mm/compaction: enhance compaction finish condition
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 72#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 73
72812019
LS
74#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75DEFINE_PER_CPU(int, numa_node);
76EXPORT_PER_CPU_SYMBOL(numa_node);
77#endif
78
7aac7898
LS
79#ifdef CONFIG_HAVE_MEMORYLESS_NODES
80/*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 88int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
89#endif
90
1da177e4 91/*
13808910 92 * Array of node states.
1da177e4 93 */
13808910
CL
94nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97#ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99#ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
101#endif
102#ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
104#endif
105 [N_CPU] = { { [0] = 1UL } },
106#endif /* NUMA */
107};
108EXPORT_SYMBOL(node_states);
109
c3d5f5f0
JL
110/* Protect totalram_pages and zone->managed_pages */
111static DEFINE_SPINLOCK(managed_page_count_lock);
112
6c231b7b 113unsigned long totalram_pages __read_mostly;
cb45b0e9 114unsigned long totalreserve_pages __read_mostly;
e48322ab 115unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
116/*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122unsigned long dirty_balance_reserve __read_mostly;
123
1b76b02f 124int percpu_pagelist_fraction;
dcce284a 125gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 126
452aa699
RW
127#ifdef CONFIG_PM_SLEEP
128/*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
c9e664f1
RW
136
137static gfp_t saved_gfp_mask;
138
139void pm_restore_gfp_mask(void)
452aa699
RW
140{
141 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
145 }
452aa699
RW
146}
147
c9e664f1 148void pm_restrict_gfp_mask(void)
452aa699 149{
452aa699 150 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 154}
f90ac398
MG
155
156bool pm_suspended_storage(void)
157{
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
161}
452aa699
RW
162#endif /* CONFIG_PM_SLEEP */
163
d9c23400
MG
164#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165int pageblock_order __read_mostly;
166#endif
167
d98c7a09 168static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 169
1da177e4
LT
170/*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
1da177e4 180 */
2f1b6248 181int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 182#ifdef CONFIG_ZONE_DMA
2f1b6248 183 256,
4b51d669 184#endif
fb0e7942 185#ifdef CONFIG_ZONE_DMA32
2f1b6248 186 256,
fb0e7942 187#endif
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 32,
e53ef38d 190#endif
2a1e274a 191 32,
2f1b6248 192};
1da177e4
LT
193
194EXPORT_SYMBOL(totalram_pages);
1da177e4 195
15ad7cdc 196static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 197#ifdef CONFIG_ZONE_DMA
2f1b6248 198 "DMA",
4b51d669 199#endif
fb0e7942 200#ifdef CONFIG_ZONE_DMA32
2f1b6248 201 "DMA32",
fb0e7942 202#endif
2f1b6248 203 "Normal",
e53ef38d 204#ifdef CONFIG_HIGHMEM
2a1e274a 205 "HighMem",
e53ef38d 206#endif
2a1e274a 207 "Movable",
2f1b6248
CL
208};
209
1da177e4 210int min_free_kbytes = 1024;
42aa83cb 211int user_min_free_kbytes = -1;
1da177e4 212
2c85f51d
JB
213static unsigned long __meminitdata nr_kernel_pages;
214static unsigned long __meminitdata nr_all_pages;
a3142c8e 215static unsigned long __meminitdata dma_reserve;
1da177e4 216
0ee332c1
TH
217#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220static unsigned long __initdata required_kernelcore;
221static unsigned long __initdata required_movablecore;
222static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225int movable_zone;
226EXPORT_SYMBOL(movable_zone);
227#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 228
418508c1
MS
229#if MAX_NUMNODES > 1
230int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 231int nr_online_nodes __read_mostly = 1;
418508c1 232EXPORT_SYMBOL(nr_node_ids);
62bc62a8 233EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
234#endif
235
9ef9acb0
MG
236int page_group_by_mobility_disabled __read_mostly;
237
ee6f509c 238void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 239{
5d0f3f72
KM
240 if (unlikely(page_group_by_mobility_disabled &&
241 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
242 migratetype = MIGRATE_UNMOVABLE;
243
b2a0ac88
MG
244 set_pageblock_flags_group(page, (unsigned long)migratetype,
245 PB_migrate, PB_migrate_end);
246}
247
13e7444b 248#ifdef CONFIG_DEBUG_VM
c6a57e19 249static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 250{
bdc8cb98
DH
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 254 unsigned long sp, start_pfn;
c6a57e19 255
bdc8cb98
DH
256 do {
257 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
108bcc96 260 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
b5e6a5a2 264 if (ret)
613813e8
DH
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
b5e6a5a2 268
bdc8cb98 269 return ret;
c6a57e19
DH
270}
271
272static int page_is_consistent(struct zone *zone, struct page *page)
273{
14e07298 274 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 275 return 0;
1da177e4 276 if (zone != page_zone(page))
c6a57e19
DH
277 return 0;
278
279 return 1;
280}
281/*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284static int bad_range(struct zone *zone, struct page *page)
285{
286 if (page_outside_zone_boundaries(zone, page))
1da177e4 287 return 1;
c6a57e19
DH
288 if (!page_is_consistent(zone, page))
289 return 1;
290
1da177e4
LT
291 return 0;
292}
13e7444b
NP
293#else
294static inline int bad_range(struct zone *zone, struct page *page)
295{
296 return 0;
297}
298#endif
299
d230dec1
KS
300static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
1da177e4 302{
d936cf9b
HD
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
2a7684a2
WF
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
22b751c3 309 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
310 return;
311 }
312
d936cf9b
HD
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
1e9e6365
HD
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
1e9e6365 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 334 current->comm, page_to_pfn(page));
f0b791a3 335 dump_page_badflags(page, reason, bad_flags);
3dc14741 336
4f31888c 337 print_modules();
1da177e4 338 dump_stack();
d936cf9b 339out:
8cc3b392 340 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 341 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
343}
344
1da177e4
LT
345/*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
6416b9fa
WSH
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
1da177e4 354 *
41d78ba5
HD
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
1da177e4 358 */
d98c7a09
HD
359
360static void free_compound_page(struct page *page)
361{
d85f3385 362 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
363}
364
01ad1c08 365void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
366{
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
58a84aa9 375 set_page_count(p, 0);
18229df5 376 p->first_page = page;
668f9abb
DR
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
18229df5
AW
380 }
381}
382
7aeb09f9
MG
383static inline void prep_zero_page(struct page *page, unsigned int order,
384 gfp_t gfp_flags)
17cf4406
NP
385{
386 int i;
387
6626c5d5
AM
388 /*
389 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
390 * and __GFP_HIGHMEM from hard or soft interrupt context.
391 */
725d704e 392 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
393 for (i = 0; i < (1 << order); i++)
394 clear_highpage(page + i);
395}
396
c0a32fc5
SG
397#ifdef CONFIG_DEBUG_PAGEALLOC
398unsigned int _debug_guardpage_minorder;
031bc574 399bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
400bool _debug_guardpage_enabled __read_mostly;
401
031bc574
JK
402static int __init early_debug_pagealloc(char *buf)
403{
404 if (!buf)
405 return -EINVAL;
406
407 if (strcmp(buf, "on") == 0)
408 _debug_pagealloc_enabled = true;
409
410 return 0;
411}
412early_param("debug_pagealloc", early_debug_pagealloc);
413
e30825f1
JK
414static bool need_debug_guardpage(void)
415{
031bc574
JK
416 /* If we don't use debug_pagealloc, we don't need guard page */
417 if (!debug_pagealloc_enabled())
418 return false;
419
e30825f1
JK
420 return true;
421}
422
423static void init_debug_guardpage(void)
424{
031bc574
JK
425 if (!debug_pagealloc_enabled())
426 return;
427
e30825f1
JK
428 _debug_guardpage_enabled = true;
429}
430
431struct page_ext_operations debug_guardpage_ops = {
432 .need = need_debug_guardpage,
433 .init = init_debug_guardpage,
434};
c0a32fc5
SG
435
436static int __init debug_guardpage_minorder_setup(char *buf)
437{
438 unsigned long res;
439
440 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
441 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
442 return 0;
443 }
444 _debug_guardpage_minorder = res;
445 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
446 return 0;
447}
448__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
449
2847cf95
JK
450static inline void set_page_guard(struct zone *zone, struct page *page,
451 unsigned int order, int migratetype)
c0a32fc5 452{
e30825f1
JK
453 struct page_ext *page_ext;
454
455 if (!debug_guardpage_enabled())
456 return;
457
458 page_ext = lookup_page_ext(page);
459 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
460
2847cf95
JK
461 INIT_LIST_HEAD(&page->lru);
462 set_page_private(page, order);
463 /* Guard pages are not available for any usage */
464 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
465}
466
2847cf95
JK
467static inline void clear_page_guard(struct zone *zone, struct page *page,
468 unsigned int order, int migratetype)
c0a32fc5 469{
e30825f1
JK
470 struct page_ext *page_ext;
471
472 if (!debug_guardpage_enabled())
473 return;
474
475 page_ext = lookup_page_ext(page);
476 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
477
2847cf95
JK
478 set_page_private(page, 0);
479 if (!is_migrate_isolate(migratetype))
480 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
481}
482#else
e30825f1 483struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
484static inline void set_page_guard(struct zone *zone, struct page *page,
485 unsigned int order, int migratetype) {}
486static inline void clear_page_guard(struct zone *zone, struct page *page,
487 unsigned int order, int migratetype) {}
c0a32fc5
SG
488#endif
489
7aeb09f9 490static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 491{
4c21e2f2 492 set_page_private(page, order);
676165a8 493 __SetPageBuddy(page);
1da177e4
LT
494}
495
496static inline void rmv_page_order(struct page *page)
497{
676165a8 498 __ClearPageBuddy(page);
4c21e2f2 499 set_page_private(page, 0);
1da177e4
LT
500}
501
1da177e4
LT
502/*
503 * This function checks whether a page is free && is the buddy
504 * we can do coalesce a page and its buddy if
13e7444b 505 * (a) the buddy is not in a hole &&
676165a8 506 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
507 * (c) a page and its buddy have the same order &&
508 * (d) a page and its buddy are in the same zone.
676165a8 509 *
cf6fe945
WSH
510 * For recording whether a page is in the buddy system, we set ->_mapcount
511 * PAGE_BUDDY_MAPCOUNT_VALUE.
512 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
513 * serialized by zone->lock.
1da177e4 514 *
676165a8 515 * For recording page's order, we use page_private(page).
1da177e4 516 */
cb2b95e1 517static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 518 unsigned int order)
1da177e4 519{
14e07298 520 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 521 return 0;
13e7444b 522
c0a32fc5 523 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
524 if (page_zone_id(page) != page_zone_id(buddy))
525 return 0;
526
4c5018ce
WY
527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528
c0a32fc5
SG
529 return 1;
530 }
531
cb2b95e1 532 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
533 /*
534 * zone check is done late to avoid uselessly
535 * calculating zone/node ids for pages that could
536 * never merge.
537 */
538 if (page_zone_id(page) != page_zone_id(buddy))
539 return 0;
540
4c5018ce
WY
541 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
542
6aa3001b 543 return 1;
676165a8 544 }
6aa3001b 545 return 0;
1da177e4
LT
546}
547
548/*
549 * Freeing function for a buddy system allocator.
550 *
551 * The concept of a buddy system is to maintain direct-mapped table
552 * (containing bit values) for memory blocks of various "orders".
553 * The bottom level table contains the map for the smallest allocatable
554 * units of memory (here, pages), and each level above it describes
555 * pairs of units from the levels below, hence, "buddies".
556 * At a high level, all that happens here is marking the table entry
557 * at the bottom level available, and propagating the changes upward
558 * as necessary, plus some accounting needed to play nicely with other
559 * parts of the VM system.
560 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
561 * free pages of length of (1 << order) and marked with _mapcount
562 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
563 * field.
1da177e4 564 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
565 * other. That is, if we allocate a small block, and both were
566 * free, the remainder of the region must be split into blocks.
1da177e4 567 * If a block is freed, and its buddy is also free, then this
5f63b720 568 * triggers coalescing into a block of larger size.
1da177e4 569 *
6d49e352 570 * -- nyc
1da177e4
LT
571 */
572
48db57f8 573static inline void __free_one_page(struct page *page,
dc4b0caf 574 unsigned long pfn,
ed0ae21d
MG
575 struct zone *zone, unsigned int order,
576 int migratetype)
1da177e4
LT
577{
578 unsigned long page_idx;
6dda9d55 579 unsigned long combined_idx;
43506fad 580 unsigned long uninitialized_var(buddy_idx);
6dda9d55 581 struct page *buddy;
3c605096 582 int max_order = MAX_ORDER;
1da177e4 583
d29bb978 584 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 585 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 586
ed0ae21d 587 VM_BUG_ON(migratetype == -1);
3c605096
JK
588 if (is_migrate_isolate(migratetype)) {
589 /*
590 * We restrict max order of merging to prevent merge
591 * between freepages on isolate pageblock and normal
592 * pageblock. Without this, pageblock isolation
593 * could cause incorrect freepage accounting.
594 */
595 max_order = min(MAX_ORDER, pageblock_order + 1);
596 } else {
8f82b55d 597 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 598 }
ed0ae21d 599
3c605096 600 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 601
309381fe
SL
602 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
603 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 604
3c605096 605 while (order < max_order - 1) {
43506fad
KC
606 buddy_idx = __find_buddy_index(page_idx, order);
607 buddy = page + (buddy_idx - page_idx);
cb2b95e1 608 if (!page_is_buddy(page, buddy, order))
3c82d0ce 609 break;
c0a32fc5
SG
610 /*
611 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
612 * merge with it and move up one order.
613 */
614 if (page_is_guard(buddy)) {
2847cf95 615 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
616 } else {
617 list_del(&buddy->lru);
618 zone->free_area[order].nr_free--;
619 rmv_page_order(buddy);
620 }
43506fad 621 combined_idx = buddy_idx & page_idx;
1da177e4
LT
622 page = page + (combined_idx - page_idx);
623 page_idx = combined_idx;
624 order++;
625 }
626 set_page_order(page, order);
6dda9d55
CZ
627
628 /*
629 * If this is not the largest possible page, check if the buddy
630 * of the next-highest order is free. If it is, it's possible
631 * that pages are being freed that will coalesce soon. In case,
632 * that is happening, add the free page to the tail of the list
633 * so it's less likely to be used soon and more likely to be merged
634 * as a higher order page
635 */
b7f50cfa 636 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 637 struct page *higher_page, *higher_buddy;
43506fad
KC
638 combined_idx = buddy_idx & page_idx;
639 higher_page = page + (combined_idx - page_idx);
640 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 641 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
642 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
643 list_add_tail(&page->lru,
644 &zone->free_area[order].free_list[migratetype]);
645 goto out;
646 }
647 }
648
649 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
650out:
1da177e4
LT
651 zone->free_area[order].nr_free++;
652}
653
224abf92 654static inline int free_pages_check(struct page *page)
1da177e4 655{
d230dec1 656 const char *bad_reason = NULL;
f0b791a3
DH
657 unsigned long bad_flags = 0;
658
659 if (unlikely(page_mapcount(page)))
660 bad_reason = "nonzero mapcount";
661 if (unlikely(page->mapping != NULL))
662 bad_reason = "non-NULL mapping";
663 if (unlikely(atomic_read(&page->_count) != 0))
664 bad_reason = "nonzero _count";
665 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
666 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
667 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
668 }
9edad6ea
JW
669#ifdef CONFIG_MEMCG
670 if (unlikely(page->mem_cgroup))
671 bad_reason = "page still charged to cgroup";
672#endif
f0b791a3
DH
673 if (unlikely(bad_reason)) {
674 bad_page(page, bad_reason, bad_flags);
79f4b7bf 675 return 1;
8cc3b392 676 }
90572890 677 page_cpupid_reset_last(page);
79f4b7bf
HD
678 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
679 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
680 return 0;
1da177e4
LT
681}
682
683/*
5f8dcc21 684 * Frees a number of pages from the PCP lists
1da177e4 685 * Assumes all pages on list are in same zone, and of same order.
207f36ee 686 * count is the number of pages to free.
1da177e4
LT
687 *
688 * If the zone was previously in an "all pages pinned" state then look to
689 * see if this freeing clears that state.
690 *
691 * And clear the zone's pages_scanned counter, to hold off the "all pages are
692 * pinned" detection logic.
693 */
5f8dcc21
MG
694static void free_pcppages_bulk(struct zone *zone, int count,
695 struct per_cpu_pages *pcp)
1da177e4 696{
5f8dcc21 697 int migratetype = 0;
a6f9edd6 698 int batch_free = 0;
72853e29 699 int to_free = count;
0d5d823a 700 unsigned long nr_scanned;
5f8dcc21 701
c54ad30c 702 spin_lock(&zone->lock);
0d5d823a
MG
703 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
704 if (nr_scanned)
705 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 706
72853e29 707 while (to_free) {
48db57f8 708 struct page *page;
5f8dcc21
MG
709 struct list_head *list;
710
711 /*
a6f9edd6
MG
712 * Remove pages from lists in a round-robin fashion. A
713 * batch_free count is maintained that is incremented when an
714 * empty list is encountered. This is so more pages are freed
715 * off fuller lists instead of spinning excessively around empty
716 * lists
5f8dcc21
MG
717 */
718 do {
a6f9edd6 719 batch_free++;
5f8dcc21
MG
720 if (++migratetype == MIGRATE_PCPTYPES)
721 migratetype = 0;
722 list = &pcp->lists[migratetype];
723 } while (list_empty(list));
48db57f8 724
1d16871d
NK
725 /* This is the only non-empty list. Free them all. */
726 if (batch_free == MIGRATE_PCPTYPES)
727 batch_free = to_free;
728
a6f9edd6 729 do {
770c8aaa
BZ
730 int mt; /* migratetype of the to-be-freed page */
731
a6f9edd6
MG
732 page = list_entry(list->prev, struct page, lru);
733 /* must delete as __free_one_page list manipulates */
734 list_del(&page->lru);
b12c4ad1 735 mt = get_freepage_migratetype(page);
8f82b55d 736 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 737 mt = get_pageblock_migratetype(page);
51bb1a40 738
a7016235 739 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 740 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 741 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 742 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 743 }
c54ad30c 744 spin_unlock(&zone->lock);
1da177e4
LT
745}
746
dc4b0caf
MG
747static void free_one_page(struct zone *zone,
748 struct page *page, unsigned long pfn,
7aeb09f9 749 unsigned int order,
ed0ae21d 750 int migratetype)
1da177e4 751{
0d5d823a 752 unsigned long nr_scanned;
006d22d9 753 spin_lock(&zone->lock);
0d5d823a
MG
754 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
755 if (nr_scanned)
756 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 757
ad53f92e
JK
758 if (unlikely(has_isolate_pageblock(zone) ||
759 is_migrate_isolate(migratetype))) {
760 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 761 }
dc4b0caf 762 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 763 spin_unlock(&zone->lock);
48db57f8
NP
764}
765
81422f29
KS
766static int free_tail_pages_check(struct page *head_page, struct page *page)
767{
768 if (!IS_ENABLED(CONFIG_DEBUG_VM))
769 return 0;
770 if (unlikely(!PageTail(page))) {
771 bad_page(page, "PageTail not set", 0);
772 return 1;
773 }
774 if (unlikely(page->first_page != head_page)) {
775 bad_page(page, "first_page not consistent", 0);
776 return 1;
777 }
778 return 0;
779}
780
ec95f53a 781static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 782{
81422f29
KS
783 bool compound = PageCompound(page);
784 int i, bad = 0;
1da177e4 785
ab1f306f 786 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 787 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 788
b413d48a 789 trace_mm_page_free(page, order);
b1eeab67 790 kmemcheck_free_shadow(page, order);
b8c73fc2 791 kasan_free_pages(page, order);
b1eeab67 792
8dd60a3a
AA
793 if (PageAnon(page))
794 page->mapping = NULL;
81422f29
KS
795 bad += free_pages_check(page);
796 for (i = 1; i < (1 << order); i++) {
797 if (compound)
798 bad += free_tail_pages_check(page, page + i);
8dd60a3a 799 bad += free_pages_check(page + i);
81422f29 800 }
8cc3b392 801 if (bad)
ec95f53a 802 return false;
689bcebf 803
48c96a36
JK
804 reset_page_owner(page, order);
805
3ac7fe5a 806 if (!PageHighMem(page)) {
b8af2941
PK
807 debug_check_no_locks_freed(page_address(page),
808 PAGE_SIZE << order);
3ac7fe5a
TG
809 debug_check_no_obj_freed(page_address(page),
810 PAGE_SIZE << order);
811 }
dafb1367 812 arch_free_page(page, order);
48db57f8 813 kernel_map_pages(page, 1 << order, 0);
dafb1367 814
ec95f53a
KM
815 return true;
816}
817
818static void __free_pages_ok(struct page *page, unsigned int order)
819{
820 unsigned long flags;
95e34412 821 int migratetype;
dc4b0caf 822 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
823
824 if (!free_pages_prepare(page, order))
825 return;
826
cfc47a28 827 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 828 local_irq_save(flags);
f8891e5e 829 __count_vm_events(PGFREE, 1 << order);
95e34412 830 set_freepage_migratetype(page, migratetype);
dc4b0caf 831 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 832 local_irq_restore(flags);
1da177e4
LT
833}
834
170a5a7e 835void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 836{
c3993076 837 unsigned int nr_pages = 1 << order;
e2d0bd2b 838 struct page *p = page;
c3993076 839 unsigned int loop;
a226f6c8 840
e2d0bd2b
YL
841 prefetchw(p);
842 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
843 prefetchw(p + 1);
c3993076
JW
844 __ClearPageReserved(p);
845 set_page_count(p, 0);
a226f6c8 846 }
e2d0bd2b
YL
847 __ClearPageReserved(p);
848 set_page_count(p, 0);
c3993076 849
e2d0bd2b 850 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
851 set_page_refcounted(page);
852 __free_pages(page, order);
a226f6c8
DH
853}
854
47118af0 855#ifdef CONFIG_CMA
9cf510a5 856/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
857void __init init_cma_reserved_pageblock(struct page *page)
858{
859 unsigned i = pageblock_nr_pages;
860 struct page *p = page;
861
862 do {
863 __ClearPageReserved(p);
864 set_page_count(p, 0);
865 } while (++p, --i);
866
47118af0 867 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
868
869 if (pageblock_order >= MAX_ORDER) {
870 i = pageblock_nr_pages;
871 p = page;
872 do {
873 set_page_refcounted(p);
874 __free_pages(p, MAX_ORDER - 1);
875 p += MAX_ORDER_NR_PAGES;
876 } while (i -= MAX_ORDER_NR_PAGES);
877 } else {
878 set_page_refcounted(page);
879 __free_pages(page, pageblock_order);
880 }
881
3dcc0571 882 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
883}
884#endif
1da177e4
LT
885
886/*
887 * The order of subdivision here is critical for the IO subsystem.
888 * Please do not alter this order without good reasons and regression
889 * testing. Specifically, as large blocks of memory are subdivided,
890 * the order in which smaller blocks are delivered depends on the order
891 * they're subdivided in this function. This is the primary factor
892 * influencing the order in which pages are delivered to the IO
893 * subsystem according to empirical testing, and this is also justified
894 * by considering the behavior of a buddy system containing a single
895 * large block of memory acted on by a series of small allocations.
896 * This behavior is a critical factor in sglist merging's success.
897 *
6d49e352 898 * -- nyc
1da177e4 899 */
085cc7d5 900static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
901 int low, int high, struct free_area *area,
902 int migratetype)
1da177e4
LT
903{
904 unsigned long size = 1 << high;
905
906 while (high > low) {
907 area--;
908 high--;
909 size >>= 1;
309381fe 910 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 911
2847cf95 912 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 913 debug_guardpage_enabled() &&
2847cf95 914 high < debug_guardpage_minorder()) {
c0a32fc5
SG
915 /*
916 * Mark as guard pages (or page), that will allow to
917 * merge back to allocator when buddy will be freed.
918 * Corresponding page table entries will not be touched,
919 * pages will stay not present in virtual address space
920 */
2847cf95 921 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
922 continue;
923 }
b2a0ac88 924 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
925 area->nr_free++;
926 set_page_order(&page[size], high);
927 }
1da177e4
LT
928}
929
1da177e4
LT
930/*
931 * This page is about to be returned from the page allocator
932 */
2a7684a2 933static inline int check_new_page(struct page *page)
1da177e4 934{
d230dec1 935 const char *bad_reason = NULL;
f0b791a3
DH
936 unsigned long bad_flags = 0;
937
938 if (unlikely(page_mapcount(page)))
939 bad_reason = "nonzero mapcount";
940 if (unlikely(page->mapping != NULL))
941 bad_reason = "non-NULL mapping";
942 if (unlikely(atomic_read(&page->_count) != 0))
943 bad_reason = "nonzero _count";
944 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
945 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
946 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
947 }
9edad6ea
JW
948#ifdef CONFIG_MEMCG
949 if (unlikely(page->mem_cgroup))
950 bad_reason = "page still charged to cgroup";
951#endif
f0b791a3
DH
952 if (unlikely(bad_reason)) {
953 bad_page(page, bad_reason, bad_flags);
689bcebf 954 return 1;
8cc3b392 955 }
2a7684a2
WF
956 return 0;
957}
958
75379191
VB
959static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
960 int alloc_flags)
2a7684a2
WF
961{
962 int i;
963
964 for (i = 0; i < (1 << order); i++) {
965 struct page *p = page + i;
966 if (unlikely(check_new_page(p)))
967 return 1;
968 }
689bcebf 969
4c21e2f2 970 set_page_private(page, 0);
7835e98b 971 set_page_refcounted(page);
cc102509
NP
972
973 arch_alloc_page(page, order);
1da177e4 974 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 975 kasan_alloc_pages(page, order);
17cf4406
NP
976
977 if (gfp_flags & __GFP_ZERO)
978 prep_zero_page(page, order, gfp_flags);
979
980 if (order && (gfp_flags & __GFP_COMP))
981 prep_compound_page(page, order);
982
48c96a36
JK
983 set_page_owner(page, order, gfp_flags);
984
75379191
VB
985 /*
986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
987 * allocate the page. The expectation is that the caller is taking
988 * steps that will free more memory. The caller should avoid the page
989 * being used for !PFMEMALLOC purposes.
