Multi-target support
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
c906108c
SS
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "gdbthread.h"
32#include "annotate.h"
1adeb98a 33#include "symfile.h"
7a292a7a 34#include "top.h"
2acceee2 35#include "inf-loop.h"
4e052eda 36#include "regcache.h"
fd0407d6 37#include "value.h"
76727919 38#include "observable.h"
f636b87d 39#include "language.h"
a77053c2 40#include "solib.h"
f17517ea 41#include "main.h"
186c406b 42#include "block.h"
034dad6f 43#include "mi/mi-common.h"
4f8d22e3 44#include "event-top.h"
96429cc8 45#include "record.h"
d02ed0bb 46#include "record-full.h"
edb3359d 47#include "inline-frame.h"
4efc6507 48#include "jit.h"
06cd862c 49#include "tracepoint.h"
1bfeeb0f 50#include "skip.h"
28106bc2
SDJ
51#include "probe.h"
52#include "objfiles.h"
de0bea00 53#include "completer.h"
9107fc8d 54#include "target-descriptions.h"
f15cb84a 55#include "target-dcache.h"
d83ad864 56#include "terminal.h"
ff862be4 57#include "solist.h"
372316f1 58#include "event-loop.h"
243a9253 59#include "thread-fsm.h"
268a13a5 60#include "gdbsupport/enum-flags.h"
5ed8105e 61#include "progspace-and-thread.h"
268a13a5 62#include "gdbsupport/gdb_optional.h"
46a62268 63#include "arch-utils.h"
268a13a5
TT
64#include "gdbsupport/scope-exit.h"
65#include "gdbsupport/forward-scope-exit.h"
5b6d1e4f
PA
66#include "gdb_select.h"
67#include <unordered_map>
c906108c
SS
68
69/* Prototypes for local functions */
70
2ea28649 71static void sig_print_info (enum gdb_signal);
c906108c 72
96baa820 73static void sig_print_header (void);
c906108c 74
4ef3f3be 75static int follow_fork (void);
96baa820 76
d83ad864
DB
77static int follow_fork_inferior (int follow_child, int detach_fork);
78
79static void follow_inferior_reset_breakpoints (void);
80
a289b8f6
JK
81static int currently_stepping (struct thread_info *tp);
82
2c03e5be 83static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
84
85static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
86
2484c66b
UW
87static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
88
8550d3b3
YQ
89static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
90
aff4e175
AB
91static void resume (gdb_signal sig);
92
5b6d1e4f
PA
93static void wait_for_inferior (inferior *inf);
94
372316f1
PA
95/* Asynchronous signal handler registered as event loop source for
96 when we have pending events ready to be passed to the core. */
97static struct async_event_handler *infrun_async_inferior_event_token;
98
99/* Stores whether infrun_async was previously enabled or disabled.
100 Starts off as -1, indicating "never enabled/disabled". */
101static int infrun_is_async = -1;
102
103/* See infrun.h. */
104
105void
106infrun_async (int enable)
107{
108 if (infrun_is_async != enable)
109 {
110 infrun_is_async = enable;
111
112 if (debug_infrun)
113 fprintf_unfiltered (gdb_stdlog,
114 "infrun: infrun_async(%d)\n",
115 enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122}
123
0b333c5e
PA
124/* See infrun.h. */
125
126void
127mark_infrun_async_event_handler (void)
128{
129 mark_async_event_handler (infrun_async_inferior_event_token);
130}
131
5fbbeb29
CF
132/* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
491144b5 135bool step_stop_if_no_debug = false;
920d2a44
AC
136static void
137show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139{
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141}
5fbbeb29 142
b9f437de
PA
143/* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
96baa820 146
39f77062 147static ptid_t previous_inferior_ptid;
7a292a7a 148
07107ca6
LM
149/* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
491144b5 154static bool detach_fork = true;
6c95b8df 155
491144b5 156bool debug_displaced = false;
237fc4c9
PA
157static void
158show_debug_displaced (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160{
161 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
162}
163
ccce17b0 164unsigned int debug_infrun = 0;
920d2a44
AC
165static void
166show_debug_infrun (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
170}
527159b7 171
03583c20
UW
172
173/* Support for disabling address space randomization. */
174
491144b5 175bool disable_randomization = true;
03583c20
UW
176
177static void
178show_disable_randomization (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 if (target_supports_disable_randomization ())
182 fprintf_filtered (file,
183 _("Disabling randomization of debuggee's "
184 "virtual address space is %s.\n"),
185 value);
186 else
187 fputs_filtered (_("Disabling randomization of debuggee's "
188 "virtual address space is unsupported on\n"
189 "this platform.\n"), file);
190}
191
192static void
eb4c3f4a 193set_disable_randomization (const char *args, int from_tty,
03583c20
UW
194 struct cmd_list_element *c)
195{
196 if (!target_supports_disable_randomization ())
197 error (_("Disabling randomization of debuggee's "
198 "virtual address space is unsupported on\n"
199 "this platform."));
200}
201
d32dc48e
PA
202/* User interface for non-stop mode. */
203
491144b5
CB
204bool non_stop = false;
205static bool non_stop_1 = false;
d32dc48e
PA
206
207static void
eb4c3f4a 208set_non_stop (const char *args, int from_tty,
d32dc48e
PA
209 struct cmd_list_element *c)
210{
211 if (target_has_execution)
212 {
213 non_stop_1 = non_stop;
214 error (_("Cannot change this setting while the inferior is running."));
215 }
216
217 non_stop = non_stop_1;
218}
219
220static void
221show_non_stop (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223{
224 fprintf_filtered (file,
225 _("Controlling the inferior in non-stop mode is %s.\n"),
226 value);
227}
228
d914c394
SS
229/* "Observer mode" is somewhat like a more extreme version of
230 non-stop, in which all GDB operations that might affect the
231 target's execution have been disabled. */
232
491144b5
CB
233bool observer_mode = false;
234static bool observer_mode_1 = false;
d914c394
SS
235
236static void
eb4c3f4a 237set_observer_mode (const char *args, int from_tty,
d914c394
SS
238 struct cmd_list_element *c)
239{
d914c394
SS
240 if (target_has_execution)
241 {
242 observer_mode_1 = observer_mode;
243 error (_("Cannot change this setting while the inferior is running."));
244 }
245
246 observer_mode = observer_mode_1;
247
248 may_write_registers = !observer_mode;
249 may_write_memory = !observer_mode;
250 may_insert_breakpoints = !observer_mode;
251 may_insert_tracepoints = !observer_mode;
252 /* We can insert fast tracepoints in or out of observer mode,
253 but enable them if we're going into this mode. */
254 if (observer_mode)
491144b5 255 may_insert_fast_tracepoints = true;
d914c394
SS
256 may_stop = !observer_mode;
257 update_target_permissions ();
258
259 /* Going *into* observer mode we must force non-stop, then
260 going out we leave it that way. */
261 if (observer_mode)
262 {
d914c394 263 pagination_enabled = 0;
491144b5 264 non_stop = non_stop_1 = true;
d914c394
SS
265 }
266
267 if (from_tty)
268 printf_filtered (_("Observer mode is now %s.\n"),
269 (observer_mode ? "on" : "off"));
270}
271
272static void
273show_observer_mode (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275{
276 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
277}
278
279/* This updates the value of observer mode based on changes in
280 permissions. Note that we are deliberately ignoring the values of
281 may-write-registers and may-write-memory, since the user may have
282 reason to enable these during a session, for instance to turn on a
283 debugging-related global. */
284
285void
286update_observer_mode (void)
287{
491144b5
CB
288 bool newval = (!may_insert_breakpoints
289 && !may_insert_tracepoints
290 && may_insert_fast_tracepoints
291 && !may_stop
292 && non_stop);
d914c394
SS
293
294 /* Let the user know if things change. */
295 if (newval != observer_mode)
296 printf_filtered (_("Observer mode is now %s.\n"),
297 (newval ? "on" : "off"));
298
299 observer_mode = observer_mode_1 = newval;
300}
c2c6d25f 301
c906108c
SS
302/* Tables of how to react to signals; the user sets them. */
303
adc6a863
PA
304static unsigned char signal_stop[GDB_SIGNAL_LAST];
305static unsigned char signal_print[GDB_SIGNAL_LAST];
306static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 307
ab04a2af
TT
308/* Table of signals that are registered with "catch signal". A
309 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
310 signal" command. */
311static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 312
2455069d
UW
313/* Table of signals that the target may silently handle.
314 This is automatically determined from the flags above,
315 and simply cached here. */
adc6a863 316static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 317
c906108c
SS
318#define SET_SIGS(nsigs,sigs,flags) \
319 do { \
320 int signum = (nsigs); \
321 while (signum-- > 0) \
322 if ((sigs)[signum]) \
323 (flags)[signum] = 1; \
324 } while (0)
325
326#define UNSET_SIGS(nsigs,sigs,flags) \
327 do { \
328 int signum = (nsigs); \
329 while (signum-- > 0) \
330 if ((sigs)[signum]) \
331 (flags)[signum] = 0; \
332 } while (0)
333
9b224c5e
PA
334/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
335 this function is to avoid exporting `signal_program'. */
336
337void
338update_signals_program_target (void)
339{
adc6a863 340 target_program_signals (signal_program);
9b224c5e
PA
341}
342
1777feb0 343/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 344
edb3359d 345#define RESUME_ALL minus_one_ptid
c906108c
SS
346
347/* Command list pointer for the "stop" placeholder. */
348
349static struct cmd_list_element *stop_command;
350
c906108c
SS
351/* Nonzero if we want to give control to the user when we're notified
352 of shared library events by the dynamic linker. */
628fe4e4 353int stop_on_solib_events;
f9e14852
GB
354
355/* Enable or disable optional shared library event breakpoints
356 as appropriate when the above flag is changed. */
357
358static void
eb4c3f4a
TT
359set_stop_on_solib_events (const char *args,
360 int from_tty, struct cmd_list_element *c)
f9e14852
GB
361{
362 update_solib_breakpoints ();
363}
364
920d2a44
AC
365static void
366show_stop_on_solib_events (struct ui_file *file, int from_tty,
367 struct cmd_list_element *c, const char *value)
368{
369 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
370 value);
371}
c906108c 372
c906108c
SS
373/* Nonzero after stop if current stack frame should be printed. */
374
375static int stop_print_frame;
376
5b6d1e4f
PA
377/* This is a cached copy of the target/ptid/waitstatus of the last
378 event returned by target_wait()/deprecated_target_wait_hook().
379 This information is returned by get_last_target_status(). */
380static process_stratum_target *target_last_proc_target;
39f77062 381static ptid_t target_last_wait_ptid;
e02bc4cc
DS
382static struct target_waitstatus target_last_waitstatus;
383
4e1c45ea 384void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 385
53904c9e
AC
386static const char follow_fork_mode_child[] = "child";
387static const char follow_fork_mode_parent[] = "parent";
388
40478521 389static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
390 follow_fork_mode_child,
391 follow_fork_mode_parent,
392 NULL
ef346e04 393};
c906108c 394
53904c9e 395static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
396static void
397show_follow_fork_mode_string (struct ui_file *file, int from_tty,
398 struct cmd_list_element *c, const char *value)
399{
3e43a32a
MS
400 fprintf_filtered (file,
401 _("Debugger response to a program "
402 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
403 value);
404}
c906108c
SS
405\f
406
d83ad864
DB
407/* Handle changes to the inferior list based on the type of fork,
408 which process is being followed, and whether the other process
409 should be detached. On entry inferior_ptid must be the ptid of
410 the fork parent. At return inferior_ptid is the ptid of the
411 followed inferior. */
412
413static int
414follow_fork_inferior (int follow_child, int detach_fork)
415{
416 int has_vforked;
79639e11 417 ptid_t parent_ptid, child_ptid;
d83ad864
DB
418
419 has_vforked = (inferior_thread ()->pending_follow.kind
420 == TARGET_WAITKIND_VFORKED);
79639e11
PA
421 parent_ptid = inferior_ptid;
422 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
423
424 if (has_vforked
425 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 426 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
427 && !(follow_child || detach_fork || sched_multi))
428 {
429 /* The parent stays blocked inside the vfork syscall until the
430 child execs or exits. If we don't let the child run, then
431 the parent stays blocked. If we're telling the parent to run
432 in the foreground, the user will not be able to ctrl-c to get
433 back the terminal, effectively hanging the debug session. */
434 fprintf_filtered (gdb_stderr, _("\
435Can not resume the parent process over vfork in the foreground while\n\
436holding the child stopped. Try \"set detach-on-fork\" or \
437\"set schedule-multiple\".\n"));
d83ad864
DB
438 return 1;
439 }
440
441 if (!follow_child)
442 {
443 /* Detach new forked process? */
444 if (detach_fork)
445 {
d83ad864
DB
446 /* Before detaching from the child, remove all breakpoints
447 from it. If we forked, then this has already been taken
448 care of by infrun.c. If we vforked however, any
449 breakpoint inserted in the parent is visible in the
450 child, even those added while stopped in a vfork
451 catchpoint. This will remove the breakpoints from the
452 parent also, but they'll be reinserted below. */
453 if (has_vforked)
454 {
455 /* Keep breakpoints list in sync. */
00431a78 456 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
457 }
458
f67c0c91 459 if (print_inferior_events)
d83ad864 460 {
8dd06f7a 461 /* Ensure that we have a process ptid. */
e99b03dc 462 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 463
223ffa71 464 target_terminal::ours_for_output ();
d83ad864 465 fprintf_filtered (gdb_stdlog,
f67c0c91 466 _("[Detaching after %s from child %s]\n"),
6f259a23 467 has_vforked ? "vfork" : "fork",
a068643d 468 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
469 }
470 }
471 else
472 {
473 struct inferior *parent_inf, *child_inf;
d83ad864
DB
474
475 /* Add process to GDB's tables. */
e99b03dc 476 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
477
478 parent_inf = current_inferior ();
479 child_inf->attach_flag = parent_inf->attach_flag;
480 copy_terminal_info (child_inf, parent_inf);
481 child_inf->gdbarch = parent_inf->gdbarch;
482 copy_inferior_target_desc_info (child_inf, parent_inf);
483
5ed8105e 484 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 485
2a00d7ce 486 set_current_inferior (child_inf);
5b6d1e4f 487 switch_to_no_thread ();
d83ad864 488 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f
PA
489 push_target (parent_inf->process_target ());
490 add_thread_silent (child_inf->process_target (), child_ptid);
491 inferior_ptid = child_ptid;
d83ad864
DB
492
493 /* If this is a vfork child, then the address-space is
494 shared with the parent. */
495 if (has_vforked)
496 {
497 child_inf->pspace = parent_inf->pspace;
498 child_inf->aspace = parent_inf->aspace;
499
5b6d1e4f
PA
500 exec_on_vfork ();
501
d83ad864
DB
502 /* The parent will be frozen until the child is done
503 with the shared region. Keep track of the
504 parent. */
505 child_inf->vfork_parent = parent_inf;
506 child_inf->pending_detach = 0;
507 parent_inf->vfork_child = child_inf;
508 parent_inf->pending_detach = 0;
509 }
510 else
511 {
512 child_inf->aspace = new_address_space ();
564b1e3f 513 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
514 child_inf->removable = 1;
515 set_current_program_space (child_inf->pspace);
516 clone_program_space (child_inf->pspace, parent_inf->pspace);
517
518 /* Let the shared library layer (e.g., solib-svr4) learn
519 about this new process, relocate the cloned exec, pull
520 in shared libraries, and install the solib event
521 breakpoint. If a "cloned-VM" event was propagated
522 better throughout the core, this wouldn't be
523 required. */
524 solib_create_inferior_hook (0);
525 }
d83ad864
DB
526 }
527
528 if (has_vforked)
529 {
530 struct inferior *parent_inf;
531
532 parent_inf = current_inferior ();
533
534 /* If we detached from the child, then we have to be careful
535 to not insert breakpoints in the parent until the child
536 is done with the shared memory region. However, if we're
537 staying attached to the child, then we can and should
538 insert breakpoints, so that we can debug it. A
539 subsequent child exec or exit is enough to know when does
540 the child stops using the parent's address space. */
541 parent_inf->waiting_for_vfork_done = detach_fork;
542 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
543 }
544 }
545 else
546 {
547 /* Follow the child. */
548 struct inferior *parent_inf, *child_inf;
549 struct program_space *parent_pspace;
550
f67c0c91 551 if (print_inferior_events)
d83ad864 552 {
f67c0c91
SDJ
553 std::string parent_pid = target_pid_to_str (parent_ptid);
554 std::string child_pid = target_pid_to_str (child_ptid);
555
223ffa71 556 target_terminal::ours_for_output ();
6f259a23 557 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
558 _("[Attaching after %s %s to child %s]\n"),
559 parent_pid.c_str (),
6f259a23 560 has_vforked ? "vfork" : "fork",
f67c0c91 561 child_pid.c_str ());
d83ad864
DB
562 }
563
564 /* Add the new inferior first, so that the target_detach below
565 doesn't unpush the target. */
566
e99b03dc 567 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
568
569 parent_inf = current_inferior ();
570 child_inf->attach_flag = parent_inf->attach_flag;
571 copy_terminal_info (child_inf, parent_inf);
572 child_inf->gdbarch = parent_inf->gdbarch;
573 copy_inferior_target_desc_info (child_inf, parent_inf);
574
575 parent_pspace = parent_inf->pspace;
576
5b6d1e4f 577 process_stratum_target *target = parent_inf->process_target ();
d83ad864 578
5b6d1e4f
PA
579 {
580 /* Hold a strong reference to the target while (maybe)
581 detaching the parent. Otherwise detaching could close the
582 target. */
583 auto target_ref = target_ops_ref::new_reference (target);
584
585 /* If we're vforking, we want to hold on to the parent until
586 the child exits or execs. At child exec or exit time we
587 can remove the old breakpoints from the parent and detach
588 or resume debugging it. Otherwise, detach the parent now;
589 we'll want to reuse it's program/address spaces, but we
590 can't set them to the child before removing breakpoints
591 from the parent, otherwise, the breakpoints module could
592 decide to remove breakpoints from the wrong process (since
593 they'd be assigned to the same address space). */
594
595 if (has_vforked)
596 {
597 gdb_assert (child_inf->vfork_parent == NULL);
598 gdb_assert (parent_inf->vfork_child == NULL);
599 child_inf->vfork_parent = parent_inf;
600 child_inf->pending_detach = 0;
601 parent_inf->vfork_child = child_inf;
602 parent_inf->pending_detach = detach_fork;
603 parent_inf->waiting_for_vfork_done = 0;
604 }
605 else if (detach_fork)
606 {
607 if (print_inferior_events)
608 {
609 /* Ensure that we have a process ptid. */
610 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
611
612 target_terminal::ours_for_output ();
613 fprintf_filtered (gdb_stdlog,
614 _("[Detaching after fork from "
615 "parent %s]\n"),
616 target_pid_to_str (process_ptid).c_str ());
617 }
8dd06f7a 618
5b6d1e4f
PA
619 target_detach (parent_inf, 0);
620 parent_inf = NULL;
621 }
6f259a23 622
5b6d1e4f 623 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 624
5b6d1e4f
PA
625 /* Add the child thread to the appropriate lists, and switch
626 to this new thread, before cloning the program space, and
627 informing the solib layer about this new process. */
d83ad864 628
5b6d1e4f
PA
629 set_current_inferior (child_inf);
630 push_target (target);
631 }
d83ad864 632
5b6d1e4f 633 add_thread_silent (target, child_ptid);
79639e11 634 inferior_ptid = child_ptid;
d83ad864
DB
635
636 /* If this is a vfork child, then the address-space is shared
637 with the parent. If we detached from the parent, then we can
638 reuse the parent's program/address spaces. */
639 if (has_vforked || detach_fork)
640 {
641 child_inf->pspace = parent_pspace;
642 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
643
644 exec_on_vfork ();
d83ad864
DB
645 }
646 else
647 {
648 child_inf->aspace = new_address_space ();
564b1e3f 649 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
650 child_inf->removable = 1;
651 child_inf->symfile_flags = SYMFILE_NO_READ;
652 set_current_program_space (child_inf->pspace);
653 clone_program_space (child_inf->pspace, parent_pspace);
654
655 /* Let the shared library layer (e.g., solib-svr4) learn
656 about this new process, relocate the cloned exec, pull in
657 shared libraries, and install the solib event breakpoint.
658 If a "cloned-VM" event was propagated better throughout
659 the core, this wouldn't be required. */
660 solib_create_inferior_hook (0);
661 }
662 }
663
664 return target_follow_fork (follow_child, detach_fork);
665}
666
e58b0e63
PA
667/* Tell the target to follow the fork we're stopped at. Returns true
668 if the inferior should be resumed; false, if the target for some
669 reason decided it's best not to resume. */
670
6604731b 671static int
4ef3f3be 672follow_fork (void)
c906108c 673{
ea1dd7bc 674 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
675 int should_resume = 1;
676 struct thread_info *tp;
677
678 /* Copy user stepping state to the new inferior thread. FIXME: the
679 followed fork child thread should have a copy of most of the
4e3990f4
DE
680 parent thread structure's run control related fields, not just these.
681 Initialized to avoid "may be used uninitialized" warnings from gcc. */
682 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 683 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
684 CORE_ADDR step_range_start = 0;
685 CORE_ADDR step_range_end = 0;
686 struct frame_id step_frame_id = { 0 };
8980e177 687 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
688
689 if (!non_stop)
690 {
5b6d1e4f 691 process_stratum_target *wait_target;
e58b0e63
PA
692 ptid_t wait_ptid;
693 struct target_waitstatus wait_status;
694
695 /* Get the last target status returned by target_wait(). */
5b6d1e4f 696 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
697
698 /* If not stopped at a fork event, then there's nothing else to
699 do. */
700 if (wait_status.kind != TARGET_WAITKIND_FORKED
701 && wait_status.kind != TARGET_WAITKIND_VFORKED)
702 return 1;
703
704 /* Check if we switched over from WAIT_PTID, since the event was
705 reported. */
00431a78 706 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
707 && (current_inferior ()->process_target () != wait_target
708 || inferior_ptid != wait_ptid))
e58b0e63
PA
709 {
710 /* We did. Switch back to WAIT_PTID thread, to tell the
711 target to follow it (in either direction). We'll
712 afterwards refuse to resume, and inform the user what
713 happened. */
5b6d1e4f 714 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 715 switch_to_thread (wait_thread);
e58b0e63
PA
716 should_resume = 0;
717 }
718 }
719
720 tp = inferior_thread ();
721
722 /* If there were any forks/vforks that were caught and are now to be
723 followed, then do so now. */
724 switch (tp->pending_follow.kind)
725 {
726 case TARGET_WAITKIND_FORKED:
727 case TARGET_WAITKIND_VFORKED:
728 {
729 ptid_t parent, child;
730
731 /* If the user did a next/step, etc, over a fork call,
732 preserve the stepping state in the fork child. */
733 if (follow_child && should_resume)
734 {
8358c15c
JK
735 step_resume_breakpoint = clone_momentary_breakpoint
736 (tp->control.step_resume_breakpoint);
16c381f0
JK
737 step_range_start = tp->control.step_range_start;
738 step_range_end = tp->control.step_range_end;
739 step_frame_id = tp->control.step_frame_id;
186c406b
TT
740 exception_resume_breakpoint
741 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 742 thread_fsm = tp->thread_fsm;
e58b0e63
PA
743
744 /* For now, delete the parent's sr breakpoint, otherwise,
745 parent/child sr breakpoints are considered duplicates,
746 and the child version will not be installed. Remove
747 this when the breakpoints module becomes aware of
748 inferiors and address spaces. */
749 delete_step_resume_breakpoint (tp);
16c381f0
JK
750 tp->control.step_range_start = 0;
751 tp->control.step_range_end = 0;
752 tp->control.step_frame_id = null_frame_id;
186c406b 753 delete_exception_resume_breakpoint (tp);
8980e177 754 tp->thread_fsm = NULL;
e58b0e63
PA
755 }
756
757 parent = inferior_ptid;
758 child = tp->pending_follow.value.related_pid;
759
5b6d1e4f 760 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
761 /* Set up inferior(s) as specified by the caller, and tell the
762 target to do whatever is necessary to follow either parent
763 or child. */
764 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
765 {
766 /* Target refused to follow, or there's some other reason
767 we shouldn't resume. */
768 should_resume = 0;
769 }
770 else
771 {
772 /* This pending follow fork event is now handled, one way
773 or another. The previous selected thread may be gone
774 from the lists by now, but if it is still around, need
775 to clear the pending follow request. */
5b6d1e4f 776 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
777 if (tp)
778 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
779
780 /* This makes sure we don't try to apply the "Switched
781 over from WAIT_PID" logic above. */
782 nullify_last_target_wait_ptid ();
783
1777feb0 784 /* If we followed the child, switch to it... */
e58b0e63
PA
785 if (follow_child)
786 {
5b6d1e4f 787 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 788 switch_to_thread (child_thr);
e58b0e63
PA
789
790 /* ... and preserve the stepping state, in case the
791 user was stepping over the fork call. */
792 if (should_resume)
793 {
794 tp = inferior_thread ();
8358c15c
JK
795 tp->control.step_resume_breakpoint
796 = step_resume_breakpoint;
16c381f0
JK
797 tp->control.step_range_start = step_range_start;
798 tp->control.step_range_end = step_range_end;
799 tp->control.step_frame_id = step_frame_id;
186c406b
TT
800 tp->control.exception_resume_breakpoint
801 = exception_resume_breakpoint;
8980e177 802 tp->thread_fsm = thread_fsm;
e58b0e63
PA
803 }
804 else
805 {
806 /* If we get here, it was because we're trying to
807 resume from a fork catchpoint, but, the user
808 has switched threads away from the thread that
809 forked. In that case, the resume command
810 issued is most likely not applicable to the
811 child, so just warn, and refuse to resume. */
3e43a32a 812 warning (_("Not resuming: switched threads "
fd7dcb94 813 "before following fork child."));
e58b0e63
PA
814 }
815
816 /* Reset breakpoints in the child as appropriate. */
817 follow_inferior_reset_breakpoints ();
818 }
e58b0e63
PA
819 }
820 }
821 break;
822 case TARGET_WAITKIND_SPURIOUS:
823 /* Nothing to follow. */
824 break;
825 default:
826 internal_error (__FILE__, __LINE__,
827 "Unexpected pending_follow.kind %d\n",
828 tp->pending_follow.kind);
829 break;
830 }
c906108c 831
e58b0e63 832 return should_resume;
c906108c
SS
833}
834
d83ad864 835static void
6604731b 836follow_inferior_reset_breakpoints (void)
c906108c 837{
4e1c45ea
PA
838 struct thread_info *tp = inferior_thread ();
839
6604731b
DJ
840 /* Was there a step_resume breakpoint? (There was if the user
841 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
842 thread number. Cloned step_resume breakpoints are disabled on
843 creation, so enable it here now that it is associated with the
844 correct thread.
6604731b
DJ
845
846 step_resumes are a form of bp that are made to be per-thread.
847 Since we created the step_resume bp when the parent process
848 was being debugged, and now are switching to the child process,
849 from the breakpoint package's viewpoint, that's a switch of
850 "threads". We must update the bp's notion of which thread
851 it is for, or it'll be ignored when it triggers. */
852
8358c15c 853 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
854 {
855 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
856 tp->control.step_resume_breakpoint->loc->enabled = 1;
857 }
6604731b 858
a1aa2221 859 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 860 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
861 {
862 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
863 tp->control.exception_resume_breakpoint->loc->enabled = 1;
864 }
186c406b 865
6604731b
DJ
866 /* Reinsert all breakpoints in the child. The user may have set
867 breakpoints after catching the fork, in which case those
868 were never set in the child, but only in the parent. This makes
869 sure the inserted breakpoints match the breakpoint list. */
870
871 breakpoint_re_set ();
872 insert_breakpoints ();
c906108c 873}
c906108c 874
6c95b8df
PA
875/* The child has exited or execed: resume threads of the parent the
876 user wanted to be executing. */
877
878static int
879proceed_after_vfork_done (struct thread_info *thread,
880 void *arg)
881{
882 int pid = * (int *) arg;
883
00431a78
PA
884 if (thread->ptid.pid () == pid
885 && thread->state == THREAD_RUNNING
886 && !thread->executing
6c95b8df 887 && !thread->stop_requested
a493e3e2 888 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
889 {
890 if (debug_infrun)
891 fprintf_unfiltered (gdb_stdlog,
892 "infrun: resuming vfork parent thread %s\n",
a068643d 893 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 894
00431a78 895 switch_to_thread (thread);
70509625 896 clear_proceed_status (0);
64ce06e4 897 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
898 }
899
900 return 0;
901}
902
5ed8105e
PA
903/* Save/restore inferior_ptid, current program space and current
904 inferior. Only use this if the current context points at an exited
905 inferior (and therefore there's no current thread to save). */
906class scoped_restore_exited_inferior
907{
908public:
909 scoped_restore_exited_inferior ()
910 : m_saved_ptid (&inferior_ptid)
911 {}
912
913private:
914 scoped_restore_tmpl<ptid_t> m_saved_ptid;
915 scoped_restore_current_program_space m_pspace;
916 scoped_restore_current_inferior m_inferior;
917};
918
6c95b8df
PA
919/* Called whenever we notice an exec or exit event, to handle
920 detaching or resuming a vfork parent. */
921
922static void
923handle_vfork_child_exec_or_exit (int exec)
924{
925 struct inferior *inf = current_inferior ();
926
927 if (inf->vfork_parent)
928 {
929 int resume_parent = -1;
930
931 /* This exec or exit marks the end of the shared memory region
b73715df
TV
932 between the parent and the child. Break the bonds. */
933 inferior *vfork_parent = inf->vfork_parent;
934 inf->vfork_parent->vfork_child = NULL;
935 inf->vfork_parent = NULL;
6c95b8df 936
b73715df
TV
937 /* If the user wanted to detach from the parent, now is the
938 time. */
939 if (vfork_parent->pending_detach)
6c95b8df
PA
940 {
941 struct thread_info *tp;
6c95b8df
PA
942 struct program_space *pspace;
943 struct address_space *aspace;
944
1777feb0 945 /* follow-fork child, detach-on-fork on. */
6c95b8df 946
b73715df 947 vfork_parent->pending_detach = 0;
68c9da30 948
5ed8105e
PA
949 gdb::optional<scoped_restore_exited_inferior>
950 maybe_restore_inferior;
951 gdb::optional<scoped_restore_current_pspace_and_thread>
952 maybe_restore_thread;
953
954 /* If we're handling a child exit, then inferior_ptid points
955 at the inferior's pid, not to a thread. */
f50f4e56 956 if (!exec)
5ed8105e 957 maybe_restore_inferior.emplace ();
f50f4e56 958 else
5ed8105e 959 maybe_restore_thread.emplace ();
6c95b8df
PA
960
961 /* We're letting loose of the parent. */
b73715df 962 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 963 switch_to_thread (tp);
6c95b8df
PA
964
965 /* We're about to detach from the parent, which implicitly
966 removes breakpoints from its address space. There's a
967 catch here: we want to reuse the spaces for the child,
968 but, parent/child are still sharing the pspace at this
969 point, although the exec in reality makes the kernel give
970 the child a fresh set of new pages. The problem here is
971 that the breakpoints module being unaware of this, would
972 likely chose the child process to write to the parent
973 address space. Swapping the child temporarily away from
974 the spaces has the desired effect. Yes, this is "sort
975 of" a hack. */
976
977 pspace = inf->pspace;
978 aspace = inf->aspace;
979 inf->aspace = NULL;
980 inf->pspace = NULL;
981
f67c0c91 982 if (print_inferior_events)
6c95b8df 983 {
a068643d 984 std::string pidstr
b73715df 985 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 986
223ffa71 987 target_terminal::ours_for_output ();
6c95b8df
PA
988
989 if (exec)
6f259a23
DB
990 {
991 fprintf_filtered (gdb_stdlog,
f67c0c91 992 _("[Detaching vfork parent %s "
a068643d 993 "after child exec]\n"), pidstr.c_str ());
6f259a23 994 }
6c95b8df 995 else
6f259a23
DB
996 {
997 fprintf_filtered (gdb_stdlog,
f67c0c91 998 _("[Detaching vfork parent %s "
a068643d 999 "after child exit]\n"), pidstr.c_str ());
6f259a23 1000 }
6c95b8df
PA
1001 }
1002
b73715df 1003 target_detach (vfork_parent, 0);
6c95b8df
PA
1004
1005 /* Put it back. */
1006 inf->pspace = pspace;
1007 inf->aspace = aspace;
6c95b8df
PA
1008 }
1009 else if (exec)
1010 {
1011 /* We're staying attached to the parent, so, really give the
1012 child a new address space. */
564b1e3f 1013 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1014 inf->aspace = inf->pspace->aspace;
1015 inf->removable = 1;
1016 set_current_program_space (inf->pspace);
1017
b73715df 1018 resume_parent = vfork_parent->pid;
6c95b8df
PA
1019 }
1020 else
1021 {
6c95b8df
PA
1022 struct program_space *pspace;
1023
1024 /* If this is a vfork child exiting, then the pspace and
1025 aspaces were shared with the parent. Since we're
1026 reporting the process exit, we'll be mourning all that is
1027 found in the address space, and switching to null_ptid,
1028 preparing to start a new inferior. But, since we don't
1029 want to clobber the parent's address/program spaces, we
1030 go ahead and create a new one for this exiting
1031 inferior. */
1032
5ed8105e
PA
1033 /* Switch to null_ptid while running clone_program_space, so
1034 that clone_program_space doesn't want to read the
1035 selected frame of a dead process. */
1036 scoped_restore restore_ptid
1037 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1038
1039 /* This inferior is dead, so avoid giving the breakpoints
1040 module the option to write through to it (cloning a
1041 program space resets breakpoints). */
1042 inf->aspace = NULL;
1043 inf->pspace = NULL;
564b1e3f 1044 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1045 set_current_program_space (pspace);
1046 inf->removable = 1;
7dcd53a0 1047 inf->symfile_flags = SYMFILE_NO_READ;
b73715df 1048 clone_program_space (pspace, vfork_parent->pspace);
6c95b8df
PA
1049 inf->pspace = pspace;
1050 inf->aspace = pspace->aspace;
1051
b73715df 1052 resume_parent = vfork_parent->pid;
6c95b8df
PA
1053 }
1054
6c95b8df
PA
1055 gdb_assert (current_program_space == inf->pspace);
1056
1057 if (non_stop && resume_parent != -1)
1058 {
1059 /* If the user wanted the parent to be running, let it go
1060 free now. */
5ed8105e 1061 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1062
1063 if (debug_infrun)
3e43a32a
MS
1064 fprintf_unfiltered (gdb_stdlog,
1065 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1066 resume_parent);
1067
1068 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1069 }
1070 }
1071}
1072
eb6c553b 1073/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1074
1075static const char follow_exec_mode_new[] = "new";
1076static const char follow_exec_mode_same[] = "same";
40478521 1077static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1078{
1079 follow_exec_mode_new,
1080 follow_exec_mode_same,
1081 NULL,
1082};
1083
1084static const char *follow_exec_mode_string = follow_exec_mode_same;
1085static void
1086show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1087 struct cmd_list_element *c, const char *value)
1088{
1089 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1090}
1091
ecf45d2c 1092/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1093
c906108c 1094static void
4ca51187 1095follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1096{
6c95b8df 1097 struct inferior *inf = current_inferior ();
e99b03dc 1098 int pid = ptid.pid ();
94585166 1099 ptid_t process_ptid;
7a292a7a 1100
65d2b333
PW
1101 /* Switch terminal for any messages produced e.g. by
1102 breakpoint_re_set. */
1103 target_terminal::ours_for_output ();
1104
c906108c
SS
1105 /* This is an exec event that we actually wish to pay attention to.
1106 Refresh our symbol table to the newly exec'd program, remove any
1107 momentary bp's, etc.
1108
1109 If there are breakpoints, they aren't really inserted now,
1110 since the exec() transformed our inferior into a fresh set
1111 of instructions.
1112
1113 We want to preserve symbolic breakpoints on the list, since
1114 we have hopes that they can be reset after the new a.out's
1115 symbol table is read.
1116
1117 However, any "raw" breakpoints must be removed from the list
1118 (e.g., the solib bp's), since their address is probably invalid
1119 now.
1120
1121 And, we DON'T want to call delete_breakpoints() here, since
1122 that may write the bp's "shadow contents" (the instruction
85102364 1123 value that was overwritten with a TRAP instruction). Since
1777feb0 1124 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1125
1126 mark_breakpoints_out ();
1127
95e50b27
PA
1128 /* The target reports the exec event to the main thread, even if
1129 some other thread does the exec, and even if the main thread was
1130 stopped or already gone. We may still have non-leader threads of
1131 the process on our list. E.g., on targets that don't have thread
1132 exit events (like remote); or on native Linux in non-stop mode if
1133 there were only two threads in the inferior and the non-leader
1134 one is the one that execs (and nothing forces an update of the
1135 thread list up to here). When debugging remotely, it's best to
1136 avoid extra traffic, when possible, so avoid syncing the thread
1137 list with the target, and instead go ahead and delete all threads
1138 of the process but one that reported the event. Note this must
1139 be done before calling update_breakpoints_after_exec, as
1140 otherwise clearing the threads' resources would reference stale
1141 thread breakpoints -- it may have been one of these threads that
1142 stepped across the exec. We could just clear their stepping
1143 states, but as long as we're iterating, might as well delete
1144 them. Deleting them now rather than at the next user-visible
1145 stop provides a nicer sequence of events for user and MI
1146 notifications. */
08036331 1147 for (thread_info *th : all_threads_safe ())
d7e15655 1148 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1149 delete_thread (th);
95e50b27
PA
1150
1151 /* We also need to clear any left over stale state for the
1152 leader/event thread. E.g., if there was any step-resume
1153 breakpoint or similar, it's gone now. We cannot truly
1154 step-to-next statement through an exec(). */
08036331 1155 thread_info *th = inferior_thread ();
8358c15c 1156 th->control.step_resume_breakpoint = NULL;
186c406b 1157 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1158 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1159 th->control.step_range_start = 0;
1160 th->control.step_range_end = 0;
c906108c 1161
95e50b27
PA
1162 /* The user may have had the main thread held stopped in the
1163 previous image (e.g., schedlock on, or non-stop). Release
1164 it now. */
a75724bc
PA
1165 th->stop_requested = 0;
1166
95e50b27
PA
1167 update_breakpoints_after_exec ();
1168
1777feb0 1169 /* What is this a.out's name? */
f2907e49 1170 process_ptid = ptid_t (pid);
6c95b8df 1171 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1172 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1173 exec_file_target);
c906108c
SS
1174
1175 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1176 inferior has essentially been killed & reborn. */
7a292a7a 1177
6ca15a4b 1178 breakpoint_init_inferior (inf_execd);
e85a822c 1179
797bc1cb
TT
1180 gdb::unique_xmalloc_ptr<char> exec_file_host
1181 = exec_file_find (exec_file_target, NULL);
ff862be4 1182
ecf45d2c
SL
1183 /* If we were unable to map the executable target pathname onto a host
1184 pathname, tell the user that. Otherwise GDB's subsequent behavior
1185 is confusing. Maybe it would even be better to stop at this point
1186 so that the user can specify a file manually before continuing. */
1187 if (exec_file_host == NULL)
1188 warning (_("Could not load symbols for executable %s.\n"
1189 "Do you need \"set sysroot\"?"),
1190 exec_file_target);
c906108c 1191
cce9b6bf
PA
1192 /* Reset the shared library package. This ensures that we get a
1193 shlib event when the child reaches "_start", at which point the
1194 dld will have had a chance to initialize the child. */
1195 /* Also, loading a symbol file below may trigger symbol lookups, and
1196 we don't want those to be satisfied by the libraries of the
1197 previous incarnation of this process. */
1198 no_shared_libraries (NULL, 0);
1199
6c95b8df
PA
1200 if (follow_exec_mode_string == follow_exec_mode_new)
1201 {
6c95b8df
PA
1202 /* The user wants to keep the old inferior and program spaces
1203 around. Create a new fresh one, and switch to it. */
1204
35ed81d4
SM
1205 /* Do exit processing for the original inferior before setting the new
1206 inferior's pid. Having two inferiors with the same pid would confuse
1207 find_inferior_p(t)id. Transfer the terminal state and info from the
1208 old to the new inferior. */
1209 inf = add_inferior_with_spaces ();
1210 swap_terminal_info (inf, current_inferior ());
057302ce 1211 exit_inferior_silent (current_inferior ());
17d8546e 1212
94585166 1213 inf->pid = pid;
ecf45d2c 1214 target_follow_exec (inf, exec_file_target);
6c95b8df 1215
5b6d1e4f
PA
1216 inferior *org_inferior = current_inferior ();
1217 switch_to_inferior_no_thread (inf);
1218 push_target (org_inferior->process_target ());
1219 thread_info *thr = add_thread (inf->process_target (), ptid);
1220 switch_to_thread (thr);
6c95b8df 1221 }
9107fc8d
PA
1222 else
1223 {
1224 /* The old description may no longer be fit for the new image.
