mm, page_alloc: reserve pageblocks for high-order atomic allocations on demand
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
1da177e4 65
7ee3d4e8 66#include <asm/sections.h>
1da177e4 67#include <asm/tlbflush.h>
ac924c60 68#include <asm/div64.h>
1da177e4
LT
69#include "internal.h"
70
c8e251fa
CS
71/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 73#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 74
72812019
LS
75#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76DEFINE_PER_CPU(int, numa_node);
77EXPORT_PER_CPU_SYMBOL(numa_node);
78#endif
79
7aac7898
LS
80#ifdef CONFIG_HAVE_MEMORYLESS_NODES
81/*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 89int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
90#endif
91
1da177e4 92/*
13808910 93 * Array of node states.
1da177e4 94 */
13808910
CL
95nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98#ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100#ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
102#endif
103#ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
105#endif
106 [N_CPU] = { { [0] = 1UL } },
107#endif /* NUMA */
108};
109EXPORT_SYMBOL(node_states);
110
c3d5f5f0
JL
111/* Protect totalram_pages and zone->managed_pages */
112static DEFINE_SPINLOCK(managed_page_count_lock);
113
6c231b7b 114unsigned long totalram_pages __read_mostly;
cb45b0e9 115unsigned long totalreserve_pages __read_mostly;
e48322ab 116unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
117/*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123unsigned long dirty_balance_reserve __read_mostly;
124
1b76b02f 125int percpu_pagelist_fraction;
dcce284a 126gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 127
bb14c2c7
VB
128/*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136static inline int get_pcppage_migratetype(struct page *page)
137{
138 return page->index;
139}
140
141static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142{
143 page->index = migratetype;
144}
145
452aa699
RW
146#ifdef CONFIG_PM_SLEEP
147/*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
c9e664f1
RW
155
156static gfp_t saved_gfp_mask;
157
158void pm_restore_gfp_mask(void)
452aa699
RW
159{
160 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
452aa699
RW
165}
166
c9e664f1 167void pm_restrict_gfp_mask(void)
452aa699 168{
452aa699 169 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
d0164adc 172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 173}
f90ac398
MG
174
175bool pm_suspended_storage(void)
176{
d0164adc 177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
178 return false;
179 return true;
180}
452aa699
RW
181#endif /* CONFIG_PM_SLEEP */
182
d9c23400
MG
183#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184int pageblock_order __read_mostly;
185#endif
186
d98c7a09 187static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 188
1da177e4
LT
189/*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
1da177e4 199 */
2f1b6248 200int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 201#ifdef CONFIG_ZONE_DMA
2f1b6248 202 256,
4b51d669 203#endif
fb0e7942 204#ifdef CONFIG_ZONE_DMA32
2f1b6248 205 256,
fb0e7942 206#endif
e53ef38d 207#ifdef CONFIG_HIGHMEM
2a1e274a 208 32,
e53ef38d 209#endif
2a1e274a 210 32,
2f1b6248 211};
1da177e4
LT
212
213EXPORT_SYMBOL(totalram_pages);
1da177e4 214
15ad7cdc 215static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 216#ifdef CONFIG_ZONE_DMA
2f1b6248 217 "DMA",
4b51d669 218#endif
fb0e7942 219#ifdef CONFIG_ZONE_DMA32
2f1b6248 220 "DMA32",
fb0e7942 221#endif
2f1b6248 222 "Normal",
e53ef38d 223#ifdef CONFIG_HIGHMEM
2a1e274a 224 "HighMem",
e53ef38d 225#endif
2a1e274a 226 "Movable",
033fbae9
DW
227#ifdef CONFIG_ZONE_DEVICE
228 "Device",
229#endif
2f1b6248
CL
230};
231
1da177e4 232int min_free_kbytes = 1024;
42aa83cb 233int user_min_free_kbytes = -1;
1da177e4 234
2c85f51d
JB
235static unsigned long __meminitdata nr_kernel_pages;
236static unsigned long __meminitdata nr_all_pages;
a3142c8e 237static unsigned long __meminitdata dma_reserve;
1da177e4 238
0ee332c1
TH
239#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
240static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
241static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
242static unsigned long __initdata required_kernelcore;
243static unsigned long __initdata required_movablecore;
244static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
245
246/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
247int movable_zone;
248EXPORT_SYMBOL(movable_zone);
249#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 250
418508c1
MS
251#if MAX_NUMNODES > 1
252int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 253int nr_online_nodes __read_mostly = 1;
418508c1 254EXPORT_SYMBOL(nr_node_ids);
62bc62a8 255EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
256#endif
257
9ef9acb0
MG
258int page_group_by_mobility_disabled __read_mostly;
259
3a80a7fa
MG
260#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
261static inline void reset_deferred_meminit(pg_data_t *pgdat)
262{
263 pgdat->first_deferred_pfn = ULONG_MAX;
264}
265
266/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 267static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 268{
ae026b2a 269 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
270 return true;
271
272 return false;
273}
274
7e18adb4
MG
275static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
276{
277 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
278 return true;
279
280 return false;
281}
282
3a80a7fa
MG
283/*
284 * Returns false when the remaining initialisation should be deferred until
285 * later in the boot cycle when it can be parallelised.
286 */
287static inline bool update_defer_init(pg_data_t *pgdat,
288 unsigned long pfn, unsigned long zone_end,
289 unsigned long *nr_initialised)
290{
291 /* Always populate low zones for address-contrained allocations */
292 if (zone_end < pgdat_end_pfn(pgdat))
293 return true;
294
295 /* Initialise at least 2G of the highest zone */
296 (*nr_initialised)++;
297 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
298 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
299 pgdat->first_deferred_pfn = pfn;
300 return false;
301 }
302
303 return true;
304}
305#else
306static inline void reset_deferred_meminit(pg_data_t *pgdat)
307{
308}
309
310static inline bool early_page_uninitialised(unsigned long pfn)
311{
312 return false;
313}
314
7e18adb4
MG
315static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
316{
317 return false;
318}
319
3a80a7fa
MG
320static inline bool update_defer_init(pg_data_t *pgdat,
321 unsigned long pfn, unsigned long zone_end,
322 unsigned long *nr_initialised)
323{
324 return true;
325}
326#endif
327
328
ee6f509c 329void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 330{
5d0f3f72
KM
331 if (unlikely(page_group_by_mobility_disabled &&
332 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
333 migratetype = MIGRATE_UNMOVABLE;
334
b2a0ac88
MG
335 set_pageblock_flags_group(page, (unsigned long)migratetype,
336 PB_migrate, PB_migrate_end);
337}
338
13e7444b 339#ifdef CONFIG_DEBUG_VM
c6a57e19 340static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 341{
bdc8cb98
DH
342 int ret = 0;
343 unsigned seq;
344 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 345 unsigned long sp, start_pfn;
c6a57e19 346
bdc8cb98
DH
347 do {
348 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
349 start_pfn = zone->zone_start_pfn;
350 sp = zone->spanned_pages;
108bcc96 351 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
352 ret = 1;
353 } while (zone_span_seqretry(zone, seq));
354
b5e6a5a2 355 if (ret)
613813e8
DH
356 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
357 pfn, zone_to_nid(zone), zone->name,
358 start_pfn, start_pfn + sp);
b5e6a5a2 359
bdc8cb98 360 return ret;
c6a57e19
DH
361}
362
363static int page_is_consistent(struct zone *zone, struct page *page)
364{
14e07298 365 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 366 return 0;
1da177e4 367 if (zone != page_zone(page))
c6a57e19
DH
368 return 0;
369
370 return 1;
371}
372/*
373 * Temporary debugging check for pages not lying within a given zone.
374 */
375static int bad_range(struct zone *zone, struct page *page)
376{
377 if (page_outside_zone_boundaries(zone, page))
1da177e4 378 return 1;
c6a57e19
DH
379 if (!page_is_consistent(zone, page))
380 return 1;
381
1da177e4
LT
382 return 0;
383}
13e7444b
NP
384#else
385static inline int bad_range(struct zone *zone, struct page *page)
386{
387 return 0;
388}
389#endif
390
d230dec1
KS
391static void bad_page(struct page *page, const char *reason,
392 unsigned long bad_flags)
1da177e4 393{
d936cf9b
HD
394 static unsigned long resume;
395 static unsigned long nr_shown;
396 static unsigned long nr_unshown;
397
2a7684a2
WF
398 /* Don't complain about poisoned pages */
399 if (PageHWPoison(page)) {
22b751c3 400 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
401 return;
402 }
403
d936cf9b
HD
404 /*
405 * Allow a burst of 60 reports, then keep quiet for that minute;
406 * or allow a steady drip of one report per second.
407 */
408 if (nr_shown == 60) {
409 if (time_before(jiffies, resume)) {
410 nr_unshown++;
411 goto out;
412 }
413 if (nr_unshown) {
1e9e6365
HD
414 printk(KERN_ALERT
415 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
416 nr_unshown);
417 nr_unshown = 0;
418 }
419 nr_shown = 0;
420 }
421 if (nr_shown++ == 0)
422 resume = jiffies + 60 * HZ;
423
1e9e6365 424 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 425 current->comm, page_to_pfn(page));
f0b791a3 426 dump_page_badflags(page, reason, bad_flags);
3dc14741 427
4f31888c 428 print_modules();
1da177e4 429 dump_stack();
d936cf9b 430out:
8cc3b392 431 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 432 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 433 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
434}
435
1da177e4
LT
436/*
437 * Higher-order pages are called "compound pages". They are structured thusly:
438 *
439 * The first PAGE_SIZE page is called the "head page".
440 *
441 * The remaining PAGE_SIZE pages are called "tail pages".
442 *
6416b9fa
WSH
443 * All pages have PG_compound set. All tail pages have their ->first_page
444 * pointing at the head page.
1da177e4 445 *
41d78ba5
HD
446 * The first tail page's ->lru.next holds the address of the compound page's
447 * put_page() function. Its ->lru.prev holds the order of allocation.
448 * This usage means that zero-order pages may not be compound.
1da177e4 449 */
d98c7a09
HD
450
451static void free_compound_page(struct page *page)
452{
d85f3385 453 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
454}
455
01ad1c08 456void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
457{
458 int i;
459 int nr_pages = 1 << order;
460
461 set_compound_page_dtor(page, free_compound_page);
462 set_compound_order(page, order);
463 __SetPageHead(page);
464 for (i = 1; i < nr_pages; i++) {
465 struct page *p = page + i;
58a84aa9 466 set_page_count(p, 0);
18229df5 467 p->first_page = page;
668f9abb
DR
468 /* Make sure p->first_page is always valid for PageTail() */
469 smp_wmb();
470 __SetPageTail(p);
18229df5
AW
471 }
472}
473
c0a32fc5
SG
474#ifdef CONFIG_DEBUG_PAGEALLOC
475unsigned int _debug_guardpage_minorder;
031bc574 476bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
477bool _debug_guardpage_enabled __read_mostly;
478
031bc574
JK
479static int __init early_debug_pagealloc(char *buf)
480{
481 if (!buf)
482 return -EINVAL;
483
484 if (strcmp(buf, "on") == 0)
485 _debug_pagealloc_enabled = true;
486
487 return 0;
488}
489early_param("debug_pagealloc", early_debug_pagealloc);
490
e30825f1
JK
491static bool need_debug_guardpage(void)
492{
031bc574
JK
493 /* If we don't use debug_pagealloc, we don't need guard page */
494 if (!debug_pagealloc_enabled())
495 return false;
496
e30825f1
JK
497 return true;
498}
499
500static void init_debug_guardpage(void)
501{
031bc574
JK
502 if (!debug_pagealloc_enabled())
503 return;
504
e30825f1
JK
505 _debug_guardpage_enabled = true;
506}
507
508struct page_ext_operations debug_guardpage_ops = {
509 .need = need_debug_guardpage,
510 .init = init_debug_guardpage,
511};
c0a32fc5
SG
512
513static int __init debug_guardpage_minorder_setup(char *buf)
514{
515 unsigned long res;
516
517 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
518 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
519 return 0;
520 }
521 _debug_guardpage_minorder = res;
522 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
523 return 0;
524}
525__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
526
2847cf95
JK
527static inline void set_page_guard(struct zone *zone, struct page *page,
528 unsigned int order, int migratetype)
c0a32fc5 529{
e30825f1
JK
530 struct page_ext *page_ext;
531
532 if (!debug_guardpage_enabled())
533 return;
534
535 page_ext = lookup_page_ext(page);
536 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
537
2847cf95
JK
538 INIT_LIST_HEAD(&page->lru);
539 set_page_private(page, order);
540 /* Guard pages are not available for any usage */
541 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
542}
543
2847cf95
JK
544static inline void clear_page_guard(struct zone *zone, struct page *page,
545 unsigned int order, int migratetype)
c0a32fc5 546{
e30825f1
JK
547 struct page_ext *page_ext;
548
549 if (!debug_guardpage_enabled())
550 return;
551
552 page_ext = lookup_page_ext(page);
553 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
554
2847cf95
JK
555 set_page_private(page, 0);
556 if (!is_migrate_isolate(migratetype))
557 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
558}
559#else
e30825f1 560struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
561static inline void set_page_guard(struct zone *zone, struct page *page,
562 unsigned int order, int migratetype) {}
563static inline void clear_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype) {}
c0a32fc5
SG
565#endif
566
7aeb09f9 567static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 568{
4c21e2f2 569 set_page_private(page, order);
676165a8 570 __SetPageBuddy(page);
1da177e4
LT
571}
572
573static inline void rmv_page_order(struct page *page)
574{
676165a8 575 __ClearPageBuddy(page);
4c21e2f2 576 set_page_private(page, 0);
1da177e4
LT
577}
578
1da177e4
LT
579/*
580 * This function checks whether a page is free && is the buddy
581 * we can do coalesce a page and its buddy if
13e7444b 582 * (a) the buddy is not in a hole &&
676165a8 583 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
584 * (c) a page and its buddy have the same order &&
585 * (d) a page and its buddy are in the same zone.
676165a8 586 *
cf6fe945
WSH
587 * For recording whether a page is in the buddy system, we set ->_mapcount
588 * PAGE_BUDDY_MAPCOUNT_VALUE.
589 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
590 * serialized by zone->lock.
1da177e4 591 *
676165a8 592 * For recording page's order, we use page_private(page).
1da177e4 593 */
cb2b95e1 594static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 595 unsigned int order)
1da177e4 596{
14e07298 597 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 598 return 0;
13e7444b 599
c0a32fc5 600 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
601 if (page_zone_id(page) != page_zone_id(buddy))
602 return 0;
603
4c5018ce
WY
604 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
605
c0a32fc5
SG
606 return 1;
607 }
608
cb2b95e1 609 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
610 /*
611 * zone check is done late to avoid uselessly
612 * calculating zone/node ids for pages that could
613 * never merge.
614 */
615 if (page_zone_id(page) != page_zone_id(buddy))
616 return 0;
617
4c5018ce
WY
618 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
619
6aa3001b 620 return 1;
676165a8 621 }
6aa3001b 622 return 0;
1da177e4
LT
623}
624
625/*
626 * Freeing function for a buddy system allocator.
627 *
628 * The concept of a buddy system is to maintain direct-mapped table
629 * (containing bit values) for memory blocks of various "orders".
630 * The bottom level table contains the map for the smallest allocatable
631 * units of memory (here, pages), and each level above it describes
632 * pairs of units from the levels below, hence, "buddies".
633 * At a high level, all that happens here is marking the table entry
634 * at the bottom level available, and propagating the changes upward
635 * as necessary, plus some accounting needed to play nicely with other
636 * parts of the VM system.
637 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
638 * free pages of length of (1 << order) and marked with _mapcount
639 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
640 * field.
1da177e4 641 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
642 * other. That is, if we allocate a small block, and both were
643 * free, the remainder of the region must be split into blocks.
1da177e4 644 * If a block is freed, and its buddy is also free, then this
5f63b720 645 * triggers coalescing into a block of larger size.
1da177e4 646 *
6d49e352 647 * -- nyc
1da177e4
LT
648 */
649
48db57f8 650static inline void __free_one_page(struct page *page,
dc4b0caf 651 unsigned long pfn,
ed0ae21d
MG
652 struct zone *zone, unsigned int order,
653 int migratetype)
1da177e4
LT
654{
655 unsigned long page_idx;
6dda9d55 656 unsigned long combined_idx;
43506fad 657 unsigned long uninitialized_var(buddy_idx);
6dda9d55 658 struct page *buddy;
3c605096 659 int max_order = MAX_ORDER;
1da177e4 660
d29bb978 661 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 662 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 663
ed0ae21d 664 VM_BUG_ON(migratetype == -1);
3c605096
JK
665 if (is_migrate_isolate(migratetype)) {
666 /*
667 * We restrict max order of merging to prevent merge
668 * between freepages on isolate pageblock and normal
669 * pageblock. Without this, pageblock isolation
670 * could cause incorrect freepage accounting.
671 */
672 max_order = min(MAX_ORDER, pageblock_order + 1);
673 } else {
8f82b55d 674 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 675 }
ed0ae21d 676
3c605096 677 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 678
309381fe
SL
679 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
680 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 681
3c605096 682 while (order < max_order - 1) {
43506fad
KC
683 buddy_idx = __find_buddy_index(page_idx, order);
684 buddy = page + (buddy_idx - page_idx);
cb2b95e1 685 if (!page_is_buddy(page, buddy, order))
3c82d0ce 686 break;
c0a32fc5
SG
687 /*
688 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
689 * merge with it and move up one order.
690 */
691 if (page_is_guard(buddy)) {
2847cf95 692 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
693 } else {
694 list_del(&buddy->lru);
695 zone->free_area[order].nr_free--;
696 rmv_page_order(buddy);
697 }
43506fad 698 combined_idx = buddy_idx & page_idx;
1da177e4
LT
699 page = page + (combined_idx - page_idx);
700 page_idx = combined_idx;
701 order++;
702 }
703 set_page_order(page, order);
6dda9d55
CZ
704
705 /*
706 * If this is not the largest possible page, check if the buddy
707 * of the next-highest order is free. If it is, it's possible
708 * that pages are being freed that will coalesce soon. In case,
709 * that is happening, add the free page to the tail of the list
710 * so it's less likely to be used soon and more likely to be merged
711 * as a higher order page
712 */
b7f50cfa 713 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 714 struct page *higher_page, *higher_buddy;
43506fad
KC
715 combined_idx = buddy_idx & page_idx;
716 higher_page = page + (combined_idx - page_idx);
717 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 718 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
719 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
720 list_add_tail(&page->lru,
721 &zone->free_area[order].free_list[migratetype]);
722 goto out;
723 }
724 }
725
726 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
727out:
1da177e4
LT
728 zone->free_area[order].nr_free++;
729}
730
224abf92 731static inline int free_pages_check(struct page *page)
1da177e4 732{
d230dec1 733 const char *bad_reason = NULL;
f0b791a3
DH
734 unsigned long bad_flags = 0;
735
736 if (unlikely(page_mapcount(page)))
737 bad_reason = "nonzero mapcount";
738 if (unlikely(page->mapping != NULL))
739 bad_reason = "non-NULL mapping";
740 if (unlikely(atomic_read(&page->_count) != 0))
741 bad_reason = "nonzero _count";
742 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
743 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
744 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
745 }
9edad6ea
JW
746#ifdef CONFIG_MEMCG
747 if (unlikely(page->mem_cgroup))
748 bad_reason = "page still charged to cgroup";
749#endif
f0b791a3
DH
750 if (unlikely(bad_reason)) {
751 bad_page(page, bad_reason, bad_flags);
79f4b7bf 752 return 1;
8cc3b392 753 }
90572890 754 page_cpupid_reset_last(page);
79f4b7bf
HD
755 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
756 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
757 return 0;
1da177e4
LT
758}
759
760/*
5f8dcc21 761 * Frees a number of pages from the PCP lists
1da177e4 762 * Assumes all pages on list are in same zone, and of same order.
207f36ee 763 * count is the number of pages to free.
1da177e4
LT
764 *
765 * If the zone was previously in an "all pages pinned" state then look to
766 * see if this freeing clears that state.
767 *
768 * And clear the zone's pages_scanned counter, to hold off the "all pages are
769 * pinned" detection logic.
770 */
5f8dcc21
MG
771static void free_pcppages_bulk(struct zone *zone, int count,
772 struct per_cpu_pages *pcp)
1da177e4 773{
5f8dcc21 774 int migratetype = 0;
a6f9edd6 775 int batch_free = 0;
72853e29 776 int to_free = count;
0d5d823a 777 unsigned long nr_scanned;
5f8dcc21 778
c54ad30c 779 spin_lock(&zone->lock);
0d5d823a
MG
780 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
781 if (nr_scanned)
782 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 783
72853e29 784 while (to_free) {
48db57f8 785 struct page *page;
5f8dcc21
MG
786 struct list_head *list;
787
788 /*
a6f9edd6
MG
789 * Remove pages from lists in a round-robin fashion. A
790 * batch_free count is maintained that is incremented when an
791 * empty list is encountered. This is so more pages are freed
792 * off fuller lists instead of spinning excessively around empty
793 * lists
5f8dcc21
MG
794 */
795 do {
a6f9edd6 796 batch_free++;
5f8dcc21
MG
797 if (++migratetype == MIGRATE_PCPTYPES)
798 migratetype = 0;
799 list = &pcp->lists[migratetype];
800 } while (list_empty(list));
48db57f8 801
1d16871d
NK
802 /* This is the only non-empty list. Free them all. */
803 if (batch_free == MIGRATE_PCPTYPES)
804 batch_free = to_free;
805
a6f9edd6 806 do {
770c8aaa
BZ
807 int mt; /* migratetype of the to-be-freed page */
808
a6f9edd6
MG
809 page = list_entry(list->prev, struct page, lru);
810 /* must delete as __free_one_page list manipulates */
811 list_del(&page->lru);
aa016d14 812
bb14c2c7 813 mt = get_pcppage_migratetype(page);
aa016d14
VB
814 /* MIGRATE_ISOLATE page should not go to pcplists */
815 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
816 /* Pageblock could have been isolated meanwhile */
8f82b55d 817 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 818 mt = get_pageblock_migratetype(page);
51bb1a40 819
dc4b0caf 820 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 821 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 822 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 823 }
c54ad30c 824 spin_unlock(&zone->lock);
1da177e4
LT
825}
826
dc4b0caf
MG
827static void free_one_page(struct zone *zone,
828 struct page *page, unsigned long pfn,
7aeb09f9 829 unsigned int order,
ed0ae21d 830 int migratetype)
1da177e4 831{
0d5d823a 832 unsigned long nr_scanned;
006d22d9 833 spin_lock(&zone->lock);
0d5d823a
MG
834 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
835 if (nr_scanned)
836 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 837
ad53f92e
JK
838 if (unlikely(has_isolate_pageblock(zone) ||
839 is_migrate_isolate(migratetype))) {
840 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 841 }
dc4b0caf 842 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 843 spin_unlock(&zone->lock);
48db57f8
NP
844}
845
81422f29
KS
846static int free_tail_pages_check(struct page *head_page, struct page *page)
847{
848 if (!IS_ENABLED(CONFIG_DEBUG_VM))
849 return 0;
850 if (unlikely(!PageTail(page))) {
851 bad_page(page, "PageTail not set", 0);
852 return 1;
853 }
854 if (unlikely(page->first_page != head_page)) {
855 bad_page(page, "first_page not consistent", 0);
856 return 1;
857 }
858 return 0;
859}
860
1e8ce83c
RH
861static void __meminit __init_single_page(struct page *page, unsigned long pfn,
862 unsigned long zone, int nid)
863{
1e8ce83c 864 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
865 init_page_count(page);
866 page_mapcount_reset(page);
867 page_cpupid_reset_last(page);
1e8ce83c 868
1e8ce83c
RH
869 INIT_LIST_HEAD(&page->lru);
870#ifdef WANT_PAGE_VIRTUAL
871 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
872 if (!is_highmem_idx(zone))
873 set_page_address(page, __va(pfn << PAGE_SHIFT));
874#endif
875}
876
877static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
878 int nid)
879{
880 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
881}
882
7e18adb4
MG
883#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
884static void init_reserved_page(unsigned long pfn)
885{
886 pg_data_t *pgdat;
887 int nid, zid;
888
889 if (!early_page_uninitialised(pfn))
890 return;
891
892 nid = early_pfn_to_nid(pfn);
893 pgdat = NODE_DATA(nid);
894
895 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
896 struct zone *zone = &pgdat->node_zones[zid];
897
898 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
899 break;
900 }
901 __init_single_pfn(pfn, zid, nid);
902}
903#else
904static inline void init_reserved_page(unsigned long pfn)
905{
906}
907#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
908
92923ca3
NZ
909/*
910 * Initialised pages do not have PageReserved set. This function is
911 * called for each range allocated by the bootmem allocator and
912 * marks the pages PageReserved. The remaining valid pages are later
913 * sent to the buddy page allocator.