990 */
991 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
992
689bcebf 993 return 0;
1da177e4
LT
994}
995
56fd56b8
MG
996/*
997 * Go through the free lists for the given migratetype and remove
998 * the smallest available page from the freelists
999 */
728ec980
MG
1000static inline
1001struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1002 int migratetype)
1003{
1004 unsigned int current_order;
b8af2941 1005 struct free_area *area;
56fd56b8
MG
1006 struct page *page;
1007
1008 /* Find a page of the appropriate size in the preferred list */
1009 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1010 area = &(zone->free_area[current_order]);
1011 if (list_empty(&area->free_list[migratetype]))
1012 continue;
1013
1014 page = list_entry(area->free_list[migratetype].next,
1015 struct page, lru);
1016 list_del(&page->lru);
1017 rmv_page_order(page);
1018 area->nr_free--;
56fd56b8 1019 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 1020 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
1021 return page;
1022 }
1023
1024 return NULL;
1025}
1026
1027
b2a0ac88
MG
1028/*
1029 * This array describes the order lists are fallen back to when
1030 * the free lists for the desirable migrate type are depleted
1031 */
47118af0
MN
1032static int fallbacks[MIGRATE_TYPES][4] = {
1033 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1034 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
dc67647b 1035 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
47118af0 1036#ifdef CONFIG_CMA
47118af0 1037 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
47118af0 1038#endif
6d4a4916 1039 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1040#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1041 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1042#endif
b2a0ac88
MG
1043};
1044
dc67647b
JK
1045#ifdef CONFIG_CMA
1046static struct page *__rmqueue_cma_fallback(struct zone *zone,
1047 unsigned int order)
1048{
1049 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1050}
1051#else
1052static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1053 unsigned int order) { return NULL; }
1054#endif
1055
c361be55
MG
1056/*
1057 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1058 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1059 * boundary. If alignment is required, use move_freepages_block()
1060 */
435b405c 1061int move_freepages(struct zone *zone,
b69a7288
AB
1062 struct page *start_page, struct page *end_page,
1063 int migratetype)
c361be55
MG
1064{
1065 struct page *page;
1066 unsigned long order;
d100313f 1067 int pages_moved = 0;
c361be55
MG
1068
1069#ifndef CONFIG_HOLES_IN_ZONE
1070 /*
1071 * page_zone is not safe to call in this context when
1072 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1073 * anyway as we check zone boundaries in move_freepages_block().
1074 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1075 * grouping pages by mobility
c361be55 1076 */
97ee4ba7 1077 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1078#endif
1079
1080 for (page = start_page; page <= end_page;) {
344c790e 1081 /* Make sure we are not inadvertently changing nodes */
309381fe 1082 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1083
c361be55
MG
1084 if (!pfn_valid_within(page_to_pfn(page))) {
1085 page++;
1086 continue;
1087 }
1088
1089 if (!PageBuddy(page)) {
1090 page++;
1091 continue;
1092 }
1093
1094 order = page_order(page);
84be48d8
KS
1095 list_move(&page->lru,
1096 &zone->free_area[order].free_list[migratetype]);
95e34412 1097 set_freepage_migratetype(page, migratetype);
c361be55 1098 page += 1 << order;
d100313f 1099 pages_moved += 1 << order;
c361be55
MG
1100 }
1101
d100313f 1102 return pages_moved;
c361be55
MG
1103}
1104
ee6f509c 1105int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1106 int migratetype)
c361be55
MG
1107{
1108 unsigned long start_pfn, end_pfn;
1109 struct page *start_page, *end_page;
1110
1111 start_pfn = page_to_pfn(page);
d9c23400 1112 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1113 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1114 end_page = start_page + pageblock_nr_pages - 1;
1115 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1116
1117 /* Do not cross zone boundaries */
108bcc96 1118 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1119 start_page = page;
108bcc96 1120 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1121 return 0;
1122
1123 return move_freepages(zone, start_page, end_page, migratetype);
1124}
1125
2f66a68f
MG
1126static void change_pageblock_range(struct page *pageblock_page,
1127 int start_order, int migratetype)
1128{
1129 int nr_pageblocks = 1 << (start_order - pageblock_order);
1130
1131 while (nr_pageblocks--) {
1132 set_pageblock_migratetype(pageblock_page, migratetype);
1133 pageblock_page += pageblock_nr_pages;
1134 }
1135}
1136
fef903ef 1137/*
9c0415eb
VB
1138 * When we are falling back to another migratetype during allocation, try to
1139 * steal extra free pages from the same pageblocks to satisfy further
1140 * allocations, instead of polluting multiple pageblocks.
1141 *
1142 * If we are stealing a relatively large buddy page, it is likely there will
1143 * be more free pages in the pageblock, so try to steal them all. For
1144 * reclaimable and unmovable allocations, we steal regardless of page size,
1145 * as fragmentation caused by those allocations polluting movable pageblocks
1146 * is worse than movable allocations stealing from unmovable and reclaimable
1147 * pageblocks.
fef903ef 1148 */
4eb7dce6
JK
1149static bool can_steal_fallback(unsigned int order, int start_mt)
1150{
1151 /*
1152 * Leaving this order check is intended, although there is
1153 * relaxed order check in next check. The reason is that
1154 * we can actually steal whole pageblock if this condition met,
1155 * but, below check doesn't guarantee it and that is just heuristic
1156 * so could be changed anytime.
1157 */
1158 if (order >= pageblock_order)
1159 return true;
1160
1161 if (order >= pageblock_order / 2 ||
1162 start_mt == MIGRATE_RECLAIMABLE ||
1163 start_mt == MIGRATE_UNMOVABLE ||
1164 page_group_by_mobility_disabled)
1165 return true;
1166
1167 return false;
1168}
1169
1170/*
1171 * This function implements actual steal behaviour. If order is large enough,
1172 * we can steal whole pageblock. If not, we first move freepages in this
1173 * pageblock and check whether half of pages are moved or not. If half of
1174 * pages are moved, we can change migratetype of pageblock and permanently
1175 * use it's pages as requested migratetype in the future.
1176 */
1177static void steal_suitable_fallback(struct zone *zone, struct page *page,
1178 int start_type)
fef903ef
SB
1179{
1180 int current_order = page_order(page);
4eb7dce6 1181 int pages;
fef903ef 1182
fef903ef
SB
1183 /* Take ownership for orders >= pageblock_order */
1184 if (current_order >= pageblock_order) {
1185 change_pageblock_range(page, current_order, start_type);
3a1086fb 1186 return;
fef903ef
SB
1187 }
1188
4eb7dce6 1189 pages = move_freepages_block(zone, page, start_type);
fef903ef 1190
4eb7dce6
JK
1191 /* Claim the whole block if over half of it is free */
1192 if (pages >= (1 << (pageblock_order-1)) ||
1193 page_group_by_mobility_disabled)
1194 set_pageblock_migratetype(page, start_type);
1195}
1196
2149cdae
JK
1197/*
1198 * Check whether there is a suitable fallback freepage with requested order.
1199 * If only_stealable is true, this function returns fallback_mt only if
1200 * we can steal other freepages all together. This would help to reduce
1201 * fragmentation due to mixed migratetype pages in one pageblock.
1202 */
1203int find_suitable_fallback(struct free_area *area, unsigned int order,
1204 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1205{
1206 int i;
1207 int fallback_mt;
1208
1209 if (area->nr_free == 0)
1210 return -1;
1211
1212 *can_steal = false;
1213 for (i = 0;; i++) {
1214 fallback_mt = fallbacks[migratetype][i];
1215 if (fallback_mt == MIGRATE_RESERVE)
1216 break;
1217
1218 if (list_empty(&area->free_list[fallback_mt]))
1219 continue;
fef903ef 1220
4eb7dce6
JK
1221 if (can_steal_fallback(order, migratetype))
1222 *can_steal = true;
1223
2149cdae
JK
1224 if (!only_stealable)
1225 return fallback_mt;
1226
1227 if (*can_steal)
1228 return fallback_mt;
fef903ef 1229 }
4eb7dce6
JK
1230
1231 return -1;
fef903ef
SB
1232}
1233
b2a0ac88 1234/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1235static inline struct page *
7aeb09f9 1236__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1237{
b8af2941 1238 struct free_area *area;
7aeb09f9 1239 unsigned int current_order;
b2a0ac88 1240 struct page *page;
4eb7dce6
JK
1241 int fallback_mt;
1242 bool can_steal;
b2a0ac88
MG
1243
1244 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1245 for (current_order = MAX_ORDER-1;
1246 current_order >= order && current_order <= MAX_ORDER-1;
1247 --current_order) {
4eb7dce6
JK
1248 area = &(zone->free_area[current_order]);
1249 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1250 start_migratetype, false, &can_steal);
4eb7dce6
JK
1251 if (fallback_mt == -1)
1252 continue;
b2a0ac88 1253
4eb7dce6
JK
1254 page = list_entry(area->free_list[fallback_mt].next,
1255 struct page, lru);
1256 if (can_steal)
1257 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1258
4eb7dce6
JK
1259 /* Remove the page from the freelists */
1260 area->nr_free--;
1261 list_del(&page->lru);
1262 rmv_page_order(page);
3a1086fb 1263
4eb7dce6
JK
1264 expand(zone, page, order, current_order, area,
1265 start_migratetype);
1266 /*
1267 * The freepage_migratetype may differ from pageblock's
1268 * migratetype depending on the decisions in
1269 * try_to_steal_freepages(). This is OK as long as it
1270 * does not differ for MIGRATE_CMA pageblocks. For CMA
1271 * we need to make sure unallocated pages flushed from
1272 * pcp lists are returned to the correct freelist.
1273 */
1274 set_freepage_migratetype(page, start_migratetype);
e0fff1bd 1275
4eb7dce6
JK
1276 trace_mm_page_alloc_extfrag(page, order, current_order,
1277 start_migratetype, fallback_mt);
e0fff1bd 1278
4eb7dce6 1279 return page;
b2a0ac88
MG
1280 }
1281
728ec980 1282 return NULL;
b2a0ac88
MG
1283}
1284
56fd56b8 1285/*
1da177e4
LT
1286 * Do the hard work of removing an element from the buddy allocator.
1287 * Call me with the zone->lock already held.
1288 */
b2a0ac88
MG
1289static struct page *__rmqueue(struct zone *zone, unsigned int order,
1290 int migratetype)
1da177e4 1291{
1da177e4
LT
1292 struct page *page;
1293
728ec980 1294retry_reserve:
56fd56b8 1295 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1296
728ec980 1297 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
dc67647b
JK
1298 if (migratetype == MIGRATE_MOVABLE)
1299 page = __rmqueue_cma_fallback(zone, order);
1300
1301 if (!page)
1302 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1303
728ec980
MG
1304 /*
1305 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1306 * is used because __rmqueue_smallest is an inline function
1307 * and we want just one call site
1308 */
1309 if (!page) {
1310 migratetype = MIGRATE_RESERVE;
1311 goto retry_reserve;
1312 }
1313 }
1314
0d3d062a 1315 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1316 return page;
1da177e4
LT
1317}
1318
5f63b720 1319/*
1da177e4
LT
1320 * Obtain a specified number of elements from the buddy allocator, all under
1321 * a single hold of the lock, for efficiency. Add them to the supplied list.
1322 * Returns the number of new pages which were placed at *list.
1323 */
5f63b720 1324static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1325 unsigned long count, struct list_head *list,
b745bc85 1326 int migratetype, bool cold)
1da177e4 1327{
5bcc9f86 1328 int i;
5f63b720 1329
c54ad30c 1330 spin_lock(&zone->lock);
1da177e4 1331 for (i = 0; i < count; ++i) {
b2a0ac88 1332 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1333 if (unlikely(page == NULL))
1da177e4 1334 break;
81eabcbe
MG
1335
1336 /*
1337 * Split buddy pages returned by expand() are received here
1338 * in physical page order. The page is added to the callers and
1339 * list and the list head then moves forward. From the callers
1340 * perspective, the linked list is ordered by page number in
1341 * some conditions. This is useful for IO devices that can
1342 * merge IO requests if the physical pages are ordered
1343 * properly.
1344 */
b745bc85 1345 if (likely(!cold))
e084b2d9
MG
1346 list_add(&page->lru, list);
1347 else
1348 list_add_tail(&page->lru, list);
81eabcbe 1349 list = &page->lru;
5bcc9f86 1350 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1351 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1352 -(1 << order));
1da177e4 1353 }
f2260e6b 1354 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1355 spin_unlock(&zone->lock);
085cc7d5 1356 return i;
1da177e4
LT
1357}
1358
4ae7c039 1359#ifdef CONFIG_NUMA
8fce4d8e 1360/*
4037d452
CL
1361 * Called from the vmstat counter updater to drain pagesets of this
1362 * currently executing processor on remote nodes after they have
1363 * expired.
1364 *
879336c3
CL
1365 * Note that this function must be called with the thread pinned to
1366 * a single processor.
8fce4d8e 1367 */
4037d452 1368void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1369{
4ae7c039 1370 unsigned long flags;
7be12fc9 1371 int to_drain, batch;
4ae7c039 1372
4037d452 1373 local_irq_save(flags);
998d39cb 1374 batch = ACCESS_ONCE(pcp->batch);
7be12fc9 1375 to_drain = min(pcp->count, batch);
2a13515c
KM
1376 if (to_drain > 0) {
1377 free_pcppages_bulk(zone, to_drain, pcp);
1378 pcp->count -= to_drain;
1379 }
4037d452 1380 local_irq_restore(flags);
4ae7c039
CL
1381}
1382#endif
1383
9f8f2172 1384/*
93481ff0 1385 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1386 *
1387 * The processor must either be the current processor and the
1388 * thread pinned to the current processor or a processor that
1389 * is not online.
1390 */
93481ff0 1391static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1392{
c54ad30c 1393 unsigned long flags;
93481ff0
VB
1394 struct per_cpu_pageset *pset;
1395 struct per_cpu_pages *pcp;
1da177e4 1396
93481ff0
VB
1397 local_irq_save(flags);
1398 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1399
93481ff0
VB
1400 pcp = &pset->pcp;
1401 if (pcp->count) {
1402 free_pcppages_bulk(zone, pcp->count, pcp);
1403 pcp->count = 0;
1404 }
1405 local_irq_restore(flags);
1406}
3dfa5721 1407
93481ff0
VB
1408/*
1409 * Drain pcplists of all zones on the indicated processor.
1410 *
1411 * The processor must either be the current processor and the
1412 * thread pinned to the current processor or a processor that
1413 * is not online.
1414 */
1415static void drain_pages(unsigned int cpu)
1416{
1417 struct zone *zone;
1418
1419 for_each_populated_zone(zone) {
1420 drain_pages_zone(cpu, zone);
1da177e4
LT
1421 }
1422}
1da177e4 1423
9f8f2172
CL
1424/*
1425 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1426 *
1427 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1428 * the single zone's pages.
9f8f2172 1429 */
93481ff0 1430void drain_local_pages(struct zone *zone)
9f8f2172 1431{
93481ff0
VB
1432 int cpu = smp_processor_id();
1433
1434 if (zone)
1435 drain_pages_zone(cpu, zone);
1436 else
1437 drain_pages(cpu);
9f8f2172
CL
1438}
1439
1440/*
74046494
GBY
1441 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1442 *
93481ff0
VB
1443 * When zone parameter is non-NULL, spill just the single zone's pages.
1444 *
74046494
GBY
1445 * Note that this code is protected against sending an IPI to an offline
1446 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1447 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1448 * nothing keeps CPUs from showing up after we populated the cpumask and
1449 * before the call to on_each_cpu_mask().
9f8f2172 1450 */
93481ff0 1451void drain_all_pages(struct zone *zone)
9f8f2172 1452{
74046494 1453 int cpu;
74046494
GBY
1454
1455 /*
1456 * Allocate in the BSS so we wont require allocation in
1457 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1458 */
1459 static cpumask_t cpus_with_pcps;
1460
1461 /*
1462 * We don't care about racing with CPU hotplug event
1463 * as offline notification will cause the notified
1464 * cpu to drain that CPU pcps and on_each_cpu_mask
1465 * disables preemption as part of its processing
1466 */
1467 for_each_online_cpu(cpu) {
93481ff0
VB
1468 struct per_cpu_pageset *pcp;
1469 struct zone *z;
74046494 1470 bool has_pcps = false;
93481ff0
VB
1471
1472 if (zone) {
74046494 1473 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1474 if (pcp->pcp.count)
74046494 1475 has_pcps = true;
93481ff0
VB
1476 } else {
1477 for_each_populated_zone(z) {
1478 pcp = per_cpu_ptr(z->pageset, cpu);
1479 if (pcp->pcp.count) {
1480 has_pcps = true;
1481 break;
1482 }
74046494
GBY
1483 }
1484 }
93481ff0 1485
74046494
GBY
1486 if (has_pcps)
1487 cpumask_set_cpu(cpu, &cpus_with_pcps);
1488 else
1489 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1490 }
93481ff0
VB
1491 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1492 zone, 1);
9f8f2172
CL
1493}
1494
296699de 1495#ifdef CONFIG_HIBERNATION
1da177e4
LT
1496
1497void mark_free_pages(struct zone *zone)
1498{
f623f0db
RW
1499 unsigned long pfn, max_zone_pfn;
1500 unsigned long flags;
7aeb09f9 1501 unsigned int order, t;
1da177e4
LT
1502 struct list_head *curr;
1503
8080fc03 1504 if (zone_is_empty(zone))
1da177e4
LT
1505 return;
1506
1507 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1508
108bcc96 1509 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1510 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1511 if (pfn_valid(pfn)) {
1512 struct page *page = pfn_to_page(pfn);
1513
7be98234
RW
1514 if (!swsusp_page_is_forbidden(page))
1515 swsusp_unset_page_free(page);
f623f0db 1516 }
1da177e4 1517
b2a0ac88
MG
1518 for_each_migratetype_order(order, t) {
1519 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1520 unsigned long i;
1da177e4 1521
f623f0db
RW
1522 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1523 for (i = 0; i < (1UL << order); i++)
7be98234 1524 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1525 }
b2a0ac88 1526 }
1da177e4
LT
1527 spin_unlock_irqrestore(&zone->lock, flags);
1528}
e2c55dc8 1529#endif /* CONFIG_PM */
1da177e4 1530
1da177e4
LT
1531/*
1532 * Free a 0-order page
b745bc85 1533 * cold == true ? free a cold page : free a hot page
1da177e4 1534 */
b745bc85 1535void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1536{
1537 struct zone *zone = page_zone(page);
1538 struct per_cpu_pages *pcp;
1539 unsigned long flags;
dc4b0caf 1540 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1541 int migratetype;
1da177e4 1542
ec95f53a 1543 if (!free_pages_prepare(page, 0))
689bcebf
HD
1544 return;
1545
dc4b0caf 1546 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1547 set_freepage_migratetype(page, migratetype);
1da177e4 1548 local_irq_save(flags);
f8891e5e 1549 __count_vm_event(PGFREE);
da456f14 1550
5f8dcc21
MG
1551 /*
1552 * We only track unmovable, reclaimable and movable on pcp lists.
1553 * Free ISOLATE pages back to the allocator because they are being
1554 * offlined but treat RESERVE as movable pages so we can get those
1555 * areas back if necessary. Otherwise, we may have to free
1556 * excessively into the page allocator
1557 */
1558 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1559 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1560 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1561 goto out;
1562 }
1563 migratetype = MIGRATE_MOVABLE;
1564 }
1565
99dcc3e5 1566 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1567 if (!cold)
5f8dcc21 1568 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1569 else
1570 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1571 pcp->count++;
48db57f8 1572 if (pcp->count >= pcp->high) {
998d39cb
CS
1573 unsigned long batch = ACCESS_ONCE(pcp->batch);
1574 free_pcppages_bulk(zone, batch, pcp);
1575 pcp->count -= batch;
48db57f8 1576 }
5f8dcc21
MG
1577
1578out:
1da177e4 1579 local_irq_restore(flags);
1da177e4
LT
1580}
1581
cc59850e
KK
1582/*
1583 * Free a list of 0-order pages
1584 */
b745bc85 1585void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1586{
1587 struct page *page, *next;
1588
1589 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1590 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1591 free_hot_cold_page(page, cold);
1592 }
1593}
1594
8dfcc9ba
NP
1595/*
1596 * split_page takes a non-compound higher-order page, and splits it into
1597 * n (1<<order) sub-pages: page[0..n]
1598 * Each sub-page must be freed individually.
1599 *
1600 * Note: this is probably too low level an operation for use in drivers.
1601 * Please consult with lkml before using this in your driver.
1602 */
1603void split_page(struct page *page, unsigned int order)
1604{
1605 int i;
1606
309381fe
SL
1607 VM_BUG_ON_PAGE(PageCompound(page), page);
1608 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1609
1610#ifdef CONFIG_KMEMCHECK
1611 /*
1612 * Split shadow pages too, because free(page[0]) would
1613 * otherwise free the whole shadow.
1614 */
1615 if (kmemcheck_page_is_tracked(page))
1616 split_page(virt_to_page(page[0].shadow), order);
1617#endif
1618
48c96a36
JK
1619 set_page_owner(page, 0, 0);
1620 for (i = 1; i < (1 << order); i++) {
7835e98b 1621 set_page_refcounted(page + i);
48c96a36
JK
1622 set_page_owner(page + i, 0, 0);
1623 }
8dfcc9ba 1624}
5853ff23 1625EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1626
3c605096 1627int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1628{
748446bb
MG
1629 unsigned long watermark;
1630 struct zone *zone;
2139cbe6 1631 int mt;
748446bb
MG
1632
1633 BUG_ON(!PageBuddy(page));
1634
1635 zone = page_zone(page);
2e30abd1 1636 mt = get_pageblock_migratetype(page);
748446bb 1637
194159fb 1638 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1639 /* Obey watermarks as if the page was being allocated */
1640 watermark = low_wmark_pages(zone) + (1 << order);
1641 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1642 return 0;
1643
8fb74b9f 1644 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1645 }
748446bb
MG
1646
1647 /* Remove page from free list */
1648 list_del(&page->lru);
1649 zone->free_area[order].nr_free--;
1650 rmv_page_order(page);
2139cbe6 1651
8fb74b9f 1652 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1653 if (order >= pageblock_order - 1) {
1654 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1655 for (; page < endpage; page += pageblock_nr_pages) {
1656 int mt = get_pageblock_migratetype(page);
194159fb 1657 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1658 set_pageblock_migratetype(page,
1659 MIGRATE_MOVABLE);
1660 }
748446bb
MG
1661 }
1662
48c96a36 1663 set_page_owner(page, order, 0);
8fb74b9f 1664 return 1UL << order;
1fb3f8ca
MG
1665}
1666
1667/*
1668 * Similar to split_page except the page is already free. As this is only
1669 * being used for migration, the migratetype of the block also changes.
1670 * As this is called with interrupts disabled, the caller is responsible
1671 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1672 * are enabled.
1673 *
1674 * Note: this is probably too low level an operation for use in drivers.
1675 * Please consult with lkml before using this in your driver.
1676 */
1677int split_free_page(struct page *page)
1678{
1679 unsigned int order;
1680 int nr_pages;
1681
1fb3f8ca
MG
1682 order = page_order(page);
1683
8fb74b9f 1684 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1685 if (!nr_pages)
1686 return 0;
1687
1688 /* Split into individual pages */
1689 set_page_refcounted(page);
1690 split_page(page, order);
1691 return nr_pages;
748446bb
MG
1692}
1693
1da177e4 1694/*
75379191 1695 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 1696 */
0a15c3e9
MG
1697static inline
1698struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1699 struct zone *zone, unsigned int order,
1700 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1701{
1702 unsigned long flags;
689bcebf 1703 struct page *page;
b745bc85 1704 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1705
48db57f8 1706 if (likely(order == 0)) {
1da177e4 1707 struct per_cpu_pages *pcp;
5f8dcc21 1708 struct list_head *list;
1da177e4 1709
1da177e4 1710 local_irq_save(flags);
99dcc3e5
CL
1711 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1712 list = &pcp->lists[migratetype];
5f8dcc21 1713 if (list_empty(list)) {
535131e6 1714 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1715 pcp->batch, list,
e084b2d9 1716 migratetype, cold);
5f8dcc21 1717 if (unlikely(list_empty(list)))
6fb332fa 1718 goto failed;
535131e6 1719 }
b92a6edd 1720
5f8dcc21
MG
1721 if (cold)
1722 page = list_entry(list->prev, struct page, lru);
1723 else
1724 page = list_entry(list->next, struct page, lru);
1725
b92a6edd
MG
1726 list_del(&page->lru);
1727 pcp->count--;
7fb1d9fc 1728 } else {
dab48dab
AM
1729 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1730 /*
1731 * __GFP_NOFAIL is not to be used in new code.
1732 *
1733 * All __GFP_NOFAIL callers should be fixed so that they
1734 * properly detect and handle allocation failures.
1735 *
1736 * We most definitely don't want callers attempting to
4923abf9 1737 * allocate greater than order-1 page units with
dab48dab
AM
1738 * __GFP_NOFAIL.