1225 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1226 old description; we'll read a new one below. No need to do
1227 this on "follow-exec-mode new", as the old inferior stays
1228 around (its description is later cleared/refetched on
1229 restart). */
1230 target_clear_description ();
1231 }
6c95b8df
PA
1232
1233 gdb_assert (current_program_space == inf->pspace);
1234
ecf45d2c
SL
1235 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1236 because the proper displacement for a PIE (Position Independent
1237 Executable) main symbol file will only be computed by
1238 solib_create_inferior_hook below. breakpoint_re_set would fail
1239 to insert the breakpoints with the zero displacement. */
797bc1cb 1240 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1241
9107fc8d
PA
1242 /* If the target can specify a description, read it. Must do this
1243 after flipping to the new executable (because the target supplied
1244 description must be compatible with the executable's
1245 architecture, and the old executable may e.g., be 32-bit, while
1246 the new one 64-bit), and before anything involving memory or
1247 registers. */
1248 target_find_description ();
1249
268a4a75 1250 solib_create_inferior_hook (0);
c906108c 1251
4efc6507
DE
1252 jit_inferior_created_hook ();
1253
c1e56572
JK
1254 breakpoint_re_set ();
1255
c906108c
SS
1256 /* Reinsert all breakpoints. (Those which were symbolic have
1257 been reset to the proper address in the new a.out, thanks
1777feb0 1258 to symbol_file_command...). */
c906108c
SS
1259 insert_breakpoints ();
1260
1261 /* The next resume of this inferior should bring it to the shlib
1262 startup breakpoints. (If the user had also set bp's on
1263 "main" from the old (parent) process, then they'll auto-
1777feb0 1264 matically get reset there in the new process.). */
c906108c
SS
1265}
1266
c2829269
PA
1267/* The queue of threads that need to do a step-over operation to get
1268 past e.g., a breakpoint. What technique is used to step over the
1269 breakpoint/watchpoint does not matter -- all threads end up in the
1270 same queue, to maintain rough temporal order of execution, in order
1271 to avoid starvation, otherwise, we could e.g., find ourselves
1272 constantly stepping the same couple threads past their breakpoints
1273 over and over, if the single-step finish fast enough. */
1274struct thread_info *step_over_queue_head;
1275
6c4cfb24
PA
1276/* Bit flags indicating what the thread needs to step over. */
1277
8d297bbf 1278enum step_over_what_flag
6c4cfb24
PA
1279 {
1280 /* Step over a breakpoint. */
1281 STEP_OVER_BREAKPOINT = 1,
1282
1283 /* Step past a non-continuable watchpoint, in order to let the
1284 instruction execute so we can evaluate the watchpoint
1285 expression. */
1286 STEP_OVER_WATCHPOINT = 2
1287 };
8d297bbf 1288DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1289
963f9c80 1290/* Info about an instruction that is being stepped over. */
31e77af2
PA
1291
1292struct step_over_info
1293{
963f9c80
PA
1294 /* If we're stepping past a breakpoint, this is the address space
1295 and address of the instruction the breakpoint is set at. We'll
1296 skip inserting all breakpoints here. Valid iff ASPACE is
1297 non-NULL. */
8b86c959 1298 const address_space *aspace;
31e77af2 1299 CORE_ADDR address;
963f9c80
PA
1300
1301 /* The instruction being stepped over triggers a nonsteppable
1302 watchpoint. If true, we'll skip inserting watchpoints. */
1303 int nonsteppable_watchpoint_p;
21edc42f
YQ
1304
1305 /* The thread's global number. */
1306 int thread;
31e77af2
PA
1307};
1308
1309/* The step-over info of the location that is being stepped over.
1310
1311 Note that with async/breakpoint always-inserted mode, a user might
1312 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1313 being stepped over. As setting a new breakpoint inserts all
1314 breakpoints, we need to make sure the breakpoint being stepped over
1315 isn't inserted then. We do that by only clearing the step-over
1316 info when the step-over is actually finished (or aborted).
1317
1318 Presently GDB can only step over one breakpoint at any given time.
1319 Given threads that can't run code in the same address space as the
1320 breakpoint's can't really miss the breakpoint, GDB could be taught
1321 to step-over at most one breakpoint per address space (so this info
1322 could move to the address space object if/when GDB is extended).
1323 The set of breakpoints being stepped over will normally be much
1324 smaller than the set of all breakpoints, so a flag in the
1325 breakpoint location structure would be wasteful. A separate list
1326 also saves complexity and run-time, as otherwise we'd have to go
1327 through all breakpoint locations clearing their flag whenever we
1328 start a new sequence. Similar considerations weigh against storing
1329 this info in the thread object. Plus, not all step overs actually
1330 have breakpoint locations -- e.g., stepping past a single-step
1331 breakpoint, or stepping to complete a non-continuable
1332 watchpoint. */
1333static struct step_over_info step_over_info;
1334
1335/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1336 stepping over.
1337 N.B. We record the aspace and address now, instead of say just the thread,
1338 because when we need the info later the thread may be running. */
31e77af2
PA
1339
1340static void
8b86c959 1341set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1342 int nonsteppable_watchpoint_p,
1343 int thread)
31e77af2
PA
1344{
1345 step_over_info.aspace = aspace;
1346 step_over_info.address = address;
963f9c80 1347 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1348 step_over_info.thread = thread;
31e77af2
PA
1349}
1350
1351/* Called when we're not longer stepping over a breakpoint / an
1352 instruction, so all breakpoints are free to be (re)inserted. */
1353
1354static void
1355clear_step_over_info (void)
1356{
372316f1
PA
1357 if (debug_infrun)
1358 fprintf_unfiltered (gdb_stdlog,
1359 "infrun: clear_step_over_info\n");
31e77af2
PA
1360 step_over_info.aspace = NULL;
1361 step_over_info.address = 0;
963f9c80 1362 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1363 step_over_info.thread = -1;
31e77af2
PA
1364}
1365
7f89fd65 1366/* See infrun.h. */
31e77af2
PA
1367
1368int
1369stepping_past_instruction_at (struct address_space *aspace,
1370 CORE_ADDR address)
1371{
1372 return (step_over_info.aspace != NULL
1373 && breakpoint_address_match (aspace, address,
1374 step_over_info.aspace,
1375 step_over_info.address));
1376}
1377
963f9c80
PA
1378/* See infrun.h. */
1379
21edc42f
YQ
1380int
1381thread_is_stepping_over_breakpoint (int thread)
1382{
1383 return (step_over_info.thread != -1
1384 && thread == step_over_info.thread);
1385}
1386
1387/* See infrun.h. */
1388
963f9c80
PA
1389int
1390stepping_past_nonsteppable_watchpoint (void)
1391{
1392 return step_over_info.nonsteppable_watchpoint_p;
1393}
1394
6cc83d2a
PA
1395/* Returns true if step-over info is valid. */
1396
1397static int
1398step_over_info_valid_p (void)
1399{
963f9c80
PA
1400 return (step_over_info.aspace != NULL
1401 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1402}
1403
c906108c 1404\f
237fc4c9
PA
1405/* Displaced stepping. */
1406
1407/* In non-stop debugging mode, we must take special care to manage
1408 breakpoints properly; in particular, the traditional strategy for
1409 stepping a thread past a breakpoint it has hit is unsuitable.
1410 'Displaced stepping' is a tactic for stepping one thread past a
1411 breakpoint it has hit while ensuring that other threads running
1412 concurrently will hit the breakpoint as they should.
1413
1414 The traditional way to step a thread T off a breakpoint in a
1415 multi-threaded program in all-stop mode is as follows:
1416
1417 a0) Initially, all threads are stopped, and breakpoints are not
1418 inserted.
1419 a1) We single-step T, leaving breakpoints uninserted.
1420 a2) We insert breakpoints, and resume all threads.
1421
1422 In non-stop debugging, however, this strategy is unsuitable: we
1423 don't want to have to stop all threads in the system in order to
1424 continue or step T past a breakpoint. Instead, we use displaced
1425 stepping:
1426
1427 n0) Initially, T is stopped, other threads are running, and
1428 breakpoints are inserted.
1429 n1) We copy the instruction "under" the breakpoint to a separate
1430 location, outside the main code stream, making any adjustments
1431 to the instruction, register, and memory state as directed by
1432 T's architecture.
1433 n2) We single-step T over the instruction at its new location.
1434 n3) We adjust the resulting register and memory state as directed
1435 by T's architecture. This includes resetting T's PC to point
1436 back into the main instruction stream.
1437 n4) We resume T.
1438
1439 This approach depends on the following gdbarch methods:
1440
1441 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1442 indicate where to copy the instruction, and how much space must
1443 be reserved there. We use these in step n1.
1444
1445 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1446 address, and makes any necessary adjustments to the instruction,
1447 register contents, and memory. We use this in step n1.
1448
1449 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1450 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1451 same effect the instruction would have had if we had executed it
1452 at its original address. We use this in step n3.
1453
237fc4c9
PA
1454 The gdbarch_displaced_step_copy_insn and
1455 gdbarch_displaced_step_fixup functions must be written so that
1456 copying an instruction with gdbarch_displaced_step_copy_insn,
1457 single-stepping across the copied instruction, and then applying
1458 gdbarch_displaced_insn_fixup should have the same effects on the
1459 thread's memory and registers as stepping the instruction in place
1460 would have. Exactly which responsibilities fall to the copy and
1461 which fall to the fixup is up to the author of those functions.
1462
1463 See the comments in gdbarch.sh for details.
1464
1465 Note that displaced stepping and software single-step cannot
1466 currently be used in combination, although with some care I think
1467 they could be made to. Software single-step works by placing
1468 breakpoints on all possible subsequent instructions; if the
1469 displaced instruction is a PC-relative jump, those breakpoints
1470 could fall in very strange places --- on pages that aren't
1471 executable, or at addresses that are not proper instruction
1472 boundaries. (We do generally let other threads run while we wait
1473 to hit the software single-step breakpoint, and they might
1474 encounter such a corrupted instruction.) One way to work around
1475 this would be to have gdbarch_displaced_step_copy_insn fully
1476 simulate the effect of PC-relative instructions (and return NULL)
1477 on architectures that use software single-stepping.
1478
1479 In non-stop mode, we can have independent and simultaneous step
1480 requests, so more than one thread may need to simultaneously step
1481 over a breakpoint. The current implementation assumes there is
1482 only one scratch space per process. In this case, we have to
1483 serialize access to the scratch space. If thread A wants to step
1484 over a breakpoint, but we are currently waiting for some other
1485 thread to complete a displaced step, we leave thread A stopped and
1486 place it in the displaced_step_request_queue. Whenever a displaced
1487 step finishes, we pick the next thread in the queue and start a new
1488 displaced step operation on it. See displaced_step_prepare and
1489 displaced_step_fixup for details. */
1490
cfba9872
SM
1491/* Default destructor for displaced_step_closure. */
1492
1493displaced_step_closure::~displaced_step_closure () = default;
1494
fc1cf338
PA
1495/* Get the displaced stepping state of process PID. */
1496
39a36629 1497static displaced_step_inferior_state *
00431a78 1498get_displaced_stepping_state (inferior *inf)
fc1cf338 1499{
d20172fc 1500 return &inf->displaced_step_state;
fc1cf338
PA
1501}
1502
372316f1
PA
1503/* Returns true if any inferior has a thread doing a displaced
1504 step. */
1505
39a36629
SM
1506static bool
1507displaced_step_in_progress_any_inferior ()
372316f1 1508{
d20172fc 1509 for (inferior *i : all_inferiors ())
39a36629 1510 {
d20172fc 1511 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1512 return true;
1513 }
372316f1 1514
39a36629 1515 return false;
372316f1
PA
1516}
1517
c0987663
YQ
1518/* Return true if thread represented by PTID is doing a displaced
1519 step. */
1520
1521static int
00431a78 1522displaced_step_in_progress_thread (thread_info *thread)
c0987663 1523{
00431a78 1524 gdb_assert (thread != NULL);
c0987663 1525
d20172fc 1526 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1527}
1528
8f572e5c
PA
1529/* Return true if process PID has a thread doing a displaced step. */
1530
1531static int
00431a78 1532displaced_step_in_progress (inferior *inf)
8f572e5c 1533{
d20172fc 1534 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1535}
1536
a42244db
YQ
1537/* If inferior is in displaced stepping, and ADDR equals to starting address
1538 of copy area, return corresponding displaced_step_closure. Otherwise,
1539 return NULL. */
1540
1541struct displaced_step_closure*
1542get_displaced_step_closure_by_addr (CORE_ADDR addr)
1543{
d20172fc 1544 displaced_step_inferior_state *displaced
00431a78 1545 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1546
1547 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1548 if (displaced->step_thread != nullptr
00431a78 1549 && displaced->step_copy == addr)
a42244db
YQ
1550 return displaced->step_closure;
1551
1552 return NULL;
1553}
1554
fc1cf338
PA
1555static void
1556infrun_inferior_exit (struct inferior *inf)
1557{
d20172fc 1558 inf->displaced_step_state.reset ();
fc1cf338 1559}
237fc4c9 1560
fff08868
HZ
1561/* If ON, and the architecture supports it, GDB will use displaced
1562 stepping to step over breakpoints. If OFF, or if the architecture
1563 doesn't support it, GDB will instead use the traditional
1564 hold-and-step approach. If AUTO (which is the default), GDB will
1565 decide which technique to use to step over breakpoints depending on
1566 which of all-stop or non-stop mode is active --- displaced stepping
1567 in non-stop mode; hold-and-step in all-stop mode. */
1568
72d0e2c5 1569static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1570
237fc4c9
PA
1571static void
1572show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1573 struct cmd_list_element *c,
1574 const char *value)
1575{
72d0e2c5 1576 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1577 fprintf_filtered (file,
1578 _("Debugger's willingness to use displaced stepping "
1579 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1580 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1581 else
3e43a32a
MS
1582 fprintf_filtered (file,
1583 _("Debugger's willingness to use displaced stepping "
1584 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1585}
1586
fff08868 1587/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1588 over breakpoints of thread TP. */
fff08868 1589
237fc4c9 1590static int
3fc8eb30 1591use_displaced_stepping (struct thread_info *tp)
237fc4c9 1592{
00431a78 1593 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1594 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1595 displaced_step_inferior_state *displaced_state
1596 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1597
fbea99ea
PA
1598 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1599 && target_is_non_stop_p ())
72d0e2c5 1600 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1601 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1602 && find_record_target () == NULL
d20172fc 1603 && !displaced_state->failed_before);
237fc4c9
PA
1604}
1605
1606/* Clean out any stray displaced stepping state. */
1607static void
fc1cf338 1608displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1609{
1610 /* Indicate that there is no cleanup pending. */
00431a78 1611 displaced->step_thread = nullptr;
237fc4c9 1612
cfba9872 1613 delete displaced->step_closure;
6d45d4b4 1614 displaced->step_closure = NULL;
237fc4c9
PA
1615}
1616
9799571e
TT
1617/* A cleanup that wraps displaced_step_clear. */
1618using displaced_step_clear_cleanup
1619 = FORWARD_SCOPE_EXIT (displaced_step_clear);
237fc4c9
PA
1620
1621/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1622void
1623displaced_step_dump_bytes (struct ui_file *file,
1624 const gdb_byte *buf,
1625 size_t len)
1626{
1627 int i;
1628
1629 for (i = 0; i < len; i++)
1630 fprintf_unfiltered (file, "%02x ", buf[i]);
1631 fputs_unfiltered ("\n", file);
1632}
1633
1634/* Prepare to single-step, using displaced stepping.
1635
1636 Note that we cannot use displaced stepping when we have a signal to
1637 deliver. If we have a signal to deliver and an instruction to step
1638 over, then after the step, there will be no indication from the
1639 target whether the thread entered a signal handler or ignored the
1640 signal and stepped over the instruction successfully --- both cases
1641 result in a simple SIGTRAP. In the first case we mustn't do a
1642 fixup, and in the second case we must --- but we can't tell which.
1643 Comments in the code for 'random signals' in handle_inferior_event
1644 explain how we handle this case instead.
1645
1646 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1647 stepped now; 0 if displaced stepping this thread got queued; or -1
1648 if this instruction can't be displaced stepped. */
1649
237fc4c9 1650static int
00431a78 1651displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1652{
00431a78 1653 regcache *regcache = get_thread_regcache (tp);
ac7936df 1654 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1655 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1656 CORE_ADDR original, copy;
1657 ULONGEST len;
1658 struct displaced_step_closure *closure;
9e529e1d 1659 int status;
237fc4c9
PA
1660
1661 /* We should never reach this function if the architecture does not
1662 support displaced stepping. */
1663 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1664
c2829269
PA
1665 /* Nor if the thread isn't meant to step over a breakpoint. */
1666 gdb_assert (tp->control.trap_expected);
1667
c1e36e3e
PA
1668 /* Disable range stepping while executing in the scratch pad. We
1669 want a single-step even if executing the displaced instruction in
1670 the scratch buffer lands within the stepping range (e.g., a
1671 jump/branch). */
1672 tp->control.may_range_step = 0;
1673
fc1cf338
PA
1674 /* We have to displaced step one thread at a time, as we only have
1675 access to a single scratch space per inferior. */
237fc4c9 1676
d20172fc
SM
1677 displaced_step_inferior_state *displaced
1678 = get_displaced_stepping_state (tp->inf);
fc1cf338 1679
00431a78 1680 if (displaced->step_thread != nullptr)
237fc4c9
PA
1681 {
1682 /* Already waiting for a displaced step to finish. Defer this
1683 request and place in queue. */
237fc4c9
PA
1684
1685 if (debug_displaced)
1686 fprintf_unfiltered (gdb_stdlog,
c2829269 1687 "displaced: deferring step of %s\n",
a068643d 1688 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1689
c2829269 1690 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1691 return 0;
1692 }
1693 else
1694 {
1695 if (debug_displaced)
1696 fprintf_unfiltered (gdb_stdlog,
1697 "displaced: stepping %s now\n",
a068643d 1698 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1699 }
1700
fc1cf338 1701 displaced_step_clear (displaced);
237fc4c9 1702
00431a78
PA
1703 scoped_restore_current_thread restore_thread;
1704
1705 switch_to_thread (tp);
ad53cd71 1706
515630c5 1707 original = regcache_read_pc (regcache);
237fc4c9
PA
1708
1709 copy = gdbarch_displaced_step_location (gdbarch);
1710 len = gdbarch_max_insn_length (gdbarch);
1711
d35ae833
PA
1712 if (breakpoint_in_range_p (aspace, copy, len))
1713 {
1714 /* There's a breakpoint set in the scratch pad location range
1715 (which is usually around the entry point). We'd either
1716 install it before resuming, which would overwrite/corrupt the
1717 scratch pad, or if it was already inserted, this displaced
1718 step would overwrite it. The latter is OK in the sense that
1719 we already assume that no thread is going to execute the code
1720 in the scratch pad range (after initial startup) anyway, but
1721 the former is unacceptable. Simply punt and fallback to
1722 stepping over this breakpoint in-line. */
1723 if (debug_displaced)
1724 {
1725 fprintf_unfiltered (gdb_stdlog,
1726 "displaced: breakpoint set in scratch pad. "
1727 "Stepping over breakpoint in-line instead.\n");
1728 }
1729
d35ae833
PA
1730 return -1;
1731 }
1732
237fc4c9 1733 /* Save the original contents of the copy area. */
d20172fc
SM
1734 displaced->step_saved_copy.resize (len);
1735 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1736 if (status != 0)
1737 throw_error (MEMORY_ERROR,
1738 _("Error accessing memory address %s (%s) for "
1739 "displaced-stepping scratch space."),
1740 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1741 if (debug_displaced)
1742 {
5af949e3
UW
1743 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1744 paddress (gdbarch, copy));
fc1cf338 1745 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1746 displaced->step_saved_copy.data (),
fc1cf338 1747 len);
237fc4c9
PA
1748 };
1749
1750 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1751 original, copy, regcache);
7f03bd92
PA
1752 if (closure == NULL)
1753 {
1754 /* The architecture doesn't know how or want to displaced step
1755 this instruction or instruction sequence. Fallback to
1756 stepping over the breakpoint in-line. */
7f03bd92
PA
1757 return -1;
1758 }
237fc4c9 1759
9f5a595d
UW
1760 /* Save the information we need to fix things up if the step
1761 succeeds. */
00431a78 1762 displaced->step_thread = tp;
fc1cf338
PA
1763 displaced->step_gdbarch = gdbarch;
1764 displaced->step_closure = closure;
1765 displaced->step_original = original;
1766 displaced->step_copy = copy;
9f5a595d 1767
9799571e
TT
1768 {
1769 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1770
9799571e
TT
1771 /* Resume execution at the copy. */
1772 regcache_write_pc (regcache, copy);
237fc4c9 1773
9799571e
TT
1774 cleanup.release ();
1775 }
ad53cd71 1776
237fc4c9 1777 if (debug_displaced)
5af949e3
UW
1778 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1779 paddress (gdbarch, copy));
237fc4c9 1780
237fc4c9
PA
1781 return 1;
1782}
1783
3fc8eb30
PA
1784/* Wrapper for displaced_step_prepare_throw that disabled further
1785 attempts at displaced stepping if we get a memory error. */
1786
1787static int
00431a78 1788displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1789{
1790 int prepared = -1;
1791
a70b8144 1792 try
3fc8eb30 1793 {
00431a78 1794 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1795 }
230d2906 1796 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1797 {
1798 struct displaced_step_inferior_state *displaced_state;
1799
16b41842
PA
1800 if (ex.error != MEMORY_ERROR
1801 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1802 throw;
3fc8eb30
PA
1803
1804 if (debug_infrun)
1805 {
1806 fprintf_unfiltered (gdb_stdlog,
1807 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1808 ex.what ());
3fc8eb30
PA
1809 }
1810
1811 /* Be verbose if "set displaced-stepping" is "on", silent if
1812 "auto". */
1813 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1814 {
fd7dcb94 1815 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1816 ex.what ());
3fc8eb30
PA
1817 }
1818
1819 /* Disable further displaced stepping attempts. */
1820 displaced_state
00431a78 1821 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1822 displaced_state->failed_before = 1;
1823 }
3fc8eb30
PA
1824
1825 return prepared;
1826}
1827
237fc4c9 1828static void
3e43a32a
MS
1829write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1830 const gdb_byte *myaddr, int len)
237fc4c9 1831{
2989a365 1832 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1833
237fc4c9
PA
1834 inferior_ptid = ptid;
1835 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1836}
1837
e2d96639
YQ
1838/* Restore the contents of the copy area for thread PTID. */
1839
1840static void
1841displaced_step_restore (struct displaced_step_inferior_state *displaced,
1842 ptid_t ptid)
1843{
1844 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1845
1846 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1847 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1848 if (debug_displaced)
1849 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1850 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1851 paddress (displaced->step_gdbarch,
1852 displaced->step_copy));
1853}
1854
372316f1
PA
1855/* If we displaced stepped an instruction successfully, adjust
1856 registers and memory to yield the same effect the instruction would
1857 have had if we had executed it at its original address, and return
1858 1. If the instruction didn't complete, relocate the PC and return
1859 -1. If the thread wasn't displaced stepping, return 0. */
1860
1861static int
00431a78 1862displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1863{
fc1cf338 1864 struct displaced_step_inferior_state *displaced
00431a78 1865 = get_displaced_stepping_state (event_thread->inf);
372316f1 1866 int ret;
fc1cf338 1867
00431a78
PA
1868 /* Was this event for the thread we displaced? */
1869 if (displaced->step_thread != event_thread)
372316f1 1870 return 0;
237fc4c9 1871
9799571e 1872 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1873
00431a78 1874 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1875
cb71640d
PA
1876 /* Fixup may need to read memory/registers. Switch to the thread
1877 that we're fixing up. Also, target_stopped_by_watchpoint checks
1878 the current thread. */
00431a78 1879 switch_to_thread (event_thread);
cb71640d 1880
237fc4c9 1881 /* Did the instruction complete successfully? */
cb71640d
PA
1882 if (signal == GDB_SIGNAL_TRAP
1883 && !(target_stopped_by_watchpoint ()
1884 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1885 || target_have_steppable_watchpoint)))
237fc4c9
PA
1886 {
1887 /* Fix up the resulting state. */
fc1cf338
PA
1888 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1889 displaced->step_closure,
1890 displaced->step_original,
1891 displaced->step_copy,
00431a78 1892 get_thread_regcache (displaced->step_thread));
372316f1 1893 ret = 1;
237fc4c9
PA
1894 }
1895 else
1896 {
1897 /* Since the instruction didn't complete, all we can do is
1898 relocate the PC. */
00431a78 1899 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1900 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1901
fc1cf338 1902 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1903 regcache_write_pc (regcache, pc);
372316f1 1904 ret = -1;
237fc4c9
PA
1905 }
1906
372316f1 1907 return ret;
c2829269 1908}
1c5cfe86 1909
4d9d9d04
PA
1910/* Data to be passed around while handling an event. This data is
1911 discarded between events. */
1912struct execution_control_state
1913{
5b6d1e4f 1914 process_stratum_target *target;
4d9d9d04
PA
1915 ptid_t ptid;
1916 /* The thread that got the event, if this was a thread event; NULL
1917 otherwise. */
1918 struct thread_info *event_thread;
1919
1920 struct target_waitstatus ws;
1921 int stop_func_filled_in;
1922 CORE_ADDR stop_func_start;
1923 CORE_ADDR stop_func_end;
1924 const char *stop_func_name;
1925 int wait_some_more;
1926
1927 /* True if the event thread hit the single-step breakpoint of
1928 another thread. Thus the event doesn't cause a stop, the thread
1929 needs to be single-stepped past the single-step breakpoint before
1930 we can switch back to the original stepping thread. */
1931 int hit_singlestep_breakpoint;
1932};
1933
1934/* Clear ECS and set it to point at TP. */
c2829269
PA
1935
1936static void
4d9d9d04
PA
1937reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1938{
1939 memset (ecs, 0, sizeof (*ecs));
1940 ecs->event_thread = tp;
1941 ecs->ptid = tp->ptid;
1942}
1943
1944static void keep_going_pass_signal (struct execution_control_state *ecs);
1945static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1946static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1947static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1948
1949/* Are there any pending step-over requests? If so, run all we can
1950 now and return true. Otherwise, return false. */
1951
1952static int
c2829269
PA
1953start_step_over (void)
1954{
1955 struct thread_info *tp, *next;
1956
372316f1
PA
1957 /* Don't start a new step-over if we already have an in-line
1958 step-over operation ongoing. */
1959 if (step_over_info_valid_p ())
1960 return 0;
1961
c2829269 1962 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1963 {
4d9d9d04
PA
1964 struct execution_control_state ecss;
1965 struct execution_control_state *ecs = &ecss;
8d297bbf 1966 step_over_what step_what;
372316f1 1967 int must_be_in_line;
c2829269 1968
c65d6b55
PA
1969 gdb_assert (!tp->stop_requested);
1970
c2829269 1971 next = thread_step_over_chain_next (tp);
237fc4c9 1972
c2829269
PA
1973 /* If this inferior already has a displaced step in process,
1974 don't start a new one. */
00431a78 1975 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1976 continue;
1977
372316f1
PA
1978 step_what = thread_still_needs_step_over (tp);
1979 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1980 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1981 && !use_displaced_stepping (tp)));
372316f1
PA
1982
1983 /* We currently stop all threads of all processes to step-over
1984 in-line. If we need to start a new in-line step-over, let
1985 any pending displaced steps finish first. */
1986 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1987 return 0;
1988
c2829269
PA
1989 thread_step_over_chain_remove (tp);
1990
1991 if (step_over_queue_head == NULL)
1992 {
1993 if (debug_infrun)
1994 fprintf_unfiltered (gdb_stdlog,
1995 "infrun: step-over queue now empty\n");
1996 }
1997
372316f1
PA
1998 if (tp->control.trap_expected
1999 || tp->resumed
2000 || tp->executing)
ad53cd71 2001 {
4d9d9d04
PA
2002 internal_error (__FILE__, __LINE__,
2003 "[%s] has inconsistent state: "
372316f1 2004 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 2005 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 2006 tp->control.trap_expected,
372316f1 2007 tp->resumed,
4d9d9d04 2008 tp->executing);
ad53cd71 2009 }
1c5cfe86 2010
4d9d9d04
PA
2011 if (debug_infrun)
2012 fprintf_unfiltered (gdb_stdlog,
2013 "infrun: resuming [%s] for step-over\n",
a068643d 2014 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
2015
2016 /* keep_going_pass_signal skips the step-over if the breakpoint
2017 is no longer inserted. In all-stop, we want to keep looking
2018 for a thread that needs a step-over instead of resuming TP,
2019 because we wouldn't be able to resume anything else until the
2020 target stops again. In non-stop, the resume always resumes
2021 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2022 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2023 continue;
8550d3b3 2024
00431a78 2025 switch_to_thread (tp);
4d9d9d04
PA
2026 reset_ecs (ecs, tp);
2027 keep_going_pass_signal (ecs);
1c5cfe86 2028
4d9d9d04
PA
2029 if (!ecs->wait_some_more)
2030 error (_("Command aborted."));
1c5cfe86 2031
372316f1
PA
2032 gdb_assert (tp->resumed);
2033
2034 /* If we started a new in-line step-over, we're done. */
2035 if (step_over_info_valid_p ())
2036 {
2037 gdb_assert (tp->control.trap_expected);
2038 return 1;
2039 }
2040
fbea99ea 2041 if (!target_is_non_stop_p ())
4d9d9d04
PA
2042 {
2043 /* On all-stop, shouldn't have resumed unless we needed a
2044 step over. */
2045 gdb_assert (tp->control.trap_expected
2046 || tp->step_after_step_resume_breakpoint);
2047
2048 /* With remote targets (at least), in all-stop, we can't
2049 issue any further remote commands until the program stops
2050 again. */
2051 return 1;
1c5cfe86 2052 }
c2829269 2053
4d9d9d04
PA
2054 /* Either the thread no longer needed a step-over, or a new
2055 displaced stepping sequence started. Even in the latter
2056 case, continue looking. Maybe we can also start another
2057 displaced step on a thread of other process. */
237fc4c9 2058 }
4d9d9d04
PA
2059
2060 return 0;
237fc4c9
PA
2061}
2062
5231c1fd
PA
2063/* Update global variables holding ptids to hold NEW_PTID if they were
2064 holding OLD_PTID. */
2065static void
2066infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2067{
d7e15655 2068 if (inferior_ptid == old_ptid)
5231c1fd 2069 inferior_ptid = new_ptid;
5231c1fd
PA
2070}
2071
237fc4c9 2072\f
c906108c 2073
53904c9e
AC
2074static const char schedlock_off[] = "off";
2075static const char schedlock_on[] = "on";
2076static const char schedlock_step[] = "step";
f2665db5 2077static const char schedlock_replay[] = "replay";
40478521 2078static const char *const scheduler_enums[] = {
ef346e04
AC
2079 schedlock_off,
2080 schedlock_on,
2081 schedlock_step,
f2665db5 2082 schedlock_replay,
ef346e04
AC
2083 NULL
2084};
f2665db5 2085static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2086static void
2087show_scheduler_mode (struct ui_file *file, int from_tty,
2088 struct cmd_list_element *c, const char *value)
2089{
3e43a32a
MS
2090 fprintf_filtered (file,
2091 _("Mode for locking scheduler "
2092 "during execution is \"%s\".\n"),
920d2a44
AC
2093 value);
2094}
c906108c
SS
2095
2096static void
eb4c3f4a 2097set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2098{
eefe576e
AC
2099 if (!target_can_lock_scheduler)
2100 {
2101 scheduler_mode = schedlock_off;
2102 error (_("Target '%s' cannot support this command."), target_shortname);
2103 }
c906108c
SS
2104}
2105
d4db2f36
PA
2106/* True if execution commands resume all threads of all processes by
2107 default; otherwise, resume only threads of the current inferior
2108 process. */
491144b5 2109bool sched_multi = false;
d4db2f36 2110
2facfe5c
DD
2111/* Try to setup for software single stepping over the specified location.
2112 Return 1 if target_resume() should use hardware single step.
2113
2114 GDBARCH the current gdbarch.
2115 PC the location to step over. */
2116
2117static int
2118maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2119{
2120 int hw_step = 1;
2121
f02253f1 2122 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2123 && gdbarch_software_single_step_p (gdbarch))
2124 hw_step = !insert_single_step_breakpoints (gdbarch);
2125
2facfe5c
DD
2126 return hw_step;
2127}
c906108c 2128
f3263aa4
PA
2129/* See infrun.h. */
2130
09cee04b
PA
2131ptid_t
2132user_visible_resume_ptid (int step)
2133{
f3263aa4 2134 ptid_t resume_ptid;
09cee04b 2135
09cee04b
PA
2136 if (non_stop)
2137 {
2138 /* With non-stop mode on, threads are always handled
2139 individually. */
2140 resume_ptid = inferior_ptid;
2141 }
2142 else if ((scheduler_mode == schedlock_on)
03d46957 2143 || (scheduler_mode == schedlock_step && step))
09cee04b 2144 {
f3263aa4
PA
2145 /* User-settable 'scheduler' mode requires solo thread
2146 resume. */
09cee04b
PA
2147 resume_ptid = inferior_ptid;
2148 }
f2665db5
MM
2149 else if ((scheduler_mode == schedlock_replay)
2150 && target_record_will_replay (minus_one_ptid, execution_direction))
2151 {
2152 /* User-settable 'scheduler' mode requires solo thread resume in replay
2153 mode. */
2154 resume_ptid = inferior_ptid;
2155 }
f3263aa4
PA
2156 else if (!sched_multi && target_supports_multi_process ())
2157 {
2158 /* Resume all threads of the current process (and none of other
2159 processes). */
e99b03dc 2160 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2161 }
2162 else
2163 {
2164 /* Resume all threads of all processes. */
2165 resume_ptid = RESUME_ALL;
2166 }
09cee04b
PA
2167
2168 return resume_ptid;
2169}
2170
5b6d1e4f
PA
2171/* See infrun.h. */
2172
2173process_stratum_target *
2174user_visible_resume_target (ptid_t resume_ptid)
2175{
2176 return (resume_ptid == minus_one_ptid && sched_multi
2177 ? NULL
2178 : current_inferior ()->process_target ());
2179}
2180
fbea99ea
PA
2181/* Return a ptid representing the set of threads that we will resume,
2182 in the perspective of the target, assuming run control handling
2183 does not require leaving some threads stopped (e.g., stepping past
2184 breakpoint). USER_STEP indicates whether we're about to start the
2185 target for a stepping command. */
2186
2187static ptid_t
2188internal_resume_ptid (int user_step)
2189{
2190 /* In non-stop, we always control threads individually. Note that
2191 the target may always work in non-stop mode even with "set
2192 non-stop off", in which case user_visible_resume_ptid could
2193 return a wildcard ptid. */
2194 if (target_is_non_stop_p ())
2195 return inferior_ptid;
2196 else
2197 return user_visible_resume_ptid (user_step);
2198}
2199
64ce06e4
PA
2200/* Wrapper for target_resume, that handles infrun-specific
2201 bookkeeping. */
2202
2203static void
2204do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2205{
2206 struct thread_info *tp = inferior_thread ();
2207
c65d6b55
PA
2208 gdb_assert (!tp->stop_requested);
2209
64ce06e4 2210 /* Install inferior's terminal modes. */
223ffa71 2211 target_terminal::inferior ();
64ce06e4
PA
2212
2213 /* Avoid confusing the next resume, if the next stop/resume
2214 happens to apply to another thread. */
2215 tp->suspend.stop_signal = GDB_SIGNAL_0;
2216
8f572e5c
PA
2217 /* Advise target which signals may be handled silently.
2218
2219 If we have removed breakpoints because we are stepping over one
2220 in-line (in any thread), we need to receive all signals to avoid
2221 accidentally skipping a breakpoint during execution of a signal
2222 handler.
2223
2224 Likewise if we're displaced stepping, otherwise a trap for a
2225 breakpoint in a signal handler might be confused with the
2226 displaced step finishing. We don't make the displaced_step_fixup
2227 step distinguish the cases instead, because:
2228
2229 - a backtrace while stopped in the signal handler would show the
2230 scratch pad as frame older than the signal handler, instead of
2231 the real mainline code.
2232
2233 - when the thread is later resumed, the signal handler would
2234 return to the scratch pad area, which would no longer be
2235 valid. */
2236 if (step_over_info_valid_p ()
00431a78 2237 || displaced_step_in_progress (tp->inf))
adc6a863 2238 target_pass_signals ({});
64ce06e4 2239 else
adc6a863 2240 target_pass_signals (signal_pass);
64ce06e4
PA
2241
2242 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2243
2244 target_commit_resume ();
5b6d1e4f
PA
2245
2246 if (target_can_async_p ())
2247 target_async (1);
64ce06e4
PA
2248}
2249
d930703d 2250/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2251 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2252 call 'resume', which handles exceptions. */
c906108c 2253
71d378ae
PA
2254static void
2255resume_1 (enum gdb_signal sig)
c906108c 2256{
515630c5 2257 struct regcache *regcache = get_current_regcache ();
ac7936df 2258 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2259 struct thread_info *tp = inferior_thread ();
515630c5 2260 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2261 const address_space *aspace = regcache->aspace ();
b0f16a3e 2262 ptid_t resume_ptid;
856e7dd6
PA
2263 /* This represents the user's step vs continue request. When
2264 deciding whether "set scheduler-locking step" applies, it's the
2265 user's intention that counts. */
2266 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2267 /* This represents what we'll actually request the target to do.
2268 This can decay from a step to a continue, if e.g., we need to
2269 implement single-stepping with breakpoints (software
2270 single-step). */
6b403daa 2271 int step;
c7e8a53c 2272
c65d6b55 2273 gdb_assert (!tp->stop_requested);
c2829269
PA
2274 gdb_assert (!thread_is_in_step_over_chain (tp));
2275
372316f1
PA
2276 if (tp->suspend.waitstatus_pending_p)
2277 {
2278 if (debug_infrun)
2279 {
23fdd69e
SM
2280 std::string statstr
2281 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2282
372316f1 2283 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2284 "infrun: resume: thread %s has pending wait "
2285 "status %s (currently_stepping=%d).\n",
a068643d
TT
2286 target_pid_to_str (tp->ptid).c_str (),
2287 statstr.c_str (),
372316f1 2288 currently_stepping (tp));
372316f1
PA
2289 }
2290
5b6d1e4f 2291 tp->inf->process_target ()->threads_executing = true;
372316f1
PA
2292 tp->resumed = 1;
2293
2294 /* FIXME: What should we do if we are supposed to resume this
2295 thread with a signal? Maybe we should maintain a queue of
2296 pending signals to deliver. */
2297 if (sig != GDB_SIGNAL_0)
2298 {
fd7dcb94 2299 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2300 gdb_signal_to_name (sig),
2301 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2302 }
2303
2304 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2305
2306 if (target_can_async_p ())
9516f85a
AB
2307 {
2308 target_async (1);
2309 /* Tell the event loop we have an event to process. */
2310 mark_async_event_handler (infrun_async_inferior_event_token);
2311 }
372316f1
PA
2312 return;
2313 }
2314
2315 tp->stepped_breakpoint = 0;
2316
6b403daa
PA
2317 /* Depends on stepped_breakpoint. */
2318 step = currently_stepping (tp);
2319
74609e71
YQ
2320 if (current_inferior ()->waiting_for_vfork_done)
2321 {
48f9886d
PA
2322 /* Don't try to single-step a vfork parent that is waiting for
2323 the child to get out of the shared memory region (by exec'ing
2324 or exiting). This is particularly important on software
2325 single-step archs, as the child process would trip on the
2326 software single step breakpoint inserted for the parent
2327 process. Since the parent will not actually execute any
2328 instruction until the child is out of the shared region (such
2329 are vfork's semantics), it is safe to simply continue it.
2330 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2331 the parent, and tell it to `keep_going', which automatically
2332 re-sets it stepping. */
74609e71
YQ
2333 if (debug_infrun)
2334 fprintf_unfiltered (gdb_stdlog,
2335 "infrun: resume : clear step\n");
a09dd441 2336 step = 0;
74609e71
YQ
2337 }
2338
527159b7 2339 if (debug_infrun)
237fc4c9 2340 fprintf_unfiltered (gdb_stdlog,
c9737c08 2341 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2342 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2343 step, gdb_signal_to_symbol_string (sig),
2344 tp->control.trap_expected,
a068643d 2345 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2346 paddress (gdbarch, pc));
c906108c 2347
c2c6d25f
JM
2348 /* Normally, by the time we reach `resume', the breakpoints are either
2349 removed or inserted, as appropriate. The exception is if we're sitting
2350 at a permanent breakpoint; we need to step over it, but permanent
2351 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2352 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2353 {
af48d08f
PA
2354 if (sig != GDB_SIGNAL_0)
2355 {
2356 /* We have a signal to pass to the inferior. The resume
2357 may, or may not take us to the signal handler. If this
2358 is a step, we'll need to stop in the signal handler, if
2359 there's one, (if the target supports stepping into
2360 handlers), or in the next mainline instruction, if
2361 there's no handler. If this is a continue, we need to be
2362 sure to run the handler with all breakpoints inserted.