914 */
7e18adb4 915void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
916{
917 unsigned long start_pfn = PFN_DOWN(start);
918 unsigned long end_pfn = PFN_UP(end);
919
7e18adb4
MG
920 for (; start_pfn < end_pfn; start_pfn++) {
921 if (pfn_valid(start_pfn)) {
922 struct page *page = pfn_to_page(start_pfn);
923
924 init_reserved_page(start_pfn);
925 SetPageReserved(page);
926 }
927 }
92923ca3
NZ
928}
929
ec95f53a 930static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 931{
81422f29
KS
932 bool compound = PageCompound(page);
933 int i, bad = 0;
1da177e4 934
ab1f306f 935 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 936 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 937
b413d48a 938 trace_mm_page_free(page, order);
b1eeab67 939 kmemcheck_free_shadow(page, order);
b8c73fc2 940 kasan_free_pages(page, order);
b1eeab67 941
8dd60a3a
AA
942 if (PageAnon(page))
943 page->mapping = NULL;
81422f29
KS
944 bad += free_pages_check(page);
945 for (i = 1; i < (1 << order); i++) {
946 if (compound)
947 bad += free_tail_pages_check(page, page + i);
8dd60a3a 948 bad += free_pages_check(page + i);
81422f29 949 }
8cc3b392 950 if (bad)
ec95f53a 951 return false;
689bcebf 952
48c96a36
JK
953 reset_page_owner(page, order);
954
3ac7fe5a 955 if (!PageHighMem(page)) {
b8af2941
PK
956 debug_check_no_locks_freed(page_address(page),
957 PAGE_SIZE << order);
3ac7fe5a
TG
958 debug_check_no_obj_freed(page_address(page),
959 PAGE_SIZE << order);
960 }
dafb1367 961 arch_free_page(page, order);
48db57f8 962 kernel_map_pages(page, 1 << order, 0);
dafb1367 963
ec95f53a
KM
964 return true;
965}
966
967static void __free_pages_ok(struct page *page, unsigned int order)
968{
969 unsigned long flags;
95e34412 970 int migratetype;
dc4b0caf 971 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
972
973 if (!free_pages_prepare(page, order))
974 return;
975
cfc47a28 976 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 977 local_irq_save(flags);
f8891e5e 978 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 979 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 980 local_irq_restore(flags);
1da177e4
LT
981}
982
0e1cc95b 983static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 984 unsigned long pfn, unsigned int order)
a226f6c8 985{
c3993076 986 unsigned int nr_pages = 1 << order;
e2d0bd2b 987 struct page *p = page;
c3993076 988 unsigned int loop;
a226f6c8 989
e2d0bd2b
YL
990 prefetchw(p);
991 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
992 prefetchw(p + 1);
c3993076
JW
993 __ClearPageReserved(p);
994 set_page_count(p, 0);
a226f6c8 995 }
e2d0bd2b
YL
996 __ClearPageReserved(p);
997 set_page_count(p, 0);
c3993076 998
e2d0bd2b 999 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1000 set_page_refcounted(page);
1001 __free_pages(page, order);
a226f6c8
DH
1002}
1003
75a592a4
MG
1004#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1005 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1006
75a592a4
MG
1007static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1008
1009int __meminit early_pfn_to_nid(unsigned long pfn)
1010{
7ace9917 1011 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1012 int nid;
1013
7ace9917 1014 spin_lock(&early_pfn_lock);
75a592a4 1015 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1016 if (nid < 0)
1017 nid = 0;
1018 spin_unlock(&early_pfn_lock);
1019
1020 return nid;
75a592a4
MG
1021}
1022#endif
1023
1024#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1025static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1026 struct mminit_pfnnid_cache *state)
1027{
1028 int nid;
1029
1030 nid = __early_pfn_to_nid(pfn, state);
1031 if (nid >= 0 && nid != node)
1032 return false;
1033 return true;
1034}
1035
1036/* Only safe to use early in boot when initialisation is single-threaded */
1037static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1038{
1039 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1040}
1041
1042#else
1043
1044static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1045{
1046 return true;
1047}
1048static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1049 struct mminit_pfnnid_cache *state)
1050{
1051 return true;
1052}
1053#endif
1054
1055
0e1cc95b 1056void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1057 unsigned int order)
1058{
1059 if (early_page_uninitialised(pfn))
1060 return;
1061 return __free_pages_boot_core(page, pfn, order);
1062}
1063
7e18adb4 1064#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1065static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1066 unsigned long pfn, int nr_pages)
1067{
1068 int i;
1069
1070 if (!page)
1071 return;
1072
1073 /* Free a large naturally-aligned chunk if possible */
1074 if (nr_pages == MAX_ORDER_NR_PAGES &&
1075 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1076 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1077 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1078 return;
1079 }
1080
1081 for (i = 0; i < nr_pages; i++, page++, pfn++)
1082 __free_pages_boot_core(page, pfn, 0);
1083}
1084
d3cd131d
NS
1085/* Completion tracking for deferred_init_memmap() threads */
1086static atomic_t pgdat_init_n_undone __initdata;
1087static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1088
1089static inline void __init pgdat_init_report_one_done(void)
1090{
1091 if (atomic_dec_and_test(&pgdat_init_n_undone))
1092 complete(&pgdat_init_all_done_comp);
1093}
0e1cc95b 1094
7e18adb4 1095/* Initialise remaining memory on a node */
0e1cc95b 1096static int __init deferred_init_memmap(void *data)
7e18adb4 1097{
0e1cc95b
MG
1098 pg_data_t *pgdat = data;
1099 int nid = pgdat->node_id;
7e18adb4
MG
1100 struct mminit_pfnnid_cache nid_init_state = { };
1101 unsigned long start = jiffies;
1102 unsigned long nr_pages = 0;
1103 unsigned long walk_start, walk_end;
1104 int i, zid;
1105 struct zone *zone;
7e18adb4 1106 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1107 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1108
0e1cc95b 1109 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1110 pgdat_init_report_one_done();
0e1cc95b
MG
1111 return 0;
1112 }
1113
1114 /* Bind memory initialisation thread to a local node if possible */
1115 if (!cpumask_empty(cpumask))
1116 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1117
1118 /* Sanity check boundaries */
1119 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1120 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1121 pgdat->first_deferred_pfn = ULONG_MAX;
1122
1123 /* Only the highest zone is deferred so find it */
1124 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1125 zone = pgdat->node_zones + zid;
1126 if (first_init_pfn < zone_end_pfn(zone))
1127 break;
1128 }
1129
1130 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1131 unsigned long pfn, end_pfn;
54608c3f 1132 struct page *page = NULL;
a4de83dd
MG
1133 struct page *free_base_page = NULL;
1134 unsigned long free_base_pfn = 0;
1135 int nr_to_free = 0;
7e18adb4
MG
1136
1137 end_pfn = min(walk_end, zone_end_pfn(zone));
1138 pfn = first_init_pfn;
1139 if (pfn < walk_start)
1140 pfn = walk_start;
1141 if (pfn < zone->zone_start_pfn)
1142 pfn = zone->zone_start_pfn;
1143
1144 for (; pfn < end_pfn; pfn++) {
54608c3f 1145 if (!pfn_valid_within(pfn))
a4de83dd 1146 goto free_range;
7e18adb4 1147
54608c3f
MG
1148 /*
1149 * Ensure pfn_valid is checked every
1150 * MAX_ORDER_NR_PAGES for memory holes
1151 */
1152 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1153 if (!pfn_valid(pfn)) {
1154 page = NULL;
a4de83dd 1155 goto free_range;
54608c3f
MG
1156 }
1157 }
1158
1159 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1160 page = NULL;
a4de83dd 1161 goto free_range;
54608c3f
MG
1162 }
1163
1164 /* Minimise pfn page lookups and scheduler checks */
1165 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1166 page++;
1167 } else {
a4de83dd
MG
1168 nr_pages += nr_to_free;
1169 deferred_free_range(free_base_page,
1170 free_base_pfn, nr_to_free);
1171 free_base_page = NULL;
1172 free_base_pfn = nr_to_free = 0;
1173
54608c3f
MG
1174 page = pfn_to_page(pfn);
1175 cond_resched();
1176 }
7e18adb4
MG
1177
1178 if (page->flags) {
1179 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1180 goto free_range;
7e18adb4
MG
1181 }
1182
1183 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1184 if (!free_base_page) {
1185 free_base_page = page;
1186 free_base_pfn = pfn;
1187 nr_to_free = 0;
1188 }
1189 nr_to_free++;
1190
1191 /* Where possible, batch up pages for a single free */
1192 continue;
1193free_range:
1194 /* Free the current block of pages to allocator */
1195 nr_pages += nr_to_free;
1196 deferred_free_range(free_base_page, free_base_pfn,
1197 nr_to_free);
1198 free_base_page = NULL;
1199 free_base_pfn = nr_to_free = 0;
7e18adb4 1200 }
a4de83dd 1201
7e18adb4
MG
1202 first_init_pfn = max(end_pfn, first_init_pfn);
1203 }
1204
1205 /* Sanity check that the next zone really is unpopulated */
1206 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1207
0e1cc95b 1208 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1209 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1210
1211 pgdat_init_report_one_done();
0e1cc95b
MG
1212 return 0;
1213}
1214
1215void __init page_alloc_init_late(void)
1216{
1217 int nid;
1218
d3cd131d
NS
1219 /* There will be num_node_state(N_MEMORY) threads */
1220 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1221 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1222 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1223 }
1224
1225 /* Block until all are initialised */
d3cd131d 1226 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1227
1228 /* Reinit limits that are based on free pages after the kernel is up */
1229 files_maxfiles_init();
7e18adb4
MG
1230}
1231#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1232
47118af0 1233#ifdef CONFIG_CMA
9cf510a5 1234/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1235void __init init_cma_reserved_pageblock(struct page *page)
1236{
1237 unsigned i = pageblock_nr_pages;
1238 struct page *p = page;
1239
1240 do {
1241 __ClearPageReserved(p);
1242 set_page_count(p, 0);
1243 } while (++p, --i);
1244
47118af0 1245 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1246
1247 if (pageblock_order >= MAX_ORDER) {
1248 i = pageblock_nr_pages;
1249 p = page;
1250 do {
1251 set_page_refcounted(p);
1252 __free_pages(p, MAX_ORDER - 1);
1253 p += MAX_ORDER_NR_PAGES;
1254 } while (i -= MAX_ORDER_NR_PAGES);
1255 } else {
1256 set_page_refcounted(page);
1257 __free_pages(page, pageblock_order);
1258 }
1259
3dcc0571 1260 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1261}
1262#endif
1da177e4
LT
1263
1264/*
1265 * The order of subdivision here is critical for the IO subsystem.
1266 * Please do not alter this order without good reasons and regression
1267 * testing. Specifically, as large blocks of memory are subdivided,
1268 * the order in which smaller blocks are delivered depends on the order
1269 * they're subdivided in this function. This is the primary factor
1270 * influencing the order in which pages are delivered to the IO
1271 * subsystem according to empirical testing, and this is also justified
1272 * by considering the behavior of a buddy system containing a single
1273 * large block of memory acted on by a series of small allocations.
1274 * This behavior is a critical factor in sglist merging's success.
1275 *
6d49e352 1276 * -- nyc
1da177e4 1277 */
085cc7d5 1278static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1279 int low, int high, struct free_area *area,
1280 int migratetype)
1da177e4
LT
1281{
1282 unsigned long size = 1 << high;
1283
1284 while (high > low) {
1285 area--;
1286 high--;
1287 size >>= 1;
309381fe 1288 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1289
2847cf95 1290 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1291 debug_guardpage_enabled() &&
2847cf95 1292 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1293 /*
1294 * Mark as guard pages (or page), that will allow to
1295 * merge back to allocator when buddy will be freed.
1296 * Corresponding page table entries will not be touched,
1297 * pages will stay not present in virtual address space
1298 */
2847cf95 1299 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1300 continue;
1301 }
b2a0ac88 1302 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1303 area->nr_free++;
1304 set_page_order(&page[size], high);
1305 }
1da177e4
LT
1306}
1307
1da177e4
LT
1308/*
1309 * This page is about to be returned from the page allocator
1310 */
2a7684a2 1311static inline int check_new_page(struct page *page)
1da177e4 1312{
d230dec1 1313 const char *bad_reason = NULL;
f0b791a3
DH
1314 unsigned long bad_flags = 0;
1315
1316 if (unlikely(page_mapcount(page)))
1317 bad_reason = "nonzero mapcount";
1318 if (unlikely(page->mapping != NULL))
1319 bad_reason = "non-NULL mapping";
1320 if (unlikely(atomic_read(&page->_count) != 0))
1321 bad_reason = "nonzero _count";
f4c18e6f
NH
1322 if (unlikely(page->flags & __PG_HWPOISON)) {
1323 bad_reason = "HWPoisoned (hardware-corrupted)";
1324 bad_flags = __PG_HWPOISON;
1325 }
f0b791a3
DH
1326 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1327 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1328 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1329 }
9edad6ea
JW
1330#ifdef CONFIG_MEMCG
1331 if (unlikely(page->mem_cgroup))
1332 bad_reason = "page still charged to cgroup";
1333#endif
f0b791a3
DH
1334 if (unlikely(bad_reason)) {
1335 bad_page(page, bad_reason, bad_flags);
689bcebf 1336 return 1;
8cc3b392 1337 }
2a7684a2
WF
1338 return 0;
1339}
1340
75379191
VB
1341static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1342 int alloc_flags)
2a7684a2
WF
1343{
1344 int i;
1345
1346 for (i = 0; i < (1 << order); i++) {
1347 struct page *p = page + i;
1348 if (unlikely(check_new_page(p)))
1349 return 1;
1350 }
689bcebf 1351
4c21e2f2 1352 set_page_private(page, 0);
7835e98b 1353 set_page_refcounted(page);
cc102509
NP
1354
1355 arch_alloc_page(page, order);
1da177e4 1356 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1357 kasan_alloc_pages(page, order);
17cf4406
NP
1358
1359 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1360 for (i = 0; i < (1 << order); i++)
1361 clear_highpage(page + i);
17cf4406
NP
1362
1363 if (order && (gfp_flags & __GFP_COMP))
1364 prep_compound_page(page, order);
1365
48c96a36
JK
1366 set_page_owner(page, order, gfp_flags);
1367
75379191 1368 /*
2f064f34 1369 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1370 * allocate the page. The expectation is that the caller is taking
1371 * steps that will free more memory. The caller should avoid the page
1372 * being used for !PFMEMALLOC purposes.
1373 */
2f064f34
MH
1374 if (alloc_flags & ALLOC_NO_WATERMARKS)
1375 set_page_pfmemalloc(page);
1376 else
1377 clear_page_pfmemalloc(page);
75379191 1378
689bcebf 1379 return 0;
1da177e4
LT
1380}
1381
56fd56b8
MG
1382/*
1383 * Go through the free lists for the given migratetype and remove
1384 * the smallest available page from the freelists
1385 */
728ec980
MG
1386static inline
1387struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1388 int migratetype)
1389{
1390 unsigned int current_order;
b8af2941 1391 struct free_area *area;
56fd56b8
MG
1392 struct page *page;
1393
1394 /* Find a page of the appropriate size in the preferred list */
1395 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1396 area = &(zone->free_area[current_order]);
1397 if (list_empty(&area->free_list[migratetype]))
1398 continue;
1399
1400 page = list_entry(area->free_list[migratetype].next,
1401 struct page, lru);
1402 list_del(&page->lru);
1403 rmv_page_order(page);
1404 area->nr_free--;
56fd56b8 1405 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1406 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1407 return page;
1408 }
1409
1410 return NULL;
1411}
1412
1413
b2a0ac88
MG
1414/*
1415 * This array describes the order lists are fallen back to when
1416 * the free lists for the desirable migrate type are depleted
1417 */
47118af0 1418static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1419 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1420 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1421 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1422#ifdef CONFIG_CMA
974a786e 1423 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1424#endif
194159fb 1425#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1426 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1427#endif
b2a0ac88
MG
1428};
1429
dc67647b
JK
1430#ifdef CONFIG_CMA
1431static struct page *__rmqueue_cma_fallback(struct zone *zone,
1432 unsigned int order)
1433{
1434 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1435}
1436#else
1437static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1438 unsigned int order) { return NULL; }
1439#endif
1440
c361be55
MG
1441/*
1442 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1443 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1444 * boundary. If alignment is required, use move_freepages_block()
1445 */
435b405c 1446int move_freepages(struct zone *zone,
b69a7288
AB
1447 struct page *start_page, struct page *end_page,
1448 int migratetype)
c361be55
MG
1449{
1450 struct page *page;
1451 unsigned long order;
d100313f 1452 int pages_moved = 0;
c361be55
MG
1453
1454#ifndef CONFIG_HOLES_IN_ZONE
1455 /*
1456 * page_zone is not safe to call in this context when
1457 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1458 * anyway as we check zone boundaries in move_freepages_block().
1459 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1460 * grouping pages by mobility
c361be55 1461 */
97ee4ba7 1462 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1463#endif
1464
1465 for (page = start_page; page <= end_page;) {
344c790e 1466 /* Make sure we are not inadvertently changing nodes */
309381fe 1467 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1468
c361be55
MG
1469 if (!pfn_valid_within(page_to_pfn(page))) {
1470 page++;
1471 continue;
1472 }
1473
1474 if (!PageBuddy(page)) {
1475 page++;
1476 continue;
1477 }
1478
1479 order = page_order(page);
84be48d8
KS
1480 list_move(&page->lru,
1481 &zone->free_area[order].free_list[migratetype]);
c361be55 1482 page += 1 << order;
d100313f 1483 pages_moved += 1 << order;
c361be55
MG
1484 }
1485
d100313f 1486 return pages_moved;
c361be55
MG
1487}
1488
ee6f509c 1489int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1490 int migratetype)
c361be55
MG
1491{
1492 unsigned long start_pfn, end_pfn;
1493 struct page *start_page, *end_page;
1494
1495 start_pfn = page_to_pfn(page);
d9c23400 1496 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1497 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1498 end_page = start_page + pageblock_nr_pages - 1;
1499 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1500
1501 /* Do not cross zone boundaries */
108bcc96 1502 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1503 start_page = page;
108bcc96 1504 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1505 return 0;
1506
1507 return move_freepages(zone, start_page, end_page, migratetype);
1508}
1509
2f66a68f
MG
1510static void change_pageblock_range(struct page *pageblock_page,
1511 int start_order, int migratetype)
1512{
1513 int nr_pageblocks = 1 << (start_order - pageblock_order);
1514
1515 while (nr_pageblocks--) {
1516 set_pageblock_migratetype(pageblock_page, migratetype);
1517 pageblock_page += pageblock_nr_pages;
1518 }
1519}
1520
fef903ef 1521/*
9c0415eb
VB
1522 * When we are falling back to another migratetype during allocation, try to
1523 * steal extra free pages from the same pageblocks to satisfy further
1524 * allocations, instead of polluting multiple pageblocks.
1525 *
1526 * If we are stealing a relatively large buddy page, it is likely there will
1527 * be more free pages in the pageblock, so try to steal them all. For
1528 * reclaimable and unmovable allocations, we steal regardless of page size,
1529 * as fragmentation caused by those allocations polluting movable pageblocks
1530 * is worse than movable allocations stealing from unmovable and reclaimable
1531 * pageblocks.
fef903ef 1532 */
4eb7dce6
JK
1533static bool can_steal_fallback(unsigned int order, int start_mt)
1534{
1535 /*
1536 * Leaving this order check is intended, although there is
1537 * relaxed order check in next check. The reason is that
1538 * we can actually steal whole pageblock if this condition met,
1539 * but, below check doesn't guarantee it and that is just heuristic
1540 * so could be changed anytime.
1541 */
1542 if (order >= pageblock_order)
1543 return true;
1544
1545 if (order >= pageblock_order / 2 ||
1546 start_mt == MIGRATE_RECLAIMABLE ||
1547 start_mt == MIGRATE_UNMOVABLE ||
1548 page_group_by_mobility_disabled)
1549 return true;
1550
1551 return false;
1552}
1553
1554/*
1555 * This function implements actual steal behaviour. If order is large enough,
1556 * we can steal whole pageblock. If not, we first move freepages in this
1557 * pageblock and check whether half of pages are moved or not. If half of
1558 * pages are moved, we can change migratetype of pageblock and permanently
1559 * use it's pages as requested migratetype in the future.
1560 */
1561static void steal_suitable_fallback(struct zone *zone, struct page *page,
1562 int start_type)
fef903ef
SB
1563{
1564 int current_order = page_order(page);
4eb7dce6 1565 int pages;
fef903ef 1566
fef903ef
SB
1567 /* Take ownership for orders >= pageblock_order */
1568 if (current_order >= pageblock_order) {
1569 change_pageblock_range(page, current_order, start_type);
3a1086fb 1570 return;
fef903ef
SB
1571 }
1572
4eb7dce6 1573 pages = move_freepages_block(zone, page, start_type);
fef903ef 1574
4eb7dce6
JK
1575 /* Claim the whole block if over half of it is free */
1576 if (pages >= (1 << (pageblock_order-1)) ||
1577 page_group_by_mobility_disabled)
1578 set_pageblock_migratetype(page, start_type);
1579}
1580
2149cdae
JK
1581/*
1582 * Check whether there is a suitable fallback freepage with requested order.
1583 * If only_stealable is true, this function returns fallback_mt only if
1584 * we can steal other freepages all together. This would help to reduce
1585 * fragmentation due to mixed migratetype pages in one pageblock.
1586 */
1587int find_suitable_fallback(struct free_area *area, unsigned int order,
1588 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1589{
1590 int i;
1591 int fallback_mt;
1592
1593 if (area->nr_free == 0)
1594 return -1;
1595
1596 *can_steal = false;
1597 for (i = 0;; i++) {
1598 fallback_mt = fallbacks[migratetype][i];
974a786e 1599 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1600 break;
1601
1602 if (list_empty(&area->free_list[fallback_mt]))
1603 continue;
fef903ef 1604
4eb7dce6
JK
1605 if (can_steal_fallback(order, migratetype))
1606 *can_steal = true;
1607
2149cdae
JK
1608 if (!only_stealable)
1609 return fallback_mt;
1610
1611 if (*can_steal)
1612 return fallback_mt;
fef903ef 1613 }
4eb7dce6
JK
1614
1615 return -1;
fef903ef
SB
1616}
1617
0aaa29a5
MG
1618/*
1619 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1620 * there are no empty page blocks that contain a page with a suitable order
1621 */
1622static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1623 unsigned int alloc_order)
1624{
1625 int mt;
1626 unsigned long max_managed, flags;
1627
1628 /*
1629 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1630 * Check is race-prone but harmless.
1631 */
1632 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1633 if (zone->nr_reserved_highatomic >= max_managed)
1634 return;
1635
1636 spin_lock_irqsave(&zone->lock, flags);
1637
1638 /* Recheck the nr_reserved_highatomic limit under the lock */
1639 if (zone->nr_reserved_highatomic >= max_managed)
1640 goto out_unlock;
1641
1642 /* Yoink! */
1643 mt = get_pageblock_migratetype(page);
1644 if (mt != MIGRATE_HIGHATOMIC &&
1645 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1646 zone->nr_reserved_highatomic += pageblock_nr_pages;
1647 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1648 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1649 }
1650
1651out_unlock:
1652 spin_unlock_irqrestore(&zone->lock, flags);
1653}
1654
1655/*
1656 * Used when an allocation is about to fail under memory pressure. This
1657 * potentially hurts the reliability of high-order allocations when under
1658 * intense memory pressure but failed atomic allocations should be easier
1659 * to recover from than an OOM.
1660 */
1661static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1662{
1663 struct zonelist *zonelist = ac->zonelist;
1664 unsigned long flags;
1665 struct zoneref *z;
1666 struct zone *zone;
1667 struct page *page;
1668 int order;
1669
1670 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1671 ac->nodemask) {
1672 /* Preserve at least one pageblock */
1673 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1674 continue;
1675
1676 spin_lock_irqsave(&zone->lock, flags);
1677 for (order = 0; order < MAX_ORDER; order++) {
1678 struct free_area *area = &(zone->free_area[order]);
1679
1680 if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
1681 continue;
1682
1683 page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
1684 struct page, lru);
1685
1686 /*
1687 * It should never happen but changes to locking could
1688 * inadvertently allow a per-cpu drain to add pages
1689 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1690 * and watch for underflows.
1691 */
1692 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1693 zone->nr_reserved_highatomic);
1694
1695 /*
1696 * Convert to ac->migratetype and avoid the normal
1697 * pageblock stealing heuristics. Minimally, the caller
1698 * is doing the work and needs the pages. More
1699 * importantly, if the block was always converted to
1700 * MIGRATE_UNMOVABLE or another type then the number
1701 * of pageblocks that cannot be completely freed
1702 * may increase.
1703 */
1704 set_pageblock_migratetype(page, ac->migratetype);
1705 move_freepages_block(zone, page, ac->migratetype);
1706 spin_unlock_irqrestore(&zone->lock, flags);
1707 return;
1708 }
1709 spin_unlock_irqrestore(&zone->lock, flags);
1710 }
1711}
1712
b2a0ac88 1713/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1714static inline struct page *
7aeb09f9 1715__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1716{
b8af2941 1717 struct free_area *area;
7aeb09f9 1718 unsigned int current_order;
b2a0ac88 1719 struct page *page;
4eb7dce6
JK
1720 int fallback_mt;
1721 bool can_steal;
b2a0ac88
MG
1722
1723 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1724 for (current_order = MAX_ORDER-1;
1725 current_order >= order && current_order <= MAX_ORDER-1;
1726 --current_order) {
4eb7dce6
JK
1727 area = &(zone->free_area[current_order]);
1728 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1729 start_migratetype, false, &can_steal);
4eb7dce6
JK
1730 if (fallback_mt == -1)
1731 continue;
b2a0ac88 1732
4eb7dce6
JK
1733 page = list_entry(area->free_list[fallback_mt].next,
1734 struct page, lru);
1735 if (can_steal)
1736 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1737
4eb7dce6
JK
1738 /* Remove the page from the freelists */
1739 area->nr_free--;
1740 list_del(&page->lru);
1741 rmv_page_order(page);
3a1086fb 1742
4eb7dce6
JK
1743 expand(zone, page, order, current_order, area,
1744 start_migratetype);
1745 /*
bb14c2c7 1746 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1747 * migratetype depending on the decisions in
bb14c2c7
VB
1748 * find_suitable_fallback(). This is OK as long as it does not
1749 * differ for MIGRATE_CMA pageblocks. Those can be used as
1750 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1751 */
bb14c2c7 1752 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1753
4eb7dce6
JK
1754 trace_mm_page_alloc_extfrag(page, order, current_order,
1755 start_migratetype, fallback_mt);
e0fff1bd 1756
4eb7dce6 1757 return page;
b2a0ac88
MG
1758 }
1759
728ec980 1760 return NULL;
b2a0ac88
MG
1761}
1762
56fd56b8 1763/*
1da177e4
LT
1764 * Do the hard work of removing an element from the buddy allocator.
1765 * Call me with the zone->lock already held.
1766 */
b2a0ac88 1767static struct page *__rmqueue(struct zone *zone, unsigned int order,
0aaa29a5 1768 int migratetype, gfp_t gfp_flags)
1da177e4 1769{
1da177e4
LT
1770 struct page *page;
1771
56fd56b8 1772 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1773 if (unlikely(!page)) {
dc67647b
JK
1774 if (migratetype == MIGRATE_MOVABLE)
1775 page = __rmqueue_cma_fallback(zone, order);
1776
1777 if (!page)
1778 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1779 }
1780
0d3d062a 1781 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1782 return page;
1da177e4
LT
1783}
1784
5f63b720 1785/*
1da177e4
LT
1786 * Obtain a specified number of elements from the buddy allocator, all under
1787 * a single hold of the lock, for efficiency. Add them to the supplied list.
1788 * Returns the number of new pages which were placed at *list.
1789 */
5f63b720 1790static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1791 unsigned long count, struct list_head *list,
b745bc85 1792 int migratetype, bool cold)
1da177e4 1793{
5bcc9f86 1794 int i;
5f63b720 1795
c54ad30c 1796 spin_lock(&zone->lock);
1da177e4 1797 for (i = 0; i < count; ++i) {
0aaa29a5 1798 struct page *page = __rmqueue(zone, order, migratetype, 0);
085cc7d5 1799 if (unlikely(page == NULL))
1da177e4 1800 break;
81eabcbe
MG
1801
1802 /*
1803 * Split buddy pages returned by expand() are received here
1804 * in physical page order. The page is added to the callers and
1805 * list and the list head then moves forward. From the callers
1806 * perspective, the linked list is ordered by page number in
1807 * some conditions. This is useful for IO devices that can
1808 * merge IO requests if the physical pages are ordered
1809 * properly.
1810 */
b745bc85 1811 if (likely(!cold))
e084b2d9
MG
1812 list_add(&page->lru, list);
1813 else
1814 list_add_tail(&page->lru, list);
81eabcbe 1815 list = &page->lru;
bb14c2c7 1816 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1817 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1818 -(1 << order));
1da177e4 1819 }
f2260e6b 1820 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1821 spin_unlock(&zone->lock);
085cc7d5 1822 return i;
1da177e4
LT
1823}
1824
4ae7c039 1825#ifdef CONFIG_NUMA
8fce4d8e 1826/*
4037d452
CL
1827 * Called from the vmstat counter updater to drain pagesets of this
1828 * currently executing processor on remote nodes after they have
1829 * expired.
