sched: Select_task_rq_fair() must honour SD_LOAD_BALANCE
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
663997d4
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
1da177e4
LT
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/nmi.h>
34#include <linux/init.h>
dff06c15 35#include <linux/uaccess.h>
1da177e4
LT
36#include <linux/highmem.h>
37#include <linux/smp_lock.h>
38#include <asm/mmu_context.h>
39#include <linux/interrupt.h>
c59ede7b 40#include <linux/capability.h>
1da177e4
LT
41#include <linux/completion.h>
42#include <linux/kernel_stat.h>
9a11b49a 43#include <linux/debug_locks.h>
cdd6c482 44#include <linux/perf_event.h>
1da177e4
LT
45#include <linux/security.h>
46#include <linux/notifier.h>
47#include <linux/profile.h>
7dfb7103 48#include <linux/freezer.h>
198e2f18 49#include <linux/vmalloc.h>
1da177e4
LT
50#include <linux/blkdev.h>
51#include <linux/delay.h>
b488893a 52#include <linux/pid_namespace.h>
1da177e4
LT
53#include <linux/smp.h>
54#include <linux/threads.h>
55#include <linux/timer.h>
56#include <linux/rcupdate.h>
57#include <linux/cpu.h>
58#include <linux/cpuset.h>
59#include <linux/percpu.h>
60#include <linux/kthread.h>
b5aadf7f 61#include <linux/proc_fs.h>
1da177e4 62#include <linux/seq_file.h>
e692ab53 63#include <linux/sysctl.h>
1da177e4
LT
64#include <linux/syscalls.h>
65#include <linux/times.h>
8f0ab514 66#include <linux/tsacct_kern.h>
c6fd91f0 67#include <linux/kprobes.h>
0ff92245 68#include <linux/delayacct.h>
dff06c15 69#include <linux/unistd.h>
f5ff8422 70#include <linux/pagemap.h>
8f4d37ec 71#include <linux/hrtimer.h>
30914a58 72#include <linux/tick.h>
f00b45c1
PZ
73#include <linux/debugfs.h>
74#include <linux/ctype.h>
6cd8a4bb 75#include <linux/ftrace.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
052f1dc7 238#ifdef CONFIG_GROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
052f1dc7 248#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
249 struct cgroup_subsys_state css;
250#endif
052f1dc7 251
6c415b92
AB
252#ifdef CONFIG_USER_SCHED
253 uid_t uid;
254#endif
255
052f1dc7 256#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
052f1dc7
PZ
262#endif
263
264#ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
d0b27fa7 268 struct rt_bandwidth rt_bandwidth;
052f1dc7 269#endif
6b2d7700 270
ae8393e5 271 struct rcu_head rcu;
6f505b16 272 struct list_head list;
f473aa5e
PZ
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
29f59db3
SV
277};
278
354d60c2 279#ifdef CONFIG_USER_SCHED
eff766a6 280
6c415b92
AB
281/* Helper function to pass uid information to create_sched_user() */
282void set_tg_uid(struct user_struct *user)
283{
284 user->tg->uid = user->uid;
285}
286
eff766a6
PZ
287/*
288 * Root task group.
84e9dabf
AS
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
eff766a6
PZ
291 */
292struct task_group root_task_group;
293
052f1dc7 294#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
295/* Default task group's sched entity on each cpu */
296static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297/* Default task group's cfs_rq on each cpu */
ada3fa15 298static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 299#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
300
301#ifdef CONFIG_RT_GROUP_SCHED
302static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
1871e52c 303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
6d6bc0ad 304#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 305#else /* !CONFIG_USER_SCHED */
eff766a6 306#define root_task_group init_task_group
9a7e0b18 307#endif /* CONFIG_USER_SCHED */
6f505b16 308
8ed36996 309/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
310 * a task group's cpu shares.
311 */
8ed36996 312static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 313
e9036b36
CG
314#ifdef CONFIG_FAIR_GROUP_SCHED
315
57310a98
PZ
316#ifdef CONFIG_SMP
317static int root_task_group_empty(void)
318{
319 return list_empty(&root_task_group.children);
320}
321#endif
322
052f1dc7
PZ
323#ifdef CONFIG_USER_SCHED
324# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 325#else /* !CONFIG_USER_SCHED */
052f1dc7 326# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 327#endif /* CONFIG_USER_SCHED */
052f1dc7 328
cb4ad1ff 329/*
2e084786
LJ
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
cb4ad1ff
MX
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
18d95a28 337#define MIN_SHARES 2
2e084786 338#define MAX_SHARES (1UL << 18)
18d95a28 339
052f1dc7
PZ
340static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341#endif
342
29f59db3 343/* Default task group.
3a252015 344 * Every task in system belong to this group at bootup.
29f59db3 345 */
434d53b0 346struct task_group init_task_group;
29f59db3
SV
347
348/* return group to which a task belongs */
4cf86d77 349static inline struct task_group *task_group(struct task_struct *p)
29f59db3 350{
4cf86d77 351 struct task_group *tg;
9b5b7751 352
052f1dc7 353#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
354 rcu_read_lock();
355 tg = __task_cred(p)->user->tg;
356 rcu_read_unlock();
052f1dc7 357#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
358 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
359 struct task_group, css);
24e377a8 360#else
41a2d6cf 361 tg = &init_task_group;
24e377a8 362#endif
9b5b7751 363 return tg;
29f59db3
SV
364}
365
366/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 368{
052f1dc7 369#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
370 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
371 p->se.parent = task_group(p)->se[cpu];
052f1dc7 372#endif
6f505b16 373
052f1dc7 374#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
375 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
376 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 377#endif
29f59db3
SV
378}
379
380#else
381
6f505b16 382static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
383static inline struct task_group *task_group(struct task_struct *p)
384{
385 return NULL;
386}
29f59db3 387
052f1dc7 388#endif /* CONFIG_GROUP_SCHED */
29f59db3 389
6aa645ea
IM
390/* CFS-related fields in a runqueue */
391struct cfs_rq {
392 struct load_weight load;
393 unsigned long nr_running;
394
6aa645ea 395 u64 exec_clock;
e9acbff6 396 u64 min_vruntime;
6aa645ea
IM
397
398 struct rb_root tasks_timeline;
399 struct rb_node *rb_leftmost;
4a55bd5e
PZ
400
401 struct list_head tasks;
402 struct list_head *balance_iterator;
403
404 /*
405 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
406 * It is set to NULL otherwise (i.e when none are currently running).
407 */
4793241b 408 struct sched_entity *curr, *next, *last;
ddc97297 409
5ac5c4d6 410 unsigned int nr_spread_over;
ddc97297 411
62160e3f 412#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
413 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414
41a2d6cf
IM
415 /*
416 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
417 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
418 * (like users, containers etc.)
419 *
420 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
421 * list is used during load balance.
422 */
41a2d6cf
IM
423 struct list_head leaf_cfs_rq_list;
424 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
425
426#ifdef CONFIG_SMP
c09595f6 427 /*
c8cba857 428 * the part of load.weight contributed by tasks
c09595f6 429 */
c8cba857 430 unsigned long task_weight;
c09595f6 431
c8cba857
PZ
432 /*
433 * h_load = weight * f(tg)
434 *
435 * Where f(tg) is the recursive weight fraction assigned to
436 * this group.
437 */
438 unsigned long h_load;
c09595f6 439
c8cba857
PZ
440 /*
441 * this cpu's part of tg->shares
442 */
443 unsigned long shares;
f1d239f7
PZ
444
445 /*
446 * load.weight at the time we set shares
447 */
448 unsigned long rq_weight;
c09595f6 449#endif
6aa645ea
IM
450#endif
451};
1da177e4 452
6aa645ea
IM
453/* Real-Time classes' related field in a runqueue: */
454struct rt_rq {
455 struct rt_prio_array active;
63489e45 456 unsigned long rt_nr_running;
052f1dc7 457#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
458 struct {
459 int curr; /* highest queued rt task prio */
398a153b 460#ifdef CONFIG_SMP
e864c499 461 int next; /* next highest */
398a153b 462#endif
e864c499 463 } highest_prio;
6f505b16 464#endif
fa85ae24 465#ifdef CONFIG_SMP
73fe6aae 466 unsigned long rt_nr_migratory;
a1ba4d8b 467 unsigned long rt_nr_total;
a22d7fc1 468 int overloaded;
917b627d 469 struct plist_head pushable_tasks;
fa85ae24 470#endif
6f505b16 471 int rt_throttled;
fa85ae24 472 u64 rt_time;
ac086bc2 473 u64 rt_runtime;
ea736ed5 474 /* Nests inside the rq lock: */
0986b11b 475 raw_spinlock_t rt_runtime_lock;
6f505b16 476
052f1dc7 477#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
478 unsigned long rt_nr_boosted;
479
6f505b16
PZ
480 struct rq *rq;
481 struct list_head leaf_rt_rq_list;
482 struct task_group *tg;
483 struct sched_rt_entity *rt_se;
484#endif
6aa645ea
IM
485};
486
57d885fe
GH
487#ifdef CONFIG_SMP
488
489/*
490 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
491 * variables. Each exclusive cpuset essentially defines an island domain by
492 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
493 * exclusive cpuset is created, we also create and attach a new root-domain
494 * object.
495 *
57d885fe
GH
496 */
497struct root_domain {
498 atomic_t refcount;
c6c4927b
RR
499 cpumask_var_t span;
500 cpumask_var_t online;
637f5085 501
0eab9146 502 /*
637f5085
GH
503 * The "RT overload" flag: it gets set if a CPU has more than
504 * one runnable RT task.
505 */
c6c4927b 506 cpumask_var_t rto_mask;
0eab9146 507 atomic_t rto_count;
6e0534f2
GH
508#ifdef CONFIG_SMP
509 struct cpupri cpupri;
510#endif
57d885fe
GH
511};
512
dc938520
GH
513/*
514 * By default the system creates a single root-domain with all cpus as
515 * members (mimicking the global state we have today).
516 */
57d885fe
GH
517static struct root_domain def_root_domain;
518
519#endif
520
1da177e4
LT
521/*
522 * This is the main, per-CPU runqueue data structure.
523 *
524 * Locking rule: those places that want to lock multiple runqueues
525 * (such as the load balancing or the thread migration code), lock
526 * acquire operations must be ordered by ascending &runqueue.
527 */
70b97a7f 528struct rq {
d8016491 529 /* runqueue lock: */
05fa785c 530 raw_spinlock_t lock;
1da177e4
LT
531
532 /*
533 * nr_running and cpu_load should be in the same cacheline because
534 * remote CPUs use both these fields when doing load calculation.
535 */
536 unsigned long nr_running;
6aa645ea
IM
537 #define CPU_LOAD_IDX_MAX 5
538 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
539#ifdef CONFIG_NO_HZ
540 unsigned char in_nohz_recently;
541#endif
d8016491
IM
542 /* capture load from *all* tasks on this cpu: */
543 struct load_weight load;
6aa645ea
IM
544 unsigned long nr_load_updates;
545 u64 nr_switches;
546
547 struct cfs_rq cfs;
6f505b16 548 struct rt_rq rt;
6f505b16 549
6aa645ea 550#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
553#endif
554#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 555 struct list_head leaf_rt_rq_list;
1da177e4 556#endif
1da177e4
LT
557
558 /*
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
563 */
564 unsigned long nr_uninterruptible;
565
36c8b586 566 struct task_struct *curr, *idle;
c9819f45 567 unsigned long next_balance;
1da177e4 568 struct mm_struct *prev_mm;
6aa645ea 569
3e51f33f 570 u64 clock;
6aa645ea 571
1da177e4
LT
572 atomic_t nr_iowait;
573
574#ifdef CONFIG_SMP
0eab9146 575 struct root_domain *rd;
1da177e4
LT
576 struct sched_domain *sd;
577
a0a522ce 578 unsigned char idle_at_tick;
1da177e4 579 /* For active balancing */
3f029d3c 580 int post_schedule;
1da177e4
LT
581 int active_balance;
582 int push_cpu;
d8016491
IM
583 /* cpu of this runqueue: */
584 int cpu;
1f11eb6a 585 int online;
1da177e4 586
a8a51d5e 587 unsigned long avg_load_per_task;
1da177e4 588
36c8b586 589 struct task_struct *migration_thread;
1da177e4 590 struct list_head migration_queue;
e9e9250b
PZ
591
592 u64 rt_avg;
593 u64 age_stamp;
1b9508f6
MG
594 u64 idle_stamp;
595 u64 avg_idle;
1da177e4
LT
596#endif
597
dce48a84
TG
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
601
8f4d37ec 602#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
603#ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606#endif
8f4d37ec
PZ
607 struct hrtimer hrtick_timer;
608#endif
609
1da177e4
LT
610#ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
9c2c4802
KC
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
615
616 /* sys_sched_yield() stats */
480b9434 617 unsigned int yld_count;
1da177e4
LT
618
619 /* schedule() stats */
480b9434
KC
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
1da177e4
LT
623
624 /* try_to_wake_up() stats */
480b9434
KC
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
b8efb561
IM
627
628 /* BKL stats */
480b9434 629 unsigned int bkl_count;
1da177e4
LT
630#endif
631};
632
f34e3b61 633static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 634
7d478721
PZ
635static inline
636void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 637{
7d478721 638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
639}
640
0a2966b4
CL
641static inline int cpu_of(struct rq *rq)
642{
643#ifdef CONFIG_SMP
644 return rq->cpu;
645#else
646 return 0;
647#endif
648}
649
674311d5
NP
650/*
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 652 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
653 *
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
656 */
48f24c4d
IM
657#define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
659
660#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661#define this_rq() (&__get_cpu_var(runqueues))
662#define task_rq(p) cpu_rq(task_cpu(p))
663#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 664#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 665
aa9c4c0f 666inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
667{
668 rq->clock = sched_clock_cpu(cpu_of(rq));
669}
670
bf5c91ba
IM
671/*
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
673 */
674#ifdef CONFIG_SCHED_DEBUG
675# define const_debug __read_mostly
676#else
677# define const_debug static const
678#endif
679
017730c1
IM
680/**
681 * runqueue_is_locked
e17b38bf 682 * @cpu: the processor in question.
017730c1
IM
683 *
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
687 */
89f19f04 688int runqueue_is_locked(int cpu)
017730c1 689{
05fa785c 690 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
691}
692
bf5c91ba
IM
693/*
694 * Debugging: various feature bits
695 */
f00b45c1
PZ
696
697#define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
699
bf5c91ba 700enum {
f00b45c1 701#include "sched_features.h"
bf5c91ba
IM
702};
703
f00b45c1
PZ
704#undef SCHED_FEAT
705
706#define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
708
bf5c91ba 709const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
710#include "sched_features.h"
711 0;
712
713#undef SCHED_FEAT
714
715#ifdef CONFIG_SCHED_DEBUG
716#define SCHED_FEAT(name, enabled) \
717 #name ,
718
983ed7a6 719static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
720#include "sched_features.h"
721 NULL
722};
723
724#undef SCHED_FEAT
725
34f3a814 726static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 727{
f00b45c1
PZ
728 int i;
729
730 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 734 }
34f3a814 735 seq_puts(m, "\n");
f00b45c1 736
34f3a814 737 return 0;
f00b45c1
PZ
738}
739
740static ssize_t
741sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
743{
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
748
749 if (cnt > 63)
750 cnt = 63;
751
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
754
755 buf[cnt] = 0;
756
c24b7c52 757 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
758 neg = 1;
759 cmp += 3;
760 }
761
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
764
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
771 }
772 }
773
774 if (!sched_feat_names[i])
775 return -EINVAL;
776
42994724 777 *ppos += cnt;
f00b45c1
PZ
778
779 return cnt;
780}
781
34f3a814
LZ
782static int sched_feat_open(struct inode *inode, struct file *filp)
783{
784 return single_open(filp, sched_feat_show, NULL);
785}
786
828c0950 787static const struct file_operations sched_feat_fops = {
34f3a814
LZ
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
f00b45c1
PZ
793};
794
795static __init int sched_init_debug(void)
796{
f00b45c1
PZ
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801}
802late_initcall(sched_init_debug);
803
804#endif
805
806#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 807
b82d9fdd
PZ
808/*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
2398f2c6
PZ
814/*
815 * ratelimit for updating the group shares.
55cd5340 816 * default: 0.25ms
2398f2c6 817 */
55cd5340 818unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 819unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 820
ffda12a1
PZ
821/*
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
825 */
826unsigned int sysctl_sched_shares_thresh = 4;
827
e9e9250b
PZ
828/*
829 * period over which we average the RT time consumption, measured
830 * in ms.
831 *
832 * default: 1s
833 */
834const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
835
fa85ae24 836/*
9f0c1e56 837 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
838 * default: 1s
839 */
9f0c1e56 840unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 841
6892b75e
IM
842static __read_mostly int scheduler_running;
843
9f0c1e56
PZ
844/*
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
847 */
848int sysctl_sched_rt_runtime = 950000;
fa85ae24 849
d0b27fa7
PZ
850static inline u64 global_rt_period(void)
851{
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
853}
854
855static inline u64 global_rt_runtime(void)
856{
e26873bb 857 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
858 return RUNTIME_INF;
859
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
861}
fa85ae24 862
1da177e4 863#ifndef prepare_arch_switch
4866cde0
NP
864# define prepare_arch_switch(next) do { } while (0)
865#endif
866#ifndef finish_arch_switch
867# define finish_arch_switch(prev) do { } while (0)
868#endif
869
051a1d1a
DA
870static inline int task_current(struct rq *rq, struct task_struct *p)
871{
872 return rq->curr == p;
873}
874
4866cde0 875#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 876static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 877{
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879}
880
70b97a7f 881static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
882{
883}
884
70b97a7f 885static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 886{
da04c035
IM
887#ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890#endif
8a25d5de
IM
891 /*
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
895 */
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
897
05fa785c 898 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
899}
900
901#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 902static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
903{
904#ifdef CONFIG_SMP
905 return p->oncpu;
906#else
051a1d1a 907 return task_current(rq, p);
4866cde0
NP
908#endif
909}
910
70b97a7f 911static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
912{
913#ifdef CONFIG_SMP
914 /*
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
918 */
919 next->oncpu = 1;
920#endif
921#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 922 raw_spin_unlock_irq(&rq->lock);
4866cde0 923#else
05fa785c 924 raw_spin_unlock(&rq->lock);
4866cde0
NP
925#endif
926}
927
70b97a7f 928static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
929{
930#ifdef CONFIG_SMP
931 /*
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
935 */
936 smp_wmb();
937 prev->oncpu = 0;
938#endif
939#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
1da177e4 941#endif
4866cde0
NP
942}
943#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 944
b29739f9
IM
945/*
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
948 */
70b97a7f 949static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
950 __acquires(rq->lock)
951{
3a5c359a
AK
952 for (;;) {
953 struct rq *rq = task_rq(p);
05fa785c 954 raw_spin_lock(&rq->lock);
3a5c359a
AK
955 if (likely(rq == task_rq(p)))
956 return rq;
05fa785c 957 raw_spin_unlock(&rq->lock);
b29739f9 958 }
b29739f9
IM
959}
960
1da177e4
LT
961/*
962 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 963 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
964 * explicitly disabling preemption.
965 */
70b97a7f 966static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
967 __acquires(rq->lock)
968{
70b97a7f 969 struct rq *rq;
1da177e4 970
3a5c359a
AK
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
05fa785c 974 raw_spin_lock(&rq->lock);
3a5c359a
AK
975 if (likely(rq == task_rq(p)))
976 return rq;
05fa785c 977 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 978 }
1da177e4
LT
979}
980
ad474cac
ON
981void task_rq_unlock_wait(struct task_struct *p)
982{
983 struct rq *rq = task_rq(p);
984
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 986 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
987}
988
a9957449 989static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
990 __releases(rq->lock)
991{
05fa785c 992 raw_spin_unlock(&rq->lock);
b29739f9
IM
993}
994
70b97a7f 995static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
996 __releases(rq->lock)
997{
05fa785c 998 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
999}
1000
1da177e4 1001/*
cc2a73b5 1002 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1003 */
a9957449 1004static struct rq *this_rq_lock(void)
1da177e4
LT
1005 __acquires(rq->lock)
1006{
70b97a7f 1007 struct rq *rq;
1da177e4
LT
1008
1009 local_irq_disable();
1010 rq = this_rq();
05fa785c 1011 raw_spin_lock(&rq->lock);
1da177e4
LT
1012
1013 return rq;
1014}
1015
8f4d37ec
PZ
1016#ifdef CONFIG_SCHED_HRTICK
1017/*
1018 * Use HR-timers to deliver accurate preemption points.
1019 *
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1023 *
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1026 */
8f4d37ec
PZ
1027
1028/*
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1032 */
1033static inline int hrtick_enabled(struct rq *rq)
1034{
1035 if (!sched_feat(HRTICK))
1036 return 0;
ba42059f 1037 if (!cpu_active(cpu_of(rq)))
b328ca18 1038 return 0;
8f4d37ec
PZ
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1040}
1041
8f4d37ec
PZ
1042static void hrtick_clear(struct rq *rq)
1043{
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1046}
1047
8f4d37ec
PZ
1048/*
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1051 */
1052static enum hrtimer_restart hrtick(struct hrtimer *timer)
1053{
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1055
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1057
05fa785c 1058 raw_spin_lock(&rq->lock);
3e51f33f 1059 update_rq_clock(rq);
8f4d37ec 1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1061 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1062
1063 return HRTIMER_NORESTART;
1064}
1065
95e904c7 1066#ifdef CONFIG_SMP
31656519
PZ
1067/*
1068 * called from hardirq (IPI) context
1069 */
1070static void __hrtick_start(void *arg)
b328ca18 1071{
31656519 1072 struct rq *rq = arg;
b328ca18 1073
05fa785c 1074 raw_spin_lock(&rq->lock);
31656519
PZ
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
05fa785c 1077 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1078}
1079
31656519
PZ
1080/*
1081 * Called to set the hrtick timer state.
1082 *
1083 * called with rq->lock held and irqs disabled
1084 */
1085static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1086{
31656519
PZ
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1089
cc584b21 1090 hrtimer_set_expires(timer, time);
31656519
PZ
1091
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
6e275637 1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1096 rq->hrtick_csd_pending = 1;
1097 }
b328ca18
PZ
1098}
1099
1100static int
1101hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1102{
1103 int cpu = (int)(long)hcpu;
1104
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
31656519 1112 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1113 return NOTIFY_OK;
1114 }
1115
1116 return NOTIFY_DONE;
1117}
1118
fa748203 1119static __init void init_hrtick(void)
b328ca18
PZ
1120{
1121 hotcpu_notifier(hotplug_hrtick, 0);
1122}
31656519
PZ
1123#else
1124/*
1125 * Called to set the hrtick timer state.
1126 *
1127 * called with rq->lock held and irqs disabled
1128 */
1129static void hrtick_start(struct rq *rq, u64 delay)
1130{
7f1e2ca9 1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1132 HRTIMER_MODE_REL_PINNED, 0);
31656519 1133}
b328ca18 1134
006c75f1 1135static inline void init_hrtick(void)
8f4d37ec 1136{
8f4d37ec 1137}
31656519 1138#endif /* CONFIG_SMP */
8f4d37ec 1139
31656519 1140static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1141{
31656519
PZ
1142#ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
8f4d37ec 1144
31656519
PZ
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148#endif
8f4d37ec 1149
31656519
PZ
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
8f4d37ec 1152}
006c75f1 1153#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1154static inline void hrtick_clear(struct rq *rq)
1155{
1156}
1157
8f4d37ec
PZ
1158static inline void init_rq_hrtick(struct rq *rq)
1159{
1160}
1161
b328ca18
PZ
1162static inline void init_hrtick(void)
1163{
1164}
006c75f1 1165#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1166
c24d20db
IM
1167/*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174#ifdef CONFIG_SMP
1175
1176#ifndef tsk_is_polling
1177#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178#endif
1179
31656519 1180static void resched_task(struct task_struct *p)
c24d20db
IM
1181{
1182 int cpu;
1183
05fa785c 1184 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1185
5ed0cec0 1186 if (test_tsk_need_resched(p))
c24d20db
IM
1187 return;
1188
5ed0cec0 1189 set_tsk_need_resched(p);
c24d20db
IM
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199}
1200
1201static void resched_cpu(int cpu)
1202{
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
05fa785c 1206 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1207 return;
1208 resched_task(cpu_curr(cpu));
05fa785c 1209 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1210}
06d8308c
TG
1211
1212#ifdef CONFIG_NO_HZ
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
5ed0cec0 1245 set_tsk_need_resched(rq->idle);
06d8308c
TG
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251}
6d6bc0ad 1252#endif /* CONFIG_NO_HZ */
06d8308c 1253
e9e9250b
PZ
1254static u64 sched_avg_period(void)
1255{
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1257}
1258
1259static void sched_avg_update(struct rq *rq)
1260{
1261 s64 period = sched_avg_period();
1262
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1266 }
1267}
1268
1269static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270{
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1273}
1274
6d6bc0ad 1275#else /* !CONFIG_SMP */
31656519 1276static void resched_task(struct task_struct *p)
c24d20db 1277{
05fa785c 1278 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1279 set_tsk_need_resched(p);
c24d20db 1280}
e9e9250b
PZ
1281
1282static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283{
1284}
6d6bc0ad 1285#endif /* CONFIG_SMP */
c24d20db 1286
45bf76df
IM
1287#if BITS_PER_LONG == 32
1288# define WMULT_CONST (~0UL)
1289#else
1290# define WMULT_CONST (1UL << 32)
1291#endif
1292
1293#define WMULT_SHIFT 32
1294
194081eb
IM
1295/*
1296 * Shift right and round:
1297 */
cf2ab469 1298#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1299
a7be37ac
PZ
1300/*
1301 * delta *= weight / lw
1302 */
cb1c4fc9 1303static unsigned long
45bf76df
IM
1304calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306{
1307 u64 tmp;
1308
7a232e03
LJ
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
45bf76df
IM
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
194081eb 1321 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1323 WMULT_SHIFT/2);
1324 else
cf2ab469 1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1326
ecf691da 1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1328}
1329
1091985b 1330static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1331{
1332 lw->weight += inc;
e89996ae 1333 lw->inv_weight = 0;
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1337{
1338 lw->weight -= dec;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
2dd73a4f
PW
1342/*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
cce7ade8
PZ
1351#define WEIGHT_IDLEPRIO 3
1352#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1353
1354/*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
dd41f596
IM
1365 */
1366static const int prio_to_weight[40] = {
254753dc
IM
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1375};
1376
5714d2de
IM
1377/*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
dd41f596 1384static const u32 prio_to_wmult[40] = {
254753dc
IM
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1393};
2dd73a4f 1394
dd41f596
IM
1395static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397/*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406};
1407
e1d1484f
PW
1408#ifdef CONFIG_SMP
1409static unsigned long
1410balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415static int
1416iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
e1d1484f 1419#endif
dd41f596 1420
ef12fefa
BR
1421/* Time spent by the tasks of the cpu accounting group executing in ... */
1422enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427};
1428
d842de87
SV
1429#ifdef CONFIG_CGROUP_CPUACCT
1430static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1431static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1433#else
1434static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1435static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1437#endif
1438
18d95a28
PZ
1439static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_add(&rq->load, load);
1442}
1443
1444static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445{
1446 update_load_sub(&rq->load, load);
1447}
1448
7940ca36 1449#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1450typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1451
1452/*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
eb755805 1456static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1457{
1458 struct task_group *parent, *child;
eb755805 1459 int ret;
c09595f6
PZ
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463down:
eb755805
PZ
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
c09595f6
PZ
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471up:
1472 continue;
1473 }
eb755805
PZ
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
c09595f6
PZ
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
eb755805 1482out_unlock:
c09595f6 1483 rcu_read_unlock();
eb755805
PZ
1484
1485 return ret;
c09595f6
PZ
1486}
1487
eb755805
PZ
1488static int tg_nop(struct task_group *tg, void *data)
1489{
1490 return 0;
c09595f6 1491}
eb755805
PZ
1492#endif
1493
1494#ifdef CONFIG_SMP
f5f08f39
PZ
1495/* Used instead of source_load when we know the type == 0 */
1496static unsigned long weighted_cpuload(const int cpu)
1497{
1498 return cpu_rq(cpu)->load.weight;
1499}
1500
1501/*
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1504 *
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1507 */
1508static unsigned long source_load(int cpu, int type)
1509{
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long total = weighted_cpuload(cpu);
1512
1513 if (type == 0 || !sched_feat(LB_BIAS))
1514 return total;
1515
1516 return min(rq->cpu_load[type-1], total);
1517}
1518
1519/*
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1522 */
1523static unsigned long target_load(int cpu, int type)
1524{
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1527
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1530
1531 return max(rq->cpu_load[type-1], total);
1532}
1533
ae154be1
PZ
1534static struct sched_group *group_of(int cpu)
1535{
1536 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1537
1538 if (!sd)
1539 return NULL;
1540
1541 return sd->groups;
1542}
1543
1544static unsigned long power_of(int cpu)
1545{
1546 struct sched_group *group = group_of(cpu);
1547
1548 if (!group)
1549 return SCHED_LOAD_SCALE;
1550
1551 return group->cpu_power;
1552}
1553
eb755805
PZ
1554static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1555
1556static unsigned long cpu_avg_load_per_task(int cpu)
1557{
1558 struct rq *rq = cpu_rq(cpu);
af6d596f 1559 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1560
4cd42620
SR
1561 if (nr_running)
1562 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1563 else
1564 rq->avg_load_per_task = 0;
eb755805
PZ
1565
1566 return rq->avg_load_per_task;
1567}
1568
1569#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1570
4a6cc4bd 1571static __read_mostly unsigned long *update_shares_data;
34d76c41 1572
c09595f6
PZ
1573static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575/*
1576 * Calculate and set the cpu's group shares.
1577 */
34d76c41
PZ
1578static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
4a6cc4bd 1581 unsigned long *usd_rq_weight)
18d95a28 1582{
34d76c41 1583 unsigned long shares, rq_weight;
a5004278 1584 int boost = 0;
c09595f6 1585
4a6cc4bd 1586 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1590 }
c8cba857 1591
c09595f6 1592 /*
a8af7246
PZ
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
c09595f6 1596 */
ec4e0e2f 1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1599
ffda12a1
PZ
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
c09595f6 1604
05fa785c 1605 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1608 __set_se_shares(tg->se[cpu], shares);
05fa785c 1609 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1610 }
18d95a28 1611}
c09595f6
PZ
1612
1613/*
c8cba857
PZ
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
c09595f6 1617 */
eb755805 1618static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1619{
cd8ad40d 1620 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1621 unsigned long *usd_rq_weight;
eb755805 1622 struct sched_domain *sd = data;
34d76c41 1623 unsigned long flags;
c8cba857 1624 int i;
c09595f6 1625
34d76c41
PZ
1626 if (!tg->se[0])
1627 return 0;
1628
1629 local_irq_save(flags);
4a6cc4bd 1630 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1631
758b2cdc 1632 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1633 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1634 usd_rq_weight[i] = weight;
34d76c41 1635
cd8ad40d 1636 rq_weight += weight;
ec4e0e2f
KC
1637 /*
1638 * If there are currently no tasks on the cpu pretend there
1639 * is one of average load so that when a new task gets to
1640 * run here it will not get delayed by group starvation.
1641 */
ec4e0e2f
KC
1642 if (!weight)
1643 weight = NICE_0_LOAD;
1644
cd8ad40d 1645 sum_weight += weight;
c8cba857 1646 shares += tg->cfs_rq[i]->shares;
c09595f6 1647 }
c09595f6 1648
cd8ad40d
PZ
1649 if (!rq_weight)
1650 rq_weight = sum_weight;
1651
c8cba857
PZ
1652 if ((!shares && rq_weight) || shares > tg->shares)
1653 shares = tg->shares;
1654
1655 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1656 shares = tg->shares;
c09595f6 1657
758b2cdc 1658 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1659 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1660
1661 local_irq_restore(flags);
eb755805
PZ
1662
1663 return 0;
c09595f6
PZ
1664}
1665
1666/*
c8cba857
PZ
1667 * Compute the cpu's hierarchical load factor for each task group.
1668 * This needs to be done in a top-down fashion because the load of a child
1669 * group is a fraction of its parents load.
c09595f6 1670 */
eb755805 1671static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1672{
c8cba857 1673 unsigned long load;
eb755805 1674 long cpu = (long)data;
c09595f6 1675
c8cba857
PZ
1676 if (!tg->parent) {
1677 load = cpu_rq(cpu)->load.weight;
1678 } else {
1679 load = tg->parent->cfs_rq[cpu]->h_load;
1680 load *= tg->cfs_rq[cpu]->shares;
1681 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1682 }
c09595f6 1683
c8cba857 1684 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1685
eb755805 1686 return 0;
c09595f6
PZ
1687}
1688
c8cba857 1689static void update_shares(struct sched_domain *sd)
4d8d595d 1690{
e7097159
PZ
1691 s64 elapsed;
1692 u64 now;
1693
1694 if (root_task_group_empty())
1695 return;
1696
1697 now = cpu_clock(raw_smp_processor_id());
1698 elapsed = now - sd->last_update;
2398f2c6
PZ
1699
1700 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1701 sd->last_update = now;
eb755805 1702 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1703 }
4d8d595d
PZ
1704}
1705
3e5459b4
PZ
1706static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1707{
e7097159
PZ
1708 if (root_task_group_empty())
1709 return;
1710
05fa785c 1711 raw_spin_unlock(&rq->lock);
3e5459b4 1712 update_shares(sd);
05fa785c 1713 raw_spin_lock(&rq->lock);
3e5459b4
PZ
1714}
1715
eb755805 1716static void update_h_load(long cpu)
c09595f6 1717{
e7097159
PZ
1718 if (root_task_group_empty())
1719 return;
1720
eb755805 1721 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1722}
1723
c09595f6
PZ
1724#else
1725
c8cba857 1726static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1727{
1728}
1729
3e5459b4
PZ
1730static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1731{
1732}
1733
18d95a28
PZ
1734#endif
1735
8f45e2b5
GH
1736#ifdef CONFIG_PREEMPT
1737
b78bb868
PZ
1738static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1739
70574a99 1740/*
8f45e2b5
GH
1741 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1742 * way at the expense of forcing extra atomic operations in all
1743 * invocations. This assures that the double_lock is acquired using the
1744 * same underlying policy as the spinlock_t on this architecture, which
1745 * reduces latency compared to the unfair variant below. However, it
1746 * also adds more overhead and therefore may reduce throughput.
70574a99 1747 */
8f45e2b5
GH
1748static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 __releases(this_rq->lock)
1750 __acquires(busiest->lock)
1751 __acquires(this_rq->lock)
1752{
05fa785c 1753 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1754 double_rq_lock(this_rq, busiest);
1755
1756 return 1;
1757}
1758
1759#else
1760/*
1761 * Unfair double_lock_balance: Optimizes throughput at the expense of
1762 * latency by eliminating extra atomic operations when the locks are
1763 * already in proper order on entry. This favors lower cpu-ids and will
1764 * grant the double lock to lower cpus over higher ids under contention,
1765 * regardless of entry order into the function.
1766 */
1767static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1768 __releases(this_rq->lock)
1769 __acquires(busiest->lock)
1770 __acquires(this_rq->lock)
1771{
1772 int ret = 0;
1773
05fa785c 1774 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1775 if (busiest < this_rq) {
05fa785c
TG
1776 raw_spin_unlock(&this_rq->lock);
1777 raw_spin_lock(&busiest->lock);
1778 raw_spin_lock_nested(&this_rq->lock,
1779 SINGLE_DEPTH_NESTING);
70574a99
AD
1780 ret = 1;
1781 } else
05fa785c
TG
1782 raw_spin_lock_nested(&busiest->lock,
1783 SINGLE_DEPTH_NESTING);
70574a99
AD
1784 }
1785 return ret;
1786}
1787
8f45e2b5
GH
1788#endif /* CONFIG_PREEMPT */
1789
1790/*
1791 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1792 */
1793static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1794{
1795 if (unlikely(!irqs_disabled())) {
1796 /* printk() doesn't work good under rq->lock */
05fa785c 1797 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1798 BUG_ON(1);
1799 }
1800
1801 return _double_lock_balance(this_rq, busiest);
1802}
1803
70574a99
AD
1804static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1805 __releases(busiest->lock)
1806{
05fa785c 1807 raw_spin_unlock(&busiest->lock);
70574a99
AD
1808 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1809}
18d95a28
PZ
1810#endif
1811
30432094 1812#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1813static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1814{
30432094 1815#ifdef CONFIG_SMP
34e83e85
IM
1816 cfs_rq->shares = shares;
1817#endif
1818}
30432094 1819#endif
e7693a36 1820
dce48a84 1821static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1822static void update_sysctl(void);
acb4a848 1823static int get_update_sysctl_factor(void);
dce48a84 1824
cd29fe6f
PZ
1825static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1826{
1827 set_task_rq(p, cpu);
1828#ifdef CONFIG_SMP
1829 /*
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1833 */
1834 smp_wmb();
1835 task_thread_info(p)->cpu = cpu;
1836#endif
1837}
dce48a84 1838
dd41f596 1839#include "sched_stats.h"
dd41f596 1840#include "sched_idletask.c"
5522d5d5
IM
1841#include "sched_fair.c"
1842#include "sched_rt.c"
dd41f596
IM
1843#ifdef CONFIG_SCHED_DEBUG
1844# include "sched_debug.c"
1845#endif
1846
1847#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1848#define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
dd41f596 1850
c09595f6 1851static void inc_nr_running(struct rq *rq)
9c217245
IM
1852{
1853 rq->nr_running++;
9c217245
IM
1854}
1855
c09595f6 1856static void dec_nr_running(struct rq *rq)
9c217245
IM
1857{
1858 rq->nr_running--;
9c217245
IM
1859}
1860
45bf76df
IM
1861static void set_load_weight(struct task_struct *p)
1862{
1863 if (task_has_rt_policy(p)) {
dd41f596
IM
1864 p->se.load.weight = prio_to_weight[0] * 2;
1865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1866 return;
1867 }
45bf76df 1868
dd41f596
IM
1869 /*
1870 * SCHED_IDLE tasks get minimal weight:
1871 */
1872 if (p->policy == SCHED_IDLE) {
1873 p->se.load.weight = WEIGHT_IDLEPRIO;
1874 p->se.load.inv_weight = WMULT_IDLEPRIO;
1875 return;
1876 }
71f8bd46 1877
dd41f596
IM
1878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1880}
1881
2087a1ad
GH
1882static void update_avg(u64 *avg, u64 sample)
1883{
1884 s64 diff = sample - *avg;
1885 *avg += diff >> 3;
1886}
1887
8159f87e 1888static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1889{
831451ac
PZ
1890 if (wakeup)
1891 p->se.start_runtime = p->se.sum_exec_runtime;
1892
dd41f596 1893 sched_info_queued(p);
fd390f6a 1894 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1895 p->se.on_rq = 1;
71f8bd46
IM
1896}
1897
69be72c1 1898static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1899{
831451ac
PZ
1900 if (sleep) {
1901 if (p->se.last_wakeup) {
1902 update_avg(&p->se.avg_overlap,
1903 p->se.sum_exec_runtime - p->se.last_wakeup);
1904 p->se.last_wakeup = 0;
1905 } else {
1906 update_avg(&p->se.avg_wakeup,
1907 sysctl_sched_wakeup_granularity);
1908 }
2087a1ad
GH
1909 }
1910
46ac22ba 1911 sched_info_dequeued(p);
f02231e5 1912 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1913 p->se.on_rq = 0;
71f8bd46
IM
1914}
1915
14531189 1916/*
dd41f596 1917 * __normal_prio - return the priority that is based on the static prio
14531189 1918 */
14531189
IM
1919static inline int __normal_prio(struct task_struct *p)
1920{
dd41f596 1921 return p->static_prio;
14531189
IM
1922}
1923
b29739f9
IM
1924/*
1925 * Calculate the expected normal priority: i.e. priority
1926 * without taking RT-inheritance into account. Might be
1927 * boosted by interactivity modifiers. Changes upon fork,
1928 * setprio syscalls, and whenever the interactivity
1929 * estimator recalculates.
1930 */
36c8b586 1931static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1932{
1933 int prio;
1934
e05606d3 1935 if (task_has_rt_policy(p))
b29739f9
IM
1936 prio = MAX_RT_PRIO-1 - p->rt_priority;
1937 else
1938 prio = __normal_prio(p);
1939 return prio;
1940}
1941
1942/*
1943 * Calculate the current priority, i.e. the priority
1944 * taken into account by the scheduler. This value might
1945 * be boosted by RT tasks, or might be boosted by
1946 * interactivity modifiers. Will be RT if the task got
1947 * RT-boosted. If not then it returns p->normal_prio.
1948 */
36c8b586 1949static int effective_prio(struct task_struct *p)
b29739f9
IM
1950{
1951 p->normal_prio = normal_prio(p);
1952 /*
1953 * If we are RT tasks or we were boosted to RT priority,
1954 * keep the priority unchanged. Otherwise, update priority
1955 * to the normal priority:
1956 */
1957 if (!rt_prio(p->prio))
1958 return p->normal_prio;
1959 return p->prio;
1960}
1961
1da177e4 1962/*
dd41f596 1963 * activate_task - move a task to the runqueue.