2363 In all cases, set a breakpoint at the current address
2364 (where the handler returns to), and once that breakpoint
2365 is hit, resume skipping the permanent breakpoint. If
2366 that breakpoint isn't hit, then we've stepped into the
2367 signal handler (or hit some other event). We'll delete
2368 the step-resume breakpoint then. */
2369
2370 if (debug_infrun)
2371 fprintf_unfiltered (gdb_stdlog,
2372 "infrun: resume: skipping permanent breakpoint, "
2373 "deliver signal first\n");
2374
2375 clear_step_over_info ();
2376 tp->control.trap_expected = 0;
2377
2378 if (tp->control.step_resume_breakpoint == NULL)
2379 {
2380 /* Set a "high-priority" step-resume, as we don't want
2381 user breakpoints at PC to trigger (again) when this
2382 hits. */
2383 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2384 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2385
2386 tp->step_after_step_resume_breakpoint = step;
2387 }
2388
2389 insert_breakpoints ();
2390 }
2391 else
2392 {
2393 /* There's no signal to pass, we can go ahead and skip the
2394 permanent breakpoint manually. */
2395 if (debug_infrun)
2396 fprintf_unfiltered (gdb_stdlog,
2397 "infrun: resume: skipping permanent breakpoint\n");
2398 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2399 /* Update pc to reflect the new address from which we will
2400 execute instructions. */
2401 pc = regcache_read_pc (regcache);
2402
2403 if (step)
2404 {
2405 /* We've already advanced the PC, so the stepping part
2406 is done. Now we need to arrange for a trap to be
2407 reported to handle_inferior_event. Set a breakpoint
2408 at the current PC, and run to it. Don't update
2409 prev_pc, because if we end in
44a1ee51
PA
2410 switch_back_to_stepped_thread, we want the "expected
2411 thread advanced also" branch to be taken. IOW, we
2412 don't want this thread to step further from PC
af48d08f 2413 (overstep). */
1ac806b8 2414 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2415 insert_single_step_breakpoint (gdbarch, aspace, pc);
2416 insert_breakpoints ();
2417
fbea99ea 2418 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2419 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2420 tp->resumed = 1;
af48d08f
PA
2421 return;
2422 }
2423 }
6d350bb5 2424 }
c2c6d25f 2425
c1e36e3e
PA
2426 /* If we have a breakpoint to step over, make sure to do a single
2427 step only. Same if we have software watchpoints. */
2428 if (tp->control.trap_expected || bpstat_should_step ())
2429 tp->control.may_range_step = 0;
2430
237fc4c9
PA
2431 /* If enabled, step over breakpoints by executing a copy of the
2432 instruction at a different address.
2433
2434 We can't use displaced stepping when we have a signal to deliver;
2435 the comments for displaced_step_prepare explain why. The
2436 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2437 signals' explain what we do instead.
2438
2439 We can't use displaced stepping when we are waiting for vfork_done
2440 event, displaced stepping breaks the vfork child similarly as single
2441 step software breakpoint. */
3fc8eb30
PA
2442 if (tp->control.trap_expected
2443 && use_displaced_stepping (tp)
cb71640d 2444 && !step_over_info_valid_p ()
a493e3e2 2445 && sig == GDB_SIGNAL_0
74609e71 2446 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2447 {
00431a78 2448 int prepared = displaced_step_prepare (tp);
fc1cf338 2449
3fc8eb30 2450 if (prepared == 0)
d56b7306 2451 {
4d9d9d04
PA
2452 if (debug_infrun)
2453 fprintf_unfiltered (gdb_stdlog,
2454 "Got placed in step-over queue\n");
2455
2456 tp->control.trap_expected = 0;
d56b7306
VP
2457 return;
2458 }
3fc8eb30
PA
2459 else if (prepared < 0)
2460 {
2461 /* Fallback to stepping over the breakpoint in-line. */
2462
2463 if (target_is_non_stop_p ())
2464 stop_all_threads ();
2465
a01bda52 2466 set_step_over_info (regcache->aspace (),
21edc42f 2467 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2468
2469 step = maybe_software_singlestep (gdbarch, pc);
2470
2471 insert_breakpoints ();
2472 }
2473 else if (prepared > 0)
2474 {
2475 struct displaced_step_inferior_state *displaced;
99e40580 2476
3fc8eb30
PA
2477 /* Update pc to reflect the new address from which we will
2478 execute instructions due to displaced stepping. */
00431a78 2479 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2480
00431a78 2481 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2482 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2483 displaced->step_closure);
2484 }
237fc4c9
PA
2485 }
2486
2facfe5c 2487 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2488 else if (step)
2facfe5c 2489 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2490
30852783
UW
2491 /* Currently, our software single-step implementation leads to different
2492 results than hardware single-stepping in one situation: when stepping
2493 into delivering a signal which has an associated signal handler,
2494 hardware single-step will stop at the first instruction of the handler,
2495 while software single-step will simply skip execution of the handler.
2496
2497 For now, this difference in behavior is accepted since there is no
2498 easy way to actually implement single-stepping into a signal handler
2499 without kernel support.
2500
2501 However, there is one scenario where this difference leads to follow-on
2502 problems: if we're stepping off a breakpoint by removing all breakpoints
2503 and then single-stepping. In this case, the software single-step
2504 behavior means that even if there is a *breakpoint* in the signal
2505 handler, GDB still would not stop.
2506
2507 Fortunately, we can at least fix this particular issue. We detect
2508 here the case where we are about to deliver a signal while software
2509 single-stepping with breakpoints removed. In this situation, we
2510 revert the decisions to remove all breakpoints and insert single-
2511 step breakpoints, and instead we install a step-resume breakpoint
2512 at the current address, deliver the signal without stepping, and
2513 once we arrive back at the step-resume breakpoint, actually step
2514 over the breakpoint we originally wanted to step over. */
34b7e8a6 2515 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2516 && sig != GDB_SIGNAL_0
2517 && step_over_info_valid_p ())
30852783
UW
2518 {
2519 /* If we have nested signals or a pending signal is delivered
2520 immediately after a handler returns, might might already have
2521 a step-resume breakpoint set on the earlier handler. We cannot
2522 set another step-resume breakpoint; just continue on until the
2523 original breakpoint is hit. */
2524 if (tp->control.step_resume_breakpoint == NULL)
2525 {
2c03e5be 2526 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2527 tp->step_after_step_resume_breakpoint = 1;
2528 }
2529
34b7e8a6 2530 delete_single_step_breakpoints (tp);
30852783 2531
31e77af2 2532 clear_step_over_info ();
30852783 2533 tp->control.trap_expected = 0;
31e77af2
PA
2534
2535 insert_breakpoints ();
30852783
UW
2536 }
2537
b0f16a3e
SM
2538 /* If STEP is set, it's a request to use hardware stepping
2539 facilities. But in that case, we should never
2540 use singlestep breakpoint. */
34b7e8a6 2541 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2542
fbea99ea 2543 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2544 if (tp->control.trap_expected)
b0f16a3e
SM
2545 {
2546 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2547 hit, either by single-stepping the thread with the breakpoint
2548 removed, or by displaced stepping, with the breakpoint inserted.
2549 In the former case, we need to single-step only this thread,
2550 and keep others stopped, as they can miss this breakpoint if
2551 allowed to run. That's not really a problem for displaced
2552 stepping, but, we still keep other threads stopped, in case
2553 another thread is also stopped for a breakpoint waiting for
2554 its turn in the displaced stepping queue. */
b0f16a3e
SM
2555 resume_ptid = inferior_ptid;
2556 }
fbea99ea
PA
2557 else
2558 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2559
7f5ef605
PA
2560 if (execution_direction != EXEC_REVERSE
2561 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2562 {
372316f1
PA
2563 /* There are two cases where we currently need to step a
2564 breakpoint instruction when we have a signal to deliver:
2565
2566 - See handle_signal_stop where we handle random signals that
2567 could take out us out of the stepping range. Normally, in
2568 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2569 signal handler with a breakpoint at PC, but there are cases
2570 where we should _always_ single-step, even if we have a
2571 step-resume breakpoint, like when a software watchpoint is
2572 set. Assuming single-stepping and delivering a signal at the
2573 same time would takes us to the signal handler, then we could
2574 have removed the breakpoint at PC to step over it. However,
2575 some hardware step targets (like e.g., Mac OS) can't step
2576 into signal handlers, and for those, we need to leave the
2577 breakpoint at PC inserted, as otherwise if the handler
2578 recurses and executes PC again, it'll miss the breakpoint.
2579 So we leave the breakpoint inserted anyway, but we need to
2580 record that we tried to step a breakpoint instruction, so
372316f1
PA
2581 that adjust_pc_after_break doesn't end up confused.
2582
2583 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2584 in one thread after another thread that was stepping had been
2585 momentarily paused for a step-over. When we re-resume the
2586 stepping thread, it may be resumed from that address with a
2587 breakpoint that hasn't trapped yet. Seen with
2588 gdb.threads/non-stop-fair-events.exp, on targets that don't
2589 do displaced stepping. */
2590
2591 if (debug_infrun)
2592 fprintf_unfiltered (gdb_stdlog,
2593 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2594 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2595
2596 tp->stepped_breakpoint = 1;
2597
b0f16a3e
SM
2598 /* Most targets can step a breakpoint instruction, thus
2599 executing it normally. But if this one cannot, just
2600 continue and we will hit it anyway. */
7f5ef605 2601 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2602 step = 0;
2603 }
ef5cf84e 2604
b0f16a3e 2605 if (debug_displaced
cb71640d 2606 && tp->control.trap_expected
3fc8eb30 2607 && use_displaced_stepping (tp)
cb71640d 2608 && !step_over_info_valid_p ())
b0f16a3e 2609 {
00431a78 2610 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2611 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2612 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2613 gdb_byte buf[4];
2614
2615 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2616 paddress (resume_gdbarch, actual_pc));
2617 read_memory (actual_pc, buf, sizeof (buf));
2618 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2619 }
237fc4c9 2620
b0f16a3e
SM
2621 if (tp->control.may_range_step)
2622 {
2623 /* If we're resuming a thread with the PC out of the step
2624 range, then we're doing some nested/finer run control
2625 operation, like stepping the thread out of the dynamic
2626 linker or the displaced stepping scratch pad. We
2627 shouldn't have allowed a range step then. */
2628 gdb_assert (pc_in_thread_step_range (pc, tp));
2629 }
c1e36e3e 2630
64ce06e4 2631 do_target_resume (resume_ptid, step, sig);
372316f1 2632 tp->resumed = 1;
c906108c 2633}
71d378ae
PA
2634
2635/* Resume the inferior. SIG is the signal to give the inferior
2636 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2637 rolls back state on error. */
2638
aff4e175 2639static void
71d378ae
PA
2640resume (gdb_signal sig)
2641{
a70b8144 2642 try
71d378ae
PA
2643 {
2644 resume_1 (sig);
2645 }
230d2906 2646 catch (const gdb_exception &ex)
71d378ae
PA
2647 {
2648 /* If resuming is being aborted for any reason, delete any
2649 single-step breakpoint resume_1 may have created, to avoid
2650 confusing the following resumption, and to avoid leaving
2651 single-step breakpoints perturbing other threads, in case
2652 we're running in non-stop mode. */
2653 if (inferior_ptid != null_ptid)
2654 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2655 throw;
71d378ae 2656 }
71d378ae
PA
2657}
2658
c906108c 2659\f
237fc4c9 2660/* Proceeding. */
c906108c 2661
4c2f2a79
PA
2662/* See infrun.h. */
2663
2664/* Counter that tracks number of user visible stops. This can be used
2665 to tell whether a command has proceeded the inferior past the
2666 current location. This allows e.g., inferior function calls in
2667 breakpoint commands to not interrupt the command list. When the
2668 call finishes successfully, the inferior is standing at the same
2669 breakpoint as if nothing happened (and so we don't call
2670 normal_stop). */
2671static ULONGEST current_stop_id;
2672
2673/* See infrun.h. */
2674
2675ULONGEST
2676get_stop_id (void)
2677{
2678 return current_stop_id;
2679}
2680
2681/* Called when we report a user visible stop. */
2682
2683static void
2684new_stop_id (void)
2685{
2686 current_stop_id++;
2687}
2688
c906108c
SS
2689/* Clear out all variables saying what to do when inferior is continued.
2690 First do this, then set the ones you want, then call `proceed'. */
2691
a7212384
UW
2692static void
2693clear_proceed_status_thread (struct thread_info *tp)
c906108c 2694{
a7212384
UW
2695 if (debug_infrun)
2696 fprintf_unfiltered (gdb_stdlog,
2697 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2698 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2699
372316f1
PA
2700 /* If we're starting a new sequence, then the previous finished
2701 single-step is no longer relevant. */
2702 if (tp->suspend.waitstatus_pending_p)
2703 {
2704 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2705 {
2706 if (debug_infrun)
2707 fprintf_unfiltered (gdb_stdlog,
2708 "infrun: clear_proceed_status: pending "
2709 "event of %s was a finished step. "
2710 "Discarding.\n",
a068643d 2711 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2712
2713 tp->suspend.waitstatus_pending_p = 0;
2714 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2715 }
2716 else if (debug_infrun)
2717 {
23fdd69e
SM
2718 std::string statstr
2719 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2720
372316f1
PA
2721 fprintf_unfiltered (gdb_stdlog,
2722 "infrun: clear_proceed_status_thread: thread %s "
2723 "has pending wait status %s "
2724 "(currently_stepping=%d).\n",
a068643d
TT
2725 target_pid_to_str (tp->ptid).c_str (),
2726 statstr.c_str (),
372316f1 2727 currently_stepping (tp));
372316f1
PA
2728 }
2729 }
2730
70509625
PA
2731 /* If this signal should not be seen by program, give it zero.
2732 Used for debugging signals. */
2733 if (!signal_pass_state (tp->suspend.stop_signal))
2734 tp->suspend.stop_signal = GDB_SIGNAL_0;
2735
46e3ed7f 2736 delete tp->thread_fsm;
243a9253
PA
2737 tp->thread_fsm = NULL;
2738
16c381f0
JK
2739 tp->control.trap_expected = 0;
2740 tp->control.step_range_start = 0;
2741 tp->control.step_range_end = 0;
c1e36e3e 2742 tp->control.may_range_step = 0;
16c381f0
JK
2743 tp->control.step_frame_id = null_frame_id;
2744 tp->control.step_stack_frame_id = null_frame_id;
2745 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2746 tp->control.step_start_function = NULL;
a7212384 2747 tp->stop_requested = 0;
4e1c45ea 2748
16c381f0 2749 tp->control.stop_step = 0;
32400beb 2750
16c381f0 2751 tp->control.proceed_to_finish = 0;
414c69f7 2752
856e7dd6 2753 tp->control.stepping_command = 0;
17b2616c 2754
a7212384 2755 /* Discard any remaining commands or status from previous stop. */
16c381f0 2756 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2757}
32400beb 2758
a7212384 2759void
70509625 2760clear_proceed_status (int step)
a7212384 2761{
f2665db5
MM
2762 /* With scheduler-locking replay, stop replaying other threads if we're
2763 not replaying the user-visible resume ptid.
2764
2765 This is a convenience feature to not require the user to explicitly
2766 stop replaying the other threads. We're assuming that the user's
2767 intent is to resume tracing the recorded process. */
2768 if (!non_stop && scheduler_mode == schedlock_replay
2769 && target_record_is_replaying (minus_one_ptid)
2770 && !target_record_will_replay (user_visible_resume_ptid (step),
2771 execution_direction))
2772 target_record_stop_replaying ();
2773
08036331 2774 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2775 {
08036331 2776 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2777 process_stratum_target *resume_target
2778 = user_visible_resume_target (resume_ptid);
70509625
PA
2779
2780 /* In all-stop mode, delete the per-thread status of all threads
2781 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2782 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2783 clear_proceed_status_thread (tp);
6c95b8df
PA
2784 }
2785
d7e15655 2786 if (inferior_ptid != null_ptid)
a7212384
UW
2787 {
2788 struct inferior *inferior;
2789
2790 if (non_stop)
2791 {
6c95b8df
PA
2792 /* If in non-stop mode, only delete the per-thread status of
2793 the current thread. */
a7212384
UW
2794 clear_proceed_status_thread (inferior_thread ());
2795 }
6c95b8df 2796
d6b48e9c 2797 inferior = current_inferior ();
16c381f0 2798 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2799 }
2800
76727919 2801 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2802}
2803
99619bea
PA
2804/* Returns true if TP is still stopped at a breakpoint that needs
2805 stepping-over in order to make progress. If the breakpoint is gone
2806 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2807
2808static int
6c4cfb24 2809thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2810{
2811 if (tp->stepping_over_breakpoint)
2812 {
00431a78 2813 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2814
a01bda52 2815 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2816 regcache_read_pc (regcache))
2817 == ordinary_breakpoint_here)
99619bea
PA
2818 return 1;
2819
2820 tp->stepping_over_breakpoint = 0;
2821 }
2822
2823 return 0;
2824}
2825
6c4cfb24
PA
2826/* Check whether thread TP still needs to start a step-over in order
2827 to make progress when resumed. Returns an bitwise or of enum
2828 step_over_what bits, indicating what needs to be stepped over. */
2829
8d297bbf 2830static step_over_what
6c4cfb24
PA
2831thread_still_needs_step_over (struct thread_info *tp)
2832{
8d297bbf 2833 step_over_what what = 0;
6c4cfb24
PA
2834
2835 if (thread_still_needs_step_over_bp (tp))
2836 what |= STEP_OVER_BREAKPOINT;
2837
2838 if (tp->stepping_over_watchpoint
2839 && !target_have_steppable_watchpoint)
2840 what |= STEP_OVER_WATCHPOINT;
2841
2842 return what;
2843}
2844
483805cf
PA
2845/* Returns true if scheduler locking applies. STEP indicates whether
2846 we're about to do a step/next-like command to a thread. */
2847
2848static int
856e7dd6 2849schedlock_applies (struct thread_info *tp)
483805cf
PA
2850{
2851 return (scheduler_mode == schedlock_on
2852 || (scheduler_mode == schedlock_step
f2665db5
MM
2853 && tp->control.stepping_command)
2854 || (scheduler_mode == schedlock_replay
2855 && target_record_will_replay (minus_one_ptid,
2856 execution_direction)));
483805cf
PA
2857}
2858
5b6d1e4f
PA
2859/* Calls target_commit_resume on all targets. */
2860
2861static void
2862commit_resume_all_targets ()
2863{
2864 scoped_restore_current_thread restore_thread;
2865
2866 /* Map between process_target and a representative inferior. This
2867 is to avoid committing a resume in the same target more than
2868 once. Resumptions must be idempotent, so this is an
2869 optimization. */
2870 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2871
2872 for (inferior *inf : all_non_exited_inferiors ())
2873 if (inf->has_execution ())
2874 conn_inf[inf->process_target ()] = inf;
2875
2876 for (const auto &ci : conn_inf)
2877 {
2878 inferior *inf = ci.second;
2879 switch_to_inferior_no_thread (inf);
2880 target_commit_resume ();
2881 }
2882}
2883
c906108c
SS
2884/* Basic routine for continuing the program in various fashions.
2885
2886 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2887 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2888 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2889
2890 You should call clear_proceed_status before calling proceed. */
2891
2892void
64ce06e4 2893proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2894{
e58b0e63
PA
2895 struct regcache *regcache;
2896 struct gdbarch *gdbarch;
e58b0e63 2897 CORE_ADDR pc;
4d9d9d04
PA
2898 struct execution_control_state ecss;
2899 struct execution_control_state *ecs = &ecss;
4d9d9d04 2900 int started;
c906108c 2901
e58b0e63
PA
2902 /* If we're stopped at a fork/vfork, follow the branch set by the
2903 "set follow-fork-mode" command; otherwise, we'll just proceed
2904 resuming the current thread. */
2905 if (!follow_fork ())
2906 {
2907 /* The target for some reason decided not to resume. */
2908 normal_stop ();
f148b27e
PA
2909 if (target_can_async_p ())
2910 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2911 return;
2912 }
2913
842951eb
PA
2914 /* We'll update this if & when we switch to a new thread. */
2915 previous_inferior_ptid = inferior_ptid;
2916
e58b0e63 2917 regcache = get_current_regcache ();
ac7936df 2918 gdbarch = regcache->arch ();
8b86c959
YQ
2919 const address_space *aspace = regcache->aspace ();
2920
e58b0e63 2921 pc = regcache_read_pc (regcache);
08036331 2922 thread_info *cur_thr = inferior_thread ();
e58b0e63 2923
99619bea 2924 /* Fill in with reasonable starting values. */
08036331 2925 init_thread_stepping_state (cur_thr);
99619bea 2926
08036331 2927 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2928
5b6d1e4f
PA
2929 ptid_t resume_ptid
2930 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2931 process_stratum_target *resume_target
2932 = user_visible_resume_target (resume_ptid);
2933
2acceee2 2934 if (addr == (CORE_ADDR) -1)
c906108c 2935 {
08036331 2936 if (pc == cur_thr->suspend.stop_pc
af48d08f 2937 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2938 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2939 /* There is a breakpoint at the address we will resume at,
2940 step one instruction before inserting breakpoints so that
2941 we do not stop right away (and report a second hit at this
b2175913
MS
2942 breakpoint).
2943
2944 Note, we don't do this in reverse, because we won't
2945 actually be executing the breakpoint insn anyway.
2946 We'll be (un-)executing the previous instruction. */
08036331 2947 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2948 else if (gdbarch_single_step_through_delay_p (gdbarch)
2949 && gdbarch_single_step_through_delay (gdbarch,
2950 get_current_frame ()))
3352ef37
AC
2951 /* We stepped onto an instruction that needs to be stepped
2952 again before re-inserting the breakpoint, do so. */
08036331 2953 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2954 }
2955 else
2956 {
515630c5 2957 regcache_write_pc (regcache, addr);
c906108c
SS
2958 }
2959
70509625 2960 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2961 cur_thr->suspend.stop_signal = siggnal;
70509625 2962
4d9d9d04
PA
2963 /* If an exception is thrown from this point on, make sure to
2964 propagate GDB's knowledge of the executing state to the
2965 frontend/user running state. */
5b6d1e4f 2966 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
2967
2968 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2969 threads (e.g., we might need to set threads stepping over
2970 breakpoints first), from the user/frontend's point of view, all
2971 threads in RESUME_PTID are now running. Unless we're calling an
2972 inferior function, as in that case we pretend the inferior
2973 doesn't run at all. */
08036331 2974 if (!cur_thr->control.in_infcall)
5b6d1e4f 2975 set_running (resume_target, resume_ptid, 1);
17b2616c 2976
527159b7 2977 if (debug_infrun)
8a9de0e4 2978 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2979 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2980 paddress (gdbarch, addr),
64ce06e4 2981 gdb_signal_to_symbol_string (siggnal));
527159b7 2982
4d9d9d04
PA
2983 annotate_starting ();
2984
2985 /* Make sure that output from GDB appears before output from the
2986 inferior. */
2987 gdb_flush (gdb_stdout);
2988
d930703d
PA
2989 /* Since we've marked the inferior running, give it the terminal. A
2990 QUIT/Ctrl-C from here on is forwarded to the target (which can
2991 still detect attempts to unblock a stuck connection with repeated
2992 Ctrl-C from within target_pass_ctrlc). */
2993 target_terminal::inferior ();
2994
4d9d9d04
PA
2995 /* In a multi-threaded task we may select another thread and
2996 then continue or step.
2997
2998 But if a thread that we're resuming had stopped at a breakpoint,
2999 it will immediately cause another breakpoint stop without any
3000 execution (i.e. it will report a breakpoint hit incorrectly). So
3001 we must step over it first.
3002
3003 Look for threads other than the current (TP) that reported a
3004 breakpoint hit and haven't been resumed yet since. */
3005
3006 /* If scheduler locking applies, we can avoid iterating over all
3007 threads. */
08036331 3008 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3009 {
5b6d1e4f
PA
3010 for (thread_info *tp : all_non_exited_threads (resume_target,
3011 resume_ptid))
08036331 3012 {
f3f8ece4
PA
3013 switch_to_thread_no_regs (tp);
3014
4d9d9d04
PA
3015 /* Ignore the current thread here. It's handled
3016 afterwards. */
08036331 3017 if (tp == cur_thr)
4d9d9d04 3018 continue;
c906108c 3019
4d9d9d04
PA
3020 if (!thread_still_needs_step_over (tp))
3021 continue;
3022
3023 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3024
99619bea
PA
3025 if (debug_infrun)
3026 fprintf_unfiltered (gdb_stdlog,
3027 "infrun: need to step-over [%s] first\n",
a068643d 3028 target_pid_to_str (tp->ptid).c_str ());
99619bea 3029
4d9d9d04 3030 thread_step_over_chain_enqueue (tp);
2adfaa28 3031 }
f3f8ece4
PA
3032
3033 switch_to_thread (cur_thr);
30852783
UW
3034 }
3035
4d9d9d04
PA
3036 /* Enqueue the current thread last, so that we move all other
3037 threads over their breakpoints first. */
08036331
PA
3038 if (cur_thr->stepping_over_breakpoint)
3039 thread_step_over_chain_enqueue (cur_thr);
30852783 3040
4d9d9d04
PA
3041 /* If the thread isn't started, we'll still need to set its prev_pc,
3042 so that switch_back_to_stepped_thread knows the thread hasn't
3043 advanced. Must do this before resuming any thread, as in
3044 all-stop/remote, once we resume we can't send any other packet
3045 until the target stops again. */
08036331 3046 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 3047
a9bc57b9
TT
3048 {
3049 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3050
a9bc57b9 3051 started = start_step_over ();
c906108c 3052
a9bc57b9
TT
3053 if (step_over_info_valid_p ())
3054 {
3055 /* Either this thread started a new in-line step over, or some
3056 other thread was already doing one. In either case, don't
3057 resume anything else until the step-over is finished. */
3058 }
3059 else if (started && !target_is_non_stop_p ())
3060 {
3061 /* A new displaced stepping sequence was started. In all-stop,
3062 we can't talk to the target anymore until it next stops. */
3063 }
3064 else if (!non_stop && target_is_non_stop_p ())
3065 {
3066 /* In all-stop, but the target is always in non-stop mode.
3067 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3068 for (thread_info *tp : all_non_exited_threads (resume_target,
3069 resume_ptid))
3070 {
3071 switch_to_thread_no_regs (tp);
3072
3073 if (!tp->inf->has_execution ())
3074 {
3075 if (debug_infrun)
3076 fprintf_unfiltered (gdb_stdlog,
3077 "infrun: proceed: [%s] target has "
3078 "no execution\n",
3079 target_pid_to_str (tp->ptid).c_str ());
3080 continue;
3081 }
f3f8ece4 3082
fbea99ea
PA
3083 if (tp->resumed)
3084 {
3085 if (debug_infrun)
3086 fprintf_unfiltered (gdb_stdlog,
3087 "infrun: proceed: [%s] resumed\n",
a068643d 3088 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3089 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3090 continue;
3091 }
3092
3093 if (thread_is_in_step_over_chain (tp))
3094 {
3095 if (debug_infrun)
3096 fprintf_unfiltered (gdb_stdlog,
3097 "infrun: proceed: [%s] needs step-over\n",
a068643d 3098 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3099 continue;
3100 }
3101
3102 if (debug_infrun)
3103 fprintf_unfiltered (gdb_stdlog,
3104 "infrun: proceed: resuming %s\n",
a068643d 3105 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3106
3107 reset_ecs (ecs, tp);
00431a78 3108 switch_to_thread (tp);
fbea99ea
PA
3109 keep_going_pass_signal (ecs);
3110 if (!ecs->wait_some_more)
fd7dcb94 3111 error (_("Command aborted."));
fbea99ea 3112 }
a9bc57b9 3113 }
08036331 3114 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3115 {
3116 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3117 reset_ecs (ecs, cur_thr);
3118 switch_to_thread (cur_thr);
a9bc57b9
TT
3119 keep_going_pass_signal (ecs);
3120 if (!ecs->wait_some_more)
3121 error (_("Command aborted."));
3122 }
3123 }
c906108c 3124
5b6d1e4f 3125 commit_resume_all_targets ();
85ad3aaf 3126
731f534f 3127 finish_state.release ();
c906108c 3128
873657b9
PA
3129 /* If we've switched threads above, switch back to the previously
3130 current thread. We don't want the user to see a different
3131 selected thread. */
3132 switch_to_thread (cur_thr);
3133
0b333c5e
PA
3134 /* Tell the event loop to wait for it to stop. If the target
3135 supports asynchronous execution, it'll do this from within
3136 target_resume. */
362646f5 3137 if (!target_can_async_p ())
0b333c5e 3138 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3139}
c906108c
SS
3140\f
3141
3142/* Start remote-debugging of a machine over a serial link. */
96baa820 3143
c906108c 3144void
8621d6a9 3145start_remote (int from_tty)
c906108c 3146{
5b6d1e4f
PA
3147 inferior *inf = current_inferior ();
3148 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3149
1777feb0 3150 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3151 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3152 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3153 nothing is returned (instead of just blocking). Because of this,
3154 targets expecting an immediate response need to, internally, set
3155 things up so that the target_wait() is forced to eventually
1777feb0 3156 timeout. */
6426a772
JM
3157 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3158 differentiate to its caller what the state of the target is after
3159 the initial open has been performed. Here we're assuming that
3160 the target has stopped. It should be possible to eventually have
3161 target_open() return to the caller an indication that the target
3162 is currently running and GDB state should be set to the same as
1777feb0 3163 for an async run. */
5b6d1e4f 3164 wait_for_inferior (inf);
8621d6a9
DJ
3165
3166 /* Now that the inferior has stopped, do any bookkeeping like
3167 loading shared libraries. We want to do this before normal_stop,
3168 so that the displayed frame is up to date. */
8b88a78e 3169 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3170
6426a772 3171 normal_stop ();
c906108c
SS
3172}
3173
3174/* Initialize static vars when a new inferior begins. */
3175
3176void
96baa820 3177init_wait_for_inferior (void)
c906108c
SS
3178{
3179 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3180
c906108c
SS
3181 breakpoint_init_inferior (inf_starting);
3182
70509625 3183 clear_proceed_status (0);
9f976b41 3184
ab1ddbcf 3185 nullify_last_target_wait_ptid ();
237fc4c9 3186
842951eb 3187 previous_inferior_ptid = inferior_ptid;
c906108c 3188}
237fc4c9 3189
c906108c 3190\f
488f131b 3191
ec9499be 3192static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3193
568d6575
UW
3194static void handle_step_into_function (struct gdbarch *gdbarch,
3195 struct execution_control_state *ecs);
3196static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3197 struct execution_control_state *ecs);
4f5d7f63 3198static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3199static void check_exception_resume (struct execution_control_state *,
28106bc2 3200 struct frame_info *);
611c83ae 3201
bdc36728 3202static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3203static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3204static void keep_going (struct execution_control_state *ecs);
94c57d6a 3205static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3206static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3207
252fbfc8
PA
3208/* This function is attached as a "thread_stop_requested" observer.
3209 Cleanup local state that assumed the PTID was to be resumed, and
3210 report the stop to the frontend. */
3211
2c0b251b 3212static void
252fbfc8
PA
3213infrun_thread_stop_requested (ptid_t ptid)
3214{
5b6d1e4f
PA
3215 process_stratum_target *curr_target = current_inferior ()->process_target ();
3216
c65d6b55
PA
3217 /* PTID was requested to stop. If the thread was already stopped,
3218 but the user/frontend doesn't know about that yet (e.g., the
3219 thread had been temporarily paused for some step-over), set up
3220 for reporting the stop now. */
5b6d1e4f 3221 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3222 {
3223 if (tp->state != THREAD_RUNNING)
3224 continue;
3225 if (tp->executing)
3226 continue;
c65d6b55 3227
08036331
PA
3228 /* Remove matching threads from the step-over queue, so
3229 start_step_over doesn't try to resume them
3230 automatically. */
3231 if (thread_is_in_step_over_chain (tp))
3232 thread_step_over_chain_remove (tp);
c65d6b55 3233
08036331
PA
3234 /* If the thread is stopped, but the user/frontend doesn't
3235 know about that yet, queue a pending event, as if the
3236 thread had just stopped now. Unless the thread already had
3237 a pending event. */
3238 if (!tp->suspend.waitstatus_pending_p)
3239 {
3240 tp->suspend.waitstatus_pending_p = 1;
3241 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3242 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3243 }
c65d6b55 3244
08036331
PA
3245 /* Clear the inline-frame state, since we're re-processing the
3246 stop. */
5b6d1e4f 3247 clear_inline_frame_state (tp);
c65d6b55 3248
08036331
PA
3249 /* If this thread was paused because some other thread was
3250 doing an inline-step over, let that finish first. Once
3251 that happens, we'll restart all threads and consume pending
3252 stop events then. */
3253 if (step_over_info_valid_p ())
3254 continue;
3255
3256 /* Otherwise we can process the (new) pending event now. Set
3257 it so this pending event is considered by
3258 do_target_wait. */
3259 tp->resumed = 1;
3260 }
252fbfc8
PA
3261}
3262
a07daef3
PA
3263static void
3264infrun_thread_thread_exit (struct thread_info *tp, int silent)
3265{
5b6d1e4f
PA
3266 if (target_last_proc_target == tp->inf->process_target ()
3267 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3268 nullify_last_target_wait_ptid ();
3269}
3270
0cbcdb96
PA
3271/* Delete the step resume, single-step and longjmp/exception resume
3272 breakpoints of TP. */
4e1c45ea 3273
0cbcdb96
PA
3274static void
3275delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3276{
0cbcdb96
PA
3277 delete_step_resume_breakpoint (tp);
3278 delete_exception_resume_breakpoint (tp);
34b7e8a6 3279 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3280}
3281
0cbcdb96
PA
3282/* If the target still has execution, call FUNC for each thread that
3283 just stopped. In all-stop, that's all the non-exited threads; in
3284 non-stop, that's the current thread, only. */
3285
3286typedef void (*for_each_just_stopped_thread_callback_func)
3287 (struct thread_info *tp);
4e1c45ea
PA
3288
3289static void
0cbcdb96 3290for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3291{
d7e15655 3292 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3293 return;
3294
fbea99ea 3295 if (target_is_non_stop_p ())
4e1c45ea 3296 {
0cbcdb96
PA
3297 /* If in non-stop mode, only the current thread stopped. */
3298 func (inferior_thread ());
4e1c45ea
PA
3299 }
3300 else
0cbcdb96 3301 {
0cbcdb96 3302 /* In all-stop mode, all threads have stopped. */
08036331
PA
3303 for (thread_info *tp : all_non_exited_threads ())
3304 func (tp);
0cbcdb96
PA
3305 }
3306}
3307
3308/* Delete the step resume and longjmp/exception resume breakpoints of
3309 the threads that just stopped. */
3310
3311static void
3312delete_just_stopped_threads_infrun_breakpoints (void)
3313{
3314 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3315}
3316
3317/* Delete the single-step breakpoints of the threads that just
3318 stopped. */
7c16b83e 3319
34b7e8a6
PA
3320static void
3321delete_just_stopped_threads_single_step_breakpoints (void)
3322{
3323 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3324}
3325
221e1a37 3326/* See infrun.h. */
223698f8 3327
221e1a37 3328void
223698f8
DE
3329print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3330 const struct target_waitstatus *ws)
3331{
23fdd69e 3332 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3333 string_file stb;
223698f8
DE
3334
3335 /* The text is split over several lines because it was getting too long.
3336 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3337 output as a unit; we want only one timestamp printed if debug_timestamp
3338 is set. */
3339
d7e74731 3340 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3341 waiton_ptid.pid (),
e38504b3 3342 waiton_ptid.lwp (),
cc6bcb54 3343 waiton_ptid.tid ());
e99b03dc 3344 if (waiton_ptid.pid () != -1)
a068643d 3345 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3346 stb.printf (", status) =\n");
3347 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3348 result_ptid.pid (),
e38504b3 3349 result_ptid.lwp (),
cc6bcb54 3350 result_ptid.tid (),
a068643d 3351 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3352 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3353
3354 /* This uses %s in part to handle %'s in the text, but also to avoid
3355 a gcc error: the format attribute requires a string literal. */
d7e74731 3356 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3357}
3358
372316f1
PA
3359/* Select a thread at random, out of those which are resumed and have
3360 had events. */
3361
3362static struct thread_info *
5b6d1e4f 3363random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3364{
372316f1 3365 int num_events = 0;
08036331 3366
5b6d1e4f 3367 auto has_event = [&] (thread_info *tp)
08036331 3368 {
5b6d1e4f
PA
3369 return (tp->ptid.matches (waiton_ptid)
3370 && tp->resumed
08036331
PA
3371 && tp->suspend.waitstatus_pending_p);
3372 };
372316f1
PA
3373
3374 /* First see how many events we have. Count only resumed threads
3375 that have an event pending. */
5b6d1e4f 3376 for (thread_info *tp : inf->non_exited_threads ())
08036331 3377 if (has_event (tp))
372316f1
PA
3378 num_events++;
3379
3380 if (num_events == 0)
3381 return NULL;
3382
3383 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3384 int random_selector = (int) ((num_events * (double) rand ())
3385 / (RAND_MAX + 1.0));
372316f1
PA
3386
3387 if (debug_infrun && num_events > 1)
3388 fprintf_unfiltered (gdb_stdlog,
3389 "infrun: Found %d events, selecting #%d\n",
3390 num_events, random_selector);
3391
3392 /* Select the Nth thread that has had an event. */
5b6d1e4f 3393 for (thread_info *tp : inf->non_exited_threads ())
08036331 3394 if (has_event (tp))
372316f1 3395 if (random_selector-- == 0)
08036331 3396 return tp;
372316f1 3397
08036331 3398 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3399}
3400
3401/* Wrapper for target_wait that first checks whether threads have
3402 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3403 more events. INF is the inferior we're using to call target_wait
3404 on. */
372316f1
PA
3405
3406static ptid_t
5b6d1e4f
PA
3407do_target_wait_1 (inferior *inf, ptid_t ptid,
3408 target_waitstatus *status, int options)
372316f1
PA
3409{
3410 ptid_t event_ptid;
3411 struct thread_info *tp;
3412
3413 /* First check if there is a resumed thread with a wait status
3414 pending. */
d7e15655 3415 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3416 {
5b6d1e4f 3417 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3418 }
3419 else
3420 {
3421 if (debug_infrun)
3422 fprintf_unfiltered (gdb_stdlog,
3423 "infrun: Waiting for specific thread %s.\n",
a068643d 3424 target_pid_to_str (ptid).c_str ());
372316f1
PA
3425
3426 /* We have a specific thread to check. */
5b6d1e4f 3427 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3428 gdb_assert (tp != NULL);
3429 if (!tp->suspend.waitstatus_pending_p)
3430 tp = NULL;
3431 }
3432
3433 if (tp != NULL
3434 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3435 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3436 {
00431a78 3437 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3438 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3439 CORE_ADDR pc;
3440 int discard = 0;
3441
3442 pc = regcache_read_pc (regcache);
3443
3444 if (pc != tp->suspend.stop_pc)
3445 {
3446 if (debug_infrun)
3447 fprintf_unfiltered (gdb_stdlog,
3448 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3449 target_pid_to_str (tp->ptid).c_str (),
defd2172 3450 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3451 paddress (gdbarch, pc));
3452 discard = 1;
3453 }
a01bda52 3454 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3455 {
3456 if (debug_infrun)
3457 fprintf_unfiltered (gdb_stdlog,
3458 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3459 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3460 paddress (gdbarch, pc));
3461
3462 discard = 1;
3463 }
3464
3465 if (discard)
3466 {
3467 if (debug_infrun)
3468 fprintf_unfiltered (gdb_stdlog,
3469 "infrun: pending event of %s cancelled.\n",
a068643d 3470 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3471
3472 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3473 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3474 }
3475 }
3476
3477 if (tp != NULL)
3478 {
3479 if (debug_infrun)
3480 {
23fdd69e
SM
3481 std::string statstr
3482 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3483
372316f1
PA
3484 fprintf_unfiltered (gdb_stdlog,
3485 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3486 statstr.c_str (),
a068643d 3487 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3488 }
3489
3490 /* Now that we've selected our final event LWP, un-adjust its PC
3491 if it was a software breakpoint (and the target doesn't
3492 always adjust the PC itself). */
3493 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3494 && !target_supports_stopped_by_sw_breakpoint ())
3495 {
3496 struct regcache *regcache;
3497 struct gdbarch *gdbarch;
3498 int decr_pc;
3499
00431a78 3500 regcache = get_thread_regcache (tp);
ac7936df 3501 gdbarch = regcache->arch ();
372316f1
PA
3502
3503 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3504 if (decr_pc != 0)
3505 {
3506 CORE_ADDR pc;
3507
3508 pc = regcache_read_pc (regcache);
3509 regcache_write_pc (regcache, pc + decr_pc);
3510 }
3511 }
3512
3513 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3514 *status = tp->suspend.waitstatus;
3515 tp->suspend.waitstatus_pending_p = 0;
3516
3517 /* Wake up the event loop again, until all pending events are
3518 processed. */
3519 if (target_is_async_p ())
3520 mark_async_event_handler (infrun_async_inferior_event_token);
3521 return tp->ptid;
3522 }
3523
3524 /* But if we don't find one, we'll have to wait. */
3525
3526 if (deprecated_target_wait_hook)
3527 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3528 else
3529 event_ptid = target_wait (ptid, status, options);
3530
3531 return event_ptid;
3532}
3533
5b6d1e4f
PA
3534/* Returns true if INF has any resumed thread with a status
3535 pending. */
3536
3537static bool
3538threads_are_resumed_pending_p (inferior *inf)
3539{
3540 for (thread_info *tp : inf->non_exited_threads ())
3541 if (tp->resumed
3542 && tp->suspend.waitstatus_pending_p)
3543 return true;
3544
3545 return false;
3546}
3547
3548/* Wrapper for target_wait that first checks whether threads have
3549 pending statuses to report before actually asking the target for
3550 more events. Polls for events from all inferiors/targets. */
3551
3552static bool
3553do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3554{
3555 int num_inferiors = 0;
3556 int random_selector;
3557
3558 /* For fairness, we pick the first inferior/target to poll at
3559 random, and then continue polling the rest of the inferior list
3560 starting from that one in a circular fashion until the whole list
3561 is polled once. */
3562
3563 auto inferior_matches = [&wait_ptid] (inferior *inf)
3564 {
3565 return (inf->process_target () != NULL
3566 && (threads_are_executing (inf->process_target ())
3567 || threads_are_resumed_pending_p (inf))
3568 && ptid_t (inf->pid).matches (wait_ptid));
3569 };
3570
3571 /* First see how many resumed inferiors we have. */
3572 for (inferior *inf : all_inferiors ())
3573 if (inferior_matches (inf))
3574 num_inferiors++;
3575
3576 if (num_inferiors == 0)
3577 {
3578 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3579 return false;
3580 }
3581
3582 /* Now randomly pick an inferior out of those that were resumed. */
3583 random_selector = (int)
3584 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3585
3586 if (debug_infrun && num_inferiors > 1)
3587 fprintf_unfiltered (gdb_stdlog,
3588 "infrun: Found %d inferiors, starting at #%d\n",
3589 num_inferiors, random_selector);
3590
3591 /* Select the Nth inferior that was resumed. */
3592
3593 inferior *selected = nullptr;
3594
3595 for (inferior *inf : all_inferiors ())
3596 if (inferior_matches (inf))
3597 if (random_selector-- == 0)
3598 {
3599 selected = inf;
3600 break;
3601 }
3602
3603 /* Now poll for events out of each of the resumed inferior's
3604 targets, starting from the selected one. */
3605
3606 auto do_wait = [&] (inferior *inf)
3607 {
3608 switch_to_inferior_no_thread (inf);
3609
3610 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3611 ecs->target = inf->process_target ();
3612 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3613 };
3614
3615 /* Needed in all-stop+target-non-stop mode, because we end up here
3616 spuriously after the target is all stopped and we've already
3617 reported the stop to the user, polling for events. */
3618 scoped_restore_current_thread restore_thread;
3619
3620 int inf_num = selected->num;
3621 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3622 if (inferior_matches (inf))
3623 if (do_wait (inf))
3624 return true;
3625
3626 for (inferior *inf = inferior_list;
3627 inf != NULL && inf->num < inf_num;
3628 inf = inf->next)
3629 if (inferior_matches (inf))
3630 if (do_wait (inf))
3631 return true;
3632
3633 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3634 return false;
3635}
3636
24291992
PA
3637/* Prepare and stabilize the inferior for detaching it. E.g.,
3638 detaching while a thread is displaced stepping is a recipe for
3639 crashing it, as nothing would readjust the PC out of the scratch
3640 pad. */
3641
3642void
3643prepare_for_detach (void)
3644{
3645 struct inferior *inf = current_inferior ();
f2907e49 3646 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3647
00431a78 3648 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3649
3650 /* Is any thread of this process displaced stepping? If not,
3651 there's nothing else to do. */
d20172fc 3652 if (displaced->step_thread == nullptr)
24291992
PA
3653 return;
3654
3655 if (debug_infrun)
3656 fprintf_unfiltered (gdb_stdlog,
3657 "displaced-stepping in-process while detaching");
3658
9bcb1f16 3659 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3660
00431a78 3661 while (displaced->step_thread != nullptr)
24291992 3662 {
24291992
PA
3663 struct execution_control_state ecss;
3664 struct execution_control_state *ecs;
3665
3666 ecs = &ecss;
3667 memset (ecs, 0, sizeof (*ecs));
3668
3669 overlay_cache_invalid = 1;
f15cb84a
YQ
3670 /* Flush target cache before starting to handle each event.