1739 */
4923abf9 1740 WARN_ON_ONCE(order > 1);
dab48dab 1741 }
1da177e4 1742 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1743 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1744 spin_unlock(&zone->lock);
1745 if (!page)
1746 goto failed;
d1ce749a 1747 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1748 get_freepage_migratetype(page));
1da177e4
LT
1749 }
1750
3a025760 1751 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 1752 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
1753 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1754 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 1755
f8891e5e 1756 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1757 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1758 local_irq_restore(flags);
1da177e4 1759
309381fe 1760 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1761 return page;
a74609fa
NP
1762
1763failed:
1764 local_irq_restore(flags);
a74609fa 1765 return NULL;
1da177e4
LT
1766}
1767
933e312e
AM
1768#ifdef CONFIG_FAIL_PAGE_ALLOC
1769
b2588c4b 1770static struct {
933e312e
AM
1771 struct fault_attr attr;
1772
1773 u32 ignore_gfp_highmem;
1774 u32 ignore_gfp_wait;
54114994 1775 u32 min_order;
933e312e
AM
1776} fail_page_alloc = {
1777 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1778 .ignore_gfp_wait = 1,
1779 .ignore_gfp_highmem = 1,
54114994 1780 .min_order = 1,
933e312e
AM
1781};
1782
1783static int __init setup_fail_page_alloc(char *str)
1784{
1785 return setup_fault_attr(&fail_page_alloc.attr, str);
1786}
1787__setup("fail_page_alloc=", setup_fail_page_alloc);
1788
deaf386e 1789static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1790{
54114994 1791 if (order < fail_page_alloc.min_order)
deaf386e 1792 return false;
933e312e 1793 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1794 return false;
933e312e 1795 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1796 return false;
933e312e 1797 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1798 return false;
933e312e
AM
1799
1800 return should_fail(&fail_page_alloc.attr, 1 << order);
1801}
1802
1803#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1804
1805static int __init fail_page_alloc_debugfs(void)
1806{
f4ae40a6 1807 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1808 struct dentry *dir;
933e312e 1809
dd48c085
AM
1810 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1811 &fail_page_alloc.attr);
1812 if (IS_ERR(dir))
1813 return PTR_ERR(dir);
933e312e 1814
b2588c4b
AM
1815 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1816 &fail_page_alloc.ignore_gfp_wait))
1817 goto fail;
1818 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1819 &fail_page_alloc.ignore_gfp_highmem))
1820 goto fail;
1821 if (!debugfs_create_u32("min-order", mode, dir,
1822 &fail_page_alloc.min_order))
1823 goto fail;
1824
1825 return 0;
1826fail:
dd48c085 1827 debugfs_remove_recursive(dir);
933e312e 1828
b2588c4b 1829 return -ENOMEM;
933e312e
AM
1830}
1831
1832late_initcall(fail_page_alloc_debugfs);
1833
1834#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1835
1836#else /* CONFIG_FAIL_PAGE_ALLOC */
1837
deaf386e 1838static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1839{
deaf386e 1840 return false;
933e312e
AM
1841}
1842
1843#endif /* CONFIG_FAIL_PAGE_ALLOC */
1844
1da177e4 1845/*
88f5acf8 1846 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1847 * of the allocation.
1848 */
7aeb09f9
MG
1849static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1850 unsigned long mark, int classzone_idx, int alloc_flags,
1851 long free_pages)
1da177e4 1852{
26086de3 1853 /* free_pages may go negative - that's OK */
d23ad423 1854 long min = mark;
1da177e4 1855 int o;
026b0814 1856 long free_cma = 0;
1da177e4 1857
df0a6daa 1858 free_pages -= (1 << order) - 1;
7fb1d9fc 1859 if (alloc_flags & ALLOC_HIGH)
1da177e4 1860 min -= min / 2;
7fb1d9fc 1861 if (alloc_flags & ALLOC_HARDER)
1da177e4 1862 min -= min / 4;
d95ea5d1
BZ
1863#ifdef CONFIG_CMA
1864 /* If allocation can't use CMA areas don't use free CMA pages */
1865 if (!(alloc_flags & ALLOC_CMA))
026b0814 1866 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1867#endif
026b0814 1868
3484b2de 1869 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1870 return false;
1da177e4
LT
1871 for (o = 0; o < order; o++) {
1872 /* At the next order, this order's pages become unavailable */
1873 free_pages -= z->free_area[o].nr_free << o;
1874
1875 /* Require fewer higher order pages to be free */
1876 min >>= 1;
1877
1878 if (free_pages <= min)
88f5acf8 1879 return false;
1da177e4 1880 }
88f5acf8
MG
1881 return true;
1882}
1883
7aeb09f9 1884bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1885 int classzone_idx, int alloc_flags)
1886{
1887 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1888 zone_page_state(z, NR_FREE_PAGES));
1889}
1890
7aeb09f9
MG
1891bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1892 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1893{
1894 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1895
1896 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1897 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1898
1899 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1900 free_pages);
1da177e4
LT
1901}
1902
9276b1bc
PJ
1903#ifdef CONFIG_NUMA
1904/*
1905 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1906 * skip over zones that are not allowed by the cpuset, or that have
1907 * been recently (in last second) found to be nearly full. See further
1908 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1909 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1910 *
a1aeb65a 1911 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1912 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1913 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1914 *
1915 * If the zonelist cache is not available for this zonelist, does
1916 * nothing and returns NULL.
1917 *
1918 * If the fullzones BITMAP in the zonelist cache is stale (more than
1919 * a second since last zap'd) then we zap it out (clear its bits.)
1920 *
1921 * We hold off even calling zlc_setup, until after we've checked the
1922 * first zone in the zonelist, on the theory that most allocations will
1923 * be satisfied from that first zone, so best to examine that zone as
1924 * quickly as we can.
1925 */
1926static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1927{
1928 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1929 nodemask_t *allowednodes; /* zonelist_cache approximation */
1930
1931 zlc = zonelist->zlcache_ptr;
1932 if (!zlc)
1933 return NULL;
1934
f05111f5 1935 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1936 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1937 zlc->last_full_zap = jiffies;
1938 }
1939
1940 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1941 &cpuset_current_mems_allowed :
4b0ef1fe 1942 &node_states[N_MEMORY];
9276b1bc
PJ
1943 return allowednodes;
1944}
1945
1946/*
1947 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1948 * if it is worth looking at further for free memory:
1949 * 1) Check that the zone isn't thought to be full (doesn't have its
1950 * bit set in the zonelist_cache fullzones BITMAP).
1951 * 2) Check that the zones node (obtained from the zonelist_cache
1952 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1953 * Return true (non-zero) if zone is worth looking at further, or
1954 * else return false (zero) if it is not.
1955 *
1956 * This check -ignores- the distinction between various watermarks,
1957 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1958 * found to be full for any variation of these watermarks, it will
1959 * be considered full for up to one second by all requests, unless
1960 * we are so low on memory on all allowed nodes that we are forced
1961 * into the second scan of the zonelist.
1962 *
1963 * In the second scan we ignore this zonelist cache and exactly
1964 * apply the watermarks to all zones, even it is slower to do so.
1965 * We are low on memory in the second scan, and should leave no stone
1966 * unturned looking for a free page.
1967 */
dd1a239f 1968static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1969 nodemask_t *allowednodes)
1970{
1971 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1972 int i; /* index of *z in zonelist zones */
1973 int n; /* node that zone *z is on */
1974
1975 zlc = zonelist->zlcache_ptr;
1976 if (!zlc)
1977 return 1;
1978
dd1a239f 1979 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1980 n = zlc->z_to_n[i];
1981
1982 /* This zone is worth trying if it is allowed but not full */
1983 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1984}
1985
1986/*
1987 * Given 'z' scanning a zonelist, set the corresponding bit in
1988 * zlc->fullzones, so that subsequent attempts to allocate a page
1989 * from that zone don't waste time re-examining it.
1990 */
dd1a239f 1991static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1992{
1993 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1994 int i; /* index of *z in zonelist zones */
1995
1996 zlc = zonelist->zlcache_ptr;
1997 if (!zlc)
1998 return;
1999
dd1a239f 2000 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2001
2002 set_bit(i, zlc->fullzones);
2003}
2004
76d3fbf8
MG
2005/*
2006 * clear all zones full, called after direct reclaim makes progress so that
2007 * a zone that was recently full is not skipped over for up to a second
2008 */
2009static void zlc_clear_zones_full(struct zonelist *zonelist)
2010{
2011 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2012
2013 zlc = zonelist->zlcache_ptr;
2014 if (!zlc)
2015 return;
2016
2017 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2018}
2019
81c0a2bb
JW
2020static bool zone_local(struct zone *local_zone, struct zone *zone)
2021{
fff4068c 2022 return local_zone->node == zone->node;
81c0a2bb
JW
2023}
2024
957f822a
DR
2025static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2026{
5f7a75ac
MG
2027 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2028 RECLAIM_DISTANCE;
957f822a
DR
2029}
2030
9276b1bc
PJ
2031#else /* CONFIG_NUMA */
2032
2033static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2034{
2035 return NULL;
2036}
2037
dd1a239f 2038static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2039 nodemask_t *allowednodes)
2040{
2041 return 1;
2042}
2043
dd1a239f 2044static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2045{
2046}
76d3fbf8
MG
2047
2048static void zlc_clear_zones_full(struct zonelist *zonelist)
2049{
2050}
957f822a 2051
81c0a2bb
JW
2052static bool zone_local(struct zone *local_zone, struct zone *zone)
2053{
2054 return true;
2055}
2056
957f822a
DR
2057static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2058{
2059 return true;
2060}
2061
9276b1bc
PJ
2062#endif /* CONFIG_NUMA */
2063
4ffeaf35
MG
2064static void reset_alloc_batches(struct zone *preferred_zone)
2065{
2066 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2067
2068 do {
2069 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2070 high_wmark_pages(zone) - low_wmark_pages(zone) -
2071 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2072 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2073 } while (zone++ != preferred_zone);
2074}
2075
7fb1d9fc 2076/*
0798e519 2077 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2078 * a page.
2079 */
2080static struct page *
a9263751
VB
2081get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2082 const struct alloc_context *ac)
753ee728 2083{
a9263751 2084 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2085 struct zoneref *z;
7fb1d9fc 2086 struct page *page = NULL;
5117f45d 2087 struct zone *zone;
9276b1bc
PJ
2088 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2089 int zlc_active = 0; /* set if using zonelist_cache */
2090 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2091 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2092 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2093 int nr_fair_skipped = 0;
2094 bool zonelist_rescan;
54a6eb5c 2095
9276b1bc 2096zonelist_scan:
4ffeaf35
MG
2097 zonelist_rescan = false;
2098
7fb1d9fc 2099 /*
9276b1bc 2100 * Scan zonelist, looking for a zone with enough free.
344736f2 2101 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2102 */
a9263751
VB
2103 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2104 ac->nodemask) {
e085dbc5
JW
2105 unsigned long mark;
2106
e5adfffc 2107 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2108 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2109 continue;
664eedde
MG
2110 if (cpusets_enabled() &&
2111 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2112 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2113 continue;
81c0a2bb
JW
2114 /*
2115 * Distribute pages in proportion to the individual
2116 * zone size to ensure fair page aging. The zone a
2117 * page was allocated in should have no effect on the
2118 * time the page has in memory before being reclaimed.
81c0a2bb 2119 */
3a025760 2120 if (alloc_flags & ALLOC_FAIR) {
a9263751 2121 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2122 break;
57054651 2123 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2124 nr_fair_skipped++;
3a025760 2125 continue;
4ffeaf35 2126 }
81c0a2bb 2127 }
a756cf59
JW
2128 /*
2129 * When allocating a page cache page for writing, we
2130 * want to get it from a zone that is within its dirty
2131 * limit, such that no single zone holds more than its
2132 * proportional share of globally allowed dirty pages.
2133 * The dirty limits take into account the zone's
2134 * lowmem reserves and high watermark so that kswapd
2135 * should be able to balance it without having to
2136 * write pages from its LRU list.
2137 *
2138 * This may look like it could increase pressure on
2139 * lower zones by failing allocations in higher zones
2140 * before they are full. But the pages that do spill
2141 * over are limited as the lower zones are protected
2142 * by this very same mechanism. It should not become
2143 * a practical burden to them.
2144 *
2145 * XXX: For now, allow allocations to potentially
2146 * exceed the per-zone dirty limit in the slowpath
2147 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2148 * which is important when on a NUMA setup the allowed
2149 * zones are together not big enough to reach the
2150 * global limit. The proper fix for these situations
2151 * will require awareness of zones in the
2152 * dirty-throttling and the flusher threads.
2153 */
a6e21b14 2154 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2155 continue;
7fb1d9fc 2156
e085dbc5
JW
2157 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2158 if (!zone_watermark_ok(zone, order, mark,
a9263751 2159 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2160 int ret;
2161
5dab2911
MG
2162 /* Checked here to keep the fast path fast */
2163 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2164 if (alloc_flags & ALLOC_NO_WATERMARKS)
2165 goto try_this_zone;
2166
e5adfffc
KS
2167 if (IS_ENABLED(CONFIG_NUMA) &&
2168 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2169 /*
2170 * we do zlc_setup if there are multiple nodes
2171 * and before considering the first zone allowed
2172 * by the cpuset.
2173 */
2174 allowednodes = zlc_setup(zonelist, alloc_flags);
2175 zlc_active = 1;
2176 did_zlc_setup = 1;
2177 }
2178
957f822a 2179 if (zone_reclaim_mode == 0 ||
a9263751 2180 !zone_allows_reclaim(ac->preferred_zone, zone))
fa5e084e
MG
2181 goto this_zone_full;
2182
cd38b115
MG
2183 /*
2184 * As we may have just activated ZLC, check if the first
2185 * eligible zone has failed zone_reclaim recently.
2186 */
e5adfffc 2187 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2188 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2189 continue;
2190
fa5e084e
MG
2191 ret = zone_reclaim(zone, gfp_mask, order);
2192 switch (ret) {
2193 case ZONE_RECLAIM_NOSCAN:
2194 /* did not scan */
cd38b115 2195 continue;
fa5e084e
MG
2196 case ZONE_RECLAIM_FULL:
2197 /* scanned but unreclaimable */
cd38b115 2198 continue;
fa5e084e
MG
2199 default:
2200 /* did we reclaim enough */
fed2719e 2201 if (zone_watermark_ok(zone, order, mark,
a9263751 2202 ac->classzone_idx, alloc_flags))
fed2719e
MG
2203 goto try_this_zone;
2204
2205 /*
2206 * Failed to reclaim enough to meet watermark.
2207 * Only mark the zone full if checking the min
2208 * watermark or if we failed to reclaim just
2209 * 1<<order pages or else the page allocator
2210 * fastpath will prematurely mark zones full
2211 * when the watermark is between the low and
2212 * min watermarks.
2213 */
2214 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2215 ret == ZONE_RECLAIM_SOME)
9276b1bc 2216 goto this_zone_full;
fed2719e
MG
2217
2218 continue;
0798e519 2219 }
7fb1d9fc
RS
2220 }
2221
fa5e084e 2222try_this_zone:
a9263751
VB
2223 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2224 gfp_mask, ac->migratetype);
75379191
VB
2225 if (page) {
2226 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2227 goto try_this_zone;
2228 return page;
2229 }
9276b1bc 2230this_zone_full:
65bb3719 2231 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2232 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2233 }
9276b1bc 2234
4ffeaf35
MG
2235 /*
2236 * The first pass makes sure allocations are spread fairly within the
2237 * local node. However, the local node might have free pages left
2238 * after the fairness batches are exhausted, and remote zones haven't
2239 * even been considered yet. Try once more without fairness, and
2240 * include remote zones now, before entering the slowpath and waking
2241 * kswapd: prefer spilling to a remote zone over swapping locally.
2242 */
2243 if (alloc_flags & ALLOC_FAIR) {
2244 alloc_flags &= ~ALLOC_FAIR;
2245 if (nr_fair_skipped) {
2246 zonelist_rescan = true;
a9263751 2247 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2248 }
2249 if (nr_online_nodes > 1)
2250 zonelist_rescan = true;
2251 }
2252
2253 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2254 /* Disable zlc cache for second zonelist scan */
2255 zlc_active = 0;
2256 zonelist_rescan = true;
2257 }
2258
2259 if (zonelist_rescan)
2260 goto zonelist_scan;
2261
2262 return NULL;
753ee728
MH
2263}
2264
29423e77
DR
2265/*
2266 * Large machines with many possible nodes should not always dump per-node
2267 * meminfo in irq context.
2268 */
2269static inline bool should_suppress_show_mem(void)
2270{
2271 bool ret = false;
2272
2273#if NODES_SHIFT > 8
2274 ret = in_interrupt();
2275#endif
2276 return ret;
2277}
2278
a238ab5b
DH
2279static DEFINE_RATELIMIT_STATE(nopage_rs,
2280 DEFAULT_RATELIMIT_INTERVAL,
2281 DEFAULT_RATELIMIT_BURST);
2282
2283void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2284{
a238ab5b
DH
2285 unsigned int filter = SHOW_MEM_FILTER_NODES;
2286
c0a32fc5
SG
2287 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2288 debug_guardpage_minorder() > 0)
a238ab5b
DH
2289 return;
2290
2291 /*
2292 * This documents exceptions given to allocations in certain
2293 * contexts that are allowed to allocate outside current's set
2294 * of allowed nodes.
2295 */
2296 if (!(gfp_mask & __GFP_NOMEMALLOC))
2297 if (test_thread_flag(TIF_MEMDIE) ||
2298 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2299 filter &= ~SHOW_MEM_FILTER_NODES;
2300 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2301 filter &= ~SHOW_MEM_FILTER_NODES;
2302
2303 if (fmt) {
3ee9a4f0
JP
2304 struct va_format vaf;
2305 va_list args;
2306
a238ab5b 2307 va_start(args, fmt);
3ee9a4f0
JP
2308
2309 vaf.fmt = fmt;
2310 vaf.va = &args;
2311
2312 pr_warn("%pV", &vaf);
2313
a238ab5b
DH
2314 va_end(args);
2315 }
2316
3ee9a4f0
JP
2317 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2318 current->comm, order, gfp_mask);
a238ab5b
DH
2319
2320 dump_stack();
2321 if (!should_suppress_show_mem())
2322 show_mem(filter);
2323}
2324
11e33f6a
MG
2325static inline int
2326should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2327 unsigned long did_some_progress,
11e33f6a 2328 unsigned long pages_reclaimed)
1da177e4 2329{
11e33f6a
MG
2330 /* Do not loop if specifically requested */
2331 if (gfp_mask & __GFP_NORETRY)
2332 return 0;
1da177e4 2333
f90ac398
MG
2334 /* Always retry if specifically requested */
2335 if (gfp_mask & __GFP_NOFAIL)
2336 return 1;
2337
2338 /*
2339 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2340 * making forward progress without invoking OOM. Suspend also disables
2341 * storage devices so kswapd will not help. Bail if we are suspending.
2342 */
2343 if (!did_some_progress && pm_suspended_storage())
2344 return 0;
2345
11e33f6a
MG
2346 /*
2347 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2348 * means __GFP_NOFAIL, but that may not be true in other
2349 * implementations.
2350 */
2351 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2352 return 1;
2353
2354 /*
2355 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2356 * specified, then we retry until we no longer reclaim any pages
2357 * (above), or we've reclaimed an order of pages at least as
2358 * large as the allocation's order. In both cases, if the
2359 * allocation still fails, we stop retrying.
2360 */
2361 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2362 return 1;
cf40bd16 2363
11e33f6a
MG
2364 return 0;
2365}
933e312e 2366
11e33f6a
MG
2367static inline struct page *
2368__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2369 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a
MG
2370{
2371 struct page *page;
2372
9879de73
JW
2373 *did_some_progress = 0;
2374
9879de73
JW
2375 /*
2376 * Acquire the per-zone oom lock for each zone. If that
2377 * fails, somebody else is making progress for us.
2378 */
a9263751 2379 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
9879de73 2380 *did_some_progress = 1;
11e33f6a 2381 schedule_timeout_uninterruptible(1);
1da177e4
LT
2382 return NULL;
2383 }
6b1de916 2384
11e33f6a
MG
2385 /*
2386 * Go through the zonelist yet one more time, keep very high watermark
2387 * here, this is only to catch a parallel oom killing, we must fail if
2388 * we're still under heavy pressure.
2389 */
a9263751
VB
2390 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2391 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2392 if (page)
11e33f6a
MG
2393 goto out;
2394
4365a567 2395 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2396 /* Coredumps can quickly deplete all memory reserves */
2397 if (current->flags & PF_DUMPCORE)
2398 goto out;
4365a567
KH
2399 /* The OOM killer will not help higher order allocs */
2400 if (order > PAGE_ALLOC_COSTLY_ORDER)
2401 goto out;
03668b3c 2402 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2403 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2404 goto out;
9879de73 2405 /* The OOM killer does not compensate for light reclaim */
cc873177
JW
2406 if (!(gfp_mask & __GFP_FS)) {
2407 /*
2408 * XXX: Page reclaim didn't yield anything,
2409 * and the OOM killer can't be invoked, but
2410 * keep looping as per should_alloc_retry().
2411 */
2412 *did_some_progress = 1;
9879de73 2413 goto out;
cc873177 2414 }
4365a567
KH
2415 /*
2416 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2417 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2418 * The caller should handle page allocation failure by itself if
2419 * it specifies __GFP_THISNODE.
2420 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2421 */
2422 if (gfp_mask & __GFP_THISNODE)
2423 goto out;
2424 }
11e33f6a 2425 /* Exhausted what can be done so it's blamo time */
e009d5dc
MH
2426 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2427 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
c32b3cbe 2428 *did_some_progress = 1;
11e33f6a 2429out:
a9263751 2430 oom_zonelist_unlock(ac->zonelist, gfp_mask);
11e33f6a
MG
2431 return page;
2432}
2433
56de7263
MG
2434#ifdef CONFIG_COMPACTION
2435/* Try memory compaction for high-order allocations before reclaim */
2436static struct page *
2437__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2438 int alloc_flags, const struct alloc_context *ac,
2439 enum migrate_mode mode, int *contended_compaction,
2440 bool *deferred_compaction)
56de7263 2441{
53853e2d 2442 unsigned long compact_result;
98dd3b48 2443 struct page *page;
53853e2d
VB
2444
2445 if (!order)
66199712 2446 return NULL;
66199712 2447
c06b1fca 2448 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2449 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2450 mode, contended_compaction);
c06b1fca 2451 current->flags &= ~PF_MEMALLOC;
56de7263 2452
98dd3b48
VB
2453 switch (compact_result) {
2454 case COMPACT_DEFERRED:
53853e2d 2455 *deferred_compaction = true;
98dd3b48
VB
2456 /* fall-through */
2457 case COMPACT_SKIPPED:
2458 return NULL;
2459 default:
2460 break;
2461 }
53853e2d 2462
98dd3b48
VB
2463 /*
2464 * At least in one zone compaction wasn't deferred or skipped, so let's
2465 * count a compaction stall
2466 */
2467 count_vm_event(COMPACTSTALL);
8fb74b9f 2468
a9263751
VB
2469 page = get_page_from_freelist(gfp_mask, order,
2470 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2471
98dd3b48
VB
2472 if (page) {
2473 struct zone *zone = page_zone(page);
53853e2d 2474
98dd3b48
VB
2475 zone->compact_blockskip_flush = false;
2476 compaction_defer_reset(zone, order, true);
2477 count_vm_event(COMPACTSUCCESS);
2478 return page;
2479 }
56de7263 2480
98dd3b48
VB
2481 /*
2482 * It's bad if compaction run occurs and fails. The most likely reason
2483 * is that pages exist, but not enough to satisfy watermarks.
2484 */
2485 count_vm_event(COMPACTFAIL);
66199712 2486
98dd3b48 2487 cond_resched();
56de7263
MG
2488
2489 return NULL;
2490}
2491#else
2492static inline struct page *
2493__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2494 int alloc_flags, const struct alloc_context *ac,
2495 enum migrate_mode mode, int *contended_compaction,
2496 bool *deferred_compaction)
56de7263
MG
2497{
2498 return NULL;
2499}
2500#endif /* CONFIG_COMPACTION */
2501
bba90710
MS
2502/* Perform direct synchronous page reclaim */
2503static int
a9263751
VB
2504__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2505 const struct alloc_context *ac)
11e33f6a 2506{
11e33f6a 2507 struct reclaim_state reclaim_state;
bba90710 2508 int progress;
11e33f6a
MG
2509
2510 cond_resched();
2511
2512 /* We now go into synchronous reclaim */
2513 cpuset_memory_pressure_bump();
c06b1fca 2514 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2515 lockdep_set_current_reclaim_state(gfp_mask);
2516 reclaim_state.reclaimed_slab = 0;
c06b1fca 2517 current->reclaim_state = &reclaim_state;
11e33f6a 2518
a9263751
VB
2519 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2520 ac->nodemask);
11e33f6a 2521
c06b1fca 2522 current->reclaim_state = NULL;
11e33f6a 2523 lockdep_clear_current_reclaim_state();
c06b1fca 2524 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2525
2526 cond_resched();
2527
bba90710
MS
2528 return progress;
2529}
2530
2531/* The really slow allocator path where we enter direct reclaim */
2532static inline struct page *
2533__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2534 int alloc_flags, const struct alloc_context *ac,
2535 unsigned long *did_some_progress)
bba90710
MS
2536{
2537 struct page *page = NULL;
2538 bool drained = false;
2539
a9263751 2540 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2541 if (unlikely(!(*did_some_progress)))
2542 return NULL;
11e33f6a 2543
76d3fbf8 2544 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2545 if (IS_ENABLED(CONFIG_NUMA))
a9263751 2546 zlc_clear_zones_full(ac->zonelist);
76d3fbf8 2547
9ee493ce 2548retry:
a9263751
VB
2549 page = get_page_from_freelist(gfp_mask, order,
2550 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2551
2552 /*
2553 * If an allocation failed after direct reclaim, it could be because
2554 * pages are pinned on the per-cpu lists. Drain them and try again
2555 */
2556 if (!page && !drained) {
93481ff0 2557 drain_all_pages(NULL);
9ee493ce
MG
2558 drained = true;
2559 goto retry;
2560 }
2561
11e33f6a
MG
2562 return page;
2563}
2564
1da177e4 2565/*
11e33f6a
MG
2566 * This is called in the allocator slow-path if the allocation request is of
2567 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2568 */
11e33f6a
MG
2569static inline struct page *
2570__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2571 const struct alloc_context *ac)
11e33f6a
MG
2572{
2573 struct page *page;
2574
2575 do {
a9263751
VB
2576 page = get_page_from_freelist(gfp_mask, order,
2577 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2578
2579 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2580 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2581 HZ/50);
11e33f6a
MG
2582 } while (!page && (gfp_mask & __GFP_NOFAIL));
2583
2584 return page;
2585}
2586
a9263751 2587static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2588{
2589 struct zoneref *z;
2590 struct zone *zone;
2591
a9263751
VB
2592 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2593 ac->high_zoneidx, ac->nodemask)
2594 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2595}
2596
341ce06f
PZ
2597static inline int
2598gfp_to_alloc_flags(gfp_t gfp_mask)
2599{
341ce06f 2600 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2601 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2602
a56f57ff 2603 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2604 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2605
341ce06f
PZ
2606 /*
2607 * The caller may dip into page reserves a bit more if the caller
2608 * cannot run direct reclaim, or if the caller has realtime scheduling
2609 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2610 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2611 */
e6223a3b 2612 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2613
b104a35d 2614 if (atomic) {
5c3240d9 2615 /*
b104a35d
DR
2616 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2617 * if it can't schedule.