1da177e4 1964 */
dd41f596 1965static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1966{
d9514f6c 1967 if (task_contributes_to_load(p))
dd41f596 1968 rq->nr_uninterruptible--;
1da177e4 1969
8159f87e 1970 enqueue_task(rq, p, wakeup);
c09595f6 1971 inc_nr_running(rq);
1da177e4
LT
1972}
1973
1da177e4
LT
1974/*
1975 * deactivate_task - remove a task from the runqueue.
1976 */
2e1cb74a 1977static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1978{
d9514f6c 1979 if (task_contributes_to_load(p))
dd41f596
IM
1980 rq->nr_uninterruptible++;
1981
69be72c1 1982 dequeue_task(rq, p, sleep);
c09595f6 1983 dec_nr_running(rq);
1da177e4
LT
1984}
1985
1da177e4
LT
1986/**
1987 * task_curr - is this task currently executing on a CPU?
1988 * @p: the task in question.
1989 */
36c8b586 1990inline int task_curr(const struct task_struct *p)
1da177e4
LT
1991{
1992 return cpu_curr(task_cpu(p)) == p;
1993}
1994
cb469845
SR
1995static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1996 const struct sched_class *prev_class,
1997 int oldprio, int running)
1998{
1999 if (prev_class != p->sched_class) {
2000 if (prev_class->switched_from)
2001 prev_class->switched_from(rq, p, running);
2002 p->sched_class->switched_to(rq, p, running);
2003 } else
2004 p->sched_class->prio_changed(rq, p, oldprio, running);
2005}
2006
b84ff7d6
MG
2007/**
2008 * kthread_bind - bind a just-created kthread to a cpu.
968c8645 2009 * @p: thread created by kthread_create().
b84ff7d6
MG
2010 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2011 *
2012 * Description: This function is equivalent to set_cpus_allowed(),
2013 * except that @cpu doesn't need to be online, and the thread must be
2014 * stopped (i.e., just returned from kthread_create()).
2015 *
2016 * Function lives here instead of kthread.c because it messes with
2017 * scheduler internals which require locking.
2018 */
2019void kthread_bind(struct task_struct *p, unsigned int cpu)
2020{
2021 struct rq *rq = cpu_rq(cpu);
2022 unsigned long flags;
2023
2024 /* Must have done schedule() in kthread() before we set_task_cpu */
2025 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2026 WARN_ON(1);
2027 return;
2028 }
2029
05fa785c 2030 raw_spin_lock_irqsave(&rq->lock, flags);
055a0086 2031 update_rq_clock(rq);
b84ff7d6
MG
2032 set_task_cpu(p, cpu);
2033 p->cpus_allowed = cpumask_of_cpu(cpu);
2034 p->rt.nr_cpus_allowed = 1;
2035 p->flags |= PF_THREAD_BOUND;
05fa785c 2036 raw_spin_unlock_irqrestore(&rq->lock, flags);
b84ff7d6
MG
2037}
2038EXPORT_SYMBOL(kthread_bind);
2039
1da177e4 2040#ifdef CONFIG_SMP
cc367732
IM
2041/*
2042 * Is this task likely cache-hot:
2043 */
e7693a36 2044static int
cc367732
IM
2045task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2046{
2047 s64 delta;
2048
e6c8fba7
PZ
2049 if (p->sched_class != &fair_sched_class)
2050 return 0;
2051
f540a608
IM
2052 /*
2053 * Buddy candidates are cache hot:
2054 */
f685ceac 2055 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2056 (&p->se == cfs_rq_of(&p->se)->next ||
2057 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2058 return 1;
2059
6bc1665b
IM
2060 if (sysctl_sched_migration_cost == -1)
2061 return 1;
2062 if (sysctl_sched_migration_cost == 0)
2063 return 0;
2064
cc367732
IM
2065 delta = now - p->se.exec_start;
2066
2067 return delta < (s64)sysctl_sched_migration_cost;
2068}
2069
2070
dd41f596 2071void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2072{
dd41f596 2073 int old_cpu = task_cpu(p);
2830cf8c
SV
2074 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2075 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
6cfb0d5d 2076
de1d7286 2077 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2078
cc367732 2079 if (old_cpu != new_cpu) {
6c594c21 2080 p->se.nr_migrations++;
cdd6c482 2081 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2082 1, 1, NULL, 0);
6c594c21 2083 }
2830cf8c
SV
2084 p->se.vruntime -= old_cfsrq->min_vruntime -
2085 new_cfsrq->min_vruntime;
dd41f596
IM
2086
2087 __set_task_cpu(p, new_cpu);
c65cc870
IM
2088}
2089
70b97a7f 2090struct migration_req {
1da177e4 2091 struct list_head list;
1da177e4 2092
36c8b586 2093 struct task_struct *task;
1da177e4
LT
2094 int dest_cpu;
2095
1da177e4 2096 struct completion done;
70b97a7f 2097};
1da177e4
LT
2098
2099/*
2100 * The task's runqueue lock must be held.
2101 * Returns true if you have to wait for migration thread.
2102 */
36c8b586 2103static int
70b97a7f 2104migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2105{
70b97a7f 2106 struct rq *rq = task_rq(p);
1da177e4
LT
2107
2108 /*
2109 * If the task is not on a runqueue (and not running), then
2110 * it is sufficient to simply update the task's cpu field.
2111 */
dd41f596 2112 if (!p->se.on_rq && !task_running(rq, p)) {
055a0086 2113 update_rq_clock(rq);
1da177e4
LT
2114 set_task_cpu(p, dest_cpu);
2115 return 0;
2116 }
2117
2118 init_completion(&req->done);
1da177e4
LT
2119 req->task = p;
2120 req->dest_cpu = dest_cpu;
2121 list_add(&req->list, &rq->migration_queue);
48f24c4d 2122
1da177e4
LT
2123 return 1;
2124}
2125
a26b89f0
MM
2126/*
2127 * wait_task_context_switch - wait for a thread to complete at least one
2128 * context switch.
2129 *
2130 * @p must not be current.
2131 */
2132void wait_task_context_switch(struct task_struct *p)
2133{
2134 unsigned long nvcsw, nivcsw, flags;
2135 int running;
2136 struct rq *rq;
2137
2138 nvcsw = p->nvcsw;
2139 nivcsw = p->nivcsw;
2140 for (;;) {
2141 /*
2142 * The runqueue is assigned before the actual context
2143 * switch. We need to take the runqueue lock.
2144 *
2145 * We could check initially without the lock but it is
2146 * very likely that we need to take the lock in every
2147 * iteration.
2148 */
2149 rq = task_rq_lock(p, &flags);
2150 running = task_running(rq, p);
2151 task_rq_unlock(rq, &flags);
2152
2153 if (likely(!running))
2154 break;
2155 /*
2156 * The switch count is incremented before the actual
2157 * context switch. We thus wait for two switches to be
2158 * sure at least one completed.
2159 */
2160 if ((p->nvcsw - nvcsw) > 1)
2161 break;
2162 if ((p->nivcsw - nivcsw) > 1)
2163 break;
2164
2165 cpu_relax();
2166 }
2167}
2168
1da177e4
LT
2169/*
2170 * wait_task_inactive - wait for a thread to unschedule.
2171 *
85ba2d86
RM
2172 * If @match_state is nonzero, it's the @p->state value just checked and
2173 * not expected to change. If it changes, i.e. @p might have woken up,
2174 * then return zero. When we succeed in waiting for @p to be off its CPU,
2175 * we return a positive number (its total switch count). If a second call
2176 * a short while later returns the same number, the caller can be sure that
2177 * @p has remained unscheduled the whole time.
2178 *
1da177e4
LT
2179 * The caller must ensure that the task *will* unschedule sometime soon,
2180 * else this function might spin for a *long* time. This function can't
2181 * be called with interrupts off, or it may introduce deadlock with
2182 * smp_call_function() if an IPI is sent by the same process we are
2183 * waiting to become inactive.
2184 */
85ba2d86 2185unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2186{
2187 unsigned long flags;
dd41f596 2188 int running, on_rq;
85ba2d86 2189 unsigned long ncsw;
70b97a7f 2190 struct rq *rq;
1da177e4 2191
3a5c359a
AK
2192 for (;;) {
2193 /*
2194 * We do the initial early heuristics without holding
2195 * any task-queue locks at all. We'll only try to get
2196 * the runqueue lock when things look like they will
2197 * work out!
2198 */
2199 rq = task_rq(p);
fa490cfd 2200
3a5c359a
AK
2201 /*
2202 * If the task is actively running on another CPU
2203 * still, just relax and busy-wait without holding
2204 * any locks.
2205 *
2206 * NOTE! Since we don't hold any locks, it's not
2207 * even sure that "rq" stays as the right runqueue!
2208 * But we don't care, since "task_running()" will
2209 * return false if the runqueue has changed and p
2210 * is actually now running somewhere else!
2211 */
85ba2d86
RM
2212 while (task_running(rq, p)) {
2213 if (match_state && unlikely(p->state != match_state))
2214 return 0;
3a5c359a 2215 cpu_relax();
85ba2d86 2216 }
fa490cfd 2217
3a5c359a
AK
2218 /*
2219 * Ok, time to look more closely! We need the rq
2220 * lock now, to be *sure*. If we're wrong, we'll
2221 * just go back and repeat.
2222 */
2223 rq = task_rq_lock(p, &flags);
0a16b607 2224 trace_sched_wait_task(rq, p);
3a5c359a
AK
2225 running = task_running(rq, p);
2226 on_rq = p->se.on_rq;
85ba2d86 2227 ncsw = 0;
f31e11d8 2228 if (!match_state || p->state == match_state)
93dcf55f 2229 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2230 task_rq_unlock(rq, &flags);
fa490cfd 2231
85ba2d86
RM
2232 /*
2233 * If it changed from the expected state, bail out now.
2234 */
2235 if (unlikely(!ncsw))
2236 break;
2237
3a5c359a
AK
2238 /*
2239 * Was it really running after all now that we
2240 * checked with the proper locks actually held?
2241 *
2242 * Oops. Go back and try again..
2243 */
2244 if (unlikely(running)) {
2245 cpu_relax();
2246 continue;
2247 }
fa490cfd 2248
3a5c359a
AK
2249 /*
2250 * It's not enough that it's not actively running,
2251 * it must be off the runqueue _entirely_, and not
2252 * preempted!
2253 *
80dd99b3 2254 * So if it was still runnable (but just not actively
3a5c359a
AK
2255 * running right now), it's preempted, and we should
2256 * yield - it could be a while.
2257 */
2258 if (unlikely(on_rq)) {
2259 schedule_timeout_uninterruptible(1);
2260 continue;
2261 }
fa490cfd 2262
3a5c359a
AK
2263 /*
2264 * Ahh, all good. It wasn't running, and it wasn't
2265 * runnable, which means that it will never become
2266 * running in the future either. We're all done!
2267 */
2268 break;
2269 }
85ba2d86
RM
2270
2271 return ncsw;
1da177e4
LT
2272}
2273
2274/***
2275 * kick_process - kick a running thread to enter/exit the kernel
2276 * @p: the to-be-kicked thread
2277 *
2278 * Cause a process which is running on another CPU to enter
2279 * kernel-mode, without any delay. (to get signals handled.)
2280 *
2281 * NOTE: this function doesnt have to take the runqueue lock,
2282 * because all it wants to ensure is that the remote task enters
2283 * the kernel. If the IPI races and the task has been migrated
2284 * to another CPU then no harm is done and the purpose has been
2285 * achieved as well.
2286 */
36c8b586 2287void kick_process(struct task_struct *p)
1da177e4
LT
2288{
2289 int cpu;
2290
2291 preempt_disable();
2292 cpu = task_cpu(p);
2293 if ((cpu != smp_processor_id()) && task_curr(p))
2294 smp_send_reschedule(cpu);
2295 preempt_enable();
2296}
b43e3521 2297EXPORT_SYMBOL_GPL(kick_process);
476d139c 2298#endif /* CONFIG_SMP */
1da177e4 2299
0793a61d
TG
2300/**
2301 * task_oncpu_function_call - call a function on the cpu on which a task runs
2302 * @p: the task to evaluate
2303 * @func: the function to be called
2304 * @info: the function call argument
2305 *
2306 * Calls the function @func when the task is currently running. This might
2307 * be on the current CPU, which just calls the function directly
2308 */
2309void task_oncpu_function_call(struct task_struct *p,
2310 void (*func) (void *info), void *info)
2311{
2312 int cpu;
2313
2314 preempt_disable();
2315 cpu = task_cpu(p);
2316 if (task_curr(p))
2317 smp_call_function_single(cpu, func, info, 1);
2318 preempt_enable();
2319}
2320
970b13ba
PZ
2321#ifdef CONFIG_SMP
2322static inline
2323int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2324{
2325 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2326}
2327#endif
2328
1da177e4
LT
2329/***
2330 * try_to_wake_up - wake up a thread
2331 * @p: the to-be-woken-up thread
2332 * @state: the mask of task states that can be woken
2333 * @sync: do a synchronous wakeup?
2334 *
2335 * Put it on the run-queue if it's not already there. The "current"
2336 * thread is always on the run-queue (except when the actual
2337 * re-schedule is in progress), and as such you're allowed to do
2338 * the simpler "current->state = TASK_RUNNING" to mark yourself
2339 * runnable without the overhead of this.
2340 *
2341 * returns failure only if the task is already active.
2342 */
7d478721
PZ
2343static int try_to_wake_up(struct task_struct *p, unsigned int state,
2344 int wake_flags)
1da177e4 2345{
cc367732 2346 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2347 unsigned long flags;
f5dc3753 2348 struct rq *rq, *orig_rq;
1da177e4 2349
b85d0667 2350 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2351 wake_flags &= ~WF_SYNC;
2398f2c6 2352
e9c84311 2353 this_cpu = get_cpu();
2398f2c6 2354
04e2f174 2355 smp_wmb();
f5dc3753 2356 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2357 update_rq_clock(rq);
e9c84311 2358 if (!(p->state & state))
1da177e4
LT
2359 goto out;
2360
dd41f596 2361 if (p->se.on_rq)
1da177e4
LT
2362 goto out_running;
2363
2364 cpu = task_cpu(p);
cc367732 2365 orig_cpu = cpu;
1da177e4
LT
2366
2367#ifdef CONFIG_SMP
2368 if (unlikely(task_running(rq, p)))
2369 goto out_activate;
2370
e9c84311
PZ
2371 /*
2372 * In order to handle concurrent wakeups and release the rq->lock
2373 * we put the task in TASK_WAKING state.
eb24073b
IM
2374 *
2375 * First fix up the nr_uninterruptible count:
e9c84311 2376 */
eb24073b
IM
2377 if (task_contributes_to_load(p))
2378 rq->nr_uninterruptible--;
e9c84311 2379 p->state = TASK_WAKING;
ab19cb23 2380 __task_rq_unlock(rq);
e9c84311 2381
970b13ba 2382 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2383 if (cpu != orig_cpu)
5d2f5a61 2384 set_task_cpu(p, cpu);
ab19cb23
PZ
2385
2386 rq = __task_rq_lock(p);
2387 update_rq_clock(rq);
f5dc3753 2388
e9c84311
PZ
2389 WARN_ON(p->state != TASK_WAKING);
2390 cpu = task_cpu(p);
1da177e4 2391
e7693a36
GH
2392#ifdef CONFIG_SCHEDSTATS
2393 schedstat_inc(rq, ttwu_count);
2394 if (cpu == this_cpu)
2395 schedstat_inc(rq, ttwu_local);
2396 else {
2397 struct sched_domain *sd;
2398 for_each_domain(this_cpu, sd) {
758b2cdc 2399 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2400 schedstat_inc(sd, ttwu_wake_remote);
2401 break;
2402 }
2403 }
2404 }
6d6bc0ad 2405#endif /* CONFIG_SCHEDSTATS */
e7693a36 2406
1da177e4
LT
2407out_activate:
2408#endif /* CONFIG_SMP */
cc367732 2409 schedstat_inc(p, se.nr_wakeups);
7d478721 2410 if (wake_flags & WF_SYNC)
cc367732
IM
2411 schedstat_inc(p, se.nr_wakeups_sync);
2412 if (orig_cpu != cpu)
2413 schedstat_inc(p, se.nr_wakeups_migrate);
2414 if (cpu == this_cpu)
2415 schedstat_inc(p, se.nr_wakeups_local);
2416 else
2417 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2418 activate_task(rq, p, 1);
1da177e4
LT
2419 success = 1;
2420
831451ac
PZ
2421 /*
2422 * Only attribute actual wakeups done by this task.
2423 */
2424 if (!in_interrupt()) {
2425 struct sched_entity *se = &current->se;
2426 u64 sample = se->sum_exec_runtime;
2427
2428 if (se->last_wakeup)
2429 sample -= se->last_wakeup;
2430 else
2431 sample -= se->start_runtime;
2432 update_avg(&se->avg_wakeup, sample);
2433
2434 se->last_wakeup = se->sum_exec_runtime;
2435 }
2436
1da177e4 2437out_running:
468a15bb 2438 trace_sched_wakeup(rq, p, success);
7d478721 2439 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2440
1da177e4 2441 p->state = TASK_RUNNING;
9a897c5a
SR
2442#ifdef CONFIG_SMP
2443 if (p->sched_class->task_wake_up)
2444 p->sched_class->task_wake_up(rq, p);
eae0c9df
MG
2445
2446 if (unlikely(rq->idle_stamp)) {
2447 u64 delta = rq->clock - rq->idle_stamp;
2448 u64 max = 2*sysctl_sched_migration_cost;
2449
2450 if (delta > max)
2451 rq->avg_idle = max;
2452 else
2453 update_avg(&rq->avg_idle, delta);
2454 rq->idle_stamp = 0;
2455 }
9a897c5a 2456#endif
1da177e4
LT
2457out:
2458 task_rq_unlock(rq, &flags);
e9c84311 2459 put_cpu();
1da177e4
LT
2460
2461 return success;
2462}
2463
50fa610a
DH
2464/**
2465 * wake_up_process - Wake up a specific process
2466 * @p: The process to be woken up.
2467 *
2468 * Attempt to wake up the nominated process and move it to the set of runnable
2469 * processes. Returns 1 if the process was woken up, 0 if it was already
2470 * running.
2471 *
2472 * It may be assumed that this function implies a write memory barrier before
2473 * changing the task state if and only if any tasks are woken up.
2474 */
7ad5b3a5 2475int wake_up_process(struct task_struct *p)
1da177e4 2476{
d9514f6c 2477 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2478}
1da177e4
LT
2479EXPORT_SYMBOL(wake_up_process);
2480
7ad5b3a5 2481int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2482{
2483 return try_to_wake_up(p, state, 0);
2484}
2485
1da177e4
LT
2486/*
2487 * Perform scheduler related setup for a newly forked process p.
2488 * p is forked by current.
dd41f596
IM
2489 *
2490 * __sched_fork() is basic setup used by init_idle() too:
2491 */
2492static void __sched_fork(struct task_struct *p)
2493{
dd41f596
IM
2494 p->se.exec_start = 0;
2495 p->se.sum_exec_runtime = 0;
f6cf891c 2496 p->se.prev_sum_exec_runtime = 0;
6c594c21 2497 p->se.nr_migrations = 0;
4ae7d5ce
IM
2498 p->se.last_wakeup = 0;
2499 p->se.avg_overlap = 0;
831451ac
PZ
2500 p->se.start_runtime = 0;
2501 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2502
2503#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2504 p->se.wait_start = 0;
2505 p->se.wait_max = 0;
2506 p->se.wait_count = 0;
2507 p->se.wait_sum = 0;
2508
2509 p->se.sleep_start = 0;
2510 p->se.sleep_max = 0;
2511 p->se.sum_sleep_runtime = 0;
2512
2513 p->se.block_start = 0;
2514 p->se.block_max = 0;
2515 p->se.exec_max = 0;
2516 p->se.slice_max = 0;
2517
2518 p->se.nr_migrations_cold = 0;
2519 p->se.nr_failed_migrations_affine = 0;
2520 p->se.nr_failed_migrations_running = 0;
2521 p->se.nr_failed_migrations_hot = 0;
2522 p->se.nr_forced_migrations = 0;
7793527b
LDM
2523
2524 p->se.nr_wakeups = 0;
2525 p->se.nr_wakeups_sync = 0;
2526 p->se.nr_wakeups_migrate = 0;
2527 p->se.nr_wakeups_local = 0;
2528 p->se.nr_wakeups_remote = 0;
2529 p->se.nr_wakeups_affine = 0;
2530 p->se.nr_wakeups_affine_attempts = 0;
2531 p->se.nr_wakeups_passive = 0;
2532 p->se.nr_wakeups_idle = 0;
2533
6cfb0d5d 2534#endif
476d139c 2535
fa717060 2536 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2537 p->se.on_rq = 0;
4a55bd5e 2538 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2539
e107be36
AK
2540#ifdef CONFIG_PREEMPT_NOTIFIERS
2541 INIT_HLIST_HEAD(&p->preempt_notifiers);
2542#endif
2543
1da177e4
LT
2544 /*
2545 * We mark the process as running here, but have not actually
2546 * inserted it onto the runqueue yet. This guarantees that
2547 * nobody will actually run it, and a signal or other external
2548 * event cannot wake it up and insert it on the runqueue either.
2549 */
2550 p->state = TASK_RUNNING;
dd41f596
IM
2551}
2552
2553/*
2554 * fork()/clone()-time setup:
2555 */
2556void sched_fork(struct task_struct *p, int clone_flags)
2557{
2558 int cpu = get_cpu();
2559
2560 __sched_fork(p);
2561
b9dc29e7
MG
2562 /*
2563 * Revert to default priority/policy on fork if requested.
2564 */
2565 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2566 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2567 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2568 p->normal_prio = p->static_prio;
2569 }
b9dc29e7 2570
6c697bdf
MG
2571 if (PRIO_TO_NICE(p->static_prio) < 0) {
2572 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2573 p->normal_prio = p->static_prio;
6c697bdf
MG
2574 set_load_weight(p);
2575 }
2576
b9dc29e7
MG
2577 /*
2578 * We don't need the reset flag anymore after the fork. It has
2579 * fulfilled its duty:
2580 */
2581 p->sched_reset_on_fork = 0;
2582 }
ca94c442 2583
f83f9ac2
PW
2584 /*
2585 * Make sure we do not leak PI boosting priority to the child.
2586 */
2587 p->prio = current->normal_prio;
2588
2ddbf952
HS
2589 if (!rt_prio(p->prio))
2590 p->sched_class = &fair_sched_class;
b29739f9 2591
cd29fe6f
PZ
2592 if (p->sched_class->task_fork)
2593 p->sched_class->task_fork(p);
2594
5f3edc1b 2595#ifdef CONFIG_SMP
970b13ba 2596 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2597#endif
2598 set_task_cpu(p, cpu);
2599
52f17b6c 2600#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2601 if (likely(sched_info_on()))
52f17b6c 2602 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2603#endif
d6077cb8 2604#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2605 p->oncpu = 0;
2606#endif
1da177e4 2607#ifdef CONFIG_PREEMPT
4866cde0 2608 /* Want to start with kernel preemption disabled. */
a1261f54 2609 task_thread_info(p)->preempt_count = 1;
1da177e4 2610#endif
917b627d
GH
2611 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2612
476d139c 2613 put_cpu();
1da177e4
LT
2614}
2615
2616/*
2617 * wake_up_new_task - wake up a newly created task for the first time.
2618 *
2619 * This function will do some initial scheduler statistics housekeeping
2620 * that must be done for every newly created context, then puts the task
2621 * on the runqueue and wakes it.
2622 */
7ad5b3a5 2623void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2624{
2625 unsigned long flags;
dd41f596 2626 struct rq *rq;
1da177e4
LT
2627
2628 rq = task_rq_lock(p, &flags);
147cbb4b 2629 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2630 update_rq_clock(rq);
cd29fe6f 2631 activate_task(rq, p, 0);
c71dd42d 2632 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2633 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2634#ifdef CONFIG_SMP
2635 if (p->sched_class->task_wake_up)
2636 p->sched_class->task_wake_up(rq, p);
2637#endif
dd41f596 2638 task_rq_unlock(rq, &flags);
1da177e4
LT
2639}
2640
e107be36
AK
2641#ifdef CONFIG_PREEMPT_NOTIFIERS
2642
2643/**
80dd99b3 2644 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2645 * @notifier: notifier struct to register
e107be36
AK
2646 */
2647void preempt_notifier_register(struct preempt_notifier *notifier)
2648{
2649 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2650}
2651EXPORT_SYMBOL_GPL(preempt_notifier_register);
2652
2653/**
2654 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2655 * @notifier: notifier struct to unregister
e107be36
AK
2656 *
2657 * This is safe to call from within a preemption notifier.
2658 */
2659void preempt_notifier_unregister(struct preempt_notifier *notifier)
2660{
2661 hlist_del(&notifier->link);
2662}
2663EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2664
2665static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2666{
2667 struct preempt_notifier *notifier;
2668 struct hlist_node *node;
2669
2670 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2671 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2672}
2673
2674static void
2675fire_sched_out_preempt_notifiers(struct task_struct *curr,
2676 struct task_struct *next)
2677{
2678 struct preempt_notifier *notifier;
2679 struct hlist_node *node;
2680
2681 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2682 notifier->ops->sched_out(notifier, next);
2683}
2684
6d6bc0ad 2685#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2686
2687static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2688{
2689}
2690
2691static void
2692fire_sched_out_preempt_notifiers(struct task_struct *curr,
2693 struct task_struct *next)
2694{
2695}
2696
6d6bc0ad 2697#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2698
4866cde0
NP
2699/**
2700 * prepare_task_switch - prepare to switch tasks
2701 * @rq: the runqueue preparing to switch
421cee29 2702 * @prev: the current task that is being switched out
4866cde0
NP
2703 * @next: the task we are going to switch to.
2704 *
2705 * This is called with the rq lock held and interrupts off. It must
2706 * be paired with a subsequent finish_task_switch after the context
2707 * switch.
2708 *
2709 * prepare_task_switch sets up locking and calls architecture specific
2710 * hooks.
2711 */
e107be36
AK
2712static inline void
2713prepare_task_switch(struct rq *rq, struct task_struct *prev,
2714 struct task_struct *next)
4866cde0 2715{
e107be36 2716 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2717 prepare_lock_switch(rq, next);
2718 prepare_arch_switch(next);
2719}
2720
1da177e4
LT
2721/**
2722 * finish_task_switch - clean up after a task-switch
344babaa 2723 * @rq: runqueue associated with task-switch
1da177e4
LT
2724 * @prev: the thread we just switched away from.
2725 *
4866cde0
NP
2726 * finish_task_switch must be called after the context switch, paired
2727 * with a prepare_task_switch call before the context switch.
2728 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2729 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2730 *
2731 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2732 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2733 * with the lock held can cause deadlocks; see schedule() for
2734 * details.)
2735 */
a9957449 2736static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2737 __releases(rq->lock)
2738{
1da177e4 2739 struct mm_struct *mm = rq->prev_mm;
55a101f8 2740 long prev_state;
1da177e4
LT
2741
2742 rq->prev_mm = NULL;
2743
2744 /*
2745 * A task struct has one reference for the use as "current".
c394cc9f 2746 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2747 * schedule one last time. The schedule call will never return, and
2748 * the scheduled task must drop that reference.
c394cc9f 2749 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2750 * still held, otherwise prev could be scheduled on another cpu, die
2751 * there before we look at prev->state, and then the reference would
2752 * be dropped twice.
2753 * Manfred Spraul <manfred@colorfullife.com>
2754 */
55a101f8 2755 prev_state = prev->state;
4866cde0 2756 finish_arch_switch(prev);
cdd6c482 2757 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2758 finish_lock_switch(rq, prev);
e8fa1362 2759
e107be36 2760 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2761 if (mm)
2762 mmdrop(mm);
c394cc9f 2763 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2764 /*
2765 * Remove function-return probe instances associated with this
2766 * task and put them back on the free list.
9761eea8 2767 */
c6fd91f0 2768 kprobe_flush_task(prev);
1da177e4 2769 put_task_struct(prev);
c6fd91f0 2770 }
1da177e4
LT
2771}
2772
3f029d3c
GH
2773#ifdef CONFIG_SMP
2774
2775/* assumes rq->lock is held */
2776static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2777{
2778 if (prev->sched_class->pre_schedule)
2779 prev->sched_class->pre_schedule(rq, prev);
2780}
2781
2782/* rq->lock is NOT held, but preemption is disabled */
2783static inline void post_schedule(struct rq *rq)
2784{
2785 if (rq->post_schedule) {
2786 unsigned long flags;
2787
05fa785c 2788 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2789 if (rq->curr->sched_class->post_schedule)
2790 rq->curr->sched_class->post_schedule(rq);
05fa785c 2791 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2792
2793 rq->post_schedule = 0;
2794 }
2795}
2796
2797#else
da19ab51 2798
3f029d3c
GH
2799static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2800{
2801}
2802
2803static inline void post_schedule(struct rq *rq)
2804{
1da177e4
LT
2805}
2806
3f029d3c
GH
2807#endif
2808
1da177e4
LT
2809/**
2810 * schedule_tail - first thing a freshly forked thread must call.
2811 * @prev: the thread we just switched away from.
2812 */
36c8b586 2813asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2814 __releases(rq->lock)
2815{
70b97a7f
IM
2816 struct rq *rq = this_rq();
2817
4866cde0 2818 finish_task_switch(rq, prev);
da19ab51 2819
3f029d3c
GH
2820 /*
2821 * FIXME: do we need to worry about rq being invalidated by the
2822 * task_switch?
2823 */
2824 post_schedule(rq);
70b97a7f 2825
4866cde0
NP
2826#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2827 /* In this case, finish_task_switch does not reenable preemption */
2828 preempt_enable();
2829#endif
1da177e4 2830 if (current->set_child_tid)
b488893a 2831 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2832}
2833
2834/*
2835 * context_switch - switch to the new MM and the new
2836 * thread's register state.
2837 */
dd41f596 2838static inline void
70b97a7f 2839context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2840 struct task_struct *next)
1da177e4 2841{
dd41f596 2842 struct mm_struct *mm, *oldmm;
1da177e4 2843
e107be36 2844 prepare_task_switch(rq, prev, next);
0a16b607 2845 trace_sched_switch(rq, prev, next);
dd41f596
IM
2846 mm = next->mm;
2847 oldmm = prev->active_mm;
9226d125
ZA
2848 /*
2849 * For paravirt, this is coupled with an exit in switch_to to
2850 * combine the page table reload and the switch backend into
2851 * one hypercall.
2852 */
224101ed 2853 arch_start_context_switch(prev);
9226d125 2854
710390d9 2855 if (likely(!mm)) {
1da177e4
LT
2856 next->active_mm = oldmm;
2857 atomic_inc(&oldmm->mm_count);
2858 enter_lazy_tlb(oldmm, next);
2859 } else
2860 switch_mm(oldmm, mm, next);
2861
710390d9 2862 if (likely(!prev->mm)) {
1da177e4 2863 prev->active_mm = NULL;
1da177e4
LT
2864 rq->prev_mm = oldmm;
2865 }
3a5f5e48
IM
2866 /*
2867 * Since the runqueue lock will be released by the next
2868 * task (which is an invalid locking op but in the case
2869 * of the scheduler it's an obvious special-case), so we
2870 * do an early lockdep release here:
2871 */
2872#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2873 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2874#endif
1da177e4
LT
2875
2876 /* Here we just switch the register state and the stack. */
2877 switch_to(prev, next, prev);
2878
dd41f596
IM
2879 barrier();
2880 /*
2881 * this_rq must be evaluated again because prev may have moved
2882 * CPUs since it called schedule(), thus the 'rq' on its stack
2883 * frame will be invalid.
2884 */
2885 finish_task_switch(this_rq(), prev);
1da177e4
LT
2886}
2887
2888/*
2889 * nr_running, nr_uninterruptible and nr_context_switches:
2890 *
2891 * externally visible scheduler statistics: current number of runnable
2892 * threads, current number of uninterruptible-sleeping threads, total
2893 * number of context switches performed since bootup.
2894 */
2895unsigned long nr_running(void)
2896{
2897 unsigned long i, sum = 0;
2898
2899 for_each_online_cpu(i)
2900 sum += cpu_rq(i)->nr_running;
2901
2902 return sum;
2903}
2904
2905unsigned long nr_uninterruptible(void)
2906{
2907 unsigned long i, sum = 0;
2908
0a945022 2909 for_each_possible_cpu(i)
1da177e4
LT
2910 sum += cpu_rq(i)->nr_uninterruptible;
2911
2912 /*
2913 * Since we read the counters lockless, it might be slightly
2914 * inaccurate. Do not allow it to go below zero though:
2915 */
2916 if (unlikely((long)sum < 0))
2917 sum = 0;
2918
2919 return sum;
2920}
2921
2922unsigned long long nr_context_switches(void)
2923{
cc94abfc
SR
2924 int i;
2925 unsigned long long sum = 0;
1da177e4 2926
0a945022 2927 for_each_possible_cpu(i)
1da177e4
LT
2928 sum += cpu_rq(i)->nr_switches;
2929
2930 return sum;
2931}
2932
2933unsigned long nr_iowait(void)
2934{
2935 unsigned long i, sum = 0;
2936
0a945022 2937 for_each_possible_cpu(i)
1da177e4
LT
2938 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2939
2940 return sum;
2941}
2942
69d25870
AV
2943unsigned long nr_iowait_cpu(void)
2944{
2945 struct rq *this = this_rq();
2946 return atomic_read(&this->nr_iowait);
2947}
2948
2949unsigned long this_cpu_load(void)
2950{
2951 struct rq *this = this_rq();
2952 return this->cpu_load[0];
2953}
2954
2955
dce48a84
TG
2956/* Variables and functions for calc_load */
2957static atomic_long_t calc_load_tasks;
2958static unsigned long calc_load_update;
2959unsigned long avenrun[3];
2960EXPORT_SYMBOL(avenrun);
2961
2d02494f
TG
2962/**
2963 * get_avenrun - get the load average array
2964 * @loads: pointer to dest load array
2965 * @offset: offset to add
2966 * @shift: shift count to shift the result left
2967 *
2968 * These values are estimates at best, so no need for locking.
2969 */
2970void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2971{
2972 loads[0] = (avenrun[0] + offset) << shift;
2973 loads[1] = (avenrun[1] + offset) << shift;
2974 loads[2] = (avenrun[2] + offset) << shift;
2975}
2976
dce48a84
TG
2977static unsigned long
2978calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2979{
dce48a84
TG
2980 load *= exp;
2981 load += active * (FIXED_1 - exp);
2982 return load >> FSHIFT;
2983}
db1b1fef 2984
dce48a84
TG
2985/*
2986 * calc_load - update the avenrun load estimates 10 ticks after the
2987 * CPUs have updated calc_load_tasks.
2988 */
2989void calc_global_load(void)
2990{
2991 unsigned long upd = calc_load_update + 10;
2992 long active;
2993
2994 if (time_before(jiffies, upd))
2995 return;
db1b1fef 2996
dce48a84
TG
2997 active = atomic_long_read(&calc_load_tasks);
2998 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2999
dce48a84
TG
3000 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3001 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3002 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3003
3004 calc_load_update += LOAD_FREQ;
3005}
3006
3007/*
3008 * Either called from update_cpu_load() or from a cpu going idle
3009 */
3010static void calc_load_account_active(struct rq *this_rq)
3011{
3012 long nr_active, delta;
3013
3014 nr_active = this_rq->nr_running;
3015 nr_active += (long) this_rq->nr_uninterruptible;
3016
3017 if (nr_active != this_rq->calc_load_active) {
3018 delta = nr_active - this_rq->calc_load_active;
3019 this_rq->calc_load_active = nr_active;
3020 atomic_long_add(delta, &calc_load_tasks);
3021 }
db1b1fef
JS
3022}
3023
48f24c4d 3024/*
dd41f596
IM
3025 * Update rq->cpu_load[] statistics. This function is usually called every
3026 * scheduler tick (TICK_NSEC).
48f24c4d 3027 */
dd41f596 3028static void update_cpu_load(struct rq *this_rq)
48f24c4d 3029{
495eca49 3030 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3031 int i, scale;
3032
3033 this_rq->nr_load_updates++;
dd41f596
IM
3034
3035 /* Update our load: */
3036 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3037 unsigned long old_load, new_load;
3038
3039 /* scale is effectively 1 << i now, and >> i divides by scale */
3040
3041 old_load = this_rq->cpu_load[i];
3042 new_load = this_load;
a25707f3
IM
3043 /*
3044 * Round up the averaging division if load is increasing. This
3045 * prevents us from getting stuck on 9 if the load is 10, for
3046 * example.
3047 */
3048 if (new_load > old_load)
3049 new_load += scale-1;
dd41f596
IM
3050 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3051 }
dce48a84
TG
3052
3053 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3054 this_rq->calc_load_update += LOAD_FREQ;
3055 calc_load_account_active(this_rq);
3056 }
48f24c4d
IM
3057}
3058
dd41f596
IM
3059#ifdef CONFIG_SMP
3060
1da177e4
LT
3061/*
3062 * double_rq_lock - safely lock two runqueues
3063 *
3064 * Note this does not disable interrupts like task_rq_lock,
3065 * you need to do so manually before calling.
3066 */
70b97a7f 3067static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3068 __acquires(rq1->lock)
3069 __acquires(rq2->lock)
3070{
054b9108 3071 BUG_ON(!irqs_disabled());
1da177e4 3072 if (rq1 == rq2) {
05fa785c 3073 raw_spin_lock(&rq1->lock);
1da177e4
LT
3074 __acquire(rq2->lock); /* Fake it out ;) */
3075 } else {
c96d145e 3076 if (rq1 < rq2) {
05fa785c
TG
3077 raw_spin_lock(&rq1->lock);
3078 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4 3079 } else {
05fa785c
TG
3080 raw_spin_lock(&rq2->lock);
3081 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3082 }
3083 }
6e82a3be
IM
3084 update_rq_clock(rq1);
3085 update_rq_clock(rq2);
1da177e4
LT
3086}
3087
3088/*
3089 * double_rq_unlock - safely unlock two runqueues
3090 *
3091 * Note this does not restore interrupts like task_rq_unlock,
3092 * you need to do so manually after calling.
3093 */
70b97a7f 3094static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3095 __releases(rq1->lock)
3096 __releases(rq2->lock)
3097{
05fa785c 3098 raw_spin_unlock(&rq1->lock);
1da177e4 3099 if (rq1 != rq2)
05fa785c 3100 raw_spin_unlock(&rq2->lock);
1da177e4
LT
3101 else
3102 __release(rq2->lock);
3103}
3104
1da177e4
LT
3105/*
3106 * If dest_cpu is allowed for this process, migrate the task to it.
3107 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3108 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3109 * the cpu_allowed mask is restored.
3110 */
36c8b586 3111static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3112{
70b97a7f 3113 struct migration_req req;
1da177e4 3114 unsigned long flags;
70b97a7f 3115 struct rq *rq;
1da177e4
LT
3116
3117 rq = task_rq_lock(p, &flags);
96f874e2 3118 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3119 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3120 goto out;
3121
3122 /* force the process onto the specified CPU */
3123 if (migrate_task(p, dest_cpu, &req)) {
3124 /* Need to wait for migration thread (might exit: take ref). */
3125 struct task_struct *mt = rq->migration_thread;
36c8b586 3126
1da177e4
LT
3127 get_task_struct(mt);
3128 task_rq_unlock(rq, &flags);
3129 wake_up_process(mt);
3130 put_task_struct(mt);
3131 wait_for_completion(&req.done);
36c8b586 3132
1da177e4
LT
3133 return;
3134 }
3135out:
3136 task_rq_unlock(rq, &flags);
3137}
3138
3139/*
476d139c
NP
3140 * sched_exec - execve() is a valuable balancing opportunity, because at
3141 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3142 */
3143void sched_exec(void)
3144{
1da177e4 3145 int new_cpu, this_cpu = get_cpu();
970b13ba 3146 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3147 put_cpu();
476d139c
NP
3148 if (new_cpu != this_cpu)
3149 sched_migrate_task(current, new_cpu);
1da177e4
LT
3150}
3151
3152/*
3153 * pull_task - move a task from a remote runqueue to the local runqueue.
3154 * Both runqueues must be locked.
3155 */
dd41f596
IM
3156static void pull_task(struct rq *src_rq, struct task_struct *p,
3157 struct rq *this_rq, int this_cpu)
1da177e4 3158{
2e1cb74a 3159 deactivate_task(src_rq, p, 0);
1da177e4 3160 set_task_cpu(p, this_cpu);
dd41f596 3161 activate_task(this_rq, p, 0);
15afe09b 3162 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3163}
3164
3165/*
3166 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3167 */
858119e1 3168static
70b97a7f 3169int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3170 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3171 int *all_pinned)
1da177e4 3172{
708dc512 3173 int tsk_cache_hot = 0;
1da177e4
LT
3174 /*
3175 * We do not migrate tasks that are:
3176 * 1) running (obviously), or
3177 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3178 * 3) are cache-hot on their current CPU.