3671 Target was running and cache could be stale. This is just a
3672 heuristic. Running threads may modify target memory, but we
3673 don't get any event. */
3674 target_dcache_invalidate ();
24291992 3675
5b6d1e4f 3676 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3677
3678 if (debug_infrun)
3679 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3680
3681 /* If an error happens while handling the event, propagate GDB's
3682 knowledge of the executing state to the frontend/user running
3683 state. */
5b6d1e4f
PA
3684 scoped_finish_thread_state finish_state (inf->process_target (),
3685 minus_one_ptid);
24291992
PA
3686
3687 /* Now figure out what to do with the result of the result. */
3688 handle_inferior_event (ecs);
3689
3690 /* No error, don't finish the state yet. */
731f534f 3691 finish_state.release ();
24291992
PA
3692
3693 /* Breakpoints and watchpoints are not installed on the target
3694 at this point, and signals are passed directly to the
3695 inferior, so this must mean the process is gone. */
3696 if (!ecs->wait_some_more)
3697 {
9bcb1f16 3698 restore_detaching.release ();
24291992
PA
3699 error (_("Program exited while detaching"));
3700 }
3701 }
3702
9bcb1f16 3703 restore_detaching.release ();
24291992
PA
3704}
3705
cd0fc7c3 3706/* Wait for control to return from inferior to debugger.
ae123ec6 3707
cd0fc7c3
SS
3708 If inferior gets a signal, we may decide to start it up again
3709 instead of returning. That is why there is a loop in this function.
3710 When this function actually returns it means the inferior
3711 should be left stopped and GDB should read more commands. */
3712
5b6d1e4f
PA
3713static void
3714wait_for_inferior (inferior *inf)
cd0fc7c3 3715{
527159b7 3716 if (debug_infrun)
ae123ec6 3717 fprintf_unfiltered
e4c8541f 3718 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3719
4c41382a 3720 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3721
e6f5c25b
PA
3722 /* If an error happens while handling the event, propagate GDB's
3723 knowledge of the executing state to the frontend/user running
3724 state. */
5b6d1e4f
PA
3725 scoped_finish_thread_state finish_state
3726 (inf->process_target (), minus_one_ptid);
e6f5c25b 3727
c906108c
SS
3728 while (1)
3729 {
ae25568b
PA
3730 struct execution_control_state ecss;
3731 struct execution_control_state *ecs = &ecss;
29f49a6a 3732
ae25568b
PA
3733 memset (ecs, 0, sizeof (*ecs));
3734
ec9499be 3735 overlay_cache_invalid = 1;
ec9499be 3736
f15cb84a
YQ
3737 /* Flush target cache before starting to handle each event.
3738 Target was running and cache could be stale. This is just a
3739 heuristic. Running threads may modify target memory, but we
3740 don't get any event. */
3741 target_dcache_invalidate ();
3742
5b6d1e4f
PA
3743 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3744 ecs->target = inf->process_target ();
c906108c 3745
f00150c9 3746 if (debug_infrun)
5b6d1e4f 3747 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3748
cd0fc7c3
SS
3749 /* Now figure out what to do with the result of the result. */
3750 handle_inferior_event (ecs);
c906108c 3751
cd0fc7c3
SS
3752 if (!ecs->wait_some_more)
3753 break;
3754 }
4e1c45ea 3755
e6f5c25b 3756 /* No error, don't finish the state yet. */
731f534f 3757 finish_state.release ();
cd0fc7c3 3758}
c906108c 3759
d3d4baed
PA
3760/* Cleanup that reinstalls the readline callback handler, if the
3761 target is running in the background. If while handling the target
3762 event something triggered a secondary prompt, like e.g., a
3763 pagination prompt, we'll have removed the callback handler (see
3764 gdb_readline_wrapper_line). Need to do this as we go back to the
3765 event loop, ready to process further input. Note this has no
3766 effect if the handler hasn't actually been removed, because calling
3767 rl_callback_handler_install resets the line buffer, thus losing
3768 input. */
3769
3770static void
d238133d 3771reinstall_readline_callback_handler_cleanup ()
d3d4baed 3772{
3b12939d
PA
3773 struct ui *ui = current_ui;
3774
3775 if (!ui->async)
6c400b59
PA
3776 {
3777 /* We're not going back to the top level event loop yet. Don't
3778 install the readline callback, as it'd prep the terminal,
3779 readline-style (raw, noecho) (e.g., --batch). We'll install
3780 it the next time the prompt is displayed, when we're ready
3781 for input. */
3782 return;
3783 }
3784
3b12939d 3785 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3786 gdb_rl_callback_handler_reinstall ();
3787}
3788
243a9253
PA
3789/* Clean up the FSMs of threads that are now stopped. In non-stop,
3790 that's just the event thread. In all-stop, that's all threads. */
3791
3792static void
3793clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3794{
08036331
PA
3795 if (ecs->event_thread != NULL
3796 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3797 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3798
3799 if (!non_stop)
3800 {
08036331 3801 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3802 {
3803 if (thr->thread_fsm == NULL)
3804 continue;
3805 if (thr == ecs->event_thread)
3806 continue;
3807
00431a78 3808 switch_to_thread (thr);
46e3ed7f 3809 thr->thread_fsm->clean_up (thr);
243a9253
PA
3810 }
3811
3812 if (ecs->event_thread != NULL)
00431a78 3813 switch_to_thread (ecs->event_thread);
243a9253
PA
3814 }
3815}
3816
3b12939d
PA
3817/* Helper for all_uis_check_sync_execution_done that works on the
3818 current UI. */
3819
3820static void
3821check_curr_ui_sync_execution_done (void)
3822{
3823 struct ui *ui = current_ui;
3824
3825 if (ui->prompt_state == PROMPT_NEEDED
3826 && ui->async
3827 && !gdb_in_secondary_prompt_p (ui))
3828 {
223ffa71 3829 target_terminal::ours ();
76727919 3830 gdb::observers::sync_execution_done.notify ();
3eb7562a 3831 ui_register_input_event_handler (ui);
3b12939d
PA
3832 }
3833}
3834
3835/* See infrun.h. */
3836
3837void
3838all_uis_check_sync_execution_done (void)
3839{
0e454242 3840 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3841 {
3842 check_curr_ui_sync_execution_done ();
3843 }
3844}
3845
a8836c93
PA
3846/* See infrun.h. */
3847
3848void
3849all_uis_on_sync_execution_starting (void)
3850{
0e454242 3851 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3852 {
3853 if (current_ui->prompt_state == PROMPT_NEEDED)
3854 async_disable_stdin ();
3855 }
3856}
3857
1777feb0 3858/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3859 event loop whenever a change of state is detected on the file
1777feb0
MS
3860 descriptor corresponding to the target. It can be called more than
3861 once to complete a single execution command. In such cases we need
3862 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3863 that this function is called for a single execution command, then
3864 report to the user that the inferior has stopped, and do the
1777feb0 3865 necessary cleanups. */
43ff13b4
JM
3866
3867void
fba45db2 3868fetch_inferior_event (void *client_data)
43ff13b4 3869{
0d1e5fa7 3870 struct execution_control_state ecss;
a474d7c2 3871 struct execution_control_state *ecs = &ecss;
0f641c01 3872 int cmd_done = 0;
43ff13b4 3873
0d1e5fa7
PA
3874 memset (ecs, 0, sizeof (*ecs));
3875
c61db772
PA
3876 /* Events are always processed with the main UI as current UI. This
3877 way, warnings, debug output, etc. are always consistently sent to
3878 the main console. */
4b6749b9 3879 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3880
d3d4baed 3881 /* End up with readline processing input, if necessary. */
d238133d
TT
3882 {
3883 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3884
3885 /* We're handling a live event, so make sure we're doing live
3886 debugging. If we're looking at traceframes while the target is
3887 running, we're going to need to get back to that mode after
3888 handling the event. */
3889 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3890 if (non_stop)
3891 {
3892 maybe_restore_traceframe.emplace ();
3893 set_current_traceframe (-1);
3894 }
43ff13b4 3895
873657b9
PA
3896 /* The user/frontend should not notice a thread switch due to
3897 internal events. Make sure we revert to the user selected
3898 thread and frame after handling the event and running any
3899 breakpoint commands. */
3900 scoped_restore_current_thread restore_thread;
d238133d
TT
3901
3902 overlay_cache_invalid = 1;
3903 /* Flush target cache before starting to handle each event. Target
3904 was running and cache could be stale. This is just a heuristic.
3905 Running threads may modify target memory, but we don't get any
3906 event. */
3907 target_dcache_invalidate ();
3908
3909 scoped_restore save_exec_dir
3910 = make_scoped_restore (&execution_direction,
3911 target_execution_direction ());
3912
5b6d1e4f
PA
3913 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3914 return;
3915
3916 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3917
3918 /* Switch to the target that generated the event, so we can do
3919 target calls. Any inferior bound to the target will do, so we
3920 just switch to the first we find. */
3921 for (inferior *inf : all_inferiors (ecs->target))
3922 {
3923 switch_to_inferior_no_thread (inf);
3924 break;
3925 }
d238133d
TT
3926
3927 if (debug_infrun)
5b6d1e4f 3928 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
3929
3930 /* If an error happens while handling the event, propagate GDB's
3931 knowledge of the executing state to the frontend/user running
3932 state. */
3933 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 3934 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 3935
979a0d13 3936 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3937 still for the thread which has thrown the exception. */
3938 auto defer_bpstat_clear
3939 = make_scope_exit (bpstat_clear_actions);
3940 auto defer_delete_threads
3941 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3942
3943 /* Now figure out what to do with the result of the result. */
3944 handle_inferior_event (ecs);
3945
3946 if (!ecs->wait_some_more)
3947 {
5b6d1e4f 3948 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
d238133d
TT
3949 int should_stop = 1;
3950 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3951
d238133d 3952 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3953
d238133d
TT
3954 if (thr != NULL)
3955 {
3956 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3957
d238133d 3958 if (thread_fsm != NULL)
46e3ed7f 3959 should_stop = thread_fsm->should_stop (thr);
d238133d 3960 }
243a9253 3961
d238133d
TT
3962 if (!should_stop)
3963 {
3964 keep_going (ecs);
3965 }
3966 else
3967 {
46e3ed7f 3968 bool should_notify_stop = true;
d238133d 3969 int proceeded = 0;
1840d81a 3970
d238133d 3971 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3972
d238133d 3973 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3974 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3975
d238133d
TT
3976 if (should_notify_stop)
3977 {
3978 /* We may not find an inferior if this was a process exit. */
3979 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3980 proceeded = normal_stop ();
3981 }
243a9253 3982
d238133d
TT
3983 if (!proceeded)
3984 {
3985 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3986 cmd_done = 1;
3987 }
873657b9
PA
3988
3989 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3990 previously selected thread is gone. We have two
3991 choices - switch to no thread selected, or restore the
3992 previously selected thread (now exited). We chose the
3993 later, just because that's what GDB used to do. After
3994 this, "info threads" says "The current thread <Thread
3995 ID 2> has terminated." instead of "No thread
3996 selected.". */
3997 if (!non_stop
3998 && cmd_done
3999 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4000 restore_thread.dont_restore ();
d238133d
TT
4001 }
4002 }
4f8d22e3 4003
d238133d
TT
4004 defer_delete_threads.release ();
4005 defer_bpstat_clear.release ();
29f49a6a 4006
d238133d
TT
4007 /* No error, don't finish the thread states yet. */
4008 finish_state.release ();
731f534f 4009
d238133d
TT
4010 /* This scope is used to ensure that readline callbacks are
4011 reinstalled here. */
4012 }
4f8d22e3 4013
3b12939d
PA
4014 /* If a UI was in sync execution mode, and now isn't, restore its
4015 prompt (a synchronous execution command has finished, and we're
4016 ready for input). */
4017 all_uis_check_sync_execution_done ();
0f641c01
PA
4018
4019 if (cmd_done
0f641c01 4020 && exec_done_display_p
00431a78
PA
4021 && (inferior_ptid == null_ptid
4022 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4023 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4024}
4025
edb3359d
DJ
4026/* Record the frame and location we're currently stepping through. */
4027void
4028set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4029{
4030 struct thread_info *tp = inferior_thread ();
4031
16c381f0
JK
4032 tp->control.step_frame_id = get_frame_id (frame);
4033 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4034
4035 tp->current_symtab = sal.symtab;
4036 tp->current_line = sal.line;
4037}
4038
0d1e5fa7
PA
4039/* Clear context switchable stepping state. */
4040
4041void
4e1c45ea 4042init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4043{
7f5ef605 4044 tss->stepped_breakpoint = 0;
0d1e5fa7 4045 tss->stepping_over_breakpoint = 0;
963f9c80 4046 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4047 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4048}
4049
ab1ddbcf 4050/* See infrun.h. */
c32c64b7 4051
6efcd9a8 4052void
5b6d1e4f
PA
4053set_last_target_status (process_stratum_target *target, ptid_t ptid,
4054 target_waitstatus status)
c32c64b7 4055{
5b6d1e4f 4056 target_last_proc_target = target;
c32c64b7
DE
4057 target_last_wait_ptid = ptid;
4058 target_last_waitstatus = status;
4059}
4060
ab1ddbcf 4061/* See infrun.h. */
e02bc4cc
DS
4062
4063void
5b6d1e4f
PA
4064get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4065 target_waitstatus *status)
e02bc4cc 4066{
5b6d1e4f
PA
4067 if (target != nullptr)
4068 *target = target_last_proc_target;
ab1ddbcf
PA
4069 if (ptid != nullptr)
4070 *ptid = target_last_wait_ptid;
4071 if (status != nullptr)
4072 *status = target_last_waitstatus;
e02bc4cc
DS
4073}
4074
ab1ddbcf
PA
4075/* See infrun.h. */
4076
ac264b3b
MS
4077void
4078nullify_last_target_wait_ptid (void)
4079{
5b6d1e4f 4080 target_last_proc_target = nullptr;
ac264b3b 4081 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4082 target_last_waitstatus = {};
ac264b3b
MS
4083}
4084
dcf4fbde 4085/* Switch thread contexts. */
dd80620e
MS
4086
4087static void
00431a78 4088context_switch (execution_control_state *ecs)
dd80620e 4089{
00431a78
PA
4090 if (debug_infrun
4091 && ecs->ptid != inferior_ptid
5b6d1e4f
PA
4092 && (inferior_ptid == null_ptid
4093 || ecs->event_thread != inferior_thread ()))
fd48f117
DJ
4094 {
4095 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 4096 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 4097 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 4098 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4099 }
4100
00431a78 4101 switch_to_thread (ecs->event_thread);
dd80620e
MS
4102}
4103
d8dd4d5f
PA
4104/* If the target can't tell whether we've hit breakpoints
4105 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4106 check whether that could have been caused by a breakpoint. If so,
4107 adjust the PC, per gdbarch_decr_pc_after_break. */
4108
4fa8626c 4109static void
d8dd4d5f
PA
4110adjust_pc_after_break (struct thread_info *thread,
4111 struct target_waitstatus *ws)
4fa8626c 4112{
24a73cce
UW
4113 struct regcache *regcache;
4114 struct gdbarch *gdbarch;
118e6252 4115 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4116
4fa8626c
DJ
4117 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4118 we aren't, just return.
9709f61c
DJ
4119
4120 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4121 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4122 implemented by software breakpoints should be handled through the normal
4123 breakpoint layer.
8fb3e588 4124
4fa8626c
DJ
4125 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4126 different signals (SIGILL or SIGEMT for instance), but it is less
4127 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4128 gdbarch_decr_pc_after_break. I don't know any specific target that
4129 generates these signals at breakpoints (the code has been in GDB since at
4130 least 1992) so I can not guess how to handle them here.
8fb3e588 4131
e6cf7916
UW
4132 In earlier versions of GDB, a target with
4133 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4134 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4135 target with both of these set in GDB history, and it seems unlikely to be
4136 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4137
d8dd4d5f 4138 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4139 return;
4140
d8dd4d5f 4141 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4142 return;
4143
4058b839
PA
4144 /* In reverse execution, when a breakpoint is hit, the instruction
4145 under it has already been de-executed. The reported PC always
4146 points at the breakpoint address, so adjusting it further would
4147 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4148 architecture:
4149
4150 B1 0x08000000 : INSN1
4151 B2 0x08000001 : INSN2
4152 0x08000002 : INSN3
4153 PC -> 0x08000003 : INSN4
4154
4155 Say you're stopped at 0x08000003 as above. Reverse continuing
4156 from that point should hit B2 as below. Reading the PC when the
4157 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4158 been de-executed already.
4159
4160 B1 0x08000000 : INSN1
4161 B2 PC -> 0x08000001 : INSN2
4162 0x08000002 : INSN3
4163 0x08000003 : INSN4
4164
4165 We can't apply the same logic as for forward execution, because
4166 we would wrongly adjust the PC to 0x08000000, since there's a
4167 breakpoint at PC - 1. We'd then report a hit on B1, although
4168 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4169 behaviour. */
4170 if (execution_direction == EXEC_REVERSE)
4171 return;
4172
1cf4d951
PA
4173 /* If the target can tell whether the thread hit a SW breakpoint,
4174 trust it. Targets that can tell also adjust the PC
4175 themselves. */
4176 if (target_supports_stopped_by_sw_breakpoint ())
4177 return;
4178
4179 /* Note that relying on whether a breakpoint is planted in memory to
4180 determine this can fail. E.g,. the breakpoint could have been
4181 removed since. Or the thread could have been told to step an
4182 instruction the size of a breakpoint instruction, and only
4183 _after_ was a breakpoint inserted at its address. */
4184
24a73cce
UW
4185 /* If this target does not decrement the PC after breakpoints, then
4186 we have nothing to do. */
00431a78 4187 regcache = get_thread_regcache (thread);
ac7936df 4188 gdbarch = regcache->arch ();
118e6252 4189
527a273a 4190 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4191 if (decr_pc == 0)
24a73cce
UW
4192 return;
4193
8b86c959 4194 const address_space *aspace = regcache->aspace ();
6c95b8df 4195
8aad930b
AC
4196 /* Find the location where (if we've hit a breakpoint) the
4197 breakpoint would be. */
118e6252 4198 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4199
1cf4d951
PA
4200 /* If the target can't tell whether a software breakpoint triggered,
4201 fallback to figuring it out based on breakpoints we think were
4202 inserted in the target, and on whether the thread was stepped or
4203 continued. */
4204
1c5cfe86
PA
4205 /* Check whether there actually is a software breakpoint inserted at
4206 that location.
4207
4208 If in non-stop mode, a race condition is possible where we've
4209 removed a breakpoint, but stop events for that breakpoint were
4210 already queued and arrive later. To suppress those spurious
4211 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4212 and retire them after a number of stop events are reported. Note
4213 this is an heuristic and can thus get confused. The real fix is
4214 to get the "stopped by SW BP and needs adjustment" info out of
4215 the target/kernel (and thus never reach here; see above). */
6c95b8df 4216 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4217 || (target_is_non_stop_p ()
4218 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4219 {
07036511 4220 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4221
8213266a 4222 if (record_full_is_used ())
07036511
TT
4223 restore_operation_disable.emplace
4224 (record_full_gdb_operation_disable_set ());
96429cc8 4225
1c0fdd0e
UW
4226 /* When using hardware single-step, a SIGTRAP is reported for both
4227 a completed single-step and a software breakpoint. Need to
4228 differentiate between the two, as the latter needs adjusting
4229 but the former does not.
4230
4231 The SIGTRAP can be due to a completed hardware single-step only if
4232 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4233 - this thread is currently being stepped
4234
4235 If any of these events did not occur, we must have stopped due
4236 to hitting a software breakpoint, and have to back up to the
4237 breakpoint address.
4238
4239 As a special case, we could have hardware single-stepped a
4240 software breakpoint. In this case (prev_pc == breakpoint_pc),
4241 we also need to back up to the breakpoint address. */
4242
d8dd4d5f
PA
4243 if (thread_has_single_step_breakpoints_set (thread)
4244 || !currently_stepping (thread)
4245 || (thread->stepped_breakpoint
4246 && thread->prev_pc == breakpoint_pc))
515630c5 4247 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4248 }
4fa8626c
DJ
4249}
4250
edb3359d
DJ
4251static int
4252stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4253{
4254 for (frame = get_prev_frame (frame);
4255 frame != NULL;
4256 frame = get_prev_frame (frame))
4257 {
4258 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4259 return 1;
4260 if (get_frame_type (frame) != INLINE_FRAME)
4261 break;
4262 }
4263
4264 return 0;
4265}
4266
4a4c04f1
BE
4267/* Look for an inline frame that is marked for skip.
4268 If PREV_FRAME is TRUE start at the previous frame,
4269 otherwise start at the current frame. Stop at the
4270 first non-inline frame, or at the frame where the
4271 step started. */
4272
4273static bool
4274inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4275{
4276 struct frame_info *frame = get_current_frame ();
4277
4278 if (prev_frame)
4279 frame = get_prev_frame (frame);
4280
4281 for (; frame != NULL; frame = get_prev_frame (frame))
4282 {
4283 const char *fn = NULL;
4284 symtab_and_line sal;
4285 struct symbol *sym;
4286
4287 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4288 break;
4289 if (get_frame_type (frame) != INLINE_FRAME)
4290 break;
4291
4292 sal = find_frame_sal (frame);
4293 sym = get_frame_function (frame);
4294
4295 if (sym != NULL)
4296 fn = sym->print_name ();
4297
4298 if (sal.line != 0
4299 && function_name_is_marked_for_skip (fn, sal))
4300 return true;
4301 }
4302
4303 return false;
4304}
4305
c65d6b55
PA
4306/* If the event thread has the stop requested flag set, pretend it
4307 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4308 target_stop). */
4309
4310static bool
4311handle_stop_requested (struct execution_control_state *ecs)
4312{
4313 if (ecs->event_thread->stop_requested)
4314 {
4315 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4316 ecs->ws.value.sig = GDB_SIGNAL_0;
4317 handle_signal_stop (ecs);
4318 return true;
4319 }
4320 return false;
4321}
4322
a96d9b2e
SDJ
4323/* Auxiliary function that handles syscall entry/return events.
4324 It returns 1 if the inferior should keep going (and GDB
4325 should ignore the event), or 0 if the event deserves to be
4326 processed. */
ca2163eb 4327
a96d9b2e 4328static int
ca2163eb 4329handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4330{
ca2163eb 4331 struct regcache *regcache;
ca2163eb
PA
4332 int syscall_number;
4333
00431a78 4334 context_switch (ecs);
ca2163eb 4335
00431a78 4336 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4337 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4338 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4339
a96d9b2e
SDJ
4340 if (catch_syscall_enabled () > 0
4341 && catching_syscall_number (syscall_number) > 0)
4342 {
4343 if (debug_infrun)
4344 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4345 syscall_number);
a96d9b2e 4346
16c381f0 4347 ecs->event_thread->control.stop_bpstat
a01bda52 4348 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4349 ecs->event_thread->suspend.stop_pc,
4350 ecs->event_thread, &ecs->ws);
ab04a2af 4351
c65d6b55
PA
4352 if (handle_stop_requested (ecs))
4353 return 0;
4354
ce12b012 4355 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4356 {
4357 /* Catchpoint hit. */
ca2163eb
PA
4358 return 0;
4359 }
a96d9b2e 4360 }
ca2163eb 4361
c65d6b55
PA
4362 if (handle_stop_requested (ecs))
4363 return 0;
4364
ca2163eb 4365 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4366 keep_going (ecs);
4367 return 1;
a96d9b2e
SDJ
4368}
4369
7e324e48
GB
4370/* Lazily fill in the execution_control_state's stop_func_* fields. */
4371
4372static void
4373fill_in_stop_func (struct gdbarch *gdbarch,
4374 struct execution_control_state *ecs)
4375{
4376 if (!ecs->stop_func_filled_in)
4377 {
98a617f8
KB
4378 const block *block;
4379
7e324e48
GB
4380 /* Don't care about return value; stop_func_start and stop_func_name
4381 will both be 0 if it doesn't work. */
98a617f8
KB
4382 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4383 &ecs->stop_func_name,
4384 &ecs->stop_func_start,
4385 &ecs->stop_func_end,
4386 &block);
4387
4388 /* The call to find_pc_partial_function, above, will set
4389 stop_func_start and stop_func_end to the start and end
4390 of the range containing the stop pc. If this range
4391 contains the entry pc for the block (which is always the
4392 case for contiguous blocks), advance stop_func_start past
4393 the function's start offset and entrypoint. Note that
4394 stop_func_start is NOT advanced when in a range of a
4395 non-contiguous block that does not contain the entry pc. */
4396 if (block != nullptr
4397 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4398 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4399 {
4400 ecs->stop_func_start
4401 += gdbarch_deprecated_function_start_offset (gdbarch);
4402
4403 if (gdbarch_skip_entrypoint_p (gdbarch))
4404 ecs->stop_func_start
4405 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4406 }
591a12a1 4407
7e324e48
GB
4408 ecs->stop_func_filled_in = 1;
4409 }
4410}
4411
4f5d7f63 4412
00431a78 4413/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4414
4415static enum stop_kind
00431a78 4416get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4417{
5b6d1e4f 4418 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4419
4420 gdb_assert (inf != NULL);
4421 return inf->control.stop_soon;
4422}
4423
5b6d1e4f
PA
4424/* Poll for one event out of the current target. Store the resulting
4425 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4426
4427static ptid_t
5b6d1e4f 4428poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4429{
4430 ptid_t event_ptid;
372316f1
PA
4431
4432 overlay_cache_invalid = 1;
4433
4434 /* Flush target cache before starting to handle each event.
4435 Target was running and cache could be stale. This is just a
4436 heuristic. Running threads may modify target memory, but we
4437 don't get any event. */
4438 target_dcache_invalidate ();
4439
4440 if (deprecated_target_wait_hook)
5b6d1e4f 4441 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4442 else
5b6d1e4f 4443 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4444
4445 if (debug_infrun)
5b6d1e4f 4446 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4447
4448 return event_ptid;
4449}
4450
5b6d1e4f
PA
4451/* An event reported by wait_one. */
4452
4453struct wait_one_event
4454{
4455 /* The target the event came out of. */
4456 process_stratum_target *target;
4457
4458 /* The PTID the event was for. */
4459 ptid_t ptid;
4460
4461 /* The waitstatus. */
4462 target_waitstatus ws;
4463};
4464
4465/* Wait for one event out of any target. */
4466
4467static wait_one_event
4468wait_one ()
4469{
4470 while (1)
4471 {
4472 for (inferior *inf : all_inferiors ())
4473 {
4474 process_stratum_target *target = inf->process_target ();
4475 if (target == NULL
4476 || !target->is_async_p ()
4477 || !target->threads_executing)
4478 continue;
4479
4480 switch_to_inferior_no_thread (inf);
4481
4482 wait_one_event event;
4483 event.target = target;
4484 event.ptid = poll_one_curr_target (&event.ws);
4485
4486 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4487 {
4488 /* If nothing is resumed, remove the target from the
4489 event loop. */
4490 target_async (0);
4491 }
4492 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4493 return event;
4494 }
4495
4496 /* Block waiting for some event. */
4497
4498 fd_set readfds;
4499 int nfds = 0;
4500
4501 FD_ZERO (&readfds);
4502
4503 for (inferior *inf : all_inferiors ())
4504 {
4505 process_stratum_target *target = inf->process_target ();
4506 if (target == NULL
4507 || !target->is_async_p ()
4508 || !target->threads_executing)
4509 continue;
4510
4511 int fd = target->async_wait_fd ();
4512 FD_SET (fd, &readfds);
4513 if (nfds <= fd)
4514 nfds = fd + 1;
4515 }
4516
4517 if (nfds == 0)
4518 {
4519 /* No waitable targets left. All must be stopped. */
4520 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4521 }
4522
4523 QUIT;
4524
4525 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4526 if (numfds < 0)
4527 {
4528 if (errno == EINTR)
4529 continue;
4530 else
4531 perror_with_name ("interruptible_select");
4532 }
4533 }
4534}
4535
372316f1
PA
4536/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4537 instead of the current thread. */
4538#define THREAD_STOPPED_BY(REASON) \
4539static int \
4540thread_stopped_by_ ## REASON (ptid_t ptid) \
4541{ \
2989a365 4542 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4543 inferior_ptid = ptid; \
4544 \
2989a365 4545 return target_stopped_by_ ## REASON (); \
372316f1
PA
4546}
4547
4548/* Generate thread_stopped_by_watchpoint. */
4549THREAD_STOPPED_BY (watchpoint)
4550/* Generate thread_stopped_by_sw_breakpoint. */
4551THREAD_STOPPED_BY (sw_breakpoint)
4552/* Generate thread_stopped_by_hw_breakpoint. */
4553THREAD_STOPPED_BY (hw_breakpoint)
4554
372316f1
PA
4555/* Save the thread's event and stop reason to process it later. */
4556
4557static void
5b6d1e4f 4558save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4559{
372316f1
PA
4560 if (debug_infrun)
4561 {
23fdd69e 4562 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4563
372316f1
PA
4564 fprintf_unfiltered (gdb_stdlog,
4565 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4566 statstr.c_str (),
e99b03dc 4567 tp->ptid.pid (),
e38504b3 4568 tp->ptid.lwp (),
cc6bcb54 4569 tp->ptid.tid ());
372316f1
PA
4570 }
4571
4572 /* Record for later. */
4573 tp->suspend.waitstatus = *ws;
4574 tp->suspend.waitstatus_pending_p = 1;
4575
00431a78 4576 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4577 const address_space *aspace = regcache->aspace ();
372316f1
PA
4578
4579 if (ws->kind == TARGET_WAITKIND_STOPPED
4580 && ws->value.sig == GDB_SIGNAL_TRAP)
4581 {
4582 CORE_ADDR pc = regcache_read_pc (regcache);
4583
4584 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4585
4586 if (thread_stopped_by_watchpoint (tp->ptid))
4587 {
4588 tp->suspend.stop_reason
4589 = TARGET_STOPPED_BY_WATCHPOINT;
4590 }
4591 else if (target_supports_stopped_by_sw_breakpoint ()
4592 && thread_stopped_by_sw_breakpoint (tp->ptid))
4593 {
4594 tp->suspend.stop_reason
4595 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4596 }
4597 else if (target_supports_stopped_by_hw_breakpoint ()
4598 && thread_stopped_by_hw_breakpoint (tp->ptid))
4599 {
4600 tp->suspend.stop_reason
4601 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4602 }
4603 else if (!target_supports_stopped_by_hw_breakpoint ()
4604 && hardware_breakpoint_inserted_here_p (aspace,
4605 pc))
4606 {
4607 tp->suspend.stop_reason
4608 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4609 }
4610 else if (!target_supports_stopped_by_sw_breakpoint ()
4611 && software_breakpoint_inserted_here_p (aspace,
4612 pc))
4613 {
4614 tp->suspend.stop_reason
4615 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4616 }
4617 else if (!thread_has_single_step_breakpoints_set (tp)
4618 && currently_stepping (tp))
4619 {
4620 tp->suspend.stop_reason
4621 = TARGET_STOPPED_BY_SINGLE_STEP;
4622 }
4623 }
4624}
4625
6efcd9a8 4626/* See infrun.h. */
372316f1 4627
6efcd9a8 4628void
372316f1
PA
4629stop_all_threads (void)
4630{
4631 /* We may need multiple passes to discover all threads. */
4632 int pass;
4633 int iterations = 0;
372316f1 4634
fbea99ea 4635 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4636
4637 if (debug_infrun)
4638 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4639
00431a78 4640 scoped_restore_current_thread restore_thread;
372316f1 4641
65706a29 4642 target_thread_events (1);
9885e6bb 4643 SCOPE_EXIT { target_thread_events (0); };
65706a29 4644
372316f1
PA
4645 /* Request threads to stop, and then wait for the stops. Because
4646 threads we already know about can spawn more threads while we're
4647 trying to stop them, and we only learn about new threads when we
4648 update the thread list, do this in a loop, and keep iterating
4649 until two passes find no threads that need to be stopped. */
4650 for (pass = 0; pass < 2; pass++, iterations++)
4651 {
4652 if (debug_infrun)
4653 fprintf_unfiltered (gdb_stdlog,
4654 "infrun: stop_all_threads, pass=%d, "
4655 "iterations=%d\n", pass, iterations);
4656 while (1)
4657 {
372316f1 4658 int need_wait = 0;
372316f1
PA
4659
4660 update_thread_list ();
4661
4662 /* Go through all threads looking for threads that we need
4663 to tell the target to stop. */
08036331 4664 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4665 {
4666 if (t->executing)
4667 {
4668 /* If already stopping, don't request a stop again.
4669 We just haven't seen the notification yet. */
4670 if (!t->stop_requested)
4671 {
4672 if (debug_infrun)
4673 fprintf_unfiltered (gdb_stdlog,
4674 "infrun: %s executing, "
4675 "need stop\n",
a068643d 4676 target_pid_to_str (t->ptid).c_str ());
f3f8ece4 4677 switch_to_thread_no_regs (t);
372316f1
PA
4678 target_stop (t->ptid);
4679 t->stop_requested = 1;
4680 }
4681 else
4682 {
4683 if (debug_infrun)
4684 fprintf_unfiltered (gdb_stdlog,
4685 "infrun: %s executing, "
4686 "already stopping\n",
a068643d 4687 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4688 }
4689
4690 if (t->stop_requested)
4691 need_wait = 1;
4692 }
4693 else
4694 {
4695 if (debug_infrun)
4696 fprintf_unfiltered (gdb_stdlog,
4697 "infrun: %s not executing\n",
a068643d 4698 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4699
4700 /* The thread may be not executing, but still be
4701 resumed with a pending status to process. */
4702 t->resumed = 0;
4703 }
4704 }
4705
4706 if (!need_wait)
4707 break;
4708
4709 /* If we find new threads on the second iteration, restart
4710 over. We want to see two iterations in a row with all
4711 threads stopped. */
4712 if (pass > 0)
4713 pass = -1;
4714
5b6d1e4f
PA
4715 wait_one_event event = wait_one ();
4716
c29705b7 4717 if (debug_infrun)
372316f1 4718 {
c29705b7
PW
4719 fprintf_unfiltered (gdb_stdlog,
4720 "infrun: stop_all_threads %s %s\n",
5b6d1e4f
PA
4721 target_waitstatus_to_string (&event.ws).c_str (),
4722 target_pid_to_str (event.ptid).c_str ());
372316f1 4723 }
372316f1 4724
5b6d1e4f
PA
4725 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED
4726 || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4727 || event.ws.kind == TARGET_WAITKIND_EXITED
4728 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
c29705b7
PW
4729 {
4730 /* All resumed threads exited
4731 or one thread/process exited/signalled. */
372316f1
PA
4732 }
4733 else
4734 {
5b6d1e4f 4735 thread_info *t = find_thread_ptid (event.target, event.ptid);
372316f1 4736 if (t == NULL)
5b6d1e4f 4737 t = add_thread (event.target, event.ptid);
372316f1
PA
4738
4739 t->stop_requested = 0;
4740 t->executing = 0;
4741 t->resumed = 0;
4742 t->control.may_range_step = 0;
4743
6efcd9a8
PA
4744 /* This may be the first time we see the inferior report
4745 a stop. */
5b6d1e4f 4746 inferior *inf = find_inferior_ptid (event.target, event.ptid);
6efcd9a8
PA
4747 if (inf->needs_setup)
4748 {
4749 switch_to_thread_no_regs (t);
4750 setup_inferior (0);
4751 }
4752
5b6d1e4f
PA
4753 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4754 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1
PA
4755 {
4756 /* We caught the event that we intended to catch, so
4757 there's no event pending. */
4758 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4759 t->suspend.waitstatus_pending_p = 0;
4760
00431a78 4761 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4762 {
4763 /* Add it back to the step-over queue. */
4764 if (debug_infrun)
4765 {
4766 fprintf_unfiltered (gdb_stdlog,
4767 "infrun: displaced-step of %s "
4768 "canceled: adding back to the "
4769 "step-over queue\n",
a068643d 4770 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4771 }
4772 t->control.trap_expected = 0;
4773 thread_step_over_chain_enqueue (t);
4774 }
4775 }
4776 else
4777 {
4778 enum gdb_signal sig;
4779 struct regcache *regcache;
372316f1
PA
4780
4781 if (debug_infrun)
4782 {
5b6d1e4f 4783 std::string statstr = target_waitstatus_to_string (&event.ws);
372316f1 4784
372316f1
PA
4785 fprintf_unfiltered (gdb_stdlog,
4786 "infrun: target_wait %s, saving "
4787 "status for %d.%ld.%ld\n",
23fdd69e 4788 statstr.c_str (),
e99b03dc 4789 t->ptid.pid (),
e38504b3 4790 t->ptid.lwp (),
cc6bcb54 4791 t->ptid.tid ());
372316f1
PA
4792 }
4793
4794 /* Record for later. */
5b6d1e4f 4795 save_waitstatus (t, &event.ws);
372316f1 4796
5b6d1e4f
PA
4797 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4798 ? event.ws.value.sig : GDB_SIGNAL_0);
372316f1 4799
00431a78 4800 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4801 {
4802 /* Add it back to the step-over queue. */
4803 t->control.trap_expected = 0;
4804 thread_step_over_chain_enqueue (t);
4805 }
4806
00431a78 4807 regcache = get_thread_regcache (t);
372316f1
PA
4808 t->suspend.stop_pc = regcache_read_pc (regcache);
4809
4810 if (debug_infrun)
4811 {
4812 fprintf_unfiltered (gdb_stdlog,
4813 "infrun: saved stop_pc=%s for %s "
4814 "(currently_stepping=%d)\n",
4815 paddress (target_gdbarch (),
4816 t->suspend.stop_pc),
a068643d 4817 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4818 currently_stepping (t));
4819 }
4820 }
4821 }
4822 }
4823 }
4824
372316f1
PA
4825 if (debug_infrun)
4826 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4827}
4828
f4836ba9
PA
4829/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4830
4831static int
4832handle_no_resumed (struct execution_control_state *ecs)
4833{
3b12939d 4834 if (target_can_async_p ())
f4836ba9 4835 {
3b12939d
PA
4836 struct ui *ui;
4837 int any_sync = 0;
f4836ba9 4838
3b12939d
PA
4839 ALL_UIS (ui)
4840 {
4841 if (ui->prompt_state == PROMPT_BLOCKED)
4842 {
4843 any_sync = 1;
4844 break;
4845 }
4846 }
4847 if (!any_sync)
4848 {
4849 /* There were no unwaited-for children left in the target, but,
4850 we're not synchronously waiting for events either. Just
4851 ignore. */
4852
4853 if (debug_infrun)
4854 fprintf_unfiltered (gdb_stdlog,
4855 "infrun: TARGET_WAITKIND_NO_RESUMED "
4856 "(ignoring: bg)\n");
4857 prepare_to_wait (ecs);
4858 return 1;
4859 }
f4836ba9
PA
4860 }
4861
4862 /* Otherwise, if we were running a synchronous execution command, we
4863 may need to cancel it and give the user back the terminal.
