KVM: MMU: Add missing large page accounting to drop_large_spte()
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
6aa8b732
AK
93#define PT_FIRST_AVAIL_BITS_SHIFT 9
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
53c07b18 138#define PTE_LIST_EXT 4
cd4a4e53 139
fe135d2c
AK
140#define ACC_EXEC_MASK 1
141#define ACC_WRITE_MASK PT_WRITABLE_MASK
142#define ACC_USER_MASK PT_USER_MASK
143#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
144
90bb6fc5
AK
145#include <trace/events/kvm.h>
146
07420171
AK
147#define CREATE_TRACE_POINTS
148#include "mmutrace.h"
149
1403283a
IE
150#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
151
135f8c2b
AK
152#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
53c07b18
XG
154struct pte_list_desc {
155 u64 *sptes[PTE_LIST_EXT];
156 struct pte_list_desc *more;
cd4a4e53
AK
157};
158
2d11123a
AK
159struct kvm_shadow_walk_iterator {
160 u64 addr;
161 hpa_t shadow_addr;
2d11123a 162 u64 *sptep;
dd3bfd59 163 int level;
2d11123a
AK
164 unsigned index;
165};
166
167#define for_each_shadow_entry(_vcpu, _addr, _walker) \
168 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
169 shadow_walk_okay(&(_walker)); \
170 shadow_walk_next(&(_walker)))
171
c2a2ac2b
XG
172#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
173 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
174 shadow_walk_okay(&(_walker)) && \
175 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
176 __shadow_walk_next(&(_walker), spte))
177
53c07b18 178static struct kmem_cache *pte_list_desc_cache;
d3d25b04 179static struct kmem_cache *mmu_page_header_cache;
45221ab6 180static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 181
7b52345e
SY
182static u64 __read_mostly shadow_nx_mask;
183static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
184static u64 __read_mostly shadow_user_mask;
185static u64 __read_mostly shadow_accessed_mask;
186static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
187static u64 __read_mostly shadow_mmio_mask;
188
189static void mmu_spte_set(u64 *sptep, u64 spte);
190
191void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
192{
193 shadow_mmio_mask = mmio_mask;
194}
195EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
196
197static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
198{
199 access &= ACC_WRITE_MASK | ACC_USER_MASK;
200
4f022648 201 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
202 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
203}
204
205static bool is_mmio_spte(u64 spte)
206{
207 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
208}
209
210static gfn_t get_mmio_spte_gfn(u64 spte)
211{
212 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
213}
214
215static unsigned get_mmio_spte_access(u64 spte)
216{
217 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
218}
219
220static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
221{
222 if (unlikely(is_noslot_pfn(pfn))) {
223 mark_mmio_spte(sptep, gfn, access);
224 return true;
225 }
226
227 return false;
228}
c7addb90 229
82725b20
DE
230static inline u64 rsvd_bits(int s, int e)
231{
232 return ((1ULL << (e - s + 1)) - 1) << s;
233}
234
7b52345e 235void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 236 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
237{
238 shadow_user_mask = user_mask;
239 shadow_accessed_mask = accessed_mask;
240 shadow_dirty_mask = dirty_mask;
241 shadow_nx_mask = nx_mask;
242 shadow_x_mask = x_mask;
243}
244EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
245
6aa8b732
AK
246static int is_cpuid_PSE36(void)
247{
248 return 1;
249}
250
73b1087e
AK
251static int is_nx(struct kvm_vcpu *vcpu)
252{
f6801dff 253 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
254}
255
c7addb90
AK
256static int is_shadow_present_pte(u64 pte)
257{
ce88decf 258 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
259}
260
05da4558
MT
261static int is_large_pte(u64 pte)
262{
263 return pte & PT_PAGE_SIZE_MASK;
264}
265
43a3795a 266static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 267{
439e218a 268 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
269}
270
43a3795a 271static int is_rmap_spte(u64 pte)
cd4a4e53 272{
4b1a80fa 273 return is_shadow_present_pte(pte);
cd4a4e53
AK
274}
275
776e6633
MT
276static int is_last_spte(u64 pte, int level)
277{
278 if (level == PT_PAGE_TABLE_LEVEL)
279 return 1;
852e3c19 280 if (is_large_pte(pte))
776e6633
MT
281 return 1;
282 return 0;
283}
284
35149e21 285static pfn_t spte_to_pfn(u64 pte)
0b49ea86 286{
35149e21 287 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
288}
289
da928521
AK
290static gfn_t pse36_gfn_delta(u32 gpte)
291{
292 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
293
294 return (gpte & PT32_DIR_PSE36_MASK) << shift;
295}
296
603e0651 297#ifdef CONFIG_X86_64
d555c333 298static void __set_spte(u64 *sptep, u64 spte)
e663ee64 299{
603e0651 300 *sptep = spte;
e663ee64
AK
301}
302
603e0651 303static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 304{
603e0651
XG
305 *sptep = spte;
306}
307
308static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
309{
310 return xchg(sptep, spte);
311}
c2a2ac2b
XG
312
313static u64 __get_spte_lockless(u64 *sptep)
314{
315 return ACCESS_ONCE(*sptep);
316}
ce88decf
XG
317
318static bool __check_direct_spte_mmio_pf(u64 spte)
319{
320 /* It is valid if the spte is zapped. */
321 return spte == 0ull;
322}
a9221dd5 323#else
603e0651
XG
324union split_spte {
325 struct {
326 u32 spte_low;
327 u32 spte_high;
328 };
329 u64 spte;
330};
a9221dd5 331
c2a2ac2b
XG
332static void count_spte_clear(u64 *sptep, u64 spte)
333{
334 struct kvm_mmu_page *sp = page_header(__pa(sptep));
335
336 if (is_shadow_present_pte(spte))
337 return;
338
339 /* Ensure the spte is completely set before we increase the count */
340 smp_wmb();
341 sp->clear_spte_count++;
342}
343
603e0651
XG
344static void __set_spte(u64 *sptep, u64 spte)
345{
346 union split_spte *ssptep, sspte;
a9221dd5 347
603e0651
XG
348 ssptep = (union split_spte *)sptep;
349 sspte = (union split_spte)spte;
350
351 ssptep->spte_high = sspte.spte_high;
352
353 /*
354 * If we map the spte from nonpresent to present, We should store
355 * the high bits firstly, then set present bit, so cpu can not
356 * fetch this spte while we are setting the spte.
357 */
358 smp_wmb();
359
360 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
361}
362
603e0651
XG
363static void __update_clear_spte_fast(u64 *sptep, u64 spte)
364{
365 union split_spte *ssptep, sspte;
366
367 ssptep = (union split_spte *)sptep;
368 sspte = (union split_spte)spte;
369
370 ssptep->spte_low = sspte.spte_low;
371
372 /*
373 * If we map the spte from present to nonpresent, we should clear
374 * present bit firstly to avoid vcpu fetch the old high bits.
375 */
376 smp_wmb();
377
378 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 379 count_spte_clear(sptep, spte);
603e0651
XG
380}
381
382static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
383{
384 union split_spte *ssptep, sspte, orig;
385
386 ssptep = (union split_spte *)sptep;
387 sspte = (union split_spte)spte;
388
389 /* xchg acts as a barrier before the setting of the high bits */
390 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
391 orig.spte_high = ssptep->spte_high;
392 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 393 count_spte_clear(sptep, spte);
603e0651
XG
394
395 return orig.spte;
396}
c2a2ac2b
XG
397
398/*
399 * The idea using the light way get the spte on x86_32 guest is from
400 * gup_get_pte(arch/x86/mm/gup.c).
401 * The difference is we can not catch the spte tlb flush if we leave
402 * guest mode, so we emulate it by increase clear_spte_count when spte
403 * is cleared.
404 */
405static u64 __get_spte_lockless(u64 *sptep)
406{
407 struct kvm_mmu_page *sp = page_header(__pa(sptep));
408 union split_spte spte, *orig = (union split_spte *)sptep;
409 int count;
410
411retry:
412 count = sp->clear_spte_count;
413 smp_rmb();
414
415 spte.spte_low = orig->spte_low;
416 smp_rmb();
417
418 spte.spte_high = orig->spte_high;
419 smp_rmb();
420
421 if (unlikely(spte.spte_low != orig->spte_low ||
422 count != sp->clear_spte_count))
423 goto retry;
424
425 return spte.spte;
426}
ce88decf
XG
427
428static bool __check_direct_spte_mmio_pf(u64 spte)
429{
430 union split_spte sspte = (union split_spte)spte;
431 u32 high_mmio_mask = shadow_mmio_mask >> 32;
432
433 /* It is valid if the spte is zapped. */
434 if (spte == 0ull)
435 return true;
436
437 /* It is valid if the spte is being zapped. */
438 if (sspte.spte_low == 0ull &&
439 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
440 return true;
441
442 return false;
443}
603e0651
XG
444#endif
445
8672b721
XG
446static bool spte_has_volatile_bits(u64 spte)
447{
448 if (!shadow_accessed_mask)
449 return false;
450
451 if (!is_shadow_present_pte(spte))
452 return false;
453
4132779b
XG
454 if ((spte & shadow_accessed_mask) &&
455 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
456 return false;
457
458 return true;
459}
460
4132779b
XG
461static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
462{
463 return (old_spte & bit_mask) && !(new_spte & bit_mask);
464}
465
1df9f2dc
XG
466/* Rules for using mmu_spte_set:
467 * Set the sptep from nonpresent to present.
468 * Note: the sptep being assigned *must* be either not present
469 * or in a state where the hardware will not attempt to update
470 * the spte.
471 */
472static void mmu_spte_set(u64 *sptep, u64 new_spte)
473{
474 WARN_ON(is_shadow_present_pte(*sptep));
475 __set_spte(sptep, new_spte);
476}
477
478/* Rules for using mmu_spte_update:
479 * Update the state bits, it means the mapped pfn is not changged.
480 */
481static void mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 482{
4132779b
XG
483 u64 mask, old_spte = *sptep;
484
485 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 486
1df9f2dc
XG
487 if (!is_shadow_present_pte(old_spte))
488 return mmu_spte_set(sptep, new_spte);
489
4132779b
XG
490 new_spte |= old_spte & shadow_dirty_mask;
491
492 mask = shadow_accessed_mask;
493 if (is_writable_pte(old_spte))
494 mask |= shadow_dirty_mask;
495
496 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
603e0651 497 __update_clear_spte_fast(sptep, new_spte);
4132779b 498 else
603e0651 499 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b
XG
500
501 if (!shadow_accessed_mask)
502 return;
503
504 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
505 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
506 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
507 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
b79b93f9
AK
508}
509
1df9f2dc
XG
510/*
511 * Rules for using mmu_spte_clear_track_bits:
512 * It sets the sptep from present to nonpresent, and track the
513 * state bits, it is used to clear the last level sptep.
514 */
515static int mmu_spte_clear_track_bits(u64 *sptep)
516{
517 pfn_t pfn;
518 u64 old_spte = *sptep;
519
520 if (!spte_has_volatile_bits(old_spte))
603e0651 521 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 522 else
603e0651 523 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
524
525 if (!is_rmap_spte(old_spte))
526 return 0;
527
528 pfn = spte_to_pfn(old_spte);
529 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
530 kvm_set_pfn_accessed(pfn);
531 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
532 kvm_set_pfn_dirty(pfn);
533 return 1;
534}
535
536/*
537 * Rules for using mmu_spte_clear_no_track:
538 * Directly clear spte without caring the state bits of sptep,
539 * it is used to set the upper level spte.
540 */
541static void mmu_spte_clear_no_track(u64 *sptep)
542{
603e0651 543 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
544}
545
c2a2ac2b
XG
546static u64 mmu_spte_get_lockless(u64 *sptep)
547{
548 return __get_spte_lockless(sptep);
549}
550
551static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
552{
553 rcu_read_lock();
554 atomic_inc(&vcpu->kvm->arch.reader_counter);
555
556 /* Increase the counter before walking shadow page table */
557 smp_mb__after_atomic_inc();
558}
559
560static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
561{
562 /* Decrease the counter after walking shadow page table finished */
563 smp_mb__before_atomic_dec();
564 atomic_dec(&vcpu->kvm->arch.reader_counter);
565 rcu_read_unlock();
566}
567
e2dec939 568static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 569 struct kmem_cache *base_cache, int min)
714b93da
AK
570{
571 void *obj;
572
573 if (cache->nobjs >= min)
e2dec939 574 return 0;
714b93da 575 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 576 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 577 if (!obj)
e2dec939 578 return -ENOMEM;
714b93da
AK
579 cache->objects[cache->nobjs++] = obj;
580 }
e2dec939 581 return 0;
714b93da
AK
582}
583
f759e2b4
XG
584static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
585{
586 return cache->nobjs;
587}
588
e8ad9a70
XG
589static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
590 struct kmem_cache *cache)
714b93da
AK
591{
592 while (mc->nobjs)
e8ad9a70 593 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
594}
595
c1158e63 596static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 597 int min)
c1158e63 598{
842f22ed 599 void *page;
c1158e63
AK
600
601 if (cache->nobjs >= min)
602 return 0;
603 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 604 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
605 if (!page)
606 return -ENOMEM;
842f22ed 607 cache->objects[cache->nobjs++] = page;
c1158e63
AK
608 }
609 return 0;
610}
611
612static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
613{
614 while (mc->nobjs)
c4d198d5 615 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
616}
617
2e3e5882 618static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 619{
e2dec939
AK
620 int r;
621
53c07b18 622 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 623 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
624 if (r)
625 goto out;
ad312c7c 626 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
627 if (r)
628 goto out;
ad312c7c 629 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 630 mmu_page_header_cache, 4);
e2dec939
AK
631out:
632 return r;
714b93da
AK
633}
634
635static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
636{
53c07b18
XG
637 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
638 pte_list_desc_cache);
ad312c7c 639 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
640 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
641 mmu_page_header_cache);
714b93da
AK
642}
643
644static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
645 size_t size)
646{
647 void *p;
648
649 BUG_ON(!mc->nobjs);
650 p = mc->objects[--mc->nobjs];
714b93da
AK
651 return p;
652}
653
53c07b18 654static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 655{
53c07b18
XG
656 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
657 sizeof(struct pte_list_desc));
714b93da
AK
658}
659
53c07b18 660static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 661{
53c07b18 662 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
663}
664
2032a93d
LJ
665static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
666{
667 if (!sp->role.direct)
668 return sp->gfns[index];
669
670 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
671}
672
673static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
674{
675 if (sp->role.direct)
676 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
677 else
678 sp->gfns[index] = gfn;
679}
680
05da4558 681/*
d4dbf470
TY
682 * Return the pointer to the large page information for a given gfn,
683 * handling slots that are not large page aligned.