5c3240d9 2618 */
b104a35d 2619 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2620 alloc_flags |= ALLOC_HARDER;
523b9458 2621 /*
b104a35d 2622 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2623 * comment for __cpuset_node_allowed().
523b9458 2624 */
341ce06f 2625 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2626 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2627 alloc_flags |= ALLOC_HARDER;
2628
b37f1dd0
MG
2629 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2630 if (gfp_mask & __GFP_MEMALLOC)
2631 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2632 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2633 alloc_flags |= ALLOC_NO_WATERMARKS;
2634 else if (!in_interrupt() &&
2635 ((current->flags & PF_MEMALLOC) ||
2636 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2637 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2638 }
d95ea5d1 2639#ifdef CONFIG_CMA
43e7a34d 2640 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2641 alloc_flags |= ALLOC_CMA;
2642#endif
341ce06f
PZ
2643 return alloc_flags;
2644}
2645
072bb0aa
MG
2646bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2647{
b37f1dd0 2648 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2649}
2650
11e33f6a
MG
2651static inline struct page *
2652__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2653 struct alloc_context *ac)
11e33f6a
MG
2654{
2655 const gfp_t wait = gfp_mask & __GFP_WAIT;
2656 struct page *page = NULL;
2657 int alloc_flags;
2658 unsigned long pages_reclaimed = 0;
2659 unsigned long did_some_progress;
e0b9daeb 2660 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2661 bool deferred_compaction = false;
1f9efdef 2662 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2663
72807a74
MG
2664 /*
2665 * In the slowpath, we sanity check order to avoid ever trying to
2666 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2667 * be using allocators in order of preference for an area that is
2668 * too large.
2669 */
1fc28b70
MG
2670 if (order >= MAX_ORDER) {
2671 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2672 return NULL;
1fc28b70 2673 }
1da177e4 2674
952f3b51
CL
2675 /*
2676 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2677 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2678 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2679 * using a larger set of nodes after it has established that the
2680 * allowed per node queues are empty and that nodes are
2681 * over allocated.
2682 */
3a025760
JW
2683 if (IS_ENABLED(CONFIG_NUMA) &&
2684 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2685 goto nopage;
2686
9879de73 2687retry:
3a025760 2688 if (!(gfp_mask & __GFP_NO_KSWAPD))
a9263751 2689 wake_all_kswapds(order, ac);
1da177e4 2690
9bf2229f 2691 /*
7fb1d9fc
RS
2692 * OK, we're below the kswapd watermark and have kicked background
2693 * reclaim. Now things get more complex, so set up alloc_flags according
2694 * to how we want to proceed.
9bf2229f 2695 */
341ce06f 2696 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2697
f33261d7
DR
2698 /*
2699 * Find the true preferred zone if the allocation is unconstrained by
2700 * cpusets.
2701 */
a9263751 2702 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 2703 struct zoneref *preferred_zoneref;
a9263751
VB
2704 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2705 ac->high_zoneidx, NULL, &ac->preferred_zone);
2706 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 2707 }
f33261d7 2708
341ce06f 2709 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
2710 page = get_page_from_freelist(gfp_mask, order,
2711 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
2712 if (page)
2713 goto got_pg;
1da177e4 2714
11e33f6a 2715 /* Allocate without watermarks if the context allows */
341ce06f 2716 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2717 /*
2718 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2719 * the allocation is high priority and these type of
2720 * allocations are system rather than user orientated
2721 */
a9263751
VB
2722 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2723
2724 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 2725
cfd19c5a 2726 if (page) {
341ce06f 2727 goto got_pg;
cfd19c5a 2728 }
1da177e4
LT
2729 }
2730
2731 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2732 if (!wait) {
2733 /*
2734 * All existing users of the deprecated __GFP_NOFAIL are
2735 * blockable, so warn of any new users that actually allow this
2736 * type of allocation to fail.
2737 */
2738 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2739 goto nopage;
aed0a0e3 2740 }
1da177e4 2741
341ce06f 2742 /* Avoid recursion of direct reclaim */
c06b1fca 2743 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2744 goto nopage;
2745
6583bb64
DR
2746 /* Avoid allocations with no watermarks from looping endlessly */
2747 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2748 goto nopage;
2749
77f1fe6b
MG
2750 /*
2751 * Try direct compaction. The first pass is asynchronous. Subsequent
2752 * attempts after direct reclaim are synchronous
2753 */
a9263751
VB
2754 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2755 migration_mode,
2756 &contended_compaction,
53853e2d 2757 &deferred_compaction);
56de7263
MG
2758 if (page)
2759 goto got_pg;
75f30861 2760
1f9efdef
VB
2761 /* Checks for THP-specific high-order allocations */
2762 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2763 /*
2764 * If compaction is deferred for high-order allocations, it is
2765 * because sync compaction recently failed. If this is the case
2766 * and the caller requested a THP allocation, we do not want
2767 * to heavily disrupt the system, so we fail the allocation
2768 * instead of entering direct reclaim.
2769 */
2770 if (deferred_compaction)
2771 goto nopage;
2772
2773 /*
2774 * In all zones where compaction was attempted (and not
2775 * deferred or skipped), lock contention has been detected.
2776 * For THP allocation we do not want to disrupt the others
2777 * so we fallback to base pages instead.
2778 */
2779 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2780 goto nopage;
2781
2782 /*
2783 * If compaction was aborted due to need_resched(), we do not
2784 * want to further increase allocation latency, unless it is
2785 * khugepaged trying to collapse.
2786 */
2787 if (contended_compaction == COMPACT_CONTENDED_SCHED
2788 && !(current->flags & PF_KTHREAD))
2789 goto nopage;
2790 }
66199712 2791
8fe78048
DR
2792 /*
2793 * It can become very expensive to allocate transparent hugepages at
2794 * fault, so use asynchronous memory compaction for THP unless it is
2795 * khugepaged trying to collapse.
2796 */
2797 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2798 (current->flags & PF_KTHREAD))
2799 migration_mode = MIGRATE_SYNC_LIGHT;
2800
11e33f6a 2801 /* Try direct reclaim and then allocating */
a9263751
VB
2802 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2803 &did_some_progress);
11e33f6a
MG
2804 if (page)
2805 goto got_pg;
1da177e4 2806
11e33f6a 2807 /* Check if we should retry the allocation */
a41f24ea 2808 pages_reclaimed += did_some_progress;
f90ac398
MG
2809 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2810 pages_reclaimed)) {
9879de73
JW
2811 /*
2812 * If we fail to make progress by freeing individual
2813 * pages, but the allocation wants us to keep going,
2814 * start OOM killing tasks.
2815 */
2816 if (!did_some_progress) {
a9263751
VB
2817 page = __alloc_pages_may_oom(gfp_mask, order, ac,
2818 &did_some_progress);
9879de73
JW
2819 if (page)
2820 goto got_pg;
2821 if (!did_some_progress)
2822 goto nopage;
2823 }
11e33f6a 2824 /* Wait for some write requests to complete then retry */
a9263751 2825 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 2826 goto retry;
3e7d3449
MG
2827 } else {
2828 /*
2829 * High-order allocations do not necessarily loop after
2830 * direct reclaim and reclaim/compaction depends on compaction
2831 * being called after reclaim so call directly if necessary
2832 */
a9263751
VB
2833 page = __alloc_pages_direct_compact(gfp_mask, order,
2834 alloc_flags, ac, migration_mode,
2835 &contended_compaction,
53853e2d 2836 &deferred_compaction);
3e7d3449
MG
2837 if (page)
2838 goto got_pg;
1da177e4
LT
2839 }
2840
2841nopage:
a238ab5b 2842 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 2843got_pg:
072bb0aa 2844 return page;
1da177e4 2845}
11e33f6a
MG
2846
2847/*
2848 * This is the 'heart' of the zoned buddy allocator.
2849 */
2850struct page *
2851__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2852 struct zonelist *zonelist, nodemask_t *nodemask)
2853{
d8846374 2854 struct zoneref *preferred_zoneref;
cc9a6c87 2855 struct page *page = NULL;
cc9a6c87 2856 unsigned int cpuset_mems_cookie;
3a025760 2857 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 2858 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
2859 struct alloc_context ac = {
2860 .high_zoneidx = gfp_zone(gfp_mask),
2861 .nodemask = nodemask,
2862 .migratetype = gfpflags_to_migratetype(gfp_mask),
2863 };
11e33f6a 2864
dcce284a
BH
2865 gfp_mask &= gfp_allowed_mask;
2866
11e33f6a
MG
2867 lockdep_trace_alloc(gfp_mask);
2868
2869 might_sleep_if(gfp_mask & __GFP_WAIT);
2870
2871 if (should_fail_alloc_page(gfp_mask, order))
2872 return NULL;
2873
2874 /*
2875 * Check the zones suitable for the gfp_mask contain at least one
2876 * valid zone. It's possible to have an empty zonelist as a result
2877 * of GFP_THISNODE and a memoryless node
2878 */
2879 if (unlikely(!zonelist->_zonerefs->zone))
2880 return NULL;
2881
a9263751 2882 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
2883 alloc_flags |= ALLOC_CMA;
2884
cc9a6c87 2885retry_cpuset:
d26914d1 2886 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2887
a9263751
VB
2888 /* We set it here, as __alloc_pages_slowpath might have changed it */
2889 ac.zonelist = zonelist;
5117f45d 2890 /* The preferred zone is used for statistics later */
a9263751
VB
2891 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2892 ac.nodemask ? : &cpuset_current_mems_allowed,
2893 &ac.preferred_zone);
2894 if (!ac.preferred_zone)
cc9a6c87 2895 goto out;
a9263751 2896 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
2897
2898 /* First allocation attempt */
91fbdc0f 2899 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 2900 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
2901 if (unlikely(!page)) {
2902 /*
2903 * Runtime PM, block IO and its error handling path
2904 * can deadlock because I/O on the device might not
2905 * complete.
2906 */
91fbdc0f
AM
2907 alloc_mask = memalloc_noio_flags(gfp_mask);
2908
a9263751 2909 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 2910 }
11e33f6a 2911
23f086f9
XQ
2912 if (kmemcheck_enabled && page)
2913 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2914
a9263751 2915 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
2916
2917out:
2918 /*
2919 * When updating a task's mems_allowed, it is possible to race with
2920 * parallel threads in such a way that an allocation can fail while
2921 * the mask is being updated. If a page allocation is about to fail,
2922 * check if the cpuset changed during allocation and if so, retry.
2923 */
d26914d1 2924 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2925 goto retry_cpuset;
2926
11e33f6a 2927 return page;
1da177e4 2928}
d239171e 2929EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2930
2931/*
2932 * Common helper functions.
2933 */
920c7a5d 2934unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2935{
945a1113
AM
2936 struct page *page;
2937
2938 /*
2939 * __get_free_pages() returns a 32-bit address, which cannot represent
2940 * a highmem page
2941 */
2942 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2943
1da177e4
LT
2944 page = alloc_pages(gfp_mask, order);
2945 if (!page)
2946 return 0;
2947 return (unsigned long) page_address(page);
2948}
1da177e4
LT
2949EXPORT_SYMBOL(__get_free_pages);
2950
920c7a5d 2951unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2952{
945a1113 2953 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2954}
1da177e4
LT
2955EXPORT_SYMBOL(get_zeroed_page);
2956
920c7a5d 2957void __free_pages(struct page *page, unsigned int order)
1da177e4 2958{
b5810039 2959 if (put_page_testzero(page)) {
1da177e4 2960 if (order == 0)
b745bc85 2961 free_hot_cold_page(page, false);
1da177e4
LT
2962 else
2963 __free_pages_ok(page, order);
2964 }
2965}
2966
2967EXPORT_SYMBOL(__free_pages);
2968
920c7a5d 2969void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2970{
2971 if (addr != 0) {
725d704e 2972 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2973 __free_pages(virt_to_page((void *)addr), order);
2974 }
2975}
2976
2977EXPORT_SYMBOL(free_pages);
2978
6a1a0d3b 2979/*
52383431
VD
2980 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2981 * of the current memory cgroup.
6a1a0d3b 2982 *
52383431
VD
2983 * It should be used when the caller would like to use kmalloc, but since the
2984 * allocation is large, it has to fall back to the page allocator.
2985 */
2986struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2987{
2988 struct page *page;
2989 struct mem_cgroup *memcg = NULL;
2990
2991 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2992 return NULL;
2993 page = alloc_pages(gfp_mask, order);
2994 memcg_kmem_commit_charge(page, memcg, order);
2995 return page;
2996}
2997
2998struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2999{
3000 struct page *page;
3001 struct mem_cgroup *memcg = NULL;
3002
3003 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3004 return NULL;
3005 page = alloc_pages_node(nid, gfp_mask, order);
3006 memcg_kmem_commit_charge(page, memcg, order);
3007 return page;
3008}
3009
3010/*
3011 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3012 * alloc_kmem_pages.
6a1a0d3b 3013 */
52383431 3014void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
3015{
3016 memcg_kmem_uncharge_pages(page, order);
3017 __free_pages(page, order);
3018}
3019
52383431 3020void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3021{
3022 if (addr != 0) {
3023 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3024 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3025 }
3026}
3027
ee85c2e1
AK
3028static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3029{
3030 if (addr) {
3031 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3032 unsigned long used = addr + PAGE_ALIGN(size);
3033
3034 split_page(virt_to_page((void *)addr), order);
3035 while (used < alloc_end) {
3036 free_page(used);
3037 used += PAGE_SIZE;
3038 }
3039 }
3040 return (void *)addr;
3041}
3042
2be0ffe2
TT
3043/**
3044 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3045 * @size: the number of bytes to allocate
3046 * @gfp_mask: GFP flags for the allocation
3047 *
3048 * This function is similar to alloc_pages(), except that it allocates the
3049 * minimum number of pages to satisfy the request. alloc_pages() can only
3050 * allocate memory in power-of-two pages.
3051 *
3052 * This function is also limited by MAX_ORDER.
3053 *
3054 * Memory allocated by this function must be released by free_pages_exact().
3055 */
3056void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3057{
3058 unsigned int order = get_order(size);
3059 unsigned long addr;
3060
3061 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3062 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3063}
3064EXPORT_SYMBOL(alloc_pages_exact);
3065
ee85c2e1
AK
3066/**
3067 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3068 * pages on a node.
b5e6ab58 3069 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3070 * @size: the number of bytes to allocate
3071 * @gfp_mask: GFP flags for the allocation
3072 *
3073 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3074 * back.
3075 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3076 * but is not exact.
3077 */
e1931811 3078void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3079{
3080 unsigned order = get_order(size);
3081 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3082 if (!p)
3083 return NULL;
3084 return make_alloc_exact((unsigned long)page_address(p), order, size);
3085}
ee85c2e1 3086
2be0ffe2
TT
3087/**
3088 * free_pages_exact - release memory allocated via alloc_pages_exact()
3089 * @virt: the value returned by alloc_pages_exact.
3090 * @size: size of allocation, same value as passed to alloc_pages_exact().
3091 *
3092 * Release the memory allocated by a previous call to alloc_pages_exact.
3093 */
3094void free_pages_exact(void *virt, size_t size)
3095{
3096 unsigned long addr = (unsigned long)virt;
3097 unsigned long end = addr + PAGE_ALIGN(size);
3098
3099 while (addr < end) {
3100 free_page(addr);
3101 addr += PAGE_SIZE;
3102 }
3103}
3104EXPORT_SYMBOL(free_pages_exact);
3105
e0fb5815
ZY
3106/**
3107 * nr_free_zone_pages - count number of pages beyond high watermark
3108 * @offset: The zone index of the highest zone
3109 *
3110 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3111 * high watermark within all zones at or below a given zone index. For each
3112 * zone, the number of pages is calculated as:
834405c3 3113 * managed_pages - high_pages
e0fb5815 3114 */
ebec3862 3115static unsigned long nr_free_zone_pages(int offset)
1da177e4 3116{
dd1a239f 3117 struct zoneref *z;
54a6eb5c
MG
3118 struct zone *zone;
3119
e310fd43 3120 /* Just pick one node, since fallback list is circular */
ebec3862 3121 unsigned long sum = 0;
1da177e4 3122
0e88460d 3123 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3124
54a6eb5c 3125 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3126 unsigned long size = zone->managed_pages;
41858966 3127 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3128 if (size > high)
3129 sum += size - high;
1da177e4
LT
3130 }
3131
3132 return sum;
3133}
3134
e0fb5815
ZY
3135/**
3136 * nr_free_buffer_pages - count number of pages beyond high watermark
3137 *
3138 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3139 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3140 */
ebec3862 3141unsigned long nr_free_buffer_pages(void)
1da177e4 3142{
af4ca457 3143 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3144}
c2f1a551 3145EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3146
e0fb5815
ZY
3147/**
3148 * nr_free_pagecache_pages - count number of pages beyond high watermark
3149 *
3150 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3151 * high watermark within all zones.
1da177e4 3152 */
ebec3862 3153unsigned long nr_free_pagecache_pages(void)
1da177e4 3154{
2a1e274a 3155 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3156}
08e0f6a9
CL
3157
3158static inline void show_node(struct zone *zone)
1da177e4 3159{
e5adfffc 3160 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3161 printk("Node %d ", zone_to_nid(zone));
1da177e4 3162}
1da177e4 3163
1da177e4
LT
3164void si_meminfo(struct sysinfo *val)
3165{
3166 val->totalram = totalram_pages;
cc7452b6 3167 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3168 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3169 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3170 val->totalhigh = totalhigh_pages;
3171 val->freehigh = nr_free_highpages();
1da177e4
LT
3172 val->mem_unit = PAGE_SIZE;
3173}
3174
3175EXPORT_SYMBOL(si_meminfo);
3176
3177#ifdef CONFIG_NUMA
3178void si_meminfo_node(struct sysinfo *val, int nid)
3179{
cdd91a77
JL
3180 int zone_type; /* needs to be signed */
3181 unsigned long managed_pages = 0;
1da177e4
LT
3182 pg_data_t *pgdat = NODE_DATA(nid);
3183
cdd91a77
JL
3184 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3185 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3186 val->totalram = managed_pages;
cc7452b6 3187 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3188 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3189#ifdef CONFIG_HIGHMEM
b40da049 3190 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3191 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3192 NR_FREE_PAGES);
98d2b0eb
CL
3193#else
3194 val->totalhigh = 0;
3195 val->freehigh = 0;
3196#endif
1da177e4
LT
3197 val->mem_unit = PAGE_SIZE;
3198}
3199#endif
3200
ddd588b5 3201/*
7bf02ea2
DR
3202 * Determine whether the node should be displayed or not, depending on whether
3203 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3204 */
7bf02ea2 3205bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3206{
3207 bool ret = false;
cc9a6c87 3208 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3209
3210 if (!(flags & SHOW_MEM_FILTER_NODES))
3211 goto out;
3212
cc9a6c87 3213 do {
d26914d1 3214 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3215 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3216 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3217out:
3218 return ret;
3219}
3220
1da177e4
LT
3221#define K(x) ((x) << (PAGE_SHIFT-10))
3222
377e4f16
RV
3223static void show_migration_types(unsigned char type)
3224{
3225 static const char types[MIGRATE_TYPES] = {
3226 [MIGRATE_UNMOVABLE] = 'U',
3227 [MIGRATE_RECLAIMABLE] = 'E',
3228 [MIGRATE_MOVABLE] = 'M',
3229 [MIGRATE_RESERVE] = 'R',
3230#ifdef CONFIG_CMA
3231 [MIGRATE_CMA] = 'C',
3232#endif
194159fb 3233#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3234 [MIGRATE_ISOLATE] = 'I',
194159fb 3235#endif
377e4f16
RV
3236 };
3237 char tmp[MIGRATE_TYPES + 1];
3238 char *p = tmp;
3239 int i;
3240
3241 for (i = 0; i < MIGRATE_TYPES; i++) {
3242 if (type & (1 << i))
3243 *p++ = types[i];
3244 }
3245
3246 *p = '\0';
3247 printk("(%s) ", tmp);
3248}
3249
1da177e4
LT
3250/*
3251 * Show free area list (used inside shift_scroll-lock stuff)
3252 * We also calculate the percentage fragmentation. We do this by counting the
3253 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3254 * Suppresses nodes that are not allowed by current's cpuset if
3255 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3256 */
7bf02ea2 3257void show_free_areas(unsigned int filter)
1da177e4 3258{
c7241913 3259 int cpu;
1da177e4
LT
3260 struct zone *zone;
3261
ee99c71c 3262 for_each_populated_zone(zone) {
7bf02ea2 3263 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3264 continue;
c7241913
JS
3265 show_node(zone);
3266 printk("%s per-cpu:\n", zone->name);
1da177e4 3267
6b482c67 3268 for_each_online_cpu(cpu) {
1da177e4
LT
3269 struct per_cpu_pageset *pageset;
3270
99dcc3e5 3271 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3272
3dfa5721
CL
3273 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3274 cpu, pageset->pcp.high,
3275 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3276 }
3277 }
3278
a731286d
KM
3279 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3280 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3281 " unevictable:%lu"
b76146ed 3282 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3283 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3284 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3285 " free_cma:%lu\n",
4f98a2fe 3286 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3287 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3288 global_page_state(NR_ISOLATED_ANON),
3289 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3290 global_page_state(NR_INACTIVE_FILE),
a731286d 3291 global_page_state(NR_ISOLATED_FILE),
7b854121 3292 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3293 global_page_state(NR_FILE_DIRTY),
ce866b34 3294 global_page_state(NR_WRITEBACK),
fd39fc85 3295 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3296 global_page_state(NR_FREE_PAGES),
3701b033
KM
3297 global_page_state(NR_SLAB_RECLAIMABLE),
3298 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3299 global_page_state(NR_FILE_MAPPED),
4b02108a 3300 global_page_state(NR_SHMEM),
a25700a5 3301 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3302 global_page_state(NR_BOUNCE),
3303 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3304
ee99c71c 3305 for_each_populated_zone(zone) {
1da177e4
LT
3306 int i;
3307
7bf02ea2 3308 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3309 continue;
1da177e4
LT
3310 show_node(zone);
3311 printk("%s"
3312 " free:%lukB"
3313 " min:%lukB"
3314 " low:%lukB"
3315 " high:%lukB"
4f98a2fe
RR
3316 " active_anon:%lukB"
3317 " inactive_anon:%lukB"
3318 " active_file:%lukB"
3319 " inactive_file:%lukB"
7b854121 3320 " unevictable:%lukB"
a731286d
KM
3321 " isolated(anon):%lukB"
3322 " isolated(file):%lukB"
1da177e4 3323 " present:%lukB"
9feedc9d 3324 " managed:%lukB"
4a0aa73f
KM
3325 " mlocked:%lukB"
3326 " dirty:%lukB"
3327 " writeback:%lukB"
3328 " mapped:%lukB"
4b02108a 3329 " shmem:%lukB"
4a0aa73f
KM
3330 " slab_reclaimable:%lukB"
3331 " slab_unreclaimable:%lukB"
c6a7f572 3332 " kernel_stack:%lukB"
4a0aa73f
KM
3333 " pagetables:%lukB"
3334 " unstable:%lukB"
3335 " bounce:%lukB"
d1ce749a 3336 " free_cma:%lukB"
4a0aa73f 3337 " writeback_tmp:%lukB"
1da177e4
LT
3338 " pages_scanned:%lu"
3339 " all_unreclaimable? %s"
3340 "\n",
3341 zone->name,
88f5acf8 3342 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3343 K(min_wmark_pages(zone)),
3344 K(low_wmark_pages(zone)),
3345 K(high_wmark_pages(zone)),
4f98a2fe
RR
3346 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3347 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3348 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3349 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3350 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3351 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3352 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3353 K(zone->present_pages),
9feedc9d 3354 K(zone->managed_pages),
4a0aa73f
KM
3355 K(zone_page_state(zone, NR_MLOCK)),
3356 K(zone_page_state(zone, NR_FILE_DIRTY)),
3357 K(zone_page_state(zone, NR_WRITEBACK)),
3358 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3359 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3360 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3361 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3362 zone_page_state(zone, NR_KERNEL_STACK) *
3363 THREAD_SIZE / 1024,
4a0aa73f
KM
3364 K(zone_page_state(zone, NR_PAGETABLE)),
3365 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3366 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3367 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3368 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3369 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3370 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3371 );
3372 printk("lowmem_reserve[]:");
3373 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3374 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3375 printk("\n");
3376 }
3377
ee99c71c 3378 for_each_populated_zone(zone) {
b8af2941 3379 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3380 unsigned char types[MAX_ORDER];
1da177e4 3381
7bf02ea2 3382 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3383 continue;
1da177e4
LT
3384 show_node(zone);
3385 printk("%s: ", zone->name);
1da177e4
LT
3386
3387 spin_lock_irqsave(&zone->lock, flags);
3388 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3389 struct free_area *area = &zone->free_area[order];
3390 int type;
3391
3392 nr[order] = area->nr_free;
8f9de51a 3393 total += nr[order] << order;
377e4f16
RV
3394
3395 types[order] = 0;
3396 for (type = 0; type < MIGRATE_TYPES; type++) {
3397 if (!list_empty(&area->free_list[type]))
3398 types[order] |= 1 << type;
3399 }
1da177e4
LT
3400 }
3401 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3402 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3403 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3404 if (nr[order])
3405 show_migration_types(types[order]);
3406 }
1da177e4
LT
3407 printk("= %lukB\n", K(total));
3408 }
3409
949f7ec5
DR
3410 hugetlb_show_meminfo();
3411
e6f3602d
LW
3412 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3413
1da177e4
LT
3414 show_swap_cache_info();
3415}
3416
19770b32
MG
3417static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3418{
3419 zoneref->zone = zone;
3420 zoneref->zone_idx = zone_idx(zone);
3421}
3422
1da177e4
LT
3423/*
3424 * Builds allocation fallback zone lists.