1830 *
879336c3
CL
1831 * Note that this function must be called with the thread pinned to
1832 * a single processor.
8fce4d8e 1833 */
4037d452 1834void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1835{
4ae7c039 1836 unsigned long flags;
7be12fc9 1837 int to_drain, batch;
4ae7c039 1838
4037d452 1839 local_irq_save(flags);
4db0c3c2 1840 batch = READ_ONCE(pcp->batch);
7be12fc9 1841 to_drain = min(pcp->count, batch);
2a13515c
KM
1842 if (to_drain > 0) {
1843 free_pcppages_bulk(zone, to_drain, pcp);
1844 pcp->count -= to_drain;
1845 }
4037d452 1846 local_irq_restore(flags);
4ae7c039
CL
1847}
1848#endif
1849
9f8f2172 1850/*
93481ff0 1851 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1852 *
1853 * The processor must either be the current processor and the
1854 * thread pinned to the current processor or a processor that
1855 * is not online.
1856 */
93481ff0 1857static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1858{
c54ad30c 1859 unsigned long flags;
93481ff0
VB
1860 struct per_cpu_pageset *pset;
1861 struct per_cpu_pages *pcp;
1da177e4 1862
93481ff0
VB
1863 local_irq_save(flags);
1864 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1865
93481ff0
VB
1866 pcp = &pset->pcp;
1867 if (pcp->count) {
1868 free_pcppages_bulk(zone, pcp->count, pcp);
1869 pcp->count = 0;
1870 }
1871 local_irq_restore(flags);
1872}
3dfa5721 1873
93481ff0
VB
1874/*
1875 * Drain pcplists of all zones on the indicated processor.
1876 *
1877 * The processor must either be the current processor and the
1878 * thread pinned to the current processor or a processor that
1879 * is not online.
1880 */
1881static void drain_pages(unsigned int cpu)
1882{
1883 struct zone *zone;
1884
1885 for_each_populated_zone(zone) {
1886 drain_pages_zone(cpu, zone);
1da177e4
LT
1887 }
1888}
1da177e4 1889
9f8f2172
CL
1890/*
1891 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1892 *
1893 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1894 * the single zone's pages.
9f8f2172 1895 */
93481ff0 1896void drain_local_pages(struct zone *zone)
9f8f2172 1897{
93481ff0
VB
1898 int cpu = smp_processor_id();
1899
1900 if (zone)
1901 drain_pages_zone(cpu, zone);
1902 else
1903 drain_pages(cpu);
9f8f2172
CL
1904}
1905
1906/*
74046494
GBY
1907 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1908 *
93481ff0
VB
1909 * When zone parameter is non-NULL, spill just the single zone's pages.
1910 *
74046494
GBY
1911 * Note that this code is protected against sending an IPI to an offline
1912 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1913 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1914 * nothing keeps CPUs from showing up after we populated the cpumask and
1915 * before the call to on_each_cpu_mask().
9f8f2172 1916 */
93481ff0 1917void drain_all_pages(struct zone *zone)
9f8f2172 1918{
74046494 1919 int cpu;
74046494
GBY
1920
1921 /*
1922 * Allocate in the BSS so we wont require allocation in
1923 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1924 */
1925 static cpumask_t cpus_with_pcps;
1926
1927 /*
1928 * We don't care about racing with CPU hotplug event
1929 * as offline notification will cause the notified
1930 * cpu to drain that CPU pcps and on_each_cpu_mask
1931 * disables preemption as part of its processing
1932 */
1933 for_each_online_cpu(cpu) {
93481ff0
VB
1934 struct per_cpu_pageset *pcp;
1935 struct zone *z;
74046494 1936 bool has_pcps = false;
93481ff0
VB
1937
1938 if (zone) {
74046494 1939 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1940 if (pcp->pcp.count)
74046494 1941 has_pcps = true;
93481ff0
VB
1942 } else {
1943 for_each_populated_zone(z) {
1944 pcp = per_cpu_ptr(z->pageset, cpu);
1945 if (pcp->pcp.count) {
1946 has_pcps = true;
1947 break;
1948 }
74046494
GBY
1949 }
1950 }
93481ff0 1951
74046494
GBY
1952 if (has_pcps)
1953 cpumask_set_cpu(cpu, &cpus_with_pcps);
1954 else
1955 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1956 }
93481ff0
VB
1957 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1958 zone, 1);
9f8f2172
CL
1959}
1960
296699de 1961#ifdef CONFIG_HIBERNATION
1da177e4
LT
1962
1963void mark_free_pages(struct zone *zone)
1964{
f623f0db
RW
1965 unsigned long pfn, max_zone_pfn;
1966 unsigned long flags;
7aeb09f9 1967 unsigned int order, t;
1da177e4
LT
1968 struct list_head *curr;
1969
8080fc03 1970 if (zone_is_empty(zone))
1da177e4
LT
1971 return;
1972
1973 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1974
108bcc96 1975 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1976 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1977 if (pfn_valid(pfn)) {
1978 struct page *page = pfn_to_page(pfn);
1979
7be98234
RW
1980 if (!swsusp_page_is_forbidden(page))
1981 swsusp_unset_page_free(page);
f623f0db 1982 }
1da177e4 1983
b2a0ac88
MG
1984 for_each_migratetype_order(order, t) {
1985 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1986 unsigned long i;
1da177e4 1987
f623f0db
RW
1988 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1989 for (i = 0; i < (1UL << order); i++)
7be98234 1990 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1991 }
b2a0ac88 1992 }
1da177e4
LT
1993 spin_unlock_irqrestore(&zone->lock, flags);
1994}
e2c55dc8 1995#endif /* CONFIG_PM */
1da177e4 1996
1da177e4
LT
1997/*
1998 * Free a 0-order page
b745bc85 1999 * cold == true ? free a cold page : free a hot page
1da177e4 2000 */
b745bc85 2001void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2002{
2003 struct zone *zone = page_zone(page);
2004 struct per_cpu_pages *pcp;
2005 unsigned long flags;
dc4b0caf 2006 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2007 int migratetype;
1da177e4 2008
ec95f53a 2009 if (!free_pages_prepare(page, 0))
689bcebf
HD
2010 return;
2011
dc4b0caf 2012 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2013 set_pcppage_migratetype(page, migratetype);
1da177e4 2014 local_irq_save(flags);
f8891e5e 2015 __count_vm_event(PGFREE);
da456f14 2016
5f8dcc21
MG
2017 /*
2018 * We only track unmovable, reclaimable and movable on pcp lists.
2019 * Free ISOLATE pages back to the allocator because they are being
2020 * offlined but treat RESERVE as movable pages so we can get those
2021 * areas back if necessary. Otherwise, we may have to free
2022 * excessively into the page allocator
2023 */
2024 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2025 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2026 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2027 goto out;
2028 }
2029 migratetype = MIGRATE_MOVABLE;
2030 }
2031
99dcc3e5 2032 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2033 if (!cold)
5f8dcc21 2034 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2035 else
2036 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2037 pcp->count++;
48db57f8 2038 if (pcp->count >= pcp->high) {
4db0c3c2 2039 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2040 free_pcppages_bulk(zone, batch, pcp);
2041 pcp->count -= batch;
48db57f8 2042 }
5f8dcc21
MG
2043
2044out:
1da177e4 2045 local_irq_restore(flags);
1da177e4
LT
2046}
2047
cc59850e
KK
2048/*
2049 * Free a list of 0-order pages
2050 */
b745bc85 2051void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2052{
2053 struct page *page, *next;
2054
2055 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2056 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2057 free_hot_cold_page(page, cold);
2058 }
2059}
2060
8dfcc9ba
NP
2061/*
2062 * split_page takes a non-compound higher-order page, and splits it into
2063 * n (1<<order) sub-pages: page[0..n]
2064 * Each sub-page must be freed individually.
2065 *
2066 * Note: this is probably too low level an operation for use in drivers.
2067 * Please consult with lkml before using this in your driver.
2068 */
2069void split_page(struct page *page, unsigned int order)
2070{
2071 int i;
e2cfc911 2072 gfp_t gfp_mask;
8dfcc9ba 2073
309381fe
SL
2074 VM_BUG_ON_PAGE(PageCompound(page), page);
2075 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2076
2077#ifdef CONFIG_KMEMCHECK
2078 /*
2079 * Split shadow pages too, because free(page[0]) would
2080 * otherwise free the whole shadow.
2081 */
2082 if (kmemcheck_page_is_tracked(page))
2083 split_page(virt_to_page(page[0].shadow), order);
2084#endif
2085
e2cfc911
JK
2086 gfp_mask = get_page_owner_gfp(page);
2087 set_page_owner(page, 0, gfp_mask);
48c96a36 2088 for (i = 1; i < (1 << order); i++) {
7835e98b 2089 set_page_refcounted(page + i);
e2cfc911 2090 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2091 }
8dfcc9ba 2092}
5853ff23 2093EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2094
3c605096 2095int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2096{
748446bb
MG
2097 unsigned long watermark;
2098 struct zone *zone;
2139cbe6 2099 int mt;
748446bb
MG
2100
2101 BUG_ON(!PageBuddy(page));
2102
2103 zone = page_zone(page);
2e30abd1 2104 mt = get_pageblock_migratetype(page);
748446bb 2105
194159fb 2106 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2107 /* Obey watermarks as if the page was being allocated */
2108 watermark = low_wmark_pages(zone) + (1 << order);
2109 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2110 return 0;
2111
8fb74b9f 2112 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2113 }
748446bb
MG
2114
2115 /* Remove page from free list */
2116 list_del(&page->lru);
2117 zone->free_area[order].nr_free--;
2118 rmv_page_order(page);
2139cbe6 2119
e2cfc911 2120 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2121
8fb74b9f 2122 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2123 if (order >= pageblock_order - 1) {
2124 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2125 for (; page < endpage; page += pageblock_nr_pages) {
2126 int mt = get_pageblock_migratetype(page);
194159fb 2127 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2128 set_pageblock_migratetype(page,
2129 MIGRATE_MOVABLE);
2130 }
748446bb
MG
2131 }
2132
f3a14ced 2133
8fb74b9f 2134 return 1UL << order;
1fb3f8ca
MG
2135}
2136
2137/*
2138 * Similar to split_page except the page is already free. As this is only
2139 * being used for migration, the migratetype of the block also changes.
2140 * As this is called with interrupts disabled, the caller is responsible
2141 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2142 * are enabled.
2143 *
2144 * Note: this is probably too low level an operation for use in drivers.
2145 * Please consult with lkml before using this in your driver.
2146 */
2147int split_free_page(struct page *page)
2148{
2149 unsigned int order;
2150 int nr_pages;
2151
1fb3f8ca
MG
2152 order = page_order(page);
2153
8fb74b9f 2154 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2155 if (!nr_pages)
2156 return 0;
2157
2158 /* Split into individual pages */
2159 set_page_refcounted(page);
2160 split_page(page, order);
2161 return nr_pages;
748446bb
MG
2162}
2163
1da177e4 2164/*
75379191 2165 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2166 */
0a15c3e9
MG
2167static inline
2168struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2169 struct zone *zone, unsigned int order,
0aaa29a5 2170 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2171{
2172 unsigned long flags;
689bcebf 2173 struct page *page;
b745bc85 2174 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2175
48db57f8 2176 if (likely(order == 0)) {
1da177e4 2177 struct per_cpu_pages *pcp;
5f8dcc21 2178 struct list_head *list;
1da177e4 2179
1da177e4 2180 local_irq_save(flags);
99dcc3e5
CL
2181 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2182 list = &pcp->lists[migratetype];
5f8dcc21 2183 if (list_empty(list)) {
535131e6 2184 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2185 pcp->batch, list,
e084b2d9 2186 migratetype, cold);
5f8dcc21 2187 if (unlikely(list_empty(list)))
6fb332fa 2188 goto failed;
535131e6 2189 }
b92a6edd 2190
5f8dcc21
MG
2191 if (cold)
2192 page = list_entry(list->prev, struct page, lru);
2193 else
2194 page = list_entry(list->next, struct page, lru);
2195
b92a6edd
MG
2196 list_del(&page->lru);
2197 pcp->count--;
7fb1d9fc 2198 } else {
dab48dab
AM
2199 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2200 /*
2201 * __GFP_NOFAIL is not to be used in new code.
2202 *
2203 * All __GFP_NOFAIL callers should be fixed so that they
2204 * properly detect and handle allocation failures.
2205 *
2206 * We most definitely don't want callers attempting to
4923abf9 2207 * allocate greater than order-1 page units with
dab48dab
AM
2208 * __GFP_NOFAIL.
2209 */
4923abf9 2210 WARN_ON_ONCE(order > 1);
dab48dab 2211 }
1da177e4 2212 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2213
2214 page = NULL;
2215 if (alloc_flags & ALLOC_HARDER) {
2216 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2217 if (page)
2218 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2219 }
2220 if (!page)
2221 page = __rmqueue(zone, order, migratetype, gfp_flags);
a74609fa
NP
2222 spin_unlock(&zone->lock);
2223 if (!page)
2224 goto failed;
d1ce749a 2225 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2226 get_pcppage_migratetype(page));
1da177e4
LT
2227 }
2228
3a025760 2229 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2230 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2231 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2232 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2233
f8891e5e 2234 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2235 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2236 local_irq_restore(flags);
1da177e4 2237
309381fe 2238 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2239 return page;
a74609fa
NP
2240
2241failed:
2242 local_irq_restore(flags);
a74609fa 2243 return NULL;
1da177e4
LT
2244}
2245
933e312e
AM
2246#ifdef CONFIG_FAIL_PAGE_ALLOC
2247
b2588c4b 2248static struct {
933e312e
AM
2249 struct fault_attr attr;
2250
621a5f7a 2251 bool ignore_gfp_highmem;
71baba4b 2252 bool ignore_gfp_reclaim;
54114994 2253 u32 min_order;
933e312e
AM
2254} fail_page_alloc = {
2255 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2256 .ignore_gfp_reclaim = true,
621a5f7a 2257 .ignore_gfp_highmem = true,
54114994 2258 .min_order = 1,
933e312e
AM
2259};
2260
2261static int __init setup_fail_page_alloc(char *str)
2262{
2263 return setup_fault_attr(&fail_page_alloc.attr, str);
2264}
2265__setup("fail_page_alloc=", setup_fail_page_alloc);
2266
deaf386e 2267static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2268{
54114994 2269 if (order < fail_page_alloc.min_order)
deaf386e 2270 return false;
933e312e 2271 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2272 return false;
933e312e 2273 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2274 return false;
71baba4b
MG
2275 if (fail_page_alloc.ignore_gfp_reclaim &&
2276 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2277 return false;
933e312e
AM
2278
2279 return should_fail(&fail_page_alloc.attr, 1 << order);
2280}
2281
2282#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2283
2284static int __init fail_page_alloc_debugfs(void)
2285{
f4ae40a6 2286 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2287 struct dentry *dir;
933e312e 2288
dd48c085
AM
2289 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2290 &fail_page_alloc.attr);
2291 if (IS_ERR(dir))
2292 return PTR_ERR(dir);
933e312e 2293
b2588c4b 2294 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2295 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2296 goto fail;
2297 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2298 &fail_page_alloc.ignore_gfp_highmem))
2299 goto fail;
2300 if (!debugfs_create_u32("min-order", mode, dir,
2301 &fail_page_alloc.min_order))
2302 goto fail;
2303
2304 return 0;
2305fail:
dd48c085 2306 debugfs_remove_recursive(dir);
933e312e 2307
b2588c4b 2308 return -ENOMEM;
933e312e
AM
2309}
2310
2311late_initcall(fail_page_alloc_debugfs);
2312
2313#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2314
2315#else /* CONFIG_FAIL_PAGE_ALLOC */
2316
deaf386e 2317static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2318{
deaf386e 2319 return false;
933e312e
AM
2320}
2321
2322#endif /* CONFIG_FAIL_PAGE_ALLOC */
2323
1da177e4 2324/*
88f5acf8 2325 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
2326 * of the allocation.
2327 */
7aeb09f9
MG
2328static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2329 unsigned long mark, int classzone_idx, int alloc_flags,
2330 long free_pages)
1da177e4 2331{
d23ad423 2332 long min = mark;
1da177e4 2333 int o;
026b0814 2334 long free_cma = 0;
1da177e4 2335
0aaa29a5 2336 /* free_pages may go negative - that's OK */
df0a6daa 2337 free_pages -= (1 << order) - 1;
0aaa29a5 2338
7fb1d9fc 2339 if (alloc_flags & ALLOC_HIGH)
1da177e4 2340 min -= min / 2;
0aaa29a5
MG
2341
2342 /*
2343 * If the caller does not have rights to ALLOC_HARDER then subtract
2344 * the high-atomic reserves. This will over-estimate the size of the
2345 * atomic reserve but it avoids a search.
2346 */
2347 if (likely(!(alloc_flags & ALLOC_HARDER)))
2348 free_pages -= z->nr_reserved_highatomic;
2349 else
1da177e4 2350 min -= min / 4;
e2b19197 2351
d95ea5d1
BZ
2352#ifdef CONFIG_CMA
2353 /* If allocation can't use CMA areas don't use free CMA pages */
2354 if (!(alloc_flags & ALLOC_CMA))
026b0814 2355 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2356#endif
026b0814 2357
3484b2de 2358 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2359 return false;
1da177e4
LT
2360 for (o = 0; o < order; o++) {
2361 /* At the next order, this order's pages become unavailable */
2362 free_pages -= z->free_area[o].nr_free << o;
2363
2364 /* Require fewer higher order pages to be free */
2365 min >>= 1;
2366
2367 if (free_pages <= min)
88f5acf8 2368 return false;
1da177e4 2369 }
88f5acf8
MG
2370 return true;
2371}
2372
7aeb09f9 2373bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2374 int classzone_idx, int alloc_flags)
2375{
2376 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2377 zone_page_state(z, NR_FREE_PAGES));
2378}
2379
7aeb09f9 2380bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2381 unsigned long mark, int classzone_idx)
88f5acf8
MG
2382{
2383 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2384
2385 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2386 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2387
e2b19197 2388 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2389 free_pages);
1da177e4
LT
2390}
2391
9276b1bc 2392#ifdef CONFIG_NUMA
81c0a2bb
JW
2393static bool zone_local(struct zone *local_zone, struct zone *zone)
2394{
fff4068c 2395 return local_zone->node == zone->node;
81c0a2bb
JW
2396}
2397
957f822a
DR
2398static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2399{
5f7a75ac
MG
2400 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2401 RECLAIM_DISTANCE;
957f822a 2402}
9276b1bc 2403#else /* CONFIG_NUMA */
81c0a2bb
JW
2404static bool zone_local(struct zone *local_zone, struct zone *zone)
2405{
2406 return true;
2407}
2408
957f822a
DR
2409static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2410{
2411 return true;
2412}
9276b1bc
PJ
2413#endif /* CONFIG_NUMA */
2414
4ffeaf35
MG
2415static void reset_alloc_batches(struct zone *preferred_zone)
2416{
2417 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2418
2419 do {
2420 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2421 high_wmark_pages(zone) - low_wmark_pages(zone) -
2422 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2423 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2424 } while (zone++ != preferred_zone);
2425}
2426
7fb1d9fc 2427/*
0798e519 2428 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2429 * a page.
2430 */
2431static struct page *
a9263751
VB
2432get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2433 const struct alloc_context *ac)
753ee728 2434{
a9263751 2435 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2436 struct zoneref *z;
7fb1d9fc 2437 struct page *page = NULL;
5117f45d 2438 struct zone *zone;
4ffeaf35
MG
2439 int nr_fair_skipped = 0;
2440 bool zonelist_rescan;
54a6eb5c 2441
9276b1bc 2442zonelist_scan:
4ffeaf35
MG
2443 zonelist_rescan = false;
2444
7fb1d9fc 2445 /*
9276b1bc 2446 * Scan zonelist, looking for a zone with enough free.
344736f2 2447 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2448 */
a9263751
VB
2449 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2450 ac->nodemask) {
e085dbc5
JW
2451 unsigned long mark;
2452
664eedde
MG
2453 if (cpusets_enabled() &&
2454 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2455 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2456 continue;
81c0a2bb
JW
2457 /*
2458 * Distribute pages in proportion to the individual
2459 * zone size to ensure fair page aging. The zone a
2460 * page was allocated in should have no effect on the
2461 * time the page has in memory before being reclaimed.
81c0a2bb 2462 */
3a025760 2463 if (alloc_flags & ALLOC_FAIR) {
a9263751 2464 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2465 break;
57054651 2466 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2467 nr_fair_skipped++;
3a025760 2468 continue;
4ffeaf35 2469 }
81c0a2bb 2470 }
a756cf59
JW
2471 /*
2472 * When allocating a page cache page for writing, we
2473 * want to get it from a zone that is within its dirty
2474 * limit, such that no single zone holds more than its
2475 * proportional share of globally allowed dirty pages.
2476 * The dirty limits take into account the zone's
2477 * lowmem reserves and high watermark so that kswapd
2478 * should be able to balance it without having to
2479 * write pages from its LRU list.
2480 *
2481 * This may look like it could increase pressure on
2482 * lower zones by failing allocations in higher zones
2483 * before they are full. But the pages that do spill
2484 * over are limited as the lower zones are protected
2485 * by this very same mechanism. It should not become
2486 * a practical burden to them.
2487 *
2488 * XXX: For now, allow allocations to potentially
2489 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2490 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2491 * which is important when on a NUMA setup the allowed
2492 * zones are together not big enough to reach the
2493 * global limit. The proper fix for these situations
2494 * will require awareness of zones in the
2495 * dirty-throttling and the flusher threads.
2496 */
c9ab0c4f 2497 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2498 continue;
7fb1d9fc 2499
e085dbc5
JW
2500 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2501 if (!zone_watermark_ok(zone, order, mark,
a9263751 2502 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2503 int ret;
2504
5dab2911
MG
2505 /* Checked here to keep the fast path fast */
2506 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2507 if (alloc_flags & ALLOC_NO_WATERMARKS)
2508 goto try_this_zone;
2509
957f822a 2510 if (zone_reclaim_mode == 0 ||
a9263751 2511 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2512 continue;
2513
fa5e084e
MG
2514 ret = zone_reclaim(zone, gfp_mask, order);
2515 switch (ret) {
2516 case ZONE_RECLAIM_NOSCAN:
2517 /* did not scan */
cd38b115 2518 continue;
fa5e084e
MG
2519 case ZONE_RECLAIM_FULL:
2520 /* scanned but unreclaimable */
cd38b115 2521 continue;
fa5e084e
MG
2522 default:
2523 /* did we reclaim enough */
fed2719e 2524 if (zone_watermark_ok(zone, order, mark,
a9263751 2525 ac->classzone_idx, alloc_flags))
fed2719e
MG
2526 goto try_this_zone;
2527
fed2719e 2528 continue;
0798e519 2529 }
7fb1d9fc
RS
2530 }
2531
fa5e084e 2532try_this_zone:
a9263751 2533 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2534 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2535 if (page) {
2536 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2537 goto try_this_zone;
0aaa29a5
MG
2538
2539 /*
2540 * If this is a high-order atomic allocation then check
2541 * if the pageblock should be reserved for the future
2542 */
2543 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2544 reserve_highatomic_pageblock(page, zone, order);
2545
75379191
VB
2546 return page;
2547 }
54a6eb5c 2548 }
9276b1bc 2549
4ffeaf35
MG
2550 /*
2551 * The first pass makes sure allocations are spread fairly within the
2552 * local node. However, the local node might have free pages left
2553 * after the fairness batches are exhausted, and remote zones haven't
2554 * even been considered yet. Try once more without fairness, and
2555 * include remote zones now, before entering the slowpath and waking
2556 * kswapd: prefer spilling to a remote zone over swapping locally.
2557 */
2558 if (alloc_flags & ALLOC_FAIR) {
2559 alloc_flags &= ~ALLOC_FAIR;
2560 if (nr_fair_skipped) {
2561 zonelist_rescan = true;
a9263751 2562 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2563 }
2564 if (nr_online_nodes > 1)
2565 zonelist_rescan = true;
2566 }
2567
4ffeaf35
MG
2568 if (zonelist_rescan)
2569 goto zonelist_scan;
2570
2571 return NULL;
753ee728
MH
2572}
2573
29423e77
DR
2574/*
2575 * Large machines with many possible nodes should not always dump per-node
2576 * meminfo in irq context.
2577 */
2578static inline bool should_suppress_show_mem(void)
2579{
2580 bool ret = false;
2581
2582#if NODES_SHIFT > 8
2583 ret = in_interrupt();
2584#endif
2585 return ret;
2586}
2587
a238ab5b
DH
2588static DEFINE_RATELIMIT_STATE(nopage_rs,
2589 DEFAULT_RATELIMIT_INTERVAL,
2590 DEFAULT_RATELIMIT_BURST);
2591
2592void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2593{
a238ab5b
DH
2594 unsigned int filter = SHOW_MEM_FILTER_NODES;
2595
c0a32fc5
SG
2596 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2597 debug_guardpage_minorder() > 0)
a238ab5b
DH
2598 return;
2599
2600 /*
2601 * This documents exceptions given to allocations in certain
2602 * contexts that are allowed to allocate outside current's set
2603 * of allowed nodes.
2604 */
2605 if (!(gfp_mask & __GFP_NOMEMALLOC))
2606 if (test_thread_flag(TIF_MEMDIE) ||
2607 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2608 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2609 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2610 filter &= ~SHOW_MEM_FILTER_NODES;
2611
2612 if (fmt) {
3ee9a4f0
JP
2613 struct va_format vaf;
2614 va_list args;
2615
a238ab5b 2616 va_start(args, fmt);
3ee9a4f0
JP
2617
2618 vaf.fmt = fmt;
2619 vaf.va = &args;
2620
2621 pr_warn("%pV", &vaf);
2622
a238ab5b
DH
2623 va_end(args);
2624 }
2625
3ee9a4f0
JP
2626 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2627 current->comm, order, gfp_mask);
a238ab5b
DH
2628
2629 dump_stack();
2630 if (!should_suppress_show_mem())
2631 show_mem(filter);
2632}
2633
11e33f6a
MG
2634static inline struct page *
2635__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2636 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2637{
6e0fc46d
DR
2638 struct oom_control oc = {
2639 .zonelist = ac->zonelist,
2640 .nodemask = ac->nodemask,
2641 .gfp_mask = gfp_mask,
2642 .order = order,
6e0fc46d 2643 };
11e33f6a
MG
2644 struct page *page;
2645
9879de73
JW
2646 *did_some_progress = 0;
2647
9879de73 2648 /*
dc56401f
JW
2649 * Acquire the oom lock. If that fails, somebody else is
2650 * making progress for us.