05da4558 684 */
d4dbf470
TY
685static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
686 struct kvm_memory_slot *slot,
687 int level)
05da4558
MT
688{
689 unsigned long idx;
690
82855413
JR
691 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
692 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
d4dbf470 693 return &slot->lpage_info[level - 2][idx];
05da4558
MT
694}
695
696static void account_shadowed(struct kvm *kvm, gfn_t gfn)
697{
d25797b2 698 struct kvm_memory_slot *slot;
d4dbf470 699 struct kvm_lpage_info *linfo;
d25797b2 700 int i;
05da4558 701
a1f4d395 702 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
703 for (i = PT_DIRECTORY_LEVEL;
704 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
705 linfo = lpage_info_slot(gfn, slot, i);
706 linfo->write_count += 1;
d25797b2 707 }
332b207d 708 kvm->arch.indirect_shadow_pages++;
05da4558
MT
709}
710
711static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
712{
d25797b2 713 struct kvm_memory_slot *slot;
d4dbf470 714 struct kvm_lpage_info *linfo;
d25797b2 715 int i;
05da4558 716
a1f4d395 717 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
718 for (i = PT_DIRECTORY_LEVEL;
719 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
720 linfo = lpage_info_slot(gfn, slot, i);
721 linfo->write_count -= 1;
722 WARN_ON(linfo->write_count < 0);
d25797b2 723 }
332b207d 724 kvm->arch.indirect_shadow_pages--;
05da4558
MT
725}
726
d25797b2
JR
727static int has_wrprotected_page(struct kvm *kvm,
728 gfn_t gfn,
729 int level)
05da4558 730{
2843099f 731 struct kvm_memory_slot *slot;
d4dbf470 732 struct kvm_lpage_info *linfo;
05da4558 733
a1f4d395 734 slot = gfn_to_memslot(kvm, gfn);
05da4558 735 if (slot) {
d4dbf470
TY
736 linfo = lpage_info_slot(gfn, slot, level);
737 return linfo->write_count;
05da4558
MT
738 }
739
740 return 1;
741}
742
d25797b2 743static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 744{
8f0b1ab6 745 unsigned long page_size;
d25797b2 746 int i, ret = 0;
05da4558 747
8f0b1ab6 748 page_size = kvm_host_page_size(kvm, gfn);
05da4558 749
d25797b2
JR
750 for (i = PT_PAGE_TABLE_LEVEL;
751 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
752 if (page_size >= KVM_HPAGE_SIZE(i))
753 ret = i;
754 else
755 break;
756 }
757
4c2155ce 758 return ret;
05da4558
MT
759}
760
5d163b1c
XG
761static struct kvm_memory_slot *
762gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
763 bool no_dirty_log)
05da4558
MT
764{
765 struct kvm_memory_slot *slot;
5d163b1c
XG
766
767 slot = gfn_to_memslot(vcpu->kvm, gfn);
768 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
769 (no_dirty_log && slot->dirty_bitmap))
770 slot = NULL;
771
772 return slot;
773}
774
775static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
776{
a0a8eaba 777 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
778}
779
780static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
781{
782 int host_level, level, max_level;
05da4558 783
d25797b2
JR
784 host_level = host_mapping_level(vcpu->kvm, large_gfn);
785
786 if (host_level == PT_PAGE_TABLE_LEVEL)
787 return host_level;
788
878403b7
SY
789 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
790 kvm_x86_ops->get_lpage_level() : host_level;
791
792 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
793 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
794 break;
d25797b2
JR
795
796 return level - 1;
05da4558
MT
797}
798
290fc38d 799/*
53c07b18 800 * Pte mapping structures:
cd4a4e53 801 *
53c07b18 802 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 803 *
53c07b18
XG
804 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
805 * pte_list_desc containing more mappings.
53a27b39 806 *
53c07b18 807 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
808 * the spte was not added.
809 *
cd4a4e53 810 */
53c07b18
XG
811static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
812 unsigned long *pte_list)
cd4a4e53 813{
53c07b18 814 struct pte_list_desc *desc;
53a27b39 815 int i, count = 0;
cd4a4e53 816
53c07b18
XG
817 if (!*pte_list) {
818 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
819 *pte_list = (unsigned long)spte;
820 } else if (!(*pte_list & 1)) {
821 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
822 desc = mmu_alloc_pte_list_desc(vcpu);
823 desc->sptes[0] = (u64 *)*pte_list;
d555c333 824 desc->sptes[1] = spte;
53c07b18 825 *pte_list = (unsigned long)desc | 1;
cb16a7b3 826 ++count;
cd4a4e53 827 } else {
53c07b18
XG
828 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
829 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
830 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 831 desc = desc->more;
53c07b18 832 count += PTE_LIST_EXT;
53a27b39 833 }
53c07b18
XG
834 if (desc->sptes[PTE_LIST_EXT-1]) {
835 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
836 desc = desc->more;
837 }
d555c333 838 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 839 ++count;
d555c333 840 desc->sptes[i] = spte;
cd4a4e53 841 }
53a27b39 842 return count;
cd4a4e53
AK
843}
844
53c07b18
XG
845static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
846{
847 struct pte_list_desc *desc;
848 u64 *prev_spte;
849 int i;
850
851 if (!*pte_list)
852 return NULL;
853 else if (!(*pte_list & 1)) {
854 if (!spte)
855 return (u64 *)*pte_list;
856 return NULL;
857 }
858 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
859 prev_spte = NULL;
860 while (desc) {
861 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
862 if (prev_spte == spte)
863 return desc->sptes[i];
864 prev_spte = desc->sptes[i];
865 }
866 desc = desc->more;
867 }
868 return NULL;
869}
870
871static void
872pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
873 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
874{
875 int j;
876
53c07b18 877 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 878 ;
d555c333
AK
879 desc->sptes[i] = desc->sptes[j];
880 desc->sptes[j] = NULL;
cd4a4e53
AK
881 if (j != 0)
882 return;
883 if (!prev_desc && !desc->more)
53c07b18 884 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
885 else
886 if (prev_desc)
887 prev_desc->more = desc->more;
888 else
53c07b18
XG
889 *pte_list = (unsigned long)desc->more | 1;
890 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
891}
892
53c07b18 893static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 894{
53c07b18
XG
895 struct pte_list_desc *desc;
896 struct pte_list_desc *prev_desc;
cd4a4e53
AK
897 int i;
898
53c07b18
XG
899 if (!*pte_list) {
900 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 901 BUG();
53c07b18
XG
902 } else if (!(*pte_list & 1)) {
903 rmap_printk("pte_list_remove: %p 1->0\n", spte);
904 if ((u64 *)*pte_list != spte) {
905 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
906 BUG();
907 }
53c07b18 908 *pte_list = 0;
cd4a4e53 909 } else {
53c07b18
XG
910 rmap_printk("pte_list_remove: %p many->many\n", spte);
911 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
912 prev_desc = NULL;
913 while (desc) {
53c07b18 914 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 915 if (desc->sptes[i] == spte) {
53c07b18 916 pte_list_desc_remove_entry(pte_list,
714b93da 917 desc, i,
cd4a4e53
AK
918 prev_desc);
919 return;
920 }
921 prev_desc = desc;
922 desc = desc->more;
923 }
53c07b18 924 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
925 BUG();
926 }
927}
928
67052b35
XG
929typedef void (*pte_list_walk_fn) (u64 *spte);
930static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
931{
932 struct pte_list_desc *desc;
933 int i;
934
935 if (!*pte_list)
936 return;
937
938 if (!(*pte_list & 1))
939 return fn((u64 *)*pte_list);
940
941 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942 while (desc) {
943 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
944 fn(desc->sptes[i]);
945 desc = desc->more;
946 }
947}
948
9b9b1492
TY
949static unsigned long *__gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level,
950 struct kvm_memory_slot *slot)
53c07b18 951{
53c07b18
XG
952 struct kvm_lpage_info *linfo;
953
53c07b18
XG
954 if (likely(level == PT_PAGE_TABLE_LEVEL))
955 return &slot->rmap[gfn - slot->base_gfn];
956
957 linfo = lpage_info_slot(gfn, slot, level);
53c07b18
XG
958 return &linfo->rmap_pde;
959}
960
9b9b1492
TY
961/*
962 * Take gfn and return the reverse mapping to it.
963 */
964static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
965{
966 struct kvm_memory_slot *slot;
967
968 slot = gfn_to_memslot(kvm, gfn);
969 return __gfn_to_rmap(kvm, gfn, level, slot);
970}
971
f759e2b4
XG
972static bool rmap_can_add(struct kvm_vcpu *vcpu)
973{
974 struct kvm_mmu_memory_cache *cache;
975
976 cache = &vcpu->arch.mmu_pte_list_desc_cache;
977 return mmu_memory_cache_free_objects(cache);
978}
979
53c07b18
XG
980static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
981{
982 struct kvm_mmu_page *sp;
983 unsigned long *rmapp;
984
53c07b18
XG
985 sp = page_header(__pa(spte));
986 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
987 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
988 return pte_list_add(vcpu, spte, rmapp);
989}
990
991static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
992{
993 return pte_list_next(rmapp, spte);
994}
995
996static void rmap_remove(struct kvm *kvm, u64 *spte)
997{
998 struct kvm_mmu_page *sp;
999 gfn_t gfn;
1000 unsigned long *rmapp;
1001
1002 sp = page_header(__pa(spte));
1003 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1004 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1005 pte_list_remove(spte, rmapp);
1006}
1007
c3707958 1008static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1009{
1df9f2dc 1010 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1011 rmap_remove(kvm, sptep);
be38d276
AK
1012}
1013
95d4c16c
TY
1014int kvm_mmu_rmap_write_protect(struct kvm *kvm, u64 gfn,
1015 struct kvm_memory_slot *slot)
98348e95 1016{
290fc38d 1017 unsigned long *rmapp;
374cbac0 1018 u64 *spte;
44ad9944 1019 int i, write_protected = 0;
374cbac0 1020
9b9b1492 1021 rmapp = __gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL, slot);
98348e95
IE
1022 spte = rmap_next(kvm, rmapp, NULL);
1023 while (spte) {
374cbac0 1024 BUG_ON(!(*spte & PT_PRESENT_MASK));
374cbac0 1025 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
8dae4445 1026 if (is_writable_pte(*spte)) {
1df9f2dc 1027 mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
caa5b8a5
ED
1028 write_protected = 1;
1029 }
9647c14c 1030 spte = rmap_next(kvm, rmapp, spte);
374cbac0 1031 }
855149aa 1032
05da4558 1033 /* check for huge page mappings */
44ad9944
JR
1034 for (i = PT_DIRECTORY_LEVEL;
1035 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
9b9b1492 1036 rmapp = __gfn_to_rmap(kvm, gfn, i, slot);
44ad9944
JR
1037 spte = rmap_next(kvm, rmapp, NULL);
1038 while (spte) {
44ad9944 1039 BUG_ON(!(*spte & PT_PRESENT_MASK));
d6eebf8b 1040 BUG_ON(!is_large_pte(*spte));
44ad9944 1041 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
8dae4445 1042 if (is_writable_pte(*spte)) {
c3707958 1043 drop_spte(kvm, spte);
44ad9944 1044 --kvm->stat.lpages;
44ad9944
JR
1045 spte = NULL;
1046 write_protected = 1;
1047 }
1048 spte = rmap_next(kvm, rmapp, spte);
05da4558 1049 }
05da4558
MT
1050 }
1051
b1a36821 1052 return write_protected;
374cbac0
AK
1053}
1054
95d4c16c
TY
1055static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1056{
1057 struct kvm_memory_slot *slot;
1058
1059 slot = gfn_to_memslot(kvm, gfn);
1060 return kvm_mmu_rmap_write_protect(kvm, gfn, slot);
1061}
1062
8a8365c5
FD
1063static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1064 unsigned long data)
e930bffe
AA
1065{
1066 u64 *spte;
1067 int need_tlb_flush = 0;
1068
1069 while ((spte = rmap_next(kvm, rmapp, NULL))) {
1070 BUG_ON(!(*spte & PT_PRESENT_MASK));
1071 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
c3707958 1072 drop_spte(kvm, spte);
e930bffe
AA
1073 need_tlb_flush = 1;
1074 }
1075 return need_tlb_flush;
1076}
1077
8a8365c5
FD
1078static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1079 unsigned long data)
3da0dd43
IE
1080{
1081 int need_flush = 0;
e4b502ea 1082 u64 *spte, new_spte;
3da0dd43
IE
1083 pte_t *ptep = (pte_t *)data;
1084 pfn_t new_pfn;
1085
1086 WARN_ON(pte_huge(*ptep));
1087 new_pfn = pte_pfn(*ptep);
1088 spte = rmap_next(kvm, rmapp, NULL);
1089 while (spte) {
1090 BUG_ON(!is_shadow_present_pte(*spte));
1091 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1092 need_flush = 1;
1093 if (pte_write(*ptep)) {
c3707958 1094 drop_spte(kvm, spte);
3da0dd43
IE
1095 spte = rmap_next(kvm, rmapp, NULL);
1096 } else {
1097 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1098 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1099
1100 new_spte &= ~PT_WRITABLE_MASK;
1101 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1102 new_spte &= ~shadow_accessed_mask;
1df9f2dc
XG
1103 mmu_spte_clear_track_bits(spte);
1104 mmu_spte_set(spte, new_spte);
3da0dd43
IE
1105 spte = rmap_next(kvm, rmapp, spte);
1106 }
1107 }
1108 if (need_flush)
1109 kvm_flush_remote_tlbs(kvm);
1110
1111 return 0;
1112}
1113
8a8365c5
FD
1114static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1115 unsigned long data,
3da0dd43 1116 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
8a8365c5 1117 unsigned long data))
e930bffe 1118{
be6ba0f0 1119 int j;
90bb6fc5 1120 int ret;
e930bffe 1121 int retval = 0;
bc6678a3 1122 struct kvm_memslots *slots;
be6ba0f0 1123 struct kvm_memory_slot *memslot;
bc6678a3 1124
90d83dc3 1125 slots = kvm_memslots(kvm);
e930bffe 1126
be6ba0f0 1127 kvm_for_each_memslot(memslot, slots) {
e930bffe
AA
1128 unsigned long start = memslot->userspace_addr;
1129 unsigned long end;
1130
e930bffe
AA
1131 end = start + (memslot->npages << PAGE_SHIFT);
1132 if (hva >= start && hva < end) {
1133 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
d4dbf470 1134 gfn_t gfn = memslot->base_gfn + gfn_offset;
852e3c19 1135
90bb6fc5 1136 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
852e3c19
JR
1137
1138 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
d4dbf470
TY
1139 struct kvm_lpage_info *linfo;
1140
1141 linfo = lpage_info_slot(gfn, memslot,
1142 PT_DIRECTORY_LEVEL + j);
1143 ret |= handler(kvm, &linfo->rmap_pde, data);
852e3c19 1144 }
90bb6fc5
AK
1145 trace_kvm_age_page(hva, memslot, ret);
1146 retval |= ret;
e930bffe
AA
1147 }
1148 }
1149
1150 return retval;
1151}
1152
1153int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1154{
3da0dd43
IE
1155 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1156}
1157
1158void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1159{
8a8365c5 1160 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1161}
1162
8a8365c5
FD
1163static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1164 unsigned long data)
e930bffe
AA
1165{
1166 u64 *spte;
1167 int young = 0;
1168
6316e1c8
RR
1169 /*
1170 * Emulate the accessed bit for EPT, by checking if this page has
1171 * an EPT mapping, and clearing it if it does. On the next access,
1172 * a new EPT mapping will be established.
