Disallow PC relative for CMPI on MC68000/10
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
c906108c
SS
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
2f4fcf00 31#include "target-connection.h"
c906108c
SS
32#include "gdbthread.h"
33#include "annotate.h"
1adeb98a 34#include "symfile.h"
7a292a7a 35#include "top.h"
2acceee2 36#include "inf-loop.h"
4e052eda 37#include "regcache.h"
fd0407d6 38#include "value.h"
76727919 39#include "observable.h"
f636b87d 40#include "language.h"
a77053c2 41#include "solib.h"
f17517ea 42#include "main.h"
186c406b 43#include "block.h"
034dad6f 44#include "mi/mi-common.h"
4f8d22e3 45#include "event-top.h"
96429cc8 46#include "record.h"
d02ed0bb 47#include "record-full.h"
edb3359d 48#include "inline-frame.h"
4efc6507 49#include "jit.h"
06cd862c 50#include "tracepoint.h"
1bfeeb0f 51#include "skip.h"
28106bc2
SDJ
52#include "probe.h"
53#include "objfiles.h"
de0bea00 54#include "completer.h"
9107fc8d 55#include "target-descriptions.h"
f15cb84a 56#include "target-dcache.h"
d83ad864 57#include "terminal.h"
ff862be4 58#include "solist.h"
400b5eca 59#include "gdbsupport/event-loop.h"
243a9253 60#include "thread-fsm.h"
268a13a5 61#include "gdbsupport/enum-flags.h"
5ed8105e 62#include "progspace-and-thread.h"
268a13a5 63#include "gdbsupport/gdb_optional.h"
46a62268 64#include "arch-utils.h"
268a13a5
TT
65#include "gdbsupport/scope-exit.h"
66#include "gdbsupport/forward-scope-exit.h"
06cc9596 67#include "gdbsupport/gdb_select.h"
5b6d1e4f 68#include <unordered_map>
93b54c8e 69#include "async-event.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
d83ad864
DB
77static void follow_inferior_reset_breakpoints (void);
78
a289b8f6
JK
79static int currently_stepping (struct thread_info *tp);
80
2c03e5be 81static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
82
83static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
84
2484c66b
UW
85static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
86
8550d3b3
YQ
87static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
88
aff4e175
AB
89static void resume (gdb_signal sig);
90
5b6d1e4f
PA
91static void wait_for_inferior (inferior *inf);
92
372316f1
PA
93/* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95static struct async_event_handler *infrun_async_inferior_event_token;
96
97/* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99static int infrun_is_async = -1;
100
101/* See infrun.h. */
102
103void
104infrun_async (int enable)
105{
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120}
121
0b333c5e
PA
122/* See infrun.h. */
123
124void
125mark_infrun_async_event_handler (void)
126{
127 mark_async_event_handler (infrun_async_inferior_event_token);
128}
129
5fbbeb29
CF
130/* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
491144b5 133bool step_stop_if_no_debug = false;
920d2a44
AC
134static void
135show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139}
5fbbeb29 140
b9f437de
PA
141/* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
96baa820 144
39f77062 145static ptid_t previous_inferior_ptid;
7a292a7a 146
07107ca6
LM
147/* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
491144b5 152static bool detach_fork = true;
6c95b8df 153
491144b5 154bool debug_displaced = false;
237fc4c9
PA
155static void
156show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160}
161
ccce17b0 162unsigned int debug_infrun = 0;
920d2a44
AC
163static void
164show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168}
527159b7 169
03583c20
UW
170
171/* Support for disabling address space randomization. */
172
491144b5 173bool disable_randomization = true;
03583c20
UW
174
175static void
176show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188}
189
190static void
eb4c3f4a 191set_disable_randomization (const char *args, int from_tty,
03583c20
UW
192 struct cmd_list_element *c)
193{
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198}
199
d32dc48e
PA
200/* User interface for non-stop mode. */
201
491144b5
CB
202bool non_stop = false;
203static bool non_stop_1 = false;
d32dc48e
PA
204
205static void
eb4c3f4a 206set_non_stop (const char *args, int from_tty,
d32dc48e
PA
207 struct cmd_list_element *c)
208{
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216}
217
218static void
219show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221{
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225}
226
d914c394
SS
227/* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
491144b5
CB
231bool observer_mode = false;
232static bool observer_mode_1 = false;
d914c394
SS
233
234static void
eb4c3f4a 235set_observer_mode (const char *args, int from_tty,
d914c394
SS
236 struct cmd_list_element *c)
237{
d914c394
SS
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
491144b5 253 may_insert_fast_tracepoints = true;
d914c394
SS
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
d914c394 261 pagination_enabled = 0;
491144b5 262 non_stop = non_stop_1 = true;
d914c394
SS
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268}
269
270static void
271show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273{
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275}
276
277/* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283void
284update_observer_mode (void)
285{
491144b5
CB
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
d914c394
SS
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298}
c2c6d25f 299
c906108c
SS
300/* Tables of how to react to signals; the user sets them. */
301
adc6a863
PA
302static unsigned char signal_stop[GDB_SIGNAL_LAST];
303static unsigned char signal_print[GDB_SIGNAL_LAST];
304static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 305
ab04a2af
TT
306/* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
308 signal" command. */
309static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 310
2455069d
UW
311/* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
adc6a863 314static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 315
c906108c
SS
316#define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324#define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
9b224c5e
PA
332/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335void
336update_signals_program_target (void)
337{
adc6a863 338 target_program_signals (signal_program);
9b224c5e
PA
339}
340
1777feb0 341/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 342
edb3359d 343#define RESUME_ALL minus_one_ptid
c906108c
SS
344
345/* Command list pointer for the "stop" placeholder. */
346
347static struct cmd_list_element *stop_command;
348
c906108c
SS
349/* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
628fe4e4 351int stop_on_solib_events;
f9e14852
GB
352
353/* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356static void
eb4c3f4a
TT
357set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
f9e14852
GB
359{
360 update_solib_breakpoints ();
361}
362
920d2a44
AC
363static void
364show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366{
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369}
c906108c 370
c906108c
SS
371/* Nonzero after stop if current stack frame should be printed. */
372
373static int stop_print_frame;
374
5b6d1e4f
PA
375/* This is a cached copy of the target/ptid/waitstatus of the last
376 event returned by target_wait()/deprecated_target_wait_hook().
377 This information is returned by get_last_target_status(). */
378static process_stratum_target *target_last_proc_target;
39f77062 379static ptid_t target_last_wait_ptid;
e02bc4cc
DS
380static struct target_waitstatus target_last_waitstatus;
381
4e1c45ea 382void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 383
53904c9e
AC
384static const char follow_fork_mode_child[] = "child";
385static const char follow_fork_mode_parent[] = "parent";
386
40478521 387static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
ef346e04 391};
c906108c 392
53904c9e 393static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
394static void
395show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397{
3e43a32a
MS
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
401 value);
402}
c906108c
SS
403\f
404
d83ad864
DB
405/* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
5ab2fbf1
SM
411static bool
412follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
413{
414 int has_vforked;
79639e11 415 ptid_t parent_ptid, child_ptid;
d83ad864
DB
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
79639e11
PA
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 424 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433Can not resume the parent process over vfork in the foreground while\n\
434holding the child stopped. Try \"set detach-on-fork\" or \
435\"set schedule-multiple\".\n"));
d83ad864
DB
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
d83ad864
DB
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
00431a78 454 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
455 }
456
f67c0c91 457 if (print_inferior_events)
d83ad864 458 {
8dd06f7a 459 /* Ensure that we have a process ptid. */
e99b03dc 460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 461
223ffa71 462 target_terminal::ours_for_output ();
d83ad864 463 fprintf_filtered (gdb_stdlog,
f67c0c91 464 _("[Detaching after %s from child %s]\n"),
6f259a23 465 has_vforked ? "vfork" : "fork",
a068643d 466 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
d83ad864
DB
472
473 /* Add process to GDB's tables. */
e99b03dc 474 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
5ed8105e 482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 483
2a00d7ce 484 set_current_inferior (child_inf);
5b6d1e4f 485 switch_to_no_thread ();
d83ad864 486 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f
PA
487 push_target (parent_inf->process_target ());
488 add_thread_silent (child_inf->process_target (), child_ptid);
489 inferior_ptid = child_ptid;
d83ad864
DB
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
5b6d1e4f
PA
498 exec_on_vfork ();
499
d83ad864
DB
500 /* The parent will be frozen until the child is done
501 with the shared region. Keep track of the
502 parent. */
503 child_inf->vfork_parent = parent_inf;
504 child_inf->pending_detach = 0;
505 parent_inf->vfork_child = child_inf;
506 parent_inf->pending_detach = 0;
507 }
508 else
509 {
510 child_inf->aspace = new_address_space ();
564b1e3f 511 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
512 child_inf->removable = 1;
513 set_current_program_space (child_inf->pspace);
514 clone_program_space (child_inf->pspace, parent_inf->pspace);
515
516 /* Let the shared library layer (e.g., solib-svr4) learn
517 about this new process, relocate the cloned exec, pull
518 in shared libraries, and install the solib event
519 breakpoint. If a "cloned-VM" event was propagated
520 better throughout the core, this wouldn't be
521 required. */
522 solib_create_inferior_hook (0);
523 }
d83ad864
DB
524 }
525
526 if (has_vforked)
527 {
528 struct inferior *parent_inf;
529
530 parent_inf = current_inferior ();
531
532 /* If we detached from the child, then we have to be careful
533 to not insert breakpoints in the parent until the child
534 is done with the shared memory region. However, if we're
535 staying attached to the child, then we can and should
536 insert breakpoints, so that we can debug it. A
537 subsequent child exec or exit is enough to know when does
538 the child stops using the parent's address space. */
539 parent_inf->waiting_for_vfork_done = detach_fork;
540 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
541 }
542 }
543 else
544 {
545 /* Follow the child. */
546 struct inferior *parent_inf, *child_inf;
547 struct program_space *parent_pspace;
548
f67c0c91 549 if (print_inferior_events)
d83ad864 550 {
f67c0c91
SDJ
551 std::string parent_pid = target_pid_to_str (parent_ptid);
552 std::string child_pid = target_pid_to_str (child_ptid);
553
223ffa71 554 target_terminal::ours_for_output ();
6f259a23 555 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
556 _("[Attaching after %s %s to child %s]\n"),
557 parent_pid.c_str (),
6f259a23 558 has_vforked ? "vfork" : "fork",
f67c0c91 559 child_pid.c_str ());
d83ad864
DB
560 }
561
562 /* Add the new inferior first, so that the target_detach below
563 doesn't unpush the target. */
564
e99b03dc 565 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
566
567 parent_inf = current_inferior ();
568 child_inf->attach_flag = parent_inf->attach_flag;
569 copy_terminal_info (child_inf, parent_inf);
570 child_inf->gdbarch = parent_inf->gdbarch;
571 copy_inferior_target_desc_info (child_inf, parent_inf);
572
573 parent_pspace = parent_inf->pspace;
574
5b6d1e4f 575 process_stratum_target *target = parent_inf->process_target ();
d83ad864 576
5b6d1e4f
PA
577 {
578 /* Hold a strong reference to the target while (maybe)
579 detaching the parent. Otherwise detaching could close the
580 target. */
581 auto target_ref = target_ops_ref::new_reference (target);
582
583 /* If we're vforking, we want to hold on to the parent until
584 the child exits or execs. At child exec or exit time we
585 can remove the old breakpoints from the parent and detach
586 or resume debugging it. Otherwise, detach the parent now;
587 we'll want to reuse it's program/address spaces, but we
588 can't set them to the child before removing breakpoints
589 from the parent, otherwise, the breakpoints module could
590 decide to remove breakpoints from the wrong process (since
591 they'd be assigned to the same address space). */
592
593 if (has_vforked)
594 {
595 gdb_assert (child_inf->vfork_parent == NULL);
596 gdb_assert (parent_inf->vfork_child == NULL);
597 child_inf->vfork_parent = parent_inf;
598 child_inf->pending_detach = 0;
599 parent_inf->vfork_child = child_inf;
600 parent_inf->pending_detach = detach_fork;
601 parent_inf->waiting_for_vfork_done = 0;
602 }
603 else if (detach_fork)
604 {
605 if (print_inferior_events)
606 {
607 /* Ensure that we have a process ptid. */
608 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
609
610 target_terminal::ours_for_output ();
611 fprintf_filtered (gdb_stdlog,
612 _("[Detaching after fork from "
613 "parent %s]\n"),
614 target_pid_to_str (process_ptid).c_str ());
615 }
8dd06f7a 616
5b6d1e4f
PA
617 target_detach (parent_inf, 0);
618 parent_inf = NULL;
619 }
6f259a23 620
5b6d1e4f 621 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 622
5b6d1e4f
PA
623 /* Add the child thread to the appropriate lists, and switch
624 to this new thread, before cloning the program space, and
625 informing the solib layer about this new process. */
d83ad864 626
5b6d1e4f
PA
627 set_current_inferior (child_inf);
628 push_target (target);
629 }
d83ad864 630
5b6d1e4f 631 add_thread_silent (target, child_ptid);
79639e11 632 inferior_ptid = child_ptid;
d83ad864
DB
633
634 /* If this is a vfork child, then the address-space is shared
635 with the parent. If we detached from the parent, then we can
636 reuse the parent's program/address spaces. */
637 if (has_vforked || detach_fork)
638 {
639 child_inf->pspace = parent_pspace;
640 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
641
642 exec_on_vfork ();
d83ad864
DB
643 }
644 else
645 {
646 child_inf->aspace = new_address_space ();
564b1e3f 647 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
648 child_inf->removable = 1;
649 child_inf->symfile_flags = SYMFILE_NO_READ;
650 set_current_program_space (child_inf->pspace);
651 clone_program_space (child_inf->pspace, parent_pspace);
652
653 /* Let the shared library layer (e.g., solib-svr4) learn
654 about this new process, relocate the cloned exec, pull in
655 shared libraries, and install the solib event breakpoint.
656 If a "cloned-VM" event was propagated better throughout
657 the core, this wouldn't be required. */
658 solib_create_inferior_hook (0);
659 }
660 }
661
662 return target_follow_fork (follow_child, detach_fork);
663}
664
e58b0e63
PA
665/* Tell the target to follow the fork we're stopped at. Returns true
666 if the inferior should be resumed; false, if the target for some
667 reason decided it's best not to resume. */
668
5ab2fbf1
SM
669static bool
670follow_fork ()
c906108c 671{
5ab2fbf1
SM
672 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
673 bool should_resume = true;
e58b0e63
PA
674 struct thread_info *tp;
675
676 /* Copy user stepping state to the new inferior thread. FIXME: the
677 followed fork child thread should have a copy of most of the
4e3990f4
DE
678 parent thread structure's run control related fields, not just these.
679 Initialized to avoid "may be used uninitialized" warnings from gcc. */
680 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 681 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
682 CORE_ADDR step_range_start = 0;
683 CORE_ADDR step_range_end = 0;
684 struct frame_id step_frame_id = { 0 };
8980e177 685 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
686
687 if (!non_stop)
688 {
5b6d1e4f 689 process_stratum_target *wait_target;
e58b0e63
PA
690 ptid_t wait_ptid;
691 struct target_waitstatus wait_status;
692
693 /* Get the last target status returned by target_wait(). */
5b6d1e4f 694 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
695
696 /* If not stopped at a fork event, then there's nothing else to
697 do. */
698 if (wait_status.kind != TARGET_WAITKIND_FORKED
699 && wait_status.kind != TARGET_WAITKIND_VFORKED)
700 return 1;
701
702 /* Check if we switched over from WAIT_PTID, since the event was
703 reported. */
00431a78 704 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
705 && (current_inferior ()->process_target () != wait_target
706 || inferior_ptid != wait_ptid))
e58b0e63
PA
707 {
708 /* We did. Switch back to WAIT_PTID thread, to tell the
709 target to follow it (in either direction). We'll
710 afterwards refuse to resume, and inform the user what
711 happened. */
5b6d1e4f 712 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 713 switch_to_thread (wait_thread);
5ab2fbf1 714 should_resume = false;
e58b0e63
PA
715 }
716 }
717
718 tp = inferior_thread ();
719
720 /* If there were any forks/vforks that were caught and are now to be
721 followed, then do so now. */
722 switch (tp->pending_follow.kind)
723 {
724 case TARGET_WAITKIND_FORKED:
725 case TARGET_WAITKIND_VFORKED:
726 {
727 ptid_t parent, child;
728
729 /* If the user did a next/step, etc, over a fork call,
730 preserve the stepping state in the fork child. */
731 if (follow_child && should_resume)
732 {
8358c15c
JK
733 step_resume_breakpoint = clone_momentary_breakpoint
734 (tp->control.step_resume_breakpoint);
16c381f0
JK
735 step_range_start = tp->control.step_range_start;
736 step_range_end = tp->control.step_range_end;
737 step_frame_id = tp->control.step_frame_id;
186c406b
TT
738 exception_resume_breakpoint
739 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 740 thread_fsm = tp->thread_fsm;
e58b0e63
PA
741
742 /* For now, delete the parent's sr breakpoint, otherwise,
743 parent/child sr breakpoints are considered duplicates,
744 and the child version will not be installed. Remove
745 this when the breakpoints module becomes aware of
746 inferiors and address spaces. */
747 delete_step_resume_breakpoint (tp);
16c381f0
JK
748 tp->control.step_range_start = 0;
749 tp->control.step_range_end = 0;
750 tp->control.step_frame_id = null_frame_id;
186c406b 751 delete_exception_resume_breakpoint (tp);
8980e177 752 tp->thread_fsm = NULL;
e58b0e63
PA
753 }
754
755 parent = inferior_ptid;
756 child = tp->pending_follow.value.related_pid;
757
5b6d1e4f 758 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
759 /* Set up inferior(s) as specified by the caller, and tell the
760 target to do whatever is necessary to follow either parent
761 or child. */
762 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
763 {
764 /* Target refused to follow, or there's some other reason
765 we shouldn't resume. */
766 should_resume = 0;
767 }
768 else
769 {
770 /* This pending follow fork event is now handled, one way
771 or another. The previous selected thread may be gone
772 from the lists by now, but if it is still around, need
773 to clear the pending follow request. */
5b6d1e4f 774 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
775 if (tp)
776 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
777
778 /* This makes sure we don't try to apply the "Switched
779 over from WAIT_PID" logic above. */
780 nullify_last_target_wait_ptid ();
781
1777feb0 782 /* If we followed the child, switch to it... */
e58b0e63
PA
783 if (follow_child)
784 {
5b6d1e4f 785 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 786 switch_to_thread (child_thr);
e58b0e63
PA
787
788 /* ... and preserve the stepping state, in case the
789 user was stepping over the fork call. */
790 if (should_resume)
791 {
792 tp = inferior_thread ();
8358c15c
JK
793 tp->control.step_resume_breakpoint
794 = step_resume_breakpoint;
16c381f0
JK
795 tp->control.step_range_start = step_range_start;
796 tp->control.step_range_end = step_range_end;
797 tp->control.step_frame_id = step_frame_id;
186c406b
TT
798 tp->control.exception_resume_breakpoint
799 = exception_resume_breakpoint;
8980e177 800 tp->thread_fsm = thread_fsm;
e58b0e63
PA
801 }
802 else
803 {
804 /* If we get here, it was because we're trying to
805 resume from a fork catchpoint, but, the user
806 has switched threads away from the thread that
807 forked. In that case, the resume command
808 issued is most likely not applicable to the
809 child, so just warn, and refuse to resume. */
3e43a32a 810 warning (_("Not resuming: switched threads "
fd7dcb94 811 "before following fork child."));
e58b0e63
PA
812 }
813
814 /* Reset breakpoints in the child as appropriate. */
815 follow_inferior_reset_breakpoints ();
816 }
e58b0e63
PA
817 }
818 }
819 break;
820 case TARGET_WAITKIND_SPURIOUS:
821 /* Nothing to follow. */
822 break;
823 default:
824 internal_error (__FILE__, __LINE__,
825 "Unexpected pending_follow.kind %d\n",
826 tp->pending_follow.kind);
827 break;
828 }
c906108c 829
e58b0e63 830 return should_resume;
c906108c
SS
831}
832
d83ad864 833static void
6604731b 834follow_inferior_reset_breakpoints (void)
c906108c 835{
4e1c45ea
PA
836 struct thread_info *tp = inferior_thread ();
837
6604731b
DJ
838 /* Was there a step_resume breakpoint? (There was if the user
839 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
840 thread number. Cloned step_resume breakpoints are disabled on
841 creation, so enable it here now that it is associated with the
842 correct thread.
6604731b
DJ
843
844 step_resumes are a form of bp that are made to be per-thread.
845 Since we created the step_resume bp when the parent process
846 was being debugged, and now are switching to the child process,
847 from the breakpoint package's viewpoint, that's a switch of
848 "threads". We must update the bp's notion of which thread
849 it is for, or it'll be ignored when it triggers. */
850
8358c15c 851 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
852 {
853 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
854 tp->control.step_resume_breakpoint->loc->enabled = 1;
855 }
6604731b 856
a1aa2221 857 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 858 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
859 {
860 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
861 tp->control.exception_resume_breakpoint->loc->enabled = 1;
862 }
186c406b 863
6604731b
DJ
864 /* Reinsert all breakpoints in the child. The user may have set
865 breakpoints after catching the fork, in which case those
866 were never set in the child, but only in the parent. This makes
867 sure the inserted breakpoints match the breakpoint list. */
868
869 breakpoint_re_set ();
870 insert_breakpoints ();
c906108c 871}
c906108c 872
6c95b8df
PA
873/* The child has exited or execed: resume threads of the parent the
874 user wanted to be executing. */
875
876static int
877proceed_after_vfork_done (struct thread_info *thread,
878 void *arg)
879{
880 int pid = * (int *) arg;
881
00431a78
PA
882 if (thread->ptid.pid () == pid
883 && thread->state == THREAD_RUNNING
884 && !thread->executing
6c95b8df 885 && !thread->stop_requested
a493e3e2 886 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
887 {
888 if (debug_infrun)
889 fprintf_unfiltered (gdb_stdlog,
890 "infrun: resuming vfork parent thread %s\n",
a068643d 891 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 892
00431a78 893 switch_to_thread (thread);
70509625 894 clear_proceed_status (0);
64ce06e4 895 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
896 }
897
898 return 0;
899}
900
5ed8105e
PA
901/* Save/restore inferior_ptid, current program space and current
902 inferior. Only use this if the current context points at an exited
903 inferior (and therefore there's no current thread to save). */
904class scoped_restore_exited_inferior
905{
906public:
907 scoped_restore_exited_inferior ()
908 : m_saved_ptid (&inferior_ptid)
909 {}
910
911private:
912 scoped_restore_tmpl<ptid_t> m_saved_ptid;
913 scoped_restore_current_program_space m_pspace;
914 scoped_restore_current_inferior m_inferior;
915};
916
6c95b8df
PA
917/* Called whenever we notice an exec or exit event, to handle
918 detaching or resuming a vfork parent. */
919
920static void
921handle_vfork_child_exec_or_exit (int exec)
922{
923 struct inferior *inf = current_inferior ();
924
925 if (inf->vfork_parent)
926 {
927 int resume_parent = -1;
928
929 /* This exec or exit marks the end of the shared memory region
b73715df
TV
930 between the parent and the child. Break the bonds. */
931 inferior *vfork_parent = inf->vfork_parent;
932 inf->vfork_parent->vfork_child = NULL;
933 inf->vfork_parent = NULL;
6c95b8df 934
b73715df
TV
935 /* If the user wanted to detach from the parent, now is the
936 time. */
937 if (vfork_parent->pending_detach)
6c95b8df
PA
938 {
939 struct thread_info *tp;
6c95b8df
PA
940 struct program_space *pspace;
941 struct address_space *aspace;
942
1777feb0 943 /* follow-fork child, detach-on-fork on. */
6c95b8df 944
b73715df 945 vfork_parent->pending_detach = 0;
68c9da30 946
5ed8105e
PA
947 gdb::optional<scoped_restore_exited_inferior>
948 maybe_restore_inferior;
949 gdb::optional<scoped_restore_current_pspace_and_thread>
950 maybe_restore_thread;
951
952 /* If we're handling a child exit, then inferior_ptid points
953 at the inferior's pid, not to a thread. */
f50f4e56 954 if (!exec)
5ed8105e 955 maybe_restore_inferior.emplace ();
f50f4e56 956 else
5ed8105e 957 maybe_restore_thread.emplace ();
6c95b8df
PA
958
959 /* We're letting loose of the parent. */
b73715df 960 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 961 switch_to_thread (tp);
6c95b8df
PA
962
963 /* We're about to detach from the parent, which implicitly
964 removes breakpoints from its address space. There's a
965 catch here: we want to reuse the spaces for the child,
966 but, parent/child are still sharing the pspace at this
967 point, although the exec in reality makes the kernel give
968 the child a fresh set of new pages. The problem here is
969 that the breakpoints module being unaware of this, would
970 likely chose the child process to write to the parent
971 address space. Swapping the child temporarily away from
972 the spaces has the desired effect. Yes, this is "sort
973 of" a hack. */
974
975 pspace = inf->pspace;
976 aspace = inf->aspace;
977 inf->aspace = NULL;
978 inf->pspace = NULL;
979
f67c0c91 980 if (print_inferior_events)
6c95b8df 981 {
a068643d 982 std::string pidstr
b73715df 983 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 984
223ffa71 985 target_terminal::ours_for_output ();
6c95b8df
PA
986
987 if (exec)
6f259a23
DB
988 {
989 fprintf_filtered (gdb_stdlog,
f67c0c91 990 _("[Detaching vfork parent %s "
a068643d 991 "after child exec]\n"), pidstr.c_str ());
6f259a23 992 }
6c95b8df 993 else
6f259a23
DB
994 {
995 fprintf_filtered (gdb_stdlog,
f67c0c91 996 _("[Detaching vfork parent %s "
a068643d 997 "after child exit]\n"), pidstr.c_str ());
6f259a23 998 }
6c95b8df
PA
999 }
1000
b73715df 1001 target_detach (vfork_parent, 0);
6c95b8df
PA
1002
1003 /* Put it back. */
1004 inf->pspace = pspace;
1005 inf->aspace = aspace;
6c95b8df
PA
1006 }
1007 else if (exec)
1008 {
1009 /* We're staying attached to the parent, so, really give the
1010 child a new address space. */
564b1e3f 1011 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1012 inf->aspace = inf->pspace->aspace;
1013 inf->removable = 1;
1014 set_current_program_space (inf->pspace);
1015
b73715df 1016 resume_parent = vfork_parent->pid;
6c95b8df
PA
1017 }
1018 else
1019 {
6c95b8df
PA
1020 /* If this is a vfork child exiting, then the pspace and
1021 aspaces were shared with the parent. Since we're
1022 reporting the process exit, we'll be mourning all that is
1023 found in the address space, and switching to null_ptid,
1024 preparing to start a new inferior. But, since we don't
1025 want to clobber the parent's address/program spaces, we
1026 go ahead and create a new one for this exiting
1027 inferior. */
1028
5ed8105e
PA
1029 /* Switch to null_ptid while running clone_program_space, so
1030 that clone_program_space doesn't want to read the
1031 selected frame of a dead process. */
1032 scoped_restore restore_ptid
1033 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df 1034
53af73bf
PA
1035 inf->pspace = new program_space (maybe_new_address_space ());
1036 inf->aspace = inf->pspace->aspace;
1037 set_current_program_space (inf->pspace);
6c95b8df 1038 inf->removable = 1;
7dcd53a0 1039 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1040 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1041
b73715df 1042 resume_parent = vfork_parent->pid;
6c95b8df
PA
1043 }
1044
6c95b8df
PA
1045 gdb_assert (current_program_space == inf->pspace);
1046
1047 if (non_stop && resume_parent != -1)
1048 {
1049 /* If the user wanted the parent to be running, let it go
1050 free now. */
5ed8105e 1051 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1052
1053 if (debug_infrun)
3e43a32a
MS
1054 fprintf_unfiltered (gdb_stdlog,
1055 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1056 resume_parent);
1057
1058 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1059 }
1060 }
1061}
1062
eb6c553b 1063/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1064
1065static const char follow_exec_mode_new[] = "new";
1066static const char follow_exec_mode_same[] = "same";
40478521 1067static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1068{
1069 follow_exec_mode_new,
1070 follow_exec_mode_same,
1071 NULL,
1072};
1073
1074static const char *follow_exec_mode_string = follow_exec_mode_same;
1075static void
1076show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1077 struct cmd_list_element *c, const char *value)
1078{
1079 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1080}
1081
ecf45d2c 1082/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1083
c906108c 1084static void
4ca51187 1085follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1086{
6c95b8df 1087 struct inferior *inf = current_inferior ();
e99b03dc 1088 int pid = ptid.pid ();
94585166 1089 ptid_t process_ptid;
7a292a7a 1090
65d2b333
PW
1091 /* Switch terminal for any messages produced e.g. by
1092 breakpoint_re_set. */
1093 target_terminal::ours_for_output ();
1094
c906108c
SS
1095 /* This is an exec event that we actually wish to pay attention to.
1096 Refresh our symbol table to the newly exec'd program, remove any
1097 momentary bp's, etc.
1098
1099 If there are breakpoints, they aren't really inserted now,
1100 since the exec() transformed our inferior into a fresh set
1101 of instructions.
1102
1103 We want to preserve symbolic breakpoints on the list, since
1104 we have hopes that they can be reset after the new a.out's
1105 symbol table is read.
1106
1107 However, any "raw" breakpoints must be removed from the list
1108 (e.g., the solib bp's), since their address is probably invalid
1109 now.
1110
1111 And, we DON'T want to call delete_breakpoints() here, since
1112 that may write the bp's "shadow contents" (the instruction
85102364 1113 value that was overwritten with a TRAP instruction). Since
1777feb0 1114 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1115
1116 mark_breakpoints_out ();
1117
95e50b27
PA
1118 /* The target reports the exec event to the main thread, even if
1119 some other thread does the exec, and even if the main thread was
1120 stopped or already gone. We may still have non-leader threads of
1121 the process on our list. E.g., on targets that don't have thread
1122 exit events (like remote); or on native Linux in non-stop mode if
1123 there were only two threads in the inferior and the non-leader
1124 one is the one that execs (and nothing forces an update of the
1125 thread list up to here). When debugging remotely, it's best to
1126 avoid extra traffic, when possible, so avoid syncing the thread
1127 list with the target, and instead go ahead and delete all threads
1128 of the process but one that reported the event. Note this must
1129 be done before calling update_breakpoints_after_exec, as
1130 otherwise clearing the threads' resources would reference stale
1131 thread breakpoints -- it may have been one of these threads that
1132 stepped across the exec. We could just clear their stepping
1133 states, but as long as we're iterating, might as well delete
1134 them. Deleting them now rather than at the next user-visible
1135 stop provides a nicer sequence of events for user and MI
1136 notifications. */
08036331 1137 for (thread_info *th : all_threads_safe ())
d7e15655 1138 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1139 delete_thread (th);
95e50b27
PA
1140
1141 /* We also need to clear any left over stale state for the
1142 leader/event thread. E.g., if there was any step-resume
1143 breakpoint or similar, it's gone now. We cannot truly
1144 step-to-next statement through an exec(). */
08036331 1145 thread_info *th = inferior_thread ();
8358c15c 1146 th->control.step_resume_breakpoint = NULL;
186c406b 1147 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1148 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1149 th->control.step_range_start = 0;
1150 th->control.step_range_end = 0;
c906108c 1151
95e50b27
PA
1152 /* The user may have had the main thread held stopped in the
1153 previous image (e.g., schedlock on, or non-stop). Release
1154 it now. */
a75724bc
PA
1155 th->stop_requested = 0;
1156
95e50b27
PA
1157 update_breakpoints_after_exec ();
1158
1777feb0 1159 /* What is this a.out's name? */
f2907e49 1160 process_ptid = ptid_t (pid);
6c95b8df 1161 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1162 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1163 exec_file_target);
c906108c
SS
1164
1165 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1166 inferior has essentially been killed & reborn. */
7a292a7a 1167
6ca15a4b 1168 breakpoint_init_inferior (inf_execd);
e85a822c 1169
797bc1cb
TT
1170 gdb::unique_xmalloc_ptr<char> exec_file_host
1171 = exec_file_find (exec_file_target, NULL);
ff862be4 1172
ecf45d2c
SL
1173 /* If we were unable to map the executable target pathname onto a host
1174 pathname, tell the user that. Otherwise GDB's subsequent behavior
1175 is confusing. Maybe it would even be better to stop at this point
1176 so that the user can specify a file manually before continuing. */
1177 if (exec_file_host == NULL)
1178 warning (_("Could not load symbols for executable %s.\n"
1179 "Do you need \"set sysroot\"?"),
1180 exec_file_target);
c906108c 1181
cce9b6bf
PA
1182 /* Reset the shared library package. This ensures that we get a
1183 shlib event when the child reaches "_start", at which point the
1184 dld will have had a chance to initialize the child. */
1185 /* Also, loading a symbol file below may trigger symbol lookups, and
1186 we don't want those to be satisfied by the libraries of the
1187 previous incarnation of this process. */
1188 no_shared_libraries (NULL, 0);
1189
6c95b8df
PA
1190 if (follow_exec_mode_string == follow_exec_mode_new)
1191 {
6c95b8df
PA
1192 /* The user wants to keep the old inferior and program spaces
1193 around. Create a new fresh one, and switch to it. */
1194
35ed81d4
SM
1195 /* Do exit processing for the original inferior before setting the new
1196 inferior's pid. Having two inferiors with the same pid would confuse
1197 find_inferior_p(t)id. Transfer the terminal state and info from the
1198 old to the new inferior. */
1199 inf = add_inferior_with_spaces ();
1200 swap_terminal_info (inf, current_inferior ());
057302ce 1201 exit_inferior_silent (current_inferior ());
17d8546e 1202
94585166 1203 inf->pid = pid;
ecf45d2c 1204 target_follow_exec (inf, exec_file_target);
6c95b8df 1205
5b6d1e4f
PA
1206 inferior *org_inferior = current_inferior ();
1207 switch_to_inferior_no_thread (inf);
1208 push_target (org_inferior->process_target ());
1209 thread_info *thr = add_thread (inf->process_target (), ptid);
1210 switch_to_thread (thr);
6c95b8df 1211 }
9107fc8d
PA
1212 else
1213 {
1214 /* The old description may no longer be fit for the new image.
1215 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1216 old description; we'll read a new one below. No need to do
1217 this on "follow-exec-mode new", as the old inferior stays
1218 around (its description is later cleared/refetched on
1219 restart). */
1220 target_clear_description ();
1221 }
6c95b8df
PA
1222
1223 gdb_assert (current_program_space == inf->pspace);
1224
ecf45d2c
SL
1225 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1226 because the proper displacement for a PIE (Position Independent
1227 Executable) main symbol file will only be computed by
1228 solib_create_inferior_hook below. breakpoint_re_set would fail
1229 to insert the breakpoints with the zero displacement. */
797bc1cb 1230 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1231
9107fc8d
PA
1232 /* If the target can specify a description, read it. Must do this
1233 after flipping to the new executable (because the target supplied
1234 description must be compatible with the executable's
1235 architecture, and the old executable may e.g., be 32-bit, while
1236 the new one 64-bit), and before anything involving memory or
1237 registers. */
1238 target_find_description ();
1239
268a4a75 1240 solib_create_inferior_hook (0);
c906108c 1241
4efc6507
DE
1242 jit_inferior_created_hook ();
1243
c1e56572
JK
1244 breakpoint_re_set ();
1245
c906108c
SS
1246 /* Reinsert all breakpoints. (Those which were symbolic have
1247 been reset to the proper address in the new a.out, thanks
1777feb0 1248 to symbol_file_command...). */
c906108c
SS
1249 insert_breakpoints ();
1250
1251 /* The next resume of this inferior should bring it to the shlib
1252 startup breakpoints. (If the user had also set bp's on
1253 "main" from the old (parent) process, then they'll auto-
1777feb0 1254 matically get reset there in the new process.). */
c906108c
SS
1255}
1256
c2829269
PA
1257/* The queue of threads that need to do a step-over operation to get
1258 past e.g., a breakpoint. What technique is used to step over the
1259 breakpoint/watchpoint does not matter -- all threads end up in the
1260 same queue, to maintain rough temporal order of execution, in order
1261 to avoid starvation, otherwise, we could e.g., find ourselves
1262 constantly stepping the same couple threads past their breakpoints
1263 over and over, if the single-step finish fast enough. */
1264struct thread_info *step_over_queue_head;
1265
6c4cfb24
PA
1266/* Bit flags indicating what the thread needs to step over. */
1267
8d297bbf 1268enum step_over_what_flag
6c4cfb24
PA
1269 {
1270 /* Step over a breakpoint. */
1271 STEP_OVER_BREAKPOINT = 1,
1272
1273 /* Step past a non-continuable watchpoint, in order to let the
1274 instruction execute so we can evaluate the watchpoint
1275 expression. */
1276 STEP_OVER_WATCHPOINT = 2
1277 };
8d297bbf 1278DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1279
963f9c80 1280/* Info about an instruction that is being stepped over. */
31e77af2
PA
1281
1282struct step_over_info
1283{
963f9c80
PA
1284 /* If we're stepping past a breakpoint, this is the address space
1285 and address of the instruction the breakpoint is set at. We'll
1286 skip inserting all breakpoints here. Valid iff ASPACE is
1287 non-NULL. */
8b86c959 1288 const address_space *aspace;
31e77af2 1289 CORE_ADDR address;
963f9c80
PA
1290
1291 /* The instruction being stepped over triggers a nonsteppable
1292 watchpoint. If true, we'll skip inserting watchpoints. */
1293 int nonsteppable_watchpoint_p;
21edc42f
YQ
1294
1295 /* The thread's global number. */
1296 int thread;
31e77af2
PA
1297};
1298
1299/* The step-over info of the location that is being stepped over.
1300
1301 Note that with async/breakpoint always-inserted mode, a user might
1302 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1303 being stepped over. As setting a new breakpoint inserts all
1304 breakpoints, we need to make sure the breakpoint being stepped over
1305 isn't inserted then. We do that by only clearing the step-over
1306 info when the step-over is actually finished (or aborted).
1307
1308 Presently GDB can only step over one breakpoint at any given time.
1309 Given threads that can't run code in the same address space as the
1310 breakpoint's can't really miss the breakpoint, GDB could be taught
1311 to step-over at most one breakpoint per address space (so this info
1312 could move to the address space object if/when GDB is extended).
1313 The set of breakpoints being stepped over will normally be much
1314 smaller than the set of all breakpoints, so a flag in the
1315 breakpoint location structure would be wasteful. A separate list
1316 also saves complexity and run-time, as otherwise we'd have to go
1317 through all breakpoint locations clearing their flag whenever we
1318 start a new sequence. Similar considerations weigh against storing
1319 this info in the thread object. Plus, not all step overs actually
1320 have breakpoint locations -- e.g., stepping past a single-step
1321 breakpoint, or stepping to complete a non-continuable
1322 watchpoint. */
1323static struct step_over_info step_over_info;
1324
1325/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1326 stepping over.
1327 N.B. We record the aspace and address now, instead of say just the thread,
1328 because when we need the info later the thread may be running. */
31e77af2
PA
1329
1330static void
8b86c959 1331set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1332 int nonsteppable_watchpoint_p,
1333 int thread)
31e77af2
PA
1334{
1335 step_over_info.aspace = aspace;
1336 step_over_info.address = address;
963f9c80 1337 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1338 step_over_info.thread = thread;
31e77af2
PA
1339}
1340
1341/* Called when we're not longer stepping over a breakpoint / an
1342 instruction, so all breakpoints are free to be (re)inserted. */
1343
1344static void
1345clear_step_over_info (void)
1346{
372316f1
PA
1347 if (debug_infrun)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "infrun: clear_step_over_info\n");
31e77af2
PA
1350 step_over_info.aspace = NULL;
1351 step_over_info.address = 0;
963f9c80 1352 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1353 step_over_info.thread = -1;
31e77af2
PA
1354}
1355
7f89fd65 1356/* See infrun.h. */
31e77af2
PA
1357
1358int
1359stepping_past_instruction_at (struct address_space *aspace,
1360 CORE_ADDR address)
1361{
1362 return (step_over_info.aspace != NULL
1363 && breakpoint_address_match (aspace, address,
1364 step_over_info.aspace,
1365 step_over_info.address));
1366}
1367
963f9c80
PA
1368/* See infrun.h. */
1369
21edc42f
YQ
1370int
1371thread_is_stepping_over_breakpoint (int thread)
1372{
1373 return (step_over_info.thread != -1
1374 && thread == step_over_info.thread);
1375}
1376
1377/* See infrun.h. */
1378
963f9c80
PA
1379int
1380stepping_past_nonsteppable_watchpoint (void)
1381{
1382 return step_over_info.nonsteppable_watchpoint_p;
1383}
1384
6cc83d2a
PA
1385/* Returns true if step-over info is valid. */
1386
1387static int
1388step_over_info_valid_p (void)
1389{
963f9c80
PA
1390 return (step_over_info.aspace != NULL
1391 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1392}
1393
c906108c 1394\f
237fc4c9
PA
1395/* Displaced stepping. */
1396
1397/* In non-stop debugging mode, we must take special care to manage
1398 breakpoints properly; in particular, the traditional strategy for
1399 stepping a thread past a breakpoint it has hit is unsuitable.