1a93205b
CL
3425 *
3426 * Add all populated zones of a node to the zonelist.
1da177e4 3427 */
f0c0b2b8 3428static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3429 int nr_zones)
1da177e4 3430{
1a93205b 3431 struct zone *zone;
bc732f1d 3432 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3433
3434 do {
2f6726e5 3435 zone_type--;
070f8032 3436 zone = pgdat->node_zones + zone_type;
1a93205b 3437 if (populated_zone(zone)) {
dd1a239f
MG
3438 zoneref_set_zone(zone,
3439 &zonelist->_zonerefs[nr_zones++]);
070f8032 3440 check_highest_zone(zone_type);
1da177e4 3441 }
2f6726e5 3442 } while (zone_type);
bc732f1d 3443
070f8032 3444 return nr_zones;
1da177e4
LT
3445}
3446
f0c0b2b8
KH
3447
3448/*
3449 * zonelist_order:
3450 * 0 = automatic detection of better ordering.
3451 * 1 = order by ([node] distance, -zonetype)
3452 * 2 = order by (-zonetype, [node] distance)
3453 *
3454 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3455 * the same zonelist. So only NUMA can configure this param.
3456 */
3457#define ZONELIST_ORDER_DEFAULT 0
3458#define ZONELIST_ORDER_NODE 1
3459#define ZONELIST_ORDER_ZONE 2
3460
3461/* zonelist order in the kernel.
3462 * set_zonelist_order() will set this to NODE or ZONE.
3463 */
3464static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3465static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3466
3467
1da177e4 3468#ifdef CONFIG_NUMA
f0c0b2b8
KH
3469/* The value user specified ....changed by config */
3470static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3471/* string for sysctl */
3472#define NUMA_ZONELIST_ORDER_LEN 16
3473char numa_zonelist_order[16] = "default";
3474
3475/*
3476 * interface for configure zonelist ordering.
3477 * command line option "numa_zonelist_order"
3478 * = "[dD]efault - default, automatic configuration.
3479 * = "[nN]ode - order by node locality, then by zone within node
3480 * = "[zZ]one - order by zone, then by locality within zone
3481 */
3482
3483static int __parse_numa_zonelist_order(char *s)
3484{
3485 if (*s == 'd' || *s == 'D') {
3486 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3487 } else if (*s == 'n' || *s == 'N') {
3488 user_zonelist_order = ZONELIST_ORDER_NODE;
3489 } else if (*s == 'z' || *s == 'Z') {
3490 user_zonelist_order = ZONELIST_ORDER_ZONE;
3491 } else {
3492 printk(KERN_WARNING
3493 "Ignoring invalid numa_zonelist_order value: "
3494 "%s\n", s);
3495 return -EINVAL;
3496 }
3497 return 0;
3498}
3499
3500static __init int setup_numa_zonelist_order(char *s)
3501{
ecb256f8
VL
3502 int ret;
3503
3504 if (!s)
3505 return 0;
3506
3507 ret = __parse_numa_zonelist_order(s);
3508 if (ret == 0)
3509 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3510
3511 return ret;
f0c0b2b8
KH
3512}
3513early_param("numa_zonelist_order", setup_numa_zonelist_order);
3514
3515/*
3516 * sysctl handler for numa_zonelist_order
3517 */
cccad5b9 3518int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3519 void __user *buffer, size_t *length,
f0c0b2b8
KH
3520 loff_t *ppos)
3521{
3522 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3523 int ret;
443c6f14 3524 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3525
443c6f14 3526 mutex_lock(&zl_order_mutex);
dacbde09
CG
3527 if (write) {
3528 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3529 ret = -EINVAL;
3530 goto out;
3531 }
3532 strcpy(saved_string, (char *)table->data);
3533 }
8d65af78 3534 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3535 if (ret)
443c6f14 3536 goto out;
f0c0b2b8
KH
3537 if (write) {
3538 int oldval = user_zonelist_order;
dacbde09
CG
3539
3540 ret = __parse_numa_zonelist_order((char *)table->data);
3541 if (ret) {
f0c0b2b8
KH
3542 /*
3543 * bogus value. restore saved string
3544 */
dacbde09 3545 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3546 NUMA_ZONELIST_ORDER_LEN);
3547 user_zonelist_order = oldval;
4eaf3f64
HL
3548 } else if (oldval != user_zonelist_order) {
3549 mutex_lock(&zonelists_mutex);
9adb62a5 3550 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3551 mutex_unlock(&zonelists_mutex);
3552 }
f0c0b2b8 3553 }
443c6f14
AK
3554out:
3555 mutex_unlock(&zl_order_mutex);
3556 return ret;
f0c0b2b8
KH
3557}
3558
3559
62bc62a8 3560#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3561static int node_load[MAX_NUMNODES];
3562
1da177e4 3563/**
4dc3b16b 3564 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3565 * @node: node whose fallback list we're appending
3566 * @used_node_mask: nodemask_t of already used nodes
3567 *
3568 * We use a number of factors to determine which is the next node that should
3569 * appear on a given node's fallback list. The node should not have appeared
3570 * already in @node's fallback list, and it should be the next closest node
3571 * according to the distance array (which contains arbitrary distance values
3572 * from each node to each node in the system), and should also prefer nodes
3573 * with no CPUs, since presumably they'll have very little allocation pressure
3574 * on them otherwise.
3575 * It returns -1 if no node is found.
3576 */
f0c0b2b8 3577static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3578{
4cf808eb 3579 int n, val;
1da177e4 3580 int min_val = INT_MAX;
00ef2d2f 3581 int best_node = NUMA_NO_NODE;
a70f7302 3582 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3583
4cf808eb
LT
3584 /* Use the local node if we haven't already */
3585 if (!node_isset(node, *used_node_mask)) {
3586 node_set(node, *used_node_mask);
3587 return node;
3588 }
1da177e4 3589
4b0ef1fe 3590 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3591
3592 /* Don't want a node to appear more than once */
3593 if (node_isset(n, *used_node_mask))
3594 continue;
3595
1da177e4
LT
3596 /* Use the distance array to find the distance */
3597 val = node_distance(node, n);
3598
4cf808eb
LT
3599 /* Penalize nodes under us ("prefer the next node") */
3600 val += (n < node);
3601
1da177e4 3602 /* Give preference to headless and unused nodes */
a70f7302
RR
3603 tmp = cpumask_of_node(n);
3604 if (!cpumask_empty(tmp))
1da177e4
LT
3605 val += PENALTY_FOR_NODE_WITH_CPUS;
3606
3607 /* Slight preference for less loaded node */
3608 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3609 val += node_load[n];
3610
3611 if (val < min_val) {
3612 min_val = val;
3613 best_node = n;
3614 }
3615 }
3616
3617 if (best_node >= 0)
3618 node_set(best_node, *used_node_mask);
3619
3620 return best_node;
3621}
3622
f0c0b2b8
KH
3623
3624/*
3625 * Build zonelists ordered by node and zones within node.
3626 * This results in maximum locality--normal zone overflows into local
3627 * DMA zone, if any--but risks exhausting DMA zone.
3628 */
3629static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3630{
f0c0b2b8 3631 int j;
1da177e4 3632 struct zonelist *zonelist;
f0c0b2b8 3633
54a6eb5c 3634 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3635 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3636 ;
bc732f1d 3637 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3638 zonelist->_zonerefs[j].zone = NULL;
3639 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3640}
3641
523b9458
CL
3642/*
3643 * Build gfp_thisnode zonelists
3644 */
3645static void build_thisnode_zonelists(pg_data_t *pgdat)
3646{
523b9458
CL
3647 int j;
3648 struct zonelist *zonelist;
3649
54a6eb5c 3650 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3651 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3652 zonelist->_zonerefs[j].zone = NULL;
3653 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3654}
3655
f0c0b2b8
KH
3656/*
3657 * Build zonelists ordered by zone and nodes within zones.
3658 * This results in conserving DMA zone[s] until all Normal memory is
3659 * exhausted, but results in overflowing to remote node while memory
3660 * may still exist in local DMA zone.
3661 */
3662static int node_order[MAX_NUMNODES];
3663
3664static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3665{
f0c0b2b8
KH
3666 int pos, j, node;
3667 int zone_type; /* needs to be signed */
3668 struct zone *z;
3669 struct zonelist *zonelist;
3670
54a6eb5c
MG
3671 zonelist = &pgdat->node_zonelists[0];
3672 pos = 0;
3673 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3674 for (j = 0; j < nr_nodes; j++) {
3675 node = node_order[j];
3676 z = &NODE_DATA(node)->node_zones[zone_type];
3677 if (populated_zone(z)) {
dd1a239f
MG
3678 zoneref_set_zone(z,
3679 &zonelist->_zonerefs[pos++]);
54a6eb5c 3680 check_highest_zone(zone_type);
f0c0b2b8
KH
3681 }
3682 }
f0c0b2b8 3683 }
dd1a239f
MG
3684 zonelist->_zonerefs[pos].zone = NULL;
3685 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3686}
3687
3193913c
MG
3688#if defined(CONFIG_64BIT)
3689/*
3690 * Devices that require DMA32/DMA are relatively rare and do not justify a
3691 * penalty to every machine in case the specialised case applies. Default
3692 * to Node-ordering on 64-bit NUMA machines
3693 */
3694static int default_zonelist_order(void)
3695{
3696 return ZONELIST_ORDER_NODE;
3697}
3698#else
3699/*
3700 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3701 * by the kernel. If processes running on node 0 deplete the low memory zone
3702 * then reclaim will occur more frequency increasing stalls and potentially
3703 * be easier to OOM if a large percentage of the zone is under writeback or
3704 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3705 * Hence, default to zone ordering on 32-bit.
3706 */
f0c0b2b8
KH
3707static int default_zonelist_order(void)
3708{
f0c0b2b8
KH
3709 return ZONELIST_ORDER_ZONE;
3710}
3193913c 3711#endif /* CONFIG_64BIT */
f0c0b2b8
KH
3712
3713static void set_zonelist_order(void)
3714{
3715 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3716 current_zonelist_order = default_zonelist_order();
3717 else
3718 current_zonelist_order = user_zonelist_order;
3719}
3720
3721static void build_zonelists(pg_data_t *pgdat)
3722{
3723 int j, node, load;
3724 enum zone_type i;
1da177e4 3725 nodemask_t used_mask;
f0c0b2b8
KH
3726 int local_node, prev_node;
3727 struct zonelist *zonelist;
3728 int order = current_zonelist_order;
1da177e4
LT
3729
3730 /* initialize zonelists */
523b9458 3731 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3732 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3733 zonelist->_zonerefs[0].zone = NULL;
3734 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3735 }
3736
3737 /* NUMA-aware ordering of nodes */
3738 local_node = pgdat->node_id;
62bc62a8 3739 load = nr_online_nodes;
1da177e4
LT
3740 prev_node = local_node;
3741 nodes_clear(used_mask);
f0c0b2b8 3742
f0c0b2b8
KH
3743 memset(node_order, 0, sizeof(node_order));
3744 j = 0;
3745
1da177e4
LT
3746 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3747 /*
3748 * We don't want to pressure a particular node.
3749 * So adding penalty to the first node in same
3750 * distance group to make it round-robin.
3751 */
957f822a
DR
3752 if (node_distance(local_node, node) !=
3753 node_distance(local_node, prev_node))
f0c0b2b8
KH
3754 node_load[node] = load;
3755
1da177e4
LT
3756 prev_node = node;
3757 load--;
f0c0b2b8
KH
3758 if (order == ZONELIST_ORDER_NODE)
3759 build_zonelists_in_node_order(pgdat, node);
3760 else
3761 node_order[j++] = node; /* remember order */
3762 }
1da177e4 3763
f0c0b2b8
KH
3764 if (order == ZONELIST_ORDER_ZONE) {
3765 /* calculate node order -- i.e., DMA last! */
3766 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3767 }
523b9458
CL
3768
3769 build_thisnode_zonelists(pgdat);
1da177e4
LT
3770}
3771
9276b1bc 3772/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3773static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3774{
54a6eb5c
MG
3775 struct zonelist *zonelist;
3776 struct zonelist_cache *zlc;
dd1a239f 3777 struct zoneref *z;
9276b1bc 3778
54a6eb5c
MG
3779 zonelist = &pgdat->node_zonelists[0];
3780 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3781 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3782 for (z = zonelist->_zonerefs; z->zone; z++)
3783 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3784}
3785
7aac7898
LS
3786#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3787/*
3788 * Return node id of node used for "local" allocations.
3789 * I.e., first node id of first zone in arg node's generic zonelist.
3790 * Used for initializing percpu 'numa_mem', which is used primarily
3791 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3792 */
3793int local_memory_node(int node)
3794{
3795 struct zone *zone;
3796
3797 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3798 gfp_zone(GFP_KERNEL),
3799 NULL,
3800 &zone);
3801 return zone->node;
3802}
3803#endif
f0c0b2b8 3804
1da177e4
LT
3805#else /* CONFIG_NUMA */
3806
f0c0b2b8
KH
3807static void set_zonelist_order(void)
3808{
3809 current_zonelist_order = ZONELIST_ORDER_ZONE;
3810}
3811
3812static void build_zonelists(pg_data_t *pgdat)
1da177e4 3813{
19655d34 3814 int node, local_node;
54a6eb5c
MG
3815 enum zone_type j;
3816 struct zonelist *zonelist;
1da177e4
LT
3817
3818 local_node = pgdat->node_id;
1da177e4 3819
54a6eb5c 3820 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3821 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3822
54a6eb5c
MG
3823 /*
3824 * Now we build the zonelist so that it contains the zones
3825 * of all the other nodes.
3826 * We don't want to pressure a particular node, so when
3827 * building the zones for node N, we make sure that the
3828 * zones coming right after the local ones are those from
3829 * node N+1 (modulo N)
3830 */
3831 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3832 if (!node_online(node))
3833 continue;
bc732f1d 3834 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3835 }
54a6eb5c
MG
3836 for (node = 0; node < local_node; node++) {
3837 if (!node_online(node))
3838 continue;
bc732f1d 3839 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3840 }
3841
dd1a239f
MG
3842 zonelist->_zonerefs[j].zone = NULL;
3843 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3844}
3845
9276b1bc 3846/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3847static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3848{
54a6eb5c 3849 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3850}
3851
1da177e4
LT
3852#endif /* CONFIG_NUMA */
3853
99dcc3e5
CL
3854/*
3855 * Boot pageset table. One per cpu which is going to be used for all
3856 * zones and all nodes. The parameters will be set in such a way
3857 * that an item put on a list will immediately be handed over to
3858 * the buddy list. This is safe since pageset manipulation is done
3859 * with interrupts disabled.
3860 *
3861 * The boot_pagesets must be kept even after bootup is complete for
3862 * unused processors and/or zones. They do play a role for bootstrapping
3863 * hotplugged processors.
3864 *
3865 * zoneinfo_show() and maybe other functions do
3866 * not check if the processor is online before following the pageset pointer.
3867 * Other parts of the kernel may not check if the zone is available.
3868 */
3869static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3870static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3871static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3872
4eaf3f64
HL
3873/*
3874 * Global mutex to protect against size modification of zonelists
3875 * as well as to serialize pageset setup for the new populated zone.
3876 */
3877DEFINE_MUTEX(zonelists_mutex);
3878
9b1a4d38 3879/* return values int ....just for stop_machine() */
4ed7e022 3880static int __build_all_zonelists(void *data)
1da177e4 3881{
6811378e 3882 int nid;
99dcc3e5 3883 int cpu;
9adb62a5 3884 pg_data_t *self = data;
9276b1bc 3885
7f9cfb31
BL
3886#ifdef CONFIG_NUMA
3887 memset(node_load, 0, sizeof(node_load));
3888#endif
9adb62a5
JL
3889
3890 if (self && !node_online(self->node_id)) {
3891 build_zonelists(self);
3892 build_zonelist_cache(self);
3893 }
3894
9276b1bc 3895 for_each_online_node(nid) {
7ea1530a
CL
3896 pg_data_t *pgdat = NODE_DATA(nid);
3897
3898 build_zonelists(pgdat);
3899 build_zonelist_cache(pgdat);
9276b1bc 3900 }
99dcc3e5
CL
3901
3902 /*
3903 * Initialize the boot_pagesets that are going to be used
3904 * for bootstrapping processors. The real pagesets for
3905 * each zone will be allocated later when the per cpu
3906 * allocator is available.
3907 *
3908 * boot_pagesets are used also for bootstrapping offline
3909 * cpus if the system is already booted because the pagesets
3910 * are needed to initialize allocators on a specific cpu too.
3911 * F.e. the percpu allocator needs the page allocator which
3912 * needs the percpu allocator in order to allocate its pagesets
3913 * (a chicken-egg dilemma).
3914 */
7aac7898 3915 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3916 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3917
7aac7898
LS
3918#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3919 /*
3920 * We now know the "local memory node" for each node--
3921 * i.e., the node of the first zone in the generic zonelist.
3922 * Set up numa_mem percpu variable for on-line cpus. During
3923 * boot, only the boot cpu should be on-line; we'll init the
3924 * secondary cpus' numa_mem as they come on-line. During
3925 * node/memory hotplug, we'll fixup all on-line cpus.
3926 */
3927 if (cpu_online(cpu))
3928 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3929#endif
3930 }
3931
6811378e
YG
3932 return 0;
3933}
3934
061f67bc
RV
3935static noinline void __init
3936build_all_zonelists_init(void)
3937{
3938 __build_all_zonelists(NULL);
3939 mminit_verify_zonelist();
3940 cpuset_init_current_mems_allowed();
3941}
3942
4eaf3f64
HL
3943/*
3944 * Called with zonelists_mutex held always
3945 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
3946 *
3947 * __ref due to (1) call of __meminit annotated setup_zone_pageset
3948 * [we're only called with non-NULL zone through __meminit paths] and
3949 * (2) call of __init annotated helper build_all_zonelists_init
3950 * [protected by SYSTEM_BOOTING].
4eaf3f64 3951 */
9adb62a5 3952void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3953{
f0c0b2b8
KH
3954 set_zonelist_order();
3955
6811378e 3956 if (system_state == SYSTEM_BOOTING) {
061f67bc 3957 build_all_zonelists_init();
6811378e 3958 } else {
e9959f0f 3959#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3960 if (zone)
3961 setup_zone_pageset(zone);
e9959f0f 3962#endif
dd1895e2
CS
3963 /* we have to stop all cpus to guarantee there is no user
3964 of zonelist */
9adb62a5 3965 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3966 /* cpuset refresh routine should be here */
3967 }
bd1e22b8 3968 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3969 /*
3970 * Disable grouping by mobility if the number of pages in the
3971 * system is too low to allow the mechanism to work. It would be
3972 * more accurate, but expensive to check per-zone. This check is
3973 * made on memory-hotadd so a system can start with mobility
3974 * disabled and enable it later
3975 */
d9c23400 3976 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3977 page_group_by_mobility_disabled = 1;
3978 else
3979 page_group_by_mobility_disabled = 0;
3980
f88dfff5 3981 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 3982 "Total pages: %ld\n",
62bc62a8 3983 nr_online_nodes,
f0c0b2b8 3984 zonelist_order_name[current_zonelist_order],
9ef9acb0 3985 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3986 vm_total_pages);
3987#ifdef CONFIG_NUMA
f88dfff5 3988 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 3989#endif
1da177e4
LT
3990}
3991
3992/*
3993 * Helper functions to size the waitqueue hash table.
3994 * Essentially these want to choose hash table sizes sufficiently
3995 * large so that collisions trying to wait on pages are rare.
3996 * But in fact, the number of active page waitqueues on typical
3997 * systems is ridiculously low, less than 200. So this is even
3998 * conservative, even though it seems large.
3999 *
4000 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4001 * waitqueues, i.e. the size of the waitq table given the number of pages.
4002 */
4003#define PAGES_PER_WAITQUEUE 256
4004
cca448fe 4005#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4006static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4007{
4008 unsigned long size = 1;
4009
4010 pages /= PAGES_PER_WAITQUEUE;
4011
4012 while (size < pages)
4013 size <<= 1;
4014
4015 /*
4016 * Once we have dozens or even hundreds of threads sleeping
4017 * on IO we've got bigger problems than wait queue collision.
4018 * Limit the size of the wait table to a reasonable size.
4019 */
4020 size = min(size, 4096UL);
4021
4022 return max(size, 4UL);
4023}
cca448fe
YG
4024#else
4025/*
4026 * A zone's size might be changed by hot-add, so it is not possible to determine
4027 * a suitable size for its wait_table. So we use the maximum size now.
4028 *
4029 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4030 *
4031 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4032 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4033 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4034 *
4035 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4036 * or more by the traditional way. (See above). It equals:
4037 *
4038 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4039 * ia64(16K page size) : = ( 8G + 4M)byte.
4040 * powerpc (64K page size) : = (32G +16M)byte.
4041 */
4042static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4043{
4044 return 4096UL;
4045}
4046#endif
1da177e4
LT
4047
4048/*
4049 * This is an integer logarithm so that shifts can be used later
4050 * to extract the more random high bits from the multiplicative
4051 * hash function before the remainder is taken.
4052 */
4053static inline unsigned long wait_table_bits(unsigned long size)
4054{
4055 return ffz(~size);
4056}
4057
6d3163ce
AH
4058/*
4059 * Check if a pageblock contains reserved pages
4060 */
4061static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4062{
4063 unsigned long pfn;
4064
4065 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4066 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4067 return 1;
4068 }
4069 return 0;
4070}
4071
56fd56b8 4072/*
d9c23400 4073 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4074 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4075 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4076 * higher will lead to a bigger reserve which will get freed as contiguous
4077 * blocks as reclaim kicks in
4078 */
4079static void setup_zone_migrate_reserve(struct zone *zone)
4080{
6d3163ce 4081 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4082 struct page *page;
78986a67
MG
4083 unsigned long block_migratetype;
4084 int reserve;
943dca1a 4085 int old_reserve;
56fd56b8 4086
d0215638
MH
4087 /*
4088 * Get the start pfn, end pfn and the number of blocks to reserve
4089 * We have to be careful to be aligned to pageblock_nr_pages to
4090 * make sure that we always check pfn_valid for the first page in
4091 * the block.
4092 */
56fd56b8 4093 start_pfn = zone->zone_start_pfn;
108bcc96 4094 end_pfn = zone_end_pfn(zone);
d0215638 4095 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4096 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4097 pageblock_order;
56fd56b8 4098
78986a67
MG
4099 /*
4100 * Reserve blocks are generally in place to help high-order atomic
4101 * allocations that are short-lived. A min_free_kbytes value that
4102 * would result in more than 2 reserve blocks for atomic allocations
4103 * is assumed to be in place to help anti-fragmentation for the
4104 * future allocation of hugepages at runtime.
4105 */
4106 reserve = min(2, reserve);
943dca1a
YI
4107 old_reserve = zone->nr_migrate_reserve_block;
4108
4109 /* When memory hot-add, we almost always need to do nothing */
4110 if (reserve == old_reserve)
4111 return;
4112 zone->nr_migrate_reserve_block = reserve;
78986a67 4113
d9c23400 4114 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4115 if (!pfn_valid(pfn))
4116 continue;
4117 page = pfn_to_page(pfn);
4118
344c790e
AL
4119 /* Watch out for overlapping nodes */
4120 if (page_to_nid(page) != zone_to_nid(zone))
4121 continue;
4122
56fd56b8
MG
4123 block_migratetype = get_pageblock_migratetype(page);
4124
938929f1
MG
4125 /* Only test what is necessary when the reserves are not met */
4126 if (reserve > 0) {
4127 /*
4128 * Blocks with reserved pages will never free, skip
4129 * them.
4130 */
4131 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4132 if (pageblock_is_reserved(pfn, block_end_pfn))
4133 continue;
56fd56b8 4134
938929f1
MG
4135 /* If this block is reserved, account for it */
4136 if (block_migratetype == MIGRATE_RESERVE) {
4137 reserve--;
4138 continue;
4139 }
4140
4141 /* Suitable for reserving if this block is movable */
4142 if (block_migratetype == MIGRATE_MOVABLE) {
4143 set_pageblock_migratetype(page,
4144 MIGRATE_RESERVE);
4145 move_freepages_block(zone, page,
4146 MIGRATE_RESERVE);
4147 reserve--;
4148 continue;
4149 }
943dca1a
YI
4150 } else if (!old_reserve) {
4151 /*
4152 * At boot time we don't need to scan the whole zone
4153 * for turning off MIGRATE_RESERVE.
4154 */
4155 break;
56fd56b8
MG
4156 }
4157
4158 /*
4159 * If the reserve is met and this is a previous reserved block,
4160 * take it back
4161 */
4162 if (block_migratetype == MIGRATE_RESERVE) {
4163 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4164 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4165 }
4166 }
4167}
ac0e5b7a 4168
1da177e4
LT
4169/*
4170 * Initially all pages are reserved - free ones are freed
4171 * up by free_all_bootmem() once the early boot process is
4172 * done. Non-atomic initialization, single-pass.
4173 */
c09b4240 4174void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4175 unsigned long start_pfn, enum memmap_context context)
1da177e4 4176{
1da177e4 4177 struct page *page;
29751f69
AW
4178 unsigned long end_pfn = start_pfn + size;
4179 unsigned long pfn;
86051ca5 4180 struct zone *z;
1da177e4 4181
22b31eec
HD
4182 if (highest_memmap_pfn < end_pfn - 1)
4183 highest_memmap_pfn = end_pfn - 1;
4184
86051ca5 4185 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4186 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4187 /*
4188 * There can be holes in boot-time mem_map[]s
4189 * handed to this function. They do not
4190 * exist on hotplugged memory.