1173 * This has some overhead, but not as much as the cost of swapping
1174 * out actively used pages or breaking up actively used hugepages.
1175 */
534e38b4 1176 if (!shadow_accessed_mask)
6316e1c8 1177 return kvm_unmap_rmapp(kvm, rmapp, data);
534e38b4 1178
e930bffe
AA
1179 spte = rmap_next(kvm, rmapp, NULL);
1180 while (spte) {
1181 int _young;
1182 u64 _spte = *spte;
1183 BUG_ON(!(_spte & PT_PRESENT_MASK));
1184 _young = _spte & PT_ACCESSED_MASK;
1185 if (_young) {
1186 young = 1;
1187 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1188 }
1189 spte = rmap_next(kvm, rmapp, spte);
1190 }
1191 return young;
1192}
1193
8ee53820
AA
1194static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1195 unsigned long data)
1196{
1197 u64 *spte;
1198 int young = 0;
1199
1200 /*
1201 * If there's no access bit in the secondary pte set by the
1202 * hardware it's up to gup-fast/gup to set the access bit in
1203 * the primary pte or in the page structure.
1204 */
1205 if (!shadow_accessed_mask)
1206 goto out;
1207
1208 spte = rmap_next(kvm, rmapp, NULL);
1209 while (spte) {
1210 u64 _spte = *spte;
1211 BUG_ON(!(_spte & PT_PRESENT_MASK));
1212 young = _spte & PT_ACCESSED_MASK;
1213 if (young) {
1214 young = 1;
1215 break;
1216 }
1217 spte = rmap_next(kvm, rmapp, spte);
1218 }
1219out:
1220 return young;
1221}
1222
53a27b39
MT
1223#define RMAP_RECYCLE_THRESHOLD 1000
1224
852e3c19 1225static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1226{
1227 unsigned long *rmapp;
852e3c19
JR
1228 struct kvm_mmu_page *sp;
1229
1230 sp = page_header(__pa(spte));
53a27b39 1231
852e3c19 1232 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1233
3da0dd43 1234 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
53a27b39
MT
1235 kvm_flush_remote_tlbs(vcpu->kvm);
1236}
1237
e930bffe
AA
1238int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1239{
3da0dd43 1240 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
e930bffe
AA
1241}
1242
8ee53820
AA
1243int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1244{
1245 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1246}
1247
d6c69ee9 1248#ifdef MMU_DEBUG
47ad8e68 1249static int is_empty_shadow_page(u64 *spt)
6aa8b732 1250{
139bdb2d
AK
1251 u64 *pos;
1252 u64 *end;
1253
47ad8e68 1254 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1255 if (is_shadow_present_pte(*pos)) {
b8688d51 1256 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1257 pos, *pos);
6aa8b732 1258 return 0;
139bdb2d 1259 }
6aa8b732
AK
1260 return 1;
1261}
d6c69ee9 1262#endif
6aa8b732 1263
45221ab6
DH
1264/*
1265 * This value is the sum of all of the kvm instances's
1266 * kvm->arch.n_used_mmu_pages values. We need a global,
1267 * aggregate version in order to make the slab shrinker
1268 * faster
1269 */
1270static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1271{
1272 kvm->arch.n_used_mmu_pages += nr;
1273 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1274}
1275
bd4c86ea
XG
1276/*
1277 * Remove the sp from shadow page cache, after call it,
1278 * we can not find this sp from the cache, and the shadow
1279 * page table is still valid.
1280 * It should be under the protection of mmu lock.
1281 */
1282static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1283{
4db35314 1284 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1285 hlist_del(&sp->hash_link);
2032a93d 1286 if (!sp->role.direct)
842f22ed 1287 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1288}
1289
1290/*
1291 * Free the shadow page table and the sp, we can do it
1292 * out of the protection of mmu lock.
1293 */
1294static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1295{
1296 list_del(&sp->link);
1297 free_page((unsigned long)sp->spt);
e8ad9a70 1298 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1299}
1300
cea0f0e7
AK
1301static unsigned kvm_page_table_hashfn(gfn_t gfn)
1302{
1ae0a13d 1303 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1304}
1305
714b93da 1306static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1307 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1308{
cea0f0e7
AK
1309 if (!parent_pte)
1310 return;
cea0f0e7 1311
67052b35 1312 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1313}
1314
4db35314 1315static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1316 u64 *parent_pte)
1317{
67052b35 1318 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1319}
1320
bcdd9a93
XG
1321static void drop_parent_pte(struct kvm_mmu_page *sp,
1322 u64 *parent_pte)
1323{
1324 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1325 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1326}
1327
67052b35
XG
1328static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1329 u64 *parent_pte, int direct)
ad8cfbe3 1330{
67052b35
XG
1331 struct kvm_mmu_page *sp;
1332 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1333 sizeof *sp);
1334 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1335 if (!direct)
1336 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1337 PAGE_SIZE);
1338 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1339 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
93a5cef0 1340 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
67052b35
XG
1341 sp->parent_ptes = 0;
1342 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1343 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1344 return sp;
ad8cfbe3
MT
1345}
1346
67052b35 1347static void mark_unsync(u64 *spte);
1047df1f 1348static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1349{
67052b35 1350 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1351}
1352
67052b35 1353static void mark_unsync(u64 *spte)
0074ff63 1354{
67052b35 1355 struct kvm_mmu_page *sp;
1047df1f 1356 unsigned int index;
0074ff63 1357
67052b35 1358 sp = page_header(__pa(spte));
1047df1f
XG
1359 index = spte - sp->spt;
1360 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1361 return;
1047df1f 1362 if (sp->unsync_children++)
0074ff63 1363 return;
1047df1f 1364 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1365}
1366
e8bc217a 1367static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1368 struct kvm_mmu_page *sp)
e8bc217a
MT
1369{
1370 return 1;
1371}
1372
a7052897
MT
1373static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1374{
1375}
1376
0f53b5b1
XG
1377static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1378 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1379 const void *pte)
0f53b5b1
XG
1380{
1381 WARN_ON(1);
1382}
1383
60c8aec6
MT
1384#define KVM_PAGE_ARRAY_NR 16
1385
1386struct kvm_mmu_pages {
1387 struct mmu_page_and_offset {
1388 struct kvm_mmu_page *sp;
1389 unsigned int idx;
1390 } page[KVM_PAGE_ARRAY_NR];
1391 unsigned int nr;
1392};
1393
cded19f3
HE
1394static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1395 int idx)
4731d4c7 1396{
60c8aec6 1397 int i;
4731d4c7 1398
60c8aec6
MT
1399 if (sp->unsync)
1400 for (i=0; i < pvec->nr; i++)
1401 if (pvec->page[i].sp == sp)
1402 return 0;
1403
1404 pvec->page[pvec->nr].sp = sp;
1405 pvec->page[pvec->nr].idx = idx;
1406 pvec->nr++;
1407 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1408}
1409
1410static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1411 struct kvm_mmu_pages *pvec)
1412{
1413 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1414
37178b8b 1415 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1416 struct kvm_mmu_page *child;
4731d4c7
MT
1417 u64 ent = sp->spt[i];
1418
7a8f1a74
XG
1419 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1420 goto clear_child_bitmap;
1421
1422 child = page_header(ent & PT64_BASE_ADDR_MASK);
1423
1424 if (child->unsync_children) {
1425 if (mmu_pages_add(pvec, child, i))
1426 return -ENOSPC;
1427
1428 ret = __mmu_unsync_walk(child, pvec);
1429 if (!ret)
1430 goto clear_child_bitmap;
1431 else if (ret > 0)
1432 nr_unsync_leaf += ret;
1433 else
1434 return ret;
1435 } else if (child->unsync) {
1436 nr_unsync_leaf++;
1437 if (mmu_pages_add(pvec, child, i))
1438 return -ENOSPC;
1439 } else
1440 goto clear_child_bitmap;
1441
1442 continue;
1443
1444clear_child_bitmap:
1445 __clear_bit(i, sp->unsync_child_bitmap);
1446 sp->unsync_children--;
1447 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1448 }
1449
4731d4c7 1450
60c8aec6
MT
1451 return nr_unsync_leaf;
1452}
1453
1454static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1455 struct kvm_mmu_pages *pvec)
1456{
1457 if (!sp->unsync_children)
1458 return 0;
1459
1460 mmu_pages_add(pvec, sp, 0);
1461 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1462}
1463
4731d4c7
MT
1464static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1465{
1466 WARN_ON(!sp->unsync);
5e1b3ddb 1467 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1468 sp->unsync = 0;
1469 --kvm->stat.mmu_unsync;
1470}
1471
7775834a
XG
1472static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1473 struct list_head *invalid_list);
1474static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1475 struct list_head *invalid_list);
4731d4c7 1476
f41d335a
XG
1477#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1478 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1479 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1480 if ((sp)->gfn != (gfn)) {} else
1481
f41d335a
XG
1482#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1483 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1484 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1485 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1486 (sp)->role.invalid) {} else
1487
f918b443 1488/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1489static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1490 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1491{
5b7e0102 1492 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1493 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1494 return 1;
1495 }
1496
f918b443 1497 if (clear_unsync)
1d9dc7e0 1498 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1499
a4a8e6f7 1500 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1501 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1502 return 1;
1503 }
1504
1505 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1506 return 0;
1507}
1508
1d9dc7e0
XG
1509static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1510 struct kvm_mmu_page *sp)
1511{
d98ba053 1512 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1513 int ret;
1514
d98ba053 1515 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1516 if (ret)
d98ba053
XG
1517 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1518
1d9dc7e0
XG
1519 return ret;
1520}
1521
e37fa785
XG
1522#ifdef CONFIG_KVM_MMU_AUDIT
1523#include "mmu_audit.c"
1524#else
1525static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1526static void mmu_audit_disable(void) { }
1527#endif
1528
d98ba053
XG
1529static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1530 struct list_head *invalid_list)
1d9dc7e0 1531{
d98ba053 1532 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1533}
1534
9f1a122f
XG
1535/* @gfn should be write-protected at the call site */
1536static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1537{
9f1a122f 1538 struct kvm_mmu_page *s;
f41d335a 1539 struct hlist_node *node;
d98ba053 1540 LIST_HEAD(invalid_list);
9f1a122f
XG
1541 bool flush = false;
1542
f41d335a 1543 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1544 if (!s->unsync)
9f1a122f
XG
1545 continue;
1546
1547 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1548 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1549 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1550 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1551 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1552 continue;
1553 }
9f1a122f
XG
1554 flush = true;
1555 }
1556
d98ba053 1557 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1558 if (flush)
1559 kvm_mmu_flush_tlb(vcpu);
1560}
1561
60c8aec6
MT
1562struct mmu_page_path {
1563 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1564 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1565};
1566
60c8aec6
MT
1567#define for_each_sp(pvec, sp, parents, i) \
1568 for (i = mmu_pages_next(&pvec, &parents, -1), \
1569 sp = pvec.page[i].sp; \
1570 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1571 i = mmu_pages_next(&pvec, &parents, i))
1572
cded19f3
HE
1573static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1574 struct mmu_page_path *parents,
1575 int i)
60c8aec6
MT
1576{
1577 int n;
1578
1579 for (n = i+1; n < pvec->nr; n++) {
1580 struct kvm_mmu_page *sp = pvec->page[n].sp;
1581
1582 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1583 parents->idx[0] = pvec->page[n].idx;
1584 return n;
1585 }
1586
1587 parents->parent[sp->role.level-2] = sp;
1588 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1589 }
1590
1591 return n;
1592}
1593
cded19f3 1594static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1595{
60c8aec6
MT
1596 struct kvm_mmu_page *sp;
1597 unsigned int level = 0;
1598
1599 do {
1600 unsigned int idx = parents->idx[level];
4731d4c7 1601
60c8aec6
MT
1602 sp = parents->parent[level];
1603 if (!sp)
1604 return;
1605
1606 --sp->unsync_children;
1607 WARN_ON((int)sp->unsync_children < 0);
1608 __clear_bit(idx, sp->unsync_child_bitmap);
1609 level++;
1610 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1611}
1612
60c8aec6
MT
1613static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1614 struct mmu_page_path *parents,
1615 struct kvm_mmu_pages *pvec)
4731d4c7 1616{
60c8aec6
MT
1617 parents->parent[parent->role.level-1] = NULL;
1618 pvec->nr = 0;
1619}
4731d4c7 1620
60c8aec6
MT
1621static void mmu_sync_children(struct kvm_vcpu *vcpu,
1622 struct kvm_mmu_page *parent)
1623{
1624 int i;
1625 struct kvm_mmu_page *sp;
1626 struct mmu_page_path parents;
1627 struct kvm_mmu_pages pages;
d98ba053 1628 LIST_HEAD(invalid_list);
60c8aec6
MT
1629
1630 kvm_mmu_pages_init(parent, &parents, &pages);
1631 while (mmu_unsync_walk(parent, &pages)) {
b1a36821
MT
1632 int protected = 0;
1633
1634 for_each_sp(pages, sp, parents, i)
1635 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1636
1637 if (protected)
1638 kvm_flush_remote_tlbs(vcpu->kvm);
1639
60c8aec6 1640 for_each_sp(pages, sp, parents, i) {
d98ba053 1641 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1642 mmu_pages_clear_parents(&parents);
1643 }
d98ba053 1644 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1645 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1646 kvm_mmu_pages_init(parent, &parents, &pages);
1647 }
4731d4c7
MT
1648}
1649
c3707958
XG
1650static void init_shadow_page_table(struct kvm_mmu_page *sp)
1651{
1652 int i;
1653
1654 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1655 sp->spt[i] = 0ull;
1656}
1657
a30f47cb
XG
1658static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1659{
1660 sp->write_flooding_count = 0;
1661}
1662
1663static void clear_sp_write_flooding_count(u64 *spte)
1664{
1665 struct kvm_mmu_page *sp = page_header(__pa(spte));
1666
1667 __clear_sp_write_flooding_count(sp);
1668}
1669
cea0f0e7
AK
1670static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1671 gfn_t gfn,
1672 gva_t gaddr,
1673 unsigned level,
f6e2c02b 1674 int direct,
41074d07 1675 unsigned access,
f7d9c7b7 1676 u64 *parent_pte)
cea0f0e7
AK
1677{
1678 union kvm_mmu_page_role role;
cea0f0e7 1679 unsigned quadrant;
9f1a122f 1680 struct kvm_mmu_page *sp;
f41d335a 1681 struct hlist_node *node;
9f1a122f 1682 bool need_sync = false;
cea0f0e7 1683
a770f6f2 1684 role = vcpu->arch.mmu.base_role;
cea0f0e7 1685 role.level = level;
f6e2c02b 1686 role.direct = direct;
84b0c8c6 1687 if (role.direct)
5b7e0102 1688 role.cr4_pae = 0;
41074d07 1689 role.access = access;
c5a78f2b
JR
1690 if (!vcpu->arch.mmu.direct_map
1691 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1692 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1693 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1694 role.quadrant = quadrant;
1695 }
f41d335a 1696 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1697 if (!need_sync && sp->unsync)
1698 need_sync = true;
4731d4c7 1699
7ae680eb
XG
1700 if (sp->role.word != role.word)
1701 continue;
4731d4c7 1702
7ae680eb
XG
1703 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1704 break;
e02aa901 1705
7ae680eb
XG
1706 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1707 if (sp->unsync_children) {
a8eeb04a 1708 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1709 kvm_mmu_mark_parents_unsync(sp);
1710 } else if (sp->unsync)
1711 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1712
a30f47cb 1713 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1714 trace_kvm_mmu_get_page(sp, false);
1715 return sp;
1716 }