1400 'Displaced stepping' is a tactic for stepping one thread past a
1401 breakpoint it has hit while ensuring that other threads running
1402 concurrently will hit the breakpoint as they should.
1403
1404 The traditional way to step a thread T off a breakpoint in a
1405 multi-threaded program in all-stop mode is as follows:
1406
1407 a0) Initially, all threads are stopped, and breakpoints are not
1408 inserted.
1409 a1) We single-step T, leaving breakpoints uninserted.
1410 a2) We insert breakpoints, and resume all threads.
1411
1412 In non-stop debugging, however, this strategy is unsuitable: we
1413 don't want to have to stop all threads in the system in order to
1414 continue or step T past a breakpoint. Instead, we use displaced
1415 stepping:
1416
1417 n0) Initially, T is stopped, other threads are running, and
1418 breakpoints are inserted.
1419 n1) We copy the instruction "under" the breakpoint to a separate
1420 location, outside the main code stream, making any adjustments
1421 to the instruction, register, and memory state as directed by
1422 T's architecture.
1423 n2) We single-step T over the instruction at its new location.
1424 n3) We adjust the resulting register and memory state as directed
1425 by T's architecture. This includes resetting T's PC to point
1426 back into the main instruction stream.
1427 n4) We resume T.
1428
1429 This approach depends on the following gdbarch methods:
1430
1431 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1432 indicate where to copy the instruction, and how much space must
1433 be reserved there. We use these in step n1.
1434
1435 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1436 address, and makes any necessary adjustments to the instruction,
1437 register contents, and memory. We use this in step n1.
1438
1439 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1440 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1441 same effect the instruction would have had if we had executed it
1442 at its original address. We use this in step n3.
1443
237fc4c9
PA
1444 The gdbarch_displaced_step_copy_insn and
1445 gdbarch_displaced_step_fixup functions must be written so that
1446 copying an instruction with gdbarch_displaced_step_copy_insn,
1447 single-stepping across the copied instruction, and then applying
1448 gdbarch_displaced_insn_fixup should have the same effects on the
1449 thread's memory and registers as stepping the instruction in place
1450 would have. Exactly which responsibilities fall to the copy and
1451 which fall to the fixup is up to the author of those functions.
1452
1453 See the comments in gdbarch.sh for details.
1454
1455 Note that displaced stepping and software single-step cannot
1456 currently be used in combination, although with some care I think
1457 they could be made to. Software single-step works by placing
1458 breakpoints on all possible subsequent instructions; if the
1459 displaced instruction is a PC-relative jump, those breakpoints
1460 could fall in very strange places --- on pages that aren't
1461 executable, or at addresses that are not proper instruction
1462 boundaries. (We do generally let other threads run while we wait
1463 to hit the software single-step breakpoint, and they might
1464 encounter such a corrupted instruction.) One way to work around
1465 this would be to have gdbarch_displaced_step_copy_insn fully
1466 simulate the effect of PC-relative instructions (and return NULL)
1467 on architectures that use software single-stepping.
1468
1469 In non-stop mode, we can have independent and simultaneous step
1470 requests, so more than one thread may need to simultaneously step
1471 over a breakpoint. The current implementation assumes there is
1472 only one scratch space per process. In this case, we have to
1473 serialize access to the scratch space. If thread A wants to step
1474 over a breakpoint, but we are currently waiting for some other
1475 thread to complete a displaced step, we leave thread A stopped and
1476 place it in the displaced_step_request_queue. Whenever a displaced
1477 step finishes, we pick the next thread in the queue and start a new
1478 displaced step operation on it. See displaced_step_prepare and
1479 displaced_step_fixup for details. */
1480
cfba9872
SM
1481/* Default destructor for displaced_step_closure. */
1482
1483displaced_step_closure::~displaced_step_closure () = default;
1484
fc1cf338
PA
1485/* Get the displaced stepping state of process PID. */
1486
39a36629 1487static displaced_step_inferior_state *
00431a78 1488get_displaced_stepping_state (inferior *inf)
fc1cf338 1489{
d20172fc 1490 return &inf->displaced_step_state;
fc1cf338
PA
1491}
1492
372316f1
PA
1493/* Returns true if any inferior has a thread doing a displaced
1494 step. */
1495
39a36629
SM
1496static bool
1497displaced_step_in_progress_any_inferior ()
372316f1 1498{
d20172fc 1499 for (inferior *i : all_inferiors ())
39a36629 1500 {
d20172fc 1501 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1502 return true;
1503 }
372316f1 1504
39a36629 1505 return false;
372316f1
PA
1506}
1507
c0987663
YQ
1508/* Return true if thread represented by PTID is doing a displaced
1509 step. */
1510
1511static int
00431a78 1512displaced_step_in_progress_thread (thread_info *thread)
c0987663 1513{
00431a78 1514 gdb_assert (thread != NULL);
c0987663 1515
d20172fc 1516 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1517}
1518
8f572e5c
PA
1519/* Return true if process PID has a thread doing a displaced step. */
1520
1521static int
00431a78 1522displaced_step_in_progress (inferior *inf)
8f572e5c 1523{
d20172fc 1524 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1525}
1526
a42244db
YQ
1527/* If inferior is in displaced stepping, and ADDR equals to starting address
1528 of copy area, return corresponding displaced_step_closure. Otherwise,
1529 return NULL. */
1530
1531struct displaced_step_closure*
1532get_displaced_step_closure_by_addr (CORE_ADDR addr)
1533{
d20172fc 1534 displaced_step_inferior_state *displaced
00431a78 1535 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1536
1537 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1538 if (displaced->step_thread != nullptr
00431a78 1539 && displaced->step_copy == addr)
d8d83535 1540 return displaced->step_closure.get ();
a42244db
YQ
1541
1542 return NULL;
1543}
1544
fc1cf338
PA
1545static void
1546infrun_inferior_exit (struct inferior *inf)
1547{
d20172fc 1548 inf->displaced_step_state.reset ();
fc1cf338 1549}
237fc4c9 1550
fff08868
HZ
1551/* If ON, and the architecture supports it, GDB will use displaced
1552 stepping to step over breakpoints. If OFF, or if the architecture
1553 doesn't support it, GDB will instead use the traditional
1554 hold-and-step approach. If AUTO (which is the default), GDB will
1555 decide which technique to use to step over breakpoints depending on
9822cb57 1556 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1557
72d0e2c5 1558static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1559
237fc4c9
PA
1560static void
1561show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1562 struct cmd_list_element *c,
1563 const char *value)
1564{
72d0e2c5 1565 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1566 fprintf_filtered (file,
1567 _("Debugger's willingness to use displaced stepping "
1568 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1569 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1570 else
3e43a32a
MS
1571 fprintf_filtered (file,
1572 _("Debugger's willingness to use displaced stepping "
1573 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1574}
1575
9822cb57
SM
1576/* Return true if the gdbarch implements the required methods to use
1577 displaced stepping. */
1578
1579static bool
1580gdbarch_supports_displaced_stepping (gdbarch *arch)
1581{
1582 /* Only check for the presence of step_copy_insn. Other required methods
1583 are checked by the gdbarch validation. */
1584 return gdbarch_displaced_step_copy_insn_p (arch);
1585}
1586
fff08868 1587/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1588 over breakpoints of thread TP. */
fff08868 1589
9822cb57
SM
1590static bool
1591use_displaced_stepping (thread_info *tp)
237fc4c9 1592{
9822cb57
SM
1593 /* If the user disabled it explicitly, don't use displaced stepping. */
1594 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1595 return false;
1596
1597 /* If "auto", only use displaced stepping if the target operates in a non-stop
1598 way. */
1599 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1600 && !target_is_non_stop_p ())
1601 return false;
1602
1603 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1604
1605 /* If the architecture doesn't implement displaced stepping, don't use
1606 it. */
1607 if (!gdbarch_supports_displaced_stepping (gdbarch))
1608 return false;
1609
1610 /* If recording, don't use displaced stepping. */
1611 if (find_record_target () != nullptr)
1612 return false;
1613
d20172fc
SM
1614 displaced_step_inferior_state *displaced_state
1615 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1616
9822cb57
SM
1617 /* If displaced stepping failed before for this inferior, don't bother trying
1618 again. */
1619 if (displaced_state->failed_before)
1620 return false;
1621
1622 return true;
237fc4c9
PA
1623}
1624
d8d83535
SM
1625/* Simple function wrapper around displaced_step_inferior_state::reset. */
1626
237fc4c9 1627static void
d8d83535 1628displaced_step_reset (displaced_step_inferior_state *displaced)
237fc4c9 1629{
d8d83535 1630 displaced->reset ();
237fc4c9
PA
1631}
1632
d8d83535
SM
1633/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1634 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1635
1636using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9
PA
1637
1638/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1639void
1640displaced_step_dump_bytes (struct ui_file *file,
1641 const gdb_byte *buf,
1642 size_t len)
1643{
1644 int i;
1645
1646 for (i = 0; i < len; i++)
1647 fprintf_unfiltered (file, "%02x ", buf[i]);
1648 fputs_unfiltered ("\n", file);
1649}
1650
1651/* Prepare to single-step, using displaced stepping.
1652
1653 Note that we cannot use displaced stepping when we have a signal to
1654 deliver. If we have a signal to deliver and an instruction to step
1655 over, then after the step, there will be no indication from the
1656 target whether the thread entered a signal handler or ignored the
1657 signal and stepped over the instruction successfully --- both cases
1658 result in a simple SIGTRAP. In the first case we mustn't do a
1659 fixup, and in the second case we must --- but we can't tell which.
1660 Comments in the code for 'random signals' in handle_inferior_event
1661 explain how we handle this case instead.
1662
1663 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1664 stepped now; 0 if displaced stepping this thread got queued; or -1
1665 if this instruction can't be displaced stepped. */
1666
237fc4c9 1667static int
00431a78 1668displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1669{
00431a78 1670 regcache *regcache = get_thread_regcache (tp);
ac7936df 1671 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1672 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1673 CORE_ADDR original, copy;
1674 ULONGEST len;
9e529e1d 1675 int status;
237fc4c9
PA
1676
1677 /* We should never reach this function if the architecture does not
1678 support displaced stepping. */
9822cb57 1679 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1680
c2829269
PA
1681 /* Nor if the thread isn't meant to step over a breakpoint. */
1682 gdb_assert (tp->control.trap_expected);
1683
c1e36e3e
PA
1684 /* Disable range stepping while executing in the scratch pad. We
1685 want a single-step even if executing the displaced instruction in
1686 the scratch buffer lands within the stepping range (e.g., a
1687 jump/branch). */
1688 tp->control.may_range_step = 0;
1689
fc1cf338
PA
1690 /* We have to displaced step one thread at a time, as we only have
1691 access to a single scratch space per inferior. */
237fc4c9 1692
d20172fc
SM
1693 displaced_step_inferior_state *displaced
1694 = get_displaced_stepping_state (tp->inf);
fc1cf338 1695
00431a78 1696 if (displaced->step_thread != nullptr)
237fc4c9
PA
1697 {
1698 /* Already waiting for a displaced step to finish. Defer this
1699 request and place in queue. */
237fc4c9
PA
1700
1701 if (debug_displaced)
1702 fprintf_unfiltered (gdb_stdlog,
c2829269 1703 "displaced: deferring step of %s\n",
a068643d 1704 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1705
c2829269 1706 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1707 return 0;
1708 }
1709 else
1710 {
1711 if (debug_displaced)
1712 fprintf_unfiltered (gdb_stdlog,
1713 "displaced: stepping %s now\n",
a068643d 1714 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1715 }
1716
d8d83535 1717 displaced_step_reset (displaced);
237fc4c9 1718
00431a78
PA
1719 scoped_restore_current_thread restore_thread;
1720
1721 switch_to_thread (tp);
ad53cd71 1722
515630c5 1723 original = regcache_read_pc (regcache);
237fc4c9
PA
1724
1725 copy = gdbarch_displaced_step_location (gdbarch);
1726 len = gdbarch_max_insn_length (gdbarch);
1727
d35ae833
PA
1728 if (breakpoint_in_range_p (aspace, copy, len))
1729 {
1730 /* There's a breakpoint set in the scratch pad location range
1731 (which is usually around the entry point). We'd either
1732 install it before resuming, which would overwrite/corrupt the
1733 scratch pad, or if it was already inserted, this displaced
1734 step would overwrite it. The latter is OK in the sense that
1735 we already assume that no thread is going to execute the code
1736 in the scratch pad range (after initial startup) anyway, but
1737 the former is unacceptable. Simply punt and fallback to
1738 stepping over this breakpoint in-line. */
1739 if (debug_displaced)
1740 {
1741 fprintf_unfiltered (gdb_stdlog,
1742 "displaced: breakpoint set in scratch pad. "
1743 "Stepping over breakpoint in-line instead.\n");
1744 }
1745
d35ae833
PA
1746 return -1;
1747 }
1748
237fc4c9 1749 /* Save the original contents of the copy area. */
d20172fc
SM
1750 displaced->step_saved_copy.resize (len);
1751 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1752 if (status != 0)
1753 throw_error (MEMORY_ERROR,
1754 _("Error accessing memory address %s (%s) for "
1755 "displaced-stepping scratch space."),
1756 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1757 if (debug_displaced)
1758 {
5af949e3
UW
1759 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1760 paddress (gdbarch, copy));
fc1cf338 1761 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1762 displaced->step_saved_copy.data (),
fc1cf338 1763 len);
237fc4c9
PA
1764 };
1765
e8217e61
SM
1766 displaced->step_closure
1767 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1768 if (displaced->step_closure == NULL)
7f03bd92
PA
1769 {
1770 /* The architecture doesn't know how or want to displaced step
1771 this instruction or instruction sequence. Fallback to
1772 stepping over the breakpoint in-line. */
7f03bd92
PA
1773 return -1;
1774 }
237fc4c9 1775
9f5a595d
UW
1776 /* Save the information we need to fix things up if the step
1777 succeeds. */
00431a78 1778 displaced->step_thread = tp;
fc1cf338 1779 displaced->step_gdbarch = gdbarch;
fc1cf338
PA
1780 displaced->step_original = original;
1781 displaced->step_copy = copy;
9f5a595d 1782
9799571e 1783 {
d8d83535 1784 displaced_step_reset_cleanup cleanup (displaced);
237fc4c9 1785
9799571e
TT
1786 /* Resume execution at the copy. */
1787 regcache_write_pc (regcache, copy);
237fc4c9 1788
9799571e
TT
1789 cleanup.release ();
1790 }
ad53cd71 1791
237fc4c9 1792 if (debug_displaced)
5af949e3
UW
1793 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1794 paddress (gdbarch, copy));
237fc4c9 1795
237fc4c9
PA
1796 return 1;
1797}
1798
3fc8eb30
PA
1799/* Wrapper for displaced_step_prepare_throw that disabled further
1800 attempts at displaced stepping if we get a memory error. */
1801
1802static int
00431a78 1803displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1804{
1805 int prepared = -1;
1806
a70b8144 1807 try
3fc8eb30 1808 {
00431a78 1809 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1810 }
230d2906 1811 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1812 {
1813 struct displaced_step_inferior_state *displaced_state;
1814
16b41842
PA
1815 if (ex.error != MEMORY_ERROR
1816 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1817 throw;
3fc8eb30
PA
1818
1819 if (debug_infrun)
1820 {
1821 fprintf_unfiltered (gdb_stdlog,
1822 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1823 ex.what ());
3fc8eb30
PA
1824 }
1825
1826 /* Be verbose if "set displaced-stepping" is "on", silent if
1827 "auto". */
1828 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1829 {
fd7dcb94 1830 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1831 ex.what ());
3fc8eb30
PA
1832 }
1833
1834 /* Disable further displaced stepping attempts. */
1835 displaced_state
00431a78 1836 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1837 displaced_state->failed_before = 1;
1838 }
3fc8eb30
PA
1839
1840 return prepared;
1841}
1842
237fc4c9 1843static void
3e43a32a
MS
1844write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1845 const gdb_byte *myaddr, int len)
237fc4c9 1846{
2989a365 1847 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1848
237fc4c9
PA
1849 inferior_ptid = ptid;
1850 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1851}
1852
e2d96639
YQ
1853/* Restore the contents of the copy area for thread PTID. */
1854
1855static void
1856displaced_step_restore (struct displaced_step_inferior_state *displaced,
1857 ptid_t ptid)
1858{
1859 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1860
1861 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1862 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1863 if (debug_displaced)
1864 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1865 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1866 paddress (displaced->step_gdbarch,
1867 displaced->step_copy));
1868}
1869
372316f1
PA
1870/* If we displaced stepped an instruction successfully, adjust
1871 registers and memory to yield the same effect the instruction would
1872 have had if we had executed it at its original address, and return
1873 1. If the instruction didn't complete, relocate the PC and return
1874 -1. If the thread wasn't displaced stepping, return 0. */
1875
1876static int
00431a78 1877displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1878{
fc1cf338 1879 struct displaced_step_inferior_state *displaced
00431a78 1880 = get_displaced_stepping_state (event_thread->inf);
372316f1 1881 int ret;
fc1cf338 1882
00431a78
PA
1883 /* Was this event for the thread we displaced? */
1884 if (displaced->step_thread != event_thread)
372316f1 1885 return 0;
237fc4c9 1886
d8d83535 1887 displaced_step_reset_cleanup cleanup (displaced);
237fc4c9 1888
00431a78 1889 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1890
cb71640d
PA
1891 /* Fixup may need to read memory/registers. Switch to the thread
1892 that we're fixing up. Also, target_stopped_by_watchpoint checks
1893 the current thread. */
00431a78 1894 switch_to_thread (event_thread);
cb71640d 1895
237fc4c9 1896 /* Did the instruction complete successfully? */
cb71640d
PA
1897 if (signal == GDB_SIGNAL_TRAP
1898 && !(target_stopped_by_watchpoint ()
1899 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1900 || target_have_steppable_watchpoint)))
237fc4c9
PA
1901 {
1902 /* Fix up the resulting state. */
fc1cf338 1903 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
d8d83535 1904 displaced->step_closure.get (),
fc1cf338
PA
1905 displaced->step_original,
1906 displaced->step_copy,
00431a78 1907 get_thread_regcache (displaced->step_thread));
372316f1 1908 ret = 1;
237fc4c9
PA
1909 }
1910 else
1911 {
1912 /* Since the instruction didn't complete, all we can do is
1913 relocate the PC. */
00431a78 1914 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1915 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1916
fc1cf338 1917 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1918 regcache_write_pc (regcache, pc);
372316f1 1919 ret = -1;
237fc4c9
PA
1920 }
1921
372316f1 1922 return ret;
c2829269 1923}
1c5cfe86 1924
4d9d9d04
PA
1925/* Data to be passed around while handling an event. This data is
1926 discarded between events. */
1927struct execution_control_state
1928{
5b6d1e4f 1929 process_stratum_target *target;
4d9d9d04
PA
1930 ptid_t ptid;
1931 /* The thread that got the event, if this was a thread event; NULL
1932 otherwise. */
1933 struct thread_info *event_thread;
1934
1935 struct target_waitstatus ws;
1936 int stop_func_filled_in;
1937 CORE_ADDR stop_func_start;
1938 CORE_ADDR stop_func_end;
1939 const char *stop_func_name;
1940 int wait_some_more;
1941
1942 /* True if the event thread hit the single-step breakpoint of
1943 another thread. Thus the event doesn't cause a stop, the thread
1944 needs to be single-stepped past the single-step breakpoint before
1945 we can switch back to the original stepping thread. */
1946 int hit_singlestep_breakpoint;
1947};
1948
1949/* Clear ECS and set it to point at TP. */
c2829269
PA
1950
1951static void
4d9d9d04
PA
1952reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1953{
1954 memset (ecs, 0, sizeof (*ecs));
1955 ecs->event_thread = tp;
1956 ecs->ptid = tp->ptid;
1957}
1958
1959static void keep_going_pass_signal (struct execution_control_state *ecs);
1960static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1961static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1962static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1963
1964/* Are there any pending step-over requests? If so, run all we can
1965 now and return true. Otherwise, return false. */
1966
1967static int
c2829269
PA
1968start_step_over (void)
1969{
1970 struct thread_info *tp, *next;
1971
372316f1
PA
1972 /* Don't start a new step-over if we already have an in-line
1973 step-over operation ongoing. */
1974 if (step_over_info_valid_p ())
1975 return 0;
1976
c2829269 1977 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1978 {
4d9d9d04
PA
1979 struct execution_control_state ecss;
1980 struct execution_control_state *ecs = &ecss;
8d297bbf 1981 step_over_what step_what;
372316f1 1982 int must_be_in_line;
c2829269 1983
c65d6b55
PA
1984 gdb_assert (!tp->stop_requested);
1985
c2829269 1986 next = thread_step_over_chain_next (tp);
237fc4c9 1987
c2829269
PA
1988 /* If this inferior already has a displaced step in process,
1989 don't start a new one. */
00431a78 1990 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1991 continue;
1992
372316f1
PA
1993 step_what = thread_still_needs_step_over (tp);
1994 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1995 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1996 && !use_displaced_stepping (tp)));
372316f1
PA
1997
1998 /* We currently stop all threads of all processes to step-over
1999 in-line. If we need to start a new in-line step-over, let
2000 any pending displaced steps finish first. */
2001 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2002 return 0;
2003
c2829269
PA
2004 thread_step_over_chain_remove (tp);
2005
2006 if (step_over_queue_head == NULL)
2007 {
2008 if (debug_infrun)
2009 fprintf_unfiltered (gdb_stdlog,
2010 "infrun: step-over queue now empty\n");
2011 }
2012
372316f1
PA
2013 if (tp->control.trap_expected
2014 || tp->resumed
2015 || tp->executing)
ad53cd71 2016 {
4d9d9d04
PA
2017 internal_error (__FILE__, __LINE__,
2018 "[%s] has inconsistent state: "
372316f1 2019 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 2020 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 2021 tp->control.trap_expected,
372316f1 2022 tp->resumed,
4d9d9d04 2023 tp->executing);
ad53cd71 2024 }
1c5cfe86 2025
4d9d9d04
PA
2026 if (debug_infrun)
2027 fprintf_unfiltered (gdb_stdlog,
2028 "infrun: resuming [%s] for step-over\n",
a068643d 2029 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
2030
2031 /* keep_going_pass_signal skips the step-over if the breakpoint
2032 is no longer inserted. In all-stop, we want to keep looking
2033 for a thread that needs a step-over instead of resuming TP,
2034 because we wouldn't be able to resume anything else until the
2035 target stops again. In non-stop, the resume always resumes
2036 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2037 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2038 continue;
8550d3b3 2039
00431a78 2040 switch_to_thread (tp);
4d9d9d04
PA
2041 reset_ecs (ecs, tp);
2042 keep_going_pass_signal (ecs);
1c5cfe86 2043
4d9d9d04
PA
2044 if (!ecs->wait_some_more)
2045 error (_("Command aborted."));
1c5cfe86 2046
372316f1
PA
2047 gdb_assert (tp->resumed);
2048
2049 /* If we started a new in-line step-over, we're done. */
2050 if (step_over_info_valid_p ())
2051 {
2052 gdb_assert (tp->control.trap_expected);
2053 return 1;
2054 }
2055
fbea99ea 2056 if (!target_is_non_stop_p ())
4d9d9d04
PA
2057 {
2058 /* On all-stop, shouldn't have resumed unless we needed a
2059 step over. */
2060 gdb_assert (tp->control.trap_expected
2061 || tp->step_after_step_resume_breakpoint);
2062
2063 /* With remote targets (at least), in all-stop, we can't
2064 issue any further remote commands until the program stops
2065 again. */
2066 return 1;
1c5cfe86 2067 }
c2829269 2068
4d9d9d04
PA
2069 /* Either the thread no longer needed a step-over, or a new
2070 displaced stepping sequence started. Even in the latter
2071 case, continue looking. Maybe we can also start another
2072 displaced step on a thread of other process. */
237fc4c9 2073 }
4d9d9d04
PA
2074
2075 return 0;
237fc4c9
PA
2076}
2077
5231c1fd
PA
2078/* Update global variables holding ptids to hold NEW_PTID if they were
2079 holding OLD_PTID. */
2080static void
2081infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2082{
d7e15655 2083 if (inferior_ptid == old_ptid)
5231c1fd 2084 inferior_ptid = new_ptid;
5231c1fd
PA
2085}
2086
237fc4c9 2087\f
c906108c 2088
53904c9e
AC
2089static const char schedlock_off[] = "off";
2090static const char schedlock_on[] = "on";
2091static const char schedlock_step[] = "step";
f2665db5 2092static const char schedlock_replay[] = "replay";
40478521 2093static const char *const scheduler_enums[] = {
ef346e04
AC
2094 schedlock_off,
2095 schedlock_on,
2096 schedlock_step,
f2665db5 2097 schedlock_replay,
ef346e04
AC
2098 NULL
2099};
f2665db5 2100static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2101static void
2102show_scheduler_mode (struct ui_file *file, int from_tty,
2103 struct cmd_list_element *c, const char *value)
2104{
3e43a32a
MS
2105 fprintf_filtered (file,
2106 _("Mode for locking scheduler "
2107 "during execution is \"%s\".\n"),
920d2a44
AC
2108 value);
2109}
c906108c
SS
2110
2111static void
eb4c3f4a 2112set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2113{
eefe576e
AC
2114 if (!target_can_lock_scheduler)
2115 {
2116 scheduler_mode = schedlock_off;
2117 error (_("Target '%s' cannot support this command."), target_shortname);
2118 }
c906108c
SS
2119}
2120
d4db2f36
PA
2121/* True if execution commands resume all threads of all processes by
2122 default; otherwise, resume only threads of the current inferior
2123 process. */
491144b5 2124bool sched_multi = false;
d4db2f36 2125
2facfe5c
DD
2126/* Try to setup for software single stepping over the specified location.
2127 Return 1 if target_resume() should use hardware single step.
2128
2129 GDBARCH the current gdbarch.
2130 PC the location to step over. */
2131
2132static int
2133maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2134{
2135 int hw_step = 1;
2136
f02253f1 2137 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2138 && gdbarch_software_single_step_p (gdbarch))
2139 hw_step = !insert_single_step_breakpoints (gdbarch);
2140
2facfe5c
DD
2141 return hw_step;
2142}
c906108c 2143
f3263aa4
PA
2144/* See infrun.h. */
2145
09cee04b
PA
2146ptid_t
2147user_visible_resume_ptid (int step)
2148{
f3263aa4 2149 ptid_t resume_ptid;
09cee04b 2150
09cee04b
PA
2151 if (non_stop)
2152 {
2153 /* With non-stop mode on, threads are always handled
2154 individually. */
2155 resume_ptid = inferior_ptid;
2156 }
2157 else if ((scheduler_mode == schedlock_on)
03d46957 2158 || (scheduler_mode == schedlock_step && step))
09cee04b 2159 {
f3263aa4
PA
2160 /* User-settable 'scheduler' mode requires solo thread
2161 resume. */
09cee04b
PA
2162 resume_ptid = inferior_ptid;
2163 }
f2665db5
MM
2164 else if ((scheduler_mode == schedlock_replay)
2165 && target_record_will_replay (minus_one_ptid, execution_direction))
2166 {
2167 /* User-settable 'scheduler' mode requires solo thread resume in replay
2168 mode. */
2169 resume_ptid = inferior_ptid;
2170 }
f3263aa4
PA
2171 else if (!sched_multi && target_supports_multi_process ())
2172 {
2173 /* Resume all threads of the current process (and none of other
2174 processes). */
e99b03dc 2175 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2176 }
2177 else
2178 {
2179 /* Resume all threads of all processes. */
2180 resume_ptid = RESUME_ALL;
2181 }
09cee04b
PA
2182
2183 return resume_ptid;
2184}
2185
5b6d1e4f
PA
2186/* See infrun.h. */
2187
2188process_stratum_target *
2189user_visible_resume_target (ptid_t resume_ptid)
2190{
2191 return (resume_ptid == minus_one_ptid && sched_multi
2192 ? NULL
2193 : current_inferior ()->process_target ());
2194}
2195
fbea99ea
PA
2196/* Return a ptid representing the set of threads that we will resume,
2197 in the perspective of the target, assuming run control handling
2198 does not require leaving some threads stopped (e.g., stepping past
2199 breakpoint). USER_STEP indicates whether we're about to start the
2200 target for a stepping command. */
2201
2202static ptid_t
2203internal_resume_ptid (int user_step)
2204{
2205 /* In non-stop, we always control threads individually. Note that
2206 the target may always work in non-stop mode even with "set
2207 non-stop off", in which case user_visible_resume_ptid could
2208 return a wildcard ptid. */
2209 if (target_is_non_stop_p ())
2210 return inferior_ptid;
2211 else
2212 return user_visible_resume_ptid (user_step);
2213}
2214
64ce06e4
PA
2215/* Wrapper for target_resume, that handles infrun-specific
2216 bookkeeping. */
2217
2218static void
2219do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2220{
2221 struct thread_info *tp = inferior_thread ();
2222
c65d6b55
PA
2223 gdb_assert (!tp->stop_requested);
2224
64ce06e4 2225 /* Install inferior's terminal modes. */
223ffa71 2226 target_terminal::inferior ();
64ce06e4
PA
2227
2228 /* Avoid confusing the next resume, if the next stop/resume
2229 happens to apply to another thread. */
2230 tp->suspend.stop_signal = GDB_SIGNAL_0;
2231
8f572e5c
PA
2232 /* Advise target which signals may be handled silently.
2233
2234 If we have removed breakpoints because we are stepping over one
2235 in-line (in any thread), we need to receive all signals to avoid
2236 accidentally skipping a breakpoint during execution of a signal
2237 handler.
2238
2239 Likewise if we're displaced stepping, otherwise a trap for a
2240 breakpoint in a signal handler might be confused with the
2241 displaced step finishing. We don't make the displaced_step_fixup
2242 step distinguish the cases instead, because:
2243
2244 - a backtrace while stopped in the signal handler would show the
2245 scratch pad as frame older than the signal handler, instead of
2246 the real mainline code.
2247
2248 - when the thread is later resumed, the signal handler would
2249 return to the scratch pad area, which would no longer be
2250 valid. */
2251 if (step_over_info_valid_p ()
00431a78 2252 || displaced_step_in_progress (tp->inf))
adc6a863 2253 target_pass_signals ({});
64ce06e4 2254 else
adc6a863 2255 target_pass_signals (signal_pass);
64ce06e4
PA
2256
2257 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2258
2259 target_commit_resume ();
5b6d1e4f
PA
2260
2261 if (target_can_async_p ())
2262 target_async (1);
64ce06e4
PA
2263}
2264
d930703d 2265/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2266 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2267 call 'resume', which handles exceptions. */
c906108c 2268
71d378ae
PA
2269static void
2270resume_1 (enum gdb_signal sig)
c906108c 2271{
515630c5 2272 struct regcache *regcache = get_current_regcache ();
ac7936df 2273 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2274 struct thread_info *tp = inferior_thread ();
515630c5 2275 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2276 const address_space *aspace = regcache->aspace ();
b0f16a3e 2277 ptid_t resume_ptid;
856e7dd6
PA
2278 /* This represents the user's step vs continue request. When
2279 deciding whether "set scheduler-locking step" applies, it's the
2280 user's intention that counts. */
2281 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2282 /* This represents what we'll actually request the target to do.
2283 This can decay from a step to a continue, if e.g., we need to
2284 implement single-stepping with breakpoints (software
2285 single-step). */
6b403daa 2286 int step;
c7e8a53c 2287
c65d6b55 2288 gdb_assert (!tp->stop_requested);
c2829269
PA
2289 gdb_assert (!thread_is_in_step_over_chain (tp));
2290
372316f1
PA
2291 if (tp->suspend.waitstatus_pending_p)
2292 {
2293 if (debug_infrun)
2294 {
23fdd69e
SM
2295 std::string statstr
2296 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2297
372316f1 2298 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2299 "infrun: resume: thread %s has pending wait "
2300 "status %s (currently_stepping=%d).\n",
a068643d
TT
2301 target_pid_to_str (tp->ptid).c_str (),
2302 statstr.c_str (),
372316f1 2303 currently_stepping (tp));
372316f1
PA
2304 }
2305
5b6d1e4f 2306 tp->inf->process_target ()->threads_executing = true;
719546c4 2307 tp->resumed = true;
372316f1
PA
2308
2309 /* FIXME: What should we do if we are supposed to resume this
2310 thread with a signal? Maybe we should maintain a queue of
2311 pending signals to deliver. */
2312 if (sig != GDB_SIGNAL_0)
2313 {
fd7dcb94 2314 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2315 gdb_signal_to_name (sig),
2316 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2317 }
2318
2319 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2320
2321 if (target_can_async_p ())
9516f85a
AB
2322 {
2323 target_async (1);
2324 /* Tell the event loop we have an event to process. */
2325 mark_async_event_handler (infrun_async_inferior_event_token);
2326 }
372316f1
PA
2327 return;
2328 }
2329
2330 tp->stepped_breakpoint = 0;
2331
6b403daa
PA
2332 /* Depends on stepped_breakpoint. */
2333 step = currently_stepping (tp);
2334
74609e71
YQ
2335 if (current_inferior ()->waiting_for_vfork_done)
2336 {
48f9886d
PA
2337 /* Don't try to single-step a vfork parent that is waiting for
2338 the child to get out of the shared memory region (by exec'ing
2339 or exiting). This is particularly important on software
2340 single-step archs, as the child process would trip on the
2341 software single step breakpoint inserted for the parent
2342 process. Since the parent will not actually execute any
2343 instruction until the child is out of the shared region (such
2344 are vfork's semantics), it is safe to simply continue it.
2345 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2346 the parent, and tell it to `keep_going', which automatically
2347 re-sets it stepping. */
74609e71
YQ
2348 if (debug_infrun)
2349 fprintf_unfiltered (gdb_stdlog,
2350 "infrun: resume : clear step\n");
a09dd441 2351 step = 0;
74609e71
YQ
2352 }
2353
527159b7 2354 if (debug_infrun)
237fc4c9 2355 fprintf_unfiltered (gdb_stdlog,
c9737c08 2356 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2357 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2358 step, gdb_signal_to_symbol_string (sig),
2359 tp->control.trap_expected,
a068643d 2360 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2361 paddress (gdbarch, pc));
c906108c 2362
c2c6d25f
JM
2363 /* Normally, by the time we reach `resume', the breakpoints are either
2364 removed or inserted, as appropriate. The exception is if we're sitting
2365 at a permanent breakpoint; we need to step over it, but permanent
2366 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2367 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2368 {
af48d08f
PA
2369 if (sig != GDB_SIGNAL_0)
2370 {
2371 /* We have a signal to pass to the inferior. The resume
2372 may, or may not take us to the signal handler. If this
2373 is a step, we'll need to stop in the signal handler, if
2374 there's one, (if the target supports stepping into
2375 handlers), or in the next mainline instruction, if
2376 there's no handler. If this is a continue, we need to be
2377 sure to run the handler with all breakpoints inserted.
2378 In all cases, set a breakpoint at the current address
2379 (where the handler returns to), and once that breakpoint
2380 is hit, resume skipping the permanent breakpoint. If
2381 that breakpoint isn't hit, then we've stepped into the
2382 signal handler (or hit some other event). We'll delete
2383 the step-resume breakpoint then. */
2384
2385 if (debug_infrun)
2386 fprintf_unfiltered (gdb_stdlog,
2387 "infrun: resume: skipping permanent breakpoint, "
2388 "deliver signal first\n");
2389
2390 clear_step_over_info ();
2391 tp->control.trap_expected = 0;
2392
2393 if (tp->control.step_resume_breakpoint == NULL)
2394 {
2395 /* Set a "high-priority" step-resume, as we don't want
2396 user breakpoints at PC to trigger (again) when this
2397 hits. */
2398 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2399 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2400
2401 tp->step_after_step_resume_breakpoint = step;
2402 }
2403
2404 insert_breakpoints ();
2405 }
2406 else
2407 {
2408 /* There's no signal to pass, we can go ahead and skip the
2409 permanent breakpoint manually. */
2410 if (debug_infrun)
2411 fprintf_unfiltered (gdb_stdlog,
2412 "infrun: resume: skipping permanent breakpoint\n");
2413 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2414 /* Update pc to reflect the new address from which we will
2415 execute instructions. */
2416 pc = regcache_read_pc (regcache);
2417
2418 if (step)
2419 {
2420 /* We've already advanced the PC, so the stepping part
2421 is done. Now we need to arrange for a trap to be
2422 reported to handle_inferior_event. Set a breakpoint
2423 at the current PC, and run to it. Don't update
2424 prev_pc, because if we end in
44a1ee51
PA
2425 switch_back_to_stepped_thread, we want the "expected
2426 thread advanced also" branch to be taken. IOW, we
2427 don't want this thread to step further from PC
af48d08f 2428 (overstep). */
1ac806b8 2429 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2430 insert_single_step_breakpoint (gdbarch, aspace, pc);
2431 insert_breakpoints ();
2432
fbea99ea 2433 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2434 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
719546c4 2435 tp->resumed = true;
af48d08f
PA
2436 return;
2437 }
2438 }
6d350bb5 2439 }
c2c6d25f 2440
c1e36e3e
PA
2441 /* If we have a breakpoint to step over, make sure to do a single
2442 step only. Same if we have software watchpoints. */
2443 if (tp->control.trap_expected || bpstat_should_step ())
2444 tp->control.may_range_step = 0;
2445
7da6a5b9
LM
2446 /* If displaced stepping is enabled, step over breakpoints by executing a
2447 copy of the instruction at a different address.
237fc4c9
PA
2448
2449 We can't use displaced stepping when we have a signal to deliver;
2450 the comments for displaced_step_prepare explain why. The
2451 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2452 signals' explain what we do instead.
2453
2454 We can't use displaced stepping when we are waiting for vfork_done
2455 event, displaced stepping breaks the vfork child similarly as single
2456 step software breakpoint. */
3fc8eb30
PA
2457 if (tp->control.trap_expected
2458 && use_displaced_stepping (tp)
cb71640d 2459 && !step_over_info_valid_p ()
a493e3e2 2460 && sig == GDB_SIGNAL_0
74609e71 2461 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2462 {
00431a78 2463 int prepared = displaced_step_prepare (tp);
fc1cf338 2464
3fc8eb30 2465 if (prepared == 0)
d56b7306 2466 {
4d9d9d04
PA
2467 if (debug_infrun)
2468 fprintf_unfiltered (gdb_stdlog,
2469 "Got placed in step-over queue\n");
2470
2471 tp->control.trap_expected = 0;
d56b7306
VP
2472 return;
2473 }
3fc8eb30
PA
2474 else if (prepared < 0)
2475 {
2476 /* Fallback to stepping over the breakpoint in-line. */
2477
2478 if (target_is_non_stop_p ())
2479 stop_all_threads ();
2480
a01bda52 2481 set_step_over_info (regcache->aspace (),
21edc42f 2482 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2483
2484 step = maybe_software_singlestep (gdbarch, pc);
2485
2486 insert_breakpoints ();
2487 }
2488 else if (prepared > 0)
2489 {
2490 struct displaced_step_inferior_state *displaced;
99e40580 2491
3fc8eb30
PA
2492 /* Update pc to reflect the new address from which we will
2493 execute instructions due to displaced stepping. */
00431a78 2494 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2495
00431a78 2496 displaced = get_displaced_stepping_state (tp->inf);
d8d83535
SM
2497 step = gdbarch_displaced_step_hw_singlestep
2498 (gdbarch, displaced->step_closure.get ());
3fc8eb30 2499 }
237fc4c9
PA
2500 }
2501
2facfe5c 2502 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2503 else if (step)
2facfe5c 2504 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2505
30852783
UW
2506 /* Currently, our software single-step implementation leads to different
2507 results than hardware single-stepping in one situation: when stepping
2508 into delivering a signal which has an associated signal handler,
2509 hardware single-step will stop at the first instruction of the handler,
2510 while software single-step will simply skip execution of the handler.
2511
2512 For now, this difference in behavior is accepted since there is no
2513 easy way to actually implement single-stepping into a signal handler
2514 without kernel support.
2515
2516 However, there is one scenario where this difference leads to follow-on
2517 problems: if we're stepping off a breakpoint by removing all breakpoints
2518 and then single-stepping. In this case, the software single-step
2519 behavior means that even if there is a *breakpoint* in the signal
2520 handler, GDB still would not stop.