9879de73 2651 */
dc56401f 2652 if (!mutex_trylock(&oom_lock)) {
9879de73 2653 *did_some_progress = 1;
11e33f6a 2654 schedule_timeout_uninterruptible(1);
1da177e4
LT
2655 return NULL;
2656 }
6b1de916 2657
11e33f6a
MG
2658 /*
2659 * Go through the zonelist yet one more time, keep very high watermark
2660 * here, this is only to catch a parallel oom killing, we must fail if
2661 * we're still under heavy pressure.
2662 */
a9263751
VB
2663 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2664 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2665 if (page)
11e33f6a
MG
2666 goto out;
2667
4365a567 2668 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2669 /* Coredumps can quickly deplete all memory reserves */
2670 if (current->flags & PF_DUMPCORE)
2671 goto out;
4365a567
KH
2672 /* The OOM killer will not help higher order allocs */
2673 if (order > PAGE_ALLOC_COSTLY_ORDER)
2674 goto out;
03668b3c 2675 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2676 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2677 goto out;
9083905a 2678 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2679 if (!(gfp_mask & __GFP_FS)) {
2680 /*
2681 * XXX: Page reclaim didn't yield anything,
2682 * and the OOM killer can't be invoked, but
9083905a 2683 * keep looping as per tradition.
cc873177
JW
2684 */
2685 *did_some_progress = 1;
9879de73 2686 goto out;
cc873177 2687 }
9083905a
JW
2688 if (pm_suspended_storage())
2689 goto out;
4167e9b2 2690 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2691 if (gfp_mask & __GFP_THISNODE)
2692 goto out;
2693 }
11e33f6a 2694 /* Exhausted what can be done so it's blamo time */
6e0fc46d 2695 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
c32b3cbe 2696 *did_some_progress = 1;
11e33f6a 2697out:
dc56401f 2698 mutex_unlock(&oom_lock);
11e33f6a
MG
2699 return page;
2700}
2701
56de7263
MG
2702#ifdef CONFIG_COMPACTION
2703/* Try memory compaction for high-order allocations before reclaim */
2704static struct page *
2705__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2706 int alloc_flags, const struct alloc_context *ac,
2707 enum migrate_mode mode, int *contended_compaction,
2708 bool *deferred_compaction)
56de7263 2709{
53853e2d 2710 unsigned long compact_result;
98dd3b48 2711 struct page *page;
53853e2d
VB
2712
2713 if (!order)
66199712 2714 return NULL;
66199712 2715
c06b1fca 2716 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2717 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2718 mode, contended_compaction);
c06b1fca 2719 current->flags &= ~PF_MEMALLOC;
56de7263 2720
98dd3b48
VB
2721 switch (compact_result) {
2722 case COMPACT_DEFERRED:
53853e2d 2723 *deferred_compaction = true;
98dd3b48
VB
2724 /* fall-through */
2725 case COMPACT_SKIPPED:
2726 return NULL;
2727 default:
2728 break;
2729 }
53853e2d 2730
98dd3b48
VB
2731 /*
2732 * At least in one zone compaction wasn't deferred or skipped, so let's
2733 * count a compaction stall
2734 */
2735 count_vm_event(COMPACTSTALL);
8fb74b9f 2736
a9263751
VB
2737 page = get_page_from_freelist(gfp_mask, order,
2738 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2739
98dd3b48
VB
2740 if (page) {
2741 struct zone *zone = page_zone(page);
53853e2d 2742
98dd3b48
VB
2743 zone->compact_blockskip_flush = false;
2744 compaction_defer_reset(zone, order, true);
2745 count_vm_event(COMPACTSUCCESS);
2746 return page;
2747 }
56de7263 2748
98dd3b48
VB
2749 /*
2750 * It's bad if compaction run occurs and fails. The most likely reason
2751 * is that pages exist, but not enough to satisfy watermarks.
2752 */
2753 count_vm_event(COMPACTFAIL);
66199712 2754
98dd3b48 2755 cond_resched();
56de7263
MG
2756
2757 return NULL;
2758}
2759#else
2760static inline struct page *
2761__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2762 int alloc_flags, const struct alloc_context *ac,
2763 enum migrate_mode mode, int *contended_compaction,
2764 bool *deferred_compaction)
56de7263
MG
2765{
2766 return NULL;
2767}
2768#endif /* CONFIG_COMPACTION */
2769
bba90710
MS
2770/* Perform direct synchronous page reclaim */
2771static int
a9263751
VB
2772__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2773 const struct alloc_context *ac)
11e33f6a 2774{
11e33f6a 2775 struct reclaim_state reclaim_state;
bba90710 2776 int progress;
11e33f6a
MG
2777
2778 cond_resched();
2779
2780 /* We now go into synchronous reclaim */
2781 cpuset_memory_pressure_bump();
c06b1fca 2782 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2783 lockdep_set_current_reclaim_state(gfp_mask);
2784 reclaim_state.reclaimed_slab = 0;
c06b1fca 2785 current->reclaim_state = &reclaim_state;
11e33f6a 2786
a9263751
VB
2787 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2788 ac->nodemask);
11e33f6a 2789
c06b1fca 2790 current->reclaim_state = NULL;
11e33f6a 2791 lockdep_clear_current_reclaim_state();
c06b1fca 2792 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2793
2794 cond_resched();
2795
bba90710
MS
2796 return progress;
2797}
2798
2799/* The really slow allocator path where we enter direct reclaim */
2800static inline struct page *
2801__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2802 int alloc_flags, const struct alloc_context *ac,
2803 unsigned long *did_some_progress)
bba90710
MS
2804{
2805 struct page *page = NULL;
2806 bool drained = false;
2807
a9263751 2808 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2809 if (unlikely(!(*did_some_progress)))
2810 return NULL;
11e33f6a 2811
9ee493ce 2812retry:
a9263751
VB
2813 page = get_page_from_freelist(gfp_mask, order,
2814 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2815
2816 /*
2817 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
2818 * pages are pinned on the per-cpu lists or in high alloc reserves.
2819 * Shrink them them and try again
9ee493ce
MG
2820 */
2821 if (!page && !drained) {
0aaa29a5 2822 unreserve_highatomic_pageblock(ac);
93481ff0 2823 drain_all_pages(NULL);
9ee493ce
MG
2824 drained = true;
2825 goto retry;
2826 }
2827
11e33f6a
MG
2828 return page;
2829}
2830
1da177e4 2831/*
11e33f6a
MG
2832 * This is called in the allocator slow-path if the allocation request is of
2833 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2834 */
11e33f6a
MG
2835static inline struct page *
2836__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2837 const struct alloc_context *ac)
11e33f6a
MG
2838{
2839 struct page *page;
2840
2841 do {
a9263751
VB
2842 page = get_page_from_freelist(gfp_mask, order,
2843 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2844
2845 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2846 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2847 HZ/50);
11e33f6a
MG
2848 } while (!page && (gfp_mask & __GFP_NOFAIL));
2849
2850 return page;
2851}
2852
a9263751 2853static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2854{
2855 struct zoneref *z;
2856 struct zone *zone;
2857
a9263751
VB
2858 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2859 ac->high_zoneidx, ac->nodemask)
2860 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2861}
2862
341ce06f
PZ
2863static inline int
2864gfp_to_alloc_flags(gfp_t gfp_mask)
2865{
341ce06f 2866 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 2867
a56f57ff 2868 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2869 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2870
341ce06f
PZ
2871 /*
2872 * The caller may dip into page reserves a bit more if the caller
2873 * cannot run direct reclaim, or if the caller has realtime scheduling
2874 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 2875 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2876 */
e6223a3b 2877 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2878
d0164adc 2879 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 2880 /*
b104a35d
DR
2881 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2882 * if it can't schedule.
5c3240d9 2883 */
b104a35d 2884 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2885 alloc_flags |= ALLOC_HARDER;
523b9458 2886 /*
b104a35d 2887 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2888 * comment for __cpuset_node_allowed().
523b9458 2889 */
341ce06f 2890 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2891 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2892 alloc_flags |= ALLOC_HARDER;
2893
b37f1dd0
MG
2894 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2895 if (gfp_mask & __GFP_MEMALLOC)
2896 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2897 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2898 alloc_flags |= ALLOC_NO_WATERMARKS;
2899 else if (!in_interrupt() &&
2900 ((current->flags & PF_MEMALLOC) ||
2901 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2902 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2903 }
d95ea5d1 2904#ifdef CONFIG_CMA
43e7a34d 2905 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2906 alloc_flags |= ALLOC_CMA;
2907#endif
341ce06f
PZ
2908 return alloc_flags;
2909}
2910
072bb0aa
MG
2911bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2912{
b37f1dd0 2913 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2914}
2915
d0164adc
MG
2916static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2917{
2918 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2919}
2920
11e33f6a
MG
2921static inline struct page *
2922__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2923 struct alloc_context *ac)
11e33f6a 2924{
d0164adc 2925 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
2926 struct page *page = NULL;
2927 int alloc_flags;
2928 unsigned long pages_reclaimed = 0;
2929 unsigned long did_some_progress;
e0b9daeb 2930 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2931 bool deferred_compaction = false;
1f9efdef 2932 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2933
72807a74
MG
2934 /*
2935 * In the slowpath, we sanity check order to avoid ever trying to
2936 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2937 * be using allocators in order of preference for an area that is
2938 * too large.
2939 */
1fc28b70
MG
2940 if (order >= MAX_ORDER) {
2941 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2942 return NULL;
1fc28b70 2943 }
1da177e4 2944
d0164adc
MG
2945 /*
2946 * We also sanity check to catch abuse of atomic reserves being used by
2947 * callers that are not in atomic context.
2948 */
2949 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
2950 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
2951 gfp_mask &= ~__GFP_ATOMIC;
2952
952f3b51 2953 /*
4167e9b2
DR
2954 * If this allocation cannot block and it is for a specific node, then
2955 * fail early. There's no need to wakeup kswapd or retry for a
2956 * speculative node-specific allocation.
952f3b51 2957 */
d0164adc 2958 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
952f3b51
CL
2959 goto nopage;
2960
9879de73 2961retry:
d0164adc 2962 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 2963 wake_all_kswapds(order, ac);
1da177e4 2964
9bf2229f 2965 /*
7fb1d9fc
RS
2966 * OK, we're below the kswapd watermark and have kicked background
2967 * reclaim. Now things get more complex, so set up alloc_flags according
2968 * to how we want to proceed.
9bf2229f 2969 */
341ce06f 2970 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2971
f33261d7
DR
2972 /*
2973 * Find the true preferred zone if the allocation is unconstrained by
2974 * cpusets.
2975 */
a9263751 2976 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 2977 struct zoneref *preferred_zoneref;
a9263751
VB
2978 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2979 ac->high_zoneidx, NULL, &ac->preferred_zone);
2980 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 2981 }
f33261d7 2982
341ce06f 2983 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
2984 page = get_page_from_freelist(gfp_mask, order,
2985 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
2986 if (page)
2987 goto got_pg;
1da177e4 2988
11e33f6a 2989 /* Allocate without watermarks if the context allows */
341ce06f 2990 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2991 /*
2992 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2993 * the allocation is high priority and these type of
2994 * allocations are system rather than user orientated
2995 */
a9263751
VB
2996 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2997
2998 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 2999
cfd19c5a 3000 if (page) {
341ce06f 3001 goto got_pg;
cfd19c5a 3002 }
1da177e4
LT
3003 }
3004
d0164adc
MG
3005 /* Caller is not willing to reclaim, we can't balance anything */
3006 if (!can_direct_reclaim) {
aed0a0e3
DR
3007 /*
3008 * All existing users of the deprecated __GFP_NOFAIL are
3009 * blockable, so warn of any new users that actually allow this
3010 * type of allocation to fail.
3011 */
3012 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3013 goto nopage;
aed0a0e3 3014 }
1da177e4 3015
341ce06f 3016 /* Avoid recursion of direct reclaim */
c06b1fca 3017 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
3018 goto nopage;
3019
6583bb64
DR
3020 /* Avoid allocations with no watermarks from looping endlessly */
3021 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3022 goto nopage;
3023
77f1fe6b
MG
3024 /*
3025 * Try direct compaction. The first pass is asynchronous. Subsequent
3026 * attempts after direct reclaim are synchronous
3027 */
a9263751
VB
3028 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3029 migration_mode,
3030 &contended_compaction,
53853e2d 3031 &deferred_compaction);
56de7263
MG
3032 if (page)
3033 goto got_pg;
75f30861 3034
1f9efdef 3035 /* Checks for THP-specific high-order allocations */
d0164adc 3036 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3037 /*
3038 * If compaction is deferred for high-order allocations, it is
3039 * because sync compaction recently failed. If this is the case
3040 * and the caller requested a THP allocation, we do not want
3041 * to heavily disrupt the system, so we fail the allocation
3042 * instead of entering direct reclaim.
3043 */
3044 if (deferred_compaction)
3045 goto nopage;
3046
3047 /*
3048 * In all zones where compaction was attempted (and not
3049 * deferred or skipped), lock contention has been detected.
3050 * For THP allocation we do not want to disrupt the others
3051 * so we fallback to base pages instead.
3052 */
3053 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3054 goto nopage;
3055
3056 /*
3057 * If compaction was aborted due to need_resched(), we do not
3058 * want to further increase allocation latency, unless it is
3059 * khugepaged trying to collapse.
3060 */
3061 if (contended_compaction == COMPACT_CONTENDED_SCHED
3062 && !(current->flags & PF_KTHREAD))
3063 goto nopage;
3064 }
66199712 3065
8fe78048
DR
3066 /*
3067 * It can become very expensive to allocate transparent hugepages at
3068 * fault, so use asynchronous memory compaction for THP unless it is
3069 * khugepaged trying to collapse.
3070 */
d0164adc 3071 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3072 migration_mode = MIGRATE_SYNC_LIGHT;
3073
11e33f6a 3074 /* Try direct reclaim and then allocating */
a9263751
VB
3075 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3076 &did_some_progress);
11e33f6a
MG
3077 if (page)
3078 goto got_pg;
1da177e4 3079
9083905a
JW
3080 /* Do not loop if specifically requested */
3081 if (gfp_mask & __GFP_NORETRY)
3082 goto noretry;
3083
3084 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3085 pages_reclaimed += did_some_progress;
9083905a
JW
3086 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3087 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3088 /* Wait for some write requests to complete then retry */
a9263751 3089 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3090 goto retry;
1da177e4
LT
3091 }
3092
9083905a
JW
3093 /* Reclaim has failed us, start killing things */
3094 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3095 if (page)
3096 goto got_pg;
3097
3098 /* Retry as long as the OOM killer is making progress */
3099 if (did_some_progress)
3100 goto retry;
3101
3102noretry:
3103 /*
3104 * High-order allocations do not necessarily loop after
3105 * direct reclaim and reclaim/compaction depends on compaction
3106 * being called after reclaim so call directly if necessary
3107 */
3108 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3109 ac, migration_mode,
3110 &contended_compaction,
3111 &deferred_compaction);
3112 if (page)
3113 goto got_pg;
1da177e4 3114nopage:
a238ab5b 3115 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3116got_pg:
072bb0aa 3117 return page;
1da177e4 3118}
11e33f6a
MG
3119
3120/*
3121 * This is the 'heart' of the zoned buddy allocator.
3122 */
3123struct page *
3124__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3125 struct zonelist *zonelist, nodemask_t *nodemask)
3126{
d8846374 3127 struct zoneref *preferred_zoneref;
cc9a6c87 3128 struct page *page = NULL;
cc9a6c87 3129 unsigned int cpuset_mems_cookie;
3a025760 3130 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3131 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3132 struct alloc_context ac = {
3133 .high_zoneidx = gfp_zone(gfp_mask),
3134 .nodemask = nodemask,
3135 .migratetype = gfpflags_to_migratetype(gfp_mask),
3136 };
11e33f6a 3137
dcce284a
BH
3138 gfp_mask &= gfp_allowed_mask;
3139
11e33f6a
MG
3140 lockdep_trace_alloc(gfp_mask);
3141
d0164adc 3142 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3143
3144 if (should_fail_alloc_page(gfp_mask, order))
3145 return NULL;
3146
3147 /*
3148 * Check the zones suitable for the gfp_mask contain at least one
3149 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3150 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3151 */
3152 if (unlikely(!zonelist->_zonerefs->zone))
3153 return NULL;
3154
a9263751 3155 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3156 alloc_flags |= ALLOC_CMA;
3157
cc9a6c87 3158retry_cpuset:
d26914d1 3159 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3160
a9263751
VB
3161 /* We set it here, as __alloc_pages_slowpath might have changed it */
3162 ac.zonelist = zonelist;
c9ab0c4f
MG
3163
3164 /* Dirty zone balancing only done in the fast path */
3165 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3166
5117f45d 3167 /* The preferred zone is used for statistics later */
a9263751
VB
3168 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3169 ac.nodemask ? : &cpuset_current_mems_allowed,
3170 &ac.preferred_zone);
3171 if (!ac.preferred_zone)
cc9a6c87 3172 goto out;
a9263751 3173 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3174
3175 /* First allocation attempt */
91fbdc0f 3176 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3177 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3178 if (unlikely(!page)) {
3179 /*
3180 * Runtime PM, block IO and its error handling path
3181 * can deadlock because I/O on the device might not
3182 * complete.
3183 */
91fbdc0f 3184 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3185 ac.spread_dirty_pages = false;
91fbdc0f 3186
a9263751 3187 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3188 }
11e33f6a 3189
23f086f9
XQ
3190 if (kmemcheck_enabled && page)
3191 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3192
a9263751 3193 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3194
3195out:
3196 /*
3197 * When updating a task's mems_allowed, it is possible to race with
3198 * parallel threads in such a way that an allocation can fail while
3199 * the mask is being updated. If a page allocation is about to fail,
3200 * check if the cpuset changed during allocation and if so, retry.
3201 */
d26914d1 3202 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3203 goto retry_cpuset;
3204
11e33f6a 3205 return page;
1da177e4 3206}
d239171e 3207EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3208
3209/*
3210 * Common helper functions.
3211 */
920c7a5d 3212unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3213{
945a1113
AM
3214 struct page *page;
3215
3216 /*
3217 * __get_free_pages() returns a 32-bit address, which cannot represent
3218 * a highmem page
3219 */
3220 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3221
1da177e4
LT
3222 page = alloc_pages(gfp_mask, order);
3223 if (!page)
3224 return 0;
3225 return (unsigned long) page_address(page);
3226}
1da177e4
LT
3227EXPORT_SYMBOL(__get_free_pages);
3228
920c7a5d 3229unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3230{
945a1113 3231 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3232}
1da177e4
LT
3233EXPORT_SYMBOL(get_zeroed_page);
3234
920c7a5d 3235void __free_pages(struct page *page, unsigned int order)
1da177e4 3236{
b5810039 3237 if (put_page_testzero(page)) {
1da177e4 3238 if (order == 0)
b745bc85 3239 free_hot_cold_page(page, false);
1da177e4
LT
3240 else
3241 __free_pages_ok(page, order);
3242 }
3243}
3244
3245EXPORT_SYMBOL(__free_pages);
3246
920c7a5d 3247void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3248{
3249 if (addr != 0) {
725d704e 3250 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3251 __free_pages(virt_to_page((void *)addr), order);
3252 }
3253}
3254
3255EXPORT_SYMBOL(free_pages);
3256
b63ae8ca
AD
3257/*
3258 * Page Fragment:
3259 * An arbitrary-length arbitrary-offset area of memory which resides
3260 * within a 0 or higher order page. Multiple fragments within that page
3261 * are individually refcounted, in the page's reference counter.
3262 *
3263 * The page_frag functions below provide a simple allocation framework for
3264 * page fragments. This is used by the network stack and network device
3265 * drivers to provide a backing region of memory for use as either an
3266 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3267 */
3268static struct page *__page_frag_refill(struct page_frag_cache *nc,
3269 gfp_t gfp_mask)
3270{
3271 struct page *page = NULL;
3272 gfp_t gfp = gfp_mask;
3273
3274#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3275 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3276 __GFP_NOMEMALLOC;
3277 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3278 PAGE_FRAG_CACHE_MAX_ORDER);
3279 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3280#endif
3281 if (unlikely(!page))
3282 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3283
3284 nc->va = page ? page_address(page) : NULL;
3285
3286 return page;
3287}
3288
3289void *__alloc_page_frag(struct page_frag_cache *nc,
3290 unsigned int fragsz, gfp_t gfp_mask)
3291{
3292 unsigned int size = PAGE_SIZE;
3293 struct page *page;
3294 int offset;
3295
3296 if (unlikely(!nc->va)) {
3297refill:
3298 page = __page_frag_refill(nc, gfp_mask);
3299 if (!page)
3300 return NULL;
3301
3302#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3303 /* if size can vary use size else just use PAGE_SIZE */
3304 size = nc->size;
3305#endif
3306 /* Even if we own the page, we do not use atomic_set().
3307 * This would break get_page_unless_zero() users.
3308 */
3309 atomic_add(size - 1, &page->_count);
3310
3311 /* reset page count bias and offset to start of new frag */
2f064f34 3312 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3313 nc->pagecnt_bias = size;
3314 nc->offset = size;
3315 }
3316
3317 offset = nc->offset - fragsz;
3318 if (unlikely(offset < 0)) {
3319 page = virt_to_page(nc->va);
3320
3321 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3322 goto refill;
3323
3324#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3325 /* if size can vary use size else just use PAGE_SIZE */
3326 size = nc->size;
3327#endif
3328 /* OK, page count is 0, we can safely set it */
3329 atomic_set(&page->_count, size);
3330
3331 /* reset page count bias and offset to start of new frag */
3332 nc->pagecnt_bias = size;
3333 offset = size - fragsz;
3334 }
3335
3336 nc->pagecnt_bias--;
3337 nc->offset = offset;
3338
3339 return nc->va + offset;
3340}
3341EXPORT_SYMBOL(__alloc_page_frag);
3342
3343/*
3344 * Frees a page fragment allocated out of either a compound or order 0 page.
3345 */
3346void __free_page_frag(void *addr)
3347{
3348 struct page *page = virt_to_head_page(addr);
3349
3350 if (unlikely(put_page_testzero(page)))
3351 __free_pages_ok(page, compound_order(page));
3352}
3353EXPORT_SYMBOL(__free_page_frag);
3354
6a1a0d3b 3355/*
52383431
VD
3356 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3357 * of the current memory cgroup.
6a1a0d3b 3358 *
52383431
VD
3359 * It should be used when the caller would like to use kmalloc, but since the
3360 * allocation is large, it has to fall back to the page allocator.
3361 */
3362struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3363{
3364 struct page *page;
52383431 3365
52383431 3366 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3367 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3368 __free_pages(page, order);
3369 page = NULL;
3370 }
52383431
VD
3371 return page;
3372}
3373
3374struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3375{
3376 struct page *page;
52383431 3377
52383431 3378 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3379 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3380 __free_pages(page, order);
3381 page = NULL;
3382 }
52383431
VD
3383 return page;
3384}
3385
3386/*
3387 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3388 * alloc_kmem_pages.
6a1a0d3b 3389 */
52383431 3390void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3391{
d05e83a6 3392 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3393 __free_pages(page, order);
3394}
3395
52383431 3396void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3397{
3398 if (addr != 0) {
3399 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3400 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3401 }
3402}
3403
ee85c2e1
AK
3404static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3405{
3406 if (addr) {
3407 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3408 unsigned long used = addr + PAGE_ALIGN(size);
3409
3410 split_page(virt_to_page((void *)addr), order);
3411 while (used < alloc_end) {
3412 free_page(used);
3413 used += PAGE_SIZE;
3414 }
3415 }
3416 return (void *)addr;
3417}
3418
2be0ffe2
TT
3419/**
3420 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3421 * @size: the number of bytes to allocate
3422 * @gfp_mask: GFP flags for the allocation
3423 *
3424 * This function is similar to alloc_pages(), except that it allocates the
3425 * minimum number of pages to satisfy the request. alloc_pages() can only
3426 * allocate memory in power-of-two pages.
3427 *
3428 * This function is also limited by MAX_ORDER.
3429 *
3430 * Memory allocated by this function must be released by free_pages_exact().
3431 */
3432void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3433{
3434 unsigned int order = get_order(size);
3435 unsigned long addr;
3436
3437 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3438 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3439}
3440EXPORT_SYMBOL(alloc_pages_exact);
3441
ee85c2e1
AK
3442/**
3443 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3444 * pages on a node.
b5e6ab58 3445 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3446 * @size: the number of bytes to allocate
3447 * @gfp_mask: GFP flags for the allocation
3448 *
3449 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3450 * back.
ee85c2e1 3451 */
e1931811 3452void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3453{
3454 unsigned order = get_order(size);
3455 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3456 if (!p)
3457 return NULL;
3458 return make_alloc_exact((unsigned long)page_address(p), order, size);
3459}
ee85c2e1 3460
2be0ffe2
TT
3461/**
3462 * free_pages_exact - release memory allocated via alloc_pages_exact()
3463 * @virt: the value returned by alloc_pages_exact.
3464 * @size: size of allocation, same value as passed to alloc_pages_exact().
3465 *
3466 * Release the memory allocated by a previous call to alloc_pages_exact.
3467 */
3468void free_pages_exact(void *virt, size_t size)
3469{
3470 unsigned long addr = (unsigned long)virt;
3471 unsigned long end = addr + PAGE_ALIGN(size);
3472
3473 while (addr < end) {
3474 free_page(addr);
3475 addr += PAGE_SIZE;
3476 }
3477}
3478EXPORT_SYMBOL(free_pages_exact);
3479
e0fb5815
ZY
3480/**
3481 * nr_free_zone_pages - count number of pages beyond high watermark
3482 * @offset: The zone index of the highest zone
3483 *
3484 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3485 * high watermark within all zones at or below a given zone index. For each
3486 * zone, the number of pages is calculated as:
834405c3 3487 * managed_pages - high_pages
e0fb5815 3488 */
ebec3862 3489static unsigned long nr_free_zone_pages(int offset)
1da177e4 3490{
dd1a239f 3491 struct zoneref *z;
54a6eb5c
MG
3492 struct zone *zone;
3493
e310fd43 3494 /* Just pick one node, since fallback list is circular */
ebec3862 3495 unsigned long sum = 0;
1da177e4 3496
0e88460d 3497 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3498
54a6eb5c 3499 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3500 unsigned long size = zone->managed_pages;
41858966 3501 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3502 if (size > high)
3503 sum += size - high;
1da177e4
LT
3504 }
3505
3506 return sum;
3507}
3508
e0fb5815
ZY
3509/**
3510 * nr_free_buffer_pages - count number of pages beyond high watermark
3511 *
3512 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3513 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3514 */
ebec3862 3515unsigned long nr_free_buffer_pages(void)
1da177e4 3516{
af4ca457 3517 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3518}
c2f1a551 3519EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3520
e0fb5815
ZY
3521/**
3522 * nr_free_pagecache_pages - count number of pages beyond high watermark
3523 *
3524 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3525 * high watermark within all zones.
