x86: extend LEA's segment override warning
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
b3adc24a 2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
c3332e24 47#ifndef INFER_ADDR_PREFIX
eecb386c 48#define INFER_ADDR_PREFIX 1
c3332e24
AM
49#endif
50
29b0f896
AM
51#ifndef DEFAULT_ARCH
52#define DEFAULT_ARCH "i386"
246fcdee 53#endif
252b5132 54
edde18a5
AM
55#ifndef INLINE
56#if __GNUC__ >= 2
57#define INLINE __inline__
58#else
59#define INLINE
60#endif
61#endif
62
6305a203
L
63/* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
68#define WAIT_PREFIX 0
69#define SEG_PREFIX 1
70#define ADDR_PREFIX 2
71#define DATA_PREFIX 3
c32fa91d 72#define REP_PREFIX 4
42164a71 73#define HLE_PREFIX REP_PREFIX
7e8b059b 74#define BND_PREFIX REP_PREFIX
c32fa91d 75#define LOCK_PREFIX 5
4e9ac44a
L
76#define REX_PREFIX 6 /* must come last. */
77#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
78
79/* we define the syntax here (modulo base,index,scale syntax) */
80#define REGISTER_PREFIX '%'
81#define IMMEDIATE_PREFIX '$'
82#define ABSOLUTE_PREFIX '*'
83
84/* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86#define WORD_MNEM_SUFFIX 'w'
87#define BYTE_MNEM_SUFFIX 'b'
88#define SHORT_MNEM_SUFFIX 's'
89#define LONG_MNEM_SUFFIX 'l'
90#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
91/* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93#define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95#define END_OF_INSN '\0'
96
79dec6b7
JB
97/* This matches the C -> StaticRounding alias in the opcode table. */
98#define commutative staticrounding
99
6305a203
L
100/*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107typedef struct
108{
d3ce72d0
NC
109 const insn_template *start;
110 const insn_template *end;
6305a203
L
111}
112templates;
113
114/* 386 operand encoding bytes: see 386 book for details of this. */
115typedef struct
116{
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120}
121modrm_byte;
122
123/* x86-64 extension prefix. */
124typedef int rex_byte;
125
6305a203
L
126/* 386 opcode byte to code indirect addressing. */
127typedef struct
128{
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132}
133sib_byte;
134
6305a203
L
135/* x86 arch names, types and features */
136typedef struct
137{
138 const char *name; /* arch name */
8a2c8fef 139 unsigned int len; /* arch string length */
6305a203
L
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 142 unsigned int skip; /* show_arch should skip this. */
6305a203
L
143}
144arch_entry;
145
293f5f65
L
146/* Used to turn off indicated flags. */
147typedef struct
148{
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152}
153noarch_entry;
154
78f12dd3 155static void update_code_flag (int, int);
e3bb37b5
L
156static void set_code_flag (int);
157static void set_16bit_gcc_code_flag (int);
158static void set_intel_syntax (int);
1efbbeb4 159static void set_intel_mnemonic (int);
db51cc60 160static void set_allow_index_reg (int);
7bab8ab5 161static void set_check (int);
e3bb37b5 162static void set_cpu_arch (int);
6482c264 163#ifdef TE_PE
e3bb37b5 164static void pe_directive_secrel (int);
6482c264 165#endif
e3bb37b5
L
166static void signed_cons (int);
167static char *output_invalid (int c);
ee86248c
JB
168static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
a7619375 172static int i386_att_operand (char *);
e3bb37b5 173static int i386_intel_operand (char *, int);
ee86248c
JB
174static int i386_intel_simplify (expressionS *);
175static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
176static const reg_entry *parse_register (char *, char **);
177static char *parse_insn (char *, char *);
178static char *parse_operands (char *, const char *);
179static void swap_operands (void);
4d456e3d 180static void swap_2_operands (int, int);
48bcea9f 181static enum flag_code i386_addressing_mode (void);
e3bb37b5
L
182static void optimize_imm (void);
183static void optimize_disp (void);
83b16ac6 184static const insn_template *match_template (char);
e3bb37b5
L
185static int check_string (void);
186static int process_suffix (void);
187static int check_byte_reg (void);
188static int check_long_reg (void);
189static int check_qword_reg (void);
190static int check_word_reg (void);
191static int finalize_imm (void);
192static int process_operands (void);
193static const seg_entry *build_modrm_byte (void);
194static void output_insn (void);
195static void output_imm (fragS *, offsetT);
196static void output_disp (fragS *, offsetT);
29b0f896 197#ifndef I386COFF
e3bb37b5 198static void s_bss (int);
252b5132 199#endif
17d4e2a2
L
200#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
202
203/* GNU_PROPERTY_X86_ISA_1_USED. */
204static unsigned int x86_isa_1_used;
205/* GNU_PROPERTY_X86_FEATURE_2_USED. */
206static unsigned int x86_feature_2_used;
207/* Generate x86 used ISA and feature properties. */
208static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 209#endif
252b5132 210
a847613f 211static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 212
43234a1e
L
213/* This struct describes rounding control and SAE in the instruction. */
214struct RC_Operation
215{
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225};
226
227static struct RC_Operation rc_op;
228
229/* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232struct Mask_Operation
233{
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238};
239
240static struct Mask_Operation mask_op;
241
242/* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244struct Broadcast_Operation
245{
8e6e0792 246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
4a1b91ea
L
251
252 /* Number of bytes to broadcast. */
253 int bytes;
43234a1e
L
254};
255
256static struct Broadcast_Operation broadcast_op;
257
c0f3af97
L
258/* VEX prefix. */
259typedef struct
260{
43234a1e
L
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
c0f3af97
L
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266} vex_prefix;
267
252b5132 268/* 'md_assemble ()' gathers together information and puts it into a
47926f60 269 i386_insn. */
252b5132 270
520dc8e8
AM
271union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
a65babc9
L
278enum i386_error
279 {
86e026a4 280 operand_size_mismatch,
a65babc9
L
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
a65babc9
L
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
6c30d220
L
288 unsupported,
289 invalid_vsib_address,
7bab8ab5 290 invalid_vector_register_set,
43234a1e
L
291 unsupported_vector_index_register,
292 unsupported_broadcast,
43234a1e
L
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
a65babc9
L
300 };
301
252b5132
RH
302struct _i386_insn
303 {
47926f60 304 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 305 insn_template tm;
252b5132 306
7d5e4556
L
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
252b5132
RH
309 char suffix;
310
47926f60 311 /* OPERANDS gives the number of given operands. */
252b5132
RH
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
47926f60 316 operands. */
252b5132
RH
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 320 use OP[i] for the corresponding operand. */
40fb9820 321 i386_operand_type types[MAX_OPERANDS];
252b5132 322
520dc8e8
AM
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
252b5132 326
3e73aa7c
JH
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329#define Operand_PCrel 1
c48dadc9 330#define Operand_Mem 2
3e73aa7c 331
252b5132 332 /* Relocation type for operand */
f86103b7 333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 334
252b5132
RH
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 342 explicit segment overrides are given. */
ce8a8b2f 343 const seg_entry *seg[2];
252b5132 344
8325cc63
JB
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
252b5132
RH
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
50128d0c
JB
353 /* Register is in low 3 bits of opcode. */
354 bfd_boolean short_form;
355
6f2f06be
JB
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
b4a3a7b4
L
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
e379e5f3
L
371 /* Has GOTPC or TLS relocation. */
372 bfd_boolean has_gotpc_tls_reloc;
373
252b5132 374 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 375 addressing modes of this insn are encoded. */
252b5132 376 modrm_byte rm;
3e73aa7c 377 rex_byte rex;
43234a1e 378 rex_byte vrex;
252b5132 379 sib_byte sib;
c0f3af97 380 vex_prefix vex;
b6169b20 381
43234a1e
L
382 /* Masking attributes. */
383 struct Mask_Operation *mask;
384
385 /* Rounding control and SAE attributes. */
386 struct RC_Operation *rounding;
387
388 /* Broadcasting attributes. */
389 struct Broadcast_Operation *broadcast;
390
391 /* Compressed disp8*N attribute. */
392 unsigned int memshift;
393
86fa6981
L
394 /* Prefer load or store in encoding. */
395 enum
396 {
397 dir_encoding_default = 0,
398 dir_encoding_load,
64c49ab3
JB
399 dir_encoding_store,
400 dir_encoding_swap
86fa6981 401 } dir_encoding;
891edac4 402
a501d77e
L
403 /* Prefer 8bit or 32bit displacement in encoding. */
404 enum
405 {
406 disp_encoding_default = 0,
407 disp_encoding_8bit,
408 disp_encoding_32bit
409 } disp_encoding;
f8a5c266 410
6b6b6807
L
411 /* Prefer the REX byte in encoding. */
412 bfd_boolean rex_encoding;
413
b6f8c7c4
L
414 /* Disable instruction size optimization. */
415 bfd_boolean no_optimize;
416
86fa6981
L
417 /* How to encode vector instructions. */
418 enum
419 {
420 vex_encoding_default = 0,
42e04b36 421 vex_encoding_vex,
86fa6981
L
422 vex_encoding_vex3,
423 vex_encoding_evex
424 } vec_encoding;
425
d5de92cf
L
426 /* REP prefix. */
427 const char *rep_prefix;
428
165de32a
L
429 /* HLE prefix. */
430 const char *hle_prefix;
42164a71 431
7e8b059b
L
432 /* Have BND prefix. */
433 const char *bnd_prefix;
434
04ef582a
L
435 /* Have NOTRACK prefix. */
436 const char *notrack_prefix;
437
891edac4 438 /* Error message. */
a65babc9 439 enum i386_error error;
252b5132
RH
440 };
441
442typedef struct _i386_insn i386_insn;
443
43234a1e
L
444/* Link RC type with corresponding string, that'll be looked for in
445 asm. */
446struct RC_name
447{
448 enum rc_type type;
449 const char *name;
450 unsigned int len;
451};
452
453static const struct RC_name RC_NamesTable[] =
454{
455 { rne, STRING_COMMA_LEN ("rn-sae") },
456 { rd, STRING_COMMA_LEN ("rd-sae") },
457 { ru, STRING_COMMA_LEN ("ru-sae") },
458 { rz, STRING_COMMA_LEN ("rz-sae") },
459 { saeonly, STRING_COMMA_LEN ("sae") },
460};
461
252b5132
RH
462/* List of chars besides those in app.c:symbol_chars that can start an
463 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 464const char extra_symbol_chars[] = "*%-([{}"
252b5132 465#ifdef LEX_AT
32137342
NC
466 "@"
467#endif
468#ifdef LEX_QM
469 "?"
252b5132 470#endif
32137342 471 ;
252b5132 472
29b0f896
AM
473#if (defined (TE_I386AIX) \
474 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 475 && !defined (TE_GNU) \
29b0f896 476 && !defined (TE_LINUX) \
8d63c93e 477 && !defined (TE_NACL) \
29b0f896 478 && !defined (TE_FreeBSD) \
5b806d27 479 && !defined (TE_DragonFly) \
29b0f896 480 && !defined (TE_NetBSD)))
252b5132 481/* This array holds the chars that always start a comment. If the
b3b91714
AM
482 pre-processor is disabled, these aren't very useful. The option
483 --divide will remove '/' from this list. */
484const char *i386_comment_chars = "#/";
485#define SVR4_COMMENT_CHARS 1
252b5132 486#define PREFIX_SEPARATOR '\\'
252b5132 487
b3b91714
AM
488#else
489const char *i386_comment_chars = "#";
490#define PREFIX_SEPARATOR '/'
491#endif
492
252b5132
RH
493/* This array holds the chars that only start a comment at the beginning of
494 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
495 .line and .file directives will appear in the pre-processed output.
496 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 497 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
498 #NO_APP at the beginning of its output.
499 Also note that comments started like this one will always work if
252b5132 500 '/' isn't otherwise defined. */
b3b91714 501const char line_comment_chars[] = "#/";
252b5132 502
63a0b638 503const char line_separator_chars[] = ";";
252b5132 504
ce8a8b2f
AM
505/* Chars that can be used to separate mant from exp in floating point
506 nums. */
252b5132
RH
507const char EXP_CHARS[] = "eE";
508
ce8a8b2f
AM
509/* Chars that mean this number is a floating point constant
510 As in 0f12.456
511 or 0d1.2345e12. */
252b5132
RH
512const char FLT_CHARS[] = "fFdDxX";
513
ce8a8b2f 514/* Tables for lexical analysis. */
252b5132
RH
515static char mnemonic_chars[256];
516static char register_chars[256];
517static char operand_chars[256];
518static char identifier_chars[256];
519static char digit_chars[256];
520
ce8a8b2f 521/* Lexical macros. */
252b5132
RH
522#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
523#define is_operand_char(x) (operand_chars[(unsigned char) x])
524#define is_register_char(x) (register_chars[(unsigned char) x])
525#define is_space_char(x) ((x) == ' ')
526#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
527#define is_digit_char(x) (digit_chars[(unsigned char) x])
528
0234cb7c 529/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
530static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
531
532/* md_assemble() always leaves the strings it's passed unaltered. To
533 effect this we maintain a stack of saved characters that we've smashed
534 with '\0's (indicating end of strings for various sub-fields of the
47926f60 535 assembler instruction). */
252b5132 536static char save_stack[32];
ce8a8b2f 537static char *save_stack_p;
252b5132
RH
538#define END_STRING_AND_SAVE(s) \
539 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
540#define RESTORE_END_STRING(s) \
541 do { *(s) = *--save_stack_p; } while (0)
542
47926f60 543/* The instruction we're assembling. */
252b5132
RH
544static i386_insn i;
545
546/* Possible templates for current insn. */
547static const templates *current_templates;
548
31b2323c
L
549/* Per instruction expressionS buffers: max displacements & immediates. */
550static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
551static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 552
47926f60 553/* Current operand we are working on. */
ee86248c 554static int this_operand = -1;
252b5132 555
3e73aa7c
JH
556/* We support four different modes. FLAG_CODE variable is used to distinguish
557 these. */
558
559enum flag_code {
560 CODE_32BIT,
561 CODE_16BIT,
562 CODE_64BIT };
563
564static enum flag_code flag_code;
4fa24527 565static unsigned int object_64bit;
862be3fb 566static unsigned int disallow_64bit_reloc;
3e73aa7c 567static int use_rela_relocations = 0;
e379e5f3
L
568/* __tls_get_addr/___tls_get_addr symbol for TLS. */
569static const char *tls_get_addr;
3e73aa7c 570
7af8ed2d
NC
571#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
572 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
573 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
574
351f65ca
L
575/* The ELF ABI to use. */
576enum x86_elf_abi
577{
578 I386_ABI,
7f56bc95
L
579 X86_64_ABI,
580 X86_64_X32_ABI
351f65ca
L
581};
582
583static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 584#endif
351f65ca 585
167ad85b
TG
586#if defined (TE_PE) || defined (TE_PEP)
587/* Use big object file format. */
588static int use_big_obj = 0;
589#endif
590
8dcea932
L
591#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
592/* 1 if generating code for a shared library. */
593static int shared = 0;
594#endif
595
47926f60
KH
596/* 1 for intel syntax,
597 0 if att syntax. */
598static int intel_syntax = 0;
252b5132 599
4b5aaf5f
L
600static enum x86_64_isa
601{
602 amd64 = 1, /* AMD64 ISA. */
603 intel64 /* Intel64 ISA. */
604} isa64;
e89c5eaa 605
1efbbeb4
L
606/* 1 for intel mnemonic,
607 0 if att mnemonic. */
608static int intel_mnemonic = !SYSV386_COMPAT;
609
a60de03c
JB
610/* 1 if pseudo registers are permitted. */
611static int allow_pseudo_reg = 0;
612
47926f60
KH
613/* 1 if register prefix % not required. */
614static int allow_naked_reg = 0;
252b5132 615
33eaf5de 616/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
617 instructions supporting it, even if this prefix wasn't specified
618 explicitly. */
619static int add_bnd_prefix = 0;
620
ba104c83 621/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
622static int allow_index_reg = 0;
623
d022bddd
IT
624/* 1 if the assembler should ignore LOCK prefix, even if it was
625 specified explicitly. */
626static int omit_lock_prefix = 0;
627
e4e00185
AS
628/* 1 if the assembler should encode lfence, mfence, and sfence as
629 "lock addl $0, (%{re}sp)". */
630static int avoid_fence = 0;
631
e379e5f3
L
632/* Type of the previous instruction. */
633static struct
634 {
635 segT seg;
636 const char *file;
637 const char *name;
638 unsigned int line;
639 enum last_insn_kind
640 {
641 last_insn_other = 0,
642 last_insn_directive,
643 last_insn_prefix
644 } kind;
645 } last_insn;
646
0cb4071e
L
647/* 1 if the assembler should generate relax relocations. */
648
649static int generate_relax_relocations
650 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
651
7bab8ab5 652static enum check_kind
daf50ae7 653 {
7bab8ab5
JB
654 check_none = 0,
655 check_warning,
656 check_error
daf50ae7 657 }
7bab8ab5 658sse_check, operand_check = check_warning;
daf50ae7 659
e379e5f3
L
660/* Non-zero if branches should be aligned within power of 2 boundary. */
661static int align_branch_power = 0;
662
663/* Types of branches to align. */
664enum align_branch_kind
665 {
666 align_branch_none = 0,
667 align_branch_jcc = 1,
668 align_branch_fused = 2,
669 align_branch_jmp = 3,
670 align_branch_call = 4,
671 align_branch_indirect = 5,
672 align_branch_ret = 6
673 };
674
675/* Type bits of branches to align. */
676enum align_branch_bit
677 {
678 align_branch_jcc_bit = 1 << align_branch_jcc,
679 align_branch_fused_bit = 1 << align_branch_fused,
680 align_branch_jmp_bit = 1 << align_branch_jmp,
681 align_branch_call_bit = 1 << align_branch_call,
682 align_branch_indirect_bit = 1 << align_branch_indirect,
683 align_branch_ret_bit = 1 << align_branch_ret
684 };
685
686static unsigned int align_branch = (align_branch_jcc_bit
687 | align_branch_fused_bit
688 | align_branch_jmp_bit);
689
690/* The maximum padding size for fused jcc. CMP like instruction can
691 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
692 prefixes. */
693#define MAX_FUSED_JCC_PADDING_SIZE 20
694
695/* The maximum number of prefixes added for an instruction. */
696static unsigned int align_branch_prefix_size = 5;
697
b6f8c7c4
L
698/* Optimization:
699 1. Clear the REX_W bit with register operand if possible.
700 2. Above plus use 128bit vector instruction to clear the full vector
701 register.
702 */
703static int optimize = 0;
704
705/* Optimization:
706 1. Clear the REX_W bit with register operand if possible.
707 2. Above plus use 128bit vector instruction to clear the full vector
708 register.
709 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
710 "testb $imm7,%r8".
711 */
712static int optimize_for_space = 0;
713
2ca3ace5
L
714/* Register prefix used for error message. */
715static const char *register_prefix = "%";
716
47926f60
KH
717/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
718 leave, push, and pop instructions so that gcc has the same stack
719 frame as in 32 bit mode. */
720static char stackop_size = '\0';
eecb386c 721
12b55ccc
L
722/* Non-zero to optimize code alignment. */
723int optimize_align_code = 1;
724
47926f60
KH
725/* Non-zero to quieten some warnings. */
726static int quiet_warnings = 0;
a38cf1db 727
47926f60
KH
728/* CPU name. */
729static const char *cpu_arch_name = NULL;
6305a203 730static char *cpu_sub_arch_name = NULL;
a38cf1db 731
47926f60 732/* CPU feature flags. */
40fb9820
L
733static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
734
ccc9c027
L
735/* If we have selected a cpu we are generating instructions for. */
736static int cpu_arch_tune_set = 0;
737
9103f4f4 738/* Cpu we are generating instructions for. */
fbf3f584 739enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
740
741/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 742static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 743
ccc9c027 744/* CPU instruction set architecture used. */
fbf3f584 745enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 746
9103f4f4 747/* CPU feature flags of instruction set architecture used. */
fbf3f584 748i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 749
fddf5b5b
AM
750/* If set, conditional jumps are not automatically promoted to handle
751 larger than a byte offset. */
752static unsigned int no_cond_jump_promotion = 0;
753
c0f3af97
L
754/* Encode SSE instructions with VEX prefix. */
755static unsigned int sse2avx;
756
539f890d
L
757/* Encode scalar AVX instructions with specific vector length. */
758static enum
759 {
760 vex128 = 0,
761 vex256
762 } avxscalar;
763
03751133
L
764/* Encode VEX WIG instructions with specific vex.w. */
765static enum
766 {
767 vexw0 = 0,
768 vexw1
769 } vexwig;
770
43234a1e
L
771/* Encode scalar EVEX LIG instructions with specific vector length. */
772static enum
773 {
774 evexl128 = 0,
775 evexl256,
776 evexl512
777 } evexlig;
778
779/* Encode EVEX WIG instructions with specific evex.w. */
780static enum
781 {
782 evexw0 = 0,
783 evexw1
784 } evexwig;
785
d3d3c6db
IT
786/* Value to encode in EVEX RC bits, for SAE-only instructions. */
787static enum rc_type evexrcig = rne;
788
29b0f896 789/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 790static symbolS *GOT_symbol;
29b0f896 791
a4447b93
RH
792/* The dwarf2 return column, adjusted for 32 or 64 bit. */
793unsigned int x86_dwarf2_return_column;
794
795/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
796int x86_cie_data_alignment;
797
252b5132 798/* Interface to relax_segment.
fddf5b5b
AM
799 There are 3 major relax states for 386 jump insns because the
800 different types of jumps add different sizes to frags when we're
e379e5f3
L
801 figuring out what sort of jump to choose to reach a given label.
802
803 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
804 branches which are handled by md_estimate_size_before_relax() and
805 i386_generic_table_relax_frag(). */
252b5132 806
47926f60 807/* Types. */
93c2a809
AM
808#define UNCOND_JUMP 0
809#define COND_JUMP 1
810#define COND_JUMP86 2
e379e5f3
L
811#define BRANCH_PADDING 3
812#define BRANCH_PREFIX 4
813#define FUSED_JCC_PADDING 5
fddf5b5b 814
47926f60 815/* Sizes. */
252b5132
RH
816#define CODE16 1
817#define SMALL 0
29b0f896 818#define SMALL16 (SMALL | CODE16)
252b5132 819#define BIG 2
29b0f896 820#define BIG16 (BIG | CODE16)
252b5132
RH
821
822#ifndef INLINE
823#ifdef __GNUC__
824#define INLINE __inline__
825#else
826#define INLINE
827#endif
828#endif
829
fddf5b5b
AM
830#define ENCODE_RELAX_STATE(type, size) \
831 ((relax_substateT) (((type) << 2) | (size)))
832#define TYPE_FROM_RELAX_STATE(s) \
833 ((s) >> 2)
834#define DISP_SIZE_FROM_RELAX_STATE(s) \
835 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
836
837/* This table is used by relax_frag to promote short jumps to long
838 ones where necessary. SMALL (short) jumps may be promoted to BIG
839 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
840 don't allow a short jump in a 32 bit code segment to be promoted to
841 a 16 bit offset jump because it's slower (requires data size
842 prefix), and doesn't work, unless the destination is in the bottom
843 64k of the code segment (The top 16 bits of eip are zeroed). */
844
845const relax_typeS md_relax_table[] =
846{
24eab124
AM
847 /* The fields are:
848 1) most positive reach of this state,
849 2) most negative reach of this state,
93c2a809 850 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 851 4) which index into the table to try if we can't fit into this one. */
252b5132 852
fddf5b5b 853 /* UNCOND_JUMP states. */
93c2a809
AM
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
855 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
856 /* dword jmp adds 4 bytes to frag:
857 0 extra opcode bytes, 4 displacement bytes. */
252b5132 858 {0, 0, 4, 0},
93c2a809
AM
859 /* word jmp adds 2 byte2 to frag:
860 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
861 {0, 0, 2, 0},
862
93c2a809
AM
863 /* COND_JUMP states. */
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
865 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
866 /* dword conditionals adds 5 bytes to frag:
867 1 extra opcode byte, 4 displacement bytes. */
868 {0, 0, 5, 0},
fddf5b5b 869 /* word conditionals add 3 bytes to frag:
93c2a809
AM
870 1 extra opcode byte, 2 displacement bytes. */
871 {0, 0, 3, 0},
872
873 /* COND_JUMP86 states. */
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
875 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
876 /* dword conditionals adds 5 bytes to frag:
877 1 extra opcode byte, 4 displacement bytes. */
878 {0, 0, 5, 0},
879 /* word conditionals add 4 bytes to frag:
880 1 displacement byte and a 3 byte long branch insn. */
881 {0, 0, 4, 0}
252b5132
RH
882};
883
9103f4f4
L
884static const arch_entry cpu_arch[] =
885{
89507696
JB
886 /* Do not replace the first two entries - i386_target_format()
887 relies on them being there in this order. */
8a2c8fef 888 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 889 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 890 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 891 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 892 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 893 CPU_NONE_FLAGS, 0 },
8a2c8fef 894 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 895 CPU_I186_FLAGS, 0 },
8a2c8fef 896 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_I286_FLAGS, 0 },
8a2c8fef 898 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 899 CPU_I386_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 901 CPU_I486_FLAGS, 0 },
8a2c8fef 902 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 903 CPU_I586_FLAGS, 0 },
8a2c8fef 904 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 905 CPU_I686_FLAGS, 0 },
8a2c8fef 906 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 907 CPU_I586_FLAGS, 0 },
8a2c8fef 908 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 909 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 911 CPU_P2_FLAGS, 0 },
8a2c8fef 912 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 913 CPU_P3_FLAGS, 0 },
8a2c8fef 914 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 915 CPU_P4_FLAGS, 0 },
8a2c8fef 916 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 917 CPU_CORE_FLAGS, 0 },
8a2c8fef 918 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 919 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 920 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 921 CPU_CORE_FLAGS, 1 },
8a2c8fef 922 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 923 CPU_CORE_FLAGS, 0 },
8a2c8fef 924 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 925 CPU_CORE2_FLAGS, 1 },
8a2c8fef 926 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 927 CPU_CORE2_FLAGS, 0 },
8a2c8fef 928 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 929 CPU_COREI7_FLAGS, 0 },
8a2c8fef 930 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 931 CPU_L1OM_FLAGS, 0 },
7a9068fe 932 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 933 CPU_K1OM_FLAGS, 0 },
81486035 934 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 935 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 936 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 937 CPU_K6_FLAGS, 0 },
8a2c8fef 938 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 939 CPU_K6_2_FLAGS, 0 },
8a2c8fef 940 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 941 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 942 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 943 CPU_K8_FLAGS, 1 },
8a2c8fef 944 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 945 CPU_K8_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 947 CPU_K8_FLAGS, 0 },
8a2c8fef 948 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 949 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 950 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 951 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 952 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 953 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 954 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 955 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 956 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 957 CPU_BDVER4_FLAGS, 0 },
029f3522 958 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 959 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
960 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
961 CPU_ZNVER2_FLAGS, 0 },
7b458c12 962 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 963 CPU_BTVER1_FLAGS, 0 },
7b458c12 964 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 965 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 966 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_8087_FLAGS, 0 },
8a2c8fef 968 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_287_FLAGS, 0 },
8a2c8fef 970 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_387_FLAGS, 0 },
1848e567
L
972 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
973 CPU_687_FLAGS, 0 },
d871f3f4
L
974 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
975 CPU_CMOV_FLAGS, 0 },
976 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
977 CPU_FXSR_FLAGS, 0 },
8a2c8fef 978 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_MMX_FLAGS, 0 },
8a2c8fef 980 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_SSE_FLAGS, 0 },
8a2c8fef 982 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_SSE2_FLAGS, 0 },
8a2c8fef 984 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_SSE3_FLAGS, 0 },
8a2c8fef 986 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 988 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 990 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 992 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 994 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_AVX_FLAGS, 0 },
6c30d220 996 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 997 CPU_AVX2_FLAGS, 0 },
43234a1e 998 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 999 CPU_AVX512F_FLAGS, 0 },
43234a1e 1000 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 1001 CPU_AVX512CD_FLAGS, 0 },
43234a1e 1002 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 1003 CPU_AVX512ER_FLAGS, 0 },
43234a1e 1004 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 1005 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 1006 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 1007 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 1008 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 1009 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 1010 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 1011 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 1012 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_VMX_FLAGS, 0 },
8729a6f6 1014 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 1016 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 1017 CPU_SMX_FLAGS, 0 },
8a2c8fef 1018 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 1019 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 1020 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 1021 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 1022 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 1023 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 1024 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 1025 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 1026 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 1027 CPU_AES_FLAGS, 0 },
8a2c8fef 1028 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 1029 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 1030 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 1031 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 1032 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 1033 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 1034 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 1035 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 1036 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 1037 CPU_F16C_FLAGS, 0 },
6c30d220 1038 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 1039 CPU_BMI2_FLAGS, 0 },
8a2c8fef 1040 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 1041 CPU_FMA_FLAGS, 0 },
8a2c8fef 1042 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 1043 CPU_FMA4_FLAGS, 0 },
8a2c8fef 1044 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 1045 CPU_XOP_FLAGS, 0 },
8a2c8fef 1046 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 1047 CPU_LWP_FLAGS, 0 },
8a2c8fef 1048 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 1049 CPU_MOVBE_FLAGS, 0 },
60aa667e 1050 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 1051 CPU_CX16_FLAGS, 0 },
8a2c8fef 1052 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 1053 CPU_EPT_FLAGS, 0 },
6c30d220 1054 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 1055 CPU_LZCNT_FLAGS, 0 },
42164a71 1056 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 1057 CPU_HLE_FLAGS, 0 },
42164a71 1058 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 1059 CPU_RTM_FLAGS, 0 },
6c30d220 1060 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 1061 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 1062 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 1063 CPU_CLFLUSH_FLAGS, 0 },
22109423 1064 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 1065 CPU_NOP_FLAGS, 0 },
8a2c8fef 1066 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 1067 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 1068 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 1069 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1070 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1071 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1072 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1073 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1074 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1075 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1076 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1077 CPU_SVME_FLAGS, 1 },
8a2c8fef 1078 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1079 CPU_SVME_FLAGS, 0 },
8a2c8fef 1080 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1081 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1082 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1083 CPU_ABM_FLAGS, 0 },
87973e9f 1084 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1085 CPU_BMI_FLAGS, 0 },
2a2a0f38 1086 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1087 CPU_TBM_FLAGS, 0 },
e2e1fcde 1088 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1089 CPU_ADX_FLAGS, 0 },
e2e1fcde 1090 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1091 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1092 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1093 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1094 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1095 CPU_SMAP_FLAGS, 0 },
7e8b059b 1096 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1097 CPU_MPX_FLAGS, 0 },
a0046408 1098 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1099 CPU_SHA_FLAGS, 0 },
963f3586 1100 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1101 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1102 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1103 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1104 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1105 CPU_SE1_FLAGS, 0 },
c5e7287a 1106 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1107 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1108 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1109 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1110 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1111 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1112 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1113 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1114 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1115 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1116 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1117 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1118 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1119 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1120 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1121 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1122 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1123 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1124 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1125 CPU_CLZERO_FLAGS, 0 },
9916071f 1126 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1127 CPU_MWAITX_FLAGS, 0 },
8eab4136 1128 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1129 CPU_OSPKE_FLAGS, 0 },
8bc52696 1130 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1131 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1132 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1133 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1134 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1135 CPU_IBT_FLAGS, 0 },
1136 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1137 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1138 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1139 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1140 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1141 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1142 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1143 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1144 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1145 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1146 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1147 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1148 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1149 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1150 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1151 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1152 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1153 CPU_MOVDIRI_FLAGS, 0 },
1154 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1155 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1156 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1157 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1158 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1159 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1160 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1161 CPU_ENQCMD_FLAGS, 0 },
142861df
JB
1162 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1163 CPU_RDPRU_FLAGS, 0 },
1164 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1165 CPU_MCOMMIT_FLAGS, 0 },
293f5f65
L
1166};
1167
1168static const noarch_entry cpu_noarch[] =
1169{
1170 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1171 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1172 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1173 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1174 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1175 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1176 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1177 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1178 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1179 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1180 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1181 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
7deea9aa 1183 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_FLAGS },
293f5f65 1184 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1185 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1186 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1194 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1195 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1196 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1197 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1198 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1199 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1200 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1201 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1202 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1203 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1204 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1205 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1206 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1207 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1208};
1209
704209c0 1210#ifdef I386COFF
a6c24e68
NC
1211/* Like s_lcomm_internal in gas/read.c but the alignment string
1212 is allowed to be optional. */
1213
1214static symbolS *
1215pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1216{
1217 addressT align = 0;
1218
1219 SKIP_WHITESPACE ();
1220
7ab9ffdd 1221 if (needs_align
a6c24e68
NC
1222 && *input_line_pointer == ',')
1223 {
1224 align = parse_align (needs_align - 1);
7ab9ffdd 1225
a6c24e68
NC
1226 if (align == (addressT) -1)
1227 return NULL;
1228 }
1229 else
1230 {
1231 if (size >= 8)
1232 align = 3;
1233 else if (size >= 4)
1234 align = 2;
1235 else if (size >= 2)
1236 align = 1;
1237 else
1238 align = 0;
1239 }
1240
1241 bss_alloc (symbolP, size, align);
1242 return symbolP;
1243}
1244
704209c0 1245static void
a6c24e68
NC
1246pe_lcomm (int needs_align)
1247{
1248 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1249}
704209c0 1250#endif
a6c24e68 1251
29b0f896
AM
1252const pseudo_typeS md_pseudo_table[] =
1253{
1254#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1255 {"align", s_align_bytes, 0},
1256#else
1257 {"align", s_align_ptwo, 0},
1258#endif
1259 {"arch", set_cpu_arch, 0},
1260#ifndef I386COFF
1261 {"bss", s_bss, 0},
a6c24e68
NC
1262#else
1263 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1264#endif
1265 {"ffloat", float_cons, 'f'},
1266 {"dfloat", float_cons, 'd'},
1267 {"tfloat", float_cons, 'x'},
1268 {"value", cons, 2},
d182319b 1269 {"slong", signed_cons, 4},
29b0f896
AM
1270 {"noopt", s_ignore, 0},
1271 {"optim", s_ignore, 0},
1272 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1273 {"code16", set_code_flag, CODE_16BIT},
1274 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1275#ifdef BFD64
29b0f896 1276 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1277#endif
29b0f896
AM
1278 {"intel_syntax", set_intel_syntax, 1},
1279 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1280 {"intel_mnemonic", set_intel_mnemonic, 1},
1281 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1282 {"allow_index_reg", set_allow_index_reg, 1},
1283 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1284 {"sse_check", set_check, 0},
1285 {"operand_check", set_check, 1},
3b22753a
L
1286#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1287 {"largecomm", handle_large_common, 0},
07a53e5c 1288#else
68d20676 1289 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1290 {"loc", dwarf2_directive_loc, 0},
1291 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1292#endif
6482c264
NC
1293#ifdef TE_PE
1294 {"secrel32", pe_directive_secrel, 0},
1295#endif
29b0f896
AM
1296 {0, 0, 0}
1297};
1298
1299/* For interface with expression (). */
1300extern char *input_line_pointer;
1301
1302/* Hash table for instruction mnemonic lookup. */
1303static struct hash_control *op_hash;
1304
1305/* Hash table for register lookup. */
1306static struct hash_control *reg_hash;
1307\f
ce8a8b2f
AM
1308 /* Various efficient no-op patterns for aligning code labels.
1309 Note: Don't try to assemble the instructions in the comments.
1310 0L and 0w are not legal. */
62a02d25
L
1311static const unsigned char f32_1[] =
1312 {0x90}; /* nop */
1313static const unsigned char f32_2[] =
1314 {0x66,0x90}; /* xchg %ax,%ax */
1315static const unsigned char f32_3[] =
1316 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1317static const unsigned char f32_4[] =
1318 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1319static const unsigned char f32_6[] =
1320 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1321static const unsigned char f32_7[] =
1322 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1323static const unsigned char f16_3[] =
3ae729d5 1324 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1325static const unsigned char f16_4[] =
3ae729d5
L
1326 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1327static const unsigned char jump_disp8[] =
1328 {0xeb}; /* jmp disp8 */
1329static const unsigned char jump32_disp32[] =
1330 {0xe9}; /* jmp disp32 */
1331static const unsigned char jump16_disp32[] =
1332 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1333/* 32-bit NOPs patterns. */
1334static const unsigned char *const f32_patt[] = {
3ae729d5 1335 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1336};
1337/* 16-bit NOPs patterns. */
1338static const unsigned char *const f16_patt[] = {
3ae729d5 1339 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1340};
1341/* nopl (%[re]ax) */
1342static const unsigned char alt_3[] =
1343 {0x0f,0x1f,0x00};
1344/* nopl 0(%[re]ax) */
1345static const unsigned char alt_4[] =
1346 {0x0f,0x1f,0x40,0x00};
1347/* nopl 0(%[re]ax,%[re]ax,1) */
1348static const unsigned char alt_5[] =
1349 {0x0f,0x1f,0x44,0x00,0x00};
1350/* nopw 0(%[re]ax,%[re]ax,1) */
1351static const unsigned char alt_6[] =
1352 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1353/* nopl 0L(%[re]ax) */
1354static const unsigned char alt_7[] =
1355 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1356/* nopl 0L(%[re]ax,%[re]ax,1) */
1357static const unsigned char alt_8[] =
1358 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1359/* nopw 0L(%[re]ax,%[re]ax,1) */
1360static const unsigned char alt_9[] =
1361 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1362/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1363static const unsigned char alt_10[] =
1364 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1365/* data16 nopw %cs:0L(%eax,%eax,1) */
1366static const unsigned char alt_11[] =
1367 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1368/* 32-bit and 64-bit NOPs patterns. */
1369static const unsigned char *const alt_patt[] = {
1370 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1371 alt_9, alt_10, alt_11
62a02d25
L
1372};
1373
1374/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1375 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1376
1377static void
1378i386_output_nops (char *where, const unsigned char *const *patt,
1379 int count, int max_single_nop_size)
1380
1381{
3ae729d5
L
1382 /* Place the longer NOP first. */
1383 int last;
1384 int offset;
3076e594
NC
1385 const unsigned char *nops;
1386
1387 if (max_single_nop_size < 1)
1388 {
1389 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1390 max_single_nop_size);
1391 return;
1392 }
1393
1394 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1395
1396 /* Use the smaller one if the requsted one isn't available. */
1397 if (nops == NULL)
62a02d25 1398 {
3ae729d5
L
1399 max_single_nop_size--;
1400 nops = patt[max_single_nop_size - 1];
62a02d25
L
1401 }
1402
3ae729d5
L
1403 last = count % max_single_nop_size;
1404
1405 count -= last;
1406 for (offset = 0; offset < count; offset += max_single_nop_size)
1407 memcpy (where + offset, nops, max_single_nop_size);
1408
1409 if (last)
1410 {
1411 nops = patt[last - 1];
1412 if (nops == NULL)
1413 {
1414 /* Use the smaller one plus one-byte NOP if the needed one
1415 isn't available. */
1416 last--;
1417 nops = patt[last - 1];
1418 memcpy (where + offset, nops, last);
1419 where[offset + last] = *patt[0];
1420 }
1421 else
1422 memcpy (where + offset, nops, last);
1423 }
62a02d25
L
1424}
1425
3ae729d5
L
1426static INLINE int
1427fits_in_imm7 (offsetT num)
1428{
1429 return (num & 0x7f) == num;
1430}
1431
1432static INLINE int
1433fits_in_imm31 (offsetT num)
1434{
1435 return (num & 0x7fffffff) == num;
1436}
62a02d25
L
1437
1438/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1439 single NOP instruction LIMIT. */
1440
1441void
3ae729d5 1442i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1443{
3ae729d5 1444 const unsigned char *const *patt = NULL;
62a02d25 1445 int max_single_nop_size;
3ae729d5
L
1446 /* Maximum number of NOPs before switching to jump over NOPs. */
1447 int max_number_of_nops;
62a02d25 1448
3ae729d5 1449 switch (fragP->fr_type)
62a02d25 1450 {
3ae729d5
L
1451 case rs_fill_nop:
1452 case rs_align_code:
1453 break;
e379e5f3
L
1454 case rs_machine_dependent:
1455 /* Allow NOP padding for jumps and calls. */
1456 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1457 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1458 break;
1459 /* Fall through. */
3ae729d5 1460 default:
62a02d25
L
1461 return;
1462 }
1463
ccc9c027
L
1464 /* We need to decide which NOP sequence to use for 32bit and
1465 64bit. When -mtune= is used:
4eed87de 1466
76bc74dc
L
1467 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1468 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1469 2. For the rest, alt_patt will be used.
1470
1471 When -mtune= isn't used, alt_patt will be used if
22109423 1472 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1473 be used.
ccc9c027
L
1474
1475 When -march= or .arch is used, we can't use anything beyond
1476 cpu_arch_isa_flags. */
1477
1478 if (flag_code == CODE_16BIT)
1479 {
3ae729d5
L
1480 patt = f16_patt;
1481 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1482 /* Limit number of NOPs to 2 in 16-bit mode. */
1483 max_number_of_nops = 2;
252b5132 1484 }
33fef721 1485 else
ccc9c027 1486 {
fbf3f584 1487 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1488 {
1489 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1490 switch (cpu_arch_tune)
1491 {
1492 case PROCESSOR_UNKNOWN:
1493 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1494 optimize with nops. */
1495 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1496 patt = alt_patt;
ccc9c027
L
1497 else
1498 patt = f32_patt;
1499 break;
ccc9c027
L
1500 case PROCESSOR_PENTIUM4:
1501 case PROCESSOR_NOCONA:
ef05d495 1502 case PROCESSOR_CORE:
76bc74dc 1503 case PROCESSOR_CORE2:
bd5295b2 1504 case PROCESSOR_COREI7:
3632d14b 1505 case PROCESSOR_L1OM:
7a9068fe 1506 case PROCESSOR_K1OM:
76bc74dc 1507 case PROCESSOR_GENERIC64:
ccc9c027
L
1508 case PROCESSOR_K6:
1509 case PROCESSOR_ATHLON:
1510 case PROCESSOR_K8:
4eed87de 1511 case PROCESSOR_AMDFAM10:
8aedb9fe 1512 case PROCESSOR_BD:
029f3522 1513 case PROCESSOR_ZNVER:
7b458c12 1514 case PROCESSOR_BT:
80b8656c 1515 patt = alt_patt;
ccc9c027 1516 break;
76bc74dc 1517 case PROCESSOR_I386:
ccc9c027
L
1518 case PROCESSOR_I486:
1519 case PROCESSOR_PENTIUM:
2dde1948 1520 case PROCESSOR_PENTIUMPRO:
81486035 1521 case PROCESSOR_IAMCU:
ccc9c027
L
1522 case PROCESSOR_GENERIC32:
1523 patt = f32_patt;
1524 break;
4eed87de 1525 }
ccc9c027
L
1526 }
1527 else
1528 {
fbf3f584 1529 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1530 {
1531 case PROCESSOR_UNKNOWN:
e6a14101 1532 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1533 PROCESSOR_UNKNOWN. */
1534 abort ();
1535 break;
1536
76bc74dc 1537 case PROCESSOR_I386:
ccc9c027
L
1538 case PROCESSOR_I486:
1539 case PROCESSOR_PENTIUM:
81486035 1540 case PROCESSOR_IAMCU:
ccc9c027
L
1541 case PROCESSOR_K6:
1542 case PROCESSOR_ATHLON:
1543 case PROCESSOR_K8:
4eed87de 1544 case PROCESSOR_AMDFAM10:
8aedb9fe 1545 case PROCESSOR_BD:
029f3522 1546 case PROCESSOR_ZNVER:
7b458c12 1547 case PROCESSOR_BT:
ccc9c027
L
1548 case PROCESSOR_GENERIC32:
1549 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1550 with nops. */
1551 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1552 patt = alt_patt;
ccc9c027
L
1553 else
1554 patt = f32_patt;
1555 break;
76bc74dc
L
1556 case PROCESSOR_PENTIUMPRO:
1557 case PROCESSOR_PENTIUM4:
1558 case PROCESSOR_NOCONA:
1559 case PROCESSOR_CORE:
ef05d495 1560 case PROCESSOR_CORE2:
bd5295b2 1561 case PROCESSOR_COREI7:
3632d14b 1562 case PROCESSOR_L1OM:
7a9068fe 1563 case PROCESSOR_K1OM:
22109423 1564 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1565 patt = alt_patt;
ccc9c027
L
1566 else
1567 patt = f32_patt;
1568 break;
1569 case PROCESSOR_GENERIC64:
80b8656c 1570 patt = alt_patt;
ccc9c027 1571 break;
4eed87de 1572 }
ccc9c027
L
1573 }
1574
76bc74dc
L
1575 if (patt == f32_patt)
1576 {
3ae729d5
L
1577 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1578 /* Limit number of NOPs to 2 for older processors. */
1579 max_number_of_nops = 2;
76bc74dc
L
1580 }
1581 else
1582 {
3ae729d5
L
1583 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1584 /* Limit number of NOPs to 7 for newer processors. */
1585 max_number_of_nops = 7;
1586 }
1587 }
1588
1589 if (limit == 0)
1590 limit = max_single_nop_size;
1591
1592 if (fragP->fr_type == rs_fill_nop)
1593 {
1594 /* Output NOPs for .nop directive. */
1595 if (limit > max_single_nop_size)
1596 {
1597 as_bad_where (fragP->fr_file, fragP->fr_line,
1598 _("invalid single nop size: %d "
1599 "(expect within [0, %d])"),
1600 limit, max_single_nop_size);
1601 return;
1602 }
1603 }
e379e5f3 1604 else if (fragP->fr_type != rs_machine_dependent)
3ae729d5
L
1605 fragP->fr_var = count;
1606
1607 if ((count / max_single_nop_size) > max_number_of_nops)
1608 {
1609 /* Generate jump over NOPs. */
1610 offsetT disp = count - 2;
1611 if (fits_in_imm7 (disp))
1612 {
1613 /* Use "jmp disp8" if possible. */
1614 count = disp;
1615 where[0] = jump_disp8[0];
1616 where[1] = count;
1617 where += 2;
1618 }
1619 else
1620 {
1621 unsigned int size_of_jump;
1622
1623 if (flag_code == CODE_16BIT)
1624 {
1625 where[0] = jump16_disp32[0];
1626 where[1] = jump16_disp32[1];
1627 size_of_jump = 2;
1628 }
1629 else
1630 {
1631 where[0] = jump32_disp32[0];
1632 size_of_jump = 1;
1633 }
1634
1635 count -= size_of_jump + 4;
1636 if (!fits_in_imm31 (count))
1637 {
1638 as_bad_where (fragP->fr_file, fragP->fr_line,
1639 _("jump over nop padding out of range"));
1640 return;
1641 }
1642
1643 md_number_to_chars (where + size_of_jump, count, 4);
1644 where += size_of_jump + 4;
76bc74dc 1645 }
ccc9c027 1646 }
3ae729d5
L
1647
1648 /* Generate multiple NOPs. */
1649 i386_output_nops (where, patt, count, limit);
252b5132
RH
1650}
1651
c6fb90c8 1652static INLINE int
0dfbf9d7 1653operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1654{
0dfbf9d7 1655 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1656 {
1657 case 3:
0dfbf9d7 1658 if (x->array[2])
c6fb90c8 1659 return 0;
1a0670f3 1660 /* Fall through. */
c6fb90c8 1661 case 2:
0dfbf9d7 1662 if (x->array[1])
c6fb90c8 1663 return 0;
1a0670f3 1664 /* Fall through. */
c6fb90c8 1665 case 1:
0dfbf9d7 1666 return !x->array[0];
c6fb90c8
L
1667 default:
1668 abort ();
1669 }
40fb9820
L
1670}
1671
c6fb90c8 1672static INLINE void
0dfbf9d7 1673operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1674{
0dfbf9d7 1675 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1676 {
1677 case 3:
0dfbf9d7 1678 x->array[2] = v;
1a0670f3 1679 /* Fall through. */
c6fb90c8 1680 case 2:
0dfbf9d7 1681 x->array[1] = v;
1a0670f3 1682 /* Fall through. */
c6fb90c8 1683 case 1:
0dfbf9d7 1684 x->array[0] = v;
1a0670f3 1685 /* Fall through. */
c6fb90c8
L
1686 break;
1687 default:
1688 abort ();
1689 }
bab6aec1
JB
1690
1691 x->bitfield.class = ClassNone;
75e5731b 1692 x->bitfield.instance = InstanceNone;
c6fb90c8 1693}
40fb9820 1694
c6fb90c8 1695static INLINE int
0dfbf9d7
L
1696operand_type_equal (const union i386_operand_type *x,
1697 const union i386_operand_type *y)
c6fb90c8 1698{
0dfbf9d7 1699 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1700 {
1701 case 3:
0dfbf9d7 1702 if (x->array[2] != y->array[2])
c6fb90c8 1703 return 0;
1a0670f3 1704 /* Fall through. */
c6fb90c8 1705 case 2:
0dfbf9d7 1706 if (x->array[1] != y->array[1])
c6fb90c8 1707 return 0;
1a0670f3 1708 /* Fall through. */
c6fb90c8 1709 case 1:
0dfbf9d7 1710 return x->array[0] == y->array[0];
c6fb90c8
L
1711 break;
1712 default:
1713 abort ();
1714 }
1715}
40fb9820 1716
0dfbf9d7
L
1717static INLINE int
1718cpu_flags_all_zero (const union i386_cpu_flags *x)
1719{
1720 switch (ARRAY_SIZE(x->array))
1721 {
53467f57
IT
1722 case 4:
1723 if (x->array[3])
1724 return 0;
1725 /* Fall through. */
0dfbf9d7
L
1726 case 3:
1727 if (x->array[2])
1728 return 0;
1a0670f3 1729 /* Fall through. */
0dfbf9d7
L
1730 case 2:
1731 if (x->array[1])
1732 return 0;
1a0670f3 1733 /* Fall through. */
0dfbf9d7
L
1734 case 1:
1735 return !x->array[0];
1736 default:
1737 abort ();
1738 }
1739}
1740
0dfbf9d7
L
1741static INLINE int
1742cpu_flags_equal (const union i386_cpu_flags *x,
1743 const union i386_cpu_flags *y)
1744{
1745 switch (ARRAY_SIZE(x->array))
1746 {
53467f57
IT
1747 case 4:
1748 if (x->array[3] != y->array[3])
1749 return 0;
1750 /* Fall through. */
0dfbf9d7
L
1751 case 3:
1752 if (x->array[2] != y->array[2])
1753 return 0;
1a0670f3 1754 /* Fall through. */
0dfbf9d7
L
1755 case 2:
1756 if (x->array[1] != y->array[1])
1757 return 0;
1a0670f3 1758 /* Fall through. */
0dfbf9d7
L
1759 case 1:
1760 return x->array[0] == y->array[0];
1761 break;
1762 default:
1763 abort ();
1764 }
1765}
c6fb90c8
L
1766
1767static INLINE int
1768cpu_flags_check_cpu64 (i386_cpu_flags f)
1769{
1770 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1771 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1772}
1773
c6fb90c8
L
1774static INLINE i386_cpu_flags
1775cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1776{
c6fb90c8
L
1777 switch (ARRAY_SIZE (x.array))
1778 {
53467f57
IT
1779 case 4:
1780 x.array [3] &= y.array [3];
1781 /* Fall through. */
c6fb90c8
L
1782 case 3:
1783 x.array [2] &= y.array [2];
1a0670f3 1784 /* Fall through. */
c6fb90c8
L
1785 case 2:
1786 x.array [1] &= y.array [1];
1a0670f3 1787 /* Fall through. */
c6fb90c8
L
1788 case 1:
1789 x.array [0] &= y.array [0];
1790 break;
1791 default:
1792 abort ();
1793 }
1794 return x;
1795}
40fb9820 1796
c6fb90c8
L
1797static INLINE i386_cpu_flags
1798cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1799{
c6fb90c8 1800 switch (ARRAY_SIZE (x.array))
40fb9820 1801 {
53467f57
IT
1802 case 4:
1803 x.array [3] |= y.array [3];
1804 /* Fall through. */
c6fb90c8
L
1805 case 3:
1806 x.array [2] |= y.array [2];
1a0670f3 1807 /* Fall through. */
c6fb90c8
L
1808 case 2:
1809 x.array [1] |= y.array [1];
1a0670f3 1810 /* Fall through. */
c6fb90c8
L
1811 case 1:
1812 x.array [0] |= y.array [0];
40fb9820
L
1813 break;
1814 default:
1815 abort ();
1816 }
40fb9820
L
1817 return x;
1818}
1819
309d3373
JB
1820static INLINE i386_cpu_flags
1821cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1822{
1823 switch (ARRAY_SIZE (x.array))
1824 {
53467f57
IT
1825 case 4:
1826 x.array [3] &= ~y.array [3];
1827 /* Fall through. */
309d3373
JB
1828 case 3:
1829 x.array [2] &= ~y.array [2];
1a0670f3 1830 /* Fall through. */
309d3373
JB
1831 case 2:
1832 x.array [1] &= ~y.array [1];
1a0670f3 1833 /* Fall through. */
309d3373
JB
1834 case 1:
1835 x.array [0] &= ~y.array [0];
1836 break;
1837 default:
1838 abort ();
1839 }
1840 return x;
1841}
1842
6c0946d0
JB
1843static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1844
c0f3af97
L
1845#define CPU_FLAGS_ARCH_MATCH 0x1
1846#define CPU_FLAGS_64BIT_MATCH 0x2
1847
c0f3af97 1848#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1849 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1850
1851/* Return CPU flags match bits. */
3629bb00 1852
40fb9820 1853static int
d3ce72d0 1854cpu_flags_match (const insn_template *t)
40fb9820 1855{
c0f3af97
L
1856 i386_cpu_flags x = t->cpu_flags;
1857 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1858
1859 x.bitfield.cpu64 = 0;
1860 x.bitfield.cpuno64 = 0;
1861
0dfbf9d7 1862 if (cpu_flags_all_zero (&x))
c0f3af97
L
1863 {
1864 /* This instruction is available on all archs. */
db12e14e 1865 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1866 }
3629bb00
L
1867 else
1868 {
c0f3af97 1869 /* This instruction is available only on some archs. */
3629bb00
L
1870 i386_cpu_flags cpu = cpu_arch_flags;
1871
ab592e75
JB
1872 /* AVX512VL is no standalone feature - match it and then strip it. */
1873 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1874 return match;
1875 x.bitfield.cpuavx512vl = 0;
1876
3629bb00 1877 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1878 if (!cpu_flags_all_zero (&cpu))
1879 {
a5ff0eb2
L
1880 if (x.bitfield.cpuavx)
1881 {
929f69fa 1882 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1883 if (cpu.bitfield.cpuavx
1884 && (!t->opcode_modifier.sse2avx || sse2avx)
1885 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1886 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1887 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1888 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1889 }
929f69fa
JB
1890 else if (x.bitfield.cpuavx512f)
1891 {
1892 /* We need to check a few extra flags with AVX512F. */
1893 if (cpu.bitfield.cpuavx512f
1894 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1895 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1896 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1897 match |= CPU_FLAGS_ARCH_MATCH;
1898 }
a5ff0eb2 1899 else
db12e14e 1900 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1901 }
3629bb00 1902 }
c0f3af97 1903 return match;
40fb9820
L
1904}
1905
c6fb90c8
L
1906static INLINE i386_operand_type
1907operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1908{
bab6aec1
JB
1909 if (x.bitfield.class != y.bitfield.class)
1910 x.bitfield.class = ClassNone;
75e5731b
JB
1911 if (x.bitfield.instance != y.bitfield.instance)
1912 x.bitfield.instance = InstanceNone;
bab6aec1 1913
c6fb90c8
L
1914 switch (ARRAY_SIZE (x.array))
1915 {
1916 case 3:
1917 x.array [2] &= y.array [2];
1a0670f3 1918 /* Fall through. */
c6fb90c8
L
1919 case 2:
1920 x.array [1] &= y.array [1];
1a0670f3 1921 /* Fall through. */
c6fb90c8
L
1922 case 1:
1923 x.array [0] &= y.array [0];
1924 break;
1925 default:
1926 abort ();
1927 }
1928 return x;
40fb9820
L
1929}
1930
73053c1f
JB
1931static INLINE i386_operand_type
1932operand_type_and_not (i386_operand_type x, i386_operand_type y)
1933{
bab6aec1 1934 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1935 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1936
73053c1f
JB
1937 switch (ARRAY_SIZE (x.array))
1938 {
1939 case 3:
1940 x.array [2] &= ~y.array [2];
1941 /* Fall through. */
1942 case 2:
1943 x.array [1] &= ~y.array [1];
1944 /* Fall through. */
1945 case 1:
1946 x.array [0] &= ~y.array [0];
1947 break;
1948 default:
1949 abort ();
1950 }
1951 return x;
1952}
1953
c6fb90c8
L
1954static INLINE i386_operand_type
1955operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1956{
bab6aec1
JB
1957 gas_assert (x.bitfield.class == ClassNone ||
1958 y.bitfield.class == ClassNone ||
1959 x.bitfield.class == y.bitfield.class);
75e5731b
JB
1960 gas_assert (x.bitfield.instance == InstanceNone ||
1961 y.bitfield.instance == InstanceNone ||
1962 x.bitfield.instance == y.bitfield.instance);
bab6aec1 1963
c6fb90c8 1964 switch (ARRAY_SIZE (x.array))
40fb9820 1965 {
c6fb90c8
L
1966 case 3:
1967 x.array [2] |= y.array [2];
1a0670f3 1968 /* Fall through. */
c6fb90c8
L
1969 case 2:
1970 x.array [1] |= y.array [1];
1a0670f3 1971 /* Fall through. */
c6fb90c8
L
1972 case 1:
1973 x.array [0] |= y.array [0];
40fb9820
L
1974 break;
1975 default:
1976 abort ();
1977 }
c6fb90c8
L
1978 return x;
1979}
40fb9820 1980
c6fb90c8
L
1981static INLINE i386_operand_type
1982operand_type_xor (i386_operand_type x, i386_operand_type y)
1983{
bab6aec1 1984 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1985 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1986
c6fb90c8
L
1987 switch (ARRAY_SIZE (x.array))
1988 {
1989 case 3:
1990 x.array [2] ^= y.array [2];
1a0670f3 1991 /* Fall through. */
c6fb90c8
L
1992 case 2:
1993 x.array [1] ^= y.array [1];
1a0670f3 1994 /* Fall through. */
c6fb90c8
L
1995 case 1:
1996 x.array [0] ^= y.array [0];
1997 break;
1998 default:
1999 abort ();
2000 }
40fb9820
L
2001 return x;
2002}
2003
40fb9820
L
2004static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2005static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2006static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2007static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
bab6aec1
JB
2008static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2009static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
40fb9820 2010static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 2011static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
2012static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2013static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2014static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2015static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2016static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2017static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2018static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2019static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2020static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2021
2022enum operand_type
2023{
2024 reg,
40fb9820
L
2025 imm,
2026 disp,
2027 anymem
2028};
2029
c6fb90c8 2030static INLINE int
40fb9820
L
2031operand_type_check (i386_operand_type t, enum operand_type c)
2032{
2033 switch (c)
2034 {
2035 case reg:
bab6aec1 2036 return t.bitfield.class == Reg;
40fb9820 2037
40fb9820
L
2038 case imm:
2039 return (t.bitfield.imm8
2040 || t.bitfield.imm8s
2041 || t.bitfield.imm16
2042 || t.bitfield.imm32
2043 || t.bitfield.imm32s
2044 || t.bitfield.imm64);
2045
2046 case disp:
2047 return (t.bitfield.disp8
2048 || t.bitfield.disp16
2049 || t.bitfield.disp32
2050 || t.bitfield.disp32s
2051 || t.bitfield.disp64);
2052
2053 case anymem:
2054 return (t.bitfield.disp8
2055 || t.bitfield.disp16
2056 || t.bitfield.disp32
2057 || t.bitfield.disp32s
2058 || t.bitfield.disp64
2059 || t.bitfield.baseindex);
2060
2061 default:
2062 abort ();
2063 }
2cfe26b6
AM
2064
2065 return 0;
40fb9820
L
2066}
2067
7a54636a
L
2068/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2069 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
2070
2071static INLINE int
7a54636a
L
2072match_operand_size (const insn_template *t, unsigned int wanted,
2073 unsigned int given)
5c07affc 2074{
3ac21baa
JB
2075 return !((i.types[given].bitfield.byte
2076 && !t->operand_types[wanted].bitfield.byte)
2077 || (i.types[given].bitfield.word
2078 && !t->operand_types[wanted].bitfield.word)
2079 || (i.types[given].bitfield.dword
2080 && !t->operand_types[wanted].bitfield.dword)
2081 || (i.types[given].bitfield.qword
2082 && !t->operand_types[wanted].bitfield.qword)
2083 || (i.types[given].bitfield.tbyte
2084 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
2085}
2086
dd40ce22
L
2087/* Return 1 if there is no conflict in SIMD register between operand
2088 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2089
2090static INLINE int
dd40ce22
L
2091match_simd_size (const insn_template *t, unsigned int wanted,
2092 unsigned int given)
1b54b8d7 2093{
3ac21baa
JB
2094 return !((i.types[given].bitfield.xmmword
2095 && !t->operand_types[wanted].bitfield.xmmword)
2096 || (i.types[given].bitfield.ymmword
2097 && !t->operand_types[wanted].bitfield.ymmword)
2098 || (i.types[given].bitfield.zmmword
2099 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
2100}
2101
7a54636a
L
2102/* Return 1 if there is no conflict in any size between operand GIVEN
2103 and opeand WANTED for instruction template T. */
5c07affc
L
2104
2105static INLINE int
dd40ce22
L
2106match_mem_size (const insn_template *t, unsigned int wanted,
2107 unsigned int given)
5c07affc 2108{
7a54636a 2109 return (match_operand_size (t, wanted, given)
3ac21baa 2110 && !((i.types[given].bitfield.unspecified
af508cb9 2111 && !i.broadcast
3ac21baa
JB
2112 && !t->operand_types[wanted].bitfield.unspecified)
2113 || (i.types[given].bitfield.fword
2114 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2115 /* For scalar opcode templates to allow register and memory
2116 operands at the same time, some special casing is needed
d6793fa1
JB
2117 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2118 down-conversion vpmov*. */
3528c362 2119 || ((t->operand_types[wanted].bitfield.class == RegSIMD
1b54b8d7 2120 && !t->opcode_modifier.broadcast
3ac21baa
JB
2121 && (t->operand_types[wanted].bitfield.byte
2122 || t->operand_types[wanted].bitfield.word
2123 || t->operand_types[wanted].bitfield.dword
2124 || t->operand_types[wanted].bitfield.qword))
2125 ? (i.types[given].bitfield.xmmword
2126 || i.types[given].bitfield.ymmword
2127 || i.types[given].bitfield.zmmword)
2128 : !match_simd_size(t, wanted, given))));
5c07affc
L
2129}
2130
3ac21baa
JB
2131/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2132 operands for instruction template T, and it has MATCH_REVERSE set if there
2133 is no size conflict on any operands for the template with operands reversed
2134 (and the template allows for reversing in the first place). */
5c07affc 2135
3ac21baa
JB
2136#define MATCH_STRAIGHT 1
2137#define MATCH_REVERSE 2
2138
2139static INLINE unsigned int
d3ce72d0 2140operand_size_match (const insn_template *t)
5c07affc 2141{
3ac21baa 2142 unsigned int j, match = MATCH_STRAIGHT;
5c07affc 2143
0cfa3eb3 2144 /* Don't check non-absolute jump instructions. */
5c07affc 2145 if (t->opcode_modifier.jump
0cfa3eb3 2146 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5c07affc
L
2147 return match;
2148
2149 /* Check memory and accumulator operand size. */
2150 for (j = 0; j < i.operands; j++)
2151 {
3528c362
JB
2152 if (i.types[j].bitfield.class != Reg
2153 && i.types[j].bitfield.class != RegSIMD
601e8564 2154 && t->opcode_modifier.anysize)
5c07affc
L
2155 continue;
2156
bab6aec1 2157 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2158 && !match_operand_size (t, j, j))
5c07affc
L
2159 {
2160 match = 0;
2161 break;
2162 }
2163
3528c362 2164 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2165 && !match_simd_size (t, j, j))
1b54b8d7
JB
2166 {
2167 match = 0;
2168 break;
2169 }
2170
75e5731b 2171 if (t->operand_types[j].bitfield.instance == Accum
7a54636a 2172 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2173 {
2174 match = 0;
2175 break;
2176 }
2177
c48dadc9 2178 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2179 {
2180 match = 0;
2181 break;
2182 }
2183 }
2184
3ac21baa 2185 if (!t->opcode_modifier.d)
891edac4
L
2186 {
2187mismatch:
3ac21baa
JB
2188 if (!match)
2189 i.error = operand_size_mismatch;
2190 return match;
891edac4 2191 }
5c07affc
L
2192
2193 /* Check reverse. */
f5eb1d70 2194 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2195
f5eb1d70 2196 for (j = 0; j < i.operands; j++)
5c07affc 2197 {
f5eb1d70
JB
2198 unsigned int given = i.operands - j - 1;
2199
bab6aec1 2200 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2201 && !match_operand_size (t, j, given))
891edac4 2202 goto mismatch;
5c07affc 2203
3528c362 2204 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2205 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2206 goto mismatch;
2207
75e5731b 2208 if (t->operand_types[j].bitfield.instance == Accum
f5eb1d70
JB
2209 && (!match_operand_size (t, j, given)
2210 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2211 goto mismatch;
2212
f5eb1d70 2213 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2214 goto mismatch;
5c07affc
L
2215 }
2216
3ac21baa 2217 return match | MATCH_REVERSE;
5c07affc
L
2218}
2219
c6fb90c8 2220static INLINE int
40fb9820
L
2221operand_type_match (i386_operand_type overlap,
2222 i386_operand_type given)
2223{
2224 i386_operand_type temp = overlap;
2225
7d5e4556 2226 temp.bitfield.unspecified = 0;
5c07affc
L
2227 temp.bitfield.byte = 0;
2228 temp.bitfield.word = 0;
2229 temp.bitfield.dword = 0;
2230 temp.bitfield.fword = 0;
2231 temp.bitfield.qword = 0;
2232 temp.bitfield.tbyte = 0;
2233 temp.bitfield.xmmword = 0;
c0f3af97 2234 temp.bitfield.ymmword = 0;
43234a1e 2235 temp.bitfield.zmmword = 0;
0dfbf9d7 2236 if (operand_type_all_zero (&temp))
891edac4 2237 goto mismatch;
40fb9820 2238
6f2f06be 2239 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
891edac4
L
2240 return 1;
2241
2242mismatch:
a65babc9 2243 i.error = operand_type_mismatch;
891edac4 2244 return 0;
40fb9820
L
2245}
2246
7d5e4556 2247/* If given types g0 and g1 are registers they must be of the same type
10c17abd 2248 unless the expected operand type register overlap is null.