dfc5aa00 1717 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1718 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1719 if (!sp)
1720 return sp;
4db35314
AK
1721 sp->gfn = gfn;
1722 sp->role = role;
7ae680eb
XG
1723 hlist_add_head(&sp->hash_link,
1724 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1725 if (!direct) {
b1a36821
MT
1726 if (rmap_write_protect(vcpu->kvm, gfn))
1727 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1728 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1729 kvm_sync_pages(vcpu, gfn);
1730
4731d4c7
MT
1731 account_shadowed(vcpu->kvm, gfn);
1732 }
c3707958 1733 init_shadow_page_table(sp);
f691fe1d 1734 trace_kvm_mmu_get_page(sp, true);
4db35314 1735 return sp;
cea0f0e7
AK
1736}
1737
2d11123a
AK
1738static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1739 struct kvm_vcpu *vcpu, u64 addr)
1740{
1741 iterator->addr = addr;
1742 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1743 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1744
1745 if (iterator->level == PT64_ROOT_LEVEL &&
1746 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1747 !vcpu->arch.mmu.direct_map)
1748 --iterator->level;
1749
2d11123a
AK
1750 if (iterator->level == PT32E_ROOT_LEVEL) {
1751 iterator->shadow_addr
1752 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1753 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1754 --iterator->level;
1755 if (!iterator->shadow_addr)
1756 iterator->level = 0;
1757 }
1758}
1759
1760static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1761{
1762 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1763 return false;
4d88954d 1764
2d11123a
AK
1765 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1766 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1767 return true;
1768}
1769
c2a2ac2b
XG
1770static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1771 u64 spte)
2d11123a 1772{
c2a2ac2b 1773 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1774 iterator->level = 0;
1775 return;
1776 }
1777
c2a2ac2b 1778 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1779 --iterator->level;
1780}
1781
c2a2ac2b
XG
1782static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1783{
1784 return __shadow_walk_next(iterator, *iterator->sptep);
1785}
1786
32ef26a3
AK
1787static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1788{
1789 u64 spte;
1790
1791 spte = __pa(sp->spt)
1792 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1793 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1794 mmu_spte_set(sptep, spte);
32ef26a3
AK
1795}
1796
a3aa51cf
AK
1797static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1798{
1799 if (is_large_pte(*sptep)) {
c3707958 1800 drop_spte(vcpu->kvm, sptep);
6addd1aa 1801 --vcpu->kvm->stat.lpages;
a3aa51cf
AK
1802 kvm_flush_remote_tlbs(vcpu->kvm);
1803 }
1804}
1805
a357bd22
AK
1806static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1807 unsigned direct_access)
1808{
1809 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1810 struct kvm_mmu_page *child;
1811
1812 /*
1813 * For the direct sp, if the guest pte's dirty bit
1814 * changed form clean to dirty, it will corrupt the
1815 * sp's access: allow writable in the read-only sp,
1816 * so we should update the spte at this point to get
1817 * a new sp with the correct access.
1818 */
1819 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1820 if (child->role.access == direct_access)
1821 return;
1822
bcdd9a93 1823 drop_parent_pte(child, sptep);
a357bd22
AK
1824 kvm_flush_remote_tlbs(vcpu->kvm);
1825 }
1826}
1827
505aef8f 1828static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1829 u64 *spte)
1830{
1831 u64 pte;
1832 struct kvm_mmu_page *child;
1833
1834 pte = *spte;
1835 if (is_shadow_present_pte(pte)) {
505aef8f 1836 if (is_last_spte(pte, sp->role.level)) {
c3707958 1837 drop_spte(kvm, spte);
505aef8f
XG
1838 if (is_large_pte(pte))
1839 --kvm->stat.lpages;
1840 } else {
38e3b2b2 1841 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1842 drop_parent_pte(child, spte);
38e3b2b2 1843 }
505aef8f
XG
1844 return true;
1845 }
1846
1847 if (is_mmio_spte(pte))
ce88decf 1848 mmu_spte_clear_no_track(spte);
c3707958 1849
505aef8f 1850 return false;
38e3b2b2
XG
1851}
1852
90cb0529 1853static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 1854 struct kvm_mmu_page *sp)
a436036b 1855{
697fe2e2 1856 unsigned i;
697fe2e2 1857
38e3b2b2
XG
1858 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1859 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
1860}
1861
4db35314 1862static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1863{
4db35314 1864 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
1865}
1866
31aa2b44 1867static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b
AK
1868{
1869 u64 *parent_pte;
1870
bcdd9a93
XG
1871 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1872 drop_parent_pte(sp, parent_pte);
31aa2b44
AK
1873}
1874
60c8aec6 1875static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
1876 struct kvm_mmu_page *parent,
1877 struct list_head *invalid_list)
4731d4c7 1878{
60c8aec6
MT
1879 int i, zapped = 0;
1880 struct mmu_page_path parents;
1881 struct kvm_mmu_pages pages;
4731d4c7 1882
60c8aec6 1883 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 1884 return 0;
60c8aec6
MT
1885
1886 kvm_mmu_pages_init(parent, &parents, &pages);
1887 while (mmu_unsync_walk(parent, &pages)) {
1888 struct kvm_mmu_page *sp;
1889
1890 for_each_sp(pages, sp, parents, i) {
7775834a 1891 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 1892 mmu_pages_clear_parents(&parents);
77662e00 1893 zapped++;
60c8aec6 1894 }
60c8aec6
MT
1895 kvm_mmu_pages_init(parent, &parents, &pages);
1896 }
1897
1898 return zapped;
4731d4c7
MT
1899}
1900
7775834a
XG
1901static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1902 struct list_head *invalid_list)
31aa2b44 1903{
4731d4c7 1904 int ret;
f691fe1d 1905
7775834a 1906 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 1907 ++kvm->stat.mmu_shadow_zapped;
7775834a 1908 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 1909 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 1910 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 1911 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 1912 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
1913 if (sp->unsync)
1914 kvm_unlink_unsync_page(kvm, sp);
4db35314 1915 if (!sp->root_count) {
54a4f023
GJ
1916 /* Count self */
1917 ret++;
7775834a 1918 list_move(&sp->link, invalid_list);
aa6bd187 1919 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 1920 } else {
5b5c6a5a 1921 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
1922 kvm_reload_remote_mmus(kvm);
1923 }
7775834a
XG
1924
1925 sp->role.invalid = 1;
4731d4c7 1926 return ret;
a436036b
AK
1927}
1928
c2a2ac2b
XG
1929static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1930{
1931 struct kvm_mmu_page *sp;
1932
1933 list_for_each_entry(sp, invalid_list, link)
1934 kvm_mmu_isolate_page(sp);
1935}
1936
1937static void free_pages_rcu(struct rcu_head *head)
1938{
1939 struct kvm_mmu_page *next, *sp;
1940
1941 sp = container_of(head, struct kvm_mmu_page, rcu);
1942 while (sp) {
1943 if (!list_empty(&sp->link))
1944 next = list_first_entry(&sp->link,
1945 struct kvm_mmu_page, link);
1946 else
1947 next = NULL;
1948 kvm_mmu_free_page(sp);
1949 sp = next;
1950 }
1951}
1952
7775834a
XG
1953static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1954 struct list_head *invalid_list)
1955{
1956 struct kvm_mmu_page *sp;
1957
1958 if (list_empty(invalid_list))
1959 return;
1960
1961 kvm_flush_remote_tlbs(kvm);
1962
c2a2ac2b
XG
1963 if (atomic_read(&kvm->arch.reader_counter)) {
1964 kvm_mmu_isolate_pages(invalid_list);
1965 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1966 list_del_init(invalid_list);
4f022648
XG
1967
1968 trace_kvm_mmu_delay_free_pages(sp);
c2a2ac2b
XG
1969 call_rcu(&sp->rcu, free_pages_rcu);
1970 return;
1971 }
1972
7775834a
XG
1973 do {
1974 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1975 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 1976 kvm_mmu_isolate_page(sp);
aa6bd187 1977 kvm_mmu_free_page(sp);
7775834a
XG
1978 } while (!list_empty(invalid_list));
1979
1980}
1981
82ce2c96
IE
1982/*
1983 * Changing the number of mmu pages allocated to the vm
49d5ca26 1984 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 1985 */
49d5ca26 1986void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 1987{
d98ba053 1988 LIST_HEAD(invalid_list);
82ce2c96
IE
1989 /*
1990 * If we set the number of mmu pages to be smaller be than the
1991 * number of actived pages , we must to free some mmu pages before we
1992 * change the value
1993 */
1994
49d5ca26
DH
1995 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1996 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 1997 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
1998 struct kvm_mmu_page *page;
1999
f05e70ac 2000 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2001 struct kvm_mmu_page, link);
80b63faf 2002 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2003 }
aa6bd187 2004 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2005 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2006 }
82ce2c96 2007
49d5ca26 2008 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2009}
2010
1cb3f3ae 2011int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2012{
4db35314 2013 struct kvm_mmu_page *sp;
f41d335a 2014 struct hlist_node *node;
d98ba053 2015 LIST_HEAD(invalid_list);
a436036b
AK
2016 int r;
2017
9ad17b10 2018 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2019 r = 0;
1cb3f3ae 2020 spin_lock(&kvm->mmu_lock);
f41d335a 2021 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2022 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2023 sp->role.word);
2024 r = 1;
f41d335a 2025 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2026 }
d98ba053 2027 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2028 spin_unlock(&kvm->mmu_lock);
2029
a436036b 2030 return r;
cea0f0e7 2031}
1cb3f3ae 2032EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2033
38c335f1 2034static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2035{
bc6678a3 2036 int slot = memslot_id(kvm, gfn);
4db35314 2037 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2038
291f26bc 2039 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2040}
2041
74be52e3
SY
2042/*
2043 * The function is based on mtrr_type_lookup() in
2044 * arch/x86/kernel/cpu/mtrr/generic.c
2045 */
2046static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2047 u64 start, u64 end)
2048{
2049 int i;
2050 u64 base, mask;
2051 u8 prev_match, curr_match;
2052 int num_var_ranges = KVM_NR_VAR_MTRR;
2053
2054 if (!mtrr_state->enabled)
2055 return 0xFF;
2056
2057 /* Make end inclusive end, instead of exclusive */
2058 end--;
2059
2060 /* Look in fixed ranges. Just return the type as per start */
2061 if (mtrr_state->have_fixed && (start < 0x100000)) {
2062 int idx;
2063
2064 if (start < 0x80000) {
2065 idx = 0;
2066 idx += (start >> 16);
2067 return mtrr_state->fixed_ranges[idx];
2068 } else if (start < 0xC0000) {
2069 idx = 1 * 8;
2070 idx += ((start - 0x80000) >> 14);
2071 return mtrr_state->fixed_ranges[idx];
2072 } else if (start < 0x1000000) {
2073 idx = 3 * 8;
2074 idx += ((start - 0xC0000) >> 12);
2075 return mtrr_state->fixed_ranges[idx];
2076 }
2077 }
2078
2079 /*
2080 * Look in variable ranges
2081 * Look of multiple ranges matching this address and pick type
2082 * as per MTRR precedence
2083 */
2084 if (!(mtrr_state->enabled & 2))
2085 return mtrr_state->def_type;
2086
2087 prev_match = 0xFF;
2088 for (i = 0; i < num_var_ranges; ++i) {
2089 unsigned short start_state, end_state;
2090
2091 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2092 continue;
2093
2094 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2095 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2096 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2097 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2098
2099 start_state = ((start & mask) == (base & mask));
2100 end_state = ((end & mask) == (base & mask));
2101 if (start_state != end_state)
2102 return 0xFE;
2103
2104 if ((start & mask) != (base & mask))
2105 continue;
2106
2107 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2108 if (prev_match == 0xFF) {
2109 prev_match = curr_match;
2110 continue;
2111 }
2112
2113 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2114 curr_match == MTRR_TYPE_UNCACHABLE)
2115 return MTRR_TYPE_UNCACHABLE;
2116
2117 if ((prev_match == MTRR_TYPE_WRBACK &&
2118 curr_match == MTRR_TYPE_WRTHROUGH) ||
2119 (prev_match == MTRR_TYPE_WRTHROUGH &&
2120 curr_match == MTRR_TYPE_WRBACK)) {
2121 prev_match = MTRR_TYPE_WRTHROUGH;
2122 curr_match = MTRR_TYPE_WRTHROUGH;
2123 }
2124
2125 if (prev_match != curr_match)
2126 return MTRR_TYPE_UNCACHABLE;
2127 }
2128
2129 if (prev_match != 0xFF)
2130 return prev_match;
2131
2132 return mtrr_state->def_type;
2133}
2134
4b12f0de 2135u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2136{
2137 u8 mtrr;
2138
2139 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2140 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2141 if (mtrr == 0xfe || mtrr == 0xff)
2142 mtrr = MTRR_TYPE_WRBACK;
2143 return mtrr;
2144}
4b12f0de 2145EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2146
9cf5cf5a
XG
2147static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2148{
2149 trace_kvm_mmu_unsync_page(sp);
2150 ++vcpu->kvm->stat.mmu_unsync;
2151 sp->unsync = 1;
2152
2153 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2154}
2155
2156static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2157{
4731d4c7 2158 struct kvm_mmu_page *s;
f41d335a 2159 struct hlist_node *node;
9cf5cf5a 2160
f41d335a 2161 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2162 if (s->unsync)
4731d4c7 2163 continue;
9cf5cf5a
XG
2164 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2165 __kvm_unsync_page(vcpu, s);
4731d4c7 2166 }
4731d4c7
MT
2167}
2168
2169static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2170 bool can_unsync)
2171{
9cf5cf5a 2172 struct kvm_mmu_page *s;
f41d335a 2173 struct hlist_node *node;
9cf5cf5a
XG
2174 bool need_unsync = false;
2175
f41d335a 2176 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2177 if (!can_unsync)
2178 return 1;
2179
9cf5cf5a 2180 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2181 return 1;
9cf5cf5a
XG
2182
2183 if (!need_unsync && !s->unsync) {
9cf5cf5a
XG
2184 need_unsync = true;
2185 }
4731d4c7 2186 }
9cf5cf5a
XG
2187 if (need_unsync)
2188 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2189 return 0;
2190}
2191
d555c333 2192static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2193 unsigned pte_access, int user_fault,
640d9b0d 2194 int write_fault, int level,
c2d0ee46 2195 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2196 bool can_unsync, bool host_writable)
1c4f1fd6 2197{
b330aa0c 2198 u64 spte, entry = *sptep;
1e73f9dd 2199 int ret = 0;
64d4d521 2200
ce88decf
XG
2201 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2202 return 0;
2203
982c2565 2204 spte = PT_PRESENT_MASK;
947da538 2205 if (!speculative)
3201b5d9 2206 spte |= shadow_accessed_mask;
640d9b0d 2207
7b52345e
SY
2208 if (pte_access & ACC_EXEC_MASK)
2209 spte |= shadow_x_mask;
2210 else
2211 spte |= shadow_nx_mask;
1c4f1fd6 2212 if (pte_access & ACC_USER_MASK)
7b52345e 2213 spte |= shadow_user_mask;
852e3c19 2214 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2215 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2216 if (tdp_enabled)
4b12f0de
SY
2217 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2218 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2219
9bdbba13 2220 if (host_writable)
1403283a 2221 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2222 else
2223 pte_access &= ~ACC_WRITE_MASK;
1403283a 2224
35149e21 2225 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2226
2227 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2228 || (!vcpu->arch.mmu.direct_map && write_fault
2229 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2230
852e3c19
JR
2231 if (level > PT_PAGE_TABLE_LEVEL &&
2232 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2233 ret = 1;
c3707958 2234 drop_spte(vcpu->kvm, sptep);
be38d276 2235 goto done;
38187c83
MT
2236 }
2237
1c4f1fd6 2238 spte |= PT_WRITABLE_MASK;
1c4f1fd6 2239
c5a78f2b 2240 if (!vcpu->arch.mmu.direct_map
411c588d 2241 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2242 spte &= ~PT_USER_MASK;
411c588d
AK
2243 /*
2244 * If we converted a user page to a kernel page,
2245 * so that the kernel can write to it when cr0.wp=0,
2246 * then we should prevent the kernel from executing it
2247 * if SMEP is enabled.
