asan: _bfd_pei_slurp_codeview_record use of uninit value
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
c906108c
SS
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
2f4fcf00 31#include "target-connection.h"
c906108c
SS
32#include "gdbthread.h"
33#include "annotate.h"
1adeb98a 34#include "symfile.h"
7a292a7a 35#include "top.h"
2acceee2 36#include "inf-loop.h"
4e052eda 37#include "regcache.h"
fd0407d6 38#include "value.h"
76727919 39#include "observable.h"
f636b87d 40#include "language.h"
a77053c2 41#include "solib.h"
f17517ea 42#include "main.h"
186c406b 43#include "block.h"
034dad6f 44#include "mi/mi-common.h"
4f8d22e3 45#include "event-top.h"
96429cc8 46#include "record.h"
d02ed0bb 47#include "record-full.h"
edb3359d 48#include "inline-frame.h"
4efc6507 49#include "jit.h"
06cd862c 50#include "tracepoint.h"
1bfeeb0f 51#include "skip.h"
28106bc2
SDJ
52#include "probe.h"
53#include "objfiles.h"
de0bea00 54#include "completer.h"
9107fc8d 55#include "target-descriptions.h"
f15cb84a 56#include "target-dcache.h"
d83ad864 57#include "terminal.h"
ff862be4 58#include "solist.h"
400b5eca 59#include "gdbsupport/event-loop.h"
243a9253 60#include "thread-fsm.h"
268a13a5 61#include "gdbsupport/enum-flags.h"
5ed8105e 62#include "progspace-and-thread.h"
268a13a5 63#include "gdbsupport/gdb_optional.h"
46a62268 64#include "arch-utils.h"
268a13a5
TT
65#include "gdbsupport/scope-exit.h"
66#include "gdbsupport/forward-scope-exit.h"
06cc9596 67#include "gdbsupport/gdb_select.h"
5b6d1e4f 68#include <unordered_map>
93b54c8e 69#include "async-event.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
d83ad864
DB
77static void follow_inferior_reset_breakpoints (void);
78
a289b8f6
JK
79static int currently_stepping (struct thread_info *tp);
80
2c03e5be 81static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
82
83static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
84
2484c66b
UW
85static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
86
8550d3b3
YQ
87static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
88
aff4e175
AB
89static void resume (gdb_signal sig);
90
5b6d1e4f
PA
91static void wait_for_inferior (inferior *inf);
92
372316f1
PA
93/* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95static struct async_event_handler *infrun_async_inferior_event_token;
96
97/* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99static int infrun_is_async = -1;
100
101/* See infrun.h. */
102
103void
104infrun_async (int enable)
105{
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120}
121
0b333c5e
PA
122/* See infrun.h. */
123
124void
125mark_infrun_async_event_handler (void)
126{
127 mark_async_event_handler (infrun_async_inferior_event_token);
128}
129
5fbbeb29
CF
130/* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
491144b5 133bool step_stop_if_no_debug = false;
920d2a44
AC
134static void
135show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139}
5fbbeb29 140
b9f437de
PA
141/* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
96baa820 144
39f77062 145static ptid_t previous_inferior_ptid;
7a292a7a 146
07107ca6
LM
147/* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
491144b5 152static bool detach_fork = true;
6c95b8df 153
491144b5 154bool debug_displaced = false;
237fc4c9
PA
155static void
156show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160}
161
ccce17b0 162unsigned int debug_infrun = 0;
920d2a44
AC
163static void
164show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168}
527159b7 169
03583c20
UW
170
171/* Support for disabling address space randomization. */
172
491144b5 173bool disable_randomization = true;
03583c20
UW
174
175static void
176show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188}
189
190static void
eb4c3f4a 191set_disable_randomization (const char *args, int from_tty,
03583c20
UW
192 struct cmd_list_element *c)
193{
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198}
199
d32dc48e
PA
200/* User interface for non-stop mode. */
201
491144b5
CB
202bool non_stop = false;
203static bool non_stop_1 = false;
d32dc48e
PA
204
205static void
eb4c3f4a 206set_non_stop (const char *args, int from_tty,
d32dc48e
PA
207 struct cmd_list_element *c)
208{
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216}
217
218static void
219show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221{
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225}
226
d914c394
SS
227/* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
491144b5
CB
231bool observer_mode = false;
232static bool observer_mode_1 = false;
d914c394
SS
233
234static void
eb4c3f4a 235set_observer_mode (const char *args, int from_tty,
d914c394
SS
236 struct cmd_list_element *c)
237{
d914c394
SS
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
491144b5 253 may_insert_fast_tracepoints = true;
d914c394
SS
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
d914c394 261 pagination_enabled = 0;
491144b5 262 non_stop = non_stop_1 = true;
d914c394
SS
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268}
269
270static void
271show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273{
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275}
276
277/* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283void
284update_observer_mode (void)
285{
491144b5
CB
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
d914c394
SS
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298}
c2c6d25f 299
c906108c
SS
300/* Tables of how to react to signals; the user sets them. */
301
adc6a863
PA
302static unsigned char signal_stop[GDB_SIGNAL_LAST];
303static unsigned char signal_print[GDB_SIGNAL_LAST];
304static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 305
ab04a2af
TT
306/* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
308 signal" command. */
309static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 310
2455069d
UW
311/* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
adc6a863 314static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 315
c906108c
SS
316#define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324#define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
9b224c5e
PA
332/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335void
336update_signals_program_target (void)
337{
adc6a863 338 target_program_signals (signal_program);
9b224c5e
PA
339}
340
1777feb0 341/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 342
edb3359d 343#define RESUME_ALL minus_one_ptid
c906108c
SS
344
345/* Command list pointer for the "stop" placeholder. */
346
347static struct cmd_list_element *stop_command;
348
c906108c
SS
349/* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
628fe4e4 351int stop_on_solib_events;
f9e14852
GB
352
353/* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356static void
eb4c3f4a
TT
357set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
f9e14852
GB
359{
360 update_solib_breakpoints ();
361}
362
920d2a44
AC
363static void
364show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366{
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369}
c906108c 370
c906108c
SS
371/* Nonzero after stop if current stack frame should be printed. */
372
373static int stop_print_frame;
374
5b6d1e4f
PA
375/* This is a cached copy of the target/ptid/waitstatus of the last
376 event returned by target_wait()/deprecated_target_wait_hook().
377 This information is returned by get_last_target_status(). */
378static process_stratum_target *target_last_proc_target;
39f77062 379static ptid_t target_last_wait_ptid;
e02bc4cc
DS
380static struct target_waitstatus target_last_waitstatus;
381
4e1c45ea 382void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 383
53904c9e
AC
384static const char follow_fork_mode_child[] = "child";
385static const char follow_fork_mode_parent[] = "parent";
386
40478521 387static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
ef346e04 391};
c906108c 392
53904c9e 393static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
394static void
395show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397{
3e43a32a
MS
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
401 value);
402}
c906108c
SS
403\f
404
d83ad864
DB
405/* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
5ab2fbf1
SM
411static bool
412follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
413{
414 int has_vforked;
79639e11 415 ptid_t parent_ptid, child_ptid;
d83ad864
DB
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
79639e11
PA
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 424 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433Can not resume the parent process over vfork in the foreground while\n\
434holding the child stopped. Try \"set detach-on-fork\" or \
435\"set schedule-multiple\".\n"));
d83ad864
DB
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
d83ad864
DB
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
00431a78 454 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
455 }
456
f67c0c91 457 if (print_inferior_events)
d83ad864 458 {
8dd06f7a 459 /* Ensure that we have a process ptid. */
e99b03dc 460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 461
223ffa71 462 target_terminal::ours_for_output ();
d83ad864 463 fprintf_filtered (gdb_stdlog,
f67c0c91 464 _("[Detaching after %s from child %s]\n"),
6f259a23 465 has_vforked ? "vfork" : "fork",
a068643d 466 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
d83ad864
DB
472
473 /* Add process to GDB's tables. */
e99b03dc 474 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
5ed8105e 482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 483
2a00d7ce 484 set_current_inferior (child_inf);
5b6d1e4f 485 switch_to_no_thread ();
d83ad864 486 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f 487 push_target (parent_inf->process_target ());
18493a00
PA
488 thread_info *child_thr
489 = add_thread_silent (child_inf->process_target (), child_ptid);
d83ad864
DB
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
5b6d1e4f
PA
498 exec_on_vfork ();
499
d83ad864
DB
500 /* The parent will be frozen until the child is done
501 with the shared region. Keep track of the
502 parent. */
503 child_inf->vfork_parent = parent_inf;
504 child_inf->pending_detach = 0;
505 parent_inf->vfork_child = child_inf;
506 parent_inf->pending_detach = 0;
18493a00
PA
507
508 /* Now that the inferiors and program spaces are all
509 wired up, we can switch to the child thread (which
510 switches inferior and program space too). */
511 switch_to_thread (child_thr);
d83ad864
DB
512 }
513 else
514 {
515 child_inf->aspace = new_address_space ();
564b1e3f 516 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
517 child_inf->removable = 1;
518 set_current_program_space (child_inf->pspace);
519 clone_program_space (child_inf->pspace, parent_inf->pspace);
520
18493a00
PA
521 /* solib_create_inferior_hook relies on the current
522 thread. */
523 switch_to_thread (child_thr);
524
d83ad864
DB
525 /* Let the shared library layer (e.g., solib-svr4) learn
526 about this new process, relocate the cloned exec, pull
527 in shared libraries, and install the solib event
528 breakpoint. If a "cloned-VM" event was propagated
529 better throughout the core, this wouldn't be
530 required. */
531 solib_create_inferior_hook (0);
532 }
d83ad864
DB
533 }
534
535 if (has_vforked)
536 {
537 struct inferior *parent_inf;
538
539 parent_inf = current_inferior ();
540
541 /* If we detached from the child, then we have to be careful
542 to not insert breakpoints in the parent until the child
543 is done with the shared memory region. However, if we're
544 staying attached to the child, then we can and should
545 insert breakpoints, so that we can debug it. A
546 subsequent child exec or exit is enough to know when does
547 the child stops using the parent's address space. */
548 parent_inf->waiting_for_vfork_done = detach_fork;
549 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
550 }
551 }
552 else
553 {
554 /* Follow the child. */
555 struct inferior *parent_inf, *child_inf;
556 struct program_space *parent_pspace;
557
f67c0c91 558 if (print_inferior_events)
d83ad864 559 {
f67c0c91
SDJ
560 std::string parent_pid = target_pid_to_str (parent_ptid);
561 std::string child_pid = target_pid_to_str (child_ptid);
562
223ffa71 563 target_terminal::ours_for_output ();
6f259a23 564 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
565 _("[Attaching after %s %s to child %s]\n"),
566 parent_pid.c_str (),
6f259a23 567 has_vforked ? "vfork" : "fork",
f67c0c91 568 child_pid.c_str ());
d83ad864
DB
569 }
570
571 /* Add the new inferior first, so that the target_detach below
572 doesn't unpush the target. */
573
e99b03dc 574 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
575
576 parent_inf = current_inferior ();
577 child_inf->attach_flag = parent_inf->attach_flag;
578 copy_terminal_info (child_inf, parent_inf);
579 child_inf->gdbarch = parent_inf->gdbarch;
580 copy_inferior_target_desc_info (child_inf, parent_inf);
581
582 parent_pspace = parent_inf->pspace;
583
5b6d1e4f 584 process_stratum_target *target = parent_inf->process_target ();
d83ad864 585
5b6d1e4f
PA
586 {
587 /* Hold a strong reference to the target while (maybe)
588 detaching the parent. Otherwise detaching could close the
589 target. */
590 auto target_ref = target_ops_ref::new_reference (target);
591
592 /* If we're vforking, we want to hold on to the parent until
593 the child exits or execs. At child exec or exit time we
594 can remove the old breakpoints from the parent and detach
595 or resume debugging it. Otherwise, detach the parent now;
596 we'll want to reuse it's program/address spaces, but we
597 can't set them to the child before removing breakpoints
598 from the parent, otherwise, the breakpoints module could
599 decide to remove breakpoints from the wrong process (since
600 they'd be assigned to the same address space). */
601
602 if (has_vforked)
603 {
604 gdb_assert (child_inf->vfork_parent == NULL);
605 gdb_assert (parent_inf->vfork_child == NULL);
606 child_inf->vfork_parent = parent_inf;
607 child_inf->pending_detach = 0;
608 parent_inf->vfork_child = child_inf;
609 parent_inf->pending_detach = detach_fork;
610 parent_inf->waiting_for_vfork_done = 0;
611 }
612 else if (detach_fork)
613 {
614 if (print_inferior_events)
615 {
616 /* Ensure that we have a process ptid. */
617 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
618
619 target_terminal::ours_for_output ();
620 fprintf_filtered (gdb_stdlog,
621 _("[Detaching after fork from "
622 "parent %s]\n"),
623 target_pid_to_str (process_ptid).c_str ());
624 }
8dd06f7a 625
5b6d1e4f
PA
626 target_detach (parent_inf, 0);
627 parent_inf = NULL;
628 }
6f259a23 629
5b6d1e4f 630 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 631
5b6d1e4f
PA
632 /* Add the child thread to the appropriate lists, and switch
633 to this new thread, before cloning the program space, and
634 informing the solib layer about this new process. */
d83ad864 635
5b6d1e4f
PA
636 set_current_inferior (child_inf);
637 push_target (target);
638 }
d83ad864 639
18493a00 640 thread_info *child_thr = add_thread_silent (target, child_ptid);
d83ad864
DB
641
642 /* If this is a vfork child, then the address-space is shared
643 with the parent. If we detached from the parent, then we can
644 reuse the parent's program/address spaces. */
645 if (has_vforked || detach_fork)
646 {
647 child_inf->pspace = parent_pspace;
648 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
649
650 exec_on_vfork ();
d83ad864
DB
651 }
652 else
653 {
654 child_inf->aspace = new_address_space ();
564b1e3f 655 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
656 child_inf->removable = 1;
657 child_inf->symfile_flags = SYMFILE_NO_READ;
658 set_current_program_space (child_inf->pspace);
659 clone_program_space (child_inf->pspace, parent_pspace);
660
661 /* Let the shared library layer (e.g., solib-svr4) learn
662 about this new process, relocate the cloned exec, pull in
663 shared libraries, and install the solib event breakpoint.
