.byte)
2074 || (i.types[given].bitfield.word
2075 && !t->operand_types[wanted].bitfield.word)
2076 || (i.types[given].bitfield.dword
2077 && !t->operand_types[wanted].bitfield.dword)
2078 || (i.types[given].bitfield.qword
2079 && !t->operand_types[wanted].bitfield.qword)
2080 || (i.types[given].bitfield.tbyte
2081 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
2082}
2083
dd40ce22
L
2084/* Return 1 if there is no conflict in SIMD register between operand
2085 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2086
2087static INLINE int
dd40ce22
L
2088match_simd_size (const insn_template *t, unsigned int wanted,
2089 unsigned int given)
1b54b8d7 2090{
3ac21baa
JB
2091 return !((i.types[given].bitfield.xmmword
2092 && !t->operand_types[wanted].bitfield.xmmword)
2093 || (i.types[given].bitfield.ymmword
2094 && !t->operand_types[wanted].bitfield.ymmword)
2095 || (i.types[given].bitfield.zmmword
2096 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
2097}
2098
7a54636a
L
2099/* Return 1 if there is no conflict in any size between operand GIVEN
2100 and opeand WANTED for instruction template T. */
5c07affc
L
2101
2102static INLINE int
dd40ce22
L
2103match_mem_size (const insn_template *t, unsigned int wanted,
2104 unsigned int given)
5c07affc 2105{
7a54636a 2106 return (match_operand_size (t, wanted, given)
3ac21baa 2107 && !((i.types[given].bitfield.unspecified
af508cb9 2108 && !i.broadcast
3ac21baa
JB
2109 && !t->operand_types[wanted].bitfield.unspecified)
2110 || (i.types[given].bitfield.fword
2111 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2112 /* For scalar opcode templates to allow register and memory
2113 operands at the same time, some special casing is needed
d6793fa1
JB
2114 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2115 down-conversion vpmov*. */
3528c362 2116 || ((t->operand_types[wanted].bitfield.class == RegSIMD
1b54b8d7 2117 && !t->opcode_modifier.broadcast
3ac21baa
JB
2118 && (t->operand_types[wanted].bitfield.byte
2119 || t->operand_types[wanted].bitfield.word
2120 || t->operand_types[wanted].bitfield.dword
2121 || t->operand_types[wanted].bitfield.qword))
2122 ? (i.types[given].bitfield.xmmword
2123 || i.types[given].bitfield.ymmword
2124 || i.types[given].bitfield.zmmword)
2125 : !match_simd_size(t, wanted, given))));
5c07affc
L
2126}
2127
3ac21baa
JB
2128/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2129 operands for instruction template T, and it has MATCH_REVERSE set if there
2130 is no size conflict on any operands for the template with operands reversed
2131 (and the template allows for reversing in the first place). */
5c07affc 2132
3ac21baa
JB
2133#define MATCH_STRAIGHT 1
2134#define MATCH_REVERSE 2
2135
2136static INLINE unsigned int
d3ce72d0 2137operand_size_match (const insn_template *t)
5c07affc 2138{
3ac21baa 2139 unsigned int j, match = MATCH_STRAIGHT;
5c07affc 2140
0cfa3eb3 2141 /* Don't check non-absolute jump instructions. */
5c07affc 2142 if (t->opcode_modifier.jump
0cfa3eb3 2143 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5c07affc
L
2144 return match;
2145
2146 /* Check memory and accumulator operand size. */
2147 for (j = 0; j < i.operands; j++)
2148 {
3528c362
JB
2149 if (i.types[j].bitfield.class != Reg
2150 && i.types[j].bitfield.class != RegSIMD
601e8564 2151 && t->opcode_modifier.anysize)
5c07affc
L
2152 continue;
2153
bab6aec1 2154 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2155 && !match_operand_size (t, j, j))
5c07affc
L
2156 {
2157 match = 0;
2158 break;
2159 }
2160
3528c362 2161 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2162 && !match_simd_size (t, j, j))
1b54b8d7
JB
2163 {
2164 match = 0;
2165 break;
2166 }
2167
75e5731b 2168 if (t->operand_types[j].bitfield.instance == Accum
7a54636a 2169 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2170 {
2171 match = 0;
2172 break;
2173 }
2174
c48dadc9 2175 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2176 {
2177 match = 0;
2178 break;
2179 }
2180 }
2181
3ac21baa 2182 if (!t->opcode_modifier.d)
891edac4
L
2183 {
2184mismatch:
3ac21baa
JB
2185 if (!match)
2186 i.error = operand_size_mismatch;
2187 return match;
891edac4 2188 }
5c07affc
L
2189
2190 /* Check reverse. */
f5eb1d70 2191 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2192
f5eb1d70 2193 for (j = 0; j < i.operands; j++)
5c07affc 2194 {
f5eb1d70
JB
2195 unsigned int given = i.operands - j - 1;
2196
bab6aec1 2197 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2198 && !match_operand_size (t, j, given))
891edac4 2199 goto mismatch;
5c07affc 2200
3528c362 2201 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2202 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2203 goto mismatch;
2204
75e5731b 2205 if (t->operand_types[j].bitfield.instance == Accum
f5eb1d70
JB
2206 && (!match_operand_size (t, j, given)
2207 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2208 goto mismatch;
2209
f5eb1d70 2210 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2211 goto mismatch;
5c07affc
L
2212 }
2213
3ac21baa 2214 return match | MATCH_REVERSE;
5c07affc
L
2215}
2216
c6fb90c8 2217static INLINE int
40fb9820
L
2218operand_type_match (i386_operand_type overlap,
2219 i386_operand_type given)
2220{
2221 i386_operand_type temp = overlap;
2222
7d5e4556 2223 temp.bitfield.unspecified = 0;
5c07affc
L
2224 temp.bitfield.byte = 0;
2225 temp.bitfield.word = 0;
2226 temp.bitfield.dword = 0;
2227 temp.bitfield.fword = 0;
2228 temp.bitfield.qword = 0;
2229 temp.bitfield.tbyte = 0;
2230 temp.bitfield.xmmword = 0;
c0f3af97 2231 temp.bitfield.ymmword = 0;
43234a1e 2232 temp.bitfield.zmmword = 0;
0dfbf9d7 2233 if (operand_type_all_zero (&temp))
891edac4 2234 goto mismatch;
40fb9820 2235
6f2f06be 2236 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
891edac4
L
2237 return 1;
2238
2239mismatch:
a65babc9 2240 i.error = operand_type_mismatch;
891edac4 2241 return 0;
40fb9820
L
2242}
2243
7d5e4556 2244/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2245 unless the expected operand type register overlap is null.
2246 Memory operand size of certain SIMD instructions is also being checked
2247 here. */
40fb9820 2248
c6fb90c8 2249static INLINE int
dc821c5f 2250operand_type_register_match (i386_operand_type g0,
40fb9820 2251 i386_operand_type t0,
40fb9820
L
2252 i386_operand_type g1,
2253 i386_operand_type t1)
2254{
bab6aec1 2255 if (g0.bitfield.class != Reg
3528c362 2256 && g0.bitfield.class != RegSIMD
10c17abd
JB
2257 && (!operand_type_check (g0, anymem)
2258 || g0.bitfield.unspecified
3528c362 2259 || t0.bitfield.class != RegSIMD))
40fb9820
L
2260 return 1;
2261
bab6aec1 2262 if (g1.bitfield.class != Reg
3528c362 2263 && g1.bitfield.class != RegSIMD
10c17abd
JB
2264 && (!operand_type_check (g1, anymem)
2265 || g1.bitfield.unspecified
3528c362 2266 || t1.bitfield.class != RegSIMD))
40fb9820
L
2267 return 1;
2268
dc821c5f
JB
2269 if (g0.bitfield.byte == g1.bitfield.byte
2270 && g0.bitfield.word == g1.bitfield.word
2271 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2272 && g0.bitfield.qword == g1.bitfield.qword
2273 && g0.bitfield.xmmword == g1.bitfield.xmmword
2274 && g0.bitfield.ymmword == g1.bitfield.ymmword
2275 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2276 return 1;
2277
dc821c5f
JB
2278 if (!(t0.bitfield.byte & t1.bitfield.byte)
2279 && !(t0.bitfield.word & t1.bitfield.word)
2280 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2281 && !(t0.bitfield.qword & t1.bitfield.qword)
2282 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2283 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2284 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2285 return 1;
2286
a65babc9 2287 i.error = register_type_mismatch;
891edac4
L
2288
2289 return 0;
40fb9820
L
2290}
2291
4c692bc7
JB
2292static INLINE unsigned int
2293register_number (const reg_entry *r)
2294{
2295 unsigned int nr = r->reg_num;
2296
2297 if (r->reg_flags & RegRex)
2298 nr += 8;
2299
200cbe0f
L
2300 if (r->reg_flags & RegVRex)
2301 nr += 16;
2302
4c692bc7
JB
2303 return nr;
2304}
2305
252b5132 2306static INLINE unsigned int
40fb9820 2307mode_from_disp_size (i386_operand_type t)
252b5132 2308{
b5014f7a 2309 if (t.bitfield.disp8)
40fb9820
L
2310 return 1;
2311 else if (t.bitfield.disp16
2312 || t.bitfield.disp32
2313 || t.bitfield.disp32s)
2314 return 2;
2315 else
2316 return 0;
252b5132
RH
2317}
2318
2319static INLINE int
65879393 2320fits_in_signed_byte (addressT num)
252b5132 2321{
65879393 2322 return num + 0x80 <= 0xff;
47926f60 2323}
252b5132
RH
2324
2325static INLINE int
65879393 2326fits_in_unsigned_byte (addressT num)
252b5132 2327{
65879393 2328 return num <= 0xff;
47926f60 2329}
252b5132
RH
2330
2331static INLINE int
65879393 2332fits_in_unsigned_word (addressT num)
252b5132 2333{
65879393 2334 return num <= 0xffff;
47926f60 2335}
252b5132
RH
2336
2337static INLINE int
65879393 2338fits_in_signed_word (addressT num)
252b5132 2339{
65879393 2340 return num + 0x8000 <= 0xffff;
47926f60 2341}
2a962e6d 2342
3e73aa7c 2343static INLINE int
65879393 2344fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2345{
2346#ifndef BFD64
2347 return 1;
2348#else
65879393 2349 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2350#endif
2351} /* fits_in_signed_long() */
2a962e6d 2352
3e73aa7c 2353static INLINE int
65879393 2354fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2355{
2356#ifndef BFD64
2357 return 1;
2358#else
65879393 2359 return num <= 0xffffffff;
3e73aa7c
JH
2360#endif
2361} /* fits_in_unsigned_long() */
252b5132 2362
43234a1e 2363static INLINE int
b5014f7a 2364fits_in_disp8 (offsetT num)
43234a1e
L
2365{
2366 int shift = i.memshift;
2367 unsigned int mask;
2368
2369 if (shift == -1)
2370 abort ();
2371
2372 mask = (1 << shift) - 1;
2373
2374 /* Return 0 if NUM isn't properly aligned. */
2375 if ((num & mask))
2376 return 0;
2377
2378 /* Check if NUM will fit in 8bit after shift. */
2379 return fits_in_signed_byte (num >> shift);
2380}
2381
a683cc34
SP
2382static INLINE int
2383fits_in_imm4 (offsetT num)
2384{
2385 return (num & 0xf) == num;
2386}
2387
40fb9820 2388static i386_operand_type
e3bb37b5 2389smallest_imm_type (offsetT num)
252b5132 2390{
40fb9820 2391 i386_operand_type t;
7ab9ffdd 2392
0dfbf9d7 2393 operand_type_set (&t, 0);
40fb9820
L
2394 t.bitfield.imm64 = 1;
2395
2396 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2397 {
2398 /* This code is disabled on the 486 because all the Imm1 forms
2399 in the opcode table are slower on the i486. They're the
2400 versions with the implicitly specified single-position
2401 displacement, which has another syntax if you really want to
2402 use that form. */
40fb9820
L
2403 t.bitfield.imm1 = 1;
2404 t.bitfield.imm8 = 1;
2405 t.bitfield.imm8s = 1;
2406 t.bitfield.imm16 = 1;
2407 t.bitfield.imm32 = 1;
2408 t.bitfield.imm32s = 1;
2409 }
2410 else if (fits_in_signed_byte (num))
2411 {
2412 t.bitfield.imm8 = 1;
2413 t.bitfield.imm8s = 1;
2414 t.bitfield.imm16 = 1;
2415 t.bitfield.imm32 = 1;
2416 t.bitfield.imm32s = 1;
2417 }
2418 else if (fits_in_unsigned_byte (num))
2419 {
2420 t.bitfield.imm8 = 1;
2421 t.bitfield.imm16 = 1;
2422 t.bitfield.imm32 = 1;
2423 t.bitfield.imm32s = 1;
2424 }
2425 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2426 {
2427 t.bitfield.imm16 = 1;
2428 t.bitfield.imm32 = 1;
2429 t.bitfield.imm32s = 1;
2430 }
2431 else if (fits_in_signed_long (num))
2432 {
2433 t.bitfield.imm32 = 1;
2434 t.bitfield.imm32s = 1;
2435 }
2436 else if (fits_in_unsigned_long (num))
2437 t.bitfield.imm32 = 1;
2438
2439 return t;
47926f60 2440}
252b5132 2441
847f7ad4 2442static offsetT
e3bb37b5 2443offset_in_range (offsetT val, int size)
847f7ad4 2444{
508866be 2445 addressT mask;
ba2adb93 2446
847f7ad4
AM
2447 switch (size)
2448 {
508866be
L
2449 case 1: mask = ((addressT) 1 << 8) - 1; break;
2450 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2451 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2452#ifdef BFD64
2453 case 8: mask = ((addressT) 2 << 63) - 1; break;
2454#endif
47926f60 2455 default: abort ();
847f7ad4
AM
2456 }
2457
9de868bf
L
2458#ifdef BFD64
2459 /* If BFD64, sign extend val for 32bit address mode. */
2460 if (flag_code != CODE_64BIT
2461 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2462 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2463 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2464#endif
ba2adb93 2465
47926f60 2466 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2467 {
2468 char buf1[40], buf2[40];
2469
2470 sprint_value (buf1, val);
2471 sprint_value (buf2, val & mask);
2472 as_warn (_("%s shortened to %s"), buf1, buf2);
2473 }
2474 return val & mask;
2475}
2476
c32fa91d
L
2477enum PREFIX_GROUP
2478{
2479 PREFIX_EXIST = 0,
2480 PREFIX_LOCK,
2481 PREFIX_REP,
04ef582a 2482 PREFIX_DS,
c32fa91d
L
2483 PREFIX_OTHER
2484};
2485
2486/* Returns
2487 a. PREFIX_EXIST if attempting to add a prefix where one from the
2488 same class already exists.
2489 b. PREFIX_LOCK if lock prefix is added.
2490 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2491 d. PREFIX_DS if ds prefix is added.
2492 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2493 */
2494
2495static enum PREFIX_GROUP
e3bb37b5 2496add_prefix (unsigned int prefix)
252b5132 2497{
c32fa91d 2498 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2499 unsigned int q;
252b5132 2500
29b0f896
AM
2501 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2502 && flag_code == CODE_64BIT)
b1905489 2503 {
161a04f6 2504 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2505 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2506 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2507 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2508 ret = PREFIX_EXIST;
b1905489
JB
2509 q = REX_PREFIX;
2510 }
3e73aa7c 2511 else
b1905489
JB
2512 {
2513 switch (prefix)
2514 {
2515 default:
2516 abort ();
2517
b1905489 2518 case DS_PREFIX_OPCODE:
04ef582a
L
2519 ret = PREFIX_DS;
2520 /* Fall through. */
2521 case CS_PREFIX_OPCODE:
b1905489
JB
2522 case ES_PREFIX_OPCODE:
2523 case FS_PREFIX_OPCODE:
2524 case GS_PREFIX_OPCODE:
2525 case SS_PREFIX_OPCODE:
2526 q = SEG_PREFIX;
2527 break;
2528
2529 case REPNE_PREFIX_OPCODE:
2530 case REPE_PREFIX_OPCODE:
c32fa91d
L
2531 q = REP_PREFIX;
2532 ret = PREFIX_REP;
2533 break;
2534
b1905489 2535 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2536 q = LOCK_PREFIX;
2537 ret = PREFIX_LOCK;
b1905489
JB
2538 break;
2539
2540 case FWAIT_OPCODE:
2541 q = WAIT_PREFIX;
2542 break;
2543
2544 case ADDR_PREFIX_OPCODE:
2545 q = ADDR_PREFIX;
2546 break;
2547
2548 case DATA_PREFIX_OPCODE:
2549 q = DATA_PREFIX;
2550 break;
2551 }
2552 if (i.prefix[q] != 0)
c32fa91d 2553 ret = PREFIX_EXIST;
b1905489 2554 }
252b5132 2555
b1905489 2556 if (ret)
252b5132 2557 {
b1905489
JB
2558 if (!i.prefix[q])
2559 ++i.prefixes;
2560 i.prefix[q] |= prefix;
252b5132 2561 }
b1905489
JB
2562 else
2563 as_bad (_("same type of prefix used twice"));
252b5132 2564
252b5132
RH
2565 return ret;
2566}
2567
2568static void
78f12dd3 2569update_code_flag (int value, int check)
eecb386c 2570{
78f12dd3
L
2571 PRINTF_LIKE ((*as_error));
2572
1e9cc1c2 2573 flag_code = (enum flag_code) value;
40fb9820
L
2574 if (flag_code == CODE_64BIT)
2575 {
2576 cpu_arch_flags.bitfield.cpu64 = 1;
2577 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2578 }
2579 else
2580 {
2581 cpu_arch_flags.bitfield.cpu64 = 0;
2582 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2583 }
2584 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2585 {
78f12dd3
L
2586 if (check)
2587 as_error = as_fatal;
2588 else
2589 as_error = as_bad;
2590 (*as_error) (_("64bit mode not supported on `%s'."),
2591 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2592 }
40fb9820 2593 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2594 {
78f12dd3
L
2595 if (check)
2596 as_error = as_fatal;
2597 else
2598 as_error = as_bad;
2599 (*as_error) (_("32bit mode not supported on `%s'."),
2600 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2601 }
eecb386c
AM
2602 stackop_size = '\0';
2603}
2604
78f12dd3
L
2605static void
2606set_code_flag (int value)
2607{
2608 update_code_flag (value, 0);
2609}
2610
eecb386c 2611static void
e3bb37b5 2612set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2613{
1e9cc1c2 2614 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2615 if (flag_code != CODE_16BIT)
2616 abort ();
2617 cpu_arch_flags.bitfield.cpu64 = 0;
2618 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2619 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2620}
2621
2622static void
e3bb37b5 2623set_intel_syntax (int syntax_flag)
252b5132
RH
2624{
2625 /* Find out if register prefixing is specified. */
2626 int ask_naked_reg = 0;
2627
2628 SKIP_WHITESPACE ();
29b0f896 2629 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2630 {
d02603dc
NC
2631 char *string;
2632 int e = get_symbol_name (&string);
252b5132 2633
47926f60 2634 if (strcmp (string, "prefix") == 0)
252b5132 2635 ask_naked_reg = 1;
47926f60 2636 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2637 ask_naked_reg = -1;
2638 else
d0b47220 2639 as_bad (_("bad argument to syntax directive."));
d02603dc 2640 (void) restore_line_pointer (e);
252b5132
RH
2641 }
2642 demand_empty_rest_of_line ();
c3332e24 2643
252b5132
RH
2644 intel_syntax = syntax_flag;
2645
2646 if (ask_naked_reg == 0)
f86103b7
AM
2647 allow_naked_reg = (intel_syntax
2648 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2649 else
2650 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2651
ee86248c 2652 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2653
e4a3b5a4 2654 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2655 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2656 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2657}
2658
1efbbeb4
L
2659static void
2660set_intel_mnemonic (int mnemonic_flag)
2661{
e1d4d893 2662 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2663}
2664
db51cc60
L
2665static void
2666set_allow_index_reg (int flag)
2667{
2668 allow_index_reg = flag;
2669}
2670
cb19c032 2671static void
7bab8ab5 2672set_check (int what)
cb19c032 2673{
7bab8ab5
JB
2674 enum check_kind *kind;
2675 const char *str;
2676
2677 if (what)
2678 {
2679 kind = &operand_check;
2680 str = "operand";
2681 }
2682 else
2683 {
2684 kind = &sse_check;
2685 str = "sse";
2686 }
2687
cb19c032
L
2688 SKIP_WHITESPACE ();
2689
2690 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2691 {
d02603dc
NC
2692 char *string;
2693 int e = get_symbol_name (&string);
cb19c032
L
2694
2695 if (strcmp (string, "none") == 0)
7bab8ab5 2696 *kind = check_none;
cb19c032 2697 else if (strcmp (string, "warning") == 0)
7bab8ab5 2698 *kind = check_warning;
cb19c032 2699 else if (strcmp (string, "error") == 0)
7bab8ab5 2700 *kind = check_error;
cb19c032 2701 else
7bab8ab5 2702 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2703 (void) restore_line_pointer (e);
cb19c032
L
2704 }
2705 else
7bab8ab5 2706 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2707
2708 demand_empty_rest_of_line ();
2709}
2710
8a9036a4
L
2711static void
2712check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2713 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2714{
2715#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2716 static const char *arch;
2717
2718 /* Intel LIOM is only supported on ELF. */
2719 if (!IS_ELF)
2720 return;
2721
2722 if (!arch)
2723 {
2724 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2725 use default_arch. */
2726 arch = cpu_arch_name;
2727 if (!arch)
2728 arch = default_arch;
2729 }
2730
81486035
L
2731 /* If we are targeting Intel MCU, we must enable it. */
2732 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2733 || new_flag.bitfield.cpuiamcu)
2734 return;
2735
3632d14b 2736 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2737 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2738 || new_flag.bitfield.cpul1om)
8a9036a4 2739 return;
76ba9986 2740
7a9068fe
L
2741 /* If we are targeting Intel K1OM, we must enable it. */
2742 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2743 || new_flag.bitfield.cpuk1om)
2744 return;
2745
8a9036a4
L
2746 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2747#endif
2748}
2749
e413e4e9 2750static void
e3bb37b5 2751set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2752{
47926f60 2753 SKIP_WHITESPACE ();
e413e4e9 2754
29b0f896 2755 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2756 {
d02603dc
NC
2757 char *string;
2758 int e = get_symbol_name (&string);
91d6fa6a 2759 unsigned int j;
40fb9820 2760 i386_cpu_flags flags;
e413e4e9 2761
91d6fa6a 2762 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2763 {
91d6fa6a 2764 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2765 {
91d6fa6a 2766 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2767
5c6af06e
JB
2768 if (*string != '.')
2769 {
91d6fa6a 2770 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2771 cpu_sub_arch_name = NULL;
91d6fa6a 2772 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2773 if (flag_code == CODE_64BIT)
2774 {
2775 cpu_arch_flags.bitfield.cpu64 = 1;
2776 cpu_arch_flags.bitfield.cpuno64 = 0;
2777 }
2778 else
2779 {
2780 cpu_arch_flags.bitfield.cpu64 = 0;
2781 cpu_arch_flags.bitfield.cpuno64 = 1;
2782 }
91d6fa6a
NC
2783 cpu_arch_isa = cpu_arch[j].type;
2784 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2785 if (!cpu_arch_tune_set)
2786 {
2787 cpu_arch_tune = cpu_arch_isa;
2788 cpu_arch_tune_flags = cpu_arch_isa_flags;
2789 }
5c6af06e
JB
2790 break;
2791 }
40fb9820 2792
293f5f65
L
2793 flags = cpu_flags_or (cpu_arch_flags,
2794 cpu_arch[j].flags);
81486035 2795
5b64d091 2796 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2797 {
6305a203
L
2798 if (cpu_sub_arch_name)
2799 {
2800 char *name = cpu_sub_arch_name;
2801 cpu_sub_arch_name = concat (name,
91d6fa6a 2802 cpu_arch[j].name,
1bf57e9f 2803 (const char *) NULL);
6305a203
L
2804 free (name);
2805 }
2806 else
91d6fa6a 2807 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2808 cpu_arch_flags = flags;
a586129e 2809 cpu_arch_isa_flags = flags;
5c6af06e 2810 }
0089dace
L
2811 else
2812 cpu_arch_isa_flags
2813 = cpu_flags_or (cpu_arch_isa_flags,
2814 cpu_arch[j].flags);
d02603dc 2815 (void) restore_line_pointer (e);
5c6af06e
JB
2816 demand_empty_rest_of_line ();
2817 return;
e413e4e9
AM
2818 }
2819 }
293f5f65
L
2820
2821 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2822 {
33eaf5de 2823 /* Disable an ISA extension. */
293f5f65
L
2824 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2825 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2826 {
2827 flags = cpu_flags_and_not (cpu_arch_flags,
2828 cpu_noarch[j].flags);
2829 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2830 {
2831 if (cpu_sub_arch_name)
2832 {
2833 char *name = cpu_sub_arch_name;
2834 cpu_sub_arch_name = concat (name, string,
2835 (const char *) NULL);
2836 free (name);
2837 }
2838 else
2839 cpu_sub_arch_name = xstrdup (string);
2840 cpu_arch_flags = flags;
2841 cpu_arch_isa_flags = flags;
2842 }
2843 (void) restore_line_pointer (e);
2844 demand_empty_rest_of_line ();
2845 return;
2846 }
2847
2848 j = ARRAY_SIZE (cpu_arch);
2849 }
2850
91d6fa6a 2851 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2852 as_bad (_("no such architecture: `%s'"), string);
2853
2854 *input_line_pointer = e;
2855 }
2856 else
2857 as_bad (_("missing cpu architecture"));
2858
fddf5b5b
AM
2859 no_cond_jump_promotion = 0;
2860 if (*input_line_pointer == ','
29b0f896 2861 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2862 {
d02603dc
NC
2863 char *string;
2864 char e;
2865
2866 ++input_line_pointer;
2867 e = get_symbol_name (&string);
fddf5b5b
AM
2868
2869 if (strcmp (string, "nojumps") == 0)
2870 no_cond_jump_promotion = 1;
2871 else if (strcmp (string, "jumps") == 0)
2872 ;
2873 else
2874 as_bad (_("no such architecture modifier: `%s'"), string);
2875
d02603dc 2876 (void) restore_line_pointer (e);
fddf5b5b
AM
2877 }
2878
e413e4e9
AM
2879 demand_empty_rest_of_line ();
2880}
2881
8a9036a4
L
2882enum bfd_architecture
2883i386_arch (void)
2884{
3632d14b 2885 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2886 {
2887 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2888 || flag_code != CODE_64BIT)
2889 as_fatal (_("Intel L1OM is 64bit ELF only"));
2890 return bfd_arch_l1om;
2891 }
7a9068fe
L
2892 else if (cpu_arch_isa == PROCESSOR_K1OM)
2893 {
2894 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2895 || flag_code != CODE_64BIT)
2896 as_fatal (_("Intel K1OM is 64bit ELF only"));
2897 return bfd_arch_k1om;
2898 }
81486035
L
2899 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2900 {
2901 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2902 || flag_code == CODE_64BIT)
2903 as_fatal (_("Intel MCU is 32bit ELF only"));
2904 return bfd_arch_iamcu;
2905 }
8a9036a4
L
2906 else
2907 return bfd_arch_i386;
2908}
2909
b9d79e03 2910unsigned long
7016a5d5 2911i386_mach (void)
b9d79e03 2912{
351f65ca 2913 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2914 {
3632d14b 2915 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2916 {
351f65ca
L
2917 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2918 || default_arch[6] != '\0')
8a9036a4
L
2919 as_fatal (_("Intel L1OM is 64bit ELF only"));
2920 return bfd_mach_l1om;
2921 }
7a9068fe
L
2922 else if (cpu_arch_isa == PROCESSOR_K1OM)
2923 {
2924 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2925 || default_arch[6] != '\0')
2926 as_fatal (_("Intel K1OM is 64bit ELF only"));
2927 return bfd_mach_k1om;
2928 }
351f65ca 2929 else if (default_arch[6] == '\0')
8a9036a4 2930 return bfd_mach_x86_64;
351f65ca
L
2931 else
2932 return bfd_mach_x64_32;
8a9036a4 2933 }
5197d474
L
2934 else if (!strcmp (default_arch, "i386")
2935 || !strcmp (default_arch, "iamcu"))
81486035
L
2936 {
2937 if (cpu_arch_isa == PROCESSOR_IAMCU)
2938 {
2939 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2940 as_fatal (_("Intel MCU is 32bit ELF only"));
2941 return bfd_mach_i386_iamcu;
2942 }
2943 else
2944 return bfd_mach_i386_i386;
2945 }
b9d79e03 2946 else
2b5d6a91 2947 as_fatal (_("unknown architecture"));
b9d79e03 2948}
b9d79e03 2949\f
252b5132 2950void
7016a5d5 2951md_begin (void)
252b5132
RH
2952{
2953 const char *hash_err;
2954
86fa6981
L
2955 /* Support pseudo prefixes like {disp32}. */
2956 lex_type ['{'] = LEX_BEGIN_NAME;
2957
47926f60 2958 /* Initialize op_hash hash table. */
252b5132
RH
2959 op_hash = hash_new ();
2960
2961 {
d3ce72d0 2962 const insn_template *optab;
29b0f896 2963 templates *core_optab;
252b5132 2964
47926f60
KH
2965 /* Setup for loop. */
2966 optab = i386_optab;
add39d23 2967 core_optab = XNEW (templates);
252b5132
RH
2968 core_optab->start = optab;
2969
2970 while (1)
2971 {
2972 ++optab;
2973 if (optab->name == NULL
2974 || strcmp (optab->name, (optab - 1)->name) != 0)
2975 {
2976 /* different name --> ship out current template list;
47926f60 2977 add to hash table; & begin anew. */
252b5132
RH
2978 core_optab->end = optab;
2979 hash_err = hash_insert (op_hash,
2980 (optab - 1)->name,
5a49b8ac 2981 (void *) core_optab);
252b5132
RH
2982 if (hash_err)
2983 {
b37df7c4 2984 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2985 (optab - 1)->name,
2986 hash_err);
2987 }
2988 if (optab->name == NULL)
2989 break;
add39d23 2990 core_optab = XNEW (templates);
252b5132
RH
2991 core_optab->start = optab;
2992 }
2993 }
2994 }
2995
47926f60 2996 /* Initialize reg_hash hash table. */
252b5132
RH
2997 reg_hash = hash_new ();
2998 {
29b0f896 2999 const reg_entry *regtab;
c3fe08fa 3000 unsigned int regtab_size = i386_regtab_size;
252b5132 3001
c3fe08fa 3002 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 3003 {
5a49b8ac 3004 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 3005 if (hash_err)
b37df7c4 3006 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
3007 regtab->reg_name,
3008 hash_err);
252b5132
RH
3009 }
3010 }
3011
47926f60 3012 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 3013 {
29b0f896
AM
3014 int c;
3015 char *p;
252b5132
RH
3016
3017 for (c = 0; c < 256; c++)
3018 {
3882b010 3019 if (ISDIGIT (c))
252b5132
RH
3020 {
3021 digit_chars[c] = c;
3022 mnemonic_chars[c] = c;
3023 register_chars[c] = c;
3024 operand_chars[c] = c;
3025 }
3882b010 3026 else if (ISLOWER (c))
252b5132
RH
3027 {
3028 mnemonic_chars[c] = c;
3029 register_chars[c] = c;
3030 operand_chars[c] = c;
3031 }
3882b010 3032 else if (ISUPPER (c))
252b5132 3033 {
3882b010 3034 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
3035 register_chars[c] = mnemonic_chars[c];
3036 operand_chars[c] = c;
3037 }
43234a1e 3038 else if (c == '{' || c == '}')
86fa6981
L
3039 {
3040 mnemonic_chars[c] = c;
3041 operand_chars[c] = c;
3042 }
252b5132 3043
3882b010 3044 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
3045 identifier_chars[c] = c;
3046 else if (c >= 128)
3047 {
3048 identifier_chars[c] = c;
3049 operand_chars[c] = c;
3050 }
3051 }
3052
3053#ifdef LEX_AT
3054 identifier_chars['@'] = '@';
32137342
NC
3055#endif
3056#ifdef LEX_QM
3057 identifier_chars['?'] = '?';
3058 operand_chars['?'] = '?';
252b5132 3059#endif
252b5132 3060 digit_chars['-'] = '-';
c0f3af97 3061 mnemonic_chars['_'] = '_';
791fe849 3062 mnemonic_chars['-'] = '-';
0003779b 3063 mnemonic_chars['.'] = '.';
252b5132
RH
3064 identifier_chars['_'] = '_';
3065 identifier_chars['.'] = '.';
3066
3067 for (p = operand_special_chars; *p != '\0'; p++)
3068 operand_chars[(unsigned char) *p] = *p;
3069 }
3070
a4447b93
RH
3071 if (flag_code == CODE_64BIT)
3072 {
ca19b261
KT
3073#if defined (OBJ_COFF) && defined (TE_PE)
3074 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3075 ? 32 : 16);
3076#else
a4447b93 3077 x86_dwarf2_return_column = 16;
ca19b261 3078#endif
61ff971f 3079 x86_cie_data_alignment = -8;
a4447b93
RH
3080 }
3081 else
3082 {
3083 x86_dwarf2_return_column = 8;
3084 x86_cie_data_alignment = -4;
3085 }
e379e5f3
L
3086
3087 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3088 can be turned into BRANCH_PREFIX frag. */
3089 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3090 abort ();
252b5132
RH
3091}
3092
3093void
e3bb37b5 3094i386_print_statistics (FILE *file)
252b5132
RH
3095{
3096 hash_print_statistics (file, "i386 opcode", op_hash);
3097 hash_print_statistics (file, "i386 register", reg_hash);
3098}
3099\f
252b5132
RH
3100#ifdef DEBUG386
3101
ce8a8b2f 3102/* Debugging routines for md_assemble. */
d3ce72d0 3103static void pte (insn_template *);
40fb9820 3104static void pt (i386_operand_type);
e3bb37b5
L
3105static void pe (expressionS *);
3106static void ps (symbolS *);
252b5132
RH
3107
3108static void
2c703856 3109pi (const char *line, i386_insn *x)
252b5132 3110{
09137c09 3111 unsigned int j;
252b5132
RH
3112
3113 fprintf (stdout, "%s: template ", line);
3114 pte (&x->tm);
09f131f2
JH
3115 fprintf (stdout, " address: base %s index %s scale %x\n",
3116 x->base_reg ? x->base_reg->reg_name : "none",
3117 x->index_reg ? x->index_reg->reg_name : "none",
3118 x->log2_scale_factor);
3119 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3120 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3121 fprintf (stdout, " sib: base %x index %x scale %x\n",
3122 x->sib.base, x->sib.index, x->sib.scale);
3123 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3124 (x->rex & REX_W) != 0,
3125 (x->rex & REX_R) != 0,
3126 (x->rex & REX_X) != 0,
3127 (x->rex & REX_B) != 0);
09137c09 3128 for (j = 0; j < x->operands; j++)
252b5132 3129 {
09137c09
SP
3130 fprintf (stdout, " #%d: ", j + 1);
3131 pt (x->types[j]);
252b5132 3132 fprintf (stdout, "\n");
bab6aec1 3133 if (x->types[j].bitfield.class == Reg
3528c362
JB
3134 || x->types[j].bitfield.class == RegMMX
3135 || x->types[j].bitfield.class == RegSIMD
00cee14f 3136 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3137 || x->types[j].bitfield.class == RegCR
3138 || x->types[j].bitfield.class == RegDR
3139 || x->types[j].bitfield.class == RegTR)
09137c09
SP
3140 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3141 if (operand_type_check (x->types[j], imm))
3142 pe (x->op[j].imms);
3143 if (operand_type_check (x->types[j], disp))
3144 pe (x->op[j].disps);
252b5132
RH
3145 }
3146}
3147
3148static void
d3ce72d0 3149pte (insn_template *t)
252b5132 3150{
09137c09 3151 unsigned int j;
252b5132 3152 fprintf (stdout, " %d operands ", t->operands);
47926f60 3153 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3154 if (t->extension_opcode != None)
3155 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3156 if (t->opcode_modifier.d)
252b5132 3157 fprintf (stdout, "D");
40fb9820 3158 if (t->opcode_modifier.w)
252b5132
RH
3159 fprintf (stdout, "W");
3160 fprintf (stdout, "\n");
09137c09 3161 for (j = 0; j < t->operands; j++)
252b5132 3162 {
09137c09
SP
3163 fprintf (stdout, " #%d type ", j + 1);
3164 pt (t->operand_types[j]);
252b5132
RH
3165 fprintf (stdout, "\n");
3166 }
3167}
3168
3169static void
e3bb37b5 3170pe (expressionS *e)
252b5132 3171{
24eab124 3172 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3173 fprintf (stdout, " add_number %ld (%lx)\n",
3174 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3175 if (e->X_add_symbol)
3176 {
3177 fprintf (stdout, " add_symbol ");
3178 ps (e->X_add_symbol);
3179 fprintf (stdout, "\n");
3180 }
3181 if (e->X_op_symbol)
3182 {
3183 fprintf (stdout, " op_symbol ");
3184 ps (e->X_op_symbol);
3185 fprintf (stdout, "\n");
3186 }
3187}
3188
3189static void
e3bb37b5 3190ps (symbolS *s)
252b5132
RH
3191{
3192 fprintf (stdout, "%s type %s%s",
3193 S_GET_NAME (s),
3194 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3195 segment_name (S_GET_SEGMENT (s)));
3196}
3197
7b81dfbb 3198static struct type_name
252b5132 3199 {
40fb9820
L
3200 i386_operand_type mask;
3201 const char *name;
252b5132 3202 }
7b81dfbb 3203const type_names[] =
252b5132 3204{
40fb9820
L
3205 { OPERAND_TYPE_REG8, "r8" },
3206 { OPERAND_TYPE_REG16, "r16" },
3207 { OPERAND_TYPE_REG32, "r32" },
3208 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3209 { OPERAND_TYPE_ACC8, "acc8" },
3210 { OPERAND_TYPE_ACC16, "acc16" },
3211 { OPERAND_TYPE_ACC32, "acc32" },
3212 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3213 { OPERAND_TYPE_IMM8, "i8" },
3214 { OPERAND_TYPE_IMM8, "i8s" },
3215 { OPERAND_TYPE_IMM16, "i16" },
3216 { OPERAND_TYPE_IMM32, "i32" },
3217 { OPERAND_TYPE_IMM32S, "i32s" },
3218 { OPERAND_TYPE_IMM64, "i64" },
3219 { OPERAND_TYPE_IMM1, "i1" },
3220 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3221 { OPERAND_TYPE_DISP8, "d8" },
3222 { OPERAND_TYPE_DISP16, "d16" },
3223 { OPERAND_TYPE_DISP32, "d32" },
3224 { OPERAND_TYPE_DISP32S, "d32s" },
3225 { OPERAND_TYPE_DISP64, "d64" },
3226 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3227 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3228 { OPERAND_TYPE_CONTROL, "control reg" },
3229 { OPERAND_TYPE_TEST, "test reg" },
3230 { OPERAND_TYPE_DEBUG, "debug reg" },
3231 { OPERAND_TYPE_FLOATREG, "FReg" },
3232 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3233 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3234 { OPERAND_TYPE_REGMMX, "rMMX" },
3235 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3236 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3237 { OPERAND_TYPE_REGZMM, "rZMM" },
3238 { OPERAND_TYPE_REGMASK, "Mask reg" },
252b5132
RH
3239};
3240
3241static void
40fb9820 3242pt (i386_operand_type t)
252b5132 3243{
40fb9820 3244 unsigned int j;
c6fb90c8 3245 i386_operand_type a;
252b5132 3246
40fb9820 3247 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3248 {
3249 a = operand_type_and (t, type_names[j].mask);
2c703856 3250 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3251 fprintf (stdout, "%s, ", type_names[j].name);
3252 }
252b5132
RH
3253 fflush (stdout);
3254}
3255
3256#endif /* DEBUG386 */
3257\f
252b5132 3258static bfd_reloc_code_real_type
3956db08 3259reloc (unsigned int size,
64e74474
AM
3260 int pcrel,
3261 int sign,
3262 bfd_reloc_code_real_type other)
252b5132 3263{
47926f60 3264 if (other != NO_RELOC)
3956db08 3265 {
91d6fa6a 3266 reloc_howto_type *rel;
3956db08
JB
3267
3268 if (size == 8)
3269 switch (other)
3270 {
64e74474
AM
3271 case BFD_RELOC_X86_64_GOT32:
3272 return BFD_RELOC_X86_64_GOT64;
3273 break;
553d1284
L
3274 case BFD_RELOC_X86_64_GOTPLT64:
3275 return BFD_RELOC_X86_64_GOTPLT64;
3276 break;
64e74474
AM
3277 case BFD_RELOC_X86_64_PLTOFF64:
3278 return BFD_RELOC_X86_64_PLTOFF64;
3279 break;
3280 case BFD_RELOC_X86_64_GOTPC32:
3281 other = BFD_RELOC_X86_64_GOTPC64;
3282 break;
3283 case BFD_RELOC_X86_64_GOTPCREL:
3284 other = BFD_RELOC_X86_64_GOTPCREL64;
3285 break;
3286 case BFD_RELOC_X86_64_TPOFF32:
3287 other = BFD_RELOC_X86_64_TPOFF64;
3288 break;
3289 case BFD_RELOC_X86_64_DTPOFF32:
3290 other = BFD_RELOC_X86_64_DTPOFF64;
3291 break;
3292 default:
3293 break;
3956db08 3294 }
e05278af 3295
8ce3d284 3296#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3297 if (other == BFD_RELOC_SIZE32)
3298 {
3299 if (size == 8)
1ab668bf 3300 other = BFD_RELOC_SIZE64;
8fd4256d 3301 if (pcrel)
1ab668bf
AM
3302 {
3303 as_bad (_("there are no pc-relative size relocations"));
3304 return NO_RELOC;
3305 }
8fd4256d 3306 }
8ce3d284 3307#endif
8fd4256d 3308
e05278af 3309 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3310 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3311 sign = -1;
3312
91d6fa6a
NC
3313 rel = bfd_reloc_type_lookup (stdoutput, other);
3314 if (!rel)
3956db08 3315 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3316 else if (size != bfd_get_reloc_size (rel))
3956db08 3317 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3318 bfd_get_reloc_size (rel),
3956db08 3319 size);
91d6fa6a 3320 else if (pcrel && !rel->pc_relative)
3956db08 3321 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3322 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3323 && !sign)
91d6fa6a 3324 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3325 && sign > 0))
3956db08
JB
3326 as_bad (_("relocated field and relocation type differ in signedness"));
3327 else
3328 return other;
3329 return NO_RELOC;
3330 }
252b5132
RH
3331
3332 if (pcrel)
3333 {
3e73aa7c 3334 if (!sign)
3956db08 3335 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3336 switch (size)
3337 {
3338 case 1: return BFD_RELOC_8_PCREL;
3339 case 2: return BFD_RELOC_16_PCREL;
d258b828 3340 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3341 case 8: return BFD_RELOC_64_PCREL;
252b5132 3342 }
3956db08 3343 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3344 }
3345 else
3346 {
3956db08 3347 if (sign > 0)
e5cb08ac 3348 switch (size)
3e73aa7c
JH
3349 {
3350 case 4: return BFD_RELOC_X86_64_32S;
3351 }
3352 else
3353 switch (size)
3354 {
3355 case 1: return BFD_RELOC_8;
3356 case 2: return BFD_RELOC_16;
3357 case 4: return BFD_RELOC_32;
3358 case 8: return BFD_RELOC_64;
3359 }
3956db08
JB
3360 as_bad (_("cannot do %s %u byte relocation"),
3361 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3362 }
3363
0cc9e1d3 3364 return NO_RELOC;
252b5132
RH
3365}
3366
47926f60
KH
3367/* Here we decide which fixups can be adjusted to make them relative to
3368 the beginning of the section instead of the symbol. Basically we need
3369 to make sure that the dynamic relocations are done correctly, so in
3370 some cases we force the original symbol to be used. */
3371
252b5132 3372int
e3bb37b5 3373tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3374{
6d249963 3375#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3376 if (!IS_ELF)
31312f95
AM
3377 return 1;
3378
a161fe53
AM
3379 /* Don't adjust pc-relative references to merge sections in 64-bit
3380 mode. */
3381 if (use_rela_relocations
3382 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3383 && fixP->fx_pcrel)
252b5132 3384 return 0;
31312f95 3385
8d01d9a9
AJ
3386 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3387 and changed later by validate_fix. */
3388 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3389 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3390 return 0;
3391
8fd4256d
L
3392 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3393 for size relocations. */
3394 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3395 || fixP->fx_r_type == BFD_RELOC_SIZE64
3396 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3397 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3398 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3399 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3400 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3401 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3402 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3403 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3410 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3411 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3412 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3413 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3414 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3418 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3425 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3426 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3427 return 0;
31312f95 3428#endif
252b5132
RH
3429 return 1;
3430}
252b5132 3431
b4cac588 3432static int
e3bb37b5 3433intel_float_operand (const char *mnemonic)
252b5132 3434{
9306ca4a
JB
3435 /* Note that the value returned is meaningful only for opcodes with (memory)
3436 operands, hence the code here is free to improperly handle opcodes that
3437 have no operands (for better performance and smaller code). */
3438
3439 if (mnemonic[0] != 'f')
3440 return 0; /* non-math */
3441
3442 switch (mnemonic[1])
3443 {
3444 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3445 the fs segment override prefix not currently handled because no
3446 call path can make opcodes without operands get here */
3447 case 'i':
3448 return 2 /* integer op */;
3449 case 'l':
3450 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3451 return 3; /* fldcw/fldenv */
3452 break;
3453 case 'n':
3454 if (mnemonic[2] != 'o' /* fnop */)
3455 return 3; /* non-waiting control op */
3456 break;
3457 case 'r':
3458 if (mnemonic[2] == 's')
3459 return 3; /* frstor/frstpm */
3460 break;
3461 case 's':
3462 if (mnemonic[2] == 'a')
3463 return 3; /* fsave */
3464 if (mnemonic[2] == 't')
3465 {
3466 switch (mnemonic[3])
3467 {
3468 case 'c': /* fstcw */
3469 case 'd': /* fstdw */
3470 case 'e': /* fstenv */
3471 case 's': /* fsts[gw] */
3472 return 3;
3473 }
3474 }
3475 break;
3476 case 'x':
3477 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3478 return 0; /* fxsave/fxrstor are not really math ops */
3479 break;
3480 }
252b5132 3481
9306ca4a 3482 return 1;
252b5132
RH
3483}
3484
c0f3af97
L
3485/* Build the VEX prefix. */
3486
3487static void
d3ce72d0 3488build_vex_prefix (const insn_template *t)
c0f3af97
L
3489{
3490 unsigned int register_specifier;
3491 unsigned int implied_prefix;
3492 unsigned int vector_length;
03751133 3493 unsigned int w;
c0f3af97
L
3494
3495 /* Check register specifier. */
3496 if (i.vex.register_specifier)
43234a1e
L
3497 {
3498 register_specifier =
3499 ~register_number (i.vex.register_specifier) & 0xf;
3500 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3501 }
c0f3af97
L
3502 else
3503 register_specifier = 0xf;
3504
79f0fa25
L
3505 /* Use 2-byte VEX prefix by swapping destination and source operand
3506 if there are more than 1 register operand. */
3507 if (i.reg_operands > 1
3508 && i.vec_encoding != vex_encoding_vex3
86fa6981 3509 && i.dir_encoding == dir_encoding_default
fa99fab2 3510 && i.operands == i.reg_operands
dbbc8b7e 3511 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3512 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3513 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3514 && i.rex == REX_B)
3515 {
3516 unsigned int xchg = i.operands - 1;
3517 union i386_op temp_op;
3518 i386_operand_type temp_type;
3519
3520 temp_type = i.types[xchg];
3521 i.types[xchg] = i.types[0];
3522 i.types[0] = temp_type;
3523 temp_op = i.op[xchg];
3524 i.op[xchg] = i.op[0];
3525 i.op[0] = temp_op;
3526
9c2799c2 3527 gas_assert (i.rm.mode == 3);
fa99fab2
L
3528
3529 i.rex = REX_R;
3530 xchg = i.rm.regmem;
3531 i.rm.regmem = i.rm.reg;
3532 i.rm.reg = xchg;
3533
dbbc8b7e
JB
3534 if (i.tm.opcode_modifier.d)
3535 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3536 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3537 else /* Use the next insn. */
3538 i.tm = t[1];
fa99fab2
L
3539 }
3540
79dec6b7
JB
3541 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3542 are no memory operands and at least 3 register ones. */
3543 if (i.reg_operands >= 3
3544 && i.vec_encoding != vex_encoding_vex3
3545 && i.reg_operands == i.operands - i.imm_operands
3546 && i.tm.opcode_modifier.vex
3547 && i.tm.opcode_modifier.commutative
3548 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3549 && i.rex == REX_B
3550 && i.vex.register_specifier
3551 && !(i.vex.register_specifier->reg_flags & RegRex))
3552 {
3553 unsigned int xchg = i.operands - i.reg_operands;
3554 union i386_op temp_op;
3555 i386_operand_type temp_type;
3556
3557 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3558 gas_assert (!i.tm.opcode_modifier.sae);
3559 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3560 &i.types[i.operands - 3]));
3561 gas_assert (i.rm.mode == 3);
3562
3563 temp_type = i.types[xchg];
3564 i.types[xchg] = i.types[xchg + 1];
3565 i.types[xchg + 1] = temp_type;
3566 temp_op = i.op[xchg];
3567 i.op[xchg] = i.op[xchg + 1];
3568 i.op[xchg + 1] = temp_op;
3569
3570 i.rex = 0;
3571 xchg = i.rm.regmem | 8;
3572 i.rm.regmem = ~register_specifier & 0xf;
3573 gas_assert (!(i.rm.regmem & 8));
3574 i.vex.register_specifier += xchg - i.rm.regmem;
3575 register_specifier = ~xchg & 0xf;
3576 }
3577
539f890d
L
3578 if (i.tm.opcode_modifier.vex == VEXScalar)
3579 vector_length = avxscalar;
10c17abd
JB
3580 else if (i.tm.opcode_modifier.vex == VEX256)
3581 vector_length = 1;
539f890d 3582 else
10c17abd 3583 {
56522fc5 3584 unsigned int op;
10c17abd 3585
c7213af9
L
3586 /* Determine vector length from the last multi-length vector
3587 operand. */
10c17abd 3588 vector_length = 0;
56522fc5 3589 for (op = t->operands; op--;)
10c17abd
JB
3590 if (t->operand_types[op].bitfield.xmmword
3591 && t->operand_types[op].bitfield.ymmword
3592 && i.types[op].bitfield.ymmword)
3593 {
3594 vector_length = 1;
3595 break;
3596 }
3597 }
c0f3af97
L
3598
3599 switch ((i.tm.base_opcode >> 8) & 0xff)
3600 {
3601 case 0:
3602 implied_prefix = 0;
3603 break;
3604 case DATA_PREFIX_OPCODE:
3605 implied_prefix = 1;
3606 break;
3607 case REPE_PREFIX_OPCODE:
3608 implied_prefix = 2;
3609 break;
3610 case REPNE_PREFIX_OPCODE:
3611 implied_prefix = 3;
3612 break;
3613 default:
3614 abort ();
3615 }
3616
03751133
L
3617 /* Check the REX.W bit and VEXW. */
3618 if (i.tm.opcode_modifier.vexw == VEXWIG)
3619 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3620 else if (i.tm.opcode_modifier.vexw)
3621 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3622 else
931d03b7 3623 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3624
c0f3af97 3625 /* Use 2-byte VEX prefix if possible. */
03751133
L
3626 if (w == 0
3627 && i.vec_encoding != vex_encoding_vex3
86fa6981 3628 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3629 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3630 {
3631 /* 2-byte VEX prefix. */
3632 unsigned int r;
3633
3634 i.vex.length = 2;
3635 i.vex.bytes[0] = 0xc5;
3636
3637 /* Check the REX.R bit. */
3638 r = (i.rex & REX_R) ? 0 : 1;
3639 i.vex.bytes[1] = (r << 7
3640 | register_specifier << 3
3641 | vector_length << 2
3642 | implied_prefix);
3643 }
3644 else
3645 {
3646 /* 3-byte VEX prefix. */
03751133 3647 unsigned int m;
c0f3af97 3648
f88c9eb0 3649 i.vex.length = 3;
f88c9eb0 3650
7f399153 3651 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3652 {
7f399153
L
3653 case VEX0F:
3654 m = 0x1;
80de6e00 3655 i.vex.bytes[0] = 0xc4;
7f399153
L
3656 break;
3657 case VEX0F38:
3658 m = 0x2;
80de6e00 3659 i.vex.bytes[0] = 0xc4;
7f399153
L
3660 break;
3661 case VEX0F3A:
3662 m = 0x3;
80de6e00 3663 i.vex.bytes[0] = 0xc4;
7f399153
L
3664 break;
3665 case XOP08:
5dd85c99
SP
3666 m = 0x8;
3667 i.vex.bytes[0] = 0x8f;
7f399153
L
3668 break;
3669 case XOP09:
f88c9eb0
SP
3670 m = 0x9;
3671 i.vex.bytes[0] = 0x8f;
7f399153
L
3672 break;
3673 case XOP0A:
f88c9eb0
SP
3674 m = 0xa;
3675 i.vex.bytes[0] = 0x8f;
7f399153
L
3676 break;
3677 default:
3678 abort ();
f88c9eb0 3679 }
c0f3af97 3680
c0f3af97
L
3681 /* The high 3 bits of the second VEX byte are 1's compliment
3682 of RXB bits from REX. */
3683 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3684
c0f3af97
L
3685 i.vex.bytes[2] = (w << 7
3686 | register_specifier << 3
3687 | vector_length << 2
3688 | implied_prefix);
3689 }
3690}
3691
e771e7c9
JB
3692static INLINE bfd_boolean
3693is_evex_encoding (const insn_template *t)
3694{
7091c612 3695 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3696 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3697 || t->opcode_modifier.sae;
e771e7c9
JB
3698}
3699
7a8655d2
JB
3700static INLINE bfd_boolean
3701is_any_vex_encoding (const insn_template *t)
3702{
3703 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3704 || is_evex_encoding (t);
3705}
3706
43234a1e
L
3707/* Build the EVEX prefix. */
3708
3709static void
3710build_evex_prefix (void)
3711{
3712 unsigned int register_specifier;
3713 unsigned int implied_prefix;
3714 unsigned int m, w;
3715 rex_byte vrex_used = 0;
3716
3717 /* Check register specifier. */
3718 if (i.vex.register_specifier)
3719 {
3720 gas_assert ((i.vrex & REX_X) == 0);
3721
3722 register_specifier = i.vex.register_specifier->reg_num;
3723 if ((i.vex.register_specifier->reg_flags & RegRex))
3724 register_specifier += 8;
3725 /* The upper 16 registers are encoded in the fourth byte of the
3726 EVEX prefix. */
3727 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3728 i.vex.bytes[3] = 0x8;
3729 register_specifier = ~register_specifier & 0xf;
3730 }
3731 else
3732 {
3733 register_specifier = 0xf;
3734
3735 /* Encode upper 16 vector index register in the fourth byte of
3736 the EVEX prefix. */
3737 if (!(i.vrex & REX_X))
3738 i.vex.bytes[3] = 0x8;
3739 else
3740 vrex_used |= REX_X;
3741 }
3742
3743 switch ((i.tm.base_opcode >> 8) & 0xff)
3744 {
3745 case 0:
3746 implied_prefix = 0;
3747 break;
3748 case DATA_PREFIX_OPCODE:
3749 implied_prefix = 1;
3750 break;
3751 case REPE_PREFIX_OPCODE:
3752 implied_prefix = 2;
3753 break;
3754 case REPNE_PREFIX_OPCODE:
3755 implied_prefix = 3;
3756 break;
3757 default:
3758 abort ();
3759 }
3760
3761 /* 4 byte EVEX prefix. */
3762 i.vex.length = 4;
3763 i.vex.bytes[0] = 0x62;
3764
3765 /* mmmm bits. */
3766 switch (i.tm.opcode_modifier.vexopcode)
3767 {
3768 case VEX0F:
3769 m = 1;
3770 break;
3771 case VEX0F38:
3772 m = 2;
3773 break;
3774 case VEX0F3A:
3775 m = 3;
3776 break;
3777 default:
3778 abort ();
3779 break;
3780 }
3781
3782 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3783 bits from REX. */
3784 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3785
3786 /* The fifth bit of the second EVEX byte is 1's compliment of the
3787 REX_R bit in VREX. */
3788 if (!(i.vrex & REX_R))
3789 i.vex.bytes[1] |= 0x10;
3790 else
3791 vrex_used |= REX_R;
3792
3793 if ((i.reg_operands + i.imm_operands) == i.operands)
3794 {
3795 /* When all operands are registers, the REX_X bit in REX is not
3796 used. We reuse it to encode the upper 16 registers, which is
3797 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3798 as 1's compliment. */
3799 if ((i.vrex & REX_B))
3800 {
3801 vrex_used |= REX_B;
3802 i.vex.bytes[1] &= ~0x40;
3803 }
3804 }
3805
3806 /* EVEX instructions shouldn't need the REX prefix. */
3807 i.vrex &= ~vrex_used;
3808 gas_assert (i.vrex == 0);
3809
6865c043
L
3810 /* Check the REX.W bit and VEXW. */
3811 if (i.tm.opcode_modifier.vexw == VEXWIG)
3812 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3813 else if (i.tm.opcode_modifier.vexw)
3814 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3815 else
931d03b7 3816 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3817
3818 /* Encode the U bit. */
3819 implied_prefix |= 0x4;
3820
3821 /* The third byte of the EVEX prefix. */
3822 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3823
3824 /* The fourth byte of the EVEX prefix. */
3825 /* The zeroing-masking bit. */
3826 if (i.mask && i.mask->zeroing)
3827 i.vex.bytes[3] |= 0x80;
3828
3829 /* Don't always set the broadcast bit if there is no RC. */
3830 if (!i.rounding)
3831 {
3832 /* Encode the vector length. */
3833 unsigned int vec_length;
3834
e771e7c9
JB
3835 if (!i.tm.opcode_modifier.evex
3836 || i.tm.opcode_modifier.evex == EVEXDYN)
3837 {
56522fc5 3838 unsigned int op;
e771e7c9 3839
c7213af9
L
3840 /* Determine vector length from the last multi-length vector
3841 operand. */
e771e7c9 3842 vec_length = 0;
56522fc5 3843 for (op = i.operands; op--;)
e771e7c9
JB
3844 if (i.tm.operand_types[op].bitfield.xmmword
3845 + i.tm.operand_types[op].bitfield.ymmword
3846 + i.tm.operand_types[op].bitfield.zmmword > 1)
3847 {
3848 if (i.types[op].bitfield.zmmword)
c7213af9
L
3849 {
3850 i.tm.opcode_modifier.evex = EVEX512;
3851 break;
3852 }
e771e7c9 3853 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3854 {
3855 i.tm.opcode_modifier.evex = EVEX256;
3856 break;
3857 }
e771e7c9 3858 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3859 {
3860 i.tm.opcode_modifier.evex = EVEX128;
3861 break;
3862 }
625cbd7a
JB
3863 else if (i.broadcast && (int) op == i.broadcast->operand)
3864 {
4a1b91ea 3865 switch (i.broadcast->bytes)
625cbd7a
JB
3866 {
3867 case 64:
3868 i.tm.opcode_modifier.evex = EVEX512;
3869 break;
3870 case 32:
3871 i.tm.opcode_modifier.evex = EVEX256;
3872 break;
3873 case 16:
3874 i.tm.opcode_modifier.evex = EVEX128;
3875 break;
3876 default:
c7213af9 3877 abort ();
625cbd7a 3878 }
c7213af9 3879 break;
625cbd7a 3880 }
e771e7c9 3881 }
c7213af9 3882
56522fc5 3883 if (op >= MAX_OPERANDS)
c7213af9 3884 abort ();
e771e7c9
JB
3885 }
3886
43234a1e
L
3887 switch (i.tm.opcode_modifier.evex)
3888 {
3889 case EVEXLIG: /* LL' is ignored */
3890 vec_length = evexlig << 5;
3891 break;
3892 case EVEX128:
3893 vec_length = 0 << 5;
3894 break;
3895 case EVEX256:
3896 vec_length = 1 << 5;
3897 break;
3898 case EVEX512:
3899 vec_length = 2 << 5;
3900 break;
3901 default:
3902 abort ();
3903 break;
3904 }
3905 i.vex.bytes[3] |= vec_length;
3906 /* Encode the broadcast bit. */
3907 if (i.broadcast)
3908 i.vex.bytes[3] |= 0x10;
3909 }
3910 else
3911 {
3912 if (i.rounding->type != saeonly)
3913 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3914 else
d3d3c6db 3915 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3916 }
3917
3918 if (i.mask && i.mask->mask)
3919 i.vex.bytes[3] |= i.mask->mask->reg_num;
3920}
3921
65da13b5
L
3922static void
3923process_immext (void)
3924{
3925 expressionS *exp;
3926
c0f3af97 3927 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3928 which is coded in the same place as an 8-bit immediate field
3929 would be. Here we fake an 8-bit immediate operand from the
3930 opcode suffix stored in tm.extension_opcode.