3179 */
96f874e2 3180 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3181 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3182 return 0;
cc367732 3183 }
81026794
NP
3184 *all_pinned = 0;
3185
cc367732
IM
3186 if (task_running(rq, p)) {
3187 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3188 return 0;
cc367732 3189 }
1da177e4 3190
da84d961
IM
3191 /*
3192 * Aggressive migration if:
3193 * 1) task is cache cold, or
3194 * 2) too many balance attempts have failed.
3195 */
3196
708dc512
LH
3197 tsk_cache_hot = task_hot(p, rq->clock, sd);
3198 if (!tsk_cache_hot ||
3199 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3200#ifdef CONFIG_SCHEDSTATS
708dc512 3201 if (tsk_cache_hot) {
da84d961 3202 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3203 schedstat_inc(p, se.nr_forced_migrations);
3204 }
da84d961
IM
3205#endif
3206 return 1;
3207 }
3208
708dc512 3209 if (tsk_cache_hot) {
cc367732 3210 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3211 return 0;
cc367732 3212 }
1da177e4
LT
3213 return 1;
3214}
3215
e1d1484f
PW
3216static unsigned long
3217balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3218 unsigned long max_load_move, struct sched_domain *sd,
3219 enum cpu_idle_type idle, int *all_pinned,
3220 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3221{
051c6764 3222 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3223 struct task_struct *p;
3224 long rem_load_move = max_load_move;
1da177e4 3225
e1d1484f 3226 if (max_load_move == 0)
1da177e4
LT
3227 goto out;
3228
81026794
NP
3229 pinned = 1;
3230
1da177e4 3231 /*
dd41f596 3232 * Start the load-balancing iterator:
1da177e4 3233 */
dd41f596
IM
3234 p = iterator->start(iterator->arg);
3235next:
b82d9fdd 3236 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3237 goto out;
051c6764
PZ
3238
3239 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3240 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3241 p = iterator->next(iterator->arg);
3242 goto next;
1da177e4
LT
3243 }
3244
dd41f596 3245 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3246 pulled++;
dd41f596 3247 rem_load_move -= p->se.load.weight;
1da177e4 3248
7e96fa58
GH
3249#ifdef CONFIG_PREEMPT
3250 /*
3251 * NEWIDLE balancing is a source of latency, so preemptible kernels
3252 * will stop after the first task is pulled to minimize the critical
3253 * section.
3254 */
3255 if (idle == CPU_NEWLY_IDLE)
3256 goto out;
3257#endif
3258
2dd73a4f 3259 /*
b82d9fdd 3260 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3261 */
e1d1484f 3262 if (rem_load_move > 0) {
a4ac01c3
PW
3263 if (p->prio < *this_best_prio)
3264 *this_best_prio = p->prio;
dd41f596
IM
3265 p = iterator->next(iterator->arg);
3266 goto next;
1da177e4
LT
3267 }
3268out:
3269 /*
e1d1484f 3270 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3271 * so we can safely collect pull_task() stats here rather than
3272 * inside pull_task().
3273 */
3274 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3275
3276 if (all_pinned)
3277 *all_pinned = pinned;
e1d1484f
PW
3278
3279 return max_load_move - rem_load_move;
1da177e4
LT
3280}
3281
dd41f596 3282/*
43010659
PW
3283 * move_tasks tries to move up to max_load_move weighted load from busiest to
3284 * this_rq, as part of a balancing operation within domain "sd".
3285 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3286 *
3287 * Called with both runqueues locked.
3288 */
3289static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3290 unsigned long max_load_move,
dd41f596
IM
3291 struct sched_domain *sd, enum cpu_idle_type idle,
3292 int *all_pinned)
3293{
5522d5d5 3294 const struct sched_class *class = sched_class_highest;
43010659 3295 unsigned long total_load_moved = 0;
a4ac01c3 3296 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3297
3298 do {
43010659
PW
3299 total_load_moved +=
3300 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3301 max_load_move - total_load_moved,
a4ac01c3 3302 sd, idle, all_pinned, &this_best_prio);
dd41f596 3303 class = class->next;
c4acb2c0 3304
7e96fa58
GH
3305#ifdef CONFIG_PREEMPT
3306 /*
3307 * NEWIDLE balancing is a source of latency, so preemptible
3308 * kernels will stop after the first task is pulled to minimize
3309 * the critical section.
3310 */
c4acb2c0
GH
3311 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3312 break;
7e96fa58 3313#endif
43010659 3314 } while (class && max_load_move > total_load_moved);
dd41f596 3315
43010659
PW
3316 return total_load_moved > 0;
3317}
3318
e1d1484f
PW
3319static int
3320iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3321 struct sched_domain *sd, enum cpu_idle_type idle,
3322 struct rq_iterator *iterator)
3323{
3324 struct task_struct *p = iterator->start(iterator->arg);
3325 int pinned = 0;
3326
3327 while (p) {
3328 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3329 pull_task(busiest, p, this_rq, this_cpu);
3330 /*
3331 * Right now, this is only the second place pull_task()
3332 * is called, so we can safely collect pull_task()
3333 * stats here rather than inside pull_task().
3334 */
3335 schedstat_inc(sd, lb_gained[idle]);
3336
3337 return 1;
3338 }
3339 p = iterator->next(iterator->arg);
3340 }
3341
3342 return 0;
3343}
3344
43010659
PW
3345/*
3346 * move_one_task tries to move exactly one task from busiest to this_rq, as
3347 * part of active balancing operations within "domain".
3348 * Returns 1 if successful and 0 otherwise.
3349 *
3350 * Called with both runqueues locked.
3351 */
3352static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3353 struct sched_domain *sd, enum cpu_idle_type idle)
3354{
5522d5d5 3355 const struct sched_class *class;
43010659 3356
cde7e5ca 3357 for_each_class(class) {
e1d1484f 3358 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3359 return 1;
cde7e5ca 3360 }
43010659
PW
3361
3362 return 0;
dd41f596 3363}
67bb6c03 3364/********** Helpers for find_busiest_group ************************/
1da177e4 3365/*
222d656d
GS
3366 * sd_lb_stats - Structure to store the statistics of a sched_domain
3367 * during load balancing.
1da177e4 3368 */
222d656d
GS
3369struct sd_lb_stats {
3370 struct sched_group *busiest; /* Busiest group in this sd */
3371 struct sched_group *this; /* Local group in this sd */
3372 unsigned long total_load; /* Total load of all groups in sd */
3373 unsigned long total_pwr; /* Total power of all groups in sd */
3374 unsigned long avg_load; /* Average load across all groups in sd */
3375
3376 /** Statistics of this group */
3377 unsigned long this_load;
3378 unsigned long this_load_per_task;
3379 unsigned long this_nr_running;
3380
3381 /* Statistics of the busiest group */
3382 unsigned long max_load;
3383 unsigned long busiest_load_per_task;
3384 unsigned long busiest_nr_running;
3385
3386 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3387#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3388 int power_savings_balance; /* Is powersave balance needed for this sd */
3389 struct sched_group *group_min; /* Least loaded group in sd */
3390 struct sched_group *group_leader; /* Group which relieves group_min */
3391 unsigned long min_load_per_task; /* load_per_task in group_min */
3392 unsigned long leader_nr_running; /* Nr running of group_leader */
3393 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3394#endif
222d656d 3395};
1da177e4 3396
d5ac537e 3397/*
381be78f
GS
3398 * sg_lb_stats - stats of a sched_group required for load_balancing
3399 */
3400struct sg_lb_stats {
3401 unsigned long avg_load; /*Avg load across the CPUs of the group */
3402 unsigned long group_load; /* Total load over the CPUs of the group */
3403 unsigned long sum_nr_running; /* Nr tasks running in the group */
3404 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3405 unsigned long group_capacity;
3406 int group_imb; /* Is there an imbalance in the group ? */
3407};
408ed066 3408
67bb6c03
GS
3409/**
3410 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3411 * @group: The group whose first cpu is to be returned.
3412 */
3413static inline unsigned int group_first_cpu(struct sched_group *group)
3414{
3415 return cpumask_first(sched_group_cpus(group));
3416}
3417
3418/**
3419 * get_sd_load_idx - Obtain the load index for a given sched domain.
3420 * @sd: The sched_domain whose load_idx is to be obtained.
3421 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3422 */
3423static inline int get_sd_load_idx(struct sched_domain *sd,
3424 enum cpu_idle_type idle)
3425{
3426 int load_idx;
3427
3428 switch (idle) {
3429 case CPU_NOT_IDLE:
7897986b 3430 load_idx = sd->busy_idx;
67bb6c03
GS
3431 break;
3432
3433 case CPU_NEWLY_IDLE:
7897986b 3434 load_idx = sd->newidle_idx;
67bb6c03
GS
3435 break;
3436 default:
7897986b 3437 load_idx = sd->idle_idx;
67bb6c03
GS
3438 break;
3439 }
1da177e4 3440
67bb6c03
GS
3441 return load_idx;
3442}
1da177e4 3443
1da177e4 3444
c071df18
GS
3445#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3446/**
3447 * init_sd_power_savings_stats - Initialize power savings statistics for
3448 * the given sched_domain, during load balancing.
3449 *
3450 * @sd: Sched domain whose power-savings statistics are to be initialized.
3451 * @sds: Variable containing the statistics for sd.
3452 * @idle: Idle status of the CPU at which we're performing load-balancing.
3453 */
3454static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3455 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3456{
3457 /*
3458 * Busy processors will not participate in power savings
3459 * balance.
3460 */
3461 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3462 sds->power_savings_balance = 0;
3463 else {
3464 sds->power_savings_balance = 1;
3465 sds->min_nr_running = ULONG_MAX;
3466 sds->leader_nr_running = 0;
3467 }
3468}
783609c6 3469
c071df18
GS
3470/**
3471 * update_sd_power_savings_stats - Update the power saving stats for a
3472 * sched_domain while performing load balancing.
3473 *
3474 * @group: sched_group belonging to the sched_domain under consideration.
3475 * @sds: Variable containing the statistics of the sched_domain
3476 * @local_group: Does group contain the CPU for which we're performing
3477 * load balancing ?
3478 * @sgs: Variable containing the statistics of the group.
3479 */
3480static inline void update_sd_power_savings_stats(struct sched_group *group,
3481 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3482{
408ed066 3483
c071df18
GS
3484 if (!sds->power_savings_balance)
3485 return;
1da177e4 3486
c071df18
GS
3487 /*
3488 * If the local group is idle or completely loaded
3489 * no need to do power savings balance at this domain
3490 */
3491 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3492 !sds->this_nr_running))
3493 sds->power_savings_balance = 0;
2dd73a4f 3494
c071df18
GS
3495 /*
3496 * If a group is already running at full capacity or idle,
3497 * don't include that group in power savings calculations
3498 */
3499 if (!sds->power_savings_balance ||
3500 sgs->sum_nr_running >= sgs->group_capacity ||
3501 !sgs->sum_nr_running)
3502 return;
5969fe06 3503
c071df18
GS
3504 /*
3505 * Calculate the group which has the least non-idle load.
3506 * This is the group from where we need to pick up the load
3507 * for saving power
3508 */
3509 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3510 (sgs->sum_nr_running == sds->min_nr_running &&
3511 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3512 sds->group_min = group;
3513 sds->min_nr_running = sgs->sum_nr_running;
3514 sds->min_load_per_task = sgs->sum_weighted_load /
3515 sgs->sum_nr_running;
3516 }
783609c6 3517
c071df18
GS
3518 /*
3519 * Calculate the group which is almost near its
3520 * capacity but still has some space to pick up some load
3521 * from other group and save more power
3522 */
d899a789 3523 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3524 return;
1da177e4 3525
c071df18
GS
3526 if (sgs->sum_nr_running > sds->leader_nr_running ||
3527 (sgs->sum_nr_running == sds->leader_nr_running &&
3528 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3529 sds->group_leader = group;
3530 sds->leader_nr_running = sgs->sum_nr_running;
3531 }
3532}
408ed066 3533
c071df18 3534/**
d5ac537e 3535 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3536 * @sds: Variable containing the statistics of the sched_domain
3537 * under consideration.
3538 * @this_cpu: Cpu at which we're currently performing load-balancing.
3539 * @imbalance: Variable to store the imbalance.
3540 *
d5ac537e
RD
3541 * Description:
3542 * Check if we have potential to perform some power-savings balance.
3543 * If yes, set the busiest group to be the least loaded group in the
3544 * sched_domain, so that it's CPUs can be put to idle.
3545 *
c071df18
GS
3546 * Returns 1 if there is potential to perform power-savings balance.
3547 * Else returns 0.
3548 */
3549static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3550 int this_cpu, unsigned long *imbalance)
3551{
3552 if (!sds->power_savings_balance)
3553 return 0;
1da177e4 3554
c071df18
GS
3555 if (sds->this != sds->group_leader ||
3556 sds->group_leader == sds->group_min)
3557 return 0;
783609c6 3558
c071df18
GS
3559 *imbalance = sds->min_load_per_task;
3560 sds->busiest = sds->group_min;
1da177e4 3561
c071df18 3562 return 1;
1da177e4 3563
c071df18
GS
3564}
3565#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3566static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3567 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3568{
3569 return;
3570}
408ed066 3571
c071df18
GS
3572static inline void update_sd_power_savings_stats(struct sched_group *group,
3573 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3574{
3575 return;
3576}
3577
3578static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3579 int this_cpu, unsigned long *imbalance)
3580{
3581 return 0;
3582}
3583#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3584
d6a59aa3
PZ
3585
3586unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3587{
3588 return SCHED_LOAD_SCALE;
3589}
3590
3591unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3592{
3593 return default_scale_freq_power(sd, cpu);
3594}
3595
3596unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3597{
3598 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3599 unsigned long smt_gain = sd->smt_gain;
3600
3601 smt_gain /= weight;
3602
3603 return smt_gain;
3604}
3605
d6a59aa3
PZ
3606unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3607{
3608 return default_scale_smt_power(sd, cpu);
3609}
3610
e9e9250b
PZ
3611unsigned long scale_rt_power(int cpu)
3612{
3613 struct rq *rq = cpu_rq(cpu);
3614 u64 total, available;
3615
3616 sched_avg_update(rq);
3617
3618 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3619 available = total - rq->rt_avg;
3620
3621 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3622 total = SCHED_LOAD_SCALE;
3623
3624 total >>= SCHED_LOAD_SHIFT;
3625
3626 return div_u64(available, total);
3627}
3628
ab29230e
PZ
3629static void update_cpu_power(struct sched_domain *sd, int cpu)
3630{
3631 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3632 unsigned long power = SCHED_LOAD_SCALE;
3633 struct sched_group *sdg = sd->groups;
ab29230e 3634
8e6598af
PZ
3635 if (sched_feat(ARCH_POWER))
3636 power *= arch_scale_freq_power(sd, cpu);
3637 else
3638 power *= default_scale_freq_power(sd, cpu);
3639
d6a59aa3 3640 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3641
3642 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3643 if (sched_feat(ARCH_POWER))
3644 power *= arch_scale_smt_power(sd, cpu);
3645 else
3646 power *= default_scale_smt_power(sd, cpu);
3647
ab29230e
PZ
3648 power >>= SCHED_LOAD_SHIFT;
3649 }
3650
e9e9250b
PZ
3651 power *= scale_rt_power(cpu);
3652 power >>= SCHED_LOAD_SHIFT;
3653
3654 if (!power)
3655 power = 1;
ab29230e 3656
18a3885f 3657 sdg->cpu_power = power;
ab29230e
PZ
3658}
3659
3660static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3661{
3662 struct sched_domain *child = sd->child;
3663 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3664 unsigned long power;
cc9fba7d
PZ
3665
3666 if (!child) {
ab29230e 3667 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3668 return;
3669 }
3670
d7ea17a7 3671 power = 0;
cc9fba7d
PZ
3672
3673 group = child->groups;
3674 do {
d7ea17a7 3675 power += group->cpu_power;
cc9fba7d
PZ
3676 group = group->next;
3677 } while (group != child->groups);
d7ea17a7
IM
3678
3679 sdg->cpu_power = power;
cc9fba7d 3680}
c071df18 3681
1f8c553d
GS
3682/**
3683 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3684 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3685 * @group: sched_group whose statistics are to be updated.
3686 * @this_cpu: Cpu for which load balance is currently performed.
3687 * @idle: Idle status of this_cpu
3688 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3689 * @sd_idle: Idle status of the sched_domain containing group.
3690 * @local_group: Does group contain this_cpu.
3691 * @cpus: Set of cpus considered for load balancing.
3692 * @balance: Should we balance.
3693 * @sgs: variable to hold the statistics for this group.
3694 */
cc9fba7d
PZ
3695static inline void update_sg_lb_stats(struct sched_domain *sd,
3696 struct sched_group *group, int this_cpu,
1f8c553d
GS
3697 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3698 int local_group, const struct cpumask *cpus,
3699 int *balance, struct sg_lb_stats *sgs)
3700{
3701 unsigned long load, max_cpu_load, min_cpu_load;
3702 int i;
3703 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3704 unsigned long sum_avg_load_per_task;
3705 unsigned long avg_load_per_task;
3706
cc9fba7d 3707 if (local_group) {
1f8c553d 3708 balance_cpu = group_first_cpu(group);
cc9fba7d 3709 if (balance_cpu == this_cpu)
ab29230e 3710 update_group_power(sd, this_cpu);
cc9fba7d 3711 }
1f8c553d
GS
3712
3713 /* Tally up the load of all CPUs in the group */
3714 sum_avg_load_per_task = avg_load_per_task = 0;
3715 max_cpu_load = 0;
3716 min_cpu_load = ~0UL;
408ed066 3717
1f8c553d
GS
3718 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3719 struct rq *rq = cpu_rq(i);
908a7c1b 3720
1f8c553d
GS
3721 if (*sd_idle && rq->nr_running)
3722 *sd_idle = 0;
5c45bf27 3723
1f8c553d 3724 /* Bias balancing toward cpus of our domain */
1da177e4 3725 if (local_group) {
1f8c553d
GS
3726 if (idle_cpu(i) && !first_idle_cpu) {
3727 first_idle_cpu = 1;
3728 balance_cpu = i;
3729 }
3730
3731 load = target_load(i, load_idx);
3732 } else {
3733 load = source_load(i, load_idx);
3734 if (load > max_cpu_load)
3735 max_cpu_load = load;
3736 if (min_cpu_load > load)
3737 min_cpu_load = load;
1da177e4 3738 }
5c45bf27 3739
1f8c553d
GS
3740 sgs->group_load += load;
3741 sgs->sum_nr_running += rq->nr_running;
3742 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3743
1f8c553d
GS
3744 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3745 }
5c45bf27 3746
1f8c553d
GS
3747 /*
3748 * First idle cpu or the first cpu(busiest) in this sched group
3749 * is eligible for doing load balancing at this and above
3750 * domains. In the newly idle case, we will allow all the cpu's
3751 * to do the newly idle load balance.
3752 */
3753 if (idle != CPU_NEWLY_IDLE && local_group &&
3754 balance_cpu != this_cpu && balance) {
3755 *balance = 0;
3756 return;
3757 }
5c45bf27 3758
1f8c553d 3759 /* Adjust by relative CPU power of the group */
18a3885f 3760 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3761
1f8c553d
GS
3762
3763 /*
3764 * Consider the group unbalanced when the imbalance is larger
3765 * than the average weight of two tasks.
3766 *
3767 * APZ: with cgroup the avg task weight can vary wildly and
3768 * might not be a suitable number - should we keep a
3769 * normalized nr_running number somewhere that negates
3770 * the hierarchy?
3771 */
18a3885f
PZ
3772 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3773 group->cpu_power;
1f8c553d
GS
3774
3775 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3776 sgs->group_imb = 1;
3777
bdb94aa5 3778 sgs->group_capacity =
18a3885f 3779 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3780}
dd41f596 3781
37abe198
GS
3782/**
3783 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3784 * @sd: sched_domain whose statistics are to be updated.
3785 * @this_cpu: Cpu for which load balance is currently performed.
3786 * @idle: Idle status of this_cpu
3787 * @sd_idle: Idle status of the sched_domain containing group.
3788 * @cpus: Set of cpus considered for load balancing.
3789 * @balance: Should we balance.
3790 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3791 */
37abe198
GS
3792static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3793 enum cpu_idle_type idle, int *sd_idle,
3794 const struct cpumask *cpus, int *balance,
3795 struct sd_lb_stats *sds)
1da177e4 3796{
b5d978e0 3797 struct sched_domain *child = sd->child;
222d656d 3798 struct sched_group *group = sd->groups;
37abe198 3799 struct sg_lb_stats sgs;
b5d978e0
PZ
3800 int load_idx, prefer_sibling = 0;
3801
3802 if (child && child->flags & SD_PREFER_SIBLING)
3803 prefer_sibling = 1;
222d656d 3804
c071df18 3805 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3806 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3807
3808 do {
1da177e4 3809 int local_group;
1da177e4 3810
758b2cdc
RR
3811 local_group = cpumask_test_cpu(this_cpu,
3812 sched_group_cpus(group));
381be78f 3813 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3814 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3815 local_group, cpus, balance, &sgs);
1da177e4 3816
37abe198
GS
3817 if (local_group && balance && !(*balance))
3818 return;
783609c6 3819
37abe198 3820 sds->total_load += sgs.group_load;
18a3885f 3821 sds->total_pwr += group->cpu_power;
1da177e4 3822
b5d978e0
PZ
3823 /*
3824 * In case the child domain prefers tasks go to siblings
3825 * first, lower the group capacity to one so that we'll try
3826 * and move all the excess tasks away.
3827 */
3828 if (prefer_sibling)
bdb94aa5 3829 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3830
1da177e4 3831 if (local_group) {
37abe198
GS
3832 sds->this_load = sgs.avg_load;
3833 sds->this = group;
3834 sds->this_nr_running = sgs.sum_nr_running;
3835 sds->this_load_per_task = sgs.sum_weighted_load;
3836 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3837 (sgs.sum_nr_running > sgs.group_capacity ||
3838 sgs.group_imb)) {
37abe198
GS
3839 sds->max_load = sgs.avg_load;
3840 sds->busiest = group;
3841 sds->busiest_nr_running = sgs.sum_nr_running;
3842 sds->busiest_load_per_task = sgs.sum_weighted_load;
3843 sds->group_imb = sgs.group_imb;
48f24c4d 3844 }
5c45bf27 3845
c071df18 3846 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3847 group = group->next;
3848 } while (group != sd->groups);
37abe198 3849}
1da177e4 3850
2e6f44ae
GS
3851/**
3852 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3853 * amongst the groups of a sched_domain, during
3854 * load balancing.
2e6f44ae
GS
3855 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3856 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3857 * @imbalance: Variable to store the imbalance.
3858 */
3859static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3860 int this_cpu, unsigned long *imbalance)
3861{
3862 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3863 unsigned int imbn = 2;
3864
3865 if (sds->this_nr_running) {
3866 sds->this_load_per_task /= sds->this_nr_running;
3867 if (sds->busiest_load_per_task >
3868 sds->this_load_per_task)
3869 imbn = 1;
3870 } else
3871 sds->this_load_per_task =
3872 cpu_avg_load_per_task(this_cpu);
1da177e4 3873
2e6f44ae
GS
3874 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3875 sds->busiest_load_per_task * imbn) {
3876 *imbalance = sds->busiest_load_per_task;
3877 return;
3878 }
908a7c1b 3879
1da177e4 3880 /*
2e6f44ae
GS
3881 * OK, we don't have enough imbalance to justify moving tasks,
3882 * however we may be able to increase total CPU power used by
3883 * moving them.
1da177e4 3884 */
2dd73a4f 3885
18a3885f 3886 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3887 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3888 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3889 min(sds->this_load_per_task, sds->this_load);
3890 pwr_now /= SCHED_LOAD_SCALE;
3891
3892 /* Amount of load we'd subtract */
18a3885f
PZ
3893 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3894 sds->busiest->cpu_power;
2e6f44ae 3895 if (sds->max_load > tmp)
18a3885f 3896 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3897 min(sds->busiest_load_per_task, sds->max_load - tmp);
3898
3899 /* Amount of load we'd add */
18a3885f 3900 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3901 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3902 tmp = (sds->max_load * sds->busiest->cpu_power) /
3903 sds->this->cpu_power;
2e6f44ae 3904 else
18a3885f
PZ
3905 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3906 sds->this->cpu_power;
3907 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3908 min(sds->this_load_per_task, sds->this_load + tmp);
3909 pwr_move /= SCHED_LOAD_SCALE;
3910
3911 /* Move if we gain throughput */
3912 if (pwr_move > pwr_now)
3913 *imbalance = sds->busiest_load_per_task;
3914}
dbc523a3
GS
3915
3916/**
3917 * calculate_imbalance - Calculate the amount of imbalance present within the
3918 * groups of a given sched_domain during load balance.
3919 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3920 * @this_cpu: Cpu for which currently load balance is being performed.
3921 * @imbalance: The variable to store the imbalance.
3922 */
3923static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3924 unsigned long *imbalance)
3925{
3926 unsigned long max_pull;
2dd73a4f
PW
3927 /*
3928 * In the presence of smp nice balancing, certain scenarios can have
3929 * max load less than avg load(as we skip the groups at or below
3930 * its cpu_power, while calculating max_load..)
3931 */
dbc523a3 3932 if (sds->max_load < sds->avg_load) {
2dd73a4f 3933 *imbalance = 0;
dbc523a3 3934 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3935 }
0c117f1b
SS
3936
3937 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3938 max_pull = min(sds->max_load - sds->avg_load,
3939 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3940
1da177e4 3941 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3942 *imbalance = min(max_pull * sds->busiest->cpu_power,
3943 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3944 / SCHED_LOAD_SCALE;
3945
2dd73a4f
PW
3946 /*
3947 * if *imbalance is less than the average load per runnable task
3948 * there is no gaurantee that any tasks will be moved so we'll have
3949 * a think about bumping its value to force at least one task to be
3950 * moved
3951 */
dbc523a3
GS
3952 if (*imbalance < sds->busiest_load_per_task)
3953 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3954
dbc523a3 3955}
37abe198 3956/******* find_busiest_group() helpers end here *********************/
1da177e4 3957
b7bb4c9b
GS
3958/**
3959 * find_busiest_group - Returns the busiest group within the sched_domain
3960 * if there is an imbalance. If there isn't an imbalance, and
3961 * the user has opted for power-savings, it returns a group whose
3962 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3963 * such a group exists.
3964 *
3965 * Also calculates the amount of weighted load which should be moved
3966 * to restore balance.
3967 *
3968 * @sd: The sched_domain whose busiest group is to be returned.
3969 * @this_cpu: The cpu for which load balancing is currently being performed.
3970 * @imbalance: Variable which stores amount of weighted load which should
3971 * be moved to restore balance/put a group to idle.
3972 * @idle: The idle status of this_cpu.
3973 * @sd_idle: The idleness of sd
3974 * @cpus: The set of CPUs under consideration for load-balancing.
3975 * @balance: Pointer to a variable indicating if this_cpu
3976 * is the appropriate cpu to perform load balancing at this_level.
3977 *
3978 * Returns: - the busiest group if imbalance exists.
3979 * - If no imbalance and user has opted for power-savings balance,
3980 * return the least loaded group whose CPUs can be
3981 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3982 */
3983static struct sched_group *
3984find_busiest_group(struct sched_domain *sd, int this_cpu,
3985 unsigned long *imbalance, enum cpu_idle_type idle,
3986 int *sd_idle, const struct cpumask *cpus, int *balance)
3987{
3988 struct sd_lb_stats sds;
1da177e4 3989
37abe198 3990 memset(&sds, 0, sizeof(sds));
1da177e4 3991
37abe198
GS
3992 /*
3993 * Compute the various statistics relavent for load balancing at
3994 * this level.
3995 */
3996 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3997 balance, &sds);
3998
b7bb4c9b
GS
3999 /* Cases where imbalance does not exist from POV of this_cpu */
4000 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4001 * at this level.
4002 * 2) There is no busy sibling group to pull from.
4003 * 3) This group is the busiest group.
4004 * 4) This group is more busy than the avg busieness at this
4005 * sched_domain.
4006 * 5) The imbalance is within the specified limit.
4007 * 6) Any rebalance would lead to ping-pong
4008 */
37abe198
GS
4009 if (balance && !(*balance))
4010 goto ret;
1da177e4 4011
b7bb4c9b
GS
4012 if (!sds.busiest || sds.busiest_nr_running == 0)
4013 goto out_balanced;
1da177e4 4014
b7bb4c9b 4015 if (sds.this_load >= sds.max_load)
1da177e4 4016 goto out_balanced;
1da177e4 4017
222d656d 4018 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4019
b7bb4c9b
GS
4020 if (sds.this_load >= sds.avg_load)
4021 goto out_balanced;
4022
4023 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4024 goto out_balanced;
4025
222d656d
GS
4026 sds.busiest_load_per_task /= sds.busiest_nr_running;
4027 if (sds.group_imb)
4028 sds.busiest_load_per_task =
4029 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4030
1da177e4
LT
4031 /*
4032 * We're trying to get all the cpus to the average_load, so we don't
4033 * want to push ourselves above the average load, nor do we wish to
4034 * reduce the max loaded cpu below the average load, as either of these
4035 * actions would just result in more rebalancing later, and ping-pong
4036 * tasks around. Thus we look for the minimum possible imbalance.
4037 * Negative imbalances (*we* are more loaded than anyone else) will
4038 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4039 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4040 * appear as very large values with unsigned longs.
4041 */
222d656d 4042 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4043 goto out_balanced;
4044
dbc523a3
GS
4045 /* Looks like there is an imbalance. Compute it */
4046 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4047 return sds.busiest;
1da177e4
LT
4048
4049out_balanced:
c071df18
GS
4050 /*
4051 * There is no obvious imbalance. But check if we can do some balancing
4052 * to save power.
4053 */
4054 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4055 return sds.busiest;
783609c6 4056ret:
1da177e4
LT
4057 *imbalance = 0;
4058 return NULL;
4059}
4060
4061/*
4062 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4063 */
70b97a7f 4064static struct rq *
d15bcfdb 4065find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4066 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4067{
70b97a7f 4068 struct rq *busiest = NULL, *rq;
2dd73a4f 4069 unsigned long max_load = 0;
1da177e4
LT
4070 int i;
4071
758b2cdc 4072 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4073 unsigned long power = power_of(i);
4074 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4075 unsigned long wl;
0a2966b4 4076
96f874e2 4077 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4078 continue;
4079
48f24c4d 4080 rq = cpu_rq(i);
bdb94aa5
PZ
4081 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4082 wl /= power;
2dd73a4f 4083
bdb94aa5 4084 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4085 continue;
1da177e4 4086
dd41f596
IM
4087 if (wl > max_load) {
4088 max_load = wl;
48f24c4d 4089 busiest = rq;
1da177e4
LT
4090 }
4091 }
4092
4093 return busiest;
4094}
4095
77391d71
NP
4096/*
4097 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4098 * so long as it is large enough.
4099 */
4100#define MAX_PINNED_INTERVAL 512
4101
df7c8e84
RR
4102/* Working cpumask for load_balance and load_balance_newidle. */
4103static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4104
1da177e4
LT
4105/*
4106 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4107 * tasks if there is an imbalance.
1da177e4 4108 */
70b97a7f 4109static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4110 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4111 int *balance)
1da177e4 4112{
43010659 4113 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4114 struct sched_group *group;
1da177e4 4115 unsigned long imbalance;
70b97a7f 4116 struct rq *busiest;
fe2eea3f 4117 unsigned long flags;
df7c8e84 4118 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4119
6ad4c188 4120 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4121
89c4710e
SS
4122 /*
4123 * When power savings policy is enabled for the parent domain, idle
4124 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4125 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4126 * portraying it as CPU_NOT_IDLE.
89c4710e 4127 */
d15bcfdb 4128 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4129 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4130 sd_idle = 1;
1da177e4 4131
2d72376b 4132 schedstat_inc(sd, lb_count[idle]);
1da177e4 4133
0a2966b4 4134redo:
c8cba857 4135 update_shares(sd);
0a2966b4 4136 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4137 cpus, balance);
783609c6 4138
06066714 4139 if (*balance == 0)
783609c6 4140 goto out_balanced;
783609c6 4141
1da177e4
LT
4142 if (!group) {
4143 schedstat_inc(sd, lb_nobusyg[idle]);
4144 goto out_balanced;
4145 }
4146
7c16ec58 4147 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4148 if (!busiest) {
4149 schedstat_inc(sd, lb_nobusyq[idle]);
4150 goto out_balanced;
4151 }
4152
db935dbd 4153 BUG_ON(busiest == this_rq);
1da177e4
LT
4154
4155 schedstat_add(sd, lb_imbalance[idle], imbalance);
4156
43010659 4157 ld_moved = 0;
1da177e4
LT
4158 if (busiest->nr_running > 1) {
4159 /*
4160 * Attempt to move tasks. If find_busiest_group has found
4161 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4162 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4163 * correctly treated as an imbalance.
4164 */
fe2eea3f 4165 local_irq_save(flags);
e17224bf 4166 double_rq_lock(this_rq, busiest);
43010659 4167 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4168 imbalance, sd, idle, &all_pinned);
e17224bf 4169 double_rq_unlock(this_rq, busiest);
fe2eea3f 4170 local_irq_restore(flags);
81026794 4171
46cb4b7c
SS
4172 /*
4173 * some other cpu did the load balance for us.
4174 */
43010659 4175 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4176 resched_cpu(this_cpu);
4177
81026794 4178 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4179 if (unlikely(all_pinned)) {
96f874e2
RR
4180 cpumask_clear_cpu(cpu_of(busiest), cpus);
4181 if (!cpumask_empty(cpus))
0a2966b4 4182 goto redo;
81026794 4183 goto out_balanced;
0a2966b4 4184 }
1da177e4 4185 }
81026794 4186
43010659 4187 if (!ld_moved) {
1da177e4
LT
4188 schedstat_inc(sd, lb_failed[idle]);
4189 sd->nr_balance_failed++;
4190
4191 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4192
05fa785c 4193 raw_spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4194
4195 /* don't kick the migration_thread, if the curr
4196 * task on busiest cpu can't be moved to this_cpu
4197 */
96f874e2
RR
4198 if (!cpumask_test_cpu(this_cpu,
4199 &busiest->curr->cpus_allowed)) {
05fa785c
TG
4200 raw_spin_unlock_irqrestore(&busiest->lock,
4201 flags);
fa3b6ddc
SS
4202 all_pinned = 1;
4203 goto out_one_pinned;
4204 }
4205
1da177e4
LT
4206 if (!busiest->active_balance) {
4207 busiest->active_balance = 1;
4208 busiest->push_cpu = this_cpu;
81026794 4209 active_balance = 1;
1da177e4 4210 }
05fa785c 4211 raw_spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4212 if (active_balance)
1da177e4
LT
4213 wake_up_process(busiest->migration_thread);
4214
4215 /*
4216 * We've kicked active balancing, reset the failure
4217 * counter.
4218 */
39507451 4219 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4220 }
81026794 4221 } else
1da177e4
LT
4222 sd->nr_balance_failed = 0;
4223
81026794 4224 if (likely(!active_balance)) {
1da177e4
LT
4225 /* We were unbalanced, so reset the balancing interval */
4226 sd->balance_interval = sd->min_interval;
81026794
NP
4227 } else {
4228 /*
4229 * If we've begun active balancing, start to back off. This
4230 * case may not be covered by the all_pinned logic if there
4231 * is only 1 task on the busy runqueue (because we don't call
4232 * move_tasks).
4233 */
4234 if (sd->balance_interval < sd->max_interval)
4235 sd->balance_interval *= 2;
1da177e4
LT
4236 }
4237
43010659 4238 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4239 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4240 ld_moved = -1;
4241
4242 goto out;
1da177e4
LT
4243
4244out_balanced:
1da177e4
LT
4245 schedstat_inc(sd, lb_balanced[idle]);
4246
16cfb1c0 4247 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4248
4249out_one_pinned:
1da177e4 4250 /* tune up the balancing interval */
77391d71
NP
4251 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4252 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4253 sd->balance_interval *= 2;
4254
48f24c4d 4255 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4256 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4257 ld_moved = -1;
4258 else
4259 ld_moved = 0;
4260out:
c8cba857
PZ
4261 if (ld_moved)
4262 update_shares(sd);
c09595f6 4263 return ld_moved;
1da177e4
LT
4264}
4265
4266/*
4267 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4268 * tasks if there is an imbalance.
4269 *
d15bcfdb 4270 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4271 * this_rq is locked.
4272 */
48f24c4d 4273static int
df7c8e84 4274load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4275{
4276 struct sched_group *group;
70b97a7f 4277 struct rq *busiest = NULL;
1da177e4 4278 unsigned long imbalance;
43010659 4279 int ld_moved = 0;
5969fe06 4280 int sd_idle = 0;
969bb4e4 4281 int all_pinned = 0;
df7c8e84 4282 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4283
6ad4c188 4284 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4285
89c4710e
SS
4286 /*
4287 * When power savings policy is enabled for the parent domain, idle
4288 * sibling can pick up load irrespective of busy siblings. In this case,
4289 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4290 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4291 */
4292 if (sd->flags & SD_SHARE_CPUPOWER &&
4293 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4294 sd_idle = 1;
1da177e4 4295
2d72376b 4296 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4297redo:
3e5459b4 4298 update_shares_locked(this_rq, sd);
d15bcfdb 4299 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4300 &sd_idle, cpus, NULL);
1da177e4 4301 if (!group) {
d15bcfdb 4302 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4303 goto out_balanced;
1da177e4
LT
4304 }
4305
7c16ec58 4306 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4307 if (!busiest) {
d15bcfdb 4308 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4309 goto out_balanced;
1da177e4
LT
4310 }
4311
db935dbd
NP
4312 BUG_ON(busiest == this_rq);
4313
d15bcfdb 4314 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4315
43010659 4316 ld_moved = 0;
d6d5cfaf
NP
4317 if (busiest->nr_running > 1) {
4318 /* Attempt to move tasks */
4319 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4320 /* this_rq->clock is already updated */
4321 update_rq_clock(busiest);
43010659 4322 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4323 imbalance, sd, CPU_NEWLY_IDLE,
4324 &all_pinned);
1b12bbc7 4325 double_unlock_balance(this_rq, busiest);
0a2966b4 4326
969bb4e4 4327 if (unlikely(all_pinned)) {
96f874e2
RR
4328 cpumask_clear_cpu(cpu_of(busiest), cpus);
4329 if (!cpumask_empty(cpus))
0a2966b4
CL
4330 goto redo;
4331 }
d6d5cfaf
NP
4332 }
4333
43010659 4334 if (!ld_moved) {
36dffab6 4335 int active_balance = 0;
ad273b32 4336
d15bcfdb 4337 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4338 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4339 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4340 return -1;
ad273b32
VS
4341
4342 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4343 return -1;
4344
4345 if (sd->nr_balance_failed++ < 2)
4346 return -1;
4347
4348 /*
4349 * The only task running in a non-idle cpu can be moved to this
4350 * cpu in an attempt to completely freeup the other CPU
4351 * package. The same method used to move task in load_balance()
4352 * have been extended for load_balance_newidle() to speedup
4353 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4354 *
4355 * The package power saving logic comes from
4356 * find_busiest_group(). If there are no imbalance, then
4357 * f_b_g() will return NULL. However when sched_mc={1,2} then
4358 * f_b_g() will select a group from which a running task may be
4359 * pulled to this cpu in order to make the other package idle.
4360 * If there is no opportunity to make a package idle and if
4361 * there are no imbalance, then f_b_g() will return NULL and no
4362 * action will be taken in load_balance_newidle().
4363 *
4364 * Under normal task pull operation due to imbalance, there
4365 * will be more than one task in the source run queue and
4366 * move_tasks() will succeed. ld_moved will be true and this
4367 * active balance code will not be triggered.
4368 */
4369
4370 /* Lock busiest in correct order while this_rq is held */
4371 double_lock_balance(this_rq, busiest);
4372
4373 /*
4374 * don't kick the migration_thread, if the curr
4375 * task on busiest cpu can't be moved to this_cpu
4376 */
6ca09dfc 4377 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4378 double_unlock_balance(this_rq, busiest);
4379 all_pinned = 1;
4380 return ld_moved;
4381 }
4382
4383 if (!busiest->active_balance) {
4384 busiest->active_balance = 1;
4385 busiest->push_cpu = this_cpu;
4386 active_balance = 1;
4387 }
4388
4389 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4390 /*
4391 * Should not call ttwu while holding a rq->lock
4392 */
05fa785c 4393 raw_spin_unlock(&this_rq->lock);
ad273b32
VS
4394 if (active_balance)
4395 wake_up_process(busiest->migration_thread);
05fa785c 4396 raw_spin_lock(&this_rq->lock);
ad273b32 4397
5969fe06 4398 } else
16cfb1c0 4399 sd->nr_balance_failed = 0;
1da177e4 4400
3e5459b4 4401 update_shares_locked(this_rq, sd);
43010659 4402 return ld_moved;
16cfb1c0
NP
4403
4404out_balanced:
d15bcfdb 4405 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4406 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4407 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4408 return -1;
16cfb1c0 4409 sd->nr_balance_failed = 0;
48f24c4d 4410
16cfb1c0 4411 return 0;
1da177e4
LT
4412}
4413
4414/*
4415 * idle_balance is called by schedule() if this_cpu is about to become
4416 * idle. Attempts to pull tasks from other CPUs.