5de4d9ef 2249 Some Intel syntax memory operand size checking also happens here. */
40fb9820 2250
c6fb90c8 2251static INLINE int
dc821c5f 2252operand_type_register_match (i386_operand_type g0,
40fb9820 2253 i386_operand_type t0,
40fb9820
L
2254 i386_operand_type g1,
2255 i386_operand_type t1)
2256{
bab6aec1 2257 if (g0.bitfield.class != Reg
3528c362 2258 && g0.bitfield.class != RegSIMD
10c17abd
JB
2259 && (!operand_type_check (g0, anymem)
2260 || g0.bitfield.unspecified
5de4d9ef
JB
2261 || (t0.bitfield.class != Reg
2262 && t0.bitfield.class != RegSIMD)))
40fb9820
L
2263 return 1;
2264
bab6aec1 2265 if (g1.bitfield.class != Reg
3528c362 2266 && g1.bitfield.class != RegSIMD
10c17abd
JB
2267 && (!operand_type_check (g1, anymem)
2268 || g1.bitfield.unspecified
5de4d9ef
JB
2269 || (t1.bitfield.class != Reg
2270 && t1.bitfield.class != RegSIMD)))
40fb9820
L
2271 return 1;
2272
dc821c5f
JB
2273 if (g0.bitfield.byte == g1.bitfield.byte
2274 && g0.bitfield.word == g1.bitfield.word
2275 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2276 && g0.bitfield.qword == g1.bitfield.qword
2277 && g0.bitfield.xmmword == g1.bitfield.xmmword
2278 && g0.bitfield.ymmword == g1.bitfield.ymmword
2279 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2280 return 1;
2281
dc821c5f
JB
2282 if (!(t0.bitfield.byte & t1.bitfield.byte)
2283 && !(t0.bitfield.word & t1.bitfield.word)
2284 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2285 && !(t0.bitfield.qword & t1.bitfield.qword)
2286 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2287 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2288 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2289 return 1;
2290
a65babc9 2291 i.error = register_type_mismatch;
891edac4
L
2292
2293 return 0;
40fb9820
L
2294}
2295
4c692bc7
JB
2296static INLINE unsigned int
2297register_number (const reg_entry *r)
2298{
2299 unsigned int nr = r->reg_num;
2300
2301 if (r->reg_flags & RegRex)
2302 nr += 8;
2303
200cbe0f
L
2304 if (r->reg_flags & RegVRex)
2305 nr += 16;
2306
4c692bc7
JB
2307 return nr;
2308}
2309
252b5132 2310static INLINE unsigned int
40fb9820 2311mode_from_disp_size (i386_operand_type t)
252b5132 2312{
b5014f7a 2313 if (t.bitfield.disp8)
40fb9820
L
2314 return 1;
2315 else if (t.bitfield.disp16
2316 || t.bitfield.disp32
2317 || t.bitfield.disp32s)
2318 return 2;
2319 else
2320 return 0;
252b5132
RH
2321}
2322
2323static INLINE int
65879393 2324fits_in_signed_byte (addressT num)
252b5132 2325{
65879393 2326 return num + 0x80 <= 0xff;
47926f60 2327}
252b5132
RH
2328
2329static INLINE int
65879393 2330fits_in_unsigned_byte (addressT num)
252b5132 2331{
65879393 2332 return num <= 0xff;
47926f60 2333}
252b5132
RH
2334
2335static INLINE int
65879393 2336fits_in_unsigned_word (addressT num)
252b5132 2337{
65879393 2338 return num <= 0xffff;
47926f60 2339}
252b5132
RH
2340
2341static INLINE int
65879393 2342fits_in_signed_word (addressT num)
252b5132 2343{
65879393 2344 return num + 0x8000 <= 0xffff;
47926f60 2345}
2a962e6d 2346
3e73aa7c 2347static INLINE int
65879393 2348fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2349{
2350#ifndef BFD64
2351 return 1;
2352#else
65879393 2353 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2354#endif
2355} /* fits_in_signed_long() */
2a962e6d 2356
3e73aa7c 2357static INLINE int
65879393 2358fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2359{
2360#ifndef BFD64
2361 return 1;
2362#else
65879393 2363 return num <= 0xffffffff;
3e73aa7c
JH
2364#endif
2365} /* fits_in_unsigned_long() */
252b5132 2366
43234a1e 2367static INLINE int
b5014f7a 2368fits_in_disp8 (offsetT num)
43234a1e
L
2369{
2370 int shift = i.memshift;
2371 unsigned int mask;
2372
2373 if (shift == -1)
2374 abort ();
2375
2376 mask = (1 << shift) - 1;
2377
2378 /* Return 0 if NUM isn't properly aligned. */
2379 if ((num & mask))
2380 return 0;
2381
2382 /* Check if NUM will fit in 8bit after shift. */
2383 return fits_in_signed_byte (num >> shift);
2384}
2385
a683cc34
SP
2386static INLINE int
2387fits_in_imm4 (offsetT num)
2388{
2389 return (num & 0xf) == num;
2390}
2391
40fb9820 2392static i386_operand_type
e3bb37b5 2393smallest_imm_type (offsetT num)
252b5132 2394{
40fb9820 2395 i386_operand_type t;
7ab9ffdd 2396
0dfbf9d7 2397 operand_type_set (&t, 0);
40fb9820
L
2398 t.bitfield.imm64 = 1;
2399
2400 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2401 {
2402 /* This code is disabled on the 486 because all the Imm1 forms
2403 in the opcode table are slower on the i486. They're the
2404 versions with the implicitly specified single-position
2405 displacement, which has another syntax if you really want to
2406 use that form. */
40fb9820
L
2407 t.bitfield.imm1 = 1;
2408 t.bitfield.imm8 = 1;
2409 t.bitfield.imm8s = 1;
2410 t.bitfield.imm16 = 1;
2411 t.bitfield.imm32 = 1;
2412 t.bitfield.imm32s = 1;
2413 }
2414 else if (fits_in_signed_byte (num))
2415 {
2416 t.bitfield.imm8 = 1;
2417 t.bitfield.imm8s = 1;
2418 t.bitfield.imm16 = 1;
2419 t.bitfield.imm32 = 1;
2420 t.bitfield.imm32s = 1;
2421 }
2422 else if (fits_in_unsigned_byte (num))
2423 {
2424 t.bitfield.imm8 = 1;
2425 t.bitfield.imm16 = 1;
2426 t.bitfield.imm32 = 1;
2427 t.bitfield.imm32s = 1;
2428 }
2429 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2430 {
2431 t.bitfield.imm16 = 1;
2432 t.bitfield.imm32 = 1;
2433 t.bitfield.imm32s = 1;
2434 }
2435 else if (fits_in_signed_long (num))
2436 {
2437 t.bitfield.imm32 = 1;
2438 t.bitfield.imm32s = 1;
2439 }
2440 else if (fits_in_unsigned_long (num))
2441 t.bitfield.imm32 = 1;
2442
2443 return t;
47926f60 2444}
252b5132 2445
847f7ad4 2446static offsetT
e3bb37b5 2447offset_in_range (offsetT val, int size)
847f7ad4 2448{
508866be 2449 addressT mask;
ba2adb93 2450
847f7ad4
AM
2451 switch (size)
2452 {
508866be
L
2453 case 1: mask = ((addressT) 1 << 8) - 1; break;
2454 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2455 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2456#ifdef BFD64
2457 case 8: mask = ((addressT) 2 << 63) - 1; break;
2458#endif
47926f60 2459 default: abort ();
847f7ad4
AM
2460 }
2461
9de868bf
L
2462#ifdef BFD64
2463 /* If BFD64, sign extend val for 32bit address mode. */
2464 if (flag_code != CODE_64BIT
2465 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2466 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2467 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2468#endif
ba2adb93 2469
47926f60 2470 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2471 {
2472 char buf1[40], buf2[40];
2473
2474 sprint_value (buf1, val);
2475 sprint_value (buf2, val & mask);
2476 as_warn (_("%s shortened to %s"), buf1, buf2);
2477 }
2478 return val & mask;
2479}
2480
c32fa91d
L
2481enum PREFIX_GROUP
2482{
2483 PREFIX_EXIST = 0,
2484 PREFIX_LOCK,
2485 PREFIX_REP,
04ef582a 2486 PREFIX_DS,
c32fa91d
L
2487 PREFIX_OTHER
2488};
2489
2490/* Returns
2491 a. PREFIX_EXIST if attempting to add a prefix where one from the
2492 same class already exists.
2493 b. PREFIX_LOCK if lock prefix is added.
2494 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2495 d. PREFIX_DS if ds prefix is added.
2496 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2497 */
2498
2499static enum PREFIX_GROUP
e3bb37b5 2500add_prefix (unsigned int prefix)
252b5132 2501{
c32fa91d 2502 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2503 unsigned int q;
252b5132 2504
29b0f896
AM
2505 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2506 && flag_code == CODE_64BIT)
b1905489 2507 {
161a04f6 2508 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2509 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2510 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2511 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2512 ret = PREFIX_EXIST;
b1905489
JB
2513 q = REX_PREFIX;
2514 }
3e73aa7c 2515 else
b1905489
JB
2516 {
2517 switch (prefix)
2518 {
2519 default:
2520 abort ();
2521
b1905489 2522 case DS_PREFIX_OPCODE:
04ef582a
L
2523 ret = PREFIX_DS;
2524 /* Fall through. */
2525 case CS_PREFIX_OPCODE:
b1905489
JB
2526 case ES_PREFIX_OPCODE:
2527 case FS_PREFIX_OPCODE:
2528 case GS_PREFIX_OPCODE:
2529 case SS_PREFIX_OPCODE:
2530 q = SEG_PREFIX;
2531 break;
2532
2533 case REPNE_PREFIX_OPCODE:
2534 case REPE_PREFIX_OPCODE:
c32fa91d
L
2535 q = REP_PREFIX;
2536 ret = PREFIX_REP;
2537 break;
2538
b1905489 2539 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2540 q = LOCK_PREFIX;
2541 ret = PREFIX_LOCK;
b1905489
JB
2542 break;
2543
2544 case FWAIT_OPCODE:
2545 q = WAIT_PREFIX;
2546 break;
2547
2548 case ADDR_PREFIX_OPCODE:
2549 q = ADDR_PREFIX;
2550 break;
2551
2552 case DATA_PREFIX_OPCODE:
2553 q = DATA_PREFIX;
2554 break;
2555 }
2556 if (i.prefix[q] != 0)
c32fa91d 2557 ret = PREFIX_EXIST;
b1905489 2558 }
252b5132 2559
b1905489 2560 if (ret)
252b5132 2561 {
b1905489
JB
2562 if (!i.prefix[q])
2563 ++i.prefixes;
2564 i.prefix[q] |= prefix;
252b5132 2565 }
b1905489
JB
2566 else
2567 as_bad (_("same type of prefix used twice"));
252b5132 2568
252b5132
RH
2569 return ret;
2570}
2571
2572static void
78f12dd3 2573update_code_flag (int value, int check)
eecb386c 2574{
78f12dd3
L
2575 PRINTF_LIKE ((*as_error));
2576
1e9cc1c2 2577 flag_code = (enum flag_code) value;
40fb9820
L
2578 if (flag_code == CODE_64BIT)
2579 {
2580 cpu_arch_flags.bitfield.cpu64 = 1;
2581 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2582 }
2583 else
2584 {
2585 cpu_arch_flags.bitfield.cpu64 = 0;
2586 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2587 }
2588 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2589 {
78f12dd3
L
2590 if (check)
2591 as_error = as_fatal;
2592 else
2593 as_error = as_bad;
2594 (*as_error) (_("64bit mode not supported on `%s'."),
2595 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2596 }
40fb9820 2597 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2598 {
78f12dd3
L
2599 if (check)
2600 as_error = as_fatal;
2601 else
2602 as_error = as_bad;
2603 (*as_error) (_("32bit mode not supported on `%s'."),
2604 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2605 }
eecb386c
AM
2606 stackop_size = '\0';
2607}
2608
78f12dd3
L
2609static void
2610set_code_flag (int value)
2611{
2612 update_code_flag (value, 0);
2613}
2614
eecb386c 2615static void
e3bb37b5 2616set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2617{
1e9cc1c2 2618 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2619 if (flag_code != CODE_16BIT)
2620 abort ();
2621 cpu_arch_flags.bitfield.cpu64 = 0;
2622 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2623 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2624}
2625
2626static void
e3bb37b5 2627set_intel_syntax (int syntax_flag)
252b5132
RH
2628{
2629 /* Find out if register prefixing is specified. */
2630 int ask_naked_reg = 0;
2631
2632 SKIP_WHITESPACE ();
29b0f896 2633 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2634 {
d02603dc
NC
2635 char *string;
2636 int e = get_symbol_name (&string);
252b5132 2637
47926f60 2638 if (strcmp (string, "prefix") == 0)
252b5132 2639 ask_naked_reg = 1;
47926f60 2640 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2641 ask_naked_reg = -1;
2642 else
d0b47220 2643 as_bad (_("bad argument to syntax directive."));
d02603dc 2644 (void) restore_line_pointer (e);
252b5132
RH
2645 }
2646 demand_empty_rest_of_line ();
c3332e24 2647
252b5132
RH
2648 intel_syntax = syntax_flag;
2649
2650 if (ask_naked_reg == 0)
f86103b7
AM
2651 allow_naked_reg = (intel_syntax
2652 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2653 else
2654 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2655
ee86248c 2656 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2657
e4a3b5a4 2658 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2659 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2660 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2661}
2662
1efbbeb4
L
2663static void
2664set_intel_mnemonic (int mnemonic_flag)
2665{
e1d4d893 2666 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2667}
2668
db51cc60
L
2669static void
2670set_allow_index_reg (int flag)
2671{
2672 allow_index_reg = flag;
2673}
2674
cb19c032 2675static void
7bab8ab5 2676set_check (int what)
cb19c032 2677{
7bab8ab5
JB
2678 enum check_kind *kind;
2679 const char *str;
2680
2681 if (what)
2682 {
2683 kind = &operand_check;
2684 str = "operand";
2685 }
2686 else
2687 {
2688 kind = &sse_check;
2689 str = "sse";
2690 }
2691
cb19c032
L
2692 SKIP_WHITESPACE ();
2693
2694 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2695 {
d02603dc
NC
2696 char *string;
2697 int e = get_symbol_name (&string);
cb19c032
L
2698
2699 if (strcmp (string, "none") == 0)
7bab8ab5 2700 *kind = check_none;
cb19c032 2701 else if (strcmp (string, "warning") == 0)
7bab8ab5 2702 *kind = check_warning;
cb19c032 2703 else if (strcmp (string, "error") == 0)
7bab8ab5 2704 *kind = check_error;
cb19c032 2705 else
7bab8ab5 2706 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2707 (void) restore_line_pointer (e);
cb19c032
L
2708 }
2709 else
7bab8ab5 2710 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2711
2712 demand_empty_rest_of_line ();
2713}
2714
8a9036a4
L
2715static void
2716check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2717 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2718{
2719#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2720 static const char *arch;
2721
2722 /* Intel LIOM is only supported on ELF. */
2723 if (!IS_ELF)
2724 return;
2725
2726 if (!arch)
2727 {
2728 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2729 use default_arch. */
2730 arch = cpu_arch_name;
2731 if (!arch)
2732 arch = default_arch;
2733 }
2734
81486035
L
2735 /* If we are targeting Intel MCU, we must enable it. */
2736 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2737 || new_flag.bitfield.cpuiamcu)
2738 return;
2739
3632d14b 2740 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2741 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2742 || new_flag.bitfield.cpul1om)
8a9036a4 2743 return;
76ba9986 2744
7a9068fe
L
2745 /* If we are targeting Intel K1OM, we must enable it. */
2746 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2747 || new_flag.bitfield.cpuk1om)
2748 return;
2749
8a9036a4
L
2750 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2751#endif
2752}
2753
e413e4e9 2754static void
e3bb37b5 2755set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2756{
47926f60 2757 SKIP_WHITESPACE ();
e413e4e9 2758
29b0f896 2759 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2760 {
d02603dc
NC
2761 char *string;
2762 int e = get_symbol_name (&string);
91d6fa6a 2763 unsigned int j;
40fb9820 2764 i386_cpu_flags flags;
e413e4e9 2765
91d6fa6a 2766 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2767 {
91d6fa6a 2768 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2769 {
91d6fa6a 2770 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2771
5c6af06e
JB
2772 if (*string != '.')
2773 {
91d6fa6a 2774 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2775 cpu_sub_arch_name = NULL;
91d6fa6a 2776 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2777 if (flag_code == CODE_64BIT)
2778 {
2779 cpu_arch_flags.bitfield.cpu64 = 1;
2780 cpu_arch_flags.bitfield.cpuno64 = 0;
2781 }
2782 else
2783 {
2784 cpu_arch_flags.bitfield.cpu64 = 0;
2785 cpu_arch_flags.bitfield.cpuno64 = 1;
2786 }
91d6fa6a
NC
2787 cpu_arch_isa = cpu_arch[j].type;
2788 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2789 if (!cpu_arch_tune_set)
2790 {
2791 cpu_arch_tune = cpu_arch_isa;
2792 cpu_arch_tune_flags = cpu_arch_isa_flags;
2793 }
5c6af06e
JB
2794 break;
2795 }
40fb9820 2796
293f5f65
L
2797 flags = cpu_flags_or (cpu_arch_flags,
2798 cpu_arch[j].flags);
81486035 2799
5b64d091 2800 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2801 {
6305a203
L
2802 if (cpu_sub_arch_name)
2803 {
2804 char *name = cpu_sub_arch_name;
2805 cpu_sub_arch_name = concat (name,
91d6fa6a 2806 cpu_arch[j].name,
1bf57e9f 2807 (const char *) NULL);
6305a203
L
2808 free (name);
2809 }
2810 else
91d6fa6a 2811 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2812 cpu_arch_flags = flags;
a586129e 2813 cpu_arch_isa_flags = flags;
5c6af06e 2814 }
0089dace
L
2815 else
2816 cpu_arch_isa_flags
2817 = cpu_flags_or (cpu_arch_isa_flags,
2818 cpu_arch[j].flags);
d02603dc 2819 (void) restore_line_pointer (e);
5c6af06e
JB
2820 demand_empty_rest_of_line ();
2821 return;
e413e4e9
AM
2822 }
2823 }
293f5f65
L
2824
2825 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2826 {
33eaf5de 2827 /* Disable an ISA extension. */
293f5f65
L
2828 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2829 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2830 {
2831 flags = cpu_flags_and_not (cpu_arch_flags,
2832 cpu_noarch[j].flags);
2833 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2834 {
2835 if (cpu_sub_arch_name)
2836 {
2837 char *name = cpu_sub_arch_name;
2838 cpu_sub_arch_name = concat (name, string,
2839 (const char *) NULL);
2840 free (name);
2841 }
2842 else
2843 cpu_sub_arch_name = xstrdup (string);
2844 cpu_arch_flags = flags;
2845 cpu_arch_isa_flags = flags;
2846 }
2847 (void) restore_line_pointer (e);
2848 demand_empty_rest_of_line ();
2849 return;
2850 }
2851
2852 j = ARRAY_SIZE (cpu_arch);
2853 }
2854
91d6fa6a 2855 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2856 as_bad (_("no such architecture: `%s'"), string);
2857
2858 *input_line_pointer = e;
2859 }
2860 else
2861 as_bad (_("missing cpu architecture"));
2862
fddf5b5b
AM
2863 no_cond_jump_promotion = 0;
2864 if (*input_line_pointer == ','
29b0f896 2865 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2866 {
d02603dc
NC
2867 char *string;
2868 char e;
2869
2870 ++input_line_pointer;
2871 e = get_symbol_name (&string);
fddf5b5b
AM
2872
2873 if (strcmp (string, "nojumps") == 0)
2874 no_cond_jump_promotion = 1;
2875 else if (strcmp (string, "jumps") == 0)
2876 ;
2877 else
2878 as_bad (_("no such architecture modifier: `%s'"), string);
2879
d02603dc 2880 (void) restore_line_pointer (e);
fddf5b5b
AM
2881 }
2882
e413e4e9
AM
2883 demand_empty_rest_of_line ();
2884}
2885
8a9036a4
L
2886enum bfd_architecture
2887i386_arch (void)
2888{
3632d14b 2889 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2890 {
2891 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2892 || flag_code != CODE_64BIT)
2893 as_fatal (_("Intel L1OM is 64bit ELF only"));
2894 return bfd_arch_l1om;
2895 }
7a9068fe
L
2896 else if (cpu_arch_isa == PROCESSOR_K1OM)
2897 {
2898 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2899 || flag_code != CODE_64BIT)
2900 as_fatal (_("Intel K1OM is 64bit ELF only"));
2901 return bfd_arch_k1om;
2902 }
81486035
L
2903 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2904 {
2905 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2906 || flag_code == CODE_64BIT)
2907 as_fatal (_("Intel MCU is 32bit ELF only"));
2908 return bfd_arch_iamcu;
2909 }
8a9036a4
L
2910 else
2911 return bfd_arch_i386;
2912}
2913
b9d79e03 2914unsigned long
7016a5d5 2915i386_mach (void)
b9d79e03 2916{
351f65ca 2917 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2918 {
3632d14b 2919 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2920 {
351f65ca
L
2921 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2922 || default_arch[6] != '\0')
8a9036a4
L
2923 as_fatal (_("Intel L1OM is 64bit ELF only"));
2924 return bfd_mach_l1om;
2925 }
7a9068fe
L
2926 else if (cpu_arch_isa == PROCESSOR_K1OM)
2927 {
2928 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2929 || default_arch[6] != '\0')
2930 as_fatal (_("Intel K1OM is 64bit ELF only"));
2931 return bfd_mach_k1om;
2932 }
351f65ca 2933 else if (default_arch[6] == '\0')
8a9036a4 2934 return bfd_mach_x86_64;
351f65ca
L
2935 else
2936 return bfd_mach_x64_32;
8a9036a4 2937 }
5197d474
L
2938 else if (!strcmp (default_arch, "i386")
2939 || !strcmp (default_arch, "iamcu"))
81486035
L
2940 {
2941 if (cpu_arch_isa == PROCESSOR_IAMCU)
2942 {
2943 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2944 as_fatal (_("Intel MCU is 32bit ELF only"));
2945 return bfd_mach_i386_iamcu;
2946 }
2947 else
2948 return bfd_mach_i386_i386;
2949 }
b9d79e03 2950 else
2b5d6a91 2951 as_fatal (_("unknown architecture"));
b9d79e03 2952}
b9d79e03 2953\f
252b5132 2954void
7016a5d5 2955md_begin (void)
252b5132
RH
2956{
2957 const char *hash_err;
2958
86fa6981
L
2959 /* Support pseudo prefixes like {disp32}. */
2960 lex_type ['{'] = LEX_BEGIN_NAME;
2961
47926f60 2962 /* Initialize op_hash hash table. */
252b5132
RH
2963 op_hash = hash_new ();
2964
2965 {
d3ce72d0 2966 const insn_template *optab;
29b0f896 2967 templates *core_optab;
252b5132 2968
47926f60
KH
2969 /* Setup for loop. */
2970 optab = i386_optab;
add39d23 2971 core_optab = XNEW (templates);
252b5132
RH
2972 core_optab->start = optab;
2973
2974 while (1)
2975 {
2976 ++optab;
2977 if (optab->name == NULL
2978 || strcmp (optab->name, (optab - 1)->name) != 0)
2979 {
2980 /* different name --> ship out current template list;
47926f60 2981 add to hash table; & begin anew. */
252b5132
RH
2982 core_optab->end = optab;
2983 hash_err = hash_insert (op_hash,
2984 (optab - 1)->name,
5a49b8ac 2985 (void *) core_optab);
252b5132
RH
2986 if (hash_err)
2987 {
b37df7c4 2988 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2989 (optab - 1)->name,
2990 hash_err);
2991 }
2992 if (optab->name == NULL)
2993 break;
add39d23 2994 core_optab = XNEW (templates);
252b5132
RH
2995 core_optab->start = optab;
2996 }
2997 }
2998 }
2999
47926f60 3000 /* Initialize reg_hash hash table. */
252b5132
RH
3001 reg_hash = hash_new ();
3002 {
29b0f896 3003 const reg_entry *regtab;
c3fe08fa 3004 unsigned int regtab_size = i386_regtab_size;
252b5132 3005
c3fe08fa 3006 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 3007 {
5a49b8ac 3008 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 3009 if (hash_err)
b37df7c4 3010 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
3011 regtab->reg_name,
3012 hash_err);
252b5132
RH
3013 }
3014 }
3015
47926f60 3016 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 3017 {
29b0f896
AM
3018 int c;
3019 char *p;
252b5132
RH
3020
3021 for (c = 0; c < 256; c++)
3022 {
3882b010 3023 if (ISDIGIT (c))
252b5132
RH
3024 {
3025 digit_chars[c] = c;
3026 mnemonic_chars[c] = c;
3027 register_chars[c] = c;
3028 operand_chars[c] = c;
3029 }
3882b010 3030 else if (ISLOWER (c))
252b5132
RH
3031 {
3032 mnemonic_chars[c] = c;
3033 register_chars[c] = c;
3034 operand_chars[c] = c;
3035 }
3882b010 3036 else if (ISUPPER (c))
252b5132 3037 {
3882b010 3038 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
3039 register_chars[c] = mnemonic_chars[c];
3040 operand_chars[c] = c;
3041 }
43234a1e 3042 else if (c == '{' || c == '}')
86fa6981
L
3043 {
3044 mnemonic_chars[c] = c;
3045 operand_chars[c] = c;
3046 }
252b5132 3047
3882b010 3048 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
3049 identifier_chars[c] = c;
3050 else if (c >= 128)
3051 {
3052 identifier_chars[c] = c;
3053 operand_chars[c] = c;
3054 }
3055 }
3056
3057#ifdef LEX_AT
3058 identifier_chars['@'] = '@';
32137342
NC
3059#endif
3060#ifdef LEX_QM
3061 identifier_chars['?'] = '?';
3062 operand_chars['?'] = '?';
252b5132 3063#endif
252b5132 3064 digit_chars['-'] = '-';
c0f3af97 3065 mnemonic_chars['_'] = '_';
791fe849 3066 mnemonic_chars['-'] = '-';
0003779b 3067 mnemonic_chars['.'] = '.';
252b5132
RH
3068 identifier_chars['_'] = '_';
3069 identifier_chars['.'] = '.';
3070
3071 for (p = operand_special_chars; *p != '\0'; p++)
3072 operand_chars[(unsigned char) *p] = *p;
3073 }
3074
a4447b93
RH
3075 if (flag_code == CODE_64BIT)
3076 {
ca19b261
KT
3077#if defined (OBJ_COFF) && defined (TE_PE)
3078 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3079 ? 32 : 16);
3080#else
a4447b93 3081 x86_dwarf2_return_column = 16;
ca19b261 3082#endif
61ff971f 3083 x86_cie_data_alignment = -8;
a4447b93
RH
3084 }
3085 else
3086 {
3087 x86_dwarf2_return_column = 8;
3088 x86_cie_data_alignment = -4;
3089 }
e379e5f3
L
3090
3091 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3092 can be turned into BRANCH_PREFIX frag. */
3093 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3094 abort ();
252b5132
RH
3095}
3096
3097void
e3bb37b5 3098i386_print_statistics (FILE *file)
252b5132
RH
3099{
3100 hash_print_statistics (file, "i386 opcode", op_hash);
3101 hash_print_statistics (file, "i386 register", reg_hash);
3102}
3103\f
252b5132
RH
3104#ifdef DEBUG386
3105
ce8a8b2f 3106/* Debugging routines for md_assemble. */
d3ce72d0 3107static void pte (insn_template *);
40fb9820 3108static void pt (i386_operand_type);
e3bb37b5
L
3109static void pe (expressionS *);
3110static void ps (symbolS *);
252b5132
RH
3111
3112static void
2c703856 3113pi (const char *line, i386_insn *x)
252b5132 3114{
09137c09 3115 unsigned int j;
252b5132
RH
3116
3117 fprintf (stdout, "%s: template ", line);
3118 pte (&x->tm);
09f131f2
JH
3119 fprintf (stdout, " address: base %s index %s scale %x\n",
3120 x->base_reg ? x->base_reg->reg_name : "none",
3121 x->index_reg ? x->index_reg->reg_name : "none",
3122 x->log2_scale_factor);
3123 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3124 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3125 fprintf (stdout, " sib: base %x index %x scale %x\n",
3126 x->sib.base, x->sib.index, x->sib.scale);
3127 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3128 (x->rex & REX_W) != 0,
3129 (x->rex & REX_R) != 0,
3130 (x->rex & REX_X) != 0,
3131 (x->rex & REX_B) != 0);
09137c09 3132 for (j = 0; j < x->operands; j++)
252b5132 3133 {
09137c09
SP
3134 fprintf (stdout, " #%d: ", j + 1);
3135 pt (x->types[j]);
252b5132 3136 fprintf (stdout, "\n");
bab6aec1 3137 if (x->types[j].bitfield.class == Reg
3528c362
JB
3138 || x->types[j].bitfield.class == RegMMX
3139 || x->types[j].bitfield.class == RegSIMD
00cee14f 3140 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3141 || x->types[j].bitfield.class == RegCR
3142 || x->types[j].bitfield.class == RegDR
3143 || x->types[j].bitfield.class == RegTR)
09137c09
SP
3144 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3145 if (operand_type_check (x->types[j], imm))
3146 pe (x->op[j].imms);
3147 if (operand_type_check (x->types[j], disp))
3148 pe (x->op[j].disps);
252b5132
RH
3149 }
3150}
3151
3152static void
d3ce72d0 3153pte (insn_template *t)
252b5132 3154{
09137c09 3155 unsigned int j;
252b5132 3156 fprintf (stdout, " %d operands ", t->operands);
47926f60 3157 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3158 if (t->extension_opcode != None)
3159 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3160 if (t->opcode_modifier.d)
252b5132 3161 fprintf (stdout, "D");
40fb9820 3162 if (t->opcode_modifier.w)
252b5132
RH
3163 fprintf (stdout, "W");
3164 fprintf (stdout, "\n");
09137c09 3165 for (j = 0; j < t->operands; j++)
252b5132 3166 {
09137c09
SP
3167 fprintf (stdout, " #%d type ", j + 1);
3168 pt (t->operand_types[j]);
252b5132
RH
3169 fprintf (stdout, "\n");
3170 }
3171}
3172
3173static void
e3bb37b5 3174pe (expressionS *e)
252b5132 3175{
24eab124 3176 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3177 fprintf (stdout, " add_number %ld (%lx)\n",
3178 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3179 if (e->X_add_symbol)
3180 {
3181 fprintf (stdout, " add_symbol ");
3182 ps (e->X_add_symbol);
3183 fprintf (stdout, "\n");
3184 }
3185 if (e->X_op_symbol)
3186 {
3187 fprintf (stdout, " op_symbol ");
3188 ps (e->X_op_symbol);
3189 fprintf (stdout, "\n");
3190 }
3191}
3192
3193static void
e3bb37b5 3194ps (symbolS *s)
252b5132
RH
3195{
3196 fprintf (stdout, "%s type %s%s",
3197 S_GET_NAME (s),
3198 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3199 segment_name (S_GET_SEGMENT (s)));
3200}
3201
7b81dfbb 3202static struct type_name
252b5132 3203 {
40fb9820
L
3204 i386_operand_type mask;
3205 const char *name;
252b5132 3206 }
7b81dfbb 3207const type_names[] =
252b5132 3208{
40fb9820
L
3209 { OPERAND_TYPE_REG8, "r8" },
3210 { OPERAND_TYPE_REG16, "r16" },
3211 { OPERAND_TYPE_REG32, "r32" },
3212 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3213 { OPERAND_TYPE_ACC8, "acc8" },
3214 { OPERAND_TYPE_ACC16, "acc16" },
3215 { OPERAND_TYPE_ACC32, "acc32" },
3216 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3217 { OPERAND_TYPE_IMM8, "i8" },
3218 { OPERAND_TYPE_IMM8, "i8s" },
3219 { OPERAND_TYPE_IMM16, "i16" },
3220 { OPERAND_TYPE_IMM32, "i32" },
3221 { OPERAND_TYPE_IMM32S, "i32s" },
3222 { OPERAND_TYPE_IMM64, "i64" },
3223 { OPERAND_TYPE_IMM1, "i1" },
3224 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3225 { OPERAND_TYPE_DISP8, "d8" },
3226 { OPERAND_TYPE_DISP16, "d16" },
3227 { OPERAND_TYPE_DISP32, "d32" },
3228 { OPERAND_TYPE_DISP32S, "d32s" },
3229 { OPERAND_TYPE_DISP64, "d64" },
3230 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3231 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3232 { OPERAND_TYPE_CONTROL, "control reg" },
3233 { OPERAND_TYPE_TEST, "test reg" },
3234 { OPERAND_TYPE_DEBUG, "debug reg" },
3235 { OPERAND_TYPE_FLOATREG, "FReg" },
3236 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3237 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3238 { OPERAND_TYPE_REGMMX, "rMMX" },
3239 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3240 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3241 { OPERAND_TYPE_REGZMM, "rZMM" },
3242 { OPERAND_TYPE_REGMASK, "Mask reg" },
252b5132
RH
3243};
3244
3245static void
40fb9820 3246pt (i386_operand_type t)
252b5132 3247{
40fb9820 3248 unsigned int j;
c6fb90c8 3249 i386_operand_type a;
252b5132 3250
40fb9820 3251 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3252 {
3253 a = operand_type_and (t, type_names[j].mask);
2c703856 3254 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3255 fprintf (stdout, "%s, ", type_names[j].name);
3256 }
252b5132
RH
3257 fflush (stdout);
3258}
3259
3260#endif /* DEBUG386 */
3261\f
252b5132 3262static bfd_reloc_code_real_type
3956db08 3263reloc (unsigned int size,
64e74474
AM
3264 int pcrel,
3265 int sign,
3266 bfd_reloc_code_real_type other)
252b5132 3267{
47926f60 3268 if (other != NO_RELOC)
3956db08 3269 {
91d6fa6a 3270 reloc_howto_type *rel;
3956db08
JB
3271
3272 if (size == 8)
3273 switch (other)
3274 {
64e74474
AM
3275 case BFD_RELOC_X86_64_GOT32:
3276 return BFD_RELOC_X86_64_GOT64;
3277 break;
553d1284
L
3278 case BFD_RELOC_X86_64_GOTPLT64:
3279 return BFD_RELOC_X86_64_GOTPLT64;
3280 break;
64e74474
AM
3281 case BFD_RELOC_X86_64_PLTOFF64:
3282 return BFD_RELOC_X86_64_PLTOFF64;
3283 break;
3284 case BFD_RELOC_X86_64_GOTPC32:
3285 other = BFD_RELOC_X86_64_GOTPC64;
3286 break;
3287 case BFD_RELOC_X86_64_GOTPCREL:
3288 other = BFD_RELOC_X86_64_GOTPCREL64;
3289 break;
3290 case BFD_RELOC_X86_64_TPOFF32:
3291 other = BFD_RELOC_X86_64_TPOFF64;
3292 break;
3293 case BFD_RELOC_X86_64_DTPOFF32:
3294 other = BFD_RELOC_X86_64_DTPOFF64;
3295 break;
3296 default:
3297 break;
3956db08 3298 }
e05278af 3299
8ce3d284 3300#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3301 if (other == BFD_RELOC_SIZE32)
3302 {
3303 if (size == 8)
1ab668bf 3304 other = BFD_RELOC_SIZE64;
8fd4256d 3305 if (pcrel)
1ab668bf
AM
3306 {
3307 as_bad (_("there are no pc-relative size relocations"));
3308 return NO_RELOC;
3309 }
8fd4256d 3310 }
8ce3d284 3311#endif
8fd4256d 3312
e05278af 3313 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3314 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3315 sign = -1;
3316
91d6fa6a
NC
3317 rel = bfd_reloc_type_lookup (stdoutput, other);
3318 if (!rel)
3956db08 3319 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3320 else if (size != bfd_get_reloc_size (rel))
3956db08 3321 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3322 bfd_get_reloc_size (rel),
3956db08 3323 size);
91d6fa6a 3324 else if (pcrel && !rel->pc_relative)
3956db08 3325 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3326 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3327 && !sign)
91d6fa6a 3328 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3329 && sign > 0))
3956db08
JB
3330 as_bad (_("relocated field and relocation type differ in signedness"));
3331 else
3332 return other;
3333 return NO_RELOC;
3334 }
252b5132
RH
3335
3336 if (pcrel)
3337 {
3e73aa7c 3338 if (!sign)
3956db08 3339 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3340 switch (size)
3341 {
3342 case 1: return BFD_RELOC_8_PCREL;
3343 case 2: return BFD_RELOC_16_PCREL;
d258b828 3344 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3345 case 8: return BFD_RELOC_64_PCREL;
252b5132 3346 }
3956db08 3347 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3348 }
3349 else
3350 {
3956db08 3351 if (sign > 0)
e5cb08ac 3352 switch (size)
3e73aa7c
JH
3353 {
3354 case 4: return BFD_RELOC_X86_64_32S;
3355 }
3356 else
3357 switch (size)
3358 {
3359 case 1: return BFD_RELOC_8;
3360 case 2: return BFD_RELOC_16;
3361 case 4: return BFD_RELOC_32;
3362 case 8: return BFD_RELOC_64;
3363 }
3956db08
JB
3364 as_bad (_("cannot do %s %u byte relocation"),
3365 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3366 }
3367
0cc9e1d3 3368 return NO_RELOC;
252b5132
RH
3369}
3370
47926f60
KH
3371/* Here we decide which fixups can be adjusted to make them relative to
3372 the beginning of the section instead of the symbol. Basically we need
3373 to make sure that the dynamic relocations are done correctly, so in
3374 some cases we force the original symbol to be used. */
3375
252b5132 3376int
e3bb37b5 3377tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3378{
6d249963 3379#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3380 if (!IS_ELF)
31312f95
AM
3381 return 1;
3382
a161fe53
AM
3383 /* Don't adjust pc-relative references to merge sections in 64-bit
3384 mode. */
3385 if (use_rela_relocations
3386 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3387 && fixP->fx_pcrel)
252b5132 3388 return 0;
31312f95 3389
8d01d9a9
AJ
3390 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3391 and changed later by validate_fix. */
3392 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3393 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3394 return 0;
3395
8fd4256d
L
3396 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3397 for size relocations. */
3398 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3399 || fixP->fx_r_type == BFD_RELOC_SIZE64
3400 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132 3401 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3402 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3403 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3410 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3411 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3412 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c 3413 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3414 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3418 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3420 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3425 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3426 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3427 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3428 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3429 return 0;
31312f95 3430#endif
252b5132
RH
3431 return 1;
3432}
252b5132 3433
b4cac588 3434static int
e3bb37b5 3435intel_float_operand (const char *mnemonic)
252b5132 3436{
9306ca4a
JB
3437 /* Note that the value returned is meaningful only for opcodes with (memory)
3438 operands, hence the code here is free to improperly handle opcodes that
3439 have no operands (for better performance and smaller code). */
3440
3441 if (mnemonic[0] != 'f')
3442 return 0; /* non-math */
3443
3444 switch (mnemonic[1])
3445 {
3446 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3447 the fs segment override prefix not currently handled because no
3448 call path can make opcodes without operands get here */
3449 case 'i':
3450 return 2 /* integer op */;
3451 case 'l':
3452 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3453 return 3; /* fldcw/fldenv */
3454 break;
3455 case 'n':
3456 if (mnemonic[2] != 'o' /* fnop */)
3457 return 3; /* non-waiting control op */
3458 break;
3459 case 'r':
3460 if (mnemonic[2] == 's')
3461 return 3; /* frstor/frstpm */
3462 break;
3463 case 's':
3464 if (mnemonic[2] == 'a')
3465 return 3; /* fsave */
3466 if (mnemonic[2] == 't')
3467 {
3468 switch (mnemonic[3])
3469 {
3470 case 'c': /* fstcw */
3471 case 'd': /* fstdw */
3472 case 'e': /* fstenv */
3473 case 's': /* fsts[gw] */
3474 return 3;
3475 }
3476 }
3477 break;
3478 case 'x':
3479 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3480 return 0; /* fxsave/fxrstor are not really math ops */
3481 break;
3482 }
252b5132 3483
9306ca4a 3484 return 1;
252b5132
RH
3485}
3486
c0f3af97
L
3487/* Build the VEX prefix. */
3488
3489static void
d3ce72d0 3490build_vex_prefix (const insn_template *t)
c0f3af97
L
3491{
3492 unsigned int register_specifier;
3493 unsigned int implied_prefix;
3494 unsigned int vector_length;
03751133 3495 unsigned int w;
c0f3af97
L
3496
3497 /* Check register specifier. */
3498 if (i.vex.register_specifier)
43234a1e
L
3499 {
3500 register_specifier =
3501 ~register_number (i.vex.register_specifier) & 0xf;
3502 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3503 }
c0f3af97
L
3504 else
3505 register_specifier = 0xf;
3506
79f0fa25
L
3507 /* Use 2-byte VEX prefix by swapping destination and source operand
3508 if there are more than 1 register operand. */
3509 if (i.reg_operands > 1
3510 && i.vec_encoding != vex_encoding_vex3
86fa6981 3511 && i.dir_encoding == dir_encoding_default
fa99fab2 3512 && i.operands == i.reg_operands
dbbc8b7e 3513 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3514 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3515 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3516 && i.rex == REX_B)
3517 {
3518 unsigned int xchg = i.operands - 1;
3519 union i386_op temp_op;
3520 i386_operand_type temp_type;
3521
3522 temp_type = i.types[xchg];
3523 i.types[xchg] = i.types[0];
3524 i.types[0] = temp_type;
3525 temp_op = i.op[xchg];
3526 i.op[xchg] = i.op[0];
3527 i.op[0] = temp_op;
3528
9c2799c2 3529 gas_assert (i.rm.mode == 3);
fa99fab2
L
3530
3531 i.rex = REX_R;
3532 xchg = i.rm.regmem;
3533 i.rm.regmem = i.rm.reg;
3534 i.rm.reg = xchg;
3535
dbbc8b7e
JB
3536 if (i.tm.opcode_modifier.d)
3537 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3538 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3539 else /* Use the next insn. */
3540 i.tm = t[1];
fa99fab2
L
3541 }
3542
79dec6b7
JB
3543 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3544 are no memory operands and at least 3 register ones. */
3545 if (i.reg_operands >= 3
3546 && i.vec_encoding != vex_encoding_vex3
3547 && i.reg_operands == i.operands - i.imm_operands
3548 && i.tm.opcode_modifier.vex
3549 && i.tm.opcode_modifier.commutative
3550 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3551 && i.rex == REX_B
3552 && i.vex.register_specifier
3553 && !(i.vex.register_specifier->reg_flags & RegRex))
3554 {
3555 unsigned int xchg = i.operands - i.reg_operands;
3556 union i386_op temp_op;
3557 i386_operand_type temp_type;
3558
3559 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3560 gas_assert (!i.tm.opcode_modifier.sae);
3561 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3562 &i.types[i.operands - 3]));
3563 gas_assert (i.rm.mode == 3);
3564
3565 temp_type = i.types[xchg];
3566 i.types[xchg] = i.types[xchg + 1];
3567 i.types[xchg + 1] = temp_type;
3568 temp_op = i.op[xchg];
3569 i.op[xchg] = i.op[xchg + 1];
3570 i.op[xchg + 1] = temp_op;
3571
3572 i.rex = 0;
3573 xchg = i.rm.regmem | 8;
3574 i.rm.regmem = ~register_specifier & 0xf;
3575 gas_assert (!(i.rm.regmem & 8));
3576 i.vex.register_specifier += xchg - i.rm.regmem;
3577 register_specifier = ~xchg & 0xf;
3578 }
3579
539f890d
L
3580 if (i.tm.opcode_modifier.vex == VEXScalar)
3581 vector_length = avxscalar;
10c17abd
JB
3582 else if (i.tm.opcode_modifier.vex == VEX256)
3583 vector_length = 1;
539f890d 3584 else
10c17abd 3585 {
56522fc5 3586 unsigned int op;
10c17abd 3587
c7213af9
L
3588 /* Determine vector length from the last multi-length vector
3589 operand. */
10c17abd 3590 vector_length = 0;
56522fc5 3591 for (op = t->operands; op--;)
10c17abd
JB
3592 if (t->operand_types[op].bitfield.xmmword
3593 && t->operand_types[op].bitfield.ymmword
3594 && i.types[op].bitfield.ymmword)
3595 {
3596 vector_length = 1;
3597 break;
3598 }
3599 }
c0f3af97
L
3600
3601 switch ((i.tm.base_opcode >> 8) & 0xff)
3602 {
3603 case 0:
3604 implied_prefix = 0;
3605 break;
3606 case DATA_PREFIX_OPCODE:
3607 implied_prefix = 1;
3608 break;
3609 case REPE_PREFIX_OPCODE:
3610 implied_prefix = 2;
3611 break;
3612 case REPNE_PREFIX_OPCODE:
3613 implied_prefix = 3;
3614 break;
3615 default:
3616 abort ();
3617 }
3618
03751133
L
3619 /* Check the REX.W bit and VEXW. */
3620 if (i.tm.opcode_modifier.vexw == VEXWIG)
3621 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3622 else if (i.tm.opcode_modifier.vexw)
3623 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3624 else
931d03b7 3625 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3626
c0f3af97 3627 /* Use 2-byte VEX prefix if possible. */
03751133
L
3628 if (w == 0
3629 && i.vec_encoding != vex_encoding_vex3
86fa6981 3630 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3631 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3632 {
3633 /* 2-byte VEX prefix. */
3634 unsigned int r;
3635
3636 i.vex.length = 2;
3637 i.vex.bytes[0] = 0xc5;
3638
3639 /* Check the REX.R bit. */
3640 r = (i.rex & REX_R) ? 0 : 1;
3641 i.vex.bytes[1] = (r << 7
3642 | register_specifier << 3
3643 | vector_length << 2
3644 | implied_prefix);
3645 }
3646 else
3647 {
3648 /* 3-byte VEX prefix. */
03751133 3649 unsigned int m;
c0f3af97 3650
f88c9eb0 3651 i.vex.length = 3;
f88c9eb0 3652
7f399153 3653 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3654 {
7f399153
L
3655 case VEX0F:
3656 m = 0x1;
80de6e00 3657 i.vex.bytes[0] = 0xc4;
7f399153
L
3658 break;
3659 case VEX0F38:
3660 m = 0x2;
80de6e00 3661 i.vex.bytes[0] = 0xc4;
7f399153
L
3662 break;
3663 case VEX0F3A:
3664 m = 0x3;
80de6e00 3665 i.vex.bytes[0] = 0xc4;
7f399153
L
3666 break;
3667 case XOP08:
5dd85c99
SP
3668 m = 0x8;
3669 i.vex.bytes[0] = 0x8f;
7f399153
L
3670 break;
3671 case XOP09:
f88c9eb0
SP
3672 m = 0x9;
3673 i.vex.bytes[0] = 0x8f;
7f399153
L
3674 break;
3675 case XOP0A:
f88c9eb0
SP
3676 m = 0xa;
3677 i.vex.bytes[0] = 0x8f;
7f399153
L
3678 break;
3679 default:
3680 abort ();
f88c9eb0 3681 }
c0f3af97 3682
c0f3af97
L
3683 /* The high 3 bits of the second VEX byte are 1's compliment
3684 of RXB bits from REX. */
3685 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3686
c0f3af97
L
3687 i.vex.bytes[2] = (w << 7
3688 | register_specifier << 3
3689 | vector_length << 2
3690 | implied_prefix);
3691 }
3692}
3693
e771e7c9
JB
3694static INLINE bfd_boolean
3695is_evex_encoding (const insn_template *t)
3696{
7091c612 3697 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3698 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3699 || t->opcode_modifier.sae;
e771e7c9
JB
3700}
3701
7a8655d2
JB
3702static INLINE bfd_boolean
3703is_any_vex_encoding (const insn_template *t)
3704{
3705 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3706 || is_evex_encoding (t);
3707}
3708
43234a1e
L
3709/* Build the EVEX prefix. */
3710
3711static void
3712build_evex_prefix (void)
3713{
3714 unsigned int register_specifier;
3715 unsigned int implied_prefix;
3716 unsigned int m, w;
3717 rex_byte vrex_used = 0;
3718
3719 /* Check register specifier. */
3720 if (i.vex.register_specifier)
3721 {
3722 gas_assert ((i.vrex & REX_X) == 0);
3723
3724 register_specifier = i.vex.register_specifier->reg_num;
3725 if ((i.vex.register_specifier->reg_flags & RegRex))
3726 register_specifier += 8;
3727 /* The upper 16 registers are encoded in the fourth byte of the
3728 EVEX prefix. */
3729 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3730 i.vex.bytes[3] = 0x8;
3731 register_specifier = ~register_specifier & 0xf;
3732 }
3733 else
3734 {
3735 register_specifier = 0xf;
3736
3737 /* Encode upper 16 vector index register in the fourth byte of
3738 the EVEX prefix. */
3739 if (!(i.vrex & REX_X))
3740 i.vex.bytes[3] = 0x8;
3741 else
3742 vrex_used |= REX_X;
3743 }
3744
3745 switch ((i.tm.base_opcode >> 8) & 0xff)
3746 {
3747 case 0:
3748 implied_prefix = 0;
3749 break;
3750 case DATA_PREFIX_OPCODE:
3751 implied_prefix = 1;
3752 break;
3753 case REPE_PREFIX_OPCODE:
3754 implied_prefix = 2;
3755 break;
3756 case REPNE_PREFIX_OPCODE:
3757 implied_prefix = 3;
3758 break;
3759 default:
3760 abort ();
3761 }
3762
3763 /* 4 byte EVEX prefix. */
3764 i.vex.length = 4;
3765 i.vex.bytes[0] = 0x62;
3766
3767 /* mmmm bits. */
3768 switch (i.tm.opcode_modifier.vexopcode)
3769 {
3770 case VEX0F:
3771 m = 1;
3772 break;
3773 case VEX0F38:
3774 m = 2;
3775 break;
3776 case VEX0F3A:
3777 m = 3;
3778 break;
3779 default:
3780 abort ();
3781 break;
3782 }
3783
3784 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3785 bits from REX. */
3786 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3787
3788 /* The fifth bit of the second EVEX byte is 1's compliment of the
3789 REX_R bit in VREX. */
3790 if (!(i.vrex & REX_R))
3791 i.vex.bytes[1] |= 0x10;
3792 else
3793 vrex_used |= REX_R;
3794
3795 if ((i.reg_operands + i.imm_operands) == i.operands)
3796 {
3797 /* When all operands are registers, the REX_X bit in REX is not
3798 used. We reuse it to encode the upper 16 registers, which is
3799 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3800 as 1's compliment. */
3801 if ((i.vrex & REX_B))
3802 {
3803 vrex_used |= REX_B;
3804 i.vex.bytes[1] &= ~0x40;
3805 }
3806 }
3807
3808 /* EVEX instructions shouldn't need the REX prefix. */
3809 i.vrex &= ~vrex_used;
3810 gas_assert (i.vrex == 0);
3811
6865c043
L
3812 /* Check the REX.W bit and VEXW. */
3813 if (i.tm.opcode_modifier.vexw == VEXWIG)
3814 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3815 else if (i.tm.opcode_modifier.vexw)
3816 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3817 else
931d03b7 3818 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3819
3820 /* Encode the U bit. */
3821 implied_prefix |= 0x4;
3822
3823 /* The third byte of the EVEX prefix. */
3824 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3825
3826 /* The fourth byte of the EVEX prefix. */
3827 /* The zeroing-masking bit. */
3828 if (i.mask && i.mask->zeroing)
3829 i.vex.bytes[3] |= 0x80;
3830
3831 /* Don't always set the broadcast bit if there is no RC. */
3832 if (!i.rounding)
3833 {
3834 /* Encode the vector length. */
3835 unsigned int vec_length;
3836
e771e7c9
JB
3837 if (!i.tm.opcode_modifier.evex
3838 || i.tm.opcode_modifier.evex == EVEXDYN)
3839 {
56522fc5 3840 unsigned int op;
e771e7c9 3841
c7213af9
L
3842 /* Determine vector length from the last multi-length vector
3843 operand. */
e771e7c9 3844 vec_length = 0;
56522fc5 3845 for (op = i.operands; op--;)
e771e7c9
JB
3846 if (i.tm.operand_types[op].bitfield.xmmword
3847 + i.tm.operand_types[op].bitfield.ymmword
3848 + i.tm.operand_types[op].bitfield.zmmword > 1)
3849 {
3850 if (i.types[op].bitfield.zmmword)
c7213af9
L
3851 {
3852 i.tm.opcode_modifier.evex = EVEX512;
3853 break;
3854 }
e771e7c9 3855 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3856 {
3857 i.tm.opcode_modifier.evex = EVEX256;
3858 break;
3859 }
e771e7c9 3860 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3861 {
3862 i.tm.opcode_modifier.evex = EVEX128;
3863 break;
3864 }
625cbd7a
JB
3865 else if (i.broadcast && (int) op == i.broadcast->operand)
3866 {
4a1b91ea 3867 switch (i.broadcast->bytes)
625cbd7a
JB
3868 {
3869 case 64:
3870 i.tm.opcode_modifier.evex = EVEX512;
3871 break;
3872 case 32:
3873 i.tm.opcode_modifier.evex = EVEX256;
3874 break;
3875 case 16:
3876 i.tm.opcode_modifier.evex = EVEX128;
3877 break;
3878 default:
c7213af9 3879 abort ();
625cbd7a 3880 }
c7213af9 3881 break;
625cbd7a 3882 }
e771e7c9 3883 }
c7213af9 3884
56522fc5 3885 if (op >= MAX_OPERANDS)
c7213af9 3886 abort ();
e771e7c9
JB
3887 }
3888
43234a1e
L
3889 switch (i.tm.opcode_modifier.evex)
3890 {
3891 case EVEXLIG: /* LL' is ignored */
3892 vec_length = evexlig << 5;
3893 break;
3894 case EVEX128:
3895 vec_length = 0 << 5;
3896 break;
3897 case EVEX256:
3898 vec_length = 1 << 5;
3899 break;
3900 case EVEX512:
3901 vec_length = 2 << 5;
3902 break;
3903 default:
3904 abort ();
3905 break;
3906 }
3907 i.vex.bytes[3] |= vec_length;
3908 /* Encode the broadcast bit. */
3909 if (i.broadcast)
3910 i.vex.bytes[3] |= 0x10;
3911 }
3912 else
3913 {
3914 if (i.rounding->type != saeonly)
3915 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3916 else
d3d3c6db 3917 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3918 }
3919
3920 if (i.mask && i.mask->mask)
3921 i.vex.bytes[3] |= i.mask->mask->reg_num;
3922}
3923
65da13b5
L
3924static void
3925process_immext (void)
3926{
3927 expressionS *exp;
3928
c0f3af97 3929 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3930 which is coded in the same place as an 8-bit immediate field
3931 would be. Here we fake an 8-bit immediate operand from the
3932 opcode suffix stored in tm.extension_opcode.