3931
c1e679ec 3932 AVX instructions also use this encoding, for some of
c0f3af97 3933 3 argument instructions. */
65da13b5 3934
43234a1e 3935 gas_assert (i.imm_operands <= 1
7ab9ffdd 3936 && (i.operands <= 2
7a8655d2 3937 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3938 && i.operands <= 4)));
65da13b5
L
3939
3940 exp = &im_expressions[i.imm_operands++];
3941 i.op[i.operands].imms = exp;
3942 i.types[i.operands] = imm8;
3943 i.operands++;
3944 exp->X_op = O_constant;
3945 exp->X_add_number = i.tm.extension_opcode;
3946 i.tm.extension_opcode = None;
3947}
3948
42164a71
L
3949
3950static int
3951check_hle (void)
3952{
3953 switch (i.tm.opcode_modifier.hleprefixok)
3954 {
3955 default:
3956 abort ();
82c2def5 3957 case HLEPrefixNone:
165de32a
L
3958 as_bad (_("invalid instruction `%s' after `%s'"),
3959 i.tm.name, i.hle_prefix);
42164a71 3960 return 0;
82c2def5 3961 case HLEPrefixLock:
42164a71
L
3962 if (i.prefix[LOCK_PREFIX])
3963 return 1;
165de32a 3964 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3965 return 0;
82c2def5 3966 case HLEPrefixAny:
42164a71 3967 return 1;
82c2def5 3968 case HLEPrefixRelease:
42164a71
L
3969 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3970 {
3971 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3972 i.tm.name);
3973 return 0;
3974 }
8dc0818e 3975 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
3976 {
3977 as_bad (_("memory destination needed for instruction `%s'"
3978 " after `xrelease'"), i.tm.name);
3979 return 0;
3980 }
3981 return 1;
3982 }
3983}
3984
b6f8c7c4
L
3985/* Try the shortest encoding by shortening operand size. */
3986
3987static void
3988optimize_encoding (void)
3989{
a0a1771e 3990 unsigned int j;
b6f8c7c4
L
3991
3992 if (optimize_for_space
3993 && i.reg_operands == 1
3994 && i.imm_operands == 1
3995 && !i.types[1].bitfield.byte
3996 && i.op[0].imms->X_op == O_constant
3997 && fits_in_imm7 (i.op[0].imms->X_add_number)
3998 && ((i.tm.base_opcode == 0xa8
3999 && i.tm.extension_opcode == None)
4000 || (i.tm.base_opcode == 0xf6
4001 && i.tm.extension_opcode == 0x0)))
4002 {
4003 /* Optimize: -Os:
4004 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4005 */
4006 unsigned int base_regnum = i.op[1].regs->reg_num;
4007 if (flag_code == CODE_64BIT || base_regnum < 4)
4008 {
4009 i.types[1].bitfield.byte = 1;
4010 /* Ignore the suffix. */
4011 i.suffix = 0;
7697afb6
JB
4012 /* Convert to byte registers. */
4013 if (i.types[1].bitfield.word)
4014 j = 16;
4015 else if (i.types[1].bitfield.dword)
4016 j = 32;
4017 else
4018 j = 48;
4019 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4020 j += 8;
4021 i.op[1].regs -= j;
b6f8c7c4
L
4022 }
4023 }
4024 else if (flag_code == CODE_64BIT
d3d50934
L
4025 && ((i.types[1].bitfield.qword
4026 && i.reg_operands == 1
b6f8c7c4
L
4027 && i.imm_operands == 1
4028 && i.op[0].imms->X_op == O_constant
507916b8 4029 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
4030 && i.tm.extension_opcode == None
4031 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4032 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4033 && (((i.tm.base_opcode == 0x24
4034 || i.tm.base_opcode == 0xa8)
4035 && i.tm.extension_opcode == None)
4036 || (i.tm.base_opcode == 0x80
4037 && i.tm.extension_opcode == 0x4)
4038 || ((i.tm.base_opcode == 0xf6
507916b8 4039 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
4040 && i.tm.extension_opcode == 0x0)))
4041 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4042 && i.tm.base_opcode == 0x83
4043 && i.tm.extension_opcode == 0x4)))
d3d50934
L
4044 || (i.types[0].bitfield.qword
4045 && ((i.reg_operands == 2
4046 && i.op[0].regs == i.op[1].regs
4047 && ((i.tm.base_opcode == 0x30
4048 || i.tm.base_opcode == 0x28)
4049 && i.tm.extension_opcode == None))
4050 || (i.reg_operands == 1
4051 && i.operands == 1
4052 && i.tm.base_opcode == 0x30
4053 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
4054 {
4055 /* Optimize: -O:
4056 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4057 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4058 testq $imm31, %r64 -> testl $imm31, %r32
4059 xorq %r64, %r64 -> xorl %r32, %r32
4060 subq %r64, %r64 -> subl %r32, %r32
4061 movq $imm31, %r64 -> movl $imm31, %r32
4062 movq $imm32, %r64 -> movl $imm32, %r32
4063 */
4064 i.tm.opcode_modifier.norex64 = 1;
507916b8 4065 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4066 {
4067 /* Handle
4068 movq $imm31, %r64 -> movl $imm31, %r32
4069 movq $imm32, %r64 -> movl $imm32, %r32
4070 */
4071 i.tm.operand_types[0].bitfield.imm32 = 1;
4072 i.tm.operand_types[0].bitfield.imm32s = 0;
4073 i.tm.operand_types[0].bitfield.imm64 = 0;
4074 i.types[0].bitfield.imm32 = 1;
4075 i.types[0].bitfield.imm32s = 0;
4076 i.types[0].bitfield.imm64 = 0;
4077 i.types[1].bitfield.dword = 1;
4078 i.types[1].bitfield.qword = 0;
507916b8 4079 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4080 {
4081 /* Handle
4082 movq $imm31, %r64 -> movl $imm31, %r32
4083 */
507916b8 4084 i.tm.base_opcode = 0xb8;
b6f8c7c4 4085 i.tm.extension_opcode = None;
507916b8 4086 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4087 i.tm.opcode_modifier.shortform = 1;
4088 i.tm.opcode_modifier.modrm = 0;
4089 }
4090 }
4091 }
5641ec01
JB
4092 else if (optimize > 1
4093 && !optimize_for_space
4094 && i.reg_operands == 2
4095 && i.op[0].regs == i.op[1].regs
4096 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4097 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4098 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4099 {
4100 /* Optimize: -O2:
4101 andb %rN, %rN -> testb %rN, %rN
4102 andw %rN, %rN -> testw %rN, %rN
4103 andq %rN, %rN -> testq %rN, %rN
4104 orb %rN, %rN -> testb %rN, %rN
4105 orw %rN, %rN -> testw %rN, %rN
4106 orq %rN, %rN -> testq %rN, %rN
4107
4108 and outside of 64-bit mode
4109
4110 andl %rN, %rN -> testl %rN, %rN
4111 orl %rN, %rN -> testl %rN, %rN
4112 */
4113 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4114 }
99112332 4115 else if (i.reg_operands == 3
b6f8c7c4
L
4116 && i.op[0].regs == i.op[1].regs
4117 && !i.types[2].bitfield.xmmword
4118 && (i.tm.opcode_modifier.vex
7a69eac3 4119 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4120 && !i.rounding
e771e7c9 4121 && is_evex_encoding (&i.tm)
80c34c38 4122 && (i.vec_encoding != vex_encoding_evex
dd22218c 4123 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4124 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4125 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4126 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4127 && ((i.tm.base_opcode == 0x55
4128 || i.tm.base_opcode == 0x6655
4129 || i.tm.base_opcode == 0x66df
4130 || i.tm.base_opcode == 0x57
4131 || i.tm.base_opcode == 0x6657
8305403a
L
4132 || i.tm.base_opcode == 0x66ef
4133 || i.tm.base_opcode == 0x66f8
4134 || i.tm.base_opcode == 0x66f9
4135 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4136 || i.tm.base_opcode == 0x66fb
4137 || i.tm.base_opcode == 0x42
4138 || i.tm.base_opcode == 0x6642
4139 || i.tm.base_opcode == 0x47
4140 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4141 && i.tm.extension_opcode == None))
4142 {
99112332 4143 /* Optimize: -O1:
8305403a
L
4144 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4145 vpsubq and vpsubw:
b6f8c7c4
L
4146 EVEX VOP %zmmM, %zmmM, %zmmN
4147 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4148 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4149 EVEX VOP %ymmM, %ymmM, %ymmN
4150 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4151 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4152 VEX VOP %ymmM, %ymmM, %ymmN
4153 -> VEX VOP %xmmM, %xmmM, %xmmN
4154 VOP, one of vpandn and vpxor:
4155 VEX VOP %ymmM, %ymmM, %ymmN
4156 -> VEX VOP %xmmM, %xmmM, %xmmN
4157 VOP, one of vpandnd and vpandnq:
4158 EVEX VOP %zmmM, %zmmM, %zmmN
4159 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4160 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4161 EVEX VOP %ymmM, %ymmM, %ymmN
4162 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4163 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4164 VOP, one of vpxord and vpxorq:
4165 EVEX VOP %zmmM, %zmmM, %zmmN
4166 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4167 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4168 EVEX VOP %ymmM, %ymmM, %ymmN
4169 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4170 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4171 VOP, one of kxord and kxorq:
4172 VEX VOP %kM, %kM, %kN
4173 -> VEX kxorw %kM, %kM, %kN
4174 VOP, one of kandnd and kandnq:
4175 VEX VOP %kM, %kM, %kN
4176 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4177 */
e771e7c9 4178 if (is_evex_encoding (&i.tm))
b6f8c7c4 4179 {
7b1d7ca1 4180 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4181 {
4182 i.tm.opcode_modifier.vex = VEX128;
4183 i.tm.opcode_modifier.vexw = VEXW0;
4184 i.tm.opcode_modifier.evex = 0;
4185 }
7b1d7ca1 4186 else if (optimize > 1)
dd22218c
L
4187 i.tm.opcode_modifier.evex = EVEX128;
4188 else
4189 return;
b6f8c7c4 4190 }
f74a6307 4191 else if (i.tm.operand_types[0].bitfield.class == RegMask)
1424ad86
JB
4192 {
4193 i.tm.base_opcode &= 0xff;
4194 i.tm.opcode_modifier.vexw = VEXW0;
4195 }
b6f8c7c4
L
4196 else
4197 i.tm.opcode_modifier.vex = VEX128;
4198
4199 if (i.tm.opcode_modifier.vex)
4200 for (j = 0; j < 3; j++)
4201 {
4202 i.types[j].bitfield.xmmword = 1;
4203 i.types[j].bitfield.ymmword = 0;
4204 }
4205 }
392a5972 4206 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4207 && !i.types[0].bitfield.zmmword
392a5972 4208 && !i.types[1].bitfield.zmmword
97ed31ae 4209 && !i.mask
a0a1771e 4210 && !i.broadcast
97ed31ae 4211 && is_evex_encoding (&i.tm)
392a5972
L
4212 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4213 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4214 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4215 || (i.tm.base_opcode & ~4) == 0x66db
4216 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4217 && i.tm.extension_opcode == None)
4218 {
4219 /* Optimize: -O1:
4220 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4221 vmovdqu32 and vmovdqu64:
4222 EVEX VOP %xmmM, %xmmN
4223 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4224 EVEX VOP %ymmM, %ymmN
4225 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4226 EVEX VOP %xmmM, mem
4227 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4228 EVEX VOP %ymmM, mem
4229 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4230 EVEX VOP mem, %xmmN
4231 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4232 EVEX VOP mem, %ymmN
4233 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4234 VOP, one of vpand, vpandn, vpor, vpxor:
4235 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4236 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4237 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4238 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4239 EVEX VOP{d,q} mem, %xmmM, %xmmN
4240 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4241 EVEX VOP{d,q} mem, %ymmM, %ymmN
4242 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4243 */
a0a1771e 4244 for (j = 0; j < i.operands; j++)
392a5972
L
4245 if (operand_type_check (i.types[j], disp)
4246 && i.op[j].disps->X_op == O_constant)
4247 {
4248 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4249 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4250 bytes, we choose EVEX Disp8 over VEX Disp32. */
4251 int evex_disp8, vex_disp8;
4252 unsigned int memshift = i.memshift;
4253 offsetT n = i.op[j].disps->X_add_number;
4254
4255 evex_disp8 = fits_in_disp8 (n);
4256 i.memshift = 0;
4257 vex_disp8 = fits_in_disp8 (n);
4258 if (evex_disp8 != vex_disp8)
4259 {
4260 i.memshift = memshift;
4261 return;
4262 }
4263
4264 i.types[j].bitfield.disp8 = vex_disp8;
4265 break;
4266 }
4267 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4268 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4269 i.tm.opcode_modifier.vex
4270 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4271 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4272 /* VPAND, VPOR, and VPXOR are commutative. */
4273 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4274 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4275 i.tm.opcode_modifier.evex = 0;
4276 i.tm.opcode_modifier.masking = 0;
a0a1771e 4277 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4278 i.tm.opcode_modifier.disp8memshift = 0;
4279 i.memshift = 0;
a0a1771e
JB
4280 if (j < i.operands)
4281 i.types[j].bitfield.disp8
4282 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4283 }
b6f8c7c4
L
4284}
4285
252b5132
RH
4286/* This is the guts of the machine-dependent assembler. LINE points to a
4287 machine dependent instruction. This function is supposed to emit
4288 the frags/bytes it assembles to. */
4289
4290void
65da13b5 4291md_assemble (char *line)
252b5132 4292{
40fb9820 4293 unsigned int j;
83b16ac6 4294 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4295 const insn_template *t;
252b5132 4296
47926f60 4297 /* Initialize globals. */
252b5132
RH
4298 memset (&i, '\0', sizeof (i));
4299 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4300 i.reloc[j] = NO_RELOC;
252b5132
RH
4301 memset (disp_expressions, '\0', sizeof (disp_expressions));
4302 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4303 save_stack_p = save_stack;
252b5132
RH
4304
4305 /* First parse an instruction mnemonic & call i386_operand for the operands.
4306 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4307 start of a (possibly prefixed) mnemonic. */
252b5132 4308
29b0f896
AM
4309 line = parse_insn (line, mnemonic);
4310 if (line == NULL)
4311 return;
83b16ac6 4312 mnem_suffix = i.suffix;
252b5132 4313
29b0f896 4314 line = parse_operands (line, mnemonic);
ee86248c 4315 this_operand = -1;
8325cc63
JB
4316 xfree (i.memop1_string);
4317 i.memop1_string = NULL;
29b0f896
AM
4318 if (line == NULL)
4319 return;
252b5132 4320
29b0f896
AM
4321 /* Now we've parsed the mnemonic into a set of templates, and have the
4322 operands at hand. */
4323
4324 /* All intel opcodes have reversed operands except for "bound" and
4325 "enter". We also don't reverse intersegment "jmp" and "call"
4326 instructions with 2 immediate operands so that the immediate segment
050dfa73 4327 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4328 if (intel_syntax
4329 && i.operands > 1
29b0f896 4330 && (strcmp (mnemonic, "bound") != 0)
30123838 4331 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4332 && !(operand_type_check (i.types[0], imm)
4333 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4334 swap_operands ();
4335
ec56d5c0
JB
4336 /* The order of the immediates should be reversed
4337 for 2 immediates extrq and insertq instructions */
4338 if (i.imm_operands == 2
4339 && (strcmp (mnemonic, "extrq") == 0
4340 || strcmp (mnemonic, "insertq") == 0))
4341 swap_2_operands (0, 1);
4342
29b0f896
AM
4343 if (i.imm_operands)
4344 optimize_imm ();
4345
b300c311
L
4346 /* Don't optimize displacement for movabs since it only takes 64bit
4347 displacement. */
4348 if (i.disp_operands
a501d77e 4349 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4350 && (flag_code != CODE_64BIT
4351 || strcmp (mnemonic, "movabs") != 0))
4352 optimize_disp ();
29b0f896
AM
4353
4354 /* Next, we find a template that matches the given insn,
4355 making sure the overlap of the given operands types is consistent
4356 with the template operand types. */
252b5132 4357
83b16ac6 4358 if (!(t = match_template (mnem_suffix)))
29b0f896 4359 return;
252b5132 4360
7bab8ab5 4361 if (sse_check != check_none
81f8a913 4362 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4363 && !i.tm.cpu_flags.bitfield.cpuavx
569d50f1 4364 && !i.tm.cpu_flags.bitfield.cpuavx512f
daf50ae7
L
4365 && (i.tm.cpu_flags.bitfield.cpusse
4366 || i.tm.cpu_flags.bitfield.cpusse2
4367 || i.tm.cpu_flags.bitfield.cpusse3
4368 || i.tm.cpu_flags.bitfield.cpussse3
4369 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e 4370 || i.tm.cpu_flags.bitfield.cpusse4_2
569d50f1 4371 || i.tm.cpu_flags.bitfield.cpusse4a
6e3e5c9e
JB
4372 || i.tm.cpu_flags.bitfield.cpupclmul
4373 || i.tm.cpu_flags.bitfield.cpuaes
569d50f1 4374 || i.tm.cpu_flags.bitfield.cpusha
6e3e5c9e 4375 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4376 {
7bab8ab5 4377 (sse_check == check_warning
daf50ae7
L
4378 ? as_warn
4379 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4380 }
4381
321fd21e
L
4382 /* Zap movzx and movsx suffix. The suffix has been set from
4383 "word ptr" or "byte ptr" on the source operand in Intel syntax
4384 or extracted from mnemonic in AT&T syntax. But we'll use
4385 the destination register to choose the suffix for encoding. */
4386 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4387 {
321fd21e
L
4388 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4389 there is no suffix, the default will be byte extension. */
4390 if (i.reg_operands != 2
4391 && !i.suffix
7ab9ffdd 4392 && intel_syntax)
321fd21e
L
4393 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4394
4395 i.suffix = 0;
cd61ebfe 4396 }
24eab124 4397
40fb9820 4398 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4399 if (!add_prefix (FWAIT_OPCODE))
4400 return;
252b5132 4401
d5de92cf
L
4402 /* Check if REP prefix is OK. */
4403 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4404 {
4405 as_bad (_("invalid instruction `%s' after `%s'"),
4406 i.tm.name, i.rep_prefix);
4407 return;
4408 }
4409
c1ba0266
L
4410 /* Check for lock without a lockable instruction. Destination operand
4411 must be memory unless it is xchg (0x86). */
c32fa91d
L
4412 if (i.prefix[LOCK_PREFIX]
4413 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4414 || i.mem_operands == 0
4415 || (i.tm.base_opcode != 0x86
8dc0818e 4416 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4417 {
4418 as_bad (_("expecting lockable instruction after `lock'"));
4419 return;
4420 }
4421
7a8655d2
JB
4422 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4423 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4424 {
4425 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4426 return;
4427 }
4428
42164a71 4429 /* Check if HLE prefix is OK. */
165de32a 4430 if (i.hle_prefix && !check_hle ())
42164a71
L
4431 return;
4432
7e8b059b
L
4433 /* Check BND prefix. */
4434 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4435 as_bad (_("expecting valid branch instruction after `bnd'"));
4436
04ef582a 4437 /* Check NOTRACK prefix. */
9fef80d6
L
4438 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4439 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4440
327e8c42
JB
4441 if (i.tm.cpu_flags.bitfield.cpumpx)
4442 {
4443 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4444 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4445 else if (flag_code != CODE_16BIT
4446 ? i.prefix[ADDR_PREFIX]
4447 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4448 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4449 }
7e8b059b
L
4450
4451 /* Insert BND prefix. */
76d3a78a
JB
4452 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4453 {
4454 if (!i.prefix[BND_PREFIX])
4455 add_prefix (BND_PREFIX_OPCODE);
4456 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4457 {
4458 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4459 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4460 }
4461 }
7e8b059b 4462
29b0f896 4463 /* Check string instruction segment overrides. */
51c8edf6 4464 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
29b0f896 4465 {
51c8edf6 4466 gas_assert (i.mem_operands);
29b0f896 4467 if (!check_string ())
5dd0794d 4468 return;
fc0763e6 4469 i.disp_operands = 0;
29b0f896 4470 }
5dd0794d 4471
b6f8c7c4
L
4472 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4473 optimize_encoding ();
4474
29b0f896
AM
4475 if (!process_suffix ())
4476 return;
e413e4e9 4477
bc0844ae
L
4478 /* Update operand types. */
4479 for (j = 0; j < i.operands; j++)
4480 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4481
29b0f896
AM
4482 /* Make still unresolved immediate matches conform to size of immediate
4483 given in i.suffix. */
4484 if (!finalize_imm ())
4485 return;
252b5132 4486
40fb9820 4487 if (i.types[0].bitfield.imm1)
29b0f896 4488 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4489
9afe6eb8
L
4490 /* We only need to check those implicit registers for instructions
4491 with 3 operands or less. */
4492 if (i.operands <= 3)
4493 for (j = 0; j < i.operands; j++)
75e5731b
JB
4494 if (i.types[j].bitfield.instance != InstanceNone
4495 && !i.types[j].bitfield.xmmword)
9afe6eb8 4496 i.reg_operands--;
40fb9820 4497
c0f3af97
L
4498 /* ImmExt should be processed after SSE2AVX. */
4499 if (!i.tm.opcode_modifier.sse2avx
4500 && i.tm.opcode_modifier.immext)
65da13b5 4501 process_immext ();
252b5132 4502
29b0f896
AM
4503 /* For insns with operands there are more diddles to do to the opcode. */
4504 if (i.operands)
4505 {
4506 if (!process_operands ())
4507 return;
4508 }
40fb9820 4509 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4510 {
4511 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4512 as_warn (_("translating to `%sp'"), i.tm.name);
4513 }
252b5132 4514
7a8655d2 4515 if (is_any_vex_encoding (&i.tm))
9e5e5283 4516 {
c1dc7af5 4517 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4518 {
c1dc7af5 4519 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4520 i.tm.name);
4521 return;
4522 }
c0f3af97 4523
9e5e5283
L
4524 if (i.tm.opcode_modifier.vex)
4525 build_vex_prefix (t);
4526 else
4527 build_evex_prefix ();
4528 }
43234a1e 4529
5dd85c99
SP
4530 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4531 instructions may define INT_OPCODE as well, so avoid this corner
4532 case for those instructions that use MODRM. */
4533 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4534 && !i.tm.opcode_modifier.modrm
4535 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4536 {
4537 i.tm.base_opcode = INT3_OPCODE;
4538 i.imm_operands = 0;
4539 }
252b5132 4540
0cfa3eb3
JB
4541 if ((i.tm.opcode_modifier.jump == JUMP
4542 || i.tm.opcode_modifier.jump == JUMP_BYTE
4543 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896
AM
4544 && i.op[0].disps->X_op == O_constant)
4545 {
4546 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4547 the absolute address given by the constant. Since ix86 jumps and
4548 calls are pc relative, we need to generate a reloc. */
4549 i.op[0].disps->X_add_symbol = &abs_symbol;
4550 i.op[0].disps->X_op = O_symbol;
4551 }
252b5132 4552
40fb9820 4553 if (i.tm.opcode_modifier.rex64)
161a04f6 4554 i.rex |= REX_W;
252b5132 4555
29b0f896
AM
4556 /* For 8 bit registers we need an empty rex prefix. Also if the
4557 instruction already has a prefix, we need to convert old
4558 registers to new ones. */
773f551c 4559
bab6aec1 4560 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
29b0f896 4561 && (i.op[0].regs->reg_flags & RegRex64) != 0)
bab6aec1 4562 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
29b0f896 4563 && (i.op[1].regs->reg_flags & RegRex64) != 0)
bab6aec1
JB
4564 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4565 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
29b0f896
AM
4566 && i.rex != 0))
4567 {
4568 int x;
726c5dcd 4569
29b0f896
AM
4570 i.rex |= REX_OPCODE;
4571 for (x = 0; x < 2; x++)
4572 {
4573 /* Look for 8 bit operand that uses old registers. */
bab6aec1 4574 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
29b0f896 4575 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4576 {
29b0f896
AM
4577 /* In case it is "hi" register, give up. */
4578 if (i.op[x].regs->reg_num > 3)
a540244d 4579 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4580 "instruction requiring REX prefix."),
a540244d 4581 register_prefix, i.op[x].regs->reg_name);
773f551c 4582
29b0f896
AM
4583 /* Otherwise it is equivalent to the extended register.
4584 Since the encoding doesn't change this is merely
4585 cosmetic cleanup for debug output. */
4586
4587 i.op[x].regs = i.op[x].regs + 8;
773f551c 4588 }
29b0f896
AM
4589 }
4590 }
773f551c 4591
6b6b6807
L
4592 if (i.rex == 0 && i.rex_encoding)
4593 {
4594 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4595 that uses legacy register. If it is "hi" register, don't add
4596 the REX_OPCODE byte. */
4597 int x;
4598 for (x = 0; x < 2; x++)
bab6aec1 4599 if (i.types[x].bitfield.class == Reg
6b6b6807
L
4600 && i.types[x].bitfield.byte
4601 && (i.op[x].regs->reg_flags & RegRex64) == 0
4602 && i.op[x].regs->reg_num > 3)
4603 {
4604 i.rex_encoding = FALSE;
4605 break;
4606 }
4607
4608 if (i.rex_encoding)
4609 i.rex = REX_OPCODE;
4610 }
4611
7ab9ffdd 4612 if (i.rex != 0)
29b0f896
AM
4613 add_prefix (REX_OPCODE | i.rex);
4614
4615 /* We are ready to output the insn. */
4616 output_insn ();
e379e5f3
L
4617
4618 last_insn.seg = now_seg;
4619
4620 if (i.tm.opcode_modifier.isprefix)
4621 {
4622 last_insn.kind = last_insn_prefix;
4623 last_insn.name = i.tm.name;
4624 last_insn.file = as_where (&last_insn.line);
4625 }
4626 else
4627 last_insn.kind = last_insn_other;
29b0f896
AM
4628}
4629
4630static char *
e3bb37b5 4631parse_insn (char *line, char *mnemonic)
29b0f896
AM
4632{
4633 char *l = line;
4634 char *token_start = l;
4635 char *mnem_p;
5c6af06e 4636 int supported;
d3ce72d0 4637 const insn_template *t;
b6169b20 4638 char *dot_p = NULL;
29b0f896 4639
29b0f896
AM
4640 while (1)
4641 {
4642 mnem_p = mnemonic;
4643 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4644 {
b6169b20
L
4645 if (*mnem_p == '.')
4646 dot_p = mnem_p;
29b0f896
AM
4647 mnem_p++;
4648 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4649 {
29b0f896
AM
4650 as_bad (_("no such instruction: `%s'"), token_start);
4651 return NULL;
4652 }
4653 l++;
4654 }
4655 if (!is_space_char (*l)
4656 && *l != END_OF_INSN
e44823cf
JB
4657 && (intel_syntax
4658 || (*l != PREFIX_SEPARATOR
4659 && *l != ',')))
29b0f896
AM
4660 {
4661 as_bad (_("invalid character %s in mnemonic"),
4662 output_invalid (*l));
4663 return NULL;
4664 }
4665 if (token_start == l)
4666 {
e44823cf 4667 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4668 as_bad (_("expecting prefix; got nothing"));
4669 else
4670 as_bad (_("expecting mnemonic; got nothing"));
4671 return NULL;
4672 }
45288df1 4673
29b0f896 4674 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4675 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4676
29b0f896
AM
4677 if (*l != END_OF_INSN
4678 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4679 && current_templates
40fb9820 4680 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4681 {
c6fb90c8 4682 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4683 {
4684 as_bad ((flag_code != CODE_64BIT
4685 ? _("`%s' is only supported in 64-bit mode")
4686 : _("`%s' is not supported in 64-bit mode")),
4687 current_templates->start->name);
4688 return NULL;
4689 }
29b0f896
AM
4690 /* If we are in 16-bit mode, do not allow addr16 or data16.
4691 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4692 if ((current_templates->start->opcode_modifier.size == SIZE16
4693 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4694 && flag_code != CODE_64BIT
673fe0f0 4695 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4696 ^ (flag_code == CODE_16BIT)))
4697 {
4698 as_bad (_("redundant %s prefix"),
4699 current_templates->start->name);
4700 return NULL;
45288df1 4701 }
86fa6981 4702 if (current_templates->start->opcode_length == 0)
29b0f896 4703 {
86fa6981
L
4704 /* Handle pseudo prefixes. */
4705 switch (current_templates->start->base_opcode)
4706 {
4707 case 0x0:
4708 /* {disp8} */
4709 i.disp_encoding = disp_encoding_8bit;
4710 break;
4711 case 0x1:
4712 /* {disp32} */
4713 i.disp_encoding = disp_encoding_32bit;
4714 break;
4715 case 0x2:
4716 /* {load} */
4717 i.dir_encoding = dir_encoding_load;
4718 break;
4719 case 0x3:
4720 /* {store} */
4721 i.dir_encoding = dir_encoding_store;
4722 break;
4723 case 0x4:
4724 /* {vex2} */
4725 i.vec_encoding = vex_encoding_vex2;
4726 break;
4727 case 0x5:
4728 /* {vex3} */
4729 i.vec_encoding = vex_encoding_vex3;
4730 break;
4731 case 0x6:
4732 /* {evex} */
4733 i.vec_encoding = vex_encoding_evex;
4734 break;
6b6b6807
L
4735 case 0x7:
4736 /* {rex} */
4737 i.rex_encoding = TRUE;
4738 break;
b6f8c7c4
L
4739 case 0x8:
4740 /* {nooptimize} */
4741 i.no_optimize = TRUE;
4742 break;
86fa6981
L
4743 default:
4744 abort ();
4745 }
4746 }
4747 else
4748 {
4749 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4750 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4751 {
4e9ac44a
L
4752 case PREFIX_EXIST:
4753 return NULL;
4754 case PREFIX_DS:
d777820b 4755 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4756 i.notrack_prefix = current_templates->start->name;
4757 break;
4758 case PREFIX_REP:
4759 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4760 i.hle_prefix = current_templates->start->name;
4761 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4762 i.bnd_prefix = current_templates->start->name;
4763 else
4764 i.rep_prefix = current_templates->start->name;
4765 break;
4766 default:
4767 break;
86fa6981 4768 }
29b0f896
AM
4769 }
4770 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4771 token_start = ++l;
4772 }
4773 else
4774 break;
4775 }
45288df1 4776
30a55f88 4777 if (!current_templates)
b6169b20 4778 {
07d5e953
JB
4779 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4780 Check if we should swap operand or force 32bit displacement in
f8a5c266 4781 encoding. */
30a55f88 4782 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4783 i.dir_encoding = dir_encoding_swap;
8d63c93e 4784 else if (mnem_p - 3 == dot_p
a501d77e
L
4785 && dot_p[1] == 'd'
4786 && dot_p[2] == '8')
4787 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4788 else if (mnem_p - 4 == dot_p
f8a5c266
L
4789 && dot_p[1] == 'd'
4790 && dot_p[2] == '3'
4791 && dot_p[3] == '2')
a501d77e 4792 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4793 else
4794 goto check_suffix;
4795 mnem_p = dot_p;
4796 *dot_p = '\0';
d3ce72d0 4797 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4798 }
4799
29b0f896
AM
4800 if (!current_templates)
4801 {
b6169b20 4802check_suffix:
1c529385 4803 if (mnem_p > mnemonic)
29b0f896 4804 {
1c529385
LH
4805 /* See if we can get a match by trimming off a suffix. */
4806 switch (mnem_p[-1])
29b0f896 4807 {
1c529385
LH
4808 case WORD_MNEM_SUFFIX:
4809 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4810 i.suffix = SHORT_MNEM_SUFFIX;
4811 else
1c529385
LH
4812 /* Fall through. */
4813 case BYTE_MNEM_SUFFIX:
4814 case QWORD_MNEM_SUFFIX:
4815 i.suffix = mnem_p[-1];
29b0f896 4816 mnem_p[-1] = '\0';
d3ce72d0 4817 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4818 mnemonic);
4819 break;
4820 case SHORT_MNEM_SUFFIX:
4821 case LONG_MNEM_SUFFIX:
4822 if (!intel_syntax)
4823 {
4824 i.suffix = mnem_p[-1];
4825 mnem_p[-1] = '\0';
4826 current_templates = (const templates *) hash_find (op_hash,
4827 mnemonic);
4828 }
4829 break;
4830
4831 /* Intel Syntax. */
4832 case 'd':
4833 if (intel_syntax)
4834 {
4835 if (intel_float_operand (mnemonic) == 1)
4836 i.suffix = SHORT_MNEM_SUFFIX;
4837 else
4838 i.suffix = LONG_MNEM_SUFFIX;
4839 mnem_p[-1] = '\0';
4840 current_templates = (const templates *) hash_find (op_hash,
4841 mnemonic);
4842 }
4843 break;
29b0f896 4844 }
29b0f896 4845 }
1c529385 4846
29b0f896
AM
4847 if (!current_templates)
4848 {
4849 as_bad (_("no such instruction: `%s'"), token_start);
4850 return NULL;
4851 }
4852 }
252b5132 4853
0cfa3eb3
JB
4854 if (current_templates->start->opcode_modifier.jump == JUMP
4855 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
4856 {
4857 /* Check for a branch hint. We allow ",pt" and ",pn" for
4858 predict taken and predict not taken respectively.