4191 */
4192 if (context == MEMMAP_EARLY) {
4193 if (!early_pfn_valid(pfn))
4194 continue;
4195 if (!early_pfn_in_nid(pfn, nid))
4196 continue;
4197 }
d41dee36
AW
4198 page = pfn_to_page(pfn);
4199 set_page_links(page, zone, nid, pfn);
708614e6 4200 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4201 init_page_count(page);
22b751c3 4202 page_mapcount_reset(page);
90572890 4203 page_cpupid_reset_last(page);
1da177e4 4204 SetPageReserved(page);
b2a0ac88
MG
4205 /*
4206 * Mark the block movable so that blocks are reserved for
4207 * movable at startup. This will force kernel allocations
4208 * to reserve their blocks rather than leaking throughout
4209 * the address space during boot when many long-lived
56fd56b8
MG
4210 * kernel allocations are made. Later some blocks near
4211 * the start are marked MIGRATE_RESERVE by
4212 * setup_zone_migrate_reserve()
86051ca5
KH
4213 *
4214 * bitmap is created for zone's valid pfn range. but memmap
4215 * can be created for invalid pages (for alignment)
4216 * check here not to call set_pageblock_migratetype() against
4217 * pfn out of zone.
b2a0ac88 4218 */
86051ca5 4219 if ((z->zone_start_pfn <= pfn)
108bcc96 4220 && (pfn < zone_end_pfn(z))
86051ca5 4221 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4222 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4223
1da177e4
LT
4224 INIT_LIST_HEAD(&page->lru);
4225#ifdef WANT_PAGE_VIRTUAL
4226 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4227 if (!is_highmem_idx(zone))
3212c6be 4228 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4229#endif
1da177e4
LT
4230 }
4231}
4232
1e548deb 4233static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4234{
7aeb09f9 4235 unsigned int order, t;
b2a0ac88
MG
4236 for_each_migratetype_order(order, t) {
4237 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4238 zone->free_area[order].nr_free = 0;
4239 }
4240}
4241
4242#ifndef __HAVE_ARCH_MEMMAP_INIT
4243#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4244 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4245#endif
4246
7cd2b0a3 4247static int zone_batchsize(struct zone *zone)
e7c8d5c9 4248{
3a6be87f 4249#ifdef CONFIG_MMU
e7c8d5c9
CL
4250 int batch;
4251
4252 /*
4253 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4254 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4255 *
4256 * OK, so we don't know how big the cache is. So guess.
4257 */
b40da049 4258 batch = zone->managed_pages / 1024;
ba56e91c
SR
4259 if (batch * PAGE_SIZE > 512 * 1024)
4260 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4261 batch /= 4; /* We effectively *= 4 below */
4262 if (batch < 1)
4263 batch = 1;
4264
4265 /*
0ceaacc9
NP
4266 * Clamp the batch to a 2^n - 1 value. Having a power
4267 * of 2 value was found to be more likely to have
4268 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4269 *
0ceaacc9
NP
4270 * For example if 2 tasks are alternately allocating
4271 * batches of pages, one task can end up with a lot
4272 * of pages of one half of the possible page colors
4273 * and the other with pages of the other colors.
e7c8d5c9 4274 */
9155203a 4275 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4276
e7c8d5c9 4277 return batch;
3a6be87f
DH
4278
4279#else
4280 /* The deferral and batching of frees should be suppressed under NOMMU
4281 * conditions.
4282 *
4283 * The problem is that NOMMU needs to be able to allocate large chunks
4284 * of contiguous memory as there's no hardware page translation to
4285 * assemble apparent contiguous memory from discontiguous pages.
4286 *
4287 * Queueing large contiguous runs of pages for batching, however,
4288 * causes the pages to actually be freed in smaller chunks. As there
4289 * can be a significant delay between the individual batches being
4290 * recycled, this leads to the once large chunks of space being
4291 * fragmented and becoming unavailable for high-order allocations.
4292 */
4293 return 0;
4294#endif
e7c8d5c9
CL
4295}
4296
8d7a8fa9
CS
4297/*
4298 * pcp->high and pcp->batch values are related and dependent on one another:
4299 * ->batch must never be higher then ->high.
4300 * The following function updates them in a safe manner without read side
4301 * locking.
4302 *
4303 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4304 * those fields changing asynchronously (acording the the above rule).
4305 *
4306 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4307 * outside of boot time (or some other assurance that no concurrent updaters
4308 * exist).
4309 */
4310static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4311 unsigned long batch)
4312{
4313 /* start with a fail safe value for batch */
4314 pcp->batch = 1;
4315 smp_wmb();
4316
4317 /* Update high, then batch, in order */
4318 pcp->high = high;
4319 smp_wmb();
4320
4321 pcp->batch = batch;
4322}
4323
3664033c 4324/* a companion to pageset_set_high() */
4008bab7
CS
4325static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4326{
8d7a8fa9 4327 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4328}
4329
88c90dbc 4330static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4331{
4332 struct per_cpu_pages *pcp;
5f8dcc21 4333 int migratetype;
2caaad41 4334
1c6fe946
MD
4335 memset(p, 0, sizeof(*p));
4336
3dfa5721 4337 pcp = &p->pcp;
2caaad41 4338 pcp->count = 0;
5f8dcc21
MG
4339 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4340 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4341}
4342
88c90dbc
CS
4343static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4344{
4345 pageset_init(p);
4346 pageset_set_batch(p, batch);
4347}
4348
8ad4b1fb 4349/*
3664033c 4350 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4351 * to the value high for the pageset p.
4352 */
3664033c 4353static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4354 unsigned long high)
4355{
8d7a8fa9
CS
4356 unsigned long batch = max(1UL, high / 4);
4357 if ((high / 4) > (PAGE_SHIFT * 8))
4358 batch = PAGE_SHIFT * 8;
8ad4b1fb 4359
8d7a8fa9 4360 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4361}
4362
7cd2b0a3
DR
4363static void pageset_set_high_and_batch(struct zone *zone,
4364 struct per_cpu_pageset *pcp)
56cef2b8 4365{
56cef2b8 4366 if (percpu_pagelist_fraction)
3664033c 4367 pageset_set_high(pcp,
56cef2b8
CS
4368 (zone->managed_pages /
4369 percpu_pagelist_fraction));
4370 else
4371 pageset_set_batch(pcp, zone_batchsize(zone));
4372}
4373
169f6c19
CS
4374static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4375{
4376 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4377
4378 pageset_init(pcp);
4379 pageset_set_high_and_batch(zone, pcp);
4380}
4381
4ed7e022 4382static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4383{
4384 int cpu;
319774e2 4385 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4386 for_each_possible_cpu(cpu)
4387 zone_pageset_init(zone, cpu);
319774e2
WF
4388}
4389
2caaad41 4390/*
99dcc3e5
CL
4391 * Allocate per cpu pagesets and initialize them.
4392 * Before this call only boot pagesets were available.
e7c8d5c9 4393 */
99dcc3e5 4394void __init setup_per_cpu_pageset(void)
e7c8d5c9 4395{
99dcc3e5 4396 struct zone *zone;
e7c8d5c9 4397
319774e2
WF
4398 for_each_populated_zone(zone)
4399 setup_zone_pageset(zone);
e7c8d5c9
CL
4400}
4401
577a32f6 4402static noinline __init_refok
cca448fe 4403int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4404{
4405 int i;
cca448fe 4406 size_t alloc_size;
ed8ece2e
DH
4407
4408 /*
4409 * The per-page waitqueue mechanism uses hashed waitqueues
4410 * per zone.
4411 */
02b694de
YG
4412 zone->wait_table_hash_nr_entries =
4413 wait_table_hash_nr_entries(zone_size_pages);
4414 zone->wait_table_bits =
4415 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4416 alloc_size = zone->wait_table_hash_nr_entries
4417 * sizeof(wait_queue_head_t);
4418
cd94b9db 4419 if (!slab_is_available()) {
cca448fe 4420 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4421 memblock_virt_alloc_node_nopanic(
4422 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4423 } else {
4424 /*
4425 * This case means that a zone whose size was 0 gets new memory
4426 * via memory hot-add.
4427 * But it may be the case that a new node was hot-added. In
4428 * this case vmalloc() will not be able to use this new node's
4429 * memory - this wait_table must be initialized to use this new
4430 * node itself as well.
4431 * To use this new node's memory, further consideration will be
4432 * necessary.
4433 */
8691f3a7 4434 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4435 }
4436 if (!zone->wait_table)
4437 return -ENOMEM;
ed8ece2e 4438
b8af2941 4439 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4440 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4441
4442 return 0;
ed8ece2e
DH
4443}
4444
c09b4240 4445static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4446{
99dcc3e5
CL
4447 /*
4448 * per cpu subsystem is not up at this point. The following code
4449 * relies on the ability of the linker to provide the
4450 * offset of a (static) per cpu variable into the per cpu area.
4451 */
4452 zone->pageset = &boot_pageset;
ed8ece2e 4453
b38a8725 4454 if (populated_zone(zone))
99dcc3e5
CL
4455 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4456 zone->name, zone->present_pages,
4457 zone_batchsize(zone));
ed8ece2e
DH
4458}
4459
4ed7e022 4460int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4461 unsigned long zone_start_pfn,
a2f3aa02
DH
4462 unsigned long size,
4463 enum memmap_context context)
ed8ece2e
DH
4464{
4465 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4466 int ret;
4467 ret = zone_wait_table_init(zone, size);
4468 if (ret)
4469 return ret;
ed8ece2e
DH
4470 pgdat->nr_zones = zone_idx(zone) + 1;
4471
ed8ece2e
DH
4472 zone->zone_start_pfn = zone_start_pfn;
4473
708614e6
MG
4474 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4475 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4476 pgdat->node_id,
4477 (unsigned long)zone_idx(zone),
4478 zone_start_pfn, (zone_start_pfn + size));
4479
1e548deb 4480 zone_init_free_lists(zone);
718127cc
YG
4481
4482 return 0;
ed8ece2e
DH
4483}
4484
0ee332c1 4485#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4486#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4487/*
4488 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4489 */
f2dbcfa7 4490int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4491{
c13291a5 4492 unsigned long start_pfn, end_pfn;
e76b63f8 4493 int nid;
7c243c71
RA
4494 /*
4495 * NOTE: The following SMP-unsafe globals are only used early in boot
4496 * when the kernel is running single-threaded.
4497 */
4498 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4499 static int __meminitdata last_nid;
4500
4501 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4502 return last_nid;
c713216d 4503
e76b63f8
YL
4504 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4505 if (nid != -1) {
4506 last_start_pfn = start_pfn;
4507 last_end_pfn = end_pfn;
4508 last_nid = nid;
4509 }
4510
4511 return nid;
c713216d
MG
4512}
4513#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4514
f2dbcfa7
KH
4515int __meminit early_pfn_to_nid(unsigned long pfn)
4516{
cc2559bc
KH
4517 int nid;
4518
4519 nid = __early_pfn_to_nid(pfn);
4520 if (nid >= 0)
4521 return nid;
4522 /* just returns 0 */
4523 return 0;
f2dbcfa7
KH
4524}
4525
cc2559bc
KH
4526#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4527bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4528{
4529 int nid;
4530
4531 nid = __early_pfn_to_nid(pfn);
4532 if (nid >= 0 && nid != node)
4533 return false;
4534 return true;
4535}
4536#endif
f2dbcfa7 4537
c713216d 4538/**
6782832e 4539 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4540 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4541 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4542 *
7d018176
ZZ
4543 * If an architecture guarantees that all ranges registered contain no holes
4544 * and may be freed, this this function may be used instead of calling
4545 * memblock_free_early_nid() manually.
c713216d 4546 */
c13291a5 4547void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4548{
c13291a5
TH
4549 unsigned long start_pfn, end_pfn;
4550 int i, this_nid;
edbe7d23 4551
c13291a5
TH
4552 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4553 start_pfn = min(start_pfn, max_low_pfn);
4554 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4555
c13291a5 4556 if (start_pfn < end_pfn)
6782832e
SS
4557 memblock_free_early_nid(PFN_PHYS(start_pfn),
4558 (end_pfn - start_pfn) << PAGE_SHIFT,
4559 this_nid);
edbe7d23 4560 }
edbe7d23 4561}
edbe7d23 4562
c713216d
MG
4563/**
4564 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4565 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4566 *
7d018176
ZZ
4567 * If an architecture guarantees that all ranges registered contain no holes and may
4568 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4569 */
4570void __init sparse_memory_present_with_active_regions(int nid)
4571{
c13291a5
TH
4572 unsigned long start_pfn, end_pfn;
4573 int i, this_nid;
c713216d 4574
c13291a5
TH
4575 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4576 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4577}
4578
4579/**
4580 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4581 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4582 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4583 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4584 *
4585 * It returns the start and end page frame of a node based on information
7d018176 4586 * provided by memblock_set_node(). If called for a node
c713216d 4587 * with no available memory, a warning is printed and the start and end
88ca3b94 4588 * PFNs will be 0.
c713216d 4589 */
a3142c8e 4590void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4591 unsigned long *start_pfn, unsigned long *end_pfn)
4592{
c13291a5 4593 unsigned long this_start_pfn, this_end_pfn;
c713216d 4594 int i;
c13291a5 4595
c713216d
MG
4596 *start_pfn = -1UL;
4597 *end_pfn = 0;
4598
c13291a5
TH
4599 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4600 *start_pfn = min(*start_pfn, this_start_pfn);
4601 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4602 }
4603
633c0666 4604 if (*start_pfn == -1UL)
c713216d 4605 *start_pfn = 0;
c713216d
MG
4606}
4607
2a1e274a
MG
4608/*
4609 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4610 * assumption is made that zones within a node are ordered in monotonic
4611 * increasing memory addresses so that the "highest" populated zone is used
4612 */
b69a7288 4613static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4614{
4615 int zone_index;
4616 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4617 if (zone_index == ZONE_MOVABLE)
4618 continue;
4619
4620 if (arch_zone_highest_possible_pfn[zone_index] >
4621 arch_zone_lowest_possible_pfn[zone_index])
4622 break;
4623 }
4624
4625 VM_BUG_ON(zone_index == -1);
4626 movable_zone = zone_index;
4627}
4628
4629/*
4630 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4631 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4632 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4633 * in each node depending on the size of each node and how evenly kernelcore
4634 * is distributed. This helper function adjusts the zone ranges
4635 * provided by the architecture for a given node by using the end of the
4636 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4637 * zones within a node are in order of monotonic increases memory addresses
4638 */
b69a7288 4639static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4640 unsigned long zone_type,
4641 unsigned long node_start_pfn,
4642 unsigned long node_end_pfn,
4643 unsigned long *zone_start_pfn,
4644 unsigned long *zone_end_pfn)
4645{
4646 /* Only adjust if ZONE_MOVABLE is on this node */
4647 if (zone_movable_pfn[nid]) {
4648 /* Size ZONE_MOVABLE */
4649 if (zone_type == ZONE_MOVABLE) {
4650 *zone_start_pfn = zone_movable_pfn[nid];
4651 *zone_end_pfn = min(node_end_pfn,
4652 arch_zone_highest_possible_pfn[movable_zone]);
4653
4654 /* Adjust for ZONE_MOVABLE starting within this range */
4655 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4656 *zone_end_pfn > zone_movable_pfn[nid]) {
4657 *zone_end_pfn = zone_movable_pfn[nid];
4658
4659 /* Check if this whole range is within ZONE_MOVABLE */
4660 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4661 *zone_start_pfn = *zone_end_pfn;
4662 }
4663}
4664
c713216d
MG
4665/*
4666 * Return the number of pages a zone spans in a node, including holes
4667 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4668 */
6ea6e688 4669static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4670 unsigned long zone_type,
7960aedd
ZY
4671 unsigned long node_start_pfn,
4672 unsigned long node_end_pfn,
c713216d
MG
4673 unsigned long *ignored)
4674{
c713216d
MG
4675 unsigned long zone_start_pfn, zone_end_pfn;
4676
7960aedd 4677 /* Get the start and end of the zone */
c713216d
MG
4678 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4679 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4680 adjust_zone_range_for_zone_movable(nid, zone_type,
4681 node_start_pfn, node_end_pfn,
4682 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4683
4684 /* Check that this node has pages within the zone's required range */
4685 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4686 return 0;
4687
4688 /* Move the zone boundaries inside the node if necessary */
4689 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4690 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4691
4692 /* Return the spanned pages */
4693 return zone_end_pfn - zone_start_pfn;
4694}
4695
4696/*
4697 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4698 * then all holes in the requested range will be accounted for.
c713216d 4699 */
32996250 4700unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4701 unsigned long range_start_pfn,
4702 unsigned long range_end_pfn)
4703{
96e907d1
TH
4704 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4705 unsigned long start_pfn, end_pfn;
4706 int i;
c713216d 4707
96e907d1
TH
4708 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4709 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4710 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4711 nr_absent -= end_pfn - start_pfn;
c713216d 4712 }
96e907d1 4713 return nr_absent;
c713216d
MG
4714}
4715
4716/**
4717 * absent_pages_in_range - Return number of page frames in holes within a range
4718 * @start_pfn: The start PFN to start searching for holes
4719 * @end_pfn: The end PFN to stop searching for holes
4720 *
88ca3b94 4721 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4722 */
4723unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4724 unsigned long end_pfn)
4725{
4726 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4727}
4728
4729/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4730static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4731 unsigned long zone_type,
7960aedd
ZY
4732 unsigned long node_start_pfn,
4733 unsigned long node_end_pfn,
c713216d
MG
4734 unsigned long *ignored)
4735{
96e907d1
TH
4736 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4737 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4738 unsigned long zone_start_pfn, zone_end_pfn;
4739
96e907d1
TH
4740 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4741 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4742
2a1e274a
MG
4743 adjust_zone_range_for_zone_movable(nid, zone_type,
4744 node_start_pfn, node_end_pfn,
4745 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4746 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4747}
0e0b864e 4748
0ee332c1 4749#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4750static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4751 unsigned long zone_type,
7960aedd
ZY
4752 unsigned long node_start_pfn,
4753 unsigned long node_end_pfn,
c713216d
MG
4754 unsigned long *zones_size)
4755{
4756 return zones_size[zone_type];
4757}
4758
6ea6e688 4759static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4760 unsigned long zone_type,
7960aedd
ZY
4761 unsigned long node_start_pfn,
4762 unsigned long node_end_pfn,
c713216d
MG
4763 unsigned long *zholes_size)
4764{
4765 if (!zholes_size)
4766 return 0;
4767
4768 return zholes_size[zone_type];
4769}
20e6926d 4770
0ee332c1 4771#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4772
a3142c8e 4773static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4774 unsigned long node_start_pfn,
4775 unsigned long node_end_pfn,
4776 unsigned long *zones_size,
4777 unsigned long *zholes_size)
c713216d
MG
4778{
4779 unsigned long realtotalpages, totalpages = 0;
4780 enum zone_type i;
4781
4782 for (i = 0; i < MAX_NR_ZONES; i++)
4783 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4784 node_start_pfn,
4785 node_end_pfn,
4786 zones_size);
c713216d
MG
4787 pgdat->node_spanned_pages = totalpages;
4788
4789 realtotalpages = totalpages;
4790 for (i = 0; i < MAX_NR_ZONES; i++)
4791 realtotalpages -=
4792 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4793 node_start_pfn, node_end_pfn,
4794 zholes_size);
c713216d
MG
4795 pgdat->node_present_pages = realtotalpages;
4796 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4797 realtotalpages);
4798}
4799
835c134e
MG
4800#ifndef CONFIG_SPARSEMEM
4801/*
4802 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4803 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4804 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4805 * round what is now in bits to nearest long in bits, then return it in
4806 * bytes.
4807 */
7c45512d 4808static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4809{
4810 unsigned long usemapsize;
4811
7c45512d 4812 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4813 usemapsize = roundup(zonesize, pageblock_nr_pages);
4814 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4815 usemapsize *= NR_PAGEBLOCK_BITS;
4816 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4817
4818 return usemapsize / 8;
4819}
4820
4821static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4822 struct zone *zone,
4823 unsigned long zone_start_pfn,
4824 unsigned long zonesize)
835c134e 4825{
7c45512d 4826 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4827 zone->pageblock_flags = NULL;
58a01a45 4828 if (usemapsize)
6782832e
SS
4829 zone->pageblock_flags =
4830 memblock_virt_alloc_node_nopanic(usemapsize,
4831 pgdat->node_id);
835c134e
MG
4832}
4833#else
7c45512d
LT
4834static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4835 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4836#endif /* CONFIG_SPARSEMEM */
4837
d9c23400 4838#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4839
d9c23400 4840/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4841void __paginginit set_pageblock_order(void)
d9c23400 4842{
955c1cd7
AM
4843 unsigned int order;
4844
d9c23400
MG
4845 /* Check that pageblock_nr_pages has not already been setup */
4846 if (pageblock_order)
4847 return;
4848
955c1cd7
AM
4849 if (HPAGE_SHIFT > PAGE_SHIFT)
4850 order = HUGETLB_PAGE_ORDER;
4851 else
4852 order = MAX_ORDER - 1;
4853
d9c23400
MG
4854 /*
4855 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4856 * This value may be variable depending on boot parameters on IA64 and
4857 * powerpc.
d9c23400
MG
4858 */
4859 pageblock_order = order;
4860}
4861#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4862
ba72cb8c
MG
4863/*
4864 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4865 * is unused as pageblock_order is set at compile-time. See
4866 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4867 * the kernel config
ba72cb8c 4868 */
15ca220e 4869void __paginginit set_pageblock_order(void)
ba72cb8c 4870{
ba72cb8c 4871}
d9c23400
MG
4872
4873#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4874
01cefaef
JL
4875static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4876 unsigned long present_pages)
4877{
4878 unsigned long pages = spanned_pages;
4879
4880 /*
4881 * Provide a more accurate estimation if there are holes within
4882 * the zone and SPARSEMEM is in use. If there are holes within the
4883 * zone, each populated memory region may cost us one or two extra
4884 * memmap pages due to alignment because memmap pages for each
4885 * populated regions may not naturally algined on page boundary.
4886 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4887 */
4888 if (spanned_pages > present_pages + (present_pages >> 4) &&
4889 IS_ENABLED(CONFIG_SPARSEMEM))
4890 pages = present_pages;
4891
4892 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4893}
4894
1da177e4
LT
4895/*
4896 * Set up the zone data structures:
4897 * - mark all pages reserved
4898 * - mark all memory queues empty
4899 * - clear the memory bitmaps
6527af5d
MK
4900 *
4901 * NOTE: pgdat should get zeroed by caller.
1da177e4 4902 */
b5a0e011 4903static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4904 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4905 unsigned long *zones_size, unsigned long *zholes_size)
4906{
2f1b6248 4907 enum zone_type j;
ed8ece2e 4908 int nid = pgdat->node_id;
1da177e4 4909 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4910 int ret;
1da177e4 4911
208d54e5 4912 pgdat_resize_init(pgdat);
8177a420
AA
4913#ifdef CONFIG_NUMA_BALANCING
4914 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4915 pgdat->numabalancing_migrate_nr_pages = 0;
4916 pgdat->numabalancing_migrate_next_window = jiffies;
4917#endif
1da177e4 4918 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4919 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 4920 pgdat_page_ext_init(pgdat);
5f63b720 4921
1da177e4
LT
4922 for (j = 0; j < MAX_NR_ZONES; j++) {
4923 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4924 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4925
7960aedd
ZY
4926 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4927 node_end_pfn, zones_size);
9feedc9d 4928 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4929 node_start_pfn,
4930 node_end_pfn,
c713216d 4931 zholes_size);
1da177e4 4932
0e0b864e 4933 /*
9feedc9d 4934 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4935 * is used by this zone for memmap. This affects the watermark
4936 * and per-cpu initialisations
4937 */
01cefaef 4938 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
4939 if (!is_highmem_idx(j)) {
4940 if (freesize >= memmap_pages) {
4941 freesize -= memmap_pages;
4942 if (memmap_pages)
4943 printk(KERN_DEBUG
4944 " %s zone: %lu pages used for memmap\n",
4945 zone_names[j], memmap_pages);
4946 } else
4947 printk(KERN_WARNING
4948 " %s zone: %lu pages exceeds freesize %lu\n",
4949 zone_names[j], memmap_pages, freesize);
4950 }
0e0b864e 4951
6267276f 4952 /* Account for reserved pages */
9feedc9d
JL
4953 if (j == 0 && freesize > dma_reserve) {
4954 freesize -= dma_reserve;
d903ef9f 4955 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4956 zone_names[0], dma_reserve);
0e0b864e
MG
4957 }
4958
98d2b0eb 4959 if (!is_highmem_idx(j))
9feedc9d 4960 nr_kernel_pages += freesize;
01cefaef
JL
4961 /* Charge for highmem memmap if there are enough kernel pages */
4962 else if (nr_kernel_pages > memmap_pages * 2)
4963 nr_kernel_pages -= memmap_pages;
9feedc9d 4964 nr_all_pages += freesize;
1da177e4
LT
4965
4966 zone->spanned_pages = size;
306f2e9e 4967 zone->present_pages = realsize;
9feedc9d
JL
4968 /*
4969 * Set an approximate value for lowmem here, it will be adjusted
4970 * when the bootmem allocator frees pages into the buddy system.
4971 * And all highmem pages will be managed by the buddy system.
4972 */
4973 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4974#ifdef CONFIG_NUMA
d5f541ed 4975 zone->node = nid;
9feedc9d 4976 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4977 / 100;
9feedc9d 4978 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4979#endif
1da177e4
LT
4980 zone->name = zone_names[j];
4981 spin_lock_init(&zone->lock);
4982 spin_lock_init(&zone->lru_lock);
bdc8cb98 4983 zone_seqlock_init(zone);
1da177e4 4984 zone->zone_pgdat = pgdat;
ed8ece2e 4985 zone_pcp_init(zone);
81c0a2bb
JW
4986
4987 /* For bootup, initialized properly in watermark setup */
4988 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4989
bea8c150 4990 lruvec_init(&zone->lruvec);
1da177e4
LT
4991 if (!size)
4992 continue;
4993
955c1cd7 4994 set_pageblock_order();
7c45512d 4995 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4996 ret = init_currently_empty_zone(zone, zone_start_pfn,
4997 size, MEMMAP_EARLY);
718127cc 4998 BUG_ON(ret);
76cdd58e 4999 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5000 zone_start_pfn += size;
1da177e4
LT
5001 }
5002}
5003
577a32f6 5004static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5005{
1da177e4
LT
5006 /* Skip empty nodes */
5007 if (!pgdat->node_spanned_pages)
5008 return;
5009
d41dee36 5010#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
5011 /* ia64 gets its own node_mem_map, before this, without bootmem */
5012 if (!pgdat->node_mem_map) {
e984bb43 5013 unsigned long size, start, end;
d41dee36
AW
5014 struct page *map;
5015
e984bb43
BP
5016 /*
5017 * The zone's endpoints aren't required to be MAX_ORDER
5018 * aligned but the node_mem_map endpoints must be in order
5019 * for the buddy allocator to function correctly.