3933
c1e679ec 3934 AVX instructions also use this encoding, for some of
c0f3af97 3935 3 argument instructions. */
65da13b5 3936
43234a1e 3937 gas_assert (i.imm_operands <= 1
7ab9ffdd 3938 && (i.operands <= 2
7a8655d2 3939 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3940 && i.operands <= 4)));
65da13b5
L
3941
3942 exp = &im_expressions[i.imm_operands++];
3943 i.op[i.operands].imms = exp;
3944 i.types[i.operands] = imm8;
3945 i.operands++;
3946 exp->X_op = O_constant;
3947 exp->X_add_number = i.tm.extension_opcode;
3948 i.tm.extension_opcode = None;
3949}
3950
42164a71
L
3951
3952static int
3953check_hle (void)
3954{
3955 switch (i.tm.opcode_modifier.hleprefixok)
3956 {
3957 default:
3958 abort ();
82c2def5 3959 case HLEPrefixNone:
165de32a
L
3960 as_bad (_("invalid instruction `%s' after `%s'"),
3961 i.tm.name, i.hle_prefix);
42164a71 3962 return 0;
82c2def5 3963 case HLEPrefixLock:
42164a71
L
3964 if (i.prefix[LOCK_PREFIX])
3965 return 1;
165de32a 3966 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3967 return 0;
82c2def5 3968 case HLEPrefixAny:
42164a71 3969 return 1;
82c2def5 3970 case HLEPrefixRelease:
42164a71
L
3971 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3972 {
3973 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3974 i.tm.name);
3975 return 0;
3976 }
8dc0818e 3977 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
3978 {
3979 as_bad (_("memory destination needed for instruction `%s'"
3980 " after `xrelease'"), i.tm.name);
3981 return 0;
3982 }
3983 return 1;
3984 }
3985}
3986
b6f8c7c4
L
3987/* Try the shortest encoding by shortening operand size. */
3988
3989static void
3990optimize_encoding (void)
3991{
a0a1771e 3992 unsigned int j;
b6f8c7c4
L
3993
3994 if (optimize_for_space
72aea328 3995 && !is_any_vex_encoding (&i.tm)
b6f8c7c4
L
3996 && i.reg_operands == 1
3997 && i.imm_operands == 1
3998 && !i.types[1].bitfield.byte
3999 && i.op[0].imms->X_op == O_constant
4000 && fits_in_imm7 (i.op[0].imms->X_add_number)
72aea328 4001 && (i.tm.base_opcode == 0xa8
b6f8c7c4
L
4002 || (i.tm.base_opcode == 0xf6
4003 && i.tm.extension_opcode == 0x0)))
4004 {
4005 /* Optimize: -Os:
4006 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4007 */
4008 unsigned int base_regnum = i.op[1].regs->reg_num;
4009 if (flag_code == CODE_64BIT || base_regnum < 4)
4010 {
4011 i.types[1].bitfield.byte = 1;
4012 /* Ignore the suffix. */
4013 i.suffix = 0;
7697afb6
JB
4014 /* Convert to byte registers. */
4015 if (i.types[1].bitfield.word)
4016 j = 16;
4017 else if (i.types[1].bitfield.dword)
4018 j = 32;
4019 else
4020 j = 48;
4021 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4022 j += 8;
4023 i.op[1].regs -= j;
b6f8c7c4
L
4024 }
4025 }
4026 else if (flag_code == CODE_64BIT
72aea328 4027 && !is_any_vex_encoding (&i.tm)
d3d50934
L
4028 && ((i.types[1].bitfield.qword
4029 && i.reg_operands == 1
b6f8c7c4
L
4030 && i.imm_operands == 1
4031 && i.op[0].imms->X_op == O_constant
507916b8 4032 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
4033 && i.tm.extension_opcode == None
4034 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4035 || (fits_in_imm31 (i.op[0].imms->X_add_number)
72aea328
JB
4036 && ((i.tm.base_opcode == 0x24
4037 || i.tm.base_opcode == 0xa8)
b6f8c7c4
L
4038 || (i.tm.base_opcode == 0x80
4039 && i.tm.extension_opcode == 0x4)
4040 || ((i.tm.base_opcode == 0xf6
507916b8 4041 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
4042 && i.tm.extension_opcode == 0x0)))
4043 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4044 && i.tm.base_opcode == 0x83
4045 && i.tm.extension_opcode == 0x4)))
d3d50934
L
4046 || (i.types[0].bitfield.qword
4047 && ((i.reg_operands == 2
4048 && i.op[0].regs == i.op[1].regs
72aea328
JB
4049 && (i.tm.base_opcode == 0x30
4050 || i.tm.base_opcode == 0x28))
d3d50934
L
4051 || (i.reg_operands == 1
4052 && i.operands == 1
72aea328 4053 && i.tm.base_opcode == 0x30)))))
b6f8c7c4
L
4054 {
4055 /* Optimize: -O:
4056 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4057 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4058 testq $imm31, %r64 -> testl $imm31, %r32
4059 xorq %r64, %r64 -> xorl %r32, %r32
4060 subq %r64, %r64 -> subl %r32, %r32
4061 movq $imm31, %r64 -> movl $imm31, %r32
4062 movq $imm32, %r64 -> movl $imm32, %r32
4063 */
4064 i.tm.opcode_modifier.norex64 = 1;
507916b8 4065 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4066 {
4067 /* Handle
4068 movq $imm31, %r64 -> movl $imm31, %r32
4069 movq $imm32, %r64 -> movl $imm32, %r32
4070 */
4071 i.tm.operand_types[0].bitfield.imm32 = 1;
4072 i.tm.operand_types[0].bitfield.imm32s = 0;
4073 i.tm.operand_types[0].bitfield.imm64 = 0;
4074 i.types[0].bitfield.imm32 = 1;
4075 i.types[0].bitfield.imm32s = 0;
4076 i.types[0].bitfield.imm64 = 0;
4077 i.types[1].bitfield.dword = 1;
4078 i.types[1].bitfield.qword = 0;
507916b8 4079 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4080 {
4081 /* Handle
4082 movq $imm31, %r64 -> movl $imm31, %r32
4083 */
507916b8 4084 i.tm.base_opcode = 0xb8;
b6f8c7c4 4085 i.tm.extension_opcode = None;
507916b8 4086 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4087 i.tm.opcode_modifier.modrm = 0;
4088 }
4089 }
4090 }
5641ec01
JB
4091 else if (optimize > 1
4092 && !optimize_for_space
72aea328 4093 && !is_any_vex_encoding (&i.tm)
5641ec01
JB
4094 && i.reg_operands == 2
4095 && i.op[0].regs == i.op[1].regs
4096 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4097 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4098 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4099 {
4100 /* Optimize: -O2:
4101 andb %rN, %rN -> testb %rN, %rN
4102 andw %rN, %rN -> testw %rN, %rN
4103 andq %rN, %rN -> testq %rN, %rN
4104 orb %rN, %rN -> testb %rN, %rN
4105 orw %rN, %rN -> testw %rN, %rN
4106 orq %rN, %rN -> testq %rN, %rN
4107
4108 and outside of 64-bit mode
4109
4110 andl %rN, %rN -> testl %rN, %rN
4111 orl %rN, %rN -> testl %rN, %rN
4112 */
4113 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4114 }
99112332 4115 else if (i.reg_operands == 3
b6f8c7c4
L
4116 && i.op[0].regs == i.op[1].regs
4117 && !i.types[2].bitfield.xmmword
4118 && (i.tm.opcode_modifier.vex
7a69eac3 4119 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4120 && !i.rounding
e771e7c9 4121 && is_evex_encoding (&i.tm)
80c34c38 4122 && (i.vec_encoding != vex_encoding_evex
dd22218c 4123 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4124 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4125 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4126 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4127 && ((i.tm.base_opcode == 0x55
4128 || i.tm.base_opcode == 0x6655
4129 || i.tm.base_opcode == 0x66df
4130 || i.tm.base_opcode == 0x57
4131 || i.tm.base_opcode == 0x6657
8305403a
L
4132 || i.tm.base_opcode == 0x66ef
4133 || i.tm.base_opcode == 0x66f8
4134 || i.tm.base_opcode == 0x66f9
4135 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4136 || i.tm.base_opcode == 0x66fb
4137 || i.tm.base_opcode == 0x42
4138 || i.tm.base_opcode == 0x6642
4139 || i.tm.base_opcode == 0x47
4140 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4141 && i.tm.extension_opcode == None))
4142 {
99112332 4143 /* Optimize: -O1:
8305403a
L
4144 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4145 vpsubq and vpsubw:
b6f8c7c4
L
4146 EVEX VOP %zmmM, %zmmM, %zmmN
4147 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4148 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4149 EVEX VOP %ymmM, %ymmM, %ymmN
4150 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4151 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4152 VEX VOP %ymmM, %ymmM, %ymmN
4153 -> VEX VOP %xmmM, %xmmM, %xmmN
4154 VOP, one of vpandn and vpxor:
4155 VEX VOP %ymmM, %ymmM, %ymmN
4156 -> VEX VOP %xmmM, %xmmM, %xmmN
4157 VOP, one of vpandnd and vpandnq:
4158 EVEX VOP %zmmM, %zmmM, %zmmN
4159 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4160 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4161 EVEX VOP %ymmM, %ymmM, %ymmN
4162 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4163 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4164 VOP, one of vpxord and vpxorq:
4165 EVEX VOP %zmmM, %zmmM, %zmmN
4166 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4167 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4168 EVEX VOP %ymmM, %ymmM, %ymmN
4169 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4170 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4171 VOP, one of kxord and kxorq:
4172 VEX VOP %kM, %kM, %kN
4173 -> VEX kxorw %kM, %kM, %kN
4174 VOP, one of kandnd and kandnq:
4175 VEX VOP %kM, %kM, %kN
4176 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4177 */
e771e7c9 4178 if (is_evex_encoding (&i.tm))
b6f8c7c4 4179 {
7b1d7ca1 4180 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4181 {
4182 i.tm.opcode_modifier.vex = VEX128;
4183 i.tm.opcode_modifier.vexw = VEXW0;
4184 i.tm.opcode_modifier.evex = 0;
4185 }
7b1d7ca1 4186 else if (optimize > 1)
dd22218c
L
4187 i.tm.opcode_modifier.evex = EVEX128;
4188 else
4189 return;
b6f8c7c4 4190 }
f74a6307 4191 else if (i.tm.operand_types[0].bitfield.class == RegMask)
1424ad86
JB
4192 {
4193 i.tm.base_opcode &= 0xff;
4194 i.tm.opcode_modifier.vexw = VEXW0;
4195 }
b6f8c7c4
L
4196 else
4197 i.tm.opcode_modifier.vex = VEX128;
4198
4199 if (i.tm.opcode_modifier.vex)
4200 for (j = 0; j < 3; j++)
4201 {
4202 i.types[j].bitfield.xmmword = 1;
4203 i.types[j].bitfield.ymmword = 0;
4204 }
4205 }
392a5972 4206 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4207 && !i.types[0].bitfield.zmmword
392a5972 4208 && !i.types[1].bitfield.zmmword
97ed31ae 4209 && !i.mask
a0a1771e 4210 && !i.broadcast
97ed31ae 4211 && is_evex_encoding (&i.tm)
392a5972
L
4212 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4213 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4214 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4215 || (i.tm.base_opcode & ~4) == 0x66db
4216 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4217 && i.tm.extension_opcode == None)
4218 {
4219 /* Optimize: -O1:
4220 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4221 vmovdqu32 and vmovdqu64:
4222 EVEX VOP %xmmM, %xmmN
4223 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4224 EVEX VOP %ymmM, %ymmN
4225 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4226 EVEX VOP %xmmM, mem
4227 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4228 EVEX VOP %ymmM, mem
4229 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4230 EVEX VOP mem, %xmmN
4231 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4232 EVEX VOP mem, %ymmN
4233 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4234 VOP, one of vpand, vpandn, vpor, vpxor:
4235 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4236 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4237 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4238 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4239 EVEX VOP{d,q} mem, %xmmM, %xmmN
4240 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4241 EVEX VOP{d,q} mem, %ymmM, %ymmN
4242 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4243 */
a0a1771e 4244 for (j = 0; j < i.operands; j++)
392a5972
L
4245 if (operand_type_check (i.types[j], disp)
4246 && i.op[j].disps->X_op == O_constant)
4247 {
4248 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4249 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4250 bytes, we choose EVEX Disp8 over VEX Disp32. */
4251 int evex_disp8, vex_disp8;
4252 unsigned int memshift = i.memshift;
4253 offsetT n = i.op[j].disps->X_add_number;
4254
4255 evex_disp8 = fits_in_disp8 (n);
4256 i.memshift = 0;
4257 vex_disp8 = fits_in_disp8 (n);
4258 if (evex_disp8 != vex_disp8)
4259 {
4260 i.memshift = memshift;
4261 return;
4262 }
4263
4264 i.types[j].bitfield.disp8 = vex_disp8;
4265 break;
4266 }
4267 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4268 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4269 i.tm.opcode_modifier.vex
4270 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4271 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4272 /* VPAND, VPOR, and VPXOR are commutative. */
4273 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4274 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4275 i.tm.opcode_modifier.evex = 0;
4276 i.tm.opcode_modifier.masking = 0;
a0a1771e 4277 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4278 i.tm.opcode_modifier.disp8memshift = 0;
4279 i.memshift = 0;
a0a1771e
JB
4280 if (j < i.operands)
4281 i.types[j].bitfield.disp8
4282 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4283 }
b6f8c7c4
L
4284}
4285
252b5132
RH
4286/* This is the guts of the machine-dependent assembler. LINE points to a
4287 machine dependent instruction. This function is supposed to emit
4288 the frags/bytes it assembles to. */
4289
4290void
65da13b5 4291md_assemble (char *line)
252b5132 4292{
40fb9820 4293 unsigned int j;
83b16ac6 4294 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4295 const insn_template *t;
252b5132 4296
47926f60 4297 /* Initialize globals. */
252b5132
RH
4298 memset (&i, '\0', sizeof (i));
4299 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4300 i.reloc[j] = NO_RELOC;
252b5132
RH
4301 memset (disp_expressions, '\0', sizeof (disp_expressions));
4302 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4303 save_stack_p = save_stack;
252b5132
RH
4304
4305 /* First parse an instruction mnemonic & call i386_operand for the operands.
4306 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4307 start of a (possibly prefixed) mnemonic. */
252b5132 4308
29b0f896
AM
4309 line = parse_insn (line, mnemonic);
4310 if (line == NULL)
4311 return;
83b16ac6 4312 mnem_suffix = i.suffix;
252b5132 4313
29b0f896 4314 line = parse_operands (line, mnemonic);
ee86248c 4315 this_operand = -1;
8325cc63
JB
4316 xfree (i.memop1_string);
4317 i.memop1_string = NULL;
29b0f896
AM
4318 if (line == NULL)
4319 return;
252b5132 4320
29b0f896
AM
4321 /* Now we've parsed the mnemonic into a set of templates, and have the
4322 operands at hand. */
4323
4324 /* All intel opcodes have reversed operands except for "bound" and
4325 "enter". We also don't reverse intersegment "jmp" and "call"
4326 instructions with 2 immediate operands so that the immediate segment
050dfa73 4327 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4328 if (intel_syntax
4329 && i.operands > 1
29b0f896 4330 && (strcmp (mnemonic, "bound") != 0)
30123838 4331 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4332 && !(operand_type_check (i.types[0], imm)
4333 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4334 swap_operands ();
4335
ec56d5c0
JB
4336 /* The order of the immediates should be reversed
4337 for 2 immediates extrq and insertq instructions */
4338 if (i.imm_operands == 2
4339 && (strcmp (mnemonic, "extrq") == 0
4340 || strcmp (mnemonic, "insertq") == 0))
4341 swap_2_operands (0, 1);
4342
29b0f896
AM
4343 if (i.imm_operands)
4344 optimize_imm ();
4345
b300c311
L
4346 /* Don't optimize displacement for movabs since it only takes 64bit
4347 displacement. */
4348 if (i.disp_operands
a501d77e 4349 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4350 && (flag_code != CODE_64BIT
4351 || strcmp (mnemonic, "movabs") != 0))
4352 optimize_disp ();
29b0f896
AM
4353
4354 /* Next, we find a template that matches the given insn,
4355 making sure the overlap of the given operands types is consistent
4356 with the template operand types. */
252b5132 4357
83b16ac6 4358 if (!(t = match_template (mnem_suffix)))
29b0f896 4359 return;
252b5132 4360
7bab8ab5 4361 if (sse_check != check_none
81f8a913 4362 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4363 && !i.tm.cpu_flags.bitfield.cpuavx
569d50f1 4364 && !i.tm.cpu_flags.bitfield.cpuavx512f
daf50ae7
L
4365 && (i.tm.cpu_flags.bitfield.cpusse
4366 || i.tm.cpu_flags.bitfield.cpusse2
4367 || i.tm.cpu_flags.bitfield.cpusse3
4368 || i.tm.cpu_flags.bitfield.cpussse3
4369 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e 4370 || i.tm.cpu_flags.bitfield.cpusse4_2
569d50f1 4371 || i.tm.cpu_flags.bitfield.cpusse4a
6e3e5c9e
JB
4372 || i.tm.cpu_flags.bitfield.cpupclmul
4373 || i.tm.cpu_flags.bitfield.cpuaes
569d50f1 4374 || i.tm.cpu_flags.bitfield.cpusha
6e3e5c9e 4375 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4376 {
7bab8ab5 4377 (sse_check == check_warning
daf50ae7
L
4378 ? as_warn
4379 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4380 }
4381
321fd21e
L
4382 /* Zap movzx and movsx suffix. The suffix has been set from
4383 "word ptr" or "byte ptr" on the source operand in Intel syntax
4384 or extracted from mnemonic in AT&T syntax. But we'll use
4385 the destination register to choose the suffix for encoding. */
4386 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4387 {
321fd21e
L
4388 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4389 there is no suffix, the default will be byte extension. */
4390 if (i.reg_operands != 2
4391 && !i.suffix
7ab9ffdd 4392 && intel_syntax)
321fd21e
L
4393 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4394
4395 i.suffix = 0;
cd61ebfe 4396 }
24eab124 4397
40fb9820 4398 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4399 if (!add_prefix (FWAIT_OPCODE))
4400 return;
252b5132 4401
d5de92cf
L
4402 /* Check if REP prefix is OK. */
4403 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4404 {
4405 as_bad (_("invalid instruction `%s' after `%s'"),
4406 i.tm.name, i.rep_prefix);
4407 return;
4408 }
4409
c1ba0266
L
4410 /* Check for lock without a lockable instruction. Destination operand
4411 must be memory unless it is xchg (0x86). */
c32fa91d
L
4412 if (i.prefix[LOCK_PREFIX]
4413 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4414 || i.mem_operands == 0
4415 || (i.tm.base_opcode != 0x86
8dc0818e 4416 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4417 {
4418 as_bad (_("expecting lockable instruction after `lock'"));
4419 return;
4420 }
4421
7a8655d2
JB
4422 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4423 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4424 {
4425 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4426 return;
4427 }
4428
42164a71 4429 /* Check if HLE prefix is OK. */
165de32a 4430 if (i.hle_prefix && !check_hle ())
42164a71
L
4431 return;
4432
7e8b059b
L
4433 /* Check BND prefix. */
4434 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4435 as_bad (_("expecting valid branch instruction after `bnd'"));
4436
04ef582a 4437 /* Check NOTRACK prefix. */
9fef80d6
L
4438 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4439 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4440
327e8c42
JB
4441 if (i.tm.cpu_flags.bitfield.cpumpx)
4442 {
4443 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4444 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4445 else if (flag_code != CODE_16BIT
4446 ? i.prefix[ADDR_PREFIX]
4447 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4448 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4449 }
7e8b059b
L
4450
4451 /* Insert BND prefix. */
76d3a78a
JB
4452 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4453 {
4454 if (!i.prefix[BND_PREFIX])
4455 add_prefix (BND_PREFIX_OPCODE);
4456 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4457 {
4458 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4459 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4460 }
4461 }
7e8b059b 4462
29b0f896 4463 /* Check string instruction segment overrides. */
51c8edf6 4464 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
29b0f896 4465 {
51c8edf6 4466 gas_assert (i.mem_operands);
29b0f896 4467 if (!check_string ())
5dd0794d 4468 return;
fc0763e6 4469 i.disp_operands = 0;
29b0f896 4470 }
5dd0794d 4471
b6f8c7c4
L
4472 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4473 optimize_encoding ();
4474
29b0f896
AM
4475 if (!process_suffix ())
4476 return;
e413e4e9 4477
bc0844ae
L
4478 /* Update operand types. */
4479 for (j = 0; j < i.operands; j++)
4480 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4481
29b0f896
AM
4482 /* Make still unresolved immediate matches conform to size of immediate
4483 given in i.suffix. */
4484 if (!finalize_imm ())
4485 return;
252b5132 4486
40fb9820 4487 if (i.types[0].bitfield.imm1)
29b0f896 4488 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4489
9afe6eb8
L
4490 /* We only need to check those implicit registers for instructions
4491 with 3 operands or less. */
4492 if (i.operands <= 3)
4493 for (j = 0; j < i.operands; j++)
75e5731b
JB
4494 if (i.types[j].bitfield.instance != InstanceNone
4495 && !i.types[j].bitfield.xmmword)
9afe6eb8 4496 i.reg_operands--;
40fb9820 4497
c0f3af97
L
4498 /* ImmExt should be processed after SSE2AVX. */
4499 if (!i.tm.opcode_modifier.sse2avx
4500 && i.tm.opcode_modifier.immext)
65da13b5 4501 process_immext ();
252b5132 4502
29b0f896
AM
4503 /* For insns with operands there are more diddles to do to the opcode. */
4504 if (i.operands)
4505 {
4506 if (!process_operands ())
4507 return;
4508 }
40fb9820 4509 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4510 {
4511 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4512 as_warn (_("translating to `%sp'"), i.tm.name);
4513 }
252b5132 4514
7a8655d2 4515 if (is_any_vex_encoding (&i.tm))
9e5e5283 4516 {
c1dc7af5 4517 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4518 {
c1dc7af5 4519 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4520 i.tm.name);
4521 return;
4522 }
c0f3af97 4523
9e5e5283
L
4524 if (i.tm.opcode_modifier.vex)
4525 build_vex_prefix (t);
4526 else
4527 build_evex_prefix ();
4528 }
43234a1e 4529
5dd85c99
SP
4530 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4531 instructions may define INT_OPCODE as well, so avoid this corner
4532 case for those instructions that use MODRM. */
4533 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4534 && !i.tm.opcode_modifier.modrm
4535 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4536 {
4537 i.tm.base_opcode = INT3_OPCODE;
4538 i.imm_operands = 0;
4539 }
252b5132 4540
0cfa3eb3
JB
4541 if ((i.tm.opcode_modifier.jump == JUMP
4542 || i.tm.opcode_modifier.jump == JUMP_BYTE
4543 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896
AM
4544 && i.op[0].disps->X_op == O_constant)
4545 {
4546 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4547 the absolute address given by the constant. Since ix86 jumps and
4548 calls are pc relative, we need to generate a reloc. */
4549 i.op[0].disps->X_add_symbol = &abs_symbol;
4550 i.op[0].disps->X_op = O_symbol;
4551 }
252b5132 4552
40fb9820 4553 if (i.tm.opcode_modifier.rex64)
161a04f6 4554 i.rex |= REX_W;
252b5132 4555
29b0f896
AM
4556 /* For 8 bit registers we need an empty rex prefix. Also if the
4557 instruction already has a prefix, we need to convert old
4558 registers to new ones. */
773f551c 4559
bab6aec1 4560 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
29b0f896 4561 && (i.op[0].regs->reg_flags & RegRex64) != 0)
bab6aec1 4562 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
29b0f896 4563 && (i.op[1].regs->reg_flags & RegRex64) != 0)
bab6aec1
JB
4564 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4565 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
29b0f896
AM
4566 && i.rex != 0))
4567 {
4568 int x;
726c5dcd 4569
29b0f896
AM
4570 i.rex |= REX_OPCODE;
4571 for (x = 0; x < 2; x++)
4572 {
4573 /* Look for 8 bit operand that uses old registers. */
bab6aec1 4574 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
29b0f896 4575 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4576 {
3f93af61 4577 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
29b0f896
AM
4578 /* In case it is "hi" register, give up. */
4579 if (i.op[x].regs->reg_num > 3)
a540244d 4580 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4581 "instruction requiring REX prefix."),
a540244d 4582 register_prefix, i.op[x].regs->reg_name);
773f551c 4583
29b0f896
AM
4584 /* Otherwise it is equivalent to the extended register.
4585 Since the encoding doesn't change this is merely
4586 cosmetic cleanup for debug output. */
4587
4588 i.op[x].regs = i.op[x].regs + 8;
773f551c 4589 }
29b0f896
AM
4590 }
4591 }
773f551c 4592
6b6b6807
L
4593 if (i.rex == 0 && i.rex_encoding)
4594 {
4595 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
3f93af61 4596 that uses legacy register. If it is "hi" register, don't add
6b6b6807
L
4597 the REX_OPCODE byte. */
4598 int x;
4599 for (x = 0; x < 2; x++)
bab6aec1 4600 if (i.types[x].bitfield.class == Reg
6b6b6807
L
4601 && i.types[x].bitfield.byte
4602 && (i.op[x].regs->reg_flags & RegRex64) == 0
4603 && i.op[x].regs->reg_num > 3)
4604 {
3f93af61 4605 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
6b6b6807
L
4606 i.rex_encoding = FALSE;
4607 break;
4608 }
4609
4610 if (i.rex_encoding)
4611 i.rex = REX_OPCODE;
4612 }
4613
7ab9ffdd 4614 if (i.rex != 0)
29b0f896
AM
4615 add_prefix (REX_OPCODE | i.rex);
4616
4617 /* We are ready to output the insn. */
4618 output_insn ();
e379e5f3
L
4619
4620 last_insn.seg = now_seg;
4621
4622 if (i.tm.opcode_modifier.isprefix)
4623 {
4624 last_insn.kind = last_insn_prefix;
4625 last_insn.name = i.tm.name;
4626 last_insn.file = as_where (&last_insn.line);
4627 }
4628 else
4629 last_insn.kind = last_insn_other;
29b0f896
AM
4630}
4631
4632static char *
e3bb37b5 4633parse_insn (char *line, char *mnemonic)
29b0f896
AM
4634{
4635 char *l = line;
4636 char *token_start = l;
4637 char *mnem_p;
5c6af06e 4638 int supported;
d3ce72d0 4639 const insn_template *t;
b6169b20 4640 char *dot_p = NULL;
29b0f896 4641
29b0f896
AM
4642 while (1)
4643 {
4644 mnem_p = mnemonic;
4645 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4646 {
b6169b20
L
4647 if (*mnem_p == '.')
4648 dot_p = mnem_p;
29b0f896
AM
4649 mnem_p++;
4650 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4651 {
29b0f896
AM
4652 as_bad (_("no such instruction: `%s'"), token_start);
4653 return NULL;
4654 }
4655 l++;
4656 }
4657 if (!is_space_char (*l)
4658 && *l != END_OF_INSN
e44823cf
JB
4659 && (intel_syntax
4660 || (*l != PREFIX_SEPARATOR
4661 && *l != ',')))
29b0f896
AM
4662 {
4663 as_bad (_("invalid character %s in mnemonic"),
4664 output_invalid (*l));
4665 return NULL;
4666 }
4667 if (token_start == l)
4668 {
e44823cf 4669 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4670 as_bad (_("expecting prefix; got nothing"));
4671 else
4672 as_bad (_("expecting mnemonic; got nothing"));
4673 return NULL;
4674 }
45288df1 4675
29b0f896 4676 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4677 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4678
29b0f896
AM
4679 if (*l != END_OF_INSN
4680 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4681 && current_templates
40fb9820 4682 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4683 {
c6fb90c8 4684 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4685 {
4686 as_bad ((flag_code != CODE_64BIT
4687 ? _("`%s' is only supported in 64-bit mode")
4688 : _("`%s' is not supported in 64-bit mode")),
4689 current_templates->start->name);
4690 return NULL;
4691 }
29b0f896
AM
4692 /* If we are in 16-bit mode, do not allow addr16 or data16.
4693 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4694 if ((current_templates->start->opcode_modifier.size == SIZE16
4695 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4696 && flag_code != CODE_64BIT
673fe0f0 4697 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4698 ^ (flag_code == CODE_16BIT)))
4699 {
4700 as_bad (_("redundant %s prefix"),
4701 current_templates->start->name);
4702 return NULL;
45288df1 4703 }
86fa6981 4704 if (current_templates->start->opcode_length == 0)
29b0f896 4705 {
86fa6981
L
4706 /* Handle pseudo prefixes. */
4707 switch (current_templates->start->base_opcode)
4708 {
4709 case 0x0:
4710 /* {disp8} */
4711 i.disp_encoding = disp_encoding_8bit;
4712 break;
4713 case 0x1:
4714 /* {disp32} */
4715 i.disp_encoding = disp_encoding_32bit;
4716 break;
4717 case 0x2:
4718 /* {load} */
4719 i.dir_encoding = dir_encoding_load;
4720 break;
4721 case 0x3:
4722 /* {store} */
4723 i.dir_encoding = dir_encoding_store;
4724 break;
4725 case 0x4:
42e04b36
L
4726 /* {vex} */
4727 i.vec_encoding = vex_encoding_vex;
86fa6981
L
4728 break;
4729 case 0x5:
4730 /* {vex3} */
4731 i.vec_encoding = vex_encoding_vex3;
4732 break;
4733 case 0x6:
4734 /* {evex} */
4735 i.vec_encoding = vex_encoding_evex;
4736 break;
6b6b6807
L
4737 case 0x7:
4738 /* {rex} */
4739 i.rex_encoding = TRUE;
4740 break;
b6f8c7c4
L
4741 case 0x8:
4742 /* {nooptimize} */
4743 i.no_optimize = TRUE;
4744 break;
86fa6981
L
4745 default:
4746 abort ();
4747 }
4748 }
4749 else
4750 {
4751 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4752 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4753 {
4e9ac44a
L
4754 case PREFIX_EXIST:
4755 return NULL;
4756 case PREFIX_DS:
d777820b 4757 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4758 i.notrack_prefix = current_templates->start->name;
4759 break;
4760 case PREFIX_REP:
4761 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4762 i.hle_prefix = current_templates->start->name;
4763 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4764 i.bnd_prefix = current_templates->start->name;
4765 else
4766 i.rep_prefix = current_templates->start->name;
4767 break;
4768 default:
4769 break;
86fa6981 4770 }
29b0f896
AM
4771 }
4772 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4773 token_start = ++l;
4774 }
4775 else
4776 break;
4777 }
45288df1 4778
30a55f88 4779 if (!current_templates)
b6169b20 4780 {
07d5e953
JB
4781 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4782 Check if we should swap operand or force 32bit displacement in
f8a5c266 4783 encoding. */
30a55f88 4784 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4785 i.dir_encoding = dir_encoding_swap;
8d63c93e 4786 else if (mnem_p - 3 == dot_p
a501d77e
L
4787 && dot_p[1] == 'd'
4788 && dot_p[2] == '8')
4789 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4790 else if (mnem_p - 4 == dot_p
f8a5c266
L
4791 && dot_p[1] == 'd'
4792 && dot_p[2] == '3'
4793 && dot_p[3] == '2')
a501d77e 4794 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4795 else
4796 goto check_suffix;
4797 mnem_p = dot_p;
4798 *dot_p = '\0';
d3ce72d0 4799 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4800 }
4801
29b0f896
AM
4802 if (!current_templates)
4803 {
b6169b20 4804check_suffix:
1c529385 4805 if (mnem_p > mnemonic)
29b0f896 4806 {
1c529385
LH
4807 /* See if we can get a match by trimming off a suffix. */
4808 switch (mnem_p[-1])
29b0f896 4809 {
1c529385
LH
4810 case WORD_MNEM_SUFFIX:
4811 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4812 i.suffix = SHORT_MNEM_SUFFIX;
4813 else
1c529385
LH
4814 /* Fall through. */
4815 case BYTE_MNEM_SUFFIX:
4816 case QWORD_MNEM_SUFFIX:
4817 i.suffix = mnem_p[-1];
29b0f896 4818 mnem_p[-1] = '\0';
d3ce72d0 4819 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4820 mnemonic);
4821 break;
4822 case SHORT_MNEM_SUFFIX:
4823 case LONG_MNEM_SUFFIX:
4824 if (!intel_syntax)
4825 {
4826 i.suffix = mnem_p[-1];
4827 mnem_p[-1] = '\0';
4828 current_templates = (const templates *) hash_find (op_hash,
4829 mnemonic);
4830 }
4831 break;
4832
4833 /* Intel Syntax. */
4834 case 'd':
4835 if (intel_syntax)
4836 {
4837 if (intel_float_operand (mnemonic) == 1)
4838 i.suffix = SHORT_MNEM_SUFFIX;
4839 else
4840 i.suffix = LONG_MNEM_SUFFIX;
4841 mnem_p[-1] = '\0';
4842 current_templates = (const templates *) hash_find (op_hash,
4843 mnemonic);
4844 }
4845 break;
29b0f896 4846 }
29b0f896 4847 }
1c529385 4848
29b0f896
AM
4849 if (!current_templates)
4850 {
4851 as_bad (_("no such instruction: `%s'"), token_start);
4852 return NULL;
4853 }
4854 }
252b5132 4855
0cfa3eb3
JB
4856 if (current_templates->start->opcode_modifier.jump == JUMP
4857 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
4858 {
4859 /* Check for a branch hint. We allow ",pt" and ",pn" for
4860 predict taken and predict not taken respectively.
4861 I'm not sure that branch hints actually do anything on loop
4862 and jcxz insns (JumpByte) for current Pentium4 chips. They
4863 may work in the future and it doesn't hurt to accept them
4864 now. */
4865 if (l[0] == ',' && l[1] == 'p')
4866 {
4867 if (l[2] == 't')
4868 {
4869 if (!add_prefix (DS_PREFIX_OPCODE))
4870 return NULL;
4871 l += 3;
4872 }
4873 else if (l[2] == 'n')
4874 {
4875 if (!add_prefix (CS_PREFIX_OPCODE))
4876 return NULL;
4877 l += 3;
4878 }
4879 }
4880 }
4881 /* Any other comma loses. */
4882 if (*l == ',')
4883 {
4884 as_bad (_("invalid character %s in mnemonic"),
4885 output_invalid (*l));
4886 return NULL;
4887 }
252b5132 4888
29b0f896 4889 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4890 supported = 0;
4891 for (t = current_templates->start; t < current_templates->end; ++t)
4892 {
c0f3af97
L
4893 supported |= cpu_flags_match (t);
4894 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4895 {
4896 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4897 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4898
548d0ee6
JB
4899 return l;
4900 }
29b0f896 4901 }
3629bb00 4902
548d0ee6
JB
4903 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4904 as_bad (flag_code == CODE_64BIT
4905 ? _("`%s' is not supported in 64-bit mode")
4906 : _("`%s' is only supported in 64-bit mode"),
4907 current_templates->start->name);
4908 else
4909 as_bad (_("`%s' is not supported on `%s%s'"),
4910 current_templates->start->name,
4911 cpu_arch_name ? cpu_arch_name : default_arch,
4912 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4913
548d0ee6 4914 return NULL;
29b0f896 4915}
252b5132 4916
29b0f896 4917static char *
e3bb37b5 4918parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4919{
4920 char *token_start;
3138f287 4921
29b0f896
AM
4922 /* 1 if operand is pending after ','. */
4923 unsigned int expecting_operand = 0;
252b5132 4924
29b0f896
AM
4925 /* Non-zero if operand parens not balanced. */
4926 unsigned int paren_not_balanced;
4927
4928 while (*l != END_OF_INSN)
4929 {
4930 /* Skip optional white space before operand. */
4931 if (is_space_char (*l))
4932 ++l;
d02603dc 4933 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4934 {
4935 as_bad (_("invalid character %s before operand %d"),
4936 output_invalid (*l),
4937 i.operands + 1);
4938 return NULL;
4939 }
d02603dc 4940 token_start = l; /* After white space. */
29b0f896
AM
4941 paren_not_balanced = 0;
4942 while (paren_not_balanced || *l != ',')
4943 {
4944 if (*l == END_OF_INSN)
4945 {
4946 if (paren_not_balanced)
4947 {
4948 if (!intel_syntax)
4949 as_bad (_("unbalanced parenthesis in operand %d."),
4950 i.operands + 1);
4951 else
4952 as_bad (_("unbalanced brackets in operand %d."),
4953 i.operands + 1);
4954 return NULL;
4955 }
4956 else
4957 break; /* we are done */
4958 }
d02603dc 4959 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4960 {
4961 as_bad (_("invalid character %s in operand %d"),
4962 output_invalid (*l),
4963 i.operands + 1);
4964 return NULL;
4965 }
4966 if (!intel_syntax)
4967 {
4968 if (*l == '(')
4969 ++paren_not_balanced;
4970 if (*l == ')')
4971 --paren_not_balanced;
4972 }
4973 else
4974 {
4975 if (*l == '[')
4976 ++paren_not_balanced;
4977 if (*l == ']')
4978 --paren_not_balanced;
4979 }
4980 l++;
4981 }
4982 if (l != token_start)
4983 { /* Yes, we've read in another operand. */
4984 unsigned int operand_ok;
4985 this_operand = i.operands++;
4986 if (i.operands > MAX_OPERANDS)
4987 {
4988 as_bad (_("spurious operands; (%d operands/instruction max)"),
4989 MAX_OPERANDS);
4990 return NULL;
4991 }
9d46ce34 4992 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4993 /* Now parse operand adding info to 'i' as we go along. */
4994 END_STRING_AND_SAVE (l);
4995
1286ab78
L
4996 if (i.mem_operands > 1)
4997 {
4998 as_bad (_("too many memory references for `%s'"),
4999 mnemonic);
5000 return 0;
5001 }
5002
29b0f896
AM
5003 if (intel_syntax)
5004 operand_ok =
5005 i386_intel_operand (token_start,
5006 intel_float_operand (mnemonic));
5007 else
a7619375 5008 operand_ok = i386_att_operand (token_start);
29b0f896
AM
5009
5010 RESTORE_END_STRING (l);
5011 if (!operand_ok)
5012 return NULL;
5013 }
5014 else
5015 {
5016 if (expecting_operand)
5017 {
5018 expecting_operand_after_comma:
5019 as_bad (_("expecting operand after ','; got nothing"));
5020 return NULL;
5021 }
5022 if (*l == ',')
5023 {
5024 as_bad (_("expecting operand before ','; got nothing"));
5025 return NULL;
5026 }
5027 }
7f3f1ea2 5028
29b0f896
AM
5029 /* Now *l must be either ',' or END_OF_INSN. */
5030 if (*l == ',')
5031 {
5032 if (*++l == END_OF_INSN)
5033 {
5034 /* Just skip it, if it's \n complain. */
5035 goto expecting_operand_after_comma;
5036 }
5037 expecting_operand = 1;
5038 }
5039 }
5040 return l;
5041}
7f3f1ea2 5042
050dfa73 5043static void
4d456e3d 5044swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
5045{
5046 union i386_op temp_op;
40fb9820 5047 i386_operand_type temp_type;
c48dadc9 5048 unsigned int temp_flags;
050dfa73 5049 enum bfd_reloc_code_real temp_reloc;
4eed87de 5050
050dfa73
MM
5051 temp_type = i.types[xchg2];
5052 i.types[xchg2] = i.types[xchg1];
5053 i.types[xchg1] = temp_type;
c48dadc9
JB
5054
5055 temp_flags = i.flags[xchg2];
5056 i.flags[xchg2] = i.flags[xchg1];
5057 i.flags[xchg1] = temp_flags;
5058
050dfa73
MM
5059 temp_op = i.op[xchg2];
5060 i.op[xchg2] = i.op[xchg1];
5061 i.op[xchg1] = temp_op;
c48dadc9 5062
050dfa73
MM
5063 temp_reloc = i.reloc[xchg2];
5064 i.reloc[xchg2] = i.reloc[xchg1];
5065 i.reloc[xchg1] = temp_reloc;
43234a1e
L
5066
5067 if (i.mask)
5068 {
5069 if (i.mask->operand == xchg1)
5070 i.mask->operand = xchg2;
5071 else if (i.mask->operand == xchg2)
5072 i.mask->operand = xchg1;
5073 }
5074 if (i.broadcast)
5075 {
5076 if (i.broadcast->operand == xchg1)
5077 i.broadcast->operand = xchg2;
5078 else if (i.broadcast->operand == xchg2)
5079 i.broadcast->operand = xchg1;
5080 }
5081 if (i.rounding)
5082 {
5083 if (i.rounding->operand == xchg1)
5084 i.rounding->operand = xchg2;
5085 else if (i.rounding->operand == xchg2)
5086 i.rounding->operand = xchg1;
5087 }
050dfa73
MM
5088}
5089
29b0f896 5090static void
e3bb37b5 5091swap_operands (void)
29b0f896 5092{
b7c61d9a 5093 switch (i.operands)
050dfa73 5094 {
c0f3af97 5095 case 5:
b7c61d9a 5096 case 4:
4d456e3d 5097 swap_2_operands (1, i.operands - 2);
1a0670f3 5098 /* Fall through. */
b7c61d9a
L
5099 case 3:
5100 case 2:
4d456e3d 5101 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5102 break;
5103 default:
5104 abort ();
29b0f896 5105 }
29b0f896
AM
5106
5107 if (i.mem_operands == 2)
5108 {
5109 const seg_entry *temp_seg;
5110 temp_seg = i.seg[0];
5111 i.seg[0] = i.seg[1];
5112 i.seg[1] = temp_seg;
5113 }
5114}
252b5132 5115
29b0f896
AM
5116/* Try to ensure constant immediates are represented in the smallest
5117 opcode possible. */
5118static void
e3bb37b5 5119optimize_imm (void)
29b0f896
AM
5120{
5121 char guess_suffix = 0;
5122 int op;
252b5132 5123
29b0f896
AM
5124 if (i.suffix)
5125 guess_suffix = i.suffix;
5126 else if (i.reg_operands)
5127 {
5128 /* Figure out a suffix from the last register operand specified.
75e5731b
JB
5129 We can't do this properly yet, i.e. excluding special register
5130 instances, but the following works for instructions with
5131 immediates. In any case, we can't set i.suffix yet. */
29b0f896 5132 for (op = i.operands; --op >= 0;)
bab6aec1
JB
5133 if (i.types[op].bitfield.class != Reg)
5134 continue;
5135 else if (i.types[op].bitfield.byte)
7ab9ffdd 5136 {
40fb9820
L
5137 guess_suffix = BYTE_MNEM_SUFFIX;
5138 break;
5139 }
bab6aec1 5140 else if (i.types[op].bitfield.word)
252b5132 5141 {
40fb9820
L
5142 guess_suffix = WORD_MNEM_SUFFIX;
5143 break;
5144 }
bab6aec1 5145 else if (i.types[op].bitfield.dword)
40fb9820
L
5146 {
5147 guess_suffix = LONG_MNEM_SUFFIX;
5148 break;
5149 }
bab6aec1 5150 else if (i.types[op].bitfield.qword)
40fb9820
L
5151 {
5152 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5153 break;
252b5132 5154 }
29b0f896
AM
5155 }
5156 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5157 guess_suffix = WORD_MNEM_SUFFIX;
5158
5159 for (op = i.operands; --op >= 0;)
40fb9820 5160 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5161 {
5162 switch (i.op[op].imms->X_op)
252b5132 5163 {
29b0f896
AM
5164 case O_constant:
5165 /* If a suffix is given, this operand may be shortened. */
5166 switch (guess_suffix)
252b5132 5167 {
29b0f896 5168 case LONG_MNEM_SUFFIX:
40fb9820
L
5169 i.types[op].bitfield.imm32 = 1;
5170 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5171 break;
5172 case WORD_MNEM_SUFFIX:
40fb9820
L
5173 i.types[op].bitfield.imm16 = 1;
5174 i.types[op].bitfield.imm32 = 1;
5175 i.types[op].bitfield.imm32s = 1;
5176 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5177 break;
5178 case BYTE_MNEM_SUFFIX:
40fb9820
L
5179 i.types[op].bitfield.imm8 = 1;
5180 i.types[op].bitfield.imm8s = 1;
5181 i.types[op].bitfield.imm16 = 1;
5182 i.types[op].bitfield.imm32 = 1;
5183 i.types[op].bitfield.imm32s = 1;
5184 i.types[op].bitfield.imm64 = 1;
29b0f896 5185 break;
252b5132 5186 }
252b5132 5187
29b0f896
AM
5188 /* If this operand is at most 16 bits, convert it
5189 to a signed 16 bit number before trying to see
5190 whether it will fit in an even smaller size.