2521
2522 Fortunately, we can at least fix this particular issue. We detect
2523 here the case where we are about to deliver a signal while software
2524 single-stepping with breakpoints removed. In this situation, we
2525 revert the decisions to remove all breakpoints and insert single-
2526 step breakpoints, and instead we install a step-resume breakpoint
2527 at the current address, deliver the signal without stepping, and
2528 once we arrive back at the step-resume breakpoint, actually step
2529 over the breakpoint we originally wanted to step over. */
34b7e8a6 2530 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2531 && sig != GDB_SIGNAL_0
2532 && step_over_info_valid_p ())
30852783
UW
2533 {
2534 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2535 immediately after a handler returns, might already have
30852783
UW
2536 a step-resume breakpoint set on the earlier handler. We cannot
2537 set another step-resume breakpoint; just continue on until the
2538 original breakpoint is hit. */
2539 if (tp->control.step_resume_breakpoint == NULL)
2540 {
2c03e5be 2541 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2542 tp->step_after_step_resume_breakpoint = 1;
2543 }
2544
34b7e8a6 2545 delete_single_step_breakpoints (tp);
30852783 2546
31e77af2 2547 clear_step_over_info ();
30852783 2548 tp->control.trap_expected = 0;
31e77af2
PA
2549
2550 insert_breakpoints ();
30852783
UW
2551 }
2552
b0f16a3e
SM
2553 /* If STEP is set, it's a request to use hardware stepping
2554 facilities. But in that case, we should never
2555 use singlestep breakpoint. */
34b7e8a6 2556 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2557
fbea99ea 2558 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2559 if (tp->control.trap_expected)
b0f16a3e
SM
2560 {
2561 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2562 hit, either by single-stepping the thread with the breakpoint
2563 removed, or by displaced stepping, with the breakpoint inserted.
2564 In the former case, we need to single-step only this thread,
2565 and keep others stopped, as they can miss this breakpoint if
2566 allowed to run. That's not really a problem for displaced
2567 stepping, but, we still keep other threads stopped, in case
2568 another thread is also stopped for a breakpoint waiting for
2569 its turn in the displaced stepping queue. */
b0f16a3e
SM
2570 resume_ptid = inferior_ptid;
2571 }
fbea99ea
PA
2572 else
2573 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2574
7f5ef605
PA
2575 if (execution_direction != EXEC_REVERSE
2576 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2577 {
372316f1
PA
2578 /* There are two cases where we currently need to step a
2579 breakpoint instruction when we have a signal to deliver:
2580
2581 - See handle_signal_stop where we handle random signals that
2582 could take out us out of the stepping range. Normally, in
2583 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2584 signal handler with a breakpoint at PC, but there are cases
2585 where we should _always_ single-step, even if we have a
2586 step-resume breakpoint, like when a software watchpoint is
2587 set. Assuming single-stepping and delivering a signal at the
2588 same time would takes us to the signal handler, then we could
2589 have removed the breakpoint at PC to step over it. However,
2590 some hardware step targets (like e.g., Mac OS) can't step
2591 into signal handlers, and for those, we need to leave the
2592 breakpoint at PC inserted, as otherwise if the handler
2593 recurses and executes PC again, it'll miss the breakpoint.
2594 So we leave the breakpoint inserted anyway, but we need to
2595 record that we tried to step a breakpoint instruction, so
372316f1
PA
2596 that adjust_pc_after_break doesn't end up confused.
2597
2598 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2599 in one thread after another thread that was stepping had been
2600 momentarily paused for a step-over. When we re-resume the
2601 stepping thread, it may be resumed from that address with a
2602 breakpoint that hasn't trapped yet. Seen with
2603 gdb.threads/non-stop-fair-events.exp, on targets that don't
2604 do displaced stepping. */
2605
2606 if (debug_infrun)
2607 fprintf_unfiltered (gdb_stdlog,
2608 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2609 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2610
2611 tp->stepped_breakpoint = 1;
2612
b0f16a3e
SM
2613 /* Most targets can step a breakpoint instruction, thus
2614 executing it normally. But if this one cannot, just
2615 continue and we will hit it anyway. */
7f5ef605 2616 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2617 step = 0;
2618 }
ef5cf84e 2619
b0f16a3e 2620 if (debug_displaced
cb71640d 2621 && tp->control.trap_expected
3fc8eb30 2622 && use_displaced_stepping (tp)
cb71640d 2623 && !step_over_info_valid_p ())
b0f16a3e 2624 {
00431a78 2625 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2626 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2627 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2628 gdb_byte buf[4];
2629
2630 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2631 paddress (resume_gdbarch, actual_pc));
2632 read_memory (actual_pc, buf, sizeof (buf));
2633 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2634 }
237fc4c9 2635
b0f16a3e
SM
2636 if (tp->control.may_range_step)
2637 {
2638 /* If we're resuming a thread with the PC out of the step
2639 range, then we're doing some nested/finer run control
2640 operation, like stepping the thread out of the dynamic
2641 linker or the displaced stepping scratch pad. We
2642 shouldn't have allowed a range step then. */
2643 gdb_assert (pc_in_thread_step_range (pc, tp));
2644 }
c1e36e3e 2645
64ce06e4 2646 do_target_resume (resume_ptid, step, sig);
719546c4 2647 tp->resumed = true;
c906108c 2648}
71d378ae
PA
2649
2650/* Resume the inferior. SIG is the signal to give the inferior
2651 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2652 rolls back state on error. */
2653
aff4e175 2654static void
71d378ae
PA
2655resume (gdb_signal sig)
2656{
a70b8144 2657 try
71d378ae
PA
2658 {
2659 resume_1 (sig);
2660 }
230d2906 2661 catch (const gdb_exception &ex)
71d378ae
PA
2662 {
2663 /* If resuming is being aborted for any reason, delete any
2664 single-step breakpoint resume_1 may have created, to avoid
2665 confusing the following resumption, and to avoid leaving
2666 single-step breakpoints perturbing other threads, in case
2667 we're running in non-stop mode. */
2668 if (inferior_ptid != null_ptid)
2669 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2670 throw;
71d378ae 2671 }
71d378ae
PA
2672}
2673
c906108c 2674\f
237fc4c9 2675/* Proceeding. */
c906108c 2676
4c2f2a79
PA
2677/* See infrun.h. */
2678
2679/* Counter that tracks number of user visible stops. This can be used
2680 to tell whether a command has proceeded the inferior past the
2681 current location. This allows e.g., inferior function calls in
2682 breakpoint commands to not interrupt the command list. When the
2683 call finishes successfully, the inferior is standing at the same
2684 breakpoint as if nothing happened (and so we don't call
2685 normal_stop). */
2686static ULONGEST current_stop_id;
2687
2688/* See infrun.h. */
2689
2690ULONGEST
2691get_stop_id (void)
2692{
2693 return current_stop_id;
2694}
2695
2696/* Called when we report a user visible stop. */
2697
2698static void
2699new_stop_id (void)
2700{
2701 current_stop_id++;
2702}
2703
c906108c
SS
2704/* Clear out all variables saying what to do when inferior is continued.
2705 First do this, then set the ones you want, then call `proceed'. */
2706
a7212384
UW
2707static void
2708clear_proceed_status_thread (struct thread_info *tp)
c906108c 2709{
a7212384
UW
2710 if (debug_infrun)
2711 fprintf_unfiltered (gdb_stdlog,
2712 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2713 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2714
372316f1
PA
2715 /* If we're starting a new sequence, then the previous finished
2716 single-step is no longer relevant. */
2717 if (tp->suspend.waitstatus_pending_p)
2718 {
2719 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2720 {
2721 if (debug_infrun)
2722 fprintf_unfiltered (gdb_stdlog,
2723 "infrun: clear_proceed_status: pending "
2724 "event of %s was a finished step. "
2725 "Discarding.\n",
a068643d 2726 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2727
2728 tp->suspend.waitstatus_pending_p = 0;
2729 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2730 }
2731 else if (debug_infrun)
2732 {
23fdd69e
SM
2733 std::string statstr
2734 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2735
372316f1
PA
2736 fprintf_unfiltered (gdb_stdlog,
2737 "infrun: clear_proceed_status_thread: thread %s "
2738 "has pending wait status %s "
2739 "(currently_stepping=%d).\n",
a068643d
TT
2740 target_pid_to_str (tp->ptid).c_str (),
2741 statstr.c_str (),
372316f1 2742 currently_stepping (tp));
372316f1
PA
2743 }
2744 }
2745
70509625
PA
2746 /* If this signal should not be seen by program, give it zero.
2747 Used for debugging signals. */
2748 if (!signal_pass_state (tp->suspend.stop_signal))
2749 tp->suspend.stop_signal = GDB_SIGNAL_0;
2750
46e3ed7f 2751 delete tp->thread_fsm;
243a9253
PA
2752 tp->thread_fsm = NULL;
2753
16c381f0
JK
2754 tp->control.trap_expected = 0;
2755 tp->control.step_range_start = 0;
2756 tp->control.step_range_end = 0;
c1e36e3e 2757 tp->control.may_range_step = 0;
16c381f0
JK
2758 tp->control.step_frame_id = null_frame_id;
2759 tp->control.step_stack_frame_id = null_frame_id;
2760 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2761 tp->control.step_start_function = NULL;
a7212384 2762 tp->stop_requested = 0;
4e1c45ea 2763
16c381f0 2764 tp->control.stop_step = 0;
32400beb 2765
16c381f0 2766 tp->control.proceed_to_finish = 0;
414c69f7 2767
856e7dd6 2768 tp->control.stepping_command = 0;
17b2616c 2769
a7212384 2770 /* Discard any remaining commands or status from previous stop. */
16c381f0 2771 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2772}
32400beb 2773
a7212384 2774void
70509625 2775clear_proceed_status (int step)
a7212384 2776{
f2665db5
MM
2777 /* With scheduler-locking replay, stop replaying other threads if we're
2778 not replaying the user-visible resume ptid.
2779
2780 This is a convenience feature to not require the user to explicitly
2781 stop replaying the other threads. We're assuming that the user's
2782 intent is to resume tracing the recorded process. */
2783 if (!non_stop && scheduler_mode == schedlock_replay
2784 && target_record_is_replaying (minus_one_ptid)
2785 && !target_record_will_replay (user_visible_resume_ptid (step),
2786 execution_direction))
2787 target_record_stop_replaying ();
2788
08036331 2789 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2790 {
08036331 2791 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2792 process_stratum_target *resume_target
2793 = user_visible_resume_target (resume_ptid);
70509625
PA
2794
2795 /* In all-stop mode, delete the per-thread status of all threads
2796 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2797 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2798 clear_proceed_status_thread (tp);
6c95b8df
PA
2799 }
2800
d7e15655 2801 if (inferior_ptid != null_ptid)
a7212384
UW
2802 {
2803 struct inferior *inferior;
2804
2805 if (non_stop)
2806 {
6c95b8df
PA
2807 /* If in non-stop mode, only delete the per-thread status of
2808 the current thread. */
a7212384
UW
2809 clear_proceed_status_thread (inferior_thread ());
2810 }
6c95b8df 2811
d6b48e9c 2812 inferior = current_inferior ();
16c381f0 2813 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2814 }
2815
76727919 2816 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2817}
2818
99619bea
PA
2819/* Returns true if TP is still stopped at a breakpoint that needs
2820 stepping-over in order to make progress. If the breakpoint is gone
2821 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2822
2823static int
6c4cfb24 2824thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2825{
2826 if (tp->stepping_over_breakpoint)
2827 {
00431a78 2828 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2829
a01bda52 2830 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2831 regcache_read_pc (regcache))
2832 == ordinary_breakpoint_here)
99619bea
PA
2833 return 1;
2834
2835 tp->stepping_over_breakpoint = 0;
2836 }
2837
2838 return 0;
2839}
2840
6c4cfb24
PA
2841/* Check whether thread TP still needs to start a step-over in order
2842 to make progress when resumed. Returns an bitwise or of enum
2843 step_over_what bits, indicating what needs to be stepped over. */
2844
8d297bbf 2845static step_over_what
6c4cfb24
PA
2846thread_still_needs_step_over (struct thread_info *tp)
2847{
8d297bbf 2848 step_over_what what = 0;
6c4cfb24
PA
2849
2850 if (thread_still_needs_step_over_bp (tp))
2851 what |= STEP_OVER_BREAKPOINT;
2852
2853 if (tp->stepping_over_watchpoint
2854 && !target_have_steppable_watchpoint)
2855 what |= STEP_OVER_WATCHPOINT;
2856
2857 return what;
2858}
2859
483805cf
PA
2860/* Returns true if scheduler locking applies. STEP indicates whether
2861 we're about to do a step/next-like command to a thread. */
2862
2863static int
856e7dd6 2864schedlock_applies (struct thread_info *tp)
483805cf
PA
2865{
2866 return (scheduler_mode == schedlock_on
2867 || (scheduler_mode == schedlock_step
f2665db5
MM
2868 && tp->control.stepping_command)
2869 || (scheduler_mode == schedlock_replay
2870 && target_record_will_replay (minus_one_ptid,
2871 execution_direction)));
483805cf
PA
2872}
2873
5b6d1e4f
PA
2874/* Calls target_commit_resume on all targets. */
2875
2876static void
2877commit_resume_all_targets ()
2878{
2879 scoped_restore_current_thread restore_thread;
2880
2881 /* Map between process_target and a representative inferior. This
2882 is to avoid committing a resume in the same target more than
2883 once. Resumptions must be idempotent, so this is an
2884 optimization. */
2885 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2886
2887 for (inferior *inf : all_non_exited_inferiors ())
2888 if (inf->has_execution ())
2889 conn_inf[inf->process_target ()] = inf;
2890
2891 for (const auto &ci : conn_inf)
2892 {
2893 inferior *inf = ci.second;
2894 switch_to_inferior_no_thread (inf);
2895 target_commit_resume ();
2896 }
2897}
2898
2f4fcf00
PA
2899/* Check that all the targets we're about to resume are in non-stop
2900 mode. Ideally, we'd only care whether all targets support
2901 target-async, but we're not there yet. E.g., stop_all_threads
2902 doesn't know how to handle all-stop targets. Also, the remote
2903 protocol in all-stop mode is synchronous, irrespective of
2904 target-async, which means that things like a breakpoint re-set
2905 triggered by one target would try to read memory from all targets
2906 and fail. */
2907
2908static void
2909check_multi_target_resumption (process_stratum_target *resume_target)
2910{
2911 if (!non_stop && resume_target == nullptr)
2912 {
2913 scoped_restore_current_thread restore_thread;
2914
2915 /* This is used to track whether we're resuming more than one
2916 target. */
2917 process_stratum_target *first_connection = nullptr;
2918
2919 /* The first inferior we see with a target that does not work in
2920 always-non-stop mode. */
2921 inferior *first_not_non_stop = nullptr;
2922
2923 for (inferior *inf : all_non_exited_inferiors (resume_target))
2924 {
2925 switch_to_inferior_no_thread (inf);
2926
2927 if (!target_has_execution)
2928 continue;
2929
2930 process_stratum_target *proc_target
2931 = current_inferior ()->process_target();
2932
2933 if (!target_is_non_stop_p ())
2934 first_not_non_stop = inf;
2935
2936 if (first_connection == nullptr)
2937 first_connection = proc_target;
2938 else if (first_connection != proc_target
2939 && first_not_non_stop != nullptr)
2940 {
2941 switch_to_inferior_no_thread (first_not_non_stop);
2942
2943 proc_target = current_inferior ()->process_target();
2944
2945 error (_("Connection %d (%s) does not support "
2946 "multi-target resumption."),
2947 proc_target->connection_number,
2948 make_target_connection_string (proc_target).c_str ());
2949 }
2950 }
2951 }
2952}
2953
c906108c
SS
2954/* Basic routine for continuing the program in various fashions.
2955
2956 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2957 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2958 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2959
2960 You should call clear_proceed_status before calling proceed. */
2961
2962void
64ce06e4 2963proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2964{
e58b0e63
PA
2965 struct regcache *regcache;
2966 struct gdbarch *gdbarch;
e58b0e63 2967 CORE_ADDR pc;
4d9d9d04
PA
2968 struct execution_control_state ecss;
2969 struct execution_control_state *ecs = &ecss;
4d9d9d04 2970 int started;
c906108c 2971
e58b0e63
PA
2972 /* If we're stopped at a fork/vfork, follow the branch set by the
2973 "set follow-fork-mode" command; otherwise, we'll just proceed
2974 resuming the current thread. */
2975 if (!follow_fork ())
2976 {
2977 /* The target for some reason decided not to resume. */
2978 normal_stop ();
f148b27e
PA
2979 if (target_can_async_p ())
2980 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2981 return;
2982 }
2983
842951eb
PA
2984 /* We'll update this if & when we switch to a new thread. */
2985 previous_inferior_ptid = inferior_ptid;
2986
e58b0e63 2987 regcache = get_current_regcache ();
ac7936df 2988 gdbarch = regcache->arch ();
8b86c959
YQ
2989 const address_space *aspace = regcache->aspace ();
2990
e58b0e63 2991 pc = regcache_read_pc (regcache);
08036331 2992 thread_info *cur_thr = inferior_thread ();
e58b0e63 2993
99619bea 2994 /* Fill in with reasonable starting values. */
08036331 2995 init_thread_stepping_state (cur_thr);
99619bea 2996
08036331 2997 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2998
5b6d1e4f
PA
2999 ptid_t resume_ptid
3000 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3001 process_stratum_target *resume_target
3002 = user_visible_resume_target (resume_ptid);
3003
2f4fcf00
PA
3004 check_multi_target_resumption (resume_target);
3005
2acceee2 3006 if (addr == (CORE_ADDR) -1)
c906108c 3007 {
08036331 3008 if (pc == cur_thr->suspend.stop_pc
af48d08f 3009 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3010 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3011 /* There is a breakpoint at the address we will resume at,
3012 step one instruction before inserting breakpoints so that
3013 we do not stop right away (and report a second hit at this
b2175913
MS
3014 breakpoint).
3015
3016 Note, we don't do this in reverse, because we won't
3017 actually be executing the breakpoint insn anyway.
3018 We'll be (un-)executing the previous instruction. */
08036331 3019 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
3020 else if (gdbarch_single_step_through_delay_p (gdbarch)
3021 && gdbarch_single_step_through_delay (gdbarch,
3022 get_current_frame ()))
3352ef37
AC
3023 /* We stepped onto an instruction that needs to be stepped
3024 again before re-inserting the breakpoint, do so. */
08036331 3025 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
3026 }
3027 else
3028 {
515630c5 3029 regcache_write_pc (regcache, addr);
c906108c
SS
3030 }
3031
70509625 3032 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 3033 cur_thr->suspend.stop_signal = siggnal;
70509625 3034
4d9d9d04
PA
3035 /* If an exception is thrown from this point on, make sure to
3036 propagate GDB's knowledge of the executing state to the
3037 frontend/user running state. */
5b6d1e4f 3038 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
3039
3040 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3041 threads (e.g., we might need to set threads stepping over
3042 breakpoints first), from the user/frontend's point of view, all
3043 threads in RESUME_PTID are now running. Unless we're calling an
3044 inferior function, as in that case we pretend the inferior
3045 doesn't run at all. */
08036331 3046 if (!cur_thr->control.in_infcall)
719546c4 3047 set_running (resume_target, resume_ptid, true);
17b2616c 3048
527159b7 3049 if (debug_infrun)
8a9de0e4 3050 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3051 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3052 paddress (gdbarch, addr),
64ce06e4 3053 gdb_signal_to_symbol_string (siggnal));
527159b7 3054
4d9d9d04
PA
3055 annotate_starting ();
3056
3057 /* Make sure that output from GDB appears before output from the
3058 inferior. */
3059 gdb_flush (gdb_stdout);
3060
d930703d
PA
3061 /* Since we've marked the inferior running, give it the terminal. A
3062 QUIT/Ctrl-C from here on is forwarded to the target (which can
3063 still detect attempts to unblock a stuck connection with repeated
3064 Ctrl-C from within target_pass_ctrlc). */
3065 target_terminal::inferior ();
3066
4d9d9d04
PA
3067 /* In a multi-threaded task we may select another thread and
3068 then continue or step.
3069
3070 But if a thread that we're resuming had stopped at a breakpoint,
3071 it will immediately cause another breakpoint stop without any
3072 execution (i.e. it will report a breakpoint hit incorrectly). So
3073 we must step over it first.
3074
3075 Look for threads other than the current (TP) that reported a
3076 breakpoint hit and haven't been resumed yet since. */
3077
3078 /* If scheduler locking applies, we can avoid iterating over all
3079 threads. */
08036331 3080 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3081 {
5b6d1e4f
PA
3082 for (thread_info *tp : all_non_exited_threads (resume_target,
3083 resume_ptid))
08036331 3084 {
f3f8ece4
PA
3085 switch_to_thread_no_regs (tp);
3086
4d9d9d04
PA
3087 /* Ignore the current thread here. It's handled
3088 afterwards. */
08036331 3089 if (tp == cur_thr)
4d9d9d04 3090 continue;
c906108c 3091
4d9d9d04
PA
3092 if (!thread_still_needs_step_over (tp))
3093 continue;
3094
3095 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3096
99619bea
PA
3097 if (debug_infrun)
3098 fprintf_unfiltered (gdb_stdlog,
3099 "infrun: need to step-over [%s] first\n",
a068643d 3100 target_pid_to_str (tp->ptid).c_str ());
99619bea 3101
4d9d9d04 3102 thread_step_over_chain_enqueue (tp);
2adfaa28 3103 }
f3f8ece4
PA
3104
3105 switch_to_thread (cur_thr);
30852783
UW
3106 }
3107
4d9d9d04
PA
3108 /* Enqueue the current thread last, so that we move all other
3109 threads over their breakpoints first. */
08036331
PA
3110 if (cur_thr->stepping_over_breakpoint)
3111 thread_step_over_chain_enqueue (cur_thr);
30852783 3112
4d9d9d04
PA
3113 /* If the thread isn't started, we'll still need to set its prev_pc,
3114 so that switch_back_to_stepped_thread knows the thread hasn't
3115 advanced. Must do this before resuming any thread, as in
3116 all-stop/remote, once we resume we can't send any other packet
3117 until the target stops again. */
08036331 3118 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 3119
a9bc57b9
TT
3120 {
3121 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3122
a9bc57b9 3123 started = start_step_over ();
c906108c 3124
a9bc57b9
TT
3125 if (step_over_info_valid_p ())
3126 {
3127 /* Either this thread started a new in-line step over, or some
3128 other thread was already doing one. In either case, don't
3129 resume anything else until the step-over is finished. */
3130 }
3131 else if (started && !target_is_non_stop_p ())
3132 {
3133 /* A new displaced stepping sequence was started. In all-stop,
3134 we can't talk to the target anymore until it next stops. */
3135 }
3136 else if (!non_stop && target_is_non_stop_p ())
3137 {
3138 /* In all-stop, but the target is always in non-stop mode.
3139 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3140 for (thread_info *tp : all_non_exited_threads (resume_target,
3141 resume_ptid))
3142 {
3143 switch_to_thread_no_regs (tp);
3144
f9fac3c8
SM
3145 if (!tp->inf->has_execution ())
3146 {
3147 if (debug_infrun)
3148 fprintf_unfiltered (gdb_stdlog,
3149 "infrun: proceed: [%s] target has "
3150 "no execution\n",
3151 target_pid_to_str (tp->ptid).c_str ());
3152 continue;
3153 }
f3f8ece4 3154
f9fac3c8
SM
3155 if (tp->resumed)
3156 {
3157 if (debug_infrun)
3158 fprintf_unfiltered (gdb_stdlog,
3159 "infrun: proceed: [%s] resumed\n",
3160 target_pid_to_str (tp->ptid).c_str ());
3161 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3162 continue;
3163 }
fbea99ea 3164
f9fac3c8
SM
3165 if (thread_is_in_step_over_chain (tp))
3166 {
3167 if (debug_infrun)
3168 fprintf_unfiltered (gdb_stdlog,
3169 "infrun: proceed: [%s] needs step-over\n",
3170 target_pid_to_str (tp->ptid).c_str ());
3171 continue;
3172 }
fbea99ea 3173
f9fac3c8
SM
3174 if (debug_infrun)
3175 fprintf_unfiltered (gdb_stdlog,
3176 "infrun: proceed: resuming %s\n",
3177 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3178
f9fac3c8
SM
3179 reset_ecs (ecs, tp);
3180 switch_to_thread (tp);
3181 keep_going_pass_signal (ecs);
3182 if (!ecs->wait_some_more)
3183 error (_("Command aborted."));
3184 }
a9bc57b9 3185 }
08036331 3186 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3187 {
3188 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3189 reset_ecs (ecs, cur_thr);
3190 switch_to_thread (cur_thr);
a9bc57b9
TT
3191 keep_going_pass_signal (ecs);
3192 if (!ecs->wait_some_more)
3193 error (_("Command aborted."));
3194 }
3195 }
c906108c 3196
5b6d1e4f 3197 commit_resume_all_targets ();
85ad3aaf 3198
731f534f 3199 finish_state.release ();
c906108c 3200
873657b9
PA
3201 /* If we've switched threads above, switch back to the previously
3202 current thread. We don't want the user to see a different
3203 selected thread. */
3204 switch_to_thread (cur_thr);
3205
0b333c5e
PA
3206 /* Tell the event loop to wait for it to stop. If the target
3207 supports asynchronous execution, it'll do this from within
3208 target_resume. */
362646f5 3209 if (!target_can_async_p ())
0b333c5e 3210 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3211}
c906108c
SS
3212\f
3213
3214/* Start remote-debugging of a machine over a serial link. */
96baa820 3215
c906108c 3216void
8621d6a9 3217start_remote (int from_tty)
c906108c 3218{
5b6d1e4f
PA
3219 inferior *inf = current_inferior ();
3220 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3221
1777feb0 3222 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3223 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3224 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3225 nothing is returned (instead of just blocking). Because of this,
3226 targets expecting an immediate response need to, internally, set
3227 things up so that the target_wait() is forced to eventually
1777feb0 3228 timeout. */
6426a772
JM
3229 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3230 differentiate to its caller what the state of the target is after
3231 the initial open has been performed. Here we're assuming that
3232 the target has stopped. It should be possible to eventually have
3233 target_open() return to the caller an indication that the target
3234 is currently running and GDB state should be set to the same as
1777feb0 3235 for an async run. */
5b6d1e4f 3236 wait_for_inferior (inf);
8621d6a9
DJ
3237
3238 /* Now that the inferior has stopped, do any bookkeeping like
3239 loading shared libraries. We want to do this before normal_stop,
3240 so that the displayed frame is up to date. */
8b88a78e 3241 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3242
6426a772 3243 normal_stop ();
c906108c
SS
3244}
3245
3246/* Initialize static vars when a new inferior begins. */
3247
3248void
96baa820 3249init_wait_for_inferior (void)
c906108c
SS
3250{
3251 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3252
c906108c
SS
3253 breakpoint_init_inferior (inf_starting);
3254
70509625 3255 clear_proceed_status (0);
9f976b41 3256
ab1ddbcf 3257 nullify_last_target_wait_ptid ();
237fc4c9 3258
842951eb 3259 previous_inferior_ptid = inferior_ptid;
c906108c 3260}
237fc4c9 3261
c906108c 3262\f
488f131b 3263
ec9499be 3264static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3265
568d6575
UW
3266static void handle_step_into_function (struct gdbarch *gdbarch,
3267 struct execution_control_state *ecs);
3268static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3269 struct execution_control_state *ecs);
4f5d7f63 3270static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3271static void check_exception_resume (struct execution_control_state *,
28106bc2 3272 struct frame_info *);
611c83ae 3273
bdc36728 3274static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3275static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3276static void keep_going (struct execution_control_state *ecs);
94c57d6a 3277static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3278static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3279
252fbfc8
PA
3280/* This function is attached as a "thread_stop_requested" observer.
3281 Cleanup local state that assumed the PTID was to be resumed, and
3282 report the stop to the frontend. */
3283
2c0b251b 3284static void
252fbfc8
PA
3285infrun_thread_stop_requested (ptid_t ptid)
3286{
5b6d1e4f
PA
3287 process_stratum_target *curr_target = current_inferior ()->process_target ();
3288
c65d6b55
PA
3289 /* PTID was requested to stop. If the thread was already stopped,
3290 but the user/frontend doesn't know about that yet (e.g., the
3291 thread had been temporarily paused for some step-over), set up
3292 for reporting the stop now. */
5b6d1e4f 3293 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3294 {
3295 if (tp->state != THREAD_RUNNING)
3296 continue;
3297 if (tp->executing)
3298 continue;
c65d6b55 3299
08036331
PA
3300 /* Remove matching threads from the step-over queue, so
3301 start_step_over doesn't try to resume them
3302 automatically. */
3303 if (thread_is_in_step_over_chain (tp))
3304 thread_step_over_chain_remove (tp);
c65d6b55 3305
08036331
PA
3306 /* If the thread is stopped, but the user/frontend doesn't
3307 know about that yet, queue a pending event, as if the
3308 thread had just stopped now. Unless the thread already had
3309 a pending event. */
3310 if (!tp->suspend.waitstatus_pending_p)
3311 {
3312 tp->suspend.waitstatus_pending_p = 1;
3313 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3314 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3315 }
c65d6b55 3316
08036331
PA
3317 /* Clear the inline-frame state, since we're re-processing the
3318 stop. */
5b6d1e4f 3319 clear_inline_frame_state (tp);
c65d6b55 3320
08036331
PA
3321 /* If this thread was paused because some other thread was
3322 doing an inline-step over, let that finish first. Once
3323 that happens, we'll restart all threads and consume pending
3324 stop events then. */
3325 if (step_over_info_valid_p ())
3326 continue;
3327
3328 /* Otherwise we can process the (new) pending event now. Set
3329 it so this pending event is considered by
3330 do_target_wait. */
719546c4 3331 tp->resumed = true;
08036331 3332 }
252fbfc8
PA
3333}
3334
a07daef3
PA
3335static void
3336infrun_thread_thread_exit (struct thread_info *tp, int silent)
3337{
5b6d1e4f
PA
3338 if (target_last_proc_target == tp->inf->process_target ()
3339 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3340 nullify_last_target_wait_ptid ();
3341}
3342
0cbcdb96
PA
3343/* Delete the step resume, single-step and longjmp/exception resume
3344 breakpoints of TP. */
4e1c45ea 3345
0cbcdb96
PA
3346static void
3347delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3348{
0cbcdb96
PA
3349 delete_step_resume_breakpoint (tp);
3350 delete_exception_resume_breakpoint (tp);
34b7e8a6 3351 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3352}
3353
0cbcdb96
PA
3354/* If the target still has execution, call FUNC for each thread that
3355 just stopped. In all-stop, that's all the non-exited threads; in
3356 non-stop, that's the current thread, only. */
3357
3358typedef void (*for_each_just_stopped_thread_callback_func)
3359 (struct thread_info *tp);
4e1c45ea
PA
3360
3361static void
0cbcdb96 3362for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3363{
d7e15655 3364 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3365 return;
3366
fbea99ea 3367 if (target_is_non_stop_p ())
4e1c45ea 3368 {
0cbcdb96
PA
3369 /* If in non-stop mode, only the current thread stopped. */
3370 func (inferior_thread ());
4e1c45ea
PA
3371 }
3372 else
0cbcdb96 3373 {
0cbcdb96 3374 /* In all-stop mode, all threads have stopped. */
08036331
PA
3375 for (thread_info *tp : all_non_exited_threads ())
3376 func (tp);
0cbcdb96
PA
3377 }
3378}
3379
3380/* Delete the step resume and longjmp/exception resume breakpoints of
3381 the threads that just stopped. */
3382
3383static void
3384delete_just_stopped_threads_infrun_breakpoints (void)
3385{
3386 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3387}
3388
3389/* Delete the single-step breakpoints of the threads that just
3390 stopped. */
7c16b83e 3391
34b7e8a6
PA
3392static void
3393delete_just_stopped_threads_single_step_breakpoints (void)
3394{
3395 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3396}
3397
221e1a37 3398/* See infrun.h. */
223698f8 3399
221e1a37 3400void
223698f8
DE
3401print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3402 const struct target_waitstatus *ws)
3403{
23fdd69e 3404 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3405 string_file stb;
223698f8
DE
3406
3407 /* The text is split over several lines because it was getting too long.
3408 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3409 output as a unit; we want only one timestamp printed if debug_timestamp
3410 is set. */
3411
d7e74731 3412 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3413 waiton_ptid.pid (),
e38504b3 3414 waiton_ptid.lwp (),
cc6bcb54 3415 waiton_ptid.tid ());
e99b03dc 3416 if (waiton_ptid.pid () != -1)
a068643d 3417 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3418 stb.printf (", status) =\n");
3419 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3420 result_ptid.pid (),
e38504b3 3421 result_ptid.lwp (),
cc6bcb54 3422 result_ptid.tid (),
a068643d 3423 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3424 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3425
3426 /* This uses %s in part to handle %'s in the text, but also to avoid
3427 a gcc error: the format attribute requires a string literal. */
d7e74731 3428 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3429}
3430
372316f1
PA
3431/* Select a thread at random, out of those which are resumed and have
3432 had events. */
3433
3434static struct thread_info *
5b6d1e4f 3435random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3436{
372316f1 3437 int num_events = 0;
08036331 3438
5b6d1e4f 3439 auto has_event = [&] (thread_info *tp)
08036331 3440 {
5b6d1e4f
PA
3441 return (tp->ptid.matches (waiton_ptid)
3442 && tp->resumed
08036331
PA
3443 && tp->suspend.waitstatus_pending_p);
3444 };
372316f1
PA
3445
3446 /* First see how many events we have. Count only resumed threads
3447 that have an event pending. */
5b6d1e4f 3448 for (thread_info *tp : inf->non_exited_threads ())
08036331 3449 if (has_event (tp))
372316f1
PA
3450 num_events++;
3451
3452 if (num_events == 0)
3453 return NULL;
3454
3455 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3456 int random_selector = (int) ((num_events * (double) rand ())
3457 / (RAND_MAX + 1.0));
372316f1
PA
3458
3459 if (debug_infrun && num_events > 1)
3460 fprintf_unfiltered (gdb_stdlog,
3461 "infrun: Found %d events, selecting #%d\n",
3462 num_events, random_selector);
3463
3464 /* Select the Nth thread that has had an event. */
5b6d1e4f 3465 for (thread_info *tp : inf->non_exited_threads ())
08036331 3466 if (has_event (tp))
372316f1 3467 if (random_selector-- == 0)
08036331 3468 return tp;
372316f1 3469
08036331 3470 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3471}
3472
3473/* Wrapper for target_wait that first checks whether threads have
3474 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3475 more events. INF is the inferior we're using to call target_wait
3476 on. */
372316f1
PA
3477
3478static ptid_t
5b6d1e4f
PA
3479do_target_wait_1 (inferior *inf, ptid_t ptid,
3480 target_waitstatus *status, int options)
372316f1
PA
3481{
3482 ptid_t event_ptid;
3483 struct thread_info *tp;
3484
24ed6739
AB
3485 /* We know that we are looking for an event in the target of inferior
3486 INF, but we don't know which thread the event might come from. As
3487 such we want to make sure that INFERIOR_PTID is reset so that none of
3488 the wait code relies on it - doing so is always a mistake. */
3489 switch_to_inferior_no_thread (inf);
3490
372316f1
PA
3491 /* First check if there is a resumed thread with a wait status
3492 pending. */
d7e15655 3493 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3494 {
5b6d1e4f 3495 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3496 }
3497 else
3498 {
3499 if (debug_infrun)
3500 fprintf_unfiltered (gdb_stdlog,
3501 "infrun: Waiting for specific thread %s.\n",
a068643d 3502 target_pid_to_str (ptid).c_str ());
372316f1
PA
3503
3504 /* We have a specific thread to check. */
5b6d1e4f 3505 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3506 gdb_assert (tp != NULL);
3507 if (!tp->suspend.waitstatus_pending_p)
3508 tp = NULL;
3509 }
3510
3511 if (tp != NULL
3512 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3513 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3514 {
00431a78 3515 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3516 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3517 CORE_ADDR pc;
3518 int discard = 0;
3519
3520 pc = regcache_read_pc (regcache);
3521
3522 if (pc != tp->suspend.stop_pc)
3523 {
3524 if (debug_infrun)
3525 fprintf_unfiltered (gdb_stdlog,
3526 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3527 target_pid_to_str (tp->ptid).c_str (),
defd2172 3528 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3529 paddress (gdbarch, pc));
3530 discard = 1;
3531 }
a01bda52 3532 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3533 {
3534 if (debug_infrun)
3535 fprintf_unfiltered (gdb_stdlog,
3536 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3537 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3538 paddress (gdbarch, pc));
3539
3540 discard = 1;
3541 }
3542
3543 if (discard)
3544 {
3545 if (debug_infrun)
3546 fprintf_unfiltered (gdb_stdlog,
3547 "infrun: pending event of %s cancelled.\n",
a068643d 3548 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3549
3550 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3551 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3552 }
3553 }
3554
3555 if (tp != NULL)
3556 {
3557 if (debug_infrun)
3558 {
23fdd69e
SM
3559 std::string statstr
3560 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3561
372316f1
PA
3562 fprintf_unfiltered (gdb_stdlog,
3563 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3564 statstr.c_str (),
a068643d 3565 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3566 }
3567
3568 /* Now that we've selected our final event LWP, un-adjust its PC
3569 if it was a software breakpoint (and the target doesn't
3570 always adjust the PC itself). */
3571 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3572 && !target_supports_stopped_by_sw_breakpoint ())
3573 {
3574 struct regcache *regcache;
3575 struct gdbarch *gdbarch;
3576 int decr_pc;
3577
00431a78 3578 regcache = get_thread_regcache (tp);
ac7936df 3579 gdbarch = regcache->arch ();
372316f1
PA
3580
3581 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3582 if (decr_pc != 0)
3583 {
3584 CORE_ADDR pc;
3585
3586 pc = regcache_read_pc (regcache);
3587 regcache_write_pc (regcache, pc + decr_pc);
3588 }
3589 }
3590
3591 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3592 *status = tp->suspend.waitstatus;
3593 tp->suspend.waitstatus_pending_p = 0;
3594
3595 /* Wake up the event loop again, until all pending events are
3596 processed. */
3597 if (target_is_async_p ())
3598 mark_async_event_handler (infrun_async_inferior_event_token);
3599 return tp->ptid;
3600 }
3601
3602 /* But if we don't find one, we'll have to wait. */
3603
3604 if (deprecated_target_wait_hook)
3605 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3606 else
3607 event_ptid = target_wait (ptid, status, options);
3608
3609 return event_ptid;
3610}
3611
5b6d1e4f
PA
3612/* Returns true if INF has any resumed thread with a status
3613 pending. */
3614
3615static bool
3616threads_are_resumed_pending_p (inferior *inf)
3617{
3618 for (thread_info *tp : inf->non_exited_threads ())
3619 if (tp->resumed
3620 && tp->suspend.waitstatus_pending_p)
3621 return true;
3622
3623 return false;
3624}
3625
3626/* Wrapper for target_wait that first checks whether threads have
3627 pending statuses to report before actually asking the target for
3628 more events. Polls for events from all inferiors/targets. */
3629
3630static bool
3631do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3632{
3633 int num_inferiors = 0;
3634 int random_selector;
3635
3636 /* For fairness, we pick the first inferior/target to poll at
3637 random, and then continue polling the rest of the inferior list
3638 starting from that one in a circular fashion until the whole list
3639 is polled once. */
3640
3641 auto inferior_matches = [&wait_ptid] (inferior *inf)
3642 {
3643 return (inf->process_target () != NULL
3644 && (threads_are_executing (inf->process_target ())
3645 || threads_are_resumed_pending_p (inf))
3646 && ptid_t (inf->pid).matches (wait_ptid));
3647 };
3648
3649 /* First see how many resumed inferiors we have. */
3650 for (inferior *inf : all_inferiors ())
3651 if (inferior_matches (inf))
3652 num_inferiors++;
3653
3654 if (num_inferiors == 0)
3655 {
3656 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3657 return false;
3658 }
3659
3660 /* Now randomly pick an inferior out of those that were resumed. */
3661 random_selector = (int)
3662 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3663
3664 if (debug_infrun && num_inferiors > 1)
3665 fprintf_unfiltered (gdb_stdlog,
3666 "infrun: Found %d inferiors, starting at #%d\n",
3667 num_inferiors, random_selector);
3668
3669 /* Select the Nth inferior that was resumed. */
3670
3671 inferior *selected = nullptr;
3672
3673 for (inferior *inf : all_inferiors ())
3674 if (inferior_matches (inf))
3675 if (random_selector-- == 0)
3676 {
3677 selected = inf;
3678 break;
3679 }
3680
3681 /* Now poll for events out of each of the resumed inferior's
3682 targets, starting from the selected one. */
3683
3684 auto do_wait = [&] (inferior *inf)
3685 {
5b6d1e4f
PA
3686 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3687 ecs->target = inf->process_target ();
3688 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3689 };
3690
3691 /* Needed in all-stop+target-non-stop mode, because we end up here
3692 spuriously after the target is all stopped and we've already
3693 reported the stop to the user, polling for events. */
3694 scoped_restore_current_thread restore_thread;
3695
3696 int inf_num = selected->num;
3697 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3698 if (inferior_matches (inf))
3699 if (do_wait (inf))
3700 return true;
3701
3702 for (inferior *inf = inferior_list;
3703 inf != NULL && inf->num < inf_num;
3704 inf = inf->next)
3705 if (inferior_matches (inf))
3706 if (do_wait (inf))
3707 return true;
3708
3709 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3710 return false;
3711}
3712
24291992
PA
3713/* Prepare and stabilize the inferior for detaching it. E.g.,
3714 detaching while a thread is displaced stepping is a recipe for
3715 crashing it, as nothing would readjust the PC out of the scratch
3716 pad. */
3717
3718void
3719prepare_for_detach (void)
3720{
3721 struct inferior *inf = current_inferior ();
f2907e49 3722 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3723
00431a78 3724 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3725
3726 /* Is any thread of this process displaced stepping? If not,
3727 there's nothing else to do. */
d20172fc 3728 if (displaced->step_thread == nullptr)
24291992
PA
3729 return;
3730
3731 if (debug_infrun)
3732 fprintf_unfiltered (gdb_stdlog,
3733 "displaced-stepping in-process while detaching");
3734
9bcb1f16 3735 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3736
00431a78 3737 while (displaced->step_thread != nullptr)
24291992 3738 {
24291992
PA
3739 struct execution_control_state ecss;
3740 struct execution_control_state *ecs;
3741
3742 ecs = &ecss;
3743 memset (ecs, 0, sizeof (*ecs));
3744
3745 overlay_cache_invalid = 1;
f15cb84a
YQ
3746 /* Flush target cache before starting to handle each event.