1da177e4 3526 */
ebec3862 3527unsigned long nr_free_pagecache_pages(void)
1da177e4 3528{
2a1e274a 3529 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3530}
08e0f6a9
CL
3531
3532static inline void show_node(struct zone *zone)
1da177e4 3533{
e5adfffc 3534 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3535 printk("Node %d ", zone_to_nid(zone));
1da177e4 3536}
1da177e4 3537
1da177e4
LT
3538void si_meminfo(struct sysinfo *val)
3539{
3540 val->totalram = totalram_pages;
cc7452b6 3541 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3542 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3543 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3544 val->totalhigh = totalhigh_pages;
3545 val->freehigh = nr_free_highpages();
1da177e4
LT
3546 val->mem_unit = PAGE_SIZE;
3547}
3548
3549EXPORT_SYMBOL(si_meminfo);
3550
3551#ifdef CONFIG_NUMA
3552void si_meminfo_node(struct sysinfo *val, int nid)
3553{
cdd91a77
JL
3554 int zone_type; /* needs to be signed */
3555 unsigned long managed_pages = 0;
1da177e4
LT
3556 pg_data_t *pgdat = NODE_DATA(nid);
3557
cdd91a77
JL
3558 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3559 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3560 val->totalram = managed_pages;
cc7452b6 3561 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3562 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3563#ifdef CONFIG_HIGHMEM
b40da049 3564 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3565 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3566 NR_FREE_PAGES);
98d2b0eb
CL
3567#else
3568 val->totalhigh = 0;
3569 val->freehigh = 0;
3570#endif
1da177e4
LT
3571 val->mem_unit = PAGE_SIZE;
3572}
3573#endif
3574
ddd588b5 3575/*
7bf02ea2
DR
3576 * Determine whether the node should be displayed or not, depending on whether
3577 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3578 */
7bf02ea2 3579bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3580{
3581 bool ret = false;
cc9a6c87 3582 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3583
3584 if (!(flags & SHOW_MEM_FILTER_NODES))
3585 goto out;
3586
cc9a6c87 3587 do {
d26914d1 3588 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3589 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3590 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3591out:
3592 return ret;
3593}
3594
1da177e4
LT
3595#define K(x) ((x) << (PAGE_SHIFT-10))
3596
377e4f16
RV
3597static void show_migration_types(unsigned char type)
3598{
3599 static const char types[MIGRATE_TYPES] = {
3600 [MIGRATE_UNMOVABLE] = 'U',
3601 [MIGRATE_RECLAIMABLE] = 'E',
3602 [MIGRATE_MOVABLE] = 'M',
377e4f16
RV
3603#ifdef CONFIG_CMA
3604 [MIGRATE_CMA] = 'C',
3605#endif
194159fb 3606#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3607 [MIGRATE_ISOLATE] = 'I',
194159fb 3608#endif
377e4f16
RV
3609 };
3610 char tmp[MIGRATE_TYPES + 1];
3611 char *p = tmp;
3612 int i;
3613
3614 for (i = 0; i < MIGRATE_TYPES; i++) {
3615 if (type & (1 << i))
3616 *p++ = types[i];
3617 }
3618
3619 *p = '\0';
3620 printk("(%s) ", tmp);
3621}
3622
1da177e4
LT
3623/*
3624 * Show free area list (used inside shift_scroll-lock stuff)
3625 * We also calculate the percentage fragmentation. We do this by counting the
3626 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3627 *
3628 * Bits in @filter:
3629 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3630 * cpuset.
1da177e4 3631 */
7bf02ea2 3632void show_free_areas(unsigned int filter)
1da177e4 3633{
d1bfcdb8 3634 unsigned long free_pcp = 0;
c7241913 3635 int cpu;
1da177e4
LT
3636 struct zone *zone;
3637
ee99c71c 3638 for_each_populated_zone(zone) {
7bf02ea2 3639 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3640 continue;
d1bfcdb8 3641
761b0677
KK
3642 for_each_online_cpu(cpu)
3643 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3644 }
3645
a731286d
KM
3646 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3647 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3648 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3649 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3650 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3651 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3652 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3653 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3654 global_page_state(NR_ISOLATED_ANON),
3655 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3656 global_page_state(NR_INACTIVE_FILE),
a731286d 3657 global_page_state(NR_ISOLATED_FILE),
7b854121 3658 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3659 global_page_state(NR_FILE_DIRTY),
ce866b34 3660 global_page_state(NR_WRITEBACK),
fd39fc85 3661 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3662 global_page_state(NR_SLAB_RECLAIMABLE),
3663 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3664 global_page_state(NR_FILE_MAPPED),
4b02108a 3665 global_page_state(NR_SHMEM),
a25700a5 3666 global_page_state(NR_PAGETABLE),
d1ce749a 3667 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3668 global_page_state(NR_FREE_PAGES),
3669 free_pcp,
d1ce749a 3670 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3671
ee99c71c 3672 for_each_populated_zone(zone) {
1da177e4
LT
3673 int i;
3674
7bf02ea2 3675 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3676 continue;
d1bfcdb8
KK
3677
3678 free_pcp = 0;
3679 for_each_online_cpu(cpu)
3680 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3681
1da177e4
LT
3682 show_node(zone);
3683 printk("%s"
3684 " free:%lukB"
3685 " min:%lukB"
3686 " low:%lukB"
3687 " high:%lukB"
4f98a2fe
RR
3688 " active_anon:%lukB"
3689 " inactive_anon:%lukB"
3690 " active_file:%lukB"
3691 " inactive_file:%lukB"
7b854121 3692 " unevictable:%lukB"
a731286d
KM
3693 " isolated(anon):%lukB"
3694 " isolated(file):%lukB"
1da177e4 3695 " present:%lukB"
9feedc9d 3696 " managed:%lukB"
4a0aa73f
KM
3697 " mlocked:%lukB"
3698 " dirty:%lukB"
3699 " writeback:%lukB"
3700 " mapped:%lukB"
4b02108a 3701 " shmem:%lukB"
4a0aa73f
KM
3702 " slab_reclaimable:%lukB"
3703 " slab_unreclaimable:%lukB"
c6a7f572 3704 " kernel_stack:%lukB"
4a0aa73f
KM
3705 " pagetables:%lukB"
3706 " unstable:%lukB"
3707 " bounce:%lukB"
d1bfcdb8
KK
3708 " free_pcp:%lukB"
3709 " local_pcp:%ukB"
d1ce749a 3710 " free_cma:%lukB"
4a0aa73f 3711 " writeback_tmp:%lukB"
1da177e4
LT
3712 " pages_scanned:%lu"
3713 " all_unreclaimable? %s"
3714 "\n",
3715 zone->name,
88f5acf8 3716 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3717 K(min_wmark_pages(zone)),
3718 K(low_wmark_pages(zone)),
3719 K(high_wmark_pages(zone)),
4f98a2fe
RR
3720 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3721 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3722 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3723 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3724 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3725 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3726 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3727 K(zone->present_pages),
9feedc9d 3728 K(zone->managed_pages),
4a0aa73f
KM
3729 K(zone_page_state(zone, NR_MLOCK)),
3730 K(zone_page_state(zone, NR_FILE_DIRTY)),
3731 K(zone_page_state(zone, NR_WRITEBACK)),
3732 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3733 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3734 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3735 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3736 zone_page_state(zone, NR_KERNEL_STACK) *
3737 THREAD_SIZE / 1024,
4a0aa73f
KM
3738 K(zone_page_state(zone, NR_PAGETABLE)),
3739 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3740 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3741 K(free_pcp),
3742 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3743 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3744 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3745 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3746 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3747 );
3748 printk("lowmem_reserve[]:");
3749 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3750 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3751 printk("\n");
3752 }
3753
ee99c71c 3754 for_each_populated_zone(zone) {
b8af2941 3755 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3756 unsigned char types[MAX_ORDER];
1da177e4 3757
7bf02ea2 3758 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3759 continue;
1da177e4
LT
3760 show_node(zone);
3761 printk("%s: ", zone->name);
1da177e4
LT
3762
3763 spin_lock_irqsave(&zone->lock, flags);
3764 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3765 struct free_area *area = &zone->free_area[order];
3766 int type;
3767
3768 nr[order] = area->nr_free;
8f9de51a 3769 total += nr[order] << order;
377e4f16
RV
3770
3771 types[order] = 0;
3772 for (type = 0; type < MIGRATE_TYPES; type++) {
3773 if (!list_empty(&area->free_list[type]))
3774 types[order] |= 1 << type;
3775 }
1da177e4
LT
3776 }
3777 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3778 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3779 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3780 if (nr[order])
3781 show_migration_types(types[order]);
3782 }
1da177e4
LT
3783 printk("= %lukB\n", K(total));
3784 }
3785
949f7ec5
DR
3786 hugetlb_show_meminfo();
3787
e6f3602d
LW
3788 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3789
1da177e4
LT
3790 show_swap_cache_info();
3791}
3792
19770b32
MG
3793static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3794{
3795 zoneref->zone = zone;
3796 zoneref->zone_idx = zone_idx(zone);
3797}
3798
1da177e4
LT
3799/*
3800 * Builds allocation fallback zone lists.
1a93205b
CL
3801 *
3802 * Add all populated zones of a node to the zonelist.
1da177e4 3803 */
f0c0b2b8 3804static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3805 int nr_zones)
1da177e4 3806{
1a93205b 3807 struct zone *zone;
bc732f1d 3808 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3809
3810 do {
2f6726e5 3811 zone_type--;
070f8032 3812 zone = pgdat->node_zones + zone_type;
1a93205b 3813 if (populated_zone(zone)) {
dd1a239f
MG
3814 zoneref_set_zone(zone,
3815 &zonelist->_zonerefs[nr_zones++]);
070f8032 3816 check_highest_zone(zone_type);
1da177e4 3817 }
2f6726e5 3818 } while (zone_type);
bc732f1d 3819
070f8032 3820 return nr_zones;
1da177e4
LT
3821}
3822
f0c0b2b8
KH
3823
3824/*
3825 * zonelist_order:
3826 * 0 = automatic detection of better ordering.
3827 * 1 = order by ([node] distance, -zonetype)
3828 * 2 = order by (-zonetype, [node] distance)
3829 *
3830 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3831 * the same zonelist. So only NUMA can configure this param.
3832 */
3833#define ZONELIST_ORDER_DEFAULT 0
3834#define ZONELIST_ORDER_NODE 1
3835#define ZONELIST_ORDER_ZONE 2
3836
3837/* zonelist order in the kernel.
3838 * set_zonelist_order() will set this to NODE or ZONE.
3839 */
3840static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3841static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3842
3843
1da177e4 3844#ifdef CONFIG_NUMA
f0c0b2b8
KH
3845/* The value user specified ....changed by config */
3846static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3847/* string for sysctl */
3848#define NUMA_ZONELIST_ORDER_LEN 16
3849char numa_zonelist_order[16] = "default";
3850
3851/*
3852 * interface for configure zonelist ordering.
3853 * command line option "numa_zonelist_order"
3854 * = "[dD]efault - default, automatic configuration.
3855 * = "[nN]ode - order by node locality, then by zone within node
3856 * = "[zZ]one - order by zone, then by locality within zone
3857 */
3858
3859static int __parse_numa_zonelist_order(char *s)
3860{
3861 if (*s == 'd' || *s == 'D') {
3862 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3863 } else if (*s == 'n' || *s == 'N') {
3864 user_zonelist_order = ZONELIST_ORDER_NODE;
3865 } else if (*s == 'z' || *s == 'Z') {
3866 user_zonelist_order = ZONELIST_ORDER_ZONE;
3867 } else {
3868 printk(KERN_WARNING
3869 "Ignoring invalid numa_zonelist_order value: "
3870 "%s\n", s);
3871 return -EINVAL;
3872 }
3873 return 0;
3874}
3875
3876static __init int setup_numa_zonelist_order(char *s)
3877{
ecb256f8
VL
3878 int ret;
3879
3880 if (!s)
3881 return 0;
3882
3883 ret = __parse_numa_zonelist_order(s);
3884 if (ret == 0)
3885 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3886
3887 return ret;
f0c0b2b8
KH
3888}
3889early_param("numa_zonelist_order", setup_numa_zonelist_order);
3890
3891/*
3892 * sysctl handler for numa_zonelist_order
3893 */
cccad5b9 3894int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3895 void __user *buffer, size_t *length,
f0c0b2b8
KH
3896 loff_t *ppos)
3897{
3898 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3899 int ret;
443c6f14 3900 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3901
443c6f14 3902 mutex_lock(&zl_order_mutex);
dacbde09
CG
3903 if (write) {
3904 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3905 ret = -EINVAL;
3906 goto out;
3907 }
3908 strcpy(saved_string, (char *)table->data);
3909 }
8d65af78 3910 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3911 if (ret)
443c6f14 3912 goto out;
f0c0b2b8
KH
3913 if (write) {
3914 int oldval = user_zonelist_order;
dacbde09
CG
3915
3916 ret = __parse_numa_zonelist_order((char *)table->data);
3917 if (ret) {
f0c0b2b8
KH
3918 /*
3919 * bogus value. restore saved string
3920 */
dacbde09 3921 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3922 NUMA_ZONELIST_ORDER_LEN);
3923 user_zonelist_order = oldval;
4eaf3f64
HL
3924 } else if (oldval != user_zonelist_order) {
3925 mutex_lock(&zonelists_mutex);
9adb62a5 3926 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3927 mutex_unlock(&zonelists_mutex);
3928 }
f0c0b2b8 3929 }
443c6f14
AK
3930out:
3931 mutex_unlock(&zl_order_mutex);
3932 return ret;
f0c0b2b8
KH
3933}
3934
3935
62bc62a8 3936#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3937static int node_load[MAX_NUMNODES];
3938
1da177e4 3939/**
4dc3b16b 3940 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3941 * @node: node whose fallback list we're appending
3942 * @used_node_mask: nodemask_t of already used nodes
3943 *
3944 * We use a number of factors to determine which is the next node that should
3945 * appear on a given node's fallback list. The node should not have appeared
3946 * already in @node's fallback list, and it should be the next closest node
3947 * according to the distance array (which contains arbitrary distance values
3948 * from each node to each node in the system), and should also prefer nodes
3949 * with no CPUs, since presumably they'll have very little allocation pressure
3950 * on them otherwise.
3951 * It returns -1 if no node is found.
3952 */
f0c0b2b8 3953static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3954{
4cf808eb 3955 int n, val;
1da177e4 3956 int min_val = INT_MAX;
00ef2d2f 3957 int best_node = NUMA_NO_NODE;
a70f7302 3958 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3959
4cf808eb
LT
3960 /* Use the local node if we haven't already */
3961 if (!node_isset(node, *used_node_mask)) {
3962 node_set(node, *used_node_mask);
3963 return node;
3964 }
1da177e4 3965
4b0ef1fe 3966 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3967
3968 /* Don't want a node to appear more than once */
3969 if (node_isset(n, *used_node_mask))
3970 continue;
3971
1da177e4
LT
3972 /* Use the distance array to find the distance */
3973 val = node_distance(node, n);
3974
4cf808eb
LT
3975 /* Penalize nodes under us ("prefer the next node") */
3976 val += (n < node);
3977
1da177e4 3978 /* Give preference to headless and unused nodes */
a70f7302
RR
3979 tmp = cpumask_of_node(n);
3980 if (!cpumask_empty(tmp))
1da177e4
LT
3981 val += PENALTY_FOR_NODE_WITH_CPUS;
3982
3983 /* Slight preference for less loaded node */
3984 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3985 val += node_load[n];
3986
3987 if (val < min_val) {
3988 min_val = val;
3989 best_node = n;
3990 }
3991 }
3992
3993 if (best_node >= 0)
3994 node_set(best_node, *used_node_mask);
3995
3996 return best_node;
3997}
3998
f0c0b2b8
KH
3999
4000/*
4001 * Build zonelists ordered by node and zones within node.
4002 * This results in maximum locality--normal zone overflows into local
4003 * DMA zone, if any--but risks exhausting DMA zone.
4004 */
4005static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4006{
f0c0b2b8 4007 int j;
1da177e4 4008 struct zonelist *zonelist;
f0c0b2b8 4009
54a6eb5c 4010 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4011 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4012 ;
bc732f1d 4013 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4014 zonelist->_zonerefs[j].zone = NULL;
4015 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4016}
4017
523b9458
CL
4018/*
4019 * Build gfp_thisnode zonelists
4020 */
4021static void build_thisnode_zonelists(pg_data_t *pgdat)
4022{
523b9458
CL
4023 int j;
4024 struct zonelist *zonelist;
4025
54a6eb5c 4026 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4027 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4028 zonelist->_zonerefs[j].zone = NULL;
4029 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4030}
4031
f0c0b2b8
KH
4032/*
4033 * Build zonelists ordered by zone and nodes within zones.
4034 * This results in conserving DMA zone[s] until all Normal memory is
4035 * exhausted, but results in overflowing to remote node while memory
4036 * may still exist in local DMA zone.
4037 */
4038static int node_order[MAX_NUMNODES];
4039
4040static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4041{
f0c0b2b8
KH
4042 int pos, j, node;
4043 int zone_type; /* needs to be signed */
4044 struct zone *z;
4045 struct zonelist *zonelist;
4046
54a6eb5c
MG
4047 zonelist = &pgdat->node_zonelists[0];
4048 pos = 0;
4049 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4050 for (j = 0; j < nr_nodes; j++) {
4051 node = node_order[j];
4052 z = &NODE_DATA(node)->node_zones[zone_type];
4053 if (populated_zone(z)) {
dd1a239f
MG
4054 zoneref_set_zone(z,
4055 &zonelist->_zonerefs[pos++]);
54a6eb5c 4056 check_highest_zone(zone_type);
f0c0b2b8
KH
4057 }
4058 }
f0c0b2b8 4059 }
dd1a239f
MG
4060 zonelist->_zonerefs[pos].zone = NULL;
4061 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4062}
4063
3193913c
MG
4064#if defined(CONFIG_64BIT)
4065/*
4066 * Devices that require DMA32/DMA are relatively rare and do not justify a
4067 * penalty to every machine in case the specialised case applies. Default
4068 * to Node-ordering on 64-bit NUMA machines
4069 */
4070static int default_zonelist_order(void)
4071{
4072 return ZONELIST_ORDER_NODE;
4073}
4074#else
4075/*
4076 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4077 * by the kernel. If processes running on node 0 deplete the low memory zone
4078 * then reclaim will occur more frequency increasing stalls and potentially
4079 * be easier to OOM if a large percentage of the zone is under writeback or
4080 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4081 * Hence, default to zone ordering on 32-bit.
4082 */
f0c0b2b8
KH
4083static int default_zonelist_order(void)
4084{
f0c0b2b8
KH
4085 return ZONELIST_ORDER_ZONE;
4086}
3193913c 4087#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4088
4089static void set_zonelist_order(void)
4090{
4091 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4092 current_zonelist_order = default_zonelist_order();
4093 else
4094 current_zonelist_order = user_zonelist_order;
4095}
4096
4097static void build_zonelists(pg_data_t *pgdat)
4098{
4099 int j, node, load;
4100 enum zone_type i;
1da177e4 4101 nodemask_t used_mask;
f0c0b2b8
KH
4102 int local_node, prev_node;
4103 struct zonelist *zonelist;
4104 int order = current_zonelist_order;
1da177e4
LT
4105
4106 /* initialize zonelists */
523b9458 4107 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4108 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4109 zonelist->_zonerefs[0].zone = NULL;
4110 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4111 }
4112
4113 /* NUMA-aware ordering of nodes */
4114 local_node = pgdat->node_id;
62bc62a8 4115 load = nr_online_nodes;
1da177e4
LT
4116 prev_node = local_node;
4117 nodes_clear(used_mask);
f0c0b2b8 4118
f0c0b2b8
KH
4119 memset(node_order, 0, sizeof(node_order));
4120 j = 0;
4121
1da177e4
LT
4122 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4123 /*
4124 * We don't want to pressure a particular node.
4125 * So adding penalty to the first node in same
4126 * distance group to make it round-robin.
4127 */
957f822a
DR
4128 if (node_distance(local_node, node) !=
4129 node_distance(local_node, prev_node))
f0c0b2b8
KH
4130 node_load[node] = load;
4131
1da177e4
LT
4132 prev_node = node;
4133 load--;
f0c0b2b8
KH
4134 if (order == ZONELIST_ORDER_NODE)
4135 build_zonelists_in_node_order(pgdat, node);
4136 else
4137 node_order[j++] = node; /* remember order */
4138 }
1da177e4 4139
f0c0b2b8
KH
4140 if (order == ZONELIST_ORDER_ZONE) {
4141 /* calculate node order -- i.e., DMA last! */
4142 build_zonelists_in_zone_order(pgdat, j);
1da177e4 4143 }
523b9458
CL
4144
4145 build_thisnode_zonelists(pgdat);
1da177e4
LT
4146}
4147
7aac7898
LS
4148#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4149/*
4150 * Return node id of node used for "local" allocations.
4151 * I.e., first node id of first zone in arg node's generic zonelist.
4152 * Used for initializing percpu 'numa_mem', which is used primarily
4153 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4154 */
4155int local_memory_node(int node)
4156{
4157 struct zone *zone;
4158
4159 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4160 gfp_zone(GFP_KERNEL),
4161 NULL,
4162 &zone);
4163 return zone->node;
4164}
4165#endif
f0c0b2b8 4166
1da177e4
LT
4167#else /* CONFIG_NUMA */
4168
f0c0b2b8
KH
4169static void set_zonelist_order(void)
4170{
4171 current_zonelist_order = ZONELIST_ORDER_ZONE;
4172}
4173
4174static void build_zonelists(pg_data_t *pgdat)
1da177e4 4175{
19655d34 4176 int node, local_node;
54a6eb5c
MG
4177 enum zone_type j;
4178 struct zonelist *zonelist;
1da177e4
LT
4179
4180 local_node = pgdat->node_id;
1da177e4 4181
54a6eb5c 4182 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4183 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4184
54a6eb5c
MG
4185 /*
4186 * Now we build the zonelist so that it contains the zones
4187 * of all the other nodes.
4188 * We don't want to pressure a particular node, so when
4189 * building the zones for node N, we make sure that the
4190 * zones coming right after the local ones are those from
4191 * node N+1 (modulo N)
4192 */
4193 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4194 if (!node_online(node))
4195 continue;
bc732f1d 4196 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4197 }
54a6eb5c
MG
4198 for (node = 0; node < local_node; node++) {
4199 if (!node_online(node))
4200 continue;
bc732f1d 4201 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4202 }
4203
dd1a239f
MG
4204 zonelist->_zonerefs[j].zone = NULL;
4205 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4206}
4207
4208#endif /* CONFIG_NUMA */
4209
99dcc3e5
CL
4210/*
4211 * Boot pageset table. One per cpu which is going to be used for all
4212 * zones and all nodes. The parameters will be set in such a way
4213 * that an item put on a list will immediately be handed over to
4214 * the buddy list. This is safe since pageset manipulation is done
4215 * with interrupts disabled.
4216 *
4217 * The boot_pagesets must be kept even after bootup is complete for
4218 * unused processors and/or zones. They do play a role for bootstrapping
4219 * hotplugged processors.
4220 *
4221 * zoneinfo_show() and maybe other functions do
4222 * not check if the processor is online before following the pageset pointer.
4223 * Other parts of the kernel may not check if the zone is available.
4224 */
4225static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4226static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4227static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4228
4eaf3f64
HL
4229/*
4230 * Global mutex to protect against size modification of zonelists
4231 * as well as to serialize pageset setup for the new populated zone.
4232 */
4233DEFINE_MUTEX(zonelists_mutex);
4234
9b1a4d38 4235/* return values int ....just for stop_machine() */
4ed7e022 4236static int __build_all_zonelists(void *data)
1da177e4 4237{
6811378e 4238 int nid;
99dcc3e5 4239 int cpu;
9adb62a5 4240 pg_data_t *self = data;
9276b1bc 4241
7f9cfb31
BL
4242#ifdef CONFIG_NUMA
4243 memset(node_load, 0, sizeof(node_load));
4244#endif
9adb62a5
JL
4245
4246 if (self && !node_online(self->node_id)) {
4247 build_zonelists(self);
9adb62a5
JL
4248 }
4249
9276b1bc 4250 for_each_online_node(nid) {
7ea1530a
CL
4251 pg_data_t *pgdat = NODE_DATA(nid);
4252
4253 build_zonelists(pgdat);
9276b1bc 4254 }
99dcc3e5
CL
4255
4256 /*
4257 * Initialize the boot_pagesets that are going to be used
4258 * for bootstrapping processors. The real pagesets for
4259 * each zone will be allocated later when the per cpu
4260 * allocator is available.
4261 *
4262 * boot_pagesets are used also for bootstrapping offline
4263 * cpus if the system is already booted because the pagesets
4264 * are needed to initialize allocators on a specific cpu too.
4265 * F.e. the percpu allocator needs the page allocator which
4266 * needs the percpu allocator in order to allocate its pagesets
4267 * (a chicken-egg dilemma).
4268 */
7aac7898 4269 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4270 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4271
7aac7898
LS
4272#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4273 /*
4274 * We now know the "local memory node" for each node--
4275 * i.e., the node of the first zone in the generic zonelist.
4276 * Set up numa_mem percpu variable for on-line cpus. During
4277 * boot, only the boot cpu should be on-line; we'll init the
4278 * secondary cpus' numa_mem as they come on-line. During
4279 * node/memory hotplug, we'll fixup all on-line cpus.
4280 */
4281 if (cpu_online(cpu))
4282 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4283#endif
4284 }
4285
6811378e
YG
4286 return 0;
4287}
4288
061f67bc
RV
4289static noinline void __init
4290build_all_zonelists_init(void)
4291{
4292 __build_all_zonelists(NULL);
4293 mminit_verify_zonelist();
4294 cpuset_init_current_mems_allowed();
4295}
4296
4eaf3f64
HL
4297/*
4298 * Called with zonelists_mutex held always
4299 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4300 *
4301 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4302 * [we're only called with non-NULL zone through __meminit paths] and
4303 * (2) call of __init annotated helper build_all_zonelists_init
4304 * [protected by SYSTEM_BOOTING].
4eaf3f64 4305 */
9adb62a5 4306void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4307{
f0c0b2b8
KH
4308 set_zonelist_order();
4309
6811378e 4310 if (system_state == SYSTEM_BOOTING) {
061f67bc 4311 build_all_zonelists_init();
6811378e 4312 } else {
e9959f0f 4313#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4314 if (zone)
4315 setup_zone_pageset(zone);
e9959f0f 4316#endif
dd1895e2
CS
4317 /* we have to stop all cpus to guarantee there is no user
4318 of zonelist */
9adb62a5 4319 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4320 /* cpuset refresh routine should be here */
4321 }
bd1e22b8 4322 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4323 /*
4324 * Disable grouping by mobility if the number of pages in the
4325 * system is too low to allow the mechanism to work. It would be
4326 * more accurate, but expensive to check per-zone. This check is
4327 * made on memory-hotadd so a system can start with mobility
4328 * disabled and enable it later
4329 */
d9c23400 4330 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4331 page_group_by_mobility_disabled = 1;
4332 else
4333 page_group_by_mobility_disabled = 0;
4334
f88dfff5 4335 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4336 "Total pages: %ld\n",
62bc62a8 4337 nr_online_nodes,
f0c0b2b8 4338 zonelist_order_name[current_zonelist_order],
9ef9acb0 4339 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4340 vm_total_pages);
4341#ifdef CONFIG_NUMA
f88dfff5 4342 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4343#endif
1da177e4
LT
4344}
4345
4346/*
4347 * Helper functions to size the waitqueue hash table.