4859 I'm not sure that branch hints actually do anything on loop
4860 and jcxz insns (JumpByte) for current Pentium4 chips. They
4861 may work in the future and it doesn't hurt to accept them
4862 now. */
4863 if (l[0] == ',' && l[1] == 'p')
4864 {
4865 if (l[2] == 't')
4866 {
4867 if (!add_prefix (DS_PREFIX_OPCODE))
4868 return NULL;
4869 l += 3;
4870 }
4871 else if (l[2] == 'n')
4872 {
4873 if (!add_prefix (CS_PREFIX_OPCODE))
4874 return NULL;
4875 l += 3;
4876 }
4877 }
4878 }
4879 /* Any other comma loses. */
4880 if (*l == ',')
4881 {
4882 as_bad (_("invalid character %s in mnemonic"),
4883 output_invalid (*l));
4884 return NULL;
4885 }
252b5132 4886
29b0f896 4887 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4888 supported = 0;
4889 for (t = current_templates->start; t < current_templates->end; ++t)
4890 {
c0f3af97
L
4891 supported |= cpu_flags_match (t);
4892 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4893 {
4894 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4895 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4896
548d0ee6
JB
4897 return l;
4898 }
29b0f896 4899 }
3629bb00 4900
548d0ee6
JB
4901 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4902 as_bad (flag_code == CODE_64BIT
4903 ? _("`%s' is not supported in 64-bit mode")
4904 : _("`%s' is only supported in 64-bit mode"),
4905 current_templates->start->name);
4906 else
4907 as_bad (_("`%s' is not supported on `%s%s'"),
4908 current_templates->start->name,
4909 cpu_arch_name ? cpu_arch_name : default_arch,
4910 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4911
548d0ee6 4912 return NULL;
29b0f896 4913}
252b5132 4914
29b0f896 4915static char *
e3bb37b5 4916parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4917{
4918 char *token_start;
3138f287 4919
29b0f896
AM
4920 /* 1 if operand is pending after ','. */
4921 unsigned int expecting_operand = 0;
252b5132 4922
29b0f896
AM
4923 /* Non-zero if operand parens not balanced. */
4924 unsigned int paren_not_balanced;
4925
4926 while (*l != END_OF_INSN)
4927 {
4928 /* Skip optional white space before operand. */
4929 if (is_space_char (*l))
4930 ++l;
d02603dc 4931 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4932 {
4933 as_bad (_("invalid character %s before operand %d"),
4934 output_invalid (*l),
4935 i.operands + 1);
4936 return NULL;
4937 }
d02603dc 4938 token_start = l; /* After white space. */
29b0f896
AM
4939 paren_not_balanced = 0;
4940 while (paren_not_balanced || *l != ',')
4941 {
4942 if (*l == END_OF_INSN)
4943 {
4944 if (paren_not_balanced)
4945 {
4946 if (!intel_syntax)
4947 as_bad (_("unbalanced parenthesis in operand %d."),
4948 i.operands + 1);
4949 else
4950 as_bad (_("unbalanced brackets in operand %d."),
4951 i.operands + 1);
4952 return NULL;
4953 }
4954 else
4955 break; /* we are done */
4956 }
d02603dc 4957 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4958 {
4959 as_bad (_("invalid character %s in operand %d"),
4960 output_invalid (*l),
4961 i.operands + 1);
4962 return NULL;
4963 }
4964 if (!intel_syntax)
4965 {
4966 if (*l == '(')
4967 ++paren_not_balanced;
4968 if (*l == ')')
4969 --paren_not_balanced;
4970 }
4971 else
4972 {
4973 if (*l == '[')
4974 ++paren_not_balanced;
4975 if (*l == ']')
4976 --paren_not_balanced;
4977 }
4978 l++;
4979 }
4980 if (l != token_start)
4981 { /* Yes, we've read in another operand. */
4982 unsigned int operand_ok;
4983 this_operand = i.operands++;
4984 if (i.operands > MAX_OPERANDS)
4985 {
4986 as_bad (_("spurious operands; (%d operands/instruction max)"),
4987 MAX_OPERANDS);
4988 return NULL;
4989 }
9d46ce34 4990 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4991 /* Now parse operand adding info to 'i' as we go along. */
4992 END_STRING_AND_SAVE (l);
4993
1286ab78
L
4994 if (i.mem_operands > 1)
4995 {
4996 as_bad (_("too many memory references for `%s'"),
4997 mnemonic);
4998 return 0;
4999 }
5000
29b0f896
AM
5001 if (intel_syntax)
5002 operand_ok =
5003 i386_intel_operand (token_start,
5004 intel_float_operand (mnemonic));
5005 else
a7619375 5006 operand_ok = i386_att_operand (token_start);
29b0f896
AM
5007
5008 RESTORE_END_STRING (l);
5009 if (!operand_ok)
5010 return NULL;
5011 }
5012 else
5013 {
5014 if (expecting_operand)
5015 {
5016 expecting_operand_after_comma:
5017 as_bad (_("expecting operand after ','; got nothing"));
5018 return NULL;
5019 }
5020 if (*l == ',')
5021 {
5022 as_bad (_("expecting operand before ','; got nothing"));
5023 return NULL;
5024 }
5025 }
7f3f1ea2 5026
29b0f896
AM
5027 /* Now *l must be either ',' or END_OF_INSN. */
5028 if (*l == ',')
5029 {
5030 if (*++l == END_OF_INSN)
5031 {
5032 /* Just skip it, if it's \n complain. */
5033 goto expecting_operand_after_comma;
5034 }
5035 expecting_operand = 1;
5036 }
5037 }
5038 return l;
5039}
7f3f1ea2 5040
050dfa73 5041static void
4d456e3d 5042swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
5043{
5044 union i386_op temp_op;
40fb9820 5045 i386_operand_type temp_type;
c48dadc9 5046 unsigned int temp_flags;
050dfa73 5047 enum bfd_reloc_code_real temp_reloc;
4eed87de 5048
050dfa73
MM
5049 temp_type = i.types[xchg2];
5050 i.types[xchg2] = i.types[xchg1];
5051 i.types[xchg1] = temp_type;
c48dadc9
JB
5052
5053 temp_flags = i.flags[xchg2];
5054 i.flags[xchg2] = i.flags[xchg1];
5055 i.flags[xchg1] = temp_flags;
5056
050dfa73
MM
5057 temp_op = i.op[xchg2];
5058 i.op[xchg2] = i.op[xchg1];
5059 i.op[xchg1] = temp_op;
c48dadc9 5060
050dfa73
MM
5061 temp_reloc = i.reloc[xchg2];
5062 i.reloc[xchg2] = i.reloc[xchg1];
5063 i.reloc[xchg1] = temp_reloc;
43234a1e
L
5064
5065 if (i.mask)
5066 {
5067 if (i.mask->operand == xchg1)
5068 i.mask->operand = xchg2;
5069 else if (i.mask->operand == xchg2)
5070 i.mask->operand = xchg1;
5071 }
5072 if (i.broadcast)
5073 {
5074 if (i.broadcast->operand == xchg1)
5075 i.broadcast->operand = xchg2;
5076 else if (i.broadcast->operand == xchg2)
5077 i.broadcast->operand = xchg1;
5078 }
5079 if (i.rounding)
5080 {
5081 if (i.rounding->operand == xchg1)
5082 i.rounding->operand = xchg2;
5083 else if (i.rounding->operand == xchg2)
5084 i.rounding->operand = xchg1;
5085 }
050dfa73
MM
5086}
5087
29b0f896 5088static void
e3bb37b5 5089swap_operands (void)
29b0f896 5090{
b7c61d9a 5091 switch (i.operands)
050dfa73 5092 {
c0f3af97 5093 case 5:
b7c61d9a 5094 case 4:
4d456e3d 5095 swap_2_operands (1, i.operands - 2);
1a0670f3 5096 /* Fall through. */
b7c61d9a
L
5097 case 3:
5098 case 2:
4d456e3d 5099 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5100 break;
5101 default:
5102 abort ();
29b0f896 5103 }
29b0f896
AM
5104
5105 if (i.mem_operands == 2)
5106 {
5107 const seg_entry *temp_seg;
5108 temp_seg = i.seg[0];
5109 i.seg[0] = i.seg[1];
5110 i.seg[1] = temp_seg;
5111 }
5112}
252b5132 5113
29b0f896
AM
5114/* Try to ensure constant immediates are represented in the smallest
5115 opcode possible. */
5116static void
e3bb37b5 5117optimize_imm (void)
29b0f896
AM
5118{
5119 char guess_suffix = 0;
5120 int op;
252b5132 5121
29b0f896
AM
5122 if (i.suffix)
5123 guess_suffix = i.suffix;
5124 else if (i.reg_operands)
5125 {
5126 /* Figure out a suffix from the last register operand specified.
75e5731b
JB
5127 We can't do this properly yet, i.e. excluding special register
5128 instances, but the following works for instructions with
5129 immediates. In any case, we can't set i.suffix yet. */
29b0f896 5130 for (op = i.operands; --op >= 0;)
bab6aec1
JB
5131 if (i.types[op].bitfield.class != Reg)
5132 continue;
5133 else if (i.types[op].bitfield.byte)
7ab9ffdd 5134 {
40fb9820
L
5135 guess_suffix = BYTE_MNEM_SUFFIX;
5136 break;
5137 }
bab6aec1 5138 else if (i.types[op].bitfield.word)
252b5132 5139 {
40fb9820
L
5140 guess_suffix = WORD_MNEM_SUFFIX;
5141 break;
5142 }
bab6aec1 5143 else if (i.types[op].bitfield.dword)
40fb9820
L
5144 {
5145 guess_suffix = LONG_MNEM_SUFFIX;
5146 break;
5147 }
bab6aec1 5148 else if (i.types[op].bitfield.qword)
40fb9820
L
5149 {
5150 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5151 break;
252b5132 5152 }
29b0f896
AM
5153 }
5154 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5155 guess_suffix = WORD_MNEM_SUFFIX;
5156
5157 for (op = i.operands; --op >= 0;)
40fb9820 5158 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5159 {
5160 switch (i.op[op].imms->X_op)
252b5132 5161 {
29b0f896
AM
5162 case O_constant:
5163 /* If a suffix is given, this operand may be shortened. */
5164 switch (guess_suffix)
252b5132 5165 {
29b0f896 5166 case LONG_MNEM_SUFFIX:
40fb9820
L
5167 i.types[op].bitfield.imm32 = 1;
5168 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5169 break;
5170 case WORD_MNEM_SUFFIX:
40fb9820
L
5171 i.types[op].bitfield.imm16 = 1;
5172 i.types[op].bitfield.imm32 = 1;
5173 i.types[op].bitfield.imm32s = 1;
5174 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5175 break;
5176 case BYTE_MNEM_SUFFIX:
40fb9820
L
5177 i.types[op].bitfield.imm8 = 1;
5178 i.types[op].bitfield.imm8s = 1;
5179 i.types[op].bitfield.imm16 = 1;
5180 i.types[op].bitfield.imm32 = 1;
5181 i.types[op].bitfield.imm32s = 1;
5182 i.types[op].bitfield.imm64 = 1;
29b0f896 5183 break;
252b5132 5184 }
252b5132 5185
29b0f896
AM
5186 /* If this operand is at most 16 bits, convert it
5187 to a signed 16 bit number before trying to see
5188 whether it will fit in an even smaller size.
5189 This allows a 16-bit operand such as $0xffe0 to
5190 be recognised as within Imm8S range. */
40fb9820 5191 if ((i.types[op].bitfield.imm16)
29b0f896 5192 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5193 {
29b0f896
AM
5194 i.op[op].imms->X_add_number =
5195 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5196 }
a28def75
L
5197#ifdef BFD64
5198 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5199 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5200 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5201 == 0))
5202 {
5203 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5204 ^ ((offsetT) 1 << 31))
5205 - ((offsetT) 1 << 31));
5206 }
a28def75 5207#endif
40fb9820 5208 i.types[op]
c6fb90c8
L
5209 = operand_type_or (i.types[op],
5210 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5211
29b0f896
AM
5212 /* We must avoid matching of Imm32 templates when 64bit
5213 only immediate is available. */
5214 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5215 i.types[op].bitfield.imm32 = 0;
29b0f896 5216 break;
252b5132 5217
29b0f896
AM
5218 case O_absent:
5219 case O_register:
5220 abort ();
5221
5222 /* Symbols and expressions. */
5223 default:
9cd96992
JB
5224 /* Convert symbolic operand to proper sizes for matching, but don't
5225 prevent matching a set of insns that only supports sizes other
5226 than those matching the insn suffix. */
5227 {
40fb9820 5228 i386_operand_type mask, allowed;
d3ce72d0 5229 const insn_template *t;
9cd96992 5230
0dfbf9d7
L
5231 operand_type_set (&mask, 0);
5232 operand_type_set (&allowed, 0);
40fb9820 5233
4eed87de
AM
5234 for (t = current_templates->start;
5235 t < current_templates->end;
5236 ++t)
bab6aec1
JB
5237 {
5238 allowed = operand_type_or (allowed, t->operand_types[op]);
5239 allowed = operand_type_and (allowed, anyimm);
5240 }
9cd96992
JB
5241 switch (guess_suffix)
5242 {
5243 case QWORD_MNEM_SUFFIX:
40fb9820
L
5244 mask.bitfield.imm64 = 1;
5245 mask.bitfield.imm32s = 1;
9cd96992
JB
5246 break;
5247 case LONG_MNEM_SUFFIX:
40fb9820 5248 mask.bitfield.imm32 = 1;
9cd96992
JB
5249 break;
5250 case WORD_MNEM_SUFFIX:
40fb9820 5251 mask.bitfield.imm16 = 1;
9cd96992
JB
5252 break;
5253 case BYTE_MNEM_SUFFIX:
40fb9820 5254 mask.bitfield.imm8 = 1;
9cd96992
JB
5255 break;
5256 default:
9cd96992
JB
5257 break;
5258 }
c6fb90c8 5259 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5260 if (!operand_type_all_zero (&allowed))
c6fb90c8 5261 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5262 }
29b0f896 5263 break;
252b5132 5264 }
29b0f896
AM
5265 }
5266}
47926f60 5267
29b0f896
AM
5268/* Try to use the smallest displacement type too. */
5269static void
e3bb37b5 5270optimize_disp (void)
29b0f896
AM
5271{
5272 int op;
3e73aa7c 5273
29b0f896 5274 for (op = i.operands; --op >= 0;)
40fb9820 5275 if (operand_type_check (i.types[op], disp))
252b5132 5276 {
b300c311 5277 if (i.op[op].disps->X_op == O_constant)
252b5132 5278 {
91d6fa6a 5279 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5280
40fb9820 5281 if (i.types[op].bitfield.disp16
91d6fa6a 5282 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5283 {
5284 /* If this operand is at most 16 bits, convert
5285 to a signed 16 bit number and don't use 64bit
5286 displacement. */
91d6fa6a 5287 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5288 i.types[op].bitfield.disp64 = 0;
b300c311 5289 }
a28def75
L
5290#ifdef BFD64
5291 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5292 if (i.types[op].bitfield.disp32
91d6fa6a 5293 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5294 {
5295 /* If this operand is at most 32 bits, convert
5296 to a signed 32 bit number and don't use 64bit
5297 displacement. */
91d6fa6a
NC
5298 op_disp &= (((offsetT) 2 << 31) - 1);
5299 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5300 i.types[op].bitfield.disp64 = 0;
b300c311 5301 }
a28def75 5302#endif
91d6fa6a 5303 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5304 {
40fb9820
L
5305 i.types[op].bitfield.disp8 = 0;
5306 i.types[op].bitfield.disp16 = 0;
5307 i.types[op].bitfield.disp32 = 0;
5308 i.types[op].bitfield.disp32s = 0;
5309 i.types[op].bitfield.disp64 = 0;
b300c311
L
5310 i.op[op].disps = 0;
5311 i.disp_operands--;
5312 }
5313 else if (flag_code == CODE_64BIT)
5314 {
91d6fa6a 5315 if (fits_in_signed_long (op_disp))
28a9d8f5 5316 {
40fb9820
L
5317 i.types[op].bitfield.disp64 = 0;
5318 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5319 }
0e1147d9 5320 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5321 && fits_in_unsigned_long (op_disp))
40fb9820 5322 i.types[op].bitfield.disp32 = 1;
b300c311 5323 }
40fb9820
L
5324 if ((i.types[op].bitfield.disp32
5325 || i.types[op].bitfield.disp32s
5326 || i.types[op].bitfield.disp16)
b5014f7a 5327 && fits_in_disp8 (op_disp))
40fb9820 5328 i.types[op].bitfield.disp8 = 1;
252b5132 5329 }
67a4f2b7
AO
5330 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5331 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5332 {
5333 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5334 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5335 i.types[op].bitfield.disp8 = 0;
5336 i.types[op].bitfield.disp16 = 0;
5337 i.types[op].bitfield.disp32 = 0;
5338 i.types[op].bitfield.disp32s = 0;
5339 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5340 }
5341 else
b300c311 5342 /* We only support 64bit displacement on constants. */
40fb9820 5343 i.types[op].bitfield.disp64 = 0;
252b5132 5344 }
29b0f896
AM
5345}
5346
4a1b91ea
L
5347/* Return 1 if there is a match in broadcast bytes between operand
5348 GIVEN and instruction template T. */
5349
5350static INLINE int
5351match_broadcast_size (const insn_template *t, unsigned int given)
5352{
5353 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5354 && i.types[given].bitfield.byte)
5355 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5356 && i.types[given].bitfield.word)
5357 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5358 && i.types[given].bitfield.dword)
5359 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5360 && i.types[given].bitfield.qword));
5361}
5362
6c30d220
L
5363/* Check if operands are valid for the instruction. */
5364
5365static int
5366check_VecOperands (const insn_template *t)
5367{
43234a1e 5368 unsigned int op;
e2195274
JB
5369 i386_cpu_flags cpu;
5370 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5371
5372 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5373 any one operand are implicity requiring AVX512VL support if the actual
5374 operand size is YMMword or XMMword. Since this function runs after
5375 template matching, there's no need to check for YMMword/XMMword in
5376 the template. */
5377 cpu = cpu_flags_and (t->cpu_flags, avx512);
5378 if (!cpu_flags_all_zero (&cpu)
5379 && !t->cpu_flags.bitfield.cpuavx512vl
5380 && !cpu_arch_flags.bitfield.cpuavx512vl)
5381 {
5382 for (op = 0; op < t->operands; ++op)
5383 {
5384 if (t->operand_types[op].bitfield.zmmword
5385 && (i.types[op].bitfield.ymmword
5386 || i.types[op].bitfield.xmmword))
5387 {
5388 i.error = unsupported;
5389 return 1;
5390 }
5391 }
5392 }
43234a1e 5393
6c30d220
L
5394 /* Without VSIB byte, we can't have a vector register for index. */
5395 if (!t->opcode_modifier.vecsib
5396 && i.index_reg
1b54b8d7
JB
5397 && (i.index_reg->reg_type.bitfield.xmmword
5398 || i.index_reg->reg_type.bitfield.ymmword
5399 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5400 {
5401 i.error = unsupported_vector_index_register;
5402 return 1;
5403 }
5404
ad8ecc81
MZ
5405 /* Check if default mask is allowed. */
5406 if (t->opcode_modifier.nodefmask
5407 && (!i.mask || i.mask->mask->reg_num == 0))
5408 {
5409 i.error = no_default_mask;
5410 return 1;
5411 }
5412
7bab8ab5
JB
5413 /* For VSIB byte, we need a vector register for index, and all vector
5414 registers must be distinct. */
5415 if (t->opcode_modifier.vecsib)
5416 {
5417 if (!i.index_reg
6c30d220 5418 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5419 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5420 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5421 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5422 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5423 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5424 {
5425 i.error = invalid_vsib_address;
5426 return 1;
5427 }
5428
43234a1e
L
5429 gas_assert (i.reg_operands == 2 || i.mask);
5430 if (i.reg_operands == 2 && !i.mask)
5431 {
3528c362 5432 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
5433 gas_assert (i.types[0].bitfield.xmmword
5434 || i.types[0].bitfield.ymmword);
3528c362 5435 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
5436 gas_assert (i.types[2].bitfield.xmmword
5437 || i.types[2].bitfield.ymmword);
43234a1e
L
5438 if (operand_check == check_none)
5439 return 0;
5440 if (register_number (i.op[0].regs)
5441 != register_number (i.index_reg)
5442 && register_number (i.op[2].regs)
5443 != register_number (i.index_reg)
5444 && register_number (i.op[0].regs)
5445 != register_number (i.op[2].regs))
5446 return 0;
5447 if (operand_check == check_error)
5448 {
5449 i.error = invalid_vector_register_set;
5450 return 1;
5451 }
5452 as_warn (_("mask, index, and destination registers should be distinct"));
5453 }
8444f82a
MZ
5454 else if (i.reg_operands == 1 && i.mask)
5455 {
3528c362 5456 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
5457 && (i.types[1].bitfield.xmmword
5458 || i.types[1].bitfield.ymmword
5459 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5460 && (register_number (i.op[1].regs)
5461 == register_number (i.index_reg)))
5462 {
5463 if (operand_check == check_error)
5464 {
5465 i.error = invalid_vector_register_set;
5466 return 1;
5467 }
5468 if (operand_check != check_none)
5469 as_warn (_("index and destination registers should be distinct"));
5470 }
5471 }
43234a1e 5472 }
7bab8ab5 5473
43234a1e
L
5474 /* Check if broadcast is supported by the instruction and is applied
5475 to the memory operand. */
5476 if (i.broadcast)
5477 {
8e6e0792 5478 i386_operand_type type, overlap;
43234a1e
L
5479
5480 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5481 and its broadcast bytes match the memory operand. */
32546502 5482 op = i.broadcast->operand;
8e6e0792 5483 if (!t->opcode_modifier.broadcast
c48dadc9 5484 || !(i.flags[op] & Operand_Mem)
c39e5b26 5485 || (!i.types[op].bitfield.unspecified
4a1b91ea 5486 && !match_broadcast_size (t, op)))
43234a1e
L
5487 {
5488 bad_broadcast:
5489 i.error = unsupported_broadcast;
5490 return 1;
5491 }
8e6e0792 5492
4a1b91ea
L
5493 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5494 * i.broadcast->type);
8e6e0792 5495 operand_type_set (&type, 0);
4a1b91ea 5496 switch (i.broadcast->bytes)
8e6e0792 5497 {
4a1b91ea
L
5498 case 2:
5499 type.bitfield.word = 1;
5500 break;
5501 case 4:
5502 type.bitfield.dword = 1;
5503 break;
8e6e0792
JB
5504 case 8:
5505 type.bitfield.qword = 1;
5506 break;
5507 case 16:
5508 type.bitfield.xmmword = 1;
5509 break;
5510 case 32:
5511 type.bitfield.ymmword = 1;
5512 break;
5513 case 64:
5514 type.bitfield.zmmword = 1;
5515 break;
5516 default:
5517 goto bad_broadcast;
5518 }
5519
5520 overlap = operand_type_and (type, t->operand_types[op]);
5521 if (operand_type_all_zero (&overlap))
5522 goto bad_broadcast;
5523
5524 if (t->opcode_modifier.checkregsize)
5525 {
5526 unsigned int j;
5527
e2195274 5528 type.bitfield.baseindex = 1;
8e6e0792
JB
5529 for (j = 0; j < i.operands; ++j)
5530 {
5531 if (j != op
5532 && !operand_type_register_match(i.types[j],
5533 t->operand_types[j],
5534 type,
5535 t->operand_types[op]))
5536 goto bad_broadcast;
5537 }
5538 }
43234a1e
L
5539 }
5540 /* If broadcast is supported in this instruction, we need to check if
5541 operand of one-element size isn't specified without broadcast. */
5542 else if (t->opcode_modifier.broadcast && i.mem_operands)
5543 {
5544 /* Find memory operand. */
5545 for (op = 0; op < i.operands; op++)
8dc0818e 5546 if (i.flags[op] & Operand_Mem)
43234a1e
L
5547 break;
5548 gas_assert (op < i.operands);
5549 /* Check size of the memory operand. */
4a1b91ea 5550 if (match_broadcast_size (t, op))
43234a1e
L
5551 {
5552 i.error = broadcast_needed;
5553 return 1;
5554 }
5555 }
c39e5b26
JB
5556 else
5557 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5558
5559 /* Check if requested masking is supported. */
ae2387fe 5560 if (i.mask)
43234a1e 5561 {
ae2387fe
JB
5562 switch (t->opcode_modifier.masking)
5563 {
5564 case BOTH_MASKING:
5565 break;
5566 case MERGING_MASKING:
5567 if (i.mask->zeroing)
5568 {
5569 case 0:
5570 i.error = unsupported_masking;
5571 return 1;
5572 }
5573 break;
5574 case DYNAMIC_MASKING:
5575 /* Memory destinations allow only merging masking. */
5576 if (i.mask->zeroing && i.mem_operands)
5577 {
5578 /* Find memory operand. */
5579 for (op = 0; op < i.operands; op++)
c48dadc9 5580 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5581 break;
5582 gas_assert (op < i.operands);
5583 if (op == i.operands - 1)
5584 {
5585 i.error = unsupported_masking;
5586 return 1;
5587 }
5588 }
5589 break;
5590 default:
5591 abort ();
5592 }
43234a1e
L
5593 }
5594
5595 /* Check if masking is applied to dest operand. */
5596 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5597 {
5598 i.error = mask_not_on_destination;
5599 return 1;
5600 }
5601
43234a1e
L
5602 /* Check RC/SAE. */
5603 if (i.rounding)
5604 {
a80195f1
JB
5605 if (!t->opcode_modifier.sae
5606 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5607 {
5608 i.error = unsupported_rc_sae;
5609 return 1;
5610 }
5611 /* If the instruction has several immediate operands and one of
5612 them is rounding, the rounding operand should be the last
5613 immediate operand. */
5614 if (i.imm_operands > 1
5615 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5616 {
43234a1e 5617 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5618 return 1;
5619 }
6c30d220
L
5620 }
5621
43234a1e 5622 /* Check vector Disp8 operand. */
b5014f7a
JB
5623 if (t->opcode_modifier.disp8memshift
5624 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5625 {
5626 if (i.broadcast)
4a1b91ea 5627 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5628 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5629 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5630 else
5631 {
5632 const i386_operand_type *type = NULL;
5633
5634 i.memshift = 0;
5635 for (op = 0; op < i.operands; op++)
8dc0818e 5636 if (i.flags[op] & Operand_Mem)
7091c612 5637 {
4174bfff
JB
5638 if (t->opcode_modifier.evex == EVEXLIG)
5639 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5640 else if (t->operand_types[op].bitfield.xmmword
5641 + t->operand_types[op].bitfield.ymmword
5642 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5643 type = &t->operand_types[op];
5644 else if (!i.types[op].bitfield.unspecified)
5645 type = &i.types[op];
5646 }
3528c362 5647 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 5648 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5649 {
5650 if (i.types[op].bitfield.zmmword)
5651 i.memshift = 6;
5652 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5653 i.memshift = 5;
5654 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5655 i.memshift = 4;
5656 }
5657
5658 if (type)
5659 {
5660 if (type->bitfield.zmmword)
5661 i.memshift = 6;
5662 else if (type->bitfield.ymmword)
5663 i.memshift = 5;
5664 else if (type->bitfield.xmmword)
5665 i.memshift = 4;
5666 }
5667
5668 /* For the check in fits_in_disp8(). */
5669 if (i.memshift == 0)
5670 i.memshift = -1;
5671 }
43234a1e
L
5672
5673 for (op = 0; op < i.operands; op++)
5674 if (operand_type_check (i.types[op], disp)
5675 && i.op[op].disps->X_op == O_constant)
5676 {
b5014f7a 5677 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5678 {
b5014f7a
JB
5679 i.types[op].bitfield.disp8 = 1;
5680 return 0;
43234a1e 5681 }
b5014f7a 5682 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5683 }
5684 }
b5014f7a
JB
5685
5686 i.memshift = 0;
43234a1e 5687
6c30d220
L
5688 return 0;
5689}
5690
43f3e2ee 5691/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5692 operand types. */
5693
5694static int
5695VEX_check_operands (const insn_template *t)
5696{
86fa6981 5697 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5698 {
86fa6981 5699 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5700 if (!is_evex_encoding (t))
86fa6981
L
5701 {
5702 i.error = unsupported;
5703 return 1;
5704 }
5705 return 0;
43234a1e
L
5706 }
5707
a683cc34 5708 if (!t->opcode_modifier.vex)
86fa6981
L
5709 {
5710 /* This instruction template doesn't have VEX prefix. */
5711 if (i.vec_encoding != vex_encoding_default)
5712 {
5713 i.error = unsupported;
5714 return 1;
5715 }
5716 return 0;
5717 }
a683cc34 5718
9d3bf266
JB
5719 /* Check the special Imm4 cases; must be the first operand. */
5720 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5721 {
5722 if (i.op[0].imms->X_op != O_constant
5723 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5724 {
a65babc9 5725 i.error = bad_imm4;
891edac4
L
5726 return 1;
5727 }
a683cc34 5728
9d3bf266
JB
5729 /* Turn off Imm<N> so that update_imm won't complain. */
5730 operand_type_set (&i.types[0], 0);
a683cc34
SP
5731 }
5732
5733 return 0;
5734}
5735
d3ce72d0 5736static const insn_template *
83b16ac6 5737match_template (char mnem_suffix)
29b0f896
AM
5738{
5739 /* Points to template once we've found it. */
d3ce72d0 5740 const insn_template *t;
40fb9820 5741 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5742 i386_operand_type overlap4;
29b0f896 5743 unsigned int found_reverse_match;
dc2be329 5744 i386_opcode_modifier suffix_check;
40fb9820 5745 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5746 int addr_prefix_disp;
a5c311ca 5747 unsigned int j;
3ac21baa 5748 unsigned int found_cpu_match, size_match;
45664ddb 5749 unsigned int check_register;
5614d22c 5750 enum i386_error specific_error = 0;
29b0f896 5751
c0f3af97
L
5752#if MAX_OPERANDS != 5
5753# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5754#endif
5755
29b0f896 5756 found_reverse_match = 0;
539e75ad 5757 addr_prefix_disp = -1;
40fb9820 5758
dc2be329 5759 /* Prepare for mnemonic suffix check. */
40fb9820 5760 memset (&suffix_check, 0, sizeof (suffix_check));
dc2be329
L
5761 switch (mnem_suffix)
5762 {
5763 case BYTE_MNEM_SUFFIX:
5764 suffix_check.no_bsuf = 1;
5765 break;
5766 case WORD_MNEM_SUFFIX:
5767 suffix_check.no_wsuf = 1;
5768 break;
5769 case SHORT_MNEM_SUFFIX:
5770 suffix_check.no_ssuf = 1;
5771 break;
5772 case LONG_MNEM_SUFFIX:
5773 suffix_check.no_lsuf = 1;
5774 break;
5775 case QWORD_MNEM_SUFFIX:
5776 suffix_check.no_qsuf = 1;
5777 break;
5778 default:
5779 /* NB: In Intel syntax, normally we can check for memory operand
5780 size when there is no mnemonic suffix. But jmp and call have
5781 2 different encodings with Dword memory operand size, one with
5782 No_ldSuf and the other without. i.suffix is set to
5783 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5784 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5785 suffix_check.no_ldsuf = 1;
83b16ac6
JB
5786 }
5787
01559ecc
L
5788 /* Must have right number of operands. */
5789 i.error = number_of_operands_mismatch;
5790
45aa61fe 5791 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5792 {
539e75ad 5793 addr_prefix_disp = -1;
dbbc8b7e 5794 found_reverse_match = 0;
539e75ad 5795
29b0f896
AM
5796 if (i.operands != t->operands)
5797 continue;
5798
50aecf8c 5799 /* Check processor support. */
a65babc9 5800 i.error = unsupported;
c0f3af97
L
5801 found_cpu_match = (cpu_flags_match (t)
5802 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5803 if (!found_cpu_match)
5804 continue;
5805
e1d4d893 5806 /* Check AT&T mnemonic. */
a65babc9 5807 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5808 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5809 continue;
5810
e92bae62 5811 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5812 i.error = unsupported_syntax;
5c07affc 5813 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5814 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5815 || (intel64 && t->opcode_modifier.amd64)
5816 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5817 continue;
5818
dc2be329 5819 /* Check the suffix. */
a65babc9 5820 i.error = invalid_instruction_suffix;
dc2be329
L
5821 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5822 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5823 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5824 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5825 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5826 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
83b16ac6 5827 continue;
29b0f896 5828
3ac21baa
JB
5829 size_match = operand_size_match (t);
5830 if (!size_match)
7d5e4556 5831 continue;
539e75ad 5832
6f2f06be
JB
5833 /* This is intentionally not
5834
0cfa3eb3 5835 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6f2f06be
JB
5836
5837 as the case of a missing * on the operand is accepted (perhaps with
5838 a warning, issued further down). */
0cfa3eb3 5839 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6f2f06be
JB
5840 {
5841 i.error = operand_type_mismatch;
5842 continue;
5843 }
5844
5c07affc
L
5845 for (j = 0; j < MAX_OPERANDS; j++)
5846 operand_types[j] = t->operand_types[j];
5847
45aa61fe
AM
5848 /* In general, don't allow 64-bit operands in 32-bit mode. */
5849 if (i.suffix == QWORD_MNEM_SUFFIX
5850 && flag_code != CODE_64BIT
5851 && (intel_syntax
40fb9820 5852 ? (!t->opcode_modifier.ignoresize
625cbd7a 5853 && !t->opcode_modifier.broadcast
45aa61fe
AM
5854 && !intel_float_operand (t->name))
5855 : intel_float_operand (t->name) != 2)
3528c362
JB
5856 && ((operand_types[0].bitfield.class != RegMMX
5857 && operand_types[0].bitfield.class != RegSIMD)
5858 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5859 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
45aa61fe
AM
5860 && (t->base_opcode != 0x0fc7
5861 || t->extension_opcode != 1 /* cmpxchg8b */))
5862 continue;
5863
192dc9c6
JB
5864 /* In general, don't allow 32-bit operands on pre-386. */
5865 else if (i.suffix == LONG_MNEM_SUFFIX
5866 && !cpu_arch_flags.bitfield.cpui386
5867 && (intel_syntax
5868 ? (!t->opcode_modifier.ignoresize
5869 && !intel_float_operand (t->name))
5870 : intel_float_operand (t->name) != 2)
3528c362
JB
5871 && ((operand_types[0].bitfield.class != RegMMX
5872 && operand_types[0].bitfield.class != RegSIMD)
5873 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5874 && operand_types[t->operands > 1].bitfield.class
5875 != RegSIMD)))
192dc9c6
JB
5876 continue;
5877
29b0f896 5878 /* Do not verify operands when there are none. */
50aecf8c 5879 else
29b0f896 5880 {
c6fb90c8 5881 if (!t->operands)
2dbab7d5
L
5882 /* We've found a match; break out of loop. */
5883 break;
29b0f896 5884 }
252b5132 5885
48bcea9f
JB
5886 if (!t->opcode_modifier.jump
5887 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5888 {
5889 /* There should be only one Disp operand. */
5890 for (j = 0; j < MAX_OPERANDS; j++)
5891 if (operand_type_check (operand_types[j], disp))
539e75ad 5892 break;
48bcea9f
JB
5893 if (j < MAX_OPERANDS)
5894 {
5895 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5896
5897 addr_prefix_disp = j;
5898
5899 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5900 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5901 switch (flag_code)
40fb9820 5902 {
48bcea9f
JB
5903 case CODE_16BIT:
5904 override = !override;
5905 /* Fall through. */
5906 case CODE_32BIT:
5907 if (operand_types[j].bitfield.disp32
5908 && operand_types[j].bitfield.disp16)
40fb9820 5909 {
48bcea9f
JB
5910 operand_types[j].bitfield.disp16 = override;
5911 operand_types[j].bitfield.disp32 = !override;
40fb9820 5912 }
48bcea9f
JB
5913 operand_types[j].bitfield.disp32s = 0;
5914 operand_types[j].bitfield.disp64 = 0;
5915 break;
5916
5917 case CODE_64BIT:
5918 if (operand_types[j].bitfield.disp32s
5919 || operand_types[j].bitfield.disp64)
40fb9820 5920 {
48bcea9f
JB
5921 operand_types[j].bitfield.disp64 &= !override;
5922 operand_types[j].bitfield.disp32s &= !override;
5923 operand_types[j].bitfield.disp32 = override;
40fb9820 5924 }
48bcea9f
JB
5925 operand_types[j].bitfield.disp16 = 0;
5926 break;
40fb9820 5927 }
539e75ad 5928 }
48bcea9f 5929 }
539e75ad 5930
02a86693
L
5931 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5932 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5933 continue;
5934
56ffb741 5935 /* We check register size if needed. */
e2195274
JB
5936 if (t->opcode_modifier.checkregsize)
5937 {
5938 check_register = (1 << t->operands) - 1;
5939 if (i.broadcast)
5940 check_register &= ~(1 << i.broadcast->operand);
5941 }
5942 else
5943 check_register = 0;
5944
c6fb90c8 5945 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5946 switch (t->operands)
5947 {
5948 case 1:
40fb9820 5949 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5950 continue;
5951 break;
5952 case 2:
33eaf5de 5953 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5954 only in 32bit mode and we can use opcode 0x90. In 64bit
5955 mode, we can't use 0x90 for xchg %eax, %eax since it should
5956 zero-extend %eax to %rax. */
5957 if (flag_code == CODE_64BIT
5958 && t->base_opcode == 0x90
75e5731b
JB
5959 && i.types[0].bitfield.instance == Accum
5960 && i.types[0].bitfield.dword
5961 && i.types[1].bitfield.instance == Accum
5962 && i.types[1].bitfield.dword)
8b38ad71 5963 continue;
1212781b
JB
5964 /* xrelease mov %eax, <disp> is another special case. It must not
5965 match the accumulator-only encoding of mov. */
5966 if (flag_code != CODE_64BIT
5967 && i.hle_prefix
5968 && t->base_opcode == 0xa0
75e5731b 5969 && i.types[0].bitfield.instance == Accum
8dc0818e 5970 && (i.flags[1] & Operand_Mem))
1212781b 5971 continue;
f5eb1d70
JB
5972 /* Fall through. */
5973
5974 case 3:
3ac21baa
JB
5975 if (!(size_match & MATCH_STRAIGHT))
5976 goto check_reverse;
64c49ab3
JB
5977 /* Reverse direction of operands if swapping is possible in the first
5978 place (operands need to be symmetric) and
5979 - the load form is requested, and the template is a store form,
5980 - the store form is requested, and the template is a load form,
5981 - the non-default (swapped) form is requested. */
5982 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5983 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5984 && !operand_type_all_zero (&overlap1))
5985 switch (i.dir_encoding)
5986 {
5987 case dir_encoding_load:
5988 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5989 || t->opcode_modifier.regmem)
64c49ab3
JB
5990 goto check_reverse;
5991 break;
5992
5993 case dir_encoding_store:
5994 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5995 && !t->opcode_modifier.regmem)
64c49ab3
JB
5996 goto check_reverse;
5997 break;
5998
5999 case dir_encoding_swap:
6000 goto check_reverse;
6001
6002 case dir_encoding_default:
6003 break;
6004 }
86fa6981 6005 /* If we want store form, we skip the current load. */
64c49ab3
JB
6006 if ((i.dir_encoding == dir_encoding_store
6007 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
6008 && i.mem_operands == 0
6009 && t->opcode_modifier.load)
fa99fab2 6010 continue;
1a0670f3 6011 /* Fall through. */
f48ff2ae 6012 case 4:
c0f3af97 6013 case 5:
c6fb90c8 6014 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
6015 if (!operand_type_match (overlap0, i.types[0])
6016 || !operand_type_match (overlap1, i.types[1])
e2195274 6017 || ((check_register & 3) == 3
dc821c5f 6018 && !operand_type_register_match (i.types[0],
40fb9820 6019 operand_types[0],
dc821c5f 6020 i.types[1],
40fb9820 6021 operand_types[1])))
29b0f896
AM
6022 {
6023 /* Check if other direction is valid ... */
38e314eb 6024 if (!t->opcode_modifier.d)
29b0f896
AM
6025 continue;
6026
b6169b20 6027check_reverse:
3ac21baa
JB
6028 if (!(size_match & MATCH_REVERSE))
6029 continue;
29b0f896 6030 /* Try reversing direction of operands. */
f5eb1d70
JB
6031 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6032 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 6033 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 6034 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 6035 || (check_register
dc821c5f 6036 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
6037 operand_types[i.operands - 1],
6038 i.types[i.operands - 1],
45664ddb 6039 operand_types[0])))
29b0f896
AM
6040 {
6041 /* Does not match either direction. */
6042 continue;
6043 }
38e314eb 6044 /* found_reverse_match holds which of D or FloatR
29b0f896 6045 we've found. */
38e314eb
JB
6046 if (!t->opcode_modifier.d)
6047 found_reverse_match = 0;
6048 else if (operand_types[0].bitfield.tbyte)
8a2ed489 6049 found_reverse_match = Opcode_FloatD;
dbbc8b7e 6050 else if (operand_types[0].bitfield.xmmword
f5eb1d70 6051 || operand_types[i.operands - 1].bitfield.xmmword
3528c362
JB
6052 || operand_types[0].bitfield.class == RegMMX
6053 || operand_types[i.operands - 1].bitfield.class == RegMMX
dbbc8b7e
JB
6054 || is_any_vex_encoding(t))
6055 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6056 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 6057 else
38e314eb 6058 found_reverse_match = Opcode_D;
40fb9820 6059 if (t->opcode_modifier.floatr)
8a2ed489 6060 found_reverse_match |= Opcode_FloatR;
29b0f896 6061 }
f48ff2ae 6062 else
29b0f896 6063 {
f48ff2ae 6064 /* Found a forward 2 operand match here. */
d1cbb4db
L
6065 switch (t->operands)
6066 {
c0f3af97
L
6067 case 5:
6068 overlap4 = operand_type_and (i.types[4],
6069 operand_types[4]);
1a0670f3 6070 /* Fall through. */
d1cbb4db 6071 case 4:
c6fb90c8
L
6072 overlap3 = operand_type_and (i.types[3],
6073 operand_types[3]);
1a0670f3 6074 /* Fall through. */
d1cbb4db 6075 case 3:
c6fb90c8
L
6076 overlap2 = operand_type_and (i.types[2],
6077 operand_types[2]);
d1cbb4db
L
6078 break;
6079 }
29b0f896 6080
f48ff2ae
L
6081 switch (t->operands)
6082 {
c0f3af97
L
6083 case 5:
6084 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6085 || !operand_type_register_match (i.types[3],
c0f3af97 6086 operand_types[3],
c0f3af97
L
6087 i.types[4],
6088 operand_types[4]))
6089 continue;
1a0670f3 6090 /* Fall through. */
f48ff2ae 6091 case 4:
40fb9820 6092 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6093 || ((check_register & 0xa) == 0xa
6094 && !operand_type_register_match (i.types[1],
f7768225
JB
6095 operand_types[1],
6096 i.types[3],
e2195274
JB
6097 operand_types[3]))
6098 || ((check_register & 0xc) == 0xc
6099 && !operand_type_register_match (i.types[2],
6100 operand_types[2],
6101 i.types[3],
6102 operand_types[3])))
f48ff2ae 6103 continue;
1a0670f3 6104 /* Fall through. */
f48ff2ae
L
6105 case 3:
6106 /* Here we make use of the fact that there are no
23e42951 6107 reverse match 3 operand instructions. */
40fb9820 6108 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6109 || ((check_register & 5) == 5
6110 && !operand_type_register_match (i.types[0],
23e42951
JB
6111 operand_types[0],
6112 i.types[2],
e2195274
JB
6113 operand_types[2]))
6114 || ((check_register & 6) == 6
6115 && !operand_type_register_match (i.types[1],
6116 operand_types[1],
6117 i.types[2],
6118 operand_types[2])))
f48ff2ae
L
6119 continue;
6120 break;
6121 }
29b0f896 6122 }
f48ff2ae 6123 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6124 slip through to break. */
6125 }
3629bb00 6126 if (!found_cpu_match)
dbbc8b7e 6127 continue;
c0f3af97 6128
5614d22c
JB
6129 /* Check if vector and VEX operands are valid. */
6130 if (check_VecOperands (t) || VEX_check_operands (t))
6131 {
6132 specific_error = i.error;
6133 continue;
6134 }
a683cc34 6135
29b0f896
AM
6136 /* We've found a match; break out of loop. */
6137 break;
6138 }
6139
6140 if (t == current_templates->end)
6141 {
6142 /* We found no match. */
a65babc9 6143 const char *err_msg;
5614d22c 6144 switch (specific_error ? specific_error : i.error)
a65babc9
L
6145 {
6146 default:
6147 abort ();
86e026a4 6148 case operand_size_mismatch:
a65babc9
L
6149 err_msg = _("operand size mismatch");
6150 break;
6151 case operand_type_mismatch:
6152 err_msg = _("operand type mismatch");
6153 break;
6154 case register_type_mismatch:
6155 err_msg = _("register type mismatch");
6156 break;
6157 case number_of_operands_mismatch:
6158 err_msg = _("number of operands mismatch");
6159 break;
6160 case invalid_instruction_suffix:
6161 err_msg = _("invalid instruction suffix");
6162 break;
6163 case bad_imm4:
4a2608e3 6164 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6165 break;
a65babc9
L
6166 case unsupported_with_intel_mnemonic:
6167 err_msg = _("unsupported with Intel mnemonic");
6168 break;
6169 case unsupported_syntax:
6170 err_msg = _("unsupported syntax");
6171 break;
6172 case unsupported:
35262a23 6173 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6174 current_templates->start->name);
6175 return NULL;
6c30d220
L
6176 case invalid_vsib_address:
6177 err_msg = _("invalid VSIB address");
6178 break;
7bab8ab5
JB
6179 case invalid_vector_register_set:
6180 err_msg = _("mask, index, and destination registers must be distinct");
6181 break;
6c30d220
L
6182 case unsupported_vector_index_register:
6183 err_msg = _("unsupported vector index register");
6184 break;
43234a1e
L
6185 case unsupported_broadcast:
6186 err_msg = _("unsupported broadcast");
6187 break;
43234a1e
L
6188 case broadcast_needed:
6189 err_msg = _("broadcast is needed for operand of such type");
6190 break;
6191 case unsupported_masking:
6192 err_msg = _("unsupported masking");
6193 break;
6194 case mask_not_on_destination:
6195 err_msg = _("mask not on destination operand");
6196 break;
6197 case no_default_mask:
6198 err_msg = _("default mask isn't allowed");
6199 break;
6200 case unsupported_rc_sae:
6201 err_msg = _("unsupported static rounding/sae");
6202 break;
6203 case rc_sae_operand_not_last_imm:
6204 if (intel_syntax)
6205 err_msg = _("RC/SAE operand must precede immediate operands");
6206 else
6207 err_msg = _("RC/SAE operand must follow immediate operands");
6208 break;
6209 case invalid_register_operand:
6210 err_msg = _("invalid register operand");
6211 break;
a65babc9
L
6212 }
6213 as_bad (_("%s for `%s'"), err_msg,
891edac4 6214 current_templates->start->name);
fa99fab2 6215 return NULL;
29b0f896 6216 }
252b5132 6217
29b0f896
AM
6218 if (!quiet_warnings)
6219 {
6220 if (!intel_syntax
0cfa3eb3 6221 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6f2f06be 6222 as_warn (_("indirect %s without `*'"), t->name);
29b0f896 6223
40fb9820
L
6224 if (t->opcode_modifier.isprefix
6225 && t->opcode_modifier.ignoresize)
29b0f896
AM
6226 {
6227 /* Warn them that a data or address size prefix doesn't
6228 affect assembly of the next line of code. */
6229 as_warn (_("stand-alone `%s' prefix"), t->name);
6230 }
6231 }
6232
6233 /* Copy the template we found. */
6234 i.tm = *t;
539e75ad
L
6235
6236 if (addr_prefix_disp != -1)
6237 i.tm.operand_types[addr_prefix_disp]
6238 = operand_types[addr_prefix_disp];
6239
29b0f896
AM
6240 if (found_reverse_match)
6241 {
dfd69174
JB
6242 /* If we found a reverse match we must alter the opcode direction
6243 bit and clear/flip the regmem modifier one. found_reverse_match
6244 holds bits to change (different for int & float insns). */
29b0f896
AM
6245
6246 i.tm.base_opcode ^= found_reverse_match;
6247
f5eb1d70
JB
6248 i.tm.operand_types[0] = operand_types[i.operands - 1];
6249 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6250
6251 /* Certain SIMD insns have their load forms specified in the opcode
6252 table, and hence we need to _set_ RegMem instead of clearing it.