3747 Target was running and cache could be stale. This is just a
3748 heuristic. Running threads may modify target memory, but we
3749 don't get any event. */
3750 target_dcache_invalidate ();
24291992 3751
5b6d1e4f 3752 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3753
3754 if (debug_infrun)
3755 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3756
3757 /* If an error happens while handling the event, propagate GDB's
3758 knowledge of the executing state to the frontend/user running
3759 state. */
5b6d1e4f
PA
3760 scoped_finish_thread_state finish_state (inf->process_target (),
3761 minus_one_ptid);
24291992
PA
3762
3763 /* Now figure out what to do with the result of the result. */
3764 handle_inferior_event (ecs);
3765
3766 /* No error, don't finish the state yet. */
731f534f 3767 finish_state.release ();
24291992
PA
3768
3769 /* Breakpoints and watchpoints are not installed on the target
3770 at this point, and signals are passed directly to the
3771 inferior, so this must mean the process is gone. */
3772 if (!ecs->wait_some_more)
3773 {
9bcb1f16 3774 restore_detaching.release ();
24291992
PA
3775 error (_("Program exited while detaching"));
3776 }
3777 }
3778
9bcb1f16 3779 restore_detaching.release ();
24291992
PA
3780}
3781
cd0fc7c3 3782/* Wait for control to return from inferior to debugger.
ae123ec6 3783
cd0fc7c3
SS
3784 If inferior gets a signal, we may decide to start it up again
3785 instead of returning. That is why there is a loop in this function.
3786 When this function actually returns it means the inferior
3787 should be left stopped and GDB should read more commands. */
3788
5b6d1e4f
PA
3789static void
3790wait_for_inferior (inferior *inf)
cd0fc7c3 3791{
527159b7 3792 if (debug_infrun)
ae123ec6 3793 fprintf_unfiltered
e4c8541f 3794 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3795
4c41382a 3796 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3797
e6f5c25b
PA
3798 /* If an error happens while handling the event, propagate GDB's
3799 knowledge of the executing state to the frontend/user running
3800 state. */
5b6d1e4f
PA
3801 scoped_finish_thread_state finish_state
3802 (inf->process_target (), minus_one_ptid);
e6f5c25b 3803
c906108c
SS
3804 while (1)
3805 {
ae25568b
PA
3806 struct execution_control_state ecss;
3807 struct execution_control_state *ecs = &ecss;
29f49a6a 3808
ae25568b
PA
3809 memset (ecs, 0, sizeof (*ecs));
3810
ec9499be 3811 overlay_cache_invalid = 1;
ec9499be 3812
f15cb84a
YQ
3813 /* Flush target cache before starting to handle each event.
3814 Target was running and cache could be stale. This is just a
3815 heuristic. Running threads may modify target memory, but we
3816 don't get any event. */
3817 target_dcache_invalidate ();
3818
5b6d1e4f
PA
3819 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3820 ecs->target = inf->process_target ();
c906108c 3821
f00150c9 3822 if (debug_infrun)
5b6d1e4f 3823 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3824
cd0fc7c3
SS
3825 /* Now figure out what to do with the result of the result. */
3826 handle_inferior_event (ecs);
c906108c 3827
cd0fc7c3
SS
3828 if (!ecs->wait_some_more)
3829 break;
3830 }
4e1c45ea 3831
e6f5c25b 3832 /* No error, don't finish the state yet. */
731f534f 3833 finish_state.release ();
cd0fc7c3 3834}
c906108c 3835
d3d4baed
PA
3836/* Cleanup that reinstalls the readline callback handler, if the
3837 target is running in the background. If while handling the target
3838 event something triggered a secondary prompt, like e.g., a
3839 pagination prompt, we'll have removed the callback handler (see
3840 gdb_readline_wrapper_line). Need to do this as we go back to the
3841 event loop, ready to process further input. Note this has no
3842 effect if the handler hasn't actually been removed, because calling
3843 rl_callback_handler_install resets the line buffer, thus losing
3844 input. */
3845
3846static void
d238133d 3847reinstall_readline_callback_handler_cleanup ()
d3d4baed 3848{
3b12939d
PA
3849 struct ui *ui = current_ui;
3850
3851 if (!ui->async)
6c400b59
PA
3852 {
3853 /* We're not going back to the top level event loop yet. Don't
3854 install the readline callback, as it'd prep the terminal,
3855 readline-style (raw, noecho) (e.g., --batch). We'll install
3856 it the next time the prompt is displayed, when we're ready
3857 for input. */
3858 return;
3859 }
3860
3b12939d 3861 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3862 gdb_rl_callback_handler_reinstall ();
3863}
3864
243a9253
PA
3865/* Clean up the FSMs of threads that are now stopped. In non-stop,
3866 that's just the event thread. In all-stop, that's all threads. */
3867
3868static void
3869clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3870{
08036331
PA
3871 if (ecs->event_thread != NULL
3872 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3873 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3874
3875 if (!non_stop)
3876 {
08036331 3877 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3878 {
3879 if (thr->thread_fsm == NULL)
3880 continue;
3881 if (thr == ecs->event_thread)
3882 continue;
3883
00431a78 3884 switch_to_thread (thr);
46e3ed7f 3885 thr->thread_fsm->clean_up (thr);
243a9253
PA
3886 }
3887
3888 if (ecs->event_thread != NULL)
00431a78 3889 switch_to_thread (ecs->event_thread);
243a9253
PA
3890 }
3891}
3892
3b12939d
PA
3893/* Helper for all_uis_check_sync_execution_done that works on the
3894 current UI. */
3895
3896static void
3897check_curr_ui_sync_execution_done (void)
3898{
3899 struct ui *ui = current_ui;
3900
3901 if (ui->prompt_state == PROMPT_NEEDED
3902 && ui->async
3903 && !gdb_in_secondary_prompt_p (ui))
3904 {
223ffa71 3905 target_terminal::ours ();
76727919 3906 gdb::observers::sync_execution_done.notify ();
3eb7562a 3907 ui_register_input_event_handler (ui);
3b12939d
PA
3908 }
3909}
3910
3911/* See infrun.h. */
3912
3913void
3914all_uis_check_sync_execution_done (void)
3915{
0e454242 3916 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3917 {
3918 check_curr_ui_sync_execution_done ();
3919 }
3920}
3921
a8836c93
PA
3922/* See infrun.h. */
3923
3924void
3925all_uis_on_sync_execution_starting (void)
3926{
0e454242 3927 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3928 {
3929 if (current_ui->prompt_state == PROMPT_NEEDED)
3930 async_disable_stdin ();
3931 }
3932}
3933
1777feb0 3934/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3935 event loop whenever a change of state is detected on the file
1777feb0
MS
3936 descriptor corresponding to the target. It can be called more than
3937 once to complete a single execution command. In such cases we need
3938 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3939 that this function is called for a single execution command, then
3940 report to the user that the inferior has stopped, and do the
1777feb0 3941 necessary cleanups. */
43ff13b4
JM
3942
3943void
fba45db2 3944fetch_inferior_event (void *client_data)
43ff13b4 3945{
0d1e5fa7 3946 struct execution_control_state ecss;
a474d7c2 3947 struct execution_control_state *ecs = &ecss;
0f641c01 3948 int cmd_done = 0;
43ff13b4 3949
0d1e5fa7
PA
3950 memset (ecs, 0, sizeof (*ecs));
3951
c61db772
PA
3952 /* Events are always processed with the main UI as current UI. This
3953 way, warnings, debug output, etc. are always consistently sent to
3954 the main console. */
4b6749b9 3955 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3956
d3d4baed 3957 /* End up with readline processing input, if necessary. */
d238133d
TT
3958 {
3959 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3960
3961 /* We're handling a live event, so make sure we're doing live
3962 debugging. If we're looking at traceframes while the target is
3963 running, we're going to need to get back to that mode after
3964 handling the event. */
3965 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3966 if (non_stop)
3967 {
3968 maybe_restore_traceframe.emplace ();
3969 set_current_traceframe (-1);
3970 }
43ff13b4 3971
873657b9
PA
3972 /* The user/frontend should not notice a thread switch due to
3973 internal events. Make sure we revert to the user selected
3974 thread and frame after handling the event and running any
3975 breakpoint commands. */
3976 scoped_restore_current_thread restore_thread;
d238133d
TT
3977
3978 overlay_cache_invalid = 1;
3979 /* Flush target cache before starting to handle each event. Target
3980 was running and cache could be stale. This is just a heuristic.
3981 Running threads may modify target memory, but we don't get any
3982 event. */
3983 target_dcache_invalidate ();
3984
3985 scoped_restore save_exec_dir
3986 = make_scoped_restore (&execution_direction,
3987 target_execution_direction ());
3988
5b6d1e4f
PA
3989 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3990 return;
3991
3992 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3993
3994 /* Switch to the target that generated the event, so we can do
3995 target calls. Any inferior bound to the target will do, so we
3996 just switch to the first we find. */
3997 for (inferior *inf : all_inferiors (ecs->target))
3998 {
3999 switch_to_inferior_no_thread (inf);
4000 break;
4001 }
d238133d
TT
4002
4003 if (debug_infrun)
5b6d1e4f 4004 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
4005
4006 /* If an error happens while handling the event, propagate GDB's
4007 knowledge of the executing state to the frontend/user running
4008 state. */
4009 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 4010 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 4011
979a0d13 4012 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
4013 still for the thread which has thrown the exception. */
4014 auto defer_bpstat_clear
4015 = make_scope_exit (bpstat_clear_actions);
4016 auto defer_delete_threads
4017 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4018
4019 /* Now figure out what to do with the result of the result. */
4020 handle_inferior_event (ecs);
4021
4022 if (!ecs->wait_some_more)
4023 {
5b6d1e4f 4024 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
d238133d
TT
4025 int should_stop = 1;
4026 struct thread_info *thr = ecs->event_thread;
d6b48e9c 4027
d238133d 4028 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 4029
d238133d
TT
4030 if (thr != NULL)
4031 {
4032 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 4033
d238133d 4034 if (thread_fsm != NULL)
46e3ed7f 4035 should_stop = thread_fsm->should_stop (thr);
d238133d 4036 }
243a9253 4037
d238133d
TT
4038 if (!should_stop)
4039 {
4040 keep_going (ecs);
4041 }
4042 else
4043 {
46e3ed7f 4044 bool should_notify_stop = true;
d238133d 4045 int proceeded = 0;
1840d81a 4046
d238133d 4047 clean_up_just_stopped_threads_fsms (ecs);
243a9253 4048
d238133d 4049 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 4050 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 4051
d238133d
TT
4052 if (should_notify_stop)
4053 {
4054 /* We may not find an inferior if this was a process exit. */
4055 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4056 proceeded = normal_stop ();
4057 }
243a9253 4058
d238133d
TT
4059 if (!proceeded)
4060 {
4061 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4062 cmd_done = 1;
4063 }
873657b9
PA
4064
4065 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4066 previously selected thread is gone. We have two
4067 choices - switch to no thread selected, or restore the
4068 previously selected thread (now exited). We chose the
4069 later, just because that's what GDB used to do. After
4070 this, "info threads" says "The current thread <Thread
4071 ID 2> has terminated." instead of "No thread
4072 selected.". */
4073 if (!non_stop
4074 && cmd_done
4075 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4076 restore_thread.dont_restore ();
d238133d
TT
4077 }
4078 }
4f8d22e3 4079
d238133d
TT
4080 defer_delete_threads.release ();
4081 defer_bpstat_clear.release ();
29f49a6a 4082
d238133d
TT
4083 /* No error, don't finish the thread states yet. */
4084 finish_state.release ();
731f534f 4085
d238133d
TT
4086 /* This scope is used to ensure that readline callbacks are
4087 reinstalled here. */
4088 }
4f8d22e3 4089
3b12939d
PA
4090 /* If a UI was in sync execution mode, and now isn't, restore its
4091 prompt (a synchronous execution command has finished, and we're
4092 ready for input). */
4093 all_uis_check_sync_execution_done ();
0f641c01
PA
4094
4095 if (cmd_done
0f641c01 4096 && exec_done_display_p
00431a78
PA
4097 && (inferior_ptid == null_ptid
4098 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4099 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4100}
4101
29734269
SM
4102/* See infrun.h. */
4103
edb3359d 4104void
29734269
SM
4105set_step_info (thread_info *tp, struct frame_info *frame,
4106 struct symtab_and_line sal)
edb3359d 4107{
29734269
SM
4108 /* This can be removed once this function no longer implicitly relies on the
4109 inferior_ptid value. */
4110 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4111
16c381f0
JK
4112 tp->control.step_frame_id = get_frame_id (frame);
4113 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4114
4115 tp->current_symtab = sal.symtab;
4116 tp->current_line = sal.line;
4117}
4118
0d1e5fa7
PA
4119/* Clear context switchable stepping state. */
4120
4121void
4e1c45ea 4122init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4123{
7f5ef605 4124 tss->stepped_breakpoint = 0;
0d1e5fa7 4125 tss->stepping_over_breakpoint = 0;
963f9c80 4126 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4127 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4128}
4129
ab1ddbcf 4130/* See infrun.h. */
c32c64b7 4131
6efcd9a8 4132void
5b6d1e4f
PA
4133set_last_target_status (process_stratum_target *target, ptid_t ptid,
4134 target_waitstatus status)
c32c64b7 4135{
5b6d1e4f 4136 target_last_proc_target = target;
c32c64b7
DE
4137 target_last_wait_ptid = ptid;
4138 target_last_waitstatus = status;
4139}
4140
ab1ddbcf 4141/* See infrun.h. */
e02bc4cc
DS
4142
4143void
5b6d1e4f
PA
4144get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4145 target_waitstatus *status)
e02bc4cc 4146{
5b6d1e4f
PA
4147 if (target != nullptr)
4148 *target = target_last_proc_target;
ab1ddbcf
PA
4149 if (ptid != nullptr)
4150 *ptid = target_last_wait_ptid;
4151 if (status != nullptr)
4152 *status = target_last_waitstatus;
e02bc4cc
DS
4153}
4154
ab1ddbcf
PA
4155/* See infrun.h. */
4156
ac264b3b
MS
4157void
4158nullify_last_target_wait_ptid (void)
4159{
5b6d1e4f 4160 target_last_proc_target = nullptr;
ac264b3b 4161 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4162 target_last_waitstatus = {};
ac264b3b
MS
4163}
4164
dcf4fbde 4165/* Switch thread contexts. */
dd80620e
MS
4166
4167static void
00431a78 4168context_switch (execution_control_state *ecs)
dd80620e 4169{
00431a78
PA
4170 if (debug_infrun
4171 && ecs->ptid != inferior_ptid
5b6d1e4f
PA
4172 && (inferior_ptid == null_ptid
4173 || ecs->event_thread != inferior_thread ()))
fd48f117
DJ
4174 {
4175 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 4176 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 4177 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 4178 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4179 }
4180
00431a78 4181 switch_to_thread (ecs->event_thread);
dd80620e
MS
4182}
4183
d8dd4d5f
PA
4184/* If the target can't tell whether we've hit breakpoints
4185 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4186 check whether that could have been caused by a breakpoint. If so,
4187 adjust the PC, per gdbarch_decr_pc_after_break. */
4188
4fa8626c 4189static void
d8dd4d5f
PA
4190adjust_pc_after_break (struct thread_info *thread,
4191 struct target_waitstatus *ws)
4fa8626c 4192{
24a73cce
UW
4193 struct regcache *regcache;
4194 struct gdbarch *gdbarch;
118e6252 4195 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4196
4fa8626c
DJ
4197 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4198 we aren't, just return.
9709f61c
DJ
4199
4200 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4201 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4202 implemented by software breakpoints should be handled through the normal
4203 breakpoint layer.
8fb3e588 4204
4fa8626c
DJ
4205 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4206 different signals (SIGILL or SIGEMT for instance), but it is less
4207 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4208 gdbarch_decr_pc_after_break. I don't know any specific target that
4209 generates these signals at breakpoints (the code has been in GDB since at
4210 least 1992) so I can not guess how to handle them here.
8fb3e588 4211
e6cf7916
UW
4212 In earlier versions of GDB, a target with
4213 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4214 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4215 target with both of these set in GDB history, and it seems unlikely to be
4216 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4217
d8dd4d5f 4218 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4219 return;
4220
d8dd4d5f 4221 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4222 return;
4223
4058b839
PA
4224 /* In reverse execution, when a breakpoint is hit, the instruction
4225 under it has already been de-executed. The reported PC always
4226 points at the breakpoint address, so adjusting it further would
4227 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4228 architecture:
4229
4230 B1 0x08000000 : INSN1
4231 B2 0x08000001 : INSN2
4232 0x08000002 : INSN3
4233 PC -> 0x08000003 : INSN4
4234
4235 Say you're stopped at 0x08000003 as above. Reverse continuing
4236 from that point should hit B2 as below. Reading the PC when the
4237 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4238 been de-executed already.
4239
4240 B1 0x08000000 : INSN1
4241 B2 PC -> 0x08000001 : INSN2
4242 0x08000002 : INSN3
4243 0x08000003 : INSN4
4244
4245 We can't apply the same logic as for forward execution, because
4246 we would wrongly adjust the PC to 0x08000000, since there's a
4247 breakpoint at PC - 1. We'd then report a hit on B1, although
4248 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4249 behaviour. */
4250 if (execution_direction == EXEC_REVERSE)
4251 return;
4252
1cf4d951
PA
4253 /* If the target can tell whether the thread hit a SW breakpoint,
4254 trust it. Targets that can tell also adjust the PC
4255 themselves. */
4256 if (target_supports_stopped_by_sw_breakpoint ())
4257 return;
4258
4259 /* Note that relying on whether a breakpoint is planted in memory to
4260 determine this can fail. E.g,. the breakpoint could have been
4261 removed since. Or the thread could have been told to step an
4262 instruction the size of a breakpoint instruction, and only
4263 _after_ was a breakpoint inserted at its address. */
4264
24a73cce
UW
4265 /* If this target does not decrement the PC after breakpoints, then
4266 we have nothing to do. */
00431a78 4267 regcache = get_thread_regcache (thread);
ac7936df 4268 gdbarch = regcache->arch ();
118e6252 4269
527a273a 4270 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4271 if (decr_pc == 0)
24a73cce
UW
4272 return;
4273
8b86c959 4274 const address_space *aspace = regcache->aspace ();
6c95b8df 4275
8aad930b
AC
4276 /* Find the location where (if we've hit a breakpoint) the
4277 breakpoint would be. */
118e6252 4278 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4279
1cf4d951
PA
4280 /* If the target can't tell whether a software breakpoint triggered,
4281 fallback to figuring it out based on breakpoints we think were
4282 inserted in the target, and on whether the thread was stepped or
4283 continued. */
4284
1c5cfe86
PA
4285 /* Check whether there actually is a software breakpoint inserted at
4286 that location.
4287
4288 If in non-stop mode, a race condition is possible where we've
4289 removed a breakpoint, but stop events for that breakpoint were
4290 already queued and arrive later. To suppress those spurious
4291 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4292 and retire them after a number of stop events are reported. Note
4293 this is an heuristic and can thus get confused. The real fix is
4294 to get the "stopped by SW BP and needs adjustment" info out of
4295 the target/kernel (and thus never reach here; see above). */
6c95b8df 4296 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4297 || (target_is_non_stop_p ()
4298 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4299 {
07036511 4300 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4301
8213266a 4302 if (record_full_is_used ())
07036511
TT
4303 restore_operation_disable.emplace
4304 (record_full_gdb_operation_disable_set ());
96429cc8 4305
1c0fdd0e
UW
4306 /* When using hardware single-step, a SIGTRAP is reported for both
4307 a completed single-step and a software breakpoint. Need to
4308 differentiate between the two, as the latter needs adjusting
4309 but the former does not.
4310
4311 The SIGTRAP can be due to a completed hardware single-step only if
4312 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4313 - this thread is currently being stepped
4314
4315 If any of these events did not occur, we must have stopped due
4316 to hitting a software breakpoint, and have to back up to the
4317 breakpoint address.
4318
4319 As a special case, we could have hardware single-stepped a
4320 software breakpoint. In this case (prev_pc == breakpoint_pc),
4321 we also need to back up to the breakpoint address. */
4322
d8dd4d5f
PA
4323 if (thread_has_single_step_breakpoints_set (thread)
4324 || !currently_stepping (thread)
4325 || (thread->stepped_breakpoint
4326 && thread->prev_pc == breakpoint_pc))
515630c5 4327 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4328 }
4fa8626c
DJ
4329}
4330
edb3359d
DJ
4331static int
4332stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4333{
4334 for (frame = get_prev_frame (frame);
4335 frame != NULL;
4336 frame = get_prev_frame (frame))
4337 {
4338 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4339 return 1;
4340 if (get_frame_type (frame) != INLINE_FRAME)
4341 break;
4342 }
4343
4344 return 0;
4345}
4346
4a4c04f1
BE
4347/* Look for an inline frame that is marked for skip.
4348 If PREV_FRAME is TRUE start at the previous frame,
4349 otherwise start at the current frame. Stop at the
4350 first non-inline frame, or at the frame where the
4351 step started. */
4352
4353static bool
4354inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4355{
4356 struct frame_info *frame = get_current_frame ();
4357
4358 if (prev_frame)
4359 frame = get_prev_frame (frame);
4360
4361 for (; frame != NULL; frame = get_prev_frame (frame))
4362 {
4363 const char *fn = NULL;
4364 symtab_and_line sal;
4365 struct symbol *sym;
4366
4367 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4368 break;
4369 if (get_frame_type (frame) != INLINE_FRAME)
4370 break;
4371
4372 sal = find_frame_sal (frame);
4373 sym = get_frame_function (frame);
4374
4375 if (sym != NULL)
4376 fn = sym->print_name ();
4377
4378 if (sal.line != 0
4379 && function_name_is_marked_for_skip (fn, sal))
4380 return true;
4381 }
4382
4383 return false;
4384}
4385
c65d6b55
PA
4386/* If the event thread has the stop requested flag set, pretend it
4387 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4388 target_stop). */
4389
4390static bool
4391handle_stop_requested (struct execution_control_state *ecs)
4392{
4393 if (ecs->event_thread->stop_requested)
4394 {
4395 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4396 ecs->ws.value.sig = GDB_SIGNAL_0;
4397 handle_signal_stop (ecs);
4398 return true;
4399 }
4400 return false;
4401}
4402
a96d9b2e
SDJ
4403/* Auxiliary function that handles syscall entry/return events.
4404 It returns 1 if the inferior should keep going (and GDB
4405 should ignore the event), or 0 if the event deserves to be
4406 processed. */
ca2163eb 4407
a96d9b2e 4408static int
ca2163eb 4409handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4410{
ca2163eb 4411 struct regcache *regcache;
ca2163eb
PA
4412 int syscall_number;
4413
00431a78 4414 context_switch (ecs);
ca2163eb 4415
00431a78 4416 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4417 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4418 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4419
a96d9b2e
SDJ
4420 if (catch_syscall_enabled () > 0
4421 && catching_syscall_number (syscall_number) > 0)
4422 {
4423 if (debug_infrun)
4424 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4425 syscall_number);
a96d9b2e 4426
16c381f0 4427 ecs->event_thread->control.stop_bpstat
a01bda52 4428 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4429 ecs->event_thread->suspend.stop_pc,
4430 ecs->event_thread, &ecs->ws);
ab04a2af 4431
c65d6b55
PA
4432 if (handle_stop_requested (ecs))
4433 return 0;
4434
ce12b012 4435 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4436 {
4437 /* Catchpoint hit. */
ca2163eb
PA
4438 return 0;
4439 }
a96d9b2e 4440 }
ca2163eb 4441
c65d6b55
PA
4442 if (handle_stop_requested (ecs))
4443 return 0;
4444
ca2163eb 4445 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4446 keep_going (ecs);
4447 return 1;
a96d9b2e
SDJ
4448}
4449
7e324e48
GB
4450/* Lazily fill in the execution_control_state's stop_func_* fields. */
4451
4452static void
4453fill_in_stop_func (struct gdbarch *gdbarch,
4454 struct execution_control_state *ecs)
4455{
4456 if (!ecs->stop_func_filled_in)
4457 {
98a617f8
KB
4458 const block *block;
4459
7e324e48
GB
4460 /* Don't care about return value; stop_func_start and stop_func_name
4461 will both be 0 if it doesn't work. */
98a617f8
KB
4462 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4463 &ecs->stop_func_name,
4464 &ecs->stop_func_start,
4465 &ecs->stop_func_end,
4466 &block);
4467
4468 /* The call to find_pc_partial_function, above, will set
4469 stop_func_start and stop_func_end to the start and end
4470 of the range containing the stop pc. If this range
4471 contains the entry pc for the block (which is always the
4472 case for contiguous blocks), advance stop_func_start past
4473 the function's start offset and entrypoint. Note that
4474 stop_func_start is NOT advanced when in a range of a
4475 non-contiguous block that does not contain the entry pc. */
4476 if (block != nullptr
4477 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4478 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4479 {
4480 ecs->stop_func_start
4481 += gdbarch_deprecated_function_start_offset (gdbarch);
4482
4483 if (gdbarch_skip_entrypoint_p (gdbarch))
4484 ecs->stop_func_start
4485 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4486 }
591a12a1 4487
7e324e48
GB
4488 ecs->stop_func_filled_in = 1;
4489 }
4490}
4491
4f5d7f63 4492
00431a78 4493/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4494
4495static enum stop_kind
00431a78 4496get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4497{
5b6d1e4f 4498 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4499
4500 gdb_assert (inf != NULL);
4501 return inf->control.stop_soon;
4502}
4503
5b6d1e4f
PA
4504/* Poll for one event out of the current target. Store the resulting
4505 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4506
4507static ptid_t
5b6d1e4f 4508poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4509{
4510 ptid_t event_ptid;
372316f1
PA
4511
4512 overlay_cache_invalid = 1;
4513
4514 /* Flush target cache before starting to handle each event.
4515 Target was running and cache could be stale. This is just a
4516 heuristic. Running threads may modify target memory, but we
4517 don't get any event. */
4518 target_dcache_invalidate ();
4519
4520 if (deprecated_target_wait_hook)
5b6d1e4f 4521 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4522 else
5b6d1e4f 4523 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4524
4525 if (debug_infrun)
5b6d1e4f 4526 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4527
4528 return event_ptid;
4529}
4530
5b6d1e4f
PA
4531/* An event reported by wait_one. */
4532
4533struct wait_one_event
4534{
4535 /* The target the event came out of. */
4536 process_stratum_target *target;
4537
4538 /* The PTID the event was for. */
4539 ptid_t ptid;
4540
4541 /* The waitstatus. */
4542 target_waitstatus ws;
4543};
4544
4545/* Wait for one event out of any target. */
4546
4547static wait_one_event
4548wait_one ()
4549{
4550 while (1)
4551 {
4552 for (inferior *inf : all_inferiors ())
4553 {
4554 process_stratum_target *target = inf->process_target ();
4555 if (target == NULL
4556 || !target->is_async_p ()
4557 || !target->threads_executing)
4558 continue;
4559
4560 switch_to_inferior_no_thread (inf);
4561
4562 wait_one_event event;
4563 event.target = target;
4564 event.ptid = poll_one_curr_target (&event.ws);
4565
4566 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4567 {
4568 /* If nothing is resumed, remove the target from the
4569 event loop. */
4570 target_async (0);
4571 }
4572 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4573 return event;
4574 }
4575
4576 /* Block waiting for some event. */
4577
4578 fd_set readfds;
4579 int nfds = 0;
4580
4581 FD_ZERO (&readfds);
4582
4583 for (inferior *inf : all_inferiors ())
4584 {
4585 process_stratum_target *target = inf->process_target ();
4586 if (target == NULL
4587 || !target->is_async_p ()
4588 || !target->threads_executing)
4589 continue;
4590
4591 int fd = target->async_wait_fd ();
4592 FD_SET (fd, &readfds);
4593 if (nfds <= fd)
4594 nfds = fd + 1;
4595 }
4596
4597 if (nfds == 0)
4598 {
4599 /* No waitable targets left. All must be stopped. */
4600 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4601 }
4602
4603 QUIT;
4604
4605 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4606 if (numfds < 0)
4607 {
4608 if (errno == EINTR)
4609 continue;
4610 else
4611 perror_with_name ("interruptible_select");
4612 }
4613 }
4614}
4615
372316f1
PA
4616/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4617 instead of the current thread. */
4618#define THREAD_STOPPED_BY(REASON) \
4619static int \
4620thread_stopped_by_ ## REASON (ptid_t ptid) \
4621{ \
2989a365 4622 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4623 inferior_ptid = ptid; \
4624 \
2989a365 4625 return target_stopped_by_ ## REASON (); \
372316f1
PA
4626}
4627
4628/* Generate thread_stopped_by_watchpoint. */
4629THREAD_STOPPED_BY (watchpoint)
4630/* Generate thread_stopped_by_sw_breakpoint. */
4631THREAD_STOPPED_BY (sw_breakpoint)
4632/* Generate thread_stopped_by_hw_breakpoint. */
4633THREAD_STOPPED_BY (hw_breakpoint)
4634
372316f1
PA
4635/* Save the thread's event and stop reason to process it later. */
4636
4637static void
5b6d1e4f 4638save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4639{
372316f1
PA
4640 if (debug_infrun)
4641 {
23fdd69e 4642 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4643
372316f1
PA
4644 fprintf_unfiltered (gdb_stdlog,
4645 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4646 statstr.c_str (),
e99b03dc 4647 tp->ptid.pid (),
e38504b3 4648 tp->ptid.lwp (),
cc6bcb54 4649 tp->ptid.tid ());
372316f1
PA
4650 }
4651
4652 /* Record for later. */
4653 tp->suspend.waitstatus = *ws;
4654 tp->suspend.waitstatus_pending_p = 1;
4655
00431a78 4656 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4657 const address_space *aspace = regcache->aspace ();
372316f1
PA
4658
4659 if (ws->kind == TARGET_WAITKIND_STOPPED
4660 && ws->value.sig == GDB_SIGNAL_TRAP)
4661 {
4662 CORE_ADDR pc = regcache_read_pc (regcache);
4663
4664 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4665
4666 if (thread_stopped_by_watchpoint (tp->ptid))
4667 {
4668 tp->suspend.stop_reason
4669 = TARGET_STOPPED_BY_WATCHPOINT;
4670 }
4671 else if (target_supports_stopped_by_sw_breakpoint ()
4672 && thread_stopped_by_sw_breakpoint (tp->ptid))
4673 {
4674 tp->suspend.stop_reason
4675 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4676 }
4677 else if (target_supports_stopped_by_hw_breakpoint ()
4678 && thread_stopped_by_hw_breakpoint (tp->ptid))
4679 {
4680 tp->suspend.stop_reason
4681 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4682 }
4683 else if (!target_supports_stopped_by_hw_breakpoint ()
4684 && hardware_breakpoint_inserted_here_p (aspace,
4685 pc))
4686 {
4687 tp->suspend.stop_reason
4688 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4689 }
4690 else if (!target_supports_stopped_by_sw_breakpoint ()
4691 && software_breakpoint_inserted_here_p (aspace,
4692 pc))
4693 {
4694 tp->suspend.stop_reason
4695 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4696 }
4697 else if (!thread_has_single_step_breakpoints_set (tp)
4698 && currently_stepping (tp))
4699 {
4700 tp->suspend.stop_reason
4701 = TARGET_STOPPED_BY_SINGLE_STEP;
4702 }
4703 }
4704}
4705
6efcd9a8 4706/* See infrun.h. */
372316f1 4707
6efcd9a8 4708void
372316f1
PA
4709stop_all_threads (void)
4710{
4711 /* We may need multiple passes to discover all threads. */
4712 int pass;
4713 int iterations = 0;
372316f1 4714
53cccef1 4715 gdb_assert (exists_non_stop_target ());
372316f1
PA
4716
4717 if (debug_infrun)
4718 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4719
00431a78 4720 scoped_restore_current_thread restore_thread;
372316f1 4721
65706a29 4722 target_thread_events (1);
9885e6bb 4723 SCOPE_EXIT { target_thread_events (0); };
65706a29 4724
372316f1
PA
4725 /* Request threads to stop, and then wait for the stops. Because
4726 threads we already know about can spawn more threads while we're
4727 trying to stop them, and we only learn about new threads when we
4728 update the thread list, do this in a loop, and keep iterating
4729 until two passes find no threads that need to be stopped. */
4730 for (pass = 0; pass < 2; pass++, iterations++)
4731 {
4732 if (debug_infrun)
4733 fprintf_unfiltered (gdb_stdlog,
4734 "infrun: stop_all_threads, pass=%d, "
4735 "iterations=%d\n", pass, iterations);
4736 while (1)
4737 {
372316f1 4738 int need_wait = 0;
372316f1
PA
4739
4740 update_thread_list ();
4741
4742 /* Go through all threads looking for threads that we need
4743 to tell the target to stop. */
08036331 4744 for (thread_info *t : all_non_exited_threads ())
372316f1 4745 {
53cccef1
TBA
4746 /* For a single-target setting with an all-stop target,
4747 we would not even arrive here. For a multi-target
4748 setting, until GDB is able to handle a mixture of
4749 all-stop and non-stop targets, simply skip all-stop
4750 targets' threads. This should be fine due to the
4751 protection of 'check_multi_target_resumption'. */
4752
4753 switch_to_thread_no_regs (t);
4754 if (!target_is_non_stop_p ())
4755 continue;
4756
372316f1
PA
4757 if (t->executing)
4758 {
4759 /* If already stopping, don't request a stop again.
4760 We just haven't seen the notification yet. */
4761 if (!t->stop_requested)
4762 {
4763 if (debug_infrun)
4764 fprintf_unfiltered (gdb_stdlog,
4765 "infrun: %s executing, "
4766 "need stop\n",
a068643d 4767 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4768 target_stop (t->ptid);
4769 t->stop_requested = 1;
4770 }
4771 else
4772 {
4773 if (debug_infrun)
4774 fprintf_unfiltered (gdb_stdlog,
4775 "infrun: %s executing, "
4776 "already stopping\n",
a068643d 4777 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4778 }
4779
4780 if (t->stop_requested)
4781 need_wait = 1;
4782 }
4783 else
4784 {
4785 if (debug_infrun)
4786 fprintf_unfiltered (gdb_stdlog,
4787 "infrun: %s not executing\n",
a068643d 4788 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4789
4790 /* The thread may be not executing, but still be
4791 resumed with a pending status to process. */
719546c4 4792 t->resumed = false;
372316f1
PA
4793 }
4794 }
4795
4796 if (!need_wait)
4797 break;
4798
4799 /* If we find new threads on the second iteration, restart
4800 over. We want to see two iterations in a row with all
4801 threads stopped. */
4802 if (pass > 0)
4803 pass = -1;
4804
5b6d1e4f
PA
4805 wait_one_event event = wait_one ();
4806
c29705b7 4807 if (debug_infrun)
372316f1 4808 {
c29705b7
PW
4809 fprintf_unfiltered (gdb_stdlog,
4810 "infrun: stop_all_threads %s %s\n",
5b6d1e4f
PA
4811 target_waitstatus_to_string (&event.ws).c_str (),
4812 target_pid_to_str (event.ptid).c_str ());
372316f1 4813 }
372316f1 4814
5b6d1e4f
PA
4815 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED
4816 || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4817 || event.ws.kind == TARGET_WAITKIND_EXITED
4818 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
c29705b7
PW
4819 {
4820 /* All resumed threads exited
4821 or one thread/process exited/signalled. */
372316f1
PA
4822 }
4823 else
4824 {
5b6d1e4f 4825 thread_info *t = find_thread_ptid (event.target, event.ptid);
372316f1 4826 if (t == NULL)
5b6d1e4f 4827 t = add_thread (event.target, event.ptid);
372316f1
PA
4828
4829 t->stop_requested = 0;
4830 t->executing = 0;
719546c4 4831 t->resumed = false;
372316f1
PA
4832 t->control.may_range_step = 0;
4833
6efcd9a8
PA
4834 /* This may be the first time we see the inferior report
4835 a stop. */
5b6d1e4f 4836 inferior *inf = find_inferior_ptid (event.target, event.ptid);
6efcd9a8
PA
4837 if (inf->needs_setup)
4838 {
4839 switch_to_thread_no_regs (t);
4840 setup_inferior (0);
4841 }
4842
5b6d1e4f
PA
4843 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4844 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1
PA
4845 {
4846 /* We caught the event that we intended to catch, so
4847 there's no event pending. */
4848 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4849 t->suspend.waitstatus_pending_p = 0;
4850
00431a78 4851 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4852 {
4853 /* Add it back to the step-over queue. */
4854 if (debug_infrun)
4855 {
4856 fprintf_unfiltered (gdb_stdlog,
4857 "infrun: displaced-step of %s "
4858 "canceled: adding back to the "
4859 "step-over queue\n",
a068643d 4860 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4861 }
4862 t->control.trap_expected = 0;
4863 thread_step_over_chain_enqueue (t);
4864 }
4865 }
4866 else
4867 {
4868 enum gdb_signal sig;
4869 struct regcache *regcache;
372316f1
PA
4870
4871 if (debug_infrun)
4872 {
5b6d1e4f 4873 std::string statstr = target_waitstatus_to_string (&event.ws);
372316f1 4874
372316f1
PA
4875 fprintf_unfiltered (gdb_stdlog,
4876 "infrun: target_wait %s, saving "
4877 "status for %d.%ld.%ld\n",
23fdd69e 4878 statstr.c_str (),
e99b03dc 4879 t->ptid.pid (),
e38504b3 4880 t->ptid.lwp (),
cc6bcb54 4881 t->ptid.tid ());
372316f1
PA
4882 }
4883
4884 /* Record for later. */
5b6d1e4f 4885 save_waitstatus (t, &event.ws);
372316f1 4886
5b6d1e4f
PA
4887 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4888 ? event.ws.value.sig : GDB_SIGNAL_0);
372316f1 4889
00431a78 4890 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4891 {
4892 /* Add it back to the step-over queue. */
4893 t->control.trap_expected = 0;
4894 thread_step_over_chain_enqueue (t);
4895 }
4896
00431a78 4897 regcache = get_thread_regcache (t);
372316f1
PA
4898 t->suspend.stop_pc = regcache_read_pc (regcache);
4899
4900 if (debug_infrun)
4901 {
4902 fprintf_unfiltered (gdb_stdlog,
4903 "infrun: saved stop_pc=%s for %s "
4904 "(currently_stepping=%d)\n",
4905 paddress (target_gdbarch (),
4906 t->suspend.stop_pc),
a068643d 4907 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4908 currently_stepping (t));
4909 }
4910 }
4911 }
4912 }
4913 }
4914
372316f1
PA
4915 if (debug_infrun)
4916 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4917}
4918
f4836ba9
PA
4919/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4920
4921static int
4922handle_no_resumed (struct execution_control_state *ecs)
4923{
3b12939d 4924 if (target_can_async_p ())
f4836ba9 4925 {
3b12939d
PA
4926 struct ui *ui;
4927 int any_sync = 0;
f4836ba9 4928
3b12939d
PA
4929 ALL_UIS (ui)
4930 {
4931 if (ui->prompt_state == PROMPT_BLOCKED)
4932 {
4933 any_sync = 1;
4934 break;
4935 }
4936 }
4937 if (!any_sync)
4938 {
4939 /* There were no unwaited-for children left in the target, but,
4940 we're not synchronously waiting for events either. Just
4941 ignore. */
4942
4943 if (debug_infrun)
4944 fprintf_unfiltered (gdb_stdlog,
4945 "infrun: TARGET_WAITKIND_NO_RESUMED "
4946 "(ignoring: bg)\n");
4947 prepare_to_wait (ecs);
4948 return 1;
4949 }
f4836ba9
PA
4950 }
4951
4952 /* Otherwise, if we were running a synchronous execution command, we
4953 may need to cancel it and give the user back the terminal.