4417 */
70b97a7f 4418static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4419{
4420 struct sched_domain *sd;
efbe027e 4421 int pulled_task = 0;
dd41f596 4422 unsigned long next_balance = jiffies + HZ;
1da177e4 4423
1b9508f6
MG
4424 this_rq->idle_stamp = this_rq->clock;
4425
4426 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4427 return;
4428
1da177e4 4429 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4430 unsigned long interval;
4431
4432 if (!(sd->flags & SD_LOAD_BALANCE))
4433 continue;
4434
4435 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4436 /* If we've pulled tasks over stop searching: */
7c16ec58 4437 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4438 sd);
92c4ca5c
CL
4439
4440 interval = msecs_to_jiffies(sd->balance_interval);
4441 if (time_after(next_balance, sd->last_balance + interval))
4442 next_balance = sd->last_balance + interval;
1b9508f6
MG
4443 if (pulled_task) {
4444 this_rq->idle_stamp = 0;
92c4ca5c 4445 break;
1b9508f6 4446 }
1da177e4 4447 }
dd41f596 4448 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4449 /*
4450 * We are going idle. next_balance may be set based on
4451 * a busy processor. So reset next_balance.
4452 */
4453 this_rq->next_balance = next_balance;
dd41f596 4454 }
1da177e4
LT
4455}
4456
4457/*
4458 * active_load_balance is run by migration threads. It pushes running tasks
4459 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4460 * running on each physical CPU where possible, and avoids physical /
4461 * logical imbalances.
4462 *
4463 * Called with busiest_rq locked.
4464 */
70b97a7f 4465static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4466{
39507451 4467 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4468 struct sched_domain *sd;
4469 struct rq *target_rq;
39507451 4470
48f24c4d 4471 /* Is there any task to move? */
39507451 4472 if (busiest_rq->nr_running <= 1)
39507451
NP
4473 return;
4474
4475 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4476
4477 /*
39507451 4478 * This condition is "impossible", if it occurs
41a2d6cf 4479 * we need to fix it. Originally reported by
39507451 4480 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4481 */
39507451 4482 BUG_ON(busiest_rq == target_rq);
1da177e4 4483
39507451
NP
4484 /* move a task from busiest_rq to target_rq */
4485 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4486 update_rq_clock(busiest_rq);
4487 update_rq_clock(target_rq);
39507451
NP
4488
4489 /* Search for an sd spanning us and the target CPU. */
c96d145e 4490 for_each_domain(target_cpu, sd) {
39507451 4491 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4492 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4493 break;
c96d145e 4494 }
39507451 4495
48f24c4d 4496 if (likely(sd)) {
2d72376b 4497 schedstat_inc(sd, alb_count);
39507451 4498
43010659
PW
4499 if (move_one_task(target_rq, target_cpu, busiest_rq,
4500 sd, CPU_IDLE))
48f24c4d
IM
4501 schedstat_inc(sd, alb_pushed);
4502 else
4503 schedstat_inc(sd, alb_failed);
4504 }
1b12bbc7 4505 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4506}
4507
46cb4b7c
SS
4508#ifdef CONFIG_NO_HZ
4509static struct {
4510 atomic_t load_balancer;
7d1e6a9b 4511 cpumask_var_t cpu_mask;
f711f609 4512 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4513} nohz ____cacheline_aligned = {
4514 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4515};
4516
eea08f32
AB
4517int get_nohz_load_balancer(void)
4518{
4519 return atomic_read(&nohz.load_balancer);
4520}
4521
f711f609
GS
4522#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4523/**
4524 * lowest_flag_domain - Return lowest sched_domain containing flag.
4525 * @cpu: The cpu whose lowest level of sched domain is to
4526 * be returned.
4527 * @flag: The flag to check for the lowest sched_domain
4528 * for the given cpu.
4529 *
4530 * Returns the lowest sched_domain of a cpu which contains the given flag.
4531 */
4532static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4533{
4534 struct sched_domain *sd;
4535
4536 for_each_domain(cpu, sd)
4537 if (sd && (sd->flags & flag))
4538 break;
4539
4540 return sd;
4541}
4542
4543/**
4544 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4545 * @cpu: The cpu whose domains we're iterating over.
4546 * @sd: variable holding the value of the power_savings_sd
4547 * for cpu.
4548 * @flag: The flag to filter the sched_domains to be iterated.
4549 *
4550 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4551 * set, starting from the lowest sched_domain to the highest.
4552 */
4553#define for_each_flag_domain(cpu, sd, flag) \
4554 for (sd = lowest_flag_domain(cpu, flag); \
4555 (sd && (sd->flags & flag)); sd = sd->parent)
4556
4557/**
4558 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4559 * @ilb_group: group to be checked for semi-idleness
4560 *
4561 * Returns: 1 if the group is semi-idle. 0 otherwise.
4562 *
4563 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4564 * and atleast one non-idle CPU. This helper function checks if the given
4565 * sched_group is semi-idle or not.
4566 */
4567static inline int is_semi_idle_group(struct sched_group *ilb_group)
4568{
4569 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4570 sched_group_cpus(ilb_group));
4571
4572 /*
4573 * A sched_group is semi-idle when it has atleast one busy cpu
4574 * and atleast one idle cpu.
4575 */
4576 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4577 return 0;
4578
4579 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4580 return 0;
4581
4582 return 1;
4583}
4584/**
4585 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4586 * @cpu: The cpu which is nominating a new idle_load_balancer.
4587 *
4588 * Returns: Returns the id of the idle load balancer if it exists,
4589 * Else, returns >= nr_cpu_ids.
4590 *
4591 * This algorithm picks the idle load balancer such that it belongs to a
4592 * semi-idle powersavings sched_domain. The idea is to try and avoid
4593 * completely idle packages/cores just for the purpose of idle load balancing
4594 * when there are other idle cpu's which are better suited for that job.
4595 */
4596static int find_new_ilb(int cpu)
4597{
4598 struct sched_domain *sd;
4599 struct sched_group *ilb_group;
4600
4601 /*
4602 * Have idle load balancer selection from semi-idle packages only
4603 * when power-aware load balancing is enabled
4604 */
4605 if (!(sched_smt_power_savings || sched_mc_power_savings))
4606 goto out_done;
4607
4608 /*
4609 * Optimize for the case when we have no idle CPUs or only one
4610 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4611 */
4612 if (cpumask_weight(nohz.cpu_mask) < 2)
4613 goto out_done;
4614
4615 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4616 ilb_group = sd->groups;
4617
4618 do {
4619 if (is_semi_idle_group(ilb_group))
4620 return cpumask_first(nohz.ilb_grp_nohz_mask);
4621
4622 ilb_group = ilb_group->next;
4623
4624 } while (ilb_group != sd->groups);
4625 }
4626
4627out_done:
4628 return cpumask_first(nohz.cpu_mask);
4629}
4630#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4631static inline int find_new_ilb(int call_cpu)
4632{
6e29ec57 4633 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4634}
4635#endif
4636
7835b98b 4637/*
46cb4b7c
SS
4638 * This routine will try to nominate the ilb (idle load balancing)
4639 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4640 * load balancing on behalf of all those cpus. If all the cpus in the system
4641 * go into this tickless mode, then there will be no ilb owner (as there is
4642 * no need for one) and all the cpus will sleep till the next wakeup event
4643 * arrives...
4644 *
4645 * For the ilb owner, tick is not stopped. And this tick will be used
4646 * for idle load balancing. ilb owner will still be part of
4647 * nohz.cpu_mask..
7835b98b 4648 *
46cb4b7c
SS
4649 * While stopping the tick, this cpu will become the ilb owner if there
4650 * is no other owner. And will be the owner till that cpu becomes busy
4651 * or if all cpus in the system stop their ticks at which point
4652 * there is no need for ilb owner.
4653 *
4654 * When the ilb owner becomes busy, it nominates another owner, during the
4655 * next busy scheduler_tick()
4656 */
4657int select_nohz_load_balancer(int stop_tick)
4658{
4659 int cpu = smp_processor_id();
4660
4661 if (stop_tick) {
46cb4b7c
SS
4662 cpu_rq(cpu)->in_nohz_recently = 1;
4663
483b4ee6
SS
4664 if (!cpu_active(cpu)) {
4665 if (atomic_read(&nohz.load_balancer) != cpu)
4666 return 0;
4667
4668 /*
4669 * If we are going offline and still the leader,
4670 * give up!
4671 */
46cb4b7c
SS
4672 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4673 BUG();
483b4ee6 4674
46cb4b7c
SS
4675 return 0;
4676 }
4677
483b4ee6
SS
4678 cpumask_set_cpu(cpu, nohz.cpu_mask);
4679
46cb4b7c 4680 /* time for ilb owner also to sleep */
6ad4c188 4681 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4682 if (atomic_read(&nohz.load_balancer) == cpu)
4683 atomic_set(&nohz.load_balancer, -1);
4684 return 0;
4685 }
4686
4687 if (atomic_read(&nohz.load_balancer) == -1) {
4688 /* make me the ilb owner */
4689 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4690 return 1;
e790fb0b
GS
4691 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4692 int new_ilb;
4693
4694 if (!(sched_smt_power_savings ||
4695 sched_mc_power_savings))
4696 return 1;
4697 /*
4698 * Check to see if there is a more power-efficient
4699 * ilb.
4700 */
4701 new_ilb = find_new_ilb(cpu);
4702 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4703 atomic_set(&nohz.load_balancer, -1);
4704 resched_cpu(new_ilb);
4705 return 0;
4706 }
46cb4b7c 4707 return 1;
e790fb0b 4708 }
46cb4b7c 4709 } else {
7d1e6a9b 4710 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4711 return 0;
4712
7d1e6a9b 4713 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4714
4715 if (atomic_read(&nohz.load_balancer) == cpu)
4716 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4717 BUG();
4718 }
4719 return 0;
4720}
4721#endif
4722
4723static DEFINE_SPINLOCK(balancing);
4724
4725/*
7835b98b
CL
4726 * It checks each scheduling domain to see if it is due to be balanced,
4727 * and initiates a balancing operation if so.
4728 *
4729 * Balancing parameters are set up in arch_init_sched_domains.
4730 */
a9957449 4731static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4732{
46cb4b7c
SS
4733 int balance = 1;
4734 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4735 unsigned long interval;
4736 struct sched_domain *sd;
46cb4b7c 4737 /* Earliest time when we have to do rebalance again */
c9819f45 4738 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4739 int update_next_balance = 0;
d07355f5 4740 int need_serialize;
1da177e4 4741
46cb4b7c 4742 for_each_domain(cpu, sd) {
1da177e4
LT
4743 if (!(sd->flags & SD_LOAD_BALANCE))
4744 continue;
4745
4746 interval = sd->balance_interval;
d15bcfdb 4747 if (idle != CPU_IDLE)
1da177e4
LT
4748 interval *= sd->busy_factor;
4749
4750 /* scale ms to jiffies */
4751 interval = msecs_to_jiffies(interval);
4752 if (unlikely(!interval))
4753 interval = 1;
dd41f596
IM
4754 if (interval > HZ*NR_CPUS/10)
4755 interval = HZ*NR_CPUS/10;
4756
d07355f5 4757 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4758
d07355f5 4759 if (need_serialize) {
08c183f3
CL
4760 if (!spin_trylock(&balancing))
4761 goto out;
4762 }
4763
c9819f45 4764 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4765 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4766 /*
4767 * We've pulled tasks over so either we're no
5969fe06
NP
4768 * longer idle, or one of our SMT siblings is
4769 * not idle.
4770 */
d15bcfdb 4771 idle = CPU_NOT_IDLE;
1da177e4 4772 }
1bd77f2d 4773 sd->last_balance = jiffies;
1da177e4 4774 }
d07355f5 4775 if (need_serialize)
08c183f3
CL
4776 spin_unlock(&balancing);
4777out:
f549da84 4778 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4779 next_balance = sd->last_balance + interval;
f549da84
SS
4780 update_next_balance = 1;
4781 }
783609c6
SS
4782
4783 /*
4784 * Stop the load balance at this level. There is another
4785 * CPU in our sched group which is doing load balancing more
4786 * actively.
4787 */
4788 if (!balance)
4789 break;
1da177e4 4790 }
f549da84
SS
4791
4792 /*
4793 * next_balance will be updated only when there is a need.
4794 * When the cpu is attached to null domain for ex, it will not be
4795 * updated.
4796 */
4797 if (likely(update_next_balance))
4798 rq->next_balance = next_balance;
46cb4b7c
SS
4799}
4800
4801/*
4802 * run_rebalance_domains is triggered when needed from the scheduler tick.
4803 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4804 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4805 */
4806static void run_rebalance_domains(struct softirq_action *h)
4807{
dd41f596
IM
4808 int this_cpu = smp_processor_id();
4809 struct rq *this_rq = cpu_rq(this_cpu);
4810 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4811 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4812
dd41f596 4813 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4814
4815#ifdef CONFIG_NO_HZ
4816 /*
4817 * If this cpu is the owner for idle load balancing, then do the
4818 * balancing on behalf of the other idle cpus whose ticks are
4819 * stopped.
4820 */
dd41f596
IM
4821 if (this_rq->idle_at_tick &&
4822 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4823 struct rq *rq;
4824 int balance_cpu;
4825
7d1e6a9b
RR
4826 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4827 if (balance_cpu == this_cpu)
4828 continue;
4829
46cb4b7c
SS
4830 /*
4831 * If this cpu gets work to do, stop the load balancing
4832 * work being done for other cpus. Next load
4833 * balancing owner will pick it up.
4834 */
4835 if (need_resched())
4836 break;
4837
de0cf899 4838 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4839
4840 rq = cpu_rq(balance_cpu);
dd41f596
IM
4841 if (time_after(this_rq->next_balance, rq->next_balance))
4842 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4843 }
4844 }
4845#endif
4846}
4847
8a0be9ef
FW
4848static inline int on_null_domain(int cpu)
4849{
4850 return !rcu_dereference(cpu_rq(cpu)->sd);
4851}
4852
46cb4b7c
SS
4853/*
4854 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4855 *
4856 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4857 * idle load balancing owner or decide to stop the periodic load balancing,
4858 * if the whole system is idle.
4859 */
dd41f596 4860static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4861{
46cb4b7c
SS
4862#ifdef CONFIG_NO_HZ
4863 /*
4864 * If we were in the nohz mode recently and busy at the current
4865 * scheduler tick, then check if we need to nominate new idle
4866 * load balancer.
4867 */
4868 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4869 rq->in_nohz_recently = 0;
4870
4871 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4872 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4873 atomic_set(&nohz.load_balancer, -1);
4874 }
4875
4876 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4877 int ilb = find_new_ilb(cpu);
46cb4b7c 4878
434d53b0 4879 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4880 resched_cpu(ilb);
4881 }
4882 }
4883
4884 /*
4885 * If this cpu is idle and doing idle load balancing for all the
4886 * cpus with ticks stopped, is it time for that to stop?
4887 */
4888 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4889 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4890 resched_cpu(cpu);
4891 return;
4892 }
4893
4894 /*
4895 * If this cpu is idle and the idle load balancing is done by
4896 * someone else, then no need raise the SCHED_SOFTIRQ
4897 */
4898 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4899 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4900 return;
4901#endif
8a0be9ef
FW
4902 /* Don't need to rebalance while attached to NULL domain */
4903 if (time_after_eq(jiffies, rq->next_balance) &&
4904 likely(!on_null_domain(cpu)))
46cb4b7c 4905 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4906}
dd41f596
IM
4907
4908#else /* CONFIG_SMP */
4909
1da177e4
LT
4910/*
4911 * on UP we do not need to balance between CPUs:
4912 */
70b97a7f 4913static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4914{
4915}
dd41f596 4916
1da177e4
LT
4917#endif
4918
1da177e4
LT
4919DEFINE_PER_CPU(struct kernel_stat, kstat);
4920
4921EXPORT_PER_CPU_SYMBOL(kstat);
4922
4923/*
c5f8d995 4924 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4925 * @p in case that task is currently running.
c5f8d995
HS
4926 *
4927 * Called with task_rq_lock() held on @rq.
1da177e4 4928 */
c5f8d995
HS
4929static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4930{
4931 u64 ns = 0;
4932
4933 if (task_current(rq, p)) {
4934 update_rq_clock(rq);
4935 ns = rq->clock - p->se.exec_start;
4936 if ((s64)ns < 0)
4937 ns = 0;
4938 }
4939
4940 return ns;
4941}
4942
bb34d92f 4943unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4944{
1da177e4 4945 unsigned long flags;
41b86e9c 4946 struct rq *rq;
bb34d92f 4947 u64 ns = 0;
48f24c4d 4948
41b86e9c 4949 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4950 ns = do_task_delta_exec(p, rq);
4951 task_rq_unlock(rq, &flags);
1508487e 4952
c5f8d995
HS
4953 return ns;
4954}
f06febc9 4955
c5f8d995
HS
4956/*
4957 * Return accounted runtime for the task.
4958 * In case the task is currently running, return the runtime plus current's
4959 * pending runtime that have not been accounted yet.
4960 */
4961unsigned long long task_sched_runtime(struct task_struct *p)
4962{
4963 unsigned long flags;
4964 struct rq *rq;
4965 u64 ns = 0;
4966
4967 rq = task_rq_lock(p, &flags);
4968 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4969 task_rq_unlock(rq, &flags);
4970
4971 return ns;
4972}
48f24c4d 4973
c5f8d995
HS
4974/*
4975 * Return sum_exec_runtime for the thread group.
4976 * In case the task is currently running, return the sum plus current's
4977 * pending runtime that have not been accounted yet.
4978 *
4979 * Note that the thread group might have other running tasks as well,
4980 * so the return value not includes other pending runtime that other
4981 * running tasks might have.
4982 */
4983unsigned long long thread_group_sched_runtime(struct task_struct *p)
4984{
4985 struct task_cputime totals;
4986 unsigned long flags;
4987 struct rq *rq;
4988 u64 ns;
4989
4990 rq = task_rq_lock(p, &flags);
4991 thread_group_cputime(p, &totals);
4992 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4993 task_rq_unlock(rq, &flags);
48f24c4d 4994
1da177e4
LT
4995 return ns;
4996}
4997
1da177e4
LT
4998/*
4999 * Account user cpu time to a process.
5000 * @p: the process that the cpu time gets accounted to
1da177e4 5001 * @cputime: the cpu time spent in user space since the last update
457533a7 5002 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5003 */
457533a7
MS
5004void account_user_time(struct task_struct *p, cputime_t cputime,
5005 cputime_t cputime_scaled)
1da177e4
LT
5006{
5007 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5008 cputime64_t tmp;
5009
457533a7 5010 /* Add user time to process. */
1da177e4 5011 p->utime = cputime_add(p->utime, cputime);
457533a7 5012 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5013 account_group_user_time(p, cputime);
1da177e4
LT
5014
5015 /* Add user time to cpustat. */
5016 tmp = cputime_to_cputime64(cputime);
5017 if (TASK_NICE(p) > 0)
5018 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5019 else
5020 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5021
5022 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5023 /* Account for user time used */
5024 acct_update_integrals(p);
1da177e4
LT
5025}
5026
94886b84
LV
5027/*
5028 * Account guest cpu time to a process.
5029 * @p: the process that the cpu time gets accounted to
5030 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5031 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5032 */
457533a7
MS
5033static void account_guest_time(struct task_struct *p, cputime_t cputime,
5034 cputime_t cputime_scaled)
94886b84
LV
5035{
5036 cputime64_t tmp;
5037 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5038
5039 tmp = cputime_to_cputime64(cputime);
5040
457533a7 5041 /* Add guest time to process. */
94886b84 5042 p->utime = cputime_add(p->utime, cputime);
457533a7 5043 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5044 account_group_user_time(p, cputime);
94886b84
LV
5045 p->gtime = cputime_add(p->gtime, cputime);
5046
457533a7 5047 /* Add guest time to cpustat. */
ce0e7b28
RO
5048 if (TASK_NICE(p) > 0) {
5049 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5050 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5051 } else {
5052 cpustat->user = cputime64_add(cpustat->user, tmp);
5053 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5054 }
94886b84
LV
5055}
5056
1da177e4
LT
5057/*
5058 * Account system cpu time to a process.
5059 * @p: the process that the cpu time gets accounted to
5060 * @hardirq_offset: the offset to subtract from hardirq_count()
5061 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5062 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5063 */
5064void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5065 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5066{
5067 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5068 cputime64_t tmp;
5069
983ed7a6 5070 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5071 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5072 return;
5073 }
94886b84 5074
457533a7 5075 /* Add system time to process. */
1da177e4 5076 p->stime = cputime_add(p->stime, cputime);
457533a7 5077 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5078 account_group_system_time(p, cputime);
1da177e4
LT
5079
5080 /* Add system time to cpustat. */
5081 tmp = cputime_to_cputime64(cputime);
5082 if (hardirq_count() - hardirq_offset)
5083 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5084 else if (softirq_count())
5085 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5086 else
79741dd3
MS
5087 cpustat->system = cputime64_add(cpustat->system, tmp);
5088
ef12fefa
BR
5089 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5090
1da177e4
LT
5091 /* Account for system time used */
5092 acct_update_integrals(p);
1da177e4
LT
5093}
5094
c66f08be 5095/*
1da177e4 5096 * Account for involuntary wait time.
1da177e4 5097 * @steal: the cpu time spent in involuntary wait
c66f08be 5098 */
79741dd3 5099void account_steal_time(cputime_t cputime)
c66f08be 5100{
79741dd3
MS
5101 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5102 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5103
5104 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5105}
5106
1da177e4 5107/*
79741dd3
MS
5108 * Account for idle time.
5109 * @cputime: the cpu time spent in idle wait
1da177e4 5110 */
79741dd3 5111void account_idle_time(cputime_t cputime)
1da177e4
LT
5112{
5113 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5114 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5115 struct rq *rq = this_rq();
1da177e4 5116
79741dd3
MS
5117 if (atomic_read(&rq->nr_iowait) > 0)
5118 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5119 else
5120 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5121}
5122
79741dd3
MS
5123#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5124
5125/*
5126 * Account a single tick of cpu time.
5127 * @p: the process that the cpu time gets accounted to
5128 * @user_tick: indicates if the tick is a user or a system tick
5129 */
5130void account_process_tick(struct task_struct *p, int user_tick)
5131{
a42548a1 5132 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5133 struct rq *rq = this_rq();
5134
5135 if (user_tick)
a42548a1 5136 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5137 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5138 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5139 one_jiffy_scaled);
5140 else
a42548a1 5141 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5142}
5143
5144/*
5145 * Account multiple ticks of steal time.
5146 * @p: the process from which the cpu time has been stolen
5147 * @ticks: number of stolen ticks
5148 */
5149void account_steal_ticks(unsigned long ticks)
5150{
5151 account_steal_time(jiffies_to_cputime(ticks));
5152}
5153
5154/*
5155 * Account multiple ticks of idle time.
5156 * @ticks: number of stolen ticks
5157 */
5158void account_idle_ticks(unsigned long ticks)
5159{
5160 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5161}
5162
79741dd3
MS
5163#endif
5164
49048622
BS
5165/*
5166 * Use precise platform statistics if available:
5167 */
5168#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5169void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5170{
d99ca3b9
HS
5171 *ut = p->utime;
5172 *st = p->stime;
49048622
BS
5173}
5174
0cf55e1e 5175void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5176{
0cf55e1e
HS
5177 struct task_cputime cputime;
5178
5179 thread_group_cputime(p, &cputime);
5180
5181 *ut = cputime.utime;
5182 *st = cputime.stime;
49048622
BS
5183}
5184#else
761b1d26
HS
5185
5186#ifndef nsecs_to_cputime
b7b20df9 5187# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5188#endif
5189
d180c5bc 5190void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5191{
d99ca3b9 5192 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5193
5194 /*
5195 * Use CFS's precise accounting:
5196 */
d180c5bc 5197 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5198
5199 if (total) {
d180c5bc
HS
5200 u64 temp;
5201
5202 temp = (u64)(rtime * utime);
49048622 5203 do_div(temp, total);
d180c5bc
HS
5204 utime = (cputime_t)temp;
5205 } else
5206 utime = rtime;
49048622 5207
d180c5bc
HS
5208 /*
5209 * Compare with previous values, to keep monotonicity:
5210 */
761b1d26 5211 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5212 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5213
d99ca3b9
HS
5214 *ut = p->prev_utime;
5215 *st = p->prev_stime;
49048622
BS
5216}
5217
0cf55e1e
HS
5218/*
5219 * Must be called with siglock held.
5220 */
5221void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5222{
0cf55e1e
HS
5223 struct signal_struct *sig = p->signal;
5224 struct task_cputime cputime;
5225 cputime_t rtime, utime, total;
49048622 5226
0cf55e1e 5227 thread_group_cputime(p, &cputime);
49048622 5228
0cf55e1e
HS
5229 total = cputime_add(cputime.utime, cputime.stime);
5230 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5231
0cf55e1e
HS
5232 if (total) {
5233 u64 temp;
49048622 5234
0cf55e1e
HS
5235 temp = (u64)(rtime * cputime.utime);
5236 do_div(temp, total);
5237 utime = (cputime_t)temp;
5238 } else
5239 utime = rtime;
5240
5241 sig->prev_utime = max(sig->prev_utime, utime);
5242 sig->prev_stime = max(sig->prev_stime,
5243 cputime_sub(rtime, sig->prev_utime));
5244
5245 *ut = sig->prev_utime;
5246 *st = sig->prev_stime;
49048622 5247}
49048622 5248#endif
49048622 5249
7835b98b
CL
5250/*
5251 * This function gets called by the timer code, with HZ frequency.
5252 * We call it with interrupts disabled.
5253 *
5254 * It also gets called by the fork code, when changing the parent's
5255 * timeslices.
5256 */
5257void scheduler_tick(void)
5258{
7835b98b
CL
5259 int cpu = smp_processor_id();
5260 struct rq *rq = cpu_rq(cpu);
dd41f596 5261 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5262
5263 sched_clock_tick();
dd41f596 5264
05fa785c 5265 raw_spin_lock(&rq->lock);
3e51f33f 5266 update_rq_clock(rq);
f1a438d8 5267 update_cpu_load(rq);
fa85ae24 5268 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 5269 raw_spin_unlock(&rq->lock);
7835b98b 5270
cdd6c482 5271 perf_event_task_tick(curr, cpu);
e220d2dc 5272
e418e1c2 5273#ifdef CONFIG_SMP
dd41f596
IM
5274 rq->idle_at_tick = idle_cpu(cpu);
5275 trigger_load_balance(rq, cpu);
e418e1c2 5276#endif
1da177e4
LT
5277}
5278
132380a0 5279notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5280{
5281 if (in_lock_functions(addr)) {
5282 addr = CALLER_ADDR2;
5283 if (in_lock_functions(addr))
5284 addr = CALLER_ADDR3;
5285 }
5286 return addr;
5287}
1da177e4 5288
7e49fcce
SR
5289#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5290 defined(CONFIG_PREEMPT_TRACER))
5291
43627582 5292void __kprobes add_preempt_count(int val)
1da177e4 5293{
6cd8a4bb 5294#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5295 /*
5296 * Underflow?
5297 */
9a11b49a
IM
5298 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5299 return;
6cd8a4bb 5300#endif
1da177e4 5301 preempt_count() += val;
6cd8a4bb 5302#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5303 /*
5304 * Spinlock count overflowing soon?
5305 */
33859f7f
MOS
5306 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5307 PREEMPT_MASK - 10);
6cd8a4bb
SR
5308#endif
5309 if (preempt_count() == val)
5310 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5311}
5312EXPORT_SYMBOL(add_preempt_count);
5313
43627582 5314void __kprobes sub_preempt_count(int val)
1da177e4 5315{
6cd8a4bb 5316#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5317 /*
5318 * Underflow?
5319 */
01e3eb82 5320 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5321 return;
1da177e4
LT
5322 /*
5323 * Is the spinlock portion underflowing?
5324 */
9a11b49a
IM
5325 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5326 !(preempt_count() & PREEMPT_MASK)))
5327 return;
6cd8a4bb 5328#endif
9a11b49a 5329
6cd8a4bb
SR
5330 if (preempt_count() == val)
5331 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5332 preempt_count() -= val;
5333}
5334EXPORT_SYMBOL(sub_preempt_count);
5335
5336#endif
5337
5338/*
dd41f596 5339 * Print scheduling while atomic bug:
1da177e4 5340 */
dd41f596 5341static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5342{
838225b4
SS
5343 struct pt_regs *regs = get_irq_regs();
5344
663997d4
JP
5345 pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
5346 prev->comm, prev->pid, preempt_count());
838225b4 5347
dd41f596 5348 debug_show_held_locks(prev);
e21f5b15 5349 print_modules();
dd41f596
IM
5350 if (irqs_disabled())
5351 print_irqtrace_events(prev);
838225b4
SS
5352
5353 if (regs)
5354 show_regs(regs);
5355 else
5356 dump_stack();
dd41f596 5357}
1da177e4 5358
dd41f596
IM
5359/*
5360 * Various schedule()-time debugging checks and statistics:
5361 */
5362static inline void schedule_debug(struct task_struct *prev)
5363{
1da177e4 5364 /*
41a2d6cf 5365 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5366 * schedule() atomically, we ignore that path for now.
5367 * Otherwise, whine if we are scheduling when we should not be.
5368 */
3f33a7ce 5369 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5370 __schedule_bug(prev);
5371
1da177e4
LT
5372 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5373
2d72376b 5374 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5375#ifdef CONFIG_SCHEDSTATS
5376 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5377 schedstat_inc(this_rq(), bkl_count);
5378 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5379 }
5380#endif
dd41f596
IM
5381}
5382
6cecd084 5383static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5384{
6cecd084
PZ
5385 if (prev->state == TASK_RUNNING) {
5386 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5387
6cecd084
PZ
5388 runtime -= prev->se.prev_sum_exec_runtime;
5389 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5390
5391 /*
5392 * In order to avoid avg_overlap growing stale when we are
5393 * indeed overlapping and hence not getting put to sleep, grow
5394 * the avg_overlap on preemption.
5395 *
5396 * We use the average preemption runtime because that
5397 * correlates to the amount of cache footprint a task can
5398 * build up.
5399 */
6cecd084 5400 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5401 }
6cecd084 5402 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5403}
5404
dd41f596
IM
5405/*
5406 * Pick up the highest-prio task:
5407 */
5408static inline struct task_struct *
b67802ea 5409pick_next_task(struct rq *rq)
dd41f596 5410{
5522d5d5 5411 const struct sched_class *class;
dd41f596 5412 struct task_struct *p;
1da177e4
LT
5413
5414 /*
dd41f596
IM
5415 * Optimization: we know that if all tasks are in
5416 * the fair class we can call that function directly:
1da177e4 5417 */
dd41f596 5418 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5419 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5420 if (likely(p))
5421 return p;
1da177e4
LT
5422 }
5423
dd41f596
IM
5424 class = sched_class_highest;
5425 for ( ; ; ) {
fb8d4724 5426 p = class->pick_next_task(rq);
dd41f596
IM
5427 if (p)
5428 return p;
5429 /*
5430 * Will never be NULL as the idle class always
5431 * returns a non-NULL p:
5432 */
5433 class = class->next;
5434 }
5435}
1da177e4 5436
dd41f596
IM
5437/*
5438 * schedule() is the main scheduler function.
5439 */
ff743345 5440asmlinkage void __sched schedule(void)
dd41f596
IM
5441{
5442 struct task_struct *prev, *next;
67ca7bde 5443 unsigned long *switch_count;
dd41f596 5444 struct rq *rq;
31656519 5445 int cpu;
dd41f596 5446
ff743345
PZ
5447need_resched:
5448 preempt_disable();
dd41f596
IM
5449 cpu = smp_processor_id();
5450 rq = cpu_rq(cpu);
d6714c22 5451 rcu_sched_qs(cpu);
dd41f596
IM
5452 prev = rq->curr;
5453 switch_count = &prev->nivcsw;
5454
5455 release_kernel_lock(prev);
5456need_resched_nonpreemptible:
5457
5458 schedule_debug(prev);
1da177e4 5459
31656519 5460 if (sched_feat(HRTICK))
f333fdc9 5461 hrtick_clear(rq);
8f4d37ec 5462
05fa785c 5463 raw_spin_lock_irq(&rq->lock);
3e51f33f 5464 update_rq_clock(rq);
1e819950 5465 clear_tsk_need_resched(prev);
1da177e4 5466
1da177e4 5467 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5468 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5469 prev->state = TASK_RUNNING;
16882c1e 5470 else
2e1cb74a 5471 deactivate_task(rq, prev, 1);
dd41f596 5472 switch_count = &prev->nvcsw;
1da177e4
LT
5473 }
5474
3f029d3c 5475 pre_schedule(rq, prev);
f65eda4f 5476
dd41f596 5477 if (unlikely(!rq->nr_running))
1da177e4 5478 idle_balance(cpu, rq);
1da177e4 5479
df1c99d4 5480 put_prev_task(rq, prev);
b67802ea 5481 next = pick_next_task(rq);
1da177e4 5482
1da177e4 5483 if (likely(prev != next)) {
673a90a1 5484 sched_info_switch(prev, next);
cdd6c482 5485 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5486
1da177e4
LT
5487 rq->nr_switches++;
5488 rq->curr = next;
5489 ++*switch_count;
5490
dd41f596 5491 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5492 /*
5493 * the context switch might have flipped the stack from under
5494 * us, hence refresh the local variables.
5495 */
5496 cpu = smp_processor_id();
5497 rq = cpu_rq(cpu);
1da177e4 5498 } else
05fa785c 5499 raw_spin_unlock_irq(&rq->lock);
1da177e4 5500
3f029d3c 5501 post_schedule(rq);
1da177e4 5502
8f4d37ec 5503 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5504 goto need_resched_nonpreemptible;
8f4d37ec 5505
1da177e4 5506 preempt_enable_no_resched();
ff743345 5507 if (need_resched())
1da177e4
LT
5508 goto need_resched;
5509}
1da177e4
LT
5510EXPORT_SYMBOL(schedule);
5511
c08f7829 5512#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5513/*
5514 * Look out! "owner" is an entirely speculative pointer
5515 * access and not reliable.
5516 */
5517int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5518{
5519 unsigned int cpu;
5520 struct rq *rq;
5521
5522 if (!sched_feat(OWNER_SPIN))
5523 return 0;
5524
5525#ifdef CONFIG_DEBUG_PAGEALLOC
5526 /*
5527 * Need to access the cpu field knowing that
5528 * DEBUG_PAGEALLOC could have unmapped it if
5529 * the mutex owner just released it and exited.
5530 */
5531 if (probe_kernel_address(&owner->cpu, cpu))
5532 goto out;
5533#else
5534 cpu = owner->cpu;
5535#endif
5536
5537 /*
5538 * Even if the access succeeded (likely case),
5539 * the cpu field may no longer be valid.
5540 */
5541 if (cpu >= nr_cpumask_bits)
5542 goto out;
5543
5544 /*
5545 * We need to validate that we can do a
5546 * get_cpu() and that we have the percpu area.
5547 */
5548 if (!cpu_online(cpu))
5549 goto out;
5550
5551 rq = cpu_rq(cpu);
5552
5553 for (;;) {
5554 /*
5555 * Owner changed, break to re-assess state.
5556 */
5557 if (lock->owner != owner)
5558 break;
5559
5560 /*
5561 * Is that owner really running on that cpu?
5562 */
5563 if (task_thread_info(rq->curr) != owner || need_resched())
5564 return 0;
5565
5566 cpu_relax();
5567 }
5568out:
5569 return 1;
5570}
5571#endif
5572
1da177e4
LT
5573#ifdef CONFIG_PREEMPT
5574/*
2ed6e34f 5575 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5576 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5577 * occur there and call schedule directly.
5578 */
5579asmlinkage void __sched preempt_schedule(void)
5580{
5581 struct thread_info *ti = current_thread_info();
6478d880 5582
1da177e4
LT
5583 /*
5584 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5585 * we do not want to preempt the current task. Just return..
1da177e4 5586 */
beed33a8 5587 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5588 return;
5589
3a5c359a
AK
5590 do {
5591 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5592 schedule();
3a5c359a 5593 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5594
3a5c359a
AK
5595 /*
5596 * Check again in case we missed a preemption opportunity
5597 * between schedule and now.
5598 */
5599 barrier();
5ed0cec0 5600 } while (need_resched());
1da177e4 5601}
1da177e4
LT
5602EXPORT_SYMBOL(preempt_schedule);
5603
5604/*
2ed6e34f 5605 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5606 * off of irq context.
5607 * Note, that this is called and return with irqs disabled. This will
5608 * protect us against recursive calling from irq.
5609 */
5610asmlinkage void __sched preempt_schedule_irq(void)
5611{
5612 struct thread_info *ti = current_thread_info();
6478d880 5613
2ed6e34f 5614 /* Catch callers which need to be fixed */
1da177e4
LT
5615 BUG_ON(ti->preempt_count || !irqs_disabled());
5616
3a5c359a
AK
5617 do {
5618 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5619 local_irq_enable();
5620 schedule();
5621 local_irq_disable();
3a5c359a 5622 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5623
3a5c359a
AK
5624 /*
5625 * Check again in case we missed a preemption opportunity
5626 * between schedule and now.
5627 */
5628 barrier();
5ed0cec0 5629 } while (need_resched());
1da177e4
LT
5630}
5631
5632#endif /* CONFIG_PREEMPT */
5633
63859d4f 5634int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5635 void *key)
1da177e4 5636{
63859d4f 5637 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5638}
1da177e4
LT
5639EXPORT_SYMBOL(default_wake_function);
5640
5641/*
41a2d6cf
IM
5642 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5643 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5644 * number) then we wake all the non-exclusive tasks and one exclusive task.
5645 *
5646 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5647 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5648 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5649 */
78ddb08f 5650static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5651 int nr_exclusive, int wake_flags, void *key)
1da177e4 5652{
2e45874c 5653 wait_queue_t *curr, *next;
1da177e4 5654
2e45874c 5655 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5656 unsigned flags = curr->flags;
5657
63859d4f 5658 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5659 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5660 break;
5661 }
5662}
5663
5664/**
5665 * __wake_up - wake up threads blocked on a waitqueue.
5666 * @q: the waitqueue
5667 * @mode: which threads
5668 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5669 * @key: is directly passed to the wakeup function
50fa610a
DH
5670 *
5671 * It may be assumed that this function implies a write memory barrier before
5672 * changing the task state if and only if any tasks are woken up.
1da177e4 5673 */
7ad5b3a5 5674void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5675 int nr_exclusive, void *key)
1da177e4
LT
5676{
5677 unsigned long flags;
5678
5679 spin_lock_irqsave(&q->lock, flags);
5680 __wake_up_common(q, mode, nr_exclusive, 0, key);
5681 spin_unlock_irqrestore(&q->lock, flags);
5682}
1da177e4
LT
5683EXPORT_SYMBOL(__wake_up);
5684
5685/*
5686 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5687 */
7ad5b3a5 5688void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5689{
5690 __wake_up_common(q, mode, 1, 0, NULL);
5691}
5692
4ede816a
DL
5693void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5694{
5695 __wake_up_common(q, mode, 1, 0, key);
5696}
5697
1da177e4 5698/**
4ede816a 5699 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5700 * @q: the waitqueue
5701 * @mode: which threads
5702 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5703 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5704 *
5705 * The sync wakeup differs that the waker knows that it will schedule
5706 * away soon, so while the target thread will be woken up, it will not
5707 * be migrated to another CPU - ie. the two threads are 'synchronized'
5708 * with each other. This can prevent needless bouncing between CPUs.
5709 *
5710 * On UP it can prevent extra preemption.
50fa610a
DH
5711 *
5712 * It may be assumed that this function implies a write memory barrier before
5713 * changing the task state if and only if any tasks are woken up.
1da177e4 5714 */
4ede816a
DL
5715void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5716 int nr_exclusive, void *key)
1da177e4
LT
5717{
5718 unsigned long flags;
7d478721 5719 int wake_flags = WF_SYNC;
1da177e4
LT
5720
5721 if (unlikely(!q))
5722 return;
5723
5724 if (unlikely(!nr_exclusive))
7d478721 5725 wake_flags = 0;
1da177e4
LT
5726
5727 spin_lock_irqsave(&q->lock, flags);
7d478721 5728 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5729 spin_unlock_irqrestore(&q->lock, flags);
5730}
4ede816a
DL
5731EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5732
5733/*
5734 * __wake_up_sync - see __wake_up_sync_key()
5735 */
5736void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5737{
5738 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5739}
1da177e4
LT
5740EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5741
65eb3dc6
KD
5742/**
5743 * complete: - signals a single thread waiting on this completion
5744 * @x: holds the state of this particular completion
5745 *
5746 * This will wake up a single thread waiting on this completion. Threads will be
5747 * awakened in the same order in which they were queued.