6253 We need to avoid setting the bit though on insns like KMOVW. */
6254 i.tm.opcode_modifier.regmem
6255 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6256 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6257 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6258 }
6259
fa99fab2 6260 return t;
29b0f896
AM
6261}
6262
6263static int
e3bb37b5 6264check_string (void)
29b0f896 6265{
51c8edf6
JB
6266 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6267 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
8dc0818e 6268
51c8edf6 6269 if (i.seg[op] != NULL && i.seg[op] != &es)
29b0f896 6270 {
51c8edf6
JB
6271 as_bad (_("`%s' operand %u must use `%ses' segment"),
6272 i.tm.name,
6273 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6274 register_prefix);
6275 return 0;
29b0f896 6276 }
51c8edf6
JB
6277
6278 /* There's only ever one segment override allowed per instruction.
6279 This instruction possibly has a legal segment override on the
6280 second operand, so copy the segment to where non-string
6281 instructions store it, allowing common code. */
6282 i.seg[op] = i.seg[1];
6283
29b0f896
AM
6284 return 1;
6285}
6286
6287static int
543613e9 6288process_suffix (void)
29b0f896
AM
6289{
6290 /* If matched instruction specifies an explicit instruction mnemonic
6291 suffix, use it. */
673fe0f0 6292 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6293 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6294 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6295 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6296 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6297 i.suffix = QWORD_MNEM_SUFFIX;
13e600d0
JB
6298 else if (i.reg_operands
6299 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
29b0f896
AM
6300 {
6301 /* If there's no instruction mnemonic suffix we try to invent one
13e600d0 6302 based on GPR operands. */
29b0f896
AM
6303 if (!i.suffix)
6304 {
6305 /* We take i.suffix from the last register operand specified,
6306 Destination register type is more significant than source
381d071f
L
6307 register type. crc32 in SSE4.2 prefers source register
6308 type. */
bab6aec1
JB
6309 if (i.tm.base_opcode == 0xf20f38f0
6310 && i.types[0].bitfield.class == Reg)
381d071f 6311 {
556059dd
JB
6312 if (i.types[0].bitfield.byte)
6313 i.suffix = BYTE_MNEM_SUFFIX;
6314 else if (i.types[0].bitfield.word)
40fb9820 6315 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6316 else if (i.types[0].bitfield.dword)
40fb9820 6317 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6318 else if (i.types[0].bitfield.qword)
40fb9820 6319 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6320 }
6321
6322 if (!i.suffix)
6323 {
6324 int op;
6325
556059dd 6326 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6327 {
6328 /* We have to know the operand size for crc32. */
6329 as_bad (_("ambiguous memory operand size for `%s`"),
6330 i.tm.name);
6331 return 0;
6332 }
6333
381d071f 6334 for (op = i.operands; --op >= 0;)
75e5731b
JB
6335 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6336 || i.tm.operand_types[op].bitfield.instance == Accum)
381d071f 6337 {
bab6aec1 6338 if (i.types[op].bitfield.class != Reg)
8819ada6
JB
6339 continue;
6340 if (i.types[op].bitfield.byte)
6341 i.suffix = BYTE_MNEM_SUFFIX;
6342 else if (i.types[op].bitfield.word)
6343 i.suffix = WORD_MNEM_SUFFIX;
6344 else if (i.types[op].bitfield.dword)
6345 i.suffix = LONG_MNEM_SUFFIX;
6346 else if (i.types[op].bitfield.qword)
6347 i.suffix = QWORD_MNEM_SUFFIX;
6348 else
6349 continue;
6350 break;
381d071f
L
6351 }
6352 }
29b0f896
AM
6353 }
6354 else if (i.suffix == BYTE_MNEM_SUFFIX)
6355 {
2eb952a4
L
6356 if (intel_syntax
6357 && i.tm.opcode_modifier.ignoresize
6358 && i.tm.opcode_modifier.no_bsuf)
6359 i.suffix = 0;
6360 else if (!check_byte_reg ())
29b0f896
AM
6361 return 0;
6362 }
6363 else if (i.suffix == LONG_MNEM_SUFFIX)
6364 {
2eb952a4
L
6365 if (intel_syntax
6366 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6367 && i.tm.opcode_modifier.no_lsuf
6368 && !i.tm.opcode_modifier.todword
6369 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6370 i.suffix = 0;
6371 else if (!check_long_reg ())
29b0f896
AM
6372 return 0;
6373 }
6374 else if (i.suffix == QWORD_MNEM_SUFFIX)
6375 {
955e1e6a
L
6376 if (intel_syntax
6377 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6378 && i.tm.opcode_modifier.no_qsuf
6379 && !i.tm.opcode_modifier.todword
6380 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6381 i.suffix = 0;
6382 else if (!check_qword_reg ())
29b0f896
AM
6383 return 0;
6384 }
6385 else if (i.suffix == WORD_MNEM_SUFFIX)
6386 {
2eb952a4
L
6387 if (intel_syntax
6388 && i.tm.opcode_modifier.ignoresize
6389 && i.tm.opcode_modifier.no_wsuf)
6390 i.suffix = 0;
6391 else if (!check_word_reg ())
29b0f896
AM
6392 return 0;
6393 }
40fb9820 6394 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6395 /* Do nothing if the instruction is going to ignore the prefix. */
6396 ;
6397 else
6398 abort ();
6399 }
40fb9820 6400 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6401 && !i.suffix
6402 /* exclude fldenv/frstor/fsave/fstenv */
3036c899
JB
6403 && i.tm.opcode_modifier.no_ssuf
6404 /* exclude sysret */
6405 && i.tm.base_opcode != 0x0f07)
29b0f896 6406 {
13e600d0
JB
6407 i.suffix = stackop_size;
6408 if (stackop_size == LONG_MNEM_SUFFIX)
06f74c5c
L
6409 {
6410 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6411 .code16gcc directive to support 16-bit mode with
6412 32-bit address. For IRET without a suffix, generate
6413 16-bit IRET (opcode 0xcf) to return from an interrupt
6414 handler. */
13e600d0
JB
6415 if (i.tm.base_opcode == 0xcf)
6416 {
6417 i.suffix = WORD_MNEM_SUFFIX;
6418 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6419 }
6420 /* Warn about changed behavior for segment register push/pop. */
6421 else if ((i.tm.base_opcode | 1) == 0x07)
6422 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6423 i.tm.name);
06f74c5c 6424 }
29b0f896 6425 }
9306ca4a
JB
6426 else if (intel_syntax
6427 && !i.suffix
0cfa3eb3
JB
6428 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6429 || i.tm.opcode_modifier.jump == JUMP_BYTE
6430 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
64e74474
AM
6431 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6432 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6433 {
6434 switch (flag_code)
6435 {
6436 case CODE_64BIT:
40fb9820 6437 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6438 {
6439 i.suffix = QWORD_MNEM_SUFFIX;
6440 break;
6441 }
1a0670f3 6442 /* Fall through. */
9306ca4a 6443 case CODE_32BIT:
40fb9820 6444 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6445 i.suffix = LONG_MNEM_SUFFIX;
6446 break;
6447 case CODE_16BIT:
40fb9820 6448 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6449 i.suffix = WORD_MNEM_SUFFIX;
6450 break;
6451 }
6452 }
252b5132 6453
9306ca4a 6454 if (!i.suffix)
29b0f896 6455 {
9306ca4a
JB
6456 if (!intel_syntax)
6457 {
40fb9820 6458 if (i.tm.opcode_modifier.w)
9306ca4a 6459 {
4eed87de
AM
6460 as_bad (_("no instruction mnemonic suffix given and "
6461 "no register operands; can't size instruction"));
9306ca4a
JB
6462 return 0;
6463 }
6464 }
6465 else
6466 {
40fb9820 6467 unsigned int suffixes;
7ab9ffdd 6468
40fb9820
L
6469 suffixes = !i.tm.opcode_modifier.no_bsuf;
6470 if (!i.tm.opcode_modifier.no_wsuf)
6471 suffixes |= 1 << 1;
6472 if (!i.tm.opcode_modifier.no_lsuf)
6473 suffixes |= 1 << 2;
fc4adea1 6474 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6475 suffixes |= 1 << 3;
6476 if (!i.tm.opcode_modifier.no_ssuf)
6477 suffixes |= 1 << 4;
c2b9da16 6478 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6479 suffixes |= 1 << 5;
6480
6481 /* There are more than suffix matches. */
6482 if (i.tm.opcode_modifier.w
9306ca4a 6483 || ((suffixes & (suffixes - 1))
40fb9820
L
6484 && !i.tm.opcode_modifier.defaultsize
6485 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6486 {
6487 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6488 return 0;
6489 }
6490 }
29b0f896 6491 }
252b5132 6492
d2224064
JB
6493 /* Change the opcode based on the operand size given by i.suffix. */
6494 switch (i.suffix)
29b0f896 6495 {
d2224064
JB
6496 /* Size floating point instruction. */
6497 case LONG_MNEM_SUFFIX:
6498 if (i.tm.opcode_modifier.floatmf)
6499 {
6500 i.tm.base_opcode ^= 4;
6501 break;
6502 }
6503 /* fall through */
6504 case WORD_MNEM_SUFFIX:
6505 case QWORD_MNEM_SUFFIX:
29b0f896 6506 /* It's not a byte, select word/dword operation. */
40fb9820 6507 if (i.tm.opcode_modifier.w)
29b0f896 6508 {
40fb9820 6509 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6510 i.tm.base_opcode |= 8;
6511 else
6512 i.tm.base_opcode |= 1;
6513 }
d2224064
JB
6514 /* fall through */
6515 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6516 /* Now select between word & dword operations via the operand
6517 size prefix, except for instructions that will ignore this
6518 prefix anyway. */
75c0a438 6519 if (i.reg_operands > 0
bab6aec1 6520 && i.types[0].bitfield.class == Reg
75c0a438 6521 && i.tm.opcode_modifier.addrprefixopreg
474da251 6522 && (i.tm.operand_types[0].bitfield.instance == Accum
75c0a438 6523 || i.operands == 1))
cb712a9e 6524 {
ca61edf2
L
6525 /* The address size override prefix changes the size of the
6526 first operand. */
40fb9820 6527 if ((flag_code == CODE_32BIT
75c0a438 6528 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6529 || (flag_code != CODE_32BIT
75c0a438 6530 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6531 if (!add_prefix (ADDR_PREFIX_OPCODE))
6532 return 0;
6533 }
6534 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6535 && !i.tm.opcode_modifier.ignoresize
6536 && !i.tm.opcode_modifier.floatmf
a38d7118 6537 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6538 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6539 || (flag_code == CODE_64BIT
0cfa3eb3 6540 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
24eab124
AM
6541 {
6542 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6543
0cfa3eb3 6544 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
29b0f896 6545 prefix = ADDR_PREFIX_OPCODE;
252b5132 6546
29b0f896
AM
6547 if (!add_prefix (prefix))
6548 return 0;
24eab124 6549 }
252b5132 6550
29b0f896
AM
6551 /* Set mode64 for an operand. */
6552 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6553 && flag_code == CODE_64BIT
d2224064 6554 && !i.tm.opcode_modifier.norex64
46e883c5 6555 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6556 need rex64. */
6557 && ! (i.operands == 2
6558 && i.tm.base_opcode == 0x90
6559 && i.tm.extension_opcode == None
75e5731b
JB
6560 && i.types[0].bitfield.instance == Accum
6561 && i.types[0].bitfield.qword
6562 && i.types[1].bitfield.instance == Accum
6563 && i.types[1].bitfield.qword))
d2224064 6564 i.rex |= REX_W;
3e73aa7c 6565
d2224064 6566 break;
29b0f896 6567 }
7ecd2f8b 6568
c0a30a9f
L
6569 if (i.reg_operands != 0
6570 && i.operands > 1
6571 && i.tm.opcode_modifier.addrprefixopreg
474da251 6572 && i.tm.operand_types[0].bitfield.instance != Accum)
c0a30a9f
L
6573 {
6574 /* Check invalid register operand when the address size override
6575 prefix changes the size of register operands. */
6576 unsigned int op;
6577 enum { need_word, need_dword, need_qword } need;
6578
6579 if (flag_code == CODE_32BIT)
6580 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6581 else
6582 {
6583 if (i.prefix[ADDR_PREFIX])
6584 need = need_dword;
6585 else
6586 need = flag_code == CODE_64BIT ? need_qword : need_word;
6587 }
6588
6589 for (op = 0; op < i.operands; op++)
bab6aec1 6590 if (i.types[op].bitfield.class == Reg
c0a30a9f
L
6591 && ((need == need_word
6592 && !i.op[op].regs->reg_type.bitfield.word)
6593 || (need == need_dword
6594 && !i.op[op].regs->reg_type.bitfield.dword)
6595 || (need == need_qword
6596 && !i.op[op].regs->reg_type.bitfield.qword)))
6597 {
6598 as_bad (_("invalid register operand size for `%s'"),
6599 i.tm.name);
6600 return 0;
6601 }
6602 }
6603
29b0f896
AM
6604 return 1;
6605}
3e73aa7c 6606
29b0f896 6607static int
543613e9 6608check_byte_reg (void)
29b0f896
AM
6609{
6610 int op;
543613e9 6611
29b0f896
AM
6612 for (op = i.operands; --op >= 0;)
6613 {
dc821c5f 6614 /* Skip non-register operands. */
bab6aec1 6615 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
6616 continue;
6617
29b0f896
AM
6618 /* If this is an eight bit register, it's OK. If it's the 16 or
6619 32 bit version of an eight bit register, we will just use the
6620 low portion, and that's OK too. */
dc821c5f 6621 if (i.types[op].bitfield.byte)
29b0f896
AM
6622 continue;
6623
5a819eb9 6624 /* I/O port address operands are OK too. */
75e5731b
JB
6625 if (i.tm.operand_types[op].bitfield.instance == RegD
6626 && i.tm.operand_types[op].bitfield.word)
5a819eb9
JB
6627 continue;
6628
9344ff29
L
6629 /* crc32 doesn't generate this warning. */
6630 if (i.tm.base_opcode == 0xf20f38f0)
6631 continue;
6632
dc821c5f
JB
6633 if ((i.types[op].bitfield.word
6634 || i.types[op].bitfield.dword
6635 || i.types[op].bitfield.qword)
5a819eb9
JB
6636 && i.op[op].regs->reg_num < 4
6637 /* Prohibit these changes in 64bit mode, since the lowering
6638 would be more complicated. */
6639 && flag_code != CODE_64BIT)
29b0f896 6640 {
29b0f896 6641#if REGISTER_WARNINGS
5a819eb9 6642 if (!quiet_warnings)
a540244d
L
6643 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6644 register_prefix,
dc821c5f 6645 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6646 ? REGNAM_AL - REGNAM_AX
6647 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6648 register_prefix,
29b0f896
AM
6649 i.op[op].regs->reg_name,
6650 i.suffix);
6651#endif
6652 continue;
6653 }
6654 /* Any other register is bad. */
bab6aec1 6655 if (i.types[op].bitfield.class == Reg
3528c362
JB
6656 || i.types[op].bitfield.class == RegMMX
6657 || i.types[op].bitfield.class == RegSIMD
00cee14f 6658 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
6659 || i.types[op].bitfield.class == RegCR
6660 || i.types[op].bitfield.class == RegDR
6661 || i.types[op].bitfield.class == RegTR)
29b0f896 6662 {
a540244d
L
6663 as_bad (_("`%s%s' not allowed with `%s%c'"),
6664 register_prefix,
29b0f896
AM
6665 i.op[op].regs->reg_name,
6666 i.tm.name,
6667 i.suffix);
6668 return 0;
6669 }
6670 }
6671 return 1;
6672}
6673
6674static int
e3bb37b5 6675check_long_reg (void)
29b0f896
AM
6676{
6677 int op;
6678
6679 for (op = i.operands; --op >= 0;)
dc821c5f 6680 /* Skip non-register operands. */
bab6aec1 6681 if (i.types[op].bitfield.class != Reg)
dc821c5f 6682 continue;
29b0f896
AM
6683 /* Reject eight bit registers, except where the template requires
6684 them. (eg. movzb) */
dc821c5f 6685 else if (i.types[op].bitfield.byte
bab6aec1 6686 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6687 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6688 && (i.tm.operand_types[op].bitfield.word
6689 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6690 {
a540244d
L
6691 as_bad (_("`%s%s' not allowed with `%s%c'"),
6692 register_prefix,
29b0f896
AM
6693 i.op[op].regs->reg_name,
6694 i.tm.name,
6695 i.suffix);
6696 return 0;
6697 }
e4630f71 6698 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6699 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f 6700 && i.types[op].bitfield.word
bab6aec1 6701 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6702 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6703 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6704 {
6705 /* Prohibit these changes in the 64bit mode, since the
6706 lowering is more complicated. */
6707 if (flag_code == CODE_64BIT)
252b5132 6708 {
2b5d6a91 6709 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6710 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6711 i.suffix);
6712 return 0;
252b5132 6713 }
29b0f896 6714#if REGISTER_WARNINGS
cecf1424
JB
6715 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6716 register_prefix,
6717 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6718 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6719#endif
252b5132 6720 }
e4630f71 6721 /* Warn if the r prefix on a general reg is present. */
dc821c5f 6722 else if (i.types[op].bitfield.qword
bab6aec1 6723 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6724 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6725 && i.tm.operand_types[op].bitfield.dword)
252b5132 6726 {
34828aad 6727 if (intel_syntax
ca61edf2 6728 && i.tm.opcode_modifier.toqword
3528c362 6729 && i.types[0].bitfield.class != RegSIMD)
34828aad 6730 {
ca61edf2 6731 /* Convert to QWORD. We want REX byte. */
34828aad
L
6732 i.suffix = QWORD_MNEM_SUFFIX;
6733 }
6734 else
6735 {
2b5d6a91 6736 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6737 register_prefix, i.op[op].regs->reg_name,
6738 i.suffix);
6739 return 0;
6740 }
29b0f896
AM
6741 }
6742 return 1;
6743}
252b5132 6744
29b0f896 6745static int
e3bb37b5 6746check_qword_reg (void)
29b0f896
AM
6747{
6748 int op;
252b5132 6749
29b0f896 6750 for (op = i.operands; --op >= 0; )
dc821c5f 6751 /* Skip non-register operands. */
bab6aec1 6752 if (i.types[op].bitfield.class != Reg)
dc821c5f 6753 continue;
29b0f896
AM
6754 /* Reject eight bit registers, except where the template requires
6755 them. (eg. movzb) */
dc821c5f 6756 else if (i.types[op].bitfield.byte
bab6aec1 6757 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6758 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6759 && (i.tm.operand_types[op].bitfield.word
6760 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6761 {
a540244d
L
6762 as_bad (_("`%s%s' not allowed with `%s%c'"),
6763 register_prefix,
29b0f896
AM
6764 i.op[op].regs->reg_name,
6765 i.tm.name,
6766 i.suffix);
6767 return 0;
6768 }
e4630f71 6769 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6770 else if ((i.types[op].bitfield.word
6771 || i.types[op].bitfield.dword)
bab6aec1 6772 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6773 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6774 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6775 {
6776 /* Prohibit these changes in the 64bit mode, since the
6777 lowering is more complicated. */
34828aad 6778 if (intel_syntax
ca61edf2 6779 && i.tm.opcode_modifier.todword
3528c362 6780 && i.types[0].bitfield.class != RegSIMD)
34828aad 6781 {
ca61edf2 6782 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6783 i.suffix = LONG_MNEM_SUFFIX;
6784 }
6785 else
6786 {
2b5d6a91 6787 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6788 register_prefix, i.op[op].regs->reg_name,
6789 i.suffix);
6790 return 0;
6791 }
252b5132 6792 }
29b0f896
AM
6793 return 1;
6794}
252b5132 6795
29b0f896 6796static int
e3bb37b5 6797check_word_reg (void)
29b0f896
AM
6798{
6799 int op;
6800 for (op = i.operands; --op >= 0;)
dc821c5f 6801 /* Skip non-register operands. */
bab6aec1 6802 if (i.types[op].bitfield.class != Reg)
dc821c5f 6803 continue;
29b0f896
AM
6804 /* Reject eight bit registers, except where the template requires
6805 them. (eg. movzb) */
dc821c5f 6806 else if (i.types[op].bitfield.byte
bab6aec1 6807 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6808 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6809 && (i.tm.operand_types[op].bitfield.word
6810 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6811 {
a540244d
L
6812 as_bad (_("`%s%s' not allowed with `%s%c'"),
6813 register_prefix,
29b0f896
AM
6814 i.op[op].regs->reg_name,
6815 i.tm.name,
6816 i.suffix);
6817 return 0;
6818 }
e4630f71 6819 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6820 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6821 && (i.types[op].bitfield.dword
6822 || i.types[op].bitfield.qword)
bab6aec1 6823 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6824 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6825 && i.tm.operand_types[op].bitfield.word)
252b5132 6826 {
29b0f896
AM
6827 /* Prohibit these changes in the 64bit mode, since the
6828 lowering is more complicated. */
6829 if (flag_code == CODE_64BIT)
252b5132 6830 {
2b5d6a91 6831 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6832 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6833 i.suffix);
6834 return 0;
252b5132 6835 }
29b0f896 6836#if REGISTER_WARNINGS
cecf1424
JB
6837 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6838 register_prefix,
6839 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6840 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6841#endif
6842 }
6843 return 1;
6844}
252b5132 6845
29b0f896 6846static int
40fb9820 6847update_imm (unsigned int j)
29b0f896 6848{
bc0844ae 6849 i386_operand_type overlap = i.types[j];
40fb9820
L
6850 if ((overlap.bitfield.imm8
6851 || overlap.bitfield.imm8s
6852 || overlap.bitfield.imm16
6853 || overlap.bitfield.imm32
6854 || overlap.bitfield.imm32s
6855 || overlap.bitfield.imm64)
0dfbf9d7
L
6856 && !operand_type_equal (&overlap, &imm8)
6857 && !operand_type_equal (&overlap, &imm8s)
6858 && !operand_type_equal (&overlap, &imm16)
6859 && !operand_type_equal (&overlap, &imm32)
6860 && !operand_type_equal (&overlap, &imm32s)
6861 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6862 {
6863 if (i.suffix)
6864 {
40fb9820
L
6865 i386_operand_type temp;
6866
0dfbf9d7 6867 operand_type_set (&temp, 0);
7ab9ffdd 6868 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6869 {
6870 temp.bitfield.imm8 = overlap.bitfield.imm8;
6871 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6872 }
6873 else if (i.suffix == WORD_MNEM_SUFFIX)
6874 temp.bitfield.imm16 = overlap.bitfield.imm16;
6875 else if (i.suffix == QWORD_MNEM_SUFFIX)
6876 {
6877 temp.bitfield.imm64 = overlap.bitfield.imm64;
6878 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6879 }
6880 else
6881 temp.bitfield.imm32 = overlap.bitfield.imm32;
6882 overlap = temp;
29b0f896 6883 }
0dfbf9d7
L
6884 else if (operand_type_equal (&overlap, &imm16_32_32s)
6885 || operand_type_equal (&overlap, &imm16_32)
6886 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6887 {
40fb9820 6888 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6889 overlap = imm16;
40fb9820 6890 else
65da13b5 6891 overlap = imm32s;
29b0f896 6892 }
0dfbf9d7
L
6893 if (!operand_type_equal (&overlap, &imm8)
6894 && !operand_type_equal (&overlap, &imm8s)
6895 && !operand_type_equal (&overlap, &imm16)
6896 && !operand_type_equal (&overlap, &imm32)
6897 && !operand_type_equal (&overlap, &imm32s)
6898 && !operand_type_equal (&overlap, &imm64))
29b0f896 6899 {
4eed87de
AM
6900 as_bad (_("no instruction mnemonic suffix given; "
6901 "can't determine immediate size"));
29b0f896
AM
6902 return 0;
6903 }
6904 }
40fb9820 6905 i.types[j] = overlap;
29b0f896 6906
40fb9820
L
6907 return 1;
6908}
6909
6910static int
6911finalize_imm (void)
6912{
bc0844ae 6913 unsigned int j, n;
29b0f896 6914
bc0844ae
L
6915 /* Update the first 2 immediate operands. */
6916 n = i.operands > 2 ? 2 : i.operands;
6917 if (n)
6918 {
6919 for (j = 0; j < n; j++)
6920 if (update_imm (j) == 0)
6921 return 0;
40fb9820 6922
bc0844ae
L
6923 /* The 3rd operand can't be immediate operand. */
6924 gas_assert (operand_type_check (i.types[2], imm) == 0);
6925 }
29b0f896
AM
6926
6927 return 1;
6928}
6929
6930static int
e3bb37b5 6931process_operands (void)
29b0f896
AM
6932{
6933 /* Default segment register this instruction will use for memory
6934 accesses. 0 means unknown. This is only for optimizing out
6935 unnecessary segment overrides. */
6936 const seg_entry *default_seg = 0;
6937
2426c15f 6938 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6939 {
91d6fa6a
NC
6940 unsigned int dupl = i.operands;
6941 unsigned int dest = dupl - 1;
9fcfb3d7
L
6942 unsigned int j;
6943
c0f3af97 6944 /* The destination must be an xmm register. */
9c2799c2 6945 gas_assert (i.reg_operands
91d6fa6a 6946 && MAX_OPERANDS > dupl
7ab9ffdd 6947 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6948
75e5731b 6949 if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 6950 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6951 {
8cd7925b 6952 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6953 {
6954 /* Keep xmm0 for instructions with VEX prefix and 3
6955 sources. */
75e5731b 6956 i.tm.operand_types[0].bitfield.instance = InstanceNone;
3528c362 6957 i.tm.operand_types[0].bitfield.class = RegSIMD;
c0f3af97
L
6958 goto duplicate;
6959 }
e2ec9d29 6960 else
c0f3af97
L
6961 {
6962 /* We remove the first xmm0 and keep the number of
6963 operands unchanged, which in fact duplicates the
6964 destination. */
6965 for (j = 1; j < i.operands; j++)
6966 {
6967 i.op[j - 1] = i.op[j];
6968 i.types[j - 1] = i.types[j];
6969 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 6970 i.flags[j - 1] = i.flags[j];
c0f3af97
L
6971 }
6972 }
6973 }
6974 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6975 {
91d6fa6a 6976 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6977 && (i.tm.opcode_modifier.vexsources
6978 == VEX3SOURCES));
c0f3af97
L
6979
6980 /* Add the implicit xmm0 for instructions with VEX prefix
6981 and 3 sources. */
6982 for (j = i.operands; j > 0; j--)
6983 {
6984 i.op[j] = i.op[j - 1];
6985 i.types[j] = i.types[j - 1];
6986 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 6987 i.flags[j] = i.flags[j - 1];
c0f3af97
L
6988 }
6989 i.op[0].regs
6990 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6991 i.types[0] = regxmm;
c0f3af97
L
6992 i.tm.operand_types[0] = regxmm;
6993
6994 i.operands += 2;
6995 i.reg_operands += 2;
6996 i.tm.operands += 2;
6997
91d6fa6a 6998 dupl++;
c0f3af97 6999 dest++;
91d6fa6a
NC
7000 i.op[dupl] = i.op[dest];
7001 i.types[dupl] = i.types[dest];
7002 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7003 i.flags[dupl] = i.flags[dest];
e2ec9d29 7004 }
c0f3af97
L
7005 else
7006 {
7007duplicate:
7008 i.operands++;
7009 i.reg_operands++;
7010 i.tm.operands++;
7011
91d6fa6a
NC
7012 i.op[dupl] = i.op[dest];
7013 i.types[dupl] = i.types[dest];
7014 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7015 i.flags[dupl] = i.flags[dest];
c0f3af97
L
7016 }
7017
7018 if (i.tm.opcode_modifier.immext)
7019 process_immext ();
7020 }
75e5731b 7021 else if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 7022 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
7023 {
7024 unsigned int j;
7025
9fcfb3d7
L
7026 for (j = 1; j < i.operands; j++)
7027 {
7028 i.op[j - 1] = i.op[j];
7029 i.types[j - 1] = i.types[j];
7030
7031 /* We need to adjust fields in i.tm since they are used by
7032 build_modrm_byte. */
7033 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
7034
7035 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
7036 }
7037
e2ec9d29
L
7038 i.operands--;
7039 i.reg_operands--;
e2ec9d29
L
7040 i.tm.operands--;
7041 }
920d2ddc
IT
7042 else if (i.tm.opcode_modifier.implicitquadgroup)
7043 {
a477a8c4
JB
7044 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7045
920d2ddc 7046 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 7047 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
7048 regnum = register_number (i.op[1].regs);
7049 first_reg_in_group = regnum & ~3;
7050 last_reg_in_group = first_reg_in_group + 3;
7051 if (regnum != first_reg_in_group)
7052 as_warn (_("source register `%s%s' implicitly denotes"
7053 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7054 register_prefix, i.op[1].regs->reg_name,
7055 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7056 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7057 i.tm.name);
7058 }
e2ec9d29
L
7059 else if (i.tm.opcode_modifier.regkludge)
7060 {
7061 /* The imul $imm, %reg instruction is converted into
7062 imul $imm, %reg, %reg, and the clr %reg instruction
7063 is converted into xor %reg, %reg. */
7064
7065 unsigned int first_reg_op;
7066
7067 if (operand_type_check (i.types[0], reg))
7068 first_reg_op = 0;
7069 else
7070 first_reg_op = 1;
7071 /* Pretend we saw the extra register operand. */
9c2799c2 7072 gas_assert (i.reg_operands == 1
7ab9ffdd 7073 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
7074 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7075 i.types[first_reg_op + 1] = i.types[first_reg_op];
7076 i.operands++;
7077 i.reg_operands++;
29b0f896
AM
7078 }
7079
85b80b0f 7080 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7081 {
7082 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7083 must be put into the modrm byte). Now, we make the modrm and
7084 index base bytes based on all the info we've collected. */
29b0f896
AM
7085
7086 default_seg = build_modrm_byte ();
7087 }
00cee14f 7088 else if (i.types[0].bitfield.class == SReg)
85b80b0f
JB
7089 {
7090 if (flag_code != CODE_64BIT
7091 ? i.tm.base_opcode == POP_SEG_SHORT
7092 && i.op[0].regs->reg_num == 1
7093 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7094 && i.op[0].regs->reg_num < 4)
7095 {
7096 as_bad (_("you can't `%s %s%s'"),
7097 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7098 return 0;
7099 }
7100 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7101 {
7102 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7103 i.tm.opcode_length = 2;
7104 }
7105 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7106 }
8a2ed489 7107 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7108 {
7109 default_seg = &ds;
7110 }
40fb9820 7111 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7112 {
7113 /* For the string instructions that allow a segment override
7114 on one of their operands, the default segment is ds. */
7115 default_seg = &ds;
7116 }
85b80b0f
JB
7117 else if (i.tm.opcode_modifier.shortform)
7118 {
7119 /* The register or float register operand is in operand
7120 0 or 1. */
bab6aec1 7121 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
85b80b0f
JB
7122
7123 /* Register goes in low 3 bits of opcode. */
7124 i.tm.base_opcode |= i.op[op].regs->reg_num;
7125 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7126 i.rex |= REX_B;
7127 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7128 {
7129 /* Warn about some common errors, but press on regardless.
7130 The first case can be generated by gcc (<= 2.8.1). */
7131 if (i.operands == 2)
7132 {
7133 /* Reversed arguments on faddp, fsubp, etc. */
7134 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7135 register_prefix, i.op[!intel_syntax].regs->reg_name,
7136 register_prefix, i.op[intel_syntax].regs->reg_name);
7137 }
7138 else
7139 {
7140 /* Extraneous `l' suffix on fp insn. */
7141 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7142 register_prefix, i.op[0].regs->reg_name);
7143 }
7144 }
7145 }
29b0f896 7146
75178d9d
L
7147 if (i.tm.base_opcode == 0x8d /* lea */
7148 && i.seg[0]
7149 && !quiet_warnings)
30123838 7150 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7151
7152 /* If a segment was explicitly specified, and the specified segment
7153 is not the default, use an opcode prefix to select it. If we
7154 never figured out what the default segment is, then default_seg
7155 will be zero at this point, and the specified segment prefix will
7156 always be used. */
29b0f896
AM
7157 if ((i.seg[0]) && (i.seg[0] != default_seg))
7158 {
7159 if (!add_prefix (i.seg[0]->seg_prefix))
7160 return 0;
7161 }
7162 return 1;
7163}
7164
7165static const seg_entry *
e3bb37b5 7166build_modrm_byte (void)
29b0f896
AM
7167{
7168 const seg_entry *default_seg = 0;
c0f3af97 7169 unsigned int source, dest;
8cd7925b 7170 int vex_3_sources;
c0f3af97 7171
8cd7925b 7172 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7173 if (vex_3_sources)
7174 {
91d6fa6a 7175 unsigned int nds, reg_slot;
4c2c6516 7176 expressionS *exp;
c0f3af97 7177
6b8d3588 7178 dest = i.operands - 1;
c0f3af97 7179 nds = dest - 1;
922d8de8 7180
a683cc34 7181 /* There are 2 kinds of instructions:
bed3d976 7182 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7183 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7184 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7185 ZMM register.
bed3d976 7186 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7187 plus 1 memory operand, with VexXDS. */
922d8de8 7188 gas_assert ((i.reg_operands == 4
bed3d976
JB
7189 || (i.reg_operands == 3 && i.mem_operands == 1))
7190 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323 7191 && i.tm.opcode_modifier.vexw
3528c362 7192 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 7193
48db9223
JB
7194 /* If VexW1 is set, the first non-immediate operand is the source and
7195 the second non-immediate one is encoded in the immediate operand. */
7196 if (i.tm.opcode_modifier.vexw == VEXW1)
7197 {
7198 source = i.imm_operands;
7199 reg_slot = i.imm_operands + 1;
7200 }
7201 else
7202 {
7203 source = i.imm_operands + 1;
7204 reg_slot = i.imm_operands;
7205 }
7206
a683cc34 7207 if (i.imm_operands == 0)
bed3d976
JB
7208 {
7209 /* When there is no immediate operand, generate an 8bit
7210 immediate operand to encode the first operand. */
7211 exp = &im_expressions[i.imm_operands++];
7212 i.op[i.operands].imms = exp;
7213 i.types[i.operands] = imm8;
7214 i.operands++;
7215
3528c362 7216 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
bed3d976
JB
7217 exp->X_op = O_constant;
7218 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7219 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7220 }
922d8de8 7221 else
bed3d976 7222 {
9d3bf266
JB
7223 gas_assert (i.imm_operands == 1);
7224 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7225 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7226
9d3bf266
JB
7227 /* Turn on Imm8 again so that output_imm will generate it. */
7228 i.types[0].bitfield.imm8 = 1;
bed3d976 7229
3528c362 7230 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
9d3bf266 7231 i.op[0].imms->X_add_number
bed3d976 7232 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7233 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7234 }
a683cc34 7235
3528c362 7236 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
dae39acc 7237 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7238 }
7239 else
7240 source = dest = 0;
29b0f896
AM
7241
7242 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7243 implicit registers do not count. If there are 3 register
7244 operands, it must be a instruction with VexNDS. For a
7245 instruction with VexNDD, the destination register is encoded
7246 in VEX prefix. If there are 4 register operands, it must be
7247 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7248 if (i.mem_operands == 0
7249 && ((i.reg_operands == 2
2426c15f 7250 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7251 || (i.reg_operands == 3
2426c15f 7252 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7253 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7254 {
cab737b9
L
7255 switch (i.operands)
7256 {
7257 case 2:
7258 source = 0;
7259 break;
7260 case 3:
c81128dc
L
7261 /* When there are 3 operands, one of them may be immediate,
7262 which may be the first or the last operand. Otherwise,
c0f3af97
L
7263 the first operand must be shift count register (cl) or it
7264 is an instruction with VexNDS. */
9c2799c2 7265 gas_assert (i.imm_operands == 1
7ab9ffdd 7266 || (i.imm_operands == 0
2426c15f 7267 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
75e5731b
JB
7268 || (i.types[0].bitfield.instance == RegC
7269 && i.types[0].bitfield.byte))));
40fb9820 7270 if (operand_type_check (i.types[0], imm)
75e5731b
JB
7271 || (i.types[0].bitfield.instance == RegC
7272 && i.types[0].bitfield.byte))
40fb9820
L
7273 source = 1;
7274 else
7275 source = 0;
cab737b9
L
7276 break;
7277 case 4:
368d64cc
L
7278 /* When there are 4 operands, the first two must be 8bit
7279 immediate operands. The source operand will be the 3rd
c0f3af97
L
7280 one.