4954
4955 In non-stop mode, the target can't tell whether we've already
4956 consumed previous stop events, so it can end up sending us a
4957 no-resumed event like so:
4958
4959 #0 - thread 1 is left stopped
4960
4961 #1 - thread 2 is resumed and hits breakpoint
4962 -> TARGET_WAITKIND_STOPPED
4963
4964 #2 - thread 3 is resumed and exits
4965 this is the last resumed thread, so
4966 -> TARGET_WAITKIND_NO_RESUMED
4967
4968 #3 - gdb processes stop for thread 2 and decides to re-resume
4969 it.
4970
4971 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4972 thread 2 is now resumed, so the event should be ignored.
4973
4974 IOW, if the stop for thread 2 doesn't end a foreground command,
4975 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4976 event. But it could be that the event meant that thread 2 itself
4977 (or whatever other thread was the last resumed thread) exited.
4978
4979 To address this we refresh the thread list and check whether we
4980 have resumed threads _now_. In the example above, this removes
4981 thread 3 from the thread list. If thread 2 was re-resumed, we
4982 ignore this event. If we find no thread resumed, then we cancel
4983 the synchronous command show "no unwaited-for " to the user. */
4984 update_thread_list ();
4985
5b6d1e4f 4986 for (thread_info *thread : all_non_exited_threads (ecs->target))
f4836ba9
PA
4987 {
4988 if (thread->executing
4989 || thread->suspend.waitstatus_pending_p)
4990 {
4991 /* There were no unwaited-for children left in the target at
4992 some point, but there are now. Just ignore. */
4993 if (debug_infrun)
4994 fprintf_unfiltered (gdb_stdlog,
4995 "infrun: TARGET_WAITKIND_NO_RESUMED "
4996 "(ignoring: found resumed)\n");
4997 prepare_to_wait (ecs);
4998 return 1;
4999 }
5000 }
5001
5002 /* Note however that we may find no resumed thread because the whole
5003 process exited meanwhile (thus updating the thread list results
5004 in an empty thread list). In this case we know we'll be getting
5005 a process exit event shortly. */
5b6d1e4f 5006 for (inferior *inf : all_non_exited_inferiors (ecs->target))
f4836ba9 5007 {
08036331 5008 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
5009 if (thread == NULL)
5010 {
5011 if (debug_infrun)
5012 fprintf_unfiltered (gdb_stdlog,
5013 "infrun: TARGET_WAITKIND_NO_RESUMED "
5014 "(expect process exit)\n");
5015 prepare_to_wait (ecs);
5016 return 1;
5017 }
5018 }
5019
5020 /* Go ahead and report the event. */
5021 return 0;
5022}
5023
05ba8510
PA
5024/* Given an execution control state that has been freshly filled in by
5025 an event from the inferior, figure out what it means and take
5026 appropriate action.
5027
5028 The alternatives are:
5029
22bcd14b 5030 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5031 debugger.
5032
5033 2) keep_going and return; to wait for the next event (set
5034 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5035 once). */
c906108c 5036
ec9499be 5037static void
595915c1 5038handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5039{
595915c1
TT
5040 /* Make sure that all temporary struct value objects that were
5041 created during the handling of the event get deleted at the
5042 end. */
5043 scoped_value_mark free_values;
5044
d6b48e9c
PA
5045 enum stop_kind stop_soon;
5046
c29705b7
PW
5047 if (debug_infrun)
5048 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5049 target_waitstatus_to_string (&ecs->ws).c_str ());
5050
28736962
PA
5051 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5052 {
5053 /* We had an event in the inferior, but we are not interested in
5054 handling it at this level. The lower layers have already
5055 done what needs to be done, if anything.
5056
5057 One of the possible circumstances for this is when the
5058 inferior produces output for the console. The inferior has
5059 not stopped, and we are ignoring the event. Another possible
5060 circumstance is any event which the lower level knows will be
5061 reported multiple times without an intervening resume. */
28736962
PA
5062 prepare_to_wait (ecs);
5063 return;
5064 }
5065
65706a29
PA
5066 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5067 {
65706a29
PA
5068 prepare_to_wait (ecs);
5069 return;
5070 }
5071
0e5bf2a8 5072 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5073 && handle_no_resumed (ecs))
5074 return;
0e5bf2a8 5075
5b6d1e4f
PA
5076 /* Cache the last target/ptid/waitstatus. */
5077 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5078
ca005067 5079 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5080 stop_stack_dummy = STOP_NONE;
ca005067 5081
0e5bf2a8
PA
5082 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5083 {
5084 /* No unwaited-for children left. IOW, all resumed children
5085 have exited. */
0e5bf2a8 5086 stop_print_frame = 0;
22bcd14b 5087 stop_waiting (ecs);
0e5bf2a8
PA
5088 return;
5089 }
5090
8c90c137 5091 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5092 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5093 {
5b6d1e4f 5094 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5095 /* If it's a new thread, add it to the thread database. */
5096 if (ecs->event_thread == NULL)
5b6d1e4f 5097 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5098
5099 /* Disable range stepping. If the next step request could use a
5100 range, this will be end up re-enabled then. */
5101 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5102 }
88ed393a
JK
5103
5104 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5105 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5106
5107 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5108 reinit_frame_cache ();
5109
28736962
PA
5110 breakpoint_retire_moribund ();
5111
2b009048
DJ
5112 /* First, distinguish signals caused by the debugger from signals
5113 that have to do with the program's own actions. Note that
5114 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5115 on the operating system version. Here we detect when a SIGILL or
5116 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5117 something similar for SIGSEGV, since a SIGSEGV will be generated
5118 when we're trying to execute a breakpoint instruction on a
5119 non-executable stack. This happens for call dummy breakpoints
5120 for architectures like SPARC that place call dummies on the
5121 stack. */
2b009048 5122 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5123 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5124 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5125 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5126 {
00431a78 5127 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5128
a01bda52 5129 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5130 regcache_read_pc (regcache)))
5131 {
5132 if (debug_infrun)
5133 fprintf_unfiltered (gdb_stdlog,
5134 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 5135 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5136 }
2b009048
DJ
5137 }
5138
28736962
PA
5139 /* Mark the non-executing threads accordingly. In all-stop, all
5140 threads of all processes are stopped when we get any event
e1316e60 5141 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
5142 {
5143 ptid_t mark_ptid;
5144
fbea99ea 5145 if (!target_is_non_stop_p ())
372316f1
PA
5146 mark_ptid = minus_one_ptid;
5147 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
5148 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
5149 {
5150 /* If we're handling a process exit in non-stop mode, even
5151 though threads haven't been deleted yet, one would think
5152 that there is nothing to do, as threads of the dead process
5153 will be soon deleted, and threads of any other process were
5154 left running. However, on some targets, threads survive a
5155 process exit event. E.g., for the "checkpoint" command,
5156 when the current checkpoint/fork exits, linux-fork.c
5157 automatically switches to another fork from within
5158 target_mourn_inferior, by associating the same
5159 inferior/thread to another fork. We haven't mourned yet at
5160 this point, but we must mark any threads left in the
5161 process as not-executing so that finish_thread_state marks
5162 them stopped (in the user's perspective) if/when we present
5163 the stop to the user. */
e99b03dc 5164 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
5165 }
5166 else
5167 mark_ptid = ecs->ptid;
5168
719546c4 5169 set_executing (ecs->target, mark_ptid, false);
372316f1
PA
5170
5171 /* Likewise the resumed flag. */
719546c4 5172 set_resumed (ecs->target, mark_ptid, false);
372316f1 5173 }
8c90c137 5174
488f131b
JB
5175 switch (ecs->ws.kind)
5176 {
5177 case TARGET_WAITKIND_LOADED:
00431a78 5178 context_switch (ecs);
b0f4b84b
DJ
5179 /* Ignore gracefully during startup of the inferior, as it might
5180 be the shell which has just loaded some objects, otherwise
5181 add the symbols for the newly loaded objects. Also ignore at
5182 the beginning of an attach or remote session; we will query
5183 the full list of libraries once the connection is
5184 established. */
4f5d7f63 5185
00431a78 5186 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5187 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5188 {
edcc5120
TT
5189 struct regcache *regcache;
5190
00431a78 5191 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5192
5193 handle_solib_event ();
5194
5195 ecs->event_thread->control.stop_bpstat
a01bda52 5196 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5197 ecs->event_thread->suspend.stop_pc,
5198 ecs->event_thread, &ecs->ws);
ab04a2af 5199
c65d6b55
PA
5200 if (handle_stop_requested (ecs))
5201 return;
5202
ce12b012 5203 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5204 {
5205 /* A catchpoint triggered. */
94c57d6a
PA
5206 process_event_stop_test (ecs);
5207 return;
edcc5120 5208 }
488f131b 5209
b0f4b84b
DJ
5210 /* If requested, stop when the dynamic linker notifies
5211 gdb of events. This allows the user to get control
5212 and place breakpoints in initializer routines for
5213 dynamically loaded objects (among other things). */
a493e3e2 5214 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5215 if (stop_on_solib_events)
5216 {
55409f9d
DJ
5217 /* Make sure we print "Stopped due to solib-event" in
5218 normal_stop. */
5219 stop_print_frame = 1;
5220
22bcd14b 5221 stop_waiting (ecs);
b0f4b84b
DJ
5222 return;
5223 }
488f131b 5224 }
b0f4b84b
DJ
5225
5226 /* If we are skipping through a shell, or through shared library
5227 loading that we aren't interested in, resume the program. If
5c09a2c5 5228 we're running the program normally, also resume. */
b0f4b84b
DJ
5229 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5230 {
74960c60
VP
5231 /* Loading of shared libraries might have changed breakpoint
5232 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5233 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5234 insert_breakpoints ();
64ce06e4 5235 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5236 prepare_to_wait (ecs);
5237 return;
5238 }
5239
5c09a2c5
PA
5240 /* But stop if we're attaching or setting up a remote
5241 connection. */
5242 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5243 || stop_soon == STOP_QUIETLY_REMOTE)
5244 {
5245 if (debug_infrun)
5246 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5247 stop_waiting (ecs);
5c09a2c5
PA
5248 return;
5249 }
5250
5251 internal_error (__FILE__, __LINE__,
5252 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5253
488f131b 5254 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5255 if (handle_stop_requested (ecs))
5256 return;
00431a78 5257 context_switch (ecs);
64ce06e4 5258 resume (GDB_SIGNAL_0);
488f131b
JB
5259 prepare_to_wait (ecs);
5260 return;
c5aa993b 5261
65706a29 5262 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5263 if (handle_stop_requested (ecs))
5264 return;
00431a78 5265 context_switch (ecs);
65706a29
PA
5266 if (!switch_back_to_stepped_thread (ecs))
5267 keep_going (ecs);
5268 return;
5269
488f131b 5270 case TARGET_WAITKIND_EXITED:
940c3c06 5271 case TARGET_WAITKIND_SIGNALLED:
fb66883a 5272 inferior_ptid = ecs->ptid;
5b6d1e4f 5273 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
6c95b8df
PA
5274 set_current_program_space (current_inferior ()->pspace);
5275 handle_vfork_child_exec_or_exit (0);
223ffa71 5276 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5277
0c557179
SDJ
5278 /* Clearing any previous state of convenience variables. */
5279 clear_exit_convenience_vars ();
5280
940c3c06
PA
5281 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5282 {
5283 /* Record the exit code in the convenience variable $_exitcode, so
5284 that the user can inspect this again later. */
5285 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5286 (LONGEST) ecs->ws.value.integer);
5287
5288 /* Also record this in the inferior itself. */
5289 current_inferior ()->has_exit_code = 1;
5290 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5291
98eb56a4
PA
5292 /* Support the --return-child-result option. */
5293 return_child_result_value = ecs->ws.value.integer;
5294
76727919 5295 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5296 }
5297 else
0c557179 5298 {
00431a78 5299 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5300
5301 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5302 {
5303 /* Set the value of the internal variable $_exitsignal,
5304 which holds the signal uncaught by the inferior. */
5305 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5306 gdbarch_gdb_signal_to_target (gdbarch,
5307 ecs->ws.value.sig));
5308 }
5309 else
5310 {
5311 /* We don't have access to the target's method used for
5312 converting between signal numbers (GDB's internal
5313 representation <-> target's representation).
5314 Therefore, we cannot do a good job at displaying this
5315 information to the user. It's better to just warn
5316 her about it (if infrun debugging is enabled), and
5317 give up. */
5318 if (debug_infrun)
5319 fprintf_filtered (gdb_stdlog, _("\
5320Cannot fill $_exitsignal with the correct signal number.\n"));
5321 }
5322
76727919 5323 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5324 }
8cf64490 5325
488f131b 5326 gdb_flush (gdb_stdout);
bc1e6c81 5327 target_mourn_inferior (inferior_ptid);
488f131b 5328 stop_print_frame = 0;
22bcd14b 5329 stop_waiting (ecs);
488f131b 5330 return;
c5aa993b 5331
488f131b 5332 case TARGET_WAITKIND_FORKED:
deb3b17b 5333 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5334 /* Check whether the inferior is displaced stepping. */
5335 {
00431a78 5336 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5337 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5338
5339 /* If checking displaced stepping is supported, and thread
5340 ecs->ptid is displaced stepping. */
00431a78 5341 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
5342 {
5343 struct inferior *parent_inf
5b6d1e4f 5344 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5345 struct regcache *child_regcache;
5346 CORE_ADDR parent_pc;
5347
d8d83535
SM
5348 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5349 {
5350 struct displaced_step_inferior_state *displaced
5351 = get_displaced_stepping_state (parent_inf);
5352
5353 /* Restore scratch pad for child process. */
5354 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5355 }
5356
e2d96639
YQ
5357 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5358 indicating that the displaced stepping of syscall instruction
5359 has been done. Perform cleanup for parent process here. Note
5360 that this operation also cleans up the child process for vfork,
5361 because their pages are shared. */
00431a78 5362 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5363 /* Start a new step-over in another thread if there's one
5364 that needs it. */
5365 start_step_over ();
e2d96639 5366
e2d96639
YQ
5367 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5368 the child's PC is also within the scratchpad. Set the child's PC
5369 to the parent's PC value, which has already been fixed up.
5370 FIXME: we use the parent's aspace here, although we're touching
5371 the child, because the child hasn't been added to the inferior
5372 list yet at this point. */
5373
5374 child_regcache
5b6d1e4f
PA
5375 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5376 ecs->ws.value.related_pid,
e2d96639
YQ
5377 gdbarch,
5378 parent_inf->aspace);
5379 /* Read PC value of parent process. */
5380 parent_pc = regcache_read_pc (regcache);
5381
5382 if (debug_displaced)
5383 fprintf_unfiltered (gdb_stdlog,
5384 "displaced: write child pc from %s to %s\n",
5385 paddress (gdbarch,
5386 regcache_read_pc (child_regcache)),
5387 paddress (gdbarch, parent_pc));
5388
5389 regcache_write_pc (child_regcache, parent_pc);
5390 }
5391 }
5392
00431a78 5393 context_switch (ecs);
5a2901d9 5394
b242c3c2
PA
5395 /* Immediately detach breakpoints from the child before there's
5396 any chance of letting the user delete breakpoints from the
5397 breakpoint lists. If we don't do this early, it's easy to
5398 leave left over traps in the child, vis: "break foo; catch
5399 fork; c; <fork>; del; c; <child calls foo>". We only follow
5400 the fork on the last `continue', and by that time the
5401 breakpoint at "foo" is long gone from the breakpoint table.
5402 If we vforked, then we don't need to unpatch here, since both
5403 parent and child are sharing the same memory pages; we'll
5404 need to unpatch at follow/detach time instead to be certain
5405 that new breakpoints added between catchpoint hit time and
5406 vfork follow are detached. */
5407 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5408 {
b242c3c2
PA
5409 /* This won't actually modify the breakpoint list, but will
5410 physically remove the breakpoints from the child. */
d80ee84f 5411 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5412 }
5413
34b7e8a6 5414 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5415
e58b0e63
PA
5416 /* In case the event is caught by a catchpoint, remember that
5417 the event is to be followed at the next resume of the thread,
5418 and not immediately. */
5419 ecs->event_thread->pending_follow = ecs->ws;
5420
f2ffa92b
PA
5421 ecs->event_thread->suspend.stop_pc
5422 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5423
16c381f0 5424 ecs->event_thread->control.stop_bpstat
a01bda52 5425 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5426 ecs->event_thread->suspend.stop_pc,
5427 ecs->event_thread, &ecs->ws);
675bf4cb 5428
c65d6b55
PA
5429 if (handle_stop_requested (ecs))
5430 return;
5431
ce12b012
PA
5432 /* If no catchpoint triggered for this, then keep going. Note
5433 that we're interested in knowing the bpstat actually causes a
5434 stop, not just if it may explain the signal. Software
5435 watchpoints, for example, always appear in the bpstat. */
5436 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5437 {
5ab2fbf1 5438 bool follow_child
3e43a32a 5439 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5440
a493e3e2 5441 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5442
5b6d1e4f
PA
5443 process_stratum_target *targ
5444 = ecs->event_thread->inf->process_target ();
5445
5ab2fbf1 5446 bool should_resume = follow_fork ();
e58b0e63 5447
5b6d1e4f
PA
5448 /* Note that one of these may be an invalid pointer,
5449 depending on detach_fork. */
00431a78 5450 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5451 thread_info *child
5452 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5453
a2077e25
PA
5454 /* At this point, the parent is marked running, and the
5455 child is marked stopped. */
5456
5457 /* If not resuming the parent, mark it stopped. */
5458 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5459 parent->set_running (false);
a2077e25
PA
5460
5461 /* If resuming the child, mark it running. */
5462 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5463 child->set_running (true);
a2077e25 5464
6c95b8df 5465 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5466 if (!detach_fork && (non_stop
5467 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5468 {
5469 if (follow_child)
5470 switch_to_thread (parent);
5471 else
5472 switch_to_thread (child);
5473
5474 ecs->event_thread = inferior_thread ();
5475 ecs->ptid = inferior_ptid;
5476 keep_going (ecs);
5477 }
5478
5479 if (follow_child)
5480 switch_to_thread (child);
5481 else
5482 switch_to_thread (parent);
5483
e58b0e63
PA
5484 ecs->event_thread = inferior_thread ();
5485 ecs->ptid = inferior_ptid;
5486
5487 if (should_resume)
5488 keep_going (ecs);
5489 else
22bcd14b 5490 stop_waiting (ecs);
04e68871
DJ
5491 return;
5492 }
94c57d6a
PA
5493 process_event_stop_test (ecs);
5494 return;
488f131b 5495
6c95b8df
PA
5496 case TARGET_WAITKIND_VFORK_DONE:
5497 /* Done with the shared memory region. Re-insert breakpoints in
5498 the parent, and keep going. */
5499
00431a78 5500 context_switch (ecs);
6c95b8df
PA
5501
5502 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5503 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5504
5505 if (handle_stop_requested (ecs))
5506 return;
5507
6c95b8df
PA
5508 /* This also takes care of reinserting breakpoints in the
5509 previously locked inferior. */
5510 keep_going (ecs);
5511 return;
5512
488f131b 5513 case TARGET_WAITKIND_EXECD:
488f131b 5514
cbd2b4e3
PA
5515 /* Note we can't read registers yet (the stop_pc), because we
5516 don't yet know the inferior's post-exec architecture.
5517 'stop_pc' is explicitly read below instead. */
00431a78 5518 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5519
6c95b8df
PA
5520 /* Do whatever is necessary to the parent branch of the vfork. */
5521 handle_vfork_child_exec_or_exit (1);
5522
795e548f
PA
5523 /* This causes the eventpoints and symbol table to be reset.
5524 Must do this now, before trying to determine whether to
5525 stop. */
71b43ef8 5526 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5527
17d8546e
DB
5528 /* In follow_exec we may have deleted the original thread and
5529 created a new one. Make sure that the event thread is the
5530 execd thread for that case (this is a nop otherwise). */
5531 ecs->event_thread = inferior_thread ();
5532
f2ffa92b
PA
5533 ecs->event_thread->suspend.stop_pc
5534 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5535
16c381f0 5536 ecs->event_thread->control.stop_bpstat
a01bda52 5537 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5538 ecs->event_thread->suspend.stop_pc,
5539 ecs->event_thread, &ecs->ws);
795e548f 5540
71b43ef8
PA
5541 /* Note that this may be referenced from inside
5542 bpstat_stop_status above, through inferior_has_execd. */
5543 xfree (ecs->ws.value.execd_pathname);
5544 ecs->ws.value.execd_pathname = NULL;
5545
c65d6b55
PA
5546 if (handle_stop_requested (ecs))
5547 return;
5548
04e68871 5549 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5550 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5551 {
a493e3e2 5552 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5553 keep_going (ecs);
5554 return;
5555 }
94c57d6a
PA
5556 process_event_stop_test (ecs);
5557 return;
488f131b 5558
b4dc5ffa
MK
5559 /* Be careful not to try to gather much state about a thread
5560 that's in a syscall. It's frequently a losing proposition. */
488f131b 5561 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5562 /* Getting the current syscall number. */
94c57d6a
PA
5563 if (handle_syscall_event (ecs) == 0)
5564 process_event_stop_test (ecs);
5565 return;
c906108c 5566
488f131b
JB
5567 /* Before examining the threads further, step this thread to
5568 get it entirely out of the syscall. (We get notice of the
5569 event when the thread is just on the verge of exiting a
5570 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5571 into user code.) */
488f131b 5572 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5573 if (handle_syscall_event (ecs) == 0)
5574 process_event_stop_test (ecs);
5575 return;
c906108c 5576
488f131b 5577 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5578 handle_signal_stop (ecs);
5579 return;
c906108c 5580
b2175913
MS
5581 case TARGET_WAITKIND_NO_HISTORY:
5582 /* Reverse execution: target ran out of history info. */
eab402df 5583
d1988021 5584 /* Switch to the stopped thread. */
00431a78 5585 context_switch (ecs);
d1988021
MM
5586 if (debug_infrun)
5587 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5588
34b7e8a6 5589 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5590 ecs->event_thread->suspend.stop_pc
5591 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5592
5593 if (handle_stop_requested (ecs))
5594 return;
5595
76727919 5596 gdb::observers::no_history.notify ();
22bcd14b 5597 stop_waiting (ecs);
b2175913 5598 return;
488f131b 5599 }
4f5d7f63
PA
5600}
5601
372316f1
PA
5602/* Restart threads back to what they were trying to do back when we
5603 paused them for an in-line step-over. The EVENT_THREAD thread is
5604 ignored. */
4d9d9d04
PA
5605
5606static void
372316f1
PA
5607restart_threads (struct thread_info *event_thread)
5608{
372316f1
PA
5609 /* In case the instruction just stepped spawned a new thread. */
5610 update_thread_list ();
5611
08036331 5612 for (thread_info *tp : all_non_exited_threads ())
372316f1 5613 {
f3f8ece4
PA
5614 switch_to_thread_no_regs (tp);
5615
372316f1
PA
5616 if (tp == event_thread)
5617 {
5618 if (debug_infrun)
5619 fprintf_unfiltered (gdb_stdlog,
5620 "infrun: restart threads: "
5621 "[%s] is event thread\n",
a068643d 5622 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5623 continue;
5624 }
5625
5626 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5627 {
5628 if (debug_infrun)
5629 fprintf_unfiltered (gdb_stdlog,
5630 "infrun: restart threads: "
5631 "[%s] not meant to be running\n",
a068643d 5632 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5633 continue;
5634 }
5635
5636 if (tp->resumed)
5637 {
5638 if (debug_infrun)
5639 fprintf_unfiltered (gdb_stdlog,
5640 "infrun: restart threads: [%s] resumed\n",
a068643d 5641 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5642 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5643 continue;
5644 }
5645
5646 if (thread_is_in_step_over_chain (tp))
5647 {
5648 if (debug_infrun)
5649 fprintf_unfiltered (gdb_stdlog,
5650 "infrun: restart threads: "
5651 "[%s] needs step-over\n",
a068643d 5652 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5653 gdb_assert (!tp->resumed);
5654 continue;
5655 }
5656
5657
5658 if (tp->suspend.waitstatus_pending_p)
5659 {
5660 if (debug_infrun)
5661 fprintf_unfiltered (gdb_stdlog,
5662 "infrun: restart threads: "
5663 "[%s] has pending status\n",
a068643d 5664 target_pid_to_str (tp->ptid).c_str ());
719546c4 5665 tp->resumed = true;
372316f1
PA
5666 continue;
5667 }
5668
c65d6b55
PA
5669 gdb_assert (!tp->stop_requested);
5670
372316f1
PA
5671 /* If some thread needs to start a step-over at this point, it
5672 should still be in the step-over queue, and thus skipped
5673 above. */
5674 if (thread_still_needs_step_over (tp))
5675 {
5676 internal_error (__FILE__, __LINE__,
5677 "thread [%s] needs a step-over, but not in "
5678 "step-over queue\n",
a068643d 5679 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5680 }
5681
5682 if (currently_stepping (tp))
5683 {
5684 if (debug_infrun)
5685 fprintf_unfiltered (gdb_stdlog,
5686 "infrun: restart threads: [%s] was stepping\n",
a068643d 5687 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5688 keep_going_stepped_thread (tp);
5689 }
5690 else
5691 {
5692 struct execution_control_state ecss;
5693 struct execution_control_state *ecs = &ecss;
5694
5695 if (debug_infrun)
5696 fprintf_unfiltered (gdb_stdlog,
5697 "infrun: restart threads: [%s] continuing\n",
a068643d 5698 target_pid_to_str (tp->ptid).c_str ());
372316f1 5699 reset_ecs (ecs, tp);
00431a78 5700 switch_to_thread (tp);
372316f1
PA
5701 keep_going_pass_signal (ecs);
5702 }
5703 }
5704}
5705
5706/* Callback for iterate_over_threads. Find a resumed thread that has
5707 a pending waitstatus. */
5708
5709static int
5710resumed_thread_with_pending_status (struct thread_info *tp,
5711 void *arg)
5712{
5713 return (tp->resumed
5714 && tp->suspend.waitstatus_pending_p);
5715}
5716
5717/* Called when we get an event that may finish an in-line or
5718 out-of-line (displaced stepping) step-over started previously.
5719 Return true if the event is processed and we should go back to the
5720 event loop; false if the caller should continue processing the
5721 event. */
5722
5723static int
4d9d9d04
PA
5724finish_step_over (struct execution_control_state *ecs)
5725{
372316f1
PA
5726 int had_step_over_info;
5727
00431a78 5728 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5729 ecs->event_thread->suspend.stop_signal);
5730
372316f1
PA
5731 had_step_over_info = step_over_info_valid_p ();
5732
5733 if (had_step_over_info)
4d9d9d04
PA
5734 {
5735 /* If we're stepping over a breakpoint with all threads locked,
5736 then only the thread that was stepped should be reporting
5737 back an event. */
5738 gdb_assert (ecs->event_thread->control.trap_expected);
5739
c65d6b55 5740 clear_step_over_info ();
4d9d9d04
PA
5741 }
5742
fbea99ea 5743 if (!target_is_non_stop_p ())
372316f1 5744 return 0;
4d9d9d04
PA
5745
5746 /* Start a new step-over in another thread if there's one that
5747 needs it. */
5748 start_step_over ();
372316f1
PA
5749
5750 /* If we were stepping over a breakpoint before, and haven't started
5751 a new in-line step-over sequence, then restart all other threads
5752 (except the event thread). We can't do this in all-stop, as then
5753 e.g., we wouldn't be able to issue any other remote packet until
5754 these other threads stop. */
5755 if (had_step_over_info && !step_over_info_valid_p ())
5756 {
5757 struct thread_info *pending;
5758
5759 /* If we only have threads with pending statuses, the restart
5760 below won't restart any thread and so nothing re-inserts the
5761 breakpoint we just stepped over. But we need it inserted
5762 when we later process the pending events, otherwise if
5763 another thread has a pending event for this breakpoint too,
5764 we'd discard its event (because the breakpoint that
5765 originally caused the event was no longer inserted). */
00431a78 5766 context_switch (ecs);
372316f1
PA
5767 insert_breakpoints ();
5768
5769 restart_threads (ecs->event_thread);
5770
5771 /* If we have events pending, go through handle_inferior_event
5772 again, picking up a pending event at random. This avoids
5773 thread starvation. */
5774
5775 /* But not if we just stepped over a watchpoint in order to let
5776 the instruction execute so we can evaluate its expression.
5777 The set of watchpoints that triggered is recorded in the
5778 breakpoint objects themselves (see bp->watchpoint_triggered).
5779 If we processed another event first, that other event could
5780 clobber this info. */
5781 if (ecs->event_thread->stepping_over_watchpoint)
5782 return 0;
5783
5784 pending = iterate_over_threads (resumed_thread_with_pending_status,
5785 NULL);
5786 if (pending != NULL)
5787 {
5788 struct thread_info *tp = ecs->event_thread;
5789 struct regcache *regcache;
5790
5791 if (debug_infrun)
5792 {
5793 fprintf_unfiltered (gdb_stdlog,
5794 "infrun: found resumed threads with "
5795 "pending events, saving status\n");
5796 }
5797
5798 gdb_assert (pending != tp);
5799
5800 /* Record the event thread's event for later. */
5801 save_waitstatus (tp, &ecs->ws);
5802 /* This was cleared early, by handle_inferior_event. Set it
5803 so this pending event is considered by
5804 do_target_wait. */
719546c4 5805 tp->resumed = true;
372316f1
PA
5806
5807 gdb_assert (!tp->executing);
5808
00431a78 5809 regcache = get_thread_regcache (tp);
372316f1
PA
5810 tp->suspend.stop_pc = regcache_read_pc (regcache);
5811
5812 if (debug_infrun)
5813 {
5814 fprintf_unfiltered (gdb_stdlog,
5815 "infrun: saved stop_pc=%s for %s "
5816 "(currently_stepping=%d)\n",
5817 paddress (target_gdbarch (),
5818 tp->suspend.stop_pc),
a068643d 5819 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5820 currently_stepping (tp));
5821 }
5822
5823 /* This in-line step-over finished; clear this so we won't
5824 start a new one. This is what handle_signal_stop would
5825 do, if we returned false. */
5826 tp->stepping_over_breakpoint = 0;
5827
5828 /* Wake up the event loop again. */
5829 mark_async_event_handler (infrun_async_inferior_event_token);
5830
5831 prepare_to_wait (ecs);
5832 return 1;
5833 }
5834 }
5835
5836 return 0;
4d9d9d04
PA
5837}
5838
4f5d7f63
PA
5839/* Come here when the program has stopped with a signal. */
5840
5841static void
5842handle_signal_stop (struct execution_control_state *ecs)
5843{
5844 struct frame_info *frame;
5845 struct gdbarch *gdbarch;
5846 int stopped_by_watchpoint;
5847 enum stop_kind stop_soon;
5848 int random_signal;
c906108c 5849
f0407826
DE
5850 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5851
c65d6b55
PA
5852 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5853
f0407826
DE
5854 /* Do we need to clean up the state of a thread that has
5855 completed a displaced single-step? (Doing so usually affects
5856 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5857 if (finish_step_over (ecs))
5858 return;
f0407826
DE
5859
5860 /* If we either finished a single-step or hit a breakpoint, but
5861 the user wanted this thread to be stopped, pretend we got a
5862 SIG0 (generic unsignaled stop). */
5863 if (ecs->event_thread->stop_requested
5864 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5865 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5866
f2ffa92b
PA
5867 ecs->event_thread->suspend.stop_pc
5868 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5869
527159b7 5870 if (debug_infrun)
237fc4c9 5871 {
00431a78 5872 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5873 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5874
f3f8ece4 5875 switch_to_thread (ecs->event_thread);
5af949e3
UW
5876
5877 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5878 paddress (reg_gdbarch,
f2ffa92b 5879 ecs->event_thread->suspend.stop_pc));
d92524f1 5880 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5881 {
5882 CORE_ADDR addr;
abbb1732 5883
237fc4c9
PA
5884 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5885
8b88a78e 5886 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5887 fprintf_unfiltered (gdb_stdlog,
5af949e3 5888 "infrun: stopped data address = %s\n",
b926417a 5889 paddress (reg_gdbarch, addr));
237fc4c9
PA
5890 else
5891 fprintf_unfiltered (gdb_stdlog,
5892 "infrun: (no data address available)\n");
5893 }
5894 }
527159b7 5895
36fa8042
PA
5896 /* This is originated from start_remote(), start_inferior() and
5897 shared libraries hook functions. */
00431a78 5898 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5899 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5900 {
00431a78 5901 context_switch (ecs);
36fa8042
PA
5902 if (debug_infrun)
5903 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5904 stop_print_frame = 1;
22bcd14b 5905 stop_waiting (ecs);
36fa8042
PA
5906 return;
5907 }
5908
36fa8042
PA
5909 /* This originates from attach_command(). We need to overwrite
5910 the stop_signal here, because some kernels don't ignore a
5911 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5912 See more comments in inferior.h. On the other hand, if we
5913 get a non-SIGSTOP, report it to the user - assume the backend
5914 will handle the SIGSTOP if it should show up later.
5915
5916 Also consider that the attach is complete when we see a
5917 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5918 target extended-remote report it instead of a SIGSTOP
5919 (e.g. gdbserver). We already rely on SIGTRAP being our
5920 signal, so this is no exception.
5921
5922 Also consider that the attach is complete when we see a
5923 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5924 the target to stop all threads of the inferior, in case the
5925 low level attach operation doesn't stop them implicitly. If
5926 they weren't stopped implicitly, then the stub will report a
5927 GDB_SIGNAL_0, meaning: stopped for no particular reason
5928 other than GDB's request. */
5929 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5930 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5931 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5932 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5933 {
5934 stop_print_frame = 1;
22bcd14b 5935 stop_waiting (ecs);
36fa8042
PA
5936 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5937 return;
5938 }
5939
488f131b 5940 /* See if something interesting happened to the non-current thread. If
b40c7d58 5941 so, then switch to that thread. */
d7e15655 5942 if (ecs->ptid != inferior_ptid)
488f131b 5943 {
527159b7 5944 if (debug_infrun)
8a9de0e4 5945 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5946
00431a78 5947 context_switch (ecs);
c5aa993b 5948
9a4105ab 5949 if (deprecated_context_hook)
00431a78 5950 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5951 }
c906108c 5952
568d6575
UW
5953 /* At this point, get hold of the now-current thread's frame. */
5954 frame = get_current_frame ();
5955 gdbarch = get_frame_arch (frame);
5956
2adfaa28 5957 /* Pull the single step breakpoints out of the target. */
af48d08f 5958 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5959 {
af48d08f 5960 struct regcache *regcache;
af48d08f 5961 CORE_ADDR pc;
2adfaa28 5962
00431a78 5963 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5964 const address_space *aspace = regcache->aspace ();
5965
af48d08f 5966 pc = regcache_read_pc (regcache);
34b7e8a6 5967
af48d08f
PA
5968 /* However, before doing so, if this single-step breakpoint was
5969 actually for another thread, set this thread up for moving
5970 past it. */
5971 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5972 aspace, pc))
5973 {
5974 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5975 {
5976 if (debug_infrun)
5977 {
5978 fprintf_unfiltered (gdb_stdlog,
af48d08f 5979 "infrun: [%s] hit another thread's "
34b7e8a6 5980 "single-step breakpoint\n",
a068643d 5981 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5982 }
af48d08f
PA
5983 ecs->hit_singlestep_breakpoint = 1;
5984 }
5985 }
5986 else
5987 {
5988 if (debug_infrun)
5989 {
5990 fprintf_unfiltered (gdb_stdlog,
5991 "infrun: [%s] hit its "
5992 "single-step breakpoint\n",
a068643d 5993 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5994 }
5995 }
488f131b 5996 }
af48d08f 5997 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5998
963f9c80
PA
5999 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6000 && ecs->event_thread->control.trap_expected
6001 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
6002 stopped_by_watchpoint = 0;
6003 else
6004 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6005
6006 /* If necessary, step over this watchpoint. We'll be back to display
6007 it in a moment. */
6008 if (stopped_by_watchpoint
d92524f1 6009 && (target_have_steppable_watchpoint
568d6575 6010 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 6011 {
488f131b
JB
6012 /* At this point, we are stopped at an instruction which has
6013 attempted to write to a piece of memory under control of
6014 a watchpoint. The instruction hasn't actually executed
6015 yet. If we were to evaluate the watchpoint expression
6016 now, we would get the old value, and therefore no change
6017 would seem to have occurred.
6018
6019 In order to make watchpoints work `right', we really need
6020 to complete the memory write, and then evaluate the
d983da9c
DJ
6021 watchpoint expression. We do this by single-stepping the
6022 target.
6023
7f89fd65 6024 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
6025 it. For example, the PA can (with some kernel cooperation)
6026 single step over a watchpoint without disabling the watchpoint.
6027
6028 It is far more common to need to disable a watchpoint to step
6029 the inferior over it. If we have non-steppable watchpoints,
6030 we must disable the current watchpoint; it's simplest to
963f9c80
PA
6031 disable all watchpoints.
6032
6033 Any breakpoint at PC must also be stepped over -- if there's
6034 one, it will have already triggered before the watchpoint
6035 triggered, and we either already reported it to the user, or
6036 it didn't cause a stop and we called keep_going. In either
6037 case, if there was a breakpoint at PC, we must be trying to
6038 step past it. */
6039 ecs->event_thread->stepping_over_watchpoint = 1;
6040 keep_going (ecs);
488f131b
JB
6041 return;
6042 }
6043
4e1c45ea 6044 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 6045 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
6046 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6047 ecs->event_thread->control.stop_step = 0;
488f131b 6048 stop_print_frame = 1;
488f131b 6049 stopped_by_random_signal = 0;
ddfe970e 6050 bpstat stop_chain = NULL;
488f131b 6051
edb3359d
DJ
6052 /* Hide inlined functions starting here, unless we just performed stepi or
6053 nexti. After stepi and nexti, always show the innermost frame (not any
6054 inline function call sites). */
16c381f0 6055 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 6056 {
00431a78
PA
6057 const address_space *aspace
6058 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
6059
6060 /* skip_inline_frames is expensive, so we avoid it if we can
6061 determine that the address is one where functions cannot have
6062 been inlined. This improves performance with inferiors that
6063 load a lot of shared libraries, because the solib event
6064 breakpoint is defined as the address of a function (i.e. not
6065 inline). Note that we have to check the previous PC as well
6066 as the current one to catch cases when we have just
6067 single-stepped off a breakpoint prior to reinstating it.
6068 Note that we're assuming that the code we single-step to is
6069 not inline, but that's not definitive: there's nothing
6070 preventing the event breakpoint function from containing
6071 inlined code, and the single-step ending up there. If the
6072 user had set a breakpoint on that inlined code, the missing
6073 skip_inline_frames call would break things. Fortunately
6074 that's an extremely unlikely scenario. */
f2ffa92b
PA
6075 if (!pc_at_non_inline_function (aspace,
6076 ecs->event_thread->suspend.stop_pc,
6077 &ecs->ws)
a210c238
MR
6078 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6079 && ecs->event_thread->control.trap_expected
6080 && pc_at_non_inline_function (aspace,
6081 ecs->event_thread->prev_pc,
09ac7c10 6082 &ecs->ws)))
1c5a993e 6083 {
f2ffa92b
PA
6084 stop_chain = build_bpstat_chain (aspace,
6085 ecs->event_thread->suspend.stop_pc,
6086 &ecs->ws);
00431a78 6087 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6088
6089 /* Re-fetch current thread's frame in case that invalidated
6090 the frame cache. */
6091 frame = get_current_frame ();
6092 gdbarch = get_frame_arch (frame);
6093 }
0574c78f 6094 }
edb3359d 6095
a493e3e2 6096 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6097 && ecs->event_thread->control.trap_expected
568d6575 6098 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6099 && currently_stepping (ecs->event_thread))
3352ef37 6100 {
b50d7442 6101 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6102 also on an instruction that needs to be stepped multiple
1777feb0 6103 times before it's been fully executing. E.g., architectures
3352ef37
AC
6104 with a delay slot. It needs to be stepped twice, once for
6105 the instruction and once for the delay slot. */
6106 int step_through_delay
568d6575 6107 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6108
527159b7 6109 if (debug_infrun && step_through_delay)
8a9de0e4 6110 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
6111 if (ecs->event_thread->control.step_range_end == 0
6112 && step_through_delay)
3352ef37
AC
6113 {
6114 /* The user issued a continue when stopped at a breakpoint.
6115 Set up for another trap and get out of here. */
4e1c45ea 6116 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6117 keep_going (ecs);
6118 return;
6119 }
6120 else if (step_through_delay)
6121 {
6122 /* The user issued a step when stopped at a breakpoint.