664 If a "cloned-VM" event was propagated better throughout
665 the core, this wouldn't be required. */
666 solib_create_inferior_hook (0);
667 }
18493a00
PA
668
669 switch_to_thread (child_thr);
d83ad864
DB
670 }
671
672 return target_follow_fork (follow_child, detach_fork);
673}
674
e58b0e63
PA
675/* Tell the target to follow the fork we're stopped at. Returns true
676 if the inferior should be resumed; false, if the target for some
677 reason decided it's best not to resume. */
678
5ab2fbf1
SM
679static bool
680follow_fork ()
c906108c 681{
5ab2fbf1
SM
682 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
683 bool should_resume = true;
e58b0e63
PA
684 struct thread_info *tp;
685
686 /* Copy user stepping state to the new inferior thread. FIXME: the
687 followed fork child thread should have a copy of most of the
4e3990f4
DE
688 parent thread structure's run control related fields, not just these.
689 Initialized to avoid "may be used uninitialized" warnings from gcc. */
690 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 691 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
692 CORE_ADDR step_range_start = 0;
693 CORE_ADDR step_range_end = 0;
bf4cb9be
TV
694 int current_line = 0;
695 symtab *current_symtab = NULL;
4e3990f4 696 struct frame_id step_frame_id = { 0 };
8980e177 697 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
698
699 if (!non_stop)
700 {
5b6d1e4f 701 process_stratum_target *wait_target;
e58b0e63
PA
702 ptid_t wait_ptid;
703 struct target_waitstatus wait_status;
704
705 /* Get the last target status returned by target_wait(). */
5b6d1e4f 706 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
707
708 /* If not stopped at a fork event, then there's nothing else to
709 do. */
710 if (wait_status.kind != TARGET_WAITKIND_FORKED
711 && wait_status.kind != TARGET_WAITKIND_VFORKED)
712 return 1;
713
714 /* Check if we switched over from WAIT_PTID, since the event was
715 reported. */
00431a78 716 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
717 && (current_inferior ()->process_target () != wait_target
718 || inferior_ptid != wait_ptid))
e58b0e63
PA
719 {
720 /* We did. Switch back to WAIT_PTID thread, to tell the
721 target to follow it (in either direction). We'll
722 afterwards refuse to resume, and inform the user what
723 happened. */
5b6d1e4f 724 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 725 switch_to_thread (wait_thread);
5ab2fbf1 726 should_resume = false;
e58b0e63
PA
727 }
728 }
729
730 tp = inferior_thread ();
731
732 /* If there were any forks/vforks that were caught and are now to be
733 followed, then do so now. */
734 switch (tp->pending_follow.kind)
735 {
736 case TARGET_WAITKIND_FORKED:
737 case TARGET_WAITKIND_VFORKED:
738 {
739 ptid_t parent, child;
740
741 /* If the user did a next/step, etc, over a fork call,
742 preserve the stepping state in the fork child. */
743 if (follow_child && should_resume)
744 {
8358c15c
JK
745 step_resume_breakpoint = clone_momentary_breakpoint
746 (tp->control.step_resume_breakpoint);
16c381f0
JK
747 step_range_start = tp->control.step_range_start;
748 step_range_end = tp->control.step_range_end;
bf4cb9be
TV
749 current_line = tp->current_line;
750 current_symtab = tp->current_symtab;
16c381f0 751 step_frame_id = tp->control.step_frame_id;
186c406b
TT
752 exception_resume_breakpoint
753 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 754 thread_fsm = tp->thread_fsm;
e58b0e63
PA
755
756 /* For now, delete the parent's sr breakpoint, otherwise,
757 parent/child sr breakpoints are considered duplicates,
758 and the child version will not be installed. Remove
759 this when the breakpoints module becomes aware of
760 inferiors and address spaces. */
761 delete_step_resume_breakpoint (tp);
16c381f0
JK
762 tp->control.step_range_start = 0;
763 tp->control.step_range_end = 0;
764 tp->control.step_frame_id = null_frame_id;
186c406b 765 delete_exception_resume_breakpoint (tp);
8980e177 766 tp->thread_fsm = NULL;
e58b0e63
PA
767 }
768
769 parent = inferior_ptid;
770 child = tp->pending_follow.value.related_pid;
771
5b6d1e4f 772 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
773 /* Set up inferior(s) as specified by the caller, and tell the
774 target to do whatever is necessary to follow either parent
775 or child. */
776 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
777 {
778 /* Target refused to follow, or there's some other reason
779 we shouldn't resume. */
780 should_resume = 0;
781 }
782 else
783 {
784 /* This pending follow fork event is now handled, one way
785 or another. The previous selected thread may be gone
786 from the lists by now, but if it is still around, need
787 to clear the pending follow request. */
5b6d1e4f 788 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
789 if (tp)
790 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
791
792 /* This makes sure we don't try to apply the "Switched
793 over from WAIT_PID" logic above. */
794 nullify_last_target_wait_ptid ();
795
1777feb0 796 /* If we followed the child, switch to it... */
e58b0e63
PA
797 if (follow_child)
798 {
5b6d1e4f 799 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 800 switch_to_thread (child_thr);
e58b0e63
PA
801
802 /* ... and preserve the stepping state, in case the
803 user was stepping over the fork call. */
804 if (should_resume)
805 {
806 tp = inferior_thread ();
8358c15c
JK
807 tp->control.step_resume_breakpoint
808 = step_resume_breakpoint;
16c381f0
JK
809 tp->control.step_range_start = step_range_start;
810 tp->control.step_range_end = step_range_end;
bf4cb9be
TV
811 tp->current_line = current_line;
812 tp->current_symtab = current_symtab;
16c381f0 813 tp->control.step_frame_id = step_frame_id;
186c406b
TT
814 tp->control.exception_resume_breakpoint
815 = exception_resume_breakpoint;
8980e177 816 tp->thread_fsm = thread_fsm;
e58b0e63
PA
817 }
818 else
819 {
820 /* If we get here, it was because we're trying to
821 resume from a fork catchpoint, but, the user
822 has switched threads away from the thread that
823 forked. In that case, the resume command
824 issued is most likely not applicable to the
825 child, so just warn, and refuse to resume. */
3e43a32a 826 warning (_("Not resuming: switched threads "
fd7dcb94 827 "before following fork child."));
e58b0e63
PA
828 }
829
830 /* Reset breakpoints in the child as appropriate. */
831 follow_inferior_reset_breakpoints ();
832 }
e58b0e63
PA
833 }
834 }
835 break;
836 case TARGET_WAITKIND_SPURIOUS:
837 /* Nothing to follow. */
838 break;
839 default:
840 internal_error (__FILE__, __LINE__,
841 "Unexpected pending_follow.kind %d\n",
842 tp->pending_follow.kind);
843 break;
844 }
c906108c 845
e58b0e63 846 return should_resume;
c906108c
SS
847}
848
d83ad864 849static void
6604731b 850follow_inferior_reset_breakpoints (void)
c906108c 851{
4e1c45ea
PA
852 struct thread_info *tp = inferior_thread ();
853
6604731b
DJ
854 /* Was there a step_resume breakpoint? (There was if the user
855 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
856 thread number. Cloned step_resume breakpoints are disabled on
857 creation, so enable it here now that it is associated with the
858 correct thread.
6604731b
DJ
859
860 step_resumes are a form of bp that are made to be per-thread.
861 Since we created the step_resume bp when the parent process
862 was being debugged, and now are switching to the child process,
863 from the breakpoint package's viewpoint, that's a switch of
864 "threads". We must update the bp's notion of which thread
865 it is for, or it'll be ignored when it triggers. */
866
8358c15c 867 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
868 {
869 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
870 tp->control.step_resume_breakpoint->loc->enabled = 1;
871 }
6604731b 872
a1aa2221 873 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 874 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
875 {
876 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
877 tp->control.exception_resume_breakpoint->loc->enabled = 1;
878 }
186c406b 879
6604731b
DJ
880 /* Reinsert all breakpoints in the child. The user may have set
881 breakpoints after catching the fork, in which case those
882 were never set in the child, but only in the parent. This makes
883 sure the inserted breakpoints match the breakpoint list. */
884
885 breakpoint_re_set ();
886 insert_breakpoints ();
c906108c 887}
c906108c 888
6c95b8df
PA
889/* The child has exited or execed: resume threads of the parent the
890 user wanted to be executing. */
891
892static int
893proceed_after_vfork_done (struct thread_info *thread,
894 void *arg)
895{
896 int pid = * (int *) arg;
897
00431a78
PA
898 if (thread->ptid.pid () == pid
899 && thread->state == THREAD_RUNNING
900 && !thread->executing
6c95b8df 901 && !thread->stop_requested
a493e3e2 902 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
903 {
904 if (debug_infrun)
905 fprintf_unfiltered (gdb_stdlog,
906 "infrun: resuming vfork parent thread %s\n",
a068643d 907 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 908
00431a78 909 switch_to_thread (thread);
70509625 910 clear_proceed_status (0);
64ce06e4 911 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
912 }
913
914 return 0;
915}
916
917/* Called whenever we notice an exec or exit event, to handle
918 detaching or resuming a vfork parent. */
919
920static void
921handle_vfork_child_exec_or_exit (int exec)
922{
923 struct inferior *inf = current_inferior ();
924
925 if (inf->vfork_parent)
926 {
927 int resume_parent = -1;
928
929 /* This exec or exit marks the end of the shared memory region
b73715df
TV
930 between the parent and the child. Break the bonds. */
931 inferior *vfork_parent = inf->vfork_parent;
932 inf->vfork_parent->vfork_child = NULL;
933 inf->vfork_parent = NULL;
6c95b8df 934
b73715df
TV
935 /* If the user wanted to detach from the parent, now is the
936 time. */
937 if (vfork_parent->pending_detach)
6c95b8df 938 {
6c95b8df
PA
939 struct program_space *pspace;
940 struct address_space *aspace;
941
1777feb0 942 /* follow-fork child, detach-on-fork on. */
6c95b8df 943
b73715df 944 vfork_parent->pending_detach = 0;
68c9da30 945
18493a00 946 scoped_restore_current_pspace_and_thread restore_thread;
6c95b8df
PA
947
948 /* We're letting loose of the parent. */
18493a00 949 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
00431a78 950 switch_to_thread (tp);
6c95b8df
PA
951
952 /* We're about to detach from the parent, which implicitly
953 removes breakpoints from its address space. There's a
954 catch here: we want to reuse the spaces for the child,
955 but, parent/child are still sharing the pspace at this
956 point, although the exec in reality makes the kernel give
957 the child a fresh set of new pages. The problem here is
958 that the breakpoints module being unaware of this, would
959 likely chose the child process to write to the parent
960 address space. Swapping the child temporarily away from
961 the spaces has the desired effect. Yes, this is "sort
962 of" a hack. */
963
964 pspace = inf->pspace;
965 aspace = inf->aspace;
966 inf->aspace = NULL;
967 inf->pspace = NULL;
968
f67c0c91 969 if (print_inferior_events)
6c95b8df 970 {
a068643d 971 std::string pidstr
b73715df 972 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 973
223ffa71 974 target_terminal::ours_for_output ();
6c95b8df
PA
975
976 if (exec)
6f259a23
DB
977 {
978 fprintf_filtered (gdb_stdlog,
f67c0c91 979 _("[Detaching vfork parent %s "
a068643d 980 "after child exec]\n"), pidstr.c_str ());
6f259a23 981 }
6c95b8df 982 else
6f259a23
DB
983 {
984 fprintf_filtered (gdb_stdlog,
f67c0c91 985 _("[Detaching vfork parent %s "
a068643d 986 "after child exit]\n"), pidstr.c_str ());
6f259a23 987 }
6c95b8df
PA
988 }
989
b73715df 990 target_detach (vfork_parent, 0);
6c95b8df
PA
991
992 /* Put it back. */
993 inf->pspace = pspace;
994 inf->aspace = aspace;
6c95b8df
PA
995 }
996 else if (exec)
997 {
998 /* We're staying attached to the parent, so, really give the
999 child a new address space. */
564b1e3f 1000 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1001 inf->aspace = inf->pspace->aspace;
1002 inf->removable = 1;
1003 set_current_program_space (inf->pspace);
1004
b73715df 1005 resume_parent = vfork_parent->pid;
6c95b8df
PA
1006 }
1007 else
1008 {
6c95b8df
PA
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
18493a00 1018 /* Switch to no-thread while running clone_program_space, so
5ed8105e
PA
1019 that clone_program_space doesn't want to read the
1020 selected frame of a dead process. */
18493a00
PA
1021 scoped_restore_current_thread restore_thread;
1022 switch_to_no_thread ();
6c95b8df 1023
53af73bf
PA
1024 inf->pspace = new program_space (maybe_new_address_space ());
1025 inf->aspace = inf->pspace->aspace;
1026 set_current_program_space (inf->pspace);
6c95b8df 1027 inf->removable = 1;
7dcd53a0 1028 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1029 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1030
b73715df 1031 resume_parent = vfork_parent->pid;
6c95b8df
PA
1032 }
1033
6c95b8df
PA
1034 gdb_assert (current_program_space == inf->pspace);
1035
1036 if (non_stop && resume_parent != -1)
1037 {
1038 /* If the user wanted the parent to be running, let it go
1039 free now. */
5ed8105e 1040 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1041
1042 if (debug_infrun)
3e43a32a
MS
1043 fprintf_unfiltered (gdb_stdlog,
1044 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1045 resume_parent);
1046
1047 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1048 }
1049 }
1050}
1051
eb6c553b 1052/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1053
1054static const char follow_exec_mode_new[] = "new";
1055static const char follow_exec_mode_same[] = "same";
40478521 1056static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1057{
1058 follow_exec_mode_new,
1059 follow_exec_mode_same,
1060 NULL,
1061};
1062
1063static const char *follow_exec_mode_string = follow_exec_mode_same;
1064static void
1065show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1066 struct cmd_list_element *c, const char *value)
1067{
1068 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1069}
1070
ecf45d2c 1071/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1072
c906108c 1073static void
4ca51187 1074follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1075{
6c95b8df 1076 struct inferior *inf = current_inferior ();
e99b03dc 1077 int pid = ptid.pid ();
94585166 1078 ptid_t process_ptid;
7a292a7a 1079
65d2b333
PW
1080 /* Switch terminal for any messages produced e.g. by
1081 breakpoint_re_set. */
1082 target_terminal::ours_for_output ();
1083
c906108c
SS
1084 /* This is an exec event that we actually wish to pay attention to.