4348 * Essentially these want to choose hash table sizes sufficiently
4349 * large so that collisions trying to wait on pages are rare.
4350 * But in fact, the number of active page waitqueues on typical
4351 * systems is ridiculously low, less than 200. So this is even
4352 * conservative, even though it seems large.
4353 *
4354 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4355 * waitqueues, i.e. the size of the waitq table given the number of pages.
4356 */
4357#define PAGES_PER_WAITQUEUE 256
4358
cca448fe 4359#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4360static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4361{
4362 unsigned long size = 1;
4363
4364 pages /= PAGES_PER_WAITQUEUE;
4365
4366 while (size < pages)
4367 size <<= 1;
4368
4369 /*
4370 * Once we have dozens or even hundreds of threads sleeping
4371 * on IO we've got bigger problems than wait queue collision.
4372 * Limit the size of the wait table to a reasonable size.
4373 */
4374 size = min(size, 4096UL);
4375
4376 return max(size, 4UL);
4377}
cca448fe
YG
4378#else
4379/*
4380 * A zone's size might be changed by hot-add, so it is not possible to determine
4381 * a suitable size for its wait_table. So we use the maximum size now.
4382 *
4383 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4384 *
4385 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4386 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4387 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4388 *
4389 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4390 * or more by the traditional way. (See above). It equals:
4391 *
4392 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4393 * ia64(16K page size) : = ( 8G + 4M)byte.
4394 * powerpc (64K page size) : = (32G +16M)byte.
4395 */
4396static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4397{
4398 return 4096UL;
4399}
4400#endif
1da177e4
LT
4401
4402/*
4403 * This is an integer logarithm so that shifts can be used later
4404 * to extract the more random high bits from the multiplicative
4405 * hash function before the remainder is taken.
4406 */
4407static inline unsigned long wait_table_bits(unsigned long size)
4408{
4409 return ffz(~size);
4410}
4411
1da177e4
LT
4412/*
4413 * Initially all pages are reserved - free ones are freed
4414 * up by free_all_bootmem() once the early boot process is
4415 * done. Non-atomic initialization, single-pass.
4416 */
c09b4240 4417void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4418 unsigned long start_pfn, enum memmap_context context)
1da177e4 4419{
3a80a7fa 4420 pg_data_t *pgdat = NODE_DATA(nid);
29751f69
AW
4421 unsigned long end_pfn = start_pfn + size;
4422 unsigned long pfn;
86051ca5 4423 struct zone *z;
3a80a7fa 4424 unsigned long nr_initialised = 0;
1da177e4 4425
22b31eec
HD
4426 if (highest_memmap_pfn < end_pfn - 1)
4427 highest_memmap_pfn = end_pfn - 1;
4428
3a80a7fa 4429 z = &pgdat->node_zones[zone];
cbe8dd4a 4430 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4431 /*
4432 * There can be holes in boot-time mem_map[]s
4433 * handed to this function. They do not
4434 * exist on hotplugged memory.
4435 */
4436 if (context == MEMMAP_EARLY) {
4437 if (!early_pfn_valid(pfn))
4438 continue;
4439 if (!early_pfn_in_nid(pfn, nid))
4440 continue;
3a80a7fa
MG
4441 if (!update_defer_init(pgdat, pfn, end_pfn,
4442 &nr_initialised))
4443 break;
a2f3aa02 4444 }
ac5d2539
MG
4445
4446 /*
4447 * Mark the block movable so that blocks are reserved for
4448 * movable at startup. This will force kernel allocations
4449 * to reserve their blocks rather than leaking throughout
4450 * the address space during boot when many long-lived
974a786e 4451 * kernel allocations are made.
ac5d2539
MG
4452 *
4453 * bitmap is created for zone's valid pfn range. but memmap
4454 * can be created for invalid pages (for alignment)
4455 * check here not to call set_pageblock_migratetype() against
4456 * pfn out of zone.
4457 */
4458 if (!(pfn & (pageblock_nr_pages - 1))) {
4459 struct page *page = pfn_to_page(pfn);
4460
4461 __init_single_page(page, pfn, zone, nid);
4462 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4463 } else {
4464 __init_single_pfn(pfn, zone, nid);
4465 }
1da177e4
LT
4466 }
4467}
4468
1e548deb 4469static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4470{
7aeb09f9 4471 unsigned int order, t;
b2a0ac88
MG
4472 for_each_migratetype_order(order, t) {
4473 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4474 zone->free_area[order].nr_free = 0;
4475 }
4476}
4477
4478#ifndef __HAVE_ARCH_MEMMAP_INIT
4479#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4480 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4481#endif
4482
7cd2b0a3 4483static int zone_batchsize(struct zone *zone)
e7c8d5c9 4484{
3a6be87f 4485#ifdef CONFIG_MMU
e7c8d5c9
CL
4486 int batch;
4487
4488 /*
4489 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4490 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4491 *
4492 * OK, so we don't know how big the cache is. So guess.
4493 */
b40da049 4494 batch = zone->managed_pages / 1024;
ba56e91c
SR
4495 if (batch * PAGE_SIZE > 512 * 1024)
4496 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4497 batch /= 4; /* We effectively *= 4 below */
4498 if (batch < 1)
4499 batch = 1;
4500
4501 /*
0ceaacc9
NP
4502 * Clamp the batch to a 2^n - 1 value. Having a power
4503 * of 2 value was found to be more likely to have
4504 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4505 *
0ceaacc9
NP
4506 * For example if 2 tasks are alternately allocating
4507 * batches of pages, one task can end up with a lot
4508 * of pages of one half of the possible page colors
4509 * and the other with pages of the other colors.
e7c8d5c9 4510 */
9155203a 4511 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4512
e7c8d5c9 4513 return batch;
3a6be87f
DH
4514
4515#else
4516 /* The deferral and batching of frees should be suppressed under NOMMU
4517 * conditions.
4518 *
4519 * The problem is that NOMMU needs to be able to allocate large chunks
4520 * of contiguous memory as there's no hardware page translation to
4521 * assemble apparent contiguous memory from discontiguous pages.
4522 *
4523 * Queueing large contiguous runs of pages for batching, however,
4524 * causes the pages to actually be freed in smaller chunks. As there
4525 * can be a significant delay between the individual batches being
4526 * recycled, this leads to the once large chunks of space being
4527 * fragmented and becoming unavailable for high-order allocations.
4528 */
4529 return 0;
4530#endif
e7c8d5c9
CL
4531}
4532
8d7a8fa9
CS
4533/*
4534 * pcp->high and pcp->batch values are related and dependent on one another:
4535 * ->batch must never be higher then ->high.
4536 * The following function updates them in a safe manner without read side
4537 * locking.
4538 *
4539 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4540 * those fields changing asynchronously (acording the the above rule).
4541 *
4542 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4543 * outside of boot time (or some other assurance that no concurrent updaters
4544 * exist).
4545 */
4546static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4547 unsigned long batch)
4548{
4549 /* start with a fail safe value for batch */
4550 pcp->batch = 1;
4551 smp_wmb();
4552
4553 /* Update high, then batch, in order */
4554 pcp->high = high;
4555 smp_wmb();
4556
4557 pcp->batch = batch;
4558}
4559
3664033c 4560/* a companion to pageset_set_high() */
4008bab7
CS
4561static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4562{
8d7a8fa9 4563 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4564}
4565
88c90dbc 4566static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4567{
4568 struct per_cpu_pages *pcp;
5f8dcc21 4569 int migratetype;
2caaad41 4570
1c6fe946
MD
4571 memset(p, 0, sizeof(*p));
4572
3dfa5721 4573 pcp = &p->pcp;
2caaad41 4574 pcp->count = 0;
5f8dcc21
MG
4575 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4576 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4577}
4578
88c90dbc
CS
4579static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4580{
4581 pageset_init(p);
4582 pageset_set_batch(p, batch);
4583}
4584
8ad4b1fb 4585/*
3664033c 4586 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4587 * to the value high for the pageset p.
4588 */
3664033c 4589static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4590 unsigned long high)
4591{
8d7a8fa9
CS
4592 unsigned long batch = max(1UL, high / 4);
4593 if ((high / 4) > (PAGE_SHIFT * 8))
4594 batch = PAGE_SHIFT * 8;
8ad4b1fb 4595
8d7a8fa9 4596 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4597}
4598
7cd2b0a3
DR
4599static void pageset_set_high_and_batch(struct zone *zone,
4600 struct per_cpu_pageset *pcp)
56cef2b8 4601{
56cef2b8 4602 if (percpu_pagelist_fraction)
3664033c 4603 pageset_set_high(pcp,
56cef2b8
CS
4604 (zone->managed_pages /
4605 percpu_pagelist_fraction));
4606 else
4607 pageset_set_batch(pcp, zone_batchsize(zone));
4608}
4609
169f6c19
CS
4610static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4611{
4612 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4613
4614 pageset_init(pcp);
4615 pageset_set_high_and_batch(zone, pcp);
4616}
4617
4ed7e022 4618static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4619{
4620 int cpu;
319774e2 4621 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4622 for_each_possible_cpu(cpu)
4623 zone_pageset_init(zone, cpu);
319774e2
WF
4624}
4625
2caaad41 4626/*
99dcc3e5
CL
4627 * Allocate per cpu pagesets and initialize them.
4628 * Before this call only boot pagesets were available.
e7c8d5c9 4629 */
99dcc3e5 4630void __init setup_per_cpu_pageset(void)
e7c8d5c9 4631{
99dcc3e5 4632 struct zone *zone;
e7c8d5c9 4633
319774e2
WF
4634 for_each_populated_zone(zone)
4635 setup_zone_pageset(zone);
e7c8d5c9
CL
4636}
4637
577a32f6 4638static noinline __init_refok
cca448fe 4639int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4640{
4641 int i;
cca448fe 4642 size_t alloc_size;
ed8ece2e
DH
4643
4644 /*
4645 * The per-page waitqueue mechanism uses hashed waitqueues
4646 * per zone.
4647 */
02b694de
YG
4648 zone->wait_table_hash_nr_entries =
4649 wait_table_hash_nr_entries(zone_size_pages);
4650 zone->wait_table_bits =
4651 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4652 alloc_size = zone->wait_table_hash_nr_entries
4653 * sizeof(wait_queue_head_t);
4654
cd94b9db 4655 if (!slab_is_available()) {
cca448fe 4656 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4657 memblock_virt_alloc_node_nopanic(
4658 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4659 } else {
4660 /*
4661 * This case means that a zone whose size was 0 gets new memory
4662 * via memory hot-add.
4663 * But it may be the case that a new node was hot-added. In
4664 * this case vmalloc() will not be able to use this new node's
4665 * memory - this wait_table must be initialized to use this new
4666 * node itself as well.
4667 * To use this new node's memory, further consideration will be
4668 * necessary.
4669 */
8691f3a7 4670 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4671 }
4672 if (!zone->wait_table)
4673 return -ENOMEM;
ed8ece2e 4674
b8af2941 4675 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4676 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4677
4678 return 0;
ed8ece2e
DH
4679}
4680
c09b4240 4681static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4682{
99dcc3e5
CL
4683 /*
4684 * per cpu subsystem is not up at this point. The following code
4685 * relies on the ability of the linker to provide the
4686 * offset of a (static) per cpu variable into the per cpu area.
4687 */
4688 zone->pageset = &boot_pageset;
ed8ece2e 4689
b38a8725 4690 if (populated_zone(zone))
99dcc3e5
CL
4691 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4692 zone->name, zone->present_pages,
4693 zone_batchsize(zone));
ed8ece2e
DH
4694}
4695
4ed7e022 4696int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4697 unsigned long zone_start_pfn,
b171e409 4698 unsigned long size)
ed8ece2e
DH
4699{
4700 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4701 int ret;
4702 ret = zone_wait_table_init(zone, size);
4703 if (ret)
4704 return ret;
ed8ece2e
DH
4705 pgdat->nr_zones = zone_idx(zone) + 1;
4706
ed8ece2e
DH
4707 zone->zone_start_pfn = zone_start_pfn;
4708
708614e6
MG
4709 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4710 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4711 pgdat->node_id,
4712 (unsigned long)zone_idx(zone),
4713 zone_start_pfn, (zone_start_pfn + size));
4714
1e548deb 4715 zone_init_free_lists(zone);
718127cc
YG
4716
4717 return 0;
ed8ece2e
DH
4718}
4719
0ee332c1 4720#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4721#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4722
c713216d
MG
4723/*
4724 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4725 */
8a942fde
MG
4726int __meminit __early_pfn_to_nid(unsigned long pfn,
4727 struct mminit_pfnnid_cache *state)
c713216d 4728{
c13291a5 4729 unsigned long start_pfn, end_pfn;
e76b63f8 4730 int nid;
7c243c71 4731
8a942fde
MG
4732 if (state->last_start <= pfn && pfn < state->last_end)
4733 return state->last_nid;
c713216d 4734
e76b63f8
YL
4735 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4736 if (nid != -1) {
8a942fde
MG
4737 state->last_start = start_pfn;
4738 state->last_end = end_pfn;
4739 state->last_nid = nid;
e76b63f8
YL
4740 }
4741
4742 return nid;
c713216d
MG
4743}
4744#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4745
c713216d 4746/**
6782832e 4747 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4748 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4749 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4750 *
7d018176
ZZ
4751 * If an architecture guarantees that all ranges registered contain no holes
4752 * and may be freed, this this function may be used instead of calling
4753 * memblock_free_early_nid() manually.
c713216d 4754 */
c13291a5 4755void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4756{
c13291a5
TH
4757 unsigned long start_pfn, end_pfn;
4758 int i, this_nid;
edbe7d23 4759
c13291a5
TH
4760 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4761 start_pfn = min(start_pfn, max_low_pfn);
4762 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4763
c13291a5 4764 if (start_pfn < end_pfn)
6782832e
SS
4765 memblock_free_early_nid(PFN_PHYS(start_pfn),
4766 (end_pfn - start_pfn) << PAGE_SHIFT,
4767 this_nid);
edbe7d23 4768 }
edbe7d23 4769}
edbe7d23 4770
c713216d
MG
4771/**
4772 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4773 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4774 *
7d018176
ZZ
4775 * If an architecture guarantees that all ranges registered contain no holes and may
4776 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4777 */
4778void __init sparse_memory_present_with_active_regions(int nid)
4779{
c13291a5
TH
4780 unsigned long start_pfn, end_pfn;
4781 int i, this_nid;
c713216d 4782
c13291a5
TH
4783 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4784 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4785}
4786
4787/**
4788 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4789 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4790 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4791 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4792 *
4793 * It returns the start and end page frame of a node based on information
7d018176 4794 * provided by memblock_set_node(). If called for a node
c713216d 4795 * with no available memory, a warning is printed and the start and end
88ca3b94 4796 * PFNs will be 0.
c713216d 4797 */
a3142c8e 4798void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4799 unsigned long *start_pfn, unsigned long *end_pfn)
4800{
c13291a5 4801 unsigned long this_start_pfn, this_end_pfn;
c713216d 4802 int i;
c13291a5 4803
c713216d
MG
4804 *start_pfn = -1UL;
4805 *end_pfn = 0;
4806
c13291a5
TH
4807 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4808 *start_pfn = min(*start_pfn, this_start_pfn);
4809 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4810 }
4811
633c0666 4812 if (*start_pfn == -1UL)
c713216d 4813 *start_pfn = 0;
c713216d
MG
4814}
4815
2a1e274a
MG
4816/*
4817 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4818 * assumption is made that zones within a node are ordered in monotonic
4819 * increasing memory addresses so that the "highest" populated zone is used
4820 */
b69a7288 4821static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4822{
4823 int zone_index;
4824 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4825 if (zone_index == ZONE_MOVABLE)
4826 continue;
4827
4828 if (arch_zone_highest_possible_pfn[zone_index] >
4829 arch_zone_lowest_possible_pfn[zone_index])
4830 break;
4831 }
4832
4833 VM_BUG_ON(zone_index == -1);
4834 movable_zone = zone_index;
4835}
4836
4837/*
4838 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4839 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4840 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4841 * in each node depending on the size of each node and how evenly kernelcore
4842 * is distributed. This helper function adjusts the zone ranges
4843 * provided by the architecture for a given node by using the end of the
4844 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4845 * zones within a node are in order of monotonic increases memory addresses
4846 */
b69a7288 4847static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4848 unsigned long zone_type,
4849 unsigned long node_start_pfn,
4850 unsigned long node_end_pfn,
4851 unsigned long *zone_start_pfn,
4852 unsigned long *zone_end_pfn)
4853{
4854 /* Only adjust if ZONE_MOVABLE is on this node */
4855 if (zone_movable_pfn[nid]) {
4856 /* Size ZONE_MOVABLE */
4857 if (zone_type == ZONE_MOVABLE) {
4858 *zone_start_pfn = zone_movable_pfn[nid];
4859 *zone_end_pfn = min(node_end_pfn,
4860 arch_zone_highest_possible_pfn[movable_zone]);
4861
4862 /* Adjust for ZONE_MOVABLE starting within this range */
4863 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4864 *zone_end_pfn > zone_movable_pfn[nid]) {
4865 *zone_end_pfn = zone_movable_pfn[nid];
4866
4867 /* Check if this whole range is within ZONE_MOVABLE */
4868 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4869 *zone_start_pfn = *zone_end_pfn;
4870 }
4871}
4872
c713216d
MG
4873/*
4874 * Return the number of pages a zone spans in a node, including holes
4875 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4876 */
6ea6e688 4877static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4878 unsigned long zone_type,
7960aedd
ZY
4879 unsigned long node_start_pfn,
4880 unsigned long node_end_pfn,
c713216d
MG
4881 unsigned long *ignored)
4882{
c713216d
MG
4883 unsigned long zone_start_pfn, zone_end_pfn;
4884
b5685e92 4885 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
4886 if (!node_start_pfn && !node_end_pfn)
4887 return 0;
4888
7960aedd 4889 /* Get the start and end of the zone */
c713216d
MG
4890 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4891 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4892 adjust_zone_range_for_zone_movable(nid, zone_type,
4893 node_start_pfn, node_end_pfn,
4894 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4895
4896 /* Check that this node has pages within the zone's required range */
4897 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4898 return 0;
4899
4900 /* Move the zone boundaries inside the node if necessary */
4901 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4902 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4903
4904 /* Return the spanned pages */
4905 return zone_end_pfn - zone_start_pfn;
4906}
4907
4908/*
4909 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4910 * then all holes in the requested range will be accounted for.
c713216d 4911 */
32996250 4912unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4913 unsigned long range_start_pfn,
4914 unsigned long range_end_pfn)
4915{
96e907d1
TH
4916 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4917 unsigned long start_pfn, end_pfn;
4918 int i;
c713216d 4919
96e907d1
TH
4920 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4921 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4922 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4923 nr_absent -= end_pfn - start_pfn;
c713216d 4924 }
96e907d1 4925 return nr_absent;
c713216d
MG
4926}
4927
4928/**
4929 * absent_pages_in_range - Return number of page frames in holes within a range
4930 * @start_pfn: The start PFN to start searching for holes
4931 * @end_pfn: The end PFN to stop searching for holes
4932 *
88ca3b94 4933 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4934 */
4935unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4936 unsigned long end_pfn)
4937{
4938 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4939}
4940
4941/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4942static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4943 unsigned long zone_type,
7960aedd
ZY
4944 unsigned long node_start_pfn,
4945 unsigned long node_end_pfn,
c713216d
MG
4946 unsigned long *ignored)
4947{
96e907d1
TH
4948 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4949 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4950 unsigned long zone_start_pfn, zone_end_pfn;
4951
b5685e92 4952 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
4953 if (!node_start_pfn && !node_end_pfn)
4954 return 0;
4955
96e907d1
TH
4956 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4957 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4958
2a1e274a
MG
4959 adjust_zone_range_for_zone_movable(nid, zone_type,
4960 node_start_pfn, node_end_pfn,
4961 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4962 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4963}
0e0b864e 4964
0ee332c1 4965#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4966static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4967 unsigned long zone_type,
7960aedd
ZY
4968 unsigned long node_start_pfn,
4969 unsigned long node_end_pfn,
c713216d
MG
4970 unsigned long *zones_size)
4971{
4972 return zones_size[zone_type];
4973}
4974
6ea6e688 4975static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4976 unsigned long zone_type,
7960aedd
ZY
4977 unsigned long node_start_pfn,
4978 unsigned long node_end_pfn,
c713216d
MG
4979 unsigned long *zholes_size)
4980{
4981 if (!zholes_size)
4982 return 0;
4983
4984 return zholes_size[zone_type];
4985}
20e6926d 4986
0ee332c1 4987#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4988
a3142c8e 4989static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4990 unsigned long node_start_pfn,
4991 unsigned long node_end_pfn,
4992 unsigned long *zones_size,
4993 unsigned long *zholes_size)
c713216d 4994{
febd5949 4995 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
4996 enum zone_type i;
4997
febd5949
GZ
4998 for (i = 0; i < MAX_NR_ZONES; i++) {
4999 struct zone *zone = pgdat->node_zones + i;
5000 unsigned long size, real_size;
c713216d 5001
febd5949
GZ
5002 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5003 node_start_pfn,
5004 node_end_pfn,
5005 zones_size);
5006 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5007 node_start_pfn, node_end_pfn,
5008 zholes_size);
febd5949
GZ
5009 zone->spanned_pages = size;
5010 zone->present_pages = real_size;
5011
5012 totalpages += size;
5013 realtotalpages += real_size;
5014 }
5015
5016 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5017 pgdat->node_present_pages = realtotalpages;
5018 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5019 realtotalpages);
5020}
5021
835c134e
MG
5022#ifndef CONFIG_SPARSEMEM
5023/*
5024 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5025 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5026 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5027 * round what is now in bits to nearest long in bits, then return it in
5028 * bytes.
5029 */
7c45512d 5030static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5031{
5032 unsigned long usemapsize;
5033
7c45512d 5034 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5035 usemapsize = roundup(zonesize, pageblock_nr_pages);
5036 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5037 usemapsize *= NR_PAGEBLOCK_BITS;
5038 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5039
5040 return usemapsize / 8;
5041}
5042
5043static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5044 struct zone *zone,
5045 unsigned long zone_start_pfn,
5046 unsigned long zonesize)
835c134e 5047{
7c45512d 5048 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5049 zone->pageblock_flags = NULL;
58a01a45 5050 if (usemapsize)
6782832e
SS
5051 zone->pageblock_flags =
5052 memblock_virt_alloc_node_nopanic(usemapsize,
5053 pgdat->node_id);
835c134e
MG
5054}
5055#else
7c45512d
LT
5056static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5057 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5058#endif /* CONFIG_SPARSEMEM */
5059
d9c23400 5060#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5061
d9c23400 5062/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5063void __paginginit set_pageblock_order(void)
d9c23400 5064{
955c1cd7
AM
5065 unsigned int order;
5066
d9c23400
MG
5067 /* Check that pageblock_nr_pages has not already been setup */
5068 if (pageblock_order)
5069 return;
5070
955c1cd7
AM
5071 if (HPAGE_SHIFT > PAGE_SHIFT)
5072 order = HUGETLB_PAGE_ORDER;
5073 else
5074 order = MAX_ORDER - 1;
5075
d9c23400
MG
5076 /*
5077 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5078 * This value may be variable depending on boot parameters on IA64 and
5079 * powerpc.
d9c23400
MG
5080 */
5081 pageblock_order = order;
5082}
5083#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5084
ba72cb8c
MG
5085/*
5086 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5087 * is unused as pageblock_order is set at compile-time. See
5088 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5089 * the kernel config
ba72cb8c 5090 */
15ca220e 5091void __paginginit set_pageblock_order(void)
ba72cb8c 5092{
ba72cb8c 5093}
d9c23400
MG
5094
5095#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5096
01cefaef
JL
5097static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5098 unsigned long present_pages)
5099{
5100 unsigned long pages = spanned_pages;
5101
5102 /*
5103 * Provide a more accurate estimation if there are holes within
5104 * the zone and SPARSEMEM is in use. If there are holes within the
5105 * zone, each populated memory region may cost us one or two extra
5106 * memmap pages due to alignment because memmap pages for each
5107 * populated regions may not naturally algined on page boundary.
5108 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5109 */
5110 if (spanned_pages > present_pages + (present_pages >> 4) &&
5111 IS_ENABLED(CONFIG_SPARSEMEM))
5112 pages = present_pages;
5113
5114 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5115}
5116
1da177e4
LT
5117/*
5118 * Set up the zone data structures:
5119 * - mark all pages reserved
5120 * - mark all memory queues empty
5121 * - clear the memory bitmaps
6527af5d
MK
5122 *
5123 * NOTE: pgdat should get zeroed by caller.
1da177e4 5124 */
7f3eb55b 5125static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5126{
2f1b6248 5127 enum zone_type j;
ed8ece2e 5128 int nid = pgdat->node_id;
1da177e4 5129 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 5130 int ret;
1da177e4 5131
208d54e5 5132 pgdat_resize_init(pgdat);
8177a420
AA
5133#ifdef CONFIG_NUMA_BALANCING
5134 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5135 pgdat->numabalancing_migrate_nr_pages = 0;
5136 pgdat->numabalancing_migrate_next_window = jiffies;
5137#endif
1da177e4 5138 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5139 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5140 pgdat_page_ext_init(pgdat);
5f63b720 5141
1da177e4
LT
5142 for (j = 0; j < MAX_NR_ZONES; j++) {
5143 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5144 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 5145
febd5949
GZ
5146 size = zone->spanned_pages;
5147 realsize = freesize = zone->present_pages;
1da177e4 5148
0e0b864e 5149 /*
9feedc9d 5150 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5151 * is used by this zone for memmap. This affects the watermark
5152 * and per-cpu initialisations
5153 */
01cefaef 5154 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5155 if (!is_highmem_idx(j)) {
5156 if (freesize >= memmap_pages) {
5157 freesize -= memmap_pages;
5158 if (memmap_pages)
5159 printk(KERN_DEBUG
5160 " %s zone: %lu pages used for memmap\n",
5161 zone_names[j], memmap_pages);
5162 } else
5163 printk(KERN_WARNING
5164 " %s zone: %lu pages exceeds freesize %lu\n",
5165 zone_names[j], memmap_pages, freesize);
5166 }
0e0b864e 5167
6267276f 5168 /* Account for reserved pages */
9feedc9d
JL
5169 if (j == 0 && freesize > dma_reserve) {
5170 freesize -= dma_reserve;
d903ef9f 5171 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5172 zone_names[0], dma_reserve);
0e0b864e
MG
5173 }
5174
98d2b0eb 5175 if (!is_highmem_idx(j))
9feedc9d 5176 nr_kernel_pages += freesize;
01cefaef
JL
5177 /* Charge for highmem memmap if there are enough kernel pages */
5178 else if (nr_kernel_pages > memmap_pages * 2)
5179 nr_kernel_pages -= memmap_pages;
9feedc9d 5180 nr_all_pages += freesize;
1da177e4 5181
9feedc9d
JL
5182 /*
5183 * Set an approximate value for lowmem here, it will be adjusted
5184 * when the bootmem allocator frees pages into the buddy system.