5748 *
5749 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5750 *
5751 * It may be assumed that this function implies a write memory barrier before
5752 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5753 */
b15136e9 5754void complete(struct completion *x)
1da177e4
LT
5755{
5756 unsigned long flags;
5757
5758 spin_lock_irqsave(&x->wait.lock, flags);
5759 x->done++;
d9514f6c 5760 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5761 spin_unlock_irqrestore(&x->wait.lock, flags);
5762}
5763EXPORT_SYMBOL(complete);
5764
65eb3dc6
KD
5765/**
5766 * complete_all: - signals all threads waiting on this completion
5767 * @x: holds the state of this particular completion
5768 *
5769 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5770 *
5771 * It may be assumed that this function implies a write memory barrier before
5772 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5773 */
b15136e9 5774void complete_all(struct completion *x)
1da177e4
LT
5775{
5776 unsigned long flags;
5777
5778 spin_lock_irqsave(&x->wait.lock, flags);
5779 x->done += UINT_MAX/2;
d9514f6c 5780 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5781 spin_unlock_irqrestore(&x->wait.lock, flags);
5782}
5783EXPORT_SYMBOL(complete_all);
5784
8cbbe86d
AK
5785static inline long __sched
5786do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5787{
1da177e4
LT
5788 if (!x->done) {
5789 DECLARE_WAITQUEUE(wait, current);
5790
5791 wait.flags |= WQ_FLAG_EXCLUSIVE;
5792 __add_wait_queue_tail(&x->wait, &wait);
5793 do {
94d3d824 5794 if (signal_pending_state(state, current)) {
ea71a546
ON
5795 timeout = -ERESTARTSYS;
5796 break;
8cbbe86d
AK
5797 }
5798 __set_current_state(state);
1da177e4
LT
5799 spin_unlock_irq(&x->wait.lock);
5800 timeout = schedule_timeout(timeout);
5801 spin_lock_irq(&x->wait.lock);
ea71a546 5802 } while (!x->done && timeout);
1da177e4 5803 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5804 if (!x->done)
5805 return timeout;
1da177e4
LT
5806 }
5807 x->done--;
ea71a546 5808 return timeout ?: 1;
1da177e4 5809}
1da177e4 5810
8cbbe86d
AK
5811static long __sched
5812wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5813{
1da177e4
LT
5814 might_sleep();
5815
5816 spin_lock_irq(&x->wait.lock);
8cbbe86d 5817 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5818 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5819 return timeout;
5820}
1da177e4 5821
65eb3dc6
KD
5822/**
5823 * wait_for_completion: - waits for completion of a task
5824 * @x: holds the state of this particular completion
5825 *
5826 * This waits to be signaled for completion of a specific task. It is NOT
5827 * interruptible and there is no timeout.
5828 *
5829 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5830 * and interrupt capability. Also see complete().
5831 */
b15136e9 5832void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5833{
5834 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5835}
8cbbe86d 5836EXPORT_SYMBOL(wait_for_completion);
1da177e4 5837
65eb3dc6
KD
5838/**
5839 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5840 * @x: holds the state of this particular completion
5841 * @timeout: timeout value in jiffies
5842 *
5843 * This waits for either a completion of a specific task to be signaled or for a
5844 * specified timeout to expire. The timeout is in jiffies. It is not
5845 * interruptible.
5846 */
b15136e9 5847unsigned long __sched
8cbbe86d 5848wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5849{
8cbbe86d 5850 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5851}
8cbbe86d 5852EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5853
65eb3dc6
KD
5854/**
5855 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5856 * @x: holds the state of this particular completion
5857 *
5858 * This waits for completion of a specific task to be signaled. It is
5859 * interruptible.
5860 */
8cbbe86d 5861int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5862{
51e97990
AK
5863 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5864 if (t == -ERESTARTSYS)
5865 return t;
5866 return 0;
0fec171c 5867}
8cbbe86d 5868EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5869
65eb3dc6
KD
5870/**
5871 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5872 * @x: holds the state of this particular completion
5873 * @timeout: timeout value in jiffies
5874 *
5875 * This waits for either a completion of a specific task to be signaled or for a
5876 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5877 */
b15136e9 5878unsigned long __sched
8cbbe86d
AK
5879wait_for_completion_interruptible_timeout(struct completion *x,
5880 unsigned long timeout)
0fec171c 5881{
8cbbe86d 5882 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5883}
8cbbe86d 5884EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5885
65eb3dc6
KD
5886/**
5887 * wait_for_completion_killable: - waits for completion of a task (killable)
5888 * @x: holds the state of this particular completion
5889 *
5890 * This waits to be signaled for completion of a specific task. It can be
5891 * interrupted by a kill signal.
5892 */
009e577e
MW
5893int __sched wait_for_completion_killable(struct completion *x)
5894{
5895 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5896 if (t == -ERESTARTSYS)
5897 return t;
5898 return 0;
5899}
5900EXPORT_SYMBOL(wait_for_completion_killable);
5901
be4de352
DC
5902/**
5903 * try_wait_for_completion - try to decrement a completion without blocking
5904 * @x: completion structure
5905 *
5906 * Returns: 0 if a decrement cannot be done without blocking
5907 * 1 if a decrement succeeded.
5908 *
5909 * If a completion is being used as a counting completion,
5910 * attempt to decrement the counter without blocking. This
5911 * enables us to avoid waiting if the resource the completion
5912 * is protecting is not available.
5913 */
5914bool try_wait_for_completion(struct completion *x)
5915{
7539a3b3 5916 unsigned long flags;
be4de352
DC
5917 int ret = 1;
5918
7539a3b3 5919 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5920 if (!x->done)
5921 ret = 0;
5922 else
5923 x->done--;
7539a3b3 5924 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5925 return ret;
5926}
5927EXPORT_SYMBOL(try_wait_for_completion);
5928
5929/**
5930 * completion_done - Test to see if a completion has any waiters
5931 * @x: completion structure
5932 *
5933 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5934 * 1 if there are no waiters.
5935 *
5936 */
5937bool completion_done(struct completion *x)
5938{
7539a3b3 5939 unsigned long flags;
be4de352
DC
5940 int ret = 1;
5941
7539a3b3 5942 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5943 if (!x->done)
5944 ret = 0;
7539a3b3 5945 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5946 return ret;
5947}
5948EXPORT_SYMBOL(completion_done);
5949
8cbbe86d
AK
5950static long __sched
5951sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5952{
0fec171c
IM
5953 unsigned long flags;
5954 wait_queue_t wait;
5955
5956 init_waitqueue_entry(&wait, current);
1da177e4 5957
8cbbe86d 5958 __set_current_state(state);
1da177e4 5959
8cbbe86d
AK
5960 spin_lock_irqsave(&q->lock, flags);
5961 __add_wait_queue(q, &wait);
5962 spin_unlock(&q->lock);
5963 timeout = schedule_timeout(timeout);
5964 spin_lock_irq(&q->lock);
5965 __remove_wait_queue(q, &wait);
5966 spin_unlock_irqrestore(&q->lock, flags);
5967
5968 return timeout;
5969}
5970
5971void __sched interruptible_sleep_on(wait_queue_head_t *q)
5972{
5973 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5974}
1da177e4
LT
5975EXPORT_SYMBOL(interruptible_sleep_on);
5976
0fec171c 5977long __sched
95cdf3b7 5978interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5979{
8cbbe86d 5980 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5981}
1da177e4
LT
5982EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5983
0fec171c 5984void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5985{
8cbbe86d 5986 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5987}
1da177e4
LT
5988EXPORT_SYMBOL(sleep_on);
5989
0fec171c 5990long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5991{
8cbbe86d 5992 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5993}
1da177e4
LT
5994EXPORT_SYMBOL(sleep_on_timeout);
5995
b29739f9
IM
5996#ifdef CONFIG_RT_MUTEXES
5997
5998/*
5999 * rt_mutex_setprio - set the current priority of a task
6000 * @p: task
6001 * @prio: prio value (kernel-internal form)
6002 *
6003 * This function changes the 'effective' priority of a task. It does
6004 * not touch ->normal_prio like __setscheduler().
6005 *
6006 * Used by the rt_mutex code to implement priority inheritance logic.
6007 */
36c8b586 6008void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6009{
6010 unsigned long flags;
83b699ed 6011 int oldprio, on_rq, running;
70b97a7f 6012 struct rq *rq;
cb469845 6013 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6014
6015 BUG_ON(prio < 0 || prio > MAX_PRIO);
6016
6017 rq = task_rq_lock(p, &flags);
a8e504d2 6018 update_rq_clock(rq);
b29739f9 6019
d5f9f942 6020 oldprio = p->prio;
dd41f596 6021 on_rq = p->se.on_rq;
051a1d1a 6022 running = task_current(rq, p);
0e1f3483 6023 if (on_rq)
69be72c1 6024 dequeue_task(rq, p, 0);
0e1f3483
HS
6025 if (running)
6026 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6027
6028 if (rt_prio(prio))
6029 p->sched_class = &rt_sched_class;
6030 else
6031 p->sched_class = &fair_sched_class;
6032
b29739f9
IM
6033 p->prio = prio;
6034
0e1f3483
HS
6035 if (running)
6036 p->sched_class->set_curr_task(rq);
dd41f596 6037 if (on_rq) {
8159f87e 6038 enqueue_task(rq, p, 0);
cb469845
SR
6039
6040 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6041 }
6042 task_rq_unlock(rq, &flags);
6043}
6044
6045#endif
6046
36c8b586 6047void set_user_nice(struct task_struct *p, long nice)
1da177e4 6048{
dd41f596 6049 int old_prio, delta, on_rq;
1da177e4 6050 unsigned long flags;
70b97a7f 6051 struct rq *rq;
1da177e4
LT
6052
6053 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6054 return;
6055 /*
6056 * We have to be careful, if called from sys_setpriority(),
6057 * the task might be in the middle of scheduling on another CPU.
6058 */
6059 rq = task_rq_lock(p, &flags);
a8e504d2 6060 update_rq_clock(rq);
1da177e4
LT
6061 /*
6062 * The RT priorities are set via sched_setscheduler(), but we still
6063 * allow the 'normal' nice value to be set - but as expected
6064 * it wont have any effect on scheduling until the task is
dd41f596 6065 * SCHED_FIFO/SCHED_RR:
1da177e4 6066 */
e05606d3 6067 if (task_has_rt_policy(p)) {
1da177e4
LT
6068 p->static_prio = NICE_TO_PRIO(nice);
6069 goto out_unlock;
6070 }
dd41f596 6071 on_rq = p->se.on_rq;
c09595f6 6072 if (on_rq)
69be72c1 6073 dequeue_task(rq, p, 0);
1da177e4 6074
1da177e4 6075 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6076 set_load_weight(p);
b29739f9
IM
6077 old_prio = p->prio;
6078 p->prio = effective_prio(p);
6079 delta = p->prio - old_prio;
1da177e4 6080
dd41f596 6081 if (on_rq) {
8159f87e 6082 enqueue_task(rq, p, 0);
1da177e4 6083 /*
d5f9f942
AM
6084 * If the task increased its priority or is running and
6085 * lowered its priority, then reschedule its CPU:
1da177e4 6086 */
d5f9f942 6087 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6088 resched_task(rq->curr);
6089 }
6090out_unlock:
6091 task_rq_unlock(rq, &flags);
6092}
1da177e4
LT
6093EXPORT_SYMBOL(set_user_nice);
6094
e43379f1
MM
6095/*
6096 * can_nice - check if a task can reduce its nice value
6097 * @p: task
6098 * @nice: nice value
6099 */
36c8b586 6100int can_nice(const struct task_struct *p, const int nice)
e43379f1 6101{
024f4747
MM
6102 /* convert nice value [19,-20] to rlimit style value [1,40] */
6103 int nice_rlim = 20 - nice;
48f24c4d 6104
e43379f1
MM
6105 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6106 capable(CAP_SYS_NICE));
6107}
6108
1da177e4
LT
6109#ifdef __ARCH_WANT_SYS_NICE
6110
6111/*
6112 * sys_nice - change the priority of the current process.
6113 * @increment: priority increment
6114 *
6115 * sys_setpriority is a more generic, but much slower function that
6116 * does similar things.
6117 */
5add95d4 6118SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6119{
48f24c4d 6120 long nice, retval;
1da177e4
LT
6121
6122 /*
6123 * Setpriority might change our priority at the same moment.
6124 * We don't have to worry. Conceptually one call occurs first
6125 * and we have a single winner.
6126 */
e43379f1
MM
6127 if (increment < -40)
6128 increment = -40;
1da177e4
LT
6129 if (increment > 40)
6130 increment = 40;
6131
2b8f836f 6132 nice = TASK_NICE(current) + increment;
1da177e4
LT
6133 if (nice < -20)
6134 nice = -20;
6135 if (nice > 19)
6136 nice = 19;
6137
e43379f1
MM
6138 if (increment < 0 && !can_nice(current, nice))
6139 return -EPERM;
6140
1da177e4
LT
6141 retval = security_task_setnice(current, nice);
6142 if (retval)
6143 return retval;
6144
6145 set_user_nice(current, nice);
6146 return 0;
6147}
6148
6149#endif
6150
6151/**
6152 * task_prio - return the priority value of a given task.
6153 * @p: the task in question.
6154 *
6155 * This is the priority value as seen by users in /proc.
6156 * RT tasks are offset by -200. Normal tasks are centered
6157 * around 0, value goes from -16 to +15.
6158 */
36c8b586 6159int task_prio(const struct task_struct *p)
1da177e4
LT
6160{
6161 return p->prio - MAX_RT_PRIO;
6162}
6163
6164/**
6165 * task_nice - return the nice value of a given task.
6166 * @p: the task in question.
6167 */
36c8b586 6168int task_nice(const struct task_struct *p)
1da177e4
LT
6169{
6170 return TASK_NICE(p);
6171}
150d8bed 6172EXPORT_SYMBOL(task_nice);
1da177e4
LT
6173
6174/**
6175 * idle_cpu - is a given cpu idle currently?
6176 * @cpu: the processor in question.
6177 */
6178int idle_cpu(int cpu)
6179{
6180 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6181}
6182
1da177e4
LT
6183/**
6184 * idle_task - return the idle task for a given cpu.
6185 * @cpu: the processor in question.
6186 */
36c8b586 6187struct task_struct *idle_task(int cpu)
1da177e4
LT
6188{
6189 return cpu_rq(cpu)->idle;
6190}
6191
6192/**
6193 * find_process_by_pid - find a process with a matching PID value.
6194 * @pid: the pid in question.
6195 */
a9957449 6196static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6197{
228ebcbe 6198 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6199}
6200
6201/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6202static void
6203__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6204{
dd41f596 6205 BUG_ON(p->se.on_rq);
48f24c4d 6206
1da177e4
LT
6207 p->policy = policy;
6208 p->rt_priority = prio;
b29739f9
IM
6209 p->normal_prio = normal_prio(p);
6210 /* we are holding p->pi_lock already */
6211 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6212 if (rt_prio(p->prio))
6213 p->sched_class = &rt_sched_class;
6214 else
6215 p->sched_class = &fair_sched_class;
2dd73a4f 6216 set_load_weight(p);
1da177e4
LT
6217}
6218
c69e8d9c
DH
6219/*
6220 * check the target process has a UID that matches the current process's
6221 */
6222static bool check_same_owner(struct task_struct *p)
6223{
6224 const struct cred *cred = current_cred(), *pcred;
6225 bool match;
6226
6227 rcu_read_lock();
6228 pcred = __task_cred(p);
6229 match = (cred->euid == pcred->euid ||
6230 cred->euid == pcred->uid);
6231 rcu_read_unlock();
6232 return match;
6233}
6234
961ccddd
RR
6235static int __sched_setscheduler(struct task_struct *p, int policy,
6236 struct sched_param *param, bool user)
1da177e4 6237{
83b699ed 6238 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6239 unsigned long flags;
cb469845 6240 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6241 struct rq *rq;
ca94c442 6242 int reset_on_fork;
1da177e4 6243
66e5393a
SR
6244 /* may grab non-irq protected spin_locks */
6245 BUG_ON(in_interrupt());
1da177e4
LT
6246recheck:
6247 /* double check policy once rq lock held */
ca94c442
LP
6248 if (policy < 0) {
6249 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6250 policy = oldpolicy = p->policy;
ca94c442
LP
6251 } else {
6252 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6253 policy &= ~SCHED_RESET_ON_FORK;
6254
6255 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6256 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6257 policy != SCHED_IDLE)
6258 return -EINVAL;
6259 }
6260
1da177e4
LT
6261 /*
6262 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6263 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6264 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6265 */
6266 if (param->sched_priority < 0 ||
95cdf3b7 6267 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6268 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6269 return -EINVAL;
e05606d3 6270 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6271 return -EINVAL;
6272
37e4ab3f
OC
6273 /*
6274 * Allow unprivileged RT tasks to decrease priority:
6275 */
961ccddd 6276 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6277 if (rt_policy(policy)) {
8dc3e909 6278 unsigned long rlim_rtprio;
8dc3e909
ON
6279
6280 if (!lock_task_sighand(p, &flags))
6281 return -ESRCH;
6282 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6283 unlock_task_sighand(p, &flags);
6284
6285 /* can't set/change the rt policy */
6286 if (policy != p->policy && !rlim_rtprio)
6287 return -EPERM;
6288
6289 /* can't increase priority */
6290 if (param->sched_priority > p->rt_priority &&
6291 param->sched_priority > rlim_rtprio)
6292 return -EPERM;
6293 }
dd41f596
IM
6294 /*
6295 * Like positive nice levels, dont allow tasks to
6296 * move out of SCHED_IDLE either:
6297 */
6298 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6299 return -EPERM;
5fe1d75f 6300
37e4ab3f 6301 /* can't change other user's priorities */
c69e8d9c 6302 if (!check_same_owner(p))
37e4ab3f 6303 return -EPERM;
ca94c442
LP
6304
6305 /* Normal users shall not reset the sched_reset_on_fork flag */
6306 if (p->sched_reset_on_fork && !reset_on_fork)
6307 return -EPERM;
37e4ab3f 6308 }
1da177e4 6309
725aad24 6310 if (user) {
b68aa230 6311#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6312 /*
6313 * Do not allow realtime tasks into groups that have no runtime
6314 * assigned.
6315 */
9a7e0b18
PZ
6316 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6317 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6318 return -EPERM;
b68aa230
PZ
6319#endif
6320
725aad24
JF
6321 retval = security_task_setscheduler(p, policy, param);
6322 if (retval)
6323 return retval;
6324 }
6325
b29739f9
IM
6326 /*
6327 * make sure no PI-waiters arrive (or leave) while we are
6328 * changing the priority of the task:
6329 */
1d615482 6330 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6331 /*
6332 * To be able to change p->policy safely, the apropriate
6333 * runqueue lock must be held.
6334 */
b29739f9 6335 rq = __task_rq_lock(p);
1da177e4
LT
6336 /* recheck policy now with rq lock held */
6337 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6338 policy = oldpolicy = -1;
b29739f9 6339 __task_rq_unlock(rq);
1d615482 6340 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6341 goto recheck;
6342 }
2daa3577 6343 update_rq_clock(rq);
dd41f596 6344 on_rq = p->se.on_rq;
051a1d1a 6345 running = task_current(rq, p);
0e1f3483 6346 if (on_rq)
2e1cb74a 6347 deactivate_task(rq, p, 0);
0e1f3483
HS
6348 if (running)
6349 p->sched_class->put_prev_task(rq, p);
f6b53205 6350
ca94c442
LP
6351 p->sched_reset_on_fork = reset_on_fork;
6352
1da177e4 6353 oldprio = p->prio;
dd41f596 6354 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6355
0e1f3483
HS
6356 if (running)
6357 p->sched_class->set_curr_task(rq);
dd41f596
IM
6358 if (on_rq) {
6359 activate_task(rq, p, 0);
cb469845
SR
6360
6361 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6362 }
b29739f9 6363 __task_rq_unlock(rq);
1d615482 6364 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 6365
95e02ca9
TG
6366 rt_mutex_adjust_pi(p);
6367
1da177e4
LT
6368 return 0;
6369}
961ccddd
RR
6370
6371/**
6372 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6373 * @p: the task in question.
6374 * @policy: new policy.
6375 * @param: structure containing the new RT priority.
6376 *
6377 * NOTE that the task may be already dead.
6378 */
6379int sched_setscheduler(struct task_struct *p, int policy,
6380 struct sched_param *param)
6381{
6382 return __sched_setscheduler(p, policy, param, true);
6383}
1da177e4
LT
6384EXPORT_SYMBOL_GPL(sched_setscheduler);
6385
961ccddd
RR
6386/**
6387 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6388 * @p: the task in question.
6389 * @policy: new policy.
6390 * @param: structure containing the new RT priority.
6391 *
6392 * Just like sched_setscheduler, only don't bother checking if the
6393 * current context has permission. For example, this is needed in
6394 * stop_machine(): we create temporary high priority worker threads,
6395 * but our caller might not have that capability.
6396 */
6397int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6398 struct sched_param *param)
6399{
6400 return __sched_setscheduler(p, policy, param, false);
6401}
6402
95cdf3b7
IM
6403static int
6404do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6405{
1da177e4
LT
6406 struct sched_param lparam;
6407 struct task_struct *p;
36c8b586 6408 int retval;
1da177e4
LT
6409
6410 if (!param || pid < 0)
6411 return -EINVAL;
6412 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6413 return -EFAULT;
5fe1d75f
ON
6414
6415 rcu_read_lock();
6416 retval = -ESRCH;
1da177e4 6417 p = find_process_by_pid(pid);
5fe1d75f
ON
6418 if (p != NULL)
6419 retval = sched_setscheduler(p, policy, &lparam);
6420 rcu_read_unlock();
36c8b586 6421
1da177e4
LT
6422 return retval;
6423}
6424
6425/**
6426 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6427 * @pid: the pid in question.
6428 * @policy: new policy.
6429 * @param: structure containing the new RT priority.
6430 */
5add95d4
HC
6431SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6432 struct sched_param __user *, param)
1da177e4 6433{
c21761f1
JB
6434 /* negative values for policy are not valid */
6435 if (policy < 0)
6436 return -EINVAL;
6437
1da177e4
LT
6438 return do_sched_setscheduler(pid, policy, param);
6439}
6440
6441/**
6442 * sys_sched_setparam - set/change the RT priority of a thread
6443 * @pid: the pid in question.
6444 * @param: structure containing the new RT priority.
6445 */
5add95d4 6446SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6447{
6448 return do_sched_setscheduler(pid, -1, param);
6449}
6450
6451/**
6452 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6453 * @pid: the pid in question.
6454 */
5add95d4 6455SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6456{
36c8b586 6457 struct task_struct *p;
3a5c359a 6458 int retval;
1da177e4
LT
6459
6460 if (pid < 0)
3a5c359a 6461 return -EINVAL;
1da177e4
LT
6462
6463 retval = -ESRCH;
5fe85be0 6464 rcu_read_lock();
1da177e4
LT
6465 p = find_process_by_pid(pid);
6466 if (p) {
6467 retval = security_task_getscheduler(p);
6468 if (!retval)
ca94c442
LP
6469 retval = p->policy
6470 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6471 }
5fe85be0 6472 rcu_read_unlock();
1da177e4
LT
6473 return retval;
6474}
6475
6476/**
ca94c442 6477 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6478 * @pid: the pid in question.
6479 * @param: structure containing the RT priority.
6480 */
5add95d4 6481SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6482{
6483 struct sched_param lp;
36c8b586 6484 struct task_struct *p;
3a5c359a 6485 int retval;
1da177e4
LT
6486
6487 if (!param || pid < 0)
3a5c359a 6488 return -EINVAL;
1da177e4 6489
5fe85be0 6490 rcu_read_lock();
1da177e4
LT
6491 p = find_process_by_pid(pid);
6492 retval = -ESRCH;
6493 if (!p)
6494 goto out_unlock;
6495
6496 retval = security_task_getscheduler(p);
6497 if (retval)
6498 goto out_unlock;
6499
6500 lp.sched_priority = p->rt_priority;
5fe85be0 6501 rcu_read_unlock();
1da177e4
LT
6502
6503 /*
6504 * This one might sleep, we cannot do it with a spinlock held ...
6505 */
6506 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6507
1da177e4
LT
6508 return retval;
6509
6510out_unlock:
5fe85be0 6511 rcu_read_unlock();
1da177e4
LT
6512 return retval;
6513}
6514
96f874e2 6515long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6516{
5a16f3d3 6517 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6518 struct task_struct *p;
6519 int retval;
1da177e4 6520
95402b38 6521 get_online_cpus();
23f5d142 6522 rcu_read_lock();
1da177e4
LT
6523
6524 p = find_process_by_pid(pid);
6525 if (!p) {
23f5d142 6526 rcu_read_unlock();
95402b38 6527 put_online_cpus();
1da177e4
LT
6528 return -ESRCH;
6529 }
6530
23f5d142 6531 /* Prevent p going away */
1da177e4 6532 get_task_struct(p);
23f5d142 6533 rcu_read_unlock();
1da177e4 6534
5a16f3d3
RR
6535 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6536 retval = -ENOMEM;
6537 goto out_put_task;
6538 }
6539 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6540 retval = -ENOMEM;
6541 goto out_free_cpus_allowed;
6542 }
1da177e4 6543 retval = -EPERM;
c69e8d9c 6544 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6545 goto out_unlock;
6546
e7834f8f
DQ
6547 retval = security_task_setscheduler(p, 0, NULL);
6548 if (retval)
6549 goto out_unlock;
6550
5a16f3d3
RR
6551 cpuset_cpus_allowed(p, cpus_allowed);
6552 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6553 again:
5a16f3d3 6554 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6555
8707d8b8 6556 if (!retval) {
5a16f3d3
RR
6557 cpuset_cpus_allowed(p, cpus_allowed);
6558 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6559 /*
6560 * We must have raced with a concurrent cpuset
6561 * update. Just reset the cpus_allowed to the
6562 * cpuset's cpus_allowed
6563 */
5a16f3d3 6564 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6565 goto again;
6566 }
6567 }
1da177e4 6568out_unlock:
5a16f3d3
RR
6569 free_cpumask_var(new_mask);
6570out_free_cpus_allowed:
6571 free_cpumask_var(cpus_allowed);
6572out_put_task:
1da177e4 6573 put_task_struct(p);
95402b38 6574 put_online_cpus();
1da177e4
LT
6575 return retval;
6576}
6577
6578static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6579 struct cpumask *new_mask)
1da177e4 6580{
96f874e2
RR
6581 if (len < cpumask_size())
6582 cpumask_clear(new_mask);
6583 else if (len > cpumask_size())
6584 len = cpumask_size();
6585
1da177e4
LT
6586 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6587}
6588
6589/**
6590 * sys_sched_setaffinity - set the cpu affinity of a process
6591 * @pid: pid of the process
6592 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6593 * @user_mask_ptr: user-space pointer to the new cpu mask
6594 */
5add95d4
HC
6595SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6596 unsigned long __user *, user_mask_ptr)
1da177e4 6597{
5a16f3d3 6598 cpumask_var_t new_mask;
1da177e4
LT
6599 int retval;
6600
5a16f3d3
RR
6601 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6602 return -ENOMEM;
1da177e4 6603
5a16f3d3
RR
6604 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6605 if (retval == 0)
6606 retval = sched_setaffinity(pid, new_mask);
6607 free_cpumask_var(new_mask);
6608 return retval;
1da177e4
LT
6609}
6610
96f874e2 6611long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6612{
36c8b586 6613 struct task_struct *p;
31605683
TG
6614 unsigned long flags;
6615 struct rq *rq;
1da177e4 6616 int retval;
1da177e4 6617
95402b38 6618 get_online_cpus();
23f5d142 6619 rcu_read_lock();
1da177e4
LT
6620
6621 retval = -ESRCH;
6622 p = find_process_by_pid(pid);
6623 if (!p)
6624 goto out_unlock;
6625
e7834f8f
DQ
6626 retval = security_task_getscheduler(p);
6627 if (retval)
6628 goto out_unlock;
6629
31605683 6630 rq = task_rq_lock(p, &flags);
96f874e2 6631 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6632 task_rq_unlock(rq, &flags);
1da177e4
LT
6633
6634out_unlock:
23f5d142 6635 rcu_read_unlock();
95402b38 6636 put_online_cpus();
1da177e4 6637
9531b62f 6638 return retval;
1da177e4
LT
6639}
6640
6641/**
6642 * sys_sched_getaffinity - get the cpu affinity of a process
6643 * @pid: pid of the process
6644 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6645 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6646 */
5add95d4
HC
6647SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6648 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6649{
6650 int ret;
f17c8607 6651 cpumask_var_t mask;
1da177e4 6652
f17c8607 6653 if (len < cpumask_size())
1da177e4
LT
6654 return -EINVAL;
6655
f17c8607
RR
6656 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6657 return -ENOMEM;
1da177e4 6658
f17c8607
RR
6659 ret = sched_getaffinity(pid, mask);
6660 if (ret == 0) {
6661 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6662 ret = -EFAULT;
6663 else
6664 ret = cpumask_size();
6665 }
6666 free_cpumask_var(mask);
1da177e4 6667
f17c8607 6668 return ret;
1da177e4
LT
6669}
6670
6671/**
6672 * sys_sched_yield - yield the current processor to other threads.
6673 *
dd41f596
IM
6674 * This function yields the current CPU to other tasks. If there are no
6675 * other threads running on this CPU then this function will return.
1da177e4 6676 */
5add95d4 6677SYSCALL_DEFINE0(sched_yield)
1da177e4 6678{
70b97a7f 6679 struct rq *rq = this_rq_lock();
1da177e4 6680
2d72376b 6681 schedstat_inc(rq, yld_count);
4530d7ab 6682 current->sched_class->yield_task(rq);
1da177e4
LT
6683
6684 /*
6685 * Since we are going to call schedule() anyway, there's
6686 * no need to preempt or enable interrupts:
6687 */
6688 __release(rq->lock);
8a25d5de 6689 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 6690 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
6691 preempt_enable_no_resched();
6692
6693 schedule();
6694
6695 return 0;
6696}
6697
d86ee480
PZ
6698static inline int should_resched(void)
6699{
6700 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6701}
6702
e7b38404 6703static void __cond_resched(void)
1da177e4 6704{
e7aaaa69
FW
6705 add_preempt_count(PREEMPT_ACTIVE);
6706 schedule();
6707 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6708}
6709
02b67cc3 6710int __sched _cond_resched(void)
1da177e4 6711{
d86ee480 6712 if (should_resched()) {
1da177e4
LT
6713 __cond_resched();
6714 return 1;
6715 }
6716 return 0;
6717}
02b67cc3 6718EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6719
6720/*
613afbf8 6721 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6722 * call schedule, and on return reacquire the lock.
6723 *
41a2d6cf 6724 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6725 * operations here to prevent schedule() from being called twice (once via
6726 * spin_unlock(), once by hand).
6727 */
613afbf8 6728int __cond_resched_lock(spinlock_t *lock)
1da177e4 6729{
d86ee480 6730 int resched = should_resched();
6df3cecb
JK
6731 int ret = 0;
6732
f607c668
PZ
6733 lockdep_assert_held(lock);
6734
95c354fe 6735 if (spin_needbreak(lock) || resched) {
1da177e4 6736 spin_unlock(lock);
d86ee480 6737 if (resched)
95c354fe
NP
6738 __cond_resched();
6739 else
6740 cpu_relax();
6df3cecb 6741 ret = 1;
1da177e4 6742 spin_lock(lock);
1da177e4 6743 }
6df3cecb 6744 return ret;
1da177e4 6745}
613afbf8 6746EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6747
613afbf8 6748int __sched __cond_resched_softirq(void)
1da177e4
LT
6749{
6750 BUG_ON(!in_softirq());
6751
d86ee480 6752 if (should_resched()) {
98d82567 6753 local_bh_enable();
1da177e4
LT
6754 __cond_resched();
6755 local_bh_disable();
6756 return 1;
6757 }
6758 return 0;
6759}
613afbf8 6760EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6761
1da177e4
LT
6762/**
6763 * yield - yield the current processor to other threads.
6764 *
72fd4a35 6765 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6766 * thread runnable and calls sys_sched_yield().
6767 */
6768void __sched yield(void)
6769{
6770 set_current_state(TASK_RUNNING);
6771 sys_sched_yield();
6772}
1da177e4
LT
6773EXPORT_SYMBOL(yield);
6774
6775/*
41a2d6cf 6776 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6777 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6778 */
6779void __sched io_schedule(void)
6780{
54d35f29 6781 struct rq *rq = raw_rq();
1da177e4 6782
0ff92245 6783 delayacct_blkio_start();
1da177e4 6784 atomic_inc(&rq->nr_iowait);
8f0dfc34 6785 current->in_iowait = 1;
1da177e4 6786 schedule();
8f0dfc34 6787 current->in_iowait = 0;
1da177e4 6788 atomic_dec(&rq->nr_iowait);
0ff92245 6789 delayacct_blkio_end();
1da177e4 6790}
1da177e4
LT
6791EXPORT_SYMBOL(io_schedule);
6792
6793long __sched io_schedule_timeout(long timeout)
6794{
54d35f29 6795 struct rq *rq = raw_rq();
1da177e4
LT
6796 long ret;
6797
0ff92245 6798 delayacct_blkio_start();
1da177e4 6799 atomic_inc(&rq->nr_iowait);
8f0dfc34 6800 current->in_iowait = 1;
1da177e4 6801 ret = schedule_timeout(timeout);
8f0dfc34 6802 current->in_iowait = 0;
1da177e4 6803 atomic_dec(&rq->nr_iowait);
0ff92245 6804 delayacct_blkio_end();
1da177e4
LT
6805 return ret;
6806}
6807
6808/**
6809 * sys_sched_get_priority_max - return maximum RT priority.
6810 * @policy: scheduling class.
6811 *
6812 * this syscall returns the maximum rt_priority that can be used
6813 * by a given scheduling class.
6814 */
5add95d4 6815SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6816{
6817 int ret = -EINVAL;
6818
6819 switch (policy) {
6820 case SCHED_FIFO:
6821 case SCHED_RR:
6822 ret = MAX_USER_RT_PRIO-1;
6823 break;
6824 case SCHED_NORMAL:
b0a9499c 6825 case SCHED_BATCH:
dd41f596 6826 case SCHED_IDLE:
1da177e4
LT
6827 ret = 0;
6828 break;
6829 }
6830 return ret;
6831}
6832
6833/**
6834 * sys_sched_get_priority_min - return minimum RT priority.
6835 * @policy: scheduling class.
6836 *
6837 * this syscall returns the minimum rt_priority that can be used
6838 * by a given scheduling class.
6839 */
5add95d4 6840SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6841{
6842 int ret = -EINVAL;
6843
6844 switch (policy) {
6845 case SCHED_FIFO:
6846 case SCHED_RR:
6847 ret = 1;
6848 break;
6849 case SCHED_NORMAL:
b0a9499c 6850 case SCHED_BATCH:
dd41f596 6851 case SCHED_IDLE:
1da177e4
LT
6852 ret = 0;
6853 }
6854 return ret;
6855}
6856
6857/**
6858 * sys_sched_rr_get_interval - return the default timeslice of a process.
6859 * @pid: pid of the process.
6860 * @interval: userspace pointer to the timeslice value.
6861 *
6862 * this syscall writes the default timeslice value of a given process
6863 * into the user-space timespec buffer. A value of '0' means infinity.
6864 */
17da2bd9 6865SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6866 struct timespec __user *, interval)
1da177e4 6867{
36c8b586 6868 struct task_struct *p;
a4ec24b4 6869 unsigned int time_slice;
dba091b9
TG
6870 unsigned long flags;
6871 struct rq *rq;
3a5c359a 6872 int retval;
1da177e4 6873 struct timespec t;
1da177e4
LT
6874
6875 if (pid < 0)
3a5c359a 6876 return -EINVAL;
1da177e4
LT
6877
6878 retval = -ESRCH;
1a551ae7 6879 rcu_read_lock();
1da177e4
LT
6880 p = find_process_by_pid(pid);
6881 if (!p)
6882 goto out_unlock;
6883
6884 retval = security_task_getscheduler(p);
6885 if (retval)
6886 goto out_unlock;
6887
dba091b9
TG
6888 rq = task_rq_lock(p, &flags);
6889 time_slice = p->sched_class->get_rr_interval(rq, p);
6890 task_rq_unlock(rq, &flags);
a4ec24b4 6891
1a551ae7 6892 rcu_read_unlock();
a4ec24b4 6893 jiffies_to_timespec(time_slice, &t);
1da177e4 6894 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6895 return retval;
3a5c359a 6896
1da177e4 6897out_unlock:
1a551ae7 6898 rcu_read_unlock();
1da177e4
LT
6899 return retval;
6900}
6901
7c731e0a 6902static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6903
82a1fcb9 6904void sched_show_task(struct task_struct *p)
1da177e4 6905{
1da177e4 6906 unsigned long free = 0;
36c8b586 6907 unsigned state;
1da177e4 6908
1da177e4 6909 state = p->state ? __ffs(p->state) + 1 : 0;
663997d4 6910 pr_info("%-13.13s %c", p->comm,
2ed6e34f 6911 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6912#if BITS_PER_LONG == 32
1da177e4 6913 if (state == TASK_RUNNING)
663997d4 6914 pr_cont(" running ");
1da177e4 6915 else
663997d4 6916 pr_cont(" %08lx ", thread_saved_pc(p));
1da177e4
LT
6917#else
6918 if (state == TASK_RUNNING)
663997d4 6919 pr_cont(" running task ");
1da177e4 6920 else
663997d4 6921 pr_cont(" %016lx ", thread_saved_pc(p));
1da177e4
LT
6922#endif
6923#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6924 free = stack_not_used(p);
1da177e4 6925#endif
663997d4 6926 pr_cont("%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
6927 task_pid_nr(p), task_pid_nr(p->real_parent),
6928 (unsigned long)task_thread_info(p)->flags);
1da177e4 6929
5fb5e6de 6930 show_stack(p, NULL);
1da177e4
LT
6931}
6932
e59e2ae2 6933void show_state_filter(unsigned long state_filter)
1da177e4 6934{
36c8b586 6935 struct task_struct *g, *p;
1da177e4 6936
4bd77321 6937#if BITS_PER_LONG == 32
663997d4 6938 pr_info(" task PC stack pid father\n");
1da177e4 6939#else
663997d4 6940 pr_info(" task PC stack pid father\n");
1da177e4
LT
6941#endif
6942 read_lock(&tasklist_lock);
6943 do_each_thread(g, p) {
6944 /*
6945 * reset the NMI-timeout, listing all files on a slow
6946 * console might take alot of time:
6947 */
6948 touch_nmi_watchdog();
39bc89fd 6949 if (!state_filter || (p->state & state_filter))
82a1fcb9 6950 sched_show_task(p);
1da177e4
LT
6951 } while_each_thread(g, p);
6952
04c9167f
JF
6953 touch_all_softlockup_watchdogs();
6954
dd41f596
IM
6955#ifdef CONFIG_SCHED_DEBUG
6956 sysrq_sched_debug_show();
6957#endif
1da177e4 6958 read_unlock(&tasklist_lock);
e59e2ae2
IM
6959 /*
6960 * Only show locks if all tasks are dumped:
6961 */
93335a21 6962 if (!state_filter)
e59e2ae2 6963 debug_show_all_locks();
1da177e4
LT
6964}
6965
1df21055
IM
6966void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6967{
dd41f596 6968 idle->sched_class = &idle_sched_class;
1df21055
IM
6969}
6970
f340c0d1
IM
6971/**
6972 * init_idle - set up an idle thread for a given CPU
6973 * @idle: task in question
6974 * @cpu: cpu the idle task belongs to
6975 *
6976 * NOTE: this function does not set the idle thread's NEED_RESCHED
6977 * flag, to make booting more robust.
6978 */
5c1e1767 6979void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6980{
70b97a7f 6981 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6982 unsigned long flags;
6983
05fa785c 6984 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 6985
dd41f596
IM
6986 __sched_fork(idle);
6987 idle->se.exec_start = sched_clock();
6988
96f874e2 6989 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6990 __set_task_cpu(idle, cpu);
1da177e4 6991
1da177e4 6992 rq->curr = rq->idle = idle;
4866cde0
NP
6993#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6994 idle->oncpu = 1;
6995#endif
05fa785c 6996 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
6997
6998 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6999#if defined(CONFIG_PREEMPT)
7000 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7001#else
a1261f54 7002 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7003#endif
dd41f596
IM
7004 /*
7005 * The idle tasks have their own, simple scheduling class:
7006 */
7007 idle->sched_class = &idle_sched_class;
fb52607a 7008 ftrace_graph_init_task(idle);
1da177e4
LT
7009}
7010
7011/*
7012 * In a system that switches off the HZ timer nohz_cpu_mask
7013 * indicates which cpus entered this state. This is used
7014 * in the rcu update to wait only for active cpus. For system
7015 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7016 * always be CPU_BITS_NONE.