1085 Refresh our symbol table to the newly exec'd program, remove any
1086 momentary bp's, etc.
1087
1088 If there are breakpoints, they aren't really inserted now,
1089 since the exec() transformed our inferior into a fresh set
1090 of instructions.
1091
1092 We want to preserve symbolic breakpoints on the list, since
1093 we have hopes that they can be reset after the new a.out's
1094 symbol table is read.
1095
1096 However, any "raw" breakpoints must be removed from the list
1097 (e.g., the solib bp's), since their address is probably invalid
1098 now.
1099
1100 And, we DON'T want to call delete_breakpoints() here, since
1101 that may write the bp's "shadow contents" (the instruction
85102364 1102 value that was overwritten with a TRAP instruction). Since
1777feb0 1103 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1104
1105 mark_breakpoints_out ();
1106
95e50b27
PA
1107 /* The target reports the exec event to the main thread, even if
1108 some other thread does the exec, and even if the main thread was
1109 stopped or already gone. We may still have non-leader threads of
1110 the process on our list. E.g., on targets that don't have thread
1111 exit events (like remote); or on native Linux in non-stop mode if
1112 there were only two threads in the inferior and the non-leader
1113 one is the one that execs (and nothing forces an update of the
1114 thread list up to here). When debugging remotely, it's best to
1115 avoid extra traffic, when possible, so avoid syncing the thread
1116 list with the target, and instead go ahead and delete all threads
1117 of the process but one that reported the event. Note this must
1118 be done before calling update_breakpoints_after_exec, as
1119 otherwise clearing the threads' resources would reference stale
1120 thread breakpoints -- it may have been one of these threads that
1121 stepped across the exec. We could just clear their stepping
1122 states, but as long as we're iterating, might as well delete
1123 them. Deleting them now rather than at the next user-visible
1124 stop provides a nicer sequence of events for user and MI
1125 notifications. */
08036331 1126 for (thread_info *th : all_threads_safe ())
d7e15655 1127 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1128 delete_thread (th);
95e50b27
PA
1129
1130 /* We also need to clear any left over stale state for the
1131 leader/event thread. E.g., if there was any step-resume
1132 breakpoint or similar, it's gone now. We cannot truly
1133 step-to-next statement through an exec(). */
08036331 1134 thread_info *th = inferior_thread ();
8358c15c 1135 th->control.step_resume_breakpoint = NULL;
186c406b 1136 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1137 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1138 th->control.step_range_start = 0;
1139 th->control.step_range_end = 0;
c906108c 1140
95e50b27
PA
1141 /* The user may have had the main thread held stopped in the
1142 previous image (e.g., schedlock on, or non-stop). Release
1143 it now. */
a75724bc
PA
1144 th->stop_requested = 0;
1145
95e50b27
PA
1146 update_breakpoints_after_exec ();
1147
1777feb0 1148 /* What is this a.out's name? */
f2907e49 1149 process_ptid = ptid_t (pid);
6c95b8df 1150 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1151 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1152 exec_file_target);
c906108c
SS
1153
1154 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1155 inferior has essentially been killed & reborn. */
7a292a7a 1156
6ca15a4b 1157 breakpoint_init_inferior (inf_execd);
e85a822c 1158
797bc1cb
TT
1159 gdb::unique_xmalloc_ptr<char> exec_file_host
1160 = exec_file_find (exec_file_target, NULL);
ff862be4 1161
ecf45d2c
SL
1162 /* If we were unable to map the executable target pathname onto a host
1163 pathname, tell the user that. Otherwise GDB's subsequent behavior
1164 is confusing. Maybe it would even be better to stop at this point
1165 so that the user can specify a file manually before continuing. */
1166 if (exec_file_host == NULL)
1167 warning (_("Could not load symbols for executable %s.\n"
1168 "Do you need \"set sysroot\"?"),
1169 exec_file_target);
c906108c 1170
cce9b6bf
PA
1171 /* Reset the shared library package. This ensures that we get a
1172 shlib event when the child reaches "_start", at which point the
1173 dld will have had a chance to initialize the child. */
1174 /* Also, loading a symbol file below may trigger symbol lookups, and
1175 we don't want those to be satisfied by the libraries of the
1176 previous incarnation of this process. */
1177 no_shared_libraries (NULL, 0);
1178
6c95b8df
PA
1179 if (follow_exec_mode_string == follow_exec_mode_new)
1180 {
6c95b8df
PA
1181 /* The user wants to keep the old inferior and program spaces
1182 around. Create a new fresh one, and switch to it. */
1183
35ed81d4
SM
1184 /* Do exit processing for the original inferior before setting the new
1185 inferior's pid. Having two inferiors with the same pid would confuse
1186 find_inferior_p(t)id. Transfer the terminal state and info from the
1187 old to the new inferior. */
1188 inf = add_inferior_with_spaces ();
1189 swap_terminal_info (inf, current_inferior ());
057302ce 1190 exit_inferior_silent (current_inferior ());
17d8546e 1191
94585166 1192 inf->pid = pid;
ecf45d2c 1193 target_follow_exec (inf, exec_file_target);
6c95b8df 1194
5b6d1e4f
PA
1195 inferior *org_inferior = current_inferior ();
1196 switch_to_inferior_no_thread (inf);
1197 push_target (org_inferior->process_target ());
1198 thread_info *thr = add_thread (inf->process_target (), ptid);
1199 switch_to_thread (thr);
6c95b8df 1200 }
9107fc8d
PA
1201 else
1202 {
1203 /* The old description may no longer be fit for the new image.
1204 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1205 old description; we'll read a new one below. No need to do
1206 this on "follow-exec-mode new", as the old inferior stays
1207 around (its description is later cleared/refetched on
1208 restart). */
1209 target_clear_description ();
1210 }
6c95b8df
PA
1211
1212 gdb_assert (current_program_space == inf->pspace);
1213
ecf45d2c
SL
1214 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1215 because the proper displacement for a PIE (Position Independent
1216 Executable) main symbol file will only be computed by
1217 solib_create_inferior_hook below. breakpoint_re_set would fail
1218 to insert the breakpoints with the zero displacement. */
797bc1cb 1219 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1220
9107fc8d
PA
1221 /* If the target can specify a description, read it. Must do this
1222 after flipping to the new executable (because the target supplied
1223 description must be compatible with the executable's
1224 architecture, and the old executable may e.g., be 32-bit, while
1225 the new one 64-bit), and before anything involving memory or
1226 registers. */
1227 target_find_description ();
1228
268a4a75 1229 solib_create_inferior_hook (0);
c906108c 1230
4efc6507
DE
1231 jit_inferior_created_hook ();
1232
c1e56572
JK
1233 breakpoint_re_set ();
1234
c906108c
SS
1235 /* Reinsert all breakpoints. (Those which were symbolic have
1236 been reset to the proper address in the new a.out, thanks
1777feb0 1237 to symbol_file_command...). */
c906108c
SS
1238 insert_breakpoints ();
1239
1240 /* The next resume of this inferior should bring it to the shlib
1241 startup breakpoints. (If the user had also set bp's on
1242 "main" from the old (parent) process, then they'll auto-
1777feb0 1243 matically get reset there in the new process.). */
c906108c
SS
1244}
1245
c2829269
PA
1246/* The queue of threads that need to do a step-over operation to get
1247 past e.g., a breakpoint. What technique is used to step over the
1248 breakpoint/watchpoint does not matter -- all threads end up in the
1249 same queue, to maintain rough temporal order of execution, in order
1250 to avoid starvation, otherwise, we could e.g., find ourselves
1251 constantly stepping the same couple threads past their breakpoints
1252 over and over, if the single-step finish fast enough. */
1253struct thread_info *step_over_queue_head;
1254
6c4cfb24
PA
1255/* Bit flags indicating what the thread needs to step over. */
1256
8d297bbf 1257enum step_over_what_flag
6c4cfb24
PA
1258 {
1259 /* Step over a breakpoint. */
1260 STEP_OVER_BREAKPOINT = 1,
1261
1262 /* Step past a non-continuable watchpoint, in order to let the
1263 instruction execute so we can evaluate the watchpoint
1264 expression. */
1265 STEP_OVER_WATCHPOINT = 2
1266 };
8d297bbf 1267DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1268
963f9c80 1269/* Info about an instruction that is being stepped over. */
31e77af2
PA
1270
1271struct step_over_info
1272{
963f9c80
PA
1273 /* If we're stepping past a breakpoint, this is the address space
1274 and address of the instruction the breakpoint is set at. We'll
1275 skip inserting all breakpoints here. Valid iff ASPACE is
1276 non-NULL. */
8b86c959 1277 const address_space *aspace;
31e77af2 1278 CORE_ADDR address;
963f9c80
PA
1279
1280 /* The instruction being stepped over triggers a nonsteppable
1281 watchpoint. If true, we'll skip inserting watchpoints. */
1282 int nonsteppable_watchpoint_p;
21edc42f
YQ
1283
1284 /* The thread's global number. */
1285 int thread;
31e77af2
PA
1286};
1287
1288/* The step-over info of the location that is being stepped over.