4864
4865 In non-stop mode, the target can't tell whether we've already
4866 consumed previous stop events, so it can end up sending us a
4867 no-resumed event like so:
4868
4869 #0 - thread 1 is left stopped
4870
4871 #1 - thread 2 is resumed and hits breakpoint
4872 -> TARGET_WAITKIND_STOPPED
4873
4874 #2 - thread 3 is resumed and exits
4875 this is the last resumed thread, so
4876 -> TARGET_WAITKIND_NO_RESUMED
4877
4878 #3 - gdb processes stop for thread 2 and decides to re-resume
4879 it.
4880
4881 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4882 thread 2 is now resumed, so the event should be ignored.
4883
4884 IOW, if the stop for thread 2 doesn't end a foreground command,
4885 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4886 event. But it could be that the event meant that thread 2 itself
4887 (or whatever other thread was the last resumed thread) exited.
4888
4889 To address this we refresh the thread list and check whether we
4890 have resumed threads _now_. In the example above, this removes
4891 thread 3 from the thread list. If thread 2 was re-resumed, we
4892 ignore this event. If we find no thread resumed, then we cancel
4893 the synchronous command show "no unwaited-for " to the user. */
4894 update_thread_list ();
4895
5b6d1e4f 4896 for (thread_info *thread : all_non_exited_threads (ecs->target))
f4836ba9
PA
4897 {
4898 if (thread->executing
4899 || thread->suspend.waitstatus_pending_p)
4900 {
4901 /* There were no unwaited-for children left in the target at
4902 some point, but there are now. Just ignore. */
4903 if (debug_infrun)
4904 fprintf_unfiltered (gdb_stdlog,
4905 "infrun: TARGET_WAITKIND_NO_RESUMED "
4906 "(ignoring: found resumed)\n");
4907 prepare_to_wait (ecs);
4908 return 1;
4909 }
4910 }
4911
4912 /* Note however that we may find no resumed thread because the whole
4913 process exited meanwhile (thus updating the thread list results
4914 in an empty thread list). In this case we know we'll be getting
4915 a process exit event shortly. */
5b6d1e4f 4916 for (inferior *inf : all_non_exited_inferiors (ecs->target))
f4836ba9 4917 {
08036331 4918 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4919 if (thread == NULL)
4920 {
4921 if (debug_infrun)
4922 fprintf_unfiltered (gdb_stdlog,
4923 "infrun: TARGET_WAITKIND_NO_RESUMED "
4924 "(expect process exit)\n");
4925 prepare_to_wait (ecs);
4926 return 1;
4927 }
4928 }
4929
4930 /* Go ahead and report the event. */
4931 return 0;
4932}
4933
05ba8510
PA
4934/* Given an execution control state that has been freshly filled in by
4935 an event from the inferior, figure out what it means and take
4936 appropriate action.
4937
4938 The alternatives are:
4939
22bcd14b 4940 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4941 debugger.
4942
4943 2) keep_going and return; to wait for the next event (set
4944 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4945 once). */
c906108c 4946
ec9499be 4947static void
595915c1 4948handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 4949{
595915c1
TT
4950 /* Make sure that all temporary struct value objects that were
4951 created during the handling of the event get deleted at the
4952 end. */
4953 scoped_value_mark free_values;
4954
d6b48e9c
PA
4955 enum stop_kind stop_soon;
4956
c29705b7
PW
4957 if (debug_infrun)
4958 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4959 target_waitstatus_to_string (&ecs->ws).c_str ());
4960
28736962
PA
4961 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4962 {
4963 /* We had an event in the inferior, but we are not interested in
4964 handling it at this level. The lower layers have already
4965 done what needs to be done, if anything.
4966
4967 One of the possible circumstances for this is when the
4968 inferior produces output for the console. The inferior has
4969 not stopped, and we are ignoring the event. Another possible
4970 circumstance is any event which the lower level knows will be
4971 reported multiple times without an intervening resume. */
28736962
PA
4972 prepare_to_wait (ecs);
4973 return;
4974 }
4975
65706a29
PA
4976 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4977 {
65706a29
PA
4978 prepare_to_wait (ecs);
4979 return;
4980 }
4981
0e5bf2a8 4982 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4983 && handle_no_resumed (ecs))
4984 return;
0e5bf2a8 4985
5b6d1e4f
PA
4986 /* Cache the last target/ptid/waitstatus. */
4987 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 4988
ca005067 4989 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4990 stop_stack_dummy = STOP_NONE;
ca005067 4991
0e5bf2a8
PA
4992 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4993 {
4994 /* No unwaited-for children left. IOW, all resumed children
4995 have exited. */
0e5bf2a8 4996 stop_print_frame = 0;
22bcd14b 4997 stop_waiting (ecs);
0e5bf2a8
PA
4998 return;
4999 }
5000
8c90c137 5001 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5002 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5003 {
5b6d1e4f 5004 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5005 /* If it's a new thread, add it to the thread database. */
5006 if (ecs->event_thread == NULL)
5b6d1e4f 5007 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5008
5009 /* Disable range stepping. If the next step request could use a
5010 range, this will be end up re-enabled then. */
5011 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5012 }
88ed393a
JK
5013
5014 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5015 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5016
5017 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5018 reinit_frame_cache ();
5019
28736962
PA
5020 breakpoint_retire_moribund ();
5021
2b009048
DJ
5022 /* First, distinguish signals caused by the debugger from signals
5023 that have to do with the program's own actions. Note that
5024 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5025 on the operating system version. Here we detect when a SIGILL or
5026 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5027 something similar for SIGSEGV, since a SIGSEGV will be generated
5028 when we're trying to execute a breakpoint instruction on a
5029 non-executable stack. This happens for call dummy breakpoints
5030 for architectures like SPARC that place call dummies on the
5031 stack. */
2b009048 5032 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5033 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5034 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5035 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5036 {
00431a78 5037 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5038
a01bda52 5039 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5040 regcache_read_pc (regcache)))
5041 {
5042 if (debug_infrun)
5043 fprintf_unfiltered (gdb_stdlog,
5044 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 5045 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5046 }
2b009048
DJ
5047 }
5048
28736962
PA
5049 /* Mark the non-executing threads accordingly. In all-stop, all
5050 threads of all processes are stopped when we get any event
e1316e60 5051 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
5052 {
5053 ptid_t mark_ptid;
5054
fbea99ea 5055 if (!target_is_non_stop_p ())
372316f1
PA
5056 mark_ptid = minus_one_ptid;
5057 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
5058 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
5059 {
5060 /* If we're handling a process exit in non-stop mode, even
5061 though threads haven't been deleted yet, one would think
5062 that there is nothing to do, as threads of the dead process
5063 will be soon deleted, and threads of any other process were
5064 left running. However, on some targets, threads survive a
5065 process exit event. E.g., for the "checkpoint" command,
5066 when the current checkpoint/fork exits, linux-fork.c
5067 automatically switches to another fork from within
5068 target_mourn_inferior, by associating the same
5069 inferior/thread to another fork. We haven't mourned yet at
5070 this point, but we must mark any threads left in the
5071 process as not-executing so that finish_thread_state marks
5072 them stopped (in the user's perspective) if/when we present
5073 the stop to the user. */
e99b03dc 5074 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
5075 }
5076 else
5077 mark_ptid = ecs->ptid;
5078
5b6d1e4f 5079 set_executing (ecs->target, mark_ptid, 0);
372316f1
PA
5080
5081 /* Likewise the resumed flag. */
5b6d1e4f 5082 set_resumed (ecs->target, mark_ptid, 0);
372316f1 5083 }
8c90c137 5084
488f131b
JB
5085 switch (ecs->ws.kind)
5086 {
5087 case TARGET_WAITKIND_LOADED:
00431a78 5088 context_switch (ecs);
b0f4b84b
DJ
5089 /* Ignore gracefully during startup of the inferior, as it might
5090 be the shell which has just loaded some objects, otherwise
5091 add the symbols for the newly loaded objects. Also ignore at
5092 the beginning of an attach or remote session; we will query
5093 the full list of libraries once the connection is
5094 established. */
4f5d7f63 5095
00431a78 5096 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5097 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5098 {
edcc5120
TT
5099 struct regcache *regcache;
5100
00431a78 5101 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5102
5103 handle_solib_event ();
5104
5105 ecs->event_thread->control.stop_bpstat
a01bda52 5106 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5107 ecs->event_thread->suspend.stop_pc,
5108 ecs->event_thread, &ecs->ws);
ab04a2af 5109
c65d6b55
PA
5110 if (handle_stop_requested (ecs))
5111 return;
5112
ce12b012 5113 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5114 {
5115 /* A catchpoint triggered. */
94c57d6a
PA
5116 process_event_stop_test (ecs);
5117 return;
edcc5120 5118 }
488f131b 5119
b0f4b84b
DJ
5120 /* If requested, stop when the dynamic linker notifies
5121 gdb of events. This allows the user to get control
5122 and place breakpoints in initializer routines for
5123 dynamically loaded objects (among other things). */
a493e3e2 5124 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5125 if (stop_on_solib_events)
5126 {
55409f9d
DJ
5127 /* Make sure we print "Stopped due to solib-event" in
5128 normal_stop. */
5129 stop_print_frame = 1;
5130
22bcd14b 5131 stop_waiting (ecs);
b0f4b84b
DJ
5132 return;
5133 }
488f131b 5134 }
b0f4b84b
DJ
5135
5136 /* If we are skipping through a shell, or through shared library
5137 loading that we aren't interested in, resume the program. If
5c09a2c5 5138 we're running the program normally, also resume. */
b0f4b84b
DJ
5139 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5140 {
74960c60
VP
5141 /* Loading of shared libraries might have changed breakpoint
5142 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5143 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5144 insert_breakpoints ();
64ce06e4 5145 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5146 prepare_to_wait (ecs);
5147 return;
5148 }
5149
5c09a2c5
PA
5150 /* But stop if we're attaching or setting up a remote
5151 connection. */
5152 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5153 || stop_soon == STOP_QUIETLY_REMOTE)
5154 {
5155 if (debug_infrun)
5156 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5157 stop_waiting (ecs);
5c09a2c5
PA
5158 return;
5159 }
5160
5161 internal_error (__FILE__, __LINE__,
5162 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5163
488f131b 5164 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5165 if (handle_stop_requested (ecs))
5166 return;
00431a78 5167 context_switch (ecs);
64ce06e4 5168 resume (GDB_SIGNAL_0);
488f131b
JB
5169 prepare_to_wait (ecs);
5170 return;
c5aa993b 5171
65706a29 5172 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5173 if (handle_stop_requested (ecs))
5174 return;
00431a78 5175 context_switch (ecs);
65706a29
PA
5176 if (!switch_back_to_stepped_thread (ecs))
5177 keep_going (ecs);
5178 return;
5179
488f131b 5180 case TARGET_WAITKIND_EXITED:
940c3c06 5181 case TARGET_WAITKIND_SIGNALLED:
fb66883a 5182 inferior_ptid = ecs->ptid;
5b6d1e4f 5183 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
6c95b8df
PA
5184 set_current_program_space (current_inferior ()->pspace);
5185 handle_vfork_child_exec_or_exit (0);
223ffa71 5186 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5187
0c557179
SDJ
5188 /* Clearing any previous state of convenience variables. */
5189 clear_exit_convenience_vars ();
5190
940c3c06
PA
5191 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5192 {
5193 /* Record the exit code in the convenience variable $_exitcode, so
5194 that the user can inspect this again later. */
5195 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5196 (LONGEST) ecs->ws.value.integer);
5197
5198 /* Also record this in the inferior itself. */
5199 current_inferior ()->has_exit_code = 1;
5200 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5201
98eb56a4
PA
5202 /* Support the --return-child-result option. */
5203 return_child_result_value = ecs->ws.value.integer;
5204
76727919 5205 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5206 }
5207 else
0c557179 5208 {
00431a78 5209 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5210
5211 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5212 {
5213 /* Set the value of the internal variable $_exitsignal,
5214 which holds the signal uncaught by the inferior. */
5215 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5216 gdbarch_gdb_signal_to_target (gdbarch,
5217 ecs->ws.value.sig));
5218 }
5219 else
5220 {
5221 /* We don't have access to the target's method used for
5222 converting between signal numbers (GDB's internal
5223 representation <-> target's representation).
5224 Therefore, we cannot do a good job at displaying this
5225 information to the user. It's better to just warn
5226 her about it (if infrun debugging is enabled), and
5227 give up. */
5228 if (debug_infrun)
5229 fprintf_filtered (gdb_stdlog, _("\
5230Cannot fill $_exitsignal with the correct signal number.\n"));
5231 }
5232
76727919 5233 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5234 }
8cf64490 5235
488f131b 5236 gdb_flush (gdb_stdout);
bc1e6c81 5237 target_mourn_inferior (inferior_ptid);
488f131b 5238 stop_print_frame = 0;
22bcd14b 5239 stop_waiting (ecs);
488f131b 5240 return;
c5aa993b 5241
488f131b 5242 /* The following are the only cases in which we keep going;
1777feb0 5243 the above cases end in a continue or goto. */
488f131b 5244 case TARGET_WAITKIND_FORKED:
deb3b17b 5245 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5246 /* Check whether the inferior is displaced stepping. */
5247 {
00431a78 5248 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5249 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5250
5251 /* If checking displaced stepping is supported, and thread
5252 ecs->ptid is displaced stepping. */
00431a78 5253 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
5254 {
5255 struct inferior *parent_inf
5b6d1e4f 5256 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5257 struct regcache *child_regcache;
5258 CORE_ADDR parent_pc;
5259
5260 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5261 indicating that the displaced stepping of syscall instruction
5262 has been done. Perform cleanup for parent process here. Note
5263 that this operation also cleans up the child process for vfork,
5264 because their pages are shared. */
00431a78 5265 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5266 /* Start a new step-over in another thread if there's one
5267 that needs it. */
5268 start_step_over ();
e2d96639
YQ
5269
5270 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5271 {
c0987663 5272 struct displaced_step_inferior_state *displaced
00431a78 5273 = get_displaced_stepping_state (parent_inf);
c0987663 5274
e2d96639
YQ
5275 /* Restore scratch pad for child process. */
5276 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5277 }
5278
5279 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5280 the child's PC is also within the scratchpad. Set the child's PC
5281 to the parent's PC value, which has already been fixed up.
5282 FIXME: we use the parent's aspace here, although we're touching
5283 the child, because the child hasn't been added to the inferior
5284 list yet at this point. */
5285
5286 child_regcache
5b6d1e4f
PA
5287 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5288 ecs->ws.value.related_pid,
e2d96639
YQ
5289 gdbarch,
5290 parent_inf->aspace);
5291 /* Read PC value of parent process. */
5292 parent_pc = regcache_read_pc (regcache);
5293
5294 if (debug_displaced)
5295 fprintf_unfiltered (gdb_stdlog,
5296 "displaced: write child pc from %s to %s\n",
5297 paddress (gdbarch,
5298 regcache_read_pc (child_regcache)),
5299 paddress (gdbarch, parent_pc));
5300
5301 regcache_write_pc (child_regcache, parent_pc);
5302 }
5303 }
5304
00431a78 5305 context_switch (ecs);
5a2901d9 5306
b242c3c2
PA
5307 /* Immediately detach breakpoints from the child before there's
5308 any chance of letting the user delete breakpoints from the
5309 breakpoint lists. If we don't do this early, it's easy to
5310 leave left over traps in the child, vis: "break foo; catch
5311 fork; c; <fork>; del; c; <child calls foo>". We only follow
5312 the fork on the last `continue', and by that time the
5313 breakpoint at "foo" is long gone from the breakpoint table.
5314 If we vforked, then we don't need to unpatch here, since both
5315 parent and child are sharing the same memory pages; we'll
5316 need to unpatch at follow/detach time instead to be certain
5317 that new breakpoints added between catchpoint hit time and
5318 vfork follow are detached. */
5319 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5320 {
b242c3c2
PA
5321 /* This won't actually modify the breakpoint list, but will
5322 physically remove the breakpoints from the child. */
d80ee84f 5323 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5324 }
5325
34b7e8a6 5326 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5327
e58b0e63
PA
5328 /* In case the event is caught by a catchpoint, remember that
5329 the event is to be followed at the next resume of the thread,
5330 and not immediately. */
5331 ecs->event_thread->pending_follow = ecs->ws;
5332
f2ffa92b
PA
5333 ecs->event_thread->suspend.stop_pc
5334 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5335
16c381f0 5336 ecs->event_thread->control.stop_bpstat
a01bda52 5337 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5338 ecs->event_thread->suspend.stop_pc,
5339 ecs->event_thread, &ecs->ws);
675bf4cb 5340
c65d6b55
PA
5341 if (handle_stop_requested (ecs))
5342 return;
5343
ce12b012
PA
5344 /* If no catchpoint triggered for this, then keep going. Note
5345 that we're interested in knowing the bpstat actually causes a
5346 stop, not just if it may explain the signal. Software
5347 watchpoints, for example, always appear in the bpstat. */
5348 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5349 {
e58b0e63 5350 int should_resume;
3e43a32a
MS
5351 int follow_child
5352 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5353
a493e3e2 5354 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5355
5b6d1e4f
PA
5356 process_stratum_target *targ
5357 = ecs->event_thread->inf->process_target ();
5358
e58b0e63
PA
5359 should_resume = follow_fork ();
5360
5b6d1e4f
PA
5361 /* Note that one of these may be an invalid pointer,
5362 depending on detach_fork. */
00431a78 5363 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5364 thread_info *child
5365 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5366
a2077e25
PA
5367 /* At this point, the parent is marked running, and the
5368 child is marked stopped. */
5369
5370 /* If not resuming the parent, mark it stopped. */
5371 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5372 parent->set_running (false);
a2077e25
PA
5373
5374 /* If resuming the child, mark it running. */
5375 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5376 child->set_running (true);
a2077e25 5377
6c95b8df 5378 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5379 if (!detach_fork && (non_stop
5380 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5381 {
5382 if (follow_child)
5383 switch_to_thread (parent);
5384 else
5385 switch_to_thread (child);
5386
5387 ecs->event_thread = inferior_thread ();
5388 ecs->ptid = inferior_ptid;
5389 keep_going (ecs);
5390 }
5391
5392 if (follow_child)
5393 switch_to_thread (child);
5394 else
5395 switch_to_thread (parent);
5396
e58b0e63
PA
5397 ecs->event_thread = inferior_thread ();
5398 ecs->ptid = inferior_ptid;
5399
5400 if (should_resume)
5401 keep_going (ecs);
5402 else
22bcd14b 5403 stop_waiting (ecs);
04e68871
DJ
5404 return;
5405 }
94c57d6a
PA
5406 process_event_stop_test (ecs);
5407 return;
488f131b 5408
6c95b8df
PA
5409 case TARGET_WAITKIND_VFORK_DONE:
5410 /* Done with the shared memory region. Re-insert breakpoints in
5411 the parent, and keep going. */
5412
00431a78 5413 context_switch (ecs);
6c95b8df
PA
5414
5415 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5416 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5417
5418 if (handle_stop_requested (ecs))
5419 return;
5420
6c95b8df
PA
5421 /* This also takes care of reinserting breakpoints in the
5422 previously locked inferior. */
5423 keep_going (ecs);
5424 return;
5425
488f131b 5426 case TARGET_WAITKIND_EXECD:
488f131b 5427
cbd2b4e3
PA
5428 /* Note we can't read registers yet (the stop_pc), because we
5429 don't yet know the inferior's post-exec architecture.
5430 'stop_pc' is explicitly read below instead. */
00431a78 5431 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5432
6c95b8df
PA
5433 /* Do whatever is necessary to the parent branch of the vfork. */
5434 handle_vfork_child_exec_or_exit (1);
5435
795e548f
PA
5436 /* This causes the eventpoints and symbol table to be reset.
5437 Must do this now, before trying to determine whether to
5438 stop. */
71b43ef8 5439 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5440
17d8546e
DB
5441 /* In follow_exec we may have deleted the original thread and
5442 created a new one. Make sure that the event thread is the
5443 execd thread for that case (this is a nop otherwise). */
5444 ecs->event_thread = inferior_thread ();
5445
f2ffa92b
PA
5446 ecs->event_thread->suspend.stop_pc
5447 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5448
16c381f0 5449 ecs->event_thread->control.stop_bpstat
a01bda52 5450 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5451 ecs->event_thread->suspend.stop_pc,
5452 ecs->event_thread, &ecs->ws);
795e548f 5453
71b43ef8
PA
5454 /* Note that this may be referenced from inside
5455 bpstat_stop_status above, through inferior_has_execd. */
5456 xfree (ecs->ws.value.execd_pathname);
5457 ecs->ws.value.execd_pathname = NULL;
5458
c65d6b55
PA
5459 if (handle_stop_requested (ecs))
5460 return;
5461
04e68871 5462 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5463 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5464 {
a493e3e2 5465 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5466 keep_going (ecs);
5467 return;
5468 }
94c57d6a
PA
5469 process_event_stop_test (ecs);
5470 return;
488f131b 5471
b4dc5ffa
MK
5472 /* Be careful not to try to gather much state about a thread
5473 that's in a syscall. It's frequently a losing proposition. */
488f131b 5474 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5475 /* Getting the current syscall number. */
94c57d6a
PA
5476 if (handle_syscall_event (ecs) == 0)
5477 process_event_stop_test (ecs);
5478 return;
c906108c 5479
488f131b
JB
5480 /* Before examining the threads further, step this thread to
5481 get it entirely out of the syscall. (We get notice of the
5482 event when the thread is just on the verge of exiting a
5483 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5484 into user code.) */
488f131b 5485 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5486 if (handle_syscall_event (ecs) == 0)
5487 process_event_stop_test (ecs);
5488 return;
c906108c 5489
488f131b 5490 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5491 handle_signal_stop (ecs);
5492 return;
c906108c 5493
b2175913
MS
5494 case TARGET_WAITKIND_NO_HISTORY:
5495 /* Reverse execution: target ran out of history info. */
eab402df 5496
d1988021 5497 /* Switch to the stopped thread. */
00431a78 5498 context_switch (ecs);
d1988021
MM
5499 if (debug_infrun)
5500 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5501
34b7e8a6 5502 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5503 ecs->event_thread->suspend.stop_pc
5504 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5505
5506 if (handle_stop_requested (ecs))
5507 return;
5508
76727919 5509 gdb::observers::no_history.notify ();
22bcd14b 5510 stop_waiting (ecs);
b2175913 5511 return;
488f131b 5512 }
4f5d7f63
PA
5513}
5514
372316f1
PA
5515/* Restart threads back to what they were trying to do back when we
5516 paused them for an in-line step-over. The EVENT_THREAD thread is
5517 ignored. */
4d9d9d04
PA
5518
5519static void
372316f1
PA
5520restart_threads (struct thread_info *event_thread)
5521{
372316f1
PA
5522 /* In case the instruction just stepped spawned a new thread. */
5523 update_thread_list ();
5524
08036331 5525 for (thread_info *tp : all_non_exited_threads ())
372316f1 5526 {
f3f8ece4
PA
5527 switch_to_thread_no_regs (tp);
5528
372316f1
PA
5529 if (tp == event_thread)
5530 {
5531 if (debug_infrun)
5532 fprintf_unfiltered (gdb_stdlog,
5533 "infrun: restart threads: "
5534 "[%s] is event thread\n",
a068643d 5535 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5536 continue;
5537 }
5538
5539 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5540 {
5541 if (debug_infrun)
5542 fprintf_unfiltered (gdb_stdlog,
5543 "infrun: restart threads: "
5544 "[%s] not meant to be running\n",
a068643d 5545 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5546 continue;
5547 }
5548
5549 if (tp->resumed)
5550 {
5551 if (debug_infrun)
5552 fprintf_unfiltered (gdb_stdlog,
5553 "infrun: restart threads: [%s] resumed\n",
a068643d 5554 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5555 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5556 continue;
5557 }
5558
5559 if (thread_is_in_step_over_chain (tp))
5560 {
5561 if (debug_infrun)
5562 fprintf_unfiltered (gdb_stdlog,
5563 "infrun: restart threads: "
5564 "[%s] needs step-over\n",
a068643d 5565 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5566 gdb_assert (!tp->resumed);
5567 continue;
5568 }
5569
5570
5571 if (tp->suspend.waitstatus_pending_p)
5572 {
5573 if (debug_infrun)
5574 fprintf_unfiltered (gdb_stdlog,
5575 "infrun: restart threads: "
5576 "[%s] has pending status\n",
a068643d 5577 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5578 tp->resumed = 1;
5579 continue;
5580 }
5581
c65d6b55
PA
5582 gdb_assert (!tp->stop_requested);
5583
372316f1
PA
5584 /* If some thread needs to start a step-over at this point, it
5585 should still be in the step-over queue, and thus skipped
5586 above. */
5587 if (thread_still_needs_step_over (tp))
5588 {
5589 internal_error (__FILE__, __LINE__,
5590 "thread [%s] needs a step-over, but not in "
5591 "step-over queue\n",
a068643d 5592 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5593 }
5594
5595 if (currently_stepping (tp))
5596 {
5597 if (debug_infrun)
5598 fprintf_unfiltered (gdb_stdlog,
5599 "infrun: restart threads: [%s] was stepping\n",
a068643d 5600 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5601 keep_going_stepped_thread (tp);
5602 }
5603 else
5604 {
5605 struct execution_control_state ecss;
5606 struct execution_control_state *ecs = &ecss;
5607
5608 if (debug_infrun)
5609 fprintf_unfiltered (gdb_stdlog,
5610 "infrun: restart threads: [%s] continuing\n",
a068643d 5611 target_pid_to_str (tp->ptid).c_str ());
372316f1 5612 reset_ecs (ecs, tp);
00431a78 5613 switch_to_thread (tp);
372316f1
PA
5614 keep_going_pass_signal (ecs);
5615 }
5616 }
5617}
5618
5619/* Callback for iterate_over_threads. Find a resumed thread that has
5620 a pending waitstatus. */
5621
5622static int
5623resumed_thread_with_pending_status (struct thread_info *tp,
5624 void *arg)
5625{
5626 return (tp->resumed
5627 && tp->suspend.waitstatus_pending_p);
5628}
5629
5630/* Called when we get an event that may finish an in-line or
5631 out-of-line (displaced stepping) step-over started previously.
5632 Return true if the event is processed and we should go back to the
5633 event loop; false if the caller should continue processing the
5634 event. */
5635
5636static int
4d9d9d04
PA
5637finish_step_over (struct execution_control_state *ecs)
5638{
372316f1
PA
5639 int had_step_over_info;
5640
00431a78 5641 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5642 ecs->event_thread->suspend.stop_signal);
5643
372316f1
PA
5644 had_step_over_info = step_over_info_valid_p ();
5645
5646 if (had_step_over_info)
4d9d9d04
PA
5647 {
5648 /* If we're stepping over a breakpoint with all threads locked,
5649 then only the thread that was stepped should be reporting
5650 back an event. */
5651 gdb_assert (ecs->event_thread->control.trap_expected);
5652
c65d6b55 5653 clear_step_over_info ();
4d9d9d04
PA
5654 }
5655
fbea99ea 5656 if (!target_is_non_stop_p ())
372316f1 5657 return 0;
4d9d9d04
PA
5658
5659 /* Start a new step-over in another thread if there's one that
5660 needs it. */
5661 start_step_over ();
372316f1
PA
5662
5663 /* If we were stepping over a breakpoint before, and haven't started
5664 a new in-line step-over sequence, then restart all other threads
5665 (except the event thread). We can't do this in all-stop, as then
5666 e.g., we wouldn't be able to issue any other remote packet until
5667 these other threads stop. */
5668 if (had_step_over_info && !step_over_info_valid_p ())
5669 {
5670 struct thread_info *pending;
5671
5672 /* If we only have threads with pending statuses, the restart
5673 below won't restart any thread and so nothing re-inserts the
5674 breakpoint we just stepped over. But we need it inserted
5675 when we later process the pending events, otherwise if
5676 another thread has a pending event for this breakpoint too,
5677 we'd discard its event (because the breakpoint that
5678 originally caused the event was no longer inserted). */
00431a78 5679 context_switch (ecs);
372316f1
PA
5680 insert_breakpoints ();
5681
5682 restart_threads (ecs->event_thread);
5683
5684 /* If we have events pending, go through handle_inferior_event
5685 again, picking up a pending event at random. This avoids
5686 thread starvation. */
5687
5688 /* But not if we just stepped over a watchpoint in order to let
5689 the instruction execute so we can evaluate its expression.
5690 The set of watchpoints that triggered is recorded in the
5691 breakpoint objects themselves (see bp->watchpoint_triggered).
5692 If we processed another event first, that other event could
5693 clobber this info. */
5694 if (ecs->event_thread->stepping_over_watchpoint)
5695 return 0;
5696
5697 pending = iterate_over_threads (resumed_thread_with_pending_status,
5698 NULL);
5699 if (pending != NULL)
5700 {
5701 struct thread_info *tp = ecs->event_thread;
5702 struct regcache *regcache;
5703
5704 if (debug_infrun)
5705 {
5706 fprintf_unfiltered (gdb_stdlog,
5707 "infrun: found resumed threads with "
5708 "pending events, saving status\n");
5709 }
5710
5711 gdb_assert (pending != tp);
5712
5713 /* Record the event thread's event for later. */
5714 save_waitstatus (tp, &ecs->ws);
5715 /* This was cleared early, by handle_inferior_event. Set it
5716 so this pending event is considered by
5717 do_target_wait. */
5718 tp->resumed = 1;
5719
5720 gdb_assert (!tp->executing);
5721
00431a78 5722 regcache = get_thread_regcache (tp);
372316f1
PA
5723 tp->suspend.stop_pc = regcache_read_pc (regcache);
5724
5725 if (debug_infrun)
5726 {
5727 fprintf_unfiltered (gdb_stdlog,
5728 "infrun: saved stop_pc=%s for %s "
5729 "(currently_stepping=%d)\n",
5730 paddress (target_gdbarch (),
5731 tp->suspend.stop_pc),
a068643d 5732 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5733 currently_stepping (tp));
5734 }
5735
5736 /* This in-line step-over finished; clear this so we won't
5737 start a new one. This is what handle_signal_stop would
5738 do, if we returned false. */
5739 tp->stepping_over_breakpoint = 0;
5740
5741 /* Wake up the event loop again. */
5742 mark_async_event_handler (infrun_async_inferior_event_token);
5743
5744 prepare_to_wait (ecs);
5745 return 1;
5746 }
5747 }
5748
5749 return 0;
4d9d9d04
PA
5750}
5751
4f5d7f63
PA
5752/* Come here when the program has stopped with a signal. */
5753
5754static void
5755handle_signal_stop (struct execution_control_state *ecs)
5756{
5757 struct frame_info *frame;
5758 struct gdbarch *gdbarch;
5759 int stopped_by_watchpoint;
5760 enum stop_kind stop_soon;
5761 int random_signal;
c906108c 5762
f0407826
DE
5763 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5764
c65d6b55
PA
5765 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5766
f0407826
DE
5767 /* Do we need to clean up the state of a thread that has
5768 completed a displaced single-step? (Doing so usually affects
5769 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5770 if (finish_step_over (ecs))
5771 return;
f0407826
DE
5772
5773 /* If we either finished a single-step or hit a breakpoint, but
5774 the user wanted this thread to be stopped, pretend we got a
5775 SIG0 (generic unsignaled stop). */
5776 if (ecs->event_thread->stop_requested
5777 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5778 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5779
f2ffa92b
PA
5780 ecs->event_thread->suspend.stop_pc
5781 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5782
527159b7 5783 if (debug_infrun)
237fc4c9 5784 {
00431a78 5785 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5786 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5787
f3f8ece4 5788 switch_to_thread (ecs->event_thread);
5af949e3
UW
5789
5790 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5791 paddress (reg_gdbarch,
f2ffa92b 5792 ecs->event_thread->suspend.stop_pc));
d92524f1 5793 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5794 {
5795 CORE_ADDR addr;
abbb1732 5796
237fc4c9
PA
5797 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5798
8b88a78e 5799 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5800 fprintf_unfiltered (gdb_stdlog,
5af949e3 5801 "infrun: stopped data address = %s\n",
b926417a 5802 paddress (reg_gdbarch, addr));
237fc4c9
PA
5803 else
5804 fprintf_unfiltered (gdb_stdlog,
5805 "infrun: (no data address available)\n");
5806 }
5807 }
527159b7 5808
36fa8042
PA
5809 /* This is originated from start_remote(), start_inferior() and
5810 shared libraries hook functions. */
00431a78 5811 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5812 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5813 {
00431a78 5814 context_switch (ecs);
36fa8042
PA
5815 if (debug_infrun)
5816 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5817 stop_print_frame = 1;
22bcd14b 5818 stop_waiting (ecs);
36fa8042
PA
5819 return;
5820 }
5821
36fa8042
PA
5822 /* This originates from attach_command(). We need to overwrite
5823 the stop_signal here, because some kernels don't ignore a
5824 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5825 See more comments in inferior.h. On the other hand, if we
5826 get a non-SIGSTOP, report it to the user - assume the backend
5827 will handle the SIGSTOP if it should show up later.
5828
5829 Also consider that the attach is complete when we see a
5830 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5831 target extended-remote report it instead of a SIGSTOP
5832 (e.g. gdbserver). We already rely on SIGTRAP being our
5833 signal, so this is no exception.
5834
5835 Also consider that the attach is complete when we see a
5836 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5837 the target to stop all threads of the inferior, in case the
5838 low level attach operation doesn't stop them implicitly. If
5839 they weren't stopped implicitly, then the stub will report a
5840 GDB_SIGNAL_0, meaning: stopped for no particular reason
5841 other than GDB's request. */
5842 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5843 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5844 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5845 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5846 {
5847 stop_print_frame = 1;
22bcd14b 5848 stop_waiting (ecs);
36fa8042
PA
5849 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5850 return;
5851 }
5852
488f131b 5853 /* See if something interesting happened to the non-current thread. If
b40c7d58 5854 so, then switch to that thread. */
d7e15655 5855 if (ecs->ptid != inferior_ptid)
488f131b 5856 {
527159b7 5857 if (debug_infrun)
8a9de0e4 5858 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5859
00431a78 5860 context_switch (ecs);
c5aa993b 5861
9a4105ab 5862 if (deprecated_context_hook)
00431a78 5863 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5864 }
c906108c 5865
568d6575
UW
5866 /* At this point, get hold of the now-current thread's frame. */
5867 frame = get_current_frame ();
5868 gdbarch = get_frame_arch (frame);
5869
2adfaa28 5870 /* Pull the single step breakpoints out of the target. */
af48d08f 5871 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5872 {
af48d08f 5873 struct regcache *regcache;
af48d08f 5874 CORE_ADDR pc;
2adfaa28 5875
00431a78 5876 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5877 const address_space *aspace = regcache->aspace ();
5878
af48d08f 5879 pc = regcache_read_pc (regcache);
34b7e8a6 5880
af48d08f
PA
5881 /* However, before doing so, if this single-step breakpoint was
5882 actually for another thread, set this thread up for moving
5883 past it. */
5884 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5885 aspace, pc))
5886 {
5887 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5888 {
5889 if (debug_infrun)
5890 {
5891 fprintf_unfiltered (gdb_stdlog,
af48d08f 5892 "infrun: [%s] hit another thread's "
34b7e8a6 5893 "single-step breakpoint\n",
a068643d 5894 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5895 }
af48d08f
PA
5896 ecs->hit_singlestep_breakpoint = 1;
5897 }
5898 }
5899 else
5900 {
5901 if (debug_infrun)
5902 {
5903 fprintf_unfiltered (gdb_stdlog,
5904 "infrun: [%s] hit its "
5905 "single-step breakpoint\n",
a068643d 5906 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5907 }
5908 }
488f131b 5909 }
af48d08f 5910 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5911
963f9c80
PA
5912 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5913 && ecs->event_thread->control.trap_expected
5914 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5915 stopped_by_watchpoint = 0;
5916 else
5917 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5918
5919 /* If necessary, step over this watchpoint. We'll be back to display
5920 it in a moment. */
5921 if (stopped_by_watchpoint
d92524f1 5922 && (target_have_steppable_watchpoint
568d6575 5923 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5924 {
488f131b
JB
5925 /* At this point, we are stopped at an instruction which has
5926 attempted to write to a piece of memory under control of
5927 a watchpoint. The instruction hasn't actually executed
5928 yet. If we were to evaluate the watchpoint expression
5929 now, we would get the old value, and therefore no change
5930 would seem to have occurred.
5931
5932 In order to make watchpoints work `right', we really need
5933 to complete the memory write, and then evaluate the
d983da9c
DJ
5934 watchpoint expression. We do this by single-stepping the
5935 target.
5936
7f89fd65 5937 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5938 it. For example, the PA can (with some kernel cooperation)
5939 single step over a watchpoint without disabling the watchpoint.
5940
5941 It is far more common to need to disable a watchpoint to step
5942 the inferior over it. If we have non-steppable watchpoints,
5943 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5944 disable all watchpoints.
5945
5946 Any breakpoint at PC must also be stepped over -- if there's
5947 one, it will have already triggered before the watchpoint
5948 triggered, and we either already reported it to the user, or
5949 it didn't cause a stop and we called keep_going. In either
5950 case, if there was a breakpoint at PC, we must be trying to
5951 step past it. */
5952 ecs->event_thread->stepping_over_watchpoint = 1;
5953 keep_going (ecs);
488f131b
JB
5954 return;
5955 }
5956
4e1c45ea 5957 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5958 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5959 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5960 ecs->event_thread->control.stop_step = 0;
488f131b 5961 stop_print_frame = 1;
488f131b 5962 stopped_by_random_signal = 0;
ddfe970e 5963 bpstat stop_chain = NULL;
488f131b 5964
edb3359d
DJ
5965 /* Hide inlined functions starting here, unless we just performed stepi or
5966 nexti. After stepi and nexti, always show the innermost frame (not any
5967 inline function call sites). */
16c381f0 5968 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5969 {
00431a78
PA
5970 const address_space *aspace
5971 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5972
5973 /* skip_inline_frames is expensive, so we avoid it if we can
5974 determine that the address is one where functions cannot have
5975 been inlined. This improves performance with inferiors that
5976 load a lot of shared libraries, because the solib event
5977 breakpoint is defined as the address of a function (i.e. not
5978 inline). Note that we have to check the previous PC as well
5979 as the current one to catch cases when we have just
5980 single-stepped off a breakpoint prior to reinstating it.