5191 This allows a 16-bit operand such as $0xffe0 to
5192 be recognised as within Imm8S range. */
40fb9820 5193 if ((i.types[op].bitfield.imm16)
29b0f896 5194 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5195 {
29b0f896
AM
5196 i.op[op].imms->X_add_number =
5197 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5198 }
a28def75
L
5199#ifdef BFD64
5200 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5201 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5202 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5203 == 0))
5204 {
5205 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5206 ^ ((offsetT) 1 << 31))
5207 - ((offsetT) 1 << 31));
5208 }
a28def75 5209#endif
40fb9820 5210 i.types[op]
c6fb90c8
L
5211 = operand_type_or (i.types[op],
5212 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5213
29b0f896
AM
5214 /* We must avoid matching of Imm32 templates when 64bit
5215 only immediate is available. */
5216 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5217 i.types[op].bitfield.imm32 = 0;
29b0f896 5218 break;
252b5132 5219
29b0f896
AM
5220 case O_absent:
5221 case O_register:
5222 abort ();
5223
5224 /* Symbols and expressions. */
5225 default:
9cd96992
JB
5226 /* Convert symbolic operand to proper sizes for matching, but don't
5227 prevent matching a set of insns that only supports sizes other
5228 than those matching the insn suffix. */
5229 {
40fb9820 5230 i386_operand_type mask, allowed;
d3ce72d0 5231 const insn_template *t;
9cd96992 5232
0dfbf9d7
L
5233 operand_type_set (&mask, 0);
5234 operand_type_set (&allowed, 0);
40fb9820 5235
4eed87de
AM
5236 for (t = current_templates->start;
5237 t < current_templates->end;
5238 ++t)
bab6aec1
JB
5239 {
5240 allowed = operand_type_or (allowed, t->operand_types[op]);
5241 allowed = operand_type_and (allowed, anyimm);
5242 }
9cd96992
JB
5243 switch (guess_suffix)
5244 {
5245 case QWORD_MNEM_SUFFIX:
40fb9820
L
5246 mask.bitfield.imm64 = 1;
5247 mask.bitfield.imm32s = 1;
9cd96992
JB
5248 break;
5249 case LONG_MNEM_SUFFIX:
40fb9820 5250 mask.bitfield.imm32 = 1;
9cd96992
JB
5251 break;
5252 case WORD_MNEM_SUFFIX:
40fb9820 5253 mask.bitfield.imm16 = 1;
9cd96992
JB
5254 break;
5255 case BYTE_MNEM_SUFFIX:
40fb9820 5256 mask.bitfield.imm8 = 1;
9cd96992
JB
5257 break;
5258 default:
9cd96992
JB
5259 break;
5260 }
c6fb90c8 5261 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5262 if (!operand_type_all_zero (&allowed))
c6fb90c8 5263 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5264 }
29b0f896 5265 break;
252b5132 5266 }
29b0f896
AM
5267 }
5268}
47926f60 5269
29b0f896
AM
5270/* Try to use the smallest displacement type too. */
5271static void
e3bb37b5 5272optimize_disp (void)
29b0f896
AM
5273{
5274 int op;
3e73aa7c 5275
29b0f896 5276 for (op = i.operands; --op >= 0;)
40fb9820 5277 if (operand_type_check (i.types[op], disp))
252b5132 5278 {
b300c311 5279 if (i.op[op].disps->X_op == O_constant)
252b5132 5280 {
91d6fa6a 5281 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5282
40fb9820 5283 if (i.types[op].bitfield.disp16
91d6fa6a 5284 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5285 {
5286 /* If this operand is at most 16 bits, convert
5287 to a signed 16 bit number and don't use 64bit
5288 displacement. */
91d6fa6a 5289 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5290 i.types[op].bitfield.disp64 = 0;
b300c311 5291 }
a28def75
L
5292#ifdef BFD64
5293 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5294 if (i.types[op].bitfield.disp32
91d6fa6a 5295 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5296 {
5297 /* If this operand is at most 32 bits, convert
5298 to a signed 32 bit number and don't use 64bit
5299 displacement. */
91d6fa6a
NC
5300 op_disp &= (((offsetT) 2 << 31) - 1);
5301 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5302 i.types[op].bitfield.disp64 = 0;
b300c311 5303 }
a28def75 5304#endif
91d6fa6a 5305 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5306 {
40fb9820
L
5307 i.types[op].bitfield.disp8 = 0;
5308 i.types[op].bitfield.disp16 = 0;
5309 i.types[op].bitfield.disp32 = 0;
5310 i.types[op].bitfield.disp32s = 0;
5311 i.types[op].bitfield.disp64 = 0;
b300c311
L
5312 i.op[op].disps = 0;
5313 i.disp_operands--;
5314 }
5315 else if (flag_code == CODE_64BIT)
5316 {
91d6fa6a 5317 if (fits_in_signed_long (op_disp))
28a9d8f5 5318 {
40fb9820
L
5319 i.types[op].bitfield.disp64 = 0;
5320 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5321 }
0e1147d9 5322 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5323 && fits_in_unsigned_long (op_disp))
40fb9820 5324 i.types[op].bitfield.disp32 = 1;
b300c311 5325 }
40fb9820
L
5326 if ((i.types[op].bitfield.disp32
5327 || i.types[op].bitfield.disp32s
5328 || i.types[op].bitfield.disp16)
b5014f7a 5329 && fits_in_disp8 (op_disp))
40fb9820 5330 i.types[op].bitfield.disp8 = 1;
252b5132 5331 }
67a4f2b7
AO
5332 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5333 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5334 {
5335 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5336 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5337 i.types[op].bitfield.disp8 = 0;
5338 i.types[op].bitfield.disp16 = 0;
5339 i.types[op].bitfield.disp32 = 0;
5340 i.types[op].bitfield.disp32s = 0;
5341 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5342 }
5343 else
b300c311 5344 /* We only support 64bit displacement on constants. */
40fb9820 5345 i.types[op].bitfield.disp64 = 0;
252b5132 5346 }
29b0f896
AM
5347}
5348
4a1b91ea
L
5349/* Return 1 if there is a match in broadcast bytes between operand
5350 GIVEN and instruction template T. */
5351
5352static INLINE int
5353match_broadcast_size (const insn_template *t, unsigned int given)
5354{
5355 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5356 && i.types[given].bitfield.byte)
5357 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5358 && i.types[given].bitfield.word)
5359 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5360 && i.types[given].bitfield.dword)
5361 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5362 && i.types[given].bitfield.qword));
5363}
5364
6c30d220
L
5365/* Check if operands are valid for the instruction. */
5366
5367static int
5368check_VecOperands (const insn_template *t)
5369{
43234a1e 5370 unsigned int op;
e2195274 5371 i386_cpu_flags cpu;
e2195274
JB
5372
5373 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5374 any one operand are implicity requiring AVX512VL support if the actual
5375 operand size is YMMword or XMMword. Since this function runs after
5376 template matching, there's no need to check for YMMword/XMMword in
5377 the template. */
5378 cpu = cpu_flags_and (t->cpu_flags, avx512);
5379 if (!cpu_flags_all_zero (&cpu)
5380 && !t->cpu_flags.bitfield.cpuavx512vl
5381 && !cpu_arch_flags.bitfield.cpuavx512vl)
5382 {
5383 for (op = 0; op < t->operands; ++op)
5384 {
5385 if (t->operand_types[op].bitfield.zmmword
5386 && (i.types[op].bitfield.ymmword
5387 || i.types[op].bitfield.xmmword))
5388 {
5389 i.error = unsupported;
5390 return 1;
5391 }
5392 }
5393 }
43234a1e 5394
6c30d220
L
5395 /* Without VSIB byte, we can't have a vector register for index. */
5396 if (!t->opcode_modifier.vecsib
5397 && i.index_reg
1b54b8d7
JB
5398 && (i.index_reg->reg_type.bitfield.xmmword
5399 || i.index_reg->reg_type.bitfield.ymmword
5400 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5401 {
5402 i.error = unsupported_vector_index_register;
5403 return 1;
5404 }
5405
ad8ecc81
MZ
5406 /* Check if default mask is allowed. */
5407 if (t->opcode_modifier.nodefmask
5408 && (!i.mask || i.mask->mask->reg_num == 0))
5409 {
5410 i.error = no_default_mask;
5411 return 1;
5412 }
5413
7bab8ab5
JB
5414 /* For VSIB byte, we need a vector register for index, and all vector
5415 registers must be distinct. */
5416 if (t->opcode_modifier.vecsib)
5417 {
5418 if (!i.index_reg
6c30d220 5419 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5420 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5421 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5422 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5423 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5424 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5425 {
5426 i.error = invalid_vsib_address;
5427 return 1;
5428 }
5429
43234a1e
L
5430 gas_assert (i.reg_operands == 2 || i.mask);
5431 if (i.reg_operands == 2 && !i.mask)
5432 {
3528c362 5433 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
5434 gas_assert (i.types[0].bitfield.xmmword
5435 || i.types[0].bitfield.ymmword);
3528c362 5436 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
5437 gas_assert (i.types[2].bitfield.xmmword
5438 || i.types[2].bitfield.ymmword);
43234a1e
L
5439 if (operand_check == check_none)
5440 return 0;
5441 if (register_number (i.op[0].regs)
5442 != register_number (i.index_reg)
5443 && register_number (i.op[2].regs)
5444 != register_number (i.index_reg)
5445 && register_number (i.op[0].regs)
5446 != register_number (i.op[2].regs))
5447 return 0;
5448 if (operand_check == check_error)
5449 {
5450 i.error = invalid_vector_register_set;
5451 return 1;
5452 }
5453 as_warn (_("mask, index, and destination registers should be distinct"));
5454 }
8444f82a
MZ
5455 else if (i.reg_operands == 1 && i.mask)
5456 {
3528c362 5457 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
5458 && (i.types[1].bitfield.xmmword
5459 || i.types[1].bitfield.ymmword
5460 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5461 && (register_number (i.op[1].regs)
5462 == register_number (i.index_reg)))
5463 {
5464 if (operand_check == check_error)
5465 {
5466 i.error = invalid_vector_register_set;
5467 return 1;
5468 }
5469 if (operand_check != check_none)
5470 as_warn (_("index and destination registers should be distinct"));
5471 }
5472 }
43234a1e 5473 }
7bab8ab5 5474
43234a1e
L
5475 /* Check if broadcast is supported by the instruction and is applied
5476 to the memory operand. */
5477 if (i.broadcast)
5478 {
8e6e0792 5479 i386_operand_type type, overlap;
43234a1e
L
5480
5481 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5482 and its broadcast bytes match the memory operand. */
32546502 5483 op = i.broadcast->operand;
8e6e0792 5484 if (!t->opcode_modifier.broadcast
c48dadc9 5485 || !(i.flags[op] & Operand_Mem)
c39e5b26 5486 || (!i.types[op].bitfield.unspecified
4a1b91ea 5487 && !match_broadcast_size (t, op)))
43234a1e
L
5488 {
5489 bad_broadcast:
5490 i.error = unsupported_broadcast;
5491 return 1;
5492 }
8e6e0792 5493
4a1b91ea
L
5494 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5495 * i.broadcast->type);
8e6e0792 5496 operand_type_set (&type, 0);
4a1b91ea 5497 switch (i.broadcast->bytes)
8e6e0792 5498 {
4a1b91ea
L
5499 case 2:
5500 type.bitfield.word = 1;
5501 break;
5502 case 4:
5503 type.bitfield.dword = 1;
5504 break;
8e6e0792
JB
5505 case 8:
5506 type.bitfield.qword = 1;
5507 break;
5508 case 16:
5509 type.bitfield.xmmword = 1;
5510 break;
5511 case 32:
5512 type.bitfield.ymmword = 1;
5513 break;
5514 case 64:
5515 type.bitfield.zmmword = 1;
5516 break;
5517 default:
5518 goto bad_broadcast;
5519 }
5520
5521 overlap = operand_type_and (type, t->operand_types[op]);
5522 if (operand_type_all_zero (&overlap))
5523 goto bad_broadcast;
5524
5525 if (t->opcode_modifier.checkregsize)
5526 {
5527 unsigned int j;
5528
e2195274 5529 type.bitfield.baseindex = 1;
8e6e0792
JB
5530 for (j = 0; j < i.operands; ++j)
5531 {
5532 if (j != op
5533 && !operand_type_register_match(i.types[j],
5534 t->operand_types[j],
5535 type,
5536 t->operand_types[op]))
5537 goto bad_broadcast;
5538 }
5539 }
43234a1e
L
5540 }
5541 /* If broadcast is supported in this instruction, we need to check if
5542 operand of one-element size isn't specified without broadcast. */
5543 else if (t->opcode_modifier.broadcast && i.mem_operands)
5544 {
5545 /* Find memory operand. */
5546 for (op = 0; op < i.operands; op++)
8dc0818e 5547 if (i.flags[op] & Operand_Mem)
43234a1e
L
5548 break;
5549 gas_assert (op < i.operands);
5550 /* Check size of the memory operand. */
4a1b91ea 5551 if (match_broadcast_size (t, op))
43234a1e
L
5552 {
5553 i.error = broadcast_needed;
5554 return 1;
5555 }
5556 }
c39e5b26
JB
5557 else
5558 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5559
5560 /* Check if requested masking is supported. */
ae2387fe 5561 if (i.mask)
43234a1e 5562 {
ae2387fe
JB
5563 switch (t->opcode_modifier.masking)
5564 {
5565 case BOTH_MASKING:
5566 break;
5567 case MERGING_MASKING:
5568 if (i.mask->zeroing)
5569 {
5570 case 0:
5571 i.error = unsupported_masking;
5572 return 1;
5573 }
5574 break;
5575 case DYNAMIC_MASKING:
5576 /* Memory destinations allow only merging masking. */
5577 if (i.mask->zeroing && i.mem_operands)
5578 {
5579 /* Find memory operand. */
5580 for (op = 0; op < i.operands; op++)
c48dadc9 5581 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5582 break;
5583 gas_assert (op < i.operands);
5584 if (op == i.operands - 1)
5585 {
5586 i.error = unsupported_masking;
5587 return 1;
5588 }
5589 }
5590 break;
5591 default:
5592 abort ();
5593 }
43234a1e
L
5594 }
5595
5596 /* Check if masking is applied to dest operand. */
5597 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5598 {
5599 i.error = mask_not_on_destination;
5600 return 1;
5601 }
5602
43234a1e
L
5603 /* Check RC/SAE. */
5604 if (i.rounding)
5605 {
a80195f1
JB
5606 if (!t->opcode_modifier.sae
5607 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5608 {
5609 i.error = unsupported_rc_sae;
5610 return 1;
5611 }
5612 /* If the instruction has several immediate operands and one of
5613 them is rounding, the rounding operand should be the last
5614 immediate operand. */
5615 if (i.imm_operands > 1
5616 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5617 {
43234a1e 5618 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5619 return 1;
5620 }
6c30d220
L
5621 }
5622
43234a1e 5623 /* Check vector Disp8 operand. */
b5014f7a
JB
5624 if (t->opcode_modifier.disp8memshift
5625 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5626 {
5627 if (i.broadcast)
4a1b91ea 5628 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5629 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5630 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5631 else
5632 {
5633 const i386_operand_type *type = NULL;
5634
5635 i.memshift = 0;
5636 for (op = 0; op < i.operands; op++)
8dc0818e 5637 if (i.flags[op] & Operand_Mem)
7091c612 5638 {
4174bfff
JB
5639 if (t->opcode_modifier.evex == EVEXLIG)
5640 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5641 else if (t->operand_types[op].bitfield.xmmword
5642 + t->operand_types[op].bitfield.ymmword
5643 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5644 type = &t->operand_types[op];
5645 else if (!i.types[op].bitfield.unspecified)
5646 type = &i.types[op];
5647 }
3528c362 5648 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 5649 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5650 {
5651 if (i.types[op].bitfield.zmmword)
5652 i.memshift = 6;
5653 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5654 i.memshift = 5;
5655 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5656 i.memshift = 4;
5657 }
5658
5659 if (type)
5660 {
5661 if (type->bitfield.zmmword)
5662 i.memshift = 6;
5663 else if (type->bitfield.ymmword)
5664 i.memshift = 5;
5665 else if (type->bitfield.xmmword)
5666 i.memshift = 4;
5667 }
5668
5669 /* For the check in fits_in_disp8(). */
5670 if (i.memshift == 0)
5671 i.memshift = -1;
5672 }
43234a1e
L
5673
5674 for (op = 0; op < i.operands; op++)
5675 if (operand_type_check (i.types[op], disp)
5676 && i.op[op].disps->X_op == O_constant)
5677 {
b5014f7a 5678 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5679 {
b5014f7a
JB
5680 i.types[op].bitfield.disp8 = 1;
5681 return 0;
43234a1e 5682 }
b5014f7a 5683 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5684 }
5685 }
b5014f7a
JB
5686
5687 i.memshift = 0;
43234a1e 5688
6c30d220
L
5689 return 0;
5690}
5691
43f3e2ee 5692/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5693 operand types. */
5694
5695static int
5696VEX_check_operands (const insn_template *t)
5697{
86fa6981 5698 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5699 {
86fa6981 5700 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5701 if (!is_evex_encoding (t))
86fa6981
L
5702 {
5703 i.error = unsupported;
5704 return 1;
5705 }
5706 return 0;
43234a1e
L
5707 }
5708
a683cc34 5709 if (!t->opcode_modifier.vex)
86fa6981
L
5710 {
5711 /* This instruction template doesn't have VEX prefix. */
5712 if (i.vec_encoding != vex_encoding_default)
5713 {
5714 i.error = unsupported;
5715 return 1;
5716 }
5717 return 0;
5718 }
a683cc34 5719
9d3bf266
JB
5720 /* Check the special Imm4 cases; must be the first operand. */
5721 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5722 {
5723 if (i.op[0].imms->X_op != O_constant
5724 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5725 {
a65babc9 5726 i.error = bad_imm4;
891edac4
L
5727 return 1;
5728 }
a683cc34 5729
9d3bf266
JB
5730 /* Turn off Imm<N> so that update_imm won't complain. */
5731 operand_type_set (&i.types[0], 0);
a683cc34
SP
5732 }
5733
5734 return 0;
5735}
5736
d3ce72d0 5737static const insn_template *
83b16ac6 5738match_template (char mnem_suffix)
29b0f896
AM
5739{
5740 /* Points to template once we've found it. */
d3ce72d0 5741 const insn_template *t;
40fb9820 5742 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5743 i386_operand_type overlap4;
29b0f896 5744 unsigned int found_reverse_match;
dc2be329 5745 i386_opcode_modifier suffix_check;
40fb9820 5746 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5747 int addr_prefix_disp;
45a4bb20 5748 unsigned int j, size_match, check_register;
5614d22c 5749 enum i386_error specific_error = 0;
29b0f896 5750
c0f3af97
L
5751#if MAX_OPERANDS != 5
5752# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5753#endif
5754
29b0f896 5755 found_reverse_match = 0;
539e75ad 5756 addr_prefix_disp = -1;
40fb9820 5757
dc2be329 5758 /* Prepare for mnemonic suffix check. */
40fb9820 5759 memset (&suffix_check, 0, sizeof (suffix_check));
dc2be329
L
5760 switch (mnem_suffix)
5761 {
5762 case BYTE_MNEM_SUFFIX:
5763 suffix_check.no_bsuf = 1;
5764 break;
5765 case WORD_MNEM_SUFFIX:
5766 suffix_check.no_wsuf = 1;
5767 break;
5768 case SHORT_MNEM_SUFFIX:
5769 suffix_check.no_ssuf = 1;
5770 break;
5771 case LONG_MNEM_SUFFIX:
5772 suffix_check.no_lsuf = 1;
5773 break;
5774 case QWORD_MNEM_SUFFIX:
5775 suffix_check.no_qsuf = 1;
5776 break;
5777 default:
5778 /* NB: In Intel syntax, normally we can check for memory operand
5779 size when there is no mnemonic suffix. But jmp and call have
5780 2 different encodings with Dword memory operand size, one with
5781 No_ldSuf and the other without. i.suffix is set to
5782 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5783 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5784 suffix_check.no_ldsuf = 1;
83b16ac6
JB
5785 }
5786
01559ecc
L
5787 /* Must have right number of operands. */
5788 i.error = number_of_operands_mismatch;
5789
45aa61fe 5790 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5791 {
539e75ad 5792 addr_prefix_disp = -1;
dbbc8b7e 5793 found_reverse_match = 0;
539e75ad 5794
29b0f896
AM
5795 if (i.operands != t->operands)
5796 continue;
5797
50aecf8c 5798 /* Check processor support. */
a65babc9 5799 i.error = unsupported;
45a4bb20 5800 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
50aecf8c
L
5801 continue;
5802
e1d4d893 5803 /* Check AT&T mnemonic. */
a65babc9 5804 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5805 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5806 continue;
5807
4b5aaf5f 5808 /* Check AT&T/Intel syntax. */
a65babc9 5809 i.error = unsupported_syntax;
5c07affc 5810 if ((intel_syntax && t->opcode_modifier.attsyntax)
4b5aaf5f 5811 || (!intel_syntax && t->opcode_modifier.intelsyntax))
1efbbeb4
L
5812 continue;
5813
4b5aaf5f
L
5814 /* Check Intel64/AMD64 ISA. */
5815 switch (isa64)
5816 {
5817 default:
5818 /* Default: Don't accept Intel64. */
5819 if (t->opcode_modifier.isa64 == INTEL64)
5820 continue;
5821 break;
5822 case amd64:
5823 /* -mamd64: Don't accept Intel64 and Intel64 only. */
5824 if (t->opcode_modifier.isa64 >= INTEL64)
5825 continue;
5826 break;
5827 case intel64:
5828 /* -mintel64: Don't accept AMD64. */
5990e377 5829 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
4b5aaf5f
L
5830 continue;
5831 break;
5832 }
5833
dc2be329 5834 /* Check the suffix. */
a65babc9 5835 i.error = invalid_instruction_suffix;
dc2be329
L
5836 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5837 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5838 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5839 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5840 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5841 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
83b16ac6 5842 continue;
29b0f896 5843
3ac21baa
JB
5844 size_match = operand_size_match (t);
5845 if (!size_match)
7d5e4556 5846 continue;
539e75ad 5847
6f2f06be
JB
5848 /* This is intentionally not
5849
0cfa3eb3 5850 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6f2f06be
JB
5851
5852 as the case of a missing * on the operand is accepted (perhaps with
5853 a warning, issued further down). */
0cfa3eb3 5854 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6f2f06be
JB
5855 {
5856 i.error = operand_type_mismatch;
5857 continue;
5858 }
5859
5c07affc
L
5860 for (j = 0; j < MAX_OPERANDS; j++)
5861 operand_types[j] = t->operand_types[j];
5862
45aa61fe
AM
5863 /* In general, don't allow 64-bit operands in 32-bit mode. */
5864 if (i.suffix == QWORD_MNEM_SUFFIX
5865 && flag_code != CODE_64BIT
5866 && (intel_syntax
40fb9820 5867 ? (!t->opcode_modifier.ignoresize
625cbd7a 5868 && !t->opcode_modifier.broadcast
45aa61fe
AM
5869 && !intel_float_operand (t->name))
5870 : intel_float_operand (t->name) != 2)
3528c362
JB
5871 && ((operand_types[0].bitfield.class != RegMMX
5872 && operand_types[0].bitfield.class != RegSIMD)
5873 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5874 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
45aa61fe
AM
5875 && (t->base_opcode != 0x0fc7
5876 || t->extension_opcode != 1 /* cmpxchg8b */))
5877 continue;
5878
192dc9c6
JB
5879 /* In general, don't allow 32-bit operands on pre-386. */
5880 else if (i.suffix == LONG_MNEM_SUFFIX
5881 && !cpu_arch_flags.bitfield.cpui386
5882 && (intel_syntax
5883 ? (!t->opcode_modifier.ignoresize
5884 && !intel_float_operand (t->name))
5885 : intel_float_operand (t->name) != 2)
3528c362
JB
5886 && ((operand_types[0].bitfield.class != RegMMX
5887 && operand_types[0].bitfield.class != RegSIMD)
5888 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5889 && operand_types[t->operands > 1].bitfield.class
5890 != RegSIMD)))
192dc9c6
JB
5891 continue;
5892
29b0f896 5893 /* Do not verify operands when there are none. */
50aecf8c 5894 else
29b0f896 5895 {
c6fb90c8 5896 if (!t->operands)
2dbab7d5
L
5897 /* We've found a match; break out of loop. */
5898 break;
29b0f896 5899 }
252b5132 5900
48bcea9f
JB
5901 if (!t->opcode_modifier.jump
5902 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5903 {
5904 /* There should be only one Disp operand. */
5905 for (j = 0; j < MAX_OPERANDS; j++)
5906 if (operand_type_check (operand_types[j], disp))
539e75ad 5907 break;
48bcea9f
JB
5908 if (j < MAX_OPERANDS)
5909 {
5910 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5911
5912 addr_prefix_disp = j;
5913
5914 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5915 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5916 switch (flag_code)
40fb9820 5917 {
48bcea9f
JB
5918 case CODE_16BIT:
5919 override = !override;
5920 /* Fall through. */
5921 case CODE_32BIT:
5922 if (operand_types[j].bitfield.disp32
5923 && operand_types[j].bitfield.disp16)
40fb9820 5924 {
48bcea9f
JB
5925 operand_types[j].bitfield.disp16 = override;
5926 operand_types[j].bitfield.disp32 = !override;
40fb9820 5927 }
48bcea9f
JB
5928 operand_types[j].bitfield.disp32s = 0;
5929 operand_types[j].bitfield.disp64 = 0;
5930 break;
5931
5932 case CODE_64BIT:
5933 if (operand_types[j].bitfield.disp32s
5934 || operand_types[j].bitfield.disp64)
40fb9820 5935 {
48bcea9f
JB
5936 operand_types[j].bitfield.disp64 &= !override;
5937 operand_types[j].bitfield.disp32s &= !override;
5938 operand_types[j].bitfield.disp32 = override;
40fb9820 5939 }
48bcea9f
JB
5940 operand_types[j].bitfield.disp16 = 0;
5941 break;
40fb9820 5942 }
539e75ad 5943 }
48bcea9f 5944 }
539e75ad 5945
02a86693
L
5946 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5947 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5948 continue;
5949
56ffb741 5950 /* We check register size if needed. */
e2195274
JB
5951 if (t->opcode_modifier.checkregsize)
5952 {
5953 check_register = (1 << t->operands) - 1;
5954 if (i.broadcast)
5955 check_register &= ~(1 << i.broadcast->operand);
5956 }
5957 else
5958 check_register = 0;
5959
c6fb90c8 5960 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5961 switch (t->operands)
5962 {
5963 case 1:
40fb9820 5964 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5965 continue;
5966 break;
5967 case 2:
33eaf5de 5968 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5969 only in 32bit mode and we can use opcode 0x90. In 64bit
5970 mode, we can't use 0x90 for xchg %eax, %eax since it should
5971 zero-extend %eax to %rax. */
5972 if (flag_code == CODE_64BIT
5973 && t->base_opcode == 0x90
75e5731b
JB
5974 && i.types[0].bitfield.instance == Accum
5975 && i.types[0].bitfield.dword
5976 && i.types[1].bitfield.instance == Accum
5977 && i.types[1].bitfield.dword)
8b38ad71 5978 continue;
1212781b
JB
5979 /* xrelease mov %eax, <disp> is another special case. It must not
5980 match the accumulator-only encoding of mov. */
5981 if (flag_code != CODE_64BIT
5982 && i.hle_prefix
5983 && t->base_opcode == 0xa0
75e5731b 5984 && i.types[0].bitfield.instance == Accum
8dc0818e 5985 && (i.flags[1] & Operand_Mem))
1212781b 5986 continue;
f5eb1d70
JB
5987 /* Fall through. */
5988
5989 case 3:
3ac21baa
JB
5990 if (!(size_match & MATCH_STRAIGHT))
5991 goto check_reverse;
64c49ab3
JB
5992 /* Reverse direction of operands if swapping is possible in the first
5993 place (operands need to be symmetric) and
5994 - the load form is requested, and the template is a store form,
5995 - the store form is requested, and the template is a load form,
5996 - the non-default (swapped) form is requested. */
5997 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5998 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5999 && !operand_type_all_zero (&overlap1))
6000 switch (i.dir_encoding)
6001 {
6002 case dir_encoding_load:
6003 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 6004 || t->opcode_modifier.regmem)
64c49ab3
JB
6005 goto check_reverse;
6006 break;
6007
6008 case dir_encoding_store:
6009 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 6010 && !t->opcode_modifier.regmem)
64c49ab3
JB
6011 goto check_reverse;
6012 break;
6013
6014 case dir_encoding_swap:
6015 goto check_reverse;
6016
6017 case dir_encoding_default:
6018 break;
6019 }
86fa6981 6020 /* If we want store form, we skip the current load. */
64c49ab3
JB
6021 if ((i.dir_encoding == dir_encoding_store
6022 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
6023 && i.mem_operands == 0
6024 && t->opcode_modifier.load)
fa99fab2 6025 continue;
1a0670f3 6026 /* Fall through. */
f48ff2ae 6027 case 4:
c0f3af97 6028 case 5:
c6fb90c8 6029 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
6030 if (!operand_type_match (overlap0, i.types[0])
6031 || !operand_type_match (overlap1, i.types[1])
e2195274 6032 || ((check_register & 3) == 3
dc821c5f 6033 && !operand_type_register_match (i.types[0],
40fb9820 6034 operand_types[0],
dc821c5f 6035 i.types[1],
40fb9820 6036 operand_types[1])))
29b0f896
AM
6037 {
6038 /* Check if other direction is valid ... */
38e314eb 6039 if (!t->opcode_modifier.d)
29b0f896
AM
6040 continue;
6041
b6169b20 6042check_reverse:
3ac21baa
JB
6043 if (!(size_match & MATCH_REVERSE))
6044 continue;
29b0f896 6045 /* Try reversing direction of operands. */
f5eb1d70
JB
6046 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6047 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 6048 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 6049 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 6050 || (check_register
dc821c5f 6051 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
6052 operand_types[i.operands - 1],
6053 i.types[i.operands - 1],
45664ddb 6054 operand_types[0])))
29b0f896
AM
6055 {
6056 /* Does not match either direction. */
6057 continue;
6058 }
38e314eb 6059 /* found_reverse_match holds which of D or FloatR
29b0f896 6060 we've found. */
38e314eb
JB
6061 if (!t->opcode_modifier.d)
6062 found_reverse_match = 0;
6063 else if (operand_types[0].bitfield.tbyte)
8a2ed489 6064 found_reverse_match = Opcode_FloatD;
dbbc8b7e 6065 else if (operand_types[0].bitfield.xmmword
f5eb1d70 6066 || operand_types[i.operands - 1].bitfield.xmmword
3528c362
JB
6067 || operand_types[0].bitfield.class == RegMMX
6068 || operand_types[i.operands - 1].bitfield.class == RegMMX
dbbc8b7e
JB
6069 || is_any_vex_encoding(t))
6070 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6071 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 6072 else
38e314eb 6073 found_reverse_match = Opcode_D;
40fb9820 6074 if (t->opcode_modifier.floatr)
8a2ed489 6075 found_reverse_match |= Opcode_FloatR;
29b0f896 6076 }
f48ff2ae 6077 else
29b0f896 6078 {
f48ff2ae 6079 /* Found a forward 2 operand match here. */
d1cbb4db
L
6080 switch (t->operands)
6081 {
c0f3af97
L
6082 case 5:
6083 overlap4 = operand_type_and (i.types[4],
6084 operand_types[4]);
1a0670f3 6085 /* Fall through. */
d1cbb4db 6086 case 4:
c6fb90c8
L
6087 overlap3 = operand_type_and (i.types[3],
6088 operand_types[3]);
1a0670f3 6089 /* Fall through. */
d1cbb4db 6090 case 3:
c6fb90c8
L
6091 overlap2 = operand_type_and (i.types[2],
6092 operand_types[2]);
d1cbb4db
L
6093 break;
6094 }
29b0f896 6095
f48ff2ae
L
6096 switch (t->operands)
6097 {
c0f3af97
L
6098 case 5:
6099 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6100 || !operand_type_register_match (i.types[3],
c0f3af97 6101 operand_types[3],
c0f3af97
L
6102 i.types[4],
6103 operand_types[4]))
6104 continue;
1a0670f3 6105 /* Fall through. */
f48ff2ae 6106 case 4:
40fb9820 6107 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6108 || ((check_register & 0xa) == 0xa
6109 && !operand_type_register_match (i.types[1],
f7768225
JB
6110 operand_types[1],
6111 i.types[3],
e2195274
JB
6112 operand_types[3]))
6113 || ((check_register & 0xc) == 0xc
6114 && !operand_type_register_match (i.types[2],
6115 operand_types[2],
6116 i.types[3],
6117 operand_types[3])))
f48ff2ae 6118 continue;
1a0670f3 6119 /* Fall through. */
f48ff2ae
L
6120 case 3:
6121 /* Here we make use of the fact that there are no
23e42951 6122 reverse match 3 operand instructions. */
40fb9820 6123 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6124 || ((check_register & 5) == 5
6125 && !operand_type_register_match (i.types[0],
23e42951
JB
6126 operand_types[0],
6127 i.types[2],
e2195274
JB
6128 operand_types[2]))
6129 || ((check_register & 6) == 6
6130 && !operand_type_register_match (i.types[1],
6131 operand_types[1],
6132 i.types[2],
6133 operand_types[2])))
f48ff2ae
L
6134 continue;
6135 break;
6136 }
29b0f896 6137 }
f48ff2ae 6138 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6139 slip through to break. */
6140 }
c0f3af97 6141
5614d22c
JB
6142 /* Check if vector and VEX operands are valid. */
6143 if (check_VecOperands (t) || VEX_check_operands (t))
6144 {
6145 specific_error = i.error;
6146 continue;
6147 }
a683cc34 6148
29b0f896
AM
6149 /* We've found a match; break out of loop. */
6150 break;
6151 }
6152
6153 if (t == current_templates->end)
6154 {
6155 /* We found no match. */
a65babc9 6156 const char *err_msg;
5614d22c 6157 switch (specific_error ? specific_error : i.error)
a65babc9
L
6158 {
6159 default:
6160 abort ();
86e026a4 6161 case operand_size_mismatch:
a65babc9
L
6162 err_msg = _("operand size mismatch");
6163 break;
6164 case operand_type_mismatch:
6165 err_msg = _("operand type mismatch");
6166 break;
6167 case register_type_mismatch:
6168 err_msg = _("register type mismatch");
6169 break;
6170 case number_of_operands_mismatch:
6171 err_msg = _("number of operands mismatch");
6172 break;
6173 case invalid_instruction_suffix:
6174 err_msg = _("invalid instruction suffix");
6175 break;
6176 case bad_imm4:
4a2608e3 6177 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6178 break;
a65babc9
L
6179 case unsupported_with_intel_mnemonic:
6180 err_msg = _("unsupported with Intel mnemonic");
6181 break;
6182 case unsupported_syntax:
6183 err_msg = _("unsupported syntax");
6184 break;
6185 case unsupported:
35262a23 6186 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6187 current_templates->start->name);
6188 return NULL;
6c30d220
L
6189 case invalid_vsib_address:
6190 err_msg = _("invalid VSIB address");
6191 break;
7bab8ab5
JB
6192 case invalid_vector_register_set:
6193 err_msg = _("mask, index, and destination registers must be distinct");
6194 break;
6c30d220
L
6195 case unsupported_vector_index_register:
6196 err_msg = _("unsupported vector index register");
6197 break;
43234a1e
L
6198 case unsupported_broadcast:
6199 err_msg = _("unsupported broadcast");
6200 break;
43234a1e
L
6201 case broadcast_needed:
6202 err_msg = _("broadcast is needed for operand of such type");
6203 break;
6204 case unsupported_masking:
6205 err_msg = _("unsupported masking");
6206 break;
6207 case mask_not_on_destination:
6208 err_msg = _("mask not on destination operand");
6209 break;
6210 case no_default_mask:
6211 err_msg = _("default mask isn't allowed");
6212 break;
6213 case unsupported_rc_sae:
6214 err_msg = _("unsupported static rounding/sae");
6215 break;
6216 case rc_sae_operand_not_last_imm:
6217 if (intel_syntax)
6218 err_msg = _("RC/SAE operand must precede immediate operands");
6219 else
6220 err_msg = _("RC/SAE operand must follow immediate operands");
6221 break;
6222 case invalid_register_operand:
6223 err_msg = _("invalid register operand");
6224 break;
a65babc9
L
6225 }
6226 as_bad (_("%s for `%s'"), err_msg,
891edac4 6227 current_templates->start->name);
fa99fab2 6228 return NULL;
29b0f896 6229 }
252b5132 6230
29b0f896
AM
6231 if (!quiet_warnings)
6232 {
6233 if (!intel_syntax
0cfa3eb3 6234 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6f2f06be 6235 as_warn (_("indirect %s without `*'"), t->name);
29b0f896 6236
40fb9820
L
6237 if (t->opcode_modifier.isprefix
6238 && t->opcode_modifier.ignoresize)
29b0f896
AM
6239 {
6240 /* Warn them that a data or address size prefix doesn't
6241 affect assembly of the next line of code. */
6242 as_warn (_("stand-alone `%s' prefix"), t->name);
6243 }
6244 }
6245
6246 /* Copy the template we found. */
6247 i.tm = *t;
539e75ad
L
6248
6249 if (addr_prefix_disp != -1)
6250 i.tm.operand_types[addr_prefix_disp]
6251 = operand_types[addr_prefix_disp];
6252
29b0f896
AM
6253 if (found_reverse_match)
6254 {
dfd69174
JB
6255 /* If we found a reverse match we must alter the opcode direction
6256 bit and clear/flip the regmem modifier one. found_reverse_match
6257 holds bits to change (different for int & float insns). */
29b0f896
AM
6258
6259 i.tm.base_opcode ^= found_reverse_match;
6260
f5eb1d70
JB
6261 i.tm.operand_types[0] = operand_types[i.operands - 1];
6262 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6263
6264 /* Certain SIMD insns have their load forms specified in the opcode
6265 table, and hence we need to _set_ RegMem instead of clearing it.
6266 We need to avoid setting the bit though on insns like KMOVW. */
6267 i.tm.opcode_modifier.regmem
6268 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6269 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6270 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6271 }
6272
fa99fab2 6273 return t;
29b0f896
AM
6274}
6275
6276static int
e3bb37b5 6277check_string (void)
29b0f896 6278{
51c8edf6
JB
6279 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6280 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
8dc0818e 6281
51c8edf6 6282 if (i.seg[op] != NULL && i.seg[op] != &es)
29b0f896 6283 {
51c8edf6
JB
6284 as_bad (_("`%s' operand %u must use `%ses' segment"),
6285 i.tm.name,
6286 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6287 register_prefix);
6288 return 0;
29b0f896 6289 }
51c8edf6
JB
6290
6291 /* There's only ever one segment override allowed per instruction.
6292 This instruction possibly has a legal segment override on the
6293 second operand, so copy the segment to where non-string
6294 instructions store it, allowing common code. */
6295 i.seg[op] = i.seg[1];
6296
29b0f896
AM
6297 return 1;
6298}
6299
6300static int
543613e9 6301process_suffix (void)
29b0f896
AM
6302{
6303 /* If matched instruction specifies an explicit instruction mnemonic
6304 suffix, use it. */
673fe0f0 6305 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6306 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6307 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6308 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6309 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6310 i.suffix = QWORD_MNEM_SUFFIX;
13e600d0
JB
6311 else if (i.reg_operands
6312 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
29b0f896
AM
6313 {
6314 /* If there's no instruction mnemonic suffix we try to invent one
13e600d0 6315 based on GPR operands. */
29b0f896
AM
6316 if (!i.suffix)
6317 {
6318 /* We take i.suffix from the last register operand specified,
6319 Destination register type is more significant than source
381d071f
L
6320 register type. crc32 in SSE4.2 prefers source register
6321 type. */
1a035124 6322 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
20592a94 6323
1a035124
JB
6324 while (op--)
6325 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6326 || i.tm.operand_types[op].bitfield.instance == Accum)
6327 {
6328 if (i.types[op].bitfield.class != Reg)
6329 continue;
6330 if (i.types[op].bitfield.byte)
6331 i.suffix = BYTE_MNEM_SUFFIX;
6332 else if (i.types[op].bitfield.word)
6333 i.suffix = WORD_MNEM_SUFFIX;
6334 else if (i.types[op].bitfield.dword)
6335 i.suffix = LONG_MNEM_SUFFIX;
6336 else if (i.types[op].bitfield.qword)
6337 i.suffix = QWORD_MNEM_SUFFIX;
6338 else
6339 continue;
6340 break;
6341 }
29b0f896
AM
6342 }
6343 else if (i.suffix == BYTE_MNEM_SUFFIX)
6344 {
2eb952a4
L
6345 if (intel_syntax
6346 && i.tm.opcode_modifier.ignoresize
6347 && i.tm.opcode_modifier.no_bsuf)
6348 i.suffix = 0;
6349 else if (!check_byte_reg ())
29b0f896
AM
6350 return 0;
6351 }
6352 else if (i.suffix == LONG_MNEM_SUFFIX)
6353 {
2eb952a4
L
6354 if (intel_syntax
6355 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6356 && i.tm.opcode_modifier.no_lsuf
6357 && !i.tm.opcode_modifier.todword
6358 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6359 i.suffix = 0;
6360 else if (!check_long_reg ())
29b0f896
AM
6361 return 0;
6362 }
6363 else if (i.suffix == QWORD_MNEM_SUFFIX)
6364 {
955e1e6a
L
6365 if (intel_syntax
6366 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6367 && i.tm.opcode_modifier.no_qsuf
6368 && !i.tm.opcode_modifier.todword
6369 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6370 i.suffix = 0;
6371 else if (!check_qword_reg ())
29b0f896
AM
6372 return 0;
6373 }
6374 else if (i.suffix == WORD_MNEM_SUFFIX)
6375 {
2eb952a4
L
6376 if (intel_syntax
6377 && i.tm.opcode_modifier.ignoresize
6378 && i.tm.opcode_modifier.no_wsuf)
6379 i.suffix = 0;
6380 else if (!check_word_reg ())
29b0f896
AM
6381 return 0;
6382 }
40fb9820 6383 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6384 /* Do nothing if the instruction is going to ignore the prefix. */
6385 ;
6386 else
6387 abort ();
6388 }
62b3f548 6389 else if (i.tm.opcode_modifier.defaultsize && !i.suffix)
29b0f896 6390 {
13e600d0
JB
6391 i.suffix = stackop_size;
6392 if (stackop_size == LONG_MNEM_SUFFIX)
06f74c5c
L
6393 {
6394 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6395 .code16gcc directive to support 16-bit mode with
6396 32-bit address. For IRET without a suffix, generate
6397 16-bit IRET (opcode 0xcf) to return from an interrupt
6398 handler. */
13e600d0
JB
6399 if (i.tm.base_opcode == 0xcf)
6400 {
6401 i.suffix = WORD_MNEM_SUFFIX;
6402 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6403 }
6404 /* Warn about changed behavior for segment register push/pop. */
6405 else if ((i.tm.base_opcode | 1) == 0x07)
6406 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6407 i.tm.name);
06f74c5c 6408 }
29b0f896 6409 }
c006a730 6410 else if (!i.suffix
0cfa3eb3
JB
6411 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6412 || i.tm.opcode_modifier.jump == JUMP_BYTE
6413 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
64e74474
AM
6414 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6415 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6416 {
6417 switch (flag_code)
6418 {
6419 case CODE_64BIT:
40fb9820 6420 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6421 {
6422 i.suffix = QWORD_MNEM_SUFFIX;
6423 break;
6424 }
1a0670f3 6425 /* Fall through. */
9306ca4a 6426 case CODE_32BIT:
40fb9820 6427 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6428 i.suffix = LONG_MNEM_SUFFIX;
6429 break;
6430 case CODE_16BIT:
40fb9820 6431 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6432 i.suffix = WORD_MNEM_SUFFIX;
6433 break;
6434 }
6435 }
252b5132 6436
c006a730 6437 if (!i.suffix
873494c8
JB
6438 && (!i.tm.opcode_modifier.defaultsize
6439 /* Also cover lret/retf/iret in 64-bit mode. */
6440 || (flag_code == CODE_64BIT
6441 && !i.tm.opcode_modifier.no_lsuf
6442 && !i.tm.opcode_modifier.no_qsuf))
62b3f548
JB
6443 && !i.tm.opcode_modifier.ignoresize
6444 /* Accept FLDENV et al without suffix. */
6445 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
29b0f896 6446 {
6c0946d0 6447 unsigned int suffixes, evex = 0;
c006a730
JB
6448
6449 suffixes = !i.tm.opcode_modifier.no_bsuf;
6450 if (!i.tm.opcode_modifier.no_wsuf)
6451 suffixes |= 1 << 1;
6452 if (!i.tm.opcode_modifier.no_lsuf)
6453 suffixes |= 1 << 2;
6454 if (!i.tm.opcode_modifier.no_ldsuf)
6455 suffixes |= 1 << 3;
6456 if (!i.tm.opcode_modifier.no_ssuf)
6457 suffixes |= 1 << 4;
6458 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6459 suffixes |= 1 << 5;
6460
6c0946d0
JB
6461 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6462 also suitable for AT&T syntax mode, it was requested that this be
6463 restricted to just Intel syntax. */
6464 if (intel_syntax)
6465 {
6466 i386_cpu_flags cpu = cpu_flags_and (i.tm.cpu_flags, avx512);
6467
6468 if (!cpu_flags_all_zero (&cpu) && !i.broadcast)
6469 {
6470 unsigned int op;
6471
6472 for (op = 0; op < i.tm.operands; ++op)
6473 {
6474 if (!cpu_arch_flags.bitfield.cpuavx512vl)
6475 {
6476 if (i.tm.operand_types[op].bitfield.ymmword)
6477 i.tm.operand_types[op].bitfield.xmmword = 0;
6478 if (i.tm.operand_types[op].bitfield.zmmword)
6479 i.tm.operand_types[op].bitfield.ymmword = 0;
6480 if (!i.tm.opcode_modifier.evex
6481 || i.tm.opcode_modifier.evex == EVEXDYN)
6482 i.tm.opcode_modifier.evex = EVEX512;
6483 }
6484
6485 if (i.tm.operand_types[op].bitfield.xmmword
6486 + i.tm.operand_types[op].bitfield.ymmword
6487 + i.tm.operand_types[op].bitfield.zmmword < 2)
6488 continue;
6489
6490 /* Any properly sized operand disambiguates the insn. */
6491 if (i.types[op].bitfield.xmmword
6492 || i.types[op].bitfield.ymmword
6493 || i.types[op].bitfield.zmmword)
6494 {
6495 suffixes &= ~(7 << 6);
6496 evex = 0;
6497 break;
6498 }
6499
6500 if ((i.flags[op] & Operand_Mem)
6501 && i.tm.operand_types[op].bitfield.unspecified)
6502 {
6503 if (i.tm.operand_types[op].bitfield.xmmword)
6504 suffixes |= 1 << 6;
6505 if (i.tm.operand_types[op].bitfield.ymmword)
6506 suffixes |= 1 << 7;
6507 if (i.tm.operand_types[op].bitfield.zmmword)
6508 suffixes |= 1 << 8;
6509 evex = EVEX512;
6510 }
6511 }
6512 }
6513 }
6514
6515 /* Are multiple suffixes / operand sizes allowed? */
c006a730 6516 if (suffixes & (suffixes - 1))
9306ca4a 6517 {
873494c8
JB
6518 if (intel_syntax
6519 && (!i.tm.opcode_modifier.defaultsize
6520 || operand_check == check_error))
9306ca4a 6521 {
c006a730 6522 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
9306ca4a
JB
6523 return 0;
6524 }
c006a730 6525 if (operand_check == check_error)
9306ca4a 6526 {
c006a730
JB
6527 as_bad (_("no instruction mnemonic suffix given and "
6528 "no register operands; can't size `%s'"), i.tm.name);
9306ca4a
JB
6529 return 0;
6530 }
c006a730 6531 if (operand_check == check_warning)
873494c8
JB
6532 as_warn (_("%s; using default for `%s'"),
6533 intel_syntax
6534 ? _("ambiguous operand size")
6535 : _("no instruction mnemonic suffix given and "
6536 "no register operands"),
6537 i.tm.name);
c006a730
JB
6538
6539 if (i.tm.opcode_modifier.floatmf)
6540 i.suffix = SHORT_MNEM_SUFFIX;
6c0946d0
JB
6541 else if (evex)
6542 i.tm.opcode_modifier.evex = evex;
c006a730
JB
6543 else if (flag_code == CODE_16BIT)
6544 i.suffix = WORD_MNEM_SUFFIX;
1a035124 6545 else if (!i.tm.opcode_modifier.no_lsuf)
c006a730 6546 i.suffix = LONG_MNEM_SUFFIX;
1a035124
JB
6547 else
6548 i.suffix = QWORD_MNEM_SUFFIX;
9306ca4a 6549 }
29b0f896 6550 }
252b5132 6551
50128d0c
JB
6552 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
6553 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
6554 != (i.tm.operand_types[1].bitfield.class == Reg);
6555
d2224064
JB
6556 /* Change the opcode based on the operand size given by i.suffix. */
6557 switch (i.suffix)
29b0f896 6558 {
d2224064
JB
6559 /* Size floating point instruction. */
6560 case LONG_MNEM_SUFFIX:
6561 if (i.tm.opcode_modifier.floatmf)
6562 {
6563 i.tm.base_opcode ^= 4;
6564 break;
6565 }
6566 /* fall through */
6567 case WORD_MNEM_SUFFIX:
6568 case QWORD_MNEM_SUFFIX:
29b0f896 6569 /* It's not a byte, select word/dword operation. */
40fb9820 6570 if (i.tm.opcode_modifier.w)
29b0f896 6571 {
50128d0c 6572 if (i.short_form)
29b0f896
AM
6573 i.tm.base_opcode |= 8;
6574 else
6575 i.tm.base_opcode |= 1;
6576 }
d2224064
JB
6577 /* fall through */
6578 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6579 /* Now select between word & dword operations via the operand
6580 size prefix, except for instructions that will ignore this
6581 prefix anyway. */
75c0a438 6582 if (i.reg_operands > 0
bab6aec1 6583 && i.types[0].bitfield.class == Reg
75c0a438 6584 && i.tm.opcode_modifier.addrprefixopreg
474da251 6585 && (i.tm.operand_types[0].bitfield.instance == Accum
75c0a438 6586 || i.operands == 1))
cb712a9e 6587 {
ca61edf2
L
6588 /* The address size override prefix changes the size of the
6589 first operand. */
40fb9820 6590 if ((flag_code == CODE_32BIT
75c0a438 6591 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6592 || (flag_code != CODE_32BIT
75c0a438 6593 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6594 if (!add_prefix (ADDR_PREFIX_OPCODE))
6595 return 0;
6596 }
6597 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6598 && !i.tm.opcode_modifier.ignoresize
6599 && !i.tm.opcode_modifier.floatmf
a38d7118 6600 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6601 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6602 || (flag_code == CODE_64BIT
0cfa3eb3 6603 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
24eab124
AM
6604 {
6605 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6606
0cfa3eb3 6607 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
29b0f896 6608 prefix = ADDR_PREFIX_OPCODE;
252b5132 6609
29b0f896
AM
6610 if (!add_prefix (prefix))
6611 return 0;
24eab124 6612 }
252b5132 6613
29b0f896
AM
6614 /* Set mode64 for an operand. */
6615 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6616 && flag_code == CODE_64BIT
d2224064 6617 && !i.tm.opcode_modifier.norex64
46e883c5 6618 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6619 need rex64. */
6620 && ! (i.operands == 2
6621 && i.tm.base_opcode == 0x90
6622 && i.tm.extension_opcode == None
75e5731b
JB
6623 && i.types[0].bitfield.instance == Accum
6624 && i.types[0].bitfield.qword
6625 && i.types[1].bitfield.instance == Accum
6626 && i.types[1].bitfield.qword))
d2224064 6627 i.rex |= REX_W;
3e73aa7c 6628
d2224064 6629 break;
29b0f896 6630 }
7ecd2f8b 6631
c0a30a9f
L
6632 if (i.reg_operands != 0
6633 && i.operands > 1
6634 && i.tm.opcode_modifier.addrprefixopreg
474da251 6635 && i.tm.operand_types[0].bitfield.instance != Accum)
c0a30a9f
L
6636 {
6637 /* Check invalid register operand when the address size override
6638 prefix changes the size of register operands. */
6639 unsigned int op;
6640 enum { need_word, need_dword, need_qword } need;
6641
6642 if (flag_code == CODE_32BIT)
6643 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6644 else
6645 {
6646 if (i.prefix[ADDR_PREFIX])
6647 need = need_dword;
6648 else
6649 need = flag_code == CODE_64BIT ? need_qword : need_word;
6650 }
6651
6652 for (op = 0; op < i.operands; op++)
bab6aec1 6653 if (i.types[op].bitfield.class == Reg
c0a30a9f
L
6654 && ((need == need_word
6655 && !i.op[op].regs->reg_type.bitfield.word)
6656 || (need == need_dword
6657 && !i.op[op].regs->reg_type.bitfield.dword)
6658 || (need == need_qword
6659 && !i.op[op].regs->reg_type.bitfield.qword)))
6660 {
6661 as_bad (_("invalid register operand size for `%s'"),
6662 i.tm.name);
6663 return 0;
6664 }
6665 }
6666
29b0f896
AM
6667 return 1;
6668}
3e73aa7c 6669
29b0f896 6670static int
543613e9 6671check_byte_reg (void)
29b0f896
AM
6672{
6673 int op;
543613e9 6674
29b0f896
AM
6675 for (op = i.operands; --op >= 0;)
6676 {
dc821c5f 6677 /* Skip non-register operands. */
bab6aec1 6678 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
6679 continue;
6680
29b0f896
AM
6681 /* If this is an eight bit register, it's OK. If it's the 16 or
6682 32 bit version of an eight bit register, we will just use the
6683 low portion, and that's OK too. */
dc821c5f 6684 if (i.types[op].bitfield.byte)
29b0f896
AM
6685 continue;
6686
5a819eb9 6687 /* I/O port address operands are OK too. */
75e5731b
JB
6688 if (i.tm.operand_types[op].bitfield.instance == RegD
6689 && i.tm.operand_types[op].bitfield.word)
5a819eb9
JB
6690 continue;
6691
9706160a
JB
6692 /* crc32 only wants its source operand checked here. */
6693 if (i.tm.base_opcode == 0xf20f38f0 && op)
9344ff29
L
6694 continue;
6695
29b0f896 6696 /* Any other register is bad. */
bab6aec1 6697 if (i.types[op].bitfield.class == Reg
3528c362
JB
6698 || i.types[op].bitfield.class == RegMMX
6699 || i.types[op].bitfield.class == RegSIMD
00cee14f 6700 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
6701 || i.types[op].bitfield.class == RegCR
6702 || i.types[op].bitfield.class == RegDR
6703 || i.types[op].bitfield.class == RegTR)
29b0f896 6704 {
a540244d
L
6705 as_bad (_("`%s%s' not allowed with `%s%c'"),
6706 register_prefix,
29b0f896
AM
6707 i.op[op].regs->reg_name,
6708 i.tm.name,
6709 i.suffix);
6710 return 0;
6711 }
6712 }
6713 return 1;
6714}
6715
6716static int
e3bb37b5 6717check_long_reg (void)
29b0f896
AM
6718{
6719 int op;
6720
6721 for (op = i.operands; --op >= 0;)
dc821c5f 6722 /* Skip non-register operands. */
bab6aec1 6723 if (i.types[op].bitfield.class != Reg)
dc821c5f 6724 continue;
29b0f896
AM
6725 /* Reject eight bit registers, except where the template requires
6726 them. (eg. movzb) */
dc821c5f 6727 else if (i.types[op].bitfield.byte
bab6aec1 6728 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6729 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6730 && (i.tm.operand_types[op].bitfield.word
6731 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6732 {
a540244d
L
6733 as_bad (_("`%s%s' not allowed with `%s%c'"),
6734 register_prefix,
29b0f896
AM
6735 i.op[op].regs->reg_name,
6736 i.tm.name,
6737 i.suffix);
6738 return 0;
6739 }
be4c5e58
L
6740 /* Error if the e prefix on a general reg is missing. */
6741 else if (i.types[op].bitfield.word
bab6aec1 6742 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6743 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6744 && i.tm.operand_types[op].bitfield.dword)
29b0f896 6745 {
be4c5e58
L
6746 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6747 register_prefix, i.op[op].regs->reg_name,
6748 i.suffix);
6749 return 0;
252b5132 6750 }
e4630f71 6751 /* Warn if the r prefix on a general reg is present. */
dc821c5f 6752 else if (i.types[op].bitfield.qword
bab6aec1 6753 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6754 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6755 && i.tm.operand_types[op].bitfield.dword)
252b5132 6756 {
34828aad 6757 if (intel_syntax
bc31405e
L
6758 && (i.tm.opcode_modifier.toqword
6759 /* Also convert to QWORD for MOVSXD. */
6760 || i.tm.base_opcode == 0x63)
3528c362 6761 && i.types[0].bitfield.class != RegSIMD)
34828aad 6762 {
ca61edf2 6763 /* Convert to QWORD. We want REX byte. */
34828aad
L
6764 i.suffix = QWORD_MNEM_SUFFIX;
6765 }
6766 else
6767 {
2b5d6a91 6768 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6769 register_prefix, i.op[op].regs->reg_name,
6770 i.suffix);
6771 return 0;
6772 }
29b0f896
AM
6773 }
6774 return 1;
6775}
252b5132 6776
29b0f896 6777static int
e3bb37b5 6778check_qword_reg (void)
29b0f896
AM
6779{
6780 int op;
252b5132 6781
29b0f896 6782 for (op = i.operands; --op >= 0; )
dc821c5f 6783 /* Skip non-register operands. */
bab6aec1 6784 if (i.types[op].bitfield.class != Reg)
dc821c5f 6785 continue;
29b0f896
AM
6786 /* Reject eight bit registers, except where the template requires
6787 them. (eg. movzb) */
dc821c5f 6788 else if (i.types[op].bitfield.byte
bab6aec1 6789 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6790 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6791 && (i.tm.operand_types[op].bitfield.word
6792 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6793 {
a540244d
L
6794 as_bad (_("`%s%s' not allowed with `%s%c'"),
6795 register_prefix,
29b0f896
AM
6796 i.op[op].regs->reg_name,
6797 i.tm.name,
6798 i.suffix);
6799 return 0;
6800 }
e4630f71 6801 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6802 else if ((i.types[op].bitfield.word
6803 || i.types[op].bitfield.dword)
bab6aec1 6804 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6805 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6806 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6807 {
6808 /* Prohibit these changes in the 64bit mode, since the
6809 lowering is more complicated. */
34828aad 6810 if (intel_syntax
ca61edf2 6811 && i.tm.opcode_modifier.todword
3528c362 6812 && i.types[0].bitfield.class != RegSIMD)
34828aad 6813 {
ca61edf2 6814 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6815 i.suffix = LONG_MNEM_SUFFIX;
6816 }
6817 else
6818 {
2b5d6a91 6819 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6820 register_prefix, i.op[op].regs->reg_name,
6821 i.suffix);
6822 return 0;
6823 }
252b5132 6824 }
29b0f896
AM
6825 return 1;
6826}
252b5132 6827
29b0f896 6828static int
e3bb37b5 6829check_word_reg (void)
29b0f896
AM
6830{
6831 int op;
6832 for (op = i.operands; --op >= 0;)
dc821c5f 6833 /* Skip non-register operands. */
bab6aec1 6834 if (i.types[op].bitfield.class != Reg)
dc821c5f 6835 continue;
29b0f896
AM
6836 /* Reject eight bit registers, except where the template requires
6837 them. (eg. movzb) */
dc821c5f 6838 else if (i.types[op].bitfield.byte
bab6aec1 6839 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6840 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6841 && (i.tm.operand_types[op].bitfield.word
6842 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6843 {
a540244d
L
6844 as_bad (_("`%s%s' not allowed with `%s%c'"),
6845 register_prefix,
29b0f896
AM
6846 i.op[op].regs->reg_name,
6847 i.tm.name,
6848 i.suffix);
6849 return 0;
6850 }
9706160a
JB
6851 /* Error if the e or r prefix on a general reg is present. */
6852 else if ((i.types[op].bitfield.dword
dc821c5f 6853 || i.types[op].bitfield.qword)
bab6aec1 6854 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6855 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6856 && i.tm.operand_types[op].bitfield.word)
252b5132 6857 {
9706160a
JB
6858 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6859 register_prefix, i.op[op].regs->reg_name,
6860 i.suffix);
6861 return 0;
29b0f896
AM
6862 }
6863 return 1;
6864}
252b5132 6865
29b0f896 6866static int
40fb9820 6867update_imm (unsigned int j)
29b0f896 6868{
bc0844ae 6869 i386_operand_type overlap = i.types[j];
40fb9820
L
6870 if ((overlap.bitfield.imm8
6871 || overlap.bitfield.imm8s
6872 || overlap.bitfield.imm16
6873 || overlap.bitfield.imm32
6874 || overlap.bitfield.imm32s
6875 || overlap.bitfield.imm64)
0dfbf9d7
L
6876 && !operand_type_equal (&overlap, &imm8)
6877 && !operand_type_equal (&overlap, &imm8s)
6878 && !operand_type_equal (&overlap, &imm16)
6879 && !operand_type_equal (&overlap, &imm32)
6880 && !operand_type_equal (&overlap, &imm32s)
6881 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6882 {
6883 if (i.suffix)
6884 {
40fb9820
L
6885 i386_operand_type temp;
6886
0dfbf9d7 6887 operand_type_set (&temp, 0);
7ab9ffdd 6888 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6889 {
6890 temp.bitfield.imm8 = overlap.bitfield.imm8;
6891 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6892 }
6893 else if (i.suffix == WORD_MNEM_SUFFIX)
6894 temp.bitfield.imm16 = overlap.bitfield.imm16;
6895 else if (i.suffix == QWORD_MNEM_SUFFIX)
6896 {
6897 temp.bitfield.imm64 = overlap.bitfield.imm64;
6898 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6899 }
6900 else
6901 temp.bitfield.imm32 = overlap.bitfield.imm32;
6902 overlap = temp;
29b0f896 6903 }
0dfbf9d7
L
6904 else if (operand_type_equal (&overlap, &imm16_32_32s)
6905 || operand_type_equal (&overlap, &imm16_32)
6906 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6907 {
40fb9820 6908 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6909 overlap = imm16;
40fb9820 6910 else
65da13b5 6911 overlap = imm32s;
29b0f896 6912 }
0dfbf9d7
L
6913 if (!operand_type_equal (&overlap, &imm8)
6914 && !operand_type_equal (&overlap, &imm8s)
6915 && !operand_type_equal (&overlap, &imm16)
6916 && !operand_type_equal (&overlap, &imm32)
6917 && !operand_type_equal (&overlap, &imm32s)
6918 && !operand_type_equal (&overlap, &imm64))
29b0f896 6919 {
4eed87de
AM
6920 as_bad (_("no instruction mnemonic suffix given; "
6921 "can't determine immediate size"));
29b0f896
AM
6922 return 0;
6923 }
6924 }
40fb9820 6925 i.types[j] = overlap;
29b0f896 6926
40fb9820
L
6927 return 1;
6928}
6929
6930static int
6931finalize_imm (void)
6932{
bc0844ae 6933 unsigned int j, n;
29b0f896 6934
bc0844ae
L
6935 /* Update the first 2 immediate operands. */
6936 n = i.operands > 2 ? 2 : i.operands;
6937 if (n)
6938 {
6939 for (j = 0; j < n; j++)
6940 if (update_imm (j) == 0)
6941 return 0;
40fb9820 6942
bc0844ae
L
6943 /* The 3rd operand can't be immediate operand. */
6944 gas_assert (operand_type_check (i.types[2], imm) == 0);
6945 }
29b0f896
AM
6946
6947 return 1;
6948}
6949
6950static int
e3bb37b5 6951process_operands (void)
29b0f896
AM
6952{
6953 /* Default segment register this instruction will use for memory
6954 accesses. 0 means unknown. This is only for optimizing out
6955 unnecessary segment overrides. */
6956 const seg_entry *default_seg = 0;
6957
2426c15f 6958 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6959 {
91d6fa6a
NC
6960 unsigned int dupl = i.operands;
6961 unsigned int dest = dupl - 1;
9fcfb3d7
L
6962 unsigned int j;
6963
c0f3af97 6964 /* The destination must be an xmm register. */
9c2799c2 6965 gas_assert (i.reg_operands
91d6fa6a 6966 && MAX_OPERANDS > dupl
7ab9ffdd 6967 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6968
75e5731b 6969 if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 6970 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6971 {
8cd7925b 6972 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6973 {
6974 /* Keep xmm0 for instructions with VEX prefix and 3
6975 sources. */
75e5731b 6976 i.tm.operand_types[0].bitfield.instance = InstanceNone;
3528c362 6977 i.tm.operand_types[0].bitfield.class = RegSIMD;
c0f3af97
L
6978 goto duplicate;
6979 }
e2ec9d29 6980 else
c0f3af97
L
6981 {
6982 /* We remove the first xmm0 and keep the number of
6983 operands unchanged, which in fact duplicates the
6984 destination. */
6985 for (j = 1; j < i.operands; j++)
6986 {
6987 i.op[j - 1] = i.op[j];
6988 i.types[j - 1] = i.types[j];
6989 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 6990 i.flags[j - 1] = i.flags[j];
c0f3af97
L
6991 }
6992 }
6993 }
6994 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6995 {
91d6fa6a 6996 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6997 && (i.tm.opcode_modifier.vexsources
6998 == VEX3SOURCES));
c0f3af97
L
6999
7000 /* Add the implicit xmm0 for instructions with VEX prefix
7001 and 3 sources. */
7002 for (j = i.operands; j > 0; j--)
7003 {
7004 i.op[j] = i.op[j - 1];
7005 i.types[j] = i.types[j - 1];
7006 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 7007 i.flags[j] = i.flags[j - 1];
c0f3af97
L
7008 }
7009 i.op[0].regs
7010 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 7011 i.types[0] = regxmm;
c0f3af97
L
7012 i.tm.operand_types[0] = regxmm;
7013
7014 i.operands += 2;
7015 i.reg_operands += 2;
7016 i.tm.operands += 2;
7017
91d6fa6a 7018 dupl++;
c0f3af97 7019 dest++;
91d6fa6a
NC
7020 i.op[dupl] = i.op[dest];
7021 i.types[dupl] = i.types[dest];
7022 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7023 i.flags[dupl] = i.flags[dest];
e2ec9d29 7024 }
c0f3af97
L
7025 else
7026 {
7027duplicate:
7028 i.operands++;
7029 i.reg_operands++;
7030 i.tm.operands++;
7031
91d6fa6a
NC
7032 i.op[dupl] = i.op[dest];
7033 i.types[dupl] = i.types[dest];
7034 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7035 i.flags[dupl] = i.flags[dest];
c0f3af97
L
7036 }
7037
7038 if (i.tm.opcode_modifier.immext)
7039 process_immext ();
7040 }
75e5731b 7041 else if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 7042 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
7043 {
7044 unsigned int j;
7045
9fcfb3d7
L
7046 for (j = 1; j < i.operands; j++)
7047 {
7048 i.op[j - 1] = i.op[j];
7049 i.types[j - 1] = i.types[j];
7050
7051 /* We need to adjust fields in i.tm since they are used by
7052 build_modrm_byte. */
7053 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
7054
7055 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
7056 }
7057
e2ec9d29
L
7058 i.operands--;
7059 i.reg_operands--;
e2ec9d29
L
7060 i.tm.operands--;
7061 }
920d2ddc
IT
7062 else if (i.tm.opcode_modifier.implicitquadgroup)
7063 {
a477a8c4
JB
7064 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7065
920d2ddc 7066 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 7067 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
7068 regnum = register_number (i.op[1].regs);
7069 first_reg_in_group = regnum & ~3;
7070 last_reg_in_group = first_reg_in_group + 3;
7071 if (regnum != first_reg_in_group)
7072 as_warn (_("source register `%s%s' implicitly denotes"
7073 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7074 register_prefix, i.op[1].regs->reg_name,
7075 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7076 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7077 i.tm.name);
7078 }
e2ec9d29
L
7079 else if (i.tm.opcode_modifier.regkludge)
7080 {
7081 /* The imul $imm, %reg instruction is converted into
7082 imul $imm, %reg, %reg, and the clr %reg instruction
7083 is converted into xor %reg, %reg. */
7084
7085 unsigned int first_reg_op;
7086
7087 if (operand_type_check (i.types[0], reg))
7088 first_reg_op = 0;
7089 else
7090 first_reg_op = 1;
7091 /* Pretend we saw the extra register operand. */
9c2799c2 7092 gas_assert (i.reg_operands == 1
7ab9ffdd 7093 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
7094 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7095 i.types[first_reg_op + 1] = i.types[first_reg_op];
7096 i.operands++;
7097 i.reg_operands++;
29b0f896
AM
7098 }
7099
85b80b0f 7100 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7101 {
7102 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7103 must be put into the modrm byte). Now, we make the modrm and
7104 index base bytes based on all the info we've collected. */
29b0f896
AM
7105
7106 default_seg = build_modrm_byte ();
7107 }
00cee14f 7108 else if (i.types[0].bitfield.class == SReg)
85b80b0f
JB
7109 {
7110 if (flag_code != CODE_64BIT
7111 ? i.tm.base_opcode == POP_SEG_SHORT
7112 && i.op[0].regs->reg_num == 1
7113 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7114 && i.op[0].regs->reg_num < 4)
7115 {
7116 as_bad (_("you can't `%s %s%s'"),
7117 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7118 return 0;
7119 }
7120 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7121 {
7122 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7123 i.tm.opcode_length = 2;
7124 }
7125 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7126 }
8a2ed489 7127 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7128 {
7129 default_seg = &ds;
7130 }
40fb9820 7131 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7132 {
7133 /* For the string instructions that allow a segment override
7134 on one of their operands, the default segment is ds. */
7135 default_seg = &ds;
7136 }
50128d0c 7137 else if (i.short_form)
85b80b0f
JB
7138 {
7139 /* The register or float register operand is in operand
7140 0 or 1. */
bab6aec1 7141 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
85b80b0f
JB
7142
7143 /* Register goes in low 3 bits of opcode. */
7144 i.tm.base_opcode |= i.op[op].regs->reg_num;
7145 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7146 i.rex |= REX_B;
7147 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7148 {
7149 /* Warn about some common errors, but press on regardless.