1289
1290 Note that with async/breakpoint always-inserted mode, a user might
1291 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1292 being stepped over. As setting a new breakpoint inserts all
1293 breakpoints, we need to make sure the breakpoint being stepped over
1294 isn't inserted then. We do that by only clearing the step-over
1295 info when the step-over is actually finished (or aborted).
1296
1297 Presently GDB can only step over one breakpoint at any given time.
1298 Given threads that can't run code in the same address space as the
1299 breakpoint's can't really miss the breakpoint, GDB could be taught
1300 to step-over at most one breakpoint per address space (so this info
1301 could move to the address space object if/when GDB is extended).
1302 The set of breakpoints being stepped over will normally be much
1303 smaller than the set of all breakpoints, so a flag in the
1304 breakpoint location structure would be wasteful. A separate list
1305 also saves complexity and run-time, as otherwise we'd have to go
1306 through all breakpoint locations clearing their flag whenever we
1307 start a new sequence. Similar considerations weigh against storing
1308 this info in the thread object. Plus, not all step overs actually
1309 have breakpoint locations -- e.g., stepping past a single-step
1310 breakpoint, or stepping to complete a non-continuable
1311 watchpoint. */
1312static struct step_over_info step_over_info;
1313
1314/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1315 stepping over.
1316 N.B. We record the aspace and address now, instead of say just the thread,
1317 because when we need the info later the thread may be running. */
31e77af2
PA
1318
1319static void
8b86c959 1320set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1321 int nonsteppable_watchpoint_p,
1322 int thread)
31e77af2
PA
1323{
1324 step_over_info.aspace = aspace;
1325 step_over_info.address = address;
963f9c80 1326 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1327 step_over_info.thread = thread;
31e77af2
PA
1328}
1329
1330/* Called when we're not longer stepping over a breakpoint / an
1331 instruction, so all breakpoints are free to be (re)inserted. */
1332
1333static void
1334clear_step_over_info (void)
1335{
372316f1
PA
1336 if (debug_infrun)
1337 fprintf_unfiltered (gdb_stdlog,
1338 "infrun: clear_step_over_info\n");
31e77af2
PA
1339 step_over_info.aspace = NULL;
1340 step_over_info.address = 0;
963f9c80 1341 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1342 step_over_info.thread = -1;
31e77af2
PA
1343}
1344
7f89fd65 1345/* See infrun.h. */
31e77af2
PA
1346
1347int
1348stepping_past_instruction_at (struct address_space *aspace,
1349 CORE_ADDR address)
1350{
1351 return (step_over_info.aspace != NULL
1352 && breakpoint_address_match (aspace, address,
1353 step_over_info.aspace,
1354 step_over_info.address));
1355}
1356
963f9c80
PA
1357/* See infrun.h. */
1358
21edc42f
YQ
1359int
1360thread_is_stepping_over_breakpoint (int thread)
1361{
1362 return (step_over_info.thread != -1
1363 && thread == step_over_info.thread);
1364}
1365
1366/* See infrun.h. */
1367
963f9c80
PA
1368int
1369stepping_past_nonsteppable_watchpoint (void)
1370{
1371 return step_over_info.nonsteppable_watchpoint_p;
1372}
1373
6cc83d2a
PA
1374/* Returns true if step-over info is valid. */
1375
1376static int
1377step_over_info_valid_p (void)
1378{
963f9c80
PA
1379 return (step_over_info.aspace != NULL
1380 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1381}
1382
c906108c 1383\f
237fc4c9
PA
1384/* Displaced stepping. */
1385
1386/* In non-stop debugging mode, we must take special care to manage
1387 breakpoints properly; in particular, the traditional strategy for
1388 stepping a thread past a breakpoint it has hit is unsuitable.
1389 'Displaced stepping' is a tactic for stepping one thread past a
1390 breakpoint it has hit while ensuring that other threads running
1391 concurrently will hit the breakpoint as they should.
1392
1393 The traditional way to step a thread T off a breakpoint in a
1394 multi-threaded program in all-stop mode is as follows:
1395
1396 a0) Initially, all threads are stopped, and breakpoints are not
1397 inserted.
1398 a1) We single-step T, leaving breakpoints uninserted.
1399 a2) We insert breakpoints, and resume all threads.
1400
1401 In non-stop debugging, however, this strategy is unsuitable: we
1402 don't want to have to stop all threads in the system in order to
1403 continue or step T past a breakpoint. Instead, we use displaced
1404 stepping:
1405
1406 n0) Initially, T is stopped, other threads are running, and
1407 breakpoints are inserted.
1408 n1) We copy the instruction "under" the breakpoint to a separate
1409 location, outside the main code stream, making any adjustments
1410 to the instruction, register, and memory state as directed by
1411 T's architecture.
1412 n2) We single-step T over the instruction at its new location.
1413 n3) We adjust the resulting register and memory state as directed
1414 by T's architecture. This includes resetting T's PC to point
1415 back into the main instruction stream.
1416 n4) We resume T.
1417
1418 This approach depends on the following gdbarch methods:
1419
1420 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1421 indicate where to copy the instruction, and how much space must
1422 be reserved there. We use these in step n1.
1423
1424 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1425 address, and makes any necessary adjustments to the instruction,
1426 register contents, and memory. We use this in step n1.
1427
1428 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1429 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1430 same effect the instruction would have had if we had executed it
1431 at its original address. We use this in step n3.
1432
237fc4c9
PA
1433 The gdbarch_displaced_step_copy_insn and
1434 gdbarch_displaced_step_fixup functions must be written so that
1435 copying an instruction with gdbarch_displaced_step_copy_insn,
1436 single-stepping across the copied instruction, and then applying
1437 gdbarch_displaced_insn_fixup should have the same effects on the
1438 thread's memory and registers as stepping the instruction in place
1439 would have. Exactly which responsibilities fall to the copy and
1440 which fall to the fixup is up to the author of those functions.
1441
1442 See the comments in gdbarch.sh for details.
1443
1444 Note that displaced stepping and software single-step cannot
1445 currently be used in combination, although with some care I think
1446 they could be made to. Software single-step works by placing
1447 breakpoints on all possible subsequent instructions; if the
1448 displaced instruction is a PC-relative jump, those breakpoints
1449 could fall in very strange places --- on pages that aren't
1450 executable, or at addresses that are not proper instruction
1451 boundaries. (We do generally let other threads run while we wait
1452 to hit the software single-step breakpoint, and they might
1453 encounter such a corrupted instruction.) One way to work around
1454 this would be to have gdbarch_displaced_step_copy_insn fully
1455 simulate the effect of PC-relative instructions (and return NULL)
1456 on architectures that use software single-stepping.
1457
1458 In non-stop mode, we can have independent and simultaneous step
1459 requests, so more than one thread may need to simultaneously step
1460 over a breakpoint. The current implementation assumes there is
1461 only one scratch space per process. In this case, we have to
1462 serialize access to the scratch space. If thread A wants to step
1463 over a breakpoint, but we are currently waiting for some other
1464 thread to complete a displaced step, we leave thread A stopped and
1465 place it in the displaced_step_request_queue. Whenever a displaced
1466 step finishes, we pick the next thread in the queue and start a new
1467 displaced step operation on it. See displaced_step_prepare and
1468 displaced_step_fixup for details. */
1469
cfba9872
SM
1470/* Default destructor for displaced_step_closure. */
1471
1472displaced_step_closure::~displaced_step_closure () = default;
1473
fc1cf338
PA
1474/* Get the displaced stepping state of process PID. */
1475
39a36629 1476static displaced_step_inferior_state *
00431a78 1477get_displaced_stepping_state (inferior *inf)
fc1cf338 1478{
d20172fc 1479 return &inf->displaced_step_state;
fc1cf338
PA
1480}
1481
372316f1
PA
1482/* Returns true if any inferior has a thread doing a displaced
1483 step. */
1484
39a36629
SM
1485static bool
1486displaced_step_in_progress_any_inferior ()
372316f1 1487{
d20172fc 1488 for (inferior *i : all_inferiors ())
39a36629 1489 {
d20172fc 1490 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1491 return true;
1492 }
372316f1 1493
39a36629 1494 return false;
372316f1
PA
1495}
1496
c0987663
YQ
1497/* Return true if thread represented by PTID is doing a displaced
1498 step. */
1499
1500static int
00431a78 1501displaced_step_in_progress_thread (thread_info *thread)
c0987663 1502{
00431a78 1503 gdb_assert (thread != NULL);
c0987663 1504
d20172fc 1505 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1506}
1507
8f572e5c
PA
1508/* Return true if process PID has a thread doing a displaced step. */
1509
1510static int
00431a78 1511displaced_step_in_progress (inferior *inf)
8f572e5c 1512{
d20172fc 1513 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1514}
1515
a42244db
YQ
1516/* If inferior is in displaced stepping, and ADDR equals to starting address
1517 of copy area, return corresponding displaced_step_closure. Otherwise,
1518 return NULL. */
1519
1520struct displaced_step_closure*
1521get_displaced_step_closure_by_addr (CORE_ADDR addr)
1522{
d20172fc 1523 displaced_step_inferior_state *displaced
00431a78 1524 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1525
1526 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1527 if (displaced->step_thread != nullptr
00431a78 1528 && displaced->step_copy == addr)
d8d83535 1529 return displaced->step_closure.get ();
a42244db
YQ
1530
1531 return NULL;
1532}
1533
fc1cf338
PA
1534static void
1535infrun_inferior_exit (struct inferior *inf)
1536{
d20172fc 1537 inf->displaced_step_state.reset ();
fc1cf338 1538}
237fc4c9 1539
fff08868
HZ
1540/* If ON, and the architecture supports it, GDB will use displaced
1541 stepping to step over breakpoints. If OFF, or if the architecture
1542 doesn't support it, GDB will instead use the traditional
1543 hold-and-step approach. If AUTO (which is the default), GDB will
1544 decide which technique to use to step over breakpoints depending on
9822cb57 1545 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1546
72d0e2c5 1547static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1548
237fc4c9
PA
1549static void
1550show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1551 struct cmd_list_element *c,
1552 const char *value)
1553{
72d0e2c5 1554 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1555 fprintf_filtered (file,
1556 _("Debugger's willingness to use displaced stepping "
1557 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1558 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1559 else
3e43a32a
MS
1560 fprintf_filtered (file,
1561 _("Debugger's willingness to use displaced stepping "
1562 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1563}
1564
9822cb57
SM
1565/* Return true if the gdbarch implements the required methods to use
1566 displaced stepping. */
1567
1568static bool
1569gdbarch_supports_displaced_stepping (gdbarch *arch)
1570{
1571 /* Only check for the presence of step_copy_insn. Other required methods
1572 are checked by the gdbarch validation. */
1573 return gdbarch_displaced_step_copy_insn_p (arch);
1574}
1575
fff08868 1576/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1577 over breakpoints of thread TP. */
fff08868 1578
9822cb57
SM
1579static bool
1580use_displaced_stepping (thread_info *tp)
237fc4c9 1581{
9822cb57
SM
1582 /* If the user disabled it explicitly, don't use displaced stepping. */
1583 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1584 return false;
1585
1586 /* If "auto", only use displaced stepping if the target operates in a non-stop
1587 way. */
1588 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1589 && !target_is_non_stop_p ())
1590 return false;
1591
1592 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1593
1594 /* If the architecture doesn't implement displaced stepping, don't use
1595 it. */
1596 if (!gdbarch_supports_displaced_stepping (gdbarch))
1597 return false;
1598
1599 /* If recording, don't use displaced stepping. */
1600 if (find_record_target () != nullptr)
1601 return false;
1602
d20172fc
SM
1603 displaced_step_inferior_state *displaced_state
1604 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1605
9822cb57
SM
1606 /* If displaced stepping failed before for this inferior, don't bother trying
1607 again. */
1608 if (displaced_state->failed_before)
1609 return false;
1610
1611 return true;
237fc4c9
PA
1612}
1613
d8d83535
SM
1614/* Simple function wrapper around displaced_step_inferior_state::reset. */
1615
237fc4c9 1616static void
d8d83535 1617displaced_step_reset (displaced_step_inferior_state *displaced)
237fc4c9 1618{
d8d83535 1619 displaced->reset ();
237fc4c9
PA
1620}
1621
d8d83535
SM
1622/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1623 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1624
1625using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9
PA
1626
1627/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1628void
1629displaced_step_dump_bytes (struct ui_file *file,
1630 const gdb_byte *buf,
1631 size_t len)
1632{
1633 int i;
1634
1635 for (i = 0; i < len; i++)
1636 fprintf_unfiltered (file, "%02x ", buf[i]);
1637 fputs_unfiltered ("\n", file);
1638}
1639
1640/* Prepare to single-step, using displaced stepping.