5981 Note that we're assuming that the code we single-step to is
5982 not inline, but that's not definitive: there's nothing
5983 preventing the event breakpoint function from containing
5984 inlined code, and the single-step ending up there. If the
5985 user had set a breakpoint on that inlined code, the missing
5986 skip_inline_frames call would break things. Fortunately
5987 that's an extremely unlikely scenario. */
f2ffa92b
PA
5988 if (!pc_at_non_inline_function (aspace,
5989 ecs->event_thread->suspend.stop_pc,
5990 &ecs->ws)
a210c238
MR
5991 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5992 && ecs->event_thread->control.trap_expected
5993 && pc_at_non_inline_function (aspace,
5994 ecs->event_thread->prev_pc,
09ac7c10 5995 &ecs->ws)))
1c5a993e 5996 {
f2ffa92b
PA
5997 stop_chain = build_bpstat_chain (aspace,
5998 ecs->event_thread->suspend.stop_pc,
5999 &ecs->ws);
00431a78 6000 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6001
6002 /* Re-fetch current thread's frame in case that invalidated
6003 the frame cache. */
6004 frame = get_current_frame ();
6005 gdbarch = get_frame_arch (frame);
6006 }
0574c78f 6007 }
edb3359d 6008
a493e3e2 6009 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6010 && ecs->event_thread->control.trap_expected
568d6575 6011 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6012 && currently_stepping (ecs->event_thread))
3352ef37 6013 {
b50d7442 6014 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6015 also on an instruction that needs to be stepped multiple
1777feb0 6016 times before it's been fully executing. E.g., architectures
3352ef37
AC
6017 with a delay slot. It needs to be stepped twice, once for
6018 the instruction and once for the delay slot. */
6019 int step_through_delay
568d6575 6020 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6021
527159b7 6022 if (debug_infrun && step_through_delay)
8a9de0e4 6023 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
6024 if (ecs->event_thread->control.step_range_end == 0
6025 && step_through_delay)
3352ef37
AC
6026 {
6027 /* The user issued a continue when stopped at a breakpoint.
6028 Set up for another trap and get out of here. */
4e1c45ea 6029 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6030 keep_going (ecs);
6031 return;
6032 }
6033 else if (step_through_delay)
6034 {
6035 /* The user issued a step when stopped at a breakpoint.
6036 Maybe we should stop, maybe we should not - the delay
6037 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6038 case, don't decide that here, just set
6039 ecs->stepping_over_breakpoint, making sure we
6040 single-step again before breakpoints are re-inserted. */
4e1c45ea 6041 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6042 }
6043 }
6044
ab04a2af
TT
6045 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6046 handles this event. */
6047 ecs->event_thread->control.stop_bpstat
a01bda52 6048 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6049 ecs->event_thread->suspend.stop_pc,
6050 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6051
ab04a2af
TT
6052 /* Following in case break condition called a
6053 function. */
6054 stop_print_frame = 1;
73dd234f 6055
ab04a2af
TT
6056 /* This is where we handle "moribund" watchpoints. Unlike
6057 software breakpoints traps, hardware watchpoint traps are
6058 always distinguishable from random traps. If no high-level
6059 watchpoint is associated with the reported stop data address
6060 anymore, then the bpstat does not explain the signal ---
6061 simply make sure to ignore it if `stopped_by_watchpoint' is
6062 set. */
6063
6064 if (debug_infrun
6065 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6066 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6067 GDB_SIGNAL_TRAP)
ab04a2af
TT
6068 && stopped_by_watchpoint)
6069 fprintf_unfiltered (gdb_stdlog,
6070 "infrun: no user watchpoint explains "
6071 "watchpoint SIGTRAP, ignoring\n");
73dd234f 6072
bac7d97b 6073 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6074 at one stage in the past included checks for an inferior
6075 function call's call dummy's return breakpoint. The original
6076 comment, that went with the test, read:
03cebad2 6077
ab04a2af
TT
6078 ``End of a stack dummy. Some systems (e.g. Sony news) give
6079 another signal besides SIGTRAP, so check here as well as
6080 above.''
73dd234f 6081
ab04a2af
TT
6082 If someone ever tries to get call dummys on a
6083 non-executable stack to work (where the target would stop
6084 with something like a SIGSEGV), then those tests might need
6085 to be re-instated. Given, however, that the tests were only
6086 enabled when momentary breakpoints were not being used, I
6087 suspect that it won't be the case.
488f131b 6088
ab04a2af
TT
6089 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6090 be necessary for call dummies on a non-executable stack on
6091 SPARC. */
488f131b 6092
bac7d97b 6093 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6094 random_signal
6095 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6096 ecs->event_thread->suspend.stop_signal);
bac7d97b 6097
1cf4d951
PA
6098 /* Maybe this was a trap for a software breakpoint that has since
6099 been removed. */
6100 if (random_signal && target_stopped_by_sw_breakpoint ())
6101 {
f2ffa92b
PA
6102 if (program_breakpoint_here_p (gdbarch,
6103 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6104 {
6105 struct regcache *regcache;
6106 int decr_pc;
6107
6108 /* Re-adjust PC to what the program would see if GDB was not
6109 debugging it. */
00431a78 6110 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6111 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6112 if (decr_pc != 0)
6113 {
07036511
TT
6114 gdb::optional<scoped_restore_tmpl<int>>
6115 restore_operation_disable;
1cf4d951
PA
6116
6117 if (record_full_is_used ())
07036511
TT
6118 restore_operation_disable.emplace
6119 (record_full_gdb_operation_disable_set ());
1cf4d951 6120
f2ffa92b
PA
6121 regcache_write_pc (regcache,
6122 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6123 }
6124 }
6125 else
6126 {
6127 /* A delayed software breakpoint event. Ignore the trap. */
6128 if (debug_infrun)
6129 fprintf_unfiltered (gdb_stdlog,
6130 "infrun: delayed software breakpoint "
6131 "trap, ignoring\n");
6132 random_signal = 0;
6133 }
6134 }
6135
6136 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6137 has since been removed. */
6138 if (random_signal && target_stopped_by_hw_breakpoint ())
6139 {
6140 /* A delayed hardware breakpoint event. Ignore the trap. */
6141 if (debug_infrun)
6142 fprintf_unfiltered (gdb_stdlog,
6143 "infrun: delayed hardware breakpoint/watchpoint "
6144 "trap, ignoring\n");
6145 random_signal = 0;
6146 }
6147
bac7d97b
PA
6148 /* If not, perhaps stepping/nexting can. */
6149 if (random_signal)
6150 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6151 && currently_stepping (ecs->event_thread));
ab04a2af 6152
2adfaa28
PA
6153 /* Perhaps the thread hit a single-step breakpoint of _another_
6154 thread. Single-step breakpoints are transparent to the
6155 breakpoints module. */
6156 if (random_signal)
6157 random_signal = !ecs->hit_singlestep_breakpoint;
6158
bac7d97b
PA
6159 /* No? Perhaps we got a moribund watchpoint. */
6160 if (random_signal)
6161 random_signal = !stopped_by_watchpoint;
ab04a2af 6162
c65d6b55
PA
6163 /* Always stop if the user explicitly requested this thread to
6164 remain stopped. */
6165 if (ecs->event_thread->stop_requested)
6166 {
6167 random_signal = 1;
6168 if (debug_infrun)
6169 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6170 }
6171
488f131b
JB
6172 /* For the program's own signals, act according to
6173 the signal handling tables. */
6174
ce12b012 6175 if (random_signal)
488f131b
JB
6176 {
6177 /* Signal not for debugging purposes. */
5b6d1e4f 6178 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6179 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6180
527159b7 6181 if (debug_infrun)
c9737c08
PA
6182 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6183 gdb_signal_to_symbol_string (stop_signal));
527159b7 6184
488f131b
JB
6185 stopped_by_random_signal = 1;
6186
252fbfc8
PA
6187 /* Always stop on signals if we're either just gaining control
6188 of the program, or the user explicitly requested this thread
6189 to remain stopped. */
d6b48e9c 6190 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6191 || ecs->event_thread->stop_requested
24291992 6192 || (!inf->detaching
16c381f0 6193 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6194 {
22bcd14b 6195 stop_waiting (ecs);
488f131b
JB
6196 return;
6197 }
b57bacec
PA
6198
6199 /* Notify observers the signal has "handle print" set. Note we
6200 returned early above if stopping; normal_stop handles the
6201 printing in that case. */
6202 if (signal_print[ecs->event_thread->suspend.stop_signal])
6203 {
6204 /* The signal table tells us to print about this signal. */
223ffa71 6205 target_terminal::ours_for_output ();
76727919 6206 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6207 target_terminal::inferior ();
b57bacec 6208 }
488f131b
JB
6209
6210 /* Clear the signal if it should not be passed. */
16c381f0 6211 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6212 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6213
f2ffa92b 6214 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6215 && ecs->event_thread->control.trap_expected
8358c15c 6216 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6217 {
6218 /* We were just starting a new sequence, attempting to
6219 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6220 Instead this signal arrives. This signal will take us out
68f53502
AC
6221 of the stepping range so GDB needs to remember to, when
6222 the signal handler returns, resume stepping off that
6223 breakpoint. */
6224 /* To simplify things, "continue" is forced to use the same
6225 code paths as single-step - set a breakpoint at the
6226 signal return address and then, once hit, step off that
6227 breakpoint. */
237fc4c9
PA
6228 if (debug_infrun)
6229 fprintf_unfiltered (gdb_stdlog,
6230 "infrun: signal arrived while stepping over "
6231 "breakpoint\n");
d3169d93 6232
2c03e5be 6233 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6234 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6235 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6236 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6237
6238 /* If we were nexting/stepping some other thread, switch to
6239 it, so that we don't continue it, losing control. */
6240 if (!switch_back_to_stepped_thread (ecs))
6241 keep_going (ecs);
9d799f85 6242 return;
68f53502 6243 }
9d799f85 6244
e5f8a7cc 6245 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6246 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6247 ecs->event_thread)
e5f8a7cc 6248 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6249 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6250 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6251 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6252 {
6253 /* The inferior is about to take a signal that will take it
6254 out of the single step range. Set a breakpoint at the
6255 current PC (which is presumably where the signal handler
6256 will eventually return) and then allow the inferior to
6257 run free.
6258
6259 Note that this is only needed for a signal delivered
6260 while in the single-step range. Nested signals aren't a
6261 problem as they eventually all return. */
237fc4c9
PA
6262 if (debug_infrun)
6263 fprintf_unfiltered (gdb_stdlog,
6264 "infrun: signal may take us out of "
6265 "single-step range\n");
6266
372316f1 6267 clear_step_over_info ();
2c03e5be 6268 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6269 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6270 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6271 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6272 keep_going (ecs);
6273 return;
d303a6c7 6274 }
9d799f85 6275
85102364 6276 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6277 when either there's a nested signal, or when there's a
6278 pending signal enabled just as the signal handler returns
6279 (leaving the inferior at the step-resume-breakpoint without
6280 actually executing it). Either way continue until the
6281 breakpoint is really hit. */
c447ac0b
PA
6282
6283 if (!switch_back_to_stepped_thread (ecs))
6284 {
6285 if (debug_infrun)
6286 fprintf_unfiltered (gdb_stdlog,
6287 "infrun: random signal, keep going\n");
6288
6289 keep_going (ecs);
6290 }
6291 return;
488f131b 6292 }
94c57d6a
PA
6293
6294 process_event_stop_test (ecs);
6295}
6296
6297/* Come here when we've got some debug event / signal we can explain
6298 (IOW, not a random signal), and test whether it should cause a
6299 stop, or whether we should resume the inferior (transparently).
6300 E.g., could be a breakpoint whose condition evaluates false; we
6301 could be still stepping within the line; etc. */
6302
6303static void
6304process_event_stop_test (struct execution_control_state *ecs)
6305{
6306 struct symtab_and_line stop_pc_sal;
6307 struct frame_info *frame;
6308 struct gdbarch *gdbarch;
cdaa5b73
PA
6309 CORE_ADDR jmp_buf_pc;
6310 struct bpstat_what what;
94c57d6a 6311
cdaa5b73 6312 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6313
cdaa5b73
PA
6314 frame = get_current_frame ();
6315 gdbarch = get_frame_arch (frame);
fcf3daef 6316
cdaa5b73 6317 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6318
cdaa5b73
PA
6319 if (what.call_dummy)
6320 {
6321 stop_stack_dummy = what.call_dummy;
6322 }
186c406b 6323
243a9253
PA
6324 /* A few breakpoint types have callbacks associated (e.g.,
6325 bp_jit_event). Run them now. */
6326 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6327
cdaa5b73
PA
6328 /* If we hit an internal event that triggers symbol changes, the
6329 current frame will be invalidated within bpstat_what (e.g., if we
6330 hit an internal solib event). Re-fetch it. */
6331 frame = get_current_frame ();
6332 gdbarch = get_frame_arch (frame);
e2e4d78b 6333
cdaa5b73
PA
6334 switch (what.main_action)
6335 {
6336 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6337 /* If we hit the breakpoint at longjmp while stepping, we
6338 install a momentary breakpoint at the target of the
6339 jmp_buf. */
186c406b 6340
cdaa5b73
PA
6341 if (debug_infrun)
6342 fprintf_unfiltered (gdb_stdlog,
6343 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6344
cdaa5b73 6345 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6346
cdaa5b73
PA
6347 if (what.is_longjmp)
6348 {
6349 struct value *arg_value;
6350
6351 /* If we set the longjmp breakpoint via a SystemTap probe,
6352 then use it to extract the arguments. The destination PC
6353 is the third argument to the probe. */
6354 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6355 if (arg_value)
8fa0c4f8
AA
6356 {
6357 jmp_buf_pc = value_as_address (arg_value);
6358 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6359 }
cdaa5b73
PA
6360 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6361 || !gdbarch_get_longjmp_target (gdbarch,
6362 frame, &jmp_buf_pc))
e2e4d78b 6363 {
cdaa5b73
PA
6364 if (debug_infrun)
6365 fprintf_unfiltered (gdb_stdlog,
6366 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6367 "(!gdbarch_get_longjmp_target)\n");
6368 keep_going (ecs);
6369 return;
e2e4d78b 6370 }
e2e4d78b 6371
cdaa5b73
PA
6372 /* Insert a breakpoint at resume address. */
6373 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6374 }
6375 else
6376 check_exception_resume (ecs, frame);
6377 keep_going (ecs);
6378 return;
e81a37f7 6379
cdaa5b73
PA
6380 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6381 {
6382 struct frame_info *init_frame;
e81a37f7 6383
cdaa5b73 6384 /* There are several cases to consider.
c906108c 6385
cdaa5b73
PA
6386 1. The initiating frame no longer exists. In this case we
6387 must stop, because the exception or longjmp has gone too
6388 far.
2c03e5be 6389
cdaa5b73
PA
6390 2. The initiating frame exists, and is the same as the
6391 current frame. We stop, because the exception or longjmp
6392 has been caught.
2c03e5be 6393
cdaa5b73
PA
6394 3. The initiating frame exists and is different from the
6395 current frame. This means the exception or longjmp has
6396 been caught beneath the initiating frame, so keep going.
c906108c 6397
cdaa5b73
PA
6398 4. longjmp breakpoint has been placed just to protect
6399 against stale dummy frames and user is not interested in
6400 stopping around longjmps. */
c5aa993b 6401
cdaa5b73
PA
6402 if (debug_infrun)
6403 fprintf_unfiltered (gdb_stdlog,
6404 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6405
cdaa5b73
PA
6406 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6407 != NULL);
6408 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6409
cdaa5b73
PA
6410 if (what.is_longjmp)
6411 {
b67a2c6f 6412 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6413
cdaa5b73 6414 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6415 {
cdaa5b73
PA
6416 /* Case 4. */
6417 keep_going (ecs);
6418 return;
e5ef252a 6419 }
cdaa5b73 6420 }
c5aa993b 6421
cdaa5b73 6422 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6423
cdaa5b73
PA
6424 if (init_frame)
6425 {
6426 struct frame_id current_id
6427 = get_frame_id (get_current_frame ());
6428 if (frame_id_eq (current_id,
6429 ecs->event_thread->initiating_frame))
6430 {
6431 /* Case 2. Fall through. */
6432 }
6433 else
6434 {
6435 /* Case 3. */
6436 keep_going (ecs);
6437 return;
6438 }
68f53502 6439 }
488f131b 6440
cdaa5b73
PA
6441 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6442 exists. */
6443 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6444
bdc36728 6445 end_stepping_range (ecs);
cdaa5b73
PA
6446 }
6447 return;
e5ef252a 6448
cdaa5b73
PA
6449 case BPSTAT_WHAT_SINGLE:
6450 if (debug_infrun)
6451 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6452 ecs->event_thread->stepping_over_breakpoint = 1;
6453 /* Still need to check other stuff, at least the case where we
6454 are stepping and step out of the right range. */
6455 break;
e5ef252a 6456
cdaa5b73
PA
6457 case BPSTAT_WHAT_STEP_RESUME:
6458 if (debug_infrun)
6459 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6460
cdaa5b73
PA
6461 delete_step_resume_breakpoint (ecs->event_thread);
6462 if (ecs->event_thread->control.proceed_to_finish
6463 && execution_direction == EXEC_REVERSE)
6464 {
6465 struct thread_info *tp = ecs->event_thread;
6466
6467 /* We are finishing a function in reverse, and just hit the
6468 step-resume breakpoint at the start address of the
6469 function, and we're almost there -- just need to back up
6470 by one more single-step, which should take us back to the
6471 function call. */
6472 tp->control.step_range_start = tp->control.step_range_end = 1;
6473 keep_going (ecs);
e5ef252a 6474 return;
cdaa5b73
PA
6475 }
6476 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6477 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6478 && execution_direction == EXEC_REVERSE)
6479 {
6480 /* We are stepping over a function call in reverse, and just
6481 hit the step-resume breakpoint at the start address of
6482 the function. Go back to single-stepping, which should
6483 take us back to the function call. */
6484 ecs->event_thread->stepping_over_breakpoint = 1;
6485 keep_going (ecs);
6486 return;
6487 }
6488 break;
e5ef252a 6489
cdaa5b73
PA
6490 case BPSTAT_WHAT_STOP_NOISY:
6491 if (debug_infrun)
6492 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6493 stop_print_frame = 1;
e5ef252a 6494
99619bea
PA
6495 /* Assume the thread stopped for a breapoint. We'll still check
6496 whether a/the breakpoint is there when the thread is next
6497 resumed. */
6498 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6499
22bcd14b 6500 stop_waiting (ecs);
cdaa5b73 6501 return;
e5ef252a 6502
cdaa5b73
PA
6503 case BPSTAT_WHAT_STOP_SILENT:
6504 if (debug_infrun)
6505 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6506 stop_print_frame = 0;
e5ef252a 6507
99619bea
PA
6508 /* Assume the thread stopped for a breapoint. We'll still check
6509 whether a/the breakpoint is there when the thread is next
6510 resumed. */
6511 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6512 stop_waiting (ecs);
cdaa5b73
PA
6513 return;
6514
6515 case BPSTAT_WHAT_HP_STEP_RESUME:
6516 if (debug_infrun)
6517 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6518
6519 delete_step_resume_breakpoint (ecs->event_thread);
6520 if (ecs->event_thread->step_after_step_resume_breakpoint)
6521 {
6522 /* Back when the step-resume breakpoint was inserted, we
6523 were trying to single-step off a breakpoint. Go back to
6524 doing that. */
6525 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6526 ecs->event_thread->stepping_over_breakpoint = 1;
6527 keep_going (ecs);
6528 return;
e5ef252a 6529 }
cdaa5b73
PA
6530 break;
6531
6532 case BPSTAT_WHAT_KEEP_CHECKING:
6533 break;
e5ef252a 6534 }
c906108c 6535
af48d08f
PA
6536 /* If we stepped a permanent breakpoint and we had a high priority
6537 step-resume breakpoint for the address we stepped, but we didn't
6538 hit it, then we must have stepped into the signal handler. The
6539 step-resume was only necessary to catch the case of _not_
6540 stepping into the handler, so delete it, and fall through to
6541 checking whether the step finished. */
6542 if (ecs->event_thread->stepped_breakpoint)
6543 {
6544 struct breakpoint *sr_bp
6545 = ecs->event_thread->control.step_resume_breakpoint;
6546
8d707a12
PA
6547 if (sr_bp != NULL
6548 && sr_bp->loc->permanent
af48d08f
PA
6549 && sr_bp->type == bp_hp_step_resume
6550 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6551 {
6552 if (debug_infrun)
6553 fprintf_unfiltered (gdb_stdlog,
6554 "infrun: stepped permanent breakpoint, stopped in "
6555 "handler\n");
6556 delete_step_resume_breakpoint (ecs->event_thread);
6557 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6558 }
6559 }
6560
cdaa5b73
PA
6561 /* We come here if we hit a breakpoint but should not stop for it.
6562 Possibly we also were stepping and should stop for that. So fall
6563 through and test for stepping. But, if not stepping, do not
6564 stop. */
c906108c 6565
a7212384
UW
6566 /* In all-stop mode, if we're currently stepping but have stopped in
6567 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6568 if (switch_back_to_stepped_thread (ecs))
6569 return;
776f04fa 6570
8358c15c 6571 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6572 {
527159b7 6573 if (debug_infrun)
d3169d93
DJ
6574 fprintf_unfiltered (gdb_stdlog,
6575 "infrun: step-resume breakpoint is inserted\n");
527159b7 6576
488f131b
JB
6577 /* Having a step-resume breakpoint overrides anything
6578 else having to do with stepping commands until
6579 that breakpoint is reached. */
488f131b
JB
6580 keep_going (ecs);
6581 return;
6582 }
c5aa993b 6583
16c381f0 6584 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6585 {
527159b7 6586 if (debug_infrun)
8a9de0e4 6587 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6588 /* Likewise if we aren't even stepping. */
488f131b
JB
6589 keep_going (ecs);
6590 return;
6591 }
c5aa993b 6592
4b7703ad
JB
6593 /* Re-fetch current thread's frame in case the code above caused
6594 the frame cache to be re-initialized, making our FRAME variable
6595 a dangling pointer. */
6596 frame = get_current_frame ();
628fe4e4 6597 gdbarch = get_frame_arch (frame);
7e324e48 6598 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6599
488f131b 6600 /* If stepping through a line, keep going if still within it.
c906108c 6601
488f131b
JB
6602 Note that step_range_end is the address of the first instruction
6603 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6604 within it!
6605
6606 Note also that during reverse execution, we may be stepping
6607 through a function epilogue and therefore must detect when
6608 the current-frame changes in the middle of a line. */
6609
f2ffa92b
PA
6610 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6611 ecs->event_thread)
31410e84 6612 && (execution_direction != EXEC_REVERSE
388a8562 6613 || frame_id_eq (get_frame_id (frame),
16c381f0 6614 ecs->event_thread->control.step_frame_id)))
488f131b 6615 {
527159b7 6616 if (debug_infrun)
5af949e3
UW
6617 fprintf_unfiltered
6618 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6619 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6620 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6621
c1e36e3e
PA
6622 /* Tentatively re-enable range stepping; `resume' disables it if
6623 necessary (e.g., if we're stepping over a breakpoint or we
6624 have software watchpoints). */
6625 ecs->event_thread->control.may_range_step = 1;
6626
b2175913
MS
6627 /* When stepping backward, stop at beginning of line range
6628 (unless it's the function entry point, in which case
6629 keep going back to the call point). */
f2ffa92b 6630 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6631 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6632 && stop_pc != ecs->stop_func_start
6633 && execution_direction == EXEC_REVERSE)
bdc36728 6634 end_stepping_range (ecs);
b2175913
MS
6635 else
6636 keep_going (ecs);
6637
488f131b
JB
6638 return;
6639 }
c5aa993b 6640
488f131b 6641 /* We stepped out of the stepping range. */
c906108c 6642
488f131b 6643 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6644 loader dynamic symbol resolution code...
6645
6646 EXEC_FORWARD: we keep on single stepping until we exit the run
6647 time loader code and reach the callee's address.
6648
6649 EXEC_REVERSE: we've already executed the callee (backward), and
6650 the runtime loader code is handled just like any other
6651 undebuggable function call. Now we need only keep stepping
6652 backward through the trampoline code, and that's handled further
6653 down, so there is nothing for us to do here. */
6654
6655 if (execution_direction != EXEC_REVERSE
16c381f0 6656 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6657 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6658 {
4c8c40e6 6659 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6660 gdbarch_skip_solib_resolver (gdbarch,
6661 ecs->event_thread->suspend.stop_pc);
c906108c 6662
527159b7 6663 if (debug_infrun)
3e43a32a
MS
6664 fprintf_unfiltered (gdb_stdlog,
6665 "infrun: stepped into dynsym resolve code\n");
527159b7 6666
488f131b
JB
6667 if (pc_after_resolver)
6668 {
6669 /* Set up a step-resume breakpoint at the address
6670 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6671 symtab_and_line sr_sal;
488f131b 6672 sr_sal.pc = pc_after_resolver;
6c95b8df 6673 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6674
a6d9a66e
UW
6675 insert_step_resume_breakpoint_at_sal (gdbarch,
6676 sr_sal, null_frame_id);
c5aa993b 6677 }
c906108c 6678
488f131b
JB
6679 keep_going (ecs);
6680 return;
6681 }
c906108c 6682
1d509aa6
MM
6683 /* Step through an indirect branch thunk. */
6684 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6685 && gdbarch_in_indirect_branch_thunk (gdbarch,
6686 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6687 {
6688 if (debug_infrun)
6689 fprintf_unfiltered (gdb_stdlog,
6690 "infrun: stepped into indirect branch thunk\n");
6691 keep_going (ecs);
6692 return;
6693 }
6694
16c381f0
JK
6695 if (ecs->event_thread->control.step_range_end != 1
6696 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6697 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6698 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6699 {
527159b7 6700 if (debug_infrun)
3e43a32a
MS
6701 fprintf_unfiltered (gdb_stdlog,
6702 "infrun: stepped into signal trampoline\n");
42edda50 6703 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6704 a signal trampoline (either by a signal being delivered or by
6705 the signal handler returning). Just single-step until the
6706 inferior leaves the trampoline (either by calling the handler
6707 or returning). */
488f131b
JB
6708 keep_going (ecs);
6709 return;
6710 }
c906108c 6711
14132e89
MR
6712 /* If we're in the return path from a shared library trampoline,
6713 we want to proceed through the trampoline when stepping. */
6714 /* macro/2012-04-25: This needs to come before the subroutine
6715 call check below as on some targets return trampolines look
6716 like subroutine calls (MIPS16 return thunks). */
6717 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6718 ecs->event_thread->suspend.stop_pc,
6719 ecs->stop_func_name)
14132e89
MR
6720 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6721 {
6722 /* Determine where this trampoline returns. */
f2ffa92b
PA
6723 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6724 CORE_ADDR real_stop_pc
6725 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6726
6727 if (debug_infrun)
6728 fprintf_unfiltered (gdb_stdlog,
6729 "infrun: stepped into solib return tramp\n");
6730
6731 /* Only proceed through if we know where it's going. */
6732 if (real_stop_pc)
6733 {
6734 /* And put the step-breakpoint there and go until there. */
51abb421 6735 symtab_and_line sr_sal;
14132e89
MR
6736 sr_sal.pc = real_stop_pc;
6737 sr_sal.section = find_pc_overlay (sr_sal.pc);
6738 sr_sal.pspace = get_frame_program_space (frame);
6739
6740 /* Do not specify what the fp should be when we stop since
6741 on some machines the prologue is where the new fp value
6742 is established. */
6743 insert_step_resume_breakpoint_at_sal (gdbarch,
6744 sr_sal, null_frame_id);
6745
6746 /* Restart without fiddling with the step ranges or
6747 other state. */
6748 keep_going (ecs);
6749 return;
6750 }
6751 }
6752
c17eaafe
DJ
6753 /* Check for subroutine calls. The check for the current frame
6754 equalling the step ID is not necessary - the check of the
6755 previous frame's ID is sufficient - but it is a common case and
6756 cheaper than checking the previous frame's ID.
14e60db5
DJ
6757
6758 NOTE: frame_id_eq will never report two invalid frame IDs as
6759 being equal, so to get into this block, both the current and
6760 previous frame must have valid frame IDs. */
005ca36a
JB
6761 /* The outer_frame_id check is a heuristic to detect stepping
6762 through startup code. If we step over an instruction which
6763 sets the stack pointer from an invalid value to a valid value,
6764 we may detect that as a subroutine call from the mythical
6765 "outermost" function. This could be fixed by marking
6766 outermost frames as !stack_p,code_p,special_p. Then the
6767 initial outermost frame, before sp was valid, would
ce6cca6d 6768 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6769 for more. */
edb3359d 6770 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6771 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6772 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6773 ecs->event_thread->control.step_stack_frame_id)
6774 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6775 outer_frame_id)
885eeb5b 6776 || (ecs->event_thread->control.step_start_function
f2ffa92b 6777 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6778 {
f2ffa92b 6779 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6780 CORE_ADDR real_stop_pc;
8fb3e588 6781
527159b7 6782 if (debug_infrun)
8a9de0e4 6783 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6784
b7a084be 6785 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6786 {
6787 /* I presume that step_over_calls is only 0 when we're
6788 supposed to be stepping at the assembly language level
6789 ("stepi"). Just stop. */
388a8562 6790 /* And this works the same backward as frontward. MVS */
bdc36728 6791 end_stepping_range (ecs);
95918acb
AC
6792 return;
6793 }
8fb3e588 6794
388a8562
MS
6795 /* Reverse stepping through solib trampolines. */
6796
6797 if (execution_direction == EXEC_REVERSE
16c381f0 6798 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6799 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6800 || (ecs->stop_func_start == 0
6801 && in_solib_dynsym_resolve_code (stop_pc))))
6802 {
6803 /* Any solib trampoline code can be handled in reverse
6804 by simply continuing to single-step. We have already
6805 executed the solib function (backwards), and a few
6806 steps will take us back through the trampoline to the
6807 caller. */
6808 keep_going (ecs);
6809 return;
6810 }
6811
16c381f0 6812 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6813 {
b2175913
MS
6814 /* We're doing a "next".
6815
6816 Normal (forward) execution: set a breakpoint at the
6817 callee's return address (the address at which the caller
6818 will resume).
6819
6820 Reverse (backward) execution. set the step-resume
6821 breakpoint at the start of the function that we just
6822 stepped into (backwards), and continue to there. When we
6130d0b7 6823 get there, we'll need to single-step back to the caller. */
b2175913
MS
6824
6825 if (execution_direction == EXEC_REVERSE)
6826 {
acf9414f
JK
6827 /* If we're already at the start of the function, we've either
6828 just stepped backward into a single instruction function,
6829 or stepped back out of a signal handler to the first instruction
6830 of the function. Just keep going, which will single-step back
6831 to the caller. */
58c48e72 6832 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6833 {
acf9414f 6834 /* Normal function call return (static or dynamic). */
51abb421 6835 symtab_and_line sr_sal;
acf9414f
JK
6836 sr_sal.pc = ecs->stop_func_start;
6837 sr_sal.pspace = get_frame_program_space (frame);
6838 insert_step_resume_breakpoint_at_sal (gdbarch,
6839 sr_sal, null_frame_id);
6840 }
b2175913
MS
6841 }
6842 else
568d6575 6843 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6844
8567c30f
AC
6845 keep_going (ecs);
6846 return;
6847 }
a53c66de 6848
95918acb 6849 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6850 calling routine and the real function), locate the real
6851 function. That's what tells us (a) whether we want to step
6852 into it at all, and (b) what prologue we want to run to the
6853 end of, if we do step into it. */
568d6575 6854 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6855 if (real_stop_pc == 0)
568d6575 6856 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6857 if (real_stop_pc != 0)
6858 ecs->stop_func_start = real_stop_pc;
8fb3e588 6859
db5f024e 6860 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6861 {
51abb421 6862 symtab_and_line sr_sal;
1b2bfbb9 6863 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6864 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6865
a6d9a66e
UW
6866 insert_step_resume_breakpoint_at_sal (gdbarch,
6867 sr_sal, null_frame_id);
8fb3e588
AC
6868 keep_going (ecs);
6869 return;
1b2bfbb9
RC
6870 }
6871
95918acb 6872 /* If we have line number information for the function we are
1bfeeb0f
JL
6873 thinking of stepping into and the function isn't on the skip
6874 list, step into it.
95918acb 6875
8fb3e588
AC
6876 If there are several symtabs at that PC (e.g. with include
6877 files), just want to know whether *any* of them have line
6878 numbers. find_pc_line handles this. */
95918acb
AC
6879 {
6880 struct symtab_and_line tmp_sal;
8fb3e588 6881
95918acb 6882 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6883 if (tmp_sal.line != 0
85817405 6884 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6885 tmp_sal)
6886 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6887 {
b2175913 6888 if (execution_direction == EXEC_REVERSE)
568d6575 6889 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6890 else
568d6575 6891 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6892 return;
6893 }
6894 }
6895
6896 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6897 set, we stop the step so that the user has a chance to switch
6898 in assembly mode. */
16c381f0 6899 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6900 && step_stop_if_no_debug)
95918acb 6901 {
bdc36728 6902 end_stepping_range (ecs);
95918acb
AC
6903 return;
6904 }
6905
b2175913
MS
6906 if (execution_direction == EXEC_REVERSE)
6907 {
acf9414f
JK
6908 /* If we're already at the start of the function, we've either just
6909 stepped backward into a single instruction function without line
6910 number info, or stepped back out of a signal handler to the first
6911 instruction of the function without line number info. Just keep
6912 going, which will single-step back to the caller. */
6913 if (ecs->stop_func_start != stop_pc)
6914 {
6915 /* Set a breakpoint at callee's start address.
6916 From there we can step once and be back in the caller. */
51abb421 6917 symtab_and_line sr_sal;
acf9414f
JK
6918 sr_sal.pc = ecs->stop_func_start;
6919 sr_sal.pspace = get_frame_program_space (frame);
6920 insert_step_resume_breakpoint_at_sal (gdbarch,
6921 sr_sal, null_frame_id);
6922 }
b2175913
MS
6923 }
6924 else
6925 /* Set a breakpoint at callee's return address (the address
6926 at which the caller will resume). */
568d6575 6927 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6928
95918acb 6929 keep_going (ecs);
488f131b 6930 return;
488f131b 6931 }
c906108c 6932
fdd654f3
MS
6933 /* Reverse stepping through solib trampolines. */
6934
6935 if (execution_direction == EXEC_REVERSE
16c381f0 6936 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6937 {
f2ffa92b
PA
6938 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6939
fdd654f3
MS
6940 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6941 || (ecs->stop_func_start == 0
6942 && in_solib_dynsym_resolve_code (stop_pc)))
6943 {
6944 /* Any solib trampoline code can be handled in reverse
6945 by simply continuing to single-step. We have already
6946 executed the solib function (backwards), and a few
6947 steps will take us back through the trampoline to the
6948 caller. */
6949 keep_going (ecs);
6950 return;
6951 }
6952 else if (in_solib_dynsym_resolve_code (stop_pc))
6953 {
6954 /* Stepped backward into the solib dynsym resolver.
6955 Set a breakpoint at its start and continue, then
6956 one more step will take us out. */
51abb421 6957 symtab_and_line sr_sal;
fdd654f3 6958 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6959 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6960 insert_step_resume_breakpoint_at_sal (gdbarch,
6961 sr_sal, null_frame_id);
6962 keep_going (ecs);
6963 return;
6964 }
6965 }
6966
f2ffa92b 6967 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6968
1b2bfbb9
RC
6969 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6970 the trampoline processing logic, however, there are some trampolines
6971 that have no names, so we should do trampoline handling first. */
16c381f0 6972 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6973 && ecs->stop_func_name == NULL
2afb61aa 6974 && stop_pc_sal.line == 0)
1b2bfbb9 6975 {
527159b7 6976 if (debug_infrun)
3e43a32a
MS
6977 fprintf_unfiltered (gdb_stdlog,
6978 "infrun: stepped into undebuggable function\n");
527159b7 6979
1b2bfbb9 6980 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6981 undebuggable function (where there is no debugging information
6982 and no line number corresponding to the address where the
1b2bfbb9
RC
6983 inferior stopped). Since we want to skip this kind of code,
6984 we keep going until the inferior returns from this
14e60db5
DJ
6985 function - unless the user has asked us not to (via
6986 set step-mode) or we no longer know how to get back
6987 to the call site. */
6988 if (step_stop_if_no_debug
c7ce8faa 6989 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6990 {
6991 /* If we have no line number and the step-stop-if-no-debug
6992 is set, we stop the step so that the user has a chance to
6993 switch in assembly mode. */
bdc36728 6994 end_stepping_range (ecs);
1b2bfbb9
RC
6995 return;
6996 }
6997 else
6998 {
6999 /* Set a breakpoint at callee's return address (the address
7000 at which the caller will resume). */
568d6575 7001 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
7002 keep_going (ecs);
7003 return;
7004 }
7005 }
7006
16c381f0 7007 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7008 {
7009 /* It is stepi or nexti. We always want to stop stepping after
7010 one instruction. */
527159b7 7011 if (debug_infrun)
8a9de0e4 7012 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 7013 end_stepping_range (ecs);
1b2bfbb9
RC
7014 return;
7015 }
7016
2afb61aa 7017 if (stop_pc_sal.line == 0)
488f131b
JB
7018 {
7019 /* We have no line number information. That means to stop
7020 stepping (does this always happen right after one instruction,
7021 when we do "s" in a function with no line numbers,
7022 or can this happen as a result of a return or longjmp?). */
527159b7 7023 if (debug_infrun)
8a9de0e4 7024 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 7025 end_stepping_range (ecs);
488f131b
JB
7026 return;
7027 }
c906108c 7028
edb3359d
DJ
7029 /* Look for "calls" to inlined functions, part one. If the inline
7030 frame machinery detected some skipped call sites, we have entered
7031 a new inline function. */
7032
7033 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7034 ecs->event_thread->control.step_frame_id)
00431a78 7035 && inline_skipped_frames (ecs->event_thread))
edb3359d 7036 {
edb3359d
DJ
7037 if (debug_infrun)
7038 fprintf_unfiltered (gdb_stdlog,
7039 "infrun: stepped into inlined function\n");
7040
51abb421 7041 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7042
16c381f0 7043 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7044 {
7045 /* For "step", we're going to stop. But if the call site
7046 for this inlined function is on the same source line as
7047 we were previously stepping, go down into the function
7048 first. Otherwise stop at the call site. */
7049
7050 if (call_sal.line == ecs->event_thread->current_line
7051 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7052 {
7053 step_into_inline_frame (ecs->event_thread);
7054 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7055 {
7056 keep_going (ecs);
7057 return;
7058 }
7059 }
edb3359d 7060
bdc36728 7061 end_stepping_range (ecs);
edb3359d
DJ
7062 return;
7063 }
7064 else
7065 {
7066 /* For "next", we should stop at the call site if it is on a
7067 different source line. Otherwise continue through the
7068 inlined function. */
7069 if (call_sal.line == ecs->event_thread->current_line
7070 && call_sal.symtab == ecs->event_thread->current_symtab)
7071 keep_going (ecs);
7072 else
bdc36728 7073 end_stepping_range (ecs);
edb3359d
DJ
7074 return;
7075 }
7076 }
7077
7078 /* Look for "calls" to inlined functions, part two. If we are still
7079 in the same real function we were stepping through, but we have
7080 to go further up to find the exact frame ID, we are stepping
7081 through a more inlined call beyond its call site. */
7082
7083 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7084 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7085 ecs->event_thread->control.step_frame_id)
edb3359d 7086 && stepped_in_from (get_current_frame (),
16c381f0 7087 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
7088 {
7089 if (debug_infrun)
7090 fprintf_unfiltered (gdb_stdlog,
7091 "infrun: stepping through inlined function\n");
7092
4a4c04f1
BE
7093 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7094 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7095 keep_going (ecs);
7096 else
bdc36728 7097 end_stepping_range (ecs);
edb3359d
DJ
7098 return;
7099 }
7100
f2ffa92b 7101 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7102 && (ecs->event_thread->current_line != stop_pc_sal.line
7103 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
7104 {
7105 /* We are at the start of a different line. So stop. Note that
7106 we don't stop if we step into the middle of a different line.