7150 The first case can be generated by gcc (<= 2.8.1). */
7151 if (i.operands == 2)
7152 {
7153 /* Reversed arguments on faddp, fsubp, etc. */
7154 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7155 register_prefix, i.op[!intel_syntax].regs->reg_name,
7156 register_prefix, i.op[intel_syntax].regs->reg_name);
7157 }
7158 else
7159 {
7160 /* Extraneous `l' suffix on fp insn. */
7161 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7162 register_prefix, i.op[0].regs->reg_name);
7163 }
7164 }
7165 }
29b0f896 7166
514a8bb0
JB
7167 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7168 && !quiet_warnings
7169 && i.tm.base_opcode == 0x8d /* lea */
7170 && !is_any_vex_encoding(&i.tm))
30123838 7171 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7172
7173 /* If a segment was explicitly specified, and the specified segment
7174 is not the default, use an opcode prefix to select it. If we
7175 never figured out what the default segment is, then default_seg
7176 will be zero at this point, and the specified segment prefix will
7177 always be used. */
29b0f896
AM
7178 if ((i.seg[0]) && (i.seg[0] != default_seg))
7179 {
7180 if (!add_prefix (i.seg[0]->seg_prefix))
7181 return 0;
7182 }
7183 return 1;
7184}
7185
7186static const seg_entry *
e3bb37b5 7187build_modrm_byte (void)
29b0f896
AM
7188{
7189 const seg_entry *default_seg = 0;
c0f3af97 7190 unsigned int source, dest;
8cd7925b 7191 int vex_3_sources;
c0f3af97 7192
8cd7925b 7193 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7194 if (vex_3_sources)
7195 {
91d6fa6a 7196 unsigned int nds, reg_slot;
4c2c6516 7197 expressionS *exp;
c0f3af97 7198
6b8d3588 7199 dest = i.operands - 1;
c0f3af97 7200 nds = dest - 1;
922d8de8 7201
a683cc34 7202 /* There are 2 kinds of instructions:
bed3d976 7203 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7204 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7205 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7206 ZMM register.
bed3d976 7207 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7208 plus 1 memory operand, with VexXDS. */
922d8de8 7209 gas_assert ((i.reg_operands == 4
bed3d976
JB
7210 || (i.reg_operands == 3 && i.mem_operands == 1))
7211 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323 7212 && i.tm.opcode_modifier.vexw
3528c362 7213 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 7214
48db9223
JB
7215 /* If VexW1 is set, the first non-immediate operand is the source and
7216 the second non-immediate one is encoded in the immediate operand. */
7217 if (i.tm.opcode_modifier.vexw == VEXW1)
7218 {
7219 source = i.imm_operands;
7220 reg_slot = i.imm_operands + 1;
7221 }
7222 else
7223 {
7224 source = i.imm_operands + 1;
7225 reg_slot = i.imm_operands;
7226 }
7227
a683cc34 7228 if (i.imm_operands == 0)
bed3d976
JB
7229 {
7230 /* When there is no immediate operand, generate an 8bit
7231 immediate operand to encode the first operand. */
7232 exp = &im_expressions[i.imm_operands++];
7233 i.op[i.operands].imms = exp;
7234 i.types[i.operands] = imm8;
7235 i.operands++;
7236
3528c362 7237 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
bed3d976
JB
7238 exp->X_op = O_constant;
7239 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7240 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7241 }
922d8de8 7242 else
bed3d976 7243 {
9d3bf266
JB
7244 gas_assert (i.imm_operands == 1);
7245 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7246 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7247
9d3bf266
JB
7248 /* Turn on Imm8 again so that output_imm will generate it. */
7249 i.types[0].bitfield.imm8 = 1;
bed3d976 7250
3528c362 7251 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
9d3bf266 7252 i.op[0].imms->X_add_number
bed3d976 7253 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7254 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7255 }
a683cc34 7256
3528c362 7257 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
dae39acc 7258 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7259 }
7260 else
7261 source = dest = 0;
29b0f896
AM
7262
7263 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7264 implicit registers do not count. If there are 3 register
7265 operands, it must be a instruction with VexNDS. For a
7266 instruction with VexNDD, the destination register is encoded
7267 in VEX prefix. If there are 4 register operands, it must be
7268 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7269 if (i.mem_operands == 0
7270 && ((i.reg_operands == 2
2426c15f 7271 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7272 || (i.reg_operands == 3
2426c15f 7273 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7274 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7275 {
cab737b9
L
7276 switch (i.operands)
7277 {
7278 case 2:
7279 source = 0;
7280 break;
7281 case 3:
c81128dc
L
7282 /* When there are 3 operands, one of them may be immediate,
7283 which may be the first or the last operand. Otherwise,
c0f3af97
L
7284 the first operand must be shift count register (cl) or it
7285 is an instruction with VexNDS. */
9c2799c2 7286 gas_assert (i.imm_operands == 1
7ab9ffdd 7287 || (i.imm_operands == 0
2426c15f 7288 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
75e5731b
JB
7289 || (i.types[0].bitfield.instance == RegC
7290 && i.types[0].bitfield.byte))));
40fb9820 7291 if (operand_type_check (i.types[0], imm)
75e5731b
JB
7292 || (i.types[0].bitfield.instance == RegC
7293 && i.types[0].bitfield.byte))
40fb9820
L
7294 source = 1;
7295 else
7296 source = 0;
cab737b9
L
7297 break;
7298 case 4:
368d64cc
L
7299 /* When there are 4 operands, the first two must be 8bit
7300 immediate operands. The source operand will be the 3rd
c0f3af97
L
7301 one.
7302
7303 For instructions with VexNDS, if the first operand
7304 an imm8, the source operand is the 2nd one. If the last
7305 operand is imm8, the source operand is the first one. */
9c2799c2 7306 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7307 && i.types[0].bitfield.imm8
7308 && i.types[1].bitfield.imm8)
2426c15f 7309 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7310 && i.imm_operands == 1
7311 && (i.types[0].bitfield.imm8
43234a1e
L
7312 || i.types[i.operands - 1].bitfield.imm8
7313 || i.rounding)));
9f2670f2
L
7314 if (i.imm_operands == 2)
7315 source = 2;
7316 else
c0f3af97
L
7317 {
7318 if (i.types[0].bitfield.imm8)
7319 source = 1;
7320 else
7321 source = 0;
7322 }
c0f3af97
L
7323 break;
7324 case 5:
e771e7c9 7325 if (is_evex_encoding (&i.tm))
43234a1e
L
7326 {
7327 /* For EVEX instructions, when there are 5 operands, the
7328 first one must be immediate operand. If the second one
7329 is immediate operand, the source operand is the 3th
7330 one. If the last one is immediate operand, the source
7331 operand is the 2nd one. */
7332 gas_assert (i.imm_operands == 2
7333 && i.tm.opcode_modifier.sae
7334 && operand_type_check (i.types[0], imm));
7335 if (operand_type_check (i.types[1], imm))
7336 source = 2;
7337 else if (operand_type_check (i.types[4], imm))
7338 source = 1;
7339 else
7340 abort ();
7341 }
cab737b9
L
7342 break;
7343 default:
7344 abort ();
7345 }
7346
c0f3af97
L
7347 if (!vex_3_sources)
7348 {
7349 dest = source + 1;
7350
43234a1e
L
7351 /* RC/SAE operand could be between DEST and SRC. That happens
7352 when one operand is GPR and the other one is XMM/YMM/ZMM
7353 register. */
7354 if (i.rounding && i.rounding->operand == (int) dest)
7355 dest++;
7356
2426c15f 7357 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7358 {
43234a1e 7359 /* For instructions with VexNDS, the register-only source
c5d0745b 7360 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7361 register. It is encoded in VEX prefix. */
f12dc422
L
7362
7363 i386_operand_type op;
7364 unsigned int vvvv;
7365
7366 /* Check register-only source operand when two source
7367 operands are swapped. */
7368 if (!i.tm.operand_types[source].bitfield.baseindex
7369 && i.tm.operand_types[dest].bitfield.baseindex)
7370 {
7371 vvvv = source;
7372 source = dest;
7373 }
7374 else
7375 vvvv = dest;
7376
7377 op = i.tm.operand_types[vvvv];
c0f3af97 7378 if ((dest + 1) >= i.operands
bab6aec1 7379 || ((op.bitfield.class != Reg
dc821c5f 7380 || (!op.bitfield.dword && !op.bitfield.qword))
3528c362 7381 && op.bitfield.class != RegSIMD
43234a1e 7382 && !operand_type_equal (&op, &regmask)))
c0f3af97 7383 abort ();
f12dc422 7384 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7385 dest++;
7386 }
7387 }
29b0f896
AM
7388
7389 i.rm.mode = 3;
dfd69174
JB
7390 /* One of the register operands will be encoded in the i.rm.reg
7391 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7392 fields. If no form of this instruction supports a memory
7393 destination operand, then we assume the source operand may
7394 sometimes be a memory operand and so we need to store the
7395 destination in the i.rm.reg field. */
dfd69174 7396 if (!i.tm.opcode_modifier.regmem
40fb9820 7397 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7398 {
7399 i.rm.reg = i.op[dest].regs->reg_num;
7400 i.rm.regmem = i.op[source].regs->reg_num;
3528c362
JB
7401 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7402 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
b4a3a7b4 7403 i.has_regmmx = TRUE;
3528c362
JB
7404 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7405 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
b4a3a7b4
L
7406 {
7407 if (i.types[dest].bitfield.zmmword
7408 || i.types[source].bitfield.zmmword)
7409 i.has_regzmm = TRUE;
7410 else if (i.types[dest].bitfield.ymmword
7411 || i.types[source].bitfield.ymmword)
7412 i.has_regymm = TRUE;
7413 else
7414 i.has_regxmm = TRUE;
7415 }
29b0f896 7416 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7417 i.rex |= REX_R;
43234a1e
L
7418 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7419 i.vrex |= REX_R;
29b0f896 7420 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7421 i.rex |= REX_B;
43234a1e
L
7422 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7423 i.vrex |= REX_B;
29b0f896
AM
7424 }
7425 else
7426 {
7427 i.rm.reg = i.op[source].regs->reg_num;
7428 i.rm.regmem = i.op[dest].regs->reg_num;
7429 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7430 i.rex |= REX_B;
43234a1e
L
7431 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7432 i.vrex |= REX_B;
29b0f896 7433 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7434 i.rex |= REX_R;
43234a1e
L
7435 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7436 i.vrex |= REX_R;
29b0f896 7437 }
e0c7f900 7438 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7439 {
4a5c67ed 7440 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
c4a530c5 7441 abort ();
e0c7f900 7442 i.rex &= ~REX_R;
c4a530c5
JB
7443 add_prefix (LOCK_PREFIX_OPCODE);
7444 }
29b0f896
AM
7445 }
7446 else
7447 { /* If it's not 2 reg operands... */
c0f3af97
L
7448 unsigned int mem;
7449
29b0f896
AM
7450 if (i.mem_operands)
7451 {
7452 unsigned int fake_zero_displacement = 0;
99018f42 7453 unsigned int op;
4eed87de 7454
7ab9ffdd 7455 for (op = 0; op < i.operands; op++)
8dc0818e 7456 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7457 break;
7ab9ffdd 7458 gas_assert (op < i.operands);
29b0f896 7459
6c30d220
L
7460 if (i.tm.opcode_modifier.vecsib)
7461 {
e968fc9b 7462 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7463 abort ();
7464
7465 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7466 if (!i.base_reg)
7467 {
7468 i.sib.base = NO_BASE_REGISTER;
7469 i.sib.scale = i.log2_scale_factor;
7470 i.types[op].bitfield.disp8 = 0;
7471 i.types[op].bitfield.disp16 = 0;
7472 i.types[op].bitfield.disp64 = 0;
43083a50 7473 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7474 {
7475 /* Must be 32 bit */
7476 i.types[op].bitfield.disp32 = 1;
7477 i.types[op].bitfield.disp32s = 0;
7478 }
7479 else
7480 {
7481 i.types[op].bitfield.disp32 = 0;
7482 i.types[op].bitfield.disp32s = 1;
7483 }
7484 }
7485 i.sib.index = i.index_reg->reg_num;
7486 if ((i.index_reg->reg_flags & RegRex) != 0)
7487 i.rex |= REX_X;
43234a1e
L
7488 if ((i.index_reg->reg_flags & RegVRex) != 0)
7489 i.vrex |= REX_X;
6c30d220
L
7490 }
7491
29b0f896
AM
7492 default_seg = &ds;
7493
7494 if (i.base_reg == 0)
7495 {
7496 i.rm.mode = 0;
7497 if (!i.disp_operands)
9bb129e8 7498 fake_zero_displacement = 1;
29b0f896
AM
7499 if (i.index_reg == 0)
7500 {
73053c1f
JB
7501 i386_operand_type newdisp;
7502
6c30d220 7503 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7504 /* Operand is just <disp> */
20f0a1fc 7505 if (flag_code == CODE_64BIT)
29b0f896
AM
7506 {
7507 /* 64bit mode overwrites the 32bit absolute
7508 addressing by RIP relative addressing and
7509 absolute addressing is encoded by one of the
7510 redundant SIB forms. */
7511 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7512 i.sib.base = NO_BASE_REGISTER;
7513 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7514 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7515 }
fc225355
L
7516 else if ((flag_code == CODE_16BIT)
7517 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7518 {
7519 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7520 newdisp = disp16;
20f0a1fc
NC
7521 }
7522 else
7523 {
7524 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7525 newdisp = disp32;
29b0f896 7526 }
73053c1f
JB
7527 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7528 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7529 }
6c30d220 7530 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7531 {
6c30d220 7532 /* !i.base_reg && i.index_reg */
e968fc9b 7533 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7534 i.sib.index = NO_INDEX_REGISTER;
7535 else
7536 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7537 i.sib.base = NO_BASE_REGISTER;
7538 i.sib.scale = i.log2_scale_factor;
7539 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7540 i.types[op].bitfield.disp8 = 0;
7541 i.types[op].bitfield.disp16 = 0;
7542 i.types[op].bitfield.disp64 = 0;
43083a50 7543 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7544 {
7545 /* Must be 32 bit */
7546 i.types[op].bitfield.disp32 = 1;
7547 i.types[op].bitfield.disp32s = 0;
7548 }
29b0f896 7549 else
40fb9820
L
7550 {
7551 i.types[op].bitfield.disp32 = 0;
7552 i.types[op].bitfield.disp32s = 1;
7553 }
29b0f896 7554 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7555 i.rex |= REX_X;
29b0f896
AM
7556 }
7557 }
7558 /* RIP addressing for 64bit mode. */
e968fc9b 7559 else if (i.base_reg->reg_num == RegIP)
29b0f896 7560 {
6c30d220 7561 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7562 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7563 i.types[op].bitfield.disp8 = 0;
7564 i.types[op].bitfield.disp16 = 0;
7565 i.types[op].bitfield.disp32 = 0;
7566 i.types[op].bitfield.disp32s = 1;
7567 i.types[op].bitfield.disp64 = 0;
71903a11 7568 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7569 if (! i.disp_operands)
7570 fake_zero_displacement = 1;
29b0f896 7571 }
dc821c5f 7572 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7573 {
6c30d220 7574 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7575 switch (i.base_reg->reg_num)
7576 {
7577 case 3: /* (%bx) */
7578 if (i.index_reg == 0)
7579 i.rm.regmem = 7;
7580 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7581 i.rm.regmem = i.index_reg->reg_num - 6;
7582 break;
7583 case 5: /* (%bp) */
7584 default_seg = &ss;
7585 if (i.index_reg == 0)
7586 {
7587 i.rm.regmem = 6;
40fb9820 7588 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7589 {
7590 /* fake (%bp) into 0(%bp) */
b5014f7a 7591 i.types[op].bitfield.disp8 = 1;
252b5132 7592 fake_zero_displacement = 1;
29b0f896
AM
7593 }
7594 }
7595 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7596 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7597 break;
7598 default: /* (%si) -> 4 or (%di) -> 5 */
7599 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7600 }
7601 i.rm.mode = mode_from_disp_size (i.types[op]);
7602 }
7603 else /* i.base_reg and 32/64 bit mode */
7604 {
7605 if (flag_code == CODE_64BIT
40fb9820
L
7606 && operand_type_check (i.types[op], disp))
7607 {
73053c1f
JB
7608 i.types[op].bitfield.disp16 = 0;
7609 i.types[op].bitfield.disp64 = 0;
40fb9820 7610 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7611 {
7612 i.types[op].bitfield.disp32 = 0;
7613 i.types[op].bitfield.disp32s = 1;
7614 }
40fb9820 7615 else
73053c1f
JB
7616 {
7617 i.types[op].bitfield.disp32 = 1;
7618 i.types[op].bitfield.disp32s = 0;
7619 }
40fb9820 7620 }
20f0a1fc 7621
6c30d220
L
7622 if (!i.tm.opcode_modifier.vecsib)
7623 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7624 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7625 i.rex |= REX_B;
29b0f896
AM
7626 i.sib.base = i.base_reg->reg_num;
7627 /* x86-64 ignores REX prefix bit here to avoid decoder
7628 complications. */
848930b2
JB
7629 if (!(i.base_reg->reg_flags & RegRex)
7630 && (i.base_reg->reg_num == EBP_REG_NUM
7631 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7632 default_seg = &ss;
848930b2 7633 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7634 {
848930b2 7635 fake_zero_displacement = 1;
b5014f7a 7636 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7637 }
7638 i.sib.scale = i.log2_scale_factor;
7639 if (i.index_reg == 0)
7640 {
6c30d220 7641 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7642 /* <disp>(%esp) becomes two byte modrm with no index
7643 register. We've already stored the code for esp
7644 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7645 Any base register besides %esp will not use the
7646 extra modrm byte. */
7647 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7648 }
6c30d220 7649 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7650 {
e968fc9b 7651 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7652 i.sib.index = NO_INDEX_REGISTER;
7653 else
7654 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7655 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7656 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7657 i.rex |= REX_X;
29b0f896 7658 }
67a4f2b7
AO
7659
7660 if (i.disp_operands
7661 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7662 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7663 i.rm.mode = 0;
7664 else
a501d77e
L
7665 {
7666 if (!fake_zero_displacement
7667 && !i.disp_operands
7668 && i.disp_encoding)
7669 {
7670 fake_zero_displacement = 1;
7671 if (i.disp_encoding == disp_encoding_8bit)
7672 i.types[op].bitfield.disp8 = 1;
7673 else
7674 i.types[op].bitfield.disp32 = 1;
7675 }
7676 i.rm.mode = mode_from_disp_size (i.types[op]);
7677 }
29b0f896 7678 }
252b5132 7679
29b0f896
AM
7680 if (fake_zero_displacement)
7681 {
7682 /* Fakes a zero displacement assuming that i.types[op]
7683 holds the correct displacement size. */
7684 expressionS *exp;
7685
9c2799c2 7686 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7687 exp = &disp_expressions[i.disp_operands++];
7688 i.op[op].disps = exp;
7689 exp->X_op = O_constant;
7690 exp->X_add_number = 0;
7691 exp->X_add_symbol = (symbolS *) 0;
7692 exp->X_op_symbol = (symbolS *) 0;
7693 }
c0f3af97
L
7694
7695 mem = op;
29b0f896 7696 }
c0f3af97
L
7697 else
7698 mem = ~0;
252b5132 7699
8c43a48b 7700 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7701 {
7702 if (operand_type_check (i.types[0], imm))
7703 i.vex.register_specifier = NULL;
7704 else
7705 {
7706 /* VEX.vvvv encodes one of the sources when the first
7707 operand is not an immediate. */
1ef99a7b 7708 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7709 i.vex.register_specifier = i.op[0].regs;
7710 else
7711 i.vex.register_specifier = i.op[1].regs;
7712 }
7713
7714 /* Destination is a XMM register encoded in the ModRM.reg
7715 and VEX.R bit. */
7716 i.rm.reg = i.op[2].regs->reg_num;
7717 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7718 i.rex |= REX_R;
7719
7720 /* ModRM.rm and VEX.B encodes the other source. */
7721 if (!i.mem_operands)
7722 {
7723 i.rm.mode = 3;
7724
1ef99a7b 7725 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7726 i.rm.regmem = i.op[1].regs->reg_num;
7727 else
7728 i.rm.regmem = i.op[0].regs->reg_num;
7729
7730 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7731 i.rex |= REX_B;
7732 }
7733 }
2426c15f 7734 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7735 {
7736 i.vex.register_specifier = i.op[2].regs;
7737 if (!i.mem_operands)
7738 {
7739 i.rm.mode = 3;
7740 i.rm.regmem = i.op[1].regs->reg_num;
7741 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7742 i.rex |= REX_B;
7743 }
7744 }
29b0f896
AM
7745 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7746 (if any) based on i.tm.extension_opcode. Again, we must be
7747 careful to make sure that segment/control/debug/test/MMX
7748 registers are coded into the i.rm.reg field. */
f88c9eb0 7749 else if (i.reg_operands)
29b0f896 7750 {
99018f42 7751 unsigned int op;
7ab9ffdd
L
7752 unsigned int vex_reg = ~0;
7753
7754 for (op = 0; op < i.operands; op++)
b4a3a7b4 7755 {
bab6aec1 7756 if (i.types[op].bitfield.class == Reg
f74a6307
JB
7757 || i.types[op].bitfield.class == RegBND
7758 || i.types[op].bitfield.class == RegMask
00cee14f 7759 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
7760 || i.types[op].bitfield.class == RegCR
7761 || i.types[op].bitfield.class == RegDR
7762 || i.types[op].bitfield.class == RegTR)
b4a3a7b4 7763 break;
3528c362 7764 if (i.types[op].bitfield.class == RegSIMD)
b4a3a7b4
L
7765 {
7766 if (i.types[op].bitfield.zmmword)
7767 i.has_regzmm = TRUE;
7768 else if (i.types[op].bitfield.ymmword)
7769 i.has_regymm = TRUE;
7770 else
7771 i.has_regxmm = TRUE;
7772 break;
7773 }
3528c362 7774 if (i.types[op].bitfield.class == RegMMX)
b4a3a7b4
L
7775 {
7776 i.has_regmmx = TRUE;
7777 break;
7778 }
7779 }
c0209578 7780
7ab9ffdd
L
7781 if (vex_3_sources)
7782 op = dest;
2426c15f 7783 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7784 {
7785 /* For instructions with VexNDS, the register-only
7786 source operand is encoded in VEX prefix. */
7787 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7788
7ab9ffdd 7789 if (op > mem)
c0f3af97 7790 {
7ab9ffdd
L
7791 vex_reg = op++;
7792 gas_assert (op < i.operands);
c0f3af97
L
7793 }
7794 else
c0f3af97 7795 {
f12dc422
L
7796 /* Check register-only source operand when two source
7797 operands are swapped. */
7798 if (!i.tm.operand_types[op].bitfield.baseindex
7799 && i.tm.operand_types[op + 1].bitfield.baseindex)
7800 {
7801 vex_reg = op;
7802 op += 2;
7803 gas_assert (mem == (vex_reg + 1)
7804 && op < i.operands);
7805 }
7806 else
7807 {
7808 vex_reg = op + 1;
7809 gas_assert (vex_reg < i.operands);
7810 }
c0f3af97 7811 }
7ab9ffdd 7812 }
2426c15f 7813 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7814 {
f12dc422 7815 /* For instructions with VexNDD, the register destination
7ab9ffdd 7816 is encoded in VEX prefix. */
f12dc422
L
7817 if (i.mem_operands == 0)
7818 {
7819 /* There is no memory operand. */
7820 gas_assert ((op + 2) == i.operands);
7821 vex_reg = op + 1;
7822 }
7823 else
8d63c93e 7824 {
ed438a93
JB
7825 /* There are only 2 non-immediate operands. */
7826 gas_assert (op < i.imm_operands + 2
7827 && i.operands == i.imm_operands + 2);
7828 vex_reg = i.imm_operands + 1;
f12dc422 7829 }
7ab9ffdd
L
7830 }
7831 else
7832 gas_assert (op < i.operands);
99018f42 7833
7ab9ffdd
L
7834 if (vex_reg != (unsigned int) ~0)
7835 {
f12dc422 7836 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7837
bab6aec1 7838 if ((type->bitfield.class != Reg
dc821c5f 7839 || (!type->bitfield.dword && !type->bitfield.qword))
3528c362 7840 && type->bitfield.class != RegSIMD
43234a1e 7841 && !operand_type_equal (type, &regmask))
7ab9ffdd 7842 abort ();
f88c9eb0 7843
7ab9ffdd
L
7844 i.vex.register_specifier = i.op[vex_reg].regs;
7845 }
7846
1b9f0c97
L
7847 /* Don't set OP operand twice. */
7848 if (vex_reg != op)
7ab9ffdd 7849 {
1b9f0c97
L
7850 /* If there is an extension opcode to put here, the
7851 register number must be put into the regmem field. */
7852 if (i.tm.extension_opcode != None)
7853 {
7854 i.rm.regmem = i.op[op].regs->reg_num;
7855 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7856 i.rex |= REX_B;
43234a1e
L
7857 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7858 i.vrex |= REX_B;
1b9f0c97
L
7859 }
7860 else
7861 {
7862 i.rm.reg = i.op[op].regs->reg_num;
7863 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7864 i.rex |= REX_R;
43234a1e
L
7865 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7866 i.vrex |= REX_R;
1b9f0c97 7867 }
7ab9ffdd 7868 }
252b5132 7869
29b0f896
AM
7870 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7871 must set it to 3 to indicate this is a register operand
7872 in the regmem field. */
7873 if (!i.mem_operands)
7874 i.rm.mode = 3;
7875 }
252b5132 7876
29b0f896 7877 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7878 if (i.tm.extension_opcode != None)
29b0f896
AM
7879 i.rm.reg = i.tm.extension_opcode;
7880 }
7881 return default_seg;
7882}
252b5132 7883
376cd056
JB
7884static unsigned int
7885flip_code16 (unsigned int code16)
7886{
7887 gas_assert (i.tm.operands == 1);
7888
7889 return !(i.prefix[REX_PREFIX] & REX_W)
7890 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7891 || i.tm.operand_types[0].bitfield.disp32s
7892 : i.tm.operand_types[0].bitfield.disp16)
7893 ? CODE16 : 0;
7894}
7895
29b0f896 7896static void
e3bb37b5 7897output_branch (void)
29b0f896
AM
7898{
7899 char *p;
f8a5c266 7900 int size;
29b0f896
AM
7901 int code16;
7902 int prefix;
7903 relax_substateT subtype;
7904 symbolS *sym;
7905 offsetT off;
7906
f8a5c266 7907 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7908 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7909
7910 prefix = 0;
7911 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7912 {
29b0f896
AM
7913 prefix = 1;
7914 i.prefixes -= 1;
376cd056 7915 code16 ^= flip_code16(code16);
252b5132 7916 }
29b0f896
AM
7917 /* Pentium4 branch hints. */
7918 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7919 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7920 {
29b0f896
AM
7921 prefix++;
7922 i.prefixes--;
7923 }
7924 if (i.prefix[REX_PREFIX] != 0)
7925 {
7926 prefix++;
7927 i.prefixes--;
2f66722d
AM
7928 }
7929
7e8b059b
L
7930 /* BND prefixed jump. */
7931 if (i.prefix[BND_PREFIX] != 0)
7932 {
6cb0a70e
JB
7933 prefix++;
7934 i.prefixes--;
7e8b059b
L
7935 }
7936
f2810fe0
JB
7937 if (i.prefixes != 0)
7938 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
29b0f896
AM
7939
7940 /* It's always a symbol; End frag & setup for relax.
7941 Make sure there is enough room in this frag for the largest
7942 instruction we may generate in md_convert_frag. This is 2
7943 bytes for the opcode and room for the prefix and largest
7944 displacement. */
7945 frag_grow (prefix + 2 + 4);
7946 /* Prefix and 1 opcode byte go in fr_fix. */
7947 p = frag_more (prefix + 1);
7948 if (i.prefix[DATA_PREFIX] != 0)
7949 *p++ = DATA_PREFIX_OPCODE;
7950 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7951 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7952 *p++ = i.prefix[SEG_PREFIX];
6cb0a70e
JB
7953 if (i.prefix[BND_PREFIX] != 0)
7954 *p++ = BND_PREFIX_OPCODE;
29b0f896
AM
7955 if (i.prefix[REX_PREFIX] != 0)
7956 *p++ = i.prefix[REX_PREFIX];
7957 *p = i.tm.base_opcode;
7958
7959 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7960 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7961 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7962 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7963 else
f8a5c266 7964 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7965 subtype |= code16;
3e73aa7c 7966
29b0f896
AM
7967 sym = i.op[0].disps->X_add_symbol;
7968 off = i.op[0].disps->X_add_number;
3e73aa7c 7969
29b0f896
AM
7970 if (i.op[0].disps->X_op != O_constant
7971 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7972 {
29b0f896
AM
7973 /* Handle complex expressions. */
7974 sym = make_expr_symbol (i.op[0].disps);
7975 off = 0;
7976 }
3e73aa7c 7977
29b0f896
AM
7978 /* 1 possible extra opcode + 4 byte displacement go in var part.
7979 Pass reloc in fr_var. */
d258b828 7980 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7981}
3e73aa7c 7982
bd7ab16b
L
7983#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7984/* Return TRUE iff PLT32 relocation should be used for branching to
7985 symbol S. */
7986
7987static bfd_boolean
7988need_plt32_p (symbolS *s)
7989{
7990 /* PLT32 relocation is ELF only. */
7991 if (!IS_ELF)
7992 return FALSE;
7993
a5def729
RO
7994#ifdef TE_SOLARIS
7995 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7996 krtld support it. */
7997 return FALSE;
7998#endif
7999
bd7ab16b
L
8000 /* Since there is no need to prepare for PLT branch on x86-64, we
8001 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8002 be used as a marker for 32-bit PC-relative branches. */
8003 if (!object_64bit)
8004 return FALSE;
8005
8006 /* Weak or undefined symbol need PLT32 relocation. */
8007 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8008 return TRUE;
8009
8010 /* Non-global symbol doesn't need PLT32 relocation. */
8011 if (! S_IS_EXTERNAL (s))
8012 return FALSE;
8013
8014 /* Other global symbols need PLT32 relocation. NB: Symbol with
8015 non-default visibilities are treated as normal global symbol
8016 so that PLT32 relocation can be used as a marker for 32-bit
8017 PC-relative branches. It is useful for linker relaxation. */
8018 return TRUE;
8019}
8020#endif
8021
29b0f896 8022static void
e3bb37b5 8023output_jump (void)
29b0f896
AM
8024{
8025 char *p;
8026 int size;
3e02c1cc 8027 fixS *fixP;
bd7ab16b 8028 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 8029
0cfa3eb3 8030 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
8031 {
8032 /* This is a loop or jecxz type instruction. */
8033 size = 1;
8034 if (i.prefix[ADDR_PREFIX] != 0)
8035 {
8036 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8037 i.prefixes -= 1;
8038 }
8039 /* Pentium4 branch hints. */
8040 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8041 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8042 {
8043 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8044 i.prefixes--;
3e73aa7c
JH
8045 }
8046 }
29b0f896
AM
8047 else
8048 {
8049 int code16;
3e73aa7c 8050
29b0f896
AM
8051 code16 = 0;
8052 if (flag_code == CODE_16BIT)
8053 code16 = CODE16;
3e73aa7c 8054
29b0f896
AM
8055 if (i.prefix[DATA_PREFIX] != 0)
8056 {
8057 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8058 i.prefixes -= 1;
376cd056 8059 code16 ^= flip_code16(code16);
29b0f896 8060 }
252b5132 8061
29b0f896
AM
8062 size = 4;
8063 if (code16)
8064 size = 2;
8065 }
9fcc94b6 8066
6cb0a70e
JB
8067 /* BND prefixed jump. */
8068 if (i.prefix[BND_PREFIX] != 0)
29b0f896 8069 {
6cb0a70e 8070 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
29b0f896
AM
8071 i.prefixes -= 1;
8072 }
252b5132 8073
6cb0a70e 8074 if (i.prefix[REX_PREFIX] != 0)
7e8b059b 8075 {
6cb0a70e 8076 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7e8b059b
L
8077 i.prefixes -= 1;
8078 }
8079
f2810fe0
JB
8080 if (i.prefixes != 0)
8081 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
e0890092 8082
42164a71
L
8083 p = frag_more (i.tm.opcode_length + size);
8084 switch (i.tm.opcode_length)
8085 {
8086 case 2:
8087 *p++ = i.tm.base_opcode >> 8;
1a0670f3 8088 /* Fall through. */
42164a71
L
8089 case 1:
8090 *p++ = i.tm.base_opcode;
8091 break;
8092 default:
8093 abort ();
8094 }
e0890092 8095
bd7ab16b
L
8096#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8097 if (size == 4
8098 && jump_reloc == NO_RELOC
8099 && need_plt32_p (i.op[0].disps->X_add_symbol))
8100 jump_reloc = BFD_RELOC_X86_64_PLT32;
8101#endif
8102
8103 jump_reloc = reloc (size, 1, 1, jump_reloc);
8104
3e02c1cc 8105 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 8106 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
8107
8108 /* All jumps handled here are signed, but don't use a signed limit
8109 check for 32 and 16 bit jumps as we want to allow wrap around at
8110 4G and 64k respectively. */
8111 if (size == 1)
8112 fixP->fx_signed = 1;
29b0f896 8113}
e0890092 8114
29b0f896 8115static void
e3bb37b5 8116output_interseg_jump (void)
29b0f896
AM
8117{
8118 char *p;
8119 int size;
8120 int prefix;
8121 int code16;
252b5132 8122
29b0f896
AM
8123 code16 = 0;
8124 if (flag_code == CODE_16BIT)
8125 code16 = CODE16;
a217f122 8126
29b0f896
AM
8127 prefix = 0;
8128 if (i.prefix[DATA_PREFIX] != 0)
8129 {
8130 prefix = 1;
8131 i.prefixes -= 1;
8132 code16 ^= CODE16;
8133 }
6cb0a70e
JB
8134
8135 gas_assert (!i.prefix[REX_PREFIX]);
252b5132 8136
29b0f896
AM
8137 size = 4;
8138 if (code16)
8139 size = 2;
252b5132 8140
f2810fe0
JB
8141 if (i.prefixes != 0)
8142 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
252b5132 8143
29b0f896
AM
8144 /* 1 opcode; 2 segment; offset */
8145 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8146
29b0f896
AM
8147 if (i.prefix[DATA_PREFIX] != 0)
8148 *p++ = DATA_PREFIX_OPCODE;
252b5132 8149
29b0f896
AM
8150 if (i.prefix[REX_PREFIX] != 0)
8151 *p++ = i.prefix[REX_PREFIX];
252b5132 8152
29b0f896
AM
8153 *p++ = i.tm.base_opcode;
8154 if (i.op[1].imms->X_op == O_constant)
8155 {
8156 offsetT n = i.op[1].imms->X_add_number;
252b5132 8157
29b0f896
AM
8158 if (size == 2
8159 && !fits_in_unsigned_word (n)
8160 && !fits_in_signed_word (n))
8161 {
8162 as_bad (_("16-bit jump out of range"));
8163 return;
8164 }
8165 md_number_to_chars (p, n, size);
8166 }
8167 else
8168 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8169 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8170 if (i.op[0].imms->X_op != O_constant)
8171 as_bad (_("can't handle non absolute segment in `%s'"),
8172 i.tm.name);
8173 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8174}
a217f122 8175
b4a3a7b4
L
8176#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8177void
8178x86_cleanup (void)
8179{
8180 char *p;
8181 asection *seg = now_seg;
8182 subsegT subseg = now_subseg;
8183 asection *sec;
8184 unsigned int alignment, align_size_1;
8185 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8186 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8187 unsigned int padding;
8188
8189 if (!IS_ELF || !x86_used_note)
8190 return;
8191
b4a3a7b4
L
8192 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8193
8194 /* The .note.gnu.property section layout:
8195
8196 Field Length Contents
8197 ---- ---- ----
8198 n_namsz 4 4
8199 n_descsz 4 The note descriptor size
8200 n_type 4 NT_GNU_PROPERTY_TYPE_0
8201 n_name 4 "GNU"
8202 n_desc n_descsz The program property array
8203 .... .... ....