1641
1642 Note that we cannot use displaced stepping when we have a signal to
1643 deliver. If we have a signal to deliver and an instruction to step
1644 over, then after the step, there will be no indication from the
1645 target whether the thread entered a signal handler or ignored the
1646 signal and stepped over the instruction successfully --- both cases
1647 result in a simple SIGTRAP. In the first case we mustn't do a
1648 fixup, and in the second case we must --- but we can't tell which.
1649 Comments in the code for 'random signals' in handle_inferior_event
1650 explain how we handle this case instead.
1651
1652 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1653 stepped now; 0 if displaced stepping this thread got queued; or -1
1654 if this instruction can't be displaced stepped. */
1655
237fc4c9 1656static int
00431a78 1657displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1658{
00431a78 1659 regcache *regcache = get_thread_regcache (tp);
ac7936df 1660 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1661 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1662 CORE_ADDR original, copy;
1663 ULONGEST len;
9e529e1d 1664 int status;
237fc4c9
PA
1665
1666 /* We should never reach this function if the architecture does not
1667 support displaced stepping. */
9822cb57 1668 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1669
c2829269
PA
1670 /* Nor if the thread isn't meant to step over a breakpoint. */
1671 gdb_assert (tp->control.trap_expected);
1672
c1e36e3e
PA
1673 /* Disable range stepping while executing in the scratch pad. We
1674 want a single-step even if executing the displaced instruction in
1675 the scratch buffer lands within the stepping range (e.g., a
1676 jump/branch). */
1677 tp->control.may_range_step = 0;
1678
fc1cf338
PA
1679 /* We have to displaced step one thread at a time, as we only have
1680 access to a single scratch space per inferior. */
237fc4c9 1681
d20172fc
SM
1682 displaced_step_inferior_state *displaced
1683 = get_displaced_stepping_state (tp->inf);
fc1cf338 1684
00431a78 1685 if (displaced->step_thread != nullptr)
237fc4c9
PA
1686 {
1687 /* Already waiting for a displaced step to finish. Defer this
1688 request and place in queue. */
237fc4c9
PA
1689
1690 if (debug_displaced)
1691 fprintf_unfiltered (gdb_stdlog,
c2829269 1692 "displaced: deferring step of %s\n",
a068643d 1693 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1694
c2829269 1695 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1696 return 0;
1697 }
1698 else
1699 {
1700 if (debug_displaced)
1701 fprintf_unfiltered (gdb_stdlog,
1702 "displaced: stepping %s now\n",
a068643d 1703 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1704 }
1705
d8d83535 1706 displaced_step_reset (displaced);
237fc4c9 1707
00431a78
PA
1708 scoped_restore_current_thread restore_thread;
1709
1710 switch_to_thread (tp);
ad53cd71 1711
515630c5 1712 original = regcache_read_pc (regcache);
237fc4c9
PA
1713
1714 copy = gdbarch_displaced_step_location (gdbarch);
1715 len = gdbarch_max_insn_length (gdbarch);
1716
d35ae833
PA
1717 if (breakpoint_in_range_p (aspace, copy, len))
1718 {
1719 /* There's a breakpoint set in the scratch pad location range
1720 (which is usually around the entry point). We'd either
1721 install it before resuming, which would overwrite/corrupt the
1722 scratch pad, or if it was already inserted, this displaced
1723 step would overwrite it. The latter is OK in the sense that
1724 we already assume that no thread is going to execute the code
1725 in the scratch pad range (after initial startup) anyway, but
1726 the former is unacceptable. Simply punt and fallback to
1727 stepping over this breakpoint in-line. */
1728 if (debug_displaced)
1729 {
1730 fprintf_unfiltered (gdb_stdlog,
1731 "displaced: breakpoint set in scratch pad. "
1732 "Stepping over breakpoint in-line instead.\n");
1733 }
1734
d35ae833
PA
1735 return -1;
1736 }
1737
237fc4c9 1738 /* Save the original contents of the copy area. */
d20172fc
SM
1739 displaced->step_saved_copy.resize (len);
1740 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1741 if (status != 0)
1742 throw_error (MEMORY_ERROR,
1743 _("Error accessing memory address %s (%s) for "
1744 "displaced-stepping scratch space."),
1745 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1746 if (debug_displaced)
1747 {
5af949e3
UW
1748 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1749 paddress (gdbarch, copy));
fc1cf338 1750 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1751 displaced->step_saved_copy.data (),
fc1cf338 1752 len);
237fc4c9
PA
1753 };
1754
e8217e61
SM
1755 displaced->step_closure
1756 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1757 if (displaced->step_closure == NULL)
7f03bd92
PA
1758 {
1759 /* The architecture doesn't know how or want to displaced step
1760 this instruction or instruction sequence. Fallback to
1761 stepping over the breakpoint in-line. */
7f03bd92
PA
1762 return -1;
1763 }
237fc4c9 1764
9f5a595d
UW
1765 /* Save the information we need to fix things up if the step
1766 succeeds. */
00431a78 1767 displaced->step_thread = tp;
fc1cf338 1768 displaced->step_gdbarch = gdbarch;
fc1cf338
PA
1769 displaced->step_original = original;
1770 displaced->step_copy = copy;
9f5a595d 1771
9799571e 1772 {
d8d83535 1773 displaced_step_reset_cleanup cleanup (displaced);
237fc4c9 1774
9799571e
TT
1775 /* Resume execution at the copy. */
1776 regcache_write_pc (regcache, copy);
237fc4c9 1777
9799571e
TT
1778 cleanup.release ();
1779 }
ad53cd71 1780
237fc4c9 1781 if (debug_displaced)
5af949e3
UW
1782 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1783 paddress (gdbarch, copy));
237fc4c9 1784
237fc4c9
PA
1785 return 1;
1786}
1787
3fc8eb30
PA
1788/* Wrapper for displaced_step_prepare_throw that disabled further
1789 attempts at displaced stepping if we get a memory error. */
1790
1791static int
00431a78 1792displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1793{
1794 int prepared = -1;
1795
a70b8144 1796 try
3fc8eb30 1797 {
00431a78 1798 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1799 }
230d2906 1800 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1801 {
1802 struct displaced_step_inferior_state *displaced_state;
1803
16b41842
PA
1804 if (ex.error != MEMORY_ERROR
1805 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1806 throw;
3fc8eb30
PA
1807
1808 if (debug_infrun)
1809 {
1810 fprintf_unfiltered (gdb_stdlog,
1811 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1812 ex.what ());
3fc8eb30
PA
1813 }
1814
1815 /* Be verbose if "set displaced-stepping" is "on", silent if
1816 "auto". */
1817 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1818 {
fd7dcb94 1819 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1820 ex.what ());
3fc8eb30
PA
1821 }
1822
1823 /* Disable further displaced stepping attempts. */
1824 displaced_state
00431a78 1825 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1826 displaced_state->failed_before = 1;
1827 }
3fc8eb30
PA
1828
1829 return prepared;
1830}
1831
237fc4c9 1832static void
3e43a32a
MS
1833write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1834 const gdb_byte *myaddr, int len)
237fc4c9 1835{
2989a365 1836 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1837
237fc4c9
PA
1838 inferior_ptid = ptid;
1839 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1840}
1841
e2d96639
YQ
1842/* Restore the contents of the copy area for thread PTID. */
1843
1844static void
1845displaced_step_restore (struct displaced_step_inferior_state *displaced,
1846 ptid_t ptid)
1847{
1848 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1849
1850 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1851 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1852 if (debug_displaced)
1853 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1854 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1855 paddress (displaced->step_gdbarch,
1856 displaced->step_copy));
1857}
1858
372316f1
PA
1859/* If we displaced stepped an instruction successfully, adjust
1860 registers and memory to yield the same effect the instruction would
1861 have had if we had executed it at its original address, and return
1862 1. If the instruction didn't complete, relocate the PC and return
1863 -1. If the thread wasn't displaced stepping, return 0. */
1864
1865static int
00431a78 1866displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1867{
fc1cf338 1868 struct displaced_step_inferior_state *displaced
00431a78 1869 = get_displaced_stepping_state (event_thread->inf);
372316f1 1870 int ret;
fc1cf338 1871
00431a78
PA
1872 /* Was this event for the thread we displaced? */
1873 if (displaced->step_thread != event_thread)
372316f1 1874 return 0;
237fc4c9 1875
cb71640d
PA
1876 /* Fixup may need to read memory/registers. Switch to the thread
1877 that we're fixing up. Also, target_stopped_by_watchpoint checks
d43b7a2d
TBA
1878 the current thread, and displaced_step_restore performs ptid-dependent
1879 memory accesses using current_inferior() and current_top_target(). */
00431a78 1880 switch_to_thread (event_thread);
cb71640d 1881
d43b7a2d
TBA
1882 displaced_step_reset_cleanup cleanup (displaced);
1883
1884 displaced_step_restore (displaced, displaced->step_thread->ptid);
1885
237fc4c9 1886 /* Did the instruction complete successfully? */
cb71640d
PA
1887 if (signal == GDB_SIGNAL_TRAP
1888 && !(target_stopped_by_watchpoint ()
1889 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1890 || target_have_steppable_watchpoint)))
237fc4c9
PA
1891 {
1892 /* Fix up the resulting state. */
fc1cf338 1893 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
d8d83535 1894 displaced->step_closure.get (),
fc1cf338
PA
1895 displaced->step_original,
1896 displaced->step_copy,
00431a78 1897 get_thread_regcache (displaced->step_thread));
372316f1 1898 ret = 1;
237fc4c9
PA
1899 }
1900 else
1901 {
1902 /* Since the instruction didn't complete, all we can do is
1903 relocate the PC. */
00431a78 1904 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1905 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1906
fc1cf338 1907 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1908 regcache_write_pc (regcache, pc);
372316f1 1909 ret = -1;
237fc4c9
PA
1910 }
1911
372316f1 1912 return ret;
c2829269 1913}
1c5cfe86 1914
4d9d9d04
PA
1915/* Data to be passed around while handling an event. This data is
1916 discarded between events. */
1917struct execution_control_state
1918{
5b6d1e4f 1919 process_stratum_target *target;
4d9d9d04
PA
1920 ptid_t ptid;
1921 /* The thread that got the event, if this was a thread event; NULL
1922 otherwise. */
1923 struct thread_info *event_thread;
1924
1925 struct target_waitstatus ws;
1926 int stop_func_filled_in;
1927 CORE_ADDR stop_func_start;
1928 CORE_ADDR stop_func_end;
1929 const char *stop_func_name;
1930 int wait_some_more;
1931
1932 /* True if the event thread hit the single-step breakpoint of
1933 another thread. Thus the event doesn't cause a stop, the thread
1934 needs to be single-stepped past the single-step breakpoint before
1935 we can switch back to the original stepping thread. */
1936 int hit_singlestep_breakpoint;
1937};
1938
1939/* Clear ECS and set it to point at TP. */
c2829269
PA
1940
1941static void
4d9d9d04
PA
1942reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1943{
1944 memset (ecs, 0, sizeof (*ecs));
1945 ecs->event_thread = tp;
1946 ecs->ptid = tp->ptid;
1947}
1948
1949static void keep_going_pass_signal (struct execution_control_state *ecs);
1950static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1951static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1952static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1953
1954/* Are there any pending step-over requests? If so, run all we can
1955 now and return true. Otherwise, return false. */
1956
1957static int
c2829269
PA
1958start_step_over (void)
1959{
1960 struct thread_info *tp, *next;
1961
372316f1
PA
1962 /* Don't start a new step-over if we already have an in-line
1963 step-over operation ongoing. */
1964 if (step_over_info_valid_p ())
1965 return 0;
1966
c2829269 1967 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1968 {
4d9d9d04
PA
1969 struct execution_control_state ecss;
1970 struct execution_control_state *ecs = &ecss;
8d297bbf 1971 step_over_what step_what;
372316f1 1972 int must_be_in_line;
c2829269 1973
c65d6b55
PA
1974 gdb_assert (!tp->stop_requested);
1975
c2829269 1976 next = thread_step_over_chain_next (tp);
237fc4c9 1977
c2829269
PA
1978 /* If this inferior already has a displaced step in process,
1979 don't start a new one. */