7281
7282 For instructions with VexNDS, if the first operand
7283 an imm8, the source operand is the 2nd one. If the last
7284 operand is imm8, the source operand is the first one. */
9c2799c2 7285 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7286 && i.types[0].bitfield.imm8
7287 && i.types[1].bitfield.imm8)
2426c15f 7288 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7289 && i.imm_operands == 1
7290 && (i.types[0].bitfield.imm8
43234a1e
L
7291 || i.types[i.operands - 1].bitfield.imm8
7292 || i.rounding)));
9f2670f2
L
7293 if (i.imm_operands == 2)
7294 source = 2;
7295 else
c0f3af97
L
7296 {
7297 if (i.types[0].bitfield.imm8)
7298 source = 1;
7299 else
7300 source = 0;
7301 }
c0f3af97
L
7302 break;
7303 case 5:
e771e7c9 7304 if (is_evex_encoding (&i.tm))
43234a1e
L
7305 {
7306 /* For EVEX instructions, when there are 5 operands, the
7307 first one must be immediate operand. If the second one
7308 is immediate operand, the source operand is the 3th
7309 one. If the last one is immediate operand, the source
7310 operand is the 2nd one. */
7311 gas_assert (i.imm_operands == 2
7312 && i.tm.opcode_modifier.sae
7313 && operand_type_check (i.types[0], imm));
7314 if (operand_type_check (i.types[1], imm))
7315 source = 2;
7316 else if (operand_type_check (i.types[4], imm))
7317 source = 1;
7318 else
7319 abort ();
7320 }
cab737b9
L
7321 break;
7322 default:
7323 abort ();
7324 }
7325
c0f3af97
L
7326 if (!vex_3_sources)
7327 {
7328 dest = source + 1;
7329
43234a1e
L
7330 /* RC/SAE operand could be between DEST and SRC. That happens
7331 when one operand is GPR and the other one is XMM/YMM/ZMM
7332 register. */
7333 if (i.rounding && i.rounding->operand == (int) dest)
7334 dest++;
7335
2426c15f 7336 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7337 {
43234a1e 7338 /* For instructions with VexNDS, the register-only source
c5d0745b 7339 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7340 register. It is encoded in VEX prefix. */
f12dc422
L
7341
7342 i386_operand_type op;
7343 unsigned int vvvv;
7344
7345 /* Check register-only source operand when two source
7346 operands are swapped. */
7347 if (!i.tm.operand_types[source].bitfield.baseindex
7348 && i.tm.operand_types[dest].bitfield.baseindex)
7349 {
7350 vvvv = source;
7351 source = dest;
7352 }
7353 else
7354 vvvv = dest;
7355
7356 op = i.tm.operand_types[vvvv];
c0f3af97 7357 if ((dest + 1) >= i.operands
bab6aec1 7358 || ((op.bitfield.class != Reg
dc821c5f 7359 || (!op.bitfield.dword && !op.bitfield.qword))
3528c362 7360 && op.bitfield.class != RegSIMD
43234a1e 7361 && !operand_type_equal (&op, &regmask)))
c0f3af97 7362 abort ();
f12dc422 7363 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7364 dest++;
7365 }
7366 }
29b0f896
AM
7367
7368 i.rm.mode = 3;
dfd69174
JB
7369 /* One of the register operands will be encoded in the i.rm.reg
7370 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7371 fields. If no form of this instruction supports a memory
7372 destination operand, then we assume the source operand may
7373 sometimes be a memory operand and so we need to store the
7374 destination in the i.rm.reg field. */
dfd69174 7375 if (!i.tm.opcode_modifier.regmem
40fb9820 7376 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7377 {
7378 i.rm.reg = i.op[dest].regs->reg_num;
7379 i.rm.regmem = i.op[source].regs->reg_num;
3528c362
JB
7380 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7381 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
b4a3a7b4 7382 i.has_regmmx = TRUE;
3528c362
JB
7383 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7384 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
b4a3a7b4
L
7385 {
7386 if (i.types[dest].bitfield.zmmword
7387 || i.types[source].bitfield.zmmword)
7388 i.has_regzmm = TRUE;
7389 else if (i.types[dest].bitfield.ymmword
7390 || i.types[source].bitfield.ymmword)
7391 i.has_regymm = TRUE;
7392 else
7393 i.has_regxmm = TRUE;
7394 }
29b0f896 7395 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7396 i.rex |= REX_R;
43234a1e
L
7397 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7398 i.vrex |= REX_R;
29b0f896 7399 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7400 i.rex |= REX_B;
43234a1e
L
7401 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7402 i.vrex |= REX_B;
29b0f896
AM
7403 }
7404 else
7405 {
7406 i.rm.reg = i.op[source].regs->reg_num;
7407 i.rm.regmem = i.op[dest].regs->reg_num;
7408 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7409 i.rex |= REX_B;
43234a1e
L
7410 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7411 i.vrex |= REX_B;
29b0f896 7412 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7413 i.rex |= REX_R;
43234a1e
L
7414 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7415 i.vrex |= REX_R;
29b0f896 7416 }
e0c7f900 7417 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7418 {
4a5c67ed 7419 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
c4a530c5 7420 abort ();
e0c7f900 7421 i.rex &= ~REX_R;
c4a530c5
JB
7422 add_prefix (LOCK_PREFIX_OPCODE);
7423 }
29b0f896
AM
7424 }
7425 else
7426 { /* If it's not 2 reg operands... */
c0f3af97
L
7427 unsigned int mem;
7428
29b0f896
AM
7429 if (i.mem_operands)
7430 {
7431 unsigned int fake_zero_displacement = 0;
99018f42 7432 unsigned int op;
4eed87de 7433
7ab9ffdd 7434 for (op = 0; op < i.operands; op++)
8dc0818e 7435 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7436 break;
7ab9ffdd 7437 gas_assert (op < i.operands);
29b0f896 7438
6c30d220
L
7439 if (i.tm.opcode_modifier.vecsib)
7440 {
e968fc9b 7441 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7442 abort ();
7443
7444 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7445 if (!i.base_reg)
7446 {
7447 i.sib.base = NO_BASE_REGISTER;
7448 i.sib.scale = i.log2_scale_factor;
7449 i.types[op].bitfield.disp8 = 0;
7450 i.types[op].bitfield.disp16 = 0;
7451 i.types[op].bitfield.disp64 = 0;
43083a50 7452 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7453 {
7454 /* Must be 32 bit */
7455 i.types[op].bitfield.disp32 = 1;
7456 i.types[op].bitfield.disp32s = 0;
7457 }
7458 else
7459 {
7460 i.types[op].bitfield.disp32 = 0;
7461 i.types[op].bitfield.disp32s = 1;
7462 }
7463 }
7464 i.sib.index = i.index_reg->reg_num;
7465 if ((i.index_reg->reg_flags & RegRex) != 0)
7466 i.rex |= REX_X;
43234a1e
L
7467 if ((i.index_reg->reg_flags & RegVRex) != 0)
7468 i.vrex |= REX_X;
6c30d220
L
7469 }
7470
29b0f896
AM
7471 default_seg = &ds;
7472
7473 if (i.base_reg == 0)
7474 {
7475 i.rm.mode = 0;
7476 if (!i.disp_operands)
9bb129e8 7477 fake_zero_displacement = 1;
29b0f896
AM
7478 if (i.index_reg == 0)
7479 {
73053c1f
JB
7480 i386_operand_type newdisp;
7481
6c30d220 7482 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7483 /* Operand is just <disp> */
20f0a1fc 7484 if (flag_code == CODE_64BIT)
29b0f896
AM
7485 {
7486 /* 64bit mode overwrites the 32bit absolute
7487 addressing by RIP relative addressing and
7488 absolute addressing is encoded by one of the
7489 redundant SIB forms. */
7490 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7491 i.sib.base = NO_BASE_REGISTER;
7492 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7493 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7494 }
fc225355
L
7495 else if ((flag_code == CODE_16BIT)
7496 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7497 {
7498 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7499 newdisp = disp16;
20f0a1fc
NC
7500 }
7501 else
7502 {
7503 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7504 newdisp = disp32;
29b0f896 7505 }
73053c1f
JB
7506 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7507 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7508 }
6c30d220 7509 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7510 {
6c30d220 7511 /* !i.base_reg && i.index_reg */
e968fc9b 7512 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7513 i.sib.index = NO_INDEX_REGISTER;
7514 else
7515 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7516 i.sib.base = NO_BASE_REGISTER;
7517 i.sib.scale = i.log2_scale_factor;
7518 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7519 i.types[op].bitfield.disp8 = 0;
7520 i.types[op].bitfield.disp16 = 0;
7521 i.types[op].bitfield.disp64 = 0;
43083a50 7522 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7523 {
7524 /* Must be 32 bit */
7525 i.types[op].bitfield.disp32 = 1;
7526 i.types[op].bitfield.disp32s = 0;
7527 }
29b0f896 7528 else
40fb9820
L
7529 {
7530 i.types[op].bitfield.disp32 = 0;
7531 i.types[op].bitfield.disp32s = 1;
7532 }
29b0f896 7533 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7534 i.rex |= REX_X;
29b0f896
AM
7535 }
7536 }
7537 /* RIP addressing for 64bit mode. */
e968fc9b 7538 else if (i.base_reg->reg_num == RegIP)
29b0f896 7539 {
6c30d220 7540 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7541 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7542 i.types[op].bitfield.disp8 = 0;
7543 i.types[op].bitfield.disp16 = 0;
7544 i.types[op].bitfield.disp32 = 0;
7545 i.types[op].bitfield.disp32s = 1;
7546 i.types[op].bitfield.disp64 = 0;
71903a11 7547 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7548 if (! i.disp_operands)
7549 fake_zero_displacement = 1;
29b0f896 7550 }
dc821c5f 7551 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7552 {
6c30d220 7553 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7554 switch (i.base_reg->reg_num)
7555 {
7556 case 3: /* (%bx) */
7557 if (i.index_reg == 0)
7558 i.rm.regmem = 7;
7559 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7560 i.rm.regmem = i.index_reg->reg_num - 6;
7561 break;
7562 case 5: /* (%bp) */
7563 default_seg = &ss;
7564 if (i.index_reg == 0)
7565 {
7566 i.rm.regmem = 6;
40fb9820 7567 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7568 {
7569 /* fake (%bp) into 0(%bp) */
b5014f7a 7570 i.types[op].bitfield.disp8 = 1;
252b5132 7571 fake_zero_displacement = 1;
29b0f896
AM
7572 }
7573 }
7574 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7575 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7576 break;
7577 default: /* (%si) -> 4 or (%di) -> 5 */
7578 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7579 }
7580 i.rm.mode = mode_from_disp_size (i.types[op]);
7581 }
7582 else /* i.base_reg and 32/64 bit mode */
7583 {
7584 if (flag_code == CODE_64BIT
40fb9820
L
7585 && operand_type_check (i.types[op], disp))
7586 {
73053c1f
JB
7587 i.types[op].bitfield.disp16 = 0;
7588 i.types[op].bitfield.disp64 = 0;
40fb9820 7589 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7590 {
7591 i.types[op].bitfield.disp32 = 0;
7592 i.types[op].bitfield.disp32s = 1;
7593 }
40fb9820 7594 else
73053c1f
JB
7595 {
7596 i.types[op].bitfield.disp32 = 1;
7597 i.types[op].bitfield.disp32s = 0;
7598 }
40fb9820 7599 }
20f0a1fc 7600
6c30d220
L
7601 if (!i.tm.opcode_modifier.vecsib)
7602 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7603 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7604 i.rex |= REX_B;
29b0f896
AM
7605 i.sib.base = i.base_reg->reg_num;
7606 /* x86-64 ignores REX prefix bit here to avoid decoder
7607 complications. */
848930b2
JB
7608 if (!(i.base_reg->reg_flags & RegRex)
7609 && (i.base_reg->reg_num == EBP_REG_NUM
7610 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7611 default_seg = &ss;
848930b2 7612 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7613 {
848930b2 7614 fake_zero_displacement = 1;
b5014f7a 7615 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7616 }
7617 i.sib.scale = i.log2_scale_factor;
7618 if (i.index_reg == 0)
7619 {
6c30d220 7620 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7621 /* <disp>(%esp) becomes two byte modrm with no index
7622 register. We've already stored the code for esp
7623 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7624 Any base register besides %esp will not use the
7625 extra modrm byte. */
7626 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7627 }
6c30d220 7628 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7629 {
e968fc9b 7630 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7631 i.sib.index = NO_INDEX_REGISTER;
7632 else
7633 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7634 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7635 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7636 i.rex |= REX_X;
29b0f896 7637 }
67a4f2b7
AO
7638
7639 if (i.disp_operands
7640 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7641 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7642 i.rm.mode = 0;
7643 else
a501d77e
L
7644 {
7645 if (!fake_zero_displacement
7646 && !i.disp_operands
7647 && i.disp_encoding)
7648 {
7649 fake_zero_displacement = 1;
7650 if (i.disp_encoding == disp_encoding_8bit)
7651 i.types[op].bitfield.disp8 = 1;
7652 else
7653 i.types[op].bitfield.disp32 = 1;
7654 }
7655 i.rm.mode = mode_from_disp_size (i.types[op]);
7656 }
29b0f896 7657 }
252b5132 7658
29b0f896
AM
7659 if (fake_zero_displacement)
7660 {
7661 /* Fakes a zero displacement assuming that i.types[op]
7662 holds the correct displacement size. */
7663 expressionS *exp;
7664
9c2799c2 7665 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7666 exp = &disp_expressions[i.disp_operands++];
7667 i.op[op].disps = exp;
7668 exp->X_op = O_constant;
7669 exp->X_add_number = 0;
7670 exp->X_add_symbol = (symbolS *) 0;
7671 exp->X_op_symbol = (symbolS *) 0;
7672 }
c0f3af97
L
7673
7674 mem = op;
29b0f896 7675 }
c0f3af97
L
7676 else
7677 mem = ~0;
252b5132 7678
8c43a48b 7679 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7680 {
7681 if (operand_type_check (i.types[0], imm))
7682 i.vex.register_specifier = NULL;
7683 else
7684 {
7685 /* VEX.vvvv encodes one of the sources when the first
7686 operand is not an immediate. */
1ef99a7b 7687 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7688 i.vex.register_specifier = i.op[0].regs;
7689 else
7690 i.vex.register_specifier = i.op[1].regs;
7691 }
7692
7693 /* Destination is a XMM register encoded in the ModRM.reg
7694 and VEX.R bit. */
7695 i.rm.reg = i.op[2].regs->reg_num;
7696 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7697 i.rex |= REX_R;
7698
7699 /* ModRM.rm and VEX.B encodes the other source. */
7700 if (!i.mem_operands)
7701 {
7702 i.rm.mode = 3;
7703
1ef99a7b 7704 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7705 i.rm.regmem = i.op[1].regs->reg_num;
7706 else
7707 i.rm.regmem = i.op[0].regs->reg_num;
7708
7709 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7710 i.rex |= REX_B;
7711 }
7712 }
2426c15f 7713 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7714 {
7715 i.vex.register_specifier = i.op[2].regs;
7716 if (!i.mem_operands)
7717 {
7718 i.rm.mode = 3;
7719 i.rm.regmem = i.op[1].regs->reg_num;
7720 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7721 i.rex |= REX_B;
7722 }
7723 }
29b0f896
AM
7724 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7725 (if any) based on i.tm.extension_opcode. Again, we must be
7726 careful to make sure that segment/control/debug/test/MMX
7727 registers are coded into the i.rm.reg field. */
f88c9eb0 7728 else if (i.reg_operands)
29b0f896 7729 {
99018f42 7730 unsigned int op;
7ab9ffdd
L
7731 unsigned int vex_reg = ~0;
7732
7733 for (op = 0; op < i.operands; op++)
b4a3a7b4 7734 {
bab6aec1 7735 if (i.types[op].bitfield.class == Reg
f74a6307
JB
7736 || i.types[op].bitfield.class == RegBND
7737 || i.types[op].bitfield.class == RegMask
00cee14f 7738 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
7739 || i.types[op].bitfield.class == RegCR
7740 || i.types[op].bitfield.class == RegDR
7741 || i.types[op].bitfield.class == RegTR)
b4a3a7b4 7742 break;
3528c362 7743 if (i.types[op].bitfield.class == RegSIMD)
b4a3a7b4
L
7744 {
7745 if (i.types[op].bitfield.zmmword)
7746 i.has_regzmm = TRUE;
7747 else if (i.types[op].bitfield.ymmword)
7748 i.has_regymm = TRUE;
7749 else
7750 i.has_regxmm = TRUE;
7751 break;
7752 }
3528c362 7753 if (i.types[op].bitfield.class == RegMMX)
b4a3a7b4
L
7754 {
7755 i.has_regmmx = TRUE;
7756 break;
7757 }
7758 }
c0209578 7759
7ab9ffdd
L
7760 if (vex_3_sources)
7761 op = dest;
2426c15f 7762 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7763 {
7764 /* For instructions with VexNDS, the register-only
7765 source operand is encoded in VEX prefix. */
7766 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7767
7ab9ffdd 7768 if (op > mem)
c0f3af97 7769 {
7ab9ffdd
L
7770 vex_reg = op++;
7771 gas_assert (op < i.operands);
c0f3af97
L
7772 }
7773 else
c0f3af97 7774 {
f12dc422
L
7775 /* Check register-only source operand when two source
7776 operands are swapped. */
7777 if (!i.tm.operand_types[op].bitfield.baseindex
7778 && i.tm.operand_types[op + 1].bitfield.baseindex)
7779 {
7780 vex_reg = op;
7781 op += 2;
7782 gas_assert (mem == (vex_reg + 1)
7783 && op < i.operands);
7784 }
7785 else
7786 {
7787 vex_reg = op + 1;
7788 gas_assert (vex_reg < i.operands);
7789 }
c0f3af97 7790 }
7ab9ffdd 7791 }
2426c15f 7792 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7793 {
f12dc422 7794 /* For instructions with VexNDD, the register destination
7ab9ffdd 7795 is encoded in VEX prefix. */
f12dc422
L
7796 if (i.mem_operands == 0)
7797 {
7798 /* There is no memory operand. */
7799 gas_assert ((op + 2) == i.operands);
7800 vex_reg = op + 1;
7801 }
7802 else
8d63c93e 7803 {
ed438a93
JB
7804 /* There are only 2 non-immediate operands. */
7805 gas_assert (op < i.imm_operands + 2
7806 && i.operands == i.imm_operands + 2);
7807 vex_reg = i.imm_operands + 1;
f12dc422 7808 }
7ab9ffdd
L
7809 }
7810 else
7811 gas_assert (op < i.operands);
99018f42 7812
7ab9ffdd
L
7813 if (vex_reg != (unsigned int) ~0)
7814 {
f12dc422 7815 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7816
bab6aec1 7817 if ((type->bitfield.class != Reg
dc821c5f 7818 || (!type->bitfield.dword && !type->bitfield.qword))
3528c362 7819 && type->bitfield.class != RegSIMD
43234a1e 7820 && !operand_type_equal (type, &regmask))
7ab9ffdd 7821 abort ();
f88c9eb0 7822
7ab9ffdd
L
7823 i.vex.register_specifier = i.op[vex_reg].regs;
7824 }
7825
1b9f0c97
L
7826 /* Don't set OP operand twice. */
7827 if (vex_reg != op)
7ab9ffdd 7828 {
1b9f0c97
L
7829 /* If there is an extension opcode to put here, the
7830 register number must be put into the regmem field. */
7831 if (i.tm.extension_opcode != None)
7832 {
7833 i.rm.regmem = i.op[op].regs->reg_num;
7834 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7835 i.rex |= REX_B;
43234a1e
L
7836 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7837 i.vrex |= REX_B;
1b9f0c97
L
7838 }
7839 else
7840 {
7841 i.rm.reg = i.op[op].regs->reg_num;
7842 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7843 i.rex |= REX_R;
43234a1e
L
7844 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7845 i.vrex |= REX_R;
1b9f0c97 7846 }
7ab9ffdd 7847 }
252b5132 7848
29b0f896
AM
7849 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7850 must set it to 3 to indicate this is a register operand
7851 in the regmem field. */
7852 if (!i.mem_operands)
7853 i.rm.mode = 3;
7854 }
252b5132 7855
29b0f896 7856 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7857 if (i.tm.extension_opcode != None)
29b0f896
AM
7858 i.rm.reg = i.tm.extension_opcode;
7859 }
7860 return default_seg;
7861}
252b5132 7862
376cd056
JB
7863static unsigned int
7864flip_code16 (unsigned int code16)
7865{
7866 gas_assert (i.tm.operands == 1);
7867
7868 return !(i.prefix[REX_PREFIX] & REX_W)
7869 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7870 || i.tm.operand_types[0].bitfield.disp32s
7871 : i.tm.operand_types[0].bitfield.disp16)
7872 ? CODE16 : 0;
7873}
7874
29b0f896 7875static void
e3bb37b5 7876output_branch (void)
29b0f896
AM
7877{
7878 char *p;
f8a5c266 7879 int size;
29b0f896
AM
7880 int code16;
7881 int prefix;
7882 relax_substateT subtype;
7883 symbolS *sym;
7884 offsetT off;
7885
f8a5c266 7886 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7887 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7888
7889 prefix = 0;
7890 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7891 {
29b0f896
AM
7892 prefix = 1;
7893 i.prefixes -= 1;
376cd056 7894 code16 ^= flip_code16(code16);
252b5132 7895 }
29b0f896
AM
7896 /* Pentium4 branch hints. */
7897 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7898 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7899 {
29b0f896
AM
7900 prefix++;
7901 i.prefixes--;
7902 }
7903 if (i.prefix[REX_PREFIX] != 0)
7904 {
7905 prefix++;
7906 i.prefixes--;
2f66722d
AM
7907 }
7908
7e8b059b
L
7909 /* BND prefixed jump. */
7910 if (i.prefix[BND_PREFIX] != 0)
7911 {
6cb0a70e
JB
7912 prefix++;
7913 i.prefixes--;
7e8b059b
L
7914 }
7915
f2810fe0
JB
7916 if (i.prefixes != 0)
7917 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
29b0f896
AM
7918
7919 /* It's always a symbol; End frag & setup for relax.
7920 Make sure there is enough room in this frag for the largest
7921 instruction we may generate in md_convert_frag. This is 2
7922 bytes for the opcode and room for the prefix and largest
7923 displacement. */
7924 frag_grow (prefix + 2 + 4);
7925 /* Prefix and 1 opcode byte go in fr_fix. */
7926 p = frag_more (prefix + 1);
7927 if (i.prefix[DATA_PREFIX] != 0)
7928 *p++ = DATA_PREFIX_OPCODE;
7929 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7930 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7931 *p++ = i.prefix[SEG_PREFIX];
6cb0a70e
JB
7932 if (i.prefix[BND_PREFIX] != 0)
7933 *p++ = BND_PREFIX_OPCODE;
29b0f896
AM
7934 if (i.prefix[REX_PREFIX] != 0)
7935 *p++ = i.prefix[REX_PREFIX];
7936 *p = i.tm.base_opcode;
7937
7938 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7939 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7940 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7941 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7942 else
f8a5c266 7943 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7944 subtype |= code16;
3e73aa7c 7945
29b0f896
AM
7946 sym = i.op[0].disps->X_add_symbol;
7947 off = i.op[0].disps->X_add_number;
3e73aa7c 7948
29b0f896
AM
7949 if (i.op[0].disps->X_op != O_constant
7950 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7951 {
29b0f896
AM
7952 /* Handle complex expressions. */
7953 sym = make_expr_symbol (i.op[0].disps);
7954 off = 0;
7955 }
3e73aa7c 7956
29b0f896
AM
7957 /* 1 possible extra opcode + 4 byte displacement go in var part.
7958 Pass reloc in fr_var. */
d258b828 7959 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7960}
3e73aa7c 7961
bd7ab16b
L
7962#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7963/* Return TRUE iff PLT32 relocation should be used for branching to
7964 symbol S. */
7965
7966static bfd_boolean
7967need_plt32_p (symbolS *s)
7968{
7969 /* PLT32 relocation is ELF only. */
7970 if (!IS_ELF)
7971 return FALSE;
7972
a5def729
RO
7973#ifdef TE_SOLARIS
7974 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7975 krtld support it. */
7976 return FALSE;
7977#endif
7978
bd7ab16b
L
7979 /* Since there is no need to prepare for PLT branch on x86-64, we
7980 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7981 be used as a marker for 32-bit PC-relative branches. */
7982 if (!object_64bit)
7983 return FALSE;
7984
7985 /* Weak or undefined symbol need PLT32 relocation. */
7986 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7987 return TRUE;
7988
7989 /* Non-global symbol doesn't need PLT32 relocation. */
7990 if (! S_IS_EXTERNAL (s))
7991 return FALSE;
7992
7993 /* Other global symbols need PLT32 relocation. NB: Symbol with
7994 non-default visibilities are treated as normal global symbol
7995 so that PLT32 relocation can be used as a marker for 32-bit
7996 PC-relative branches. It is useful for linker relaxation. */
7997 return TRUE;
7998}
7999#endif
8000
29b0f896 8001static void
e3bb37b5 8002output_jump (void)
29b0f896
AM
8003{
8004 char *p;
8005 int size;
3e02c1cc 8006 fixS *fixP;
bd7ab16b 8007 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 8008
0cfa3eb3 8009 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
8010 {
8011 /* This is a loop or jecxz type instruction. */
8012 size = 1;
8013 if (i.prefix[ADDR_PREFIX] != 0)
8014 {
8015 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8016 i.prefixes -= 1;
8017 }
8018 /* Pentium4 branch hints. */
8019 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8020 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8021 {
8022 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8023 i.prefixes--;
3e73aa7c
JH
8024 }
8025 }
29b0f896
AM
8026 else
8027 {
8028 int code16;
3e73aa7c 8029
29b0f896
AM
8030 code16 = 0;
8031 if (flag_code == CODE_16BIT)
8032 code16 = CODE16;
3e73aa7c 8033
29b0f896
AM
8034 if (i.prefix[DATA_PREFIX] != 0)
8035 {
8036 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8037 i.prefixes -= 1;
376cd056 8038 code16 ^= flip_code16(code16);
29b0f896 8039 }
252b5132 8040
29b0f896
AM
8041 size = 4;
8042 if (code16)
8043 size = 2;
8044 }
9fcc94b6 8045
6cb0a70e
JB
8046 /* BND prefixed jump. */
8047 if (i.prefix[BND_PREFIX] != 0)
29b0f896 8048 {
6cb0a70e 8049 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
29b0f896
AM
8050 i.prefixes -= 1;
8051 }
252b5132 8052
6cb0a70e 8053 if (i.prefix[REX_PREFIX] != 0)
7e8b059b 8054 {
6cb0a70e 8055 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7e8b059b
L
8056 i.prefixes -= 1;
8057 }
8058
f2810fe0
JB
8059 if (i.prefixes != 0)
8060 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
e0890092 8061
42164a71
L
8062 p = frag_more (i.tm.opcode_length + size);
8063 switch (i.tm.opcode_length)
8064 {
8065 case 2:
8066 *p++ = i.tm.base_opcode >> 8;
1a0670f3 8067 /* Fall through. */
42164a71
L
8068 case 1:
8069 *p++ = i.tm.base_opcode;
8070 break;
8071 default:
8072 abort ();
8073 }
e0890092 8074
bd7ab16b
L
8075#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8076 if (size == 4
8077 && jump_reloc == NO_RELOC
8078 && need_plt32_p (i.op[0].disps->X_add_symbol))
8079 jump_reloc = BFD_RELOC_X86_64_PLT32;
8080#endif
8081
8082 jump_reloc = reloc (size, 1, 1, jump_reloc);
8083
3e02c1cc 8084 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 8085 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
8086
8087 /* All jumps handled here are signed, but don't use a signed limit
8088 check for 32 and 16 bit jumps as we want to allow wrap around at
8089 4G and 64k respectively. */
8090 if (size == 1)
8091 fixP->fx_signed = 1;
29b0f896 8092}
e0890092 8093
29b0f896 8094static void
e3bb37b5 8095output_interseg_jump (void)
29b0f896
AM
8096{
8097 char *p;
8098 int size;
8099 int prefix;
8100 int code16;
252b5132 8101
29b0f896
AM
8102 code16 = 0;
8103 if (flag_code == CODE_16BIT)
8104 code16 = CODE16;
a217f122 8105
29b0f896
AM
8106 prefix = 0;
8107 if (i.prefix[DATA_PREFIX] != 0)
8108 {
8109 prefix = 1;
8110 i.prefixes -= 1;
8111 code16 ^= CODE16;
8112 }
6cb0a70e
JB
8113
8114 gas_assert (!i.prefix[REX_PREFIX]);
252b5132 8115
29b0f896
AM
8116 size = 4;
8117 if (code16)
8118 size = 2;
252b5132 8119
f2810fe0
JB
8120 if (i.prefixes != 0)
8121 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
252b5132 8122
29b0f896
AM
8123 /* 1 opcode; 2 segment; offset */
8124 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8125
29b0f896
AM
8126 if (i.prefix[DATA_PREFIX] != 0)
8127 *p++ = DATA_PREFIX_OPCODE;
252b5132 8128
29b0f896
AM
8129 if (i.prefix[REX_PREFIX] != 0)
8130 *p++ = i.prefix[REX_PREFIX];
252b5132 8131
29b0f896
AM
8132 *p++ = i.tm.base_opcode;
8133 if (i.op[1].imms->X_op == O_constant)
8134 {
8135 offsetT n = i.op[1].imms->X_add_number;
252b5132 8136
29b0f896
AM
8137 if (size == 2
8138 && !fits_in_unsigned_word (n)
8139 && !fits_in_signed_word (n))
8140 {
8141 as_bad (_("16-bit jump out of range"));
8142 return;
8143 }
8144 md_number_to_chars (p, n, size);
8145 }
8146 else
8147 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8148 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8149 if (i.op[0].imms->X_op != O_constant)
8150 as_bad (_("can't handle non absolute segment in `%s'"),
8151 i.tm.name);
8152 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8153}
a217f122 8154
b4a3a7b4
L
8155#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8156void
8157x86_cleanup (void)
8158{
8159 char *p;
8160 asection *seg = now_seg;
8161 subsegT subseg = now_subseg;
8162 asection *sec;
8163 unsigned int alignment, align_size_1;
8164 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8165 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8166 unsigned int padding;
8167
8168 if (!IS_ELF || !x86_used_note)
8169 return;
8170
b4a3a7b4
L
8171 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8172
8173 /* The .note.gnu.property section layout:
8174
8175 Field Length Contents
8176 ---- ---- ----
8177 n_namsz 4 4
8178 n_descsz 4 The note descriptor size
8179 n_type 4 NT_GNU_PROPERTY_TYPE_0
8180 n_name 4 "GNU"
8181 n_desc n_descsz The program property array
8182 .... .... ....
8183 */
8184
8185 /* Create the .note.gnu.property section. */
8186 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8187 bfd_set_section_flags (sec,
b4a3a7b4
L
8188 (SEC_ALLOC
8189 | SEC_LOAD
8190 | SEC_DATA
8191 | SEC_HAS_CONTENTS
8192 | SEC_READONLY));
8193
8194 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8195 {
8196 align_size_1 = 7;
8197 alignment = 3;
8198 }
8199 else
8200 {
8201 align_size_1 = 3;
8202 alignment = 2;
8203 }
8204
fd361982 8205 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8206 elf_section_type (sec) = SHT_NOTE;
8207
8208 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8209 + 4-byte data */
8210 isa_1_descsz_raw = 4 + 4 + 4;
8211 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8212 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8213
8214 feature_2_descsz_raw = isa_1_descsz;
8215 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8216 + 4-byte data */
8217 feature_2_descsz_raw += 4 + 4 + 4;
8218 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8219 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8220 & ~align_size_1);
8221
8222 descsz = feature_2_descsz;
8223 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8224 p = frag_more (4 + 4 + 4 + 4 + descsz);
8225
8226 /* Write n_namsz. */
8227 md_number_to_chars (p, (valueT) 4, 4);
8228
8229 /* Write n_descsz. */
8230 md_number_to_chars (p + 4, (valueT) descsz, 4);
8231
8232 /* Write n_type. */
8233 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8234
8235 /* Write n_name. */
8236 memcpy (p + 4 * 3, "GNU", 4);
8237
8238 /* Write 4-byte type. */
8239 md_number_to_chars (p + 4 * 4,
8240 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8241
8242 /* Write 4-byte data size. */
8243 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8244
8245 /* Write 4-byte data. */
8246 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8247
8248 /* Zero out paddings. */
8249 padding = isa_1_descsz - isa_1_descsz_raw;
8250 if (padding)
8251 memset (p + 4 * 7, 0, padding);
8252
8253 /* Write 4-byte type. */
8254 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8255 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8256
8257 /* Write 4-byte data size. */
8258 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8259
8260 /* Write 4-byte data. */
8261 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8262 (valueT) x86_feature_2_used, 4);
8263
8264 /* Zero out paddings. */
8265 padding = feature_2_descsz - feature_2_descsz_raw;
8266 if (padding)
8267 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8268
8269 /* We probably can't restore the current segment, for there likely
8270 isn't one yet... */
8271 if (seg && subseg)
8272 subseg_set (seg, subseg);
8273}
8274#endif
8275
9c33702b
JB
8276static unsigned int
8277encoding_length (const fragS *start_frag, offsetT start_off,
8278 const char *frag_now_ptr)
8279{
8280 unsigned int len = 0;
8281
8282 if (start_frag != frag_now)
8283 {
8284 const fragS *fr = start_frag;
8285
8286 do {
8287 len += fr->fr_fix;
8288 fr = fr->fr_next;
8289 } while (fr && fr != frag_now);
8290 }
8291
8292 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8293}
8294
e379e5f3
L
8295/* Return 1 for test, and, cmp, add, sub, inc and dec which may
8296 be macro-fused with conditional jumps. */
8297
8298static int
8299maybe_fused_with_jcc_p (void)
8300{
8301 /* No RIP address. */
8302 if (i.base_reg && i.base_reg->reg_num == RegIP)
8303 return 0;
8304
8305 /* No VEX/EVEX encoding. */
8306 if (is_any_vex_encoding (&i.tm))
8307 return 0;
8308
8309 /* and, add, sub with destination register. */
8310 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8311 || i.tm.base_opcode <= 5
8312 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8313 || ((i.tm.base_opcode | 3) == 0x83
8314 && ((i.tm.extension_opcode | 1) == 0x5
8315 || i.tm.extension_opcode == 0x0)))
8316 return (i.types[1].bitfield.class == Reg
8317 || i.types[1].bitfield.instance == Accum);
8318
8319 /* test, cmp with any register. */
8320 if ((i.tm.base_opcode | 1) == 0x85
8321 || (i.tm.base_opcode | 1) == 0xa9
8322 || ((i.tm.base_opcode | 1) == 0xf7
8323 && i.tm.extension_opcode == 0)
8324 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8325 || ((i.tm.base_opcode | 3) == 0x83
8326 && (i.tm.extension_opcode == 0x7)))
8327 return (i.types[0].bitfield.class == Reg
8328 || i.types[0].bitfield.instance == Accum
8329 || i.types[1].bitfield.class == Reg
8330 || i.types[1].bitfield.instance == Accum);
8331
8332 /* inc, dec with any register. */
8333 if ((i.tm.cpu_flags.bitfield.cpuno64
8334 && (i.tm.base_opcode | 0xf) == 0x4f)
8335 || ((i.tm.base_opcode | 1) == 0xff
8336 && i.tm.extension_opcode <= 0x1))
8337 return (i.types[0].bitfield.class == Reg
8338 || i.types[0].bitfield.instance == Accum);
8339
8340 return 0;
8341}
8342
8343/* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8344
8345static int
8346add_fused_jcc_padding_frag_p (void)
8347{
8348 /* NB: Don't work with COND_JUMP86 without i386. */
8349 if (!align_branch_power
8350 || now_seg == absolute_section
8351 || !cpu_arch_flags.bitfield.cpui386
8352 || !(align_branch & align_branch_fused_bit))
8353 return 0;
8354
8355 if (maybe_fused_with_jcc_p ())
8356 {
8357 if (last_insn.kind == last_insn_other
8358 || last_insn.seg != now_seg)
8359 return 1;
8360 if (flag_debug)
8361 as_warn_where (last_insn.file, last_insn.line,
8362 _("`%s` skips -malign-branch-boundary on `%s`"),
8363 last_insn.name, i.tm.name);
8364 }
8365
8366 return 0;
8367}
8368
8369/* Return 1 if a BRANCH_PREFIX frag should be generated. */
8370
8371static int
8372add_branch_prefix_frag_p (void)
8373{
8374 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8375 to PadLock instructions since they include prefixes in opcode. */
8376 if (!align_branch_power
8377 || !align_branch_prefix_size
8378 || now_seg == absolute_section
8379 || i.tm.cpu_flags.bitfield.cpupadlock
8380 || !cpu_arch_flags.bitfield.cpui386)
8381 return 0;
8382
8383 /* Don't add prefix if it is a prefix or there is no operand in case
8384 that segment prefix is special. */
8385 if (!i.operands || i.tm.opcode_modifier.isprefix)
8386 return 0;
8387
8388 if (last_insn.kind == last_insn_other
8389 || last_insn.seg != now_seg)
8390 return 1;
8391
8392 if (flag_debug)
8393 as_warn_where (last_insn.file, last_insn.line,
8394 _("`%s` skips -malign-branch-boundary on `%s`"),
8395 last_insn.name, i.tm.name);
8396
8397 return 0;
8398}
8399
8400/* Return 1 if a BRANCH_PADDING frag should be generated. */
8401
8402static int
8403add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8404{
8405 int add_padding;
8406
8407 /* NB: Don't work with COND_JUMP86 without i386. */
8408 if (!align_branch_power
8409 || now_seg == absolute_section
8410 || !cpu_arch_flags.bitfield.cpui386)
8411 return 0;
8412
8413 add_padding = 0;
8414
8415 /* Check for jcc and direct jmp. */
8416 if (i.tm.opcode_modifier.jump == JUMP)
8417 {
8418 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8419 {
8420 *branch_p = align_branch_jmp;
8421 add_padding = align_branch & align_branch_jmp_bit;
8422 }
8423 else
8424 {
8425 *branch_p = align_branch_jcc;
8426 if ((align_branch & align_branch_jcc_bit))
8427 add_padding = 1;
8428 }
8429 }
8430 else if (is_any_vex_encoding (&i.tm))
8431 return 0;
8432 else if ((i.tm.base_opcode | 1) == 0xc3)
8433 {
8434 /* Near ret. */
8435 *branch_p = align_branch_ret;
8436 if ((align_branch & align_branch_ret_bit))
8437 add_padding = 1;
8438 }
8439 else
8440 {
8441 /* Check for indirect jmp, direct and indirect calls. */
8442 if (i.tm.base_opcode == 0xe8)
8443 {
8444 /* Direct call. */
8445 *branch_p = align_branch_call;
8446 if ((align_branch & align_branch_call_bit))
8447 add_padding = 1;
8448 }
8449 else if (i.tm.base_opcode == 0xff
8450 && (i.tm.extension_opcode == 2
8451 || i.tm.extension_opcode == 4))
8452 {
8453 /* Indirect call and jmp. */
8454 *branch_p = align_branch_indirect;
8455 if ((align_branch & align_branch_indirect_bit))
8456 add_padding = 1;
8457 }
8458
8459 if (add_padding
8460 && i.disp_operands
8461 && tls_get_addr
8462 && (i.op[0].disps->X_op == O_symbol
8463 || (i.op[0].disps->X_op == O_subtract
8464 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8465 {
8466 symbolS *s = i.op[0].disps->X_add_symbol;
8467 /* No padding to call to global or undefined tls_get_addr. */
8468 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8469 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8470 return 0;
8471 }
8472 }
8473
8474 if (add_padding
8475 && last_insn.kind != last_insn_other
8476 && last_insn.seg == now_seg)
8477 {
8478 if (flag_debug)
8479 as_warn_where (last_insn.file, last_insn.line,
8480 _("`%s` skips -malign-branch-boundary on `%s`"),
8481 last_insn.name, i.tm.name);
8482 return 0;
8483 }
8484
8485 return add_padding;
8486}
8487
29b0f896 8488static void
e3bb37b5 8489output_insn (void)
29b0f896 8490{
2bbd9c25
JJ
8491 fragS *insn_start_frag;
8492 offsetT insn_start_off;
e379e5f3
L
8493 fragS *fragP = NULL;
8494 enum align_branch_kind branch = align_branch_none;
2bbd9c25 8495
b4a3a7b4
L
8496#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8497 if (IS_ELF && x86_used_note)
8498 {
8499 if (i.tm.cpu_flags.bitfield.cpucmov)
8500 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8501 if (i.tm.cpu_flags.bitfield.cpusse)
8502 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8503 if (i.tm.cpu_flags.bitfield.cpusse2)
8504 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8505 if (i.tm.cpu_flags.bitfield.cpusse3)
8506 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8507 if (i.tm.cpu_flags.bitfield.cpussse3)
8508 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8509 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8510 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8511 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8512 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8513 if (i.tm.cpu_flags.bitfield.cpuavx)
8514 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8515 if (i.tm.cpu_flags.bitfield.cpuavx2)
8516 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8517 if (i.tm.cpu_flags.bitfield.cpufma)
8518 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8519 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8520 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8521 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8522 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8523 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8524 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8525 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8526 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8527 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8528 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8529 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8530 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8531 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8532 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8533 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8534 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8535 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8536 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8537 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8538 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8539 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8540 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8541 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8542 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8543 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8544 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8545 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8546 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8547 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8548 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8549
8550 if (i.tm.cpu_flags.bitfield.cpu8087
8551 || i.tm.cpu_flags.bitfield.cpu287
8552 || i.tm.cpu_flags.bitfield.cpu387
8553 || i.tm.cpu_flags.bitfield.cpu687
8554 || i.tm.cpu_flags.bitfield.cpufisttp)
8555 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
319ff62c
JB
8556 if (i.has_regmmx
8557 || i.tm.base_opcode == 0xf77 /* emms */
8558 || i.tm.base_opcode == 0xf0e /* femms */)
b4a3a7b4
L
8559 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8560 if (i.has_regxmm)
8561 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8562 if (i.has_regymm)
8563 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8564 if (i.has_regzmm)
8565 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8566 if (i.tm.cpu_flags.bitfield.cpufxsr)
8567 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8568 if (i.tm.cpu_flags.bitfield.cpuxsave)
8569 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8570 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8571 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8572 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8573 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8574 }
8575#endif
8576
29b0f896
AM
8577 /* Tie dwarf2 debug info to the address at the start of the insn.
8578 We can't do this after the insn has been output as the current
8579 frag may have been closed off. eg. by frag_var. */
8580 dwarf2_emit_insn (0);
8581
2bbd9c25
JJ
8582 insn_start_frag = frag_now;
8583 insn_start_off = frag_now_fix ();
8584
e379e5f3
L
8585 if (add_branch_padding_frag_p (&branch))
8586 {
8587 char *p;
8588 /* Branch can be 8 bytes. Leave some room for prefixes. */
8589 unsigned int max_branch_padding_size = 14;
8590
8591 /* Align section to boundary. */
8592 record_alignment (now_seg, align_branch_power);
8593
8594 /* Make room for padding. */
8595 frag_grow (max_branch_padding_size);
8596
8597 /* Start of the padding. */
8598 p = frag_more (0);
8599
8600 fragP = frag_now;
8601
8602 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8603 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8604 NULL, 0, p);
8605
8606 fragP->tc_frag_data.branch_type = branch;
8607 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8608 }
8609
29b0f896 8610 /* Output jumps. */
0cfa3eb3 8611 if (i.tm.opcode_modifier.jump == JUMP)
29b0f896 8612 output_branch ();
0cfa3eb3
JB
8613 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8614 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896 8615 output_jump ();
0cfa3eb3 8616 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
29b0f896
AM
8617 output_interseg_jump ();
8618 else
8619 {
8620 /* Output normal instructions here. */
8621 char *p;
8622 unsigned char *q;
47465058 8623 unsigned int j;
331d2d0d 8624 unsigned int prefix;
4dffcebc 8625
e4e00185 8626 if (avoid_fence
c3949f43
JB
8627 && (i.tm.base_opcode == 0xfaee8
8628 || i.tm.base_opcode == 0xfaef0
8629 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8630 {
8631 /* Encode lfence, mfence, and sfence as
8632 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8633 offsetT val = 0x240483f0ULL;
8634 p = frag_more (5);
8635 md_number_to_chars (p, val, 5);
8636 return;
8637 }
8638
d022bddd
IT
8639 /* Some processors fail on LOCK prefix. This options makes
8640 assembler ignore LOCK prefix and serves as a workaround. */
8641 if (omit_lock_prefix)
8642 {
8643 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8644 return;
8645 i.prefix[LOCK_PREFIX] = 0;
8646 }
8647
e379e5f3
L
8648 if (branch)
8649 /* Skip if this is a branch. */
8650 ;
8651 else if (add_fused_jcc_padding_frag_p ())
8652 {
8653 /* Make room for padding. */
8654 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8655 p = frag_more (0);
8656
8657 fragP = frag_now;
8658
8659 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8660 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8661 NULL, 0, p);
8662
8663 fragP->tc_frag_data.branch_type = align_branch_fused;
8664 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8665 }
8666 else if (add_branch_prefix_frag_p ())
8667 {
8668 unsigned int max_prefix_size = align_branch_prefix_size;
8669
8670 /* Make room for padding. */
8671 frag_grow (max_prefix_size);
8672 p = frag_more (0);
8673
8674 fragP = frag_now;
8675
8676 frag_var (rs_machine_dependent, max_prefix_size, 0,
8677 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8678 NULL, 0, p);
8679
8680 fragP->tc_frag_data.max_bytes = max_prefix_size;
8681 }
8682
43234a1e
L
8683 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8684 don't need the explicit prefix. */
8685 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8686 {
c0f3af97 8687 switch (i.tm.opcode_length)
bc4bd9ab 8688 {
c0f3af97
L
8689 case 3:
8690 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8691 {
c0f3af97 8692 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8693 if (!i.tm.cpu_flags.bitfield.cpupadlock
8694 || prefix != REPE_PREFIX_OPCODE
8695 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8696 add_prefix (prefix);
c0f3af97
L
8697 }
8698 break;
8699 case 2:
8700 if ((i.tm.base_opcode & 0xff0000) != 0)
8701 {
8702 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8703 add_prefix (prefix);
4dffcebc 8704 }
c0f3af97
L
8705 break;
8706 case 1:
8707 break;
390c91cf
L
8708 case 0:
8709 /* Check for pseudo prefixes. */
8710 as_bad_where (insn_start_frag->fr_file,
8711 insn_start_frag->fr_line,
8712 _("pseudo prefix without instruction"));
8713 return;
c0f3af97
L
8714 default:
8715 abort ();
bc4bd9ab 8716 }
c0f3af97 8717
6d19a37a 8718#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8719 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8720 R_X86_64_GOTTPOFF relocation so that linker can safely
8721 perform IE->LE optimization. */
8722 if (x86_elf_abi == X86_64_X32_ABI
8723 && i.operands == 2
8724 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8725 && i.prefix[REX_PREFIX] == 0)
8726 add_prefix (REX_OPCODE);
6d19a37a 8727#endif
cf61b747 8728
c0f3af97
L
8729 /* The prefix bytes. */
8730 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8731 if (*q)
8732 FRAG_APPEND_1_CHAR (*q);
0f10071e 8733 }
ae5c1c7b 8734 else
c0f3af97
L
8735 {
8736 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8737 if (*q)
8738 switch (j)
8739 {
8740 case REX_PREFIX:
8741 /* REX byte is encoded in VEX prefix. */
8742 break;
8743 case SEG_PREFIX:
8744 case ADDR_PREFIX:
8745 FRAG_APPEND_1_CHAR (*q);
8746 break;
8747 default:
8748 /* There should be no other prefixes for instructions
8749 with VEX prefix. */
8750 abort ();
8751 }
8752
43234a1e
L
8753 /* For EVEX instructions i.vrex should become 0 after
8754 build_evex_prefix. For VEX instructions upper 16 registers
8755 aren't available, so VREX should be 0. */
8756 if (i.vrex)
8757 abort ();
c0f3af97
L
8758 /* Now the VEX prefix. */
8759 p = frag_more (i.vex.length);
8760 for (j = 0; j < i.vex.length; j++)
8761 p[j] = i.vex.bytes[j];
8762 }
252b5132 8763
29b0f896 8764 /* Now the opcode; be careful about word order here! */
4dffcebc 8765 if (i.tm.opcode_length == 1)
29b0f896
AM
8766 {
8767 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8768 }
8769 else
8770 {
4dffcebc 8771 switch (i.tm.opcode_length)
331d2d0d 8772 {
43234a1e
L
8773 case 4:
8774 p = frag_more (4);
8775 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8776 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8777 break;
4dffcebc 8778 case 3:
331d2d0d
L
8779 p = frag_more (3);
8780 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8781 break;
8782 case 2:
8783 p = frag_more (2);
8784 break;
8785 default:
8786 abort ();
8787 break;
331d2d0d 8788 }
0f10071e 8789
29b0f896
AM
8790 /* Put out high byte first: can't use md_number_to_chars! */
8791 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8792 *p = i.tm.base_opcode & 0xff;
8793 }
3e73aa7c 8794
29b0f896 8795 /* Now the modrm byte and sib byte (if present). */
40fb9820 8796 if (i.tm.opcode_modifier.modrm)
29b0f896 8797 {
4a3523fa
L
8798 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8799 | i.rm.reg << 3
8800 | i.rm.mode << 6));
29b0f896
AM
8801 /* If i.rm.regmem == ESP (4)
8802 && i.rm.mode != (Register mode)
8803 && not 16 bit
8804 ==> need second modrm byte. */
8805 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8806 && i.rm.mode != 3
dc821c5f 8807 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8808 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8809 | i.sib.index << 3
8810 | i.sib.scale << 6));
29b0f896 8811 }
3e73aa7c 8812
29b0f896 8813 if (i.disp_operands)
2bbd9c25 8814 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8815
29b0f896 8816 if (i.imm_operands)
2bbd9c25 8817 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8818
8819 /*
8820 * frag_now_fix () returning plain abs_section_offset when we're in the
8821 * absolute section, and abs_section_offset not getting updated as data
8822 * gets added to the frag breaks the logic below.
8823 */
8824 if (now_seg != absolute_section)
8825 {
8826 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8827 if (j > 15)
8828 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8829 j);
e379e5f3
L
8830 else if (fragP)
8831 {
8832 /* NB: Don't add prefix with GOTPC relocation since
8833 output_disp() above depends on the fixed encoding
8834 length. Can't add prefix with TLS relocation since
8835 it breaks TLS linker optimization. */
8836 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8837 /* Prefix count on the current instruction. */
8838 unsigned int count = i.vex.length;
8839 unsigned int k;
8840 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8841 /* REX byte is encoded in VEX/EVEX prefix. */
8842 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8843 count++;
8844
8845 /* Count prefixes for extended opcode maps. */
8846 if (!i.vex.length)
8847 switch (i.tm.opcode_length)
8848 {
8849 case 3:
8850 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8851 {
8852 count++;
8853 switch ((i.tm.base_opcode >> 8) & 0xff)
8854 {
8855 case 0x38:
8856 case 0x3a:
8857 count++;
8858 break;
8859 default:
8860 break;
8861 }
8862 }
8863 break;
8864 case 2:
8865 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8866 count++;
8867 break;
8868 case 1:
8869 break;
8870 default:
8871 abort ();
8872 }
8873
8874 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8875 == BRANCH_PREFIX)
8876 {
8877 /* Set the maximum prefix size in BRANCH_PREFIX
8878 frag. */
8879 if (fragP->tc_frag_data.max_bytes > max)
8880 fragP->tc_frag_data.max_bytes = max;
8881 if (fragP->tc_frag_data.max_bytes > count)
8882 fragP->tc_frag_data.max_bytes -= count;
8883 else
8884 fragP->tc_frag_data.max_bytes = 0;
8885 }
8886 else
8887 {
8888 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8889 frag. */
8890 unsigned int max_prefix_size;
8891 if (align_branch_prefix_size > max)
8892 max_prefix_size = max;
8893 else
8894 max_prefix_size = align_branch_prefix_size;
8895 if (max_prefix_size > count)
8896 fragP->tc_frag_data.max_prefix_length
8897 = max_prefix_size - count;
8898 }
8899
8900 /* Use existing segment prefix if possible. Use CS
8901 segment prefix in 64-bit mode. In 32-bit mode, use SS
8902 segment prefix with ESP/EBP base register and use DS
8903 segment prefix without ESP/EBP base register. */
8904 if (i.prefix[SEG_PREFIX])
8905 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8906 else if (flag_code == CODE_64BIT)
8907 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8908 else if (i.base_reg
8909 && (i.base_reg->reg_num == 4
8910 || i.base_reg->reg_num == 5))
8911 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8912 else
8913 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8914 }
9c33702b 8915 }
29b0f896 8916 }
252b5132 8917
e379e5f3
L
8918 /* NB: Don't work with COND_JUMP86 without i386. */
8919 if (align_branch_power
8920 && now_seg != absolute_section
8921 && cpu_arch_flags.bitfield.cpui386)
8922 {
8923 /* Terminate each frag so that we can add prefix and check for
8924 fused jcc. */
8925 frag_wane (frag_now);
8926 frag_new (0);
8927 }
8928
29b0f896
AM
8929#ifdef DEBUG386
8930 if (flag_debug)
8931 {
7b81dfbb 8932 pi ("" /*line*/, &i);
29b0f896
AM
8933 }
8934#endif /* DEBUG386 */
8935}
252b5132 8936
e205caa7
L
8937/* Return the size of the displacement operand N. */
8938
8939static int
8940disp_size (unsigned int n)
8941{
8942 int size = 4;
43234a1e 8943
b5014f7a 8944 if (i.types[n].bitfield.disp64)
40fb9820
L
8945 size = 8;
8946 else if (i.types[n].bitfield.disp8)
8947 size = 1;
8948 else if (i.types[n].bitfield.disp16)
8949 size = 2;
e205caa7
L
8950 return size;
8951}
8952
8953/* Return the size of the immediate operand N. */
8954
8955static int
8956imm_size (unsigned int n)
8957{
8958 int size = 4;
40fb9820
L
8959 if (i.types[n].bitfield.imm64)
8960 size = 8;
8961 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8962 size = 1;
8963 else if (i.types[n].bitfield.imm16)
8964 size = 2;
e205caa7
L
8965 return size;
8966}
8967
29b0f896 8968static void
64e74474 8969output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8970{
8971 char *p;
8972 unsigned int n;
252b5132 8973
29b0f896
AM
8974 for (n = 0; n < i.operands; n++)
8975 {
b5014f7a 8976 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8977 {
8978 if (i.op[n].disps->X_op == O_constant)
8979 {
e205caa7 8980 int size = disp_size (n);
43234a1e 8981 offsetT val = i.op[n].disps->X_add_number;
252b5132 8982
629cfaf1
JB
8983 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8984 size);
29b0f896
AM
8985 p = frag_more (size);
8986 md_number_to_chars (p, val, size);
8987 }
8988 else
8989 {
f86103b7 8990 enum bfd_reloc_code_real reloc_type;
e205caa7 8991 int size = disp_size (n);
40fb9820 8992 int sign = i.types[n].bitfield.disp32s;
29b0f896 8993 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8994 fixS *fixP;
29b0f896 8995
e205caa7 8996 /* We can't have 8 bit displacement here. */
9c2799c2 8997 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8998
29b0f896
AM
8999 /* The PC relative address is computed relative
9000 to the instruction boundary, so in case immediate
9001 fields follows, we need to adjust the value. */
9002 if (pcrel && i.imm_operands)
9003 {
29b0f896 9004 unsigned int n1;
e205caa7 9005 int sz = 0;
252b5132 9006
29b0f896 9007 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 9008 if (operand_type_check (i.types[n1], imm))
252b5132 9009 {
e205caa7
L
9010 /* Only one immediate is allowed for PC
9011 relative address. */
9c2799c2 9012 gas_assert (sz == 0);
e205caa7
L
9013 sz = imm_size (n1);
9014 i.op[n].disps->X_add_number -= sz;
252b5132 9015 }
29b0f896 9016 /* We should find the immediate. */
9c2799c2 9017 gas_assert (sz != 0);
29b0f896 9018 }
520dc8e8 9019
29b0f896 9020 p = frag_more (size);
d258b828 9021 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 9022 if (GOT_symbol
2bbd9c25 9023 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 9024 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9025 || reloc_type == BFD_RELOC_X86_64_32S
9026 || (reloc_type == BFD_RELOC_64
9027 && object_64bit))
d6ab8113
JB
9028 && (i.op[n].disps->X_op == O_symbol
9029 || (i.op[n].disps->X_op == O_add
9030 && ((symbol_get_value_expression
9031 (i.op[n].disps->X_op_symbol)->X_op)
9032 == O_subtract))))
9033 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 9034 {
4fa24527 9035 if (!object_64bit)
7b81dfbb
AJ
9036 {
9037 reloc_type = BFD_RELOC_386_GOTPC;
e379e5f3 9038 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9039 i.op[n].imms->X_add_number +=
9040 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
9041 }
9042 else if (reloc_type == BFD_RELOC_64)
9043 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 9044 else
7b81dfbb
AJ
9045 /* Don't do the adjustment for x86-64, as there
9046 the pcrel addressing is relative to the _next_
9047 insn, and that is taken care of in other code. */
d6ab8113 9048 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 9049 }
e379e5f3
L
9050 else if (align_branch_power)
9051 {
9052 switch (reloc_type)
9053 {
9054 case BFD_RELOC_386_TLS_GD:
9055 case BFD_RELOC_386_TLS_LDM:
9056 case BFD_RELOC_386_TLS_IE:
9057 case BFD_RELOC_386_TLS_IE_32:
9058 case BFD_RELOC_386_TLS_GOTIE:
9059 case BFD_RELOC_386_TLS_GOTDESC:
9060 case BFD_RELOC_386_TLS_DESC_CALL:
9061 case BFD_RELOC_X86_64_TLSGD:
9062 case BFD_RELOC_X86_64_TLSLD:
9063 case BFD_RELOC_X86_64_GOTTPOFF:
9064 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9065 case BFD_RELOC_X86_64_TLSDESC_CALL:
9066 i.has_gotpc_tls_reloc = TRUE;
9067 default:
9068 break;
9069 }
9070 }
02a86693
L
9071 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9072 size, i.op[n].disps, pcrel,
9073 reloc_type);
9074 /* Check for "call/jmp *mem", "mov mem, %reg",
9075 "test %reg, mem" and "binop mem, %reg" where binop
9076 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
9077 instructions without data prefix. Always generate
9078 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9079 if (i.prefix[DATA_PREFIX] == 0
9080 && (generate_relax_relocations
9081 || (!object_64bit
9082 && i.rm.mode == 0
9083 && i.rm.regmem == 5))
0cb4071e
L
9084 && (i.rm.mode == 2
9085 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
9086 && ((i.operands == 1
9087 && i.tm.base_opcode == 0xff
9088 && (i.rm.reg == 2 || i.rm.reg == 4))
9089 || (i.operands == 2
9090 && (i.tm.base_opcode == 0x8b
9091 || i.tm.base_opcode == 0x85
9092 || (i.tm.base_opcode & 0xc7) == 0x03))))
9093 {
9094 if (object_64bit)
9095 {
9096 fixP->fx_tcbit = i.rex != 0;
9097 if (i.base_reg
e968fc9b 9098 && (i.base_reg->reg_num == RegIP))
02a86693
L
9099 fixP->fx_tcbit2 = 1;
9100 }
9101 else
9102 fixP->fx_tcbit2 = 1;
9103 }
29b0f896
AM
9104 }
9105 }
9106 }
9107}
252b5132 9108
29b0f896 9109static void
64e74474 9110output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9111{
9112 char *p;
9113 unsigned int n;
252b5132 9114
29b0f896
AM
9115 for (n = 0; n < i.operands; n++)
9116 {
43234a1e
L
9117 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9118 if (i.rounding && (int) n == i.rounding->operand)
9119 continue;
9120
40fb9820 9121 if (operand_type_check (i.types[n], imm))
29b0f896
AM
9122 {
9123 if (i.op[n].imms->X_op == O_constant)
9124 {
e205caa7 9125 int size = imm_size (n);
29b0f896 9126 offsetT val;
b4cac588 9127
29b0f896
AM
9128 val = offset_in_range (i.op[n].imms->X_add_number,
9129 size);
9130 p = frag_more (size);
9131 md_number_to_chars (p, val, size);
9132 }
9133 else
9134 {
9135 /* Not absolute_section.