5185 * And all highmem pages will be managed by the buddy system.
5186 */
5187 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5188#ifdef CONFIG_NUMA
d5f541ed 5189 zone->node = nid;
9feedc9d 5190 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5191 / 100;
9feedc9d 5192 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5193#endif
1da177e4
LT
5194 zone->name = zone_names[j];
5195 spin_lock_init(&zone->lock);
5196 spin_lock_init(&zone->lru_lock);
bdc8cb98 5197 zone_seqlock_init(zone);
1da177e4 5198 zone->zone_pgdat = pgdat;
ed8ece2e 5199 zone_pcp_init(zone);
81c0a2bb
JW
5200
5201 /* For bootup, initialized properly in watermark setup */
5202 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5203
bea8c150 5204 lruvec_init(&zone->lruvec);
1da177e4
LT
5205 if (!size)
5206 continue;
5207
955c1cd7 5208 set_pageblock_order();
7c45512d 5209 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5210 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5211 BUG_ON(ret);
76cdd58e 5212 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5213 zone_start_pfn += size;
1da177e4
LT
5214 }
5215}
5216
577a32f6 5217static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5218{
a1c34a3b
LA
5219 unsigned long __maybe_unused offset = 0;
5220
1da177e4
LT
5221 /* Skip empty nodes */
5222 if (!pgdat->node_spanned_pages)
5223 return;
5224
d41dee36 5225#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
5226 /* ia64 gets its own node_mem_map, before this, without bootmem */
5227 if (!pgdat->node_mem_map) {
e984bb43 5228 unsigned long size, start, end;
d41dee36
AW
5229 struct page *map;
5230
e984bb43
BP
5231 /*
5232 * The zone's endpoints aren't required to be MAX_ORDER
5233 * aligned but the node_mem_map endpoints must be in order
5234 * for the buddy allocator to function correctly.
5235 */
5236 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
a1c34a3b 5237 offset = pgdat->node_start_pfn - start;
108bcc96 5238 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5239 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5240 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5241 map = alloc_remap(pgdat->node_id, size);
5242 if (!map)
6782832e
SS
5243 map = memblock_virt_alloc_node_nopanic(size,
5244 pgdat->node_id);
a1c34a3b 5245 pgdat->node_mem_map = map + offset;
1da177e4 5246 }
12d810c1 5247#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5248 /*
5249 * With no DISCONTIG, the global mem_map is just set as node 0's
5250 */
c713216d 5251 if (pgdat == NODE_DATA(0)) {
1da177e4 5252 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5253#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5254 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5255 mem_map -= offset;
0ee332c1 5256#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5257 }
1da177e4 5258#endif
d41dee36 5259#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5260}
5261
9109fb7b
JW
5262void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5263 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5264{
9109fb7b 5265 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5266 unsigned long start_pfn = 0;
5267 unsigned long end_pfn = 0;
9109fb7b 5268
88fdf75d 5269 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5270 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5271
3a80a7fa 5272 reset_deferred_meminit(pgdat);
1da177e4
LT
5273 pgdat->node_id = nid;
5274 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5275#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5276 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5277 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5278 (u64)start_pfn << PAGE_SHIFT,
5279 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7960aedd
ZY
5280#endif
5281 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5282 zones_size, zholes_size);
1da177e4
LT
5283
5284 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5285#ifdef CONFIG_FLAT_NODE_MEM_MAP
5286 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5287 nid, (unsigned long)pgdat,
5288 (unsigned long)pgdat->node_mem_map);
5289#endif
1da177e4 5290
7f3eb55b 5291 free_area_init_core(pgdat);
1da177e4
LT
5292}
5293
0ee332c1 5294#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5295
5296#if MAX_NUMNODES > 1
5297/*
5298 * Figure out the number of possible node ids.
5299 */
f9872caf 5300void __init setup_nr_node_ids(void)
418508c1 5301{
904a9553 5302 unsigned int highest;
418508c1 5303
904a9553 5304 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5305 nr_node_ids = highest + 1;
5306}
418508c1
MS
5307#endif
5308
1e01979c
TH
5309/**
5310 * node_map_pfn_alignment - determine the maximum internode alignment
5311 *
5312 * This function should be called after node map is populated and sorted.
5313 * It calculates the maximum power of two alignment which can distinguish
5314 * all the nodes.
5315 *
5316 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5317 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5318 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5319 * shifted, 1GiB is enough and this function will indicate so.
5320 *
5321 * This is used to test whether pfn -> nid mapping of the chosen memory
5322 * model has fine enough granularity to avoid incorrect mapping for the
5323 * populated node map.
5324 *
5325 * Returns the determined alignment in pfn's. 0 if there is no alignment
5326 * requirement (single node).
5327 */
5328unsigned long __init node_map_pfn_alignment(void)
5329{
5330 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5331 unsigned long start, end, mask;
1e01979c 5332 int last_nid = -1;
c13291a5 5333 int i, nid;
1e01979c 5334
c13291a5 5335 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5336 if (!start || last_nid < 0 || last_nid == nid) {
5337 last_nid = nid;
5338 last_end = end;
5339 continue;
5340 }
5341
5342 /*
5343 * Start with a mask granular enough to pin-point to the
5344 * start pfn and tick off bits one-by-one until it becomes
5345 * too coarse to separate the current node from the last.
5346 */
5347 mask = ~((1 << __ffs(start)) - 1);
5348 while (mask && last_end <= (start & (mask << 1)))
5349 mask <<= 1;
5350
5351 /* accumulate all internode masks */
5352 accl_mask |= mask;
5353 }
5354
5355 /* convert mask to number of pages */
5356 return ~accl_mask + 1;
5357}
5358
a6af2bc3 5359/* Find the lowest pfn for a node */
b69a7288 5360static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5361{
a6af2bc3 5362 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5363 unsigned long start_pfn;
5364 int i;
1abbfb41 5365
c13291a5
TH
5366 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5367 min_pfn = min(min_pfn, start_pfn);
c713216d 5368
a6af2bc3
MG
5369 if (min_pfn == ULONG_MAX) {
5370 printk(KERN_WARNING
2bc0d261 5371 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5372 return 0;
5373 }
5374
5375 return min_pfn;
c713216d
MG
5376}
5377
5378/**
5379 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5380 *
5381 * It returns the minimum PFN based on information provided via
7d018176 5382 * memblock_set_node().
c713216d
MG
5383 */
5384unsigned long __init find_min_pfn_with_active_regions(void)
5385{
5386 return find_min_pfn_for_node(MAX_NUMNODES);
5387}
5388
37b07e41
LS
5389/*
5390 * early_calculate_totalpages()
5391 * Sum pages in active regions for movable zone.
4b0ef1fe 5392 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5393 */
484f51f8 5394static unsigned long __init early_calculate_totalpages(void)
7e63efef 5395{
7e63efef 5396 unsigned long totalpages = 0;
c13291a5
TH
5397 unsigned long start_pfn, end_pfn;
5398 int i, nid;
5399
5400 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5401 unsigned long pages = end_pfn - start_pfn;
7e63efef 5402
37b07e41
LS
5403 totalpages += pages;
5404 if (pages)
4b0ef1fe 5405 node_set_state(nid, N_MEMORY);
37b07e41 5406 }
b8af2941 5407 return totalpages;
7e63efef
MG
5408}
5409
2a1e274a
MG
5410/*
5411 * Find the PFN the Movable zone begins in each node. Kernel memory
5412 * is spread evenly between nodes as long as the nodes have enough
5413 * memory. When they don't, some nodes will have more kernelcore than
5414 * others
5415 */
b224ef85 5416static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5417{
5418 int i, nid;
5419 unsigned long usable_startpfn;
5420 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5421 /* save the state before borrow the nodemask */
4b0ef1fe 5422 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5423 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5424 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5425 struct memblock_region *r;
b2f3eebe
TC
5426
5427 /* Need to find movable_zone earlier when movable_node is specified. */
5428 find_usable_zone_for_movable();
5429
5430 /*
5431 * If movable_node is specified, ignore kernelcore and movablecore
5432 * options.
5433 */
5434 if (movable_node_is_enabled()) {
136199f0
EM
5435 for_each_memblock(memory, r) {
5436 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5437 continue;
5438
136199f0 5439 nid = r->nid;
b2f3eebe 5440
136199f0 5441 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5442 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5443 min(usable_startpfn, zone_movable_pfn[nid]) :
5444 usable_startpfn;
5445 }
5446
5447 goto out2;
5448 }
2a1e274a 5449
7e63efef 5450 /*
b2f3eebe 5451 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5452 * kernelcore that corresponds so that memory usable for
5453 * any allocation type is evenly spread. If both kernelcore
5454 * and movablecore are specified, then the value of kernelcore
5455 * will be used for required_kernelcore if it's greater than
5456 * what movablecore would have allowed.
5457 */
5458 if (required_movablecore) {
7e63efef
MG
5459 unsigned long corepages;
5460
5461 /*
5462 * Round-up so that ZONE_MOVABLE is at least as large as what
5463 * was requested by the user
5464 */
5465 required_movablecore =
5466 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5467 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5468 corepages = totalpages - required_movablecore;
5469
5470 required_kernelcore = max(required_kernelcore, corepages);
5471 }
5472
bde304bd
XQ
5473 /*
5474 * If kernelcore was not specified or kernelcore size is larger
5475 * than totalpages, there is no ZONE_MOVABLE.
5476 */
5477 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5478 goto out;
2a1e274a
MG
5479
5480 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5481 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5482
5483restart:
5484 /* Spread kernelcore memory as evenly as possible throughout nodes */
5485 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5486 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5487 unsigned long start_pfn, end_pfn;
5488
2a1e274a
MG
5489 /*
5490 * Recalculate kernelcore_node if the division per node
5491 * now exceeds what is necessary to satisfy the requested
5492 * amount of memory for the kernel
5493 */
5494 if (required_kernelcore < kernelcore_node)
5495 kernelcore_node = required_kernelcore / usable_nodes;
5496
5497 /*
5498 * As the map is walked, we track how much memory is usable
5499 * by the kernel using kernelcore_remaining. When it is
5500 * 0, the rest of the node is usable by ZONE_MOVABLE
5501 */
5502 kernelcore_remaining = kernelcore_node;
5503
5504 /* Go through each range of PFNs within this node */
c13291a5 5505 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5506 unsigned long size_pages;
5507
c13291a5 5508 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5509 if (start_pfn >= end_pfn)
5510 continue;
5511
5512 /* Account for what is only usable for kernelcore */
5513 if (start_pfn < usable_startpfn) {
5514 unsigned long kernel_pages;
5515 kernel_pages = min(end_pfn, usable_startpfn)
5516 - start_pfn;
5517
5518 kernelcore_remaining -= min(kernel_pages,
5519 kernelcore_remaining);
5520 required_kernelcore -= min(kernel_pages,
5521 required_kernelcore);
5522
5523 /* Continue if range is now fully accounted */
5524 if (end_pfn <= usable_startpfn) {
5525
5526 /*
5527 * Push zone_movable_pfn to the end so
5528 * that if we have to rebalance
5529 * kernelcore across nodes, we will
5530 * not double account here
5531 */
5532 zone_movable_pfn[nid] = end_pfn;
5533 continue;
5534 }
5535 start_pfn = usable_startpfn;
5536 }
5537
5538 /*
5539 * The usable PFN range for ZONE_MOVABLE is from
5540 * start_pfn->end_pfn. Calculate size_pages as the
5541 * number of pages used as kernelcore
5542 */
5543 size_pages = end_pfn - start_pfn;
5544 if (size_pages > kernelcore_remaining)
5545 size_pages = kernelcore_remaining;
5546 zone_movable_pfn[nid] = start_pfn + size_pages;
5547
5548 /*
5549 * Some kernelcore has been met, update counts and
5550 * break if the kernelcore for this node has been
b8af2941 5551 * satisfied
2a1e274a
MG
5552 */
5553 required_kernelcore -= min(required_kernelcore,
5554 size_pages);
5555 kernelcore_remaining -= size_pages;
5556 if (!kernelcore_remaining)
5557 break;
5558 }
5559 }
5560
5561 /*
5562 * If there is still required_kernelcore, we do another pass with one
5563 * less node in the count. This will push zone_movable_pfn[nid] further
5564 * along on the nodes that still have memory until kernelcore is
b8af2941 5565 * satisfied
2a1e274a
MG
5566 */
5567 usable_nodes--;
5568 if (usable_nodes && required_kernelcore > usable_nodes)
5569 goto restart;
5570
b2f3eebe 5571out2:
2a1e274a
MG
5572 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5573 for (nid = 0; nid < MAX_NUMNODES; nid++)
5574 zone_movable_pfn[nid] =
5575 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5576
20e6926d 5577out:
66918dcd 5578 /* restore the node_state */
4b0ef1fe 5579 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5580}
5581
4b0ef1fe
LJ
5582/* Any regular or high memory on that node ? */
5583static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5584{
37b07e41
LS
5585 enum zone_type zone_type;
5586
4b0ef1fe
LJ
5587 if (N_MEMORY == N_NORMAL_MEMORY)
5588 return;
5589
5590 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5591 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5592 if (populated_zone(zone)) {
4b0ef1fe
LJ
5593 node_set_state(nid, N_HIGH_MEMORY);
5594 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5595 zone_type <= ZONE_NORMAL)
5596 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5597 break;
5598 }
37b07e41 5599 }
37b07e41
LS
5600}
5601
c713216d
MG
5602/**
5603 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5604 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5605 *
5606 * This will call free_area_init_node() for each active node in the system.
7d018176 5607 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5608 * zone in each node and their holes is calculated. If the maximum PFN
5609 * between two adjacent zones match, it is assumed that the zone is empty.
5610 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5611 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5612 * starts where the previous one ended. For example, ZONE_DMA32 starts
5613 * at arch_max_dma_pfn.
5614 */
5615void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5616{
c13291a5
TH
5617 unsigned long start_pfn, end_pfn;
5618 int i, nid;
a6af2bc3 5619
c713216d
MG
5620 /* Record where the zone boundaries are */
5621 memset(arch_zone_lowest_possible_pfn, 0,
5622 sizeof(arch_zone_lowest_possible_pfn));
5623 memset(arch_zone_highest_possible_pfn, 0,
5624 sizeof(arch_zone_highest_possible_pfn));
5625 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5626 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5627 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5628 if (i == ZONE_MOVABLE)
5629 continue;
c713216d
MG
5630 arch_zone_lowest_possible_pfn[i] =
5631 arch_zone_highest_possible_pfn[i-1];
5632 arch_zone_highest_possible_pfn[i] =
5633 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5634 }
2a1e274a
MG
5635 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5636 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5637
5638 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5639 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5640 find_zone_movable_pfns_for_nodes();
c713216d 5641
c713216d 5642 /* Print out the zone ranges */
f88dfff5 5643 pr_info("Zone ranges:\n");
2a1e274a
MG
5644 for (i = 0; i < MAX_NR_ZONES; i++) {
5645 if (i == ZONE_MOVABLE)
5646 continue;
f88dfff5 5647 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5648 if (arch_zone_lowest_possible_pfn[i] ==
5649 arch_zone_highest_possible_pfn[i])
f88dfff5 5650 pr_cont("empty\n");
72f0ba02 5651 else
8d29e18a
JG
5652 pr_cont("[mem %#018Lx-%#018Lx]\n",
5653 (u64)arch_zone_lowest_possible_pfn[i]
5654 << PAGE_SHIFT,
5655 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5656 << PAGE_SHIFT) - 1);
2a1e274a
MG
5657 }
5658
5659 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5660 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5661 for (i = 0; i < MAX_NUMNODES; i++) {
5662 if (zone_movable_pfn[i])
8d29e18a
JG
5663 pr_info(" Node %d: %#018Lx\n", i,
5664 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5665 }
c713216d 5666
f2d52fe5 5667 /* Print out the early node map */
f88dfff5 5668 pr_info("Early memory node ranges\n");
c13291a5 5669 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5670 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5671 (u64)start_pfn << PAGE_SHIFT,
5672 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5673
5674 /* Initialise every node */
708614e6 5675 mminit_verify_pageflags_layout();
8ef82866 5676 setup_nr_node_ids();
c713216d
MG
5677 for_each_online_node(nid) {
5678 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5679 free_area_init_node(nid, NULL,
c713216d 5680 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5681
5682 /* Any memory on that node */
5683 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5684 node_set_state(nid, N_MEMORY);
5685 check_for_memory(pgdat, nid);
c713216d
MG
5686 }
5687}
2a1e274a 5688
7e63efef 5689static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5690{
5691 unsigned long long coremem;
5692 if (!p)
5693 return -EINVAL;
5694
5695 coremem = memparse(p, &p);
7e63efef 5696 *core = coremem >> PAGE_SHIFT;
2a1e274a 5697
7e63efef 5698 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5699 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5700
5701 return 0;
5702}
ed7ed365 5703
7e63efef
MG
5704/*
5705 * kernelcore=size sets the amount of memory for use for allocations that
5706 * cannot be reclaimed or migrated.
5707 */
5708static int __init cmdline_parse_kernelcore(char *p)
5709{
5710 return cmdline_parse_core(p, &required_kernelcore);
5711}
5712
5713/*
5714 * movablecore=size sets the amount of memory for use for allocations that
5715 * can be reclaimed or migrated.
5716 */
5717static int __init cmdline_parse_movablecore(char *p)
5718{
5719 return cmdline_parse_core(p, &required_movablecore);
5720}
5721
ed7ed365 5722early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5723early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5724
0ee332c1 5725#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5726
c3d5f5f0
JL
5727void adjust_managed_page_count(struct page *page, long count)
5728{
5729 spin_lock(&managed_page_count_lock);
5730 page_zone(page)->managed_pages += count;
5731 totalram_pages += count;
3dcc0571
JL
5732#ifdef CONFIG_HIGHMEM
5733 if (PageHighMem(page))
5734 totalhigh_pages += count;
5735#endif
c3d5f5f0
JL
5736 spin_unlock(&managed_page_count_lock);
5737}
3dcc0571 5738EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5739
11199692 5740unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5741{
11199692
JL
5742 void *pos;
5743 unsigned long pages = 0;
69afade7 5744
11199692
JL
5745 start = (void *)PAGE_ALIGN((unsigned long)start);
5746 end = (void *)((unsigned long)end & PAGE_MASK);
5747 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5748 if ((unsigned int)poison <= 0xFF)
11199692
JL
5749 memset(pos, poison, PAGE_SIZE);
5750 free_reserved_page(virt_to_page(pos));
69afade7
JL
5751 }
5752
5753 if (pages && s)
11199692 5754 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5755 s, pages << (PAGE_SHIFT - 10), start, end);
5756
5757 return pages;
5758}
11199692 5759EXPORT_SYMBOL(free_reserved_area);
69afade7 5760
cfa11e08
JL
5761#ifdef CONFIG_HIGHMEM
5762void free_highmem_page(struct page *page)
5763{
5764 __free_reserved_page(page);
5765 totalram_pages++;
7b4b2a0d 5766 page_zone(page)->managed_pages++;
cfa11e08
JL
5767 totalhigh_pages++;
5768}
5769#endif
5770
7ee3d4e8
JL
5771
5772void __init mem_init_print_info(const char *str)
5773{
5774 unsigned long physpages, codesize, datasize, rosize, bss_size;
5775 unsigned long init_code_size, init_data_size;
5776
5777 physpages = get_num_physpages();
5778 codesize = _etext - _stext;
5779 datasize = _edata - _sdata;
5780 rosize = __end_rodata - __start_rodata;
5781 bss_size = __bss_stop - __bss_start;
5782 init_data_size = __init_end - __init_begin;
5783 init_code_size = _einittext - _sinittext;
5784
5785 /*
5786 * Detect special cases and adjust section sizes accordingly:
5787 * 1) .init.* may be embedded into .data sections
5788 * 2) .init.text.* may be out of [__init_begin, __init_end],
5789 * please refer to arch/tile/kernel/vmlinux.lds.S.
5790 * 3) .rodata.* may be embedded into .text or .data sections.
5791 */
5792#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5793 do { \
5794 if (start <= pos && pos < end && size > adj) \
5795 size -= adj; \
5796 } while (0)
7ee3d4e8
JL
5797
5798 adj_init_size(__init_begin, __init_end, init_data_size,
5799 _sinittext, init_code_size);
5800 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5801 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5802 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5803 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5804
5805#undef adj_init_size
5806
f88dfff5 5807 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5808 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5809 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5810#ifdef CONFIG_HIGHMEM
5811 ", %luK highmem"
5812#endif
5813 "%s%s)\n",
5814 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5815 codesize >> 10, datasize >> 10, rosize >> 10,
5816 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5817 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5818 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5819#ifdef CONFIG_HIGHMEM
5820 totalhigh_pages << (PAGE_SHIFT-10),
5821#endif
5822 str ? ", " : "", str ? str : "");
5823}
5824
0e0b864e 5825/**
88ca3b94
RD
5826 * set_dma_reserve - set the specified number of pages reserved in the first zone
5827 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 5828 *
013110a7 5829 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
5830 * In the DMA zone, a significant percentage may be consumed by kernel image
5831 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5832 * function may optionally be used to account for unfreeable pages in the
5833 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5834 * smaller per-cpu batchsize.
0e0b864e
MG
5835 */
5836void __init set_dma_reserve(unsigned long new_dma_reserve)
5837{
5838 dma_reserve = new_dma_reserve;
5839}
5840
1da177e4
LT
5841void __init free_area_init(unsigned long *zones_size)
5842{
9109fb7b 5843 free_area_init_node(0, zones_size,
1da177e4
LT
5844 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5845}
1da177e4 5846
1da177e4
LT
5847static int page_alloc_cpu_notify(struct notifier_block *self,
5848 unsigned long action, void *hcpu)
5849{
5850 int cpu = (unsigned long)hcpu;
1da177e4 5851
8bb78442 5852 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5853 lru_add_drain_cpu(cpu);
9f8f2172
CL
5854 drain_pages(cpu);
5855
5856 /*
5857 * Spill the event counters of the dead processor
5858 * into the current processors event counters.
5859 * This artificially elevates the count of the current
5860 * processor.
5861 */
f8891e5e 5862 vm_events_fold_cpu(cpu);
9f8f2172
CL
5863
5864 /*
5865 * Zero the differential counters of the dead processor
5866 * so that the vm statistics are consistent.
5867 *
5868 * This is only okay since the processor is dead and cannot
5869 * race with what we are doing.
5870 */
2bb921e5 5871 cpu_vm_stats_fold(cpu);
1da177e4
LT
5872 }
5873 return NOTIFY_OK;
5874}
1da177e4
LT
5875
5876void __init page_alloc_init(void)
5877{
5878 hotcpu_notifier(page_alloc_cpu_notify, 0);
5879}
5880
cb45b0e9 5881/*
34b10060 5882 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
5883 * or min_free_kbytes changes.
5884 */
5885static void calculate_totalreserve_pages(void)
5886{
5887 struct pglist_data *pgdat;
5888 unsigned long reserve_pages = 0;
2f6726e5 5889 enum zone_type i, j;
cb45b0e9
HA
5890
5891 for_each_online_pgdat(pgdat) {
5892 for (i = 0; i < MAX_NR_ZONES; i++) {
5893 struct zone *zone = pgdat->node_zones + i;
3484b2de 5894 long max = 0;
cb45b0e9
HA
5895
5896 /* Find valid and maximum lowmem_reserve in the zone */
5897 for (j = i; j < MAX_NR_ZONES; j++) {
5898 if (zone->lowmem_reserve[j] > max)
5899 max = zone->lowmem_reserve[j];
5900 }
5901
41858966
MG
5902 /* we treat the high watermark as reserved pages. */
5903 max += high_wmark_pages(zone);
cb45b0e9 5904
b40da049
JL
5905 if (max > zone->managed_pages)
5906 max = zone->managed_pages;
cb45b0e9 5907 reserve_pages += max;
ab8fabd4
JW
5908 /*
5909 * Lowmem reserves are not available to
5910 * GFP_HIGHUSER page cache allocations and
5911 * kswapd tries to balance zones to their high
5912 * watermark. As a result, neither should be
5913 * regarded as dirtyable memory, to prevent a
5914 * situation where reclaim has to clean pages
5915 * in order to balance the zones.
5916 */
5917 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5918 }
5919 }
ab8fabd4 5920 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5921 totalreserve_pages = reserve_pages;
5922}
5923
1da177e4
LT
5924/*
5925 * setup_per_zone_lowmem_reserve - called whenever
34b10060 5926 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
5927 * has a correct pages reserved value, so an adequate number of
5928 * pages are left in the zone after a successful __alloc_pages().
5929 */
5930static void setup_per_zone_lowmem_reserve(void)
5931{
5932 struct pglist_data *pgdat;
2f6726e5 5933 enum zone_type j, idx;
1da177e4 5934
ec936fc5 5935 for_each_online_pgdat(pgdat) {
1da177e4
LT
5936 for (j = 0; j < MAX_NR_ZONES; j++) {
5937 struct zone *zone = pgdat->node_zones + j;
b40da049 5938 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5939
5940 zone->lowmem_reserve[j] = 0;
5941
2f6726e5
CL
5942 idx = j;
5943 while (idx) {
1da177e4
LT
5944 struct zone *lower_zone;
5945
2f6726e5
CL
5946 idx--;
5947
1da177e4
LT
5948 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5949 sysctl_lowmem_reserve_ratio[idx] = 1;
5950
5951 lower_zone = pgdat->node_zones + idx;
b40da049 5952 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5953 sysctl_lowmem_reserve_ratio[idx];
b40da049 5954 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5955 }
5956 }
5957 }
cb45b0e9
HA
5958
5959 /* update totalreserve_pages */
5960 calculate_totalreserve_pages();
1da177e4
LT
5961}
5962
cfd3da1e 5963static void __setup_per_zone_wmarks(void)
1da177e4
LT
5964{
5965 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5966 unsigned long lowmem_pages = 0;
5967 struct zone *zone;
5968 unsigned long flags;
5969
5970 /* Calculate total number of !ZONE_HIGHMEM pages */
5971 for_each_zone(zone) {
5972 if (!is_highmem(zone))
b40da049 5973 lowmem_pages += zone->managed_pages;
1da177e4
LT
5974 }
5975
5976 for_each_zone(zone) {
ac924c60
AM
5977 u64 tmp;
5978
1125b4e3 5979 spin_lock_irqsave(&zone->lock, flags);
b40da049 5980 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5981 do_div(tmp, lowmem_pages);
1da177e4
LT
5982 if (is_highmem(zone)) {
5983 /*
669ed175
NP
5984 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5985 * need highmem pages, so cap pages_min to a small
5986 * value here.
5987 *
41858966 5988 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 5989 * deltas control asynch page reclaim, and so should
669ed175 5990 * not be capped for highmem.