2248 */
2249 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2250 spte |= PT64_NX_MASK;
2251 }
69325a12 2252
ecc5589f
MT
2253 /*
2254 * Optimization: for pte sync, if spte was writable the hash
2255 * lookup is unnecessary (and expensive). Write protection
2256 * is responsibility of mmu_get_page / kvm_sync_page.
2257 * Same reasoning can be applied to dirty page accounting.
2258 */
8dae4445 2259 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2260 goto set_pte;
2261
4731d4c7 2262 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2263 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2264 __func__, gfn);
1e73f9dd 2265 ret = 1;
1c4f1fd6 2266 pte_access &= ~ACC_WRITE_MASK;
8dae4445 2267 if (is_writable_pte(spte))
1c4f1fd6 2268 spte &= ~PT_WRITABLE_MASK;
1c4f1fd6
AK
2269 }
2270 }
2271
1c4f1fd6
AK
2272 if (pte_access & ACC_WRITE_MASK)
2273 mark_page_dirty(vcpu->kvm, gfn);
2274
38187c83 2275set_pte:
1df9f2dc 2276 mmu_spte_update(sptep, spte);
b330aa0c
XG
2277 /*
2278 * If we overwrite a writable spte with a read-only one we
2279 * should flush remote TLBs. Otherwise rmap_write_protect
2280 * will find a read-only spte, even though the writable spte
2281 * might be cached on a CPU's TLB.
2282 */
2283 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2284 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2285done:
1e73f9dd
MT
2286 return ret;
2287}
2288
d555c333 2289static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2290 unsigned pt_access, unsigned pte_access,
640d9b0d 2291 int user_fault, int write_fault,
b90a0e6c 2292 int *emulate, int level, gfn_t gfn,
1403283a 2293 pfn_t pfn, bool speculative,
9bdbba13 2294 bool host_writable)
1e73f9dd
MT
2295{
2296 int was_rmapped = 0;
53a27b39 2297 int rmap_count;
1e73f9dd
MT
2298
2299 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2300 " user_fault %d gfn %llx\n",
d555c333 2301 __func__, *sptep, pt_access,
1e73f9dd
MT
2302 write_fault, user_fault, gfn);
2303
d555c333 2304 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2305 /*
2306 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2307 * the parent of the now unreachable PTE.
2308 */
852e3c19
JR
2309 if (level > PT_PAGE_TABLE_LEVEL &&
2310 !is_large_pte(*sptep)) {
1e73f9dd 2311 struct kvm_mmu_page *child;
d555c333 2312 u64 pte = *sptep;
1e73f9dd
MT
2313
2314 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2315 drop_parent_pte(child, sptep);
3be2264b 2316 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2317 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2318 pgprintk("hfn old %llx new %llx\n",
d555c333 2319 spte_to_pfn(*sptep), pfn);
c3707958 2320 drop_spte(vcpu->kvm, sptep);
91546356 2321 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2322 } else
2323 was_rmapped = 1;
1e73f9dd 2324 }
852e3c19 2325
d555c333 2326 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2327 level, gfn, pfn, speculative, true,
9bdbba13 2328 host_writable)) {
1e73f9dd 2329 if (write_fault)
b90a0e6c 2330 *emulate = 1;
5304efde 2331 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2332 }
1e73f9dd 2333
ce88decf
XG
2334 if (unlikely(is_mmio_spte(*sptep) && emulate))
2335 *emulate = 1;
2336
d555c333 2337 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2338 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2339 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2340 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2341 *sptep, sptep);
d555c333 2342 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2343 ++vcpu->kvm->stat.lpages;
2344
ffb61bb3
XG
2345 if (is_shadow_present_pte(*sptep)) {
2346 page_header_update_slot(vcpu->kvm, sptep, gfn);
2347 if (!was_rmapped) {
2348 rmap_count = rmap_add(vcpu, sptep, gfn);
2349 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2350 rmap_recycle(vcpu, sptep, gfn);
2351 }
1c4f1fd6 2352 }
9ed5520d 2353 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2354}
2355
6aa8b732
AK
2356static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2357{
2358}
2359
957ed9ef
XG
2360static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2361 bool no_dirty_log)
2362{
2363 struct kvm_memory_slot *slot;
2364 unsigned long hva;
2365
5d163b1c 2366 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2367 if (!slot) {
fce92dce
XG
2368 get_page(fault_page);
2369 return page_to_pfn(fault_page);
957ed9ef
XG
2370 }
2371
2372 hva = gfn_to_hva_memslot(slot, gfn);
2373
2374 return hva_to_pfn_atomic(vcpu->kvm, hva);
2375}
2376
2377static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2378 struct kvm_mmu_page *sp,
2379 u64 *start, u64 *end)
2380{
2381 struct page *pages[PTE_PREFETCH_NUM];
2382 unsigned access = sp->role.access;
2383 int i, ret;
2384 gfn_t gfn;
2385
2386 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2387 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2388 return -1;
2389
2390 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2391 if (ret <= 0)
2392 return -1;
2393
2394 for (i = 0; i < ret; i++, gfn++, start++)
2395 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2396 access, 0, 0, NULL,
957ed9ef
XG
2397 sp->role.level, gfn,
2398 page_to_pfn(pages[i]), true, true);
2399
2400 return 0;
2401}
2402
2403static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2404 struct kvm_mmu_page *sp, u64 *sptep)
2405{
2406 u64 *spte, *start = NULL;
2407 int i;
2408
2409 WARN_ON(!sp->role.direct);
2410
2411 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2412 spte = sp->spt + i;
2413
2414 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2415 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2416 if (!start)
2417 continue;
2418 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2419 break;
2420 start = NULL;
2421 } else if (!start)
2422 start = spte;
2423 }
2424}
2425
2426static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2427{
2428 struct kvm_mmu_page *sp;
2429
2430 /*
2431 * Since it's no accessed bit on EPT, it's no way to
2432 * distinguish between actually accessed translations
2433 * and prefetched, so disable pte prefetch if EPT is
2434 * enabled.
2435 */
2436 if (!shadow_accessed_mask)
2437 return;
2438
2439 sp = page_header(__pa(sptep));
2440 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2441 return;
2442
2443 __direct_pte_prefetch(vcpu, sp, sptep);
2444}
2445
9f652d21 2446static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2447 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2448 bool prefault)
140754bc 2449{
9f652d21 2450 struct kvm_shadow_walk_iterator iterator;
140754bc 2451 struct kvm_mmu_page *sp;
b90a0e6c 2452 int emulate = 0;
140754bc 2453 gfn_t pseudo_gfn;
6aa8b732 2454
9f652d21 2455 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2456 if (iterator.level == level) {
612819c3
MT
2457 unsigned pte_access = ACC_ALL;
2458
612819c3 2459 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2460 0, write, &emulate,
2ec4739d 2461 level, gfn, pfn, prefault, map_writable);
957ed9ef 2462 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2463 ++vcpu->stat.pf_fixed;
2464 break;
6aa8b732
AK
2465 }
2466
c3707958 2467 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2468 u64 base_addr = iterator.addr;
2469
2470 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2471 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2472 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2473 iterator.level - 1,
2474 1, ACC_ALL, iterator.sptep);
2475 if (!sp) {
2476 pgprintk("nonpaging_map: ENOMEM\n");
2477 kvm_release_pfn_clean(pfn);
2478 return -ENOMEM;
2479 }
140754bc 2480
1df9f2dc
XG
2481 mmu_spte_set(iterator.sptep,
2482 __pa(sp->spt)
2483 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2484 | shadow_user_mask | shadow_x_mask
2485 | shadow_accessed_mask);
9f652d21
AK
2486 }
2487 }
b90a0e6c 2488 return emulate;
6aa8b732
AK
2489}
2490
77db5cbd 2491static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2492{
77db5cbd
HY
2493 siginfo_t info;
2494
2495 info.si_signo = SIGBUS;
2496 info.si_errno = 0;
2497 info.si_code = BUS_MCEERR_AR;
2498 info.si_addr = (void __user *)address;
2499 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2500
77db5cbd 2501 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2502}
2503
d7c55201 2504static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2505{
2506 kvm_release_pfn_clean(pfn);
2507 if (is_hwpoison_pfn(pfn)) {
bebb106a 2508 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2509 return 0;
d7c55201 2510 }
edba23e5 2511
d7c55201 2512 return -EFAULT;
bf998156
HY
2513}
2514
936a5fe6
AA
2515static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2516 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2517{
2518 pfn_t pfn = *pfnp;
2519 gfn_t gfn = *gfnp;
2520 int level = *levelp;
2521
2522 /*
2523 * Check if it's a transparent hugepage. If this would be an
2524 * hugetlbfs page, level wouldn't be set to
2525 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2526 * here.
2527 */
2528 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2529 level == PT_PAGE_TABLE_LEVEL &&
2530 PageTransCompound(pfn_to_page(pfn)) &&
2531 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2532 unsigned long mask;
2533 /*
2534 * mmu_notifier_retry was successful and we hold the
2535 * mmu_lock here, so the pmd can't become splitting
2536 * from under us, and in turn
2537 * __split_huge_page_refcount() can't run from under
2538 * us and we can safely transfer the refcount from
2539 * PG_tail to PG_head as we switch the pfn to tail to
2540 * head.
2541 */
2542 *levelp = level = PT_DIRECTORY_LEVEL;
2543 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2544 VM_BUG_ON((gfn & mask) != (pfn & mask));
2545 if (pfn & mask) {
2546 gfn &= ~mask;
2547 *gfnp = gfn;
2548 kvm_release_pfn_clean(pfn);
2549 pfn &= ~mask;
2550 if (!get_page_unless_zero(pfn_to_page(pfn)))
2551 BUG();
2552 *pfnp = pfn;
2553 }
2554 }
2555}
2556
d7c55201
XG
2557static bool mmu_invalid_pfn(pfn_t pfn)
2558{
ce88decf 2559 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2560}
2561
2562static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2563 pfn_t pfn, unsigned access, int *ret_val)
2564{
2565 bool ret = true;
2566
2567 /* The pfn is invalid, report the error! */
2568 if (unlikely(is_invalid_pfn(pfn))) {
2569 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2570 goto exit;
2571 }
2572
ce88decf 2573 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2574 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2575
2576 ret = false;
2577exit:
2578 return ret;
2579}
2580
78b2c54a 2581static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2582 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2583
2584static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
78b2c54a 2585 bool prefault)
10589a46
MT
2586{
2587 int r;
852e3c19 2588 int level;
936a5fe6 2589 int force_pt_level;
35149e21 2590 pfn_t pfn;
e930bffe 2591 unsigned long mmu_seq;
612819c3 2592 bool map_writable;
aaee2c94 2593
936a5fe6
AA
2594 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2595 if (likely(!force_pt_level)) {
2596 level = mapping_level(vcpu, gfn);
2597 /*
2598 * This path builds a PAE pagetable - so we can map
2599 * 2mb pages at maximum. Therefore check if the level
2600 * is larger than that.