8204 */
8205
8206 /* Create the .note.gnu.property section. */
8207 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8208 bfd_set_section_flags (sec,
b4a3a7b4
L
8209 (SEC_ALLOC
8210 | SEC_LOAD
8211 | SEC_DATA
8212 | SEC_HAS_CONTENTS
8213 | SEC_READONLY));
8214
8215 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8216 {
8217 align_size_1 = 7;
8218 alignment = 3;
8219 }
8220 else
8221 {
8222 align_size_1 = 3;
8223 alignment = 2;
8224 }
8225
fd361982 8226 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8227 elf_section_type (sec) = SHT_NOTE;
8228
8229 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8230 + 4-byte data */
8231 isa_1_descsz_raw = 4 + 4 + 4;
8232 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8233 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8234
8235 feature_2_descsz_raw = isa_1_descsz;
8236 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8237 + 4-byte data */
8238 feature_2_descsz_raw += 4 + 4 + 4;
8239 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8240 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8241 & ~align_size_1);
8242
8243 descsz = feature_2_descsz;
8244 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8245 p = frag_more (4 + 4 + 4 + 4 + descsz);
8246
8247 /* Write n_namsz. */
8248 md_number_to_chars (p, (valueT) 4, 4);
8249
8250 /* Write n_descsz. */
8251 md_number_to_chars (p + 4, (valueT) descsz, 4);
8252
8253 /* Write n_type. */
8254 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8255
8256 /* Write n_name. */
8257 memcpy (p + 4 * 3, "GNU", 4);
8258
8259 /* Write 4-byte type. */
8260 md_number_to_chars (p + 4 * 4,
8261 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8262
8263 /* Write 4-byte data size. */
8264 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8265
8266 /* Write 4-byte data. */
8267 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8268
8269 /* Zero out paddings. */
8270 padding = isa_1_descsz - isa_1_descsz_raw;
8271 if (padding)
8272 memset (p + 4 * 7, 0, padding);
8273
8274 /* Write 4-byte type. */
8275 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8276 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8277
8278 /* Write 4-byte data size. */
8279 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8280
8281 /* Write 4-byte data. */
8282 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8283 (valueT) x86_feature_2_used, 4);
8284
8285 /* Zero out paddings. */
8286 padding = feature_2_descsz - feature_2_descsz_raw;
8287 if (padding)
8288 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8289
8290 /* We probably can't restore the current segment, for there likely
8291 isn't one yet... */
8292 if (seg && subseg)
8293 subseg_set (seg, subseg);
8294}
8295#endif
8296
9c33702b
JB
8297static unsigned int
8298encoding_length (const fragS *start_frag, offsetT start_off,
8299 const char *frag_now_ptr)
8300{
8301 unsigned int len = 0;
8302
8303 if (start_frag != frag_now)
8304 {
8305 const fragS *fr = start_frag;
8306
8307 do {
8308 len += fr->fr_fix;
8309 fr = fr->fr_next;
8310 } while (fr && fr != frag_now);
8311 }
8312
8313 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8314}
8315
e379e5f3
L
8316/* Return 1 for test, and, cmp, add, sub, inc and dec which may
8317 be macro-fused with conditional jumps. */
8318
8319static int
8320maybe_fused_with_jcc_p (void)
8321{
8322 /* No RIP address. */
8323 if (i.base_reg && i.base_reg->reg_num == RegIP)
8324 return 0;
8325
8326 /* No VEX/EVEX encoding. */
8327 if (is_any_vex_encoding (&i.tm))
8328 return 0;
8329
8330 /* and, add, sub with destination register. */
8331 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8332 || i.tm.base_opcode <= 5
8333 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8334 || ((i.tm.base_opcode | 3) == 0x83
8335 && ((i.tm.extension_opcode | 1) == 0x5
8336 || i.tm.extension_opcode == 0x0)))
8337 return (i.types[1].bitfield.class == Reg
8338 || i.types[1].bitfield.instance == Accum);
8339
8340 /* test, cmp with any register. */
8341 if ((i.tm.base_opcode | 1) == 0x85
8342 || (i.tm.base_opcode | 1) == 0xa9
8343 || ((i.tm.base_opcode | 1) == 0xf7
8344 && i.tm.extension_opcode == 0)
8345 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8346 || ((i.tm.base_opcode | 3) == 0x83
8347 && (i.tm.extension_opcode == 0x7)))
8348 return (i.types[0].bitfield.class == Reg
8349 || i.types[0].bitfield.instance == Accum
8350 || i.types[1].bitfield.class == Reg
8351 || i.types[1].bitfield.instance == Accum);
8352
8353 /* inc, dec with any register. */
8354 if ((i.tm.cpu_flags.bitfield.cpuno64
8355 && (i.tm.base_opcode | 0xf) == 0x4f)
8356 || ((i.tm.base_opcode | 1) == 0xff
8357 && i.tm.extension_opcode <= 0x1))
8358 return (i.types[0].bitfield.class == Reg
8359 || i.types[0].bitfield.instance == Accum);
8360
8361 return 0;
8362}
8363
8364/* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8365
8366static int
8367add_fused_jcc_padding_frag_p (void)
8368{
8369 /* NB: Don't work with COND_JUMP86 without i386. */
8370 if (!align_branch_power
8371 || now_seg == absolute_section
8372 || !cpu_arch_flags.bitfield.cpui386
8373 || !(align_branch & align_branch_fused_bit))
8374 return 0;
8375
8376 if (maybe_fused_with_jcc_p ())
8377 {
8378 if (last_insn.kind == last_insn_other
8379 || last_insn.seg != now_seg)
8380 return 1;
8381 if (flag_debug)
8382 as_warn_where (last_insn.file, last_insn.line,
8383 _("`%s` skips -malign-branch-boundary on `%s`"),
8384 last_insn.name, i.tm.name);
8385 }
8386
8387 return 0;
8388}
8389
8390/* Return 1 if a BRANCH_PREFIX frag should be generated. */
8391
8392static int
8393add_branch_prefix_frag_p (void)
8394{
8395 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8396 to PadLock instructions since they include prefixes in opcode. */
8397 if (!align_branch_power
8398 || !align_branch_prefix_size
8399 || now_seg == absolute_section
8400 || i.tm.cpu_flags.bitfield.cpupadlock
8401 || !cpu_arch_flags.bitfield.cpui386)
8402 return 0;
8403
8404 /* Don't add prefix if it is a prefix or there is no operand in case
8405 that segment prefix is special. */
8406 if (!i.operands || i.tm.opcode_modifier.isprefix)
8407 return 0;
8408
8409 if (last_insn.kind == last_insn_other
8410 || last_insn.seg != now_seg)
8411 return 1;
8412
8413 if (flag_debug)
8414 as_warn_where (last_insn.file, last_insn.line,
8415 _("`%s` skips -malign-branch-boundary on `%s`"),
8416 last_insn.name, i.tm.name);
8417
8418 return 0;
8419}
8420
8421/* Return 1 if a BRANCH_PADDING frag should be generated. */
8422
8423static int
8424add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8425{
8426 int add_padding;
8427
8428 /* NB: Don't work with COND_JUMP86 without i386. */
8429 if (!align_branch_power
8430 || now_seg == absolute_section
8431 || !cpu_arch_flags.bitfield.cpui386)
8432 return 0;
8433
8434 add_padding = 0;
8435
8436 /* Check for jcc and direct jmp. */
8437 if (i.tm.opcode_modifier.jump == JUMP)
8438 {
8439 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8440 {
8441 *branch_p = align_branch_jmp;
8442 add_padding = align_branch & align_branch_jmp_bit;
8443 }
8444 else
8445 {
8446 *branch_p = align_branch_jcc;
8447 if ((align_branch & align_branch_jcc_bit))
8448 add_padding = 1;
8449 }
8450 }
8451 else if (is_any_vex_encoding (&i.tm))
8452 return 0;
8453 else if ((i.tm.base_opcode | 1) == 0xc3)
8454 {
8455 /* Near ret. */
8456 *branch_p = align_branch_ret;
8457 if ((align_branch & align_branch_ret_bit))
8458 add_padding = 1;
8459 }
8460 else
8461 {
8462 /* Check for indirect jmp, direct and indirect calls. */
8463 if (i.tm.base_opcode == 0xe8)
8464 {
8465 /* Direct call. */
8466 *branch_p = align_branch_call;
8467 if ((align_branch & align_branch_call_bit))
8468 add_padding = 1;
8469 }
8470 else if (i.tm.base_opcode == 0xff
8471 && (i.tm.extension_opcode == 2
8472 || i.tm.extension_opcode == 4))
8473 {
8474 /* Indirect call and jmp. */
8475 *branch_p = align_branch_indirect;
8476 if ((align_branch & align_branch_indirect_bit))
8477 add_padding = 1;
8478 }
8479
8480 if (add_padding
8481 && i.disp_operands
8482 && tls_get_addr
8483 && (i.op[0].disps->X_op == O_symbol
8484 || (i.op[0].disps->X_op == O_subtract
8485 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8486 {
8487 symbolS *s = i.op[0].disps->X_add_symbol;
8488 /* No padding to call to global or undefined tls_get_addr. */
8489 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8490 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8491 return 0;
8492 }
8493 }
8494
8495 if (add_padding
8496 && last_insn.kind != last_insn_other
8497 && last_insn.seg == now_seg)
8498 {
8499 if (flag_debug)
8500 as_warn_where (last_insn.file, last_insn.line,
8501 _("`%s` skips -malign-branch-boundary on `%s`"),
8502 last_insn.name, i.tm.name);
8503 return 0;
8504 }
8505
8506 return add_padding;
8507}
8508
29b0f896 8509static void
e3bb37b5 8510output_insn (void)
29b0f896 8511{
2bbd9c25
JJ
8512 fragS *insn_start_frag;
8513 offsetT insn_start_off;
e379e5f3
L
8514 fragS *fragP = NULL;
8515 enum align_branch_kind branch = align_branch_none;
2bbd9c25 8516
b4a3a7b4
L
8517#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8518 if (IS_ELF && x86_used_note)
8519 {
8520 if (i.tm.cpu_flags.bitfield.cpucmov)
8521 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8522 if (i.tm.cpu_flags.bitfield.cpusse)
8523 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8524 if (i.tm.cpu_flags.bitfield.cpusse2)
8525 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8526 if (i.tm.cpu_flags.bitfield.cpusse3)
8527 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8528 if (i.tm.cpu_flags.bitfield.cpussse3)
8529 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8530 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8531 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8532 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8533 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8534 if (i.tm.cpu_flags.bitfield.cpuavx)
8535 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8536 if (i.tm.cpu_flags.bitfield.cpuavx2)
8537 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8538 if (i.tm.cpu_flags.bitfield.cpufma)
8539 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8540 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8541 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8542 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8543 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8544 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8545 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8546 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8547 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8548 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8549 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8550 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8551 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8552 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8553 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8554 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8555 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8556 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8557 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8558 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8559 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8560 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8561 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8562 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8563 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8564 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8565 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8566 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8567 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8568 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8569 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8570
8571 if (i.tm.cpu_flags.bitfield.cpu8087
8572 || i.tm.cpu_flags.bitfield.cpu287
8573 || i.tm.cpu_flags.bitfield.cpu387
8574 || i.tm.cpu_flags.bitfield.cpu687
8575 || i.tm.cpu_flags.bitfield.cpufisttp)
8576 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
319ff62c
JB
8577 if (i.has_regmmx
8578 || i.tm.base_opcode == 0xf77 /* emms */
8579 || i.tm.base_opcode == 0xf0e /* femms */)
b4a3a7b4
L
8580 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8581 if (i.has_regxmm)
8582 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8583 if (i.has_regymm)
8584 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8585 if (i.has_regzmm)
8586 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8587 if (i.tm.cpu_flags.bitfield.cpufxsr)
8588 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8589 if (i.tm.cpu_flags.bitfield.cpuxsave)
8590 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8591 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8592 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8593 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8594 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8595 }
8596#endif
8597
29b0f896
AM
8598 /* Tie dwarf2 debug info to the address at the start of the insn.
8599 We can't do this after the insn has been output as the current
8600 frag may have been closed off. eg. by frag_var. */
8601 dwarf2_emit_insn (0);
8602
2bbd9c25
JJ
8603 insn_start_frag = frag_now;
8604 insn_start_off = frag_now_fix ();
8605
e379e5f3
L
8606 if (add_branch_padding_frag_p (&branch))
8607 {
8608 char *p;
8609 /* Branch can be 8 bytes. Leave some room for prefixes. */
8610 unsigned int max_branch_padding_size = 14;
8611
8612 /* Align section to boundary. */
8613 record_alignment (now_seg, align_branch_power);
8614
8615 /* Make room for padding. */
8616 frag_grow (max_branch_padding_size);
8617
8618 /* Start of the padding. */
8619 p = frag_more (0);
8620
8621 fragP = frag_now;
8622
8623 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8624 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8625 NULL, 0, p);
8626
8627 fragP->tc_frag_data.branch_type = branch;
8628 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8629 }
8630
29b0f896 8631 /* Output jumps. */
0cfa3eb3 8632 if (i.tm.opcode_modifier.jump == JUMP)
29b0f896 8633 output_branch ();
0cfa3eb3
JB
8634 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8635 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896 8636 output_jump ();
0cfa3eb3 8637 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
29b0f896
AM
8638 output_interseg_jump ();
8639 else
8640 {
8641 /* Output normal instructions here. */
8642 char *p;
8643 unsigned char *q;
47465058 8644 unsigned int j;
331d2d0d 8645 unsigned int prefix;
4dffcebc 8646
e4e00185 8647 if (avoid_fence
c3949f43
JB
8648 && (i.tm.base_opcode == 0xfaee8
8649 || i.tm.base_opcode == 0xfaef0
8650 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8651 {
8652 /* Encode lfence, mfence, and sfence as
8653 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8654 offsetT val = 0x240483f0ULL;
8655 p = frag_more (5);
8656 md_number_to_chars (p, val, 5);
8657 return;
8658 }
8659
d022bddd
IT
8660 /* Some processors fail on LOCK prefix. This options makes
8661 assembler ignore LOCK prefix and serves as a workaround. */
8662 if (omit_lock_prefix)
8663 {
8664 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8665 return;
8666 i.prefix[LOCK_PREFIX] = 0;
8667 }
8668
e379e5f3
L
8669 if (branch)
8670 /* Skip if this is a branch. */
8671 ;
8672 else if (add_fused_jcc_padding_frag_p ())
8673 {
8674 /* Make room for padding. */
8675 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8676 p = frag_more (0);
8677
8678 fragP = frag_now;
8679
8680 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8681 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8682 NULL, 0, p);
8683
8684 fragP->tc_frag_data.branch_type = align_branch_fused;
8685 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8686 }
8687 else if (add_branch_prefix_frag_p ())
8688 {
8689 unsigned int max_prefix_size = align_branch_prefix_size;
8690
8691 /* Make room for padding. */
8692 frag_grow (max_prefix_size);
8693 p = frag_more (0);
8694
8695 fragP = frag_now;
8696
8697 frag_var (rs_machine_dependent, max_prefix_size, 0,
8698 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8699 NULL, 0, p);
8700
8701 fragP->tc_frag_data.max_bytes = max_prefix_size;
8702 }
8703
43234a1e
L
8704 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8705 don't need the explicit prefix. */
8706 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8707 {
c0f3af97 8708 switch (i.tm.opcode_length)
bc4bd9ab 8709 {
c0f3af97
L
8710 case 3:
8711 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8712 {
c0f3af97 8713 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8714 if (!i.tm.cpu_flags.bitfield.cpupadlock
8715 || prefix != REPE_PREFIX_OPCODE
8716 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8717 add_prefix (prefix);
c0f3af97
L
8718 }
8719 break;
8720 case 2:
8721 if ((i.tm.base_opcode & 0xff0000) != 0)
8722 {
8723 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8724 add_prefix (prefix);
4dffcebc 8725 }
c0f3af97
L
8726 break;
8727 case 1:
8728 break;
390c91cf
L
8729 case 0:
8730 /* Check for pseudo prefixes. */
8731 as_bad_where (insn_start_frag->fr_file,
8732 insn_start_frag->fr_line,
8733 _("pseudo prefix without instruction"));
8734 return;
c0f3af97
L
8735 default:
8736 abort ();
bc4bd9ab 8737 }
c0f3af97 8738
6d19a37a 8739#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8740 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8741 R_X86_64_GOTTPOFF relocation so that linker can safely
14470f07
L
8742 perform IE->LE optimization. A dummy REX_OPCODE prefix
8743 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8744 relocation for GDesc -> IE/LE optimization. */
cf61b747
L
8745 if (x86_elf_abi == X86_64_X32_ABI
8746 && i.operands == 2
14470f07
L
8747 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8748 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
cf61b747
L
8749 && i.prefix[REX_PREFIX] == 0)
8750 add_prefix (REX_OPCODE);
6d19a37a 8751#endif
cf61b747 8752
c0f3af97
L
8753 /* The prefix bytes. */
8754 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8755 if (*q)
8756 FRAG_APPEND_1_CHAR (*q);
0f10071e 8757 }
ae5c1c7b 8758 else
c0f3af97
L
8759 {
8760 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8761 if (*q)
8762 switch (j)
8763 {
8764 case REX_PREFIX:
8765 /* REX byte is encoded in VEX prefix. */
8766 break;
8767 case SEG_PREFIX:
8768 case ADDR_PREFIX:
8769 FRAG_APPEND_1_CHAR (*q);
8770 break;
8771 default:
8772 /* There should be no other prefixes for instructions
8773 with VEX prefix. */
8774 abort ();
8775 }
8776
43234a1e
L
8777 /* For EVEX instructions i.vrex should become 0 after
8778 build_evex_prefix. For VEX instructions upper 16 registers
8779 aren't available, so VREX should be 0. */
8780 if (i.vrex)
8781 abort ();
c0f3af97
L
8782 /* Now the VEX prefix. */
8783 p = frag_more (i.vex.length);
8784 for (j = 0; j < i.vex.length; j++)
8785 p[j] = i.vex.bytes[j];
8786 }
252b5132 8787
29b0f896 8788 /* Now the opcode; be careful about word order here! */
4dffcebc 8789 if (i.tm.opcode_length == 1)
29b0f896
AM
8790 {
8791 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8792 }
8793 else
8794 {
4dffcebc 8795 switch (i.tm.opcode_length)
331d2d0d 8796 {
43234a1e
L
8797 case 4:
8798 p = frag_more (4);
8799 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8800 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8801 break;
4dffcebc 8802 case 3:
331d2d0d
L
8803 p = frag_more (3);
8804 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8805 break;
8806 case 2:
8807 p = frag_more (2);
8808 break;
8809 default:
8810 abort ();
8811 break;
331d2d0d 8812 }
0f10071e 8813
29b0f896
AM
8814 /* Put out high byte first: can't use md_number_to_chars! */
8815 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8816 *p = i.tm.base_opcode & 0xff;
8817 }
3e73aa7c 8818
29b0f896 8819 /* Now the modrm byte and sib byte (if present). */
40fb9820 8820 if (i.tm.opcode_modifier.modrm)
29b0f896 8821 {
4a3523fa
L
8822 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8823 | i.rm.reg << 3
8824 | i.rm.mode << 6));
29b0f896
AM
8825 /* If i.rm.regmem == ESP (4)
8826 && i.rm.mode != (Register mode)
8827 && not 16 bit
8828 ==> need second modrm byte. */
8829 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8830 && i.rm.mode != 3
dc821c5f 8831 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8832 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8833 | i.sib.index << 3
8834 | i.sib.scale << 6));
29b0f896 8835 }
3e73aa7c 8836
29b0f896 8837 if (i.disp_operands)
2bbd9c25 8838 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8839
29b0f896 8840 if (i.imm_operands)
2bbd9c25 8841 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8842
8843 /*
8844 * frag_now_fix () returning plain abs_section_offset when we're in the
8845 * absolute section, and abs_section_offset not getting updated as data
8846 * gets added to the frag breaks the logic below.
8847 */
8848 if (now_seg != absolute_section)
8849 {
8850 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8851 if (j > 15)
8852 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8853 j);
e379e5f3
L
8854 else if (fragP)
8855 {
8856 /* NB: Don't add prefix with GOTPC relocation since
8857 output_disp() above depends on the fixed encoding
8858 length. Can't add prefix with TLS relocation since
8859 it breaks TLS linker optimization. */
8860 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8861 /* Prefix count on the current instruction. */
8862 unsigned int count = i.vex.length;
8863 unsigned int k;
8864 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8865 /* REX byte is encoded in VEX/EVEX prefix. */
8866 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8867 count++;
8868
8869 /* Count prefixes for extended opcode maps. */
8870 if (!i.vex.length)
8871 switch (i.tm.opcode_length)
8872 {
8873 case 3:
8874 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8875 {
8876 count++;
8877 switch ((i.tm.base_opcode >> 8) & 0xff)
8878 {
8879 case 0x38:
8880 case 0x3a:
8881 count++;
8882 break;
8883 default:
8884 break;
8885 }
8886 }
8887 break;
8888 case 2:
8889 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8890 count++;
8891 break;
8892 case 1:
8893 break;
8894 default:
8895 abort ();
8896 }
8897
8898 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8899 == BRANCH_PREFIX)
8900 {
8901 /* Set the maximum prefix size in BRANCH_PREFIX
8902 frag. */
8903 if (fragP->tc_frag_data.max_bytes > max)
8904 fragP->tc_frag_data.max_bytes = max;
8905 if (fragP->tc_frag_data.max_bytes > count)
8906 fragP->tc_frag_data.max_bytes -= count;
8907 else
8908 fragP->tc_frag_data.max_bytes = 0;
8909 }
8910 else
8911 {
8912 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8913 frag. */
8914 unsigned int max_prefix_size;
8915 if (align_branch_prefix_size > max)
8916 max_prefix_size = max;
8917 else
8918 max_prefix_size = align_branch_prefix_size;
8919 if (max_prefix_size > count)
8920 fragP->tc_frag_data.max_prefix_length
8921 = max_prefix_size - count;
8922 }
8923
8924 /* Use existing segment prefix if possible. Use CS
8925 segment prefix in 64-bit mode. In 32-bit mode, use SS
8926 segment prefix with ESP/EBP base register and use DS
8927 segment prefix without ESP/EBP base register. */
8928 if (i.prefix[SEG_PREFIX])
8929 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8930 else if (flag_code == CODE_64BIT)
8931 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8932 else if (i.base_reg
8933 && (i.base_reg->reg_num == 4
8934 || i.base_reg->reg_num == 5))
8935 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8936 else
8937 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8938 }
9c33702b 8939 }
29b0f896 8940 }
252b5132 8941
e379e5f3
L
8942 /* NB: Don't work with COND_JUMP86 without i386. */
8943 if (align_branch_power
8944 && now_seg != absolute_section
8945 && cpu_arch_flags.bitfield.cpui386)
8946 {
8947 /* Terminate each frag so that we can add prefix and check for
8948 fused jcc. */
8949 frag_wane (frag_now);
8950 frag_new (0);
8951 }
8952
29b0f896
AM
8953#ifdef DEBUG386
8954 if (flag_debug)
8955 {
7b81dfbb 8956 pi ("" /*line*/, &i);
29b0f896
AM
8957 }
8958#endif /* DEBUG386 */
8959}
252b5132 8960
e205caa7
L
8961/* Return the size of the displacement operand N. */
8962
8963static int
8964disp_size (unsigned int n)
8965{
8966 int size = 4;
43234a1e 8967
b5014f7a 8968 if (i.types[n].bitfield.disp64)
40fb9820
L
8969 size = 8;
8970 else if (i.types[n].bitfield.disp8)
8971 size = 1;
8972 else if (i.types[n].bitfield.disp16)
8973 size = 2;
e205caa7
L
8974 return size;
8975}
8976
8977/* Return the size of the immediate operand N. */
8978
8979static int
8980imm_size (unsigned int n)
8981{
8982 int size = 4;
40fb9820
L
8983 if (i.types[n].bitfield.imm64)
8984 size = 8;
8985 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8986 size = 1;
8987 else if (i.types[n].bitfield.imm16)
8988 size = 2;
e205caa7
L
8989 return size;
8990}
8991
29b0f896 8992static void
64e74474 8993output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8994{
8995 char *p;
8996 unsigned int n;
252b5132 8997
29b0f896
AM
8998 for (n = 0; n < i.operands; n++)
8999 {
b5014f7a 9000 if (operand_type_check (i.types[n], disp))
29b0f896
AM
9001 {
9002 if (i.op[n].disps->X_op == O_constant)
9003 {
e205caa7 9004 int size = disp_size (n);
43234a1e 9005 offsetT val = i.op[n].disps->X_add_number;
252b5132 9006
629cfaf1
JB
9007 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9008 size);
29b0f896
AM
9009 p = frag_more (size);
9010 md_number_to_chars (p, val, size);
9011 }
9012 else
9013 {
f86103b7 9014 enum bfd_reloc_code_real reloc_type;
e205caa7 9015 int size = disp_size (n);
40fb9820 9016 int sign = i.types[n].bitfield.disp32s;
29b0f896 9017 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 9018 fixS *fixP;
29b0f896 9019
e205caa7 9020 /* We can't have 8 bit displacement here. */
9c2799c2 9021 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 9022
29b0f896
AM
9023 /* The PC relative address is computed relative
9024 to the instruction boundary, so in case immediate
9025 fields follows, we need to adjust the value. */
9026 if (pcrel && i.imm_operands)
9027 {
29b0f896 9028 unsigned int n1;
e205caa7 9029 int sz = 0;
252b5132 9030
29b0f896 9031 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 9032 if (operand_type_check (i.types[n1], imm))
252b5132 9033 {
e205caa7
L
9034 /* Only one immediate is allowed for PC
9035 relative address. */
9c2799c2 9036 gas_assert (sz == 0);
e205caa7
L
9037 sz = imm_size (n1);
9038 i.op[n].disps->X_add_number -= sz;
252b5132 9039 }
29b0f896 9040 /* We should find the immediate. */
9c2799c2 9041 gas_assert (sz != 0);
29b0f896 9042 }
520dc8e8 9043
29b0f896 9044 p = frag_more (size);
d258b828 9045 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 9046 if (GOT_symbol
2bbd9c25 9047 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 9048 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9049 || reloc_type == BFD_RELOC_X86_64_32S
9050 || (reloc_type == BFD_RELOC_64
9051 && object_64bit))
d6ab8113
JB
9052 && (i.op[n].disps->X_op == O_symbol
9053 || (i.op[n].disps->X_op == O_add
9054 && ((symbol_get_value_expression
9055 (i.op[n].disps->X_op_symbol)->X_op)
9056 == O_subtract))))
9057 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 9058 {
4fa24527 9059 if (!object_64bit)
7b81dfbb
AJ
9060 {
9061 reloc_type = BFD_RELOC_386_GOTPC;
e379e5f3 9062 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9063 i.op[n].imms->X_add_number +=
9064 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
9065 }
9066 else if (reloc_type == BFD_RELOC_64)
9067 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 9068 else
7b81dfbb
AJ
9069 /* Don't do the adjustment for x86-64, as there
9070 the pcrel addressing is relative to the _next_
9071 insn, and that is taken care of in other code. */
d6ab8113 9072 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 9073 }
e379e5f3
L
9074 else if (align_branch_power)
9075 {
9076 switch (reloc_type)
9077 {
9078 case BFD_RELOC_386_TLS_GD:
9079 case BFD_RELOC_386_TLS_LDM:
9080 case BFD_RELOC_386_TLS_IE:
9081 case BFD_RELOC_386_TLS_IE_32:
9082 case BFD_RELOC_386_TLS_GOTIE:
9083 case BFD_RELOC_386_TLS_GOTDESC:
9084 case BFD_RELOC_386_TLS_DESC_CALL:
9085 case BFD_RELOC_X86_64_TLSGD:
9086 case BFD_RELOC_X86_64_TLSLD:
9087 case BFD_RELOC_X86_64_GOTTPOFF:
9088 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9089 case BFD_RELOC_X86_64_TLSDESC_CALL:
9090 i.has_gotpc_tls_reloc = TRUE;
9091 default:
9092 break;
9093 }
9094 }
02a86693
L
9095 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9096 size, i.op[n].disps, pcrel,
9097 reloc_type);
9098 /* Check for "call/jmp *mem", "mov mem, %reg",
9099 "test %reg, mem" and "binop mem, %reg" where binop
9100 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
9101 instructions without data prefix. Always generate
9102 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9103 if (i.prefix[DATA_PREFIX] == 0
9104 && (generate_relax_relocations
9105 || (!object_64bit
9106 && i.rm.mode == 0
9107 && i.rm.regmem == 5))
0cb4071e
L
9108 && (i.rm.mode == 2
9109 || (i.rm.mode == 0 && i.rm.regmem == 5))
2ae4c703 9110 && !is_any_vex_encoding(&i.tm)
02a86693
L
9111 && ((i.operands == 1
9112 && i.tm.base_opcode == 0xff
9113 && (i.rm.reg == 2 || i.rm.reg == 4))
9114 || (i.operands == 2
9115 && (i.tm.base_opcode == 0x8b
9116 || i.tm.base_opcode == 0x85
2ae4c703 9117 || (i.tm.base_opcode & ~0x38) == 0x03))))
02a86693
L
9118 {
9119 if (object_64bit)
9120 {
9121 fixP->fx_tcbit = i.rex != 0;
9122 if (i.base_reg
e968fc9b 9123 && (i.base_reg->reg_num == RegIP))
02a86693
L
9124 fixP->fx_tcbit2 = 1;
9125 }
9126 else
9127 fixP->fx_tcbit2 = 1;
9128 }
29b0f896
AM
9129 }
9130 }
9131 }
9132}
252b5132 9133
29b0f896 9134static void
64e74474 9135output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9136{
9137 char *p;
9138 unsigned int n;
252b5132 9139
29b0f896
AM
9140 for (n = 0; n < i.operands; n++)
9141 {
43234a1e
L
9142 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9143 if (i.rounding && (int) n == i.rounding->operand)
9144 continue;
9145
40fb9820 9146 if (operand_type_check (i.types[n], imm))
29b0f896
AM
9147 {
9148 if (i.op[n].imms->X_op == O_constant)
9149 {
e205caa7 9150 int size = imm_size (n);
29b0f896 9151 offsetT val;
b4cac588 9152
29b0f896
AM
9153 val = offset_in_range (i.op[n].imms->X_add_number,
9154 size);
9155 p = frag_more (size);
9156 md_number_to_chars (p, val, size);
9157 }
9158 else
9159 {
9160 /* Not absolute_section.
9161 Need a 32-bit fixup (don't support 8bit
9162 non-absolute imms). Try to support other
9163 sizes ... */
f86103b7 9164 enum bfd_reloc_code_real reloc_type;
e205caa7
L
9165 int size = imm_size (n);
9166 int sign;
29b0f896 9167
40fb9820 9168 if (i.types[n].bitfield.imm32s
a7d61044 9169 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 9170 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 9171 sign = 1;
e205caa7
L
9172 else
9173 sign = 0;
520dc8e8 9174
29b0f896 9175 p = frag_more (size);
d258b828 9176 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 9177
2bbd9c25
JJ
9178 /* This is tough to explain. We end up with this one if we
9179 * have operands that look like
9180 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9181 * obtain the absolute address of the GOT, and it is strongly
9182 * preferable from a performance point of view to avoid using
9183 * a runtime relocation for this. The actual sequence of
9184 * instructions often look something like:
9185 *
9186 * call .L66
9187 * .L66:
9188 * popl %ebx
9189 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9190 *
9191 * The call and pop essentially return the absolute address
9192 * of the label .L66 and store it in %ebx. The linker itself
9193 * will ultimately change the first operand of the addl so
9194 * that %ebx points to the GOT, but to keep things simple, the
9195 * .o file must have this operand set so that it generates not
9196 * the absolute address of .L66, but the absolute address of
9197 * itself. This allows the linker itself simply treat a GOTPC
9198 * relocation as asking for a pcrel offset to the GOT to be
9199 * added in, and the addend of the relocation is stored in the
9200 * operand field for the instruction itself.
9201 *
9202 * Our job here is to fix the operand so that it would add
9203 * the correct offset so that %ebx would point to itself. The
9204 * thing that is tricky is that .-.L66 will point to the
9205 * beginning of the instruction, so we need to further modify
9206 * the operand so that it will point to itself. There are
9207 * other cases where you have something like:
9208 *
9209 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9210 *
9211 * and here no correction would be required. Internally in
9212 * the assembler we treat operands of this form as not being
9213 * pcrel since the '.' is explicitly mentioned, and I wonder
9214 * whether it would simplify matters to do it this way. Who
9215 * knows. In earlier versions of the PIC patches, the
9216 * pcrel_adjust field was used to store the correction, but
9217 * since the expression is not pcrel, I felt it would be
9218 * confusing to do it this way. */
9219
d6ab8113 9220 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9221 || reloc_type == BFD_RELOC_X86_64_32S
9222 || reloc_type == BFD_RELOC_64)
29b0f896
AM
9223 && GOT_symbol
9224 && GOT_symbol == i.op[n].imms->X_add_symbol
9225 && (i.op[n].imms->X_op == O_symbol
9226 || (i.op[n].imms->X_op == O_add
9227 && ((symbol_get_value_expression
9228 (i.op[n].imms->X_op_symbol)->X_op)
9229 == O_subtract))))
9230 {
4fa24527 9231 if (!object_64bit)
d6ab8113 9232 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 9233 else if (size == 4)
d6ab8113 9234 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
9235 else if (size == 8)
9236 reloc_type = BFD_RELOC_X86_64_GOTPC64;
e379e5f3 9237 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9238 i.op[n].imms->X_add_number +=
9239 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 9240 }
29b0f896
AM
9241 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9242 i.op[n].imms, 0, reloc_type);
9243 }
9244 }
9245 }
252b5132
RH
9246}
9247\f
d182319b
JB
9248/* x86_cons_fix_new is called via the expression parsing code when a
9249 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
9250static int cons_sign = -1;
9251
9252void
e3bb37b5 9253x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 9254 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 9255{
d258b828 9256 r = reloc (len, 0, cons_sign, r);
d182319b
JB
9257
9258#ifdef TE_PE
9259 if (exp->X_op == O_secrel)
9260 {
9261 exp->X_op = O_symbol;
9262 r = BFD_RELOC_32_SECREL;
9263 }
9264#endif
9265
9266 fix_new_exp (frag, off, len, exp, 0, r);
9267}
9268
357d1bd8
L
9269/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9270 purpose of the `.dc.a' internal pseudo-op. */
9271
9272int
9273x86_address_bytes (void)
9274{
9275 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9276 return 4;
9277 return stdoutput->arch_info->bits_per_address / 8;
9278}
9279
d382c579
TG
9280#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9281 || defined (LEX_AT)
d258b828 9282# define lex_got(reloc, adjust, types) NULL
718ddfc0 9283#else
f3c180ae
AM
9284/* Parse operands of the form
9285 <symbol>@GOTOFF+<nnn>
9286 and similar .plt or .got references.
9287
9288 If we find one, set up the correct relocation in RELOC and copy the
9289 input string, minus the `@GOTOFF' into a malloc'd buffer for
9290 parsing by the calling routine. Return this buffer, and if ADJUST
9291 is non-null set it to the length of the string we removed from the
9292 input line. Otherwise return NULL. */
9293static char *
91d6fa6a 9294lex_got (enum bfd_reloc_code_real *rel,
64e74474 9295 int *adjust,
d258b828 9296 i386_operand_type *types)
f3c180ae 9297{
7b81dfbb
AJ
9298 /* Some of the relocations depend on the size of what field is to
9299 be relocated. But in our callers i386_immediate and i386_displacement
9300 we don't yet know the operand size (this will be set by insn
9301 matching). Hence we record the word32 relocation here,
9302 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
9303 static const struct {
9304 const char *str;
cff8d58a 9305 int len;
4fa24527 9306 const enum bfd_reloc_code_real rel[2];
40fb9820 9307 const i386_operand_type types64;
f3c180ae 9308 } gotrel[] = {
8ce3d284 9309#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
9310 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9311 BFD_RELOC_SIZE32 },
9312 OPERAND_TYPE_IMM32_64 },
8ce3d284 9313#endif
cff8d58a
L
9314 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9315 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 9316 OPERAND_TYPE_IMM64 },
cff8d58a
L
9317 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9318 BFD_RELOC_X86_64_PLT32 },
40fb9820 9319 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9320 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9321 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 9322 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9323 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9324 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 9325 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9326 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9327 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 9328 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9329 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9330 BFD_RELOC_X86_64_TLSGD },
40fb9820 9331 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9332 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9333 _dummy_first_bfd_reloc_code_real },
40fb9820 9334 OPERAND_TYPE_NONE },
cff8d58a
L
9335 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9336 BFD_RELOC_X86_64_TLSLD },
40fb9820 9337 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9338 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9339 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 9340 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9341 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9342 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 9343 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9344 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9345 _dummy_first_bfd_reloc_code_real },
40fb9820 9346 OPERAND_TYPE_NONE },
cff8d58a
L
9347 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9348 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 9349 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9350 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9351 _dummy_first_bfd_reloc_code_real },
40fb9820 9352 OPERAND_TYPE_NONE },
cff8d58a
L
9353 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9354 _dummy_first_bfd_reloc_code_real },
40fb9820 9355 OPERAND_TYPE_NONE },
cff8d58a
L
9356 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9357 BFD_RELOC_X86_64_GOT32 },
40fb9820 9358 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
9359 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9360 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 9361 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9362 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9363 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 9364 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
9365 };
9366 char *cp;
9367 unsigned int j;
9368
d382c579 9369#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
9370 if (!IS_ELF)
9371 return NULL;
d382c579 9372#endif
718ddfc0 9373
f3c180ae 9374 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 9375 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
9376 return NULL;
9377
47465058 9378 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 9379 {
cff8d58a 9380 int len = gotrel[j].len;
28f81592 9381 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 9382 {
4fa24527 9383 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 9384 {
28f81592
AM
9385 int first, second;
9386 char *tmpbuf, *past_reloc;
f3c180ae 9387
91d6fa6a 9388 *rel = gotrel[j].rel[object_64bit];
f3c180ae 9389
3956db08
JB
9390 if (types)
9391 {
9392 if (flag_code != CODE_64BIT)
40fb9820
L
9393 {
9394 types->bitfield.imm32 = 1;
9395 types->bitfield.disp32 = 1;
9396 }
3956db08
JB
9397 else
9398 *types = gotrel[j].types64;
9399 }
9400
8fd4256d 9401 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
9402 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9403
28f81592 9404 /* The length of the first part of our input line. */
f3c180ae 9405 first = cp - input_line_pointer;
28f81592
AM
9406
9407 /* The second part goes from after the reloc token until
67c11a9b 9408 (and including) an end_of_line char or comma. */
28f81592 9409 past_reloc = cp + 1 + len;
67c11a9b
AM
9410 cp = past_reloc;
9411 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9412 ++cp;
9413 second = cp + 1 - past_reloc;
28f81592
AM
9414
9415 /* Allocate and copy string. The trailing NUL shouldn't
9416 be necessary, but be safe. */
add39d23 9417 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 9418 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
9419 if (second != 0 && *past_reloc != ' ')
9420 /* Replace the relocation token with ' ', so that
9421 errors like foo@GOTOFF1 will be detected. */
9422 tmpbuf[first++] = ' ';
af89796a
L
9423 else
9424 /* Increment length by 1 if the relocation token is
9425 removed. */
9426 len++;
9427 if (adjust)
9428 *adjust = len;
0787a12d
AM
9429 memcpy (tmpbuf + first, past_reloc, second);
9430 tmpbuf[first + second] = '\0';
f3c180ae
AM
9431 return tmpbuf;
9432 }
9433
4fa24527
JB
9434 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9435 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
9436 return NULL;
9437 }
9438 }
9439
9440 /* Might be a symbol version string. Don't as_bad here. */
9441 return NULL;
9442}
4e4f7c87 9443#endif
f3c180ae 9444
a988325c
NC
9445#ifdef TE_PE
9446#ifdef lex_got
9447#undef lex_got
9448#endif
9449/* Parse operands of the form
9450 <symbol>@SECREL32+<nnn>
9451
9452 If we find one, set up the correct relocation in RELOC and copy the
9453 input string, minus the `@SECREL32' into a malloc'd buffer for
9454 parsing by the calling routine. Return this buffer, and if ADJUST
9455 is non-null set it to the length of the string we removed from the
34bca508
L
9456 input line. Otherwise return NULL.
9457
a988325c
NC
9458 This function is copied from the ELF version above adjusted for PE targets. */
9459
9460static char *
9461lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9462 int *adjust ATTRIBUTE_UNUSED,
d258b828 9463 i386_operand_type *types)
a988325c
NC
9464{
9465 static const struct
9466 {
9467 const char *str;
9468 int len;
9469 const enum bfd_reloc_code_real rel[2];
9470 const i386_operand_type types64;
9471 }
9472 gotrel[] =
9473 {
9474 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9475 BFD_RELOC_32_SECREL },
9476 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9477 };
9478
9479 char *cp;
9480 unsigned j;
9481
9482 for (cp = input_line_pointer; *cp != '@'; cp++)
9483 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9484 return NULL;
9485
9486 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9487 {
9488 int len = gotrel[j].len;
9489
9490 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9491 {
9492 if (gotrel[j].rel[object_64bit] != 0)
9493 {
9494 int first, second;
9495 char *tmpbuf, *past_reloc;
9496
9497 *rel = gotrel[j].rel[object_64bit];
9498 if (adjust)
9499 *adjust = len;
9500
9501 if (types)
9502 {
9503 if (flag_code != CODE_64BIT)
9504 {
9505 types->bitfield.imm32 = 1;
9506 types->bitfield.disp32 = 1;
9507 }
9508 else
9509 *types = gotrel[j].types64;
9510 }
9511
9512 /* The length of the first part of our input line. */
9513 first = cp - input_line_pointer;
9514
9515 /* The second part goes from after the reloc token until
9516 (and including) an end_of_line char or comma. */
9517 past_reloc = cp + 1 + len;
9518 cp = past_reloc;
9519 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9520 ++cp;
9521 second = cp + 1 - past_reloc;
9522
9523 /* Allocate and copy string. The trailing NUL shouldn't
9524 be necessary, but be safe. */
add39d23 9525 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9526 memcpy (tmpbuf, input_line_pointer, first);
9527 if (second != 0 && *past_reloc != ' ')
9528 /* Replace the relocation token with ' ', so that
9529 errors like foo@SECLREL321 will be detected. */
9530 tmpbuf[first++] = ' ';
9531 memcpy (tmpbuf + first, past_reloc, second);
9532 tmpbuf[first + second] = '\0';
9533 return tmpbuf;
9534 }
9535
9536 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9537 gotrel[j].str, 1 << (5 + object_64bit));
9538 return NULL;
9539 }
9540 }
9541
9542 /* Might be a symbol version string. Don't as_bad here. */
9543 return NULL;
9544}
9545
9546#endif /* TE_PE */
9547
62ebcb5c 9548bfd_reloc_code_real_type
e3bb37b5 9549x86_cons (expressionS *exp, int size)
f3c180ae 9550{
62ebcb5c
AM
9551 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9552
ee86248c
JB
9553 intel_syntax = -intel_syntax;
9554
3c7b9c2c 9555 exp->X_md = 0;
4fa24527 9556 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9557 {
9558 /* Handle @GOTOFF and the like in an expression. */
9559 char *save;
9560 char *gotfree_input_line;
4a57f2cf 9561 int adjust = 0;
f3c180ae
AM
9562
9563 save = input_line_pointer;
d258b828 9564 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9565 if (gotfree_input_line)
9566 input_line_pointer = gotfree_input_line;
9567
9568 expression (exp);
9569
9570 if (gotfree_input_line)
9571 {
9572 /* expression () has merrily parsed up to the end of line,
9573 or a comma - in the wrong buffer. Transfer how far
9574 input_line_pointer has moved to the right buffer. */
9575 input_line_pointer = (save
9576 + (input_line_pointer - gotfree_input_line)
9577 + adjust);
9578 free (gotfree_input_line);
3992d3b7
AM
9579 if (exp->X_op == O_constant
9580 || exp->X_op == O_absent
9581 || exp->X_op == O_illegal
0398aac5 9582 || exp->X_op == O_register
3992d3b7
AM
9583 || exp->X_op == O_big)
9584 {
9585 char c = *input_line_pointer;
9586 *input_line_pointer = 0;
9587 as_bad (_("missing or invalid expression `%s'"), save);
9588 *input_line_pointer = c;
9589 }
b9519cfe
L
9590 else if ((got_reloc == BFD_RELOC_386_PLT32
9591 || got_reloc == BFD_RELOC_X86_64_PLT32)
9592 && exp->X_op != O_symbol)
9593 {
9594 char c = *input_line_pointer;
9595 *input_line_pointer = 0;
9596 as_bad (_("invalid PLT expression `%s'"), save);
9597 *input_line_pointer = c;
9598 }
f3c180ae
AM
9599 }
9600 }
9601 else
9602 expression (exp);
ee86248c
JB
9603
9604 intel_syntax = -intel_syntax;
9605
9606 if (intel_syntax)
9607 i386_intel_simplify (exp);
62ebcb5c
AM
9608
9609 return got_reloc;
f3c180ae 9610}
f3c180ae 9611
9f32dd5b
L
9612static void
9613signed_cons (int size)
6482c264 9614{
d182319b
JB
9615 if (flag_code == CODE_64BIT)
9616 cons_sign = 1;
9617 cons (size);
9618 cons_sign = -1;
6482c264
NC
9619}
9620
d182319b 9621#ifdef TE_PE
6482c264 9622static void
7016a5d5 9623pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9624{
9625 expressionS exp;
9626
9627 do
9628 {
9629 expression (&exp);
9630 if (exp.X_op == O_symbol)
9631 exp.X_op = O_secrel;
9632
9633 emit_expr (&exp, 4);
9634 }
9635 while (*input_line_pointer++ == ',');
9636
9637 input_line_pointer--;
9638 demand_empty_rest_of_line ();
9639}
6482c264
NC
9640#endif
9641
43234a1e
L
9642/* Handle Vector operations. */
9643
9644static char *
9645check_VecOperations (char *op_string, char *op_end)
9646{
9647 const reg_entry *mask;
9648 const char *saved;
9649 char *end_op;
9650
9651 while (*op_string
9652 && (op_end == NULL || op_string < op_end))
9653 {
9654 saved = op_string;
9655 if (*op_string == '{')
9656 {
9657 op_string++;
9658
9659 /* Check broadcasts. */
9660 if (strncmp (op_string, "1to", 3) == 0)
9661 {
9662 int bcst_type;
9663
9664 if (i.broadcast)
9665 goto duplicated_vec_op;
9666
9667 op_string += 3;
9668 if (*op_string == '8')
8e6e0792 9669 bcst_type = 8;
b28d1bda 9670 else if (*op_string == '4')
8e6e0792 9671 bcst_type = 4;
b28d1bda 9672 else if (*op_string == '2')
8e6e0792 9673 bcst_type = 2;
43234a1e
L
9674 else if (*op_string == '1'
9675 && *(op_string+1) == '6')
9676 {
8e6e0792 9677 bcst_type = 16;
43234a1e
L
9678 op_string++;
9679 }
9680 else
9681 {
9682 as_bad (_("Unsupported broadcast: `%s'"), saved);
9683 return NULL;
9684 }
9685 op_string++;
9686
9687 broadcast_op.type = bcst_type;
9688 broadcast_op.operand = this_operand;
1f75763a 9689 broadcast_op.bytes = 0;
43234a1e
L
9690 i.broadcast = &broadcast_op;
9691 }
9692 /* Check masking operation. */
9693 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9694 {
9695 /* k0 can't be used for write mask. */
f74a6307 9696 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
43234a1e 9697 {
6d2cd6b2
JB
9698 as_bad (_("`%s%s' can't be used for write mask"),
9699 register_prefix, mask->reg_name);
43234a1e
L
9700 return NULL;
9701 }
9702
9703 if (!i.mask)
9704 {
9705 mask_op.mask = mask;
9706 mask_op.zeroing = 0;
9707 mask_op.operand = this_operand;
9708 i.mask = &mask_op;
9709 }
9710 else
9711 {
9712 if (i.mask->mask)
9713 goto duplicated_vec_op;
9714
9715 i.mask->mask = mask;
9716
9717 /* Only "{z}" is allowed here. No need to check
9718 zeroing mask explicitly. */
9719 if (i.mask->operand != this_operand)
9720 {
9721 as_bad (_("invalid write mask `%s'"), saved);
9722 return NULL;
9723 }
9724 }
9725
9726 op_string = end_op;
9727 }
9728 /* Check zeroing-flag for masking operation. */
9729 else if (*op_string == 'z')
9730 {
9731 if (!i.mask)
9732 {
9733 mask_op.mask = NULL;
9734 mask_op.zeroing = 1;
9735 mask_op.operand = this_operand;
9736 i.mask = &mask_op;
9737 }
9738 else
9739 {
9740 if (i.mask->zeroing)
9741 {
9742 duplicated_vec_op:
9743 as_bad (_("duplicated `%s'"), saved);
9744 return NULL;
9745 }
9746
9747 i.mask->zeroing = 1;
9748
9749 /* Only "{%k}" is allowed here. No need to check mask
9750 register explicitly. */
9751 if (i.mask->operand != this_operand)
9752 {
9753 as_bad (_("invalid zeroing-masking `%s'"),
9754 saved);
9755 return NULL;
9756 }
9757 }
9758
9759 op_string++;
9760 }
9761 else
9762 goto unknown_vec_op;
9763
9764 if (*op_string != '}')
9765 {
9766 as_bad (_("missing `}' in `%s'"), saved);
9767 return NULL;
9768 }
9769 op_string++;
0ba3a731
L
9770
9771 /* Strip whitespace since the addition of pseudo prefixes
9772 changed how the scrubber treats '{'. */
9773 if (is_space_char (*op_string))
9774 ++op_string;
9775
43234a1e
L
9776 continue;
9777 }
9778 unknown_vec_op:
9779 /* We don't know this one. */
9780 as_bad (_("unknown vector operation: `%s'"), saved);
9781 return NULL;
9782 }
9783
6d2cd6b2
JB
9784 if (i.mask && i.mask->zeroing && !i.mask->mask)
9785 {
9786 as_bad (_("zeroing-masking only allowed with write mask"));
9787 return NULL;
9788 }
9789
43234a1e
L
9790 return op_string;
9791}
9792
252b5132 9793static int
70e41ade 9794i386_immediate (char *imm_start)
252b5132
RH
9795{
9796 char *save_input_line_pointer;
f3c180ae 9797 char *gotfree_input_line;
252b5132 9798 segT exp_seg = 0;
47926f60 9799 expressionS *exp;
40fb9820
L
9800 i386_operand_type types;
9801
0dfbf9d7 9802 operand_type_set (&types, ~0);
252b5132
RH
9803
9804 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9805 {
31b2323c
L
9806 as_bad (_("at most %d immediate operands are allowed"),
9807 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9808 return 0;
9809 }
9810
9811 exp = &im_expressions[i.imm_operands++];
520dc8e8 9812 i.op[this_operand].imms = exp;
252b5132
RH
9813
9814 if (is_space_char (*imm_start))
9815 ++imm_start;
9816
9817 save_input_line_pointer = input_line_pointer;
9818 input_line_pointer = imm_start;
9819
d258b828 9820 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9821 if (gotfree_input_line)
9822 input_line_pointer = gotfree_input_line;
252b5132
RH
9823
9824 exp_seg = expression (exp);
9825
83183c0c 9826 SKIP_WHITESPACE ();
43234a1e
L
9827
9828 /* Handle vector operations. */
9829 if (*input_line_pointer == '{')
9830 {
9831 input_line_pointer = check_VecOperations (input_line_pointer,
9832 NULL);
9833 if (input_line_pointer == NULL)
9834 return 0;
9835 }
9836
252b5132 9837 if (*input_line_pointer)
f3c180ae 9838 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9839
9840 input_line_pointer = save_input_line_pointer;
f3c180ae 9841 if (gotfree_input_line)
ee86248c
JB
9842 {
9843 free (gotfree_input_line);
9844
9845 if (exp->X_op == O_constant || exp->X_op == O_register)
9846 exp->X_op = O_illegal;
9847 }
9848
9849 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9850}
252b5132 9851
ee86248c
JB
9852static int
9853i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9854 i386_operand_type types, const char *imm_start)
9855{
9856 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9857 {
313c53d1
L
9858 if (imm_start)
9859 as_bad (_("missing or invalid immediate expression `%s'"),
9860 imm_start);
3992d3b7 9861 return 0;
252b5132 9862 }
3e73aa7c 9863 else if (exp->X_op == O_constant)
252b5132 9864 {
47926f60 9865 /* Size it properly later. */
40fb9820 9866 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9867 /* If not 64bit, sign extend val. */
9868 if (flag_code != CODE_64BIT
4eed87de
AM
9869 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9870 exp->X_add_number
9871 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9872 }
4c63da97 9873#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9874 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9875 && exp_seg != absolute_section
47926f60 9876 && exp_seg != text_section
24eab124
AM
9877 && exp_seg != data_section
9878 && exp_seg != bss_section
9879 && exp_seg != undefined_section
f86103b7 9880 && !bfd_is_com_section (exp_seg))
252b5132 9881 {
d0b47220 9882 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9883 return 0;
9884 }
9885#endif
a841bdf5 9886 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9887 {
313c53d1
L
9888 if (imm_start)
9889 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9890 return 0;
9891 }
252b5132
RH
9892 else
9893 {
9894 /* This is an address. The size of the address will be
24eab124 9895 determined later, depending on destination register,
3e73aa7c 9896 suffix, or the default for the section. */
40fb9820
L
9897 i.types[this_operand].bitfield.imm8 = 1;
9898 i.types[this_operand].bitfield.imm16 = 1;
9899 i.types[this_operand].bitfield.imm32 = 1;
9900 i.types[this_operand].bitfield.imm32s = 1;
9901 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9902 i.types[this_operand] = operand_type_and (i.types[this_operand],
9903 types);
252b5132
RH
9904 }
9905
9906 return 1;
9907}
9908
551c1ca1 9909static char *
e3bb37b5 9910i386_scale (char *scale)
252b5132 9911{
551c1ca1
AM
9912 offsetT val;
9913 char *save = input_line_pointer;
252b5132 9914
551c1ca1
AM
9915 input_line_pointer = scale;
9916 val = get_absolute_expression ();
9917
9918 switch (val)
252b5132 9919 {
551c1ca1 9920 case 1:
252b5132
RH
9921 i.log2_scale_factor = 0;
9922 break;
551c1ca1 9923 case 2:
252b5132
RH
9924 i.log2_scale_factor = 1;
9925 break;
551c1ca1 9926 case 4:
252b5132
RH
9927 i.log2_scale_factor = 2;
9928 break;
551c1ca1 9929 case 8:
252b5132
RH
9930 i.log2_scale_factor = 3;
9931 break;
9932 default:
a724f0f4
JB
9933 {
9934 char sep = *input_line_pointer;
9935
9936 *input_line_pointer = '\0';
9937 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9938 scale);
9939 *input_line_pointer = sep;
9940 input_line_pointer = save;
9941 return NULL;
9942 }
252b5132 9943 }
29b0f896 9944 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9945 {
9946 as_warn (_("scale factor of %d without an index register"),
24eab124 9947 1 << i.log2_scale_factor);
252b5132 9948 i.log2_scale_factor = 0;
252b5132 9949 }
551c1ca1
AM
9950 scale = input_line_pointer;
9951 input_line_pointer = save;
9952 return scale;
252b5132
RH
9953}
9954
252b5132 9955static int
e3bb37b5 9956i386_displacement (char *disp_start, char *disp_end)
252b5132 9957{
29b0f896 9958 expressionS *exp;
252b5132
RH
9959 segT exp_seg = 0;
9960 char *save_input_line_pointer;
f3c180ae 9961 char *gotfree_input_line;
40fb9820
L
9962 int override;
9963 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9964 int ret;
252b5132 9965
31b2323c
L
9966 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9967 {
9968 as_bad (_("at most %d displacement operands are allowed"),
9969 MAX_MEMORY_OPERANDS);
9970 return 0;
9971 }
9972
0dfbf9d7 9973 operand_type_set (&bigdisp, 0);
6f2f06be 9974 if (i.jumpabsolute
48bcea9f 9975 || i.types[this_operand].bitfield.baseindex
0cfa3eb3
JB
9976 || (current_templates->start->opcode_modifier.jump != JUMP
9977 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
e05278af 9978 {
48bcea9f 9979 i386_addressing_mode ();
e05278af 9980 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9981 if (flag_code == CODE_64BIT)
9982 {
9983 if (!override)
9984 {
9985 bigdisp.bitfield.disp32s = 1;
9986 bigdisp.bitfield.disp64 = 1;
9987 }
48bcea9f
JB
9988 else
9989 bigdisp.bitfield.disp32 = 1;
40fb9820
L
9990 }
9991 else if ((flag_code == CODE_16BIT) ^ override)
40fb9820 9992 bigdisp.bitfield.disp16 = 1;
48bcea9f
JB
9993 else
9994 bigdisp.bitfield.disp32 = 1;
e05278af
JB
9995 }
9996 else
9997 {
376cd056
JB
9998 /* For PC-relative branches, the width of the displacement may be
9999 dependent upon data size, but is never dependent upon address size.
10000 Also make sure to not unintentionally match against a non-PC-relative
10001 branch template. */
10002 static templates aux_templates;
10003 const insn_template *t = current_templates->start;
10004 bfd_boolean has_intel64 = FALSE;
10005
10006 aux_templates.start = t;
10007 while (++t < current_templates->end)
10008 {
10009 if (t->opcode_modifier.jump
10010 != current_templates->start->opcode_modifier.jump)
10011 break;
4b5aaf5f 10012 if ((t->opcode_modifier.isa64 >= INTEL64))
376cd056
JB
10013 has_intel64 = TRUE;
10014 }
10015 if (t < current_templates->end)
10016 {
10017 aux_templates.end = t;
10018 current_templates = &aux_templates;
10019 }
10020
e05278af 10021 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
10022 if (flag_code == CODE_64BIT)
10023 {
376cd056
JB
10024 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10025 && (!intel64 || !has_intel64))
40fb9820
L
10026 bigdisp.bitfield.disp16 = 1;
10027 else
48bcea9f 10028 bigdisp.bitfield.disp32s = 1;
40fb9820
L
10029 }
10030 else
e05278af
JB
10031 {
10032 if (!override)
10033 override = (i.suffix == (flag_code != CODE_16BIT
10034 ? WORD_MNEM_SUFFIX
10035 : LONG_MNEM_SUFFIX));
40fb9820
L
10036 bigdisp.bitfield.disp32 = 1;
10037 if ((flag_code == CODE_16BIT) ^ override)
10038 {
10039 bigdisp.bitfield.disp32 = 0;
10040 bigdisp.bitfield.disp16 = 1;
10041 }
e05278af 10042 }
e05278af 10043 }
c6fb90c8
L
10044 i.types[this_operand] = operand_type_or (i.types[this_operand],
10045 bigdisp);
252b5132
RH
10046
10047 exp = &disp_expressions[i.disp_operands];
520dc8e8 10048 i.op[this_operand].disps = exp;
252b5132
RH
10049 i.disp_operands++;
10050 save_input_line_pointer = input_line_pointer;
10051 input_line_pointer = disp_start;
10052 END_STRING_AND_SAVE (disp_end);
10053
10054#ifndef GCC_ASM_O_HACK
10055#define GCC_ASM_O_HACK 0
10056#endif
10057#if GCC_ASM_O_HACK
10058 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 10059 if (i.types[this_operand].bitfield.baseIndex
24eab124 10060 && displacement_string_end[-1] == '+')
252b5132
RH
10061 {
10062 /* This hack is to avoid a warning when using the "o"
24eab124
AM
10063 constraint within gcc asm statements.