9136 Need a 32-bit fixup (don't support 8bit
9137 non-absolute imms). Try to support other
9138 sizes ... */
f86103b7 9139 enum bfd_reloc_code_real reloc_type;
e205caa7
L
9140 int size = imm_size (n);
9141 int sign;
29b0f896 9142
40fb9820 9143 if (i.types[n].bitfield.imm32s
a7d61044 9144 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 9145 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 9146 sign = 1;
e205caa7
L
9147 else
9148 sign = 0;
520dc8e8 9149
29b0f896 9150 p = frag_more (size);
d258b828 9151 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 9152
2bbd9c25
JJ
9153 /* This is tough to explain. We end up with this one if we
9154 * have operands that look like
9155 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9156 * obtain the absolute address of the GOT, and it is strongly
9157 * preferable from a performance point of view to avoid using
9158 * a runtime relocation for this. The actual sequence of
9159 * instructions often look something like:
9160 *
9161 * call .L66
9162 * .L66:
9163 * popl %ebx
9164 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9165 *
9166 * The call and pop essentially return the absolute address
9167 * of the label .L66 and store it in %ebx. The linker itself
9168 * will ultimately change the first operand of the addl so
9169 * that %ebx points to the GOT, but to keep things simple, the
9170 * .o file must have this operand set so that it generates not
9171 * the absolute address of .L66, but the absolute address of
9172 * itself. This allows the linker itself simply treat a GOTPC
9173 * relocation as asking for a pcrel offset to the GOT to be
9174 * added in, and the addend of the relocation is stored in the
9175 * operand field for the instruction itself.
9176 *
9177 * Our job here is to fix the operand so that it would add
9178 * the correct offset so that %ebx would point to itself. The
9179 * thing that is tricky is that .-.L66 will point to the
9180 * beginning of the instruction, so we need to further modify
9181 * the operand so that it will point to itself. There are
9182 * other cases where you have something like:
9183 *
9184 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9185 *
9186 * and here no correction would be required. Internally in
9187 * the assembler we treat operands of this form as not being
9188 * pcrel since the '.' is explicitly mentioned, and I wonder
9189 * whether it would simplify matters to do it this way. Who
9190 * knows. In earlier versions of the PIC patches, the
9191 * pcrel_adjust field was used to store the correction, but
9192 * since the expression is not pcrel, I felt it would be
9193 * confusing to do it this way. */
9194
d6ab8113 9195 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9196 || reloc_type == BFD_RELOC_X86_64_32S
9197 || reloc_type == BFD_RELOC_64)
29b0f896
AM
9198 && GOT_symbol
9199 && GOT_symbol == i.op[n].imms->X_add_symbol
9200 && (i.op[n].imms->X_op == O_symbol
9201 || (i.op[n].imms->X_op == O_add
9202 && ((symbol_get_value_expression
9203 (i.op[n].imms->X_op_symbol)->X_op)
9204 == O_subtract))))
9205 {
4fa24527 9206 if (!object_64bit)
d6ab8113 9207 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 9208 else if (size == 4)
d6ab8113 9209 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
9210 else if (size == 8)
9211 reloc_type = BFD_RELOC_X86_64_GOTPC64;
e379e5f3 9212 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9213 i.op[n].imms->X_add_number +=
9214 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 9215 }
29b0f896
AM
9216 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9217 i.op[n].imms, 0, reloc_type);
9218 }
9219 }
9220 }
252b5132
RH
9221}
9222\f
d182319b
JB
9223/* x86_cons_fix_new is called via the expression parsing code when a
9224 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
9225static int cons_sign = -1;
9226
9227void
e3bb37b5 9228x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 9229 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 9230{
d258b828 9231 r = reloc (len, 0, cons_sign, r);
d182319b
JB
9232
9233#ifdef TE_PE
9234 if (exp->X_op == O_secrel)
9235 {
9236 exp->X_op = O_symbol;
9237 r = BFD_RELOC_32_SECREL;
9238 }
9239#endif
9240
9241 fix_new_exp (frag, off, len, exp, 0, r);
9242}
9243
357d1bd8
L
9244/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9245 purpose of the `.dc.a' internal pseudo-op. */
9246
9247int
9248x86_address_bytes (void)
9249{
9250 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9251 return 4;
9252 return stdoutput->arch_info->bits_per_address / 8;
9253}
9254
d382c579
TG
9255#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9256 || defined (LEX_AT)
d258b828 9257# define lex_got(reloc, adjust, types) NULL
718ddfc0 9258#else
f3c180ae
AM
9259/* Parse operands of the form
9260 <symbol>@GOTOFF+<nnn>
9261 and similar .plt or .got references.
9262
9263 If we find one, set up the correct relocation in RELOC and copy the
9264 input string, minus the `@GOTOFF' into a malloc'd buffer for
9265 parsing by the calling routine. Return this buffer, and if ADJUST
9266 is non-null set it to the length of the string we removed from the
9267 input line. Otherwise return NULL. */
9268static char *
91d6fa6a 9269lex_got (enum bfd_reloc_code_real *rel,
64e74474 9270 int *adjust,
d258b828 9271 i386_operand_type *types)
f3c180ae 9272{
7b81dfbb
AJ
9273 /* Some of the relocations depend on the size of what field is to
9274 be relocated. But in our callers i386_immediate and i386_displacement
9275 we don't yet know the operand size (this will be set by insn
9276 matching). Hence we record the word32 relocation here,
9277 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
9278 static const struct {
9279 const char *str;
cff8d58a 9280 int len;
4fa24527 9281 const enum bfd_reloc_code_real rel[2];
40fb9820 9282 const i386_operand_type types64;
f3c180ae 9283 } gotrel[] = {
8ce3d284 9284#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
9285 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9286 BFD_RELOC_SIZE32 },
9287 OPERAND_TYPE_IMM32_64 },
8ce3d284 9288#endif
cff8d58a
L
9289 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9290 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 9291 OPERAND_TYPE_IMM64 },
cff8d58a
L
9292 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9293 BFD_RELOC_X86_64_PLT32 },
40fb9820 9294 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9295 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9296 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 9297 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9298 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9299 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 9300 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9301 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9302 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 9303 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9304 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9305 BFD_RELOC_X86_64_TLSGD },
40fb9820 9306 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9307 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9308 _dummy_first_bfd_reloc_code_real },
40fb9820 9309 OPERAND_TYPE_NONE },
cff8d58a
L
9310 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9311 BFD_RELOC_X86_64_TLSLD },
40fb9820 9312 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9313 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9314 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 9315 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9316 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9317 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 9318 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9319 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9320 _dummy_first_bfd_reloc_code_real },
40fb9820 9321 OPERAND_TYPE_NONE },
cff8d58a
L
9322 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9323 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 9324 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9325 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9326 _dummy_first_bfd_reloc_code_real },
40fb9820 9327 OPERAND_TYPE_NONE },
cff8d58a
L
9328 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9329 _dummy_first_bfd_reloc_code_real },
40fb9820 9330 OPERAND_TYPE_NONE },
cff8d58a
L
9331 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9332 BFD_RELOC_X86_64_GOT32 },
40fb9820 9333 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
9334 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9335 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 9336 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9337 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9338 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 9339 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
9340 };
9341 char *cp;
9342 unsigned int j;
9343
d382c579 9344#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
9345 if (!IS_ELF)
9346 return NULL;
d382c579 9347#endif
718ddfc0 9348
f3c180ae 9349 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 9350 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
9351 return NULL;
9352
47465058 9353 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 9354 {
cff8d58a 9355 int len = gotrel[j].len;
28f81592 9356 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 9357 {
4fa24527 9358 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 9359 {
28f81592
AM
9360 int first, second;
9361 char *tmpbuf, *past_reloc;
f3c180ae 9362
91d6fa6a 9363 *rel = gotrel[j].rel[object_64bit];
f3c180ae 9364
3956db08
JB
9365 if (types)
9366 {
9367 if (flag_code != CODE_64BIT)
40fb9820
L
9368 {
9369 types->bitfield.imm32 = 1;
9370 types->bitfield.disp32 = 1;
9371 }
3956db08
JB
9372 else
9373 *types = gotrel[j].types64;
9374 }
9375
8fd4256d 9376 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
9377 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9378
28f81592 9379 /* The length of the first part of our input line. */
f3c180ae 9380 first = cp - input_line_pointer;
28f81592
AM
9381
9382 /* The second part goes from after the reloc token until
67c11a9b 9383 (and including) an end_of_line char or comma. */
28f81592 9384 past_reloc = cp + 1 + len;
67c11a9b
AM
9385 cp = past_reloc;
9386 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9387 ++cp;
9388 second = cp + 1 - past_reloc;
28f81592
AM
9389
9390 /* Allocate and copy string. The trailing NUL shouldn't
9391 be necessary, but be safe. */
add39d23 9392 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 9393 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
9394 if (second != 0 && *past_reloc != ' ')
9395 /* Replace the relocation token with ' ', so that
9396 errors like foo@GOTOFF1 will be detected. */
9397 tmpbuf[first++] = ' ';
af89796a
L
9398 else
9399 /* Increment length by 1 if the relocation token is
9400 removed. */
9401 len++;
9402 if (adjust)
9403 *adjust = len;
0787a12d
AM
9404 memcpy (tmpbuf + first, past_reloc, second);
9405 tmpbuf[first + second] = '\0';
f3c180ae
AM
9406 return tmpbuf;
9407 }
9408
4fa24527
JB
9409 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9410 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
9411 return NULL;
9412 }
9413 }
9414
9415 /* Might be a symbol version string. Don't as_bad here. */
9416 return NULL;
9417}
4e4f7c87 9418#endif
f3c180ae 9419
a988325c
NC
9420#ifdef TE_PE
9421#ifdef lex_got
9422#undef lex_got
9423#endif
9424/* Parse operands of the form
9425 <symbol>@SECREL32+<nnn>
9426
9427 If we find one, set up the correct relocation in RELOC and copy the
9428 input string, minus the `@SECREL32' into a malloc'd buffer for
9429 parsing by the calling routine. Return this buffer, and if ADJUST
9430 is non-null set it to the length of the string we removed from the
34bca508
L
9431 input line. Otherwise return NULL.
9432
a988325c
NC
9433 This function is copied from the ELF version above adjusted for PE targets. */
9434
9435static char *
9436lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9437 int *adjust ATTRIBUTE_UNUSED,
d258b828 9438 i386_operand_type *types)
a988325c
NC
9439{
9440 static const struct
9441 {
9442 const char *str;
9443 int len;
9444 const enum bfd_reloc_code_real rel[2];
9445 const i386_operand_type types64;
9446 }
9447 gotrel[] =
9448 {
9449 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9450 BFD_RELOC_32_SECREL },
9451 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9452 };
9453
9454 char *cp;
9455 unsigned j;
9456
9457 for (cp = input_line_pointer; *cp != '@'; cp++)
9458 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9459 return NULL;
9460
9461 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9462 {
9463 int len = gotrel[j].len;
9464
9465 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9466 {
9467 if (gotrel[j].rel[object_64bit] != 0)
9468 {
9469 int first, second;
9470 char *tmpbuf, *past_reloc;
9471
9472 *rel = gotrel[j].rel[object_64bit];
9473 if (adjust)
9474 *adjust = len;
9475
9476 if (types)
9477 {
9478 if (flag_code != CODE_64BIT)
9479 {
9480 types->bitfield.imm32 = 1;
9481 types->bitfield.disp32 = 1;
9482 }
9483 else
9484 *types = gotrel[j].types64;
9485 }
9486
9487 /* The length of the first part of our input line. */
9488 first = cp - input_line_pointer;
9489
9490 /* The second part goes from after the reloc token until
9491 (and including) an end_of_line char or comma. */
9492 past_reloc = cp + 1 + len;
9493 cp = past_reloc;
9494 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9495 ++cp;
9496 second = cp + 1 - past_reloc;
9497
9498 /* Allocate and copy string. The trailing NUL shouldn't
9499 be necessary, but be safe. */
add39d23 9500 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9501 memcpy (tmpbuf, input_line_pointer, first);
9502 if (second != 0 && *past_reloc != ' ')
9503 /* Replace the relocation token with ' ', so that
9504 errors like foo@SECLREL321 will be detected. */
9505 tmpbuf[first++] = ' ';
9506 memcpy (tmpbuf + first, past_reloc, second);
9507 tmpbuf[first + second] = '\0';
9508 return tmpbuf;
9509 }
9510
9511 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9512 gotrel[j].str, 1 << (5 + object_64bit));
9513 return NULL;
9514 }
9515 }
9516
9517 /* Might be a symbol version string. Don't as_bad here. */
9518 return NULL;
9519}
9520
9521#endif /* TE_PE */
9522
62ebcb5c 9523bfd_reloc_code_real_type
e3bb37b5 9524x86_cons (expressionS *exp, int size)
f3c180ae 9525{
62ebcb5c
AM
9526 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9527
ee86248c
JB
9528 intel_syntax = -intel_syntax;
9529
3c7b9c2c 9530 exp->X_md = 0;
4fa24527 9531 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9532 {
9533 /* Handle @GOTOFF and the like in an expression. */
9534 char *save;
9535 char *gotfree_input_line;
4a57f2cf 9536 int adjust = 0;
f3c180ae
AM
9537
9538 save = input_line_pointer;
d258b828 9539 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9540 if (gotfree_input_line)
9541 input_line_pointer = gotfree_input_line;
9542
9543 expression (exp);
9544
9545 if (gotfree_input_line)
9546 {
9547 /* expression () has merrily parsed up to the end of line,
9548 or a comma - in the wrong buffer. Transfer how far
9549 input_line_pointer has moved to the right buffer. */
9550 input_line_pointer = (save
9551 + (input_line_pointer - gotfree_input_line)
9552 + adjust);
9553 free (gotfree_input_line);
3992d3b7
AM
9554 if (exp->X_op == O_constant
9555 || exp->X_op == O_absent
9556 || exp->X_op == O_illegal
0398aac5 9557 || exp->X_op == O_register
3992d3b7
AM
9558 || exp->X_op == O_big)
9559 {
9560 char c = *input_line_pointer;
9561 *input_line_pointer = 0;
9562 as_bad (_("missing or invalid expression `%s'"), save);
9563 *input_line_pointer = c;
9564 }
b9519cfe
L
9565 else if ((got_reloc == BFD_RELOC_386_PLT32
9566 || got_reloc == BFD_RELOC_X86_64_PLT32)
9567 && exp->X_op != O_symbol)
9568 {
9569 char c = *input_line_pointer;
9570 *input_line_pointer = 0;
9571 as_bad (_("invalid PLT expression `%s'"), save);
9572 *input_line_pointer = c;
9573 }
f3c180ae
AM
9574 }
9575 }
9576 else
9577 expression (exp);
ee86248c
JB
9578
9579 intel_syntax = -intel_syntax;
9580
9581 if (intel_syntax)
9582 i386_intel_simplify (exp);
62ebcb5c
AM
9583
9584 return got_reloc;
f3c180ae 9585}
f3c180ae 9586
9f32dd5b
L
9587static void
9588signed_cons (int size)
6482c264 9589{
d182319b
JB
9590 if (flag_code == CODE_64BIT)
9591 cons_sign = 1;
9592 cons (size);
9593 cons_sign = -1;
6482c264
NC
9594}
9595
d182319b 9596#ifdef TE_PE
6482c264 9597static void
7016a5d5 9598pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9599{
9600 expressionS exp;
9601
9602 do
9603 {
9604 expression (&exp);
9605 if (exp.X_op == O_symbol)
9606 exp.X_op = O_secrel;
9607
9608 emit_expr (&exp, 4);
9609 }
9610 while (*input_line_pointer++ == ',');
9611
9612 input_line_pointer--;
9613 demand_empty_rest_of_line ();
9614}
6482c264
NC
9615#endif
9616
43234a1e
L
9617/* Handle Vector operations. */
9618
9619static char *
9620check_VecOperations (char *op_string, char *op_end)
9621{
9622 const reg_entry *mask;
9623 const char *saved;
9624 char *end_op;
9625
9626 while (*op_string
9627 && (op_end == NULL || op_string < op_end))
9628 {
9629 saved = op_string;
9630 if (*op_string == '{')
9631 {
9632 op_string++;
9633
9634 /* Check broadcasts. */
9635 if (strncmp (op_string, "1to", 3) == 0)
9636 {
9637 int bcst_type;
9638
9639 if (i.broadcast)
9640 goto duplicated_vec_op;
9641
9642 op_string += 3;
9643 if (*op_string == '8')
8e6e0792 9644 bcst_type = 8;
b28d1bda 9645 else if (*op_string == '4')
8e6e0792 9646 bcst_type = 4;
b28d1bda 9647 else if (*op_string == '2')
8e6e0792 9648 bcst_type = 2;
43234a1e
L
9649 else if (*op_string == '1'
9650 && *(op_string+1) == '6')
9651 {
8e6e0792 9652 bcst_type = 16;
43234a1e
L
9653 op_string++;
9654 }
9655 else
9656 {
9657 as_bad (_("Unsupported broadcast: `%s'"), saved);
9658 return NULL;
9659 }
9660 op_string++;
9661
9662 broadcast_op.type = bcst_type;
9663 broadcast_op.operand = this_operand;
1f75763a 9664 broadcast_op.bytes = 0;
43234a1e
L
9665 i.broadcast = &broadcast_op;
9666 }
9667 /* Check masking operation. */
9668 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9669 {
9670 /* k0 can't be used for write mask. */
f74a6307 9671 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
43234a1e 9672 {
6d2cd6b2
JB
9673 as_bad (_("`%s%s' can't be used for write mask"),
9674 register_prefix, mask->reg_name);
43234a1e
L
9675 return NULL;
9676 }
9677
9678 if (!i.mask)
9679 {
9680 mask_op.mask = mask;
9681 mask_op.zeroing = 0;
9682 mask_op.operand = this_operand;
9683 i.mask = &mask_op;
9684 }
9685 else
9686 {
9687 if (i.mask->mask)
9688 goto duplicated_vec_op;
9689
9690 i.mask->mask = mask;
9691
9692 /* Only "{z}" is allowed here. No need to check
9693 zeroing mask explicitly. */
9694 if (i.mask->operand != this_operand)
9695 {
9696 as_bad (_("invalid write mask `%s'"), saved);
9697 return NULL;
9698 }
9699 }
9700
9701 op_string = end_op;
9702 }
9703 /* Check zeroing-flag for masking operation. */
9704 else if (*op_string == 'z')
9705 {
9706 if (!i.mask)
9707 {
9708 mask_op.mask = NULL;
9709 mask_op.zeroing = 1;
9710 mask_op.operand = this_operand;
9711 i.mask = &mask_op;
9712 }
9713 else
9714 {
9715 if (i.mask->zeroing)
9716 {
9717 duplicated_vec_op:
9718 as_bad (_("duplicated `%s'"), saved);
9719 return NULL;
9720 }
9721
9722 i.mask->zeroing = 1;
9723
9724 /* Only "{%k}" is allowed here. No need to check mask
9725 register explicitly. */
9726 if (i.mask->operand != this_operand)
9727 {
9728 as_bad (_("invalid zeroing-masking `%s'"),
9729 saved);
9730 return NULL;
9731 }
9732 }
9733
9734 op_string++;
9735 }
9736 else
9737 goto unknown_vec_op;
9738
9739 if (*op_string != '}')
9740 {
9741 as_bad (_("missing `}' in `%s'"), saved);
9742 return NULL;
9743 }
9744 op_string++;
0ba3a731
L
9745
9746 /* Strip whitespace since the addition of pseudo prefixes
9747 changed how the scrubber treats '{'. */
9748 if (is_space_char (*op_string))
9749 ++op_string;
9750
43234a1e
L
9751 continue;
9752 }
9753 unknown_vec_op:
9754 /* We don't know this one. */
9755 as_bad (_("unknown vector operation: `%s'"), saved);
9756 return NULL;
9757 }
9758
6d2cd6b2
JB
9759 if (i.mask && i.mask->zeroing && !i.mask->mask)
9760 {
9761 as_bad (_("zeroing-masking only allowed with write mask"));
9762 return NULL;
9763 }
9764
43234a1e
L
9765 return op_string;
9766}
9767
252b5132 9768static int
70e41ade 9769i386_immediate (char *imm_start)
252b5132
RH
9770{
9771 char *save_input_line_pointer;
f3c180ae 9772 char *gotfree_input_line;
252b5132 9773 segT exp_seg = 0;
47926f60 9774 expressionS *exp;
40fb9820
L
9775 i386_operand_type types;
9776
0dfbf9d7 9777 operand_type_set (&types, ~0);
252b5132
RH
9778
9779 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9780 {
31b2323c
L
9781 as_bad (_("at most %d immediate operands are allowed"),
9782 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9783 return 0;
9784 }
9785
9786 exp = &im_expressions[i.imm_operands++];
520dc8e8 9787 i.op[this_operand].imms = exp;
252b5132
RH
9788
9789 if (is_space_char (*imm_start))
9790 ++imm_start;
9791
9792 save_input_line_pointer = input_line_pointer;
9793 input_line_pointer = imm_start;
9794
d258b828 9795 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9796 if (gotfree_input_line)
9797 input_line_pointer = gotfree_input_line;
252b5132
RH
9798
9799 exp_seg = expression (exp);
9800
83183c0c 9801 SKIP_WHITESPACE ();
43234a1e
L
9802
9803 /* Handle vector operations. */
9804 if (*input_line_pointer == '{')
9805 {
9806 input_line_pointer = check_VecOperations (input_line_pointer,
9807 NULL);
9808 if (input_line_pointer == NULL)
9809 return 0;
9810 }
9811
252b5132 9812 if (*input_line_pointer)
f3c180ae 9813 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9814
9815 input_line_pointer = save_input_line_pointer;
f3c180ae 9816 if (gotfree_input_line)
ee86248c
JB
9817 {
9818 free (gotfree_input_line);
9819
9820 if (exp->X_op == O_constant || exp->X_op == O_register)
9821 exp->X_op = O_illegal;
9822 }
9823
9824 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9825}
252b5132 9826
ee86248c
JB
9827static int
9828i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9829 i386_operand_type types, const char *imm_start)
9830{
9831 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9832 {
313c53d1
L
9833 if (imm_start)
9834 as_bad (_("missing or invalid immediate expression `%s'"),
9835 imm_start);
3992d3b7 9836 return 0;
252b5132 9837 }
3e73aa7c 9838 else if (exp->X_op == O_constant)
252b5132 9839 {
47926f60 9840 /* Size it properly later. */
40fb9820 9841 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9842 /* If not 64bit, sign extend val. */
9843 if (flag_code != CODE_64BIT
4eed87de
AM
9844 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9845 exp->X_add_number
9846 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9847 }
4c63da97 9848#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9849 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9850 && exp_seg != absolute_section
47926f60 9851 && exp_seg != text_section
24eab124
AM
9852 && exp_seg != data_section
9853 && exp_seg != bss_section
9854 && exp_seg != undefined_section
f86103b7 9855 && !bfd_is_com_section (exp_seg))
252b5132 9856 {
d0b47220 9857 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9858 return 0;
9859 }
9860#endif
a841bdf5 9861 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9862 {
313c53d1
L
9863 if (imm_start)
9864 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9865 return 0;
9866 }
252b5132
RH
9867 else
9868 {
9869 /* This is an address. The size of the address will be
24eab124 9870 determined later, depending on destination register,
3e73aa7c 9871 suffix, or the default for the section. */
40fb9820
L
9872 i.types[this_operand].bitfield.imm8 = 1;
9873 i.types[this_operand].bitfield.imm16 = 1;
9874 i.types[this_operand].bitfield.imm32 = 1;
9875 i.types[this_operand].bitfield.imm32s = 1;
9876 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9877 i.types[this_operand] = operand_type_and (i.types[this_operand],
9878 types);
252b5132
RH
9879 }
9880
9881 return 1;
9882}
9883
551c1ca1 9884static char *
e3bb37b5 9885i386_scale (char *scale)
252b5132 9886{
551c1ca1
AM
9887 offsetT val;
9888 char *save = input_line_pointer;
252b5132 9889
551c1ca1
AM
9890 input_line_pointer = scale;
9891 val = get_absolute_expression ();
9892
9893 switch (val)
252b5132 9894 {
551c1ca1 9895 case 1:
252b5132
RH
9896 i.log2_scale_factor = 0;
9897 break;
551c1ca1 9898 case 2:
252b5132
RH
9899 i.log2_scale_factor = 1;
9900 break;
551c1ca1 9901 case 4:
252b5132
RH
9902 i.log2_scale_factor = 2;
9903 break;
551c1ca1 9904 case 8:
252b5132
RH
9905 i.log2_scale_factor = 3;
9906 break;
9907 default:
a724f0f4
JB
9908 {
9909 char sep = *input_line_pointer;
9910
9911 *input_line_pointer = '\0';
9912 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9913 scale);
9914 *input_line_pointer = sep;
9915 input_line_pointer = save;
9916 return NULL;
9917 }
252b5132 9918 }
29b0f896 9919 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9920 {
9921 as_warn (_("scale factor of %d without an index register"),
24eab124 9922 1 << i.log2_scale_factor);
252b5132 9923 i.log2_scale_factor = 0;
252b5132 9924 }
551c1ca1
AM
9925 scale = input_line_pointer;
9926 input_line_pointer = save;
9927 return scale;
252b5132
RH
9928}
9929
252b5132 9930static int
e3bb37b5 9931i386_displacement (char *disp_start, char *disp_end)
252b5132 9932{
29b0f896 9933 expressionS *exp;
252b5132
RH
9934 segT exp_seg = 0;
9935 char *save_input_line_pointer;
f3c180ae 9936 char *gotfree_input_line;
40fb9820
L
9937 int override;
9938 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9939 int ret;
252b5132 9940
31b2323c
L
9941 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9942 {
9943 as_bad (_("at most %d displacement operands are allowed"),
9944 MAX_MEMORY_OPERANDS);
9945 return 0;
9946 }
9947
0dfbf9d7 9948 operand_type_set (&bigdisp, 0);
6f2f06be 9949 if (i.jumpabsolute
48bcea9f 9950 || i.types[this_operand].bitfield.baseindex
0cfa3eb3
JB
9951 || (current_templates->start->opcode_modifier.jump != JUMP
9952 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
e05278af 9953 {
48bcea9f 9954 i386_addressing_mode ();
e05278af 9955 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9956 if (flag_code == CODE_64BIT)
9957 {
9958 if (!override)
9959 {
9960 bigdisp.bitfield.disp32s = 1;
9961 bigdisp.bitfield.disp64 = 1;
9962 }
48bcea9f
JB
9963 else
9964 bigdisp.bitfield.disp32 = 1;
40fb9820
L
9965 }
9966 else if ((flag_code == CODE_16BIT) ^ override)
40fb9820 9967 bigdisp.bitfield.disp16 = 1;
48bcea9f
JB
9968 else
9969 bigdisp.bitfield.disp32 = 1;
e05278af
JB
9970 }
9971 else
9972 {
376cd056
JB
9973 /* For PC-relative branches, the width of the displacement may be
9974 dependent upon data size, but is never dependent upon address size.
9975 Also make sure to not unintentionally match against a non-PC-relative
9976 branch template. */
9977 static templates aux_templates;
9978 const insn_template *t = current_templates->start;
9979 bfd_boolean has_intel64 = FALSE;
9980
9981 aux_templates.start = t;
9982 while (++t < current_templates->end)
9983 {
9984 if (t->opcode_modifier.jump
9985 != current_templates->start->opcode_modifier.jump)
9986 break;
9987 if (t->opcode_modifier.intel64)
9988 has_intel64 = TRUE;
9989 }
9990 if (t < current_templates->end)
9991 {
9992 aux_templates.end = t;
9993 current_templates = &aux_templates;
9994 }
9995
e05278af 9996 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9997 if (flag_code == CODE_64BIT)
9998 {
376cd056
JB
9999 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10000 && (!intel64 || !has_intel64))
40fb9820
L
10001 bigdisp.bitfield.disp16 = 1;
10002 else
48bcea9f 10003 bigdisp.bitfield.disp32s = 1;
40fb9820
L
10004 }
10005 else
e05278af
JB
10006 {
10007 if (!override)
10008 override = (i.suffix == (flag_code != CODE_16BIT
10009 ? WORD_MNEM_SUFFIX
10010 : LONG_MNEM_SUFFIX));
40fb9820
L
10011 bigdisp.bitfield.disp32 = 1;
10012 if ((flag_code == CODE_16BIT) ^ override)
10013 {
10014 bigdisp.bitfield.disp32 = 0;
10015 bigdisp.bitfield.disp16 = 1;
10016 }
e05278af 10017 }
e05278af 10018 }
c6fb90c8
L
10019 i.types[this_operand] = operand_type_or (i.types[this_operand],
10020 bigdisp);
252b5132
RH
10021
10022 exp = &disp_expressions[i.disp_operands];
520dc8e8 10023 i.op[this_operand].disps = exp;
252b5132
RH
10024 i.disp_operands++;
10025 save_input_line_pointer = input_line_pointer;
10026 input_line_pointer = disp_start;
10027 END_STRING_AND_SAVE (disp_end);
10028
10029#ifndef GCC_ASM_O_HACK
10030#define GCC_ASM_O_HACK 0
10031#endif
10032#if GCC_ASM_O_HACK
10033 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 10034 if (i.types[this_operand].bitfield.baseIndex
24eab124 10035 && displacement_string_end[-1] == '+')
252b5132
RH
10036 {
10037 /* This hack is to avoid a warning when using the "o"
24eab124
AM
10038 constraint within gcc asm statements.
10039 For instance:
10040
10041 #define _set_tssldt_desc(n,addr,limit,type) \
10042 __asm__ __volatile__ ( \
10043 "movw %w2,%0\n\t" \
10044 "movw %w1,2+%0\n\t" \
10045 "rorl $16,%1\n\t" \
10046 "movb %b1,4+%0\n\t" \
10047 "movb %4,5+%0\n\t" \
10048 "movb $0,6+%0\n\t" \
10049 "movb %h1,7+%0\n\t" \
10050 "rorl $16,%1" \
10051 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10052
10053 This works great except that the output assembler ends
10054 up looking a bit weird if it turns out that there is
10055 no offset. You end up producing code that looks like:
10056
10057 #APP
10058 movw $235,(%eax)
10059 movw %dx,2+(%eax)
10060 rorl $16,%edx
10061 movb %dl,4+(%eax)
10062 movb $137,5+(%eax)
10063 movb $0,6+(%eax)
10064 movb %dh,7+(%eax)
10065 rorl $16,%edx
10066 #NO_APP
10067
47926f60 10068 So here we provide the missing zero. */
24eab124
AM
10069
10070 *displacement_string_end = '0';
252b5132
RH
10071 }
10072#endif
d258b828 10073 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
10074 if (gotfree_input_line)
10075 input_line_pointer = gotfree_input_line;
252b5132 10076
24eab124 10077 exp_seg = expression (exp);
252b5132 10078
636c26b0
AM
10079 SKIP_WHITESPACE ();
10080 if (*input_line_pointer)
10081 as_bad (_("junk `%s' after expression"), input_line_pointer);
10082#if GCC_ASM_O_HACK
10083 RESTORE_END_STRING (disp_end + 1);
10084#endif
636c26b0 10085 input_line_pointer = save_input_line_pointer;
636c26b0 10086 if (gotfree_input_line)
ee86248c
JB
10087 {
10088 free (gotfree_input_line);
10089
10090 if (exp->X_op == O_constant || exp->X_op == O_register)
10091 exp->X_op = O_illegal;
10092 }
10093
10094 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10095
10096 RESTORE_END_STRING (disp_end);
10097
10098 return ret;
10099}
10100
10101static int
10102i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10103 i386_operand_type types, const char *disp_start)
10104{
10105 i386_operand_type bigdisp;
10106 int ret = 1;
636c26b0 10107
24eab124
AM
10108 /* We do this to make sure that the section symbol is in
10109 the symbol table. We will ultimately change the relocation
47926f60 10110 to be relative to the beginning of the section. */
1ae12ab7 10111 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
10112 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10113 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 10114 {
636c26b0 10115 if (exp->X_op != O_symbol)
3992d3b7 10116 goto inv_disp;
636c26b0 10117
e5cb08ac 10118 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
10119 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10120 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 10121 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
10122 exp->X_op = O_subtract;
10123 exp->X_op_symbol = GOT_symbol;
1ae12ab7 10124 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 10125 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
10126 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10127 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 10128 else
29b0f896 10129 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 10130 }
252b5132 10131
3992d3b7
AM
10132 else if (exp->X_op == O_absent
10133 || exp->X_op == O_illegal
ee86248c 10134 || exp->X_op == O_big)
2daf4fd8 10135 {
3992d3b7
AM
10136 inv_disp:
10137 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 10138 disp_start);
3992d3b7 10139 ret = 0;
2daf4fd8
AM
10140 }
10141
0e1147d9
L
10142 else if (flag_code == CODE_64BIT
10143 && !i.prefix[ADDR_PREFIX]
10144 && exp->X_op == O_constant)
10145 {
10146 /* Since displacement is signed extended to 64bit, don't allow
10147 disp32 and turn off disp32s if they are out of range. */
10148 i.types[this_operand].bitfield.disp32 = 0;
10149 if (!fits_in_signed_long (exp->X_add_number))
10150 {
10151 i.types[this_operand].bitfield.disp32s = 0;
10152 if (i.types[this_operand].bitfield.baseindex)
10153 {
10154 as_bad (_("0x%lx out range of signed 32bit displacement"),
10155 (long) exp->X_add_number);
10156 ret = 0;
10157 }
10158 }
10159 }
10160
4c63da97 10161#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
10162 else if (exp->X_op != O_constant
10163 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10164 && exp_seg != absolute_section
10165 && exp_seg != text_section
10166 && exp_seg != data_section
10167 && exp_seg != bss_section
10168 && exp_seg != undefined_section
10169 && !bfd_is_com_section (exp_seg))
24eab124 10170 {
d0b47220 10171 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 10172 ret = 0;
24eab124 10173 }
252b5132 10174#endif
3956db08 10175
48bcea9f
JB
10176 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10177 /* Constants get taken care of by optimize_disp(). */
10178 && exp->X_op != O_constant)
10179 i.types[this_operand].bitfield.disp8 = 1;
10180
40fb9820
L
10181 /* Check if this is a displacement only operand. */
10182 bigdisp = i.types[this_operand];
10183 bigdisp.bitfield.disp8 = 0;
10184 bigdisp.bitfield.disp16 = 0;
10185 bigdisp.bitfield.disp32 = 0;
10186 bigdisp.bitfield.disp32s = 0;
10187 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 10188 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
10189 i.types[this_operand] = operand_type_and (i.types[this_operand],
10190 types);
3956db08 10191
3992d3b7 10192 return ret;
252b5132
RH
10193}
10194
2abc2bec
JB
10195/* Return the active addressing mode, taking address override and
10196 registers forming the address into consideration. Update the
10197 address override prefix if necessary. */
47926f60 10198
2abc2bec
JB
10199static enum flag_code
10200i386_addressing_mode (void)
252b5132 10201{
be05d201
L
10202 enum flag_code addr_mode;
10203
10204 if (i.prefix[ADDR_PREFIX])
10205 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10206 else
10207 {
10208 addr_mode = flag_code;
10209
24eab124 10210#if INFER_ADDR_PREFIX
be05d201
L
10211 if (i.mem_operands == 0)
10212 {
10213 /* Infer address prefix from the first memory operand. */
10214 const reg_entry *addr_reg = i.base_reg;
10215
10216 if (addr_reg == NULL)
10217 addr_reg = i.index_reg;
eecb386c 10218
be05d201
L
10219 if (addr_reg)
10220 {
e968fc9b 10221 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
10222 addr_mode = CODE_32BIT;
10223 else if (flag_code != CODE_64BIT
dc821c5f 10224 && addr_reg->reg_type.bitfield.word)
be05d201
L
10225 addr_mode = CODE_16BIT;
10226
10227 if (addr_mode != flag_code)
10228 {
10229 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10230 i.prefixes += 1;
10231 /* Change the size of any displacement too. At most one
10232 of Disp16 or Disp32 is set.
10233 FIXME. There doesn't seem to be any real need for
10234 separate Disp16 and Disp32 flags. The same goes for
10235 Imm16 and Imm32. Removing them would probably clean
10236 up the code quite a lot. */
10237 if (flag_code != CODE_64BIT
10238 && (i.types[this_operand].bitfield.disp16
10239 || i.types[this_operand].bitfield.disp32))
10240 i.types[this_operand]
10241 = operand_type_xor (i.types[this_operand], disp16_32);
10242 }
10243 }
10244 }
24eab124 10245#endif
be05d201
L
10246 }
10247
2abc2bec
JB
10248 return addr_mode;
10249}
10250
10251/* Make sure the memory operand we've been dealt is valid.