2601 */
2602 if (level > PT_DIRECTORY_LEVEL)
2603 level = PT_DIRECTORY_LEVEL;
852e3c19 2604
936a5fe6
AA
2605 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2606 } else
2607 level = PT_PAGE_TABLE_LEVEL;
05da4558 2608
e930bffe 2609 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2610 smp_rmb();
060c2abe 2611
78b2c54a 2612 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2613 return 0;
aaee2c94 2614
d7c55201
XG
2615 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2616 return r;
d196e343 2617
aaee2c94 2618 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2619 if (mmu_notifier_retry(vcpu, mmu_seq))
2620 goto out_unlock;
eb787d10 2621 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2622 if (likely(!force_pt_level))
2623 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2624 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2625 prefault);
aaee2c94
MT
2626 spin_unlock(&vcpu->kvm->mmu_lock);
2627
aaee2c94 2628
10589a46 2629 return r;
e930bffe
AA
2630
2631out_unlock:
2632 spin_unlock(&vcpu->kvm->mmu_lock);
2633 kvm_release_pfn_clean(pfn);
2634 return 0;
10589a46
MT
2635}
2636
2637
17ac10ad
AK
2638static void mmu_free_roots(struct kvm_vcpu *vcpu)
2639{
2640 int i;
4db35314 2641 struct kvm_mmu_page *sp;
d98ba053 2642 LIST_HEAD(invalid_list);
17ac10ad 2643
ad312c7c 2644 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2645 return;
aaee2c94 2646 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2647 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2648 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2649 vcpu->arch.mmu.direct_map)) {
ad312c7c 2650 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2651
4db35314
AK
2652 sp = page_header(root);
2653 --sp->root_count;
d98ba053
XG
2654 if (!sp->root_count && sp->role.invalid) {
2655 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2656 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2657 }
ad312c7c 2658 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2659 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2660 return;
2661 }
17ac10ad 2662 for (i = 0; i < 4; ++i) {
ad312c7c 2663 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2664
417726a3 2665 if (root) {
417726a3 2666 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2667 sp = page_header(root);
2668 --sp->root_count;
2e53d63a 2669 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2670 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2671 &invalid_list);
417726a3 2672 }
ad312c7c 2673 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2674 }
d98ba053 2675 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2676 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2677 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2678}
2679
8986ecc0
MT
2680static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2681{
2682 int ret = 0;
2683
2684 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2685 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2686 ret = 1;
2687 }
2688
2689 return ret;
2690}
2691
651dd37a
JR
2692static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2693{
2694 struct kvm_mmu_page *sp;
7ebaf15e 2695 unsigned i;
651dd37a
JR
2696
2697 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2698 spin_lock(&vcpu->kvm->mmu_lock);
2699 kvm_mmu_free_some_pages(vcpu);
2700 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2701 1, ACC_ALL, NULL);
2702 ++sp->root_count;
2703 spin_unlock(&vcpu->kvm->mmu_lock);
2704 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2705 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2706 for (i = 0; i < 4; ++i) {
2707 hpa_t root = vcpu->arch.mmu.pae_root[i];
2708
2709 ASSERT(!VALID_PAGE(root));
2710 spin_lock(&vcpu->kvm->mmu_lock);
2711 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2712 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2713 i << 30,
651dd37a
JR
2714 PT32_ROOT_LEVEL, 1, ACC_ALL,
2715 NULL);
2716 root = __pa(sp->spt);
2717 ++sp->root_count;
2718 spin_unlock(&vcpu->kvm->mmu_lock);
2719 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2720 }
6292757f 2721 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2722 } else
2723 BUG();
2724
2725 return 0;
2726}
2727
2728static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2729{
4db35314 2730 struct kvm_mmu_page *sp;
81407ca5
JR
2731 u64 pdptr, pm_mask;
2732 gfn_t root_gfn;
2733 int i;
3bb65a22 2734
5777ed34 2735 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2736
651dd37a
JR
2737 if (mmu_check_root(vcpu, root_gfn))
2738 return 1;
2739
2740 /*
2741 * Do we shadow a long mode page table? If so we need to
2742 * write-protect the guests page table root.
2743 */
2744 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2745 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2746
2747 ASSERT(!VALID_PAGE(root));
651dd37a 2748
8facbbff 2749 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2750 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2751 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2752 0, ACC_ALL, NULL);
4db35314
AK
2753 root = __pa(sp->spt);
2754 ++sp->root_count;
8facbbff 2755 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2756 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2757 return 0;
17ac10ad 2758 }
f87f9288 2759
651dd37a
JR
2760 /*
2761 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2762 * or a PAE 3-level page table. In either case we need to be aware that
2763 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2764 */
81407ca5
JR
2765 pm_mask = PT_PRESENT_MASK;
2766 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2767 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2768
17ac10ad 2769 for (i = 0; i < 4; ++i) {
ad312c7c 2770 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2771
2772 ASSERT(!VALID_PAGE(root));
ad312c7c 2773 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2774 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2775 if (!is_present_gpte(pdptr)) {
ad312c7c 2776 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2777 continue;
2778 }
6de4f3ad 2779 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
2780 if (mmu_check_root(vcpu, root_gfn))
2781 return 1;
5a7388c2 2782 }
8facbbff 2783 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2784 kvm_mmu_free_some_pages(vcpu);
4db35314 2785 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 2786 PT32_ROOT_LEVEL, 0,
f7d9c7b7 2787 ACC_ALL, NULL);
4db35314
AK
2788 root = __pa(sp->spt);
2789 ++sp->root_count;
8facbbff
AK
2790 spin_unlock(&vcpu->kvm->mmu_lock);
2791
81407ca5 2792 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 2793 }
6292757f 2794 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
2795
2796 /*
2797 * If we shadow a 32 bit page table with a long mode page
2798 * table we enter this path.
2799 */
2800 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2801 if (vcpu->arch.mmu.lm_root == NULL) {
2802 /*
2803 * The additional page necessary for this is only
2804 * allocated on demand.
2805 */
2806
2807 u64 *lm_root;
2808
2809 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2810 if (lm_root == NULL)
2811 return 1;
2812
2813 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2814
2815 vcpu->arch.mmu.lm_root = lm_root;
2816 }
2817
2818 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2819 }
2820
8986ecc0 2821 return 0;
17ac10ad
AK
2822}
2823
651dd37a
JR
2824static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2825{
2826 if (vcpu->arch.mmu.direct_map)
2827 return mmu_alloc_direct_roots(vcpu);
2828 else
2829 return mmu_alloc_shadow_roots(vcpu);
2830}
2831
0ba73cda
MT
2832static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2833{
2834 int i;
2835 struct kvm_mmu_page *sp;
2836
81407ca5
JR
2837 if (vcpu->arch.mmu.direct_map)
2838 return;
2839
0ba73cda
MT
2840 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2841 return;
6903074c 2842
bebb106a 2843 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 2844 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 2845 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
2846 hpa_t root = vcpu->arch.mmu.root_hpa;
2847 sp = page_header(root);
2848 mmu_sync_children(vcpu, sp);
0375f7fa 2849 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2850 return;
2851 }
2852 for (i = 0; i < 4; ++i) {
2853 hpa_t root = vcpu->arch.mmu.pae_root[i];
2854
8986ecc0 2855 if (root && VALID_PAGE(root)) {
0ba73cda
MT
2856 root &= PT64_BASE_ADDR_MASK;
2857 sp = page_header(root);
2858 mmu_sync_children(vcpu, sp);
2859 }
2860 }
0375f7fa 2861 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2862}
2863
2864void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2865{
2866 spin_lock(&vcpu->kvm->mmu_lock);
2867 mmu_sync_roots(vcpu);
6cffe8ca 2868 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
2869}
2870
1871c602 2871static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 2872 u32 access, struct x86_exception *exception)
6aa8b732 2873{
ab9ae313
AK
2874 if (exception)
2875 exception->error_code = 0;
6aa8b732
AK
2876 return vaddr;
2877}
2878
6539e738 2879static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
2880 u32 access,
2881 struct x86_exception *exception)
6539e738 2882{
ab9ae313
AK
2883 if (exception)
2884 exception->error_code = 0;
6539e738
JR
2885 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2886}
2887
ce88decf
XG
2888static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2889{
2890 if (direct)
2891 return vcpu_match_mmio_gpa(vcpu, addr);
2892
2893 return vcpu_match_mmio_gva(vcpu, addr);
2894}
2895
2896
2897/*
2898 * On direct hosts, the last spte is only allows two states
2899 * for mmio page fault:
2900 * - It is the mmio spte
2901 * - It is zapped or it is being zapped.
2902 *
2903 * This function completely checks the spte when the last spte
2904 * is not the mmio spte.
2905 */
2906static bool check_direct_spte_mmio_pf(u64 spte)
2907{
2908 return __check_direct_spte_mmio_pf(spte);
2909}
2910
2911static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2912{
2913 struct kvm_shadow_walk_iterator iterator;
2914 u64 spte = 0ull;
2915
2916 walk_shadow_page_lockless_begin(vcpu);
2917 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2918 if (!is_shadow_present_pte(spte))
2919 break;
2920 walk_shadow_page_lockless_end(vcpu);
2921
2922 return spte;
2923}
2924
2925/*
2926 * If it is a real mmio page fault, return 1 and emulat the instruction
2927 * directly, return 0 to let CPU fault again on the address, -1 is
2928 * returned if bug is detected.
2929 */
2930int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2931{
2932 u64 spte;
2933
2934 if (quickly_check_mmio_pf(vcpu, addr, direct))
2935 return 1;
2936
2937 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2938
2939 if (is_mmio_spte(spte)) {
2940 gfn_t gfn = get_mmio_spte_gfn(spte);
2941 unsigned access = get_mmio_spte_access(spte);
2942
2943 if (direct)
2944 addr = 0;
4f022648
XG
2945
2946 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
2947 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2948 return 1;
2949 }
2950
2951 /*
2952 * It's ok if the gva is remapped by other cpus on shadow guest,
2953 * it's a BUG if the gfn is not a mmio page.
2954 */
2955 if (direct && !check_direct_spte_mmio_pf(spte))
2956 return -1;
2957
2958 /*
2959 * If the page table is zapped by other cpus, let CPU fault again on
2960 * the address.