00431a78 1980 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1981 continue;
1982
372316f1
PA
1983 step_what = thread_still_needs_step_over (tp);
1984 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1985 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1986 && !use_displaced_stepping (tp)));
372316f1
PA
1987
1988 /* We currently stop all threads of all processes to step-over
1989 in-line. If we need to start a new in-line step-over, let
1990 any pending displaced steps finish first. */
1991 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1992 return 0;
1993
c2829269
PA
1994 thread_step_over_chain_remove (tp);
1995
1996 if (step_over_queue_head == NULL)
1997 {
1998 if (debug_infrun)
1999 fprintf_unfiltered (gdb_stdlog,
2000 "infrun: step-over queue now empty\n");
2001 }
2002
372316f1
PA
2003 if (tp->control.trap_expected
2004 || tp->resumed
2005 || tp->executing)
ad53cd71 2006 {
4d9d9d04
PA
2007 internal_error (__FILE__, __LINE__,
2008 "[%s] has inconsistent state: "
372316f1 2009 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 2010 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 2011 tp->control.trap_expected,
372316f1 2012 tp->resumed,
4d9d9d04 2013 tp->executing);
ad53cd71 2014 }
1c5cfe86 2015
4d9d9d04
PA
2016 if (debug_infrun)
2017 fprintf_unfiltered (gdb_stdlog,
2018 "infrun: resuming [%s] for step-over\n",
a068643d 2019 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
2020
2021 /* keep_going_pass_signal skips the step-over if the breakpoint
2022 is no longer inserted. In all-stop, we want to keep looking
2023 for a thread that needs a step-over instead of resuming TP,
2024 because we wouldn't be able to resume anything else until the
2025 target stops again. In non-stop, the resume always resumes
2026 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2027 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2028 continue;
8550d3b3 2029
00431a78 2030 switch_to_thread (tp);
4d9d9d04
PA
2031 reset_ecs (ecs, tp);
2032 keep_going_pass_signal (ecs);
1c5cfe86 2033
4d9d9d04
PA
2034 if (!ecs->wait_some_more)
2035 error (_("Command aborted."));
1c5cfe86 2036
372316f1
PA
2037 gdb_assert (tp->resumed);
2038
2039 /* If we started a new in-line step-over, we're done. */
2040 if (step_over_info_valid_p ())
2041 {
2042 gdb_assert (tp->control.trap_expected);
2043 return 1;
2044 }
2045
fbea99ea 2046 if (!target_is_non_stop_p ())
4d9d9d04
PA
2047 {
2048 /* On all-stop, shouldn't have resumed unless we needed a
2049 step over. */
2050 gdb_assert (tp->control.trap_expected
2051 || tp->step_after_step_resume_breakpoint);
2052
2053 /* With remote targets (at least), in all-stop, we can't
2054 issue any further remote commands until the program stops
2055 again. */
2056 return 1;
1c5cfe86 2057 }
c2829269 2058
4d9d9d04
PA
2059 /* Either the thread no longer needed a step-over, or a new
2060 displaced stepping sequence started. Even in the latter
2061 case, continue looking. Maybe we can also start another
2062 displaced step on a thread of other process. */
237fc4c9 2063 }
4d9d9d04
PA
2064
2065 return 0;
237fc4c9
PA
2066}
2067
5231c1fd
PA
2068/* Update global variables holding ptids to hold NEW_PTID if they were
2069 holding OLD_PTID. */
2070static void
2071infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2072{
d7e15655 2073 if (inferior_ptid == old_ptid)
5231c1fd 2074 inferior_ptid = new_ptid;
5231c1fd
PA
2075}
2076
237fc4c9 2077\f
c906108c 2078
53904c9e
AC
2079static const char schedlock_off[] = "off";
2080static const char schedlock_on[] = "on";
2081static const char schedlock_step[] = "step";
f2665db5 2082static const char schedlock_replay[] = "replay";
40478521 2083static const char *const scheduler_enums[] = {
ef346e04
AC
2084 schedlock_off,
2085 schedlock_on,
2086 schedlock_step,
f2665db5 2087 schedlock_replay,
ef346e04
AC
2088 NULL
2089};
f2665db5 2090static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2091static void
2092show_scheduler_mode (struct ui_file *file, int from_tty,
2093 struct cmd_list_element *c, const char *value)
2094{
3e43a32a
MS
2095 fprintf_filtered (file,
2096 _("Mode for locking scheduler "
2097 "during execution is \"%s\".\n"),
920d2a44
AC
2098 value);
2099}
c906108c
SS
2100
2101static void
eb4c3f4a 2102set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2103{
eefe576e
AC
2104 if (!target_can_lock_scheduler)
2105 {
2106 scheduler_mode = schedlock_off;
2107 error (_("Target '%s' cannot support this command."), target_shortname);
2108 }
c906108c
SS
2109}
2110
d4db2f36
PA
2111/* True if execution commands resume all threads of all processes by
2112 default; otherwise, resume only threads of the current inferior
2113 process. */
491144b5 2114bool sched_multi = false;
d4db2f36 2115
2facfe5c
DD
2116/* Try to setup for software single stepping over the specified location.
2117 Return 1 if target_resume() should use hardware single step.
2118
2119 GDBARCH the current gdbarch.
2120 PC the location to step over. */
2121
2122static int
2123maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2124{
2125 int hw_step = 1;
2126
f02253f1 2127 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2128 && gdbarch_software_single_step_p (gdbarch))
2129 hw_step = !insert_single_step_breakpoints (gdbarch);
2130
2facfe5c
DD
2131 return hw_step;
2132}
c906108c 2133
f3263aa4
PA
2134/* See infrun.h. */
2135
09cee04b
PA
2136ptid_t
2137user_visible_resume_ptid (int step)
2138{
f3263aa4 2139 ptid_t resume_ptid;
09cee04b 2140
09cee04b
PA
2141 if (non_stop)
2142 {
2143 /* With non-stop mode on, threads are always handled
2144 individually. */
2145 resume_ptid = inferior_ptid;
2146 }
2147 else if ((scheduler_mode == schedlock_on)
03d46957 2148 || (scheduler_mode == schedlock_step && step))
09cee04b 2149 {
f3263aa4
PA
2150 /* User-settable 'scheduler' mode requires solo thread
2151 resume. */
09cee04b
PA
2152 resume_ptid = inferior_ptid;
2153 }
f2665db5
MM
2154 else if ((scheduler_mode == schedlock_replay)
2155 && target_record_will_replay (minus_one_ptid, execution_direction))
2156 {
2157 /* User-settable 'scheduler' mode requires solo thread resume in replay
2158 mode. */
2159 resume_ptid = inferior_ptid;
2160 }
f3263aa4
PA
2161 else if (!sched_multi && target_supports_multi_process ())
2162 {
2163 /* Resume all threads of the current process (and none of other
2164 processes). */
e99b03dc 2165 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2166 }
2167 else
2168 {
2169 /* Resume all threads of all processes. */
2170 resume_ptid = RESUME_ALL;
2171 }
09cee04b
PA
2172
2173 return resume_ptid;
2174}
2175
5b6d1e4f
PA
2176/* See infrun.h. */
2177
2178process_stratum_target *
2179user_visible_resume_target (ptid_t resume_ptid)
2180{
2181 return (resume_ptid == minus_one_ptid && sched_multi
2182 ? NULL
2183 : current_inferior ()->process_target ());
2184}
2185
fbea99ea
PA
2186/* Return a ptid representing the set of threads that we will resume,
2187 in the perspective of the target, assuming run control handling
2188 does not require leaving some threads stopped (e.g., stepping past
2189 breakpoint). USER_STEP indicates whether we're about to start the
2190 target for a stepping command. */
2191
2192static ptid_t
2193internal_resume_ptid (int user_step)
2194{
2195 /* In non-stop, we always control threads individually. Note that
2196 the target may always work in non-stop mode even with "set
2197 non-stop off", in which case user_visible_resume_ptid could
2198 return a wildcard ptid. */
2199 if (target_is_non_stop_p ())
2200 return inferior_ptid;
2201 else
2202 return user_visible_resume_ptid (user_step);
2203}
2204
64ce06e4
PA
2205/* Wrapper for target_resume, that handles infrun-specific
2206 bookkeeping. */
2207
2208static void
2209do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2210{
2211 struct thread_info *tp = inferior_thread ();
2212
c65d6b55
PA
2213 gdb_assert (!tp->stop_requested);
2214
64ce06e4 2215 /* Install inferior's terminal modes. */
223ffa71 2216 target_terminal::inferior ();
64ce06e4
PA
2217
2218 /* Avoid confusing the next resume, if the next stop/resume
2219 happens to apply to another thread. */
2220 tp->suspend.stop_signal = GDB_SIGNAL_0;
2221
8f572e5c
PA
2222 /* Advise target which signals may be handled silently.
2223
2224 If we have removed breakpoints because we are stepping over one
2225 in-line (in any thread), we need to receive all signals to avoid
2226 accidentally skipping a breakpoint during execution of a signal
2227 handler.
2228
2229 Likewise if we're displaced stepping, otherwise a trap for a
2230 breakpoint in a signal handler might be confused with the
2231 displaced step finishing. We don't make the displaced_step_fixup
2232 step distinguish the cases instead, because:
2233
2234 - a backtrace while stopped in the signal handler would show the
2235 scratch pad as frame older than the signal handler, instead of
2236 the real mainline code.
2237
2238 - when the thread is later resumed, the signal handler would
2239 return to the scratch pad area, which would no longer be
2240 valid. */
2241 if (step_over_info_valid_p ()
00431a78 2242 || displaced_step_in_progress (tp->inf))
adc6a863 2243 target_pass_signals ({});
64ce06e4 2244 else
adc6a863 2245 target_pass_signals (signal_pass);
64ce06e4
PA
2246
2247 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2248
2249 target_commit_resume ();
5b6d1e4f
PA
2250
2251 if (target_can_async_p ())
2252 target_async (1);
64ce06e4
PA
2253}
2254
d930703d 2255/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2256 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2257 call 'resume', which handles exceptions. */
c906108c 2258
71d378ae
PA
2259static void
2260resume_1 (enum gdb_signal sig)
c906108c 2261{
515630c5 2262 struct regcache *regcache = get_current_regcache ();
ac7936df 2263 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2264 struct thread_info *tp = inferior_thread ();
8b86c959 2265 const address_space *aspace = regcache->aspace ();
b0f16a3e 2266 ptid_t resume_ptid;
856e7dd6
PA
2267 /* This represents the user's step vs continue request. When
2268 deciding whether "set scheduler-locking step" applies, it's the
2269 user's intention that counts. */
2270 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2271 /* This represents what we'll actually request the target to do.
2272 This can decay from a step to a continue, if e.g., we need to
2273 implement single-stepping with breakpoints (software
2274 single-step). */
6b403daa 2275 int step;
c7e8a53c 2276
c65d6b55 2277 gdb_assert (!tp->stop_requested);
c2829269
PA
2278 gdb_assert (!thread_is_in_step_over_chain (tp));
2279
372316f1
PA
2280 if (tp->suspend.waitstatus_pending_p)
2281 {
2282 if (debug_infrun)
2283 {
23fdd69e
SM
2284 std::string statstr
2285 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2286
372316f1 2287 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2288 "infrun: resume: thread %s has pending wait "
2289 "status %s (currently_stepping=%d).\n",
a068643d
TT
2290 target_pid_to_str (tp->ptid).c_str (),
2291 statstr.c_str (),
372316f1 2292 currently_stepping (tp));
372316f1
PA
2293 }
2294
5b6d1e4f 2295 tp->inf->process_target ()->threads_executing = true;
719546c4 2296 tp->resumed = true;
372316f1
PA
2297
2298 /* FIXME: What should we do if we are supposed to resume this
2299 thread with a signal? Maybe we should maintain a queue of
2300 pending signals to deliver. */
2301 if (sig != GDB_SIGNAL_0)
2302 {
fd7dcb94 2303 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2304 gdb_signal_to_name (sig),
2305 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2306 }
2307
2308 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2309
2310 if (target_can_async_p ())
9516f85a
AB
2311 {
2312 target_async (1);
2313 /* Tell the event loop we have an event to process. */
2314 mark_async_event_handler (infrun_async_inferior_event_token);
2315 }
372316f1
PA
2316 return;
2317 }
2318
2319 tp->stepped_breakpoint = 0;
2320
6b403daa
PA
2321 /* Depends on stepped_breakpoint. */
2322 step = currently_stepping (tp);
2323
74609e71
YQ
2324 if (current_inferior ()->waiting_for_vfork_done)
2325 {
48f9886d
PA
2326 /* Don't try to single-step a vfork parent that is waiting for
2327 the child to get out of the shared memory region (by exec'ing
2328 or exiting). This is particularly important on software
2329 single-step archs, as the child process would trip on the
2330 software single step breakpoint inserted for the parent
2331 process. Since the parent will not actually execute any
2332 instruction until the child is out of the shared region (such
2333 are vfork's semantics), it is safe to simply continue it.