10252 Return 1 on success, 0 on a failure. */
10253
10254static int
10255i386_index_check (const char *operand_string)
10256{
10257 const char *kind = "base/index";
10258 enum flag_code addr_mode = i386_addressing_mode ();
10259
fc0763e6 10260 if (current_templates->start->opcode_modifier.isstring
c3949f43 10261 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
10262 && (current_templates->end[-1].opcode_modifier.isstring
10263 || i.mem_operands))
10264 {
10265 /* Memory operands of string insns are special in that they only allow
10266 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
10267 const reg_entry *expected_reg;
10268 static const char *di_si[][2] =
10269 {
10270 { "esi", "edi" },
10271 { "si", "di" },
10272 { "rsi", "rdi" }
10273 };
10274 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
10275
10276 kind = "string address";
10277
8325cc63 10278 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6 10279 {
51c8edf6
JB
10280 int es_op = current_templates->end[-1].opcode_modifier.isstring
10281 - IS_STRING_ES_OP0;
10282 int op = 0;
fc0763e6 10283
51c8edf6 10284 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
fc0763e6
JB
10285 || ((!i.mem_operands != !intel_syntax)
10286 && current_templates->end[-1].operand_types[1]
10287 .bitfield.baseindex))
51c8edf6
JB
10288 op = 1;
10289 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
fc0763e6
JB
10290 }
10291 else
be05d201 10292 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 10293
be05d201
L
10294 if (i.base_reg != expected_reg
10295 || i.index_reg
fc0763e6 10296 || operand_type_check (i.types[this_operand], disp))
fc0763e6 10297 {
be05d201
L
10298 /* The second memory operand must have the same size as
10299 the first one. */
10300 if (i.mem_operands
10301 && i.base_reg
10302 && !((addr_mode == CODE_64BIT
dc821c5f 10303 && i.base_reg->reg_type.bitfield.qword)
be05d201 10304 || (addr_mode == CODE_32BIT
dc821c5f
JB
10305 ? i.base_reg->reg_type.bitfield.dword
10306 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
10307 goto bad_address;
10308
fc0763e6
JB
10309 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10310 operand_string,
10311 intel_syntax ? '[' : '(',
10312 register_prefix,
be05d201 10313 expected_reg->reg_name,
fc0763e6 10314 intel_syntax ? ']' : ')');
be05d201 10315 return 1;
fc0763e6 10316 }
be05d201
L
10317 else
10318 return 1;
10319
10320bad_address:
10321 as_bad (_("`%s' is not a valid %s expression"),
10322 operand_string, kind);
10323 return 0;
3e73aa7c
JH
10324 }
10325 else
10326 {
be05d201
L
10327 if (addr_mode != CODE_16BIT)
10328 {
10329 /* 32-bit/64-bit checks. */
10330 if ((i.base_reg
e968fc9b
JB
10331 && ((addr_mode == CODE_64BIT
10332 ? !i.base_reg->reg_type.bitfield.qword
10333 : !i.base_reg->reg_type.bitfield.dword)
10334 || (i.index_reg && i.base_reg->reg_num == RegIP)
10335 || i.base_reg->reg_num == RegIZ))
be05d201 10336 || (i.index_reg
1b54b8d7
JB
10337 && !i.index_reg->reg_type.bitfield.xmmword
10338 && !i.index_reg->reg_type.bitfield.ymmword
10339 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 10340 && ((addr_mode == CODE_64BIT
e968fc9b
JB
10341 ? !i.index_reg->reg_type.bitfield.qword
10342 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
10343 || !i.index_reg->reg_type.bitfield.baseindex)))
10344 goto bad_address;
8178be5b
JB
10345
10346 /* bndmk, bndldx, and bndstx have special restrictions. */
10347 if (current_templates->start->base_opcode == 0xf30f1b
10348 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10349 {
10350 /* They cannot use RIP-relative addressing. */
e968fc9b 10351 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
10352 {
10353 as_bad (_("`%s' cannot be used here"), operand_string);
10354 return 0;
10355 }
10356
10357 /* bndldx and bndstx ignore their scale factor. */
10358 if (current_templates->start->base_opcode != 0xf30f1b
10359 && i.log2_scale_factor)
10360 as_warn (_("register scaling is being ignored here"));
10361 }
be05d201
L
10362 }
10363 else
3e73aa7c 10364 {
be05d201 10365 /* 16-bit checks. */
3e73aa7c 10366 if ((i.base_reg
dc821c5f 10367 && (!i.base_reg->reg_type.bitfield.word
40fb9820 10368 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 10369 || (i.index_reg
dc821c5f 10370 && (!i.index_reg->reg_type.bitfield.word
40fb9820 10371 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
10372 || !(i.base_reg
10373 && i.base_reg->reg_num < 6
10374 && i.index_reg->reg_num >= 6
10375 && i.log2_scale_factor == 0))))
be05d201 10376 goto bad_address;
3e73aa7c
JH
10377 }
10378 }
be05d201 10379 return 1;
24eab124 10380}
252b5132 10381
43234a1e
L
10382/* Handle vector immediates. */
10383
10384static int
10385RC_SAE_immediate (const char *imm_start)
10386{
10387 unsigned int match_found, j;
10388 const char *pstr = imm_start;
10389 expressionS *exp;
10390
10391 if (*pstr != '{')
10392 return 0;
10393
10394 pstr++;
10395 match_found = 0;
10396 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10397 {
10398 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10399 {
10400 if (!i.rounding)
10401 {
10402 rc_op.type = RC_NamesTable[j].type;
10403 rc_op.operand = this_operand;
10404 i.rounding = &rc_op;
10405 }
10406 else
10407 {
10408 as_bad (_("duplicated `%s'"), imm_start);
10409 return 0;
10410 }
10411 pstr += RC_NamesTable[j].len;
10412 match_found = 1;
10413 break;
10414 }
10415 }
10416 if (!match_found)
10417 return 0;
10418
10419 if (*pstr++ != '}')
10420 {
10421 as_bad (_("Missing '}': '%s'"), imm_start);
10422 return 0;
10423 }
10424 /* RC/SAE immediate string should contain nothing more. */;
10425 if (*pstr != 0)
10426 {
10427 as_bad (_("Junk after '}': '%s'"), imm_start);
10428 return 0;
10429 }
10430
10431 exp = &im_expressions[i.imm_operands++];
10432 i.op[this_operand].imms = exp;
10433
10434 exp->X_op = O_constant;
10435 exp->X_add_number = 0;
10436 exp->X_add_symbol = (symbolS *) 0;
10437 exp->X_op_symbol = (symbolS *) 0;
10438
10439 i.types[this_operand].bitfield.imm8 = 1;
10440 return 1;
10441}
10442
8325cc63
JB
10443/* Only string instructions can have a second memory operand, so
10444 reduce current_templates to just those if it contains any. */
10445static int
10446maybe_adjust_templates (void)
10447{
10448 const insn_template *t;
10449
10450 gas_assert (i.mem_operands == 1);
10451
10452 for (t = current_templates->start; t < current_templates->end; ++t)
10453 if (t->opcode_modifier.isstring)
10454 break;
10455
10456 if (t < current_templates->end)
10457 {
10458 static templates aux_templates;
10459 bfd_boolean recheck;
10460
10461 aux_templates.start = t;
10462 for (; t < current_templates->end; ++t)
10463 if (!t->opcode_modifier.isstring)
10464 break;
10465 aux_templates.end = t;
10466
10467 /* Determine whether to re-check the first memory operand. */
10468 recheck = (aux_templates.start != current_templates->start
10469 || t != current_templates->end);
10470
10471 current_templates = &aux_templates;
10472
10473 if (recheck)
10474 {
10475 i.mem_operands = 0;
10476 if (i.memop1_string != NULL
10477 && i386_index_check (i.memop1_string) == 0)
10478 return 0;
10479 i.mem_operands = 1;
10480 }
10481 }
10482
10483 return 1;
10484}
10485
fc0763e6 10486/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 10487 on error. */
252b5132 10488
252b5132 10489static int
a7619375 10490i386_att_operand (char *operand_string)
252b5132 10491{
af6bdddf
AM
10492 const reg_entry *r;
10493 char *end_op;
24eab124 10494 char *op_string = operand_string;
252b5132 10495
24eab124 10496 if (is_space_char (*op_string))
252b5132
RH
10497 ++op_string;
10498
24eab124 10499 /* We check for an absolute prefix (differentiating,
47926f60 10500 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10501 if (*op_string == ABSOLUTE_PREFIX)
10502 {
10503 ++op_string;
10504 if (is_space_char (*op_string))
10505 ++op_string;
6f2f06be 10506 i.jumpabsolute = TRUE;
24eab124 10507 }
252b5132 10508
47926f60 10509 /* Check if operand is a register. */
4d1bb795 10510 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10511 {
40fb9820
L
10512 i386_operand_type temp;
10513
24eab124
AM
10514 /* Check for a segment override by searching for ':' after a
10515 segment register. */
10516 op_string = end_op;
10517 if (is_space_char (*op_string))
10518 ++op_string;
00cee14f 10519 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124
AM
10520 {
10521 switch (r->reg_num)
10522 {
10523 case 0:
10524 i.seg[i.mem_operands] = &es;
10525 break;
10526 case 1:
10527 i.seg[i.mem_operands] = &cs;
10528 break;
10529 case 2:
10530 i.seg[i.mem_operands] = &ss;
10531 break;
10532 case 3:
10533 i.seg[i.mem_operands] = &ds;
10534 break;
10535 case 4:
10536 i.seg[i.mem_operands] = &fs;
10537 break;
10538 case 5:
10539 i.seg[i.mem_operands] = &gs;
10540 break;
10541 }
252b5132 10542
24eab124 10543 /* Skip the ':' and whitespace. */
252b5132
RH
10544 ++op_string;
10545 if (is_space_char (*op_string))
24eab124 10546 ++op_string;
252b5132 10547
24eab124
AM
10548 if (!is_digit_char (*op_string)
10549 && !is_identifier_char (*op_string)
10550 && *op_string != '('
10551 && *op_string != ABSOLUTE_PREFIX)
10552 {
10553 as_bad (_("bad memory operand `%s'"), op_string);
10554 return 0;
10555 }
47926f60 10556 /* Handle case of %es:*foo. */
24eab124
AM
10557 if (*op_string == ABSOLUTE_PREFIX)
10558 {
10559 ++op_string;
10560 if (is_space_char (*op_string))
10561 ++op_string;
6f2f06be 10562 i.jumpabsolute = TRUE;
24eab124
AM
10563 }
10564 goto do_memory_reference;
10565 }
43234a1e
L
10566
10567 /* Handle vector operations. */
10568 if (*op_string == '{')
10569 {
10570 op_string = check_VecOperations (op_string, NULL);
10571 if (op_string == NULL)
10572 return 0;
10573 }
10574
24eab124
AM
10575 if (*op_string)
10576 {
d0b47220 10577 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10578 return 0;
10579 }
40fb9820
L
10580 temp = r->reg_type;
10581 temp.bitfield.baseindex = 0;
c6fb90c8
L
10582 i.types[this_operand] = operand_type_or (i.types[this_operand],
10583 temp);
7d5e4556 10584 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10585 i.op[this_operand].regs = r;
24eab124
AM
10586 i.reg_operands++;
10587 }
af6bdddf
AM
10588 else if (*op_string == REGISTER_PREFIX)
10589 {
10590 as_bad (_("bad register name `%s'"), op_string);
10591 return 0;
10592 }
24eab124 10593 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10594 {
24eab124 10595 ++op_string;
6f2f06be 10596 if (i.jumpabsolute)
24eab124 10597 {
d0b47220 10598 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10599 return 0;
10600 }
10601 if (!i386_immediate (op_string))
10602 return 0;
10603 }
43234a1e
L
10604 else if (RC_SAE_immediate (operand_string))
10605 {
10606 /* If it is a RC or SAE immediate, do nothing. */
10607 ;
10608 }
24eab124
AM
10609 else if (is_digit_char (*op_string)
10610 || is_identifier_char (*op_string)
d02603dc 10611 || *op_string == '"'
e5cb08ac 10612 || *op_string == '(')
24eab124 10613 {
47926f60 10614 /* This is a memory reference of some sort. */
af6bdddf 10615 char *base_string;
252b5132 10616
47926f60 10617 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10618 char *displacement_string_start;
10619 char *displacement_string_end;
43234a1e 10620 char *vop_start;
252b5132 10621
24eab124 10622 do_memory_reference:
8325cc63
JB
10623 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10624 return 0;
24eab124 10625 if ((i.mem_operands == 1
40fb9820 10626 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10627 || i.mem_operands == 2)
10628 {
10629 as_bad (_("too many memory references for `%s'"),
10630 current_templates->start->name);
10631 return 0;
10632 }
252b5132 10633
24eab124
AM
10634 /* Check for base index form. We detect the base index form by
10635 looking for an ')' at the end of the operand, searching
10636 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10637 after the '('. */
af6bdddf 10638 base_string = op_string + strlen (op_string);
c3332e24 10639
43234a1e
L
10640 /* Handle vector operations. */
10641 vop_start = strchr (op_string, '{');
10642 if (vop_start && vop_start < base_string)
10643 {
10644 if (check_VecOperations (vop_start, base_string) == NULL)
10645 return 0;
10646 base_string = vop_start;
10647 }
10648
af6bdddf
AM
10649 --base_string;
10650 if (is_space_char (*base_string))
10651 --base_string;
252b5132 10652
47926f60 10653 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10654 displacement_string_start = op_string;
10655 displacement_string_end = base_string + 1;
252b5132 10656
24eab124
AM
10657 if (*base_string == ')')
10658 {
af6bdddf 10659 char *temp_string;
24eab124
AM
10660 unsigned int parens_balanced = 1;
10661 /* We've already checked that the number of left & right ()'s are
47926f60 10662 equal, so this loop will not be infinite. */
24eab124
AM
10663 do
10664 {
10665 base_string--;
10666 if (*base_string == ')')
10667 parens_balanced++;
10668 if (*base_string == '(')
10669 parens_balanced--;
10670 }
10671 while (parens_balanced);
c3332e24 10672
af6bdddf 10673 temp_string = base_string;
c3332e24 10674
24eab124 10675 /* Skip past '(' and whitespace. */
252b5132
RH
10676 ++base_string;
10677 if (is_space_char (*base_string))
24eab124 10678 ++base_string;
252b5132 10679
af6bdddf 10680 if (*base_string == ','
4eed87de
AM
10681 || ((i.base_reg = parse_register (base_string, &end_op))
10682 != NULL))
252b5132 10683 {
af6bdddf 10684 displacement_string_end = temp_string;
252b5132 10685
40fb9820 10686 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10687
af6bdddf 10688 if (i.base_reg)
24eab124 10689 {
24eab124
AM
10690 base_string = end_op;
10691 if (is_space_char (*base_string))
10692 ++base_string;
af6bdddf
AM
10693 }
10694
10695 /* There may be an index reg or scale factor here. */
10696 if (*base_string == ',')
10697 {
10698 ++base_string;
10699 if (is_space_char (*base_string))
10700 ++base_string;
10701
4eed87de
AM
10702 if ((i.index_reg = parse_register (base_string, &end_op))
10703 != NULL)
24eab124 10704 {
af6bdddf 10705 base_string = end_op;
24eab124
AM
10706 if (is_space_char (*base_string))
10707 ++base_string;
af6bdddf
AM
10708 if (*base_string == ',')
10709 {
10710 ++base_string;
10711 if (is_space_char (*base_string))
10712 ++base_string;
10713 }
e5cb08ac 10714 else if (*base_string != ')')
af6bdddf 10715 {
4eed87de
AM
10716 as_bad (_("expecting `,' or `)' "
10717 "after index register in `%s'"),
af6bdddf
AM
10718 operand_string);
10719 return 0;
10720 }
24eab124 10721 }
af6bdddf 10722 else if (*base_string == REGISTER_PREFIX)
24eab124 10723 {
f76bf5e0
L
10724 end_op = strchr (base_string, ',');
10725 if (end_op)
10726 *end_op = '\0';
af6bdddf 10727 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10728 return 0;
10729 }
252b5132 10730
47926f60 10731 /* Check for scale factor. */
551c1ca1 10732 if (*base_string != ')')
af6bdddf 10733 {
551c1ca1
AM
10734 char *end_scale = i386_scale (base_string);
10735
10736 if (!end_scale)
af6bdddf 10737 return 0;
24eab124 10738
551c1ca1 10739 base_string = end_scale;
af6bdddf
AM
10740 if (is_space_char (*base_string))
10741 ++base_string;
10742 if (*base_string != ')')
10743 {
4eed87de
AM
10744 as_bad (_("expecting `)' "
10745 "after scale factor in `%s'"),
af6bdddf
AM
10746 operand_string);
10747 return 0;
10748 }
10749 }
10750 else if (!i.index_reg)
24eab124 10751 {
4eed87de
AM
10752 as_bad (_("expecting index register or scale factor "
10753 "after `,'; got '%c'"),
af6bdddf 10754 *base_string);
24eab124
AM
10755 return 0;
10756 }
10757 }
af6bdddf 10758 else if (*base_string != ')')
24eab124 10759 {
4eed87de
AM
10760 as_bad (_("expecting `,' or `)' "
10761 "after base register in `%s'"),
af6bdddf 10762 operand_string);
24eab124
AM
10763 return 0;
10764 }
c3332e24 10765 }
af6bdddf 10766 else if (*base_string == REGISTER_PREFIX)
c3332e24 10767 {
f76bf5e0
L
10768 end_op = strchr (base_string, ',');
10769 if (end_op)
10770 *end_op = '\0';
af6bdddf 10771 as_bad (_("bad register name `%s'"), base_string);
24eab124 10772 return 0;
c3332e24 10773 }
24eab124
AM
10774 }
10775
10776 /* If there's an expression beginning the operand, parse it,
10777 assuming displacement_string_start and
10778 displacement_string_end are meaningful. */
10779 if (displacement_string_start != displacement_string_end)
10780 {
10781 if (!i386_displacement (displacement_string_start,
10782 displacement_string_end))
10783 return 0;
10784 }
10785
10786 /* Special case for (%dx) while doing input/output op. */
10787 if (i.base_reg
75e5731b
JB
10788 && i.base_reg->reg_type.bitfield.instance == RegD
10789 && i.base_reg->reg_type.bitfield.word
24eab124
AM
10790 && i.index_reg == 0
10791 && i.log2_scale_factor == 0
10792 && i.seg[i.mem_operands] == 0
40fb9820 10793 && !operand_type_check (i.types[this_operand], disp))
24eab124 10794 {
2fb5be8d 10795 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10796 return 1;
10797 }
10798
eecb386c
AM
10799 if (i386_index_check (operand_string) == 0)
10800 return 0;
c48dadc9 10801 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10802 if (i.mem_operands == 0)
10803 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10804 i.mem_operands++;
10805 }
10806 else
ce8a8b2f
AM
10807 {
10808 /* It's not a memory operand; argh! */
24eab124
AM
10809 as_bad (_("invalid char %s beginning operand %d `%s'"),
10810 output_invalid (*op_string),
10811 this_operand + 1,
10812 op_string);
10813 return 0;
10814 }
47926f60 10815 return 1; /* Normal return. */
252b5132
RH
10816}
10817\f
fa94de6b
RM
10818/* Calculate the maximum variable size (i.e., excluding fr_fix)
10819 that an rs_machine_dependent frag may reach. */
10820
10821unsigned int
10822i386_frag_max_var (fragS *frag)
10823{
10824 /* The only relaxable frags are for jumps.
10825 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10826 gas_assert (frag->fr_type == rs_machine_dependent);
10827 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10828}
10829
b084df0b
L
10830#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10831static int
8dcea932 10832elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10833{
10834 /* STT_GNU_IFUNC symbol must go through PLT. */
10835 if ((symbol_get_bfdsym (fr_symbol)->flags
10836 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10837 return 0;
10838
10839 if (!S_IS_EXTERNAL (fr_symbol))
10840 /* Symbol may be weak or local. */
10841 return !S_IS_WEAK (fr_symbol);
10842
8dcea932
L
10843 /* Global symbols with non-default visibility can't be preempted. */
10844 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10845 return 1;
10846
10847 if (fr_var != NO_RELOC)
10848 switch ((enum bfd_reloc_code_real) fr_var)
10849 {
10850 case BFD_RELOC_386_PLT32:
10851 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10852 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10853 return 0;
10854 default:
10855 abort ();
10856 }
10857
b084df0b
L
10858 /* Global symbols with default visibility in a shared library may be
10859 preempted by another definition. */
8dcea932 10860 return !shared;
b084df0b
L
10861}
10862#endif
10863
e379e5f3
L
10864/* Return the next non-empty frag. */
10865
10866static fragS *
10867i386_next_non_empty_frag (fragS *fragP)
10868{
10869 /* There may be a frag with a ".fill 0" when there is no room in
10870 the current frag for frag_grow in output_insn. */
10871 for (fragP = fragP->fr_next;
10872 (fragP != NULL
10873 && fragP->fr_type == rs_fill
10874 && fragP->fr_fix == 0);
10875 fragP = fragP->fr_next)
10876 ;
10877 return fragP;
10878}
10879
10880/* Return the next jcc frag after BRANCH_PADDING. */
10881
10882static fragS *
10883i386_next_jcc_frag (fragS *fragP)
10884{
10885 if (!fragP)
10886 return NULL;
10887
10888 if (fragP->fr_type == rs_machine_dependent
10889 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10890 == BRANCH_PADDING))
10891 {
10892 fragP = i386_next_non_empty_frag (fragP);
10893 if (fragP->fr_type != rs_machine_dependent)
10894 return NULL;
10895 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10896 return fragP;
10897 }
10898
10899 return NULL;
10900}
10901
10902/* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10903
10904static void
10905i386_classify_machine_dependent_frag (fragS *fragP)
10906{
10907 fragS *cmp_fragP;
10908 fragS *pad_fragP;
10909 fragS *branch_fragP;
10910 fragS *next_fragP;
10911 unsigned int max_prefix_length;
10912
10913 if (fragP->tc_frag_data.classified)
10914 return;
10915
10916 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10917 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10918 for (next_fragP = fragP;
10919 next_fragP != NULL;
10920 next_fragP = next_fragP->fr_next)
10921 {
10922 next_fragP->tc_frag_data.classified = 1;
10923 if (next_fragP->fr_type == rs_machine_dependent)
10924 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10925 {
10926 case BRANCH_PADDING:
10927 /* The BRANCH_PADDING frag must be followed by a branch
10928 frag. */
10929 branch_fragP = i386_next_non_empty_frag (next_fragP);
10930 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10931 break;
10932 case FUSED_JCC_PADDING:
10933 /* Check if this is a fused jcc:
10934 FUSED_JCC_PADDING
10935 CMP like instruction
10936 BRANCH_PADDING
10937 COND_JUMP
10938 */
10939 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10940 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10941 branch_fragP = i386_next_jcc_frag (pad_fragP);
10942 if (branch_fragP)
10943 {
10944 /* The BRANCH_PADDING frag is merged with the
10945 FUSED_JCC_PADDING frag. */
10946 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10947 /* CMP like instruction size. */
10948 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10949 frag_wane (pad_fragP);
10950 /* Skip to branch_fragP. */
10951 next_fragP = branch_fragP;
10952 }
10953 else if (next_fragP->tc_frag_data.max_prefix_length)
10954 {
10955 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10956 a fused jcc. */
10957 next_fragP->fr_subtype
10958 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10959 next_fragP->tc_frag_data.max_bytes
10960 = next_fragP->tc_frag_data.max_prefix_length;
10961 /* This will be updated in the BRANCH_PREFIX scan. */
10962 next_fragP->tc_frag_data.max_prefix_length = 0;
10963 }
10964 else
10965 frag_wane (next_fragP);
10966 break;
10967 }
10968 }
10969
10970 /* Stop if there is no BRANCH_PREFIX. */
10971 if (!align_branch_prefix_size)
10972 return;
10973
10974 /* Scan for BRANCH_PREFIX. */
10975 for (; fragP != NULL; fragP = fragP->fr_next)
10976 {
10977 if (fragP->fr_type != rs_machine_dependent
10978 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10979 != BRANCH_PREFIX))
10980 continue;
10981
10982 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
10983 COND_JUMP_PREFIX. */
10984 max_prefix_length = 0;
10985 for (next_fragP = fragP;
10986 next_fragP != NULL;
10987 next_fragP = next_fragP->fr_next)
10988 {
10989 if (next_fragP->fr_type == rs_fill)
10990 /* Skip rs_fill frags. */
10991 continue;
10992 else if (next_fragP->fr_type != rs_machine_dependent)
10993 /* Stop for all other frags. */
10994 break;
10995
10996 /* rs_machine_dependent frags. */
10997 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10998 == BRANCH_PREFIX)
10999 {
11000 /* Count BRANCH_PREFIX frags. */
11001 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11002 {
11003 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11004 frag_wane (next_fragP);
11005 }
11006 else
11007 max_prefix_length
11008 += next_fragP->tc_frag_data.max_bytes;
11009 }
11010 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11011 == BRANCH_PADDING)
11012 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11013 == FUSED_JCC_PADDING))
11014 {
11015 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11016 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11017 break;
11018 }
11019 else
11020 /* Stop for other rs_machine_dependent frags. */
11021 break;
11022 }
11023
11024 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11025
11026 /* Skip to the next frag. */
11027 fragP = next_fragP;
11028 }
11029}
11030
11031/* Compute padding size for
11032
11033 FUSED_JCC_PADDING
11034 CMP like instruction
11035 BRANCH_PADDING
11036 COND_JUMP/UNCOND_JUMP
11037
11038 or
11039
11040 BRANCH_PADDING
11041 COND_JUMP/UNCOND_JUMP
11042 */
11043
11044static int
11045i386_branch_padding_size (fragS *fragP, offsetT address)
11046{
11047 unsigned int offset, size, padding_size;
11048 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11049
11050 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11051 if (!address)
11052 address = fragP->fr_address;
11053 address += fragP->fr_fix;
11054
11055 /* CMP like instrunction size. */
11056 size = fragP->tc_frag_data.cmp_size;
11057
11058 /* The base size of the branch frag. */
11059 size += branch_fragP->fr_fix;
11060
11061 /* Add opcode and displacement bytes for the rs_machine_dependent
11062 branch frag. */
11063 if (branch_fragP->fr_type == rs_machine_dependent)
11064 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11065
11066 /* Check if branch is within boundary and doesn't end at the last
11067 byte. */
11068 offset = address & ((1U << align_branch_power) - 1);
11069 if ((offset + size) >= (1U << align_branch_power))
11070 /* Padding needed to avoid crossing boundary. */
11071 padding_size = (1U << align_branch_power) - offset;
11072 else
11073 /* No padding needed. */
11074 padding_size = 0;
11075
11076 /* The return value may be saved in tc_frag_data.length which is
11077 unsigned byte. */
11078 if (!fits_in_unsigned_byte (padding_size))
11079 abort ();
11080
11081 return padding_size;
11082}
11083
11084/* i386_generic_table_relax_frag()
11085
11086 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11087 grow/shrink padding to align branch frags. Hand others to
11088 relax_frag(). */
11089
11090long
11091i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11092{
11093 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11094 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11095 {
11096 long padding_size = i386_branch_padding_size (fragP, 0);
11097 long grow = padding_size - fragP->tc_frag_data.length;
11098
11099 /* When the BRANCH_PREFIX frag is used, the computed address
11100 must match the actual address and there should be no padding. */
11101 if (fragP->tc_frag_data.padding_address
11102 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11103 || padding_size))
11104 abort ();
11105
11106 /* Update the padding size. */
11107 if (grow)
11108 fragP->tc_frag_data.length = padding_size;
11109
11110 return grow;
11111 }
11112 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11113 {
11114 fragS *padding_fragP, *next_fragP;
11115 long padding_size, left_size, last_size;
11116
11117 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11118 if (!padding_fragP)
11119 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11120 return (fragP->tc_frag_data.length
11121 - fragP->tc_frag_data.last_length);
11122
11123 /* Compute the relative address of the padding frag in the very
11124 first time where the BRANCH_PREFIX frag sizes are zero. */
11125 if (!fragP->tc_frag_data.padding_address)
11126 fragP->tc_frag_data.padding_address
11127 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11128
11129 /* First update the last length from the previous interation. */
11130 left_size = fragP->tc_frag_data.prefix_length;
11131 for (next_fragP = fragP;
11132 next_fragP != padding_fragP;
11133 next_fragP = next_fragP->fr_next)
11134 if (next_fragP->fr_type == rs_machine_dependent
11135 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11136 == BRANCH_PREFIX))
11137 {
11138 if (left_size)
11139 {
11140 int max = next_fragP->tc_frag_data.max_bytes;
11141 if (max)
11142 {
11143 int size;
11144 if (max > left_size)
11145 size = left_size;
11146 else
11147 size = max;
11148 left_size -= size;
11149 next_fragP->tc_frag_data.last_length = size;
11150 }
11151 }
11152 else
11153 next_fragP->tc_frag_data.last_length = 0;
11154 }
11155
11156 /* Check the padding size for the padding frag. */
11157 padding_size = i386_branch_padding_size
11158 (padding_fragP, (fragP->fr_address
11159 + fragP->tc_frag_data.padding_address));
11160
11161 last_size = fragP->tc_frag_data.prefix_length;
11162 /* Check if there is change from the last interation. */
11163 if (padding_size == last_size)
11164 {
11165 /* Update the expected address of the padding frag. */
11166 padding_fragP->tc_frag_data.padding_address
11167 = (fragP->fr_address + padding_size
11168 + fragP->tc_frag_data.padding_address);
11169 return 0;
11170 }
11171
11172 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11173 {
11174 /* No padding if there is no sufficient room. Clear the
11175 expected address of the padding frag. */
11176 padding_fragP->tc_frag_data.padding_address = 0;
11177 padding_size = 0;
11178 }
11179 else
11180 /* Store the expected address of the padding frag. */
11181 padding_fragP->tc_frag_data.padding_address
11182 = (fragP->fr_address + padding_size
11183 + fragP->tc_frag_data.padding_address);
11184
11185 fragP->tc_frag_data.prefix_length = padding_size;
11186
11187 /* Update the length for the current interation. */
11188 left_size = padding_size;
11189 for (next_fragP = fragP;
11190 next_fragP != padding_fragP;
11191 next_fragP = next_fragP->fr_next)
11192 if (next_fragP->fr_type == rs_machine_dependent
11193 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11194 == BRANCH_PREFIX))
11195 {
11196 if (left_size)
11197 {
11198 int max = next_fragP->tc_frag_data.max_bytes;
11199 if (max)
11200 {
11201 int size;
11202 if (max > left_size)
11203 size = left_size;
11204 else
11205 size = max;
11206 left_size -= size;
11207 next_fragP->tc_frag_data.length = size;
11208 }
11209 }
11210 else
11211 next_fragP->tc_frag_data.length = 0;
11212 }
11213
11214 return (fragP->tc_frag_data.length
11215 - fragP->tc_frag_data.last_length);
11216 }
11217 return relax_frag (segment, fragP, stretch);
11218}
11219
ee7fcc42
AM
11220/* md_estimate_size_before_relax()
11221
11222 Called just before relax() for rs_machine_dependent frags. The x86
11223 assembler uses these frags to handle variable size jump
11224 instructions.
11225
11226 Any symbol that is now undefined will not become defined.
11227 Return the correct fr_subtype in the frag.
11228 Return the initial "guess for variable size of frag" to caller.
11229 The guess is actually the growth beyond the fixed part. Whatever
11230 we do to grow the fixed or variable part contributes to our
11231 returned value. */
11232
252b5132 11233int
7016a5d5 11234md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 11235{
e379e5f3
L
11236 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11237 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11238 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11239 {
11240 i386_classify_machine_dependent_frag (fragP);
11241 return fragP->tc_frag_data.length;
11242 }
11243
252b5132 11244 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
11245 check for un-relaxable symbols. On an ELF system, we can't relax
11246 an externally visible symbol, because it may be overridden by a
11247 shared library. */
11248 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 11249#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11250 || (IS_ELF
8dcea932
L
11251 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11252 fragP->fr_var))
fbeb56a4
DK
11253#endif
11254#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 11255 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 11256 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
11257#endif
11258 )
252b5132 11259 {
b98ef147
AM
11260 /* Symbol is undefined in this segment, or we need to keep a
11261 reloc so that weak symbols can be overridden. */
11262 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 11263 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
11264 unsigned char *opcode;
11265 int old_fr_fix;
f6af82bd 11266
ee7fcc42 11267 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 11268 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 11269 else if (size == 2)
f6af82bd 11270 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
11271#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11272 else if (need_plt32_p (fragP->fr_symbol))
11273 reloc_type = BFD_RELOC_X86_64_PLT32;
11274#endif
f6af82bd
AM
11275 else
11276 reloc_type = BFD_RELOC_32_PCREL;
252b5132 11277
ee7fcc42
AM
11278 old_fr_fix = fragP->fr_fix;
11279 opcode = (unsigned char *) fragP->fr_opcode;
11280
fddf5b5b 11281 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 11282 {
fddf5b5b
AM
11283 case UNCOND_JUMP:
11284 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 11285 opcode[0] = 0xe9;
252b5132 11286 fragP->fr_fix += size;
062cd5e7
AS
11287 fix_new (fragP, old_fr_fix, size,
11288 fragP->fr_symbol,
11289 fragP->fr_offset, 1,
11290 reloc_type);
252b5132
RH
11291 break;
11292
fddf5b5b 11293 case COND_JUMP86:
412167cb
AM
11294 if (size == 2
11295 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
11296 {
11297 /* Negate the condition, and branch past an
11298 unconditional jump. */
11299 opcode[0] ^= 1;
11300 opcode[1] = 3;
11301 /* Insert an unconditional jump. */
11302 opcode[2] = 0xe9;
11303 /* We added two extra opcode bytes, and have a two byte
11304 offset. */
11305 fragP->fr_fix += 2 + 2;
062cd5e7
AS
11306 fix_new (fragP, old_fr_fix + 2, 2,
11307 fragP->fr_symbol,
11308 fragP->fr_offset, 1,
11309 reloc_type);
fddf5b5b
AM
11310 break;
11311 }
11312 /* Fall through. */
11313
11314 case COND_JUMP:
412167cb
AM
11315 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11316 {
3e02c1cc
AM
11317 fixS *fixP;
11318
412167cb 11319 fragP->fr_fix += 1;
3e02c1cc
AM
11320 fixP = fix_new (fragP, old_fr_fix, 1,
11321 fragP->fr_symbol,
11322 fragP->fr_offset, 1,
11323 BFD_RELOC_8_PCREL);
11324 fixP->fx_signed = 1;
412167cb
AM
11325 break;
11326 }
93c2a809 11327
24eab124 11328 /* This changes the byte-displacement jump 0x7N
fddf5b5b 11329 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 11330 opcode[1] = opcode[0] + 0x10;
f6af82bd 11331 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
11332 /* We've added an opcode byte. */
11333 fragP->fr_fix += 1 + size;
062cd5e7
AS
11334 fix_new (fragP, old_fr_fix + 1, size,
11335 fragP->fr_symbol,
11336 fragP->fr_offset, 1,
11337 reloc_type);
252b5132 11338 break;
fddf5b5b
AM
11339
11340 default:
11341 BAD_CASE (fragP->fr_subtype);
11342 break;
252b5132
RH
11343 }
11344 frag_wane (fragP);
ee7fcc42 11345 return fragP->fr_fix - old_fr_fix;
252b5132 11346 }
93c2a809 11347
93c2a809
AM
11348 /* Guess size depending on current relax state. Initially the relax
11349 state will correspond to a short jump and we return 1, because
11350 the variable part of the frag (the branch offset) is one byte
11351 long. However, we can relax a section more than once and in that
11352 case we must either set fr_subtype back to the unrelaxed state,
11353 or return the value for the appropriate branch. */
11354 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
11355}
11356
47926f60
KH
11357/* Called after relax() is finished.
11358
11359 In: Address of frag.
11360 fr_type == rs_machine_dependent.
11361 fr_subtype is what the address relaxed to.
11362
11363 Out: Any fixSs and constants are set up.
11364 Caller will turn frag into a ".space 0". */
11365
252b5132 11366void
7016a5d5
TG
11367md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11368 fragS *fragP)
252b5132 11369{
29b0f896 11370 unsigned char *opcode;
252b5132 11371 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
11372 offsetT target_address;
11373 offsetT opcode_address;
252b5132 11374 unsigned int extension = 0;
847f7ad4 11375 offsetT displacement_from_opcode_start;
252b5132 11376
e379e5f3
L
11377 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11378 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11379 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11380 {
11381 /* Generate nop padding. */
11382 unsigned int size = fragP->tc_frag_data.length;
11383 if (size)
11384 {
11385 if (size > fragP->tc_frag_data.max_bytes)
11386 abort ();
11387
11388 if (flag_debug)
11389 {
11390 const char *msg;
11391 const char *branch = "branch";
11392 const char *prefix = "";
11393 fragS *padding_fragP;
11394 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11395 == BRANCH_PREFIX)
11396 {
11397 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11398 switch (fragP->tc_frag_data.default_prefix)
11399 {
11400 default:
11401 abort ();
11402 break;
11403 case CS_PREFIX_OPCODE:
11404 prefix = " cs";
11405 break;
11406 case DS_PREFIX_OPCODE:
11407 prefix = " ds";
11408 break;
11409 case ES_PREFIX_OPCODE:
11410 prefix = " es";
11411 break;
11412 case FS_PREFIX_OPCODE:
11413 prefix = " fs";
11414 break;
11415 case GS_PREFIX_OPCODE:
11416 prefix = " gs";
11417 break;
11418 case SS_PREFIX_OPCODE:
11419 prefix = " ss";
11420 break;
11421 }
11422 if (padding_fragP)
11423 msg = _("%s:%u: add %d%s at 0x%llx to align "
11424 "%s within %d-byte boundary\n");
11425 else
11426 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11427 "align %s within %d-byte boundary\n");
11428 }
11429 else
11430 {
11431 padding_fragP = fragP;
11432 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11433 "%s within %d-byte boundary\n");
11434 }
11435
11436 if (padding_fragP)
11437 switch (padding_fragP->tc_frag_data.branch_type)
11438 {
11439 case align_branch_jcc:
11440 branch = "jcc";
11441 break;
11442 case align_branch_fused:
11443 branch = "fused jcc";
11444 break;
11445 case align_branch_jmp:
11446 branch = "jmp";
11447 break;
11448 case align_branch_call:
11449 branch = "call";
11450 break;
11451 case align_branch_indirect:
11452 branch = "indiret branch";
11453 break;
11454 case align_branch_ret:
11455 branch = "ret";
11456 break;
11457 default:
11458 break;
11459 }
11460
11461 fprintf (stdout, msg,
11462 fragP->fr_file, fragP->fr_line, size, prefix,
11463 (long long) fragP->fr_address, branch,
11464 1 << align_branch_power);
11465 }
11466 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11467 memset (fragP->fr_opcode,
11468 fragP->tc_frag_data.default_prefix, size);
11469 else
11470 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11471 size, 0);
11472 fragP->fr_fix += size;
11473 }
11474 return;
11475 }
11476
252b5132
RH
11477 opcode = (unsigned char *) fragP->fr_opcode;
11478
47926f60 11479 /* Address we want to reach in file space. */
252b5132 11480 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 11481
47926f60 11482 /* Address opcode resides at in file space. */
252b5132
RH
11483 opcode_address = fragP->fr_address + fragP->fr_fix;
11484
47926f60 11485 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
11486 displacement_from_opcode_start = target_address - opcode_address;
11487
fddf5b5b 11488 if ((fragP->fr_subtype & BIG) == 0)
252b5132 11489 {
47926f60
KH
11490 /* Don't have to change opcode. */
11491 extension = 1; /* 1 opcode + 1 displacement */
252b5132 11492 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
11493 }
11494 else
11495 {
11496 if (no_cond_jump_promotion
11497 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
11498 as_warn_where (fragP->fr_file, fragP->fr_line,
11499 _("long jump required"));
252b5132 11500
fddf5b5b
AM
11501 switch (fragP->fr_subtype)
11502 {
11503 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11504 extension = 4; /* 1 opcode + 4 displacement */
11505 opcode[0] = 0xe9;
11506 where_to_put_displacement = &opcode[1];
11507 break;
252b5132 11508
fddf5b5b
AM
11509 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11510 extension = 2; /* 1 opcode + 2 displacement */
11511 opcode[0] = 0xe9;
11512 where_to_put_displacement = &opcode[1];
11513 break;
252b5132 11514
fddf5b5b
AM
11515 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11516 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11517 extension = 5; /* 2 opcode + 4 displacement */
11518 opcode[1] = opcode[0] + 0x10;
11519 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11520 where_to_put_displacement = &opcode[2];
11521 break;
252b5132 11522
fddf5b5b
AM
11523 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11524 extension = 3; /* 2 opcode + 2 displacement */
11525 opcode[1] = opcode[0] + 0x10;
11526 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11527 where_to_put_displacement = &opcode[2];
11528 break;
252b5132 11529
fddf5b5b
AM
11530 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11531 extension = 4;
11532 opcode[0] ^= 1;
11533 opcode[1] = 3;
11534 opcode[2] = 0xe9;
11535 where_to_put_displacement = &opcode[3];
11536 break;
11537
11538 default:
11539 BAD_CASE (fragP->fr_subtype);
11540 break;
11541 }
252b5132 11542 }
fddf5b5b 11543
7b81dfbb
AJ
11544 /* If size if less then four we are sure that the operand fits,
11545 but if it's 4, then it could be that the displacement is larger
11546 then -/+ 2GB. */
11547 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11548 && object_64bit
11549 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
11550 + ((addressT) 1 << 31))
11551 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
11552 {
11553 as_bad_where (fragP->fr_file, fragP->fr_line,
11554 _("jump target out of range"));
11555 /* Make us emit 0. */
11556 displacement_from_opcode_start = extension;
11557 }
47926f60 11558 /* Now put displacement after opcode. */
252b5132
RH
11559 md_number_to_chars ((char *) where_to_put_displacement,
11560 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 11561 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
11562 fragP->fr_fix += extension;
11563}
11564\f
7016a5d5 11565/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
11566 by our caller that we have all the info we need to fix it up.
11567
7016a5d5
TG
11568 Parameter valP is the pointer to the value of the bits.
11569
252b5132
RH
11570 On the 386, immediates, displacements, and data pointers are all in
11571 the same (little-endian) format, so we don't need to care about which
11572 we are handling. */
11573
94f592af 11574void
7016a5d5 11575md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 11576{
94f592af 11577 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 11578 valueT value = *valP;
252b5132 11579
f86103b7 11580#if !defined (TE_Mach)
93382f6d
AM
11581 if (fixP->fx_pcrel)
11582 {
11583 switch (fixP->fx_r_type)
11584 {
5865bb77
ILT
11585 default:
11586 break;
11587
d6ab8113
JB
11588 case BFD_RELOC_64:
11589 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11590 break;
93382f6d 11591 case BFD_RELOC_32:
ae8887b5 11592 case BFD_RELOC_X86_64_32S:
93382f6d
AM
11593 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11594 break;
11595 case BFD_RELOC_16:
11596 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11597 break;
11598 case BFD_RELOC_8:
11599 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11600 break;
11601 }
11602 }
252b5132 11603
a161fe53 11604 if (fixP->fx_addsy != NULL
31312f95 11605 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 11606 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 11607 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 11608 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 11609 && !use_rela_relocations)
252b5132 11610 {
31312f95
AM
11611 /* This is a hack. There should be a better way to handle this.
11612 This covers for the fact that bfd_install_relocation will
11613 subtract the current location (for partial_inplace, PC relative
11614 relocations); see more below. */
252b5132 11615#ifndef OBJ_AOUT
718ddfc0 11616 if (IS_ELF
252b5132
RH
11617#ifdef TE_PE
11618 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11619#endif
11620 )
11621 value += fixP->fx_where + fixP->fx_frag->fr_address;
11622#endif
11623#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11624 if (IS_ELF)
252b5132 11625 {
6539b54b 11626 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 11627
6539b54b 11628 if ((sym_seg == seg
2f66722d 11629 || (symbol_section_p (fixP->fx_addsy)
6539b54b 11630 && sym_seg != absolute_section))
af65af87 11631 && !generic_force_reloc (fixP))
2f66722d
AM
11632 {
11633 /* Yes, we add the values in twice. This is because
6539b54b
AM
11634 bfd_install_relocation subtracts them out again. I think
11635 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
11636 it. FIXME. */
11637 value += fixP->fx_where + fixP->fx_frag->fr_address;
11638 }
252b5132
RH
11639 }
11640#endif
11641#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
11642 /* For some reason, the PE format does not store a
11643 section address offset for a PC relative symbol. */
11644 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 11645 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
11646 value += md_pcrel_from (fixP);
11647#endif
11648 }
fbeb56a4 11649#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
11650 if (fixP->fx_addsy != NULL
11651 && S_IS_WEAK (fixP->fx_addsy)
11652 /* PR 16858: Do not modify weak function references. */
11653 && ! fixP->fx_pcrel)
fbeb56a4 11654 {
296a8689
NC
11655#if !defined (TE_PEP)
11656 /* For x86 PE weak function symbols are neither PC-relative
11657 nor do they set S_IS_FUNCTION. So the only reliable way
11658 to detect them is to check the flags of their containing
11659 section. */
11660 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11661 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11662 ;
11663 else
11664#endif
fbeb56a4
DK
11665 value -= S_GET_VALUE (fixP->fx_addsy);
11666 }
11667#endif
252b5132
RH
11668
11669 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 11670 and we must not disappoint it. */
252b5132 11671#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11672 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
11673 switch (fixP->fx_r_type)
11674 {
11675 case BFD_RELOC_386_PLT32:
3e73aa7c 11676 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
11677 /* Make the jump instruction point to the address of the operand.
11678 At runtime we merely add the offset to the actual PLT entry.
11679 NB: Subtract the offset size only for jump instructions. */
11680 if (fixP->fx_pcrel)
11681 value = -4;
47926f60 11682 break;
31312f95 11683
13ae64f3
JJ
11684 case BFD_RELOC_386_TLS_GD:
11685 case BFD_RELOC_386_TLS_LDM:
13ae64f3 11686 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11687 case BFD_RELOC_386_TLS_IE:
11688 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 11689 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
11690 case BFD_RELOC_X86_64_TLSGD:
11691 case BFD_RELOC_X86_64_TLSLD:
11692 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 11693 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
11694 value = 0; /* Fully resolved at runtime. No addend. */
11695 /* Fallthrough */
11696 case BFD_RELOC_386_TLS_LE:
11697 case BFD_RELOC_386_TLS_LDO_32:
11698 case BFD_RELOC_386_TLS_LE_32:
11699 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11700 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 11701 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 11702 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
11703 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11704 break;
11705
67a4f2b7
AO
11706 case BFD_RELOC_386_TLS_DESC_CALL:
11707 case BFD_RELOC_X86_64_TLSDESC_CALL:
11708 value = 0; /* Fully resolved at runtime. No addend. */
11709 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11710 fixP->fx_done = 0;
11711 return;
11712
47926f60
KH
11713 case BFD_RELOC_VTABLE_INHERIT:
11714 case BFD_RELOC_VTABLE_ENTRY:
11715 fixP->fx_done = 0;
94f592af 11716 return;
47926f60
KH
11717
11718 default:
11719 break;
11720 }
11721#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 11722 *valP = value;
f86103b7 11723#endif /* !defined (TE_Mach) */
3e73aa7c 11724
3e73aa7c 11725 /* Are we finished with this relocation now? */
c6682705 11726 if (fixP->fx_addsy == NULL)
3e73aa7c 11727 fixP->fx_done = 1;
fbeb56a4
DK
11728#if defined (OBJ_COFF) && defined (TE_PE)
11729 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11730 {
11731 fixP->fx_done = 0;
11732 /* Remember value for tc_gen_reloc. */
11733 fixP->fx_addnumber = value;
11734 /* Clear out the frag for now. */
11735 value = 0;
11736 }
11737#endif
3e73aa7c
JH
11738 else if (use_rela_relocations)
11739 {
11740 fixP->fx_no_overflow = 1;
062cd5e7
AS
11741 /* Remember value for tc_gen_reloc. */
11742 fixP->fx_addnumber = value;
3e73aa7c
JH
11743 value = 0;
11744 }
f86103b7 11745
94f592af 11746 md_number_to_chars (p, value, fixP->fx_size);
252b5132 11747}
252b5132 11748\f
6d4af3c2 11749const char *
499ac353 11750md_atof (int type, char *litP, int *sizeP)
252b5132 11751{
499ac353
NC
11752 /* This outputs the LITTLENUMs in REVERSE order;
11753 in accord with the bigendian 386. */
11754 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
11755}
11756\f
2d545b82 11757static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 11758
252b5132 11759static char *
e3bb37b5 11760output_invalid (int c)
252b5132 11761{
3882b010 11762 if (ISPRINT (c))
f9f21a03
L
11763 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11764 "'%c'", c);
252b5132 11765 else
f9f21a03 11766 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 11767 "(0x%x)", (unsigned char) c);
252b5132
RH
11768 return output_invalid_buf;
11769}
11770
af6bdddf 11771/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
11772
11773static const reg_entry *
4d1bb795 11774parse_real_register (char *reg_string, char **end_op)
252b5132 11775{
af6bdddf
AM
11776 char *s = reg_string;
11777 char *p;
252b5132
RH
11778 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11779 const reg_entry *r;
11780
11781 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11782 if (*s == REGISTER_PREFIX)
11783 ++s;
11784
11785 if (is_space_char (*s))
11786 ++s;
11787
11788 p = reg_name_given;
af6bdddf 11789 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
11790 {
11791 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
11792 return (const reg_entry *) NULL;
11793 s++;
252b5132
RH
11794 }
11795
6588847e
DN
11796 /* For naked regs, make sure that we are not dealing with an identifier.