1da177e4 7017 */
6a7b3dc3 7018cpumask_var_t nohz_cpu_mask;
1da177e4 7019
19978ca6
IM
7020/*
7021 * Increase the granularity value when there are more CPUs,
7022 * because with more CPUs the 'effective latency' as visible
7023 * to users decreases. But the relationship is not linear,
7024 * so pick a second-best guess by going with the log2 of the
7025 * number of CPUs.
7026 *
7027 * This idea comes from the SD scheduler of Con Kolivas:
7028 */
acb4a848 7029static int get_update_sysctl_factor(void)
19978ca6 7030{
4ca3ef71 7031 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
7032 unsigned int factor;
7033
7034 switch (sysctl_sched_tunable_scaling) {
7035 case SCHED_TUNABLESCALING_NONE:
7036 factor = 1;
7037 break;
7038 case SCHED_TUNABLESCALING_LINEAR:
7039 factor = cpus;
7040 break;
7041 case SCHED_TUNABLESCALING_LOG:
7042 default:
7043 factor = 1 + ilog2(cpus);
7044 break;
7045 }
19978ca6 7046
acb4a848
CE
7047 return factor;
7048}
19978ca6 7049
acb4a848
CE
7050static void update_sysctl(void)
7051{
7052 unsigned int factor = get_update_sysctl_factor();
19978ca6 7053
0bcdcf28
CE
7054#define SET_SYSCTL(name) \
7055 (sysctl_##name = (factor) * normalized_sysctl_##name)
7056 SET_SYSCTL(sched_min_granularity);
7057 SET_SYSCTL(sched_latency);
7058 SET_SYSCTL(sched_wakeup_granularity);
7059 SET_SYSCTL(sched_shares_ratelimit);
7060#undef SET_SYSCTL
7061}
55cd5340 7062
0bcdcf28
CE
7063static inline void sched_init_granularity(void)
7064{
7065 update_sysctl();
19978ca6
IM
7066}
7067
1da177e4
LT
7068#ifdef CONFIG_SMP
7069/*
7070 * This is how migration works:
7071 *
70b97a7f 7072 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7073 * runqueue and wake up that CPU's migration thread.
7074 * 2) we down() the locked semaphore => thread blocks.
7075 * 3) migration thread wakes up (implicitly it forces the migrated
7076 * thread off the CPU)
7077 * 4) it gets the migration request and checks whether the migrated
7078 * task is still in the wrong runqueue.
7079 * 5) if it's in the wrong runqueue then the migration thread removes
7080 * it and puts it into the right queue.
7081 * 6) migration thread up()s the semaphore.
7082 * 7) we wake up and the migration is done.
7083 */
7084
7085/*
7086 * Change a given task's CPU affinity. Migrate the thread to a
7087 * proper CPU and schedule it away if the CPU it's executing on
7088 * is removed from the allowed bitmask.
7089 *
7090 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7091 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7092 * call is not atomic; no spinlocks may be held.
7093 */
96f874e2 7094int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7095{
70b97a7f 7096 struct migration_req req;
1da177e4 7097 unsigned long flags;
70b97a7f 7098 struct rq *rq;
48f24c4d 7099 int ret = 0;
1da177e4
LT
7100
7101 rq = task_rq_lock(p, &flags);
6ad4c188 7102 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7103 ret = -EINVAL;
7104 goto out;
7105 }
7106
9985b0ba 7107 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7108 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7109 ret = -EINVAL;
7110 goto out;
7111 }
7112
73fe6aae 7113 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7114 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7115 else {
96f874e2
RR
7116 cpumask_copy(&p->cpus_allowed, new_mask);
7117 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7118 }
7119
1da177e4 7120 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7121 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7122 goto out;
7123
6ad4c188 7124 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7125 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7126 struct task_struct *mt = rq->migration_thread;
7127
7128 get_task_struct(mt);
1da177e4
LT
7129 task_rq_unlock(rq, &flags);
7130 wake_up_process(rq->migration_thread);
693525e3 7131 put_task_struct(mt);
1da177e4
LT
7132 wait_for_completion(&req.done);
7133 tlb_migrate_finish(p->mm);
7134 return 0;
7135 }
7136out:
7137 task_rq_unlock(rq, &flags);
48f24c4d 7138
1da177e4
LT
7139 return ret;
7140}
cd8ba7cd 7141EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7142
7143/*
41a2d6cf 7144 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7145 * this because either it can't run here any more (set_cpus_allowed()
7146 * away from this CPU, or CPU going down), or because we're
7147 * attempting to rebalance this task on exec (sched_exec).
7148 *
7149 * So we race with normal scheduler movements, but that's OK, as long
7150 * as the task is no longer on this CPU.
efc30814
KK
7151 *
7152 * Returns non-zero if task was successfully migrated.
1da177e4 7153 */
efc30814 7154static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7155{
70b97a7f 7156 struct rq *rq_dest, *rq_src;
dd41f596 7157 int ret = 0, on_rq;
1da177e4 7158
e761b772 7159 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7160 return ret;
1da177e4
LT
7161
7162 rq_src = cpu_rq(src_cpu);
7163 rq_dest = cpu_rq(dest_cpu);
7164
7165 double_rq_lock(rq_src, rq_dest);
7166 /* Already moved. */
7167 if (task_cpu(p) != src_cpu)
b1e38734 7168 goto done;
1da177e4 7169 /* Affinity changed (again). */
96f874e2 7170 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7171 goto fail;
1da177e4 7172
dd41f596 7173 on_rq = p->se.on_rq;
6e82a3be 7174 if (on_rq)
2e1cb74a 7175 deactivate_task(rq_src, p, 0);
6e82a3be 7176
1da177e4 7177 set_task_cpu(p, dest_cpu);
dd41f596
IM
7178 if (on_rq) {
7179 activate_task(rq_dest, p, 0);
15afe09b 7180 check_preempt_curr(rq_dest, p, 0);
1da177e4 7181 }
b1e38734 7182done:
efc30814 7183 ret = 1;
b1e38734 7184fail:
1da177e4 7185 double_rq_unlock(rq_src, rq_dest);
efc30814 7186 return ret;
1da177e4
LT
7187}
7188
03b042bf
PM
7189#define RCU_MIGRATION_IDLE 0
7190#define RCU_MIGRATION_NEED_QS 1
7191#define RCU_MIGRATION_GOT_QS 2
7192#define RCU_MIGRATION_MUST_SYNC 3
7193
1da177e4
LT
7194/*
7195 * migration_thread - this is a highprio system thread that performs
7196 * thread migration by bumping thread off CPU then 'pushing' onto
7197 * another runqueue.
7198 */
95cdf3b7 7199static int migration_thread(void *data)
1da177e4 7200{
03b042bf 7201 int badcpu;
1da177e4 7202 int cpu = (long)data;
70b97a7f 7203 struct rq *rq;
1da177e4
LT
7204
7205 rq = cpu_rq(cpu);
7206 BUG_ON(rq->migration_thread != current);
7207
7208 set_current_state(TASK_INTERRUPTIBLE);
7209 while (!kthread_should_stop()) {
70b97a7f 7210 struct migration_req *req;
1da177e4 7211 struct list_head *head;
1da177e4 7212
05fa785c 7213 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
7214
7215 if (cpu_is_offline(cpu)) {
05fa785c 7216 raw_spin_unlock_irq(&rq->lock);
371cbb38 7217 break;
1da177e4
LT
7218 }
7219
7220 if (rq->active_balance) {
7221 active_load_balance(rq, cpu);
7222 rq->active_balance = 0;
7223 }
7224
7225 head = &rq->migration_queue;
7226
7227 if (list_empty(head)) {
05fa785c 7228 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
7229 schedule();
7230 set_current_state(TASK_INTERRUPTIBLE);
7231 continue;
7232 }
70b97a7f 7233 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7234 list_del_init(head->next);
7235
03b042bf 7236 if (req->task != NULL) {
05fa785c 7237 raw_spin_unlock(&rq->lock);
03b042bf
PM
7238 __migrate_task(req->task, cpu, req->dest_cpu);
7239 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7240 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 7241 raw_spin_unlock(&rq->lock);
03b042bf
PM
7242 } else {
7243 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 7244 raw_spin_unlock(&rq->lock);
03b042bf
PM
7245 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7246 }
674311d5 7247 local_irq_enable();
1da177e4
LT
7248
7249 complete(&req->done);
7250 }
7251 __set_current_state(TASK_RUNNING);
1da177e4 7252
1da177e4
LT
7253 return 0;
7254}
7255
7256#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7257
7258static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7259{
7260 int ret;
7261
7262 local_irq_disable();
7263 ret = __migrate_task(p, src_cpu, dest_cpu);
7264 local_irq_enable();
7265 return ret;
7266}
7267
054b9108 7268/*
3a4fa0a2 7269 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7270 */
48f24c4d 7271static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7272{
70b97a7f 7273 int dest_cpu;
6ca09dfc 7274 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7275
7276again:
7277 /* Look for allowed, online CPU in same node. */
6ad4c188 7278 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
e76bd8d9
RR
7279 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7280 goto move;
7281
7282 /* Any allowed, online CPU? */
6ad4c188 7283 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
e76bd8d9
RR
7284 if (dest_cpu < nr_cpu_ids)
7285 goto move;
7286
7287 /* No more Mr. Nice Guy. */
7288 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9 7289 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6ad4c188 7290 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
1da177e4 7291
e76bd8d9
RR
7292 /*
7293 * Don't tell them about moving exiting tasks or
7294 * kernel threads (both mm NULL), since they never
7295 * leave kernel.
7296 */
7297 if (p->mm && printk_ratelimit()) {
663997d4
JP
7298 pr_info("process %d (%s) no longer affine to cpu%d\n",
7299 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7300 }
e76bd8d9
RR
7301 }
7302
7303move:
7304 /* It can have affinity changed while we were choosing. */
7305 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7306 goto again;
1da177e4
LT
7307}
7308
7309/*
7310 * While a dead CPU has no uninterruptible tasks queued at this point,
7311 * it might still have a nonzero ->nr_uninterruptible counter, because
7312 * for performance reasons the counter is not stricly tracking tasks to
7313 * their home CPUs. So we just add the counter to another CPU's counter,
7314 * to keep the global sum constant after CPU-down:
7315 */
70b97a7f 7316static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7317{
6ad4c188 7318 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7319 unsigned long flags;
7320
7321 local_irq_save(flags);
7322 double_rq_lock(rq_src, rq_dest);
7323 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7324 rq_src->nr_uninterruptible = 0;
7325 double_rq_unlock(rq_src, rq_dest);
7326 local_irq_restore(flags);
7327}
7328
7329/* Run through task list and migrate tasks from the dead cpu. */
7330static void migrate_live_tasks(int src_cpu)
7331{
48f24c4d 7332 struct task_struct *p, *t;
1da177e4 7333
f7b4cddc 7334 read_lock(&tasklist_lock);
1da177e4 7335
48f24c4d
IM
7336 do_each_thread(t, p) {
7337 if (p == current)
1da177e4
LT
7338 continue;
7339
48f24c4d
IM
7340 if (task_cpu(p) == src_cpu)
7341 move_task_off_dead_cpu(src_cpu, p);
7342 } while_each_thread(t, p);
1da177e4 7343
f7b4cddc 7344 read_unlock(&tasklist_lock);
1da177e4
LT
7345}
7346
dd41f596
IM
7347/*
7348 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7349 * It does so by boosting its priority to highest possible.
7350 * Used by CPU offline code.
1da177e4
LT
7351 */
7352void sched_idle_next(void)
7353{
48f24c4d 7354 int this_cpu = smp_processor_id();
70b97a7f 7355 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7356 struct task_struct *p = rq->idle;
7357 unsigned long flags;
7358
7359 /* cpu has to be offline */
48f24c4d 7360 BUG_ON(cpu_online(this_cpu));
1da177e4 7361
48f24c4d
IM
7362 /*
7363 * Strictly not necessary since rest of the CPUs are stopped by now
7364 * and interrupts disabled on the current cpu.
1da177e4 7365 */
05fa785c 7366 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 7367
dd41f596 7368 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7369
94bc9a7b
DA
7370 update_rq_clock(rq);
7371 activate_task(rq, p, 0);
1da177e4 7372
05fa785c 7373 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7374}
7375
48f24c4d
IM
7376/*
7377 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7378 * offline.
7379 */
7380void idle_task_exit(void)
7381{
7382 struct mm_struct *mm = current->active_mm;
7383
7384 BUG_ON(cpu_online(smp_processor_id()));
7385
7386 if (mm != &init_mm)
7387 switch_mm(mm, &init_mm, current);
7388 mmdrop(mm);
7389}
7390
054b9108 7391/* called under rq->lock with disabled interrupts */
36c8b586 7392static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7393{
70b97a7f 7394 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7395
7396 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7397 BUG_ON(!p->exit_state);
1da177e4
LT
7398
7399 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7400 BUG_ON(p->state == TASK_DEAD);
1da177e4 7401
48f24c4d 7402 get_task_struct(p);
1da177e4
LT
7403
7404 /*
7405 * Drop lock around migration; if someone else moves it,
41a2d6cf 7406 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7407 * fine.
7408 */
05fa785c 7409 raw_spin_unlock_irq(&rq->lock);
48f24c4d 7410 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 7411 raw_spin_lock_irq(&rq->lock);
1da177e4 7412
48f24c4d 7413 put_task_struct(p);
1da177e4
LT
7414}
7415
7416/* release_task() removes task from tasklist, so we won't find dead tasks. */
7417static void migrate_dead_tasks(unsigned int dead_cpu)
7418{
70b97a7f 7419 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7420 struct task_struct *next;
48f24c4d 7421
dd41f596
IM
7422 for ( ; ; ) {
7423 if (!rq->nr_running)
7424 break;
a8e504d2 7425 update_rq_clock(rq);
b67802ea 7426 next = pick_next_task(rq);
dd41f596
IM
7427 if (!next)
7428 break;
79c53799 7429 next->sched_class->put_prev_task(rq, next);
dd41f596 7430 migrate_dead(dead_cpu, next);
e692ab53 7431
1da177e4
LT
7432 }
7433}
dce48a84
TG
7434
7435/*
7436 * remove the tasks which were accounted by rq from calc_load_tasks.
7437 */
7438static void calc_global_load_remove(struct rq *rq)
7439{
7440 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7441 rq->calc_load_active = 0;
dce48a84 7442}
1da177e4
LT
7443#endif /* CONFIG_HOTPLUG_CPU */
7444
e692ab53
NP
7445#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7446
7447static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7448 {
7449 .procname = "sched_domain",
c57baf1e 7450 .mode = 0555,
e0361851 7451 },
56992309 7452 {}
e692ab53
NP
7453};
7454
7455static struct ctl_table sd_ctl_root[] = {
e0361851
AD
7456 {
7457 .procname = "kernel",
c57baf1e 7458 .mode = 0555,
e0361851
AD
7459 .child = sd_ctl_dir,
7460 },
56992309 7461 {}
e692ab53
NP
7462};
7463
7464static struct ctl_table *sd_alloc_ctl_entry(int n)
7465{
7466 struct ctl_table *entry =
5cf9f062 7467 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7468
e692ab53
NP
7469 return entry;
7470}
7471
6382bc90
MM
7472static void sd_free_ctl_entry(struct ctl_table **tablep)
7473{
cd790076 7474 struct ctl_table *entry;
6382bc90 7475
cd790076
MM
7476 /*
7477 * In the intermediate directories, both the child directory and
7478 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7479 * will always be set. In the lowest directory the names are
cd790076
MM
7480 * static strings and all have proc handlers.
7481 */
7482 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7483 if (entry->child)
7484 sd_free_ctl_entry(&entry->child);
cd790076
MM
7485 if (entry->proc_handler == NULL)
7486 kfree(entry->procname);
7487 }
6382bc90
MM
7488
7489 kfree(*tablep);
7490 *tablep = NULL;
7491}
7492
e692ab53 7493static void
e0361851 7494set_table_entry(struct ctl_table *entry,
e692ab53
NP
7495 const char *procname, void *data, int maxlen,
7496 mode_t mode, proc_handler *proc_handler)
7497{
e692ab53
NP
7498 entry->procname = procname;
7499 entry->data = data;
7500 entry->maxlen = maxlen;
7501 entry->mode = mode;
7502 entry->proc_handler = proc_handler;
7503}
7504
7505static struct ctl_table *
7506sd_alloc_ctl_domain_table(struct sched_domain *sd)
7507{
a5d8c348 7508 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7509
ad1cdc1d
MM
7510 if (table == NULL)
7511 return NULL;
7512
e0361851 7513 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7514 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7515 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7516 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7517 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7518 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7519 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7520 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7521 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7522 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7523 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7524 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7525 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7526 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7527 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7528 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7529 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7530 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7531 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7532 &sd->cache_nice_tries,
7533 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7534 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7535 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7536 set_table_entry(&table[11], "name", sd->name,
7537 CORENAME_MAX_SIZE, 0444, proc_dostring);
7538 /* &table[12] is terminator */
e692ab53
NP
7539
7540 return table;
7541}
7542
9a4e7159 7543static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7544{
7545 struct ctl_table *entry, *table;
7546 struct sched_domain *sd;
7547 int domain_num = 0, i;
7548 char buf[32];
7549
7550 for_each_domain(cpu, sd)
7551 domain_num++;
7552 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7553 if (table == NULL)
7554 return NULL;
e692ab53
NP
7555
7556 i = 0;
7557 for_each_domain(cpu, sd) {
7558 snprintf(buf, 32, "domain%d", i);
e692ab53 7559 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7560 entry->mode = 0555;
e692ab53
NP
7561 entry->child = sd_alloc_ctl_domain_table(sd);
7562 entry++;
7563 i++;
7564 }
7565 return table;
7566}
7567
7568static struct ctl_table_header *sd_sysctl_header;
6382bc90 7569static void register_sched_domain_sysctl(void)
e692ab53 7570{
6ad4c188 7571 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7572 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7573 char buf[32];
7574
7378547f
MM
7575 WARN_ON(sd_ctl_dir[0].child);
7576 sd_ctl_dir[0].child = entry;
7577
ad1cdc1d
MM
7578 if (entry == NULL)
7579 return;
7580
6ad4c188 7581 for_each_possible_cpu(i) {
e692ab53 7582 snprintf(buf, 32, "cpu%d", i);
e692ab53 7583 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7584 entry->mode = 0555;
e692ab53 7585 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7586 entry++;
e692ab53 7587 }
7378547f
MM
7588
7589 WARN_ON(sd_sysctl_header);
e692ab53
NP
7590 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7591}
6382bc90 7592
7378547f 7593/* may be called multiple times per register */
6382bc90
MM
7594static void unregister_sched_domain_sysctl(void)
7595{
7378547f
MM
7596 if (sd_sysctl_header)
7597 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7598 sd_sysctl_header = NULL;
7378547f
MM
7599 if (sd_ctl_dir[0].child)
7600 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7601}
e692ab53 7602#else
6382bc90
MM
7603static void register_sched_domain_sysctl(void)
7604{
7605}
7606static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7607{
7608}
7609#endif
7610
1f11eb6a
GH
7611static void set_rq_online(struct rq *rq)
7612{
7613 if (!rq->online) {
7614 const struct sched_class *class;
7615
c6c4927b 7616 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7617 rq->online = 1;
7618
7619 for_each_class(class) {
7620 if (class->rq_online)
7621 class->rq_online(rq);
7622 }
7623 }
7624}
7625
7626static void set_rq_offline(struct rq *rq)
7627{
7628 if (rq->online) {
7629 const struct sched_class *class;
7630
7631 for_each_class(class) {
7632 if (class->rq_offline)
7633 class->rq_offline(rq);
7634 }
7635
c6c4927b 7636 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7637 rq->online = 0;
7638 }
7639}
7640
1da177e4
LT
7641/*
7642 * migration_call - callback that gets triggered when a CPU is added.
7643 * Here we can start up the necessary migration thread for the new CPU.
7644 */
48f24c4d
IM
7645static int __cpuinit
7646migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7647{
1da177e4 7648 struct task_struct *p;
48f24c4d 7649 int cpu = (long)hcpu;
1da177e4 7650 unsigned long flags;
70b97a7f 7651 struct rq *rq;
1da177e4
LT
7652
7653 switch (action) {
5be9361c 7654
1da177e4 7655 case CPU_UP_PREPARE:
8bb78442 7656 case CPU_UP_PREPARE_FROZEN:
dd41f596 7657 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7658 if (IS_ERR(p))
7659 return NOTIFY_BAD;
1da177e4
LT
7660 kthread_bind(p, cpu);
7661 /* Must be high prio: stop_machine expects to yield to it. */
7662 rq = task_rq_lock(p, &flags);
dd41f596 7663 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7664 task_rq_unlock(rq, &flags);
371cbb38 7665 get_task_struct(p);
1da177e4 7666 cpu_rq(cpu)->migration_thread = p;
a468d389 7667 rq->calc_load_update = calc_load_update;
1da177e4 7668 break;
48f24c4d 7669
1da177e4 7670 case CPU_ONLINE:
8bb78442 7671 case CPU_ONLINE_FROZEN:
3a4fa0a2 7672 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7673 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7674
7675 /* Update our root-domain */
7676 rq = cpu_rq(cpu);
05fa785c 7677 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 7678 if (rq->rd) {
c6c4927b 7679 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7680
7681 set_rq_online(rq);
1f94ef59 7682 }
05fa785c 7683 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7684 break;
48f24c4d 7685
1da177e4
LT
7686#ifdef CONFIG_HOTPLUG_CPU
7687 case CPU_UP_CANCELED:
8bb78442 7688 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7689 if (!cpu_rq(cpu)->migration_thread)
7690 break;
41a2d6cf 7691 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7692 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7693 cpumask_any(cpu_online_mask));
1da177e4 7694 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7695 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7696 cpu_rq(cpu)->migration_thread = NULL;
7697 break;
48f24c4d 7698
1da177e4 7699 case CPU_DEAD:
8bb78442 7700 case CPU_DEAD_FROZEN:
470fd646 7701 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7702 migrate_live_tasks(cpu);
7703 rq = cpu_rq(cpu);
7704 kthread_stop(rq->migration_thread);
371cbb38 7705 put_task_struct(rq->migration_thread);
1da177e4
LT
7706 rq->migration_thread = NULL;
7707 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 7708 raw_spin_lock_irq(&rq->lock);
a8e504d2 7709 update_rq_clock(rq);
2e1cb74a 7710 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
7711 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7712 rq->idle->sched_class = &idle_sched_class;
1da177e4 7713 migrate_dead_tasks(cpu);
05fa785c 7714 raw_spin_unlock_irq(&rq->lock);
470fd646 7715 cpuset_unlock();
1da177e4
LT
7716 migrate_nr_uninterruptible(rq);
7717 BUG_ON(rq->nr_running != 0);
dce48a84 7718 calc_global_load_remove(rq);
41a2d6cf
IM
7719 /*
7720 * No need to migrate the tasks: it was best-effort if
7721 * they didn't take sched_hotcpu_mutex. Just wake up
7722 * the requestors.
7723 */
05fa785c 7724 raw_spin_lock_irq(&rq->lock);
1da177e4 7725 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7726 struct migration_req *req;
7727
1da177e4 7728 req = list_entry(rq->migration_queue.next,
70b97a7f 7729 struct migration_req, list);
1da177e4 7730 list_del_init(&req->list);
05fa785c 7731 raw_spin_unlock_irq(&rq->lock);
1da177e4 7732 complete(&req->done);
05fa785c 7733 raw_spin_lock_irq(&rq->lock);
1da177e4 7734 }
05fa785c 7735 raw_spin_unlock_irq(&rq->lock);
1da177e4 7736 break;
57d885fe 7737
08f503b0
GH
7738 case CPU_DYING:
7739 case CPU_DYING_FROZEN:
57d885fe
GH
7740 /* Update our root-domain */
7741 rq = cpu_rq(cpu);
05fa785c 7742 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 7743 if (rq->rd) {
c6c4927b 7744 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7745 set_rq_offline(rq);
57d885fe 7746 }
05fa785c 7747 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 7748 break;
1da177e4
LT
7749#endif
7750 }
7751 return NOTIFY_OK;
7752}
7753
f38b0820
PM
7754/*
7755 * Register at high priority so that task migration (migrate_all_tasks)
7756 * happens before everything else. This has to be lower priority than
cdd6c482 7757 * the notifier in the perf_event subsystem, though.
1da177e4 7758 */
26c2143b 7759static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7760 .notifier_call = migration_call,
7761 .priority = 10
7762};
7763
7babe8db 7764static int __init migration_init(void)
1da177e4
LT
7765{
7766 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7767 int err;
48f24c4d
IM
7768
7769 /* Start one for the boot CPU: */
07dccf33
AM
7770 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7771 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7772 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7773 register_cpu_notifier(&migration_notifier);
7babe8db 7774
a004cd42 7775 return 0;
1da177e4 7776}
7babe8db 7777early_initcall(migration_init);
1da177e4
LT
7778#endif
7779
7780#ifdef CONFIG_SMP
476f3534 7781
3e9830dc 7782#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7783
f6630114
MT
7784static __read_mostly int sched_domain_debug_enabled;
7785
7786static int __init sched_domain_debug_setup(char *str)
7787{
7788 sched_domain_debug_enabled = 1;
7789
7790 return 0;
7791}
7792early_param("sched_debug", sched_domain_debug_setup);
7793
7c16ec58 7794static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7795 struct cpumask *groupmask)
1da177e4 7796{
4dcf6aff 7797 struct sched_group *group = sd->groups;
434d53b0 7798 char str[256];
1da177e4 7799
968ea6d8 7800 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7801 cpumask_clear(groupmask);
4dcf6aff
IM
7802
7803 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7804
7805 if (!(sd->flags & SD_LOAD_BALANCE)) {
663997d4 7806 pr_cont("does not load-balance\n");
4dcf6aff 7807 if (sd->parent)
663997d4 7808 pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
4dcf6aff 7809 return -1;
41c7ce9a
NP
7810 }
7811
663997d4 7812 pr_cont("span %s level %s\n", str, sd->name);
4dcf6aff 7813
758b2cdc 7814 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
663997d4 7815 pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
4dcf6aff 7816 }
758b2cdc 7817 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
663997d4 7818 pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
4dcf6aff 7819 }
1da177e4 7820
4dcf6aff 7821 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7822 do {
4dcf6aff 7823 if (!group) {
663997d4
JP
7824 pr_cont("\n");
7825 pr_err("ERROR: group is NULL\n");
1da177e4
LT
7826 break;
7827 }
7828
18a3885f 7829 if (!group->cpu_power) {
663997d4
JP
7830 pr_cont("\n");
7831 pr_err("ERROR: domain->cpu_power not set\n");
4dcf6aff
IM
7832 break;
7833 }
1da177e4 7834
758b2cdc 7835 if (!cpumask_weight(sched_group_cpus(group))) {
663997d4
JP
7836 pr_cont("\n");
7837 pr_err("ERROR: empty group\n");
4dcf6aff
IM
7838 break;
7839 }
1da177e4 7840
758b2cdc 7841 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
663997d4
JP
7842 pr_cont("\n");
7843 pr_err("ERROR: repeated CPUs\n");
4dcf6aff
IM
7844 break;
7845 }
1da177e4 7846
758b2cdc 7847 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7848
968ea6d8 7849 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 7850
663997d4 7851 pr_cont(" %s", str);
18a3885f 7852 if (group->cpu_power != SCHED_LOAD_SCALE) {
663997d4 7853 pr_cont(" (cpu_power = %d)", group->cpu_power);
381512cf 7854 }
1da177e4 7855
4dcf6aff
IM
7856 group = group->next;
7857 } while (group != sd->groups);
663997d4 7858 pr_cont("\n");
1da177e4 7859
758b2cdc 7860 if (!cpumask_equal(sched_domain_span(sd), groupmask))
663997d4 7861 pr_err("ERROR: groups don't span domain->span\n");
1da177e4 7862
758b2cdc
RR
7863 if (sd->parent &&
7864 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
663997d4 7865 pr_err("ERROR: parent span is not a superset of domain->span\n");
4dcf6aff
IM
7866 return 0;
7867}
1da177e4 7868
4dcf6aff
IM
7869static void sched_domain_debug(struct sched_domain *sd, int cpu)
7870{
d5dd3db1 7871 cpumask_var_t groupmask;
4dcf6aff 7872 int level = 0;
1da177e4 7873
f6630114
MT
7874 if (!sched_domain_debug_enabled)
7875 return;
7876
4dcf6aff
IM
7877 if (!sd) {
7878 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7879 return;
7880 }
1da177e4 7881
4dcf6aff
IM
7882 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7883
d5dd3db1 7884 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7885 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7886 return;
7887 }
7888
4dcf6aff 7889 for (;;) {
7c16ec58 7890 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7891 break;
1da177e4
LT
7892 level++;
7893 sd = sd->parent;
33859f7f 7894 if (!sd)
4dcf6aff
IM
7895 break;
7896 }
d5dd3db1 7897 free_cpumask_var(groupmask);
1da177e4 7898}
6d6bc0ad 7899#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7900# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7901#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7902
1a20ff27 7903static int sd_degenerate(struct sched_domain *sd)
245af2c7 7904{
758b2cdc 7905 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7906 return 1;
7907
7908 /* Following flags need at least 2 groups */
7909 if (sd->flags & (SD_LOAD_BALANCE |
7910 SD_BALANCE_NEWIDLE |
7911 SD_BALANCE_FORK |
89c4710e
SS
7912 SD_BALANCE_EXEC |
7913 SD_SHARE_CPUPOWER |
7914 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7915 if (sd->groups != sd->groups->next)
7916 return 0;
7917 }
7918
7919 /* Following flags don't use groups */
c88d5910 7920 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7921 return 0;
7922
7923 return 1;
7924}
7925
48f24c4d
IM
7926static int
7927sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7928{
7929 unsigned long cflags = sd->flags, pflags = parent->flags;
7930
7931 if (sd_degenerate(parent))
7932 return 1;
7933
758b2cdc 7934 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7935 return 0;
7936
245af2c7
SS
7937 /* Flags needing groups don't count if only 1 group in parent */
7938 if (parent->groups == parent->groups->next) {
7939 pflags &= ~(SD_LOAD_BALANCE |
7940 SD_BALANCE_NEWIDLE |
7941 SD_BALANCE_FORK |
89c4710e
SS
7942 SD_BALANCE_EXEC |
7943 SD_SHARE_CPUPOWER |
7944 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7945 if (nr_node_ids == 1)
7946 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7947 }
7948 if (~cflags & pflags)
7949 return 0;
7950
7951 return 1;
7952}
7953
c6c4927b
RR
7954static void free_rootdomain(struct root_domain *rd)
7955{
047106ad
PZ
7956 synchronize_sched();
7957
68e74568
RR
7958 cpupri_cleanup(&rd->cpupri);
7959
c6c4927b
RR
7960 free_cpumask_var(rd->rto_mask);
7961 free_cpumask_var(rd->online);
7962 free_cpumask_var(rd->span);
7963 kfree(rd);
7964}
7965
57d885fe
GH
7966static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7967{
a0490fa3 7968 struct root_domain *old_rd = NULL;
57d885fe 7969 unsigned long flags;
57d885fe 7970
05fa785c 7971 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
7972
7973 if (rq->rd) {
a0490fa3 7974 old_rd = rq->rd;
57d885fe 7975
c6c4927b 7976 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7977 set_rq_offline(rq);
57d885fe 7978
c6c4927b 7979 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7980
a0490fa3
IM
7981 /*
7982 * If we dont want to free the old_rt yet then
7983 * set old_rd to NULL to skip the freeing later
7984 * in this function:
7985 */
7986 if (!atomic_dec_and_test(&old_rd->refcount))
7987 old_rd = NULL;
57d885fe
GH
7988 }
7989
7990 atomic_inc(&rd->refcount);
7991 rq->rd = rd;
7992
c6c4927b 7993 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7994 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7995 set_rq_online(rq);
57d885fe 7996
05fa785c 7997 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7998
7999 if (old_rd)
8000 free_rootdomain(old_rd);
57d885fe
GH
8001}
8002
fd5e1b5d 8003static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8004{
36b7b6d4
PE
8005 gfp_t gfp = GFP_KERNEL;
8006
57d885fe
GH
8007 memset(rd, 0, sizeof(*rd));
8008
36b7b6d4
PE
8009 if (bootmem)
8010 gfp = GFP_NOWAIT;
c6c4927b 8011
36b7b6d4 8012 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8013 goto out;
36b7b6d4 8014 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8015 goto free_span;
36b7b6d4 8016 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8017 goto free_online;
6e0534f2 8018
0fb53029 8019 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8020 goto free_rto_mask;
c6c4927b 8021 return 0;
6e0534f2 8022
68e74568
RR
8023free_rto_mask:
8024 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8025free_online:
8026 free_cpumask_var(rd->online);
8027free_span:
8028 free_cpumask_var(rd->span);
0c910d28 8029out:
c6c4927b 8030 return -ENOMEM;
57d885fe
GH
8031}
8032
8033static void init_defrootdomain(void)
8034{
c6c4927b
RR
8035 init_rootdomain(&def_root_domain, true);
8036
57d885fe
GH
8037 atomic_set(&def_root_domain.refcount, 1);
8038}
8039
dc938520 8040static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8041{
8042 struct root_domain *rd;
8043
8044 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8045 if (!rd)
8046 return NULL;
8047
c6c4927b
RR
8048 if (init_rootdomain(rd, false) != 0) {
8049 kfree(rd);
8050 return NULL;
8051 }
57d885fe
GH
8052
8053 return rd;
8054}
8055
1da177e4 8056/*
0eab9146 8057 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8058 * hold the hotplug lock.
8059 */
0eab9146
IM
8060static void
8061cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8062{
70b97a7f 8063 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8064 struct sched_domain *tmp;
8065
8066 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8067 for (tmp = sd; tmp; ) {
245af2c7
SS
8068 struct sched_domain *parent = tmp->parent;
8069 if (!parent)
8070 break;
f29c9b1c 8071
1a848870 8072 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8073 tmp->parent = parent->parent;
1a848870
SS
8074 if (parent->parent)
8075 parent->parent->child = tmp;
f29c9b1c
LZ
8076 } else
8077 tmp = tmp->parent;
245af2c7
SS
8078 }
8079
1a848870 8080 if (sd && sd_degenerate(sd)) {
245af2c7 8081 sd = sd->parent;
1a848870
SS
8082 if (sd)
8083 sd->child = NULL;
8084 }
1da177e4
LT
8085
8086 sched_domain_debug(sd, cpu);
8087
57d885fe 8088 rq_attach_root(rq, rd);
674311d5 8089 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8090}
8091
8092/* cpus with isolated domains */
dcc30a35 8093static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8094
8095/* Setup the mask of cpus configured for isolated domains */
8096static int __init isolated_cpu_setup(char *str)
8097{
bdddd296 8098 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8099 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8100 return 1;
8101}
8102
8927f494 8103__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8104
8105/*
6711cab4
SS
8106 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8107 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8108 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8109 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8110 *
8111 * init_sched_build_groups will build a circular linked list of the groups
8112 * covered by the given span, and will set each group's ->cpumask correctly,
8113 * and ->cpu_power to 0.
8114 */
a616058b 8115static void
96f874e2
RR
8116init_sched_build_groups(const struct cpumask *span,
8117 const struct cpumask *cpu_map,
8118 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8119 struct sched_group **sg,
96f874e2
RR
8120 struct cpumask *tmpmask),
8121 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8122{
8123 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8124 int i;
8125
96f874e2 8126 cpumask_clear(covered);
7c16ec58 8127
abcd083a 8128 for_each_cpu(i, span) {
6711cab4 8129 struct sched_group *sg;
7c16ec58 8130 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8131 int j;
8132
758b2cdc 8133 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8134 continue;
8135
758b2cdc 8136 cpumask_clear(sched_group_cpus(sg));
18a3885f 8137 sg->cpu_power = 0;
1da177e4 8138
abcd083a 8139 for_each_cpu(j, span) {
7c16ec58 8140 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8141 continue;
8142
96f874e2 8143 cpumask_set_cpu(j, covered);
758b2cdc 8144 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8145 }
8146 if (!first)
8147 first = sg;
8148 if (last)
8149 last->next = sg;
8150 last = sg;
8151 }
8152 last->next = first;
8153}
8154
9c1cfda2 8155#define SD_NODES_PER_DOMAIN 16
1da177e4 8156
9c1cfda2 8157#ifdef CONFIG_NUMA
198e2f18 8158
9c1cfda2
JH
8159/**
8160 * find_next_best_node - find the next node to include in a sched_domain
8161 * @node: node whose sched_domain we're building
8162 * @used_nodes: nodes already in the sched_domain
8163 *
41a2d6cf 8164 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8165 * finds the closest node not already in the @used_nodes map.
8166 *
8167 * Should use nodemask_t.
8168 */
c5f59f08 8169static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8170{
8171 int i, n, val, min_val, best_node = 0;
8172
8173 min_val = INT_MAX;
8174
076ac2af 8175 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8176 /* Start at @node */
076ac2af 8177 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8178
8179 if (!nr_cpus_node(n))
8180 continue;
8181
8182 /* Skip already used nodes */
c5f59f08 8183 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8184 continue;
8185
8186 /* Simple min distance search */
8187 val = node_distance(node, n);
8188
8189 if (val < min_val) {
8190 min_val = val;
8191 best_node = n;
8192 }
8193 }
8194
c5f59f08 8195 node_set(best_node, *used_nodes);
9c1cfda2
JH
8196 return best_node;
8197}
8198
8199/**
8200 * sched_domain_node_span - get a cpumask for a node's sched_domain
8201 * @node: node whose cpumask we're constructing
73486722 8202 * @span: resulting cpumask
9c1cfda2 8203 *
41a2d6cf 8204 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8205 * should be one that prevents unnecessary balancing, but also spreads tasks
8206 * out optimally.
8207 */
96f874e2 8208static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8209{
c5f59f08 8210 nodemask_t used_nodes;
48f24c4d 8211 int i;
9c1cfda2 8212
6ca09dfc 8213 cpumask_clear(span);
c5f59f08 8214 nodes_clear(used_nodes);
9c1cfda2 8215
6ca09dfc 8216 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8217 node_set(node, used_nodes);
9c1cfda2
JH
8218
8219 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8220 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8221
6ca09dfc 8222 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8223 }
9c1cfda2 8224}
6d6bc0ad 8225#endif /* CONFIG_NUMA */
9c1cfda2 8226
5c45bf27 8227int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8228
6c99e9ad
RR
8229/*
8230 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8231 *
8232 * ( See the the comments in include/linux/sched.h:struct sched_group
8233 * and struct sched_domain. )
6c99e9ad
RR
8234 */
8235struct static_sched_group {
8236 struct sched_group sg;
8237 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8238};
8239
8240struct static_sched_domain {
8241 struct sched_domain sd;
8242 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8243};
8244
49a02c51
AH
8245struct s_data {
8246#ifdef CONFIG_NUMA
8247 int sd_allnodes;
8248 cpumask_var_t domainspan;
8249 cpumask_var_t covered;
8250 cpumask_var_t notcovered;
8251#endif
8252 cpumask_var_t nodemask;
8253 cpumask_var_t this_sibling_map;
8254 cpumask_var_t this_core_map;
8255 cpumask_var_t send_covered;
8256 cpumask_var_t tmpmask;
8257 struct sched_group **sched_group_nodes;
8258 struct root_domain *rd;
8259};
8260
2109b99e
AH
8261enum s_alloc {
8262 sa_sched_groups = 0,
8263 sa_rootdomain,
8264 sa_tmpmask,
8265 sa_send_covered,
8266 sa_this_core_map,
8267 sa_this_sibling_map,
8268 sa_nodemask,
8269 sa_sched_group_nodes,
8270#ifdef CONFIG_NUMA
8271 sa_notcovered,
8272 sa_covered,
8273 sa_domainspan,
8274#endif
8275 sa_none,
8276};
8277
9c1cfda2 8278/*
48f24c4d 8279 * SMT sched-domains:
9c1cfda2 8280 */
1da177e4 8281#ifdef CONFIG_SCHED_SMT
6c99e9ad 8282static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 8283static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 8284
41a2d6cf 8285static int
96f874e2
RR
8286cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8287 struct sched_group **sg, struct cpumask *unused)
1da177e4 8288{
6711cab4 8289 if (sg)
1871e52c 8290 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
8291 return cpu;
8292}
6d6bc0ad 8293#endif /* CONFIG_SCHED_SMT */
1da177e4 8294
48f24c4d
IM
8295/*
8296 * multi-core sched-domains:
8297 */
1e9f28fa 8298#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8299static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8300static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8301#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8302
8303#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8304static int
96f874e2
RR
8305cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8306 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8307{
6711cab4 8308 int group;
7c16ec58 8309
c69fc56d 8310 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8311 group = cpumask_first(mask);
6711cab4 8312 if (sg)
6c99e9ad 8313 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8314 return group;
1e9f28fa
SS
8315}
8316#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8317static int
96f874e2
RR
8318cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8319 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8320{
6711cab4 8321 if (sg)
6c99e9ad 8322 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8323 return cpu;
8324}
8325#endif
8326
6c99e9ad
RR
8327static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8328static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8329
41a2d6cf 8330static int
96f874e2
RR
8331cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8332 struct sched_group **sg, struct cpumask *mask)
1da177e4 8333{
6711cab4 8334 int group;
48f24c4d 8335#ifdef CONFIG_SCHED_MC
6ca09dfc 8336 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8337 group = cpumask_first(mask);
1e9f28fa 8338#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8339 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8340 group = cpumask_first(mask);
1da177e4 8341#else
6711cab4 8342 group = cpu;
1da177e4 8343#endif
6711cab4 8344 if (sg)
6c99e9ad 8345 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8346 return group;
1da177e4
LT
8347}
8348
8349#ifdef CONFIG_NUMA
1da177e4 8350/*
9c1cfda2
JH
8351 * The init_sched_build_groups can't handle what we want to do with node
8352 * groups, so roll our own. Now each node has its own list of groups which
8353 * gets dynamically allocated.