2334 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2335 the parent, and tell it to `keep_going', which automatically
2336 re-sets it stepping. */
74609e71
YQ
2337 if (debug_infrun)
2338 fprintf_unfiltered (gdb_stdlog,
2339 "infrun: resume : clear step\n");
a09dd441 2340 step = 0;
74609e71
YQ
2341 }
2342
7ca9b62a
TBA
2343 CORE_ADDR pc = regcache_read_pc (regcache);
2344
527159b7 2345 if (debug_infrun)
237fc4c9 2346 fprintf_unfiltered (gdb_stdlog,
c9737c08 2347 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2348 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2349 step, gdb_signal_to_symbol_string (sig),
2350 tp->control.trap_expected,
a068643d 2351 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2352 paddress (gdbarch, pc));
c906108c 2353
c2c6d25f
JM
2354 /* Normally, by the time we reach `resume', the breakpoints are either
2355 removed or inserted, as appropriate. The exception is if we're sitting
2356 at a permanent breakpoint; we need to step over it, but permanent
2357 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2358 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2359 {
af48d08f
PA
2360 if (sig != GDB_SIGNAL_0)
2361 {
2362 /* We have a signal to pass to the inferior. The resume
2363 may, or may not take us to the signal handler. If this
2364 is a step, we'll need to stop in the signal handler, if
2365 there's one, (if the target supports stepping into
2366 handlers), or in the next mainline instruction, if
2367 there's no handler. If this is a continue, we need to be
2368 sure to run the handler with all breakpoints inserted.
2369 In all cases, set a breakpoint at the current address
2370 (where the handler returns to), and once that breakpoint
2371 is hit, resume skipping the permanent breakpoint. If
2372 that breakpoint isn't hit, then we've stepped into the
2373 signal handler (or hit some other event). We'll delete
2374 the step-resume breakpoint then. */
2375
2376 if (debug_infrun)
2377 fprintf_unfiltered (gdb_stdlog,
2378 "infrun: resume: skipping permanent breakpoint, "
2379 "deliver signal first\n");
2380
2381 clear_step_over_info ();
2382 tp->control.trap_expected = 0;
2383
2384 if (tp->control.step_resume_breakpoint == NULL)
2385 {
2386 /* Set a "high-priority" step-resume, as we don't want
2387 user breakpoints at PC to trigger (again) when this
2388 hits. */
2389 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2390 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2391
2392 tp->step_after_step_resume_breakpoint = step;
2393 }
2394
2395 insert_breakpoints ();
2396 }
2397 else
2398 {
2399 /* There's no signal to pass, we can go ahead and skip the
2400 permanent breakpoint manually. */
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog,
2403 "infrun: resume: skipping permanent breakpoint\n");
2404 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2405 /* Update pc to reflect the new address from which we will
2406 execute instructions. */
2407 pc = regcache_read_pc (regcache);
2408
2409 if (step)
2410 {
2411 /* We've already advanced the PC, so the stepping part
2412 is done. Now we need to arrange for a trap to be
2413 reported to handle_inferior_event. Set a breakpoint
2414 at the current PC, and run to it. Don't update
2415 prev_pc, because if we end in
44a1ee51
PA
2416 switch_back_to_stepped_thread, we want the "expected
2417 thread advanced also" branch to be taken. IOW, we
2418 don't want this thread to step further from PC
af48d08f 2419 (overstep). */
1ac806b8 2420 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2421 insert_single_step_breakpoint (gdbarch, aspace, pc);
2422 insert_breakpoints ();
2423
fbea99ea 2424 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2425 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
719546c4 2426 tp->resumed = true;
af48d08f
PA
2427 return;
2428 }
2429 }
6d350bb5 2430 }
c2c6d25f 2431
c1e36e3e
PA
2432 /* If we have a breakpoint to step over, make sure to do a single
2433 step only. Same if we have software watchpoints. */
2434 if (tp->control.trap_expected || bpstat_should_step ())
2435 tp->control.may_range_step = 0;
2436
7da6a5b9
LM
2437 /* If displaced stepping is enabled, step over breakpoints by executing a
2438 copy of the instruction at a different address.
237fc4c9
PA
2439
2440 We can't use displaced stepping when we have a signal to deliver;
2441 the comments for displaced_step_prepare explain why. The
2442 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2443 signals' explain what we do instead.
2444
2445 We can't use displaced stepping when we are waiting for vfork_done
2446 event, displaced stepping breaks the vfork child similarly as single
2447 step software breakpoint. */
3fc8eb30
PA
2448 if (tp->control.trap_expected
2449 && use_displaced_stepping (tp)
cb71640d 2450 && !step_over_info_valid_p ()
a493e3e2 2451 && sig == GDB_SIGNAL_0
74609e71 2452 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2453 {
00431a78 2454 int prepared = displaced_step_prepare (tp);
fc1cf338 2455
3fc8eb30 2456 if (prepared == 0)
d56b7306 2457 {
4d9d9d04
PA
2458 if (debug_infrun)
2459 fprintf_unfiltered (gdb_stdlog,
2460 "Got placed in step-over queue\n");
2461
2462 tp->control.trap_expected = 0;
d56b7306
VP
2463 return;
2464 }
3fc8eb30
PA
2465 else if (prepared < 0)
2466 {
2467 /* Fallback to stepping over the breakpoint in-line. */
2468
2469 if (target_is_non_stop_p ())
2470 stop_all_threads ();
2471
a01bda52 2472 set_step_over_info (regcache->aspace (),
21edc42f 2473 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2474
2475 step = maybe_software_singlestep (gdbarch, pc);
2476
2477 insert_breakpoints ();
2478 }
2479 else if (prepared > 0)
2480 {
2481 struct displaced_step_inferior_state *displaced;
99e40580 2482
3fc8eb30
PA
2483 /* Update pc to reflect the new address from which we will
2484 execute instructions due to displaced stepping. */
00431a78 2485 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2486
00431a78 2487 displaced = get_displaced_stepping_state (tp->inf);
d8d83535
SM
2488 step = gdbarch_displaced_step_hw_singlestep
2489 (gdbarch, displaced->step_closure.get ());
3fc8eb30 2490 }
237fc4c9
PA
2491 }
2492
2facfe5c 2493 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2494 else if (step)
2facfe5c 2495 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2496
30852783
UW
2497 /* Currently, our software single-step implementation leads to different
2498 results than hardware single-stepping in one situation: when stepping
2499 into delivering a signal which has an associated signal handler,
2500 hardware single-step will stop at the first instruction of the handler,
2501 while software single-step will simply skip execution of the handler.
2502
2503 For now, this difference in behavior is accepted since there is no
2504 easy way to actually implement single-stepping into a signal handler
2505 without kernel support.
2506
2507 However, there is one scenario where this difference leads to follow-on
2508 problems: if we're stepping off a breakpoint by removing all breakpoints
2509 and then single-stepping. In this case, the software single-step
2510 behavior means that even if there is a *breakpoint* in the signal
2511 handler, GDB still would not stop.
2512
2513 Fortunately, we can at least fix this particular issue. We detect
2514 here the case where we are about to deliver a signal while software
2515 single-stepping with breakpoints removed. In this situation, we
2516 revert the decisions to remove all breakpoints and insert single-
2517 step breakpoints, and instead we install a step-resume breakpoint
2518 at the current address, deliver the signal without stepping, and
2519 once we arrive back at the step-resume breakpoint, actually step
2520 over the breakpoint we originally wanted to step over. */
34b7e8a6 2521 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2522 && sig != GDB_SIGNAL_0
2523 && step_over_info_valid_p ())
30852783
UW
2524 {
2525 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2526 immediately after a handler returns, might already have
30852783
UW
2527 a step-resume breakpoint set on the earlier handler. We cannot
2528 set another step-resume breakpoint; just continue on until the
2529 original breakpoint is hit. */
2530 if (tp->control.step_resume_breakpoint == NULL)
2531 {
2c03e5be 2532 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2533 tp->step_after_step_resume_breakpoint = 1;
2534 }
2535
34b7e8a6 2536 delete_single_step_breakpoints (tp);
30852783 2537
31e77af2 2538 clear_step_over_info ();
30852783 2539 tp->control.trap_expected = 0;
31e77af2
PA
2540
2541 insert_breakpoints ();
30852783
UW
2542 }
2543
b0f16a3e
SM
2544 /* If STEP is set, it's a request to use hardware stepping
2545 facilities. But in that case, we should never
2546 use singlestep breakpoint. */
34b7e8a6 2547 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2548
fbea99ea 2549 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2550 if (tp->control.trap_expected)
b0f16a3e
SM
2551 {
2552 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2553 hit, either by single-stepping the thread with the breakpoint
2554 removed, or by displaced stepping, with the breakpoint inserted.
2555 In the former case, we need to single-step only this thread,
2556 and keep others stopped, as they can miss this breakpoint if
2557 allowed to run. That's not really a problem for displaced
2558 stepping, but, we still keep other threads stopped, in case
2559 another thread is also stopped for a breakpoint waiting for
2560 its turn in the displaced stepping queue. */
b0f16a3e
SM
2561 resume_ptid = inferior_ptid;
2562 }
fbea99ea
PA
2563 else
2564 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2565
7f5ef605
PA
2566 if (execution_direction != EXEC_REVERSE
2567 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2568 {
372316f1
PA
2569 /* There are two cases where we currently need to step a
2570 breakpoint instruction when we have a signal to deliver:
2571
2572 - See handle_signal_stop where we handle random signals that
2573 could take out us out of the stepping range. Normally, in
2574 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2575 signal handler with a breakpoint at PC, but there are cases
2576 where we should _always_ single-step, even if we have a
2577 step-resume breakpoint, like when a software watchpoint is
2578 set. Assuming single-stepping and delivering a signal at the
2579 same time would takes us to the signal handler, then we could
2580 have removed the breakpoint at PC to step over it. However,
2581 some hardware step targets (like e.g., Mac OS) can't step
2582 into signal handlers, and for those, we need to leave the
2583 breakpoint at PC inserted, as otherwise if the handler
2584 recurses and executes PC again, it'll miss the breakpoint.
2585 So we leave the breakpoint inserted anyway, but we need to
2586 record that we tried to step a breakpoint instruction, so
372316f1
PA
2587 that adjust_pc_after_break doesn't end up confused.
2588
2589 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2590 in one thread after another thread that was stepping had been
2591 momentarily paused for a step-over. When we re-resume the
2592 stepping thread, it may be resumed from that address with a
2593 breakpoint that hasn't trapped yet. Seen with
2594 gdb.threads/non-stop-fair-events.exp, on targets that don't
2595 do displaced stepping. */
2596
2597 if (debug_infrun)
2598 fprintf_unfiltered (gdb_stdlog,
2599 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2600 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2601
2602 tp->stepped_breakpoint = 1;
2603
b0f16a3e
SM
2604 /* Most targets can step a breakpoint instruction, thus
2605 executing it normally. But if this one cannot, just
2606 continue and we will hit it anyway. */
7f5ef605 2607 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2608 step = 0;
2609 }
ef5cf84e 2610
b0f16a3e 2611 if (debug_displaced
cb71640d 2612 && tp->control.trap_expected
3fc8eb30 2613 && use_displaced_stepping (tp)
cb71640d 2614 && !step_over_info_valid_p ())
b0f16a3e 2615 {
00431a78 2616 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2617 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2618 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2619 gdb_byte buf[4];
2620
2621 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2622 paddress (resume_gdbarch, actual_pc));
2623 read_memory (actual_pc, buf, sizeof (buf));
2624 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2625 }
237fc4c9 2626
b0f16a3e
SM
2627 if (tp->control.may_range_step)
2628 {
2629 /* If we're resuming a thread with the PC out of the step
2630 range, then we're doing some nested/finer run control
2631 operation, like stepping the thread out of the dynamic
2632 linker or the displaced stepping scratch pad. We
2633 shouldn't have allowed a range step then. */
2634 gdb_assert (pc_in_thread_step_range (pc, tp));
2635 }
c1e36e3e 2636
64ce06e4 2637 do_target_resume (resume_ptid, step, sig);
719546c4 2638 tp->resumed = true;
c906108c 2639}
71d378ae
PA
2640
2641/* Resume the inferior. SIG is the signal to give the inferior
2642 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2643 rolls back state on error. */
2644
aff4e175 2645static void
71d378ae
PA
2646resume (gdb_signal sig)
2647{
a70b8144 2648 try
71d378ae
PA
2649 {
2650 resume_1 (sig);
2651 }
230d2906 2652 catch (const gdb_exception &ex)
71d378ae
PA
2653 {
2654 /* If resuming is being aborted for any reason, delete any
2655 single-step breakpoint resume_1 may have created, to avoid
2656 confusing the following resumption, and to avoid leaving
2657 single-step breakpoints perturbing other threads, in case
2658 we're running in non-stop mode. */
2659 if (inferior_ptid != null_ptid)
2660 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2661 throw;
71d378ae 2662 }
71d378ae
PA
2663}
2664
c906108c 2665\f
237fc4c9 2666/* Proceeding. */
c906108c 2667
4c2f2a79
PA
2668/* See infrun.h. */
2669
2670/* Counter that tracks number of user visible stops. This can be used
2671 to tell whether a command has proceeded the inferior past the
2672 current location. This allows e.g., inferior function calls in
2673 breakpoint commands to not interrupt the command list. When the
2674 call finishes successfully, the inferior is standing at the same
2675 breakpoint as if nothing happened (and so we don't call
2676 normal_stop). */
2677static ULONGEST current_stop_id;
2678
2679/* See infrun.h. */
2680
2681ULONGEST
2682get_stop_id (void)
2683{
2684 return current_stop_id;
2685}
2686
2687/* Called when we report a user visible stop. */
2688
2689static void
2690new_stop_id (void)
2691{
2692 current_stop_id++;
2693}
2694
c906108c
SS
2695/* Clear out all variables saying what to do when inferior is continued.