2961 */
2962 return 0;
2963}
2964EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2965
2966static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2967 u32 error_code, bool direct)
2968{
2969 int ret;
2970
2971 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2972 WARN_ON(ret < 0);
2973 return ret;
2974}
2975
6aa8b732 2976static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 2977 u32 error_code, bool prefault)
6aa8b732 2978{
e833240f 2979 gfn_t gfn;
e2dec939 2980 int r;
6aa8b732 2981
b8688d51 2982 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
2983
2984 if (unlikely(error_code & PFERR_RSVD_MASK))
2985 return handle_mmio_page_fault(vcpu, gva, error_code, true);
2986
e2dec939
AK
2987 r = mmu_topup_memory_caches(vcpu);
2988 if (r)
2989 return r;
714b93da 2990
6aa8b732 2991 ASSERT(vcpu);
ad312c7c 2992 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 2993
e833240f 2994 gfn = gva >> PAGE_SHIFT;
6aa8b732 2995
e833240f 2996 return nonpaging_map(vcpu, gva & PAGE_MASK,
78b2c54a 2997 error_code & PFERR_WRITE_MASK, gfn, prefault);
6aa8b732
AK
2998}
2999
7e1fbeac 3000static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3001{
3002 struct kvm_arch_async_pf arch;
fb67e14f 3003
7c90705b 3004 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3005 arch.gfn = gfn;
c4806acd 3006 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3007 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3008
3009 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3010}
3011
3012static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3013{
3014 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3015 kvm_event_needs_reinjection(vcpu)))
3016 return false;
3017
3018 return kvm_x86_ops->interrupt_allowed(vcpu);
3019}
3020
78b2c54a 3021static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3022 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3023{
3024 bool async;
3025
612819c3 3026 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3027
3028 if (!async)
3029 return false; /* *pfn has correct page already */
3030
3031 put_page(pfn_to_page(*pfn));
3032
78b2c54a 3033 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3034 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3035 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3036 trace_kvm_async_pf_doublefault(gva, gfn);
3037 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3038 return true;
3039 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3040 return true;
3041 }
3042
612819c3 3043 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3044
3045 return false;
3046}
3047
56028d08 3048static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3049 bool prefault)
fb72d167 3050{
35149e21 3051 pfn_t pfn;
fb72d167 3052 int r;
852e3c19 3053 int level;
936a5fe6 3054 int force_pt_level;
05da4558 3055 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3056 unsigned long mmu_seq;
612819c3
MT
3057 int write = error_code & PFERR_WRITE_MASK;
3058 bool map_writable;
fb72d167
JR
3059
3060 ASSERT(vcpu);
3061 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3062
ce88decf
XG
3063 if (unlikely(error_code & PFERR_RSVD_MASK))
3064 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3065
fb72d167
JR
3066 r = mmu_topup_memory_caches(vcpu);
3067 if (r)
3068 return r;
3069
936a5fe6
AA
3070 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3071 if (likely(!force_pt_level)) {
3072 level = mapping_level(vcpu, gfn);
3073 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3074 } else
3075 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3076
e930bffe 3077 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3078 smp_rmb();
af585b92 3079
78b2c54a 3080 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3081 return 0;
3082
d7c55201
XG
3083 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3084 return r;
3085
fb72d167 3086 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3087 if (mmu_notifier_retry(vcpu, mmu_seq))
3088 goto out_unlock;
fb72d167 3089 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3090 if (likely(!force_pt_level))
3091 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3092 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3093 level, gfn, pfn, prefault);
fb72d167 3094 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3095
3096 return r;
e930bffe
AA
3097
3098out_unlock:
3099 spin_unlock(&vcpu->kvm->mmu_lock);
3100 kvm_release_pfn_clean(pfn);
3101 return 0;
fb72d167
JR
3102}
3103
6aa8b732
AK
3104static void nonpaging_free(struct kvm_vcpu *vcpu)
3105{
17ac10ad 3106 mmu_free_roots(vcpu);
6aa8b732
AK
3107}
3108
52fde8df
JR
3109static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3110 struct kvm_mmu *context)
6aa8b732 3111{
6aa8b732
AK
3112 context->new_cr3 = nonpaging_new_cr3;
3113 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3114 context->gva_to_gpa = nonpaging_gva_to_gpa;
3115 context->free = nonpaging_free;
e8bc217a 3116 context->sync_page = nonpaging_sync_page;
a7052897 3117 context->invlpg = nonpaging_invlpg;
0f53b5b1 3118 context->update_pte = nonpaging_update_pte;
cea0f0e7 3119 context->root_level = 0;
6aa8b732 3120 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3121 context->root_hpa = INVALID_PAGE;
c5a78f2b 3122 context->direct_map = true;
2d48a985 3123 context->nx = false;
6aa8b732
AK
3124 return 0;
3125}
3126
d835dfec 3127void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3128{
1165f5fe 3129 ++vcpu->stat.tlb_flush;
a8eeb04a 3130 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3131}
3132
3133static void paging_new_cr3(struct kvm_vcpu *vcpu)
3134{
9f8fe504 3135 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3136 mmu_free_roots(vcpu);
6aa8b732
AK
3137}
3138
5777ed34
JR
3139static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3140{
9f8fe504 3141 return kvm_read_cr3(vcpu);
5777ed34
JR
3142}
3143
6389ee94
AK
3144static void inject_page_fault(struct kvm_vcpu *vcpu,
3145 struct x86_exception *fault)
6aa8b732 3146{
6389ee94 3147 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3148}
3149
6aa8b732
AK
3150static void paging_free(struct kvm_vcpu *vcpu)
3151{
3152 nonpaging_free(vcpu);
3153}
3154
3241f22d 3155static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3156{
3157 int bit7;
3158
3159 bit7 = (gpte >> 7) & 1;
3241f22d 3160 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3161}
3162
ce88decf
XG
3163static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3164 int *nr_present)
3165{
3166 if (unlikely(is_mmio_spte(*sptep))) {
3167 if (gfn != get_mmio_spte_gfn(*sptep)) {
3168 mmu_spte_clear_no_track(sptep);
3169 return true;
3170 }
3171
3172 (*nr_present)++;
3173 mark_mmio_spte(sptep, gfn, access);
3174 return true;
3175 }
3176
3177 return false;
3178}
3179
6aa8b732
AK
3180#define PTTYPE 64
3181#include "paging_tmpl.h"
3182#undef PTTYPE
3183
3184#define PTTYPE 32
3185#include "paging_tmpl.h"
3186#undef PTTYPE
3187
52fde8df
JR
3188static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3189 struct kvm_mmu *context,
3190 int level)
82725b20 3191{
82725b20
DE
3192 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3193 u64 exb_bit_rsvd = 0;
3194
2d48a985 3195 if (!context->nx)
82725b20
DE
3196 exb_bit_rsvd = rsvd_bits(63, 63);
3197 switch (level) {
3198 case PT32_ROOT_LEVEL:
3199 /* no rsvd bits for 2 level 4K page table entries */
3200 context->rsvd_bits_mask[0][1] = 0;
3201 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3202 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3203
3204 if (!is_pse(vcpu)) {
3205 context->rsvd_bits_mask[1][1] = 0;
3206 break;
3207 }
3208
82725b20
DE
3209 if (is_cpuid_PSE36())
3210 /* 36bits PSE 4MB page */
3211 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3212 else
3213 /* 32 bits PSE 4MB page */
3214 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3215 break;
3216 case PT32E_ROOT_LEVEL:
20c466b5
DE
3217 context->rsvd_bits_mask[0][2] =
3218 rsvd_bits(maxphyaddr, 63) |
3219 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3220 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3221 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3222 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3223 rsvd_bits(maxphyaddr, 62); /* PTE */
3224 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3225 rsvd_bits(maxphyaddr, 62) |
3226 rsvd_bits(13, 20); /* large page */
f815bce8 3227 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3228 break;
3229 case PT64_ROOT_LEVEL:
3230 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3231 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3232 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3233 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3234 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3235 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3236 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3237 rsvd_bits(maxphyaddr, 51);
3238 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3239 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3240 rsvd_bits(maxphyaddr, 51) |
3241 rsvd_bits(13, 29);
82725b20 3242 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3243 rsvd_bits(maxphyaddr, 51) |
3244 rsvd_bits(13, 20); /* large page */
f815bce8 3245 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3246 break;
3247 }
3248}
3249
52fde8df
JR
3250static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3251 struct kvm_mmu *context,
3252 int level)
6aa8b732 3253{
2d48a985
JR
3254 context->nx = is_nx(vcpu);
3255
52fde8df 3256 reset_rsvds_bits_mask(vcpu, context, level);
6aa8b732
AK
3257
3258 ASSERT(is_pae(vcpu));
3259 context->new_cr3 = paging_new_cr3;
3260 context->page_fault = paging64_page_fault;
6aa8b732 3261 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3262 context->sync_page = paging64_sync_page;
a7052897 3263 context->invlpg = paging64_invlpg;
0f53b5b1 3264 context->update_pte = paging64_update_pte;
6aa8b732 3265 context->free = paging_free;
17ac10ad
AK
3266 context->root_level = level;
3267 context->shadow_root_level = level;
17c3ba9d 3268 context->root_hpa = INVALID_PAGE;
c5a78f2b 3269 context->direct_map = false;
6aa8b732
AK
3270 return 0;
3271}
3272
52fde8df
JR
3273static int paging64_init_context(struct kvm_vcpu *vcpu,
3274 struct kvm_mmu *context)
17ac10ad 3275{
52fde8df 3276 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3277}
3278
52fde8df
JR
3279static int paging32_init_context(struct kvm_vcpu *vcpu,
3280 struct kvm_mmu *context)
6aa8b732 3281{
2d48a985
JR
3282 context->nx = false;
3283
52fde8df 3284 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
6aa8b732
AK
3285
3286 context->new_cr3 = paging_new_cr3;
3287 context->page_fault = paging32_page_fault;
6aa8b732
AK
3288 context->gva_to_gpa = paging32_gva_to_gpa;
3289 context->free = paging_free;
e8bc217a 3290 context->sync_page = paging32_sync_page;
a7052897 3291 context->invlpg = paging32_invlpg;
0f53b5b1 3292 context->update_pte = paging32_update_pte;
6aa8b732
AK
3293 context->root_level = PT32_ROOT_LEVEL;
3294 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3295 context->root_hpa = INVALID_PAGE;
c5a78f2b 3296 context->direct_map = false;
6aa8b732
AK
3297 return 0;
3298}
3299
52fde8df
JR
3300static int paging32E_init_context(struct kvm_vcpu *vcpu,
3301 struct kvm_mmu *context)
6aa8b732 3302{
52fde8df 3303 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3304}
3305
fb72d167
JR
3306static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3307{
14dfe855 3308 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3309
c445f8ef 3310 context->base_role.word = 0;
fb72d167
JR
3311 context->new_cr3 = nonpaging_new_cr3;
3312 context->page_fault = tdp_page_fault;
3313 context->free = nonpaging_free;
e8bc217a 3314 context->sync_page = nonpaging_sync_page;
a7052897 3315 context->invlpg = nonpaging_invlpg;
0f53b5b1 3316 context->update_pte = nonpaging_update_pte;
67253af5 3317 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3318 context->root_hpa = INVALID_PAGE;
c5a78f2b 3319 context->direct_map = true;
1c97f0a0 3320 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3321 context->get_cr3 = get_cr3;
e4e517b4 3322 context->get_pdptr = kvm_pdptr_read;
cb659db8 3323 context->inject_page_fault = kvm_inject_page_fault;
2d48a985 3324 context->nx = is_nx(vcpu);
fb72d167
JR
3325
3326 if (!is_paging(vcpu)) {
2d48a985 3327 context->nx = false;
fb72d167
JR
3328 context->gva_to_gpa = nonpaging_gva_to_gpa;
3329 context->root_level = 0;
3330 } else if (is_long_mode(vcpu)) {
2d48a985 3331 context->nx = is_nx(vcpu);
52fde8df 3332 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
fb72d167
JR
3333 context->gva_to_gpa = paging64_gva_to_gpa;
3334 context->root_level = PT64_ROOT_LEVEL;
3335 } else if (is_pae(vcpu)) {
2d48a985 3336 context->nx = is_nx(vcpu);
52fde8df 3337 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
fb72d167
JR
3338 context->gva_to_gpa = paging64_gva_to_gpa;
3339 context->root_level = PT32E_ROOT_LEVEL;
3340 } else {
2d48a985 3341 context->nx = false;
52fde8df 3342 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
fb72d167
JR
3343 context->gva_to_gpa = paging32_gva_to_gpa;
3344 context->root_level = PT32_ROOT_LEVEL;
3345 }
3346
3347 return 0;
3348}
3349
52fde8df 3350int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3351{
a770f6f2 3352 int r;
411c588d 3353 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3354 ASSERT(vcpu);
ad312c7c 3355 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3356
3357 if (!is_paging(vcpu))
52fde8df 3358 r = nonpaging_init_context(vcpu, context);
a9058ecd 3359 else if (is_long_mode(vcpu))
52fde8df 3360 r = paging64_init_context(vcpu, context);
6aa8b732 3361 else if (is_pae(vcpu))
52fde8df 3362 r = paging32E_init_context(vcpu, context);
6aa8b732 3363 else
52fde8df 3364 r = paging32_init_context(vcpu, context);
a770f6f2 3365
5b7e0102 3366 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3367 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3368 vcpu->arch.mmu.base_role.smep_andnot_wp
3369 = smep && !is_write_protection(vcpu);
52fde8df
JR
3370
3371 return r;
3372}
3373EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3374
3375static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3376{
14dfe855 3377 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3378
14dfe855
JR
3379 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3380 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3381 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3382 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3383
3384 return r;
6aa8b732
AK
3385}
3386
02f59dc9
JR
3387static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3388{
3389 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3390
3391 g_context->get_cr3 = get_cr3;
e4e517b4 3392 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3393 g_context->inject_page_fault = kvm_inject_page_fault;
3394
3395 /*
3396 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3397 * translation of l2_gpa to l1_gpa addresses is done using the
3398 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3399 * functions between mmu and nested_mmu are swapped.
3400 */
3401 if (!is_paging(vcpu)) {
2d48a985 3402 g_context->nx = false;
02f59dc9
JR
3403 g_context->root_level = 0;
3404 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3405 } else if (is_long_mode(vcpu)) {
2d48a985 3406 g_context->nx = is_nx(vcpu);
02f59dc9
JR
3407 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3408 g_context->root_level = PT64_ROOT_LEVEL;
3409 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3410 } else if (is_pae(vcpu)) {
2d48a985 3411 g_context->nx = is_nx(vcpu);
02f59dc9
JR
3412 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3413 g_context->root_level = PT32E_ROOT_LEVEL;
3414 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3415 } else {
2d48a985 3416 g_context->nx = false;
02f59dc9
JR
3417 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3418 g_context->root_level = PT32_ROOT_LEVEL;
3419 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3420 }
3421
3422 return 0;
3423}
3424
fb72d167
JR
3425static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3426{
02f59dc9
JR
3427 if (mmu_is_nested(vcpu))
3428 return init_kvm_nested_mmu(vcpu);
3429 else if (tdp_enabled)
fb72d167
JR
3430 return init_kvm_tdp_mmu(vcpu);
3431 else
3432 return init_kvm_softmmu(vcpu);
3433}
3434
6aa8b732
AK
3435static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3436{
3437 ASSERT(vcpu);
62ad0755
SY
3438 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3439 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3440 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3441}
3442
3443int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3444{
3445 destroy_kvm_mmu(vcpu);
f8f7e5ee 3446 return init_kvm_mmu(vcpu);
17c3ba9d 3447}
8668a3c4 3448EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3449
3450int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3451{
714b93da
AK
3452 int r;
3453
e2dec939 3454 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3455 if (r)
3456 goto out;
8986ecc0 3457 r = mmu_alloc_roots(vcpu);
8facbbff 3458 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3459 mmu_sync_roots(vcpu);
aaee2c94 3460 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3461 if (r)
3462 goto out;
3662cb1c 3463 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3464 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3465out:
3466 return r;
6aa8b732 3467}
17c3ba9d
AK
3468EXPORT_SYMBOL_GPL(kvm_mmu_load);
3469
3470void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3471{
3472 mmu_free_roots(vcpu);
3473}
4b16184c 3474EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3475
0028425f 3476static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3477 struct kvm_mmu_page *sp, u64 *spte,
3478 const void *new)
0028425f 3479{
30945387 3480 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3481 ++vcpu->kvm->stat.mmu_pde_zapped;
3482 return;
30945387 3483 }
0028425f 3484
4cee5764 3485 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3486 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3487}
3488
79539cec
AK
3489static bool need_remote_flush(u64 old, u64 new)
3490{
3491 if (!is_shadow_present_pte(old))
3492 return false;
3493 if (!is_shadow_present_pte(new))
3494 return true;
3495 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3496 return true;
3497 old ^= PT64_NX_MASK;
3498 new ^= PT64_NX_MASK;
3499 return (old & ~new & PT64_PERM_MASK) != 0;
3500}
3501
0671a8e7
XG
3502static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3503 bool remote_flush, bool local_flush)
79539cec 3504{
0671a8e7
XG
3505 if (zap_page)
3506 return;
3507
3508 if (remote_flush)
79539cec 3509 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3510 else if (local_flush)
79539cec
AK
3511 kvm_mmu_flush_tlb(vcpu);
3512}
3513
889e5cbc
XG
3514static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3515 const u8 *new, int *bytes)
da4a00f0 3516{
889e5cbc
XG
3517 u64 gentry;
3518 int r;
72016f3a 3519
72016f3a
AK
3520 /*
3521 * Assume that the pte write on a page table of the same type
49b26e26
XG
3522 * as the current vcpu paging mode since we update the sptes only
3523 * when they have the same mode.
72016f3a 3524 */
889e5cbc 3525 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3526 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3527 *gpa &= ~(gpa_t)7;
3528 *bytes = 8;
3529 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3530 if (r)
3531 gentry = 0;
08e850c6
AK
3532 new = (const u8 *)&gentry;
3533 }
3534
889e5cbc 3535 switch (*bytes) {
08e850c6
AK
3536 case 4:
3537 gentry = *(const u32 *)new;
3538 break;
3539 case 8:
3540 gentry = *(const u64 *)new;
3541 break;
3542 default:
3543 gentry = 0;
3544 break;
72016f3a
AK
3545 }
3546
889e5cbc
XG
3547 return gentry;
3548}
3549
3550/*
3551 * If we're seeing too many writes to a page, it may no longer be a page table,
3552 * or we may be forking, in which case it is better to unmap the page.