5020 */
5021 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 5022 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5023 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5024 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5025 map = alloc_remap(pgdat->node_id, size);
5026 if (!map)
6782832e
SS
5027 map = memblock_virt_alloc_node_nopanic(size,
5028 pgdat->node_id);
e984bb43 5029 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 5030 }
12d810c1 5031#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5032 /*
5033 * With no DISCONTIG, the global mem_map is just set as node 0's
5034 */
c713216d 5035 if (pgdat == NODE_DATA(0)) {
1da177e4 5036 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 5037#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5038 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 5039 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 5040#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5041 }
1da177e4 5042#endif
d41dee36 5043#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5044}
5045
9109fb7b
JW
5046void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5047 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5048{
9109fb7b 5049 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5050 unsigned long start_pfn = 0;
5051 unsigned long end_pfn = 0;
9109fb7b 5052
88fdf75d 5053 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5054 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5055
1da177e4
LT
5056 pgdat->node_id = nid;
5057 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5058#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5059 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a
JG
5060 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5061 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5062#endif
5063 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5064 zones_size, zholes_size);
1da177e4
LT
5065
5066 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5067#ifdef CONFIG_FLAT_NODE_MEM_MAP
5068 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5069 nid, (unsigned long)pgdat,
5070 (unsigned long)pgdat->node_mem_map);
5071#endif
1da177e4 5072
7960aedd
ZY
5073 free_area_init_core(pgdat, start_pfn, end_pfn,
5074 zones_size, zholes_size);
1da177e4
LT
5075}
5076
0ee332c1 5077#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5078
5079#if MAX_NUMNODES > 1
5080/*
5081 * Figure out the number of possible node ids.
5082 */
f9872caf 5083void __init setup_nr_node_ids(void)
418508c1
MS
5084{
5085 unsigned int node;
5086 unsigned int highest = 0;
5087
5088 for_each_node_mask(node, node_possible_map)
5089 highest = node;
5090 nr_node_ids = highest + 1;
5091}
418508c1
MS
5092#endif
5093
1e01979c
TH
5094/**
5095 * node_map_pfn_alignment - determine the maximum internode alignment
5096 *
5097 * This function should be called after node map is populated and sorted.
5098 * It calculates the maximum power of two alignment which can distinguish
5099 * all the nodes.
5100 *
5101 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5102 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5103 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5104 * shifted, 1GiB is enough and this function will indicate so.
5105 *
5106 * This is used to test whether pfn -> nid mapping of the chosen memory
5107 * model has fine enough granularity to avoid incorrect mapping for the
5108 * populated node map.
5109 *
5110 * Returns the determined alignment in pfn's. 0 if there is no alignment
5111 * requirement (single node).
5112 */
5113unsigned long __init node_map_pfn_alignment(void)
5114{
5115 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5116 unsigned long start, end, mask;
1e01979c 5117 int last_nid = -1;
c13291a5 5118 int i, nid;
1e01979c 5119
c13291a5 5120 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5121 if (!start || last_nid < 0 || last_nid == nid) {
5122 last_nid = nid;
5123 last_end = end;
5124 continue;
5125 }
5126
5127 /*
5128 * Start with a mask granular enough to pin-point to the
5129 * start pfn and tick off bits one-by-one until it becomes
5130 * too coarse to separate the current node from the last.
5131 */
5132 mask = ~((1 << __ffs(start)) - 1);
5133 while (mask && last_end <= (start & (mask << 1)))
5134 mask <<= 1;
5135
5136 /* accumulate all internode masks */
5137 accl_mask |= mask;
5138 }
5139
5140 /* convert mask to number of pages */
5141 return ~accl_mask + 1;
5142}
5143
a6af2bc3 5144/* Find the lowest pfn for a node */
b69a7288 5145static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5146{
a6af2bc3 5147 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5148 unsigned long start_pfn;
5149 int i;
1abbfb41 5150
c13291a5
TH
5151 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5152 min_pfn = min(min_pfn, start_pfn);
c713216d 5153
a6af2bc3
MG
5154 if (min_pfn == ULONG_MAX) {
5155 printk(KERN_WARNING
2bc0d261 5156 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5157 return 0;
5158 }
5159
5160 return min_pfn;
c713216d
MG
5161}
5162
5163/**
5164 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5165 *
5166 * It returns the minimum PFN based on information provided via
7d018176 5167 * memblock_set_node().
c713216d
MG
5168 */
5169unsigned long __init find_min_pfn_with_active_regions(void)
5170{
5171 return find_min_pfn_for_node(MAX_NUMNODES);
5172}
5173
37b07e41
LS
5174/*
5175 * early_calculate_totalpages()
5176 * Sum pages in active regions for movable zone.
4b0ef1fe 5177 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5178 */
484f51f8 5179static unsigned long __init early_calculate_totalpages(void)
7e63efef 5180{
7e63efef 5181 unsigned long totalpages = 0;
c13291a5
TH
5182 unsigned long start_pfn, end_pfn;
5183 int i, nid;
5184
5185 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5186 unsigned long pages = end_pfn - start_pfn;
7e63efef 5187
37b07e41
LS
5188 totalpages += pages;
5189 if (pages)
4b0ef1fe 5190 node_set_state(nid, N_MEMORY);
37b07e41 5191 }
b8af2941 5192 return totalpages;
7e63efef
MG
5193}
5194
2a1e274a
MG
5195/*
5196 * Find the PFN the Movable zone begins in each node. Kernel memory
5197 * is spread evenly between nodes as long as the nodes have enough
5198 * memory. When they don't, some nodes will have more kernelcore than
5199 * others
5200 */
b224ef85 5201static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5202{
5203 int i, nid;
5204 unsigned long usable_startpfn;
5205 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5206 /* save the state before borrow the nodemask */
4b0ef1fe 5207 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5208 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5209 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5210 struct memblock_region *r;
b2f3eebe
TC
5211
5212 /* Need to find movable_zone earlier when movable_node is specified. */
5213 find_usable_zone_for_movable();
5214
5215 /*
5216 * If movable_node is specified, ignore kernelcore and movablecore
5217 * options.
5218 */
5219 if (movable_node_is_enabled()) {
136199f0
EM
5220 for_each_memblock(memory, r) {
5221 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5222 continue;
5223
136199f0 5224 nid = r->nid;
b2f3eebe 5225
136199f0 5226 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5227 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5228 min(usable_startpfn, zone_movable_pfn[nid]) :
5229 usable_startpfn;
5230 }
5231
5232 goto out2;
5233 }
2a1e274a 5234
7e63efef 5235 /*
b2f3eebe 5236 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5237 * kernelcore that corresponds so that memory usable for
5238 * any allocation type is evenly spread. If both kernelcore
5239 * and movablecore are specified, then the value of kernelcore
5240 * will be used for required_kernelcore if it's greater than
5241 * what movablecore would have allowed.
5242 */
5243 if (required_movablecore) {
7e63efef
MG
5244 unsigned long corepages;
5245
5246 /*
5247 * Round-up so that ZONE_MOVABLE is at least as large as what
5248 * was requested by the user
5249 */
5250 required_movablecore =
5251 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5252 corepages = totalpages - required_movablecore;
5253
5254 required_kernelcore = max(required_kernelcore, corepages);
5255 }
5256
20e6926d
YL
5257 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5258 if (!required_kernelcore)
66918dcd 5259 goto out;
2a1e274a
MG
5260
5261 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5262 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5263
5264restart:
5265 /* Spread kernelcore memory as evenly as possible throughout nodes */
5266 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5267 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5268 unsigned long start_pfn, end_pfn;
5269
2a1e274a
MG
5270 /*
5271 * Recalculate kernelcore_node if the division per node
5272 * now exceeds what is necessary to satisfy the requested
5273 * amount of memory for the kernel
5274 */
5275 if (required_kernelcore < kernelcore_node)
5276 kernelcore_node = required_kernelcore / usable_nodes;
5277
5278 /*
5279 * As the map is walked, we track how much memory is usable
5280 * by the kernel using kernelcore_remaining. When it is
5281 * 0, the rest of the node is usable by ZONE_MOVABLE
5282 */
5283 kernelcore_remaining = kernelcore_node;
5284
5285 /* Go through each range of PFNs within this node */
c13291a5 5286 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5287 unsigned long size_pages;
5288
c13291a5 5289 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5290 if (start_pfn >= end_pfn)
5291 continue;
5292
5293 /* Account for what is only usable for kernelcore */
5294 if (start_pfn < usable_startpfn) {
5295 unsigned long kernel_pages;
5296 kernel_pages = min(end_pfn, usable_startpfn)
5297 - start_pfn;
5298
5299 kernelcore_remaining -= min(kernel_pages,
5300 kernelcore_remaining);
5301 required_kernelcore -= min(kernel_pages,
5302 required_kernelcore);
5303
5304 /* Continue if range is now fully accounted */
5305 if (end_pfn <= usable_startpfn) {
5306
5307 /*
5308 * Push zone_movable_pfn to the end so
5309 * that if we have to rebalance
5310 * kernelcore across nodes, we will
5311 * not double account here
5312 */
5313 zone_movable_pfn[nid] = end_pfn;
5314 continue;
5315 }
5316 start_pfn = usable_startpfn;
5317 }
5318
5319 /*
5320 * The usable PFN range for ZONE_MOVABLE is from
5321 * start_pfn->end_pfn. Calculate size_pages as the
5322 * number of pages used as kernelcore
5323 */
5324 size_pages = end_pfn - start_pfn;
5325 if (size_pages > kernelcore_remaining)
5326 size_pages = kernelcore_remaining;
5327 zone_movable_pfn[nid] = start_pfn + size_pages;
5328
5329 /*
5330 * Some kernelcore has been met, update counts and
5331 * break if the kernelcore for this node has been
b8af2941 5332 * satisfied
2a1e274a
MG
5333 */
5334 required_kernelcore -= min(required_kernelcore,
5335 size_pages);
5336 kernelcore_remaining -= size_pages;
5337 if (!kernelcore_remaining)
5338 break;
5339 }
5340 }
5341
5342 /*
5343 * If there is still required_kernelcore, we do another pass with one
5344 * less node in the count. This will push zone_movable_pfn[nid] further
5345 * along on the nodes that still have memory until kernelcore is
b8af2941 5346 * satisfied
2a1e274a
MG
5347 */
5348 usable_nodes--;
5349 if (usable_nodes && required_kernelcore > usable_nodes)
5350 goto restart;
5351
b2f3eebe 5352out2:
2a1e274a
MG
5353 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5354 for (nid = 0; nid < MAX_NUMNODES; nid++)
5355 zone_movable_pfn[nid] =
5356 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5357
20e6926d 5358out:
66918dcd 5359 /* restore the node_state */
4b0ef1fe 5360 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5361}
5362
4b0ef1fe
LJ
5363/* Any regular or high memory on that node ? */
5364static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5365{
37b07e41
LS
5366 enum zone_type zone_type;
5367
4b0ef1fe
LJ
5368 if (N_MEMORY == N_NORMAL_MEMORY)
5369 return;
5370
5371 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5372 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5373 if (populated_zone(zone)) {
4b0ef1fe
LJ
5374 node_set_state(nid, N_HIGH_MEMORY);
5375 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5376 zone_type <= ZONE_NORMAL)
5377 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5378 break;
5379 }
37b07e41 5380 }
37b07e41
LS
5381}
5382
c713216d
MG
5383/**
5384 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5385 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5386 *
5387 * This will call free_area_init_node() for each active node in the system.
7d018176 5388 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5389 * zone in each node and their holes is calculated. If the maximum PFN
5390 * between two adjacent zones match, it is assumed that the zone is empty.
5391 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5392 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5393 * starts where the previous one ended. For example, ZONE_DMA32 starts
5394 * at arch_max_dma_pfn.
5395 */
5396void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5397{
c13291a5
TH
5398 unsigned long start_pfn, end_pfn;
5399 int i, nid;
a6af2bc3 5400
c713216d
MG
5401 /* Record where the zone boundaries are */
5402 memset(arch_zone_lowest_possible_pfn, 0,
5403 sizeof(arch_zone_lowest_possible_pfn));
5404 memset(arch_zone_highest_possible_pfn, 0,
5405 sizeof(arch_zone_highest_possible_pfn));
5406 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5407 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5408 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5409 if (i == ZONE_MOVABLE)
5410 continue;
c713216d
MG
5411 arch_zone_lowest_possible_pfn[i] =
5412 arch_zone_highest_possible_pfn[i-1];
5413 arch_zone_highest_possible_pfn[i] =
5414 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5415 }
2a1e274a
MG
5416 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5417 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5418
5419 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5420 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5421 find_zone_movable_pfns_for_nodes();
c713216d 5422
c713216d 5423 /* Print out the zone ranges */
f88dfff5 5424 pr_info("Zone ranges:\n");
2a1e274a
MG
5425 for (i = 0; i < MAX_NR_ZONES; i++) {
5426 if (i == ZONE_MOVABLE)
5427 continue;
f88dfff5 5428 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5429 if (arch_zone_lowest_possible_pfn[i] ==
5430 arch_zone_highest_possible_pfn[i])
f88dfff5 5431 pr_cont("empty\n");
72f0ba02 5432 else
8d29e18a
JG
5433 pr_cont("[mem %#018Lx-%#018Lx]\n",
5434 (u64)arch_zone_lowest_possible_pfn[i]
5435 << PAGE_SHIFT,
5436 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5437 << PAGE_SHIFT) - 1);
2a1e274a
MG
5438 }
5439
5440 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5441 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5442 for (i = 0; i < MAX_NUMNODES; i++) {
5443 if (zone_movable_pfn[i])
8d29e18a
JG
5444 pr_info(" Node %d: %#018Lx\n", i,
5445 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5446 }
c713216d 5447
f2d52fe5 5448 /* Print out the early node map */
f88dfff5 5449 pr_info("Early memory node ranges\n");
c13291a5 5450 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5451 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5452 (u64)start_pfn << PAGE_SHIFT,
5453 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5454
5455 /* Initialise every node */
708614e6 5456 mminit_verify_pageflags_layout();
8ef82866 5457 setup_nr_node_ids();
c713216d
MG
5458 for_each_online_node(nid) {
5459 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5460 free_area_init_node(nid, NULL,
c713216d 5461 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5462
5463 /* Any memory on that node */
5464 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5465 node_set_state(nid, N_MEMORY);
5466 check_for_memory(pgdat, nid);
c713216d
MG
5467 }
5468}
2a1e274a 5469
7e63efef 5470static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5471{
5472 unsigned long long coremem;
5473 if (!p)
5474 return -EINVAL;
5475
5476 coremem = memparse(p, &p);
7e63efef 5477 *core = coremem >> PAGE_SHIFT;
2a1e274a 5478
7e63efef 5479 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5480 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5481
5482 return 0;
5483}
ed7ed365 5484
7e63efef
MG
5485/*
5486 * kernelcore=size sets the amount of memory for use for allocations that
5487 * cannot be reclaimed or migrated.
5488 */
5489static int __init cmdline_parse_kernelcore(char *p)
5490{
5491 return cmdline_parse_core(p, &required_kernelcore);
5492}
5493
5494/*
5495 * movablecore=size sets the amount of memory for use for allocations that
5496 * can be reclaimed or migrated.
5497 */
5498static int __init cmdline_parse_movablecore(char *p)
5499{
5500 return cmdline_parse_core(p, &required_movablecore);
5501}
5502
ed7ed365 5503early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5504early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5505
0ee332c1 5506#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5507
c3d5f5f0
JL
5508void adjust_managed_page_count(struct page *page, long count)
5509{
5510 spin_lock(&managed_page_count_lock);
5511 page_zone(page)->managed_pages += count;
5512 totalram_pages += count;
3dcc0571
JL
5513#ifdef CONFIG_HIGHMEM
5514 if (PageHighMem(page))
5515 totalhigh_pages += count;
5516#endif
c3d5f5f0
JL
5517 spin_unlock(&managed_page_count_lock);
5518}
3dcc0571 5519EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5520
11199692 5521unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5522{
11199692
JL
5523 void *pos;
5524 unsigned long pages = 0;
69afade7 5525
11199692
JL
5526 start = (void *)PAGE_ALIGN((unsigned long)start);
5527 end = (void *)((unsigned long)end & PAGE_MASK);
5528 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5529 if ((unsigned int)poison <= 0xFF)
11199692
JL
5530 memset(pos, poison, PAGE_SIZE);
5531 free_reserved_page(virt_to_page(pos));
69afade7
JL
5532 }
5533
5534 if (pages && s)
11199692 5535 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5536 s, pages << (PAGE_SHIFT - 10), start, end);
5537
5538 return pages;
5539}
11199692 5540EXPORT_SYMBOL(free_reserved_area);
69afade7 5541
cfa11e08
JL
5542#ifdef CONFIG_HIGHMEM
5543void free_highmem_page(struct page *page)
5544{
5545 __free_reserved_page(page);
5546 totalram_pages++;
7b4b2a0d 5547 page_zone(page)->managed_pages++;
cfa11e08
JL
5548 totalhigh_pages++;
5549}
5550#endif
5551
7ee3d4e8
JL
5552
5553void __init mem_init_print_info(const char *str)
5554{
5555 unsigned long physpages, codesize, datasize, rosize, bss_size;
5556 unsigned long init_code_size, init_data_size;
5557
5558 physpages = get_num_physpages();
5559 codesize = _etext - _stext;
5560 datasize = _edata - _sdata;
5561 rosize = __end_rodata - __start_rodata;
5562 bss_size = __bss_stop - __bss_start;
5563 init_data_size = __init_end - __init_begin;
5564 init_code_size = _einittext - _sinittext;
5565
5566 /*
5567 * Detect special cases and adjust section sizes accordingly:
5568 * 1) .init.* may be embedded into .data sections
5569 * 2) .init.text.* may be out of [__init_begin, __init_end],
5570 * please refer to arch/tile/kernel/vmlinux.lds.S.
5571 * 3) .rodata.* may be embedded into .text or .data sections.
5572 */
5573#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5574 do { \
5575 if (start <= pos && pos < end && size > adj) \
5576 size -= adj; \
5577 } while (0)
7ee3d4e8
JL
5578
5579 adj_init_size(__init_begin, __init_end, init_data_size,
5580 _sinittext, init_code_size);
5581 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5582 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5583 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5584 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5585
5586#undef adj_init_size
5587
f88dfff5 5588 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5589 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5590 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5591#ifdef CONFIG_HIGHMEM
5592 ", %luK highmem"
5593#endif
5594 "%s%s)\n",
5595 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5596 codesize >> 10, datasize >> 10, rosize >> 10,
5597 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5598 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5599 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5600#ifdef CONFIG_HIGHMEM
5601 totalhigh_pages << (PAGE_SHIFT-10),
5602#endif
5603 str ? ", " : "", str ? str : "");
5604}
5605
0e0b864e 5606/**
88ca3b94
RD
5607 * set_dma_reserve - set the specified number of pages reserved in the first zone
5608 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5609 *
5610 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5611 * In the DMA zone, a significant percentage may be consumed by kernel image
5612 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5613 * function may optionally be used to account for unfreeable pages in the
5614 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5615 * smaller per-cpu batchsize.
0e0b864e
MG
5616 */
5617void __init set_dma_reserve(unsigned long new_dma_reserve)
5618{
5619 dma_reserve = new_dma_reserve;
5620}
5621
1da177e4
LT
5622void __init free_area_init(unsigned long *zones_size)
5623{
9109fb7b 5624 free_area_init_node(0, zones_size,
1da177e4
LT
5625 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5626}
1da177e4 5627
1da177e4
LT
5628static int page_alloc_cpu_notify(struct notifier_block *self,
5629 unsigned long action, void *hcpu)
5630{
5631 int cpu = (unsigned long)hcpu;
1da177e4 5632
8bb78442 5633 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5634 lru_add_drain_cpu(cpu);
9f8f2172
CL
5635 drain_pages(cpu);
5636
5637 /*
5638 * Spill the event counters of the dead processor
5639 * into the current processors event counters.
5640 * This artificially elevates the count of the current
5641 * processor.
5642 */
f8891e5e 5643 vm_events_fold_cpu(cpu);
9f8f2172
CL
5644
5645 /*
5646 * Zero the differential counters of the dead processor
5647 * so that the vm statistics are consistent.
5648 *
5649 * This is only okay since the processor is dead and cannot
5650 * race with what we are doing.
5651 */
2bb921e5 5652 cpu_vm_stats_fold(cpu);
1da177e4
LT
5653 }
5654 return NOTIFY_OK;
5655}
1da177e4
LT
5656
5657void __init page_alloc_init(void)
5658{
5659 hotcpu_notifier(page_alloc_cpu_notify, 0);
5660}
5661
cb45b0e9
HA
5662/*
5663 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5664 * or min_free_kbytes changes.
5665 */
5666static void calculate_totalreserve_pages(void)
5667{
5668 struct pglist_data *pgdat;
5669 unsigned long reserve_pages = 0;
2f6726e5 5670 enum zone_type i, j;
cb45b0e9
HA
5671
5672 for_each_online_pgdat(pgdat) {
5673 for (i = 0; i < MAX_NR_ZONES; i++) {
5674 struct zone *zone = pgdat->node_zones + i;
3484b2de 5675 long max = 0;
cb45b0e9
HA
5676
5677 /* Find valid and maximum lowmem_reserve in the zone */
5678 for (j = i; j < MAX_NR_ZONES; j++) {
5679 if (zone->lowmem_reserve[j] > max)
5680 max = zone->lowmem_reserve[j];
5681 }
5682
41858966
MG
5683 /* we treat the high watermark as reserved pages. */
5684 max += high_wmark_pages(zone);
cb45b0e9 5685
b40da049
JL
5686 if (max > zone->managed_pages)
5687 max = zone->managed_pages;
cb45b0e9 5688 reserve_pages += max;
ab8fabd4
JW
5689 /*
5690 * Lowmem reserves are not available to
5691 * GFP_HIGHUSER page cache allocations and
5692 * kswapd tries to balance zones to their high
5693 * watermark. As a result, neither should be
5694 * regarded as dirtyable memory, to prevent a
5695 * situation where reclaim has to clean pages
5696 * in order to balance the zones.
5697 */
5698 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5699 }
5700 }
ab8fabd4 5701 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5702 totalreserve_pages = reserve_pages;
5703}
5704
1da177e4
LT
5705/*
5706 * setup_per_zone_lowmem_reserve - called whenever
5707 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5708 * has a correct pages reserved value, so an adequate number of
5709 * pages are left in the zone after a successful __alloc_pages().
5710 */
5711static void setup_per_zone_lowmem_reserve(void)
5712{
5713 struct pglist_data *pgdat;
2f6726e5 5714 enum zone_type j, idx;
1da177e4 5715
ec936fc5 5716 for_each_online_pgdat(pgdat) {
1da177e4
LT
5717 for (j = 0; j < MAX_NR_ZONES; j++) {
5718 struct zone *zone = pgdat->node_zones + j;
b40da049 5719 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5720
5721 zone->lowmem_reserve[j] = 0;
5722
2f6726e5
CL
5723 idx = j;
5724 while (idx) {
1da177e4
LT
5725 struct zone *lower_zone;
5726
2f6726e5
CL
5727 idx--;
5728
1da177e4
LT
5729 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5730 sysctl_lowmem_reserve_ratio[idx] = 1;
5731
5732 lower_zone = pgdat->node_zones + idx;
b40da049 5733 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5734 sysctl_lowmem_reserve_ratio[idx];
b40da049 5735 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5736 }
5737 }
5738 }
cb45b0e9
HA
5739
5740 /* update totalreserve_pages */
5741 calculate_totalreserve_pages();
1da177e4
LT
5742}
5743
cfd3da1e 5744static void __setup_per_zone_wmarks(void)
1da177e4
LT
5745{
5746 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5747 unsigned long lowmem_pages = 0;
5748 struct zone *zone;
5749 unsigned long flags;
5750
5751 /* Calculate total number of !ZONE_HIGHMEM pages */
5752 for_each_zone(zone) {
5753 if (!is_highmem(zone))
b40da049 5754 lowmem_pages += zone->managed_pages;
1da177e4
LT
5755 }
5756
5757 for_each_zone(zone) {
ac924c60
AM
5758 u64 tmp;
5759
1125b4e3 5760 spin_lock_irqsave(&zone->lock, flags);
b40da049 5761 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5762 do_div(tmp, lowmem_pages);
1da177e4
LT
5763 if (is_highmem(zone)) {
5764 /*
669ed175
NP
5765 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5766 * need highmem pages, so cap pages_min to a small
5767 * value here.
5768 *
41858966 5769 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5770 * deltas controls asynch page reclaim, and so should
5771 * not be capped for highmem.
1da177e4 5772 */
90ae8d67 5773 unsigned long min_pages;
1da177e4 5774
b40da049 5775 min_pages = zone->managed_pages / 1024;
90ae8d67 5776 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5777 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5778 } else {
669ed175
NP
5779 /*
5780 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5781 * proportionate to the zone's size.
5782 */
41858966 5783 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5784 }
5785
41858966
MG
5786 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5787 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5788
81c0a2bb 5789 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
5790 high_wmark_pages(zone) - low_wmark_pages(zone) -
5791 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 5792
56fd56b8 5793 setup_zone_migrate_reserve(zone);
1125b4e3 5794 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5795 }
cb45b0e9
HA
5796
5797 /* update totalreserve_pages */
5798 calculate_totalreserve_pages();
1da177e4
LT
5799}
5800
cfd3da1e
MG
5801/**
5802 * setup_per_zone_wmarks - called when min_free_kbytes changes
5803 * or when memory is hot-{added|removed}
5804 *
5805 * Ensures that the watermark[min,low,high] values for each zone are set
5806 * correctly with respect to min_free_kbytes.