1da177e4 5991 */
90ae8d67 5992 unsigned long min_pages;
1da177e4 5993
b40da049 5994 min_pages = zone->managed_pages / 1024;
90ae8d67 5995 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5996 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5997 } else {
669ed175
NP
5998 /*
5999 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6000 * proportionate to the zone's size.
6001 */
41858966 6002 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6003 }
6004
41858966
MG
6005 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6006 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6007
81c0a2bb 6008 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6009 high_wmark_pages(zone) - low_wmark_pages(zone) -
6010 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6011
1125b4e3 6012 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6013 }
cb45b0e9
HA
6014
6015 /* update totalreserve_pages */
6016 calculate_totalreserve_pages();
1da177e4
LT
6017}
6018
cfd3da1e
MG
6019/**
6020 * setup_per_zone_wmarks - called when min_free_kbytes changes
6021 * or when memory is hot-{added|removed}
6022 *
6023 * Ensures that the watermark[min,low,high] values for each zone are set
6024 * correctly with respect to min_free_kbytes.
6025 */
6026void setup_per_zone_wmarks(void)
6027{
6028 mutex_lock(&zonelists_mutex);
6029 __setup_per_zone_wmarks();
6030 mutex_unlock(&zonelists_mutex);
6031}
6032
55a4462a 6033/*
556adecb
RR
6034 * The inactive anon list should be small enough that the VM never has to
6035 * do too much work, but large enough that each inactive page has a chance
6036 * to be referenced again before it is swapped out.
6037 *
6038 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6039 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6040 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6041 * the anonymous pages are kept on the inactive list.
6042 *
6043 * total target max
6044 * memory ratio inactive anon
6045 * -------------------------------------
6046 * 10MB 1 5MB
6047 * 100MB 1 50MB
6048 * 1GB 3 250MB
6049 * 10GB 10 0.9GB
6050 * 100GB 31 3GB
6051 * 1TB 101 10GB
6052 * 10TB 320 32GB
6053 */
1b79acc9 6054static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6055{
96cb4df5 6056 unsigned int gb, ratio;
556adecb 6057
96cb4df5 6058 /* Zone size in gigabytes */
b40da049 6059 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6060 if (gb)
556adecb 6061 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6062 else
6063 ratio = 1;
556adecb 6064
96cb4df5
MK
6065 zone->inactive_ratio = ratio;
6066}
556adecb 6067
839a4fcc 6068static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6069{
6070 struct zone *zone;
6071
6072 for_each_zone(zone)
6073 calculate_zone_inactive_ratio(zone);
556adecb
RR
6074}
6075
1da177e4
LT
6076/*
6077 * Initialise min_free_kbytes.
6078 *
6079 * For small machines we want it small (128k min). For large machines
6080 * we want it large (64MB max). But it is not linear, because network
6081 * bandwidth does not increase linearly with machine size. We use
6082 *
b8af2941 6083 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6084 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6085 *
6086 * which yields
6087 *
6088 * 16MB: 512k
6089 * 32MB: 724k
6090 * 64MB: 1024k
6091 * 128MB: 1448k
6092 * 256MB: 2048k
6093 * 512MB: 2896k
6094 * 1024MB: 4096k
6095 * 2048MB: 5792k
6096 * 4096MB: 8192k
6097 * 8192MB: 11584k
6098 * 16384MB: 16384k
6099 */
1b79acc9 6100int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6101{
6102 unsigned long lowmem_kbytes;
5f12733e 6103 int new_min_free_kbytes;
1da177e4
LT
6104
6105 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6106 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6107
6108 if (new_min_free_kbytes > user_min_free_kbytes) {
6109 min_free_kbytes = new_min_free_kbytes;
6110 if (min_free_kbytes < 128)
6111 min_free_kbytes = 128;
6112 if (min_free_kbytes > 65536)
6113 min_free_kbytes = 65536;
6114 } else {
6115 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6116 new_min_free_kbytes, user_min_free_kbytes);
6117 }
bc75d33f 6118 setup_per_zone_wmarks();
a6cccdc3 6119 refresh_zone_stat_thresholds();
1da177e4 6120 setup_per_zone_lowmem_reserve();
556adecb 6121 setup_per_zone_inactive_ratio();
1da177e4
LT
6122 return 0;
6123}
bc75d33f 6124module_init(init_per_zone_wmark_min)
1da177e4
LT
6125
6126/*
b8af2941 6127 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6128 * that we can call two helper functions whenever min_free_kbytes
6129 * changes.
6130 */
cccad5b9 6131int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6132 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6133{
da8c757b
HP
6134 int rc;
6135
6136 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6137 if (rc)
6138 return rc;
6139
5f12733e
MH
6140 if (write) {
6141 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6142 setup_per_zone_wmarks();
5f12733e 6143 }
1da177e4
LT
6144 return 0;
6145}
6146
9614634f 6147#ifdef CONFIG_NUMA
cccad5b9 6148int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6149 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6150{
6151 struct zone *zone;
6152 int rc;
6153
8d65af78 6154 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6155 if (rc)
6156 return rc;
6157
6158 for_each_zone(zone)
b40da049 6159 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6160 sysctl_min_unmapped_ratio) / 100;
6161 return 0;
6162}
0ff38490 6163
cccad5b9 6164int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6165 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6166{
6167 struct zone *zone;
6168 int rc;
6169
8d65af78 6170 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6171 if (rc)
6172 return rc;
6173
6174 for_each_zone(zone)
b40da049 6175 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6176 sysctl_min_slab_ratio) / 100;
6177 return 0;
6178}
9614634f
CL
6179#endif
6180
1da177e4
LT
6181/*
6182 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6183 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6184 * whenever sysctl_lowmem_reserve_ratio changes.
6185 *
6186 * The reserve ratio obviously has absolutely no relation with the
41858966 6187 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6188 * if in function of the boot time zone sizes.
6189 */
cccad5b9 6190int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6191 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6192{
8d65af78 6193 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6194 setup_per_zone_lowmem_reserve();
6195 return 0;
6196}
6197
8ad4b1fb
RS
6198/*
6199 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6200 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6201 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6202 */
cccad5b9 6203int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6204 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6205{
6206 struct zone *zone;
7cd2b0a3 6207 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6208 int ret;
6209
7cd2b0a3
DR
6210 mutex_lock(&pcp_batch_high_lock);
6211 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6212
8d65af78 6213 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6214 if (!write || ret < 0)
6215 goto out;
6216
6217 /* Sanity checking to avoid pcp imbalance */
6218 if (percpu_pagelist_fraction &&
6219 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6220 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6221 ret = -EINVAL;
6222 goto out;
6223 }
6224
6225 /* No change? */
6226 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6227 goto out;
c8e251fa 6228
364df0eb 6229 for_each_populated_zone(zone) {
7cd2b0a3
DR
6230 unsigned int cpu;
6231
22a7f12b 6232 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6233 pageset_set_high_and_batch(zone,
6234 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6235 }
7cd2b0a3 6236out:
c8e251fa 6237 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6238 return ret;
8ad4b1fb
RS
6239}
6240
a9919c79 6241#ifdef CONFIG_NUMA
f034b5d4 6242int hashdist = HASHDIST_DEFAULT;
1da177e4 6243
1da177e4
LT
6244static int __init set_hashdist(char *str)
6245{
6246 if (!str)
6247 return 0;
6248 hashdist = simple_strtoul(str, &str, 0);
6249 return 1;
6250}
6251__setup("hashdist=", set_hashdist);
6252#endif
6253
6254/*
6255 * allocate a large system hash table from bootmem
6256 * - it is assumed that the hash table must contain an exact power-of-2
6257 * quantity of entries
6258 * - limit is the number of hash buckets, not the total allocation size
6259 */
6260void *__init alloc_large_system_hash(const char *tablename,
6261 unsigned long bucketsize,
6262 unsigned long numentries,
6263 int scale,
6264 int flags,
6265 unsigned int *_hash_shift,
6266 unsigned int *_hash_mask,
31fe62b9
TB
6267 unsigned long low_limit,
6268 unsigned long high_limit)
1da177e4 6269{
31fe62b9 6270 unsigned long long max = high_limit;
1da177e4
LT
6271 unsigned long log2qty, size;
6272 void *table = NULL;
6273
6274 /* allow the kernel cmdline to have a say */
6275 if (!numentries) {
6276 /* round applicable memory size up to nearest megabyte */
04903664 6277 numentries = nr_kernel_pages;
a7e83318
JZ
6278
6279 /* It isn't necessary when PAGE_SIZE >= 1MB */
6280 if (PAGE_SHIFT < 20)
6281 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6282
6283 /* limit to 1 bucket per 2^scale bytes of low memory */
6284 if (scale > PAGE_SHIFT)
6285 numentries >>= (scale - PAGE_SHIFT);
6286 else
6287 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6288
6289 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6290 if (unlikely(flags & HASH_SMALL)) {
6291 /* Makes no sense without HASH_EARLY */
6292 WARN_ON(!(flags & HASH_EARLY));
6293 if (!(numentries >> *_hash_shift)) {
6294 numentries = 1UL << *_hash_shift;
6295 BUG_ON(!numentries);
6296 }
6297 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6298 numentries = PAGE_SIZE / bucketsize;
1da177e4 6299 }
6e692ed3 6300 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6301
6302 /* limit allocation size to 1/16 total memory by default */
6303 if (max == 0) {
6304 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6305 do_div(max, bucketsize);
6306 }
074b8517 6307 max = min(max, 0x80000000ULL);
1da177e4 6308
31fe62b9
TB
6309 if (numentries < low_limit)
6310 numentries = low_limit;
1da177e4
LT
6311 if (numentries > max)
6312 numentries = max;
6313
f0d1b0b3 6314 log2qty = ilog2(numentries);
1da177e4
LT
6315
6316 do {
6317 size = bucketsize << log2qty;
6318 if (flags & HASH_EARLY)
6782832e 6319 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6320 else if (hashdist)
6321 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6322 else {
1037b83b
ED
6323 /*
6324 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6325 * some pages at the end of hash table which
6326 * alloc_pages_exact() automatically does
1037b83b 6327 */
264ef8a9 6328 if (get_order(size) < MAX_ORDER) {
a1dd268c 6329 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6330 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6331 }
1da177e4
LT
6332 }
6333 } while (!table && size > PAGE_SIZE && --log2qty);
6334
6335 if (!table)
6336 panic("Failed to allocate %s hash table\n", tablename);
6337
f241e660 6338 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6339 tablename,
f241e660 6340 (1UL << log2qty),
f0d1b0b3 6341 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6342 size);
6343
6344 if (_hash_shift)
6345 *_hash_shift = log2qty;
6346 if (_hash_mask)
6347 *_hash_mask = (1 << log2qty) - 1;
6348
6349 return table;
6350}
a117e66e 6351
835c134e
MG
6352/* Return a pointer to the bitmap storing bits affecting a block of pages */
6353static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6354 unsigned long pfn)
6355{
6356#ifdef CONFIG_SPARSEMEM
6357 return __pfn_to_section(pfn)->pageblock_flags;
6358#else
6359 return zone->pageblock_flags;
6360#endif /* CONFIG_SPARSEMEM */
6361}
6362
6363static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6364{
6365#ifdef CONFIG_SPARSEMEM
6366 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6367 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6368#else
c060f943 6369 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6371#endif /* CONFIG_SPARSEMEM */
6372}
6373
6374/**
1aab4d77 6375 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6376 * @page: The page within the block of interest
1aab4d77
RD
6377 * @pfn: The target page frame number
6378 * @end_bitidx: The last bit of interest to retrieve
6379 * @mask: mask of bits that the caller is interested in
6380 *
6381 * Return: pageblock_bits flags
835c134e 6382 */
dc4b0caf 6383unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6384 unsigned long end_bitidx,
6385 unsigned long mask)
835c134e
MG
6386{
6387 struct zone *zone;
6388 unsigned long *bitmap;
dc4b0caf 6389 unsigned long bitidx, word_bitidx;
e58469ba 6390 unsigned long word;
835c134e
MG
6391
6392 zone = page_zone(page);
835c134e
MG
6393 bitmap = get_pageblock_bitmap(zone, pfn);
6394 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6395 word_bitidx = bitidx / BITS_PER_LONG;
6396 bitidx &= (BITS_PER_LONG-1);
835c134e 6397
e58469ba
MG
6398 word = bitmap[word_bitidx];
6399 bitidx += end_bitidx;
6400 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6401}
6402
6403/**
dc4b0caf 6404 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6405 * @page: The page within the block of interest
835c134e 6406 * @flags: The flags to set
1aab4d77
RD
6407 * @pfn: The target page frame number
6408 * @end_bitidx: The last bit of interest
6409 * @mask: mask of bits that the caller is interested in
835c134e 6410 */
dc4b0caf
MG
6411void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6412 unsigned long pfn,
e58469ba
MG
6413 unsigned long end_bitidx,
6414 unsigned long mask)
835c134e
MG
6415{
6416 struct zone *zone;
6417 unsigned long *bitmap;
dc4b0caf 6418 unsigned long bitidx, word_bitidx;
e58469ba
MG
6419 unsigned long old_word, word;
6420
6421 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6422
6423 zone = page_zone(page);
835c134e
MG
6424 bitmap = get_pageblock_bitmap(zone, pfn);
6425 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6426 word_bitidx = bitidx / BITS_PER_LONG;
6427 bitidx &= (BITS_PER_LONG-1);
6428
309381fe 6429 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6430
e58469ba
MG
6431 bitidx += end_bitidx;
6432 mask <<= (BITS_PER_LONG - bitidx - 1);
6433 flags <<= (BITS_PER_LONG - bitidx - 1);
6434
4db0c3c2 6435 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6436 for (;;) {
6437 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6438 if (word == old_word)
6439 break;
6440 word = old_word;
6441 }
835c134e 6442}
a5d76b54
KH
6443
6444/*
80934513
MK
6445 * This function checks whether pageblock includes unmovable pages or not.
6446 * If @count is not zero, it is okay to include less @count unmovable pages
6447 *
b8af2941 6448 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6449 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6450 * expect this function should be exact.
a5d76b54 6451 */
b023f468
WC
6452bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6453 bool skip_hwpoisoned_pages)
49ac8255
KH
6454{
6455 unsigned long pfn, iter, found;
47118af0
MN
6456 int mt;
6457
49ac8255
KH
6458 /*
6459 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6460 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6461 */
6462 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6463 return false;
47118af0
MN
6464 mt = get_pageblock_migratetype(page);
6465 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6466 return false;
49ac8255
KH
6467
6468 pfn = page_to_pfn(page);
6469 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6470 unsigned long check = pfn + iter;
6471
29723fcc 6472 if (!pfn_valid_within(check))
49ac8255 6473 continue;
29723fcc 6474
49ac8255 6475 page = pfn_to_page(check);
c8721bbb
NH
6476
6477 /*
6478 * Hugepages are not in LRU lists, but they're movable.
6479 * We need not scan over tail pages bacause we don't
6480 * handle each tail page individually in migration.
6481 */
6482 if (PageHuge(page)) {
6483 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6484 continue;
6485 }
6486
97d255c8
MK
6487 /*
6488 * We can't use page_count without pin a page
6489 * because another CPU can free compound page.
6490 * This check already skips compound tails of THP
6491 * because their page->_count is zero at all time.
6492 */
6493 if (!atomic_read(&page->_count)) {
49ac8255
KH
6494 if (PageBuddy(page))
6495 iter += (1 << page_order(page)) - 1;
6496 continue;
6497 }
97d255c8 6498
b023f468
WC
6499 /*
6500 * The HWPoisoned page may be not in buddy system, and
6501 * page_count() is not 0.
6502 */
6503 if (skip_hwpoisoned_pages && PageHWPoison(page))
6504 continue;
6505
49ac8255
KH
6506 if (!PageLRU(page))
6507 found++;
6508 /*
6b4f7799
JW
6509 * If there are RECLAIMABLE pages, we need to check
6510 * it. But now, memory offline itself doesn't call
6511 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6512 */
6513 /*
6514 * If the page is not RAM, page_count()should be 0.
6515 * we don't need more check. This is an _used_ not-movable page.
6516 *
6517 * The problematic thing here is PG_reserved pages. PG_reserved
6518 * is set to both of a memory hole page and a _used_ kernel
6519 * page at boot.
6520 */
6521 if (found > count)
80934513 6522 return true;
49ac8255 6523 }
80934513 6524 return false;
49ac8255
KH
6525}
6526
6527bool is_pageblock_removable_nolock(struct page *page)
6528{
656a0706
MH
6529 struct zone *zone;
6530 unsigned long pfn;
687875fb
MH
6531
6532 /*
6533 * We have to be careful here because we are iterating over memory
6534 * sections which are not zone aware so we might end up outside of
6535 * the zone but still within the section.
656a0706
MH
6536 * We have to take care about the node as well. If the node is offline
6537 * its NODE_DATA will be NULL - see page_zone.
687875fb 6538 */
656a0706
MH
6539 if (!node_online(page_to_nid(page)))
6540 return false;
6541
6542 zone = page_zone(page);
6543 pfn = page_to_pfn(page);
108bcc96 6544 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6545 return false;
6546
b023f468 6547 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6548}
0c0e6195 6549
041d3a8c
MN
6550#ifdef CONFIG_CMA
6551
6552static unsigned long pfn_max_align_down(unsigned long pfn)
6553{
6554 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6555 pageblock_nr_pages) - 1);
6556}
6557
6558static unsigned long pfn_max_align_up(unsigned long pfn)
6559{
6560 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6561 pageblock_nr_pages));
6562}
6563
041d3a8c 6564/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6565static int __alloc_contig_migrate_range(struct compact_control *cc,
6566 unsigned long start, unsigned long end)
041d3a8c
MN
6567{
6568 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6569 unsigned long nr_reclaimed;
041d3a8c
MN
6570 unsigned long pfn = start;
6571 unsigned int tries = 0;
6572 int ret = 0;
6573
be49a6e1 6574 migrate_prep();
041d3a8c 6575
bb13ffeb 6576 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6577 if (fatal_signal_pending(current)) {
6578 ret = -EINTR;
6579 break;
6580 }
6581
bb13ffeb
MG
6582 if (list_empty(&cc->migratepages)) {
6583 cc->nr_migratepages = 0;
edc2ca61 6584 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6585 if (!pfn) {
6586 ret = -EINTR;
6587 break;
6588 }
6589 tries = 0;
6590 } else if (++tries == 5) {
6591 ret = ret < 0 ? ret : -EBUSY;
6592 break;
6593 }
6594
beb51eaa
MK
6595 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6596 &cc->migratepages);
6597 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6598
9c620e2b 6599 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6600 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6601 }
2a6f5124
SP
6602 if (ret < 0) {
6603 putback_movable_pages(&cc->migratepages);
6604 return ret;
6605 }
6606 return 0;
041d3a8c
MN
6607}
6608
6609/**
6610 * alloc_contig_range() -- tries to allocate given range of pages
6611 * @start: start PFN to allocate
6612 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6613 * @migratetype: migratetype of the underlaying pageblocks (either
6614 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6615 * in range must have the same migratetype and it must
6616 * be either of the two.
041d3a8c
MN
6617 *
6618 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6619 * aligned, however it's the caller's responsibility to guarantee that
6620 * we are the only thread that changes migrate type of pageblocks the
6621 * pages fall in.
6622 *
6623 * The PFN range must belong to a single zone.
6624 *
6625 * Returns zero on success or negative error code. On success all
6626 * pages which PFN is in [start, end) are allocated for the caller and
6627 * need to be freed with free_contig_range().
6628 */
0815f3d8
MN
6629int alloc_contig_range(unsigned long start, unsigned long end,
6630 unsigned migratetype)
041d3a8c 6631{
041d3a8c
MN
6632 unsigned long outer_start, outer_end;
6633 int ret = 0, order;
6634
bb13ffeb
MG
6635 struct compact_control cc = {
6636 .nr_migratepages = 0,
6637 .order = -1,
6638 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6639 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6640 .ignore_skip_hint = true,
6641 };
6642 INIT_LIST_HEAD(&cc.migratepages);
6643
041d3a8c
MN
6644 /*
6645 * What we do here is we mark all pageblocks in range as
6646 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6647 * have different sizes, and due to the way page allocator
6648 * work, we align the range to biggest of the two pages so
6649 * that page allocator won't try to merge buddies from
6650 * different pageblocks and change MIGRATE_ISOLATE to some
6651 * other migration type.
6652 *
6653 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6654 * migrate the pages from an unaligned range (ie. pages that
6655 * we are interested in). This will put all the pages in
6656 * range back to page allocator as MIGRATE_ISOLATE.
6657 *
6658 * When this is done, we take the pages in range from page
6659 * allocator removing them from the buddy system. This way
6660 * page allocator will never consider using them.
6661 *
6662 * This lets us mark the pageblocks back as
6663 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6664 * aligned range but not in the unaligned, original range are
6665 * put back to page allocator so that buddy can use them.
6666 */
6667
6668 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6669 pfn_max_align_up(end), migratetype,
6670 false);
041d3a8c 6671 if (ret)
86a595f9 6672 return ret;
041d3a8c 6673
bb13ffeb 6674 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6675 if (ret)
6676 goto done;
6677
6678 /*
6679 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6680 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6681 * more, all pages in [start, end) are free in page allocator.
6682 * What we are going to do is to allocate all pages from
6683 * [start, end) (that is remove them from page allocator).
6684 *
6685 * The only problem is that pages at the beginning and at the
6686 * end of interesting range may be not aligned with pages that
6687 * page allocator holds, ie. they can be part of higher order
6688 * pages. Because of this, we reserve the bigger range and
6689 * once this is done free the pages we are not interested in.
6690 *
6691 * We don't have to hold zone->lock here because the pages are
6692 * isolated thus they won't get removed from buddy.
6693 */
6694
6695 lru_add_drain_all();
510f5507 6696 drain_all_pages(cc.zone);
041d3a8c
MN
6697
6698 order = 0;
6699 outer_start = start;
6700 while (!PageBuddy(pfn_to_page(outer_start))) {
6701 if (++order >= MAX_ORDER) {
6702 ret = -EBUSY;
6703 goto done;
6704 }
6705 outer_start &= ~0UL << order;
6706 }
6707
6708 /* Make sure the range is really isolated. */
b023f468 6709 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6710 pr_info("%s: [%lx, %lx) PFNs busy\n",
6711 __func__, outer_start, end);
041d3a8c
MN
6712 ret = -EBUSY;
6713 goto done;
6714 }
6715
49f223a9 6716 /* Grab isolated pages from freelists. */
bb13ffeb 6717 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6718 if (!outer_end) {
6719 ret = -EBUSY;
6720 goto done;
6721 }
6722
6723 /* Free head and tail (if any) */
6724 if (start != outer_start)
6725 free_contig_range(outer_start, start - outer_start);
6726 if (end != outer_end)
6727 free_contig_range(end, outer_end - end);
6728
6729done:
6730 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6731 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6732 return ret;
6733}
6734
6735void free_contig_range(unsigned long pfn, unsigned nr_pages)
6736{
bcc2b02f
MS
6737 unsigned int count = 0;
6738
6739 for (; nr_pages--; pfn++) {
6740 struct page *page = pfn_to_page(pfn);
6741
6742 count += page_count(page) != 1;
6743 __free_page(page);
6744 }
6745 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6746}
6747#endif
6748
4ed7e022 6749#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6750/*
6751 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6752 * page high values need to be recalulated.
6753 */
4ed7e022
JL
6754void __meminit zone_pcp_update(struct zone *zone)
6755{
0a647f38 6756 unsigned cpu;
c8e251fa 6757 mutex_lock(&pcp_batch_high_lock);
0a647f38 6758 for_each_possible_cpu(cpu)
169f6c19
CS
6759 pageset_set_high_and_batch(zone,
6760 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6761 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6762}
6763#endif
6764
340175b7
JL
6765void zone_pcp_reset(struct zone *zone)
6766{
6767 unsigned long flags;
5a883813
MK
6768 int cpu;
6769 struct per_cpu_pageset *pset;
340175b7
JL
6770
6771 /* avoid races with drain_pages() */
6772 local_irq_save(flags);
6773 if (zone->pageset != &boot_pageset) {
5a883813
MK
6774 for_each_online_cpu(cpu) {
6775 pset = per_cpu_ptr(zone->pageset, cpu);
6776 drain_zonestat(zone, pset);
6777 }
340175b7
JL
6778 free_percpu(zone->pageset);
6779 zone->pageset = &boot_pageset;
6780 }
6781 local_irq_restore(flags);
6782}
6783
6dcd73d7 6784#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6785/*
6786 * All pages in the range must be isolated before calling this.
6787 */
6788void
6789__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6790{
6791 struct page *page;
6792 struct zone *zone;
7aeb09f9 6793 unsigned int order, i;
0c0e6195
KH
6794 unsigned long pfn;
6795 unsigned long flags;
6796 /* find the first valid pfn */
6797 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6798 if (pfn_valid(pfn))
6799 break;
6800 if (pfn == end_pfn)
6801 return;
6802 zone = page_zone(pfn_to_page(pfn));
6803 spin_lock_irqsave(&zone->lock, flags);
6804 pfn = start_pfn;
6805 while (pfn < end_pfn) {
6806 if (!pfn_valid(pfn)) {
6807 pfn++;
6808 continue;
6809 }
6810 page = pfn_to_page(pfn);
b023f468
WC
6811 /*
6812 * The HWPoisoned page may be not in buddy system, and
6813 * page_count() is not 0.
6814 */
6815 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6816 pfn++;
6817 SetPageReserved(page);
6818 continue;
6819 }
6820
0c0e6195
KH
6821 BUG_ON(page_count(page));
6822 BUG_ON(!PageBuddy(page));
6823 order = page_order(page);
6824#ifdef CONFIG_DEBUG_VM
6825 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6826 pfn, 1 << order, end_pfn);
6827#endif
6828 list_del(&page->lru);
6829 rmv_page_order(page);
6830 zone->free_area[order].nr_free--;
0c0e6195
KH
6831 for (i = 0; i < (1 << order); i++)
6832 SetPageReserved((page+i));
6833 pfn += (1 << order);
6834 }
6835 spin_unlock_irqrestore(&zone->lock, flags);
6836}
6837#endif
8d22ba1b
WF
6838
6839#ifdef CONFIG_MEMORY_FAILURE
6840bool is_free_buddy_page(struct page *page)
6841{
6842 struct zone *zone = page_zone(page);
6843 unsigned long pfn = page_to_pfn(page);
6844 unsigned long flags;
7aeb09f9 6845 unsigned int order;
8d22ba1b
WF
6846
6847 spin_lock_irqsave(&zone->lock, flags);
6848 for (order = 0; order < MAX_ORDER; order++) {
6849 struct page *page_head = page - (pfn & ((1 << order) - 1));
6850
6851 if (PageBuddy(page_head) && page_order(page_head) >= order)
6852 break;
6853 }
6854 spin_unlock_irqrestore(&zone->lock, flags);
6855
6856 return order < MAX_ORDER;
6857}
6858#endif
This page took 1.631887 seconds and 5 git commands to generate.