3553 */
a30f47cb 3554static bool detect_write_flooding(struct kvm_mmu_page *sp, u64 *spte)
889e5cbc 3555{
a30f47cb
XG
3556 /*
3557 * Skip write-flooding detected for the sp whose level is 1, because
3558 * it can become unsync, then the guest page is not write-protected.
3559 */
3560 if (sp->role.level == 1)
3561 return false;
3246af0e 3562
a30f47cb 3563 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3564}
3565
3566/*
3567 * Misaligned accesses are too much trouble to fix up; also, they usually
3568 * indicate a page is not used as a page table.
3569 */
3570static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3571 int bytes)
3572{
3573 unsigned offset, pte_size, misaligned;
3574
3575 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3576 gpa, bytes, sp->role.word);
3577
3578 offset = offset_in_page(gpa);
3579 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3580
3581 /*
3582 * Sometimes, the OS only writes the last one bytes to update status
3583 * bits, for example, in linux, andb instruction is used in clear_bit().
3584 */
3585 if (!(offset & (pte_size - 1)) && bytes == 1)
3586 return false;
3587
889e5cbc
XG
3588 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3589 misaligned |= bytes < 4;
3590
3591 return misaligned;
3592}
3593
3594static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3595{
3596 unsigned page_offset, quadrant;
3597 u64 *spte;
3598 int level;
3599
3600 page_offset = offset_in_page(gpa);
3601 level = sp->role.level;
3602 *nspte = 1;
3603 if (!sp->role.cr4_pae) {
3604 page_offset <<= 1; /* 32->64 */
3605 /*
3606 * A 32-bit pde maps 4MB while the shadow pdes map
3607 * only 2MB. So we need to double the offset again
3608 * and zap two pdes instead of one.
3609 */
3610 if (level == PT32_ROOT_LEVEL) {
3611 page_offset &= ~7; /* kill rounding error */
3612 page_offset <<= 1;
3613 *nspte = 2;
3614 }
3615 quadrant = page_offset >> PAGE_SHIFT;
3616 page_offset &= ~PAGE_MASK;
3617 if (quadrant != sp->role.quadrant)
3618 return NULL;
3619 }
3620
3621 spte = &sp->spt[page_offset / sizeof(*spte)];
3622 return spte;
3623}
3624
3625void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3626 const u8 *new, int bytes)
3627{
3628 gfn_t gfn = gpa >> PAGE_SHIFT;
3629 union kvm_mmu_page_role mask = { .word = 0 };
3630 struct kvm_mmu_page *sp;
3631 struct hlist_node *node;
3632 LIST_HEAD(invalid_list);
3633 u64 entry, gentry, *spte;
3634 int npte;
a30f47cb 3635 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3636
3637 /*
3638 * If we don't have indirect shadow pages, it means no page is
3639 * write-protected, so we can exit simply.
3640 */
3641 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3642 return;
3643
3644 zap_page = remote_flush = local_flush = false;
3645
3646 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3647
3648 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3649
3650 /*
3651 * No need to care whether allocation memory is successful
3652 * or not since pte prefetch is skiped if it does not have
3653 * enough objects in the cache.
3654 */
3655 mmu_topup_memory_caches(vcpu);
3656
3657 spin_lock(&vcpu->kvm->mmu_lock);
3658 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3659 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3660
fa1de2bf 3661 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3662 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3663 spte = get_written_sptes(sp, gpa, &npte);
889e5cbc 3664
a30f47cb
XG
3665 if (detect_write_misaligned(sp, gpa, bytes) ||
3666 detect_write_flooding(sp, spte)) {
0671a8e7 3667 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3668 &invalid_list);
4cee5764 3669 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3670 continue;
3671 }
889e5cbc
XG
3672
3673 spte = get_written_sptes(sp, gpa, &npte);
3674 if (!spte)
3675 continue;
3676
0671a8e7 3677 local_flush = true;
ac1b714e 3678 while (npte--) {
79539cec 3679 entry = *spte;
38e3b2b2 3680 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3681 if (gentry &&
3682 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3683 & mask.word) && rmap_can_add(vcpu))
7c562522 3684 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3685 if (!remote_flush && need_remote_flush(entry, *spte))
3686 remote_flush = true;
ac1b714e 3687 ++spte;
9b7a0325 3688 }
9b7a0325 3689 }
0671a8e7 3690 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3691 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3692 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3693 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3694}
3695
a436036b
AK
3696int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3697{
10589a46
MT
3698 gpa_t gpa;
3699 int r;
a436036b 3700
c5a78f2b 3701 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3702 return 0;
3703
1871c602 3704 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3705
10589a46 3706 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 3707
10589a46 3708 return r;
a436036b 3709}
577bdc49 3710EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3711
22d95b12 3712void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3713{
d98ba053 3714 LIST_HEAD(invalid_list);
103ad25a 3715
e0df7b9f 3716 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3717 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3718 struct kvm_mmu_page *sp;
ebeace86 3719
f05e70ac 3720 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3721 struct kvm_mmu_page, link);
e0df7b9f 3722 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3723 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3724 }
aa6bd187 3725 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3726}
ebeace86 3727
1cb3f3ae
XG
3728static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3729{
3730 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3731 return vcpu_match_mmio_gpa(vcpu, addr);
3732
3733 return vcpu_match_mmio_gva(vcpu, addr);
3734}
3735
dc25e89e
AP
3736int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3737 void *insn, int insn_len)
3067714c 3738{
1cb3f3ae 3739 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
3740 enum emulation_result er;
3741
56028d08 3742 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3743 if (r < 0)
3744 goto out;
3745
3746 if (!r) {
3747 r = 1;
3748 goto out;
3749 }
3750
1cb3f3ae
XG
3751 if (is_mmio_page_fault(vcpu, cr2))
3752 emulation_type = 0;
3753
3754 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
3755
3756 switch (er) {
3757 case EMULATE_DONE:
3758 return 1;
3759 case EMULATE_DO_MMIO:
3760 ++vcpu->stat.mmio_exits;
6d77dbfc 3761 /* fall through */
3067714c 3762 case EMULATE_FAIL:
3f5d18a9 3763 return 0;
3067714c
AK
3764 default:
3765 BUG();
3766 }
3767out:
3067714c
AK
3768 return r;
3769}
3770EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3771
a7052897
MT
3772void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3773{
a7052897 3774 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
3775 kvm_mmu_flush_tlb(vcpu);
3776 ++vcpu->stat.invlpg;
3777}
3778EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3779
18552672
JR
3780void kvm_enable_tdp(void)
3781{
3782 tdp_enabled = true;
3783}
3784EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3785
5f4cb662
JR
3786void kvm_disable_tdp(void)
3787{
3788 tdp_enabled = false;
3789}
3790EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3791
6aa8b732
AK
3792static void free_mmu_pages(struct kvm_vcpu *vcpu)
3793{
ad312c7c 3794 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
3795 if (vcpu->arch.mmu.lm_root != NULL)
3796 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
3797}
3798
3799static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3800{
17ac10ad 3801 struct page *page;
6aa8b732
AK
3802 int i;
3803
3804 ASSERT(vcpu);
3805
17ac10ad
AK
3806 /*
3807 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3808 * Therefore we need to allocate shadow page tables in the first
3809 * 4GB of memory, which happens to fit the DMA32 zone.
3810 */
3811 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3812 if (!page)
d7fa6ab2
WY
3813 return -ENOMEM;
3814
ad312c7c 3815 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 3816 for (i = 0; i < 4; ++i)
ad312c7c 3817 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3818
6aa8b732 3819 return 0;
6aa8b732
AK
3820}
3821
8018c27b 3822int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 3823{
6aa8b732 3824 ASSERT(vcpu);
e459e322
XG
3825
3826 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3827 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3828 vcpu->arch.mmu.translate_gpa = translate_gpa;
3829 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 3830
8018c27b
IM
3831 return alloc_mmu_pages(vcpu);
3832}
6aa8b732 3833
8018c27b
IM
3834int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3835{
3836 ASSERT(vcpu);
ad312c7c 3837 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 3838
8018c27b 3839 return init_kvm_mmu(vcpu);
6aa8b732
AK
3840}
3841
90cb0529 3842void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 3843{
4db35314 3844 struct kvm_mmu_page *sp;
6aa8b732 3845
f05e70ac 3846 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
3847 int i;
3848 u64 *pt;
3849
291f26bc 3850 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
3851 continue;
3852
4db35314 3853 pt = sp->spt;
8234b22e 3854 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
3855 if (!is_shadow_present_pte(pt[i]) ||
3856 !is_last_spte(pt[i], sp->role.level))
3857 continue;
3858
3859 if (is_large_pte(pt[i])) {
c3707958 3860 drop_spte(kvm, &pt[i]);
8234b22e 3861 --kvm->stat.lpages;
da8dc75f 3862 continue;
8234b22e 3863 }
da8dc75f 3864
6aa8b732 3865 /* avoid RMW */
01c168ac 3866 if (is_writable_pte(pt[i]))
1df9f2dc
XG
3867 mmu_spte_update(&pt[i],
3868 pt[i] & ~PT_WRITABLE_MASK);
8234b22e 3869 }
6aa8b732 3870 }
171d595d 3871 kvm_flush_remote_tlbs(kvm);
6aa8b732 3872}
37a7d8b0 3873
90cb0529 3874void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 3875{
4db35314 3876 struct kvm_mmu_page *sp, *node;
d98ba053 3877 LIST_HEAD(invalid_list);
e0fa826f 3878
aaee2c94 3879 spin_lock(&kvm->mmu_lock);
3246af0e 3880restart:
f05e70ac 3881 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 3882 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
3883 goto restart;
3884
d98ba053 3885 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 3886 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
3887}
3888
3d56cbdf
JK
3889static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3890 struct list_head *invalid_list)
3ee16c81
IE
3891{
3892 struct kvm_mmu_page *page;
3893
3894 page = container_of(kvm->arch.active_mmu_pages.prev,
3895 struct kvm_mmu_page, link);
3d56cbdf 3896 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
3897}
3898
1495f230 3899static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
3900{
3901 struct kvm *kvm;
3902 struct kvm *kvm_freed = NULL;
1495f230 3903 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
3904
3905 if (nr_to_scan == 0)
3906 goto out;
3ee16c81 3907
e935b837 3908 raw_spin_lock(&kvm_lock);
3ee16c81
IE
3909
3910 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 3911 int idx;
d98ba053 3912 LIST_HEAD(invalid_list);
3ee16c81 3913
f656ce01 3914 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 3915 spin_lock(&kvm->mmu_lock);
45221ab6
DH
3916 if (!kvm_freed && nr_to_scan > 0 &&
3917 kvm->arch.n_used_mmu_pages > 0) {
3d56cbdf
JK
3918 kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3919 &invalid_list);
3ee16c81
IE
3920 kvm_freed = kvm;
3921 }
3922 nr_to_scan--;
3923
d98ba053 3924 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3ee16c81 3925 spin_unlock(&kvm->mmu_lock);
f656ce01 3926 srcu_read_unlock(&kvm->srcu, idx);
3ee16c81
IE
3927 }
3928 if (kvm_freed)
3929 list_move_tail(&kvm_freed->vm_list, &vm_list);
3930
e935b837 3931 raw_spin_unlock(&kvm_lock);
3ee16c81 3932
45221ab6
DH
3933out:
3934 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
3935}
3936
3937static struct shrinker mmu_shrinker = {
3938 .shrink = mmu_shrink,
3939 .seeks = DEFAULT_SEEKS * 10,
3940};
3941
2ddfd20e 3942static void mmu_destroy_caches(void)
b5a33a75 3943{
53c07b18
XG
3944 if (pte_list_desc_cache)
3945 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
3946 if (mmu_page_header_cache)
3947 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
3948}
3949
3950int kvm_mmu_module_init(void)
3951{
53c07b18
XG
3952 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3953 sizeof(struct pte_list_desc),
20c2df83 3954 0, 0, NULL);
53c07b18 3955 if (!pte_list_desc_cache)
b5a33a75
AK
3956 goto nomem;
3957
d3d25b04
AK
3958 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3959 sizeof(struct kvm_mmu_page),
20c2df83 3960 0, 0, NULL);
d3d25b04
AK
3961 if (!mmu_page_header_cache)
3962 goto nomem;
3963
45bf21a8
WY
3964 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3965 goto nomem;
3966
3ee16c81
IE
3967 register_shrinker(&mmu_shrinker);
3968
b5a33a75
AK
3969 return 0;
3970
3971nomem:
3ee16c81 3972 mmu_destroy_caches();
b5a33a75
AK
3973 return -ENOMEM;
3974}
3975
3ad82a7e
ZX
3976/*
3977 * Caculate mmu pages needed for kvm.
3978 */
3979unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3980{
3ad82a7e
ZX
3981 unsigned int nr_mmu_pages;
3982 unsigned int nr_pages = 0;
bc6678a3 3983 struct kvm_memslots *slots;
be6ba0f0 3984 struct kvm_memory_slot *memslot;
3ad82a7e 3985
90d83dc3
LJ
3986 slots = kvm_memslots(kvm);
3987
be6ba0f0
XG
3988 kvm_for_each_memslot(memslot, slots)
3989 nr_pages += memslot->npages;
3ad82a7e
ZX
3990
3991 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3992 nr_mmu_pages = max(nr_mmu_pages,
3993 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3994
3995 return nr_mmu_pages;
3996}
3997
94d8b056
MT
3998int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3999{
4000 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4001 u64 spte;
94d8b056
MT
4002 int nr_sptes = 0;
4003
c2a2ac2b
XG
4004 walk_shadow_page_lockless_begin(vcpu);
4005 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4006 sptes[iterator.level-1] = spte;
94d8b056 4007 nr_sptes++;
c2a2ac2b 4008 if (!is_shadow_present_pte(spte))
94d8b056
MT
4009 break;
4010 }
c2a2ac2b 4011 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4012
4013 return nr_sptes;
4014}
4015EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4016
c42fffe3
XG
4017void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4018{
4019 ASSERT(vcpu);
4020
4021 destroy_kvm_mmu(vcpu);
4022 free_mmu_pages(vcpu);
4023 mmu_free_memory_caches(vcpu);
b034cf01
XG
4024}
4025
b034cf01
XG
4026void kvm_mmu_module_exit(void)
4027{
4028 mmu_destroy_caches();
4029 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4030 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4031 mmu_audit_disable();
4032}
This page took 0.785265 seconds and 5 git commands to generate.