6123 Maybe we should stop, maybe we should not - the delay
6124 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6125 case, don't decide that here, just set
6126 ecs->stepping_over_breakpoint, making sure we
6127 single-step again before breakpoints are re-inserted. */
4e1c45ea 6128 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6129 }
6130 }
6131
ab04a2af
TT
6132 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6133 handles this event. */
6134 ecs->event_thread->control.stop_bpstat
a01bda52 6135 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6136 ecs->event_thread->suspend.stop_pc,
6137 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6138
ab04a2af
TT
6139 /* Following in case break condition called a
6140 function. */
6141 stop_print_frame = 1;
73dd234f 6142
ab04a2af
TT
6143 /* This is where we handle "moribund" watchpoints. Unlike
6144 software breakpoints traps, hardware watchpoint traps are
6145 always distinguishable from random traps. If no high-level
6146 watchpoint is associated with the reported stop data address
6147 anymore, then the bpstat does not explain the signal ---
6148 simply make sure to ignore it if `stopped_by_watchpoint' is
6149 set. */
6150
6151 if (debug_infrun
6152 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6153 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6154 GDB_SIGNAL_TRAP)
ab04a2af
TT
6155 && stopped_by_watchpoint)
6156 fprintf_unfiltered (gdb_stdlog,
6157 "infrun: no user watchpoint explains "
6158 "watchpoint SIGTRAP, ignoring\n");
73dd234f 6159
bac7d97b 6160 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6161 at one stage in the past included checks for an inferior
6162 function call's call dummy's return breakpoint. The original
6163 comment, that went with the test, read:
03cebad2 6164
ab04a2af
TT
6165 ``End of a stack dummy. Some systems (e.g. Sony news) give
6166 another signal besides SIGTRAP, so check here as well as
6167 above.''
73dd234f 6168
ab04a2af
TT
6169 If someone ever tries to get call dummys on a
6170 non-executable stack to work (where the target would stop
6171 with something like a SIGSEGV), then those tests might need
6172 to be re-instated. Given, however, that the tests were only
6173 enabled when momentary breakpoints were not being used, I
6174 suspect that it won't be the case.
488f131b 6175
ab04a2af
TT
6176 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6177 be necessary for call dummies on a non-executable stack on
6178 SPARC. */
488f131b 6179
bac7d97b 6180 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6181 random_signal
6182 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6183 ecs->event_thread->suspend.stop_signal);
bac7d97b 6184
1cf4d951
PA
6185 /* Maybe this was a trap for a software breakpoint that has since
6186 been removed. */
6187 if (random_signal && target_stopped_by_sw_breakpoint ())
6188 {
5133a315
LM
6189 if (gdbarch_program_breakpoint_here_p (gdbarch,
6190 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6191 {
6192 struct regcache *regcache;
6193 int decr_pc;
6194
6195 /* Re-adjust PC to what the program would see if GDB was not
6196 debugging it. */
00431a78 6197 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6198 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6199 if (decr_pc != 0)
6200 {
07036511
TT
6201 gdb::optional<scoped_restore_tmpl<int>>
6202 restore_operation_disable;
1cf4d951
PA
6203
6204 if (record_full_is_used ())
07036511
TT
6205 restore_operation_disable.emplace
6206 (record_full_gdb_operation_disable_set ());
1cf4d951 6207
f2ffa92b
PA
6208 regcache_write_pc (regcache,
6209 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6210 }
6211 }
6212 else
6213 {
6214 /* A delayed software breakpoint event. Ignore the trap. */
6215 if (debug_infrun)
6216 fprintf_unfiltered (gdb_stdlog,
6217 "infrun: delayed software breakpoint "
6218 "trap, ignoring\n");
6219 random_signal = 0;
6220 }
6221 }
6222
6223 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6224 has since been removed. */
6225 if (random_signal && target_stopped_by_hw_breakpoint ())
6226 {
6227 /* A delayed hardware breakpoint event. Ignore the trap. */
6228 if (debug_infrun)
6229 fprintf_unfiltered (gdb_stdlog,
6230 "infrun: delayed hardware breakpoint/watchpoint "
6231 "trap, ignoring\n");
6232 random_signal = 0;
6233 }
6234
bac7d97b
PA
6235 /* If not, perhaps stepping/nexting can. */
6236 if (random_signal)
6237 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6238 && currently_stepping (ecs->event_thread));
ab04a2af 6239
2adfaa28
PA
6240 /* Perhaps the thread hit a single-step breakpoint of _another_
6241 thread. Single-step breakpoints are transparent to the
6242 breakpoints module. */
6243 if (random_signal)
6244 random_signal = !ecs->hit_singlestep_breakpoint;
6245
bac7d97b
PA
6246 /* No? Perhaps we got a moribund watchpoint. */
6247 if (random_signal)
6248 random_signal = !stopped_by_watchpoint;
ab04a2af 6249
c65d6b55
PA
6250 /* Always stop if the user explicitly requested this thread to
6251 remain stopped. */
6252 if (ecs->event_thread->stop_requested)
6253 {
6254 random_signal = 1;
6255 if (debug_infrun)
6256 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6257 }
6258
488f131b
JB
6259 /* For the program's own signals, act according to
6260 the signal handling tables. */
6261
ce12b012 6262 if (random_signal)
488f131b
JB
6263 {
6264 /* Signal not for debugging purposes. */
5b6d1e4f 6265 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6266 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6267
527159b7 6268 if (debug_infrun)
c9737c08
PA
6269 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6270 gdb_signal_to_symbol_string (stop_signal));
527159b7 6271
488f131b
JB
6272 stopped_by_random_signal = 1;
6273
252fbfc8
PA
6274 /* Always stop on signals if we're either just gaining control
6275 of the program, or the user explicitly requested this thread
6276 to remain stopped. */
d6b48e9c 6277 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6278 || ecs->event_thread->stop_requested
24291992 6279 || (!inf->detaching
16c381f0 6280 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6281 {
22bcd14b 6282 stop_waiting (ecs);
488f131b
JB
6283 return;
6284 }
b57bacec
PA
6285
6286 /* Notify observers the signal has "handle print" set. Note we
6287 returned early above if stopping; normal_stop handles the
6288 printing in that case. */
6289 if (signal_print[ecs->event_thread->suspend.stop_signal])
6290 {
6291 /* The signal table tells us to print about this signal. */
223ffa71 6292 target_terminal::ours_for_output ();
76727919 6293 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6294 target_terminal::inferior ();
b57bacec 6295 }
488f131b
JB
6296
6297 /* Clear the signal if it should not be passed. */
16c381f0 6298 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6299 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6300
f2ffa92b 6301 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6302 && ecs->event_thread->control.trap_expected
8358c15c 6303 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6304 {
6305 /* We were just starting a new sequence, attempting to
6306 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6307 Instead this signal arrives. This signal will take us out
68f53502
AC
6308 of the stepping range so GDB needs to remember to, when
6309 the signal handler returns, resume stepping off that
6310 breakpoint. */
6311 /* To simplify things, "continue" is forced to use the same
6312 code paths as single-step - set a breakpoint at the
6313 signal return address and then, once hit, step off that
6314 breakpoint. */
237fc4c9
PA
6315 if (debug_infrun)
6316 fprintf_unfiltered (gdb_stdlog,
6317 "infrun: signal arrived while stepping over "
6318 "breakpoint\n");
d3169d93 6319
2c03e5be 6320 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6321 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6322 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6323 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6324
6325 /* If we were nexting/stepping some other thread, switch to
6326 it, so that we don't continue it, losing control. */
6327 if (!switch_back_to_stepped_thread (ecs))
6328 keep_going (ecs);
9d799f85 6329 return;
68f53502 6330 }
9d799f85 6331
e5f8a7cc 6332 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6333 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6334 ecs->event_thread)
e5f8a7cc 6335 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6336 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6337 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6338 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6339 {
6340 /* The inferior is about to take a signal that will take it
6341 out of the single step range. Set a breakpoint at the
6342 current PC (which is presumably where the signal handler
6343 will eventually return) and then allow the inferior to
6344 run free.
6345
6346 Note that this is only needed for a signal delivered
6347 while in the single-step range. Nested signals aren't a
6348 problem as they eventually all return. */
237fc4c9
PA
6349 if (debug_infrun)
6350 fprintf_unfiltered (gdb_stdlog,
6351 "infrun: signal may take us out of "
6352 "single-step range\n");
6353
372316f1 6354 clear_step_over_info ();
2c03e5be 6355 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6356 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6357 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6358 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6359 keep_going (ecs);
6360 return;
d303a6c7 6361 }
9d799f85 6362
85102364 6363 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6364 when either there's a nested signal, or when there's a
6365 pending signal enabled just as the signal handler returns
6366 (leaving the inferior at the step-resume-breakpoint without
6367 actually executing it). Either way continue until the
6368 breakpoint is really hit. */
c447ac0b
PA
6369
6370 if (!switch_back_to_stepped_thread (ecs))
6371 {
6372 if (debug_infrun)
6373 fprintf_unfiltered (gdb_stdlog,
6374 "infrun: random signal, keep going\n");
6375
6376 keep_going (ecs);
6377 }
6378 return;
488f131b 6379 }
94c57d6a
PA
6380
6381 process_event_stop_test (ecs);
6382}
6383
6384/* Come here when we've got some debug event / signal we can explain
6385 (IOW, not a random signal), and test whether it should cause a
6386 stop, or whether we should resume the inferior (transparently).
6387 E.g., could be a breakpoint whose condition evaluates false; we
6388 could be still stepping within the line; etc. */
6389
6390static void
6391process_event_stop_test (struct execution_control_state *ecs)
6392{
6393 struct symtab_and_line stop_pc_sal;
6394 struct frame_info *frame;
6395 struct gdbarch *gdbarch;
cdaa5b73
PA
6396 CORE_ADDR jmp_buf_pc;
6397 struct bpstat_what what;
94c57d6a 6398
cdaa5b73 6399 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6400
cdaa5b73
PA
6401 frame = get_current_frame ();
6402 gdbarch = get_frame_arch (frame);
fcf3daef 6403
cdaa5b73 6404 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6405
cdaa5b73
PA
6406 if (what.call_dummy)
6407 {
6408 stop_stack_dummy = what.call_dummy;
6409 }
186c406b 6410
243a9253
PA
6411 /* A few breakpoint types have callbacks associated (e.g.,
6412 bp_jit_event). Run them now. */
6413 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6414
cdaa5b73
PA
6415 /* If we hit an internal event that triggers symbol changes, the
6416 current frame will be invalidated within bpstat_what (e.g., if we
6417 hit an internal solib event). Re-fetch it. */
6418 frame = get_current_frame ();
6419 gdbarch = get_frame_arch (frame);
e2e4d78b 6420
cdaa5b73
PA
6421 switch (what.main_action)
6422 {
6423 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6424 /* If we hit the breakpoint at longjmp while stepping, we
6425 install a momentary breakpoint at the target of the
6426 jmp_buf. */
186c406b 6427
cdaa5b73
PA
6428 if (debug_infrun)
6429 fprintf_unfiltered (gdb_stdlog,
6430 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6431
cdaa5b73 6432 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6433
cdaa5b73
PA
6434 if (what.is_longjmp)
6435 {
6436 struct value *arg_value;
6437
6438 /* If we set the longjmp breakpoint via a SystemTap probe,
6439 then use it to extract the arguments. The destination PC
6440 is the third argument to the probe. */
6441 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6442 if (arg_value)
8fa0c4f8
AA
6443 {
6444 jmp_buf_pc = value_as_address (arg_value);
6445 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6446 }
cdaa5b73
PA
6447 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6448 || !gdbarch_get_longjmp_target (gdbarch,
6449 frame, &jmp_buf_pc))
e2e4d78b 6450 {
cdaa5b73
PA
6451 if (debug_infrun)
6452 fprintf_unfiltered (gdb_stdlog,
6453 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6454 "(!gdbarch_get_longjmp_target)\n");
6455 keep_going (ecs);
6456 return;
e2e4d78b 6457 }
e2e4d78b 6458
cdaa5b73
PA
6459 /* Insert a breakpoint at resume address. */
6460 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6461 }
6462 else
6463 check_exception_resume (ecs, frame);
6464 keep_going (ecs);
6465 return;
e81a37f7 6466
cdaa5b73
PA
6467 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6468 {
6469 struct frame_info *init_frame;
e81a37f7 6470
cdaa5b73 6471 /* There are several cases to consider.
c906108c 6472
cdaa5b73
PA
6473 1. The initiating frame no longer exists. In this case we
6474 must stop, because the exception or longjmp has gone too
6475 far.
2c03e5be 6476
cdaa5b73
PA
6477 2. The initiating frame exists, and is the same as the
6478 current frame. We stop, because the exception or longjmp
6479 has been caught.
2c03e5be 6480
cdaa5b73
PA
6481 3. The initiating frame exists and is different from the
6482 current frame. This means the exception or longjmp has
6483 been caught beneath the initiating frame, so keep going.
c906108c 6484
cdaa5b73
PA
6485 4. longjmp breakpoint has been placed just to protect
6486 against stale dummy frames and user is not interested in
6487 stopping around longjmps. */
c5aa993b 6488
cdaa5b73
PA
6489 if (debug_infrun)
6490 fprintf_unfiltered (gdb_stdlog,
6491 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6492
cdaa5b73
PA
6493 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6494 != NULL);
6495 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6496
cdaa5b73
PA
6497 if (what.is_longjmp)
6498 {
b67a2c6f 6499 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6500
cdaa5b73 6501 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6502 {
cdaa5b73
PA
6503 /* Case 4. */
6504 keep_going (ecs);
6505 return;
e5ef252a 6506 }
cdaa5b73 6507 }
c5aa993b 6508
cdaa5b73 6509 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6510
cdaa5b73
PA
6511 if (init_frame)
6512 {
6513 struct frame_id current_id
6514 = get_frame_id (get_current_frame ());
6515 if (frame_id_eq (current_id,
6516 ecs->event_thread->initiating_frame))
6517 {
6518 /* Case 2. Fall through. */
6519 }
6520 else
6521 {
6522 /* Case 3. */
6523 keep_going (ecs);
6524 return;
6525 }
68f53502 6526 }
488f131b 6527
cdaa5b73
PA
6528 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6529 exists. */
6530 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6531
bdc36728 6532 end_stepping_range (ecs);
cdaa5b73
PA
6533 }
6534 return;
e5ef252a 6535
cdaa5b73
PA
6536 case BPSTAT_WHAT_SINGLE:
6537 if (debug_infrun)
6538 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6539 ecs->event_thread->stepping_over_breakpoint = 1;
6540 /* Still need to check other stuff, at least the case where we
6541 are stepping and step out of the right range. */
6542 break;
e5ef252a 6543
cdaa5b73
PA
6544 case BPSTAT_WHAT_STEP_RESUME:
6545 if (debug_infrun)
6546 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6547
cdaa5b73
PA
6548 delete_step_resume_breakpoint (ecs->event_thread);
6549 if (ecs->event_thread->control.proceed_to_finish
6550 && execution_direction == EXEC_REVERSE)
6551 {
6552 struct thread_info *tp = ecs->event_thread;
6553
6554 /* We are finishing a function in reverse, and just hit the
6555 step-resume breakpoint at the start address of the
6556 function, and we're almost there -- just need to back up
6557 by one more single-step, which should take us back to the
6558 function call. */
6559 tp->control.step_range_start = tp->control.step_range_end = 1;
6560 keep_going (ecs);
e5ef252a 6561 return;
cdaa5b73
PA
6562 }
6563 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6564 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6565 && execution_direction == EXEC_REVERSE)
6566 {
6567 /* We are stepping over a function call in reverse, and just
6568 hit the step-resume breakpoint at the start address of
6569 the function. Go back to single-stepping, which should
6570 take us back to the function call. */
6571 ecs->event_thread->stepping_over_breakpoint = 1;
6572 keep_going (ecs);
6573 return;
6574 }
6575 break;
e5ef252a 6576
cdaa5b73
PA
6577 case BPSTAT_WHAT_STOP_NOISY:
6578 if (debug_infrun)
6579 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6580 stop_print_frame = 1;
e5ef252a 6581
99619bea
PA
6582 /* Assume the thread stopped for a breapoint. We'll still check
6583 whether a/the breakpoint is there when the thread is next
6584 resumed. */
6585 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6586
22bcd14b 6587 stop_waiting (ecs);
cdaa5b73 6588 return;
e5ef252a 6589
cdaa5b73
PA
6590 case BPSTAT_WHAT_STOP_SILENT:
6591 if (debug_infrun)
6592 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6593 stop_print_frame = 0;
e5ef252a 6594
99619bea
PA
6595 /* Assume the thread stopped for a breapoint. We'll still check
6596 whether a/the breakpoint is there when the thread is next
6597 resumed. */
6598 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6599 stop_waiting (ecs);
cdaa5b73
PA
6600 return;
6601
6602 case BPSTAT_WHAT_HP_STEP_RESUME:
6603 if (debug_infrun)
6604 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6605
6606 delete_step_resume_breakpoint (ecs->event_thread);
6607 if (ecs->event_thread->step_after_step_resume_breakpoint)
6608 {
6609 /* Back when the step-resume breakpoint was inserted, we
6610 were trying to single-step off a breakpoint. Go back to
6611 doing that. */
6612 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6613 ecs->event_thread->stepping_over_breakpoint = 1;
6614 keep_going (ecs);
6615 return;
e5ef252a 6616 }
cdaa5b73
PA
6617 break;
6618
6619 case BPSTAT_WHAT_KEEP_CHECKING:
6620 break;
e5ef252a 6621 }
c906108c 6622
af48d08f
PA
6623 /* If we stepped a permanent breakpoint and we had a high priority
6624 step-resume breakpoint for the address we stepped, but we didn't
6625 hit it, then we must have stepped into the signal handler. The
6626 step-resume was only necessary to catch the case of _not_
6627 stepping into the handler, so delete it, and fall through to
6628 checking whether the step finished. */
6629 if (ecs->event_thread->stepped_breakpoint)
6630 {
6631 struct breakpoint *sr_bp
6632 = ecs->event_thread->control.step_resume_breakpoint;
6633
8d707a12
PA
6634 if (sr_bp != NULL
6635 && sr_bp->loc->permanent
af48d08f
PA
6636 && sr_bp->type == bp_hp_step_resume
6637 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6638 {
6639 if (debug_infrun)
6640 fprintf_unfiltered (gdb_stdlog,
6641 "infrun: stepped permanent breakpoint, stopped in "
6642 "handler\n");
6643 delete_step_resume_breakpoint (ecs->event_thread);
6644 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6645 }
6646 }
6647
cdaa5b73
PA
6648 /* We come here if we hit a breakpoint but should not stop for it.
6649 Possibly we also were stepping and should stop for that. So fall
6650 through and test for stepping. But, if not stepping, do not
6651 stop. */
c906108c 6652
a7212384
UW
6653 /* In all-stop mode, if we're currently stepping but have stopped in
6654 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6655 if (switch_back_to_stepped_thread (ecs))
6656 return;
776f04fa 6657
8358c15c 6658 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6659 {
527159b7 6660 if (debug_infrun)
d3169d93
DJ
6661 fprintf_unfiltered (gdb_stdlog,
6662 "infrun: step-resume breakpoint is inserted\n");
527159b7 6663
488f131b
JB
6664 /* Having a step-resume breakpoint overrides anything
6665 else having to do with stepping commands until
6666 that breakpoint is reached. */
488f131b
JB
6667 keep_going (ecs);
6668 return;
6669 }
c5aa993b 6670
16c381f0 6671 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6672 {
527159b7 6673 if (debug_infrun)
8a9de0e4 6674 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6675 /* Likewise if we aren't even stepping. */
488f131b
JB
6676 keep_going (ecs);
6677 return;
6678 }
c5aa993b 6679
4b7703ad
JB
6680 /* Re-fetch current thread's frame in case the code above caused
6681 the frame cache to be re-initialized, making our FRAME variable
6682 a dangling pointer. */
6683 frame = get_current_frame ();
628fe4e4 6684 gdbarch = get_frame_arch (frame);
7e324e48 6685 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6686
488f131b 6687 /* If stepping through a line, keep going if still within it.
c906108c 6688
488f131b
JB
6689 Note that step_range_end is the address of the first instruction
6690 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6691 within it!
6692
6693 Note also that during reverse execution, we may be stepping
6694 through a function epilogue and therefore must detect when
6695 the current-frame changes in the middle of a line. */
6696
f2ffa92b
PA
6697 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6698 ecs->event_thread)
31410e84 6699 && (execution_direction != EXEC_REVERSE
388a8562 6700 || frame_id_eq (get_frame_id (frame),
16c381f0 6701 ecs->event_thread->control.step_frame_id)))
488f131b 6702 {
527159b7 6703 if (debug_infrun)
5af949e3
UW
6704 fprintf_unfiltered
6705 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6706 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6707 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6708
c1e36e3e
PA
6709 /* Tentatively re-enable range stepping; `resume' disables it if
6710 necessary (e.g., if we're stepping over a breakpoint or we
6711 have software watchpoints). */
6712 ecs->event_thread->control.may_range_step = 1;
6713
b2175913
MS
6714 /* When stepping backward, stop at beginning of line range
6715 (unless it's the function entry point, in which case
6716 keep going back to the call point). */
f2ffa92b 6717 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6718 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6719 && stop_pc != ecs->stop_func_start
6720 && execution_direction == EXEC_REVERSE)
bdc36728 6721 end_stepping_range (ecs);
b2175913
MS
6722 else
6723 keep_going (ecs);
6724
488f131b
JB
6725 return;
6726 }
c5aa993b 6727
488f131b 6728 /* We stepped out of the stepping range. */
c906108c 6729
488f131b 6730 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6731 loader dynamic symbol resolution code...
6732
6733 EXEC_FORWARD: we keep on single stepping until we exit the run
6734 time loader code and reach the callee's address.
6735
6736 EXEC_REVERSE: we've already executed the callee (backward), and
6737 the runtime loader code is handled just like any other
6738 undebuggable function call. Now we need only keep stepping
6739 backward through the trampoline code, and that's handled further
6740 down, so there is nothing for us to do here. */
6741
6742 if (execution_direction != EXEC_REVERSE
16c381f0 6743 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6744 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6745 {
4c8c40e6 6746 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6747 gdbarch_skip_solib_resolver (gdbarch,
6748 ecs->event_thread->suspend.stop_pc);
c906108c 6749
527159b7 6750 if (debug_infrun)
3e43a32a
MS
6751 fprintf_unfiltered (gdb_stdlog,
6752 "infrun: stepped into dynsym resolve code\n");
527159b7 6753
488f131b
JB
6754 if (pc_after_resolver)
6755 {
6756 /* Set up a step-resume breakpoint at the address
6757 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6758 symtab_and_line sr_sal;
488f131b 6759 sr_sal.pc = pc_after_resolver;
6c95b8df 6760 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6761
a6d9a66e
UW
6762 insert_step_resume_breakpoint_at_sal (gdbarch,
6763 sr_sal, null_frame_id);
c5aa993b 6764 }
c906108c 6765
488f131b
JB
6766 keep_going (ecs);
6767 return;
6768 }
c906108c 6769
1d509aa6
MM
6770 /* Step through an indirect branch thunk. */
6771 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6772 && gdbarch_in_indirect_branch_thunk (gdbarch,
6773 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6774 {
6775 if (debug_infrun)
6776 fprintf_unfiltered (gdb_stdlog,
6777 "infrun: stepped into indirect branch thunk\n");
6778 keep_going (ecs);
6779 return;
6780 }
6781
16c381f0
JK
6782 if (ecs->event_thread->control.step_range_end != 1
6783 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6784 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6785 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6786 {
527159b7 6787 if (debug_infrun)
3e43a32a
MS
6788 fprintf_unfiltered (gdb_stdlog,
6789 "infrun: stepped into signal trampoline\n");
42edda50 6790 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6791 a signal trampoline (either by a signal being delivered or by
6792 the signal handler returning). Just single-step until the
6793 inferior leaves the trampoline (either by calling the handler
6794 or returning). */
488f131b
JB
6795 keep_going (ecs);
6796 return;
6797 }
c906108c 6798
14132e89
MR
6799 /* If we're in the return path from a shared library trampoline,
6800 we want to proceed through the trampoline when stepping. */
6801 /* macro/2012-04-25: This needs to come before the subroutine
6802 call check below as on some targets return trampolines look
6803 like subroutine calls (MIPS16 return thunks). */
6804 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6805 ecs->event_thread->suspend.stop_pc,
6806 ecs->stop_func_name)
14132e89
MR
6807 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6808 {
6809 /* Determine where this trampoline returns. */
f2ffa92b
PA
6810 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6811 CORE_ADDR real_stop_pc
6812 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6813
6814 if (debug_infrun)
6815 fprintf_unfiltered (gdb_stdlog,
6816 "infrun: stepped into solib return tramp\n");
6817
6818 /* Only proceed through if we know where it's going. */
6819 if (real_stop_pc)
6820 {
6821 /* And put the step-breakpoint there and go until there. */
51abb421 6822 symtab_and_line sr_sal;
14132e89
MR
6823 sr_sal.pc = real_stop_pc;
6824 sr_sal.section = find_pc_overlay (sr_sal.pc);
6825 sr_sal.pspace = get_frame_program_space (frame);
6826
6827 /* Do not specify what the fp should be when we stop since
6828 on some machines the prologue is where the new fp value
6829 is established. */
6830 insert_step_resume_breakpoint_at_sal (gdbarch,
6831 sr_sal, null_frame_id);
6832
6833 /* Restart without fiddling with the step ranges or
6834 other state. */
6835 keep_going (ecs);
6836 return;
6837 }
6838 }
6839
c17eaafe
DJ
6840 /* Check for subroutine calls. The check for the current frame
6841 equalling the step ID is not necessary - the check of the
6842 previous frame's ID is sufficient - but it is a common case and
6843 cheaper than checking the previous frame's ID.
14e60db5
DJ
6844
6845 NOTE: frame_id_eq will never report two invalid frame IDs as
6846 being equal, so to get into this block, both the current and
6847 previous frame must have valid frame IDs. */
005ca36a
JB
6848 /* The outer_frame_id check is a heuristic to detect stepping
6849 through startup code. If we step over an instruction which
6850 sets the stack pointer from an invalid value to a valid value,
6851 we may detect that as a subroutine call from the mythical
6852 "outermost" function. This could be fixed by marking
6853 outermost frames as !stack_p,code_p,special_p. Then the
6854 initial outermost frame, before sp was valid, would
ce6cca6d 6855 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6856 for more. */
edb3359d 6857 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6858 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6859 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6860 ecs->event_thread->control.step_stack_frame_id)
6861 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6862 outer_frame_id)
885eeb5b 6863 || (ecs->event_thread->control.step_start_function
f2ffa92b 6864 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6865 {
f2ffa92b 6866 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6867 CORE_ADDR real_stop_pc;
8fb3e588 6868
527159b7 6869 if (debug_infrun)
8a9de0e4 6870 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6871
b7a084be 6872 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6873 {
6874 /* I presume that step_over_calls is only 0 when we're
6875 supposed to be stepping at the assembly language level
6876 ("stepi"). Just stop. */
388a8562 6877 /* And this works the same backward as frontward. MVS */
bdc36728 6878 end_stepping_range (ecs);
95918acb
AC
6879 return;
6880 }
8fb3e588 6881
388a8562
MS
6882 /* Reverse stepping through solib trampolines. */
6883
6884 if (execution_direction == EXEC_REVERSE
16c381f0 6885 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6886 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6887 || (ecs->stop_func_start == 0
6888 && in_solib_dynsym_resolve_code (stop_pc))))
6889 {
6890 /* Any solib trampoline code can be handled in reverse
6891 by simply continuing to single-step. We have already
6892 executed the solib function (backwards), and a few
6893 steps will take us back through the trampoline to the
6894 caller. */
6895 keep_going (ecs);
6896 return;
6897 }
6898
16c381f0 6899 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6900 {
b2175913
MS
6901 /* We're doing a "next".
6902
6903 Normal (forward) execution: set a breakpoint at the
6904 callee's return address (the address at which the caller
6905 will resume).
6906
6907 Reverse (backward) execution. set the step-resume
6908 breakpoint at the start of the function that we just
6909 stepped into (backwards), and continue to there. When we
6130d0b7 6910 get there, we'll need to single-step back to the caller. */
b2175913
MS
6911
6912 if (execution_direction == EXEC_REVERSE)
6913 {
acf9414f
JK
6914 /* If we're already at the start of the function, we've either
6915 just stepped backward into a single instruction function,
6916 or stepped back out of a signal handler to the first instruction
6917 of the function. Just keep going, which will single-step back
6918 to the caller. */
58c48e72 6919 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6920 {
acf9414f 6921 /* Normal function call return (static or dynamic). */
51abb421 6922 symtab_and_line sr_sal;
acf9414f
JK
6923 sr_sal.pc = ecs->stop_func_start;
6924 sr_sal.pspace = get_frame_program_space (frame);
6925 insert_step_resume_breakpoint_at_sal (gdbarch,
6926 sr_sal, null_frame_id);
6927 }
b2175913
MS
6928 }
6929 else
568d6575 6930 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6931
8567c30f
AC
6932 keep_going (ecs);
6933 return;
6934 }
a53c66de 6935
95918acb 6936 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6937 calling routine and the real function), locate the real
6938 function. That's what tells us (a) whether we want to step
6939 into it at all, and (b) what prologue we want to run to the
6940 end of, if we do step into it. */
568d6575 6941 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6942 if (real_stop_pc == 0)
568d6575 6943 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6944 if (real_stop_pc != 0)
6945 ecs->stop_func_start = real_stop_pc;
8fb3e588 6946
db5f024e 6947 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6948 {
51abb421 6949 symtab_and_line sr_sal;
1b2bfbb9 6950 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6951 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6952
a6d9a66e
UW
6953 insert_step_resume_breakpoint_at_sal (gdbarch,
6954 sr_sal, null_frame_id);
8fb3e588
AC
6955 keep_going (ecs);
6956 return;
1b2bfbb9
RC
6957 }
6958
95918acb 6959 /* If we have line number information for the function we are
1bfeeb0f
JL
6960 thinking of stepping into and the function isn't on the skip
6961 list, step into it.
95918acb 6962
8fb3e588
AC
6963 If there are several symtabs at that PC (e.g. with include
6964 files), just want to know whether *any* of them have line
6965 numbers. find_pc_line handles this. */
95918acb
AC
6966 {
6967 struct symtab_and_line tmp_sal;
8fb3e588 6968
95918acb 6969 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6970 if (tmp_sal.line != 0
85817405 6971 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6972 tmp_sal)
6973 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6974 {
b2175913 6975 if (execution_direction == EXEC_REVERSE)
568d6575 6976 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6977 else
568d6575 6978 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6979 return;
6980 }
6981 }
6982
6983 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6984 set, we stop the step so that the user has a chance to switch
6985 in assembly mode. */
16c381f0 6986 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6987 && step_stop_if_no_debug)
95918acb 6988 {
bdc36728 6989 end_stepping_range (ecs);
95918acb
AC
6990 return;
6991 }
6992
b2175913
MS
6993 if (execution_direction == EXEC_REVERSE)
6994 {
acf9414f
JK
6995 /* If we're already at the start of the function, we've either just
6996 stepped backward into a single instruction function without line
6997 number info, or stepped back out of a signal handler to the first
6998 instruction of the function without line number info. Just keep
6999 going, which will single-step back to the caller. */
7000 if (ecs->stop_func_start != stop_pc)
7001 {
7002 /* Set a breakpoint at callee's start address.
7003 From there we can step once and be back in the caller. */
51abb421 7004 symtab_and_line sr_sal;
acf9414f
JK
7005 sr_sal.pc = ecs->stop_func_start;
7006 sr_sal.pspace = get_frame_program_space (frame);
7007 insert_step_resume_breakpoint_at_sal (gdbarch,
7008 sr_sal, null_frame_id);
7009 }
b2175913
MS
7010 }
7011 else
7012 /* Set a breakpoint at callee's return address (the address
7013 at which the caller will resume). */
568d6575 7014 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7015
95918acb 7016 keep_going (ecs);
488f131b 7017 return;
488f131b 7018 }
c906108c 7019
fdd654f3
MS
7020 /* Reverse stepping through solib trampolines. */
7021
7022 if (execution_direction == EXEC_REVERSE
16c381f0 7023 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 7024 {
f2ffa92b
PA
7025 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7026
fdd654f3
MS
7027 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7028 || (ecs->stop_func_start == 0
7029 && in_solib_dynsym_resolve_code (stop_pc)))
7030 {
7031 /* Any solib trampoline code can be handled in reverse
7032 by simply continuing to single-step. We have already
7033 executed the solib function (backwards), and a few
7034 steps will take us back through the trampoline to the
7035 caller. */
7036 keep_going (ecs);
7037 return;
7038 }
7039 else if (in_solib_dynsym_resolve_code (stop_pc))
7040 {
7041 /* Stepped backward into the solib dynsym resolver.
7042 Set a breakpoint at its start and continue, then
7043 one more step will take us out. */
51abb421 7044 symtab_and_line sr_sal;
fdd654f3 7045 sr_sal.pc = ecs->stop_func_start;
9d1807c3 7046 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
7047 insert_step_resume_breakpoint_at_sal (gdbarch,
7048 sr_sal, null_frame_id);
7049 keep_going (ecs);
7050 return;
7051 }
7052 }
7053
8c95582d
AB
7054 /* This always returns the sal for the inner-most frame when we are in a
7055 stack of inlined frames, even if GDB actually believes that it is in a
7056 more outer frame. This is checked for below by calls to
7057 inline_skipped_frames. */
f2ffa92b 7058 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 7059
1b2bfbb9
RC
7060 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7061 the trampoline processing logic, however, there are some trampolines
7062 that have no names, so we should do trampoline handling first. */
16c381f0 7063 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 7064 && ecs->stop_func_name == NULL
2afb61aa 7065 && stop_pc_sal.line == 0)
1b2bfbb9 7066 {
527159b7 7067 if (debug_infrun)
3e43a32a
MS
7068 fprintf_unfiltered (gdb_stdlog,
7069 "infrun: stepped into undebuggable function\n");
527159b7 7070
1b2bfbb9 7071 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
7072 undebuggable function (where there is no debugging information
7073 and no line number corresponding to the address where the
1b2bfbb9
RC
7074 inferior stopped). Since we want to skip this kind of code,
7075 we keep going until the inferior returns from this
14e60db5
DJ
7076 function - unless the user has asked us not to (via
7077 set step-mode) or we no longer know how to get back
7078 to the call site. */
7079 if (step_stop_if_no_debug
c7ce8faa 7080 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
7081 {
7082 /* If we have no line number and the step-stop-if-no-debug
7083 is set, we stop the step so that the user has a chance to
7084 switch in assembly mode. */
bdc36728 7085 end_stepping_range (ecs);
1b2bfbb9
RC
7086 return;
7087 }
7088 else
7089 {
7090 /* Set a breakpoint at callee's return address (the address
7091 at which the caller will resume). */
568d6575 7092 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
7093 keep_going (ecs);
7094 return;
7095 }
7096 }
7097
16c381f0 7098 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7099 {
7100 /* It is stepi or nexti. We always want to stop stepping after
7101 one instruction. */
527159b7 7102 if (debug_infrun)
8a9de0e4 7103 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 7104 end_stepping_range (ecs);
1b2bfbb9
RC
7105 return;
7106 }
7107
2afb61aa 7108 if (stop_pc_sal.line == 0)
488f131b
JB
7109 {
7110 /* We have no line number information. That means to stop
7111 stepping (does this always happen right after one instruction,
7112 when we do "s" in a function with no line numbers,
7113 or can this happen as a result of a return or longjmp?). */
527159b7 7114 if (debug_infrun)
8a9de0e4 7115 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 7116 end_stepping_range (ecs);
488f131b
JB
7117 return;
7118 }
c906108c 7119
edb3359d
DJ
7120 /* Look for "calls" to inlined functions, part one. If the inline
7121 frame machinery detected some skipped call sites, we have entered
7122 a new inline function. */
7123
7124 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7125 ecs->event_thread->control.step_frame_id)
00431a78 7126 && inline_skipped_frames (ecs->event_thread))
edb3359d 7127 {
edb3359d
DJ
7128 if (debug_infrun)
7129 fprintf_unfiltered (gdb_stdlog,
7130 "infrun: stepped into inlined function\n");
7131
51abb421 7132 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7133
16c381f0 7134 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7135 {
7136 /* For "step", we're going to stop. But if the call site
7137 for this inlined function is on the same source line as
7138 we were previously stepping, go down into the function
7139 first. Otherwise stop at the call site. */
7140
7141 if (call_sal.line == ecs->event_thread->current_line
7142 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7143 {
7144 step_into_inline_frame (ecs->event_thread);
7145 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7146 {
7147 keep_going (ecs);
7148 return;
7149 }
7150 }
edb3359d 7151
bdc36728 7152 end_stepping_range (ecs);
edb3359d
DJ
7153 return;
7154 }
7155 else
7156 {
7157 /* For "next", we should stop at the call site if it is on a
7158 different source line. Otherwise continue through the
7159 inlined function. */
7160 if (call_sal.line == ecs->event_thread->current_line
7161 && call_sal.symtab == ecs->event_thread->current_symtab)
7162 keep_going (ecs);
7163 else
bdc36728 7164 end_stepping_range (ecs);
edb3359d
DJ
7165 return;
7166 }
7167 }
7168
7169 /* Look for "calls" to inlined functions, part two. If we are still
7170 in the same real function we were stepping through, but we have
7171 to go further up to find the exact frame ID, we are stepping
7172 through a more inlined call beyond its call site. */
7173
7174 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7175 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7176 ecs->event_thread->control.step_frame_id)
edb3359d 7177 && stepped_in_from (get_current_frame (),
16c381f0 7178 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
7179 {
7180 if (debug_infrun)
7181 fprintf_unfiltered (gdb_stdlog,
7182 "infrun: stepping through inlined function\n");
7183
4a4c04f1
BE
7184 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7185 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7186 keep_going (ecs);
7187 else
bdc36728 7188 end_stepping_range (ecs);
edb3359d
DJ
7189 return;
7190 }
7191
8c95582d 7192 bool refresh_step_info = true;
f2ffa92b 7193 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7194 && (ecs->event_thread->current_line != stop_pc_sal.line
7195 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7196 {
8c95582d
AB
7197 if (stop_pc_sal.is_stmt)
7198 {
7199 /* We are at the start of a different line. So stop. Note that
7200 we don't stop if we step into the middle of a different line.
7201 That is said to make things like for (;;) statements work
7202 better. */
7203 if (debug_infrun)
7204 fprintf_unfiltered (gdb_stdlog,
7205 "infrun: stepped to a different line\n");
7206 end_stepping_range (ecs);
7207 return;
7208 }
7209 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7210 ecs->event_thread->control.step_frame_id))
7211 {
7212 /* We are at the start of a different line, however, this line is
7213 not marked as a statement, and we have not changed frame. We
7214 ignore this line table entry, and continue stepping forward,
7215 looking for a better place to stop. */
7216 refresh_step_info = false;
7217 if (debug_infrun)
7218 fprintf_unfiltered (gdb_stdlog,
7219 "infrun: stepped to a different line, but "
7220 "it's not the start of a statement\n");
7221 }
488f131b 7222 }
c906108c 7223
488f131b 7224 /* We aren't done stepping.
c906108c 7225
488f131b
JB
7226 Optimize by setting the stepping range to the line.
7227 (We might not be in the original line, but if we entered a
7228 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7229 things like for(;;) statements work better.)
7230
7231 If we entered a SAL that indicates a non-statement line table entry,
7232 then we update the stepping range, but we don't update the step info,
7233 which includes things like the line number we are stepping away from.
7234 This means we will stop when we find a line table entry that is marked
7235 as is-statement, even if it matches the non-statement one we just
7236 stepped into. */
c906108c 7237
16c381f0
JK
7238 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7239 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7240 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7241 if (refresh_step_info)
7242 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7243
527159b7 7244 if (debug_infrun)
8a9de0e4 7245 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7246 keep_going (ecs);
104c1213
JM
7247}
7248
c447ac0b
PA
7249/* In all-stop mode, if we're currently stepping but have stopped in
7250 some other thread, we may need to switch back to the stepped
7251 thread. Returns true we set the inferior running, false if we left
7252 it stopped (and the event needs further processing). */
7253
7254static int
7255switch_back_to_stepped_thread (struct execution_control_state *ecs)
7256{
fbea99ea 7257 if (!target_is_non_stop_p ())
c447ac0b 7258 {
99619bea
PA
7259 struct thread_info *stepping_thread;
7260
7261 /* If any thread is blocked on some internal breakpoint, and we
7262 simply need to step over that breakpoint to get it going
7263 again, do that first. */
7264
7265 /* However, if we see an event for the stepping thread, then we
7266 know all other threads have been moved past their breakpoints
7267 already. Let the caller check whether the step is finished,
7268 etc., before deciding to move it past a breakpoint. */
7269 if (ecs->event_thread->control.step_range_end != 0)
7270 return 0;
7271
7272 /* Check if the current thread is blocked on an incomplete
7273 step-over, interrupted by a random signal. */
7274 if (ecs->event_thread->control.trap_expected
7275 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7276 {
99619bea
PA
7277 if (debug_infrun)
7278 {
7279 fprintf_unfiltered (gdb_stdlog,
7280 "infrun: need to finish step-over of [%s]\n",
a068643d 7281 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
7282 }
7283 keep_going (ecs);
7284 return 1;
7285 }
2adfaa28 7286
99619bea
PA
7287 /* Check if the current thread is blocked by a single-step
7288 breakpoint of another thread. */
7289 if (ecs->hit_singlestep_breakpoint)
7290 {
7291 if (debug_infrun)
7292 {
7293 fprintf_unfiltered (gdb_stdlog,
7294 "infrun: need to step [%s] over single-step "
7295 "breakpoint\n",
a068643d 7296 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
7297 }
7298 keep_going (ecs);
7299 return 1;
7300 }
7301
4d9d9d04
PA
7302 /* If this thread needs yet another step-over (e.g., stepping
7303 through a delay slot), do it first before moving on to
7304 another thread. */
7305 if (thread_still_needs_step_over (ecs->event_thread))
7306 {
7307 if (debug_infrun)
7308 {
7309 fprintf_unfiltered (gdb_stdlog,
7310 "infrun: thread [%s] still needs step-over\n",
a068643d 7311 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
7312 }
7313 keep_going (ecs);
7314 return 1;
7315 }
70509625 7316
483805cf
PA
7317 /* If scheduler locking applies even if not stepping, there's no
7318 need to walk over threads. Above we've checked whether the
7319 current thread is stepping. If some other thread not the
7320 event thread is stepping, then it must be that scheduler
7321 locking is not in effect. */
856e7dd6 7322 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7323 return 0;
7324
4d9d9d04
PA
7325 /* Otherwise, we no longer expect a trap in the current thread.