5807 */
5808void setup_per_zone_wmarks(void)
5809{
5810 mutex_lock(&zonelists_mutex);
5811 __setup_per_zone_wmarks();
5812 mutex_unlock(&zonelists_mutex);
5813}
5814
55a4462a 5815/*
556adecb
RR
5816 * The inactive anon list should be small enough that the VM never has to
5817 * do too much work, but large enough that each inactive page has a chance
5818 * to be referenced again before it is swapped out.
5819 *
5820 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5821 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5822 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5823 * the anonymous pages are kept on the inactive list.
5824 *
5825 * total target max
5826 * memory ratio inactive anon
5827 * -------------------------------------
5828 * 10MB 1 5MB
5829 * 100MB 1 50MB
5830 * 1GB 3 250MB
5831 * 10GB 10 0.9GB
5832 * 100GB 31 3GB
5833 * 1TB 101 10GB
5834 * 10TB 320 32GB
5835 */
1b79acc9 5836static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5837{
96cb4df5 5838 unsigned int gb, ratio;
556adecb 5839
96cb4df5 5840 /* Zone size in gigabytes */
b40da049 5841 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5842 if (gb)
556adecb 5843 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5844 else
5845 ratio = 1;
556adecb 5846
96cb4df5
MK
5847 zone->inactive_ratio = ratio;
5848}
556adecb 5849
839a4fcc 5850static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5851{
5852 struct zone *zone;
5853
5854 for_each_zone(zone)
5855 calculate_zone_inactive_ratio(zone);
556adecb
RR
5856}
5857
1da177e4
LT
5858/*
5859 * Initialise min_free_kbytes.
5860 *
5861 * For small machines we want it small (128k min). For large machines
5862 * we want it large (64MB max). But it is not linear, because network
5863 * bandwidth does not increase linearly with machine size. We use
5864 *
b8af2941 5865 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5866 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5867 *
5868 * which yields
5869 *
5870 * 16MB: 512k
5871 * 32MB: 724k
5872 * 64MB: 1024k
5873 * 128MB: 1448k
5874 * 256MB: 2048k
5875 * 512MB: 2896k
5876 * 1024MB: 4096k
5877 * 2048MB: 5792k
5878 * 4096MB: 8192k
5879 * 8192MB: 11584k
5880 * 16384MB: 16384k
5881 */
1b79acc9 5882int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5883{
5884 unsigned long lowmem_kbytes;
5f12733e 5885 int new_min_free_kbytes;
1da177e4
LT
5886
5887 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5888 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5889
5890 if (new_min_free_kbytes > user_min_free_kbytes) {
5891 min_free_kbytes = new_min_free_kbytes;
5892 if (min_free_kbytes < 128)
5893 min_free_kbytes = 128;
5894 if (min_free_kbytes > 65536)
5895 min_free_kbytes = 65536;
5896 } else {
5897 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5898 new_min_free_kbytes, user_min_free_kbytes);
5899 }
bc75d33f 5900 setup_per_zone_wmarks();
a6cccdc3 5901 refresh_zone_stat_thresholds();
1da177e4 5902 setup_per_zone_lowmem_reserve();
556adecb 5903 setup_per_zone_inactive_ratio();
1da177e4
LT
5904 return 0;
5905}
bc75d33f 5906module_init(init_per_zone_wmark_min)
1da177e4
LT
5907
5908/*
b8af2941 5909 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5910 * that we can call two helper functions whenever min_free_kbytes
5911 * changes.
5912 */
cccad5b9 5913int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5914 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5915{
da8c757b
HP
5916 int rc;
5917
5918 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5919 if (rc)
5920 return rc;
5921
5f12733e
MH
5922 if (write) {
5923 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5924 setup_per_zone_wmarks();
5f12733e 5925 }
1da177e4
LT
5926 return 0;
5927}
5928
9614634f 5929#ifdef CONFIG_NUMA
cccad5b9 5930int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5931 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5932{
5933 struct zone *zone;
5934 int rc;
5935
8d65af78 5936 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5937 if (rc)
5938 return rc;
5939
5940 for_each_zone(zone)
b40da049 5941 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5942 sysctl_min_unmapped_ratio) / 100;
5943 return 0;
5944}
0ff38490 5945
cccad5b9 5946int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5947 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5948{
5949 struct zone *zone;
5950 int rc;
5951
8d65af78 5952 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5953 if (rc)
5954 return rc;
5955
5956 for_each_zone(zone)
b40da049 5957 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5958 sysctl_min_slab_ratio) / 100;
5959 return 0;
5960}
9614634f
CL
5961#endif
5962
1da177e4
LT
5963/*
5964 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5965 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5966 * whenever sysctl_lowmem_reserve_ratio changes.
5967 *
5968 * The reserve ratio obviously has absolutely no relation with the
41858966 5969 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5970 * if in function of the boot time zone sizes.
5971 */
cccad5b9 5972int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5973 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5974{
8d65af78 5975 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5976 setup_per_zone_lowmem_reserve();
5977 return 0;
5978}
5979
8ad4b1fb
RS
5980/*
5981 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5982 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5983 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5984 */
cccad5b9 5985int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5986 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5987{
5988 struct zone *zone;
7cd2b0a3 5989 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
5990 int ret;
5991
7cd2b0a3
DR
5992 mutex_lock(&pcp_batch_high_lock);
5993 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5994
8d65af78 5995 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5996 if (!write || ret < 0)
5997 goto out;
5998
5999 /* Sanity checking to avoid pcp imbalance */
6000 if (percpu_pagelist_fraction &&
6001 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6002 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6003 ret = -EINVAL;
6004 goto out;
6005 }
6006
6007 /* No change? */
6008 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6009 goto out;
c8e251fa 6010
364df0eb 6011 for_each_populated_zone(zone) {
7cd2b0a3
DR
6012 unsigned int cpu;
6013
22a7f12b 6014 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6015 pageset_set_high_and_batch(zone,
6016 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6017 }
7cd2b0a3 6018out:
c8e251fa 6019 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6020 return ret;
8ad4b1fb
RS
6021}
6022
f034b5d4 6023int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
6024
6025#ifdef CONFIG_NUMA
6026static int __init set_hashdist(char *str)
6027{
6028 if (!str)
6029 return 0;
6030 hashdist = simple_strtoul(str, &str, 0);
6031 return 1;
6032}
6033__setup("hashdist=", set_hashdist);
6034#endif
6035
6036/*
6037 * allocate a large system hash table from bootmem
6038 * - it is assumed that the hash table must contain an exact power-of-2
6039 * quantity of entries
6040 * - limit is the number of hash buckets, not the total allocation size
6041 */
6042void *__init alloc_large_system_hash(const char *tablename,
6043 unsigned long bucketsize,
6044 unsigned long numentries,
6045 int scale,
6046 int flags,
6047 unsigned int *_hash_shift,
6048 unsigned int *_hash_mask,
31fe62b9
TB
6049 unsigned long low_limit,
6050 unsigned long high_limit)
1da177e4 6051{
31fe62b9 6052 unsigned long long max = high_limit;
1da177e4
LT
6053 unsigned long log2qty, size;
6054 void *table = NULL;
6055
6056 /* allow the kernel cmdline to have a say */
6057 if (!numentries) {
6058 /* round applicable memory size up to nearest megabyte */
04903664 6059 numentries = nr_kernel_pages;
a7e83318
JZ
6060
6061 /* It isn't necessary when PAGE_SIZE >= 1MB */
6062 if (PAGE_SHIFT < 20)
6063 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6064
6065 /* limit to 1 bucket per 2^scale bytes of low memory */
6066 if (scale > PAGE_SHIFT)
6067 numentries >>= (scale - PAGE_SHIFT);
6068 else
6069 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6070
6071 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6072 if (unlikely(flags & HASH_SMALL)) {
6073 /* Makes no sense without HASH_EARLY */
6074 WARN_ON(!(flags & HASH_EARLY));
6075 if (!(numentries >> *_hash_shift)) {
6076 numentries = 1UL << *_hash_shift;
6077 BUG_ON(!numentries);
6078 }
6079 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6080 numentries = PAGE_SIZE / bucketsize;
1da177e4 6081 }
6e692ed3 6082 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6083
6084 /* limit allocation size to 1/16 total memory by default */
6085 if (max == 0) {
6086 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6087 do_div(max, bucketsize);
6088 }
074b8517 6089 max = min(max, 0x80000000ULL);
1da177e4 6090
31fe62b9
TB
6091 if (numentries < low_limit)
6092 numentries = low_limit;
1da177e4
LT
6093 if (numentries > max)
6094 numentries = max;
6095
f0d1b0b3 6096 log2qty = ilog2(numentries);
1da177e4
LT
6097
6098 do {
6099 size = bucketsize << log2qty;
6100 if (flags & HASH_EARLY)
6782832e 6101 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6102 else if (hashdist)
6103 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6104 else {
1037b83b
ED
6105 /*
6106 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6107 * some pages at the end of hash table which
6108 * alloc_pages_exact() automatically does
1037b83b 6109 */
264ef8a9 6110 if (get_order(size) < MAX_ORDER) {
a1dd268c 6111 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6112 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6113 }
1da177e4
LT
6114 }
6115 } while (!table && size > PAGE_SIZE && --log2qty);
6116
6117 if (!table)
6118 panic("Failed to allocate %s hash table\n", tablename);
6119
f241e660 6120 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6121 tablename,
f241e660 6122 (1UL << log2qty),
f0d1b0b3 6123 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6124 size);
6125
6126 if (_hash_shift)
6127 *_hash_shift = log2qty;
6128 if (_hash_mask)
6129 *_hash_mask = (1 << log2qty) - 1;
6130
6131 return table;
6132}
a117e66e 6133
835c134e
MG
6134/* Return a pointer to the bitmap storing bits affecting a block of pages */
6135static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6136 unsigned long pfn)
6137{
6138#ifdef CONFIG_SPARSEMEM
6139 return __pfn_to_section(pfn)->pageblock_flags;
6140#else
6141 return zone->pageblock_flags;
6142#endif /* CONFIG_SPARSEMEM */
6143}
6144
6145static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6146{
6147#ifdef CONFIG_SPARSEMEM
6148 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6149 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6150#else
c060f943 6151 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6152 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6153#endif /* CONFIG_SPARSEMEM */
6154}
6155
6156/**
1aab4d77 6157 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6158 * @page: The page within the block of interest
1aab4d77
RD
6159 * @pfn: The target page frame number
6160 * @end_bitidx: The last bit of interest to retrieve
6161 * @mask: mask of bits that the caller is interested in
6162 *
6163 * Return: pageblock_bits flags
835c134e 6164 */
dc4b0caf 6165unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6166 unsigned long end_bitidx,
6167 unsigned long mask)
835c134e
MG
6168{
6169 struct zone *zone;
6170 unsigned long *bitmap;
dc4b0caf 6171 unsigned long bitidx, word_bitidx;
e58469ba 6172 unsigned long word;
835c134e
MG
6173
6174 zone = page_zone(page);
835c134e
MG
6175 bitmap = get_pageblock_bitmap(zone, pfn);
6176 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6177 word_bitidx = bitidx / BITS_PER_LONG;
6178 bitidx &= (BITS_PER_LONG-1);
835c134e 6179
e58469ba
MG
6180 word = bitmap[word_bitidx];
6181 bitidx += end_bitidx;
6182 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6183}
6184
6185/**
dc4b0caf 6186 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6187 * @page: The page within the block of interest
835c134e 6188 * @flags: The flags to set
1aab4d77
RD
6189 * @pfn: The target page frame number
6190 * @end_bitidx: The last bit of interest
6191 * @mask: mask of bits that the caller is interested in
835c134e 6192 */
dc4b0caf
MG
6193void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6194 unsigned long pfn,
e58469ba
MG
6195 unsigned long end_bitidx,
6196 unsigned long mask)
835c134e
MG
6197{
6198 struct zone *zone;
6199 unsigned long *bitmap;
dc4b0caf 6200 unsigned long bitidx, word_bitidx;
e58469ba
MG
6201 unsigned long old_word, word;
6202
6203 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6204
6205 zone = page_zone(page);
835c134e
MG
6206 bitmap = get_pageblock_bitmap(zone, pfn);
6207 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6208 word_bitidx = bitidx / BITS_PER_LONG;
6209 bitidx &= (BITS_PER_LONG-1);
6210
309381fe 6211 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6212
e58469ba
MG
6213 bitidx += end_bitidx;
6214 mask <<= (BITS_PER_LONG - bitidx - 1);
6215 flags <<= (BITS_PER_LONG - bitidx - 1);
6216
6217 word = ACCESS_ONCE(bitmap[word_bitidx]);
6218 for (;;) {
6219 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6220 if (word == old_word)
6221 break;
6222 word = old_word;
6223 }
835c134e 6224}
a5d76b54
KH
6225
6226/*
80934513
MK
6227 * This function checks whether pageblock includes unmovable pages or not.
6228 * If @count is not zero, it is okay to include less @count unmovable pages
6229 *
b8af2941 6230 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6231 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6232 * expect this function should be exact.
a5d76b54 6233 */
b023f468
WC
6234bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6235 bool skip_hwpoisoned_pages)
49ac8255
KH
6236{
6237 unsigned long pfn, iter, found;
47118af0
MN
6238 int mt;
6239
49ac8255
KH
6240 /*
6241 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6242 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6243 */
6244 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6245 return false;
47118af0
MN
6246 mt = get_pageblock_migratetype(page);
6247 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6248 return false;
49ac8255
KH
6249
6250 pfn = page_to_pfn(page);
6251 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6252 unsigned long check = pfn + iter;
6253
29723fcc 6254 if (!pfn_valid_within(check))
49ac8255 6255 continue;
29723fcc 6256
49ac8255 6257 page = pfn_to_page(check);
c8721bbb
NH
6258
6259 /*
6260 * Hugepages are not in LRU lists, but they're movable.
6261 * We need not scan over tail pages bacause we don't
6262 * handle each tail page individually in migration.
6263 */
6264 if (PageHuge(page)) {
6265 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6266 continue;
6267 }
6268
97d255c8
MK
6269 /*
6270 * We can't use page_count without pin a page
6271 * because another CPU can free compound page.
6272 * This check already skips compound tails of THP
6273 * because their page->_count is zero at all time.
6274 */
6275 if (!atomic_read(&page->_count)) {
49ac8255
KH
6276 if (PageBuddy(page))
6277 iter += (1 << page_order(page)) - 1;
6278 continue;
6279 }
97d255c8 6280
b023f468
WC
6281 /*
6282 * The HWPoisoned page may be not in buddy system, and
6283 * page_count() is not 0.
6284 */
6285 if (skip_hwpoisoned_pages && PageHWPoison(page))
6286 continue;
6287
49ac8255
KH
6288 if (!PageLRU(page))
6289 found++;
6290 /*
6b4f7799
JW
6291 * If there are RECLAIMABLE pages, we need to check
6292 * it. But now, memory offline itself doesn't call
6293 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6294 */
6295 /*
6296 * If the page is not RAM, page_count()should be 0.
6297 * we don't need more check. This is an _used_ not-movable page.
6298 *
6299 * The problematic thing here is PG_reserved pages. PG_reserved
6300 * is set to both of a memory hole page and a _used_ kernel
6301 * page at boot.
6302 */
6303 if (found > count)
80934513 6304 return true;
49ac8255 6305 }
80934513 6306 return false;
49ac8255
KH
6307}
6308
6309bool is_pageblock_removable_nolock(struct page *page)
6310{
656a0706
MH
6311 struct zone *zone;
6312 unsigned long pfn;
687875fb
MH
6313
6314 /*
6315 * We have to be careful here because we are iterating over memory
6316 * sections which are not zone aware so we might end up outside of
6317 * the zone but still within the section.
656a0706
MH
6318 * We have to take care about the node as well. If the node is offline
6319 * its NODE_DATA will be NULL - see page_zone.
687875fb 6320 */
656a0706
MH
6321 if (!node_online(page_to_nid(page)))
6322 return false;
6323
6324 zone = page_zone(page);
6325 pfn = page_to_pfn(page);
108bcc96 6326 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6327 return false;
6328
b023f468 6329 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6330}
0c0e6195 6331
041d3a8c
MN
6332#ifdef CONFIG_CMA
6333
6334static unsigned long pfn_max_align_down(unsigned long pfn)
6335{
6336 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6337 pageblock_nr_pages) - 1);
6338}
6339
6340static unsigned long pfn_max_align_up(unsigned long pfn)
6341{
6342 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6343 pageblock_nr_pages));
6344}
6345
041d3a8c 6346/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6347static int __alloc_contig_migrate_range(struct compact_control *cc,
6348 unsigned long start, unsigned long end)
041d3a8c
MN
6349{
6350 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6351 unsigned long nr_reclaimed;
041d3a8c
MN
6352 unsigned long pfn = start;
6353 unsigned int tries = 0;
6354 int ret = 0;
6355
be49a6e1 6356 migrate_prep();
041d3a8c 6357
bb13ffeb 6358 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6359 if (fatal_signal_pending(current)) {
6360 ret = -EINTR;
6361 break;
6362 }
6363
bb13ffeb
MG
6364 if (list_empty(&cc->migratepages)) {
6365 cc->nr_migratepages = 0;
edc2ca61 6366 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6367 if (!pfn) {
6368 ret = -EINTR;
6369 break;
6370 }
6371 tries = 0;
6372 } else if (++tries == 5) {
6373 ret = ret < 0 ? ret : -EBUSY;
6374 break;
6375 }
6376
beb51eaa
MK
6377 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6378 &cc->migratepages);
6379 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6380
9c620e2b 6381 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6382 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6383 }
2a6f5124
SP
6384 if (ret < 0) {
6385 putback_movable_pages(&cc->migratepages);
6386 return ret;
6387 }
6388 return 0;
041d3a8c
MN
6389}
6390
6391/**
6392 * alloc_contig_range() -- tries to allocate given range of pages
6393 * @start: start PFN to allocate
6394 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6395 * @migratetype: migratetype of the underlaying pageblocks (either
6396 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6397 * in range must have the same migratetype and it must
6398 * be either of the two.
041d3a8c
MN
6399 *
6400 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6401 * aligned, however it's the caller's responsibility to guarantee that
6402 * we are the only thread that changes migrate type of pageblocks the
6403 * pages fall in.
6404 *
6405 * The PFN range must belong to a single zone.
6406 *
6407 * Returns zero on success or negative error code. On success all
6408 * pages which PFN is in [start, end) are allocated for the caller and
6409 * need to be freed with free_contig_range().
6410 */
0815f3d8
MN
6411int alloc_contig_range(unsigned long start, unsigned long end,
6412 unsigned migratetype)
041d3a8c 6413{
041d3a8c
MN
6414 unsigned long outer_start, outer_end;
6415 int ret = 0, order;
6416
bb13ffeb
MG
6417 struct compact_control cc = {
6418 .nr_migratepages = 0,
6419 .order = -1,
6420 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6421 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6422 .ignore_skip_hint = true,
6423 };
6424 INIT_LIST_HEAD(&cc.migratepages);
6425
041d3a8c
MN
6426 /*
6427 * What we do here is we mark all pageblocks in range as
6428 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6429 * have different sizes, and due to the way page allocator
6430 * work, we align the range to biggest of the two pages so
6431 * that page allocator won't try to merge buddies from
6432 * different pageblocks and change MIGRATE_ISOLATE to some
6433 * other migration type.
6434 *
6435 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6436 * migrate the pages from an unaligned range (ie. pages that
6437 * we are interested in). This will put all the pages in
6438 * range back to page allocator as MIGRATE_ISOLATE.
6439 *
6440 * When this is done, we take the pages in range from page
6441 * allocator removing them from the buddy system. This way
6442 * page allocator will never consider using them.
6443 *
6444 * This lets us mark the pageblocks back as
6445 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6446 * aligned range but not in the unaligned, original range are
6447 * put back to page allocator so that buddy can use them.
6448 */
6449
6450 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6451 pfn_max_align_up(end), migratetype,
6452 false);
041d3a8c 6453 if (ret)
86a595f9 6454 return ret;
041d3a8c 6455
bb13ffeb 6456 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6457 if (ret)
6458 goto done;
6459
6460 /*
6461 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6462 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6463 * more, all pages in [start, end) are free in page allocator.
6464 * What we are going to do is to allocate all pages from
6465 * [start, end) (that is remove them from page allocator).
6466 *
6467 * The only problem is that pages at the beginning and at the
6468 * end of interesting range may be not aligned with pages that
6469 * page allocator holds, ie. they can be part of higher order
6470 * pages. Because of this, we reserve the bigger range and
6471 * once this is done free the pages we are not interested in.
6472 *
6473 * We don't have to hold zone->lock here because the pages are
6474 * isolated thus they won't get removed from buddy.
6475 */
6476
6477 lru_add_drain_all();
510f5507 6478 drain_all_pages(cc.zone);
041d3a8c
MN
6479
6480 order = 0;
6481 outer_start = start;
6482 while (!PageBuddy(pfn_to_page(outer_start))) {
6483 if (++order >= MAX_ORDER) {
6484 ret = -EBUSY;
6485 goto done;
6486 }
6487 outer_start &= ~0UL << order;
6488 }
6489
6490 /* Make sure the range is really isolated. */
b023f468 6491 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6492 pr_info("%s: [%lx, %lx) PFNs busy\n",
6493 __func__, outer_start, end);
041d3a8c
MN
6494 ret = -EBUSY;
6495 goto done;
6496 }
6497
49f223a9 6498 /* Grab isolated pages from freelists. */
bb13ffeb 6499 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6500 if (!outer_end) {
6501 ret = -EBUSY;
6502 goto done;
6503 }
6504
6505 /* Free head and tail (if any) */
6506 if (start != outer_start)
6507 free_contig_range(outer_start, start - outer_start);
6508 if (end != outer_end)
6509 free_contig_range(end, outer_end - end);
6510
6511done:
6512 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6513 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6514 return ret;
6515}
6516
6517void free_contig_range(unsigned long pfn, unsigned nr_pages)
6518{
bcc2b02f
MS
6519 unsigned int count = 0;
6520
6521 for (; nr_pages--; pfn++) {
6522 struct page *page = pfn_to_page(pfn);
6523
6524 count += page_count(page) != 1;
6525 __free_page(page);
6526 }
6527 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6528}
6529#endif
6530
4ed7e022 6531#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6532/*
6533 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6534 * page high values need to be recalulated.
6535 */
4ed7e022
JL
6536void __meminit zone_pcp_update(struct zone *zone)
6537{
0a647f38 6538 unsigned cpu;
c8e251fa 6539 mutex_lock(&pcp_batch_high_lock);
0a647f38 6540 for_each_possible_cpu(cpu)
169f6c19
CS
6541 pageset_set_high_and_batch(zone,
6542 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6543 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6544}
6545#endif
6546
340175b7
JL
6547void zone_pcp_reset(struct zone *zone)
6548{
6549 unsigned long flags;
5a883813
MK
6550 int cpu;
6551 struct per_cpu_pageset *pset;
340175b7
JL
6552
6553 /* avoid races with drain_pages() */
6554 local_irq_save(flags);
6555 if (zone->pageset != &boot_pageset) {
5a883813
MK
6556 for_each_online_cpu(cpu) {
6557 pset = per_cpu_ptr(zone->pageset, cpu);
6558 drain_zonestat(zone, pset);
6559 }
340175b7
JL
6560 free_percpu(zone->pageset);
6561 zone->pageset = &boot_pageset;
6562 }
6563 local_irq_restore(flags);
6564}
6565
6dcd73d7 6566#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6567/*
6568 * All pages in the range must be isolated before calling this.
6569 */
6570void
6571__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6572{
6573 struct page *page;
6574 struct zone *zone;
7aeb09f9 6575 unsigned int order, i;
0c0e6195
KH
6576 unsigned long pfn;
6577 unsigned long flags;
6578 /* find the first valid pfn */
6579 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6580 if (pfn_valid(pfn))
6581 break;
6582 if (pfn == end_pfn)
6583 return;
6584 zone = page_zone(pfn_to_page(pfn));
6585 spin_lock_irqsave(&zone->lock, flags);
6586 pfn = start_pfn;
6587 while (pfn < end_pfn) {
6588 if (!pfn_valid(pfn)) {
6589 pfn++;
6590 continue;
6591 }
6592 page = pfn_to_page(pfn);
b023f468
WC
6593 /*
6594 * The HWPoisoned page may be not in buddy system, and
6595 * page_count() is not 0.
6596 */
6597 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6598 pfn++;
6599 SetPageReserved(page);
6600 continue;
6601 }
6602
0c0e6195
KH
6603 BUG_ON(page_count(page));
6604 BUG_ON(!PageBuddy(page));
6605 order = page_order(page);
6606#ifdef CONFIG_DEBUG_VM
6607 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6608 pfn, 1 << order, end_pfn);
6609#endif
6610 list_del(&page->lru);
6611 rmv_page_order(page);
6612 zone->free_area[order].nr_free--;
0c0e6195
KH
6613 for (i = 0; i < (1 << order); i++)
6614 SetPageReserved((page+i));
6615 pfn += (1 << order);
6616 }
6617 spin_unlock_irqrestore(&zone->lock, flags);
6618}
6619#endif
8d22ba1b
WF
6620
6621#ifdef CONFIG_MEMORY_FAILURE
6622bool is_free_buddy_page(struct page *page)
6623{
6624 struct zone *zone = page_zone(page);
6625 unsigned long pfn = page_to_pfn(page);
6626 unsigned long flags;
7aeb09f9 6627 unsigned int order;
8d22ba1b
WF
6628
6629 spin_lock_irqsave(&zone->lock, flags);
6630 for (order = 0; order < MAX_ORDER; order++) {
6631 struct page *page_head = page - (pfn & ((1 << order) - 1));
6632
6633 if (PageBuddy(page_head) && page_order(page_head) >= order)
6634 break;
6635 }
6636 spin_unlock_irqrestore(&zone->lock, flags);
6637
6638 return order < MAX_ORDER;
6639}
6640#endif
This page took 1.486052 seconds and 5 git commands to generate.