1da177e4 8354 */
62ea9ceb 8355static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8356static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8357
62ea9ceb 8358static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8359static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8360
96f874e2
RR
8361static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8362 struct sched_group **sg,
8363 struct cpumask *nodemask)
9c1cfda2 8364{
6711cab4
SS
8365 int group;
8366
6ca09dfc 8367 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8368 group = cpumask_first(nodemask);
6711cab4
SS
8369
8370 if (sg)
6c99e9ad 8371 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8372 return group;
1da177e4 8373}
6711cab4 8374
08069033
SS
8375static void init_numa_sched_groups_power(struct sched_group *group_head)
8376{
8377 struct sched_group *sg = group_head;
8378 int j;
8379
8380 if (!sg)
8381 return;
3a5c359a 8382 do {
758b2cdc 8383 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8384 struct sched_domain *sd;
08069033 8385
6c99e9ad 8386 sd = &per_cpu(phys_domains, j).sd;
13318a71 8387 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8388 /*
8389 * Only add "power" once for each
8390 * physical package.
8391 */
8392 continue;
8393 }
08069033 8394
18a3885f 8395 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8396 }
8397 sg = sg->next;
8398 } while (sg != group_head);
08069033 8399}
0601a88d
AH
8400
8401static int build_numa_sched_groups(struct s_data *d,
8402 const struct cpumask *cpu_map, int num)
8403{
8404 struct sched_domain *sd;
8405 struct sched_group *sg, *prev;
8406 int n, j;
8407
8408 cpumask_clear(d->covered);
8409 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8410 if (cpumask_empty(d->nodemask)) {
8411 d->sched_group_nodes[num] = NULL;
8412 goto out;
8413 }
8414
8415 sched_domain_node_span(num, d->domainspan);
8416 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8417
8418 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8419 GFP_KERNEL, num);
8420 if (!sg) {
663997d4 8421 pr_warning("Can not alloc domain group for node %d\n", num);
0601a88d
AH
8422 return -ENOMEM;
8423 }
8424 d->sched_group_nodes[num] = sg;
8425
8426 for_each_cpu(j, d->nodemask) {
8427 sd = &per_cpu(node_domains, j).sd;
8428 sd->groups = sg;
8429 }
8430
18a3885f 8431 sg->cpu_power = 0;
0601a88d
AH
8432 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8433 sg->next = sg;
8434 cpumask_or(d->covered, d->covered, d->nodemask);
8435
8436 prev = sg;
8437 for (j = 0; j < nr_node_ids; j++) {
8438 n = (num + j) % nr_node_ids;
8439 cpumask_complement(d->notcovered, d->covered);
8440 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8441 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8442 if (cpumask_empty(d->tmpmask))
8443 break;
8444 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8445 if (cpumask_empty(d->tmpmask))
8446 continue;
8447 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8448 GFP_KERNEL, num);
8449 if (!sg) {
663997d4
JP
8450 pr_warning("Can not alloc domain group for node %d\n",
8451 j);
0601a88d
AH
8452 return -ENOMEM;
8453 }
18a3885f 8454 sg->cpu_power = 0;
0601a88d
AH
8455 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8456 sg->next = prev->next;
8457 cpumask_or(d->covered, d->covered, d->tmpmask);
8458 prev->next = sg;
8459 prev = sg;
8460 }
8461out:
8462 return 0;
8463}
6d6bc0ad 8464#endif /* CONFIG_NUMA */
1da177e4 8465
a616058b 8466#ifdef CONFIG_NUMA
51888ca2 8467/* Free memory allocated for various sched_group structures */
96f874e2
RR
8468static void free_sched_groups(const struct cpumask *cpu_map,
8469 struct cpumask *nodemask)
51888ca2 8470{
a616058b 8471 int cpu, i;
51888ca2 8472
abcd083a 8473 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8474 struct sched_group **sched_group_nodes
8475 = sched_group_nodes_bycpu[cpu];
8476
51888ca2
SV
8477 if (!sched_group_nodes)
8478 continue;
8479
076ac2af 8480 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8481 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8482
6ca09dfc 8483 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8484 if (cpumask_empty(nodemask))
51888ca2
SV
8485 continue;
8486
8487 if (sg == NULL)
8488 continue;
8489 sg = sg->next;
8490next_sg:
8491 oldsg = sg;
8492 sg = sg->next;
8493 kfree(oldsg);
8494 if (oldsg != sched_group_nodes[i])
8495 goto next_sg;
8496 }
8497 kfree(sched_group_nodes);
8498 sched_group_nodes_bycpu[cpu] = NULL;
8499 }
51888ca2 8500}
6d6bc0ad 8501#else /* !CONFIG_NUMA */
96f874e2
RR
8502static void free_sched_groups(const struct cpumask *cpu_map,
8503 struct cpumask *nodemask)
a616058b
SS
8504{
8505}
6d6bc0ad 8506#endif /* CONFIG_NUMA */
51888ca2 8507
89c4710e
SS
8508/*
8509 * Initialize sched groups cpu_power.
8510 *
8511 * cpu_power indicates the capacity of sched group, which is used while
8512 * distributing the load between different sched groups in a sched domain.
8513 * Typically cpu_power for all the groups in a sched domain will be same unless
8514 * there are asymmetries in the topology. If there are asymmetries, group
8515 * having more cpu_power will pickup more load compared to the group having
8516 * less cpu_power.
89c4710e
SS
8517 */
8518static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8519{
8520 struct sched_domain *child;
8521 struct sched_group *group;
f93e65c1
PZ
8522 long power;
8523 int weight;
89c4710e
SS
8524
8525 WARN_ON(!sd || !sd->groups);
8526
13318a71 8527 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8528 return;
8529
8530 child = sd->child;
8531
18a3885f 8532 sd->groups->cpu_power = 0;
5517d86b 8533
f93e65c1
PZ
8534 if (!child) {
8535 power = SCHED_LOAD_SCALE;
8536 weight = cpumask_weight(sched_domain_span(sd));
8537 /*
8538 * SMT siblings share the power of a single core.
a52bfd73
PZ
8539 * Usually multiple threads get a better yield out of
8540 * that one core than a single thread would have,
8541 * reflect that in sd->smt_gain.
f93e65c1 8542 */
a52bfd73
PZ
8543 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8544 power *= sd->smt_gain;
f93e65c1 8545 power /= weight;
a52bfd73
PZ
8546 power >>= SCHED_LOAD_SHIFT;
8547 }
18a3885f 8548 sd->groups->cpu_power += power;
89c4710e
SS
8549 return;
8550 }
8551
89c4710e 8552 /*
f93e65c1 8553 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8554 */
8555 group = child->groups;
8556 do {
18a3885f 8557 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8558 group = group->next;
8559 } while (group != child->groups);
8560}
8561
7c16ec58
MT
8562/*
8563 * Initializers for schedule domains
8564 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8565 */
8566
a5d8c348
IM
8567#ifdef CONFIG_SCHED_DEBUG
8568# define SD_INIT_NAME(sd, type) sd->name = #type
8569#else
8570# define SD_INIT_NAME(sd, type) do { } while (0)
8571#endif
8572
7c16ec58 8573#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8574
7c16ec58
MT
8575#define SD_INIT_FUNC(type) \
8576static noinline void sd_init_##type(struct sched_domain *sd) \
8577{ \
8578 memset(sd, 0, sizeof(*sd)); \
8579 *sd = SD_##type##_INIT; \
1d3504fc 8580 sd->level = SD_LV_##type; \
a5d8c348 8581 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8582}
8583
8584SD_INIT_FUNC(CPU)
8585#ifdef CONFIG_NUMA
8586 SD_INIT_FUNC(ALLNODES)
8587 SD_INIT_FUNC(NODE)
8588#endif
8589#ifdef CONFIG_SCHED_SMT
8590 SD_INIT_FUNC(SIBLING)
8591#endif
8592#ifdef CONFIG_SCHED_MC
8593 SD_INIT_FUNC(MC)
8594#endif
8595
1d3504fc
HS
8596static int default_relax_domain_level = -1;
8597
8598static int __init setup_relax_domain_level(char *str)
8599{
30e0e178
LZ
8600 unsigned long val;
8601
8602 val = simple_strtoul(str, NULL, 0);
8603 if (val < SD_LV_MAX)
8604 default_relax_domain_level = val;
8605
1d3504fc
HS
8606 return 1;
8607}
8608__setup("relax_domain_level=", setup_relax_domain_level);
8609
8610static void set_domain_attribute(struct sched_domain *sd,
8611 struct sched_domain_attr *attr)
8612{
8613 int request;
8614
8615 if (!attr || attr->relax_domain_level < 0) {
8616 if (default_relax_domain_level < 0)
8617 return;
8618 else
8619 request = default_relax_domain_level;
8620 } else
8621 request = attr->relax_domain_level;
8622 if (request < sd->level) {
8623 /* turn off idle balance on this domain */
c88d5910 8624 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8625 } else {
8626 /* turn on idle balance on this domain */
c88d5910 8627 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8628 }
8629}
8630
2109b99e
AH
8631static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8632 const struct cpumask *cpu_map)
8633{
8634 switch (what) {
8635 case sa_sched_groups:
8636 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8637 d->sched_group_nodes = NULL;
8638 case sa_rootdomain:
8639 free_rootdomain(d->rd); /* fall through */
8640 case sa_tmpmask:
8641 free_cpumask_var(d->tmpmask); /* fall through */
8642 case sa_send_covered:
8643 free_cpumask_var(d->send_covered); /* fall through */
8644 case sa_this_core_map:
8645 free_cpumask_var(d->this_core_map); /* fall through */
8646 case sa_this_sibling_map:
8647 free_cpumask_var(d->this_sibling_map); /* fall through */
8648 case sa_nodemask:
8649 free_cpumask_var(d->nodemask); /* fall through */
8650 case sa_sched_group_nodes:
d1b55138 8651#ifdef CONFIG_NUMA
2109b99e
AH
8652 kfree(d->sched_group_nodes); /* fall through */
8653 case sa_notcovered:
8654 free_cpumask_var(d->notcovered); /* fall through */
8655 case sa_covered:
8656 free_cpumask_var(d->covered); /* fall through */
8657 case sa_domainspan:
8658 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8659#endif
2109b99e
AH
8660 case sa_none:
8661 break;
8662 }
8663}
3404c8d9 8664
2109b99e
AH
8665static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8666 const struct cpumask *cpu_map)
8667{
3404c8d9 8668#ifdef CONFIG_NUMA
2109b99e
AH
8669 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8670 return sa_none;
8671 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8672 return sa_domainspan;
8673 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8674 return sa_covered;
8675 /* Allocate the per-node list of sched groups */
8676 d->sched_group_nodes = kcalloc(nr_node_ids,
8677 sizeof(struct sched_group *), GFP_KERNEL);
8678 if (!d->sched_group_nodes) {
663997d4 8679 pr_warning("Can not alloc sched group node list\n");
2109b99e 8680 return sa_notcovered;
d1b55138 8681 }
2109b99e 8682 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8683#endif
2109b99e
AH
8684 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8685 return sa_sched_group_nodes;
8686 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8687 return sa_nodemask;
8688 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8689 return sa_this_sibling_map;
8690 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8691 return sa_this_core_map;
8692 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8693 return sa_send_covered;
8694 d->rd = alloc_rootdomain();
8695 if (!d->rd) {
663997d4 8696 pr_warning("Cannot alloc root domain\n");
2109b99e 8697 return sa_tmpmask;
57d885fe 8698 }
2109b99e
AH
8699 return sa_rootdomain;
8700}
57d885fe 8701
7f4588f3
AH
8702static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8703 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8704{
8705 struct sched_domain *sd = NULL;
7c16ec58 8706#ifdef CONFIG_NUMA
7f4588f3 8707 struct sched_domain *parent;
1da177e4 8708
7f4588f3
AH
8709 d->sd_allnodes = 0;
8710 if (cpumask_weight(cpu_map) >
8711 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8712 sd = &per_cpu(allnodes_domains, i).sd;
8713 SD_INIT(sd, ALLNODES);
1d3504fc 8714 set_domain_attribute(sd, attr);
7f4588f3
AH
8715 cpumask_copy(sched_domain_span(sd), cpu_map);
8716 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8717 d->sd_allnodes = 1;
8718 }
8719 parent = sd;
8720
8721 sd = &per_cpu(node_domains, i).sd;
8722 SD_INIT(sd, NODE);
8723 set_domain_attribute(sd, attr);
8724 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8725 sd->parent = parent;
8726 if (parent)
8727 parent->child = sd;
8728 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8729#endif
7f4588f3
AH
8730 return sd;
8731}
1da177e4 8732
87cce662
AH
8733static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8734 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8735 struct sched_domain *parent, int i)
8736{
8737 struct sched_domain *sd;
8738 sd = &per_cpu(phys_domains, i).sd;
8739 SD_INIT(sd, CPU);
8740 set_domain_attribute(sd, attr);
8741 cpumask_copy(sched_domain_span(sd), d->nodemask);
8742 sd->parent = parent;
8743 if (parent)
8744 parent->child = sd;
8745 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8746 return sd;
8747}
1da177e4 8748
410c4081
AH
8749static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8750 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8751 struct sched_domain *parent, int i)
8752{
8753 struct sched_domain *sd = parent;
1e9f28fa 8754#ifdef CONFIG_SCHED_MC
410c4081
AH
8755 sd = &per_cpu(core_domains, i).sd;
8756 SD_INIT(sd, MC);
8757 set_domain_attribute(sd, attr);
8758 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8759 sd->parent = parent;
8760 parent->child = sd;
8761 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8762#endif
410c4081
AH
8763 return sd;
8764}
1e9f28fa 8765
d8173535
AH
8766static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8767 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8768 struct sched_domain *parent, int i)
8769{
8770 struct sched_domain *sd = parent;
1da177e4 8771#ifdef CONFIG_SCHED_SMT
d8173535
AH
8772 sd = &per_cpu(cpu_domains, i).sd;
8773 SD_INIT(sd, SIBLING);
8774 set_domain_attribute(sd, attr);
8775 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8776 sd->parent = parent;
8777 parent->child = sd;
8778 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8779#endif
d8173535
AH
8780 return sd;
8781}
1da177e4 8782
0e8e85c9
AH
8783static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8784 const struct cpumask *cpu_map, int cpu)
8785{
8786 switch (l) {
1da177e4 8787#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8788 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8789 cpumask_and(d->this_sibling_map, cpu_map,
8790 topology_thread_cpumask(cpu));
8791 if (cpu == cpumask_first(d->this_sibling_map))
8792 init_sched_build_groups(d->this_sibling_map, cpu_map,
8793 &cpu_to_cpu_group,
8794 d->send_covered, d->tmpmask);
8795 break;
1da177e4 8796#endif
1e9f28fa 8797#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8798 case SD_LV_MC: /* set up multi-core groups */
8799 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8800 if (cpu == cpumask_first(d->this_core_map))
8801 init_sched_build_groups(d->this_core_map, cpu_map,
8802 &cpu_to_core_group,
8803 d->send_covered, d->tmpmask);
8804 break;
1e9f28fa 8805#endif
86548096
AH
8806 case SD_LV_CPU: /* set up physical groups */
8807 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8808 if (!cpumask_empty(d->nodemask))
8809 init_sched_build_groups(d->nodemask, cpu_map,
8810 &cpu_to_phys_group,
8811 d->send_covered, d->tmpmask);
8812 break;
1da177e4 8813#ifdef CONFIG_NUMA
de616e36
AH
8814 case SD_LV_ALLNODES:
8815 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8816 d->send_covered, d->tmpmask);
8817 break;
8818#endif
0e8e85c9
AH
8819 default:
8820 break;
7c16ec58 8821 }
0e8e85c9 8822}
9c1cfda2 8823
2109b99e
AH
8824/*
8825 * Build sched domains for a given set of cpus and attach the sched domains
8826 * to the individual cpus
8827 */
8828static int __build_sched_domains(const struct cpumask *cpu_map,
8829 struct sched_domain_attr *attr)
8830{
8831 enum s_alloc alloc_state = sa_none;
8832 struct s_data d;
294b0c96 8833 struct sched_domain *sd;
2109b99e 8834 int i;
7c16ec58 8835#ifdef CONFIG_NUMA
2109b99e 8836 d.sd_allnodes = 0;
7c16ec58 8837#endif
9c1cfda2 8838
2109b99e
AH
8839 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8840 if (alloc_state != sa_rootdomain)
8841 goto error;
8842 alloc_state = sa_sched_groups;
9c1cfda2 8843
1da177e4 8844 /*
1a20ff27 8845 * Set up domains for cpus specified by the cpu_map.
1da177e4 8846 */
abcd083a 8847 for_each_cpu(i, cpu_map) {
49a02c51
AH
8848 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8849 cpu_map);
9761eea8 8850
7f4588f3 8851 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8852 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8853 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8854 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8855 }
9c1cfda2 8856
abcd083a 8857 for_each_cpu(i, cpu_map) {
0e8e85c9 8858 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8859 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8860 }
9c1cfda2 8861
1da177e4 8862 /* Set up physical groups */
86548096
AH
8863 for (i = 0; i < nr_node_ids; i++)
8864 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8865
1da177e4
LT
8866#ifdef CONFIG_NUMA
8867 /* Set up node groups */
de616e36
AH
8868 if (d.sd_allnodes)
8869 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8870
0601a88d
AH
8871 for (i = 0; i < nr_node_ids; i++)
8872 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8873 goto error;
1da177e4
LT
8874#endif
8875
8876 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8877#ifdef CONFIG_SCHED_SMT
abcd083a 8878 for_each_cpu(i, cpu_map) {
294b0c96 8879 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8880 init_sched_groups_power(i, sd);
5c45bf27 8881 }
1da177e4 8882#endif
1e9f28fa 8883#ifdef CONFIG_SCHED_MC
abcd083a 8884 for_each_cpu(i, cpu_map) {
294b0c96 8885 sd = &per_cpu(core_domains, i).sd;
89c4710e 8886 init_sched_groups_power(i, sd);
5c45bf27
SS
8887 }
8888#endif
1e9f28fa 8889
abcd083a 8890 for_each_cpu(i, cpu_map) {
294b0c96 8891 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8892 init_sched_groups_power(i, sd);
1da177e4
LT
8893 }
8894
9c1cfda2 8895#ifdef CONFIG_NUMA
076ac2af 8896 for (i = 0; i < nr_node_ids; i++)
49a02c51 8897 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8898
49a02c51 8899 if (d.sd_allnodes) {
6711cab4 8900 struct sched_group *sg;
f712c0c7 8901
96f874e2 8902 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8903 d.tmpmask);
f712c0c7
SS
8904 init_numa_sched_groups_power(sg);
8905 }
9c1cfda2
JH
8906#endif
8907
1da177e4 8908 /* Attach the domains */
abcd083a 8909 for_each_cpu(i, cpu_map) {
1da177e4 8910#ifdef CONFIG_SCHED_SMT
6c99e9ad 8911 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8912#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8913 sd = &per_cpu(core_domains, i).sd;
1da177e4 8914#else
6c99e9ad 8915 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8916#endif
49a02c51 8917 cpu_attach_domain(sd, d.rd, i);
1da177e4 8918 }
51888ca2 8919
2109b99e
AH
8920 d.sched_group_nodes = NULL; /* don't free this we still need it */
8921 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8922 return 0;
51888ca2 8923
51888ca2 8924error:
2109b99e
AH
8925 __free_domain_allocs(&d, alloc_state, cpu_map);
8926 return -ENOMEM;
1da177e4 8927}
029190c5 8928
96f874e2 8929static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8930{
8931 return __build_sched_domains(cpu_map, NULL);
8932}
8933
acc3f5d7 8934static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8935static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8936static struct sched_domain_attr *dattr_cur;
8937 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8938
8939/*
8940 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8941 * cpumask) fails, then fallback to a single sched domain,
8942 * as determined by the single cpumask fallback_doms.
029190c5 8943 */
4212823f 8944static cpumask_var_t fallback_doms;
029190c5 8945
ee79d1bd
HC
8946/*
8947 * arch_update_cpu_topology lets virtualized architectures update the
8948 * cpu core maps. It is supposed to return 1 if the topology changed
8949 * or 0 if it stayed the same.
8950 */
8951int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8952{
ee79d1bd 8953 return 0;
22e52b07
HC
8954}
8955
acc3f5d7
RR
8956cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8957{
8958 int i;
8959 cpumask_var_t *doms;
8960
8961 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8962 if (!doms)
8963 return NULL;
8964 for (i = 0; i < ndoms; i++) {
8965 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8966 free_sched_domains(doms, i);
8967 return NULL;
8968 }
8969 }
8970 return doms;
8971}
8972
8973void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8974{
8975 unsigned int i;
8976 for (i = 0; i < ndoms; i++)
8977 free_cpumask_var(doms[i]);
8978 kfree(doms);
8979}
8980
1a20ff27 8981/*
41a2d6cf 8982 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8983 * For now this just excludes isolated cpus, but could be used to
8984 * exclude other special cases in the future.
1a20ff27 8985 */
96f874e2 8986static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8987{
7378547f
MM
8988 int err;
8989
22e52b07 8990 arch_update_cpu_topology();
029190c5 8991 ndoms_cur = 1;
acc3f5d7 8992 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 8993 if (!doms_cur)
acc3f5d7
RR
8994 doms_cur = &fallback_doms;
8995 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 8996 dattr_cur = NULL;
acc3f5d7 8997 err = build_sched_domains(doms_cur[0]);
6382bc90 8998 register_sched_domain_sysctl();
7378547f
MM
8999
9000 return err;
1a20ff27
DG
9001}
9002
96f874e2
RR
9003static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9004 struct cpumask *tmpmask)
1da177e4 9005{
7c16ec58 9006 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9007}
1da177e4 9008
1a20ff27
DG
9009/*
9010 * Detach sched domains from a group of cpus specified in cpu_map
9011 * These cpus will now be attached to the NULL domain
9012 */
96f874e2 9013static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9014{
96f874e2
RR
9015 /* Save because hotplug lock held. */
9016 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9017 int i;
9018
abcd083a 9019 for_each_cpu(i, cpu_map)
57d885fe 9020 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9021 synchronize_sched();
96f874e2 9022 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9023}
9024
1d3504fc
HS
9025/* handle null as "default" */
9026static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9027 struct sched_domain_attr *new, int idx_new)
9028{
9029 struct sched_domain_attr tmp;
9030
9031 /* fast path */
9032 if (!new && !cur)
9033 return 1;
9034
9035 tmp = SD_ATTR_INIT;
9036 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9037 new ? (new + idx_new) : &tmp,
9038 sizeof(struct sched_domain_attr));
9039}
9040
029190c5
PJ
9041/*
9042 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9043 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9044 * doms_new[] to the current sched domain partitioning, doms_cur[].
9045 * It destroys each deleted domain and builds each new domain.
9046 *
acc3f5d7 9047 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9048 * The masks don't intersect (don't overlap.) We should setup one
9049 * sched domain for each mask. CPUs not in any of the cpumasks will
9050 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9051 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9052 * it as it is.
9053 *
acc3f5d7
RR
9054 * The passed in 'doms_new' should be allocated using
9055 * alloc_sched_domains. This routine takes ownership of it and will
9056 * free_sched_domains it when done with it. If the caller failed the
9057 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9058 * and partition_sched_domains() will fallback to the single partition
9059 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9060 *
96f874e2 9061 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9062 * ndoms_new == 0 is a special case for destroying existing domains,
9063 * and it will not create the default domain.
dfb512ec 9064 *
029190c5
PJ
9065 * Call with hotplug lock held
9066 */
acc3f5d7 9067void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9068 struct sched_domain_attr *dattr_new)
029190c5 9069{
dfb512ec 9070 int i, j, n;
d65bd5ec 9071 int new_topology;
029190c5 9072
712555ee 9073 mutex_lock(&sched_domains_mutex);
a1835615 9074
7378547f
MM
9075 /* always unregister in case we don't destroy any domains */
9076 unregister_sched_domain_sysctl();
9077
d65bd5ec
HC
9078 /* Let architecture update cpu core mappings. */
9079 new_topology = arch_update_cpu_topology();
9080
dfb512ec 9081 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9082
9083 /* Destroy deleted domains */
9084 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9085 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9086 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9087 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9088 goto match1;
9089 }
9090 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9091 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9092match1:
9093 ;
9094 }
9095
e761b772
MK
9096 if (doms_new == NULL) {
9097 ndoms_cur = 0;
acc3f5d7 9098 doms_new = &fallback_doms;
6ad4c188 9099 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9100 WARN_ON_ONCE(dattr_new);
e761b772
MK
9101 }
9102
029190c5
PJ
9103 /* Build new domains */
9104 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9105 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9106 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9107 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9108 goto match2;
9109 }
9110 /* no match - add a new doms_new */
acc3f5d7 9111 __build_sched_domains(doms_new[i],
1d3504fc 9112 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9113match2:
9114 ;
9115 }
9116
9117 /* Remember the new sched domains */
acc3f5d7
RR
9118 if (doms_cur != &fallback_doms)
9119 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9120 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9121 doms_cur = doms_new;
1d3504fc 9122 dattr_cur = dattr_new;
029190c5 9123 ndoms_cur = ndoms_new;
7378547f
MM
9124
9125 register_sched_domain_sysctl();
a1835615 9126
712555ee 9127 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9128}
9129
5c45bf27 9130#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9131static void arch_reinit_sched_domains(void)
5c45bf27 9132{
95402b38 9133 get_online_cpus();
dfb512ec
MK
9134
9135 /* Destroy domains first to force the rebuild */
9136 partition_sched_domains(0, NULL, NULL);
9137
e761b772 9138 rebuild_sched_domains();
95402b38 9139 put_online_cpus();
5c45bf27
SS
9140}
9141
9142static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9143{
afb8a9b7 9144 unsigned int level = 0;
5c45bf27 9145
afb8a9b7
GS
9146 if (sscanf(buf, "%u", &level) != 1)
9147 return -EINVAL;
9148
9149 /*
9150 * level is always be positive so don't check for
9151 * level < POWERSAVINGS_BALANCE_NONE which is 0
9152 * What happens on 0 or 1 byte write,
9153 * need to check for count as well?
9154 */
9155
9156 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9157 return -EINVAL;
9158
9159 if (smt)
afb8a9b7 9160 sched_smt_power_savings = level;
5c45bf27 9161 else
afb8a9b7 9162 sched_mc_power_savings = level;
5c45bf27 9163
c70f22d2 9164 arch_reinit_sched_domains();
5c45bf27 9165
c70f22d2 9166 return count;
5c45bf27
SS
9167}
9168
5c45bf27 9169#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9170static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9171 char *page)
5c45bf27
SS
9172{
9173 return sprintf(page, "%u\n", sched_mc_power_savings);
9174}
f718cd4a 9175static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9176 const char *buf, size_t count)
5c45bf27
SS
9177{
9178 return sched_power_savings_store(buf, count, 0);
9179}
f718cd4a
AK
9180static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9181 sched_mc_power_savings_show,
9182 sched_mc_power_savings_store);
5c45bf27
SS
9183#endif
9184
9185#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9186static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9187 char *page)
5c45bf27
SS
9188{
9189 return sprintf(page, "%u\n", sched_smt_power_savings);
9190}
f718cd4a 9191static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9192 const char *buf, size_t count)
5c45bf27
SS
9193{
9194 return sched_power_savings_store(buf, count, 1);
9195}
f718cd4a
AK
9196static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9197 sched_smt_power_savings_show,
6707de00
AB
9198 sched_smt_power_savings_store);
9199#endif
9200
39aac648 9201int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9202{
9203 int err = 0;
9204
9205#ifdef CONFIG_SCHED_SMT
9206 if (smt_capable())
9207 err = sysfs_create_file(&cls->kset.kobj,
9208 &attr_sched_smt_power_savings.attr);
9209#endif
9210#ifdef CONFIG_SCHED_MC
9211 if (!err && mc_capable())
9212 err = sysfs_create_file(&cls->kset.kobj,
9213 &attr_sched_mc_power_savings.attr);
9214#endif
9215 return err;
9216}
6d6bc0ad 9217#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9218
e761b772 9219#ifndef CONFIG_CPUSETS
1da177e4 9220/*
e761b772
MK
9221 * Add online and remove offline CPUs from the scheduler domains.
9222 * When cpusets are enabled they take over this function.
1da177e4
LT
9223 */
9224static int update_sched_domains(struct notifier_block *nfb,
9225 unsigned long action, void *hcpu)
e761b772
MK
9226{
9227 switch (action) {
9228 case CPU_ONLINE:
9229 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9230 case CPU_DOWN_PREPARE:
9231 case CPU_DOWN_PREPARE_FROZEN:
9232 case CPU_DOWN_FAILED:
9233 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9234 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9235 return NOTIFY_OK;
9236
9237 default:
9238 return NOTIFY_DONE;
9239 }
9240}
9241#endif
9242
9243static int update_runtime(struct notifier_block *nfb,
9244 unsigned long action, void *hcpu)
1da177e4 9245{
7def2be1
PZ
9246 int cpu = (int)(long)hcpu;
9247
1da177e4 9248 switch (action) {
1da177e4 9249 case CPU_DOWN_PREPARE:
8bb78442 9250 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9251 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9252 return NOTIFY_OK;
9253
1da177e4 9254 case CPU_DOWN_FAILED:
8bb78442 9255 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9256 case CPU_ONLINE:
8bb78442 9257 case CPU_ONLINE_FROZEN:
7def2be1 9258 enable_runtime(cpu_rq(cpu));
e761b772
MK
9259 return NOTIFY_OK;
9260
1da177e4
LT
9261 default:
9262 return NOTIFY_DONE;
9263 }
1da177e4 9264}
1da177e4
LT
9265
9266void __init sched_init_smp(void)
9267{
dcc30a35
RR
9268 cpumask_var_t non_isolated_cpus;
9269
9270 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9271 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9272
434d53b0
MT
9273#if defined(CONFIG_NUMA)
9274 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9275 GFP_KERNEL);
9276 BUG_ON(sched_group_nodes_bycpu == NULL);
9277#endif
95402b38 9278 get_online_cpus();
712555ee 9279 mutex_lock(&sched_domains_mutex);
6ad4c188 9280 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9281 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9282 if (cpumask_empty(non_isolated_cpus))
9283 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9284 mutex_unlock(&sched_domains_mutex);
95402b38 9285 put_online_cpus();
e761b772
MK
9286
9287#ifndef CONFIG_CPUSETS
1da177e4
LT
9288 /* XXX: Theoretical race here - CPU may be hotplugged now */
9289 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9290#endif
9291
9292 /* RT runtime code needs to handle some hotplug events */
9293 hotcpu_notifier(update_runtime, 0);
9294
b328ca18 9295 init_hrtick();
5c1e1767
NP
9296
9297 /* Move init over to a non-isolated CPU */
dcc30a35 9298 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9299 BUG();
19978ca6 9300 sched_init_granularity();
dcc30a35 9301 free_cpumask_var(non_isolated_cpus);
4212823f 9302
0e3900e6 9303 init_sched_rt_class();
1da177e4
LT
9304}
9305#else
9306void __init sched_init_smp(void)
9307{
19978ca6 9308 sched_init_granularity();
1da177e4
LT
9309}
9310#endif /* CONFIG_SMP */
9311
cd1bb94b
AB
9312const_debug unsigned int sysctl_timer_migration = 1;
9313
1da177e4
LT
9314int in_sched_functions(unsigned long addr)
9315{
1da177e4
LT
9316 return in_lock_functions(addr) ||
9317 (addr >= (unsigned long)__sched_text_start
9318 && addr < (unsigned long)__sched_text_end);
9319}
9320
a9957449 9321static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9322{
9323 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9324 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9325#ifdef CONFIG_FAIR_GROUP_SCHED
9326 cfs_rq->rq = rq;
9327#endif
67e9fb2a 9328 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9329}
9330
fa85ae24
PZ
9331static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9332{
9333 struct rt_prio_array *array;
9334 int i;
9335
9336 array = &rt_rq->active;
9337 for (i = 0; i < MAX_RT_PRIO; i++) {
9338 INIT_LIST_HEAD(array->queue + i);
9339 __clear_bit(i, array->bitmap);
9340 }
9341 /* delimiter for bitsearch: */
9342 __set_bit(MAX_RT_PRIO, array->bitmap);
9343
052f1dc7 9344#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9345 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9346#ifdef CONFIG_SMP
e864c499 9347 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9348#endif
48d5e258 9349#endif
fa85ae24
PZ
9350#ifdef CONFIG_SMP
9351 rt_rq->rt_nr_migratory = 0;
fa85ae24 9352 rt_rq->overloaded = 0;
05fa785c 9353 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9354#endif
9355
9356 rt_rq->rt_time = 0;
9357 rt_rq->rt_throttled = 0;
ac086bc2 9358 rt_rq->rt_runtime = 0;
0986b11b 9359 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9360
052f1dc7 9361#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9362 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9363 rt_rq->rq = rq;
9364#endif
fa85ae24
PZ
9365}
9366
6f505b16 9367#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9368static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9369 struct sched_entity *se, int cpu, int add,
9370 struct sched_entity *parent)
6f505b16 9371{
ec7dc8ac 9372 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9373 tg->cfs_rq[cpu] = cfs_rq;
9374 init_cfs_rq(cfs_rq, rq);
9375 cfs_rq->tg = tg;
9376 if (add)
9377 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9378
9379 tg->se[cpu] = se;
354d60c2
DG
9380 /* se could be NULL for init_task_group */
9381 if (!se)
9382 return;
9383
ec7dc8ac
DG
9384 if (!parent)
9385 se->cfs_rq = &rq->cfs;
9386 else
9387 se->cfs_rq = parent->my_q;
9388
6f505b16
PZ
9389 se->my_q = cfs_rq;
9390 se->load.weight = tg->shares;
e05510d0 9391 se->load.inv_weight = 0;
ec7dc8ac 9392 se->parent = parent;
6f505b16 9393}
052f1dc7 9394#endif
6f505b16 9395
052f1dc7 9396#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9397static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9398 struct sched_rt_entity *rt_se, int cpu, int add,
9399 struct sched_rt_entity *parent)
6f505b16 9400{
ec7dc8ac
DG
9401 struct rq *rq = cpu_rq(cpu);
9402
6f505b16
PZ
9403 tg->rt_rq[cpu] = rt_rq;
9404 init_rt_rq(rt_rq, rq);
9405 rt_rq->tg = tg;
9406 rt_rq->rt_se = rt_se;
ac086bc2 9407 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9408 if (add)
9409 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9410
9411 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9412 if (!rt_se)
9413 return;
9414
ec7dc8ac
DG
9415 if (!parent)
9416 rt_se->rt_rq = &rq->rt;
9417 else
9418 rt_se->rt_rq = parent->my_q;
9419
6f505b16 9420 rt_se->my_q = rt_rq;
ec7dc8ac 9421 rt_se->parent = parent;
6f505b16
PZ
9422 INIT_LIST_HEAD(&rt_se->run_list);
9423}
9424#endif
9425
1da177e4
LT
9426void __init sched_init(void)
9427{
dd41f596 9428 int i, j;
434d53b0
MT
9429 unsigned long alloc_size = 0, ptr;
9430
9431#ifdef CONFIG_FAIR_GROUP_SCHED
9432 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9433#endif
9434#ifdef CONFIG_RT_GROUP_SCHED
9435 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9436#endif
9437#ifdef CONFIG_USER_SCHED
9438 alloc_size *= 2;
df7c8e84
RR
9439#endif
9440#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9441 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9442#endif
434d53b0 9443 if (alloc_size) {
36b7b6d4 9444 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9445
9446#ifdef CONFIG_FAIR_GROUP_SCHED
9447 init_task_group.se = (struct sched_entity **)ptr;
9448 ptr += nr_cpu_ids * sizeof(void **);
9449
9450 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9451 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9452
9453#ifdef CONFIG_USER_SCHED
9454 root_task_group.se = (struct sched_entity **)ptr;
9455 ptr += nr_cpu_ids * sizeof(void **);
9456
9457 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9458 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9459#endif /* CONFIG_USER_SCHED */
9460#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9461#ifdef CONFIG_RT_GROUP_SCHED
9462 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9463 ptr += nr_cpu_ids * sizeof(void **);
9464
9465 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9466 ptr += nr_cpu_ids * sizeof(void **);
9467
9468#ifdef CONFIG_USER_SCHED
9469 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9470 ptr += nr_cpu_ids * sizeof(void **);
9471
9472 root_task_group.rt_rq = (struct rt_rq **)ptr;
9473 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9474#endif /* CONFIG_USER_SCHED */
9475#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9476#ifdef CONFIG_CPUMASK_OFFSTACK
9477 for_each_possible_cpu(i) {
9478 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9479 ptr += cpumask_size();
9480 }
9481#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9482 }
dd41f596 9483
57d885fe
GH
9484#ifdef CONFIG_SMP
9485 init_defrootdomain();
9486#endif
9487
d0b27fa7
PZ
9488 init_rt_bandwidth(&def_rt_bandwidth,
9489 global_rt_period(), global_rt_runtime());
9490
9491#ifdef CONFIG_RT_GROUP_SCHED
9492 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9493 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9494#ifdef CONFIG_USER_SCHED
9495 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9496 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9497#endif /* CONFIG_USER_SCHED */
9498#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9499
052f1dc7 9500#ifdef CONFIG_GROUP_SCHED
6f505b16 9501 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9502 INIT_LIST_HEAD(&init_task_group.children);
9503
9504#ifdef CONFIG_USER_SCHED
9505 INIT_LIST_HEAD(&root_task_group.children);
9506 init_task_group.parent = &root_task_group;
9507 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9508#endif /* CONFIG_USER_SCHED */
9509#endif /* CONFIG_GROUP_SCHED */
6f505b16 9510
4a6cc4bd
JK
9511#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9512 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9513 __alignof__(unsigned long));
9514#endif
0a945022 9515 for_each_possible_cpu(i) {
70b97a7f 9516 struct rq *rq;
1da177e4
LT
9517
9518 rq = cpu_rq(i);
05fa785c 9519 raw_spin_lock_init(&rq->lock);
7897986b 9520 rq->nr_running = 0;
dce48a84
TG
9521 rq->calc_load_active = 0;
9522 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9523 init_cfs_rq(&rq->cfs, rq);
6f505b16 9524 init_rt_rq(&rq->rt, rq);
dd41f596 9525#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9526 init_task_group.shares = init_task_group_load;
6f505b16 9527 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9528#ifdef CONFIG_CGROUP_SCHED
9529 /*
9530 * How much cpu bandwidth does init_task_group get?
9531 *
9532 * In case of task-groups formed thr' the cgroup filesystem, it
9533 * gets 100% of the cpu resources in the system. This overall
9534 * system cpu resource is divided among the tasks of
9535 * init_task_group and its child task-groups in a fair manner,
9536 * based on each entity's (task or task-group's) weight
9537 * (se->load.weight).
9538 *
9539 * In other words, if init_task_group has 10 tasks of weight
9540 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9541 * then A0's share of the cpu resource is:
9542 *
0d905bca 9543 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9544 *
9545 * We achieve this by letting init_task_group's tasks sit
9546 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9547 */
ec7dc8ac 9548 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9549#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9550 root_task_group.shares = NICE_0_LOAD;
9551 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9552 /*
9553 * In case of task-groups formed thr' the user id of tasks,
9554 * init_task_group represents tasks belonging to root user.
9555 * Hence it forms a sibling of all subsequent groups formed.