7107 That is said to make things like for (;;) statements work
7108 better. */
527159b7 7109 if (debug_infrun)
3e43a32a
MS
7110 fprintf_unfiltered (gdb_stdlog,
7111 "infrun: stepped to a different line\n");
bdc36728 7112 end_stepping_range (ecs);
488f131b
JB
7113 return;
7114 }
c906108c 7115
488f131b 7116 /* We aren't done stepping.
c906108c 7117
488f131b
JB
7118 Optimize by setting the stepping range to the line.
7119 (We might not be in the original line, but if we entered a
7120 new line in mid-statement, we continue stepping. This makes
7121 things like for(;;) statements work better.) */
c906108c 7122
16c381f0
JK
7123 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7124 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7125 ecs->event_thread->control.may_range_step = 1;
edb3359d 7126 set_step_info (frame, stop_pc_sal);
488f131b 7127
527159b7 7128 if (debug_infrun)
8a9de0e4 7129 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7130 keep_going (ecs);
104c1213
JM
7131}
7132
c447ac0b
PA
7133/* In all-stop mode, if we're currently stepping but have stopped in
7134 some other thread, we may need to switch back to the stepped
7135 thread. Returns true we set the inferior running, false if we left
7136 it stopped (and the event needs further processing). */
7137
7138static int
7139switch_back_to_stepped_thread (struct execution_control_state *ecs)
7140{
fbea99ea 7141 if (!target_is_non_stop_p ())
c447ac0b 7142 {
99619bea
PA
7143 struct thread_info *stepping_thread;
7144
7145 /* If any thread is blocked on some internal breakpoint, and we
7146 simply need to step over that breakpoint to get it going
7147 again, do that first. */
7148
7149 /* However, if we see an event for the stepping thread, then we
7150 know all other threads have been moved past their breakpoints
7151 already. Let the caller check whether the step is finished,
7152 etc., before deciding to move it past a breakpoint. */
7153 if (ecs->event_thread->control.step_range_end != 0)
7154 return 0;
7155
7156 /* Check if the current thread is blocked on an incomplete
7157 step-over, interrupted by a random signal. */
7158 if (ecs->event_thread->control.trap_expected
7159 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7160 {
99619bea
PA
7161 if (debug_infrun)
7162 {
7163 fprintf_unfiltered (gdb_stdlog,
7164 "infrun: need to finish step-over of [%s]\n",
a068643d 7165 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
7166 }
7167 keep_going (ecs);
7168 return 1;
7169 }
2adfaa28 7170
99619bea
PA
7171 /* Check if the current thread is blocked by a single-step
7172 breakpoint of another thread. */
7173 if (ecs->hit_singlestep_breakpoint)
7174 {
7175 if (debug_infrun)
7176 {
7177 fprintf_unfiltered (gdb_stdlog,
7178 "infrun: need to step [%s] over single-step "
7179 "breakpoint\n",
a068643d 7180 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
7181 }
7182 keep_going (ecs);
7183 return 1;
7184 }
7185
4d9d9d04
PA
7186 /* If this thread needs yet another step-over (e.g., stepping
7187 through a delay slot), do it first before moving on to
7188 another thread. */
7189 if (thread_still_needs_step_over (ecs->event_thread))
7190 {
7191 if (debug_infrun)
7192 {
7193 fprintf_unfiltered (gdb_stdlog,
7194 "infrun: thread [%s] still needs step-over\n",
a068643d 7195 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
7196 }
7197 keep_going (ecs);
7198 return 1;
7199 }
70509625 7200
483805cf
PA
7201 /* If scheduler locking applies even if not stepping, there's no
7202 need to walk over threads. Above we've checked whether the
7203 current thread is stepping. If some other thread not the
7204 event thread is stepping, then it must be that scheduler
7205 locking is not in effect. */
856e7dd6 7206 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7207 return 0;
7208
4d9d9d04
PA
7209 /* Otherwise, we no longer expect a trap in the current thread.
7210 Clear the trap_expected flag before switching back -- this is
7211 what keep_going does as well, if we call it. */
7212 ecs->event_thread->control.trap_expected = 0;
7213
7214 /* Likewise, clear the signal if it should not be passed. */
7215 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7216 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7217
7218 /* Do all pending step-overs before actually proceeding with
483805cf 7219 step/next/etc. */
4d9d9d04
PA
7220 if (start_step_over ())
7221 {
7222 prepare_to_wait (ecs);
7223 return 1;
7224 }
7225
7226 /* Look for the stepping/nexting thread. */
483805cf 7227 stepping_thread = NULL;
4d9d9d04 7228
08036331 7229 for (thread_info *tp : all_non_exited_threads ())
483805cf 7230 {
f3f8ece4
PA
7231 switch_to_thread_no_regs (tp);
7232
fbea99ea
PA
7233 /* Ignore threads of processes the caller is not
7234 resuming. */
483805cf 7235 if (!sched_multi
5b6d1e4f
PA
7236 && (tp->inf->process_target () != ecs->target
7237 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7238 continue;
7239
7240 /* When stepping over a breakpoint, we lock all threads
7241 except the one that needs to move past the breakpoint.
7242 If a non-event thread has this set, the "incomplete
7243 step-over" check above should have caught it earlier. */
372316f1
PA
7244 if (tp->control.trap_expected)
7245 {
7246 internal_error (__FILE__, __LINE__,
7247 "[%s] has inconsistent state: "
7248 "trap_expected=%d\n",
a068643d 7249 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7250 tp->control.trap_expected);
7251 }
483805cf
PA
7252
7253 /* Did we find the stepping thread? */
7254 if (tp->control.step_range_end)
7255 {
7256 /* Yep. There should only one though. */
7257 gdb_assert (stepping_thread == NULL);
7258
7259 /* The event thread is handled at the top, before we
7260 enter this loop. */
7261 gdb_assert (tp != ecs->event_thread);
7262
7263 /* If some thread other than the event thread is
7264 stepping, then scheduler locking can't be in effect,
7265 otherwise we wouldn't have resumed the current event
7266 thread in the first place. */
856e7dd6 7267 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7268
7269 stepping_thread = tp;
7270 }
99619bea
PA
7271 }
7272
483805cf 7273 if (stepping_thread != NULL)
99619bea 7274 {
c447ac0b
PA
7275 if (debug_infrun)
7276 fprintf_unfiltered (gdb_stdlog,
7277 "infrun: switching back to stepped thread\n");
7278
2ac7589c
PA
7279 if (keep_going_stepped_thread (stepping_thread))
7280 {
7281 prepare_to_wait (ecs);
7282 return 1;
7283 }
7284 }
f3f8ece4
PA
7285
7286 switch_to_thread (ecs->event_thread);
2ac7589c 7287 }
2adfaa28 7288
2ac7589c
PA
7289 return 0;
7290}
2adfaa28 7291
2ac7589c
PA
7292/* Set a previously stepped thread back to stepping. Returns true on
7293 success, false if the resume is not possible (e.g., the thread
7294 vanished). */
7295
7296static int
7297keep_going_stepped_thread (struct thread_info *tp)
7298{
7299 struct frame_info *frame;
2ac7589c
PA
7300 struct execution_control_state ecss;
7301 struct execution_control_state *ecs = &ecss;
2adfaa28 7302
2ac7589c
PA
7303 /* If the stepping thread exited, then don't try to switch back and
7304 resume it, which could fail in several different ways depending
7305 on the target. Instead, just keep going.
2adfaa28 7306
2ac7589c
PA
7307 We can find a stepping dead thread in the thread list in two
7308 cases:
2adfaa28 7309
2ac7589c
PA
7310 - The target supports thread exit events, and when the target
7311 tries to delete the thread from the thread list, inferior_ptid
7312 pointed at the exiting thread. In such case, calling
7313 delete_thread does not really remove the thread from the list;
7314 instead, the thread is left listed, with 'exited' state.
64ce06e4 7315
2ac7589c
PA
7316 - The target's debug interface does not support thread exit
7317 events, and so we have no idea whatsoever if the previously
7318 stepping thread is still alive. For that reason, we need to
7319 synchronously query the target now. */
2adfaa28 7320
00431a78 7321 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7322 {
7323 if (debug_infrun)
7324 fprintf_unfiltered (gdb_stdlog,
7325 "infrun: not resuming previously "
7326 "stepped thread, it has vanished\n");
7327
00431a78 7328 delete_thread (tp);
2ac7589c 7329 return 0;
c447ac0b 7330 }
2ac7589c
PA
7331
7332 if (debug_infrun)
7333 fprintf_unfiltered (gdb_stdlog,
7334 "infrun: resuming previously stepped thread\n");
7335
7336 reset_ecs (ecs, tp);
00431a78 7337 switch_to_thread (tp);
2ac7589c 7338
f2ffa92b 7339 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7340 frame = get_current_frame ();
2ac7589c
PA
7341
7342 /* If the PC of the thread we were trying to single-step has
7343 changed, then that thread has trapped or been signaled, but the
7344 event has not been reported to GDB yet. Re-poll the target
7345 looking for this particular thread's event (i.e. temporarily
7346 enable schedlock) by:
7347
7348 - setting a break at the current PC
7349 - resuming that particular thread, only (by setting trap
7350 expected)
7351
7352 This prevents us continuously moving the single-step breakpoint
7353 forward, one instruction at a time, overstepping. */
7354
f2ffa92b 7355 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7356 {
7357 ptid_t resume_ptid;
7358
7359 if (debug_infrun)
7360 fprintf_unfiltered (gdb_stdlog,
7361 "infrun: expected thread advanced also (%s -> %s)\n",
7362 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7363 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7364
7365 /* Clear the info of the previous step-over, as it's no longer
7366 valid (if the thread was trying to step over a breakpoint, it
7367 has already succeeded). It's what keep_going would do too,
7368 if we called it. Do this before trying to insert the sss
7369 breakpoint, otherwise if we were previously trying to step
7370 over this exact address in another thread, the breakpoint is
7371 skipped. */
7372 clear_step_over_info ();
7373 tp->control.trap_expected = 0;
7374
7375 insert_single_step_breakpoint (get_frame_arch (frame),
7376 get_frame_address_space (frame),
f2ffa92b 7377 tp->suspend.stop_pc);
2ac7589c 7378
372316f1 7379 tp->resumed = 1;
fbea99ea 7380 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7381 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7382 }
7383 else
7384 {
7385 if (debug_infrun)
7386 fprintf_unfiltered (gdb_stdlog,
7387 "infrun: expected thread still hasn't advanced\n");
7388
7389 keep_going_pass_signal (ecs);
7390 }
7391 return 1;
c447ac0b
PA
7392}
7393
8b061563
PA
7394/* Is thread TP in the middle of (software or hardware)
7395 single-stepping? (Note the result of this function must never be
7396 passed directly as target_resume's STEP parameter.) */
104c1213 7397
a289b8f6 7398static int
b3444185 7399currently_stepping (struct thread_info *tp)
a7212384 7400{
8358c15c
JK
7401 return ((tp->control.step_range_end
7402 && tp->control.step_resume_breakpoint == NULL)
7403 || tp->control.trap_expected
af48d08f 7404 || tp->stepped_breakpoint
8358c15c 7405 || bpstat_should_step ());
a7212384
UW
7406}
7407
b2175913
MS
7408/* Inferior has stepped into a subroutine call with source code that
7409 we should not step over. Do step to the first line of code in
7410 it. */
c2c6d25f
JM
7411
7412static void
568d6575
UW
7413handle_step_into_function (struct gdbarch *gdbarch,
7414 struct execution_control_state *ecs)
c2c6d25f 7415{
7e324e48
GB
7416 fill_in_stop_func (gdbarch, ecs);
7417
f2ffa92b
PA
7418 compunit_symtab *cust
7419 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7420 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7421 ecs->stop_func_start
7422 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7423
51abb421 7424 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7425 /* Use the step_resume_break to step until the end of the prologue,
7426 even if that involves jumps (as it seems to on the vax under
7427 4.2). */
7428 /* If the prologue ends in the middle of a source line, continue to
7429 the end of that source line (if it is still within the function).
7430 Otherwise, just go to end of prologue. */
2afb61aa
PA
7431 if (stop_func_sal.end
7432 && stop_func_sal.pc != ecs->stop_func_start
7433 && stop_func_sal.end < ecs->stop_func_end)
7434 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7435
2dbd5e30
KB
7436 /* Architectures which require breakpoint adjustment might not be able
7437 to place a breakpoint at the computed address. If so, the test
7438 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7439 ecs->stop_func_start to an address at which a breakpoint may be
7440 legitimately placed.
8fb3e588 7441
2dbd5e30
KB
7442 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7443 made, GDB will enter an infinite loop when stepping through
7444 optimized code consisting of VLIW instructions which contain
7445 subinstructions corresponding to different source lines. On
7446 FR-V, it's not permitted to place a breakpoint on any but the
7447 first subinstruction of a VLIW instruction. When a breakpoint is
7448 set, GDB will adjust the breakpoint address to the beginning of
7449 the VLIW instruction. Thus, we need to make the corresponding
7450 adjustment here when computing the stop address. */
8fb3e588 7451
568d6575 7452 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7453 {
7454 ecs->stop_func_start
568d6575 7455 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7456 ecs->stop_func_start);
2dbd5e30
KB
7457 }
7458
f2ffa92b 7459 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7460 {
7461 /* We are already there: stop now. */
bdc36728 7462 end_stepping_range (ecs);
c2c6d25f
JM
7463 return;
7464 }
7465 else
7466 {
7467 /* Put the step-breakpoint there and go until there. */
51abb421 7468 symtab_and_line sr_sal;
c2c6d25f
JM
7469 sr_sal.pc = ecs->stop_func_start;
7470 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7471 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7472
c2c6d25f 7473 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7474 some machines the prologue is where the new fp value is
7475 established. */
a6d9a66e 7476 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7477
7478 /* And make sure stepping stops right away then. */
16c381f0
JK
7479 ecs->event_thread->control.step_range_end
7480 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7481 }
7482 keep_going (ecs);
7483}
d4f3574e 7484
b2175913
MS
7485/* Inferior has stepped backward into a subroutine call with source
7486 code that we should not step over. Do step to the beginning of the
7487 last line of code in it. */
7488
7489static void
568d6575
UW
7490handle_step_into_function_backward (struct gdbarch *gdbarch,
7491 struct execution_control_state *ecs)
b2175913 7492{
43f3e411 7493 struct compunit_symtab *cust;
167e4384 7494 struct symtab_and_line stop_func_sal;
b2175913 7495
7e324e48
GB
7496 fill_in_stop_func (gdbarch, ecs);
7497
f2ffa92b 7498 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7499 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7500 ecs->stop_func_start
7501 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7502
f2ffa92b 7503 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7504
7505 /* OK, we're just going to keep stepping here. */
f2ffa92b 7506 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7507 {
7508 /* We're there already. Just stop stepping now. */
bdc36728 7509 end_stepping_range (ecs);
b2175913
MS
7510 }
7511 else
7512 {
7513 /* Else just reset the step range and keep going.
7514 No step-resume breakpoint, they don't work for
7515 epilogues, which can have multiple entry paths. */
16c381f0
JK
7516 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7517 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7518 keep_going (ecs);
7519 }
7520 return;
7521}
7522
d3169d93 7523/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7524 This is used to both functions and to skip over code. */
7525
7526static void
2c03e5be
PA
7527insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7528 struct symtab_and_line sr_sal,
7529 struct frame_id sr_id,
7530 enum bptype sr_type)
44cbf7b5 7531{
611c83ae
PA
7532 /* There should never be more than one step-resume or longjmp-resume
7533 breakpoint per thread, so we should never be setting a new
44cbf7b5 7534 step_resume_breakpoint when one is already active. */
8358c15c 7535 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7536 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7537
7538 if (debug_infrun)
7539 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7540 "infrun: inserting step-resume breakpoint at %s\n",
7541 paddress (gdbarch, sr_sal.pc));
d3169d93 7542
8358c15c 7543 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7544 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7545}
7546
9da8c2a0 7547void
2c03e5be
PA
7548insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7549 struct symtab_and_line sr_sal,
7550 struct frame_id sr_id)
7551{
7552 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7553 sr_sal, sr_id,
7554 bp_step_resume);
44cbf7b5 7555}
7ce450bd 7556
2c03e5be
PA
7557/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7558 This is used to skip a potential signal handler.
7ce450bd 7559
14e60db5
DJ
7560 This is called with the interrupted function's frame. The signal
7561 handler, when it returns, will resume the interrupted function at
7562 RETURN_FRAME.pc. */
d303a6c7
AC
7563
7564static void
2c03e5be 7565insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7566{
f4c1edd8 7567 gdb_assert (return_frame != NULL);
d303a6c7 7568
51abb421
PA
7569 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7570
7571 symtab_and_line sr_sal;
568d6575 7572 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7573 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7574 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7575
2c03e5be
PA
7576 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7577 get_stack_frame_id (return_frame),
7578 bp_hp_step_resume);
d303a6c7
AC
7579}
7580
2c03e5be
PA
7581/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7582 is used to skip a function after stepping into it (for "next" or if
7583 the called function has no debugging information).
14e60db5
DJ
7584
7585 The current function has almost always been reached by single
7586 stepping a call or return instruction. NEXT_FRAME belongs to the
7587 current function, and the breakpoint will be set at the caller's
7588 resume address.
7589
7590 This is a separate function rather than reusing
2c03e5be 7591 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7592 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7593 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7594
7595static void
7596insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7597{
14e60db5
DJ
7598 /* We shouldn't have gotten here if we don't know where the call site
7599 is. */
c7ce8faa 7600 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7601
51abb421 7602 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7603
51abb421 7604 symtab_and_line sr_sal;
c7ce8faa
DJ
7605 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7606 frame_unwind_caller_pc (next_frame));
14e60db5 7607 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7608 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7609
a6d9a66e 7610 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7611 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7612}
7613
611c83ae
PA
7614/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7615 new breakpoint at the target of a jmp_buf. The handling of
7616 longjmp-resume uses the same mechanisms used for handling
7617 "step-resume" breakpoints. */
7618
7619static void
a6d9a66e 7620insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7621{
e81a37f7
TT
7622 /* There should never be more than one longjmp-resume breakpoint per
7623 thread, so we should never be setting a new
611c83ae 7624 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7625 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7626
7627 if (debug_infrun)
7628 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7629 "infrun: inserting longjmp-resume breakpoint at %s\n",
7630 paddress (gdbarch, pc));
611c83ae 7631
e81a37f7 7632 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7633 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7634}
7635
186c406b
TT
7636/* Insert an exception resume breakpoint. TP is the thread throwing
7637 the exception. The block B is the block of the unwinder debug hook
7638 function. FRAME is the frame corresponding to the call to this
7639 function. SYM is the symbol of the function argument holding the
7640 target PC of the exception. */
7641
7642static void
7643insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7644 const struct block *b,
186c406b
TT
7645 struct frame_info *frame,
7646 struct symbol *sym)
7647{
a70b8144 7648 try
186c406b 7649 {
63e43d3a 7650 struct block_symbol vsym;
186c406b
TT
7651 struct value *value;
7652 CORE_ADDR handler;
7653 struct breakpoint *bp;
7654
987012b8 7655 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7656 b, VAR_DOMAIN);
63e43d3a 7657 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7658 /* If the value was optimized out, revert to the old behavior. */
7659 if (! value_optimized_out (value))
7660 {
7661 handler = value_as_address (value);
7662
7663 if (debug_infrun)
7664 fprintf_unfiltered (gdb_stdlog,
7665 "infrun: exception resume at %lx\n",
7666 (unsigned long) handler);
7667
7668 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7669 handler,
7670 bp_exception_resume).release ();
c70a6932
JK
7671
7672 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7673 frame = NULL;
7674
5d5658a1 7675 bp->thread = tp->global_num;
186c406b
TT
7676 inferior_thread ()->control.exception_resume_breakpoint = bp;
7677 }
7678 }
230d2906 7679 catch (const gdb_exception_error &e)
492d29ea
PA
7680 {
7681 /* We want to ignore errors here. */
7682 }
186c406b
TT
7683}
7684
28106bc2
SDJ
7685/* A helper for check_exception_resume that sets an
7686 exception-breakpoint based on a SystemTap probe. */
7687
7688static void
7689insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7690 const struct bound_probe *probe,
28106bc2
SDJ
7691 struct frame_info *frame)
7692{
7693 struct value *arg_value;
7694 CORE_ADDR handler;
7695 struct breakpoint *bp;
7696
7697 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7698 if (!arg_value)
7699 return;
7700
7701 handler = value_as_address (arg_value);
7702
7703 if (debug_infrun)
7704 fprintf_unfiltered (gdb_stdlog,
7705 "infrun: exception resume at %s\n",
6bac7473 7706 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7707 handler));
7708
7709 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7710 handler, bp_exception_resume).release ();
5d5658a1 7711 bp->thread = tp->global_num;
28106bc2
SDJ
7712 inferior_thread ()->control.exception_resume_breakpoint = bp;
7713}
7714
186c406b
TT
7715/* This is called when an exception has been intercepted. Check to
7716 see whether the exception's destination is of interest, and if so,
7717 set an exception resume breakpoint there. */
7718
7719static void
7720check_exception_resume (struct execution_control_state *ecs,
28106bc2 7721 struct frame_info *frame)
186c406b 7722{
729662a5 7723 struct bound_probe probe;
28106bc2
SDJ
7724 struct symbol *func;
7725
7726 /* First see if this exception unwinding breakpoint was set via a
7727 SystemTap probe point. If so, the probe has two arguments: the
7728 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7729 set a breakpoint there. */
6bac7473 7730 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7731 if (probe.prob)
28106bc2 7732 {
729662a5 7733 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7734 return;
7735 }
7736
7737 func = get_frame_function (frame);
7738 if (!func)
7739 return;
186c406b 7740
a70b8144 7741 try
186c406b 7742 {
3977b71f 7743 const struct block *b;
8157b174 7744 struct block_iterator iter;
186c406b
TT
7745 struct symbol *sym;
7746 int argno = 0;
7747
7748 /* The exception breakpoint is a thread-specific breakpoint on
7749 the unwinder's debug hook, declared as:
7750
7751 void _Unwind_DebugHook (void *cfa, void *handler);
7752
7753 The CFA argument indicates the frame to which control is
7754 about to be transferred. HANDLER is the destination PC.
7755
7756 We ignore the CFA and set a temporary breakpoint at HANDLER.
7757 This is not extremely efficient but it avoids issues in gdb
7758 with computing the DWARF CFA, and it also works even in weird
7759 cases such as throwing an exception from inside a signal
7760 handler. */
7761
7762 b = SYMBOL_BLOCK_VALUE (func);
7763 ALL_BLOCK_SYMBOLS (b, iter, sym)
7764 {
7765 if (!SYMBOL_IS_ARGUMENT (sym))
7766 continue;
7767
7768 if (argno == 0)
7769 ++argno;
7770 else
7771 {
7772 insert_exception_resume_breakpoint (ecs->event_thread,
7773 b, frame, sym);
7774 break;
7775 }
7776 }
7777 }
230d2906 7778 catch (const gdb_exception_error &e)
492d29ea
PA
7779 {
7780 }
186c406b
TT
7781}
7782
104c1213 7783static void
22bcd14b 7784stop_waiting (struct execution_control_state *ecs)
104c1213 7785{
527159b7 7786 if (debug_infrun)
22bcd14b 7787 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7788
cd0fc7c3
SS
7789 /* Let callers know we don't want to wait for the inferior anymore. */
7790 ecs->wait_some_more = 0;
fbea99ea
PA
7791
7792 /* If all-stop, but the target is always in non-stop mode, stop all
7793 threads now that we're presenting the stop to the user. */
7794 if (!non_stop && target_is_non_stop_p ())
7795 stop_all_threads ();
cd0fc7c3
SS
7796}
7797
4d9d9d04
PA
7798/* Like keep_going, but passes the signal to the inferior, even if the
7799 signal is set to nopass. */
d4f3574e
SS
7800
7801static void
4d9d9d04 7802keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7803{
d7e15655 7804 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7805 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7806
d4f3574e 7807 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7808 ecs->event_thread->prev_pc
00431a78 7809 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7810
4d9d9d04 7811 if (ecs->event_thread->control.trap_expected)
d4f3574e 7812 {
4d9d9d04
PA
7813 struct thread_info *tp = ecs->event_thread;
7814
7815 if (debug_infrun)
7816 fprintf_unfiltered (gdb_stdlog,
7817 "infrun: %s has trap_expected set, "
7818 "resuming to collect trap\n",
a068643d 7819 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7820
a9ba6bae
PA
7821 /* We haven't yet gotten our trap, and either: intercepted a
7822 non-signal event (e.g., a fork); or took a signal which we
7823 are supposed to pass through to the inferior. Simply
7824 continue. */
64ce06e4 7825 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7826 }
372316f1
PA
7827 else if (step_over_info_valid_p ())
7828 {
7829 /* Another thread is stepping over a breakpoint in-line. If
7830 this thread needs a step-over too, queue the request. In
7831 either case, this resume must be deferred for later. */
7832 struct thread_info *tp = ecs->event_thread;
7833
7834 if (ecs->hit_singlestep_breakpoint
7835 || thread_still_needs_step_over (tp))
7836 {
7837 if (debug_infrun)
7838 fprintf_unfiltered (gdb_stdlog,
7839 "infrun: step-over already in progress: "
7840 "step-over for %s deferred\n",
a068643d 7841 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7842 thread_step_over_chain_enqueue (tp);
7843 }
7844 else
7845 {
7846 if (debug_infrun)
7847 fprintf_unfiltered (gdb_stdlog,
7848 "infrun: step-over in progress: "
7849 "resume of %s deferred\n",
a068643d 7850 target_pid_to_str (tp->ptid).c_str ());
372316f1 7851 }
372316f1 7852 }
d4f3574e
SS
7853 else
7854 {
31e77af2 7855 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7856 int remove_bp;
7857 int remove_wps;
8d297bbf 7858 step_over_what step_what;
31e77af2 7859
d4f3574e 7860 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7861 anyway (if we got a signal, the user asked it be passed to
7862 the child)
7863 -- or --
7864 We got our expected trap, but decided we should resume from
7865 it.
d4f3574e 7866
a9ba6bae 7867 We're going to run this baby now!
d4f3574e 7868
c36b740a
VP
7869 Note that insert_breakpoints won't try to re-insert
7870 already inserted breakpoints. Therefore, we don't
7871 care if breakpoints were already inserted, or not. */
a9ba6bae 7872
31e77af2
PA
7873 /* If we need to step over a breakpoint, and we're not using
7874 displaced stepping to do so, insert all breakpoints
7875 (watchpoints, etc.) but the one we're stepping over, step one
7876 instruction, and then re-insert the breakpoint when that step
7877 is finished. */
963f9c80 7878
6c4cfb24
PA
7879 step_what = thread_still_needs_step_over (ecs->event_thread);
7880
963f9c80 7881 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7882 || (step_what & STEP_OVER_BREAKPOINT));
7883 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7884
cb71640d
PA
7885 /* We can't use displaced stepping if we need to step past a
7886 watchpoint. The instruction copied to the scratch pad would
7887 still trigger the watchpoint. */
7888 if (remove_bp
3fc8eb30 7889 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7890 {
a01bda52 7891 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7892 regcache_read_pc (regcache), remove_wps,
7893 ecs->event_thread->global_num);
45e8c884 7894 }
963f9c80 7895 else if (remove_wps)
21edc42f 7896 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7897
7898 /* If we now need to do an in-line step-over, we need to stop
7899 all other threads. Note this must be done before
7900 insert_breakpoints below, because that removes the breakpoint
7901 we're about to step over, otherwise other threads could miss
7902 it. */
fbea99ea 7903 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7904 stop_all_threads ();
abbb1732 7905
31e77af2 7906 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7907 try
31e77af2
PA
7908 {
7909 insert_breakpoints ();
7910 }
230d2906 7911 catch (const gdb_exception_error &e)
31e77af2
PA
7912 {
7913 exception_print (gdb_stderr, e);
22bcd14b 7914 stop_waiting (ecs);
bdf2a94a 7915 clear_step_over_info ();
31e77af2 7916 return;
d4f3574e
SS
7917 }
7918
963f9c80 7919 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7920
64ce06e4 7921 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7922 }
7923
488f131b 7924 prepare_to_wait (ecs);
d4f3574e
SS
7925}
7926
4d9d9d04
PA
7927/* Called when we should continue running the inferior, because the
7928 current event doesn't cause a user visible stop. This does the
7929 resuming part; waiting for the next event is done elsewhere. */
7930
7931static void
7932keep_going (struct execution_control_state *ecs)
7933{
7934 if (ecs->event_thread->control.trap_expected
7935 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7936 ecs->event_thread->control.trap_expected = 0;
7937
7938 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7939 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7940 keep_going_pass_signal (ecs);
7941}
7942
104c1213
JM
7943/* This function normally comes after a resume, before
7944 handle_inferior_event exits. It takes care of any last bits of
7945 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7946
104c1213
JM
7947static void
7948prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7949{
527159b7 7950 if (debug_infrun)
8a9de0e4 7951 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7952
104c1213 7953 ecs->wait_some_more = 1;
0b333c5e
PA
7954
7955 if (!target_is_async_p ())
7956 mark_infrun_async_event_handler ();
c906108c 7957}
11cf8741 7958
fd664c91 7959/* We are done with the step range of a step/next/si/ni command.
b57bacec 7960 Called once for each n of a "step n" operation. */
fd664c91
PA
7961
7962static void
bdc36728 7963end_stepping_range (struct execution_control_state *ecs)
fd664c91 7964{
bdc36728 7965 ecs->event_thread->control.stop_step = 1;
bdc36728 7966 stop_waiting (ecs);
fd664c91
PA
7967}
7968
33d62d64
JK
7969/* Several print_*_reason functions to print why the inferior has stopped.
7970 We always print something when the inferior exits, or receives a signal.
7971 The rest of the cases are dealt with later on in normal_stop and
7972 print_it_typical. Ideally there should be a call to one of these
7973 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7974 stop_waiting is called.
33d62d64 7975
fd664c91
PA
7976 Note that we don't call these directly, instead we delegate that to
7977 the interpreters, through observers. Interpreters then call these
7978 with whatever uiout is right. */
33d62d64 7979
fd664c91
PA
7980void
7981print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7982{
fd664c91 7983 /* For CLI-like interpreters, print nothing. */
33d62d64 7984
112e8700 7985 if (uiout->is_mi_like_p ())
fd664c91 7986 {
112e8700 7987 uiout->field_string ("reason",
fd664c91
PA
7988 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7989 }
7990}
33d62d64 7991
fd664c91
PA
7992void
7993print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7994{
33d62d64 7995 annotate_signalled ();
112e8700
SM
7996 if (uiout->is_mi_like_p ())
7997 uiout->field_string
7998 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7999 uiout->text ("\nProgram terminated with signal ");
33d62d64 8000 annotate_signal_name ();
112e8700 8001 uiout->field_string ("signal-name",
2ea28649 8002 gdb_signal_to_name (siggnal));
33d62d64 8003 annotate_signal_name_end ();
112e8700 8004 uiout->text (", ");
33d62d64 8005 annotate_signal_string ();
112e8700 8006 uiout->field_string ("signal-meaning",
2ea28649 8007 gdb_signal_to_string (siggnal));
33d62d64 8008 annotate_signal_string_end ();
112e8700
SM
8009 uiout->text (".\n");
8010 uiout->text ("The program no longer exists.\n");
33d62d64
JK
8011}
8012
fd664c91
PA
8013void
8014print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 8015{
fda326dd 8016 struct inferior *inf = current_inferior ();
a068643d 8017 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 8018
33d62d64
JK
8019 annotate_exited (exitstatus);
8020 if (exitstatus)
8021 {
112e8700
SM
8022 if (uiout->is_mi_like_p ())
8023 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
8024 std::string exit_code_str
8025 = string_printf ("0%o", (unsigned int) exitstatus);
8026 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8027 plongest (inf->num), pidstr.c_str (),
8028 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8029 }
8030 else
11cf8741 8031 {
112e8700
SM
8032 if (uiout->is_mi_like_p ())
8033 uiout->field_string
8034 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8035 uiout->message ("[Inferior %s (%s) exited normally]\n",
8036 plongest (inf->num), pidstr.c_str ());
33d62d64 8037 }
33d62d64
JK
8038}
8039
012b3a21
WT
8040/* Some targets/architectures can do extra processing/display of
8041 segmentation faults. E.g., Intel MPX boundary faults.
8042 Call the architecture dependent function to handle the fault. */
8043
8044static void
8045handle_segmentation_fault (struct ui_out *uiout)
8046{
8047 struct regcache *regcache = get_current_regcache ();
ac7936df 8048 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
8049
8050 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8051 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8052}
8053
fd664c91
PA
8054void
8055print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8056{
f303dbd6
PA
8057 struct thread_info *thr = inferior_thread ();
8058
33d62d64
JK
8059 annotate_signal ();
8060
112e8700 8061 if (uiout->is_mi_like_p ())
f303dbd6
PA
8062 ;
8063 else if (show_thread_that_caused_stop ())
33d62d64 8064 {
f303dbd6 8065 const char *name;
33d62d64 8066
112e8700 8067 uiout->text ("\nThread ");
33eca680 8068 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8069
8070 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8071 if (name != NULL)
8072 {
112e8700 8073 uiout->text (" \"");
33eca680 8074 uiout->field_string ("name", name);
112e8700 8075 uiout->text ("\"");
f303dbd6 8076 }
33d62d64 8077 }
f303dbd6 8078 else
112e8700 8079 uiout->text ("\nProgram");
f303dbd6 8080
112e8700
SM
8081 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8082 uiout->text (" stopped");
33d62d64
JK
8083 else
8084 {
112e8700 8085 uiout->text (" received signal ");
8b93c638 8086 annotate_signal_name ();
112e8700
SM
8087 if (uiout->is_mi_like_p ())
8088 uiout->field_string
8089 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8090 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8091 annotate_signal_name_end ();
112e8700 8092 uiout->text (", ");
8b93c638 8093 annotate_signal_string ();
112e8700 8094 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8095
8096 if (siggnal == GDB_SIGNAL_SEGV)
8097 handle_segmentation_fault (uiout);
8098
8b93c638 8099 annotate_signal_string_end ();
33d62d64 8100 }
112e8700 8101 uiout->text (".\n");
33d62d64 8102}
252fbfc8 8103
fd664c91
PA
8104void
8105print_no_history_reason (struct ui_out *uiout)
33d62d64 8106{
112e8700 8107 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8108}
43ff13b4 8109
0c7e1a46
PA
8110/* Print current location without a level number, if we have changed
8111 functions or hit a breakpoint. Print source line if we have one.
8112 bpstat_print contains the logic deciding in detail what to print,
8113 based on the event(s) that just occurred. */
8114
243a9253
PA
8115static void
8116print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8117{
8118 int bpstat_ret;
f486487f 8119 enum print_what source_flag;
0c7e1a46
PA
8120 int do_frame_printing = 1;
8121 struct thread_info *tp = inferior_thread ();
8122
8123 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8124 switch (bpstat_ret)
8125 {
8126 case PRINT_UNKNOWN:
8127 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8128 should) carry around the function and does (or should) use
8129 that when doing a frame comparison. */
8130 if (tp->control.stop_step
8131 && frame_id_eq (tp->control.step_frame_id,
8132 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8133 && (tp->control.step_start_function
8134 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8135 {
8136 /* Finished step, just print source line. */
8137 source_flag = SRC_LINE;
8138 }
8139 else
8140 {
8141 /* Print location and source line. */
8142 source_flag = SRC_AND_LOC;
8143 }
8144 break;
8145 case PRINT_SRC_AND_LOC:
8146 /* Print location and source line. */
8147 source_flag = SRC_AND_LOC;
8148 break;
8149 case PRINT_SRC_ONLY:
8150 source_flag = SRC_LINE;
8151 break;
8152 case PRINT_NOTHING:
8153 /* Something bogus. */
8154 source_flag = SRC_LINE;
8155 do_frame_printing = 0;
8156 break;
8157 default:
8158 internal_error (__FILE__, __LINE__, _("Unknown value."));
8159 }
8160
8161 /* The behavior of this routine with respect to the source
8162 flag is:
8163 SRC_LINE: Print only source line
8164 LOCATION: Print only location
8165 SRC_AND_LOC: Print location and source line. */
8166 if (do_frame_printing)
8167 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8168}
8169
243a9253
PA
8170/* See infrun.h. */
8171
8172void
4c7d57e7 8173print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8174{
243a9253 8175 struct target_waitstatus last;
243a9253
PA
8176 struct thread_info *tp;
8177
5b6d1e4f 8178 get_last_target_status (nullptr, nullptr, &last);
243a9253 8179
67ad9399
TT
8180 {
8181 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8182
67ad9399 8183 print_stop_location (&last);
243a9253 8184
67ad9399 8185 /* Display the auto-display expressions. */
4c7d57e7
TT
8186 if (displays)
8187 do_displays ();
67ad9399 8188 }
243a9253
PA
8189
8190 tp = inferior_thread ();
8191 if (tp->thread_fsm != NULL
46e3ed7f 8192 && tp->thread_fsm->finished_p ())
243a9253
PA
8193 {
8194 struct return_value_info *rv;
8195
46e3ed7f 8196 rv = tp->thread_fsm->return_value ();
243a9253
PA
8197 if (rv != NULL)
8198 print_return_value (uiout, rv);
8199 }
0c7e1a46
PA
8200}
8201
388a7084
PA
8202/* See infrun.h. */
8203
8204void
8205maybe_remove_breakpoints (void)
8206{
8207 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8208 {
8209 if (remove_breakpoints ())
8210 {
223ffa71 8211 target_terminal::ours_for_output ();
388a7084
PA
8212 printf_filtered (_("Cannot remove breakpoints because "
8213 "program is no longer writable.\nFurther "
8214 "execution is probably impossible.\n"));
8215 }
8216 }
8217}
8218
4c2f2a79
PA
8219/* The execution context that just caused a normal stop. */
8220
8221struct stop_context
8222{
2d844eaf
TT
8223 stop_context ();
8224 ~stop_context ();
8225
8226 DISABLE_COPY_AND_ASSIGN (stop_context);
8227
8228 bool changed () const;
8229
4c2f2a79
PA
8230 /* The stop ID. */
8231 ULONGEST stop_id;
c906108c 8232
4c2f2a79 8233 /* The event PTID. */
c906108c 8234
4c2f2a79
PA
8235 ptid_t ptid;
8236
8237 /* If stopp for a thread event, this is the thread that caused the
8238 stop. */
8239 struct thread_info *thread;
8240
8241 /* The inferior that caused the stop. */
8242 int inf_num;
8243};
8244
2d844eaf 8245/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8246 takes a strong reference to the thread. */
8247
2d844eaf 8248stop_context::stop_context ()
4c2f2a79 8249{
2d844eaf
TT
8250 stop_id = get_stop_id ();
8251 ptid = inferior_ptid;
8252 inf_num = current_inferior ()->num;
4c2f2a79 8253
d7e15655 8254 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8255 {
8256 /* Take a strong reference so that the thread can't be deleted
8257 yet. */
2d844eaf
TT
8258 thread = inferior_thread ();
8259 thread->incref ();
4c2f2a79
PA
8260 }
8261 else
2d844eaf 8262 thread = NULL;
4c2f2a79
PA
8263}
8264
8265/* Release a stop context previously created with save_stop_context.
8266 Releases the strong reference to the thread as well. */
8267
2d844eaf 8268stop_context::~stop_context ()
4c2f2a79 8269{
2d844eaf
TT
8270 if (thread != NULL)
8271 thread->decref ();
4c2f2a79
PA
8272}
8273
8274/* Return true if the current context no longer matches the saved stop
8275 context. */
8276
2d844eaf
TT
8277bool
8278stop_context::changed () const
8279{
8280 if (ptid != inferior_ptid)
8281 return true;
8282 if (inf_num != current_inferior ()->num)
8283 return true;
8284 if (thread != NULL && thread->state != THREAD_STOPPED)
8285 return true;
8286 if (get_stop_id () != stop_id)
8287 return true;
8288 return false;
4c2f2a79
PA
8289}
8290
8291/* See infrun.h. */
8292
8293int
96baa820 8294normal_stop (void)
c906108c 8295{
73b65bb0 8296 struct target_waitstatus last;
73b65bb0 8297
5b6d1e4f 8298 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8299
4c2f2a79
PA
8300 new_stop_id ();
8301
29f49a6a
PA
8302 /* If an exception is thrown from this point on, make sure to
8303 propagate GDB's knowledge of the executing state to the
8304 frontend/user running state. A QUIT is an easy exception to see
8305 here, so do this before any filtered output. */
731f534f 8306
5b6d1e4f 8307 ptid_t finish_ptid = null_ptid;
731f534f 8308
c35b1492 8309 if (!non_stop)
5b6d1e4f 8310 finish_ptid = minus_one_ptid;
e1316e60
PA
8311 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8312 || last.kind == TARGET_WAITKIND_EXITED)
8313 {
8314 /* On some targets, we may still have live threads in the
8315 inferior when we get a process exit event. E.g., for
8316 "checkpoint", when the current checkpoint/fork exits,
8317 linux-fork.c automatically switches to another fork from
8318 within target_mourn_inferior. */
731f534f 8319 if (inferior_ptid != null_ptid)
5b6d1e4f 8320 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8321 }
8322 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8323 finish_ptid = inferior_ptid;
8324
8325 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8326 if (finish_ptid != null_ptid)
8327 {
8328 maybe_finish_thread_state.emplace
8329 (user_visible_resume_target (finish_ptid), finish_ptid);
8330 }
29f49a6a 8331
b57bacec
PA
8332 /* As we're presenting a stop, and potentially removing breakpoints,
8333 update the thread list so we can tell whether there are threads
8334 running on the target. With target remote, for example, we can
8335 only learn about new threads when we explicitly update the thread
8336 list. Do this before notifying the interpreters about signal
8337 stops, end of stepping ranges, etc., so that the "new thread"
8338 output is emitted before e.g., "Program received signal FOO",
8339 instead of after. */
8340 update_thread_list ();
8341
8342 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8343 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8344
c906108c
SS
8345 /* As with the notification of thread events, we want to delay
8346 notifying the user that we've switched thread context until
8347 the inferior actually stops.
8348
73b65bb0
DJ
8349 There's no point in saying anything if the inferior has exited.
8350 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8351 "received a signal".