7326 Clear the trap_expected flag before switching back -- this is
7327 what keep_going does as well, if we call it. */
7328 ecs->event_thread->control.trap_expected = 0;
7329
7330 /* Likewise, clear the signal if it should not be passed. */
7331 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7332 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7333
7334 /* Do all pending step-overs before actually proceeding with
483805cf 7335 step/next/etc. */
4d9d9d04
PA
7336 if (start_step_over ())
7337 {
7338 prepare_to_wait (ecs);
7339 return 1;
7340 }
7341
7342 /* Look for the stepping/nexting thread. */
483805cf 7343 stepping_thread = NULL;
4d9d9d04 7344
08036331 7345 for (thread_info *tp : all_non_exited_threads ())
483805cf 7346 {
f3f8ece4
PA
7347 switch_to_thread_no_regs (tp);
7348
fbea99ea
PA
7349 /* Ignore threads of processes the caller is not
7350 resuming. */
483805cf 7351 if (!sched_multi
5b6d1e4f
PA
7352 && (tp->inf->process_target () != ecs->target
7353 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7354 continue;
7355
7356 /* When stepping over a breakpoint, we lock all threads
7357 except the one that needs to move past the breakpoint.
7358 If a non-event thread has this set, the "incomplete
7359 step-over" check above should have caught it earlier. */
372316f1
PA
7360 if (tp->control.trap_expected)
7361 {
7362 internal_error (__FILE__, __LINE__,
7363 "[%s] has inconsistent state: "
7364 "trap_expected=%d\n",
a068643d 7365 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7366 tp->control.trap_expected);
7367 }
483805cf
PA
7368
7369 /* Did we find the stepping thread? */
7370 if (tp->control.step_range_end)
7371 {
7372 /* Yep. There should only one though. */
7373 gdb_assert (stepping_thread == NULL);
7374
7375 /* The event thread is handled at the top, before we
7376 enter this loop. */
7377 gdb_assert (tp != ecs->event_thread);
7378
7379 /* If some thread other than the event thread is
7380 stepping, then scheduler locking can't be in effect,
7381 otherwise we wouldn't have resumed the current event
7382 thread in the first place. */
856e7dd6 7383 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7384
7385 stepping_thread = tp;
7386 }
99619bea
PA
7387 }
7388
483805cf 7389 if (stepping_thread != NULL)
99619bea 7390 {
c447ac0b
PA
7391 if (debug_infrun)
7392 fprintf_unfiltered (gdb_stdlog,
7393 "infrun: switching back to stepped thread\n");
7394
2ac7589c
PA
7395 if (keep_going_stepped_thread (stepping_thread))
7396 {
7397 prepare_to_wait (ecs);
7398 return 1;
7399 }
7400 }
f3f8ece4
PA
7401
7402 switch_to_thread (ecs->event_thread);
2ac7589c 7403 }
2adfaa28 7404
2ac7589c
PA
7405 return 0;
7406}
2adfaa28 7407
2ac7589c
PA
7408/* Set a previously stepped thread back to stepping. Returns true on
7409 success, false if the resume is not possible (e.g., the thread
7410 vanished). */
7411
7412static int
7413keep_going_stepped_thread (struct thread_info *tp)
7414{
7415 struct frame_info *frame;
2ac7589c
PA
7416 struct execution_control_state ecss;
7417 struct execution_control_state *ecs = &ecss;
2adfaa28 7418
2ac7589c
PA
7419 /* If the stepping thread exited, then don't try to switch back and
7420 resume it, which could fail in several different ways depending
7421 on the target. Instead, just keep going.
2adfaa28 7422
2ac7589c
PA
7423 We can find a stepping dead thread in the thread list in two
7424 cases:
2adfaa28 7425
2ac7589c
PA
7426 - The target supports thread exit events, and when the target
7427 tries to delete the thread from the thread list, inferior_ptid
7428 pointed at the exiting thread. In such case, calling
7429 delete_thread does not really remove the thread from the list;
7430 instead, the thread is left listed, with 'exited' state.
64ce06e4 7431
2ac7589c
PA
7432 - The target's debug interface does not support thread exit
7433 events, and so we have no idea whatsoever if the previously
7434 stepping thread is still alive. For that reason, we need to
7435 synchronously query the target now. */
2adfaa28 7436
00431a78 7437 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7438 {
7439 if (debug_infrun)
7440 fprintf_unfiltered (gdb_stdlog,
7441 "infrun: not resuming previously "
7442 "stepped thread, it has vanished\n");
7443
00431a78 7444 delete_thread (tp);
2ac7589c 7445 return 0;
c447ac0b 7446 }
2ac7589c
PA
7447
7448 if (debug_infrun)
7449 fprintf_unfiltered (gdb_stdlog,
7450 "infrun: resuming previously stepped thread\n");
7451
7452 reset_ecs (ecs, tp);
00431a78 7453 switch_to_thread (tp);
2ac7589c 7454
f2ffa92b 7455 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7456 frame = get_current_frame ();
2ac7589c
PA
7457
7458 /* If the PC of the thread we were trying to single-step has
7459 changed, then that thread has trapped or been signaled, but the
7460 event has not been reported to GDB yet. Re-poll the target
7461 looking for this particular thread's event (i.e. temporarily
7462 enable schedlock) by:
7463
7464 - setting a break at the current PC
7465 - resuming that particular thread, only (by setting trap
7466 expected)
7467
7468 This prevents us continuously moving the single-step breakpoint
7469 forward, one instruction at a time, overstepping. */
7470
f2ffa92b 7471 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7472 {
7473 ptid_t resume_ptid;
7474
7475 if (debug_infrun)
7476 fprintf_unfiltered (gdb_stdlog,
7477 "infrun: expected thread advanced also (%s -> %s)\n",
7478 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7479 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7480
7481 /* Clear the info of the previous step-over, as it's no longer
7482 valid (if the thread was trying to step over a breakpoint, it
7483 has already succeeded). It's what keep_going would do too,
7484 if we called it. Do this before trying to insert the sss
7485 breakpoint, otherwise if we were previously trying to step
7486 over this exact address in another thread, the breakpoint is
7487 skipped. */
7488 clear_step_over_info ();
7489 tp->control.trap_expected = 0;
7490
7491 insert_single_step_breakpoint (get_frame_arch (frame),
7492 get_frame_address_space (frame),
f2ffa92b 7493 tp->suspend.stop_pc);
2ac7589c 7494
719546c4 7495 tp->resumed = true;
fbea99ea 7496 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7497 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7498 }
7499 else
7500 {
7501 if (debug_infrun)
7502 fprintf_unfiltered (gdb_stdlog,
7503 "infrun: expected thread still hasn't advanced\n");
7504
7505 keep_going_pass_signal (ecs);
7506 }
7507 return 1;
c447ac0b
PA
7508}
7509
8b061563
PA
7510/* Is thread TP in the middle of (software or hardware)
7511 single-stepping? (Note the result of this function must never be
7512 passed directly as target_resume's STEP parameter.) */
104c1213 7513
a289b8f6 7514static int
b3444185 7515currently_stepping (struct thread_info *tp)
a7212384 7516{
8358c15c
JK
7517 return ((tp->control.step_range_end
7518 && tp->control.step_resume_breakpoint == NULL)
7519 || tp->control.trap_expected
af48d08f 7520 || tp->stepped_breakpoint
8358c15c 7521 || bpstat_should_step ());
a7212384
UW
7522}
7523
b2175913
MS
7524/* Inferior has stepped into a subroutine call with source code that
7525 we should not step over. Do step to the first line of code in
7526 it. */
c2c6d25f
JM
7527
7528static void
568d6575
UW
7529handle_step_into_function (struct gdbarch *gdbarch,
7530 struct execution_control_state *ecs)
c2c6d25f 7531{
7e324e48
GB
7532 fill_in_stop_func (gdbarch, ecs);
7533
f2ffa92b
PA
7534 compunit_symtab *cust
7535 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7536 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7537 ecs->stop_func_start
7538 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7539
51abb421 7540 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7541 /* Use the step_resume_break to step until the end of the prologue,
7542 even if that involves jumps (as it seems to on the vax under
7543 4.2). */
7544 /* If the prologue ends in the middle of a source line, continue to
7545 the end of that source line (if it is still within the function).
7546 Otherwise, just go to end of prologue. */
2afb61aa
PA
7547 if (stop_func_sal.end
7548 && stop_func_sal.pc != ecs->stop_func_start
7549 && stop_func_sal.end < ecs->stop_func_end)
7550 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7551
2dbd5e30
KB
7552 /* Architectures which require breakpoint adjustment might not be able
7553 to place a breakpoint at the computed address. If so, the test
7554 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7555 ecs->stop_func_start to an address at which a breakpoint may be
7556 legitimately placed.
8fb3e588 7557
2dbd5e30
KB
7558 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7559 made, GDB will enter an infinite loop when stepping through
7560 optimized code consisting of VLIW instructions which contain
7561 subinstructions corresponding to different source lines. On
7562 FR-V, it's not permitted to place a breakpoint on any but the
7563 first subinstruction of a VLIW instruction. When a breakpoint is
7564 set, GDB will adjust the breakpoint address to the beginning of
7565 the VLIW instruction. Thus, we need to make the corresponding
7566 adjustment here when computing the stop address. */
8fb3e588 7567
568d6575 7568 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7569 {
7570 ecs->stop_func_start
568d6575 7571 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7572 ecs->stop_func_start);
2dbd5e30
KB
7573 }
7574
f2ffa92b 7575 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7576 {
7577 /* We are already there: stop now. */
bdc36728 7578 end_stepping_range (ecs);
c2c6d25f
JM
7579 return;
7580 }
7581 else
7582 {
7583 /* Put the step-breakpoint there and go until there. */
51abb421 7584 symtab_and_line sr_sal;
c2c6d25f
JM
7585 sr_sal.pc = ecs->stop_func_start;
7586 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7587 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7588
c2c6d25f 7589 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7590 some machines the prologue is where the new fp value is
7591 established. */
a6d9a66e 7592 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7593
7594 /* And make sure stepping stops right away then. */
16c381f0
JK
7595 ecs->event_thread->control.step_range_end
7596 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7597 }
7598 keep_going (ecs);
7599}
d4f3574e 7600
b2175913
MS
7601/* Inferior has stepped backward into a subroutine call with source
7602 code that we should not step over. Do step to the beginning of the
7603 last line of code in it. */
7604
7605static void
568d6575
UW
7606handle_step_into_function_backward (struct gdbarch *gdbarch,
7607 struct execution_control_state *ecs)
b2175913 7608{
43f3e411 7609 struct compunit_symtab *cust;
167e4384 7610 struct symtab_and_line stop_func_sal;
b2175913 7611
7e324e48
GB
7612 fill_in_stop_func (gdbarch, ecs);
7613
f2ffa92b 7614 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7615 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7616 ecs->stop_func_start
7617 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7618
f2ffa92b 7619 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7620
7621 /* OK, we're just going to keep stepping here. */
f2ffa92b 7622 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7623 {
7624 /* We're there already. Just stop stepping now. */
bdc36728 7625 end_stepping_range (ecs);
b2175913
MS
7626 }
7627 else
7628 {
7629 /* Else just reset the step range and keep going.
7630 No step-resume breakpoint, they don't work for
7631 epilogues, which can have multiple entry paths. */
16c381f0
JK
7632 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7633 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7634 keep_going (ecs);
7635 }
7636 return;
7637}
7638
d3169d93 7639/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7640 This is used to both functions and to skip over code. */
7641
7642static void
2c03e5be
PA
7643insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7644 struct symtab_and_line sr_sal,
7645 struct frame_id sr_id,
7646 enum bptype sr_type)
44cbf7b5 7647{
611c83ae
PA
7648 /* There should never be more than one step-resume or longjmp-resume
7649 breakpoint per thread, so we should never be setting a new
44cbf7b5 7650 step_resume_breakpoint when one is already active. */
8358c15c 7651 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7652 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7653
7654 if (debug_infrun)
7655 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7656 "infrun: inserting step-resume breakpoint at %s\n",
7657 paddress (gdbarch, sr_sal.pc));
d3169d93 7658
8358c15c 7659 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7660 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7661}
7662
9da8c2a0 7663void
2c03e5be
PA
7664insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7665 struct symtab_and_line sr_sal,
7666 struct frame_id sr_id)
7667{
7668 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7669 sr_sal, sr_id,
7670 bp_step_resume);
44cbf7b5 7671}
7ce450bd 7672
2c03e5be
PA
7673/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7674 This is used to skip a potential signal handler.
7ce450bd 7675
14e60db5
DJ
7676 This is called with the interrupted function's frame. The signal
7677 handler, when it returns, will resume the interrupted function at
7678 RETURN_FRAME.pc. */
d303a6c7
AC
7679
7680static void
2c03e5be 7681insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7682{
f4c1edd8 7683 gdb_assert (return_frame != NULL);
d303a6c7 7684
51abb421
PA
7685 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7686
7687 symtab_and_line sr_sal;
568d6575 7688 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7689 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7690 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7691
2c03e5be
PA
7692 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7693 get_stack_frame_id (return_frame),
7694 bp_hp_step_resume);
d303a6c7
AC
7695}
7696
2c03e5be
PA
7697/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7698 is used to skip a function after stepping into it (for "next" or if
7699 the called function has no debugging information).
14e60db5
DJ
7700
7701 The current function has almost always been reached by single
7702 stepping a call or return instruction. NEXT_FRAME belongs to the
7703 current function, and the breakpoint will be set at the caller's
7704 resume address.
7705
7706 This is a separate function rather than reusing
2c03e5be 7707 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7708 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7709 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7710
7711static void
7712insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7713{
14e60db5
DJ
7714 /* We shouldn't have gotten here if we don't know where the call site
7715 is. */
c7ce8faa 7716 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7717
51abb421 7718 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7719
51abb421 7720 symtab_and_line sr_sal;
c7ce8faa
DJ
7721 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7722 frame_unwind_caller_pc (next_frame));
14e60db5 7723 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7724 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7725
a6d9a66e 7726 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7727 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7728}
7729
611c83ae
PA
7730/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7731 new breakpoint at the target of a jmp_buf. The handling of
7732 longjmp-resume uses the same mechanisms used for handling
7733 "step-resume" breakpoints. */
7734
7735static void
a6d9a66e 7736insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7737{
e81a37f7
TT
7738 /* There should never be more than one longjmp-resume breakpoint per
7739 thread, so we should never be setting a new
611c83ae 7740 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7741 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7742
7743 if (debug_infrun)
7744 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7745 "infrun: inserting longjmp-resume breakpoint at %s\n",
7746 paddress (gdbarch, pc));
611c83ae 7747
e81a37f7 7748 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7749 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7750}
7751
186c406b
TT
7752/* Insert an exception resume breakpoint. TP is the thread throwing
7753 the exception. The block B is the block of the unwinder debug hook
7754 function. FRAME is the frame corresponding to the call to this
7755 function. SYM is the symbol of the function argument holding the
7756 target PC of the exception. */
7757
7758static void
7759insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7760 const struct block *b,
186c406b
TT
7761 struct frame_info *frame,
7762 struct symbol *sym)
7763{
a70b8144 7764 try
186c406b 7765 {
63e43d3a 7766 struct block_symbol vsym;
186c406b
TT
7767 struct value *value;
7768 CORE_ADDR handler;
7769 struct breakpoint *bp;
7770
987012b8 7771 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7772 b, VAR_DOMAIN);
63e43d3a 7773 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7774 /* If the value was optimized out, revert to the old behavior. */
7775 if (! value_optimized_out (value))
7776 {
7777 handler = value_as_address (value);
7778
7779 if (debug_infrun)
7780 fprintf_unfiltered (gdb_stdlog,
7781 "infrun: exception resume at %lx\n",
7782 (unsigned long) handler);
7783
7784 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7785 handler,
7786 bp_exception_resume).release ();
c70a6932
JK
7787
7788 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7789 frame = NULL;
7790
5d5658a1 7791 bp->thread = tp->global_num;
186c406b
TT
7792 inferior_thread ()->control.exception_resume_breakpoint = bp;
7793 }
7794 }
230d2906 7795 catch (const gdb_exception_error &e)
492d29ea
PA
7796 {
7797 /* We want to ignore errors here. */
7798 }
186c406b
TT
7799}
7800
28106bc2
SDJ
7801/* A helper for check_exception_resume that sets an
7802 exception-breakpoint based on a SystemTap probe. */
7803
7804static void
7805insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7806 const struct bound_probe *probe,
28106bc2
SDJ
7807 struct frame_info *frame)
7808{
7809 struct value *arg_value;
7810 CORE_ADDR handler;
7811 struct breakpoint *bp;
7812
7813 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7814 if (!arg_value)
7815 return;
7816
7817 handler = value_as_address (arg_value);
7818
7819 if (debug_infrun)
7820 fprintf_unfiltered (gdb_stdlog,
7821 "infrun: exception resume at %s\n",
08feed99 7822 paddress (probe->objfile->arch (),
28106bc2
SDJ
7823 handler));
7824
7825 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7826 handler, bp_exception_resume).release ();
5d5658a1 7827 bp->thread = tp->global_num;
28106bc2
SDJ
7828 inferior_thread ()->control.exception_resume_breakpoint = bp;
7829}
7830
186c406b
TT
7831/* This is called when an exception has been intercepted. Check to
7832 see whether the exception's destination is of interest, and if so,
7833 set an exception resume breakpoint there. */
7834
7835static void
7836check_exception_resume (struct execution_control_state *ecs,
28106bc2 7837 struct frame_info *frame)
186c406b 7838{
729662a5 7839 struct bound_probe probe;
28106bc2
SDJ
7840 struct symbol *func;
7841
7842 /* First see if this exception unwinding breakpoint was set via a
7843 SystemTap probe point. If so, the probe has two arguments: the
7844 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7845 set a breakpoint there. */
6bac7473 7846 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7847 if (probe.prob)
28106bc2 7848 {
729662a5 7849 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7850 return;
7851 }
7852
7853 func = get_frame_function (frame);
7854 if (!func)
7855 return;
186c406b 7856
a70b8144 7857 try
186c406b 7858 {
3977b71f 7859 const struct block *b;
8157b174 7860 struct block_iterator iter;
186c406b
TT
7861 struct symbol *sym;
7862 int argno = 0;
7863
7864 /* The exception breakpoint is a thread-specific breakpoint on
7865 the unwinder's debug hook, declared as:
7866
7867 void _Unwind_DebugHook (void *cfa, void *handler);
7868
7869 The CFA argument indicates the frame to which control is
7870 about to be transferred. HANDLER is the destination PC.
7871
7872 We ignore the CFA and set a temporary breakpoint at HANDLER.
7873 This is not extremely efficient but it avoids issues in gdb
7874 with computing the DWARF CFA, and it also works even in weird
7875 cases such as throwing an exception from inside a signal
7876 handler. */
7877
7878 b = SYMBOL_BLOCK_VALUE (func);
7879 ALL_BLOCK_SYMBOLS (b, iter, sym)
7880 {
7881 if (!SYMBOL_IS_ARGUMENT (sym))
7882 continue;
7883
7884 if (argno == 0)
7885 ++argno;
7886 else
7887 {
7888 insert_exception_resume_breakpoint (ecs->event_thread,
7889 b, frame, sym);
7890 break;
7891 }
7892 }
7893 }
230d2906 7894 catch (const gdb_exception_error &e)
492d29ea
PA
7895 {
7896 }
186c406b
TT
7897}
7898
104c1213 7899static void
22bcd14b 7900stop_waiting (struct execution_control_state *ecs)
104c1213 7901{
527159b7 7902 if (debug_infrun)
22bcd14b 7903 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7904
cd0fc7c3
SS
7905 /* Let callers know we don't want to wait for the inferior anymore. */
7906 ecs->wait_some_more = 0;
fbea99ea 7907
53cccef1 7908 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 7909 threads now that we're presenting the stop to the user. */
53cccef1 7910 if (!non_stop && exists_non_stop_target ())
fbea99ea 7911 stop_all_threads ();
cd0fc7c3
SS
7912}
7913
4d9d9d04
PA
7914/* Like keep_going, but passes the signal to the inferior, even if the
7915 signal is set to nopass. */
d4f3574e
SS
7916
7917static void
4d9d9d04 7918keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7919{
d7e15655 7920 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7921 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7922
d4f3574e 7923 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7924 ecs->event_thread->prev_pc
00431a78 7925 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7926
4d9d9d04 7927 if (ecs->event_thread->control.trap_expected)
d4f3574e 7928 {
4d9d9d04
PA
7929 struct thread_info *tp = ecs->event_thread;
7930
7931 if (debug_infrun)
7932 fprintf_unfiltered (gdb_stdlog,
7933 "infrun: %s has trap_expected set, "
7934 "resuming to collect trap\n",
a068643d 7935 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7936
a9ba6bae
PA
7937 /* We haven't yet gotten our trap, and either: intercepted a
7938 non-signal event (e.g., a fork); or took a signal which we
7939 are supposed to pass through to the inferior. Simply
7940 continue. */
64ce06e4 7941 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7942 }
372316f1
PA
7943 else if (step_over_info_valid_p ())
7944 {
7945 /* Another thread is stepping over a breakpoint in-line. If
7946 this thread needs a step-over too, queue the request. In
7947 either case, this resume must be deferred for later. */
7948 struct thread_info *tp = ecs->event_thread;
7949
7950 if (ecs->hit_singlestep_breakpoint
7951 || thread_still_needs_step_over (tp))
7952 {
7953 if (debug_infrun)
7954 fprintf_unfiltered (gdb_stdlog,
7955 "infrun: step-over already in progress: "
7956 "step-over for %s deferred\n",
a068643d 7957 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7958 thread_step_over_chain_enqueue (tp);
7959 }
7960 else
7961 {
7962 if (debug_infrun)
7963 fprintf_unfiltered (gdb_stdlog,
7964 "infrun: step-over in progress: "
7965 "resume of %s deferred\n",
a068643d 7966 target_pid_to_str (tp->ptid).c_str ());
372316f1 7967 }
372316f1 7968 }
d4f3574e
SS
7969 else
7970 {
31e77af2 7971 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7972 int remove_bp;
7973 int remove_wps;
8d297bbf 7974 step_over_what step_what;
31e77af2 7975
d4f3574e 7976 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7977 anyway (if we got a signal, the user asked it be passed to
7978 the child)
7979 -- or --
7980 We got our expected trap, but decided we should resume from
7981 it.
d4f3574e 7982
a9ba6bae 7983 We're going to run this baby now!
d4f3574e 7984
c36b740a
VP
7985 Note that insert_breakpoints won't try to re-insert
7986 already inserted breakpoints. Therefore, we don't
7987 care if breakpoints were already inserted, or not. */
a9ba6bae 7988
31e77af2
PA
7989 /* If we need to step over a breakpoint, and we're not using
7990 displaced stepping to do so, insert all breakpoints
7991 (watchpoints, etc.) but the one we're stepping over, step one
7992 instruction, and then re-insert the breakpoint when that step
7993 is finished. */
963f9c80 7994
6c4cfb24
PA
7995 step_what = thread_still_needs_step_over (ecs->event_thread);
7996
963f9c80 7997 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7998 || (step_what & STEP_OVER_BREAKPOINT));
7999 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 8000
cb71640d
PA
8001 /* We can't use displaced stepping if we need to step past a
8002 watchpoint. The instruction copied to the scratch pad would
8003 still trigger the watchpoint. */
8004 if (remove_bp
3fc8eb30 8005 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 8006 {
a01bda52 8007 set_step_over_info (regcache->aspace (),
21edc42f
YQ
8008 regcache_read_pc (regcache), remove_wps,
8009 ecs->event_thread->global_num);
45e8c884 8010 }
963f9c80 8011 else if (remove_wps)
21edc42f 8012 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
8013
8014 /* If we now need to do an in-line step-over, we need to stop
8015 all other threads. Note this must be done before
8016 insert_breakpoints below, because that removes the breakpoint
8017 we're about to step over, otherwise other threads could miss
8018 it. */
fbea99ea 8019 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 8020 stop_all_threads ();
abbb1732 8021
31e77af2 8022 /* Stop stepping if inserting breakpoints fails. */
a70b8144 8023 try
31e77af2
PA
8024 {
8025 insert_breakpoints ();
8026 }
230d2906 8027 catch (const gdb_exception_error &e)
31e77af2
PA
8028 {
8029 exception_print (gdb_stderr, e);
22bcd14b 8030 stop_waiting (ecs);
bdf2a94a 8031 clear_step_over_info ();
31e77af2 8032 return;
d4f3574e
SS
8033 }
8034
963f9c80 8035 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 8036
64ce06e4 8037 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
8038 }
8039
488f131b 8040 prepare_to_wait (ecs);
d4f3574e
SS
8041}
8042
4d9d9d04
PA
8043/* Called when we should continue running the inferior, because the
8044 current event doesn't cause a user visible stop. This does the
8045 resuming part; waiting for the next event is done elsewhere. */
8046
8047static void
8048keep_going (struct execution_control_state *ecs)
8049{
8050 if (ecs->event_thread->control.trap_expected
8051 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8052 ecs->event_thread->control.trap_expected = 0;
8053
8054 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8055 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8056 keep_going_pass_signal (ecs);
8057}
8058
104c1213
JM
8059/* This function normally comes after a resume, before
8060 handle_inferior_event exits. It takes care of any last bits of
8061 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 8062
104c1213
JM
8063static void
8064prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 8065{
527159b7 8066 if (debug_infrun)
8a9de0e4 8067 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 8068
104c1213 8069 ecs->wait_some_more = 1;
0b333c5e
PA
8070
8071 if (!target_is_async_p ())
8072 mark_infrun_async_event_handler ();
c906108c 8073}
11cf8741 8074
fd664c91 8075/* We are done with the step range of a step/next/si/ni command.
b57bacec 8076 Called once for each n of a "step n" operation. */
fd664c91
PA
8077
8078static void
bdc36728 8079end_stepping_range (struct execution_control_state *ecs)
fd664c91 8080{
bdc36728 8081 ecs->event_thread->control.stop_step = 1;
bdc36728 8082 stop_waiting (ecs);
fd664c91
PA
8083}
8084
33d62d64
JK
8085/* Several print_*_reason functions to print why the inferior has stopped.
8086 We always print something when the inferior exits, or receives a signal.
8087 The rest of the cases are dealt with later on in normal_stop and
8088 print_it_typical. Ideally there should be a call to one of these
8089 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 8090 stop_waiting is called.
33d62d64 8091
fd664c91
PA
8092 Note that we don't call these directly, instead we delegate that to
8093 the interpreters, through observers. Interpreters then call these
8094 with whatever uiout is right. */
33d62d64 8095
fd664c91
PA
8096void
8097print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 8098{
fd664c91 8099 /* For CLI-like interpreters, print nothing. */
33d62d64 8100
112e8700 8101 if (uiout->is_mi_like_p ())
fd664c91 8102 {
112e8700 8103 uiout->field_string ("reason",
fd664c91
PA
8104 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8105 }
8106}
33d62d64 8107
fd664c91
PA
8108void
8109print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 8110{
33d62d64 8111 annotate_signalled ();
112e8700
SM
8112 if (uiout->is_mi_like_p ())
8113 uiout->field_string
8114 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8115 uiout->text ("\nProgram terminated with signal ");
33d62d64 8116 annotate_signal_name ();
112e8700 8117 uiout->field_string ("signal-name",
2ea28649 8118 gdb_signal_to_name (siggnal));
33d62d64 8119 annotate_signal_name_end ();
112e8700 8120 uiout->text (", ");
33d62d64 8121 annotate_signal_string ();
112e8700 8122 uiout->field_string ("signal-meaning",
2ea28649 8123 gdb_signal_to_string (siggnal));
33d62d64 8124 annotate_signal_string_end ();
112e8700
SM
8125 uiout->text (".\n");
8126 uiout->text ("The program no longer exists.\n");
33d62d64
JK
8127}
8128
fd664c91
PA
8129void
8130print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 8131{
fda326dd 8132 struct inferior *inf = current_inferior ();
a068643d 8133 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 8134
33d62d64
JK
8135 annotate_exited (exitstatus);
8136 if (exitstatus)
8137 {
112e8700
SM
8138 if (uiout->is_mi_like_p ())
8139 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
8140 std::string exit_code_str
8141 = string_printf ("0%o", (unsigned int) exitstatus);
8142 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8143 plongest (inf->num), pidstr.c_str (),
8144 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8145 }
8146 else
11cf8741 8147 {
112e8700
SM
8148 if (uiout->is_mi_like_p ())
8149 uiout->field_string
8150 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8151 uiout->message ("[Inferior %s (%s) exited normally]\n",
8152 plongest (inf->num), pidstr.c_str ());
33d62d64 8153 }
33d62d64
JK
8154}
8155
012b3a21
WT
8156/* Some targets/architectures can do extra processing/display of
8157 segmentation faults. E.g., Intel MPX boundary faults.
8158 Call the architecture dependent function to handle the fault. */
8159
8160static void
8161handle_segmentation_fault (struct ui_out *uiout)
8162{
8163 struct regcache *regcache = get_current_regcache ();
ac7936df 8164 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
8165
8166 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8167 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8168}
8169
fd664c91
PA
8170void
8171print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8172{
f303dbd6
PA
8173 struct thread_info *thr = inferior_thread ();
8174
33d62d64
JK
8175 annotate_signal ();
8176
112e8700 8177 if (uiout->is_mi_like_p ())
f303dbd6
PA
8178 ;
8179 else if (show_thread_that_caused_stop ())
33d62d64 8180 {
f303dbd6 8181 const char *name;
33d62d64 8182
112e8700 8183 uiout->text ("\nThread ");
33eca680 8184 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8185
8186 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8187 if (name != NULL)
8188 {
112e8700 8189 uiout->text (" \"");
33eca680 8190 uiout->field_string ("name", name);
112e8700 8191 uiout->text ("\"");
f303dbd6 8192 }
33d62d64 8193 }
f303dbd6 8194 else
112e8700 8195 uiout->text ("\nProgram");
f303dbd6 8196
112e8700
SM
8197 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8198 uiout->text (" stopped");
33d62d64
JK
8199 else
8200 {
112e8700 8201 uiout->text (" received signal ");
8b93c638 8202 annotate_signal_name ();
112e8700
SM
8203 if (uiout->is_mi_like_p ())
8204 uiout->field_string
8205 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8206 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8207 annotate_signal_name_end ();
112e8700 8208 uiout->text (", ");
8b93c638 8209 annotate_signal_string ();
112e8700 8210 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8211
8212 if (siggnal == GDB_SIGNAL_SEGV)
8213 handle_segmentation_fault (uiout);
8214
8b93c638 8215 annotate_signal_string_end ();
33d62d64 8216 }
112e8700 8217 uiout->text (".\n");
33d62d64 8218}
252fbfc8 8219
fd664c91
PA
8220void
8221print_no_history_reason (struct ui_out *uiout)
33d62d64 8222{
112e8700 8223 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8224}
43ff13b4 8225
0c7e1a46
PA
8226/* Print current location without a level number, if we have changed
8227 functions or hit a breakpoint. Print source line if we have one.
8228 bpstat_print contains the logic deciding in detail what to print,
8229 based on the event(s) that just occurred. */
8230
243a9253
PA
8231static void
8232print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8233{
8234 int bpstat_ret;
f486487f 8235 enum print_what source_flag;
0c7e1a46
PA
8236 int do_frame_printing = 1;
8237 struct thread_info *tp = inferior_thread ();
8238
8239 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8240 switch (bpstat_ret)
8241 {
8242 case PRINT_UNKNOWN:
8243 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8244 should) carry around the function and does (or should) use
8245 that when doing a frame comparison. */
8246 if (tp->control.stop_step
8247 && frame_id_eq (tp->control.step_frame_id,
8248 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8249 && (tp->control.step_start_function
8250 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8251 {
8252 /* Finished step, just print source line. */
8253 source_flag = SRC_LINE;
8254 }
8255 else
8256 {
8257 /* Print location and source line. */
8258 source_flag = SRC_AND_LOC;
8259 }
8260 break;
8261 case PRINT_SRC_AND_LOC:
8262 /* Print location and source line. */
8263 source_flag = SRC_AND_LOC;
8264 break;
8265 case PRINT_SRC_ONLY:
8266 source_flag = SRC_LINE;
8267 break;
8268 case PRINT_NOTHING:
8269 /* Something bogus. */
8270 source_flag = SRC_LINE;
8271 do_frame_printing = 0;
8272 break;
8273 default:
8274 internal_error (__FILE__, __LINE__, _("Unknown value."));
8275 }
8276
8277 /* The behavior of this routine with respect to the source
8278 flag is:
8279 SRC_LINE: Print only source line
8280 LOCATION: Print only location
8281 SRC_AND_LOC: Print location and source line. */
8282 if (do_frame_printing)
8283 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8284}
8285
243a9253
PA
8286/* See infrun.h. */
8287
8288void
4c7d57e7 8289print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8290{
243a9253 8291 struct target_waitstatus last;
243a9253
PA
8292 struct thread_info *tp;
8293
5b6d1e4f 8294 get_last_target_status (nullptr, nullptr, &last);
243a9253 8295
67ad9399
TT
8296 {
8297 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8298
67ad9399 8299 print_stop_location (&last);
243a9253 8300
67ad9399 8301 /* Display the auto-display expressions. */
4c7d57e7
TT
8302 if (displays)
8303 do_displays ();
67ad9399 8304 }
243a9253
PA
8305
8306 tp = inferior_thread ();
8307 if (tp->thread_fsm != NULL
46e3ed7f 8308 && tp->thread_fsm->finished_p ())
243a9253
PA
8309 {
8310 struct return_value_info *rv;
8311
46e3ed7f 8312 rv = tp->thread_fsm->return_value ();
243a9253
PA
8313 if (rv != NULL)
8314 print_return_value (uiout, rv);
8315 }
0c7e1a46
PA
8316}
8317
388a7084
PA
8318/* See infrun.h. */
8319
8320void
8321maybe_remove_breakpoints (void)
8322{
8323 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8324 {
8325 if (remove_breakpoints ())
8326 {
223ffa71 8327 target_terminal::ours_for_output ();
388a7084
PA
8328 printf_filtered (_("Cannot remove breakpoints because "
8329 "program is no longer writable.\nFurther "
8330 "execution is probably impossible.\n"));
8331 }
8332 }
8333}
8334
4c2f2a79
PA
8335/* The execution context that just caused a normal stop. */
8336
8337struct stop_context
8338{
2d844eaf
TT
8339 stop_context ();
8340 ~stop_context ();
8341
8342 DISABLE_COPY_AND_ASSIGN (stop_context);
8343
8344 bool changed () const;
8345
4c2f2a79
PA
8346 /* The stop ID. */
8347 ULONGEST stop_id;
c906108c 8348
4c2f2a79 8349 /* The event PTID. */
c906108c 8350
4c2f2a79
PA
8351 ptid_t ptid;
8352
8353 /* If stopp for a thread event, this is the thread that caused the
8354 stop. */
8355 struct thread_info *thread;
8356
8357 /* The inferior that caused the stop. */
8358 int inf_num;
8359};
8360
2d844eaf 8361/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8362 takes a strong reference to the thread. */
8363
2d844eaf 8364stop_context::stop_context ()
4c2f2a79 8365{
2d844eaf
TT
8366 stop_id = get_stop_id ();
8367 ptid = inferior_ptid;
8368 inf_num = current_inferior ()->num;
4c2f2a79 8369
d7e15655 8370 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8371 {
8372 /* Take a strong reference so that the thread can't be deleted
8373 yet. */
2d844eaf
TT
8374 thread = inferior_thread ();
8375 thread->incref ();
4c2f2a79
PA
8376 }
8377 else
2d844eaf 8378 thread = NULL;
4c2f2a79
PA
8379}
8380
8381/* Release a stop context previously created with save_stop_context.
8382 Releases the strong reference to the thread as well. */
8383
2d844eaf 8384stop_context::~stop_context ()
4c2f2a79 8385{
2d844eaf
TT
8386 if (thread != NULL)
8387 thread->decref ();
4c2f2a79
PA
8388}
8389
8390/* Return true if the current context no longer matches the saved stop
8391 context. */
8392
2d844eaf
TT
8393bool
8394stop_context::changed () const
8395{
8396 if (ptid != inferior_ptid)
8397 return true;
8398 if (inf_num != current_inferior ()->num)
8399 return true;
8400 if (thread != NULL && thread->state != THREAD_STOPPED)
8401 return true;
8402 if (get_stop_id () != stop_id)
8403 return true;
8404 return false;
4c2f2a79
PA
8405}
8406
8407/* See infrun.h. */
8408
8409int
96baa820 8410normal_stop (void)
c906108c 8411{
73b65bb0 8412 struct target_waitstatus last;
73b65bb0 8413
5b6d1e4f 8414 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8415
4c2f2a79
PA
8416 new_stop_id ();
8417
29f49a6a
PA
8418 /* If an exception is thrown from this point on, make sure to
8419 propagate GDB's knowledge of the executing state to the
8420 frontend/user running state. A QUIT is an easy exception to see
8421 here, so do this before any filtered output. */
731f534f 8422
5b6d1e4f 8423 ptid_t finish_ptid = null_ptid;
731f534f 8424
c35b1492 8425 if (!non_stop)
5b6d1e4f 8426 finish_ptid = minus_one_ptid;
e1316e60
PA
8427 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8428 || last.kind == TARGET_WAITKIND_EXITED)
8429 {
8430 /* On some targets, we may still have live threads in the
8431 inferior when we get a process exit event. E.g., for
8432 "checkpoint", when the current checkpoint/fork exits,
8433 linux-fork.c automatically switches to another fork from
8434 within target_mourn_inferior. */
731f534f 8435 if (inferior_ptid != null_ptid)
5b6d1e4f 8436 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8437 }
8438 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8439 finish_ptid = inferior_ptid;
8440
8441 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8442 if (finish_ptid != null_ptid)
8443 {
8444 maybe_finish_thread_state.emplace
8445 (user_visible_resume_target (finish_ptid), finish_ptid);
8446 }
29f49a6a 8447
b57bacec
PA
8448 /* As we're presenting a stop, and potentially removing breakpoints,
8449 update the thread list so we can tell whether there are threads
8450 running on the target. With target remote, for example, we can
8451 only learn about new threads when we explicitly update the thread
8452 list. Do this before notifying the interpreters about signal
8453 stops, end of stepping ranges, etc., so that the "new thread"
8454 output is emitted before e.g., "Program received signal FOO",
8455 instead of after. */
8456 update_thread_list ();
8457
8458 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8459 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8460
c906108c
SS
8461 /* As with the notification of thread events, we want to delay
8462 notifying the user that we've switched thread context until
8463 the inferior actually stops.
8464
73b65bb0
DJ
8465 There's no point in saying anything if the inferior has exited.
8466 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8467 "received a signal".