11797 This prevents confusing an identifier like `eax_var' with register
11798 `eax'. */
11799 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11800 return (const reg_entry *) NULL;
11801
af6bdddf 11802 *end_op = s;
252b5132
RH
11803
11804 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11805
5f47d35b 11806 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 11807 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 11808 {
0e0eea78
JB
11809 if (!cpu_arch_flags.bitfield.cpu8087
11810 && !cpu_arch_flags.bitfield.cpu287
11811 && !cpu_arch_flags.bitfield.cpu387)
11812 return (const reg_entry *) NULL;
11813
5f47d35b
AM
11814 if (is_space_char (*s))
11815 ++s;
11816 if (*s == '(')
11817 {
af6bdddf 11818 ++s;
5f47d35b
AM
11819 if (is_space_char (*s))
11820 ++s;
11821 if (*s >= '0' && *s <= '7')
11822 {
db557034 11823 int fpr = *s - '0';
af6bdddf 11824 ++s;
5f47d35b
AM
11825 if (is_space_char (*s))
11826 ++s;
11827 if (*s == ')')
11828 {
11829 *end_op = s + 1;
1e9cc1c2 11830 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
11831 know (r);
11832 return r + fpr;
5f47d35b 11833 }
5f47d35b 11834 }
47926f60 11835 /* We have "%st(" then garbage. */
5f47d35b
AM
11836 return (const reg_entry *) NULL;
11837 }
11838 }
11839
a60de03c
JB
11840 if (r == NULL || allow_pseudo_reg)
11841 return r;
11842
0dfbf9d7 11843 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
11844 return (const reg_entry *) NULL;
11845
dc821c5f 11846 if ((r->reg_type.bitfield.dword
00cee14f 11847 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
4a5c67ed
JB
11848 || r->reg_type.bitfield.class == RegCR
11849 || r->reg_type.bitfield.class == RegDR
11850 || r->reg_type.bitfield.class == RegTR)
192dc9c6
JB
11851 && !cpu_arch_flags.bitfield.cpui386)
11852 return (const reg_entry *) NULL;
11853
3528c362 11854 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
11855 return (const reg_entry *) NULL;
11856
6e041cf4
JB
11857 if (!cpu_arch_flags.bitfield.cpuavx512f)
11858 {
f74a6307
JB
11859 if (r->reg_type.bitfield.zmmword
11860 || r->reg_type.bitfield.class == RegMask)
6e041cf4 11861 return (const reg_entry *) NULL;
40f12533 11862
6e041cf4
JB
11863 if (!cpu_arch_flags.bitfield.cpuavx)
11864 {
11865 if (r->reg_type.bitfield.ymmword)
11866 return (const reg_entry *) NULL;
1848e567 11867
6e041cf4
JB
11868 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11869 return (const reg_entry *) NULL;
11870 }
11871 }
43234a1e 11872
f74a6307 11873 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
1adf7f56
JB
11874 return (const reg_entry *) NULL;
11875
db51cc60 11876 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 11877 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
11878 return (const reg_entry *) NULL;
11879
1d3f8286
JB
11880 /* Upper 16 vector registers are only available with VREX in 64bit
11881 mode, and require EVEX encoding. */
11882 if (r->reg_flags & RegVRex)
43234a1e 11883 {
e951d5ca 11884 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
11885 || flag_code != CODE_64BIT)
11886 return (const reg_entry *) NULL;
1d3f8286
JB
11887
11888 i.vec_encoding = vex_encoding_evex;
43234a1e
L
11889 }
11890
4787f4a5 11891 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
4a5c67ed 11892 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
1ae00879 11893 && flag_code != CODE_64BIT)
20f0a1fc 11894 return (const reg_entry *) NULL;
1ae00879 11895
00cee14f
JB
11896 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11897 && !intel_syntax)
b7240065
JB
11898 return (const reg_entry *) NULL;
11899
252b5132
RH
11900 return r;
11901}
4d1bb795
JB
11902
11903/* REG_STRING starts *before* REGISTER_PREFIX. */
11904
11905static const reg_entry *
11906parse_register (char *reg_string, char **end_op)
11907{
11908 const reg_entry *r;
11909
11910 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11911 r = parse_real_register (reg_string, end_op);
11912 else
11913 r = NULL;
11914 if (!r)
11915 {
11916 char *save = input_line_pointer;
11917 char c;
11918 symbolS *symbolP;
11919
11920 input_line_pointer = reg_string;
d02603dc 11921 c = get_symbol_name (&reg_string);
4d1bb795
JB
11922 symbolP = symbol_find (reg_string);
11923 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11924 {
11925 const expressionS *e = symbol_get_value_expression (symbolP);
11926
0398aac5 11927 know (e->X_op == O_register);
4eed87de 11928 know (e->X_add_number >= 0
c3fe08fa 11929 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 11930 r = i386_regtab + e->X_add_number;
d3bb6b49 11931 if ((r->reg_flags & RegVRex))
86fa6981 11932 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
11933 *end_op = input_line_pointer;
11934 }
11935 *input_line_pointer = c;
11936 input_line_pointer = save;
11937 }
11938 return r;
11939}
11940
11941int
11942i386_parse_name (char *name, expressionS *e, char *nextcharP)
11943{
11944 const reg_entry *r;
11945 char *end = input_line_pointer;
11946
11947 *end = *nextcharP;
11948 r = parse_register (name, &input_line_pointer);
11949 if (r && end <= input_line_pointer)
11950 {
11951 *nextcharP = *input_line_pointer;
11952 *input_line_pointer = 0;
11953 e->X_op = O_register;
11954 e->X_add_number = r - i386_regtab;
11955 return 1;
11956 }
11957 input_line_pointer = end;
11958 *end = 0;
ee86248c 11959 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
11960}
11961
11962void
11963md_operand (expressionS *e)
11964{
ee86248c
JB
11965 char *end;
11966 const reg_entry *r;
4d1bb795 11967
ee86248c
JB
11968 switch (*input_line_pointer)
11969 {
11970 case REGISTER_PREFIX:
11971 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11972 if (r)
11973 {
11974 e->X_op = O_register;
11975 e->X_add_number = r - i386_regtab;
11976 input_line_pointer = end;
11977 }
ee86248c
JB
11978 break;
11979
11980 case '[':
9c2799c2 11981 gas_assert (intel_syntax);
ee86248c
JB
11982 end = input_line_pointer++;
11983 expression (e);
11984 if (*input_line_pointer == ']')
11985 {
11986 ++input_line_pointer;
11987 e->X_op_symbol = make_expr_symbol (e);
11988 e->X_add_symbol = NULL;
11989 e->X_add_number = 0;
11990 e->X_op = O_index;
11991 }
11992 else
11993 {
11994 e->X_op = O_absent;
11995 input_line_pointer = end;
11996 }
11997 break;
4d1bb795
JB
11998 }
11999}
12000
252b5132 12001\f
4cc782b5 12002#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 12003const char *md_shortopts = "kVQ:sqnO::";
252b5132 12004#else
b6f8c7c4 12005const char *md_shortopts = "qnO::";
252b5132 12006#endif
6e0b89ee 12007
3e73aa7c 12008#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
12009#define OPTION_64 (OPTION_MD_BASE + 1)
12010#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
12011#define OPTION_MARCH (OPTION_MD_BASE + 3)
12012#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
12013#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12014#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12015#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12016#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 12017#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 12018#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 12019#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
12020#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12021#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12022#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 12023#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
12024#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12025#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 12026#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 12027#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 12028#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 12029#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
12030#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12031#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 12032#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 12033#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 12034#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
e379e5f3
L
12035#define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12036#define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12037#define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
76cf450b 12038#define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
b3b91714 12039
99ad8390
NC
12040struct option md_longopts[] =
12041{
3e73aa7c 12042 {"32", no_argument, NULL, OPTION_32},
321098a5 12043#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12044 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 12045 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
12046#endif
12047#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12048 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 12049 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 12050 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 12051#endif
b3b91714 12052 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
12053 {"march", required_argument, NULL, OPTION_MARCH},
12054 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
12055 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12056 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12057 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12058 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 12059 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 12060 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 12061 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 12062 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 12063 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 12064 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
12065 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12066 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
12067# if defined (TE_PE) || defined (TE_PEP)
12068 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12069#endif
d1982f93 12070 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 12071 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 12072 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 12073 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
e379e5f3
L
12074 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12075 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12076 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
76cf450b 12077 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
5db04b09
L
12078 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12079 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
12080 {NULL, no_argument, NULL, 0}
12081};
12082size_t md_longopts_size = sizeof (md_longopts);
12083
12084int
17b9d67d 12085md_parse_option (int c, const char *arg)
252b5132 12086{
91d6fa6a 12087 unsigned int j;
e379e5f3 12088 char *arch, *next, *saved, *type;
9103f4f4 12089
252b5132
RH
12090 switch (c)
12091 {
12b55ccc
L
12092 case 'n':
12093 optimize_align_code = 0;
12094 break;
12095
a38cf1db
AM
12096 case 'q':
12097 quiet_warnings = 1;
252b5132
RH
12098 break;
12099
12100#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
12101 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12102 should be emitted or not. FIXME: Not implemented. */
12103 case 'Q':
d4693039
JB
12104 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12105 return 0;
252b5132
RH
12106 break;
12107
12108 /* -V: SVR4 argument to print version ID. */
12109 case 'V':
12110 print_version_id ();
12111 break;
12112
a38cf1db
AM
12113 /* -k: Ignore for FreeBSD compatibility. */
12114 case 'k':
252b5132 12115 break;
4cc782b5
ILT
12116
12117 case 's':
12118 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 12119 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 12120 break;
8dcea932
L
12121
12122 case OPTION_MSHARED:
12123 shared = 1;
12124 break;
b4a3a7b4
L
12125
12126 case OPTION_X86_USED_NOTE:
12127 if (strcasecmp (arg, "yes") == 0)
12128 x86_used_note = 1;
12129 else if (strcasecmp (arg, "no") == 0)
12130 x86_used_note = 0;
12131 else
12132 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12133 break;
12134
12135
99ad8390 12136#endif
321098a5 12137#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12138 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
12139 case OPTION_64:
12140 {
12141 const char **list, **l;
12142
3e73aa7c
JH
12143 list = bfd_target_list ();
12144 for (l = list; *l != NULL; l++)
8620418b 12145 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
12146 || strcmp (*l, "coff-x86-64") == 0
12147 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
12148 || strcmp (*l, "pei-x86-64") == 0
12149 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
12150 {
12151 default_arch = "x86_64";
12152 break;
12153 }
3e73aa7c 12154 if (*l == NULL)
2b5d6a91 12155 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
12156 free (list);
12157 }
12158 break;
12159#endif
252b5132 12160
351f65ca 12161#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12162 case OPTION_X32:
351f65ca
L
12163 if (IS_ELF)
12164 {
12165 const char **list, **l;
12166
12167 list = bfd_target_list ();
12168 for (l = list; *l != NULL; l++)
12169 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12170 {
12171 default_arch = "x86_64:32";
12172 break;
12173 }
12174 if (*l == NULL)
2b5d6a91 12175 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
12176 free (list);
12177 }
12178 else
12179 as_fatal (_("32bit x86_64 is only supported for ELF"));
12180 break;
12181#endif
12182
6e0b89ee
AM
12183 case OPTION_32:
12184 default_arch = "i386";
12185 break;
12186
b3b91714
AM
12187 case OPTION_DIVIDE:
12188#ifdef SVR4_COMMENT_CHARS
12189 {
12190 char *n, *t;
12191 const char *s;
12192
add39d23 12193 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
12194 t = n;
12195 for (s = i386_comment_chars; *s != '\0'; s++)
12196 if (*s != '/')
12197 *t++ = *s;
12198 *t = '\0';
12199 i386_comment_chars = n;
12200 }
12201#endif
12202 break;
12203
9103f4f4 12204 case OPTION_MARCH:
293f5f65
L
12205 saved = xstrdup (arg);
12206 arch = saved;
12207 /* Allow -march=+nosse. */
12208 if (*arch == '+')
12209 arch++;
6305a203 12210 do
9103f4f4 12211 {
6305a203 12212 if (*arch == '.')
2b5d6a91 12213 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12214 next = strchr (arch, '+');
12215 if (next)
12216 *next++ = '\0';
91d6fa6a 12217 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12218 {
91d6fa6a 12219 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 12220 {
6305a203 12221 /* Processor. */
1ded5609
JB
12222 if (! cpu_arch[j].flags.bitfield.cpui386)
12223 continue;
12224
91d6fa6a 12225 cpu_arch_name = cpu_arch[j].name;
6305a203 12226 cpu_sub_arch_name = NULL;
91d6fa6a
NC
12227 cpu_arch_flags = cpu_arch[j].flags;
12228 cpu_arch_isa = cpu_arch[j].type;
12229 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
12230 if (!cpu_arch_tune_set)
12231 {
12232 cpu_arch_tune = cpu_arch_isa;
12233 cpu_arch_tune_flags = cpu_arch_isa_flags;
12234 }
12235 break;
12236 }
91d6fa6a
NC
12237 else if (*cpu_arch [j].name == '.'
12238 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 12239 {
33eaf5de 12240 /* ISA extension. */
6305a203 12241 i386_cpu_flags flags;
309d3373 12242
293f5f65
L
12243 flags = cpu_flags_or (cpu_arch_flags,
12244 cpu_arch[j].flags);
81486035 12245
5b64d091 12246 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
12247 {
12248 if (cpu_sub_arch_name)
12249 {
12250 char *name = cpu_sub_arch_name;
12251 cpu_sub_arch_name = concat (name,
91d6fa6a 12252 cpu_arch[j].name,
1bf57e9f 12253 (const char *) NULL);
6305a203
L
12254 free (name);
12255 }
12256 else
91d6fa6a 12257 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 12258 cpu_arch_flags = flags;
a586129e 12259 cpu_arch_isa_flags = flags;
6305a203 12260 }
0089dace
L
12261 else
12262 cpu_arch_isa_flags
12263 = cpu_flags_or (cpu_arch_isa_flags,
12264 cpu_arch[j].flags);
6305a203 12265 break;
ccc9c027 12266 }
9103f4f4 12267 }
6305a203 12268
293f5f65
L
12269 if (j >= ARRAY_SIZE (cpu_arch))
12270 {
33eaf5de 12271 /* Disable an ISA extension. */
293f5f65
L
12272 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12273 if (strcmp (arch, cpu_noarch [j].name) == 0)
12274 {
12275 i386_cpu_flags flags;
12276
12277 flags = cpu_flags_and_not (cpu_arch_flags,
12278 cpu_noarch[j].flags);
12279 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12280 {
12281 if (cpu_sub_arch_name)
12282 {
12283 char *name = cpu_sub_arch_name;
12284 cpu_sub_arch_name = concat (arch,
12285 (const char *) NULL);
12286 free (name);
12287 }
12288 else
12289 cpu_sub_arch_name = xstrdup (arch);
12290 cpu_arch_flags = flags;
12291 cpu_arch_isa_flags = flags;
12292 }
12293 break;
12294 }
12295
12296 if (j >= ARRAY_SIZE (cpu_noarch))
12297 j = ARRAY_SIZE (cpu_arch);
12298 }
12299
91d6fa6a 12300 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12301 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12302
12303 arch = next;
9103f4f4 12304 }
293f5f65
L
12305 while (next != NULL);
12306 free (saved);
9103f4f4
L
12307 break;
12308
12309 case OPTION_MTUNE:
12310 if (*arg == '.')
2b5d6a91 12311 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 12312 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12313 {
91d6fa6a 12314 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 12315 {
ccc9c027 12316 cpu_arch_tune_set = 1;
91d6fa6a
NC
12317 cpu_arch_tune = cpu_arch [j].type;
12318 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
12319 break;
12320 }
12321 }
91d6fa6a 12322 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12323 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
12324 break;
12325
1efbbeb4
L
12326 case OPTION_MMNEMONIC:
12327 if (strcasecmp (arg, "att") == 0)
12328 intel_mnemonic = 0;
12329 else if (strcasecmp (arg, "intel") == 0)
12330 intel_mnemonic = 1;
12331 else
2b5d6a91 12332 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
12333 break;
12334
12335 case OPTION_MSYNTAX:
12336 if (strcasecmp (arg, "att") == 0)
12337 intel_syntax = 0;
12338 else if (strcasecmp (arg, "intel") == 0)
12339 intel_syntax = 1;
12340 else
2b5d6a91 12341 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
12342 break;
12343
12344 case OPTION_MINDEX_REG:
12345 allow_index_reg = 1;
12346 break;
12347
12348 case OPTION_MNAKED_REG:
12349 allow_naked_reg = 1;
12350 break;
12351
c0f3af97
L
12352 case OPTION_MSSE2AVX:
12353 sse2avx = 1;
12354 break;
12355
daf50ae7
L
12356 case OPTION_MSSE_CHECK:
12357 if (strcasecmp (arg, "error") == 0)
7bab8ab5 12358 sse_check = check_error;
daf50ae7 12359 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 12360 sse_check = check_warning;
daf50ae7 12361 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 12362 sse_check = check_none;
daf50ae7 12363 else
2b5d6a91 12364 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
12365 break;
12366
7bab8ab5
JB
12367 case OPTION_MOPERAND_CHECK:
12368 if (strcasecmp (arg, "error") == 0)
12369 operand_check = check_error;
12370 else if (strcasecmp (arg, "warning") == 0)
12371 operand_check = check_warning;
12372 else if (strcasecmp (arg, "none") == 0)
12373 operand_check = check_none;
12374 else
12375 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12376 break;
12377
539f890d
L
12378 case OPTION_MAVXSCALAR:
12379 if (strcasecmp (arg, "128") == 0)
12380 avxscalar = vex128;
12381 else if (strcasecmp (arg, "256") == 0)
12382 avxscalar = vex256;
12383 else
2b5d6a91 12384 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
12385 break;
12386
03751133
L
12387 case OPTION_MVEXWIG:
12388 if (strcmp (arg, "0") == 0)
40c9c8de 12389 vexwig = vexw0;
03751133 12390 else if (strcmp (arg, "1") == 0)
40c9c8de 12391 vexwig = vexw1;
03751133
L
12392 else
12393 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12394 break;
12395
7e8b059b
L
12396 case OPTION_MADD_BND_PREFIX:
12397 add_bnd_prefix = 1;
12398 break;
12399
43234a1e
L
12400 case OPTION_MEVEXLIG:
12401 if (strcmp (arg, "128") == 0)
12402 evexlig = evexl128;
12403 else if (strcmp (arg, "256") == 0)
12404 evexlig = evexl256;
12405 else if (strcmp (arg, "512") == 0)
12406 evexlig = evexl512;
12407 else
12408 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12409 break;
12410
d3d3c6db
IT
12411 case OPTION_MEVEXRCIG:
12412 if (strcmp (arg, "rne") == 0)
12413 evexrcig = rne;
12414 else if (strcmp (arg, "rd") == 0)
12415 evexrcig = rd;
12416 else if (strcmp (arg, "ru") == 0)
12417 evexrcig = ru;
12418 else if (strcmp (arg, "rz") == 0)
12419 evexrcig = rz;
12420 else
12421 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12422 break;
12423
43234a1e
L
12424 case OPTION_MEVEXWIG:
12425 if (strcmp (arg, "0") == 0)
12426 evexwig = evexw0;
12427 else if (strcmp (arg, "1") == 0)
12428 evexwig = evexw1;
12429 else
12430 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12431 break;
12432
167ad85b
TG
12433# if defined (TE_PE) || defined (TE_PEP)
12434 case OPTION_MBIG_OBJ:
12435 use_big_obj = 1;
12436 break;
12437#endif
12438
d1982f93 12439 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
12440 if (strcasecmp (arg, "yes") == 0)
12441 omit_lock_prefix = 1;
12442 else if (strcasecmp (arg, "no") == 0)
12443 omit_lock_prefix = 0;
12444 else
12445 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12446 break;
12447
e4e00185
AS
12448 case OPTION_MFENCE_AS_LOCK_ADD:
12449 if (strcasecmp (arg, "yes") == 0)
12450 avoid_fence = 1;
12451 else if (strcasecmp (arg, "no") == 0)
12452 avoid_fence = 0;
12453 else
12454 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12455 break;
12456
0cb4071e
L
12457 case OPTION_MRELAX_RELOCATIONS:
12458 if (strcasecmp (arg, "yes") == 0)
12459 generate_relax_relocations = 1;
12460 else if (strcasecmp (arg, "no") == 0)
12461 generate_relax_relocations = 0;
12462 else
12463 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12464 break;
12465
e379e5f3
L
12466 case OPTION_MALIGN_BRANCH_BOUNDARY:
12467 {
12468 char *end;
12469 long int align = strtoul (arg, &end, 0);
12470 if (*end == '\0')
12471 {
12472 if (align == 0)
12473 {
12474 align_branch_power = 0;
12475 break;
12476 }
12477 else if (align >= 16)
12478 {
12479 int align_power;
12480 for (align_power = 0;
12481 (align & 1) == 0;
12482 align >>= 1, align_power++)
12483 continue;
12484 /* Limit alignment power to 31. */
12485 if (align == 1 && align_power < 32)
12486 {
12487 align_branch_power = align_power;
12488 break;
12489 }
12490 }
12491 }
12492 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12493 }
12494 break;
12495
12496 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12497 {
12498 char *end;
12499 int align = strtoul (arg, &end, 0);
12500 /* Some processors only support 5 prefixes. */
12501 if (*end == '\0' && align >= 0 && align < 6)
12502 {
12503 align_branch_prefix_size = align;
12504 break;
12505 }
12506 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12507 arg);
12508 }
12509 break;
12510
12511 case OPTION_MALIGN_BRANCH:
12512 align_branch = 0;
12513 saved = xstrdup (arg);
12514 type = saved;
12515 do
12516 {
12517 next = strchr (type, '+');
12518 if (next)
12519 *next++ = '\0';
12520 if (strcasecmp (type, "jcc") == 0)
12521 align_branch |= align_branch_jcc_bit;
12522 else if (strcasecmp (type, "fused") == 0)
12523 align_branch |= align_branch_fused_bit;
12524 else if (strcasecmp (type, "jmp") == 0)
12525 align_branch |= align_branch_jmp_bit;
12526 else if (strcasecmp (type, "call") == 0)
12527 align_branch |= align_branch_call_bit;
12528 else if (strcasecmp (type, "ret") == 0)
12529 align_branch |= align_branch_ret_bit;
12530 else if (strcasecmp (type, "indirect") == 0)
12531 align_branch |= align_branch_indirect_bit;
12532 else
12533 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12534 type = next;
12535 }
12536 while (next != NULL);
12537 free (saved);
12538 break;
12539
76cf450b
L
12540 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12541 align_branch_power = 5;
12542 align_branch_prefix_size = 5;
12543 align_branch = (align_branch_jcc_bit
12544 | align_branch_fused_bit
12545 | align_branch_jmp_bit);
12546 break;
12547
5db04b09 12548 case OPTION_MAMD64:
e89c5eaa 12549 intel64 = 0;
5db04b09
L
12550 break;
12551
12552 case OPTION_MINTEL64:
e89c5eaa 12553 intel64 = 1;
5db04b09
L
12554 break;
12555
b6f8c7c4
L
12556 case 'O':
12557 if (arg == NULL)
12558 {
12559 optimize = 1;
12560 /* Turn off -Os. */
12561 optimize_for_space = 0;
12562 }
12563 else if (*arg == 's')
12564 {
12565 optimize_for_space = 1;
12566 /* Turn on all encoding optimizations. */
41fd2579 12567 optimize = INT_MAX;
b6f8c7c4
L
12568 }
12569 else
12570 {
12571 optimize = atoi (arg);
12572 /* Turn off -Os. */
12573 optimize_for_space = 0;
12574 }
12575 break;
12576
252b5132
RH
12577 default:
12578 return 0;
12579 }
12580 return 1;
12581}
12582
8a2c8fef
L
12583#define MESSAGE_TEMPLATE \
12584" "
12585
293f5f65
L
12586static char *
12587output_message (FILE *stream, char *p, char *message, char *start,
12588 int *left_p, const char *name, int len)
12589{
12590 int size = sizeof (MESSAGE_TEMPLATE);
12591 int left = *left_p;
12592
12593 /* Reserve 2 spaces for ", " or ",\0" */
12594 left -= len + 2;
12595
12596 /* Check if there is any room. */
12597 if (left >= 0)
12598 {
12599 if (p != start)
12600 {
12601 *p++ = ',';
12602 *p++ = ' ';
12603 }
12604 p = mempcpy (p, name, len);
12605 }
12606 else
12607 {
12608 /* Output the current message now and start a new one. */
12609 *p++ = ',';
12610 *p = '\0';
12611 fprintf (stream, "%s\n", message);
12612 p = start;
12613 left = size - (start - message) - len - 2;
12614
12615 gas_assert (left >= 0);
12616
12617 p = mempcpy (p, name, len);
12618 }
12619
12620 *left_p = left;
12621 return p;
12622}
12623
8a2c8fef 12624static void
1ded5609 12625show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
12626{
12627 static char message[] = MESSAGE_TEMPLATE;
12628 char *start = message + 27;
12629 char *p;
12630 int size = sizeof (MESSAGE_TEMPLATE);
12631 int left;
12632 const char *name;
12633 int len;
12634 unsigned int j;
12635
12636 p = start;
12637 left = size - (start - message);
12638 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12639 {
12640 /* Should it be skipped? */
12641 if (cpu_arch [j].skip)
12642 continue;
12643
12644 name = cpu_arch [j].name;
12645 len = cpu_arch [j].len;
12646 if (*name == '.')
12647 {
12648 /* It is an extension. Skip if we aren't asked to show it. */
12649 if (ext)
12650 {
12651 name++;
12652 len--;
12653 }
12654 else
12655 continue;
12656 }
12657 else if (ext)
12658 {
12659 /* It is an processor. Skip if we show only extension. */
12660 continue;
12661 }
1ded5609
JB
12662 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12663 {
12664 /* It is an impossible processor - skip. */
12665 continue;
12666 }
8a2c8fef 12667
293f5f65 12668 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
12669 }
12670
293f5f65
L
12671 /* Display disabled extensions. */
12672 if (ext)
12673 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12674 {
12675 name = cpu_noarch [j].name;
12676 len = cpu_noarch [j].len;
12677 p = output_message (stream, p, message, start, &left, name,
12678 len);
12679 }
12680
8a2c8fef
L
12681 *p = '\0';
12682 fprintf (stream, "%s\n", message);
12683}
12684
252b5132 12685void
8a2c8fef 12686md_show_usage (FILE *stream)
252b5132 12687{
4cc782b5
ILT
12688#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12689 fprintf (stream, _("\
d4693039 12690 -Qy, -Qn ignored\n\
a38cf1db 12691 -V print assembler version number\n\
b3b91714
AM
12692 -k ignored\n"));
12693#endif
12694 fprintf (stream, _("\
12b55ccc 12695 -n Do not optimize code alignment\n\
b3b91714
AM
12696 -q quieten some warnings\n"));
12697#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12698 fprintf (stream, _("\
a38cf1db 12699 -s ignored\n"));
b3b91714 12700#endif
d7f449c0
L
12701#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12702 || defined (TE_PE) || defined (TE_PEP))
751d281c 12703 fprintf (stream, _("\
570561f7 12704 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 12705#endif
b3b91714
AM
12706#ifdef SVR4_COMMENT_CHARS
12707 fprintf (stream, _("\
12708 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
12709#else
12710 fprintf (stream, _("\
b3b91714 12711 --divide ignored\n"));
4cc782b5 12712#endif
9103f4f4 12713 fprintf (stream, _("\
6305a203 12714 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 12715 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 12716 show_arch (stream, 0, 1);
8a2c8fef
L
12717 fprintf (stream, _("\
12718 EXTENSION is combination of:\n"));
1ded5609 12719 show_arch (stream, 1, 0);
6305a203 12720 fprintf (stream, _("\
8a2c8fef 12721 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 12722 show_arch (stream, 0, 0);
ba104c83 12723 fprintf (stream, _("\
c0f3af97
L
12724 -msse2avx encode SSE instructions with VEX prefix\n"));
12725 fprintf (stream, _("\
7c5c05ef 12726 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
12727 check SSE instructions\n"));
12728 fprintf (stream, _("\
7c5c05ef 12729 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
12730 check operand combinations for validity\n"));
12731 fprintf (stream, _("\
7c5c05ef
L
12732 -mavxscalar=[128|256] (default: 128)\n\
12733 encode scalar AVX instructions with specific vector\n\
539f890d
L
12734 length\n"));
12735 fprintf (stream, _("\
03751133
L
12736 -mvexwig=[0|1] (default: 0)\n\
12737 encode VEX instructions with specific VEX.W value\n\
12738 for VEX.W bit ignored instructions\n"));
12739 fprintf (stream, _("\
7c5c05ef
L
12740 -mevexlig=[128|256|512] (default: 128)\n\
12741 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
12742 length\n"));
12743 fprintf (stream, _("\
7c5c05ef
L
12744 -mevexwig=[0|1] (default: 0)\n\
12745 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
12746 for EVEX.W bit ignored instructions\n"));
12747 fprintf (stream, _("\
7c5c05ef 12748 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
12749 encode EVEX instructions with specific EVEX.RC value\n\
12750 for SAE-only ignored instructions\n"));
12751 fprintf (stream, _("\
7c5c05ef
L
12752 -mmnemonic=[att|intel] "));
12753 if (SYSV386_COMPAT)
12754 fprintf (stream, _("(default: att)\n"));
12755 else
12756 fprintf (stream, _("(default: intel)\n"));
12757 fprintf (stream, _("\
12758 use AT&T/Intel mnemonic\n"));
ba104c83 12759 fprintf (stream, _("\
7c5c05ef
L
12760 -msyntax=[att|intel] (default: att)\n\
12761 use AT&T/Intel syntax\n"));
ba104c83
L
12762 fprintf (stream, _("\
12763 -mindex-reg support pseudo index registers\n"));
12764 fprintf (stream, _("\
12765 -mnaked-reg don't require `%%' prefix for registers\n"));
12766 fprintf (stream, _("\
7e8b059b 12767 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 12768#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
12769 fprintf (stream, _("\
12770 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
12771 fprintf (stream, _("\
12772 -mx86-used-note=[no|yes] "));
12773 if (DEFAULT_X86_USED_NOTE)
12774 fprintf (stream, _("(default: yes)\n"));
12775 else
12776 fprintf (stream, _("(default: no)\n"));
12777 fprintf (stream, _("\
12778 generate x86 used ISA and feature properties\n"));
12779#endif
12780#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
12781 fprintf (stream, _("\
12782 -mbig-obj generate big object files\n"));
12783#endif
d022bddd 12784 fprintf (stream, _("\
7c5c05ef 12785 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 12786 strip all lock prefixes\n"));
5db04b09 12787 fprintf (stream, _("\
7c5c05ef 12788 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
12789 encode lfence, mfence and sfence as\n\
12790 lock addl $0x0, (%%{re}sp)\n"));
12791 fprintf (stream, _("\
7c5c05ef
L
12792 -mrelax-relocations=[no|yes] "));
12793 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12794 fprintf (stream, _("(default: yes)\n"));
12795 else
12796 fprintf (stream, _("(default: no)\n"));
12797 fprintf (stream, _("\
0cb4071e
L
12798 generate relax relocations\n"));
12799 fprintf (stream, _("\
e379e5f3
L
12800 -malign-branch-boundary=NUM (default: 0)\n\
12801 align branches within NUM byte boundary\n"));
12802 fprintf (stream, _("\
12803 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12804 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12805 indirect\n\
12806 specify types of branches to align\n"));
12807 fprintf (stream, _("\
12808 -malign-branch-prefix-size=NUM (default: 5)\n\
12809 align branches with NUM prefixes per instruction\n"));
12810 fprintf (stream, _("\
76cf450b
L
12811 -mbranches-within-32B-boundaries\n\
12812 align branches within 32 byte boundary\n"));
12813 fprintf (stream, _("\
7c5c05ef 12814 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
12815 fprintf (stream, _("\
12816 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
12817}
12818
3e73aa7c 12819#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 12820 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 12821 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
12822
12823/* Pick the target format to use. */
12824
47926f60 12825const char *
e3bb37b5 12826i386_target_format (void)
252b5132 12827{
351f65ca
L
12828 if (!strncmp (default_arch, "x86_64", 6))
12829 {
12830 update_code_flag (CODE_64BIT, 1);
12831 if (default_arch[6] == '\0')
7f56bc95 12832 x86_elf_abi = X86_64_ABI;
351f65ca 12833 else
7f56bc95 12834 x86_elf_abi = X86_64_X32_ABI;
351f65ca 12835 }
3e73aa7c 12836 else if (!strcmp (default_arch, "i386"))
78f12dd3 12837 update_code_flag (CODE_32BIT, 1);
5197d474
L
12838 else if (!strcmp (default_arch, "iamcu"))
12839 {
12840 update_code_flag (CODE_32BIT, 1);
12841 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12842 {
12843 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12844 cpu_arch_name = "iamcu";
12845 cpu_sub_arch_name = NULL;
12846 cpu_arch_flags = iamcu_flags;
12847 cpu_arch_isa = PROCESSOR_IAMCU;
12848 cpu_arch_isa_flags = iamcu_flags;
12849 if (!cpu_arch_tune_set)
12850 {
12851 cpu_arch_tune = cpu_arch_isa;
12852 cpu_arch_tune_flags = cpu_arch_isa_flags;
12853 }
12854 }
8d471ec1 12855 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
12856 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12857 cpu_arch_name);
12858 }
3e73aa7c 12859 else
2b5d6a91 12860 as_fatal (_("unknown architecture"));
89507696
JB
12861
12862 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12863 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12864 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12865 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12866
252b5132
RH
12867 switch (OUTPUT_FLAVOR)
12868 {
9384f2ff 12869#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 12870 case bfd_target_aout_flavour:
47926f60 12871 return AOUT_TARGET_FORMAT;
4c63da97 12872#endif
9384f2ff
AM
12873#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12874# if defined (TE_PE) || defined (TE_PEP)
12875 case bfd_target_coff_flavour:
167ad85b
TG
12876 if (flag_code == CODE_64BIT)
12877 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12878 else
12879 return "pe-i386";
9384f2ff 12880# elif defined (TE_GO32)
0561d57c
JK
12881 case bfd_target_coff_flavour:
12882 return "coff-go32";
9384f2ff 12883# else
252b5132
RH
12884 case bfd_target_coff_flavour:
12885 return "coff-i386";
9384f2ff 12886# endif
4c63da97 12887#endif
3e73aa7c 12888#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 12889 case bfd_target_elf_flavour:
3e73aa7c 12890 {
351f65ca
L
12891 const char *format;
12892
12893 switch (x86_elf_abi)
4fa24527 12894 {
351f65ca
L
12895 default:
12896 format = ELF_TARGET_FORMAT;
e379e5f3
L
12897#ifndef TE_SOLARIS
12898 tls_get_addr = "___tls_get_addr";
12899#endif
351f65ca 12900 break;
7f56bc95 12901 case X86_64_ABI:
351f65ca 12902 use_rela_relocations = 1;
4fa24527 12903 object_64bit = 1;
e379e5f3
L
12904#ifndef TE_SOLARIS
12905 tls_get_addr = "__tls_get_addr";
12906#endif
351f65ca
L
12907 format = ELF_TARGET_FORMAT64;
12908 break;
7f56bc95 12909 case X86_64_X32_ABI:
4fa24527 12910 use_rela_relocations = 1;
351f65ca 12911 object_64bit = 1;
e379e5f3
L
12912#ifndef TE_SOLARIS
12913 tls_get_addr = "__tls_get_addr";
12914#endif
862be3fb 12915 disallow_64bit_reloc = 1;
351f65ca
L
12916 format = ELF_TARGET_FORMAT32;
12917 break;
4fa24527 12918 }
3632d14b 12919 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 12920 {
7f56bc95 12921 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
12922 as_fatal (_("Intel L1OM is 64bit only"));
12923 return ELF_TARGET_L1OM_FORMAT;
12924 }
b49f93f6 12925 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
12926 {
12927 if (x86_elf_abi != X86_64_ABI)
12928 as_fatal (_("Intel K1OM is 64bit only"));
12929 return ELF_TARGET_K1OM_FORMAT;
12930 }
81486035
L
12931 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12932 {
12933 if (x86_elf_abi != I386_ABI)
12934 as_fatal (_("Intel MCU is 32bit only"));
12935 return ELF_TARGET_IAMCU_FORMAT;
12936 }
8a9036a4 12937 else
351f65ca 12938 return format;
3e73aa7c 12939 }
e57f8c65
TG
12940#endif
12941#if defined (OBJ_MACH_O)
12942 case bfd_target_mach_o_flavour:
d382c579
TG
12943 if (flag_code == CODE_64BIT)
12944 {
12945 use_rela_relocations = 1;
12946 object_64bit = 1;
12947 return "mach-o-x86-64";
12948 }
12949 else
12950 return "mach-o-i386";
4c63da97 12951#endif
252b5132
RH
12952 default:
12953 abort ();
12954 return NULL;
12955 }
12956}
12957
47926f60 12958#endif /* OBJ_MAYBE_ more than one */
252b5132 12959\f
252b5132 12960symbolS *
7016a5d5 12961md_undefined_symbol (char *name)
252b5132 12962{
18dc2407
ILT
12963 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12964 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12965 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12966 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
12967 {
12968 if (!GOT_symbol)
12969 {
12970 if (symbol_find (name))
12971 as_bad (_("GOT already in symbol table"));
12972 GOT_symbol = symbol_new (name, undefined_section,
12973 (valueT) 0, &zero_address_frag);
12974 };
12975 return GOT_symbol;
12976 }
252b5132
RH
12977 return 0;
12978}
12979
12980/* Round up a section size to the appropriate boundary. */
47926f60 12981
252b5132 12982valueT
7016a5d5 12983md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 12984{
4c63da97
AM
12985#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
12986 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
12987 {
12988 /* For a.out, force the section size to be aligned. If we don't do
12989 this, BFD will align it for us, but it will not write out the
12990 final bytes of the section. This may be a bug in BFD, but it is
12991 easier to fix it here since that is how the other a.out targets
12992 work. */
12993 int align;
12994
fd361982 12995 align = bfd_section_alignment (segment);
8d3842cd 12996 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 12997 }
252b5132
RH
12998#endif
12999
13000 return size;
13001}
13002
13003/* On the i386, PC-relative offsets are relative to the start of the
13004 next instruction. That is, the address of the offset, plus its
13005 size, since the offset is always the last part of the insn. */
13006
13007long
e3bb37b5 13008md_pcrel_from (fixS *fixP)
252b5132
RH
13009{
13010 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13011}
13012
13013#ifndef I386COFF
13014
13015static void
e3bb37b5 13016s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 13017{
29b0f896 13018 int temp;
252b5132 13019
8a75718c
JB
13020#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13021 if (IS_ELF)
13022 obj_elf_section_change_hook ();
13023#endif
252b5132
RH
13024 temp = get_absolute_expression ();
13025 subseg_set (bss_section, (subsegT) temp);
13026 demand_empty_rest_of_line ();
13027}
13028
13029#endif
13030
e379e5f3
L
13031/* Remember constant directive. */
13032
13033void
13034i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13035{
13036 if (last_insn.kind != last_insn_directive
13037 && (bfd_section_flags (now_seg) & SEC_CODE))
13038 {
13039 last_insn.seg = now_seg;
13040 last_insn.kind = last_insn_directive;
13041 last_insn.name = "constant directive";
13042 last_insn.file = as_where (&last_insn.line);
13043 }
13044}
13045
252b5132 13046void
e3bb37b5 13047i386_validate_fix (fixS *fixp)
252b5132 13048{
02a86693 13049 if (fixp->fx_subsy)
252b5132 13050 {
02a86693 13051 if (fixp->fx_subsy == GOT_symbol)
23df1078 13052 {
02a86693
L
13053 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13054 {
13055 if (!object_64bit)
13056 abort ();
13057#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13058 if (fixp->fx_tcbit2)
56ceb5b5
L
13059 fixp->fx_r_type = (fixp->fx_tcbit
13060 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13061 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
13062 else
13063#endif
13064 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13065 }
d6ab8113 13066 else
02a86693
L
13067 {
13068 if (!object_64bit)
13069 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13070 else
13071 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13072 }
13073 fixp->fx_subsy = 0;
23df1078 13074 }
252b5132 13075 }
02a86693
L
13076#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13077 else if (!object_64bit)
13078 {
13079 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13080 && fixp->fx_tcbit2)
13081 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13082 }
13083#endif
252b5132
RH
13084}
13085
252b5132 13086arelent *
7016a5d5 13087tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
13088{
13089 arelent *rel;
13090 bfd_reloc_code_real_type code;
13091
13092 switch (fixp->fx_r_type)
13093 {
8ce3d284 13094#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
13095 case BFD_RELOC_SIZE32:
13096 case BFD_RELOC_SIZE64:
13097 if (S_IS_DEFINED (fixp->fx_addsy)
13098 && !S_IS_EXTERNAL (fixp->fx_addsy))
13099 {
13100 /* Resolve size relocation against local symbol to size of
13101 the symbol plus addend. */
13102 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13103 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13104 && !fits_in_unsigned_long (value))
13105 as_bad_where (fixp->fx_file, fixp->fx_line,
13106 _("symbol size computation overflow"));
13107 fixp->fx_addsy = NULL;
13108 fixp->fx_subsy = NULL;
13109 md_apply_fix (fixp, (valueT *) &value, NULL);
13110 return NULL;
13111 }
8ce3d284 13112#endif
1a0670f3 13113 /* Fall through. */
8fd4256d 13114
3e73aa7c
JH
13115 case BFD_RELOC_X86_64_PLT32:
13116 case BFD_RELOC_X86_64_GOT32:
13117 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13118 case BFD_RELOC_X86_64_GOTPCRELX:
13119 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
13120 case BFD_RELOC_386_PLT32:
13121 case BFD_RELOC_386_GOT32:
02a86693 13122 case BFD_RELOC_386_GOT32X:
252b5132
RH
13123 case BFD_RELOC_386_GOTOFF:
13124 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
13125 case BFD_RELOC_386_TLS_GD:
13126 case BFD_RELOC_386_TLS_LDM:
13127 case BFD_RELOC_386_TLS_LDO_32:
13128 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
13129 case BFD_RELOC_386_TLS_IE:
13130 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
13131 case BFD_RELOC_386_TLS_LE_32:
13132 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
13133 case BFD_RELOC_386_TLS_GOTDESC:
13134 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
13135 case BFD_RELOC_X86_64_TLSGD:
13136 case BFD_RELOC_X86_64_TLSLD:
13137 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 13138 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
13139 case BFD_RELOC_X86_64_GOTTPOFF:
13140 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
13141 case BFD_RELOC_X86_64_TPOFF64:
13142 case BFD_RELOC_X86_64_GOTOFF64:
13143 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
13144 case BFD_RELOC_X86_64_GOT64:
13145 case BFD_RELOC_X86_64_GOTPCREL64:
13146 case BFD_RELOC_X86_64_GOTPC64:
13147 case BFD_RELOC_X86_64_GOTPLT64:
13148 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
13149 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13150 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
13151 case BFD_RELOC_RVA:
13152 case BFD_RELOC_VTABLE_ENTRY:
13153 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
13154#ifdef TE_PE
13155 case BFD_RELOC_32_SECREL:
13156#endif
252b5132
RH
13157 code = fixp->fx_r_type;
13158 break;
dbbaec26
L
13159 case BFD_RELOC_X86_64_32S:
13160 if (!fixp->fx_pcrel)
13161 {
13162 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13163 code = fixp->fx_r_type;
13164 break;
13165 }
1a0670f3 13166 /* Fall through. */
252b5132 13167 default:
93382f6d 13168 if (fixp->fx_pcrel)
252b5132 13169 {
93382f6d
AM
13170 switch (fixp->fx_size)
13171 {
13172 default:
b091f402
AM
13173 as_bad_where (fixp->fx_file, fixp->fx_line,
13174 _("can not do %d byte pc-relative relocation"),
13175 fixp->fx_size);
93382f6d
AM
13176 code = BFD_RELOC_32_PCREL;
13177 break;
13178 case 1: code = BFD_RELOC_8_PCREL; break;
13179 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 13180 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
13181#ifdef BFD64
13182 case 8: code = BFD_RELOC_64_PCREL; break;
13183#endif
93382f6d
AM
13184 }
13185 }
13186 else
13187 {
13188 switch (fixp->fx_size)
13189 {
13190 default:
b091f402
AM
13191 as_bad_where (fixp->fx_file, fixp->fx_line,
13192 _("can not do %d byte relocation"),
13193 fixp->fx_size);
93382f6d
AM
13194 code = BFD_RELOC_32;
13195 break;
13196 case 1: code = BFD_RELOC_8; break;
13197 case 2: code = BFD_RELOC_16; break;
13198 case 4: code = BFD_RELOC_32; break;
937149dd 13199#ifdef BFD64
3e73aa7c 13200 case 8: code = BFD_RELOC_64; break;
937149dd 13201#endif
93382f6d 13202 }
252b5132
RH
13203 }
13204 break;
13205 }
252b5132 13206
d182319b
JB
13207 if ((code == BFD_RELOC_32
13208 || code == BFD_RELOC_32_PCREL
13209 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
13210 && GOT_symbol
13211 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 13212 {
4fa24527 13213 if (!object_64bit)
d6ab8113
JB
13214 code = BFD_RELOC_386_GOTPC;
13215 else
13216 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 13217 }
7b81dfbb
AJ
13218 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13219 && GOT_symbol
13220 && fixp->fx_addsy == GOT_symbol)
13221 {
13222 code = BFD_RELOC_X86_64_GOTPC64;
13223 }
252b5132 13224
add39d23
TS
13225 rel = XNEW (arelent);
13226 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 13227 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
13228
13229 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 13230
3e73aa7c
JH
13231 if (!use_rela_relocations)
13232 {
13233 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13234 vtable entry to be used in the relocation's section offset. */
13235 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13236 rel->address = fixp->fx_offset;
fbeb56a4
DK
13237#if defined (OBJ_COFF) && defined (TE_PE)
13238 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13239 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13240 else
13241#endif
c6682705 13242 rel->addend = 0;
3e73aa7c
JH
13243 }
13244 /* Use the rela in 64bit mode. */
252b5132 13245 else
3e73aa7c 13246 {
862be3fb
L
13247 if (disallow_64bit_reloc)
13248 switch (code)
13249 {
862be3fb
L
13250 case BFD_RELOC_X86_64_DTPOFF64:
13251 case BFD_RELOC_X86_64_TPOFF64:
13252 case BFD_RELOC_64_PCREL:
13253 case BFD_RELOC_X86_64_GOTOFF64:
13254 case BFD_RELOC_X86_64_GOT64:
13255 case BFD_RELOC_X86_64_GOTPCREL64:
13256 case BFD_RELOC_X86_64_GOTPC64:
13257 case BFD_RELOC_X86_64_GOTPLT64:
13258 case BFD_RELOC_X86_64_PLTOFF64:
13259 as_bad_where (fixp->fx_file, fixp->fx_line,
13260 _("cannot represent relocation type %s in x32 mode"),
13261 bfd_get_reloc_code_name (code));
13262 break;
13263 default:
13264 break;
13265 }
13266
062cd5e7
AS
13267 if (!fixp->fx_pcrel)
13268 rel->addend = fixp->fx_offset;
13269 else
13270 switch (code)
13271 {
13272 case BFD_RELOC_X86_64_PLT32:
13273 case BFD_RELOC_X86_64_GOT32:
13274 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13275 case BFD_RELOC_X86_64_GOTPCRELX:
13276 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
13277 case BFD_RELOC_X86_64_TLSGD:
13278 case BFD_RELOC_X86_64_TLSLD:
13279 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
13280 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13281 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
13282 rel->addend = fixp->fx_offset - fixp->fx_size;
13283 break;
13284 default:
13285 rel->addend = (section->vma
13286 - fixp->fx_size
13287 + fixp->fx_addnumber
13288 + md_pcrel_from (fixp));
13289 break;
13290 }
3e73aa7c
JH
13291 }
13292
252b5132
RH
13293 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13294 if (rel->howto == NULL)
13295 {
13296 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 13297 _("cannot represent relocation type %s"),
252b5132
RH
13298 bfd_get_reloc_code_name (code));
13299 /* Set howto to a garbage value so that we can keep going. */
13300 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 13301 gas_assert (rel->howto != NULL);
252b5132
RH
13302 }
13303
13304 return rel;
13305}
13306
ee86248c 13307#include "tc-i386-intel.c"
54cfded0 13308
a60de03c
JB
13309void
13310tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 13311{
a60de03c
JB
13312 int saved_naked_reg;
13313 char saved_register_dot;
54cfded0 13314
a60de03c
JB
13315 saved_naked_reg = allow_naked_reg;
13316 allow_naked_reg = 1;
13317 saved_register_dot = register_chars['.'];
13318 register_chars['.'] = '.';
13319 allow_pseudo_reg = 1;
13320 expression_and_evaluate (exp);
13321 allow_pseudo_reg = 0;
13322 register_chars['.'] = saved_register_dot;
13323 allow_naked_reg = saved_naked_reg;
13324
e96d56a1 13325 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 13326 {
a60de03c
JB
13327 if ((addressT) exp->X_add_number < i386_regtab_size)
13328 {
13329 exp->X_op = O_constant;
13330 exp->X_add_number = i386_regtab[exp->X_add_number]
13331 .dw2_regnum[flag_code >> 1];
13332 }
13333 else
13334 exp->X_op = O_illegal;
54cfded0 13335 }
54cfded0
AM
13336}
13337
13338void
13339tc_x86_frame_initial_instructions (void)
13340{
a60de03c
JB
13341 static unsigned int sp_regno[2];
13342
13343 if (!sp_regno[flag_code >> 1])
13344 {
13345 char *saved_input = input_line_pointer;
13346 char sp[][4] = {"esp", "rsp"};
13347 expressionS exp;
a4447b93 13348
a60de03c
JB
13349 input_line_pointer = sp[flag_code >> 1];
13350 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 13351 gas_assert (exp.X_op == O_constant);
a60de03c
JB
13352 sp_regno[flag_code >> 1] = exp.X_add_number;
13353 input_line_pointer = saved_input;
13354 }
a4447b93 13355
61ff971f
L
13356 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13357 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 13358}
d2b2c203 13359
d7921315
L
13360int
13361x86_dwarf2_addr_size (void)
13362{
13363#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13364 if (x86_elf_abi == X86_64_X32_ABI)
13365 return 4;
13366#endif
13367 return bfd_arch_bits_per_address (stdoutput) / 8;
13368}
13369
d2b2c203
DJ
13370int
13371i386_elf_section_type (const char *str, size_t len)
13372{
13373 if (flag_code == CODE_64BIT
13374 && len == sizeof ("unwind") - 1
13375 && strncmp (str, "unwind", 6) == 0)
13376 return SHT_X86_64_UNWIND;
13377
13378 return -1;
13379}
bb41ade5 13380
ad5fec3b
EB
13381#ifdef TE_SOLARIS
13382void
13383i386_solaris_fix_up_eh_frame (segT sec)
13384{
13385 if (flag_code == CODE_64BIT)
13386 elf_section_type (sec) = SHT_X86_64_UNWIND;
13387}
13388#endif
13389
bb41ade5
AM
13390#ifdef TE_PE
13391void
13392tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13393{
91d6fa6a 13394 expressionS exp;
bb41ade5 13395
91d6fa6a
NC
13396 exp.X_op = O_secrel;
13397 exp.X_add_symbol = symbol;
13398 exp.X_add_number = 0;
13399 emit_expr (&exp, size);
bb41ade5
AM
13400}
13401#endif
3b22753a
L
13402
13403#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13404/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13405
01e1a5bc 13406bfd_vma
6d4af3c2 13407x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
13408{
13409 if (flag_code == CODE_64BIT)
13410 {
13411 if (letter == 'l')
13412 return SHF_X86_64_LARGE;
13413
8f3bae45 13414 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 13415 }
3b22753a 13416 else
8f3bae45 13417 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
13418 return -1;
13419}
13420
01e1a5bc 13421bfd_vma
3b22753a
L
13422x86_64_section_word (char *str, size_t len)
13423{
8620418b 13424 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
13425 return SHF_X86_64_LARGE;
13426
13427 return -1;
13428}
13429
13430static void
13431handle_large_common (int small ATTRIBUTE_UNUSED)
13432{
13433 if (flag_code != CODE_64BIT)
13434 {
13435 s_comm_internal (0, elf_common_parse);
13436 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13437 }
13438 else
13439 {
13440 static segT lbss_section;
13441 asection *saved_com_section_ptr = elf_com_section_ptr;
13442 asection *saved_bss_section = bss_section;
13443
13444 if (lbss_section == NULL)
13445 {
13446 flagword applicable;
13447 segT seg = now_seg;
13448 subsegT subseg = now_subseg;
13449
13450 /* The .lbss section is for local .largecomm symbols. */
13451 lbss_section = subseg_new (".lbss", 0);
13452 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 13453 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
13454 seg_info (lbss_section)->bss = 1;
13455
13456 subseg_set (seg, subseg);
13457 }
13458
13459 elf_com_section_ptr = &_bfd_elf_large_com_section;
13460 bss_section = lbss_section;
13461
13462 s_comm_internal (0, elf_common_parse);
13463
13464 elf_com_section_ptr = saved_com_section_ptr;
13465 bss_section = saved_bss_section;
13466 }
13467}
13468#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.284704 seconds and 4 git commands to generate.