10064 For instance:
10065
10066 #define _set_tssldt_desc(n,addr,limit,type) \
10067 __asm__ __volatile__ ( \
10068 "movw %w2,%0\n\t" \
10069 "movw %w1,2+%0\n\t" \
10070 "rorl $16,%1\n\t" \
10071 "movb %b1,4+%0\n\t" \
10072 "movb %4,5+%0\n\t" \
10073 "movb $0,6+%0\n\t" \
10074 "movb %h1,7+%0\n\t" \
10075 "rorl $16,%1" \
10076 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10077
10078 This works great except that the output assembler ends
10079 up looking a bit weird if it turns out that there is
10080 no offset. You end up producing code that looks like:
10081
10082 #APP
10083 movw $235,(%eax)
10084 movw %dx,2+(%eax)
10085 rorl $16,%edx
10086 movb %dl,4+(%eax)
10087 movb $137,5+(%eax)
10088 movb $0,6+(%eax)
10089 movb %dh,7+(%eax)
10090 rorl $16,%edx
10091 #NO_APP
10092
47926f60 10093 So here we provide the missing zero. */
24eab124
AM
10094
10095 *displacement_string_end = '0';
252b5132
RH
10096 }
10097#endif
d258b828 10098 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
10099 if (gotfree_input_line)
10100 input_line_pointer = gotfree_input_line;
252b5132 10101
24eab124 10102 exp_seg = expression (exp);
252b5132 10103
636c26b0
AM
10104 SKIP_WHITESPACE ();
10105 if (*input_line_pointer)
10106 as_bad (_("junk `%s' after expression"), input_line_pointer);
10107#if GCC_ASM_O_HACK
10108 RESTORE_END_STRING (disp_end + 1);
10109#endif
636c26b0 10110 input_line_pointer = save_input_line_pointer;
636c26b0 10111 if (gotfree_input_line)
ee86248c
JB
10112 {
10113 free (gotfree_input_line);
10114
10115 if (exp->X_op == O_constant || exp->X_op == O_register)
10116 exp->X_op = O_illegal;
10117 }
10118
10119 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10120
10121 RESTORE_END_STRING (disp_end);
10122
10123 return ret;
10124}
10125
10126static int
10127i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10128 i386_operand_type types, const char *disp_start)
10129{
10130 i386_operand_type bigdisp;
10131 int ret = 1;
636c26b0 10132
24eab124
AM
10133 /* We do this to make sure that the section symbol is in
10134 the symbol table. We will ultimately change the relocation
47926f60 10135 to be relative to the beginning of the section. */
1ae12ab7 10136 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
10137 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10138 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 10139 {
636c26b0 10140 if (exp->X_op != O_symbol)
3992d3b7 10141 goto inv_disp;
636c26b0 10142
e5cb08ac 10143 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
10144 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10145 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 10146 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
10147 exp->X_op = O_subtract;
10148 exp->X_op_symbol = GOT_symbol;
1ae12ab7 10149 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 10150 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
10151 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10152 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 10153 else
29b0f896 10154 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 10155 }
252b5132 10156
3992d3b7
AM
10157 else if (exp->X_op == O_absent
10158 || exp->X_op == O_illegal
ee86248c 10159 || exp->X_op == O_big)
2daf4fd8 10160 {
3992d3b7
AM
10161 inv_disp:
10162 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 10163 disp_start);
3992d3b7 10164 ret = 0;
2daf4fd8
AM
10165 }
10166
0e1147d9
L
10167 else if (flag_code == CODE_64BIT
10168 && !i.prefix[ADDR_PREFIX]
10169 && exp->X_op == O_constant)
10170 {
10171 /* Since displacement is signed extended to 64bit, don't allow
10172 disp32 and turn off disp32s if they are out of range. */
10173 i.types[this_operand].bitfield.disp32 = 0;
10174 if (!fits_in_signed_long (exp->X_add_number))
10175 {
10176 i.types[this_operand].bitfield.disp32s = 0;
10177 if (i.types[this_operand].bitfield.baseindex)
10178 {
10179 as_bad (_("0x%lx out range of signed 32bit displacement"),
10180 (long) exp->X_add_number);
10181 ret = 0;
10182 }
10183 }
10184 }
10185
4c63da97 10186#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
10187 else if (exp->X_op != O_constant
10188 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10189 && exp_seg != absolute_section
10190 && exp_seg != text_section
10191 && exp_seg != data_section
10192 && exp_seg != bss_section
10193 && exp_seg != undefined_section
10194 && !bfd_is_com_section (exp_seg))
24eab124 10195 {
d0b47220 10196 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 10197 ret = 0;
24eab124 10198 }
252b5132 10199#endif
3956db08 10200
48bcea9f
JB
10201 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10202 /* Constants get taken care of by optimize_disp(). */
10203 && exp->X_op != O_constant)
10204 i.types[this_operand].bitfield.disp8 = 1;
10205
40fb9820
L
10206 /* Check if this is a displacement only operand. */
10207 bigdisp = i.types[this_operand];
10208 bigdisp.bitfield.disp8 = 0;
10209 bigdisp.bitfield.disp16 = 0;
10210 bigdisp.bitfield.disp32 = 0;
10211 bigdisp.bitfield.disp32s = 0;
10212 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 10213 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
10214 i.types[this_operand] = operand_type_and (i.types[this_operand],
10215 types);
3956db08 10216
3992d3b7 10217 return ret;
252b5132
RH
10218}
10219
2abc2bec
JB
10220/* Return the active addressing mode, taking address override and
10221 registers forming the address into consideration. Update the
10222 address override prefix if necessary. */
47926f60 10223
2abc2bec
JB
10224static enum flag_code
10225i386_addressing_mode (void)
252b5132 10226{
be05d201
L
10227 enum flag_code addr_mode;
10228
10229 if (i.prefix[ADDR_PREFIX])
10230 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10231 else
10232 {
10233 addr_mode = flag_code;
10234
24eab124 10235#if INFER_ADDR_PREFIX
be05d201
L
10236 if (i.mem_operands == 0)
10237 {
10238 /* Infer address prefix from the first memory operand. */
10239 const reg_entry *addr_reg = i.base_reg;
10240
10241 if (addr_reg == NULL)
10242 addr_reg = i.index_reg;
eecb386c 10243
be05d201
L
10244 if (addr_reg)
10245 {
e968fc9b 10246 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
10247 addr_mode = CODE_32BIT;
10248 else if (flag_code != CODE_64BIT
dc821c5f 10249 && addr_reg->reg_type.bitfield.word)
be05d201
L
10250 addr_mode = CODE_16BIT;
10251
10252 if (addr_mode != flag_code)
10253 {
10254 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10255 i.prefixes += 1;
10256 /* Change the size of any displacement too. At most one
10257 of Disp16 or Disp32 is set.
10258 FIXME. There doesn't seem to be any real need for
10259 separate Disp16 and Disp32 flags. The same goes for
10260 Imm16 and Imm32. Removing them would probably clean
10261 up the code quite a lot. */
10262 if (flag_code != CODE_64BIT
10263 && (i.types[this_operand].bitfield.disp16
10264 || i.types[this_operand].bitfield.disp32))
10265 i.types[this_operand]
10266 = operand_type_xor (i.types[this_operand], disp16_32);
10267 }
10268 }
10269 }
24eab124 10270#endif
be05d201
L
10271 }
10272
2abc2bec
JB
10273 return addr_mode;
10274}
10275
10276/* Make sure the memory operand we've been dealt is valid.
10277 Return 1 on success, 0 on a failure. */
10278
10279static int
10280i386_index_check (const char *operand_string)
10281{
10282 const char *kind = "base/index";
10283 enum flag_code addr_mode = i386_addressing_mode ();
10284
fc0763e6 10285 if (current_templates->start->opcode_modifier.isstring
c3949f43 10286 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
10287 && (current_templates->end[-1].opcode_modifier.isstring
10288 || i.mem_operands))
10289 {
10290 /* Memory operands of string insns are special in that they only allow
10291 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
10292 const reg_entry *expected_reg;
10293 static const char *di_si[][2] =
10294 {
10295 { "esi", "edi" },
10296 { "si", "di" },
10297 { "rsi", "rdi" }
10298 };
10299 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
10300
10301 kind = "string address";
10302
8325cc63 10303 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6 10304 {
51c8edf6
JB
10305 int es_op = current_templates->end[-1].opcode_modifier.isstring
10306 - IS_STRING_ES_OP0;
10307 int op = 0;
fc0763e6 10308
51c8edf6 10309 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
fc0763e6
JB
10310 || ((!i.mem_operands != !intel_syntax)
10311 && current_templates->end[-1].operand_types[1]
10312 .bitfield.baseindex))
51c8edf6
JB
10313 op = 1;
10314 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
fc0763e6
JB
10315 }
10316 else
be05d201 10317 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 10318
be05d201
L
10319 if (i.base_reg != expected_reg
10320 || i.index_reg
fc0763e6 10321 || operand_type_check (i.types[this_operand], disp))
fc0763e6 10322 {
be05d201
L
10323 /* The second memory operand must have the same size as
10324 the first one. */
10325 if (i.mem_operands
10326 && i.base_reg
10327 && !((addr_mode == CODE_64BIT
dc821c5f 10328 && i.base_reg->reg_type.bitfield.qword)
be05d201 10329 || (addr_mode == CODE_32BIT
dc821c5f
JB
10330 ? i.base_reg->reg_type.bitfield.dword
10331 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
10332 goto bad_address;
10333
fc0763e6
JB
10334 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10335 operand_string,
10336 intel_syntax ? '[' : '(',
10337 register_prefix,
be05d201 10338 expected_reg->reg_name,
fc0763e6 10339 intel_syntax ? ']' : ')');
be05d201 10340 return 1;
fc0763e6 10341 }
be05d201
L
10342 else
10343 return 1;
10344
10345bad_address:
10346 as_bad (_("`%s' is not a valid %s expression"),
10347 operand_string, kind);
10348 return 0;
3e73aa7c
JH
10349 }
10350 else
10351 {
be05d201
L
10352 if (addr_mode != CODE_16BIT)
10353 {
10354 /* 32-bit/64-bit checks. */
10355 if ((i.base_reg
e968fc9b
JB
10356 && ((addr_mode == CODE_64BIT
10357 ? !i.base_reg->reg_type.bitfield.qword
10358 : !i.base_reg->reg_type.bitfield.dword)
10359 || (i.index_reg && i.base_reg->reg_num == RegIP)
10360 || i.base_reg->reg_num == RegIZ))
be05d201 10361 || (i.index_reg
1b54b8d7
JB
10362 && !i.index_reg->reg_type.bitfield.xmmword
10363 && !i.index_reg->reg_type.bitfield.ymmword
10364 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 10365 && ((addr_mode == CODE_64BIT
e968fc9b
JB
10366 ? !i.index_reg->reg_type.bitfield.qword
10367 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
10368 || !i.index_reg->reg_type.bitfield.baseindex)))
10369 goto bad_address;
8178be5b
JB
10370
10371 /* bndmk, bndldx, and bndstx have special restrictions. */
10372 if (current_templates->start->base_opcode == 0xf30f1b
10373 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10374 {
10375 /* They cannot use RIP-relative addressing. */
e968fc9b 10376 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
10377 {
10378 as_bad (_("`%s' cannot be used here"), operand_string);
10379 return 0;
10380 }
10381
10382 /* bndldx and bndstx ignore their scale factor. */
10383 if (current_templates->start->base_opcode != 0xf30f1b
10384 && i.log2_scale_factor)
10385 as_warn (_("register scaling is being ignored here"));
10386 }
be05d201
L
10387 }
10388 else
3e73aa7c 10389 {
be05d201 10390 /* 16-bit checks. */
3e73aa7c 10391 if ((i.base_reg
dc821c5f 10392 && (!i.base_reg->reg_type.bitfield.word
40fb9820 10393 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 10394 || (i.index_reg
dc821c5f 10395 && (!i.index_reg->reg_type.bitfield.word
40fb9820 10396 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
10397 || !(i.base_reg
10398 && i.base_reg->reg_num < 6
10399 && i.index_reg->reg_num >= 6
10400 && i.log2_scale_factor == 0))))
be05d201 10401 goto bad_address;
3e73aa7c
JH
10402 }
10403 }
be05d201 10404 return 1;
24eab124 10405}
252b5132 10406
43234a1e
L
10407/* Handle vector immediates. */
10408
10409static int
10410RC_SAE_immediate (const char *imm_start)
10411{
10412 unsigned int match_found, j;
10413 const char *pstr = imm_start;
10414 expressionS *exp;
10415
10416 if (*pstr != '{')
10417 return 0;
10418
10419 pstr++;
10420 match_found = 0;
10421 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10422 {
10423 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10424 {
10425 if (!i.rounding)
10426 {
10427 rc_op.type = RC_NamesTable[j].type;
10428 rc_op.operand = this_operand;
10429 i.rounding = &rc_op;
10430 }
10431 else
10432 {
10433 as_bad (_("duplicated `%s'"), imm_start);
10434 return 0;
10435 }
10436 pstr += RC_NamesTable[j].len;
10437 match_found = 1;
10438 break;
10439 }
10440 }
10441 if (!match_found)
10442 return 0;
10443
10444 if (*pstr++ != '}')
10445 {
10446 as_bad (_("Missing '}': '%s'"), imm_start);
10447 return 0;
10448 }
10449 /* RC/SAE immediate string should contain nothing more. */;
10450 if (*pstr != 0)
10451 {
10452 as_bad (_("Junk after '}': '%s'"), imm_start);
10453 return 0;
10454 }
10455
10456 exp = &im_expressions[i.imm_operands++];
10457 i.op[this_operand].imms = exp;
10458
10459 exp->X_op = O_constant;
10460 exp->X_add_number = 0;
10461 exp->X_add_symbol = (symbolS *) 0;
10462 exp->X_op_symbol = (symbolS *) 0;
10463
10464 i.types[this_operand].bitfield.imm8 = 1;
10465 return 1;
10466}
10467
8325cc63
JB
10468/* Only string instructions can have a second memory operand, so
10469 reduce current_templates to just those if it contains any. */
10470static int
10471maybe_adjust_templates (void)
10472{
10473 const insn_template *t;
10474
10475 gas_assert (i.mem_operands == 1);
10476
10477 for (t = current_templates->start; t < current_templates->end; ++t)
10478 if (t->opcode_modifier.isstring)
10479 break;
10480
10481 if (t < current_templates->end)
10482 {
10483 static templates aux_templates;
10484 bfd_boolean recheck;
10485
10486 aux_templates.start = t;
10487 for (; t < current_templates->end; ++t)
10488 if (!t->opcode_modifier.isstring)
10489 break;
10490 aux_templates.end = t;
10491
10492 /* Determine whether to re-check the first memory operand. */
10493 recheck = (aux_templates.start != current_templates->start
10494 || t != current_templates->end);
10495
10496 current_templates = &aux_templates;
10497
10498 if (recheck)
10499 {
10500 i.mem_operands = 0;
10501 if (i.memop1_string != NULL
10502 && i386_index_check (i.memop1_string) == 0)
10503 return 0;
10504 i.mem_operands = 1;
10505 }
10506 }
10507
10508 return 1;
10509}
10510
fc0763e6 10511/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 10512 on error. */
252b5132 10513
252b5132 10514static int
a7619375 10515i386_att_operand (char *operand_string)
252b5132 10516{
af6bdddf
AM
10517 const reg_entry *r;
10518 char *end_op;
24eab124 10519 char *op_string = operand_string;
252b5132 10520
24eab124 10521 if (is_space_char (*op_string))
252b5132
RH
10522 ++op_string;
10523
24eab124 10524 /* We check for an absolute prefix (differentiating,
47926f60 10525 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10526 if (*op_string == ABSOLUTE_PREFIX)
10527 {
10528 ++op_string;
10529 if (is_space_char (*op_string))
10530 ++op_string;
6f2f06be 10531 i.jumpabsolute = TRUE;
24eab124 10532 }
252b5132 10533
47926f60 10534 /* Check if operand is a register. */
4d1bb795 10535 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10536 {
40fb9820
L
10537 i386_operand_type temp;
10538
24eab124
AM
10539 /* Check for a segment override by searching for ':' after a
10540 segment register. */
10541 op_string = end_op;
10542 if (is_space_char (*op_string))
10543 ++op_string;
00cee14f 10544 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124
AM
10545 {
10546 switch (r->reg_num)
10547 {
10548 case 0:
10549 i.seg[i.mem_operands] = &es;
10550 break;
10551 case 1:
10552 i.seg[i.mem_operands] = &cs;
10553 break;
10554 case 2:
10555 i.seg[i.mem_operands] = &ss;
10556 break;
10557 case 3:
10558 i.seg[i.mem_operands] = &ds;
10559 break;
10560 case 4:
10561 i.seg[i.mem_operands] = &fs;
10562 break;
10563 case 5:
10564 i.seg[i.mem_operands] = &gs;
10565 break;
10566 }
252b5132 10567
24eab124 10568 /* Skip the ':' and whitespace. */
252b5132
RH
10569 ++op_string;
10570 if (is_space_char (*op_string))
24eab124 10571 ++op_string;
252b5132 10572
24eab124
AM
10573 if (!is_digit_char (*op_string)
10574 && !is_identifier_char (*op_string)
10575 && *op_string != '('
10576 && *op_string != ABSOLUTE_PREFIX)
10577 {
10578 as_bad (_("bad memory operand `%s'"), op_string);
10579 return 0;
10580 }
47926f60 10581 /* Handle case of %es:*foo. */
24eab124
AM
10582 if (*op_string == ABSOLUTE_PREFIX)
10583 {
10584 ++op_string;
10585 if (is_space_char (*op_string))
10586 ++op_string;
6f2f06be 10587 i.jumpabsolute = TRUE;
24eab124
AM
10588 }
10589 goto do_memory_reference;
10590 }
43234a1e
L
10591
10592 /* Handle vector operations. */
10593 if (*op_string == '{')
10594 {
10595 op_string = check_VecOperations (op_string, NULL);
10596 if (op_string == NULL)
10597 return 0;
10598 }
10599
24eab124
AM
10600 if (*op_string)
10601 {
d0b47220 10602 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10603 return 0;
10604 }
40fb9820
L
10605 temp = r->reg_type;
10606 temp.bitfield.baseindex = 0;
c6fb90c8
L
10607 i.types[this_operand] = operand_type_or (i.types[this_operand],
10608 temp);
7d5e4556 10609 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10610 i.op[this_operand].regs = r;
24eab124
AM
10611 i.reg_operands++;
10612 }
af6bdddf
AM
10613 else if (*op_string == REGISTER_PREFIX)
10614 {
10615 as_bad (_("bad register name `%s'"), op_string);
10616 return 0;
10617 }
24eab124 10618 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10619 {
24eab124 10620 ++op_string;
6f2f06be 10621 if (i.jumpabsolute)
24eab124 10622 {
d0b47220 10623 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10624 return 0;
10625 }
10626 if (!i386_immediate (op_string))
10627 return 0;
10628 }
43234a1e
L
10629 else if (RC_SAE_immediate (operand_string))
10630 {
10631 /* If it is a RC or SAE immediate, do nothing. */
10632 ;
10633 }
24eab124
AM
10634 else if (is_digit_char (*op_string)
10635 || is_identifier_char (*op_string)
d02603dc 10636 || *op_string == '"'
e5cb08ac 10637 || *op_string == '(')
24eab124 10638 {
47926f60 10639 /* This is a memory reference of some sort. */
af6bdddf 10640 char *base_string;
252b5132 10641
47926f60 10642 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10643 char *displacement_string_start;
10644 char *displacement_string_end;
43234a1e 10645 char *vop_start;
252b5132 10646
24eab124 10647 do_memory_reference:
8325cc63
JB
10648 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10649 return 0;
24eab124 10650 if ((i.mem_operands == 1
40fb9820 10651 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10652 || i.mem_operands == 2)
10653 {
10654 as_bad (_("too many memory references for `%s'"),
10655 current_templates->start->name);
10656 return 0;
10657 }
252b5132 10658
24eab124
AM
10659 /* Check for base index form. We detect the base index form by
10660 looking for an ')' at the end of the operand, searching
10661 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10662 after the '('. */
af6bdddf 10663 base_string = op_string + strlen (op_string);
c3332e24 10664
43234a1e
L
10665 /* Handle vector operations. */
10666 vop_start = strchr (op_string, '{');
10667 if (vop_start && vop_start < base_string)
10668 {
10669 if (check_VecOperations (vop_start, base_string) == NULL)
10670 return 0;
10671 base_string = vop_start;
10672 }
10673
af6bdddf
AM
10674 --base_string;
10675 if (is_space_char (*base_string))
10676 --base_string;
252b5132 10677
47926f60 10678 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10679 displacement_string_start = op_string;
10680 displacement_string_end = base_string + 1;
252b5132 10681
24eab124
AM
10682 if (*base_string == ')')
10683 {
af6bdddf 10684 char *temp_string;
24eab124
AM
10685 unsigned int parens_balanced = 1;
10686 /* We've already checked that the number of left & right ()'s are
47926f60 10687 equal, so this loop will not be infinite. */
24eab124
AM
10688 do
10689 {
10690 base_string--;
10691 if (*base_string == ')')
10692 parens_balanced++;
10693 if (*base_string == '(')
10694 parens_balanced--;
10695 }
10696 while (parens_balanced);
c3332e24 10697
af6bdddf 10698 temp_string = base_string;
c3332e24 10699
24eab124 10700 /* Skip past '(' and whitespace. */
252b5132
RH
10701 ++base_string;
10702 if (is_space_char (*base_string))
24eab124 10703 ++base_string;
252b5132 10704
af6bdddf 10705 if (*base_string == ','
4eed87de
AM
10706 || ((i.base_reg = parse_register (base_string, &end_op))
10707 != NULL))
252b5132 10708 {
af6bdddf 10709 displacement_string_end = temp_string;
252b5132 10710
40fb9820 10711 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10712
af6bdddf 10713 if (i.base_reg)
24eab124 10714 {
24eab124
AM
10715 base_string = end_op;
10716 if (is_space_char (*base_string))
10717 ++base_string;
af6bdddf
AM
10718 }
10719
10720 /* There may be an index reg or scale factor here. */
10721 if (*base_string == ',')
10722 {
10723 ++base_string;
10724 if (is_space_char (*base_string))
10725 ++base_string;
10726
4eed87de
AM
10727 if ((i.index_reg = parse_register (base_string, &end_op))
10728 != NULL)
24eab124 10729 {
af6bdddf 10730 base_string = end_op;
24eab124
AM
10731 if (is_space_char (*base_string))
10732 ++base_string;
af6bdddf
AM
10733 if (*base_string == ',')
10734 {
10735 ++base_string;
10736 if (is_space_char (*base_string))
10737 ++base_string;
10738 }
e5cb08ac 10739 else if (*base_string != ')')
af6bdddf 10740 {
4eed87de
AM
10741 as_bad (_("expecting `,' or `)' "
10742 "after index register in `%s'"),
af6bdddf
AM
10743 operand_string);
10744 return 0;
10745 }
24eab124 10746 }
af6bdddf 10747 else if (*base_string == REGISTER_PREFIX)
24eab124 10748 {
f76bf5e0
L
10749 end_op = strchr (base_string, ',');
10750 if (end_op)
10751 *end_op = '\0';
af6bdddf 10752 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10753 return 0;
10754 }
252b5132 10755
47926f60 10756 /* Check for scale factor. */
551c1ca1 10757 if (*base_string != ')')
af6bdddf 10758 {
551c1ca1
AM
10759 char *end_scale = i386_scale (base_string);
10760
10761 if (!end_scale)
af6bdddf 10762 return 0;
24eab124 10763
551c1ca1 10764 base_string = end_scale;
af6bdddf
AM
10765 if (is_space_char (*base_string))
10766 ++base_string;
10767 if (*base_string != ')')
10768 {
4eed87de
AM
10769 as_bad (_("expecting `)' "
10770 "after scale factor in `%s'"),
af6bdddf
AM
10771 operand_string);
10772 return 0;
10773 }
10774 }
10775 else if (!i.index_reg)
24eab124 10776 {
4eed87de
AM
10777 as_bad (_("expecting index register or scale factor "
10778 "after `,'; got '%c'"),
af6bdddf 10779 *base_string);
24eab124
AM
10780 return 0;
10781 }
10782 }
af6bdddf 10783 else if (*base_string != ')')
24eab124 10784 {
4eed87de
AM
10785 as_bad (_("expecting `,' or `)' "
10786 "after base register in `%s'"),
af6bdddf 10787 operand_string);
24eab124
AM
10788 return 0;
10789 }
c3332e24 10790 }
af6bdddf 10791 else if (*base_string == REGISTER_PREFIX)
c3332e24 10792 {
f76bf5e0
L
10793 end_op = strchr (base_string, ',');
10794 if (end_op)
10795 *end_op = '\0';
af6bdddf 10796 as_bad (_("bad register name `%s'"), base_string);
24eab124 10797 return 0;
c3332e24 10798 }
24eab124
AM
10799 }
10800
10801 /* If there's an expression beginning the operand, parse it,
10802 assuming displacement_string_start and
10803 displacement_string_end are meaningful. */
10804 if (displacement_string_start != displacement_string_end)
10805 {
10806 if (!i386_displacement (displacement_string_start,
10807 displacement_string_end))
10808 return 0;
10809 }
10810
10811 /* Special case for (%dx) while doing input/output op. */
10812 if (i.base_reg
75e5731b
JB
10813 && i.base_reg->reg_type.bitfield.instance == RegD
10814 && i.base_reg->reg_type.bitfield.word
24eab124
AM
10815 && i.index_reg == 0
10816 && i.log2_scale_factor == 0
10817 && i.seg[i.mem_operands] == 0
40fb9820 10818 && !operand_type_check (i.types[this_operand], disp))
24eab124 10819 {
2fb5be8d 10820 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10821 return 1;
10822 }
10823
eecb386c
AM
10824 if (i386_index_check (operand_string) == 0)
10825 return 0;
c48dadc9 10826 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10827 if (i.mem_operands == 0)
10828 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10829 i.mem_operands++;
10830 }
10831 else
ce8a8b2f
AM
10832 {
10833 /* It's not a memory operand; argh! */
24eab124
AM
10834 as_bad (_("invalid char %s beginning operand %d `%s'"),
10835 output_invalid (*op_string),
10836 this_operand + 1,
10837 op_string);
10838 return 0;
10839 }
47926f60 10840 return 1; /* Normal return. */
252b5132
RH
10841}
10842\f
fa94de6b
RM
10843/* Calculate the maximum variable size (i.e., excluding fr_fix)
10844 that an rs_machine_dependent frag may reach. */
10845
10846unsigned int
10847i386_frag_max_var (fragS *frag)
10848{
10849 /* The only relaxable frags are for jumps.
10850 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10851 gas_assert (frag->fr_type == rs_machine_dependent);
10852 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10853}
10854
b084df0b
L
10855#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10856static int
8dcea932 10857elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10858{
10859 /* STT_GNU_IFUNC symbol must go through PLT. */
10860 if ((symbol_get_bfdsym (fr_symbol)->flags
10861 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10862 return 0;
10863
10864 if (!S_IS_EXTERNAL (fr_symbol))
10865 /* Symbol may be weak or local. */
10866 return !S_IS_WEAK (fr_symbol);
10867
8dcea932
L
10868 /* Global symbols with non-default visibility can't be preempted. */
10869 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10870 return 1;
10871
10872 if (fr_var != NO_RELOC)
10873 switch ((enum bfd_reloc_code_real) fr_var)
10874 {
10875 case BFD_RELOC_386_PLT32:
10876 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10877 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10878 return 0;
10879 default:
10880 abort ();
10881 }
10882
b084df0b
L
10883 /* Global symbols with default visibility in a shared library may be
10884 preempted by another definition. */
8dcea932 10885 return !shared;
b084df0b
L
10886}
10887#endif
10888
e379e5f3
L
10889/* Return the next non-empty frag. */
10890
10891static fragS *
10892i386_next_non_empty_frag (fragS *fragP)
10893{
10894 /* There may be a frag with a ".fill 0" when there is no room in
10895 the current frag for frag_grow in output_insn. */
10896 for (fragP = fragP->fr_next;
10897 (fragP != NULL
10898 && fragP->fr_type == rs_fill
10899 && fragP->fr_fix == 0);
10900 fragP = fragP->fr_next)
10901 ;
10902 return fragP;
10903}
10904
10905/* Return the next jcc frag after BRANCH_PADDING. */
10906
10907static fragS *
10908i386_next_jcc_frag (fragS *fragP)
10909{
10910 if (!fragP)
10911 return NULL;
10912
10913 if (fragP->fr_type == rs_machine_dependent
10914 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10915 == BRANCH_PADDING))
10916 {
10917 fragP = i386_next_non_empty_frag (fragP);
10918 if (fragP->fr_type != rs_machine_dependent)
10919 return NULL;
10920 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10921 return fragP;
10922 }
10923
10924 return NULL;
10925}
10926
10927/* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10928
10929static void
10930i386_classify_machine_dependent_frag (fragS *fragP)
10931{
10932 fragS *cmp_fragP;
10933 fragS *pad_fragP;
10934 fragS *branch_fragP;
10935 fragS *next_fragP;
10936 unsigned int max_prefix_length;
10937
10938 if (fragP->tc_frag_data.classified)
10939 return;
10940
10941 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10942 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10943 for (next_fragP = fragP;
10944 next_fragP != NULL;
10945 next_fragP = next_fragP->fr_next)
10946 {
10947 next_fragP->tc_frag_data.classified = 1;
10948 if (next_fragP->fr_type == rs_machine_dependent)
10949 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10950 {
10951 case BRANCH_PADDING:
10952 /* The BRANCH_PADDING frag must be followed by a branch
10953 frag. */
10954 branch_fragP = i386_next_non_empty_frag (next_fragP);
10955 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10956 break;
10957 case FUSED_JCC_PADDING:
10958 /* Check if this is a fused jcc:
10959 FUSED_JCC_PADDING
10960 CMP like instruction
10961 BRANCH_PADDING
10962 COND_JUMP
10963 */
10964 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10965 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10966 branch_fragP = i386_next_jcc_frag (pad_fragP);
10967 if (branch_fragP)
10968 {
10969 /* The BRANCH_PADDING frag is merged with the
10970 FUSED_JCC_PADDING frag. */
10971 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10972 /* CMP like instruction size. */
10973 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10974 frag_wane (pad_fragP);
10975 /* Skip to branch_fragP. */
10976 next_fragP = branch_fragP;
10977 }
10978 else if (next_fragP->tc_frag_data.max_prefix_length)
10979 {
10980 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10981 a fused jcc. */
10982 next_fragP->fr_subtype
10983 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10984 next_fragP->tc_frag_data.max_bytes
10985 = next_fragP->tc_frag_data.max_prefix_length;
10986 /* This will be updated in the BRANCH_PREFIX scan. */
10987 next_fragP->tc_frag_data.max_prefix_length = 0;
10988 }
10989 else
10990 frag_wane (next_fragP);
10991 break;
10992 }
10993 }
10994
10995 /* Stop if there is no BRANCH_PREFIX. */
10996 if (!align_branch_prefix_size)
10997 return;
10998
10999 /* Scan for BRANCH_PREFIX. */
11000 for (; fragP != NULL; fragP = fragP->fr_next)
11001 {
11002 if (fragP->fr_type != rs_machine_dependent
11003 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11004 != BRANCH_PREFIX))
11005 continue;
11006
11007 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11008 COND_JUMP_PREFIX. */
11009 max_prefix_length = 0;
11010 for (next_fragP = fragP;
11011 next_fragP != NULL;
11012 next_fragP = next_fragP->fr_next)
11013 {
11014 if (next_fragP->fr_type == rs_fill)
11015 /* Skip rs_fill frags. */
11016 continue;
11017 else if (next_fragP->fr_type != rs_machine_dependent)
11018 /* Stop for all other frags. */
11019 break;
11020
11021 /* rs_machine_dependent frags. */
11022 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11023 == BRANCH_PREFIX)
11024 {
11025 /* Count BRANCH_PREFIX frags. */
11026 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11027 {
11028 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11029 frag_wane (next_fragP);
11030 }
11031 else
11032 max_prefix_length
11033 += next_fragP->tc_frag_data.max_bytes;
11034 }
11035 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11036 == BRANCH_PADDING)
11037 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11038 == FUSED_JCC_PADDING))
11039 {
11040 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11041 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11042 break;
11043 }
11044 else
11045 /* Stop for other rs_machine_dependent frags. */
11046 break;
11047 }
11048
11049 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11050
11051 /* Skip to the next frag. */
11052 fragP = next_fragP;
11053 }
11054}
11055
11056/* Compute padding size for
11057
11058 FUSED_JCC_PADDING
11059 CMP like instruction
11060 BRANCH_PADDING
11061 COND_JUMP/UNCOND_JUMP
11062
11063 or
11064
11065 BRANCH_PADDING
11066 COND_JUMP/UNCOND_JUMP
11067 */
11068
11069static int
11070i386_branch_padding_size (fragS *fragP, offsetT address)
11071{
11072 unsigned int offset, size, padding_size;
11073 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11074
11075 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11076 if (!address)
11077 address = fragP->fr_address;
11078 address += fragP->fr_fix;
11079
11080 /* CMP like instrunction size. */
11081 size = fragP->tc_frag_data.cmp_size;
11082
11083 /* The base size of the branch frag. */
11084 size += branch_fragP->fr_fix;
11085
11086 /* Add opcode and displacement bytes for the rs_machine_dependent
11087 branch frag. */
11088 if (branch_fragP->fr_type == rs_machine_dependent)
11089 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11090
11091 /* Check if branch is within boundary and doesn't end at the last
11092 byte. */
11093 offset = address & ((1U << align_branch_power) - 1);
11094 if ((offset + size) >= (1U << align_branch_power))
11095 /* Padding needed to avoid crossing boundary. */
11096 padding_size = (1U << align_branch_power) - offset;
11097 else
11098 /* No padding needed. */
11099 padding_size = 0;
11100
11101 /* The return value may be saved in tc_frag_data.length which is
11102 unsigned byte. */
11103 if (!fits_in_unsigned_byte (padding_size))
11104 abort ();
11105
11106 return padding_size;
11107}
11108
11109/* i386_generic_table_relax_frag()
11110
11111 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11112 grow/shrink padding to align branch frags. Hand others to
11113 relax_frag(). */
11114
11115long
11116i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11117{
11118 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11119 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11120 {
11121 long padding_size = i386_branch_padding_size (fragP, 0);
11122 long grow = padding_size - fragP->tc_frag_data.length;
11123
11124 /* When the BRANCH_PREFIX frag is used, the computed address
11125 must match the actual address and there should be no padding. */
11126 if (fragP->tc_frag_data.padding_address
11127 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11128 || padding_size))
11129 abort ();
11130
11131 /* Update the padding size. */
11132 if (grow)
11133 fragP->tc_frag_data.length = padding_size;
11134
11135 return grow;
11136 }
11137 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11138 {
11139 fragS *padding_fragP, *next_fragP;
11140 long padding_size, left_size, last_size;
11141
11142 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11143 if (!padding_fragP)
11144 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11145 return (fragP->tc_frag_data.length
11146 - fragP->tc_frag_data.last_length);
11147
11148 /* Compute the relative address of the padding frag in the very
11149 first time where the BRANCH_PREFIX frag sizes are zero. */
11150 if (!fragP->tc_frag_data.padding_address)
11151 fragP->tc_frag_data.padding_address
11152 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11153
11154 /* First update the last length from the previous interation. */
11155 left_size = fragP->tc_frag_data.prefix_length;
11156 for (next_fragP = fragP;
11157 next_fragP != padding_fragP;
11158 next_fragP = next_fragP->fr_next)
11159 if (next_fragP->fr_type == rs_machine_dependent
11160 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11161 == BRANCH_PREFIX))
11162 {
11163 if (left_size)
11164 {
11165 int max = next_fragP->tc_frag_data.max_bytes;
11166 if (max)
11167 {
11168 int size;
11169 if (max > left_size)
11170 size = left_size;
11171 else
11172 size = max;
11173 left_size -= size;
11174 next_fragP->tc_frag_data.last_length = size;
11175 }
11176 }
11177 else
11178 next_fragP->tc_frag_data.last_length = 0;
11179 }
11180
11181 /* Check the padding size for the padding frag. */
11182 padding_size = i386_branch_padding_size
11183 (padding_fragP, (fragP->fr_address
11184 + fragP->tc_frag_data.padding_address));
11185
11186 last_size = fragP->tc_frag_data.prefix_length;
11187 /* Check if there is change from the last interation. */
11188 if (padding_size == last_size)
11189 {
11190 /* Update the expected address of the padding frag. */
11191 padding_fragP->tc_frag_data.padding_address
11192 = (fragP->fr_address + padding_size
11193 + fragP->tc_frag_data.padding_address);
11194 return 0;
11195 }
11196
11197 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11198 {
11199 /* No padding if there is no sufficient room. Clear the
11200 expected address of the padding frag. */
11201 padding_fragP->tc_frag_data.padding_address = 0;
11202 padding_size = 0;
11203 }
11204 else
11205 /* Store the expected address of the padding frag. */
11206 padding_fragP->tc_frag_data.padding_address
11207 = (fragP->fr_address + padding_size
11208 + fragP->tc_frag_data.padding_address);
11209
11210 fragP->tc_frag_data.prefix_length = padding_size;
11211
11212 /* Update the length for the current interation. */
11213 left_size = padding_size;
11214 for (next_fragP = fragP;
11215 next_fragP != padding_fragP;
11216 next_fragP = next_fragP->fr_next)
11217 if (next_fragP->fr_type == rs_machine_dependent
11218 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11219 == BRANCH_PREFIX))
11220 {
11221 if (left_size)
11222 {
11223 int max = next_fragP->tc_frag_data.max_bytes;
11224 if (max)
11225 {
11226 int size;
11227 if (max > left_size)
11228 size = left_size;
11229 else
11230 size = max;
11231 left_size -= size;
11232 next_fragP->tc_frag_data.length = size;
11233 }
11234 }
11235 else
11236 next_fragP->tc_frag_data.length = 0;
11237 }
11238
11239 return (fragP->tc_frag_data.length
11240 - fragP->tc_frag_data.last_length);
11241 }
11242 return relax_frag (segment, fragP, stretch);
11243}
11244
ee7fcc42
AM
11245/* md_estimate_size_before_relax()
11246
11247 Called just before relax() for rs_machine_dependent frags. The x86
11248 assembler uses these frags to handle variable size jump
11249 instructions.
11250
11251 Any symbol that is now undefined will not become defined.
11252 Return the correct fr_subtype in the frag.
11253 Return the initial "guess for variable size of frag" to caller.
11254 The guess is actually the growth beyond the fixed part. Whatever
11255 we do to grow the fixed or variable part contributes to our
11256 returned value. */
11257
252b5132 11258int
7016a5d5 11259md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 11260{
e379e5f3
L
11261 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11262 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11263 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11264 {
11265 i386_classify_machine_dependent_frag (fragP);
11266 return fragP->tc_frag_data.length;
11267 }
11268
252b5132 11269 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
11270 check for un-relaxable symbols. On an ELF system, we can't relax
11271 an externally visible symbol, because it may be overridden by a
11272 shared library. */
11273 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 11274#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11275 || (IS_ELF
8dcea932
L
11276 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11277 fragP->fr_var))
fbeb56a4
DK
11278#endif
11279#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 11280 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 11281 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
11282#endif
11283 )
252b5132 11284 {
b98ef147
AM
11285 /* Symbol is undefined in this segment, or we need to keep a
11286 reloc so that weak symbols can be overridden. */
11287 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 11288 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
11289 unsigned char *opcode;
11290 int old_fr_fix;
f6af82bd 11291
ee7fcc42 11292 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 11293 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 11294 else if (size == 2)
f6af82bd 11295 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
11296#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11297 else if (need_plt32_p (fragP->fr_symbol))
11298 reloc_type = BFD_RELOC_X86_64_PLT32;
11299#endif
f6af82bd
AM
11300 else
11301 reloc_type = BFD_RELOC_32_PCREL;
252b5132 11302
ee7fcc42
AM
11303 old_fr_fix = fragP->fr_fix;
11304 opcode = (unsigned char *) fragP->fr_opcode;
11305
fddf5b5b 11306 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 11307 {
fddf5b5b
AM
11308 case UNCOND_JUMP:
11309 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 11310 opcode[0] = 0xe9;
252b5132 11311 fragP->fr_fix += size;
062cd5e7
AS
11312 fix_new (fragP, old_fr_fix, size,
11313 fragP->fr_symbol,
11314 fragP->fr_offset, 1,
11315 reloc_type);
252b5132
RH
11316 break;
11317
fddf5b5b 11318 case COND_JUMP86:
412167cb
AM
11319 if (size == 2
11320 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
11321 {
11322 /* Negate the condition, and branch past an
11323 unconditional jump. */
11324 opcode[0] ^= 1;
11325 opcode[1] = 3;
11326 /* Insert an unconditional jump. */
11327 opcode[2] = 0xe9;
11328 /* We added two extra opcode bytes, and have a two byte
11329 offset. */
11330 fragP->fr_fix += 2 + 2;
062cd5e7
AS
11331 fix_new (fragP, old_fr_fix + 2, 2,
11332 fragP->fr_symbol,
11333 fragP->fr_offset, 1,
11334 reloc_type);
fddf5b5b
AM
11335 break;
11336 }
11337 /* Fall through. */
11338
11339 case COND_JUMP:
412167cb
AM
11340 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11341 {
3e02c1cc
AM
11342 fixS *fixP;
11343
412167cb 11344 fragP->fr_fix += 1;
3e02c1cc
AM
11345 fixP = fix_new (fragP, old_fr_fix, 1,
11346 fragP->fr_symbol,
11347 fragP->fr_offset, 1,
11348 BFD_RELOC_8_PCREL);
11349 fixP->fx_signed = 1;
412167cb
AM
11350 break;
11351 }
93c2a809 11352
24eab124 11353 /* This changes the byte-displacement jump 0x7N
fddf5b5b 11354 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 11355 opcode[1] = opcode[0] + 0x10;
f6af82bd 11356 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
11357 /* We've added an opcode byte. */
11358 fragP->fr_fix += 1 + size;
062cd5e7
AS
11359 fix_new (fragP, old_fr_fix + 1, size,
11360 fragP->fr_symbol,
11361 fragP->fr_offset, 1,
11362 reloc_type);
252b5132 11363 break;
fddf5b5b
AM
11364
11365 default:
11366 BAD_CASE (fragP->fr_subtype);
11367 break;
252b5132
RH
11368 }
11369 frag_wane (fragP);
ee7fcc42 11370 return fragP->fr_fix - old_fr_fix;
252b5132 11371 }
93c2a809 11372
93c2a809
AM
11373 /* Guess size depending on current relax state. Initially the relax
11374 state will correspond to a short jump and we return 1, because
11375 the variable part of the frag (the branch offset) is one byte
11376 long. However, we can relax a section more than once and in that
11377 case we must either set fr_subtype back to the unrelaxed state,
11378 or return the value for the appropriate branch. */
11379 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
11380}
11381
47926f60
KH
11382/* Called after relax() is finished.
11383
11384 In: Address of frag.
11385 fr_type == rs_machine_dependent.
11386 fr_subtype is what the address relaxed to.
11387
11388 Out: Any fixSs and constants are set up.
11389 Caller will turn frag into a ".space 0". */
11390
252b5132 11391void
7016a5d5
TG
11392md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11393 fragS *fragP)
252b5132 11394{
29b0f896 11395 unsigned char *opcode;
252b5132 11396 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
11397 offsetT target_address;
11398 offsetT opcode_address;
252b5132 11399 unsigned int extension = 0;
847f7ad4 11400 offsetT displacement_from_opcode_start;
252b5132 11401
e379e5f3
L
11402 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11403 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11404 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11405 {
11406 /* Generate nop padding. */
11407 unsigned int size = fragP->tc_frag_data.length;
11408 if (size)
11409 {
11410 if (size > fragP->tc_frag_data.max_bytes)
11411 abort ();
11412
11413 if (flag_debug)
11414 {
11415 const char *msg;
11416 const char *branch = "branch";
11417 const char *prefix = "";
11418 fragS *padding_fragP;
11419 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11420 == BRANCH_PREFIX)
11421 {
11422 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11423 switch (fragP->tc_frag_data.default_prefix)
11424 {
11425 default:
11426 abort ();
11427 break;
11428 case CS_PREFIX_OPCODE:
11429 prefix = " cs";
11430 break;
11431 case DS_PREFIX_OPCODE:
11432 prefix = " ds";
11433 break;
11434 case ES_PREFIX_OPCODE:
11435 prefix = " es";
11436 break;
11437 case FS_PREFIX_OPCODE:
11438 prefix = " fs";
11439 break;
11440 case GS_PREFIX_OPCODE:
11441 prefix = " gs";
11442 break;
11443 case SS_PREFIX_OPCODE:
11444 prefix = " ss";
11445 break;
11446 }
11447 if (padding_fragP)
11448 msg = _("%s:%u: add %d%s at 0x%llx to align "
11449 "%s within %d-byte boundary\n");
11450 else
11451 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11452 "align %s within %d-byte boundary\n");
11453 }
11454 else
11455 {
11456 padding_fragP = fragP;
11457 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11458 "%s within %d-byte boundary\n");
11459 }
11460
11461 if (padding_fragP)
11462 switch (padding_fragP->tc_frag_data.branch_type)
11463 {
11464 case align_branch_jcc:
11465 branch = "jcc";
11466 break;
11467 case align_branch_fused:
11468 branch = "fused jcc";
11469 break;
11470 case align_branch_jmp:
11471 branch = "jmp";
11472 break;
11473 case align_branch_call:
11474 branch = "call";
11475 break;
11476 case align_branch_indirect:
11477 branch = "indiret branch";
11478 break;
11479 case align_branch_ret:
11480 branch = "ret";
11481 break;
11482 default:
11483 break;
11484 }
11485
11486 fprintf (stdout, msg,
11487 fragP->fr_file, fragP->fr_line, size, prefix,
11488 (long long) fragP->fr_address, branch,
11489 1 << align_branch_power);
11490 }
11491 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11492 memset (fragP->fr_opcode,
11493 fragP->tc_frag_data.default_prefix, size);
11494 else
11495 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11496 size, 0);
11497 fragP->fr_fix += size;
11498 }
11499 return;
11500 }
11501
252b5132
RH
11502 opcode = (unsigned char *) fragP->fr_opcode;
11503
47926f60 11504 /* Address we want to reach in file space. */
252b5132 11505 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 11506
47926f60 11507 /* Address opcode resides at in file space. */
252b5132
RH
11508 opcode_address = fragP->fr_address + fragP->fr_fix;
11509
47926f60 11510 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
11511 displacement_from_opcode_start = target_address - opcode_address;
11512
fddf5b5b 11513 if ((fragP->fr_subtype & BIG) == 0)
252b5132 11514 {
47926f60
KH
11515 /* Don't have to change opcode. */
11516 extension = 1; /* 1 opcode + 1 displacement */
252b5132 11517 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
11518 }
11519 else
11520 {
11521 if (no_cond_jump_promotion
11522 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
11523 as_warn_where (fragP->fr_file, fragP->fr_line,
11524 _("long jump required"));
252b5132 11525
fddf5b5b
AM
11526 switch (fragP->fr_subtype)
11527 {
11528 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11529 extension = 4; /* 1 opcode + 4 displacement */
11530 opcode[0] = 0xe9;
11531 where_to_put_displacement = &opcode[1];
11532 break;
252b5132 11533
fddf5b5b
AM
11534 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11535 extension = 2; /* 1 opcode + 2 displacement */
11536 opcode[0] = 0xe9;
11537 where_to_put_displacement = &opcode[1];
11538 break;
252b5132 11539
fddf5b5b
AM
11540 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11541 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11542 extension = 5; /* 2 opcode + 4 displacement */
11543 opcode[1] = opcode[0] + 0x10;
11544 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11545 where_to_put_displacement = &opcode[2];
11546 break;
252b5132 11547
fddf5b5b
AM
11548 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11549 extension = 3; /* 2 opcode + 2 displacement */
11550 opcode[1] = opcode[0] + 0x10;
11551 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11552 where_to_put_displacement = &opcode[2];
11553 break;
252b5132 11554
fddf5b5b
AM
11555 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11556 extension = 4;
11557 opcode[0] ^= 1;
11558 opcode[1] = 3;
11559 opcode[2] = 0xe9;
11560 where_to_put_displacement = &opcode[3];
11561 break;
11562
11563 default:
11564 BAD_CASE (fragP->fr_subtype);
11565 break;
11566 }
252b5132 11567 }
fddf5b5b 11568
7b81dfbb
AJ
11569 /* If size if less then four we are sure that the operand fits,
11570 but if it's 4, then it could be that the displacement is larger
11571 then -/+ 2GB. */
11572 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11573 && object_64bit
11574 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
11575 + ((addressT) 1 << 31))
11576 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
11577 {
11578 as_bad_where (fragP->fr_file, fragP->fr_line,
11579 _("jump target out of range"));
11580 /* Make us emit 0. */
11581 displacement_from_opcode_start = extension;
11582 }
47926f60 11583 /* Now put displacement after opcode. */
252b5132
RH
11584 md_number_to_chars ((char *) where_to_put_displacement,
11585 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 11586 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
11587 fragP->fr_fix += extension;
11588}
11589\f
7016a5d5 11590/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
11591 by our caller that we have all the info we need to fix it up.
11592
7016a5d5
TG
11593 Parameter valP is the pointer to the value of the bits.
11594
252b5132
RH
11595 On the 386, immediates, displacements, and data pointers are all in
11596 the same (little-endian) format, so we don't need to care about which
11597 we are handling. */
11598
94f592af 11599void
7016a5d5 11600md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 11601{
94f592af 11602 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 11603 valueT value = *valP;
252b5132 11604
f86103b7 11605#if !defined (TE_Mach)
93382f6d
AM
11606 if (fixP->fx_pcrel)
11607 {
11608 switch (fixP->fx_r_type)
11609 {
5865bb77
ILT
11610 default:
11611 break;
11612
d6ab8113
JB
11613 case BFD_RELOC_64:
11614 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11615 break;
93382f6d 11616 case BFD_RELOC_32:
ae8887b5 11617 case BFD_RELOC_X86_64_32S:
93382f6d
AM
11618 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11619 break;
11620 case BFD_RELOC_16:
11621 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11622 break;
11623 case BFD_RELOC_8:
11624 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11625 break;
11626 }
11627 }
252b5132 11628
a161fe53 11629 if (fixP->fx_addsy != NULL
31312f95 11630 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 11631 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 11632 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 11633 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 11634 && !use_rela_relocations)
252b5132 11635 {
31312f95
AM
11636 /* This is a hack. There should be a better way to handle this.
11637 This covers for the fact that bfd_install_relocation will
11638 subtract the current location (for partial_inplace, PC relative
11639 relocations); see more below. */
252b5132 11640#ifndef OBJ_AOUT
718ddfc0 11641 if (IS_ELF
252b5132
RH
11642#ifdef TE_PE
11643 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11644#endif
11645 )
11646 value += fixP->fx_where + fixP->fx_frag->fr_address;
11647#endif
11648#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11649 if (IS_ELF)
252b5132 11650 {
6539b54b 11651 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 11652
6539b54b 11653 if ((sym_seg == seg
2f66722d 11654 || (symbol_section_p (fixP->fx_addsy)
6539b54b 11655 && sym_seg != absolute_section))
af65af87 11656 && !generic_force_reloc (fixP))
2f66722d
AM
11657 {
11658 /* Yes, we add the values in twice. This is because
6539b54b
AM
11659 bfd_install_relocation subtracts them out again. I think
11660 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
11661 it. FIXME. */
11662 value += fixP->fx_where + fixP->fx_frag->fr_address;
11663 }
252b5132
RH
11664 }
11665#endif
11666#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
11667 /* For some reason, the PE format does not store a
11668 section address offset for a PC relative symbol. */
11669 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 11670 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
11671 value += md_pcrel_from (fixP);
11672#endif
11673 }
fbeb56a4 11674#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
11675 if (fixP->fx_addsy != NULL
11676 && S_IS_WEAK (fixP->fx_addsy)
11677 /* PR 16858: Do not modify weak function references. */
11678 && ! fixP->fx_pcrel)
fbeb56a4 11679 {
296a8689
NC
11680#if !defined (TE_PEP)
11681 /* For x86 PE weak function symbols are neither PC-relative
11682 nor do they set S_IS_FUNCTION. So the only reliable way
11683 to detect them is to check the flags of their containing
11684 section. */
11685 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11686 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11687 ;
11688 else
11689#endif
fbeb56a4
DK
11690 value -= S_GET_VALUE (fixP->fx_addsy);
11691 }
11692#endif
252b5132
RH
11693
11694 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 11695 and we must not disappoint it. */
252b5132 11696#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11697 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
11698 switch (fixP->fx_r_type)
11699 {
11700 case BFD_RELOC_386_PLT32:
3e73aa7c 11701 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
11702 /* Make the jump instruction point to the address of the operand.