9556 * In this case, init_task_group gets only a fraction of overall
9557 * system cpu resource, based on the weight assigned to root
9558 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9559 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9560 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9561 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9562 */
ec7dc8ac 9563 init_tg_cfs_entry(&init_task_group,
84e9dabf 9564 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9565 &per_cpu(init_sched_entity, i), i, 1,
9566 root_task_group.se[i]);
6f505b16 9567
052f1dc7 9568#endif
354d60c2
DG
9569#endif /* CONFIG_FAIR_GROUP_SCHED */
9570
9571 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9572#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9573 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9574#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9575 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9576#elif defined CONFIG_USER_SCHED
eff766a6 9577 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9578 init_tg_rt_entry(&init_task_group,
1871e52c 9579 &per_cpu(init_rt_rq_var, i),
eff766a6
PZ
9580 &per_cpu(init_sched_rt_entity, i), i, 1,
9581 root_task_group.rt_se[i]);
354d60c2 9582#endif
dd41f596 9583#endif
1da177e4 9584
dd41f596
IM
9585 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9586 rq->cpu_load[j] = 0;
1da177e4 9587#ifdef CONFIG_SMP
41c7ce9a 9588 rq->sd = NULL;
57d885fe 9589 rq->rd = NULL;
3f029d3c 9590 rq->post_schedule = 0;
1da177e4 9591 rq->active_balance = 0;
dd41f596 9592 rq->next_balance = jiffies;
1da177e4 9593 rq->push_cpu = 0;
0a2966b4 9594 rq->cpu = i;
1f11eb6a 9595 rq->online = 0;
1da177e4 9596 rq->migration_thread = NULL;
eae0c9df
MG
9597 rq->idle_stamp = 0;
9598 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9599 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9600 rq_attach_root(rq, &def_root_domain);
1da177e4 9601#endif
8f4d37ec 9602 init_rq_hrtick(rq);
1da177e4 9603 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9604 }
9605
2dd73a4f 9606 set_load_weight(&init_task);
b50f60ce 9607
e107be36
AK
9608#ifdef CONFIG_PREEMPT_NOTIFIERS
9609 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9610#endif
9611
c9819f45 9612#ifdef CONFIG_SMP
962cf36c 9613 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9614#endif
9615
b50f60ce 9616#ifdef CONFIG_RT_MUTEXES
1d615482 9617 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
9618#endif
9619
1da177e4
LT
9620 /*
9621 * The boot idle thread does lazy MMU switching as well:
9622 */
9623 atomic_inc(&init_mm.mm_count);
9624 enter_lazy_tlb(&init_mm, current);
9625
9626 /*
9627 * Make us the idle thread. Technically, schedule() should not be
9628 * called from this thread, however somewhere below it might be,
9629 * but because we are the idle thread, we just pick up running again
9630 * when this runqueue becomes "idle".
9631 */
9632 init_idle(current, smp_processor_id());
dce48a84
TG
9633
9634 calc_load_update = jiffies + LOAD_FREQ;
9635
dd41f596
IM
9636 /*
9637 * During early bootup we pretend to be a normal task:
9638 */
9639 current->sched_class = &fair_sched_class;
6892b75e 9640
6a7b3dc3 9641 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9642 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9643#ifdef CONFIG_SMP
7d1e6a9b 9644#ifdef CONFIG_NO_HZ
49557e62 9645 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9646 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9647#endif
bdddd296
RR
9648 /* May be allocated at isolcpus cmdline parse time */
9649 if (cpu_isolated_map == NULL)
9650 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9651#endif /* SMP */
6a7b3dc3 9652
cdd6c482 9653 perf_event_init();
0d905bca 9654
6892b75e 9655 scheduler_running = 1;
1da177e4
LT
9656}
9657
9658#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9659static inline int preempt_count_equals(int preempt_offset)
9660{
9661 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9662
9663 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9664}
9665
9666void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9667{
48f24c4d 9668#ifdef in_atomic
1da177e4
LT
9669 static unsigned long prev_jiffy; /* ratelimiting */
9670
e4aafea2
FW
9671 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9672 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9673 return;
9674 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9675 return;
9676 prev_jiffy = jiffies;
9677
663997d4
JP
9678 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9679 file, line);
9680 pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9681 in_atomic(), irqs_disabled(),
9682 current->pid, current->comm);
aef745fc
IM
9683
9684 debug_show_held_locks(current);
9685 if (irqs_disabled())
9686 print_irqtrace_events(current);
9687 dump_stack();
1da177e4
LT
9688#endif
9689}
9690EXPORT_SYMBOL(__might_sleep);
9691#endif
9692
9693#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9694static void normalize_task(struct rq *rq, struct task_struct *p)
9695{
9696 int on_rq;
3e51f33f 9697
3a5e4dc1
AK
9698 update_rq_clock(rq);
9699 on_rq = p->se.on_rq;
9700 if (on_rq)
9701 deactivate_task(rq, p, 0);
9702 __setscheduler(rq, p, SCHED_NORMAL, 0);
9703 if (on_rq) {
9704 activate_task(rq, p, 0);
9705 resched_task(rq->curr);
9706 }
9707}
9708
1da177e4
LT
9709void normalize_rt_tasks(void)
9710{
a0f98a1c 9711 struct task_struct *g, *p;
1da177e4 9712 unsigned long flags;
70b97a7f 9713 struct rq *rq;
1da177e4 9714
4cf5d77a 9715 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9716 do_each_thread(g, p) {
178be793
IM
9717 /*
9718 * Only normalize user tasks:
9719 */
9720 if (!p->mm)
9721 continue;
9722
6cfb0d5d 9723 p->se.exec_start = 0;
6cfb0d5d 9724#ifdef CONFIG_SCHEDSTATS
dd41f596 9725 p->se.wait_start = 0;
dd41f596 9726 p->se.sleep_start = 0;
dd41f596 9727 p->se.block_start = 0;
6cfb0d5d 9728#endif
dd41f596
IM
9729
9730 if (!rt_task(p)) {
9731 /*
9732 * Renice negative nice level userspace
9733 * tasks back to 0:
9734 */
9735 if (TASK_NICE(p) < 0 && p->mm)
9736 set_user_nice(p, 0);
1da177e4 9737 continue;
dd41f596 9738 }
1da177e4 9739
1d615482 9740 raw_spin_lock(&p->pi_lock);
b29739f9 9741 rq = __task_rq_lock(p);
1da177e4 9742
178be793 9743 normalize_task(rq, p);
3a5e4dc1 9744
b29739f9 9745 __task_rq_unlock(rq);
1d615482 9746 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
9747 } while_each_thread(g, p);
9748
4cf5d77a 9749 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9750}
9751
9752#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9753
9754#ifdef CONFIG_IA64
9755/*
9756 * These functions are only useful for the IA64 MCA handling.
9757 *
9758 * They can only be called when the whole system has been
9759 * stopped - every CPU needs to be quiescent, and no scheduling
9760 * activity can take place. Using them for anything else would
9761 * be a serious bug, and as a result, they aren't even visible
9762 * under any other configuration.
9763 */
9764
9765/**
9766 * curr_task - return the current task for a given cpu.
9767 * @cpu: the processor in question.
9768 *
9769 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9770 */
36c8b586 9771struct task_struct *curr_task(int cpu)
1df5c10a
LT
9772{
9773 return cpu_curr(cpu);
9774}
9775
9776/**
9777 * set_curr_task - set the current task for a given cpu.
9778 * @cpu: the processor in question.
9779 * @p: the task pointer to set.
9780 *
9781 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9782 * are serviced on a separate stack. It allows the architecture to switch the
9783 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9784 * must be called with all CPU's synchronized, and interrupts disabled, the
9785 * and caller must save the original value of the current task (see
9786 * curr_task() above) and restore that value before reenabling interrupts and
9787 * re-starting the system.
9788 *
9789 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9790 */
36c8b586 9791void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9792{
9793 cpu_curr(cpu) = p;
9794}
9795
9796#endif
29f59db3 9797
bccbe08a
PZ
9798#ifdef CONFIG_FAIR_GROUP_SCHED
9799static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9800{
9801 int i;
9802
9803 for_each_possible_cpu(i) {
9804 if (tg->cfs_rq)
9805 kfree(tg->cfs_rq[i]);
9806 if (tg->se)
9807 kfree(tg->se[i]);
6f505b16
PZ
9808 }
9809
9810 kfree(tg->cfs_rq);
9811 kfree(tg->se);
6f505b16
PZ
9812}
9813
ec7dc8ac
DG
9814static
9815int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9816{
29f59db3 9817 struct cfs_rq *cfs_rq;
eab17229 9818 struct sched_entity *se;
9b5b7751 9819 struct rq *rq;
29f59db3
SV
9820 int i;
9821
434d53b0 9822 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9823 if (!tg->cfs_rq)
9824 goto err;
434d53b0 9825 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9826 if (!tg->se)
9827 goto err;
052f1dc7
PZ
9828
9829 tg->shares = NICE_0_LOAD;
29f59db3
SV
9830
9831 for_each_possible_cpu(i) {
9b5b7751 9832 rq = cpu_rq(i);
29f59db3 9833
eab17229
LZ
9834 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9835 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9836 if (!cfs_rq)
9837 goto err;
9838
eab17229
LZ
9839 se = kzalloc_node(sizeof(struct sched_entity),
9840 GFP_KERNEL, cpu_to_node(i));
29f59db3 9841 if (!se)
dfc12eb2 9842 goto err_free_rq;
29f59db3 9843
eab17229 9844 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9845 }
9846
9847 return 1;
9848
dfc12eb2
PC
9849 err_free_rq:
9850 kfree(cfs_rq);
bccbe08a
PZ
9851 err:
9852 return 0;
9853}
9854
9855static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9856{
9857 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9858 &cpu_rq(cpu)->leaf_cfs_rq_list);
9859}
9860
9861static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9862{
9863 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9864}
6d6bc0ad 9865#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9866static inline void free_fair_sched_group(struct task_group *tg)
9867{
9868}
9869
ec7dc8ac
DG
9870static inline
9871int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9872{
9873 return 1;
9874}
9875
9876static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9877{
9878}
9879
9880static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9881{
9882}
6d6bc0ad 9883#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9884
9885#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9886static void free_rt_sched_group(struct task_group *tg)
9887{
9888 int i;
9889
d0b27fa7
PZ
9890 destroy_rt_bandwidth(&tg->rt_bandwidth);
9891
bccbe08a
PZ
9892 for_each_possible_cpu(i) {
9893 if (tg->rt_rq)
9894 kfree(tg->rt_rq[i]);
9895 if (tg->rt_se)
9896 kfree(tg->rt_se[i]);
9897 }
9898
9899 kfree(tg->rt_rq);
9900 kfree(tg->rt_se);
9901}
9902
ec7dc8ac
DG
9903static
9904int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9905{
9906 struct rt_rq *rt_rq;
eab17229 9907 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9908 struct rq *rq;
9909 int i;
9910
434d53b0 9911 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9912 if (!tg->rt_rq)
9913 goto err;
434d53b0 9914 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9915 if (!tg->rt_se)
9916 goto err;
9917
d0b27fa7
PZ
9918 init_rt_bandwidth(&tg->rt_bandwidth,
9919 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9920
9921 for_each_possible_cpu(i) {
9922 rq = cpu_rq(i);
9923
eab17229
LZ
9924 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9925 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9926 if (!rt_rq)
9927 goto err;
29f59db3 9928
eab17229
LZ
9929 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9930 GFP_KERNEL, cpu_to_node(i));
6f505b16 9931 if (!rt_se)
dfc12eb2 9932 goto err_free_rq;
29f59db3 9933
eab17229 9934 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9935 }
9936
bccbe08a
PZ
9937 return 1;
9938
dfc12eb2
PC
9939 err_free_rq:
9940 kfree(rt_rq);
bccbe08a
PZ
9941 err:
9942 return 0;
9943}
9944
9945static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9946{
9947 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9948 &cpu_rq(cpu)->leaf_rt_rq_list);
9949}
9950
9951static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9952{
9953 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9954}
6d6bc0ad 9955#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9956static inline void free_rt_sched_group(struct task_group *tg)
9957{
9958}
9959
ec7dc8ac
DG
9960static inline
9961int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9962{
9963 return 1;
9964}
9965
9966static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9967{
9968}
9969
9970static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9971{
9972}
6d6bc0ad 9973#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9974
d0b27fa7 9975#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9976static void free_sched_group(struct task_group *tg)
9977{
9978 free_fair_sched_group(tg);
9979 free_rt_sched_group(tg);
9980 kfree(tg);
9981}
9982
9983/* allocate runqueue etc for a new task group */
ec7dc8ac 9984struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9985{
9986 struct task_group *tg;
9987 unsigned long flags;
9988 int i;
9989
9990 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9991 if (!tg)
9992 return ERR_PTR(-ENOMEM);
9993
ec7dc8ac 9994 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9995 goto err;
9996
ec7dc8ac 9997 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9998 goto err;
9999
8ed36996 10000 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10001 for_each_possible_cpu(i) {
bccbe08a
PZ
10002 register_fair_sched_group(tg, i);
10003 register_rt_sched_group(tg, i);
9b5b7751 10004 }
6f505b16 10005 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10006
10007 WARN_ON(!parent); /* root should already exist */
10008
10009 tg->parent = parent;
f473aa5e 10010 INIT_LIST_HEAD(&tg->children);
09f2724a 10011 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10012 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10013
9b5b7751 10014 return tg;
29f59db3
SV
10015
10016err:
6f505b16 10017 free_sched_group(tg);
29f59db3
SV
10018 return ERR_PTR(-ENOMEM);
10019}
10020
9b5b7751 10021/* rcu callback to free various structures associated with a task group */
6f505b16 10022static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10023{
29f59db3 10024 /* now it should be safe to free those cfs_rqs */
6f505b16 10025 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10026}
10027
9b5b7751 10028/* Destroy runqueue etc associated with a task group */
4cf86d77 10029void sched_destroy_group(struct task_group *tg)
29f59db3 10030{
8ed36996 10031 unsigned long flags;
9b5b7751 10032 int i;
29f59db3 10033
8ed36996 10034 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10035 for_each_possible_cpu(i) {
bccbe08a
PZ
10036 unregister_fair_sched_group(tg, i);
10037 unregister_rt_sched_group(tg, i);
9b5b7751 10038 }
6f505b16 10039 list_del_rcu(&tg->list);
f473aa5e 10040 list_del_rcu(&tg->siblings);
8ed36996 10041 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10042
9b5b7751 10043 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10044 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10045}
10046
9b5b7751 10047/* change task's runqueue when it moves between groups.
3a252015
IM
10048 * The caller of this function should have put the task in its new group
10049 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10050 * reflect its new group.
9b5b7751
SV
10051 */
10052void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10053{
10054 int on_rq, running;
10055 unsigned long flags;
10056 struct rq *rq;
10057
10058 rq = task_rq_lock(tsk, &flags);
10059
29f59db3
SV
10060 update_rq_clock(rq);
10061
051a1d1a 10062 running = task_current(rq, tsk);
29f59db3
SV
10063 on_rq = tsk->se.on_rq;
10064
0e1f3483 10065 if (on_rq)
29f59db3 10066 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10067 if (unlikely(running))
10068 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10069
6f505b16 10070 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10071
810b3817
PZ
10072#ifdef CONFIG_FAIR_GROUP_SCHED
10073 if (tsk->sched_class->moved_group)
10074 tsk->sched_class->moved_group(tsk);
10075#endif
10076
0e1f3483
HS
10077 if (unlikely(running))
10078 tsk->sched_class->set_curr_task(rq);
10079 if (on_rq)
7074badb 10080 enqueue_task(rq, tsk, 0);
29f59db3 10081
29f59db3
SV
10082 task_rq_unlock(rq, &flags);
10083}
6d6bc0ad 10084#endif /* CONFIG_GROUP_SCHED */
29f59db3 10085
052f1dc7 10086#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10087static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10088{
10089 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10090 int on_rq;
10091
29f59db3 10092 on_rq = se->on_rq;
62fb1851 10093 if (on_rq)
29f59db3
SV
10094 dequeue_entity(cfs_rq, se, 0);
10095
10096 se->load.weight = shares;
e05510d0 10097 se->load.inv_weight = 0;
29f59db3 10098
62fb1851 10099 if (on_rq)
29f59db3 10100 enqueue_entity(cfs_rq, se, 0);
c09595f6 10101}
62fb1851 10102
c09595f6
PZ
10103static void set_se_shares(struct sched_entity *se, unsigned long shares)
10104{
10105 struct cfs_rq *cfs_rq = se->cfs_rq;
10106 struct rq *rq = cfs_rq->rq;
10107 unsigned long flags;
10108
05fa785c 10109 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 10110 __set_se_shares(se, shares);
05fa785c 10111 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10112}
10113
8ed36996
PZ
10114static DEFINE_MUTEX(shares_mutex);
10115
4cf86d77 10116int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10117{
10118 int i;
8ed36996 10119 unsigned long flags;
c61935fd 10120
ec7dc8ac
DG
10121 /*
10122 * We can't change the weight of the root cgroup.
10123 */
10124 if (!tg->se[0])
10125 return -EINVAL;
10126
18d95a28
PZ
10127 if (shares < MIN_SHARES)
10128 shares = MIN_SHARES;
cb4ad1ff
MX
10129 else if (shares > MAX_SHARES)
10130 shares = MAX_SHARES;
62fb1851 10131
8ed36996 10132 mutex_lock(&shares_mutex);
9b5b7751 10133 if (tg->shares == shares)
5cb350ba 10134 goto done;
29f59db3 10135
8ed36996 10136 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10137 for_each_possible_cpu(i)
10138 unregister_fair_sched_group(tg, i);
f473aa5e 10139 list_del_rcu(&tg->siblings);
8ed36996 10140 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10141
10142 /* wait for any ongoing reference to this group to finish */
10143 synchronize_sched();
10144
10145 /*
10146 * Now we are free to modify the group's share on each cpu
10147 * w/o tripping rebalance_share or load_balance_fair.
10148 */
9b5b7751 10149 tg->shares = shares;
c09595f6
PZ
10150 for_each_possible_cpu(i) {
10151 /*
10152 * force a rebalance
10153 */
10154 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10155 set_se_shares(tg->se[i], shares);
c09595f6 10156 }
29f59db3 10157
6b2d7700
SV
10158 /*
10159 * Enable load balance activity on this group, by inserting it back on
10160 * each cpu's rq->leaf_cfs_rq_list.
10161 */
8ed36996 10162 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10163 for_each_possible_cpu(i)
10164 register_fair_sched_group(tg, i);
f473aa5e 10165 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10166 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10167done:
8ed36996 10168 mutex_unlock(&shares_mutex);
9b5b7751 10169 return 0;
29f59db3
SV
10170}
10171
5cb350ba
DG
10172unsigned long sched_group_shares(struct task_group *tg)
10173{
10174 return tg->shares;
10175}
052f1dc7 10176#endif
5cb350ba 10177
052f1dc7 10178#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10179/*
9f0c1e56 10180 * Ensure that the real time constraints are schedulable.
6f505b16 10181 */
9f0c1e56
PZ
10182static DEFINE_MUTEX(rt_constraints_mutex);
10183
10184static unsigned long to_ratio(u64 period, u64 runtime)
10185{
10186 if (runtime == RUNTIME_INF)
9a7e0b18 10187 return 1ULL << 20;
9f0c1e56 10188
9a7e0b18 10189 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10190}
10191
9a7e0b18
PZ
10192/* Must be called with tasklist_lock held */
10193static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10194{
9a7e0b18 10195 struct task_struct *g, *p;
b40b2e8e 10196
9a7e0b18
PZ
10197 do_each_thread(g, p) {
10198 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10199 return 1;
10200 } while_each_thread(g, p);
b40b2e8e 10201
9a7e0b18
PZ
10202 return 0;
10203}
b40b2e8e 10204
9a7e0b18
PZ
10205struct rt_schedulable_data {
10206 struct task_group *tg;
10207 u64 rt_period;
10208 u64 rt_runtime;
10209};
b40b2e8e 10210
9a7e0b18
PZ
10211static int tg_schedulable(struct task_group *tg, void *data)
10212{
10213 struct rt_schedulable_data *d = data;
10214 struct task_group *child;
10215 unsigned long total, sum = 0;
10216 u64 period, runtime;
b40b2e8e 10217
9a7e0b18
PZ
10218 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10219 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10220
9a7e0b18
PZ
10221 if (tg == d->tg) {
10222 period = d->rt_period;
10223 runtime = d->rt_runtime;
b40b2e8e 10224 }
b40b2e8e 10225
98a4826b
PZ
10226#ifdef CONFIG_USER_SCHED
10227 if (tg == &root_task_group) {
10228 period = global_rt_period();
10229 runtime = global_rt_runtime();
10230 }
10231#endif
10232
4653f803
PZ
10233 /*
10234 * Cannot have more runtime than the period.
10235 */
10236 if (runtime > period && runtime != RUNTIME_INF)
10237 return -EINVAL;
6f505b16 10238
4653f803
PZ
10239 /*
10240 * Ensure we don't starve existing RT tasks.
10241 */
9a7e0b18
PZ
10242 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10243 return -EBUSY;
6f505b16 10244
9a7e0b18 10245 total = to_ratio(period, runtime);
6f505b16 10246
4653f803
PZ
10247 /*
10248 * Nobody can have more than the global setting allows.
10249 */
10250 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10251 return -EINVAL;
6f505b16 10252
4653f803
PZ
10253 /*
10254 * The sum of our children's runtime should not exceed our own.
10255 */
9a7e0b18
PZ
10256 list_for_each_entry_rcu(child, &tg->children, siblings) {
10257 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10258 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10259
9a7e0b18
PZ
10260 if (child == d->tg) {
10261 period = d->rt_period;
10262 runtime = d->rt_runtime;
10263 }
6f505b16 10264
9a7e0b18 10265 sum += to_ratio(period, runtime);
9f0c1e56 10266 }
6f505b16 10267
9a7e0b18
PZ
10268 if (sum > total)
10269 return -EINVAL;
10270
10271 return 0;
6f505b16
PZ
10272}
10273
9a7e0b18 10274static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10275{
9a7e0b18
PZ
10276 struct rt_schedulable_data data = {
10277 .tg = tg,
10278 .rt_period = period,
10279 .rt_runtime = runtime,
10280 };
10281
10282 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10283}
10284
d0b27fa7
PZ
10285static int tg_set_bandwidth(struct task_group *tg,
10286 u64 rt_period, u64 rt_runtime)
6f505b16 10287{
ac086bc2 10288 int i, err = 0;
9f0c1e56 10289
9f0c1e56 10290 mutex_lock(&rt_constraints_mutex);
521f1a24 10291 read_lock(&tasklist_lock);
9a7e0b18
PZ
10292 err = __rt_schedulable(tg, rt_period, rt_runtime);
10293 if (err)
9f0c1e56 10294 goto unlock;
ac086bc2 10295
0986b11b 10296 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10297 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10298 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10299
10300 for_each_possible_cpu(i) {
10301 struct rt_rq *rt_rq = tg->rt_rq[i];
10302
0986b11b 10303 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10304 rt_rq->rt_runtime = rt_runtime;
0986b11b 10305 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10306 }
0986b11b 10307 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10308 unlock:
521f1a24 10309 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10310 mutex_unlock(&rt_constraints_mutex);
10311
10312 return err;
6f505b16
PZ
10313}
10314
d0b27fa7
PZ
10315int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10316{
10317 u64 rt_runtime, rt_period;
10318
10319 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10320 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10321 if (rt_runtime_us < 0)
10322 rt_runtime = RUNTIME_INF;
10323
10324 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10325}
10326
9f0c1e56
PZ
10327long sched_group_rt_runtime(struct task_group *tg)
10328{
10329 u64 rt_runtime_us;
10330
d0b27fa7 10331 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10332 return -1;
10333
d0b27fa7 10334 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10335 do_div(rt_runtime_us, NSEC_PER_USEC);
10336 return rt_runtime_us;
10337}
d0b27fa7
PZ
10338
10339int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10340{
10341 u64 rt_runtime, rt_period;
10342
10343 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10344 rt_runtime = tg->rt_bandwidth.rt_runtime;
10345
619b0488
R
10346 if (rt_period == 0)
10347 return -EINVAL;
10348
d0b27fa7
PZ
10349 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10350}
10351
10352long sched_group_rt_period(struct task_group *tg)
10353{
10354 u64 rt_period_us;
10355
10356 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10357 do_div(rt_period_us, NSEC_PER_USEC);
10358 return rt_period_us;
10359}
10360
10361static int sched_rt_global_constraints(void)
10362{
4653f803 10363 u64 runtime, period;
d0b27fa7
PZ
10364 int ret = 0;
10365
ec5d4989
HS
10366 if (sysctl_sched_rt_period <= 0)
10367 return -EINVAL;
10368
4653f803
PZ
10369 runtime = global_rt_runtime();
10370 period = global_rt_period();
10371
10372 /*
10373 * Sanity check on the sysctl variables.
10374 */
10375 if (runtime > period && runtime != RUNTIME_INF)
10376 return -EINVAL;
10b612f4 10377
d0b27fa7 10378 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10379 read_lock(&tasklist_lock);
4653f803 10380 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10381 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10382 mutex_unlock(&rt_constraints_mutex);
10383
10384 return ret;
10385}
54e99124
DG
10386
10387int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10388{
10389 /* Don't accept realtime tasks when there is no way for them to run */
10390 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10391 return 0;
10392
10393 return 1;
10394}
10395
6d6bc0ad 10396#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10397static int sched_rt_global_constraints(void)
10398{
ac086bc2
PZ
10399 unsigned long flags;
10400 int i;
10401
ec5d4989
HS
10402 if (sysctl_sched_rt_period <= 0)
10403 return -EINVAL;
10404
60aa605d
PZ
10405 /*
10406 * There's always some RT tasks in the root group
10407 * -- migration, kstopmachine etc..
10408 */
10409 if (sysctl_sched_rt_runtime == 0)
10410 return -EBUSY;
10411
0986b11b 10412 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
10413 for_each_possible_cpu(i) {
10414 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10415
0986b11b 10416 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10417 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 10418 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10419 }
0986b11b 10420 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 10421
d0b27fa7
PZ
10422 return 0;
10423}
6d6bc0ad 10424#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10425
10426int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10427 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10428 loff_t *ppos)
10429{
10430 int ret;
10431 int old_period, old_runtime;
10432 static DEFINE_MUTEX(mutex);
10433
10434 mutex_lock(&mutex);
10435 old_period = sysctl_sched_rt_period;
10436 old_runtime = sysctl_sched_rt_runtime;
10437
8d65af78 10438 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10439
10440 if (!ret && write) {
10441 ret = sched_rt_global_constraints();
10442 if (ret) {
10443 sysctl_sched_rt_period = old_period;
10444 sysctl_sched_rt_runtime = old_runtime;
10445 } else {
10446 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10447 def_rt_bandwidth.rt_period =
10448 ns_to_ktime(global_rt_period());
10449 }
10450 }
10451 mutex_unlock(&mutex);
10452
10453 return ret;
10454}
68318b8e 10455
052f1dc7 10456#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10457
10458/* return corresponding task_group object of a cgroup */
2b01dfe3 10459static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10460{
2b01dfe3
PM
10461 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10462 struct task_group, css);
68318b8e
SV
10463}
10464
10465static struct cgroup_subsys_state *
2b01dfe3 10466cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10467{
ec7dc8ac 10468 struct task_group *tg, *parent;
68318b8e 10469
2b01dfe3 10470 if (!cgrp->parent) {
68318b8e 10471 /* This is early initialization for the top cgroup */
68318b8e
SV
10472 return &init_task_group.css;
10473 }
10474
ec7dc8ac
DG
10475 parent = cgroup_tg(cgrp->parent);
10476 tg = sched_create_group(parent);
68318b8e
SV
10477 if (IS_ERR(tg))
10478 return ERR_PTR(-ENOMEM);
10479
68318b8e
SV
10480 return &tg->css;
10481}
10482
41a2d6cf
IM
10483static void
10484cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10485{
2b01dfe3 10486 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10487
10488 sched_destroy_group(tg);
10489}
10490
41a2d6cf 10491static int
be367d09 10492cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10493{
b68aa230 10494#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10495 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10496 return -EINVAL;
10497#else
68318b8e
SV
10498 /* We don't support RT-tasks being in separate groups */
10499 if (tsk->sched_class != &fair_sched_class)
10500 return -EINVAL;
b68aa230 10501#endif
be367d09
BB
10502 return 0;
10503}
68318b8e 10504
be367d09
BB
10505static int
10506cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10507 struct task_struct *tsk, bool threadgroup)
10508{
10509 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10510 if (retval)
10511 return retval;
10512 if (threadgroup) {
10513 struct task_struct *c;
10514 rcu_read_lock();
10515 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10516 retval = cpu_cgroup_can_attach_task(cgrp, c);
10517 if (retval) {
10518 rcu_read_unlock();
10519 return retval;
10520 }
10521 }
10522 rcu_read_unlock();
10523 }
68318b8e
SV
10524 return 0;
10525}
10526
10527static void
2b01dfe3 10528cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10529 struct cgroup *old_cont, struct task_struct *tsk,
10530 bool threadgroup)
68318b8e
SV
10531{
10532 sched_move_task(tsk);
be367d09
BB
10533 if (threadgroup) {
10534 struct task_struct *c;
10535 rcu_read_lock();
10536 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10537 sched_move_task(c);
10538 }
10539 rcu_read_unlock();
10540 }
68318b8e
SV
10541}
10542
052f1dc7 10543#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10544static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10545 u64 shareval)
68318b8e 10546{
2b01dfe3 10547 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10548}
10549
f4c753b7 10550static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10551{
2b01dfe3 10552 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10553
10554 return (u64) tg->shares;
10555}
6d6bc0ad 10556#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10557
052f1dc7 10558#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10559static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10560 s64 val)
6f505b16 10561{
06ecb27c 10562 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10563}
10564
06ecb27c 10565static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10566{
06ecb27c 10567 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10568}
d0b27fa7
PZ
10569
10570static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10571 u64 rt_period_us)
10572{
10573 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10574}
10575
10576static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10577{
10578 return sched_group_rt_period(cgroup_tg(cgrp));
10579}
6d6bc0ad 10580#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10581
fe5c7cc2 10582static struct cftype cpu_files[] = {
052f1dc7 10583#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10584 {
10585 .name = "shares",
f4c753b7
PM
10586 .read_u64 = cpu_shares_read_u64,
10587 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10588 },
052f1dc7
PZ
10589#endif
10590#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10591 {
9f0c1e56 10592 .name = "rt_runtime_us",
06ecb27c
PM
10593 .read_s64 = cpu_rt_runtime_read,
10594 .write_s64 = cpu_rt_runtime_write,
6f505b16 10595 },
d0b27fa7
PZ
10596 {
10597 .name = "rt_period_us",
f4c753b7
PM
10598 .read_u64 = cpu_rt_period_read_uint,
10599 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10600 },
052f1dc7 10601#endif
68318b8e
SV
10602};
10603
10604static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10605{
fe5c7cc2 10606 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10607}
10608
10609struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10610 .name = "cpu",
10611 .create = cpu_cgroup_create,
10612 .destroy = cpu_cgroup_destroy,
10613 .can_attach = cpu_cgroup_can_attach,
10614 .attach = cpu_cgroup_attach,
10615 .populate = cpu_cgroup_populate,
10616 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10617 .early_init = 1,
10618};
10619
052f1dc7 10620#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10621
10622#ifdef CONFIG_CGROUP_CPUACCT
10623
10624/*
10625 * CPU accounting code for task groups.
10626 *
10627 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10628 * (balbir@in.ibm.com).
10629 */
10630
934352f2 10631/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10632struct cpuacct {
10633 struct cgroup_subsys_state css;
10634 /* cpuusage holds pointer to a u64-type object on every cpu */
10635 u64 *cpuusage;
ef12fefa 10636 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10637 struct cpuacct *parent;
d842de87
SV
10638};
10639
10640struct cgroup_subsys cpuacct_subsys;
10641
10642/* return cpu accounting group corresponding to this container */
32cd756a 10643static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10644{
32cd756a 10645 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10646 struct cpuacct, css);
10647}
10648
10649/* return cpu accounting group to which this task belongs */
10650static inline struct cpuacct *task_ca(struct task_struct *tsk)
10651{
10652 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10653 struct cpuacct, css);
10654}
10655
10656/* create a new cpu accounting group */
10657static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10658 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10659{
10660 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10661 int i;
d842de87
SV
10662
10663 if (!ca)
ef12fefa 10664 goto out;
d842de87
SV
10665
10666 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10667 if (!ca->cpuusage)
10668 goto out_free_ca;
10669
10670 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10671 if (percpu_counter_init(&ca->cpustat[i], 0))
10672 goto out_free_counters;
d842de87 10673
934352f2
BR
10674 if (cgrp->parent)
10675 ca->parent = cgroup_ca(cgrp->parent);
10676
d842de87 10677 return &ca->css;
ef12fefa
BR
10678
10679out_free_counters:
10680 while (--i >= 0)
10681 percpu_counter_destroy(&ca->cpustat[i]);
10682 free_percpu(ca->cpuusage);
10683out_free_ca:
10684 kfree(ca);
10685out:
10686 return ERR_PTR(-ENOMEM);
d842de87
SV
10687}
10688
10689/* destroy an existing cpu accounting group */
41a2d6cf 10690static void
32cd756a 10691cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10692{
32cd756a 10693 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10694 int i;
d842de87 10695
ef12fefa
BR
10696 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10697 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10698 free_percpu(ca->cpuusage);
10699 kfree(ca);
10700}
10701
720f5498
KC
10702static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10703{
b36128c8 10704 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10705 u64 data;
10706
10707#ifndef CONFIG_64BIT
10708 /*
10709 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10710 */
05fa785c 10711 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10712 data = *cpuusage;
05fa785c 10713 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10714#else
10715 data = *cpuusage;
10716#endif
10717
10718 return data;
10719}
10720
10721static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10722{
b36128c8 10723 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10724
10725#ifndef CONFIG_64BIT
10726 /*
10727 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10728 */
05fa785c 10729 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10730 *cpuusage = val;
05fa785c 10731 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10732#else
10733 *cpuusage = val;
10734#endif
10735}
10736
d842de87 10737/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10738static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10739{
32cd756a 10740 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10741 u64 totalcpuusage = 0;
10742 int i;
10743
720f5498
KC
10744 for_each_present_cpu(i)
10745 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10746
10747 return totalcpuusage;
10748}
10749
0297b803
DG
10750static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10751 u64 reset)
10752{
10753 struct cpuacct *ca = cgroup_ca(cgrp);
10754 int err = 0;
10755 int i;
10756
10757 if (reset) {
10758 err = -EINVAL;
10759 goto out;
10760 }
10761
720f5498
KC
10762 for_each_present_cpu(i)
10763 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10764
0297b803
DG
10765out:
10766 return err;
10767}
10768
e9515c3c
KC
10769static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10770 struct seq_file *m)
10771{
10772 struct cpuacct *ca = cgroup_ca(cgroup);
10773 u64 percpu;
10774 int i;
10775
10776 for_each_present_cpu(i) {
10777 percpu = cpuacct_cpuusage_read(ca, i);
10778 seq_printf(m, "%llu ", (unsigned long long) percpu);
10779 }
10780 seq_printf(m, "\n");
10781 return 0;
10782}
10783
ef12fefa
BR
10784static const char *cpuacct_stat_desc[] = {
10785 [CPUACCT_STAT_USER] = "user",
10786 [CPUACCT_STAT_SYSTEM] = "system",
10787};
10788
10789static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10790 struct cgroup_map_cb *cb)
10791{
10792 struct cpuacct *ca = cgroup_ca(cgrp);
10793 int i;
10794
10795 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10796 s64 val = percpu_counter_read(&ca->cpustat[i]);
10797 val = cputime64_to_clock_t(val);
10798 cb->fill(cb, cpuacct_stat_desc[i], val);
10799 }
10800 return 0;
10801}
10802
d842de87
SV
10803static struct cftype files[] = {
10804 {
10805 .name = "usage",
f4c753b7
PM
10806 .read_u64 = cpuusage_read,
10807 .write_u64 = cpuusage_write,
d842de87 10808 },
e9515c3c
KC
10809 {
10810 .name = "usage_percpu",
10811 .read_seq_string = cpuacct_percpu_seq_read,
10812 },
ef12fefa
BR
10813 {
10814 .name = "stat",
10815 .read_map = cpuacct_stats_show,
10816 },
d842de87
SV
10817};
10818
32cd756a 10819static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10820{
32cd756a 10821 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10822}
10823
10824/*
10825 * charge this task's execution time to its accounting group.
10826 *
10827 * called with rq->lock held.
10828 */
10829static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10830{
10831 struct cpuacct *ca;
934352f2 10832 int cpu;
d842de87 10833
c40c6f85 10834 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10835 return;
10836
934352f2 10837 cpu = task_cpu(tsk);
a18b83b7
BR
10838
10839 rcu_read_lock();
10840
d842de87 10841 ca = task_ca(tsk);
d842de87 10842
934352f2 10843 for (; ca; ca = ca->parent) {
b36128c8 10844 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10845 *cpuusage += cputime;
10846 }
a18b83b7
BR
10847
10848 rcu_read_unlock();
d842de87
SV
10849}
10850
ef12fefa
BR
10851/*
10852 * Charge the system/user time to the task's accounting group.
10853 */
10854static void cpuacct_update_stats(struct task_struct *tsk,
10855 enum cpuacct_stat_index idx, cputime_t val)
10856{
10857 struct cpuacct *ca;
10858
10859 if (unlikely(!cpuacct_subsys.active))
10860 return;
10861
10862 rcu_read_lock();
10863 ca = task_ca(tsk);
10864
10865 do {
10866 percpu_counter_add(&ca->cpustat[idx], val);
10867 ca = ca->parent;
10868 } while (ca);
10869 rcu_read_unlock();
10870}
10871
d842de87
SV
10872struct cgroup_subsys cpuacct_subsys = {
10873 .name = "cpuacct",
10874 .create = cpuacct_create,
10875 .destroy = cpuacct_destroy,
10876 .populate = cpuacct_populate,
10877 .subsys_id = cpuacct_subsys_id,
10878};
10879#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10880
10881#ifndef CONFIG_SMP
10882
10883int rcu_expedited_torture_stats(char *page)
10884{
10885 return 0;
10886}
10887EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10888
10889void synchronize_sched_expedited(void)
10890{
10891}
10892EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10893
10894#else /* #ifndef CONFIG_SMP */
10895
10896static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10897static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10898
10899#define RCU_EXPEDITED_STATE_POST -2
10900#define RCU_EXPEDITED_STATE_IDLE -1
10901
10902static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10903
10904int rcu_expedited_torture_stats(char *page)
10905{
10906 int cnt = 0;
10907 int cpu;
10908
10909 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10910 for_each_online_cpu(cpu) {
10911 cnt += sprintf(&page[cnt], " %d:%d",
10912 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10913 }
10914 cnt += sprintf(&page[cnt], "\n");
10915 return cnt;
10916}
10917EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10918
10919static long synchronize_sched_expedited_count;
10920
10921/*
10922 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10923 * approach to force grace period to end quickly. This consumes
10924 * significant time on all CPUs, and is thus not recommended for
10925 * any sort of common-case code.
10926 *
10927 * Note that it is illegal to call this function while holding any
10928 * lock that is acquired by a CPU-hotplug notifier. Failing to
10929 * observe this restriction will result in deadlock.
10930 */
10931void synchronize_sched_expedited(void)
10932{
10933 int cpu;
10934 unsigned long flags;
10935 bool need_full_sync = 0;
10936 struct rq *rq;
10937 struct migration_req *req;
10938 long snap;
10939 int trycount = 0;
10940
10941 smp_mb(); /* ensure prior mod happens before capturing snap. */
10942 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10943 get_online_cpus();
10944 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10945 put_online_cpus();
10946 if (trycount++ < 10)
10947 udelay(trycount * num_online_cpus());
10948 else {
10949 synchronize_sched();
10950 return;
10951 }
10952 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10953 smp_mb(); /* ensure test happens before caller kfree */
10954 return;
10955 }
10956 get_online_cpus();
10957 }
10958 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10959 for_each_online_cpu(cpu) {
10960 rq = cpu_rq(cpu);
10961 req = &per_cpu(rcu_migration_req, cpu);
10962 init_completion(&req->done);
10963 req->task = NULL;
10964 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 10965 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 10966 list_add(&req->list, &rq->migration_queue);
05fa785c 10967 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
10968 wake_up_process(rq->migration_thread);
10969 }
10970 for_each_online_cpu(cpu) {
10971 rcu_expedited_state = cpu;
10972 req = &per_cpu(rcu_migration_req, cpu);
10973 rq = cpu_rq(cpu);
10974 wait_for_completion(&req->done);
05fa785c 10975 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
10976 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10977 need_full_sync = 1;
10978 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 10979 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
10980 }
10981 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 10982 synchronize_sched_expedited_count++;
03b042bf
PM
10983 mutex_unlock(&rcu_sched_expedited_mutex);
10984 put_online_cpus();
10985 if (need_full_sync)
10986 synchronize_sched();
10987}
10988EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10989
10990#endif /* #else #ifndef CONFIG_SMP */
This page took 1.912536 seconds and 5 git commands to generate.