8468
8469 Also skip saying anything in non-stop mode. In that mode, as we
8470 don't want GDB to switch threads behind the user's back, to avoid
8471 races where the user is typing a command to apply to thread x,
8472 but GDB switches to thread y before the user finishes entering
8473 the command, fetch_inferior_event installs a cleanup to restore
8474 the current thread back to the thread the user had selected right
8475 after this event is handled, so we're not really switching, only
8476 informing of a stop. */
4f8d22e3 8477 if (!non_stop
731f534f 8478 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8479 && target_has_execution
8480 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8481 && last.kind != TARGET_WAITKIND_EXITED
8482 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8483 {
0e454242 8484 SWITCH_THRU_ALL_UIS ()
3b12939d 8485 {
223ffa71 8486 target_terminal::ours_for_output ();
3b12939d 8487 printf_filtered (_("[Switching to %s]\n"),
a068643d 8488 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8489 annotate_thread_changed ();
8490 }
39f77062 8491 previous_inferior_ptid = inferior_ptid;
c906108c 8492 }
c906108c 8493
0e5bf2a8
PA
8494 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8495 {
0e454242 8496 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8497 if (current_ui->prompt_state == PROMPT_BLOCKED)
8498 {
223ffa71 8499 target_terminal::ours_for_output ();
3b12939d
PA
8500 printf_filtered (_("No unwaited-for children left.\n"));
8501 }
0e5bf2a8
PA
8502 }
8503
b57bacec 8504 /* Note: this depends on the update_thread_list call above. */
388a7084 8505 maybe_remove_breakpoints ();
c906108c 8506
c906108c
SS
8507 /* If an auto-display called a function and that got a signal,
8508 delete that auto-display to avoid an infinite recursion. */
8509
8510 if (stopped_by_random_signal)
8511 disable_current_display ();
8512
0e454242 8513 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8514 {
8515 async_enable_stdin ();
8516 }
c906108c 8517
388a7084 8518 /* Let the user/frontend see the threads as stopped. */
731f534f 8519 maybe_finish_thread_state.reset ();
388a7084
PA
8520
8521 /* Select innermost stack frame - i.e., current frame is frame 0,
8522 and current location is based on that. Handle the case where the
8523 dummy call is returning after being stopped. E.g. the dummy call
8524 previously hit a breakpoint. (If the dummy call returns
8525 normally, we won't reach here.) Do this before the stop hook is
8526 run, so that it doesn't get to see the temporary dummy frame,
8527 which is not where we'll present the stop. */
8528 if (has_stack_frames ())
8529 {
8530 if (stop_stack_dummy == STOP_STACK_DUMMY)
8531 {
8532 /* Pop the empty frame that contains the stack dummy. This
8533 also restores inferior state prior to the call (struct
8534 infcall_suspend_state). */
8535 struct frame_info *frame = get_current_frame ();
8536
8537 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8538 frame_pop (frame);
8539 /* frame_pop calls reinit_frame_cache as the last thing it
8540 does which means there's now no selected frame. */
8541 }
8542
8543 select_frame (get_current_frame ());
8544
8545 /* Set the current source location. */
8546 set_current_sal_from_frame (get_current_frame ());
8547 }
dd7e2d2b
PA
8548
8549 /* Look up the hook_stop and run it (CLI internally handles problem
8550 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8551 if (stop_command != NULL)
8552 {
2d844eaf 8553 stop_context saved_context;
4c2f2a79 8554
a70b8144 8555 try
bf469271
PA
8556 {
8557 execute_cmd_pre_hook (stop_command);
8558 }
230d2906 8559 catch (const gdb_exception &ex)
bf469271
PA
8560 {
8561 exception_fprintf (gdb_stderr, ex,
8562 "Error while running hook_stop:\n");
8563 }
4c2f2a79
PA
8564
8565 /* If the stop hook resumes the target, then there's no point in
8566 trying to notify about the previous stop; its context is
8567 gone. Likewise if the command switches thread or inferior --
8568 the observers would print a stop for the wrong
8569 thread/inferior. */
2d844eaf
TT
8570 if (saved_context.changed ())
8571 return 1;
4c2f2a79 8572 }
dd7e2d2b 8573
388a7084
PA
8574 /* Notify observers about the stop. This is where the interpreters
8575 print the stop event. */
d7e15655 8576 if (inferior_ptid != null_ptid)
76727919 8577 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8578 stop_print_frame);
8579 else
76727919 8580 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8581
243a9253
PA
8582 annotate_stopped ();
8583
48844aa6
PA
8584 if (target_has_execution)
8585 {
8586 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8587 && last.kind != TARGET_WAITKIND_EXITED
8588 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8589 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8590 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8591 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8592 }
6c95b8df
PA
8593
8594 /* Try to get rid of automatically added inferiors that are no
8595 longer needed. Keeping those around slows down things linearly.
8596 Note that this never removes the current inferior. */
8597 prune_inferiors ();
4c2f2a79
PA
8598
8599 return 0;
c906108c 8600}
c906108c 8601\f
c5aa993b 8602int
96baa820 8603signal_stop_state (int signo)
c906108c 8604{
d6b48e9c 8605 return signal_stop[signo];
c906108c
SS
8606}
8607
c5aa993b 8608int
96baa820 8609signal_print_state (int signo)
c906108c
SS
8610{
8611 return signal_print[signo];
8612}
8613
c5aa993b 8614int
96baa820 8615signal_pass_state (int signo)
c906108c
SS
8616{
8617 return signal_program[signo];
8618}
8619
2455069d
UW
8620static void
8621signal_cache_update (int signo)
8622{
8623 if (signo == -1)
8624 {
a493e3e2 8625 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8626 signal_cache_update (signo);
8627
8628 return;
8629 }
8630
8631 signal_pass[signo] = (signal_stop[signo] == 0
8632 && signal_print[signo] == 0
ab04a2af
TT
8633 && signal_program[signo] == 1
8634 && signal_catch[signo] == 0);
2455069d
UW
8635}
8636
488f131b 8637int
7bda5e4a 8638signal_stop_update (int signo, int state)
d4f3574e
SS
8639{
8640 int ret = signal_stop[signo];
abbb1732 8641
d4f3574e 8642 signal_stop[signo] = state;
2455069d 8643 signal_cache_update (signo);
d4f3574e
SS
8644 return ret;
8645}
8646
488f131b 8647int
7bda5e4a 8648signal_print_update (int signo, int state)
d4f3574e
SS
8649{
8650 int ret = signal_print[signo];
abbb1732 8651
d4f3574e 8652 signal_print[signo] = state;
2455069d 8653 signal_cache_update (signo);
d4f3574e
SS
8654 return ret;
8655}
8656
488f131b 8657int
7bda5e4a 8658signal_pass_update (int signo, int state)
d4f3574e
SS
8659{
8660 int ret = signal_program[signo];
abbb1732 8661
d4f3574e 8662 signal_program[signo] = state;
2455069d 8663 signal_cache_update (signo);
d4f3574e
SS
8664 return ret;
8665}
8666
ab04a2af
TT
8667/* Update the global 'signal_catch' from INFO and notify the
8668 target. */
8669
8670void
8671signal_catch_update (const unsigned int *info)
8672{
8673 int i;
8674
8675 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8676 signal_catch[i] = info[i] > 0;
8677 signal_cache_update (-1);
adc6a863 8678 target_pass_signals (signal_pass);
ab04a2af
TT
8679}
8680
c906108c 8681static void
96baa820 8682sig_print_header (void)
c906108c 8683{
3e43a32a
MS
8684 printf_filtered (_("Signal Stop\tPrint\tPass "
8685 "to program\tDescription\n"));
c906108c
SS
8686}
8687
8688static void
2ea28649 8689sig_print_info (enum gdb_signal oursig)
c906108c 8690{
2ea28649 8691 const char *name = gdb_signal_to_name (oursig);
c906108c 8692 int name_padding = 13 - strlen (name);
96baa820 8693
c906108c
SS
8694 if (name_padding <= 0)
8695 name_padding = 0;
8696
8697 printf_filtered ("%s", name);
488f131b 8698 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8699 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8700 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8701 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8702 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8703}
8704
8705/* Specify how various signals in the inferior should be handled. */
8706
8707static void
0b39b52e 8708handle_command (const char *args, int from_tty)
c906108c 8709{
c906108c 8710 int digits, wordlen;
b926417a 8711 int sigfirst, siglast;
2ea28649 8712 enum gdb_signal oursig;
c906108c 8713 int allsigs;
c906108c
SS
8714
8715 if (args == NULL)
8716 {
e2e0b3e5 8717 error_no_arg (_("signal to handle"));
c906108c
SS
8718 }
8719
1777feb0 8720 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8721
adc6a863
PA
8722 const size_t nsigs = GDB_SIGNAL_LAST;
8723 unsigned char sigs[nsigs] {};
c906108c 8724
1777feb0 8725 /* Break the command line up into args. */
c906108c 8726
773a1edc 8727 gdb_argv built_argv (args);
c906108c
SS
8728
8729 /* Walk through the args, looking for signal oursigs, signal names, and
8730 actions. Signal numbers and signal names may be interspersed with
8731 actions, with the actions being performed for all signals cumulatively
1777feb0 8732 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8733
773a1edc 8734 for (char *arg : built_argv)
c906108c 8735 {
773a1edc
TT
8736 wordlen = strlen (arg);
8737 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8738 {;
8739 }
8740 allsigs = 0;
8741 sigfirst = siglast = -1;
8742
773a1edc 8743 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8744 {
8745 /* Apply action to all signals except those used by the
1777feb0 8746 debugger. Silently skip those. */
c906108c
SS
8747 allsigs = 1;
8748 sigfirst = 0;
8749 siglast = nsigs - 1;
8750 }
773a1edc 8751 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8752 {
8753 SET_SIGS (nsigs, sigs, signal_stop);
8754 SET_SIGS (nsigs, sigs, signal_print);
8755 }
773a1edc 8756 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8757 {
8758 UNSET_SIGS (nsigs, sigs, signal_program);
8759 }
773a1edc 8760 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8761 {
8762 SET_SIGS (nsigs, sigs, signal_print);
8763 }
773a1edc 8764 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8765 {
8766 SET_SIGS (nsigs, sigs, signal_program);
8767 }
773a1edc 8768 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8769 {
8770 UNSET_SIGS (nsigs, sigs, signal_stop);
8771 }
773a1edc 8772 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8773 {
8774 SET_SIGS (nsigs, sigs, signal_program);
8775 }
773a1edc 8776 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8777 {
8778 UNSET_SIGS (nsigs, sigs, signal_print);
8779 UNSET_SIGS (nsigs, sigs, signal_stop);
8780 }
773a1edc 8781 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8782 {
8783 UNSET_SIGS (nsigs, sigs, signal_program);
8784 }
8785 else if (digits > 0)
8786 {
8787 /* It is numeric. The numeric signal refers to our own
8788 internal signal numbering from target.h, not to host/target
8789 signal number. This is a feature; users really should be
8790 using symbolic names anyway, and the common ones like
8791 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8792
8793 sigfirst = siglast = (int)
773a1edc
TT
8794 gdb_signal_from_command (atoi (arg));
8795 if (arg[digits] == '-')
c906108c
SS
8796 {
8797 siglast = (int)
773a1edc 8798 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8799 }
8800 if (sigfirst > siglast)
8801 {
1777feb0 8802 /* Bet he didn't figure we'd think of this case... */
b926417a 8803 std::swap (sigfirst, siglast);
c906108c
SS
8804 }
8805 }
8806 else
8807 {
773a1edc 8808 oursig = gdb_signal_from_name (arg);
a493e3e2 8809 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8810 {
8811 sigfirst = siglast = (int) oursig;
8812 }
8813 else
8814 {
8815 /* Not a number and not a recognized flag word => complain. */
773a1edc 8816 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8817 }
8818 }
8819
8820 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8821 which signals to apply actions to. */
c906108c 8822
b926417a 8823 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8824 {
2ea28649 8825 switch ((enum gdb_signal) signum)
c906108c 8826 {
a493e3e2
PA
8827 case GDB_SIGNAL_TRAP:
8828 case GDB_SIGNAL_INT:
c906108c
SS
8829 if (!allsigs && !sigs[signum])
8830 {
9e2f0ad4 8831 if (query (_("%s is used by the debugger.\n\
3e43a32a 8832Are you sure you want to change it? "),
2ea28649 8833 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8834 {
8835 sigs[signum] = 1;
8836 }
8837 else
c119e040 8838 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8839 }
8840 break;
a493e3e2
PA
8841 case GDB_SIGNAL_0:
8842 case GDB_SIGNAL_DEFAULT:
8843 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8844 /* Make sure that "all" doesn't print these. */
8845 break;
8846 default:
8847 sigs[signum] = 1;
8848 break;
8849 }
8850 }
c906108c
SS
8851 }
8852
b926417a 8853 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8854 if (sigs[signum])
8855 {
2455069d 8856 signal_cache_update (-1);
adc6a863
PA
8857 target_pass_signals (signal_pass);
8858 target_program_signals (signal_program);
c906108c 8859
3a031f65
PA
8860 if (from_tty)
8861 {
8862 /* Show the results. */
8863 sig_print_header ();
8864 for (; signum < nsigs; signum++)
8865 if (sigs[signum])
aead7601 8866 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8867 }
8868
8869 break;
8870 }
c906108c
SS
8871}
8872
de0bea00
MF
8873/* Complete the "handle" command. */
8874
eb3ff9a5 8875static void
de0bea00 8876handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8877 completion_tracker &tracker,
6f937416 8878 const char *text, const char *word)
de0bea00 8879{
de0bea00
MF
8880 static const char * const keywords[] =
8881 {
8882 "all",
8883 "stop",
8884 "ignore",
8885 "print",
8886 "pass",
8887 "nostop",
8888 "noignore",
8889 "noprint",
8890 "nopass",
8891 NULL,
8892 };
8893
eb3ff9a5
PA
8894 signal_completer (ignore, tracker, text, word);
8895 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8896}
8897
2ea28649
PA
8898enum gdb_signal
8899gdb_signal_from_command (int num)
ed01b82c
PA
8900{
8901 if (num >= 1 && num <= 15)
2ea28649 8902 return (enum gdb_signal) num;
ed01b82c
PA
8903 error (_("Only signals 1-15 are valid as numeric signals.\n\
8904Use \"info signals\" for a list of symbolic signals."));
8905}
8906
c906108c
SS
8907/* Print current contents of the tables set by the handle command.
8908 It is possible we should just be printing signals actually used
8909 by the current target (but for things to work right when switching
8910 targets, all signals should be in the signal tables). */
8911
8912static void
1d12d88f 8913info_signals_command (const char *signum_exp, int from_tty)
c906108c 8914{
2ea28649 8915 enum gdb_signal oursig;
abbb1732 8916
c906108c
SS
8917 sig_print_header ();
8918
8919 if (signum_exp)
8920 {
8921 /* First see if this is a symbol name. */
2ea28649 8922 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8923 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8924 {
8925 /* No, try numeric. */
8926 oursig =
2ea28649 8927 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8928 }
8929 sig_print_info (oursig);
8930 return;
8931 }
8932
8933 printf_filtered ("\n");
8934 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8935 for (oursig = GDB_SIGNAL_FIRST;
8936 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8937 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8938 {
8939 QUIT;
8940
a493e3e2
PA
8941 if (oursig != GDB_SIGNAL_UNKNOWN
8942 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8943 sig_print_info (oursig);
8944 }
8945
3e43a32a
MS
8946 printf_filtered (_("\nUse the \"handle\" command "
8947 "to change these tables.\n"));
c906108c 8948}
4aa995e1
PA
8949
8950/* The $_siginfo convenience variable is a bit special. We don't know
8951 for sure the type of the value until we actually have a chance to
7a9dd1b2 8952 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8953 also dependent on which thread you have selected.
8954
8955 1. making $_siginfo be an internalvar that creates a new value on
8956 access.
8957
8958 2. making the value of $_siginfo be an lval_computed value. */
8959
8960/* This function implements the lval_computed support for reading a
8961 $_siginfo value. */
8962
8963static void
8964siginfo_value_read (struct value *v)
8965{
8966 LONGEST transferred;
8967
a911d87a
PA
8968 /* If we can access registers, so can we access $_siginfo. Likewise
8969 vice versa. */
8970 validate_registers_access ();
c709acd1 8971
4aa995e1 8972 transferred =
8b88a78e 8973 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8974 NULL,
8975 value_contents_all_raw (v),
8976 value_offset (v),
8977 TYPE_LENGTH (value_type (v)));
8978
8979 if (transferred != TYPE_LENGTH (value_type (v)))
8980 error (_("Unable to read siginfo"));
8981}
8982
8983/* This function implements the lval_computed support for writing a
8984 $_siginfo value. */
8985
8986static void
8987siginfo_value_write (struct value *v, struct value *fromval)
8988{
8989 LONGEST transferred;
8990
a911d87a
PA
8991 /* If we can access registers, so can we access $_siginfo. Likewise
8992 vice versa. */
8993 validate_registers_access ();
c709acd1 8994
8b88a78e 8995 transferred = target_write (current_top_target (),
4aa995e1
PA
8996 TARGET_OBJECT_SIGNAL_INFO,
8997 NULL,
8998 value_contents_all_raw (fromval),
8999 value_offset (v),
9000 TYPE_LENGTH (value_type (fromval)));
9001
9002 if (transferred != TYPE_LENGTH (value_type (fromval)))
9003 error (_("Unable to write siginfo"));
9004}
9005
c8f2448a 9006static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
9007 {
9008 siginfo_value_read,
9009 siginfo_value_write
9010 };
9011
9012/* Return a new value with the correct type for the siginfo object of
78267919
UW
9013 the current thread using architecture GDBARCH. Return a void value
9014 if there's no object available. */
4aa995e1 9015
2c0b251b 9016static struct value *
22d2b532
SDJ
9017siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9018 void *ignore)
4aa995e1 9019{
4aa995e1 9020 if (target_has_stack
d7e15655 9021 && inferior_ptid != null_ptid
78267919 9022 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 9023 {
78267919 9024 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 9025
78267919 9026 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
9027 }
9028
78267919 9029 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
9030}
9031
c906108c 9032\f
16c381f0
JK
9033/* infcall_suspend_state contains state about the program itself like its
9034 registers and any signal it received when it last stopped.
9035 This state must be restored regardless of how the inferior function call
9036 ends (either successfully, or after it hits a breakpoint or signal)
9037 if the program is to properly continue where it left off. */
9038
6bf78e29 9039class infcall_suspend_state
7a292a7a 9040{
6bf78e29
AB
9041public:
9042 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9043 once the inferior function call has finished. */
9044 infcall_suspend_state (struct gdbarch *gdbarch,
9045 const struct thread_info *tp,
9046 struct regcache *regcache)
9047 : m_thread_suspend (tp->suspend),
9048 m_registers (new readonly_detached_regcache (*regcache))
9049 {
9050 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9051
9052 if (gdbarch_get_siginfo_type_p (gdbarch))
9053 {
9054 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9055 size_t len = TYPE_LENGTH (type);
9056
9057 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9058
9059 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9060 siginfo_data.get (), 0, len) != len)
9061 {
9062 /* Errors ignored. */
9063 siginfo_data.reset (nullptr);
9064 }
9065 }
9066
9067 if (siginfo_data)
9068 {
9069 m_siginfo_gdbarch = gdbarch;
9070 m_siginfo_data = std::move (siginfo_data);
9071 }
9072 }
9073
9074 /* Return a pointer to the stored register state. */
16c381f0 9075
6bf78e29
AB
9076 readonly_detached_regcache *registers () const
9077 {
9078 return m_registers.get ();
9079 }
9080
9081 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9082
9083 void restore (struct gdbarch *gdbarch,
9084 struct thread_info *tp,
9085 struct regcache *regcache) const
9086 {
9087 tp->suspend = m_thread_suspend;
9088
9089 if (m_siginfo_gdbarch == gdbarch)
9090 {
9091 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9092
9093 /* Errors ignored. */
9094 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9095 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9096 }
9097
9098 /* The inferior can be gone if the user types "print exit(0)"
9099 (and perhaps other times). */
9100 if (target_has_execution)
9101 /* NB: The register write goes through to the target. */
9102 regcache->restore (registers ());
9103 }
9104
9105private:
9106 /* How the current thread stopped before the inferior function call was
9107 executed. */
9108 struct thread_suspend_state m_thread_suspend;
9109
9110 /* The registers before the inferior function call was executed. */
9111 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 9112
35515841 9113 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 9114 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
9115
9116 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9117 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9118 content would be invalid. */
6bf78e29 9119 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
9120};
9121
cb524840
TT
9122infcall_suspend_state_up
9123save_infcall_suspend_state ()
b89667eb 9124{
b89667eb 9125 struct thread_info *tp = inferior_thread ();
1736ad11 9126 struct regcache *regcache = get_current_regcache ();
ac7936df 9127 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 9128
6bf78e29
AB
9129 infcall_suspend_state_up inf_state
9130 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 9131
6bf78e29
AB
9132 /* Having saved the current state, adjust the thread state, discarding
9133 any stop signal information. The stop signal is not useful when
9134 starting an inferior function call, and run_inferior_call will not use
9135 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 9136 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 9137
b89667eb
DE
9138 return inf_state;
9139}
9140
9141/* Restore inferior session state to INF_STATE. */
9142
9143void
16c381f0 9144restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9145{
9146 struct thread_info *tp = inferior_thread ();
1736ad11 9147 struct regcache *regcache = get_current_regcache ();
ac7936df 9148 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9149
6bf78e29 9150 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9151 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9152}
9153
b89667eb 9154void
16c381f0 9155discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9156{
dd848631 9157 delete inf_state;
b89667eb
DE
9158}
9159
daf6667d 9160readonly_detached_regcache *
16c381f0 9161get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9162{
6bf78e29 9163 return inf_state->registers ();
b89667eb
DE
9164}
9165
16c381f0
JK
9166/* infcall_control_state contains state regarding gdb's control of the
9167 inferior itself like stepping control. It also contains session state like
9168 the user's currently selected frame. */
b89667eb 9169
16c381f0 9170struct infcall_control_state
b89667eb 9171{
16c381f0
JK
9172 struct thread_control_state thread_control;
9173 struct inferior_control_state inferior_control;
d82142e2
JK
9174
9175 /* Other fields: */
ee841dd8
TT
9176 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9177 int stopped_by_random_signal = 0;
7a292a7a 9178
b89667eb 9179 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 9180 struct frame_id selected_frame_id {};
7a292a7a
SS
9181};
9182
c906108c 9183/* Save all of the information associated with the inferior<==>gdb
b89667eb 9184 connection. */
c906108c 9185
cb524840
TT
9186infcall_control_state_up
9187save_infcall_control_state ()
c906108c 9188{
cb524840 9189 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9190 struct thread_info *tp = inferior_thread ();
d6b48e9c 9191 struct inferior *inf = current_inferior ();
7a292a7a 9192
16c381f0
JK
9193 inf_status->thread_control = tp->control;
9194 inf_status->inferior_control = inf->control;
d82142e2 9195
8358c15c 9196 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9197 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9198
16c381f0
JK
9199 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9200 chain. If caller's caller is walking the chain, they'll be happier if we
9201 hand them back the original chain when restore_infcall_control_state is
9202 called. */
9203 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9204
9205 /* Other fields: */
9206 inf_status->stop_stack_dummy = stop_stack_dummy;
9207 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9208
206415a3 9209 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9210
7a292a7a 9211 return inf_status;
c906108c
SS
9212}
9213
bf469271
PA
9214static void
9215restore_selected_frame (const frame_id &fid)
c906108c 9216{
bf469271 9217 frame_info *frame = frame_find_by_id (fid);
c906108c 9218
aa0cd9c1
AC
9219 /* If inf_status->selected_frame_id is NULL, there was no previously
9220 selected frame. */
101dcfbe 9221 if (frame == NULL)
c906108c 9222 {
8a3fe4f8 9223 warning (_("Unable to restore previously selected frame."));
bf469271 9224 return;
c906108c
SS
9225 }
9226
0f7d239c 9227 select_frame (frame);
c906108c
SS
9228}
9229
b89667eb
DE
9230/* Restore inferior session state to INF_STATUS. */
9231
c906108c 9232void
16c381f0 9233restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9234{
4e1c45ea 9235 struct thread_info *tp = inferior_thread ();
d6b48e9c 9236 struct inferior *inf = current_inferior ();
4e1c45ea 9237
8358c15c
JK
9238 if (tp->control.step_resume_breakpoint)
9239 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9240
5b79abe7
TT
9241 if (tp->control.exception_resume_breakpoint)
9242 tp->control.exception_resume_breakpoint->disposition
9243 = disp_del_at_next_stop;
9244
d82142e2 9245 /* Handle the bpstat_copy of the chain. */
16c381f0 9246 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9247
16c381f0
JK
9248 tp->control = inf_status->thread_control;
9249 inf->control = inf_status->inferior_control;
d82142e2
JK
9250
9251 /* Other fields: */
9252 stop_stack_dummy = inf_status->stop_stack_dummy;
9253 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9254
b89667eb 9255 if (target_has_stack)
c906108c 9256 {
bf469271 9257 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9258 walking the stack might encounter a garbage pointer and
9259 error() trying to dereference it. */
a70b8144 9260 try
bf469271
PA
9261 {
9262 restore_selected_frame (inf_status->selected_frame_id);
9263 }
230d2906 9264 catch (const gdb_exception_error &ex)
bf469271
PA
9265 {
9266 exception_fprintf (gdb_stderr, ex,
9267 "Unable to restore previously selected frame:\n");
9268 /* Error in restoring the selected frame. Select the
9269 innermost frame. */
9270 select_frame (get_current_frame ());
9271 }
c906108c 9272 }
c906108c 9273
ee841dd8 9274 delete inf_status;
7a292a7a 9275}
c906108c
SS
9276
9277void
16c381f0 9278discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9279{
8358c15c
JK
9280 if (inf_status->thread_control.step_resume_breakpoint)
9281 inf_status->thread_control.step_resume_breakpoint->disposition
9282 = disp_del_at_next_stop;
9283
5b79abe7
TT
9284 if (inf_status->thread_control.exception_resume_breakpoint)
9285 inf_status->thread_control.exception_resume_breakpoint->disposition
9286 = disp_del_at_next_stop;
9287
1777feb0 9288 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9289 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9290
ee841dd8 9291 delete inf_status;
7a292a7a 9292}
b89667eb 9293\f
7f89fd65 9294/* See infrun.h. */
0c557179
SDJ
9295
9296void
9297clear_exit_convenience_vars (void)
9298{
9299 clear_internalvar (lookup_internalvar ("_exitsignal"));
9300 clear_internalvar (lookup_internalvar ("_exitcode"));
9301}
c5aa993b 9302\f
488f131b 9303
b2175913
MS
9304/* User interface for reverse debugging:
9305 Set exec-direction / show exec-direction commands
9306 (returns error unless target implements to_set_exec_direction method). */
9307
170742de 9308enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9309static const char exec_forward[] = "forward";
9310static const char exec_reverse[] = "reverse";
9311static const char *exec_direction = exec_forward;
40478521 9312static const char *const exec_direction_names[] = {
b2175913
MS
9313 exec_forward,
9314 exec_reverse,
9315 NULL
9316};
9317
9318static void
eb4c3f4a 9319set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9320 struct cmd_list_element *cmd)
9321{
9322 if (target_can_execute_reverse)
9323 {
9324 if (!strcmp (exec_direction, exec_forward))
9325 execution_direction = EXEC_FORWARD;
9326 else if (!strcmp (exec_direction, exec_reverse))
9327 execution_direction = EXEC_REVERSE;
9328 }
8bbed405
MS
9329 else
9330 {
9331 exec_direction = exec_forward;
9332 error (_("Target does not support this operation."));
9333 }
b2175913
MS
9334}
9335
9336static void
9337show_exec_direction_func (struct ui_file *out, int from_tty,
9338 struct cmd_list_element *cmd, const char *value)
9339{
9340 switch (execution_direction) {
9341 case EXEC_FORWARD:
9342 fprintf_filtered (out, _("Forward.\n"));
9343 break;
9344 case EXEC_REVERSE:
9345 fprintf_filtered (out, _("Reverse.\n"));
9346 break;
b2175913 9347 default:
d8b34453
PA
9348 internal_error (__FILE__, __LINE__,
9349 _("bogus execution_direction value: %d"),
9350 (int) execution_direction);
b2175913
MS
9351 }
9352}
9353
d4db2f36
PA
9354static void
9355show_schedule_multiple (struct ui_file *file, int from_tty,
9356 struct cmd_list_element *c, const char *value)
9357{
3e43a32a
MS
9358 fprintf_filtered (file, _("Resuming the execution of threads "
9359 "of all processes is %s.\n"), value);
d4db2f36 9360}
ad52ddc6 9361
22d2b532
SDJ
9362/* Implementation of `siginfo' variable. */
9363
9364static const struct internalvar_funcs siginfo_funcs =
9365{
9366 siginfo_make_value,
9367 NULL,
9368 NULL
9369};
9370
372316f1
PA
9371/* Callback for infrun's target events source. This is marked when a
9372 thread has a pending status to process. */
9373
9374static void
9375infrun_async_inferior_event_handler (gdb_client_data data)
9376{
372316f1
PA
9377 inferior_event_handler (INF_REG_EVENT, NULL);
9378}
9379
6c265988 9380void _initialize_infrun ();
c906108c 9381void
6c265988 9382_initialize_infrun ()
c906108c 9383{
de0bea00 9384 struct cmd_list_element *c;
c906108c 9385
372316f1
PA
9386 /* Register extra event sources in the event loop. */
9387 infrun_async_inferior_event_token
9388 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9389
11db9430 9390 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9391What debugger does when program gets various signals.\n\
9392Specify a signal as argument to print info on that signal only."));
c906108c
SS
9393 add_info_alias ("handle", "signals", 0);
9394
de0bea00 9395 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9396Specify how to handle signals.\n\
486c7739 9397Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9398Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9399If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9400will be displayed instead.\n\
9401\n\
c906108c
SS
9402Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9403from 1-15 are allowed for compatibility with old versions of GDB.\n\
9404Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9405The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9406used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9407\n\
1bedd215 9408Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9409\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9410Stop means reenter debugger if this signal happens (implies print).\n\
9411Print means print a message if this signal happens.\n\
9412Pass means let program see this signal; otherwise program doesn't know.\n\
9413Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9414Pass and Stop may be combined.\n\
9415\n\
9416Multiple signals may be specified. Signal numbers and signal names\n\
9417may be interspersed with actions, with the actions being performed for\n\
9418all signals cumulatively specified."));
de0bea00 9419 set_cmd_completer (c, handle_completer);
486c7739 9420
c906108c 9421 if (!dbx_commands)
1a966eab
AC
9422 stop_command = add_cmd ("stop", class_obscure,
9423 not_just_help_class_command, _("\
9424There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9425This allows you to set a list of commands to be run each time execution\n\
1a966eab 9426of the program stops."), &cmdlist);
c906108c 9427
ccce17b0 9428 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9429Set inferior debugging."), _("\
9430Show inferior debugging."), _("\
9431When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9432 NULL,
9433 show_debug_infrun,
9434 &setdebuglist, &showdebuglist);
527159b7 9435
3e43a32a
MS
9436 add_setshow_boolean_cmd ("displaced", class_maintenance,
9437 &debug_displaced, _("\
237fc4c9
PA
9438Set displaced stepping debugging."), _("\
9439Show displaced stepping debugging."), _("\
9440When non-zero, displaced stepping specific debugging is enabled."),
9441 NULL,
9442 show_debug_displaced,
9443 &setdebuglist, &showdebuglist);
9444
ad52ddc6
PA
9445 add_setshow_boolean_cmd ("non-stop", no_class,
9446 &non_stop_1, _("\
9447Set whether gdb controls the inferior in non-stop mode."), _("\
9448Show whether gdb controls the inferior in non-stop mode."), _("\
9449When debugging a multi-threaded program and this setting is\n\
9450off (the default, also called all-stop mode), when one thread stops\n\
9451(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9452all other threads in the program while you interact with the thread of\n\
9453interest. When you continue or step a thread, you can allow the other\n\
9454threads to run, or have them remain stopped, but while you inspect any\n\
9455thread's state, all threads stop.\n\
9456\n\
9457In non-stop mode, when one thread stops, other threads can continue\n\
9458to run freely. You'll be able to step each thread independently,\n\
9459leave it stopped or free to run as needed."),
9460 set_non_stop,
9461 show_non_stop,
9462 &setlist,
9463 &showlist);
9464
adc6a863 9465 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9466 {
9467 signal_stop[i] = 1;
9468 signal_print[i] = 1;
9469 signal_program[i] = 1;
ab04a2af 9470 signal_catch[i] = 0;
c906108c
SS
9471 }
9472
4d9d9d04
PA
9473 /* Signals caused by debugger's own actions should not be given to
9474 the program afterwards.
9475
9476 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9477 explicitly specifies that it should be delivered to the target
9478 program. Typically, that would occur when a user is debugging a
9479 target monitor on a simulator: the target monitor sets a
9480 breakpoint; the simulator encounters this breakpoint and halts
9481 the simulation handing control to GDB; GDB, noting that the stop
9482 address doesn't map to any known breakpoint, returns control back
9483 to the simulator; the simulator then delivers the hardware
9484 equivalent of a GDB_SIGNAL_TRAP to the program being
9485 debugged. */
a493e3e2
PA
9486 signal_program[GDB_SIGNAL_TRAP] = 0;
9487 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9488
9489 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9490 signal_stop[GDB_SIGNAL_ALRM] = 0;
9491 signal_print[GDB_SIGNAL_ALRM] = 0;
9492 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9493 signal_print[GDB_SIGNAL_VTALRM] = 0;
9494 signal_stop[GDB_SIGNAL_PROF] = 0;
9495 signal_print[GDB_SIGNAL_PROF] = 0;
9496 signal_stop[GDB_SIGNAL_CHLD] = 0;
9497 signal_print[GDB_SIGNAL_CHLD] = 0;
9498 signal_stop[GDB_SIGNAL_IO] = 0;
9499 signal_print[GDB_SIGNAL_IO] = 0;
9500 signal_stop[GDB_SIGNAL_POLL] = 0;
9501 signal_print[GDB_SIGNAL_POLL] = 0;
9502 signal_stop[GDB_SIGNAL_URG] = 0;
9503 signal_print[GDB_SIGNAL_URG] = 0;
9504 signal_stop[GDB_SIGNAL_WINCH] = 0;
9505 signal_print[GDB_SIGNAL_WINCH] = 0;
9506 signal_stop[GDB_SIGNAL_PRIO] = 0;
9507 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9508
cd0fc7c3
SS
9509 /* These signals are used internally by user-level thread
9510 implementations. (See signal(5) on Solaris.) Like the above
9511 signals, a healthy program receives and handles them as part of
9512 its normal operation. */
a493e3e2
PA
9513 signal_stop[GDB_SIGNAL_LWP] = 0;
9514 signal_print[GDB_SIGNAL_LWP] = 0;
9515 signal_stop[GDB_SIGNAL_WAITING] = 0;
9516 signal_print[GDB_SIGNAL_WAITING] = 0;
9517 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9518 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9519 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9520 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9521
2455069d
UW
9522 /* Update cached state. */
9523 signal_cache_update (-1);
9524
85c07804
AC
9525 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9526 &stop_on_solib_events, _("\
9527Set stopping for shared library events."), _("\
9528Show stopping for shared library events."), _("\
c906108c
SS
9529If nonzero, gdb will give control to the user when the dynamic linker\n\
9530notifies gdb of shared library events. The most common event of interest\n\
85c07804 9531to the user would be loading/unloading of a new library."),
f9e14852 9532 set_stop_on_solib_events,
920d2a44 9533 show_stop_on_solib_events,
85c07804 9534 &setlist, &showlist);
c906108c 9535
7ab04401
AC
9536 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9537 follow_fork_mode_kind_names,
9538 &follow_fork_mode_string, _("\
9539Set debugger response to a program call of fork or vfork."), _("\
9540Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9541A fork or vfork creates a new process. follow-fork-mode can be:\n\
9542 parent - the original process is debugged after a fork\n\
9543 child - the new process is debugged after a fork\n\
ea1dd7bc 9544The unfollowed process will continue to run.\n\
7ab04401
AC
9545By default, the debugger will follow the parent process."),
9546 NULL,
920d2a44 9547 show_follow_fork_mode_string,
7ab04401
AC
9548 &setlist, &showlist);
9549
6c95b8df
PA
9550 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9551 follow_exec_mode_names,
9552 &follow_exec_mode_string, _("\
9553Set debugger response to a program call of exec."), _("\
9554Show debugger response to a program call of exec."), _("\
9555An exec call replaces the program image of a process.\n\
9556\n\
9557follow-exec-mode can be:\n\
9558\n\
cce7e648 9559 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9560to this new inferior. The program the process was running before\n\
9561the exec call can be restarted afterwards by restarting the original\n\
9562inferior.\n\
9563\n\
9564 same - the debugger keeps the process bound to the same inferior.\n\
9565The new executable image replaces the previous executable loaded in\n\
9566the inferior. Restarting the inferior after the exec call restarts\n\
9567the executable the process was running after the exec call.\n\
9568\n\
9569By default, the debugger will use the same inferior."),
9570 NULL,
9571 show_follow_exec_mode_string,
9572 &setlist, &showlist);
9573
7ab04401
AC
9574 add_setshow_enum_cmd ("scheduler-locking", class_run,
9575 scheduler_enums, &scheduler_mode, _("\
9576Set mode for locking scheduler during execution."), _("\
9577Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9578off == no locking (threads may preempt at any time)\n\
9579on == full locking (no thread except the current thread may run)\n\
9580 This applies to both normal execution and replay mode.\n\
9581step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9582 In this mode, other threads may run during other commands.\n\
9583 This applies to both normal execution and replay mode.\n\
9584replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9585 set_schedlock_func, /* traps on target vector */
920d2a44 9586 show_scheduler_mode,
7ab04401 9587 &setlist, &showlist);
5fbbeb29 9588
d4db2f36
PA
9589 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9590Set mode for resuming threads of all processes."), _("\
9591Show mode for resuming threads of all processes."), _("\
9592When on, execution commands (such as 'continue' or 'next') resume all\n\
9593threads of all processes. When off (which is the default), execution\n\
9594commands only resume the threads of the current process. The set of\n\
9595threads that are resumed is further refined by the scheduler-locking\n\
9596mode (see help set scheduler-locking)."),
9597 NULL,
9598 show_schedule_multiple,
9599 &setlist, &showlist);
9600
5bf193a2
AC
9601 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9602Set mode of the step operation."), _("\
9603Show mode of the step operation."), _("\
9604When set, doing a step over a function without debug line information\n\
9605will stop at the first instruction of that function. Otherwise, the\n\
9606function is skipped and the step command stops at a different source line."),
9607 NULL,
920d2a44 9608 show_step_stop_if_no_debug,
5bf193a2 9609 &setlist, &showlist);
ca6724c1 9610
72d0e2c5
YQ
9611 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9612 &can_use_displaced_stepping, _("\
237fc4c9
PA
9613Set debugger's willingness to use displaced stepping."), _("\
9614Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9615If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9616supported by the target architecture. If off, gdb will not use displaced\n\
9617stepping to step over breakpoints, even if such is supported by the target\n\
9618architecture. If auto (which is the default), gdb will use displaced stepping\n\
9619if the target architecture supports it and non-stop mode is active, but will not\n\
9620use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9621 NULL,
9622 show_can_use_displaced_stepping,
9623 &setlist, &showlist);
237fc4c9 9624
b2175913
MS
9625 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9626 &exec_direction, _("Set direction of execution.\n\
9627Options are 'forward' or 'reverse'."),
9628 _("Show direction of execution (forward/reverse)."),
9629 _("Tells gdb whether to execute forward or backward."),
9630 set_exec_direction_func, show_exec_direction_func,
9631 &setlist, &showlist);
9632
6c95b8df
PA
9633 /* Set/show detach-on-fork: user-settable mode. */
9634
9635 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9636Set whether gdb will detach the child of a fork."), _("\
9637Show whether gdb will detach the child of a fork."), _("\
9638Tells gdb whether to detach the child of a fork."),
9639 NULL, NULL, &setlist, &showlist);
9640
03583c20
UW
9641 /* Set/show disable address space randomization mode. */
9642
9643 add_setshow_boolean_cmd ("disable-randomization", class_support,
9644 &disable_randomization, _("\
9645Set disabling of debuggee's virtual address space randomization."), _("\
9646Show disabling of debuggee's virtual address space randomization."), _("\
9647When this mode is on (which is the default), randomization of the virtual\n\
9648address space is disabled. Standalone programs run with the randomization\n\
9649enabled by default on some platforms."),
9650 &set_disable_randomization,
9651 &show_disable_randomization,
9652 &setlist, &showlist);
9653
ca6724c1 9654 /* ptid initializations */
ca6724c1
KB
9655 inferior_ptid = null_ptid;
9656 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9657
76727919
TT
9658 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9659 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9660 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9661 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9662
9663 /* Explicitly create without lookup, since that tries to create a
9664 value with a void typed value, and when we get here, gdbarch
9665 isn't initialized yet. At this point, we're quite sure there
9666 isn't another convenience variable of the same name. */
22d2b532 9667 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9668
9669 add_setshow_boolean_cmd ("observer", no_class,
9670 &observer_mode_1, _("\
9671Set whether gdb controls the inferior in observer mode."), _("\
9672Show whether gdb controls the inferior in observer mode."), _("\
9673In observer mode, GDB can get data from the inferior, but not\n\
9674affect its execution. Registers and memory may not be changed,\n\
9675breakpoints may not be set, and the program cannot be interrupted\n\
9676or signalled."),
9677 set_observer_mode,
9678 show_observer_mode,
9679 &setlist,
9680 &showlist);
c906108c 9681}
This page took 2.735498 seconds and 4 git commands to generate.