11703 At runtime we merely add the offset to the actual PLT entry.
11704 NB: Subtract the offset size only for jump instructions. */
11705 if (fixP->fx_pcrel)
11706 value = -4;
47926f60 11707 break;
31312f95 11708
13ae64f3
JJ
11709 case BFD_RELOC_386_TLS_GD:
11710 case BFD_RELOC_386_TLS_LDM:
13ae64f3 11711 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11712 case BFD_RELOC_386_TLS_IE:
11713 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 11714 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
11715 case BFD_RELOC_X86_64_TLSGD:
11716 case BFD_RELOC_X86_64_TLSLD:
11717 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 11718 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
11719 value = 0; /* Fully resolved at runtime. No addend. */
11720 /* Fallthrough */
11721 case BFD_RELOC_386_TLS_LE:
11722 case BFD_RELOC_386_TLS_LDO_32:
11723 case BFD_RELOC_386_TLS_LE_32:
11724 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11725 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 11726 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 11727 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
11728 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11729 break;
11730
67a4f2b7
AO
11731 case BFD_RELOC_386_TLS_DESC_CALL:
11732 case BFD_RELOC_X86_64_TLSDESC_CALL:
11733 value = 0; /* Fully resolved at runtime. No addend. */
11734 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11735 fixP->fx_done = 0;
11736 return;
11737
47926f60
KH
11738 case BFD_RELOC_VTABLE_INHERIT:
11739 case BFD_RELOC_VTABLE_ENTRY:
11740 fixP->fx_done = 0;
94f592af 11741 return;
47926f60
KH
11742
11743 default:
11744 break;
11745 }
11746#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 11747 *valP = value;
f86103b7 11748#endif /* !defined (TE_Mach) */
3e73aa7c 11749
3e73aa7c 11750 /* Are we finished with this relocation now? */
c6682705 11751 if (fixP->fx_addsy == NULL)
3e73aa7c 11752 fixP->fx_done = 1;
fbeb56a4
DK
11753#if defined (OBJ_COFF) && defined (TE_PE)
11754 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11755 {
11756 fixP->fx_done = 0;
11757 /* Remember value for tc_gen_reloc. */
11758 fixP->fx_addnumber = value;
11759 /* Clear out the frag for now. */
11760 value = 0;
11761 }
11762#endif
3e73aa7c
JH
11763 else if (use_rela_relocations)
11764 {
11765 fixP->fx_no_overflow = 1;
062cd5e7
AS
11766 /* Remember value for tc_gen_reloc. */
11767 fixP->fx_addnumber = value;
3e73aa7c
JH
11768 value = 0;
11769 }
f86103b7 11770
94f592af 11771 md_number_to_chars (p, value, fixP->fx_size);
252b5132 11772}
252b5132 11773\f
6d4af3c2 11774const char *
499ac353 11775md_atof (int type, char *litP, int *sizeP)
252b5132 11776{
499ac353
NC
11777 /* This outputs the LITTLENUMs in REVERSE order;
11778 in accord with the bigendian 386. */
11779 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
11780}
11781\f
2d545b82 11782static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 11783
252b5132 11784static char *
e3bb37b5 11785output_invalid (int c)
252b5132 11786{
3882b010 11787 if (ISPRINT (c))
f9f21a03
L
11788 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11789 "'%c'", c);
252b5132 11790 else
f9f21a03 11791 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 11792 "(0x%x)", (unsigned char) c);
252b5132
RH
11793 return output_invalid_buf;
11794}
11795
af6bdddf 11796/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
11797
11798static const reg_entry *
4d1bb795 11799parse_real_register (char *reg_string, char **end_op)
252b5132 11800{
af6bdddf
AM
11801 char *s = reg_string;
11802 char *p;
252b5132
RH
11803 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11804 const reg_entry *r;
11805
11806 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11807 if (*s == REGISTER_PREFIX)
11808 ++s;
11809
11810 if (is_space_char (*s))
11811 ++s;
11812
11813 p = reg_name_given;
af6bdddf 11814 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
11815 {
11816 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
11817 return (const reg_entry *) NULL;
11818 s++;
252b5132
RH
11819 }
11820
6588847e
DN
11821 /* For naked regs, make sure that we are not dealing with an identifier.
11822 This prevents confusing an identifier like `eax_var' with register
11823 `eax'. */
11824 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11825 return (const reg_entry *) NULL;
11826
af6bdddf 11827 *end_op = s;
252b5132
RH
11828
11829 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11830
5f47d35b 11831 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 11832 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 11833 {
0e0eea78
JB
11834 if (!cpu_arch_flags.bitfield.cpu8087
11835 && !cpu_arch_flags.bitfield.cpu287
11836 && !cpu_arch_flags.bitfield.cpu387)
11837 return (const reg_entry *) NULL;
11838
5f47d35b
AM
11839 if (is_space_char (*s))
11840 ++s;
11841 if (*s == '(')
11842 {
af6bdddf 11843 ++s;
5f47d35b
AM
11844 if (is_space_char (*s))
11845 ++s;
11846 if (*s >= '0' && *s <= '7')
11847 {
db557034 11848 int fpr = *s - '0';
af6bdddf 11849 ++s;
5f47d35b
AM
11850 if (is_space_char (*s))
11851 ++s;
11852 if (*s == ')')
11853 {
11854 *end_op = s + 1;
1e9cc1c2 11855 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
11856 know (r);
11857 return r + fpr;
5f47d35b 11858 }
5f47d35b 11859 }
47926f60 11860 /* We have "%st(" then garbage. */
5f47d35b
AM
11861 return (const reg_entry *) NULL;
11862 }
11863 }
11864
a60de03c
JB
11865 if (r == NULL || allow_pseudo_reg)
11866 return r;
11867
0dfbf9d7 11868 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
11869 return (const reg_entry *) NULL;
11870
dc821c5f 11871 if ((r->reg_type.bitfield.dword
00cee14f 11872 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
4a5c67ed
JB
11873 || r->reg_type.bitfield.class == RegCR
11874 || r->reg_type.bitfield.class == RegDR
11875 || r->reg_type.bitfield.class == RegTR)
192dc9c6
JB
11876 && !cpu_arch_flags.bitfield.cpui386)
11877 return (const reg_entry *) NULL;
11878
3528c362 11879 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
11880 return (const reg_entry *) NULL;
11881
6e041cf4
JB
11882 if (!cpu_arch_flags.bitfield.cpuavx512f)
11883 {
f74a6307
JB
11884 if (r->reg_type.bitfield.zmmword
11885 || r->reg_type.bitfield.class == RegMask)
6e041cf4 11886 return (const reg_entry *) NULL;
40f12533 11887
6e041cf4
JB
11888 if (!cpu_arch_flags.bitfield.cpuavx)
11889 {
11890 if (r->reg_type.bitfield.ymmword)
11891 return (const reg_entry *) NULL;
1848e567 11892
6e041cf4
JB
11893 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11894 return (const reg_entry *) NULL;
11895 }
11896 }
43234a1e 11897
f74a6307 11898 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
1adf7f56
JB
11899 return (const reg_entry *) NULL;
11900
db51cc60 11901 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 11902 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
11903 return (const reg_entry *) NULL;
11904
1d3f8286
JB
11905 /* Upper 16 vector registers are only available with VREX in 64bit
11906 mode, and require EVEX encoding. */
11907 if (r->reg_flags & RegVRex)
43234a1e 11908 {
e951d5ca 11909 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
11910 || flag_code != CODE_64BIT)
11911 return (const reg_entry *) NULL;
1d3f8286
JB
11912
11913 i.vec_encoding = vex_encoding_evex;
43234a1e
L
11914 }
11915
4787f4a5 11916 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
4a5c67ed 11917 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
1ae00879 11918 && flag_code != CODE_64BIT)
20f0a1fc 11919 return (const reg_entry *) NULL;
1ae00879 11920
00cee14f
JB
11921 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11922 && !intel_syntax)
b7240065
JB
11923 return (const reg_entry *) NULL;
11924
252b5132
RH
11925 return r;
11926}
4d1bb795
JB
11927
11928/* REG_STRING starts *before* REGISTER_PREFIX. */
11929
11930static const reg_entry *
11931parse_register (char *reg_string, char **end_op)
11932{
11933 const reg_entry *r;
11934
11935 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11936 r = parse_real_register (reg_string, end_op);
11937 else
11938 r = NULL;
11939 if (!r)
11940 {
11941 char *save = input_line_pointer;
11942 char c;
11943 symbolS *symbolP;
11944
11945 input_line_pointer = reg_string;
d02603dc 11946 c = get_symbol_name (&reg_string);
4d1bb795
JB
11947 symbolP = symbol_find (reg_string);
11948 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11949 {
11950 const expressionS *e = symbol_get_value_expression (symbolP);
11951
0398aac5 11952 know (e->X_op == O_register);
4eed87de 11953 know (e->X_add_number >= 0
c3fe08fa 11954 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 11955 r = i386_regtab + e->X_add_number;
d3bb6b49 11956 if ((r->reg_flags & RegVRex))
86fa6981 11957 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
11958 *end_op = input_line_pointer;
11959 }
11960 *input_line_pointer = c;
11961 input_line_pointer = save;
11962 }
11963 return r;
11964}
11965
11966int
11967i386_parse_name (char *name, expressionS *e, char *nextcharP)
11968{
11969 const reg_entry *r;
11970 char *end = input_line_pointer;
11971
11972 *end = *nextcharP;
11973 r = parse_register (name, &input_line_pointer);
11974 if (r && end <= input_line_pointer)
11975 {
11976 *nextcharP = *input_line_pointer;
11977 *input_line_pointer = 0;
11978 e->X_op = O_register;
11979 e->X_add_number = r - i386_regtab;
11980 return 1;
11981 }
11982 input_line_pointer = end;
11983 *end = 0;
ee86248c 11984 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
11985}
11986
11987void
11988md_operand (expressionS *e)
11989{
ee86248c
JB
11990 char *end;
11991 const reg_entry *r;
4d1bb795 11992
ee86248c
JB
11993 switch (*input_line_pointer)
11994 {
11995 case REGISTER_PREFIX:
11996 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11997 if (r)
11998 {
11999 e->X_op = O_register;
12000 e->X_add_number = r - i386_regtab;
12001 input_line_pointer = end;
12002 }
ee86248c
JB
12003 break;
12004
12005 case '[':
9c2799c2 12006 gas_assert (intel_syntax);
ee86248c
JB
12007 end = input_line_pointer++;
12008 expression (e);
12009 if (*input_line_pointer == ']')
12010 {
12011 ++input_line_pointer;
12012 e->X_op_symbol = make_expr_symbol (e);
12013 e->X_add_symbol = NULL;
12014 e->X_add_number = 0;
12015 e->X_op = O_index;
12016 }
12017 else
12018 {
12019 e->X_op = O_absent;
12020 input_line_pointer = end;
12021 }
12022 break;
4d1bb795
JB
12023 }
12024}
12025
252b5132 12026\f
4cc782b5 12027#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 12028const char *md_shortopts = "kVQ:sqnO::";
252b5132 12029#else
b6f8c7c4 12030const char *md_shortopts = "qnO::";
252b5132 12031#endif
6e0b89ee 12032
3e73aa7c 12033#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
12034#define OPTION_64 (OPTION_MD_BASE + 1)
12035#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
12036#define OPTION_MARCH (OPTION_MD_BASE + 3)
12037#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
12038#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12039#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12040#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12041#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 12042#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 12043#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 12044#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
12045#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12046#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12047#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 12048#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
12049#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12050#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 12051#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 12052#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 12053#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 12054#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
12055#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12056#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 12057#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 12058#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 12059#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
e379e5f3
L
12060#define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12061#define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12062#define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
76cf450b 12063#define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
b3b91714 12064
99ad8390
NC
12065struct option md_longopts[] =
12066{
3e73aa7c 12067 {"32", no_argument, NULL, OPTION_32},
321098a5 12068#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12069 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 12070 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
12071#endif
12072#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12073 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 12074 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 12075 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 12076#endif
b3b91714 12077 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
12078 {"march", required_argument, NULL, OPTION_MARCH},
12079 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
12080 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12081 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12082 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12083 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 12084 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 12085 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 12086 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 12087 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 12088 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 12089 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
12090 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12091 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
12092# if defined (TE_PE) || defined (TE_PEP)
12093 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12094#endif
d1982f93 12095 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 12096 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 12097 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 12098 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
e379e5f3
L
12099 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12100 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12101 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
76cf450b 12102 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
5db04b09
L
12103 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12104 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
12105 {NULL, no_argument, NULL, 0}
12106};
12107size_t md_longopts_size = sizeof (md_longopts);
12108
12109int
17b9d67d 12110md_parse_option (int c, const char *arg)
252b5132 12111{
91d6fa6a 12112 unsigned int j;
e379e5f3 12113 char *arch, *next, *saved, *type;
9103f4f4 12114
252b5132
RH
12115 switch (c)
12116 {
12b55ccc
L
12117 case 'n':
12118 optimize_align_code = 0;
12119 break;
12120
a38cf1db
AM
12121 case 'q':
12122 quiet_warnings = 1;
252b5132
RH
12123 break;
12124
12125#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
12126 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12127 should be emitted or not. FIXME: Not implemented. */
12128 case 'Q':
d4693039
JB
12129 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12130 return 0;
252b5132
RH
12131 break;
12132
12133 /* -V: SVR4 argument to print version ID. */
12134 case 'V':
12135 print_version_id ();
12136 break;
12137
a38cf1db
AM
12138 /* -k: Ignore for FreeBSD compatibility. */
12139 case 'k':
252b5132 12140 break;
4cc782b5
ILT
12141
12142 case 's':
12143 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 12144 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 12145 break;
8dcea932
L
12146
12147 case OPTION_MSHARED:
12148 shared = 1;
12149 break;
b4a3a7b4
L
12150
12151 case OPTION_X86_USED_NOTE:
12152 if (strcasecmp (arg, "yes") == 0)
12153 x86_used_note = 1;
12154 else if (strcasecmp (arg, "no") == 0)
12155 x86_used_note = 0;
12156 else
12157 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12158 break;
12159
12160
99ad8390 12161#endif
321098a5 12162#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12163 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
12164 case OPTION_64:
12165 {
12166 const char **list, **l;
12167
3e73aa7c
JH
12168 list = bfd_target_list ();
12169 for (l = list; *l != NULL; l++)
8620418b 12170 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
12171 || strcmp (*l, "coff-x86-64") == 0
12172 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
12173 || strcmp (*l, "pei-x86-64") == 0
12174 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
12175 {
12176 default_arch = "x86_64";
12177 break;
12178 }
3e73aa7c 12179 if (*l == NULL)
2b5d6a91 12180 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
12181 free (list);
12182 }
12183 break;
12184#endif
252b5132 12185
351f65ca 12186#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12187 case OPTION_X32:
351f65ca
L
12188 if (IS_ELF)
12189 {
12190 const char **list, **l;
12191
12192 list = bfd_target_list ();
12193 for (l = list; *l != NULL; l++)
12194 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12195 {
12196 default_arch = "x86_64:32";
12197 break;
12198 }
12199 if (*l == NULL)
2b5d6a91 12200 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
12201 free (list);
12202 }
12203 else
12204 as_fatal (_("32bit x86_64 is only supported for ELF"));
12205 break;
12206#endif
12207
6e0b89ee
AM
12208 case OPTION_32:
12209 default_arch = "i386";
12210 break;
12211
b3b91714
AM
12212 case OPTION_DIVIDE:
12213#ifdef SVR4_COMMENT_CHARS
12214 {
12215 char *n, *t;
12216 const char *s;
12217
add39d23 12218 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
12219 t = n;
12220 for (s = i386_comment_chars; *s != '\0'; s++)
12221 if (*s != '/')
12222 *t++ = *s;
12223 *t = '\0';
12224 i386_comment_chars = n;
12225 }
12226#endif
12227 break;
12228
9103f4f4 12229 case OPTION_MARCH:
293f5f65
L
12230 saved = xstrdup (arg);
12231 arch = saved;
12232 /* Allow -march=+nosse. */
12233 if (*arch == '+')
12234 arch++;
6305a203 12235 do
9103f4f4 12236 {
6305a203 12237 if (*arch == '.')
2b5d6a91 12238 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12239 next = strchr (arch, '+');
12240 if (next)
12241 *next++ = '\0';
91d6fa6a 12242 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12243 {
91d6fa6a 12244 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 12245 {
6305a203 12246 /* Processor. */
1ded5609
JB
12247 if (! cpu_arch[j].flags.bitfield.cpui386)
12248 continue;
12249
91d6fa6a 12250 cpu_arch_name = cpu_arch[j].name;
6305a203 12251 cpu_sub_arch_name = NULL;
91d6fa6a
NC
12252 cpu_arch_flags = cpu_arch[j].flags;
12253 cpu_arch_isa = cpu_arch[j].type;
12254 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
12255 if (!cpu_arch_tune_set)
12256 {
12257 cpu_arch_tune = cpu_arch_isa;
12258 cpu_arch_tune_flags = cpu_arch_isa_flags;
12259 }
12260 break;
12261 }
91d6fa6a
NC
12262 else if (*cpu_arch [j].name == '.'
12263 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 12264 {
33eaf5de 12265 /* ISA extension. */
6305a203 12266 i386_cpu_flags flags;
309d3373 12267
293f5f65
L
12268 flags = cpu_flags_or (cpu_arch_flags,
12269 cpu_arch[j].flags);
81486035 12270
5b64d091 12271 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
12272 {
12273 if (cpu_sub_arch_name)
12274 {
12275 char *name = cpu_sub_arch_name;
12276 cpu_sub_arch_name = concat (name,
91d6fa6a 12277 cpu_arch[j].name,
1bf57e9f 12278 (const char *) NULL);
6305a203
L
12279 free (name);
12280 }
12281 else
91d6fa6a 12282 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 12283 cpu_arch_flags = flags;
a586129e 12284 cpu_arch_isa_flags = flags;
6305a203 12285 }
0089dace
L
12286 else
12287 cpu_arch_isa_flags
12288 = cpu_flags_or (cpu_arch_isa_flags,
12289 cpu_arch[j].flags);
6305a203 12290 break;
ccc9c027 12291 }
9103f4f4 12292 }
6305a203 12293
293f5f65
L
12294 if (j >= ARRAY_SIZE (cpu_arch))
12295 {
33eaf5de 12296 /* Disable an ISA extension. */
293f5f65
L
12297 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12298 if (strcmp (arch, cpu_noarch [j].name) == 0)
12299 {
12300 i386_cpu_flags flags;
12301
12302 flags = cpu_flags_and_not (cpu_arch_flags,
12303 cpu_noarch[j].flags);
12304 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12305 {
12306 if (cpu_sub_arch_name)
12307 {
12308 char *name = cpu_sub_arch_name;
12309 cpu_sub_arch_name = concat (arch,
12310 (const char *) NULL);
12311 free (name);
12312 }
12313 else
12314 cpu_sub_arch_name = xstrdup (arch);
12315 cpu_arch_flags = flags;
12316 cpu_arch_isa_flags = flags;
12317 }
12318 break;
12319 }
12320
12321 if (j >= ARRAY_SIZE (cpu_noarch))
12322 j = ARRAY_SIZE (cpu_arch);
12323 }
12324
91d6fa6a 12325 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12326 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12327
12328 arch = next;
9103f4f4 12329 }
293f5f65
L
12330 while (next != NULL);
12331 free (saved);
9103f4f4
L
12332 break;
12333
12334 case OPTION_MTUNE:
12335 if (*arg == '.')
2b5d6a91 12336 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 12337 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12338 {
91d6fa6a 12339 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 12340 {
ccc9c027 12341 cpu_arch_tune_set = 1;
91d6fa6a
NC
12342 cpu_arch_tune = cpu_arch [j].type;
12343 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
12344 break;
12345 }
12346 }
91d6fa6a 12347 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12348 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
12349 break;
12350
1efbbeb4
L
12351 case OPTION_MMNEMONIC:
12352 if (strcasecmp (arg, "att") == 0)
12353 intel_mnemonic = 0;
12354 else if (strcasecmp (arg, "intel") == 0)
12355 intel_mnemonic = 1;
12356 else
2b5d6a91 12357 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
12358 break;
12359
12360 case OPTION_MSYNTAX:
12361 if (strcasecmp (arg, "att") == 0)
12362 intel_syntax = 0;
12363 else if (strcasecmp (arg, "intel") == 0)
12364 intel_syntax = 1;
12365 else
2b5d6a91 12366 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
12367 break;
12368
12369 case OPTION_MINDEX_REG:
12370 allow_index_reg = 1;
12371 break;
12372
12373 case OPTION_MNAKED_REG:
12374 allow_naked_reg = 1;
12375 break;
12376
c0f3af97
L
12377 case OPTION_MSSE2AVX:
12378 sse2avx = 1;
12379 break;
12380
daf50ae7
L
12381 case OPTION_MSSE_CHECK:
12382 if (strcasecmp (arg, "error") == 0)
7bab8ab5 12383 sse_check = check_error;
daf50ae7 12384 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 12385 sse_check = check_warning;
daf50ae7 12386 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 12387 sse_check = check_none;
daf50ae7 12388 else
2b5d6a91 12389 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
12390 break;
12391
7bab8ab5
JB
12392 case OPTION_MOPERAND_CHECK:
12393 if (strcasecmp (arg, "error") == 0)
12394 operand_check = check_error;
12395 else if (strcasecmp (arg, "warning") == 0)
12396 operand_check = check_warning;
12397 else if (strcasecmp (arg, "none") == 0)
12398 operand_check = check_none;
12399 else
12400 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12401 break;
12402
539f890d
L
12403 case OPTION_MAVXSCALAR:
12404 if (strcasecmp (arg, "128") == 0)
12405 avxscalar = vex128;
12406 else if (strcasecmp (arg, "256") == 0)
12407 avxscalar = vex256;
12408 else
2b5d6a91 12409 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
12410 break;
12411
03751133
L
12412 case OPTION_MVEXWIG:
12413 if (strcmp (arg, "0") == 0)
40c9c8de 12414 vexwig = vexw0;
03751133 12415 else if (strcmp (arg, "1") == 0)
40c9c8de 12416 vexwig = vexw1;
03751133
L
12417 else
12418 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12419 break;
12420
7e8b059b
L
12421 case OPTION_MADD_BND_PREFIX:
12422 add_bnd_prefix = 1;
12423 break;
12424
43234a1e
L
12425 case OPTION_MEVEXLIG:
12426 if (strcmp (arg, "128") == 0)
12427 evexlig = evexl128;
12428 else if (strcmp (arg, "256") == 0)
12429 evexlig = evexl256;
12430 else if (strcmp (arg, "512") == 0)
12431 evexlig = evexl512;
12432 else
12433 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12434 break;
12435
d3d3c6db
IT
12436 case OPTION_MEVEXRCIG:
12437 if (strcmp (arg, "rne") == 0)
12438 evexrcig = rne;
12439 else if (strcmp (arg, "rd") == 0)
12440 evexrcig = rd;
12441 else if (strcmp (arg, "ru") == 0)
12442 evexrcig = ru;
12443 else if (strcmp (arg, "rz") == 0)
12444 evexrcig = rz;
12445 else
12446 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12447 break;
12448
43234a1e
L
12449 case OPTION_MEVEXWIG:
12450 if (strcmp (arg, "0") == 0)
12451 evexwig = evexw0;
12452 else if (strcmp (arg, "1") == 0)
12453 evexwig = evexw1;
12454 else
12455 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12456 break;
12457
167ad85b
TG
12458# if defined (TE_PE) || defined (TE_PEP)
12459 case OPTION_MBIG_OBJ:
12460 use_big_obj = 1;
12461 break;
12462#endif
12463
d1982f93 12464 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
12465 if (strcasecmp (arg, "yes") == 0)
12466 omit_lock_prefix = 1;
12467 else if (strcasecmp (arg, "no") == 0)
12468 omit_lock_prefix = 0;
12469 else
12470 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12471 break;
12472
e4e00185
AS
12473 case OPTION_MFENCE_AS_LOCK_ADD:
12474 if (strcasecmp (arg, "yes") == 0)
12475 avoid_fence = 1;
12476 else if (strcasecmp (arg, "no") == 0)
12477 avoid_fence = 0;
12478 else
12479 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12480 break;
12481
0cb4071e
L
12482 case OPTION_MRELAX_RELOCATIONS:
12483 if (strcasecmp (arg, "yes") == 0)
12484 generate_relax_relocations = 1;
12485 else if (strcasecmp (arg, "no") == 0)
12486 generate_relax_relocations = 0;
12487 else
12488 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12489 break;
12490
e379e5f3
L
12491 case OPTION_MALIGN_BRANCH_BOUNDARY:
12492 {
12493 char *end;
12494 long int align = strtoul (arg, &end, 0);
12495 if (*end == '\0')
12496 {
12497 if (align == 0)
12498 {
12499 align_branch_power = 0;
12500 break;
12501 }
12502 else if (align >= 16)
12503 {
12504 int align_power;
12505 for (align_power = 0;
12506 (align & 1) == 0;
12507 align >>= 1, align_power++)
12508 continue;
12509 /* Limit alignment power to 31. */
12510 if (align == 1 && align_power < 32)
12511 {
12512 align_branch_power = align_power;
12513 break;
12514 }
12515 }
12516 }
12517 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12518 }
12519 break;
12520
12521 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12522 {
12523 char *end;
12524 int align = strtoul (arg, &end, 0);
12525 /* Some processors only support 5 prefixes. */
12526 if (*end == '\0' && align >= 0 && align < 6)
12527 {
12528 align_branch_prefix_size = align;
12529 break;
12530 }
12531 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12532 arg);
12533 }
12534 break;
12535
12536 case OPTION_MALIGN_BRANCH:
12537 align_branch = 0;
12538 saved = xstrdup (arg);
12539 type = saved;
12540 do
12541 {
12542 next = strchr (type, '+');
12543 if (next)
12544 *next++ = '\0';
12545 if (strcasecmp (type, "jcc") == 0)
12546 align_branch |= align_branch_jcc_bit;
12547 else if (strcasecmp (type, "fused") == 0)
12548 align_branch |= align_branch_fused_bit;
12549 else if (strcasecmp (type, "jmp") == 0)
12550 align_branch |= align_branch_jmp_bit;
12551 else if (strcasecmp (type, "call") == 0)
12552 align_branch |= align_branch_call_bit;
12553 else if (strcasecmp (type, "ret") == 0)
12554 align_branch |= align_branch_ret_bit;
12555 else if (strcasecmp (type, "indirect") == 0)
12556 align_branch |= align_branch_indirect_bit;
12557 else
12558 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12559 type = next;
12560 }
12561 while (next != NULL);
12562 free (saved);
12563 break;
12564
76cf450b
L
12565 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12566 align_branch_power = 5;
12567 align_branch_prefix_size = 5;
12568 align_branch = (align_branch_jcc_bit
12569 | align_branch_fused_bit
12570 | align_branch_jmp_bit);
12571 break;
12572
5db04b09 12573 case OPTION_MAMD64:
4b5aaf5f 12574 isa64 = amd64;
5db04b09
L
12575 break;
12576
12577 case OPTION_MINTEL64:
4b5aaf5f 12578 isa64 = intel64;
5db04b09
L
12579 break;
12580
b6f8c7c4
L
12581 case 'O':
12582 if (arg == NULL)
12583 {
12584 optimize = 1;
12585 /* Turn off -Os. */
12586 optimize_for_space = 0;
12587 }
12588 else if (*arg == 's')
12589 {
12590 optimize_for_space = 1;
12591 /* Turn on all encoding optimizations. */
41fd2579 12592 optimize = INT_MAX;
b6f8c7c4
L
12593 }
12594 else
12595 {
12596 optimize = atoi (arg);
12597 /* Turn off -Os. */
12598 optimize_for_space = 0;
12599 }
12600 break;
12601
252b5132
RH
12602 default:
12603 return 0;
12604 }
12605 return 1;
12606}
12607
8a2c8fef
L
12608#define MESSAGE_TEMPLATE \
12609" "
12610
293f5f65
L
12611static char *
12612output_message (FILE *stream, char *p, char *message, char *start,
12613 int *left_p, const char *name, int len)
12614{
12615 int size = sizeof (MESSAGE_TEMPLATE);
12616 int left = *left_p;
12617
12618 /* Reserve 2 spaces for ", " or ",\0" */
12619 left -= len + 2;
12620
12621 /* Check if there is any room. */
12622 if (left >= 0)
12623 {
12624 if (p != start)
12625 {
12626 *p++ = ',';
12627 *p++ = ' ';
12628 }
12629 p = mempcpy (p, name, len);
12630 }
12631 else
12632 {
12633 /* Output the current message now and start a new one. */
12634 *p++ = ',';
12635 *p = '\0';
12636 fprintf (stream, "%s\n", message);
12637 p = start;
12638 left = size - (start - message) - len - 2;
12639
12640 gas_assert (left >= 0);
12641
12642 p = mempcpy (p, name, len);
12643 }
12644
12645 *left_p = left;
12646 return p;
12647}
12648
8a2c8fef 12649static void
1ded5609 12650show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
12651{
12652 static char message[] = MESSAGE_TEMPLATE;
12653 char *start = message + 27;
12654 char *p;
12655 int size = sizeof (MESSAGE_TEMPLATE);
12656 int left;
12657 const char *name;
12658 int len;
12659 unsigned int j;
12660
12661 p = start;
12662 left = size - (start - message);
12663 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12664 {
12665 /* Should it be skipped? */
12666 if (cpu_arch [j].skip)
12667 continue;
12668
12669 name = cpu_arch [j].name;
12670 len = cpu_arch [j].len;
12671 if (*name == '.')
12672 {
12673 /* It is an extension. Skip if we aren't asked to show it. */
12674 if (ext)
12675 {
12676 name++;
12677 len--;
12678 }
12679 else
12680 continue;
12681 }
12682 else if (ext)
12683 {
12684 /* It is an processor. Skip if we show only extension. */
12685 continue;
12686 }
1ded5609
JB
12687 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12688 {
12689 /* It is an impossible processor - skip. */
12690 continue;
12691 }
8a2c8fef 12692
293f5f65 12693 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
12694 }
12695
293f5f65
L
12696 /* Display disabled extensions. */
12697 if (ext)
12698 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12699 {
12700 name = cpu_noarch [j].name;
12701 len = cpu_noarch [j].len;
12702 p = output_message (stream, p, message, start, &left, name,
12703 len);
12704 }
12705
8a2c8fef
L
12706 *p = '\0';
12707 fprintf (stream, "%s\n", message);
12708}
12709
252b5132 12710void
8a2c8fef 12711md_show_usage (FILE *stream)
252b5132 12712{
4cc782b5
ILT
12713#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12714 fprintf (stream, _("\
d4693039 12715 -Qy, -Qn ignored\n\
a38cf1db 12716 -V print assembler version number\n\
b3b91714
AM
12717 -k ignored\n"));
12718#endif
12719 fprintf (stream, _("\
12b55ccc 12720 -n Do not optimize code alignment\n\
b3b91714
AM
12721 -q quieten some warnings\n"));
12722#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12723 fprintf (stream, _("\
a38cf1db 12724 -s ignored\n"));
b3b91714 12725#endif
d7f449c0
L
12726#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12727 || defined (TE_PE) || defined (TE_PEP))
751d281c 12728 fprintf (stream, _("\
570561f7 12729 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 12730#endif
b3b91714
AM
12731#ifdef SVR4_COMMENT_CHARS
12732 fprintf (stream, _("\
12733 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
12734#else
12735 fprintf (stream, _("\
b3b91714 12736 --divide ignored\n"));
4cc782b5 12737#endif
9103f4f4 12738 fprintf (stream, _("\
6305a203 12739 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 12740 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 12741 show_arch (stream, 0, 1);
8a2c8fef
L
12742 fprintf (stream, _("\
12743 EXTENSION is combination of:\n"));
1ded5609 12744 show_arch (stream, 1, 0);
6305a203 12745 fprintf (stream, _("\
8a2c8fef 12746 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 12747 show_arch (stream, 0, 0);
ba104c83 12748 fprintf (stream, _("\
c0f3af97
L
12749 -msse2avx encode SSE instructions with VEX prefix\n"));
12750 fprintf (stream, _("\
7c5c05ef 12751 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
12752 check SSE instructions\n"));
12753 fprintf (stream, _("\
7c5c05ef 12754 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
12755 check operand combinations for validity\n"));
12756 fprintf (stream, _("\
7c5c05ef
L
12757 -mavxscalar=[128|256] (default: 128)\n\
12758 encode scalar AVX instructions with specific vector\n\
539f890d
L
12759 length\n"));
12760 fprintf (stream, _("\
03751133
L
12761 -mvexwig=[0|1] (default: 0)\n\
12762 encode VEX instructions with specific VEX.W value\n\
12763 for VEX.W bit ignored instructions\n"));
12764 fprintf (stream, _("\
7c5c05ef
L
12765 -mevexlig=[128|256|512] (default: 128)\n\
12766 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
12767 length\n"));
12768 fprintf (stream, _("\
7c5c05ef
L
12769 -mevexwig=[0|1] (default: 0)\n\
12770 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
12771 for EVEX.W bit ignored instructions\n"));
12772 fprintf (stream, _("\
7c5c05ef 12773 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
12774 encode EVEX instructions with specific EVEX.RC value\n\
12775 for SAE-only ignored instructions\n"));
12776 fprintf (stream, _("\
7c5c05ef
L
12777 -mmnemonic=[att|intel] "));
12778 if (SYSV386_COMPAT)
12779 fprintf (stream, _("(default: att)\n"));
12780 else
12781 fprintf (stream, _("(default: intel)\n"));
12782 fprintf (stream, _("\
12783 use AT&T/Intel mnemonic\n"));
ba104c83 12784 fprintf (stream, _("\
7c5c05ef
L
12785 -msyntax=[att|intel] (default: att)\n\
12786 use AT&T/Intel syntax\n"));
ba104c83
L
12787 fprintf (stream, _("\
12788 -mindex-reg support pseudo index registers\n"));
12789 fprintf (stream, _("\
12790 -mnaked-reg don't require `%%' prefix for registers\n"));
12791 fprintf (stream, _("\
7e8b059b 12792 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 12793#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
12794 fprintf (stream, _("\
12795 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
12796 fprintf (stream, _("\
12797 -mx86-used-note=[no|yes] "));
12798 if (DEFAULT_X86_USED_NOTE)
12799 fprintf (stream, _("(default: yes)\n"));
12800 else
12801 fprintf (stream, _("(default: no)\n"));
12802 fprintf (stream, _("\
12803 generate x86 used ISA and feature properties\n"));
12804#endif
12805#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
12806 fprintf (stream, _("\
12807 -mbig-obj generate big object files\n"));
12808#endif
d022bddd 12809 fprintf (stream, _("\
7c5c05ef 12810 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 12811 strip all lock prefixes\n"));
5db04b09 12812 fprintf (stream, _("\
7c5c05ef 12813 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
12814 encode lfence, mfence and sfence as\n\
12815 lock addl $0x0, (%%{re}sp)\n"));
12816 fprintf (stream, _("\
7c5c05ef
L
12817 -mrelax-relocations=[no|yes] "));
12818 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12819 fprintf (stream, _("(default: yes)\n"));
12820 else
12821 fprintf (stream, _("(default: no)\n"));
12822 fprintf (stream, _("\
0cb4071e
L
12823 generate relax relocations\n"));
12824 fprintf (stream, _("\
e379e5f3
L
12825 -malign-branch-boundary=NUM (default: 0)\n\
12826 align branches within NUM byte boundary\n"));
12827 fprintf (stream, _("\
12828 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12829 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12830 indirect\n\
12831 specify types of branches to align\n"));
12832 fprintf (stream, _("\
12833 -malign-branch-prefix-size=NUM (default: 5)\n\
12834 align branches with NUM prefixes per instruction\n"));
12835 fprintf (stream, _("\
76cf450b
L
12836 -mbranches-within-32B-boundaries\n\
12837 align branches within 32 byte boundary\n"));
12838 fprintf (stream, _("\
7c5c05ef 12839 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
12840 fprintf (stream, _("\
12841 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
12842}
12843
3e73aa7c 12844#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 12845 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 12846 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
12847
12848/* Pick the target format to use. */
12849
47926f60 12850const char *
e3bb37b5 12851i386_target_format (void)
252b5132 12852{
351f65ca
L
12853 if (!strncmp (default_arch, "x86_64", 6))
12854 {
12855 update_code_flag (CODE_64BIT, 1);
12856 if (default_arch[6] == '\0')
7f56bc95 12857 x86_elf_abi = X86_64_ABI;
351f65ca 12858 else
7f56bc95 12859 x86_elf_abi = X86_64_X32_ABI;
351f65ca 12860 }
3e73aa7c 12861 else if (!strcmp (default_arch, "i386"))
78f12dd3 12862 update_code_flag (CODE_32BIT, 1);
5197d474
L
12863 else if (!strcmp (default_arch, "iamcu"))
12864 {
12865 update_code_flag (CODE_32BIT, 1);
12866 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12867 {
12868 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12869 cpu_arch_name = "iamcu";
12870 cpu_sub_arch_name = NULL;
12871 cpu_arch_flags = iamcu_flags;
12872 cpu_arch_isa = PROCESSOR_IAMCU;
12873 cpu_arch_isa_flags = iamcu_flags;
12874 if (!cpu_arch_tune_set)
12875 {
12876 cpu_arch_tune = cpu_arch_isa;
12877 cpu_arch_tune_flags = cpu_arch_isa_flags;
12878 }
12879 }
8d471ec1 12880 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
12881 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12882 cpu_arch_name);
12883 }
3e73aa7c 12884 else
2b5d6a91 12885 as_fatal (_("unknown architecture"));
89507696
JB
12886
12887 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12888 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12889 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12890 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12891
252b5132
RH
12892 switch (OUTPUT_FLAVOR)
12893 {
9384f2ff 12894#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 12895 case bfd_target_aout_flavour:
47926f60 12896 return AOUT_TARGET_FORMAT;
4c63da97 12897#endif
9384f2ff
AM
12898#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12899# if defined (TE_PE) || defined (TE_PEP)
12900 case bfd_target_coff_flavour:
167ad85b
TG
12901 if (flag_code == CODE_64BIT)
12902 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12903 else
12904 return "pe-i386";
9384f2ff 12905# elif defined (TE_GO32)
0561d57c
JK
12906 case bfd_target_coff_flavour:
12907 return "coff-go32";
9384f2ff 12908# else
252b5132
RH
12909 case bfd_target_coff_flavour:
12910 return "coff-i386";
9384f2ff 12911# endif
4c63da97 12912#endif
3e73aa7c 12913#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 12914 case bfd_target_elf_flavour:
3e73aa7c 12915 {
351f65ca
L
12916 const char *format;
12917
12918 switch (x86_elf_abi)
4fa24527 12919 {
351f65ca
L
12920 default:
12921 format = ELF_TARGET_FORMAT;
e379e5f3
L
12922#ifndef TE_SOLARIS
12923 tls_get_addr = "___tls_get_addr";
12924#endif
351f65ca 12925 break;
7f56bc95 12926 case X86_64_ABI:
351f65ca 12927 use_rela_relocations = 1;
4fa24527 12928 object_64bit = 1;
e379e5f3
L
12929#ifndef TE_SOLARIS
12930 tls_get_addr = "__tls_get_addr";
12931#endif
351f65ca
L
12932 format = ELF_TARGET_FORMAT64;
12933 break;
7f56bc95 12934 case X86_64_X32_ABI:
4fa24527 12935 use_rela_relocations = 1;
351f65ca 12936 object_64bit = 1;
e379e5f3
L
12937#ifndef TE_SOLARIS
12938 tls_get_addr = "__tls_get_addr";
12939#endif
862be3fb 12940 disallow_64bit_reloc = 1;
351f65ca
L
12941 format = ELF_TARGET_FORMAT32;
12942 break;
4fa24527 12943 }
3632d14b 12944 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 12945 {
7f56bc95 12946 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
12947 as_fatal (_("Intel L1OM is 64bit only"));
12948 return ELF_TARGET_L1OM_FORMAT;
12949 }
b49f93f6 12950 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
12951 {
12952 if (x86_elf_abi != X86_64_ABI)
12953 as_fatal (_("Intel K1OM is 64bit only"));
12954 return ELF_TARGET_K1OM_FORMAT;
12955 }
81486035
L
12956 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12957 {
12958 if (x86_elf_abi != I386_ABI)
12959 as_fatal (_("Intel MCU is 32bit only"));
12960 return ELF_TARGET_IAMCU_FORMAT;
12961 }
8a9036a4 12962 else
351f65ca 12963 return format;
3e73aa7c 12964 }
e57f8c65
TG
12965#endif
12966#if defined (OBJ_MACH_O)
12967 case bfd_target_mach_o_flavour:
d382c579
TG
12968 if (flag_code == CODE_64BIT)
12969 {
12970 use_rela_relocations = 1;
12971 object_64bit = 1;
12972 return "mach-o-x86-64";
12973 }
12974 else
12975 return "mach-o-i386";
4c63da97 12976#endif
252b5132
RH
12977 default:
12978 abort ();
12979 return NULL;
12980 }
12981}
12982
47926f60 12983#endif /* OBJ_MAYBE_ more than one */
252b5132 12984\f
252b5132 12985symbolS *
7016a5d5 12986md_undefined_symbol (char *name)
252b5132 12987{
18dc2407
ILT
12988 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12989 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12990 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12991 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
12992 {
12993 if (!GOT_symbol)
12994 {
12995 if (symbol_find (name))
12996 as_bad (_("GOT already in symbol table"));
12997 GOT_symbol = symbol_new (name, undefined_section,
12998 (valueT) 0, &zero_address_frag);
12999 };
13000 return GOT_symbol;
13001 }
252b5132
RH
13002 return 0;
13003}
13004
13005/* Round up a section size to the appropriate boundary. */
47926f60 13006
252b5132 13007valueT
7016a5d5 13008md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 13009{
4c63da97
AM
13010#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13011 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13012 {
13013 /* For a.out, force the section size to be aligned. If we don't do
13014 this, BFD will align it for us, but it will not write out the
13015 final bytes of the section. This may be a bug in BFD, but it is
13016 easier to fix it here since that is how the other a.out targets
13017 work. */
13018 int align;
13019
fd361982 13020 align = bfd_section_alignment (segment);
8d3842cd 13021 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 13022 }
252b5132
RH
13023#endif
13024
13025 return size;
13026}
13027
13028/* On the i386, PC-relative offsets are relative to the start of the
13029 next instruction. That is, the address of the offset, plus its
13030 size, since the offset is always the last part of the insn. */
13031
13032long
e3bb37b5 13033md_pcrel_from (fixS *fixP)
252b5132
RH
13034{
13035 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13036}
13037
13038#ifndef I386COFF
13039
13040static void
e3bb37b5 13041s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 13042{
29b0f896 13043 int temp;
252b5132 13044
8a75718c
JB
13045#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13046 if (IS_ELF)
13047 obj_elf_section_change_hook ();
13048#endif
252b5132
RH
13049 temp = get_absolute_expression ();
13050 subseg_set (bss_section, (subsegT) temp);
13051 demand_empty_rest_of_line ();
13052}
13053
13054#endif
13055
e379e5f3
L
13056/* Remember constant directive. */
13057
13058void
13059i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13060{
13061 if (last_insn.kind != last_insn_directive
13062 && (bfd_section_flags (now_seg) & SEC_CODE))
13063 {
13064 last_insn.seg = now_seg;
13065 last_insn.kind = last_insn_directive;
13066 last_insn.name = "constant directive";
13067 last_insn.file = as_where (&last_insn.line);
13068 }
13069}
13070
252b5132 13071void
e3bb37b5 13072i386_validate_fix (fixS *fixp)
252b5132 13073{
02a86693 13074 if (fixp->fx_subsy)
252b5132 13075 {
02a86693 13076 if (fixp->fx_subsy == GOT_symbol)
23df1078 13077 {
02a86693
L
13078 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13079 {
13080 if (!object_64bit)
13081 abort ();
13082#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13083 if (fixp->fx_tcbit2)
56ceb5b5
L
13084 fixp->fx_r_type = (fixp->fx_tcbit
13085 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13086 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
13087 else
13088#endif
13089 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13090 }
d6ab8113 13091 else
02a86693
L
13092 {
13093 if (!object_64bit)
13094 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13095 else
13096 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13097 }
13098 fixp->fx_subsy = 0;
23df1078 13099 }
252b5132 13100 }
02a86693
L
13101#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13102 else if (!object_64bit)
13103 {
13104 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13105 && fixp->fx_tcbit2)
13106 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13107 }
13108#endif
252b5132
RH
13109}
13110
252b5132 13111arelent *
7016a5d5 13112tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
13113{
13114 arelent *rel;
13115 bfd_reloc_code_real_type code;
13116
13117 switch (fixp->fx_r_type)
13118 {
8ce3d284 13119#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
13120 case BFD_RELOC_SIZE32:
13121 case BFD_RELOC_SIZE64:
13122 if (S_IS_DEFINED (fixp->fx_addsy)
13123 && !S_IS_EXTERNAL (fixp->fx_addsy))
13124 {
13125 /* Resolve size relocation against local symbol to size of
13126 the symbol plus addend. */
13127 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13128 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13129 && !fits_in_unsigned_long (value))
13130 as_bad_where (fixp->fx_file, fixp->fx_line,
13131 _("symbol size computation overflow"));
13132 fixp->fx_addsy = NULL;
13133 fixp->fx_subsy = NULL;
13134 md_apply_fix (fixp, (valueT *) &value, NULL);
13135 return NULL;
13136 }
8ce3d284 13137#endif
1a0670f3 13138 /* Fall through. */
8fd4256d 13139
3e73aa7c
JH
13140 case BFD_RELOC_X86_64_PLT32:
13141 case BFD_RELOC_X86_64_GOT32:
13142 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13143 case BFD_RELOC_X86_64_GOTPCRELX:
13144 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
13145 case BFD_RELOC_386_PLT32:
13146 case BFD_RELOC_386_GOT32:
02a86693 13147 case BFD_RELOC_386_GOT32X:
252b5132
RH
13148 case BFD_RELOC_386_GOTOFF:
13149 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
13150 case BFD_RELOC_386_TLS_GD:
13151 case BFD_RELOC_386_TLS_LDM:
13152 case BFD_RELOC_386_TLS_LDO_32:
13153 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
13154 case BFD_RELOC_386_TLS_IE:
13155 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
13156 case BFD_RELOC_386_TLS_LE_32:
13157 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
13158 case BFD_RELOC_386_TLS_GOTDESC:
13159 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
13160 case BFD_RELOC_X86_64_TLSGD:
13161 case BFD_RELOC_X86_64_TLSLD:
13162 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 13163 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
13164 case BFD_RELOC_X86_64_GOTTPOFF:
13165 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
13166 case BFD_RELOC_X86_64_TPOFF64:
13167 case BFD_RELOC_X86_64_GOTOFF64:
13168 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
13169 case BFD_RELOC_X86_64_GOT64:
13170 case BFD_RELOC_X86_64_GOTPCREL64:
13171 case BFD_RELOC_X86_64_GOTPC64:
13172 case BFD_RELOC_X86_64_GOTPLT64:
13173 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
13174 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13175 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
13176 case BFD_RELOC_RVA:
13177 case BFD_RELOC_VTABLE_ENTRY:
13178 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
13179#ifdef TE_PE
13180 case BFD_RELOC_32_SECREL:
13181#endif
252b5132
RH
13182 code = fixp->fx_r_type;
13183 break;
dbbaec26
L
13184 case BFD_RELOC_X86_64_32S:
13185 if (!fixp->fx_pcrel)
13186 {
13187 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13188 code = fixp->fx_r_type;
13189 break;
13190 }
1a0670f3 13191 /* Fall through. */
252b5132 13192 default:
93382f6d 13193 if (fixp->fx_pcrel)
252b5132 13194 {
93382f6d
AM
13195 switch (fixp->fx_size)
13196 {
13197 default:
b091f402
AM
13198 as_bad_where (fixp->fx_file, fixp->fx_line,
13199 _("can not do %d byte pc-relative relocation"),
13200 fixp->fx_size);
93382f6d
AM
13201 code = BFD_RELOC_32_PCREL;
13202 break;
13203 case 1: code = BFD_RELOC_8_PCREL; break;
13204 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 13205 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
13206#ifdef BFD64
13207 case 8: code = BFD_RELOC_64_PCREL; break;
13208#endif
93382f6d
AM
13209 }
13210 }
13211 else
13212 {
13213 switch (fixp->fx_size)
13214 {
13215 default:
b091f402
AM
13216 as_bad_where (fixp->fx_file, fixp->fx_line,
13217 _("can not do %d byte relocation"),
13218 fixp->fx_size);
93382f6d
AM
13219 code = BFD_RELOC_32;
13220 break;
13221 case 1: code = BFD_RELOC_8; break;
13222 case 2: code = BFD_RELOC_16; break;
13223 case 4: code = BFD_RELOC_32; break;
937149dd 13224#ifdef BFD64
3e73aa7c 13225 case 8: code = BFD_RELOC_64; break;
937149dd 13226#endif
93382f6d 13227 }
252b5132
RH
13228 }
13229 break;
13230 }
252b5132 13231
d182319b
JB
13232 if ((code == BFD_RELOC_32
13233 || code == BFD_RELOC_32_PCREL
13234 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
13235 && GOT_symbol
13236 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 13237 {
4fa24527 13238 if (!object_64bit)
d6ab8113
JB
13239 code = BFD_RELOC_386_GOTPC;
13240 else
13241 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 13242 }
7b81dfbb
AJ
13243 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13244 && GOT_symbol
13245 && fixp->fx_addsy == GOT_symbol)
13246 {
13247 code = BFD_RELOC_X86_64_GOTPC64;
13248 }
252b5132 13249
add39d23
TS
13250 rel = XNEW (arelent);
13251 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 13252 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
13253
13254 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 13255
3e73aa7c
JH
13256 if (!use_rela_relocations)
13257 {
13258 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13259 vtable entry to be used in the relocation's section offset. */
13260 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13261 rel->address = fixp->fx_offset;
fbeb56a4
DK
13262#if defined (OBJ_COFF) && defined (TE_PE)
13263 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13264 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13265 else
13266#endif
c6682705 13267 rel->addend = 0;
3e73aa7c
JH
13268 }
13269 /* Use the rela in 64bit mode. */
252b5132 13270 else
3e73aa7c 13271 {
862be3fb
L
13272 if (disallow_64bit_reloc)
13273 switch (code)
13274 {
862be3fb
L
13275 case BFD_RELOC_X86_64_DTPOFF64:
13276 case BFD_RELOC_X86_64_TPOFF64:
13277 case BFD_RELOC_64_PCREL:
13278 case BFD_RELOC_X86_64_GOTOFF64:
13279 case BFD_RELOC_X86_64_GOT64:
13280 case BFD_RELOC_X86_64_GOTPCREL64:
13281 case BFD_RELOC_X86_64_GOTPC64:
13282 case BFD_RELOC_X86_64_GOTPLT64:
13283 case BFD_RELOC_X86_64_PLTOFF64:
13284 as_bad_where (fixp->fx_file, fixp->fx_line,
13285 _("cannot represent relocation type %s in x32 mode"),
13286 bfd_get_reloc_code_name (code));
13287 break;
13288 default:
13289 break;
13290 }
13291
062cd5e7
AS
13292 if (!fixp->fx_pcrel)
13293 rel->addend = fixp->fx_offset;
13294 else
13295 switch (code)
13296 {
13297 case BFD_RELOC_X86_64_PLT32:
13298 case BFD_RELOC_X86_64_GOT32:
13299 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13300 case BFD_RELOC_X86_64_GOTPCRELX:
13301 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
13302 case BFD_RELOC_X86_64_TLSGD:
13303 case BFD_RELOC_X86_64_TLSLD:
13304 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
13305 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13306 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
13307 rel->addend = fixp->fx_offset - fixp->fx_size;
13308 break;
13309 default:
13310 rel->addend = (section->vma
13311 - fixp->fx_size
13312 + fixp->fx_addnumber
13313 + md_pcrel_from (fixp));
13314 break;
13315 }
3e73aa7c
JH
13316 }
13317
252b5132
RH
13318 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13319 if (rel->howto == NULL)
13320 {
13321 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 13322 _("cannot represent relocation type %s"),
252b5132
RH
13323 bfd_get_reloc_code_name (code));
13324 /* Set howto to a garbage value so that we can keep going. */
13325 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 13326 gas_assert (rel->howto != NULL);
252b5132
RH
13327 }
13328
13329 return rel;
13330}
13331
ee86248c 13332#include "tc-i386-intel.c"
54cfded0 13333
a60de03c
JB
13334void
13335tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 13336{
a60de03c
JB
13337 int saved_naked_reg;
13338 char saved_register_dot;
54cfded0 13339
a60de03c
JB
13340 saved_naked_reg = allow_naked_reg;
13341 allow_naked_reg = 1;
13342 saved_register_dot = register_chars['.'];
13343 register_chars['.'] = '.';
13344 allow_pseudo_reg = 1;
13345 expression_and_evaluate (exp);
13346 allow_pseudo_reg = 0;
13347 register_chars['.'] = saved_register_dot;
13348 allow_naked_reg = saved_naked_reg;
13349
e96d56a1 13350 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 13351 {
a60de03c
JB
13352 if ((addressT) exp->X_add_number < i386_regtab_size)
13353 {
13354 exp->X_op = O_constant;
13355 exp->X_add_number = i386_regtab[exp->X_add_number]
13356 .dw2_regnum[flag_code >> 1];
13357 }
13358 else
13359 exp->X_op = O_illegal;
54cfded0 13360 }
54cfded0
AM
13361}
13362
13363void
13364tc_x86_frame_initial_instructions (void)
13365{
a60de03c
JB
13366 static unsigned int sp_regno[2];
13367
13368 if (!sp_regno[flag_code >> 1])
13369 {
13370 char *saved_input = input_line_pointer;
13371 char sp[][4] = {"esp", "rsp"};
13372 expressionS exp;
a4447b93 13373
a60de03c
JB
13374 input_line_pointer = sp[flag_code >> 1];
13375 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 13376 gas_assert (exp.X_op == O_constant);
a60de03c
JB
13377 sp_regno[flag_code >> 1] = exp.X_add_number;
13378 input_line_pointer = saved_input;
13379 }
a4447b93 13380
61ff971f
L
13381 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13382 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 13383}
d2b2c203 13384
d7921315
L
13385int
13386x86_dwarf2_addr_size (void)
13387{
13388#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13389 if (x86_elf_abi == X86_64_X32_ABI)
13390 return 4;
13391#endif
13392 return bfd_arch_bits_per_address (stdoutput) / 8;
13393}
13394
d2b2c203
DJ
13395int
13396i386_elf_section_type (const char *str, size_t len)
13397{
13398 if (flag_code == CODE_64BIT
13399 && len == sizeof ("unwind") - 1
13400 && strncmp (str, "unwind", 6) == 0)
13401 return SHT_X86_64_UNWIND;
13402
13403 return -1;
13404}
bb41ade5 13405
ad5fec3b
EB
13406#ifdef TE_SOLARIS
13407void
13408i386_solaris_fix_up_eh_frame (segT sec)
13409{
13410 if (flag_code == CODE_64BIT)
13411 elf_section_type (sec) = SHT_X86_64_UNWIND;
13412}
13413#endif
13414
bb41ade5
AM
13415#ifdef TE_PE
13416void
13417tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13418{
91d6fa6a 13419 expressionS exp;
bb41ade5 13420
91d6fa6a
NC
13421 exp.X_op = O_secrel;
13422 exp.X_add_symbol = symbol;
13423 exp.X_add_number = 0;
13424 emit_expr (&exp, size);
bb41ade5
AM
13425}
13426#endif
3b22753a
L
13427
13428#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13429/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13430
01e1a5bc 13431bfd_vma
6d4af3c2 13432x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
13433{
13434 if (flag_code == CODE_64BIT)
13435 {
13436 if (letter == 'l')
13437 return SHF_X86_64_LARGE;
13438
8f3bae45 13439 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 13440 }
3b22753a 13441 else
8f3bae45 13442 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
13443 return -1;
13444}
13445
01e1a5bc 13446bfd_vma
3b22753a
L
13447x86_64_section_word (char *str, size_t len)
13448{
8620418b 13449 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
13450 return SHF_X86_64_LARGE;
13451
13452 return -1;
13453}
13454
13455static void
13456handle_large_common (int small ATTRIBUTE_UNUSED)
13457{
13458 if (flag_code != CODE_64BIT)
13459 {
13460 s_comm_internal (0, elf_common_parse);
13461 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13462 }
13463 else
13464 {
13465 static segT lbss_section;
13466 asection *saved_com_section_ptr = elf_com_section_ptr;
13467 asection *saved_bss_section = bss_section;
13468
13469 if (lbss_section == NULL)
13470 {
13471 flagword applicable;
13472 segT seg = now_seg;
13473 subsegT subseg = now_subseg;
13474
13475 /* The .lbss section is for local .largecomm symbols. */
13476 lbss_section = subseg_new (".lbss", 0);
13477 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 13478 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
13479 seg_info (lbss_section)->bss = 1;
13480
13481 subseg_set (seg, subseg);
13482 }
13483
13484 elf_com_section_ptr = &_bfd_elf_large_com_section;
13485 bss_section = lbss_section;
13486
13487 s_comm_internal (0, elf_common_parse);
13488
13489 elf_com_section_ptr = saved_com_section_ptr;
13490 bss_section = saved_bss_section;
13491 }
13492}
13493#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.402549 seconds and 4 git commands to generate.