8352
8353 Also skip saying anything in non-stop mode. In that mode, as we
8354 don't want GDB to switch threads behind the user's back, to avoid
8355 races where the user is typing a command to apply to thread x,
8356 but GDB switches to thread y before the user finishes entering
8357 the command, fetch_inferior_event installs a cleanup to restore
8358 the current thread back to the thread the user had selected right
8359 after this event is handled, so we're not really switching, only
8360 informing of a stop. */
4f8d22e3 8361 if (!non_stop
731f534f 8362 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8363 && target_has_execution
8364 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8365 && last.kind != TARGET_WAITKIND_EXITED
8366 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8367 {
0e454242 8368 SWITCH_THRU_ALL_UIS ()
3b12939d 8369 {
223ffa71 8370 target_terminal::ours_for_output ();
3b12939d 8371 printf_filtered (_("[Switching to %s]\n"),
a068643d 8372 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8373 annotate_thread_changed ();
8374 }
39f77062 8375 previous_inferior_ptid = inferior_ptid;
c906108c 8376 }
c906108c 8377
0e5bf2a8
PA
8378 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8379 {
0e454242 8380 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8381 if (current_ui->prompt_state == PROMPT_BLOCKED)
8382 {
223ffa71 8383 target_terminal::ours_for_output ();
3b12939d
PA
8384 printf_filtered (_("No unwaited-for children left.\n"));
8385 }
0e5bf2a8
PA
8386 }
8387
b57bacec 8388 /* Note: this depends on the update_thread_list call above. */
388a7084 8389 maybe_remove_breakpoints ();
c906108c 8390
c906108c
SS
8391 /* If an auto-display called a function and that got a signal,
8392 delete that auto-display to avoid an infinite recursion. */
8393
8394 if (stopped_by_random_signal)
8395 disable_current_display ();
8396
0e454242 8397 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8398 {
8399 async_enable_stdin ();
8400 }
c906108c 8401
388a7084 8402 /* Let the user/frontend see the threads as stopped. */
731f534f 8403 maybe_finish_thread_state.reset ();
388a7084
PA
8404
8405 /* Select innermost stack frame - i.e., current frame is frame 0,
8406 and current location is based on that. Handle the case where the
8407 dummy call is returning after being stopped. E.g. the dummy call
8408 previously hit a breakpoint. (If the dummy call returns
8409 normally, we won't reach here.) Do this before the stop hook is
8410 run, so that it doesn't get to see the temporary dummy frame,
8411 which is not where we'll present the stop. */
8412 if (has_stack_frames ())
8413 {
8414 if (stop_stack_dummy == STOP_STACK_DUMMY)
8415 {
8416 /* Pop the empty frame that contains the stack dummy. This
8417 also restores inferior state prior to the call (struct
8418 infcall_suspend_state). */
8419 struct frame_info *frame = get_current_frame ();
8420
8421 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8422 frame_pop (frame);
8423 /* frame_pop calls reinit_frame_cache as the last thing it
8424 does which means there's now no selected frame. */
8425 }
8426
8427 select_frame (get_current_frame ());
8428
8429 /* Set the current source location. */
8430 set_current_sal_from_frame (get_current_frame ());
8431 }
dd7e2d2b
PA
8432
8433 /* Look up the hook_stop and run it (CLI internally handles problem
8434 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8435 if (stop_command != NULL)
8436 {
2d844eaf 8437 stop_context saved_context;
4c2f2a79 8438
a70b8144 8439 try
bf469271
PA
8440 {
8441 execute_cmd_pre_hook (stop_command);
8442 }
230d2906 8443 catch (const gdb_exception &ex)
bf469271
PA
8444 {
8445 exception_fprintf (gdb_stderr, ex,
8446 "Error while running hook_stop:\n");
8447 }
4c2f2a79
PA
8448
8449 /* If the stop hook resumes the target, then there's no point in
8450 trying to notify about the previous stop; its context is
8451 gone. Likewise if the command switches thread or inferior --
8452 the observers would print a stop for the wrong
8453 thread/inferior. */
2d844eaf
TT
8454 if (saved_context.changed ())
8455 return 1;
4c2f2a79 8456 }
dd7e2d2b 8457
388a7084
PA
8458 /* Notify observers about the stop. This is where the interpreters
8459 print the stop event. */
d7e15655 8460 if (inferior_ptid != null_ptid)
76727919 8461 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8462 stop_print_frame);
8463 else
76727919 8464 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8465
243a9253
PA
8466 annotate_stopped ();
8467
48844aa6
PA
8468 if (target_has_execution)
8469 {
8470 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8471 && last.kind != TARGET_WAITKIND_EXITED
8472 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8473 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8474 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8475 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8476 }
6c95b8df
PA
8477
8478 /* Try to get rid of automatically added inferiors that are no
8479 longer needed. Keeping those around slows down things linearly.
8480 Note that this never removes the current inferior. */
8481 prune_inferiors ();
4c2f2a79
PA
8482
8483 return 0;
c906108c 8484}
c906108c 8485\f
c5aa993b 8486int
96baa820 8487signal_stop_state (int signo)
c906108c 8488{
d6b48e9c 8489 return signal_stop[signo];
c906108c
SS
8490}
8491
c5aa993b 8492int
96baa820 8493signal_print_state (int signo)
c906108c
SS
8494{
8495 return signal_print[signo];
8496}
8497
c5aa993b 8498int
96baa820 8499signal_pass_state (int signo)
c906108c
SS
8500{
8501 return signal_program[signo];
8502}
8503
2455069d
UW
8504static void
8505signal_cache_update (int signo)
8506{
8507 if (signo == -1)
8508 {
a493e3e2 8509 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8510 signal_cache_update (signo);
8511
8512 return;
8513 }
8514
8515 signal_pass[signo] = (signal_stop[signo] == 0
8516 && signal_print[signo] == 0
ab04a2af
TT
8517 && signal_program[signo] == 1
8518 && signal_catch[signo] == 0);
2455069d
UW
8519}
8520
488f131b 8521int
7bda5e4a 8522signal_stop_update (int signo, int state)
d4f3574e
SS
8523{
8524 int ret = signal_stop[signo];
abbb1732 8525
d4f3574e 8526 signal_stop[signo] = state;
2455069d 8527 signal_cache_update (signo);
d4f3574e
SS
8528 return ret;
8529}
8530
488f131b 8531int
7bda5e4a 8532signal_print_update (int signo, int state)
d4f3574e
SS
8533{
8534 int ret = signal_print[signo];
abbb1732 8535
d4f3574e 8536 signal_print[signo] = state;
2455069d 8537 signal_cache_update (signo);
d4f3574e
SS
8538 return ret;
8539}
8540
488f131b 8541int
7bda5e4a 8542signal_pass_update (int signo, int state)
d4f3574e
SS
8543{
8544 int ret = signal_program[signo];
abbb1732 8545
d4f3574e 8546 signal_program[signo] = state;
2455069d 8547 signal_cache_update (signo);
d4f3574e
SS
8548 return ret;
8549}
8550
ab04a2af
TT
8551/* Update the global 'signal_catch' from INFO and notify the
8552 target. */
8553
8554void
8555signal_catch_update (const unsigned int *info)
8556{
8557 int i;
8558
8559 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8560 signal_catch[i] = info[i] > 0;
8561 signal_cache_update (-1);
adc6a863 8562 target_pass_signals (signal_pass);
ab04a2af
TT
8563}
8564
c906108c 8565static void
96baa820 8566sig_print_header (void)
c906108c 8567{
3e43a32a
MS
8568 printf_filtered (_("Signal Stop\tPrint\tPass "
8569 "to program\tDescription\n"));
c906108c
SS
8570}
8571
8572static void
2ea28649 8573sig_print_info (enum gdb_signal oursig)
c906108c 8574{
2ea28649 8575 const char *name = gdb_signal_to_name (oursig);
c906108c 8576 int name_padding = 13 - strlen (name);
96baa820 8577
c906108c
SS
8578 if (name_padding <= 0)
8579 name_padding = 0;
8580
8581 printf_filtered ("%s", name);
488f131b 8582 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8583 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8584 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8585 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8586 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8587}
8588
8589/* Specify how various signals in the inferior should be handled. */
8590
8591static void
0b39b52e 8592handle_command (const char *args, int from_tty)
c906108c 8593{
c906108c 8594 int digits, wordlen;
b926417a 8595 int sigfirst, siglast;
2ea28649 8596 enum gdb_signal oursig;
c906108c 8597 int allsigs;
c906108c
SS
8598
8599 if (args == NULL)
8600 {
e2e0b3e5 8601 error_no_arg (_("signal to handle"));
c906108c
SS
8602 }
8603
1777feb0 8604 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8605
adc6a863
PA
8606 const size_t nsigs = GDB_SIGNAL_LAST;
8607 unsigned char sigs[nsigs] {};
c906108c 8608
1777feb0 8609 /* Break the command line up into args. */
c906108c 8610
773a1edc 8611 gdb_argv built_argv (args);
c906108c
SS
8612
8613 /* Walk through the args, looking for signal oursigs, signal names, and
8614 actions. Signal numbers and signal names may be interspersed with
8615 actions, with the actions being performed for all signals cumulatively
1777feb0 8616 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8617
773a1edc 8618 for (char *arg : built_argv)
c906108c 8619 {
773a1edc
TT
8620 wordlen = strlen (arg);
8621 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8622 {;
8623 }
8624 allsigs = 0;
8625 sigfirst = siglast = -1;
8626
773a1edc 8627 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8628 {
8629 /* Apply action to all signals except those used by the
1777feb0 8630 debugger. Silently skip those. */
c906108c
SS
8631 allsigs = 1;
8632 sigfirst = 0;
8633 siglast = nsigs - 1;
8634 }
773a1edc 8635 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8636 {
8637 SET_SIGS (nsigs, sigs, signal_stop);
8638 SET_SIGS (nsigs, sigs, signal_print);
8639 }
773a1edc 8640 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8641 {
8642 UNSET_SIGS (nsigs, sigs, signal_program);
8643 }
773a1edc 8644 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8645 {
8646 SET_SIGS (nsigs, sigs, signal_print);
8647 }
773a1edc 8648 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8649 {
8650 SET_SIGS (nsigs, sigs, signal_program);
8651 }
773a1edc 8652 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8653 {
8654 UNSET_SIGS (nsigs, sigs, signal_stop);
8655 }
773a1edc 8656 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8657 {
8658 SET_SIGS (nsigs, sigs, signal_program);
8659 }
773a1edc 8660 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8661 {
8662 UNSET_SIGS (nsigs, sigs, signal_print);
8663 UNSET_SIGS (nsigs, sigs, signal_stop);
8664 }
773a1edc 8665 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8666 {
8667 UNSET_SIGS (nsigs, sigs, signal_program);
8668 }
8669 else if (digits > 0)
8670 {
8671 /* It is numeric. The numeric signal refers to our own
8672 internal signal numbering from target.h, not to host/target
8673 signal number. This is a feature; users really should be
8674 using symbolic names anyway, and the common ones like
8675 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8676
8677 sigfirst = siglast = (int)
773a1edc
TT
8678 gdb_signal_from_command (atoi (arg));
8679 if (arg[digits] == '-')
c906108c
SS
8680 {
8681 siglast = (int)
773a1edc 8682 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8683 }
8684 if (sigfirst > siglast)
8685 {
1777feb0 8686 /* Bet he didn't figure we'd think of this case... */
b926417a 8687 std::swap (sigfirst, siglast);
c906108c
SS
8688 }
8689 }
8690 else
8691 {
773a1edc 8692 oursig = gdb_signal_from_name (arg);
a493e3e2 8693 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8694 {
8695 sigfirst = siglast = (int) oursig;
8696 }
8697 else
8698 {
8699 /* Not a number and not a recognized flag word => complain. */
773a1edc 8700 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8701 }
8702 }
8703
8704 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8705 which signals to apply actions to. */
c906108c 8706
b926417a 8707 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8708 {
2ea28649 8709 switch ((enum gdb_signal) signum)
c906108c 8710 {
a493e3e2
PA
8711 case GDB_SIGNAL_TRAP:
8712 case GDB_SIGNAL_INT:
c906108c
SS
8713 if (!allsigs && !sigs[signum])
8714 {
9e2f0ad4 8715 if (query (_("%s is used by the debugger.\n\
3e43a32a 8716Are you sure you want to change it? "),
2ea28649 8717 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8718 {
8719 sigs[signum] = 1;
8720 }
8721 else
c119e040 8722 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8723 }
8724 break;
a493e3e2
PA
8725 case GDB_SIGNAL_0:
8726 case GDB_SIGNAL_DEFAULT:
8727 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8728 /* Make sure that "all" doesn't print these. */
8729 break;
8730 default:
8731 sigs[signum] = 1;
8732 break;
8733 }
8734 }
c906108c
SS
8735 }
8736
b926417a 8737 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8738 if (sigs[signum])
8739 {
2455069d 8740 signal_cache_update (-1);
adc6a863
PA
8741 target_pass_signals (signal_pass);
8742 target_program_signals (signal_program);
c906108c 8743
3a031f65
PA
8744 if (from_tty)
8745 {
8746 /* Show the results. */
8747 sig_print_header ();
8748 for (; signum < nsigs; signum++)
8749 if (sigs[signum])
aead7601 8750 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8751 }
8752
8753 break;
8754 }
c906108c
SS
8755}
8756
de0bea00
MF
8757/* Complete the "handle" command. */
8758
eb3ff9a5 8759static void
de0bea00 8760handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8761 completion_tracker &tracker,
6f937416 8762 const char *text, const char *word)
de0bea00 8763{
de0bea00
MF
8764 static const char * const keywords[] =
8765 {
8766 "all",
8767 "stop",
8768 "ignore",
8769 "print",
8770 "pass",
8771 "nostop",
8772 "noignore",
8773 "noprint",
8774 "nopass",
8775 NULL,
8776 };
8777
eb3ff9a5
PA
8778 signal_completer (ignore, tracker, text, word);
8779 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8780}
8781
2ea28649
PA
8782enum gdb_signal
8783gdb_signal_from_command (int num)
ed01b82c
PA
8784{
8785 if (num >= 1 && num <= 15)
2ea28649 8786 return (enum gdb_signal) num;
ed01b82c
PA
8787 error (_("Only signals 1-15 are valid as numeric signals.\n\
8788Use \"info signals\" for a list of symbolic signals."));
8789}
8790
c906108c
SS
8791/* Print current contents of the tables set by the handle command.
8792 It is possible we should just be printing signals actually used
8793 by the current target (but for things to work right when switching
8794 targets, all signals should be in the signal tables). */
8795
8796static void
1d12d88f 8797info_signals_command (const char *signum_exp, int from_tty)
c906108c 8798{
2ea28649 8799 enum gdb_signal oursig;
abbb1732 8800
c906108c
SS
8801 sig_print_header ();
8802
8803 if (signum_exp)
8804 {
8805 /* First see if this is a symbol name. */
2ea28649 8806 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8807 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8808 {
8809 /* No, try numeric. */
8810 oursig =
2ea28649 8811 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8812 }
8813 sig_print_info (oursig);
8814 return;
8815 }
8816
8817 printf_filtered ("\n");
8818 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8819 for (oursig = GDB_SIGNAL_FIRST;
8820 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8821 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8822 {
8823 QUIT;
8824
a493e3e2
PA
8825 if (oursig != GDB_SIGNAL_UNKNOWN
8826 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8827 sig_print_info (oursig);
8828 }
8829
3e43a32a
MS
8830 printf_filtered (_("\nUse the \"handle\" command "
8831 "to change these tables.\n"));
c906108c 8832}
4aa995e1
PA
8833
8834/* The $_siginfo convenience variable is a bit special. We don't know
8835 for sure the type of the value until we actually have a chance to
7a9dd1b2 8836 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8837 also dependent on which thread you have selected.
8838
8839 1. making $_siginfo be an internalvar that creates a new value on
8840 access.
8841
8842 2. making the value of $_siginfo be an lval_computed value. */
8843
8844/* This function implements the lval_computed support for reading a
8845 $_siginfo value. */
8846
8847static void
8848siginfo_value_read (struct value *v)
8849{
8850 LONGEST transferred;
8851
a911d87a
PA
8852 /* If we can access registers, so can we access $_siginfo. Likewise
8853 vice versa. */
8854 validate_registers_access ();
c709acd1 8855
4aa995e1 8856 transferred =
8b88a78e 8857 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8858 NULL,
8859 value_contents_all_raw (v),
8860 value_offset (v),
8861 TYPE_LENGTH (value_type (v)));
8862
8863 if (transferred != TYPE_LENGTH (value_type (v)))
8864 error (_("Unable to read siginfo"));
8865}
8866
8867/* This function implements the lval_computed support for writing a
8868 $_siginfo value. */
8869
8870static void
8871siginfo_value_write (struct value *v, struct value *fromval)
8872{
8873 LONGEST transferred;
8874
a911d87a
PA
8875 /* If we can access registers, so can we access $_siginfo. Likewise
8876 vice versa. */
8877 validate_registers_access ();
c709acd1 8878
8b88a78e 8879 transferred = target_write (current_top_target (),
4aa995e1
PA
8880 TARGET_OBJECT_SIGNAL_INFO,
8881 NULL,
8882 value_contents_all_raw (fromval),
8883 value_offset (v),
8884 TYPE_LENGTH (value_type (fromval)));
8885
8886 if (transferred != TYPE_LENGTH (value_type (fromval)))
8887 error (_("Unable to write siginfo"));
8888}
8889
c8f2448a 8890static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8891 {
8892 siginfo_value_read,
8893 siginfo_value_write
8894 };
8895
8896/* Return a new value with the correct type for the siginfo object of
78267919
UW
8897 the current thread using architecture GDBARCH. Return a void value
8898 if there's no object available. */
4aa995e1 8899
2c0b251b 8900static struct value *
22d2b532
SDJ
8901siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8902 void *ignore)
4aa995e1 8903{
4aa995e1 8904 if (target_has_stack
d7e15655 8905 && inferior_ptid != null_ptid
78267919 8906 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8907 {
78267919 8908 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8909
78267919 8910 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8911 }
8912
78267919 8913 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8914}
8915
c906108c 8916\f
16c381f0
JK
8917/* infcall_suspend_state contains state about the program itself like its
8918 registers and any signal it received when it last stopped.
8919 This state must be restored regardless of how the inferior function call
8920 ends (either successfully, or after it hits a breakpoint or signal)
8921 if the program is to properly continue where it left off. */
8922
6bf78e29 8923class infcall_suspend_state
7a292a7a 8924{
6bf78e29
AB
8925public:
8926 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8927 once the inferior function call has finished. */
8928 infcall_suspend_state (struct gdbarch *gdbarch,
8929 const struct thread_info *tp,
8930 struct regcache *regcache)
8931 : m_thread_suspend (tp->suspend),
8932 m_registers (new readonly_detached_regcache (*regcache))
8933 {
8934 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8935
8936 if (gdbarch_get_siginfo_type_p (gdbarch))
8937 {
8938 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8939 size_t len = TYPE_LENGTH (type);
8940
8941 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8942
8943 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8944 siginfo_data.get (), 0, len) != len)
8945 {
8946 /* Errors ignored. */
8947 siginfo_data.reset (nullptr);
8948 }
8949 }
8950
8951 if (siginfo_data)
8952 {
8953 m_siginfo_gdbarch = gdbarch;
8954 m_siginfo_data = std::move (siginfo_data);
8955 }
8956 }
8957
8958 /* Return a pointer to the stored register state. */
16c381f0 8959
6bf78e29
AB
8960 readonly_detached_regcache *registers () const
8961 {
8962 return m_registers.get ();
8963 }
8964
8965 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8966
8967 void restore (struct gdbarch *gdbarch,
8968 struct thread_info *tp,
8969 struct regcache *regcache) const
8970 {
8971 tp->suspend = m_thread_suspend;
8972
8973 if (m_siginfo_gdbarch == gdbarch)
8974 {
8975 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8976
8977 /* Errors ignored. */
8978 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8979 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8980 }
8981
8982 /* The inferior can be gone if the user types "print exit(0)"
8983 (and perhaps other times). */
8984 if (target_has_execution)
8985 /* NB: The register write goes through to the target. */
8986 regcache->restore (registers ());
8987 }
8988
8989private:
8990 /* How the current thread stopped before the inferior function call was
8991 executed. */
8992 struct thread_suspend_state m_thread_suspend;
8993
8994 /* The registers before the inferior function call was executed. */
8995 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8996
35515841 8997 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8998 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8999
9000 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9001 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9002 content would be invalid. */
6bf78e29 9003 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
9004};
9005
cb524840
TT
9006infcall_suspend_state_up
9007save_infcall_suspend_state ()
b89667eb 9008{
b89667eb 9009 struct thread_info *tp = inferior_thread ();
1736ad11 9010 struct regcache *regcache = get_current_regcache ();
ac7936df 9011 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 9012
6bf78e29
AB
9013 infcall_suspend_state_up inf_state
9014 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 9015
6bf78e29
AB
9016 /* Having saved the current state, adjust the thread state, discarding
9017 any stop signal information. The stop signal is not useful when
9018 starting an inferior function call, and run_inferior_call will not use
9019 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 9020 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 9021
b89667eb
DE
9022 return inf_state;
9023}
9024
9025/* Restore inferior session state to INF_STATE. */
9026
9027void
16c381f0 9028restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9029{
9030 struct thread_info *tp = inferior_thread ();
1736ad11 9031 struct regcache *regcache = get_current_regcache ();
ac7936df 9032 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9033
6bf78e29 9034 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9035 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9036}
9037
b89667eb 9038void
16c381f0 9039discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9040{
dd848631 9041 delete inf_state;
b89667eb
DE
9042}
9043
daf6667d 9044readonly_detached_regcache *
16c381f0 9045get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9046{
6bf78e29 9047 return inf_state->registers ();
b89667eb
DE
9048}
9049
16c381f0
JK
9050/* infcall_control_state contains state regarding gdb's control of the
9051 inferior itself like stepping control. It also contains session state like
9052 the user's currently selected frame. */
b89667eb 9053
16c381f0 9054struct infcall_control_state
b89667eb 9055{
16c381f0
JK
9056 struct thread_control_state thread_control;
9057 struct inferior_control_state inferior_control;
d82142e2
JK
9058
9059 /* Other fields: */
ee841dd8
TT
9060 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9061 int stopped_by_random_signal = 0;
7a292a7a 9062
b89667eb 9063 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 9064 struct frame_id selected_frame_id {};
7a292a7a
SS
9065};
9066
c906108c 9067/* Save all of the information associated with the inferior<==>gdb
b89667eb 9068 connection. */
c906108c 9069
cb524840
TT
9070infcall_control_state_up
9071save_infcall_control_state ()
c906108c 9072{
cb524840 9073 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9074 struct thread_info *tp = inferior_thread ();
d6b48e9c 9075 struct inferior *inf = current_inferior ();
7a292a7a 9076
16c381f0
JK
9077 inf_status->thread_control = tp->control;
9078 inf_status->inferior_control = inf->control;
d82142e2 9079
8358c15c 9080 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9081 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9082
16c381f0
JK
9083 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9084 chain. If caller's caller is walking the chain, they'll be happier if we
9085 hand them back the original chain when restore_infcall_control_state is
9086 called. */
9087 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9088
9089 /* Other fields: */
9090 inf_status->stop_stack_dummy = stop_stack_dummy;
9091 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9092
206415a3 9093 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9094
7a292a7a 9095 return inf_status;
c906108c
SS
9096}
9097
bf469271
PA
9098static void
9099restore_selected_frame (const frame_id &fid)
c906108c 9100{
bf469271 9101 frame_info *frame = frame_find_by_id (fid);
c906108c 9102
aa0cd9c1
AC
9103 /* If inf_status->selected_frame_id is NULL, there was no previously
9104 selected frame. */
101dcfbe 9105 if (frame == NULL)
c906108c 9106 {
8a3fe4f8 9107 warning (_("Unable to restore previously selected frame."));
bf469271 9108 return;
c906108c
SS
9109 }
9110
0f7d239c 9111 select_frame (frame);
c906108c
SS
9112}
9113
b89667eb
DE
9114/* Restore inferior session state to INF_STATUS. */
9115
c906108c 9116void
16c381f0 9117restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9118{
4e1c45ea 9119 struct thread_info *tp = inferior_thread ();
d6b48e9c 9120 struct inferior *inf = current_inferior ();
4e1c45ea 9121
8358c15c
JK
9122 if (tp->control.step_resume_breakpoint)
9123 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9124
5b79abe7
TT
9125 if (tp->control.exception_resume_breakpoint)
9126 tp->control.exception_resume_breakpoint->disposition
9127 = disp_del_at_next_stop;
9128
d82142e2 9129 /* Handle the bpstat_copy of the chain. */
16c381f0 9130 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9131
16c381f0
JK
9132 tp->control = inf_status->thread_control;
9133 inf->control = inf_status->inferior_control;
d82142e2
JK
9134
9135 /* Other fields: */
9136 stop_stack_dummy = inf_status->stop_stack_dummy;
9137 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9138
b89667eb 9139 if (target_has_stack)
c906108c 9140 {
bf469271 9141 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9142 walking the stack might encounter a garbage pointer and
9143 error() trying to dereference it. */
a70b8144 9144 try
bf469271
PA
9145 {
9146 restore_selected_frame (inf_status->selected_frame_id);
9147 }
230d2906 9148 catch (const gdb_exception_error &ex)
bf469271
PA
9149 {
9150 exception_fprintf (gdb_stderr, ex,
9151 "Unable to restore previously selected frame:\n");
9152 /* Error in restoring the selected frame. Select the
9153 innermost frame. */
9154 select_frame (get_current_frame ());
9155 }
c906108c 9156 }
c906108c 9157
ee841dd8 9158 delete inf_status;
7a292a7a 9159}
c906108c
SS
9160
9161void
16c381f0 9162discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9163{
8358c15c
JK
9164 if (inf_status->thread_control.step_resume_breakpoint)
9165 inf_status->thread_control.step_resume_breakpoint->disposition
9166 = disp_del_at_next_stop;
9167
5b79abe7
TT
9168 if (inf_status->thread_control.exception_resume_breakpoint)
9169 inf_status->thread_control.exception_resume_breakpoint->disposition
9170 = disp_del_at_next_stop;
9171
1777feb0 9172 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9173 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9174
ee841dd8 9175 delete inf_status;
7a292a7a 9176}
b89667eb 9177\f
7f89fd65 9178/* See infrun.h. */
0c557179
SDJ
9179
9180void
9181clear_exit_convenience_vars (void)
9182{
9183 clear_internalvar (lookup_internalvar ("_exitsignal"));
9184 clear_internalvar (lookup_internalvar ("_exitcode"));
9185}
c5aa993b 9186\f
488f131b 9187
b2175913
MS
9188/* User interface for reverse debugging:
9189 Set exec-direction / show exec-direction commands
9190 (returns error unless target implements to_set_exec_direction method). */
9191
170742de 9192enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9193static const char exec_forward[] = "forward";
9194static const char exec_reverse[] = "reverse";
9195static const char *exec_direction = exec_forward;
40478521 9196static const char *const exec_direction_names[] = {
b2175913
MS
9197 exec_forward,
9198 exec_reverse,
9199 NULL
9200};
9201
9202static void
eb4c3f4a 9203set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9204 struct cmd_list_element *cmd)
9205{
9206 if (target_can_execute_reverse)
9207 {
9208 if (!strcmp (exec_direction, exec_forward))
9209 execution_direction = EXEC_FORWARD;
9210 else if (!strcmp (exec_direction, exec_reverse))
9211 execution_direction = EXEC_REVERSE;
9212 }
8bbed405
MS
9213 else
9214 {
9215 exec_direction = exec_forward;
9216 error (_("Target does not support this operation."));
9217 }
b2175913
MS
9218}
9219
9220static void
9221show_exec_direction_func (struct ui_file *out, int from_tty,
9222 struct cmd_list_element *cmd, const char *value)
9223{
9224 switch (execution_direction) {
9225 case EXEC_FORWARD:
9226 fprintf_filtered (out, _("Forward.\n"));
9227 break;
9228 case EXEC_REVERSE:
9229 fprintf_filtered (out, _("Reverse.\n"));
9230 break;
b2175913 9231 default:
d8b34453
PA
9232 internal_error (__FILE__, __LINE__,
9233 _("bogus execution_direction value: %d"),
9234 (int) execution_direction);
b2175913
MS
9235 }
9236}
9237
d4db2f36
PA
9238static void
9239show_schedule_multiple (struct ui_file *file, int from_tty,
9240 struct cmd_list_element *c, const char *value)
9241{
3e43a32a
MS
9242 fprintf_filtered (file, _("Resuming the execution of threads "
9243 "of all processes is %s.\n"), value);
d4db2f36 9244}
ad52ddc6 9245
22d2b532
SDJ
9246/* Implementation of `siginfo' variable. */
9247
9248static const struct internalvar_funcs siginfo_funcs =
9249{
9250 siginfo_make_value,
9251 NULL,
9252 NULL
9253};
9254
372316f1
PA
9255/* Callback for infrun's target events source. This is marked when a
9256 thread has a pending status to process. */
9257
9258static void
9259infrun_async_inferior_event_handler (gdb_client_data data)
9260{
372316f1
PA
9261 inferior_event_handler (INF_REG_EVENT, NULL);
9262}
9263
c906108c 9264void
96baa820 9265_initialize_infrun (void)
c906108c 9266{
de0bea00 9267 struct cmd_list_element *c;
c906108c 9268
372316f1
PA
9269 /* Register extra event sources in the event loop. */
9270 infrun_async_inferior_event_token
9271 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9272
11db9430 9273 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9274What debugger does when program gets various signals.\n\
9275Specify a signal as argument to print info on that signal only."));
c906108c
SS
9276 add_info_alias ("handle", "signals", 0);
9277
de0bea00 9278 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9279Specify how to handle signals.\n\
486c7739 9280Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9281Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9282If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9283will be displayed instead.\n\
9284\n\
c906108c
SS
9285Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9286from 1-15 are allowed for compatibility with old versions of GDB.\n\
9287Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9288The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9289used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9290\n\
1bedd215 9291Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9292\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9293Stop means reenter debugger if this signal happens (implies print).\n\
9294Print means print a message if this signal happens.\n\
9295Pass means let program see this signal; otherwise program doesn't know.\n\
9296Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9297Pass and Stop may be combined.\n\
9298\n\
9299Multiple signals may be specified. Signal numbers and signal names\n\
9300may be interspersed with actions, with the actions being performed for\n\
9301all signals cumulatively specified."));
de0bea00 9302 set_cmd_completer (c, handle_completer);
486c7739 9303
c906108c 9304 if (!dbx_commands)
1a966eab
AC
9305 stop_command = add_cmd ("stop", class_obscure,
9306 not_just_help_class_command, _("\
9307There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9308This allows you to set a list of commands to be run each time execution\n\
1a966eab 9309of the program stops."), &cmdlist);
c906108c 9310
ccce17b0 9311 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9312Set inferior debugging."), _("\
9313Show inferior debugging."), _("\
9314When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9315 NULL,
9316 show_debug_infrun,
9317 &setdebuglist, &showdebuglist);
527159b7 9318
3e43a32a
MS
9319 add_setshow_boolean_cmd ("displaced", class_maintenance,
9320 &debug_displaced, _("\
237fc4c9
PA
9321Set displaced stepping debugging."), _("\
9322Show displaced stepping debugging."), _("\
9323When non-zero, displaced stepping specific debugging is enabled."),
9324 NULL,
9325 show_debug_displaced,
9326 &setdebuglist, &showdebuglist);
9327
ad52ddc6
PA
9328 add_setshow_boolean_cmd ("non-stop", no_class,
9329 &non_stop_1, _("\
9330Set whether gdb controls the inferior in non-stop mode."), _("\
9331Show whether gdb controls the inferior in non-stop mode."), _("\
9332When debugging a multi-threaded program and this setting is\n\
9333off (the default, also called all-stop mode), when one thread stops\n\
9334(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9335all other threads in the program while you interact with the thread of\n\
9336interest. When you continue or step a thread, you can allow the other\n\
9337threads to run, or have them remain stopped, but while you inspect any\n\
9338thread's state, all threads stop.\n\
9339\n\
9340In non-stop mode, when one thread stops, other threads can continue\n\
9341to run freely. You'll be able to step each thread independently,\n\
9342leave it stopped or free to run as needed."),
9343 set_non_stop,
9344 show_non_stop,
9345 &setlist,
9346 &showlist);
9347
adc6a863 9348 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9349 {
9350 signal_stop[i] = 1;
9351 signal_print[i] = 1;
9352 signal_program[i] = 1;
ab04a2af 9353 signal_catch[i] = 0;
c906108c
SS
9354 }
9355
4d9d9d04
PA
9356 /* Signals caused by debugger's own actions should not be given to
9357 the program afterwards.
9358
9359 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9360 explicitly specifies that it should be delivered to the target
9361 program. Typically, that would occur when a user is debugging a
9362 target monitor on a simulator: the target monitor sets a
9363 breakpoint; the simulator encounters this breakpoint and halts
9364 the simulation handing control to GDB; GDB, noting that the stop
9365 address doesn't map to any known breakpoint, returns control back
9366 to the simulator; the simulator then delivers the hardware
9367 equivalent of a GDB_SIGNAL_TRAP to the program being
9368 debugged. */
a493e3e2
PA
9369 signal_program[GDB_SIGNAL_TRAP] = 0;
9370 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9371
9372 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9373 signal_stop[GDB_SIGNAL_ALRM] = 0;
9374 signal_print[GDB_SIGNAL_ALRM] = 0;
9375 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9376 signal_print[GDB_SIGNAL_VTALRM] = 0;
9377 signal_stop[GDB_SIGNAL_PROF] = 0;
9378 signal_print[GDB_SIGNAL_PROF] = 0;
9379 signal_stop[GDB_SIGNAL_CHLD] = 0;
9380 signal_print[GDB_SIGNAL_CHLD] = 0;
9381 signal_stop[GDB_SIGNAL_IO] = 0;
9382 signal_print[GDB_SIGNAL_IO] = 0;
9383 signal_stop[GDB_SIGNAL_POLL] = 0;
9384 signal_print[GDB_SIGNAL_POLL] = 0;
9385 signal_stop[GDB_SIGNAL_URG] = 0;
9386 signal_print[GDB_SIGNAL_URG] = 0;
9387 signal_stop[GDB_SIGNAL_WINCH] = 0;
9388 signal_print[GDB_SIGNAL_WINCH] = 0;
9389 signal_stop[GDB_SIGNAL_PRIO] = 0;
9390 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9391
cd0fc7c3
SS
9392 /* These signals are used internally by user-level thread
9393 implementations. (See signal(5) on Solaris.) Like the above
9394 signals, a healthy program receives and handles them as part of
9395 its normal operation. */
a493e3e2
PA
9396 signal_stop[GDB_SIGNAL_LWP] = 0;
9397 signal_print[GDB_SIGNAL_LWP] = 0;
9398 signal_stop[GDB_SIGNAL_WAITING] = 0;
9399 signal_print[GDB_SIGNAL_WAITING] = 0;
9400 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9401 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9402 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9403 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9404
2455069d
UW
9405 /* Update cached state. */
9406 signal_cache_update (-1);
9407
85c07804
AC
9408 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9409 &stop_on_solib_events, _("\
9410Set stopping for shared library events."), _("\
9411Show stopping for shared library events."), _("\
c906108c
SS
9412If nonzero, gdb will give control to the user when the dynamic linker\n\
9413notifies gdb of shared library events. The most common event of interest\n\
85c07804 9414to the user would be loading/unloading of a new library."),
f9e14852 9415 set_stop_on_solib_events,
920d2a44 9416 show_stop_on_solib_events,
85c07804 9417 &setlist, &showlist);
c906108c 9418
7ab04401
AC
9419 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9420 follow_fork_mode_kind_names,
9421 &follow_fork_mode_string, _("\
9422Set debugger response to a program call of fork or vfork."), _("\
9423Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9424A fork or vfork creates a new process. follow-fork-mode can be:\n\
9425 parent - the original process is debugged after a fork\n\
9426 child - the new process is debugged after a fork\n\
ea1dd7bc 9427The unfollowed process will continue to run.\n\
7ab04401
AC
9428By default, the debugger will follow the parent process."),
9429 NULL,
920d2a44 9430 show_follow_fork_mode_string,
7ab04401
AC
9431 &setlist, &showlist);
9432
6c95b8df
PA
9433 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9434 follow_exec_mode_names,
9435 &follow_exec_mode_string, _("\
9436Set debugger response to a program call of exec."), _("\
9437Show debugger response to a program call of exec."), _("\
9438An exec call replaces the program image of a process.\n\
9439\n\
9440follow-exec-mode can be:\n\
9441\n\
cce7e648 9442 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9443to this new inferior. The program the process was running before\n\
9444the exec call can be restarted afterwards by restarting the original\n\
9445inferior.\n\
9446\n\
9447 same - the debugger keeps the process bound to the same inferior.\n\
9448The new executable image replaces the previous executable loaded in\n\
9449the inferior. Restarting the inferior after the exec call restarts\n\
9450the executable the process was running after the exec call.\n\
9451\n\
9452By default, the debugger will use the same inferior."),
9453 NULL,
9454 show_follow_exec_mode_string,
9455 &setlist, &showlist);
9456
7ab04401
AC
9457 add_setshow_enum_cmd ("scheduler-locking", class_run,
9458 scheduler_enums, &scheduler_mode, _("\
9459Set mode for locking scheduler during execution."), _("\
9460Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9461off == no locking (threads may preempt at any time)\n\
9462on == full locking (no thread except the current thread may run)\n\
9463 This applies to both normal execution and replay mode.\n\
9464step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9465 In this mode, other threads may run during other commands.\n\
9466 This applies to both normal execution and replay mode.\n\
9467replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9468 set_schedlock_func, /* traps on target vector */
920d2a44 9469 show_scheduler_mode,
7ab04401 9470 &setlist, &showlist);
5fbbeb29 9471
d4db2f36
PA
9472 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9473Set mode for resuming threads of all processes."), _("\
9474Show mode for resuming threads of all processes."), _("\
9475When on, execution commands (such as 'continue' or 'next') resume all\n\
9476threads of all processes. When off (which is the default), execution\n\
9477commands only resume the threads of the current process. The set of\n\
9478threads that are resumed is further refined by the scheduler-locking\n\
9479mode (see help set scheduler-locking)."),
9480 NULL,
9481 show_schedule_multiple,
9482 &setlist, &showlist);
9483
5bf193a2
AC
9484 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9485Set mode of the step operation."), _("\
9486Show mode of the step operation."), _("\
9487When set, doing a step over a function without debug line information\n\
9488will stop at the first instruction of that function. Otherwise, the\n\
9489function is skipped and the step command stops at a different source line."),
9490 NULL,
920d2a44 9491 show_step_stop_if_no_debug,
5bf193a2 9492 &setlist, &showlist);
ca6724c1 9493
72d0e2c5
YQ
9494 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9495 &can_use_displaced_stepping, _("\
237fc4c9
PA
9496Set debugger's willingness to use displaced stepping."), _("\
9497Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9498If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9499supported by the target architecture. If off, gdb will not use displaced\n\
9500stepping to step over breakpoints, even if such is supported by the target\n\
9501architecture. If auto (which is the default), gdb will use displaced stepping\n\
9502if the target architecture supports it and non-stop mode is active, but will not\n\
9503use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9504 NULL,
9505 show_can_use_displaced_stepping,
9506 &setlist, &showlist);
237fc4c9 9507
b2175913
MS
9508 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9509 &exec_direction, _("Set direction of execution.\n\
9510Options are 'forward' or 'reverse'."),
9511 _("Show direction of execution (forward/reverse)."),
9512 _("Tells gdb whether to execute forward or backward."),
9513 set_exec_direction_func, show_exec_direction_func,
9514 &setlist, &showlist);
9515
6c95b8df
PA
9516 /* Set/show detach-on-fork: user-settable mode. */
9517
9518 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9519Set whether gdb will detach the child of a fork."), _("\
9520Show whether gdb will detach the child of a fork."), _("\
9521Tells gdb whether to detach the child of a fork."),
9522 NULL, NULL, &setlist, &showlist);
9523
03583c20
UW
9524 /* Set/show disable address space randomization mode. */
9525
9526 add_setshow_boolean_cmd ("disable-randomization", class_support,
9527 &disable_randomization, _("\
9528Set disabling of debuggee's virtual address space randomization."), _("\
9529Show disabling of debuggee's virtual address space randomization."), _("\
9530When this mode is on (which is the default), randomization of the virtual\n\
9531address space is disabled. Standalone programs run with the randomization\n\
9532enabled by default on some platforms."),
9533 &set_disable_randomization,
9534 &show_disable_randomization,
9535 &setlist, &showlist);
9536
ca6724c1 9537 /* ptid initializations */
ca6724c1
KB
9538 inferior_ptid = null_ptid;
9539 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9540
76727919
TT
9541 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9542 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9543 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9544 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9545
9546 /* Explicitly create without lookup, since that tries to create a
9547 value with a void typed value, and when we get here, gdbarch
9548 isn't initialized yet. At this point, we're quite sure there
9549 isn't another convenience variable of the same name. */
22d2b532 9550 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9551
9552 add_setshow_boolean_cmd ("observer", no_class,
9553 &observer_mode_1, _("\
9554Set whether gdb controls the inferior in observer mode."), _("\
9555Show whether gdb controls the inferior in observer mode."), _("\
9556In observer mode, GDB can get data from the inferior, but not\n\
9557affect its execution. Registers and memory may not be changed,\n\
9558breakpoints may not be set, and the program cannot be interrupted\n\
9559or signalled."),
9560 set_observer_mode,
9561 show_observer_mode,
9562 &setlist,
9563 &showlist);
c906108c 9564}
This page took 2.70908 seconds and 4 git commands to generate.