2696 First do this, then set the ones you want, then call `proceed'. */
2697
a7212384
UW
2698static void
2699clear_proceed_status_thread (struct thread_info *tp)
c906108c 2700{
a7212384
UW
2701 if (debug_infrun)
2702 fprintf_unfiltered (gdb_stdlog,
2703 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2704 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2705
372316f1
PA
2706 /* If we're starting a new sequence, then the previous finished
2707 single-step is no longer relevant. */
2708 if (tp->suspend.waitstatus_pending_p)
2709 {
2710 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2711 {
2712 if (debug_infrun)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "infrun: clear_proceed_status: pending "
2715 "event of %s was a finished step. "
2716 "Discarding.\n",
a068643d 2717 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2718
2719 tp->suspend.waitstatus_pending_p = 0;
2720 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2721 }
2722 else if (debug_infrun)
2723 {
23fdd69e
SM
2724 std::string statstr
2725 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2726
372316f1
PA
2727 fprintf_unfiltered (gdb_stdlog,
2728 "infrun: clear_proceed_status_thread: thread %s "
2729 "has pending wait status %s "
2730 "(currently_stepping=%d).\n",
a068643d
TT
2731 target_pid_to_str (tp->ptid).c_str (),
2732 statstr.c_str (),
372316f1 2733 currently_stepping (tp));
372316f1
PA
2734 }
2735 }
2736
70509625
PA
2737 /* If this signal should not be seen by program, give it zero.
2738 Used for debugging signals. */
2739 if (!signal_pass_state (tp->suspend.stop_signal))
2740 tp->suspend.stop_signal = GDB_SIGNAL_0;
2741
46e3ed7f 2742 delete tp->thread_fsm;
243a9253
PA
2743 tp->thread_fsm = NULL;
2744
16c381f0
JK
2745 tp->control.trap_expected = 0;
2746 tp->control.step_range_start = 0;
2747 tp->control.step_range_end = 0;
c1e36e3e 2748 tp->control.may_range_step = 0;
16c381f0
JK
2749 tp->control.step_frame_id = null_frame_id;
2750 tp->control.step_stack_frame_id = null_frame_id;
2751 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2752 tp->control.step_start_function = NULL;
a7212384 2753 tp->stop_requested = 0;
4e1c45ea 2754
16c381f0 2755 tp->control.stop_step = 0;
32400beb 2756
16c381f0 2757 tp->control.proceed_to_finish = 0;
414c69f7 2758
856e7dd6 2759 tp->control.stepping_command = 0;
17b2616c 2760
a7212384 2761 /* Discard any remaining commands or status from previous stop. */
16c381f0 2762 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2763}
32400beb 2764
a7212384 2765void
70509625 2766clear_proceed_status (int step)
a7212384 2767{
f2665db5
MM
2768 /* With scheduler-locking replay, stop replaying other threads if we're
2769 not replaying the user-visible resume ptid.
2770
2771 This is a convenience feature to not require the user to explicitly
2772 stop replaying the other threads. We're assuming that the user's
2773 intent is to resume tracing the recorded process. */
2774 if (!non_stop && scheduler_mode == schedlock_replay
2775 && target_record_is_replaying (minus_one_ptid)
2776 && !target_record_will_replay (user_visible_resume_ptid (step),
2777 execution_direction))
2778 target_record_stop_replaying ();
2779
08036331 2780 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2781 {
08036331 2782 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2783 process_stratum_target *resume_target
2784 = user_visible_resume_target (resume_ptid);
70509625
PA
2785
2786 /* In all-stop mode, delete the per-thread status of all threads
2787 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2788 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2789 clear_proceed_status_thread (tp);
6c95b8df
PA
2790 }
2791
d7e15655 2792 if (inferior_ptid != null_ptid)
a7212384
UW
2793 {
2794 struct inferior *inferior;
2795
2796 if (non_stop)
2797 {
6c95b8df
PA
2798 /* If in non-stop mode, only delete the per-thread status of
2799 the current thread. */
a7212384
UW
2800 clear_proceed_status_thread (inferior_thread ());
2801 }
6c95b8df 2802
d6b48e9c 2803 inferior = current_inferior ();
16c381f0 2804 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2805 }
2806
76727919 2807 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2808}
2809
99619bea
PA
2810/* Returns true if TP is still stopped at a breakpoint that needs
2811 stepping-over in order to make progress. If the breakpoint is gone
2812 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2813
2814static int
6c4cfb24 2815thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2816{
2817 if (tp->stepping_over_breakpoint)
2818 {
00431a78 2819 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2820
a01bda52 2821 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2822 regcache_read_pc (regcache))
2823 == ordinary_breakpoint_here)
99619bea
PA
2824 return 1;
2825
2826 tp->stepping_over_breakpoint = 0;
2827 }
2828
2829 return 0;
2830}
2831
6c4cfb24
PA
2832/* Check whether thread TP still needs to start a step-over in order
2833 to make progress when resumed. Returns an bitwise or of enum
2834 step_over_what bits, indicating what needs to be stepped over. */
2835
8d297bbf 2836static step_over_what
6c4cfb24
PA
2837thread_still_needs_step_over (struct thread_info *tp)
2838{
8d297bbf 2839 step_over_what what = 0;
6c4cfb24
PA
2840
2841 if (thread_still_needs_step_over_bp (tp))
2842 what |= STEP_OVER_BREAKPOINT;
2843
2844 if (tp->stepping_over_watchpoint
2845 && !target_have_steppable_watchpoint)
2846 what |= STEP_OVER_WATCHPOINT;
2847
2848 return what;
2849}
2850
483805cf
PA
2851/* Returns true if scheduler locking applies. STEP indicates whether
2852 we're about to do a step/next-like command to a thread. */
2853
2854static int
856e7dd6 2855schedlock_applies (struct thread_info *tp)
483805cf
PA
2856{
2857 return (scheduler_mode == schedlock_on
2858 || (scheduler_mode == schedlock_step
f2665db5
MM
2859 && tp->control.stepping_command)
2860 || (scheduler_mode == schedlock_replay
2861 && target_record_will_replay (minus_one_ptid,
2862 execution_direction)));
483805cf
PA
2863}
2864
5b6d1e4f
PA
2865/* Calls target_commit_resume on all targets. */
2866
2867static void
2868commit_resume_all_targets ()
2869{
2870 scoped_restore_current_thread restore_thread;
2871
2872 /* Map between process_target and a representative inferior. This
2873 is to avoid committing a resume in the same target more than
2874 once. Resumptions must be idempotent, so this is an
2875 optimization. */
2876 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2877
2878 for (inferior *inf : all_non_exited_inferiors ())
2879 if (inf->has_execution ())
2880 conn_inf[inf->process_target ()] = inf;
2881
2882 for (const auto &ci : conn_inf)
2883 {
2884 inferior *inf = ci.second;
2885 switch_to_inferior_no_thread (inf);
2886 target_commit_resume ();
2887 }
2888}
2889
2f4fcf00
PA
2890/* Check that all the targets we're about to resume are in non-stop
2891 mode. Ideally, we'd only care whether all targets support
2892 target-async, but we're not there yet. E.g., stop_all_threads
2893 doesn't know how to handle all-stop targets. Also, the remote
2894 protocol in all-stop mode is synchronous, irrespective of
2895 target-async, which means that things like a breakpoint re-set
2896 triggered by one target would try to read memory from all targets
2897 and fail. */
2898
2899static void
2900check_multi_target_resumption (process_stratum_target *resume_target)
2901{
2902 if (!non_stop && resume_target == nullptr)
2903 {
2904 scoped_restore_current_thread restore_thread;
2905
2906 /* This is used to track whether we're resuming more than one
2907 target. */
2908 process_stratum_target *first_connection = nullptr;
2909
2910 /* The first inferior we see with a target that does not work in
2911 always-non-stop mode. */
2912 inferior *first_not_non_stop = nullptr;
2913
2914 for (inferior *inf : all_non_exited_inferiors (resume_target))
2915 {
2916 switch_to_inferior_no_thread (inf);
2917
2918 if (!target_has_execution)
2919 continue;
2920
2921 process_stratum_target *proc_target
2922 = current_inferior ()->process_target();
2923
2924 if (!target_is_non_stop_p ())
2925 first_not_non_stop = inf;
2926
2927 if (first_connection == nullptr)
2928 first_connection = proc_target;
2929 else if (first_connection != proc_target
2930 && first_not_non_stop != nullptr)
2931 {
2932 switch_to_inferior_no_thread (first_not_non_stop);
2933
2934 proc_target = current_inferior ()->process_target();
2935
2936 error (_("Connection %d (%s) does not support "
2937 "multi-target resumption."),
2938 proc_target->connection_number,
2939 make_target_connection_string (proc_target).c_str ());
2940 }
2941 }
2942 }
2943}
2944
c906108c
SS
2945/* Basic routine for continuing the program in various fashions.
2946
2947 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2948 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2949 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2950
2951 You should call clear_proceed_status before calling proceed. */
2952
2953void
64ce06e4 2954proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2955{
e58b0e63
PA
2956 struct regcache *regcache;
2957 struct gdbarch *gdbarch;
e58b0e63 2958 CORE_ADDR pc;
4d9d9d04
PA
2959 struct execution_control_state ecss;
2960 struct execution_control_state *ecs = &ecss;
4d9d9d04 2961 int started;
c906108c 2962
e58b0e63
PA
2963 /* If we're stopped at a fork/vfork, follow the branch set by the
2964 "set follow-fork-mode" command; otherwise, we'll just proceed
2965 resuming the current thread. */
2966 if (!follow_fork ())
2967 {
2968 /* The target for some reason decided not to resume. */
2969 normal_stop ();
f148b27e
PA
2970 if (target_can_async_p ())
2971 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2972 return;
2973 }
2974
842951eb
PA
2975 /* We'll update this if & when we switch to a new thread. */
2976 previous_inferior_ptid = inferior_ptid;
2977
e58b0e63 2978 regcache = get_current_regcache ();
ac7936df 2979 gdbarch = regcache->arch ();
8b86c959
YQ
2980 const address_space *aspace = regcache->aspace ();
2981
fc75c28b
TBA
2982 pc = regcache_read_pc_protected (regcache);
2983
08036331 2984 thread_info *cur_thr = inferior_thread ();
e58b0e63 2985
99619bea 2986 /* Fill in with reasonable starting values. */
08036331 2987 init_thread_stepping_state (cur_thr);
99619bea 2988
08036331 2989 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2990
5b6d1e4f
PA
2991 ptid_t resume_ptid
2992 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2993 process_stratum_target *resume_target
2994 = user_visible_resume_target (resume_ptid);
2995
2f4fcf00
PA
2996 check_multi_target_resumption (resume_target);
2997
2acceee2 2998 if (addr == (CORE_ADDR) -1)
c906108c 2999 {
08036331 3000 if (pc == cur_thr->suspend.stop_pc
af48d08f 3001 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3002 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3003 /* There is a breakpoint at the address we will resume at,
3004 step one instruction before inserting breakpoints so that
3005 we do not stop right away (and report a second hit at this
b2175913
MS
3006 breakpoint).
3007
3008 Note, we don't do this in reverse, because we won't
3009 actually be executing the breakpoint insn anyway.
3010 We'll be (un-)executing the previous instruction. */
08036331 3011 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
3012 else if (gdbarch_single_step_through_delay_p (gdbarch)
3013 && gdbarch_single_step_through_delay (gdbarch,
3014 get_current_frame ()))
3352ef37
AC
3015 /* We stepped onto an instruction that needs to be stepped
3016 again before re-inserting the breakpoint, do so. */
08036331 3017 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
3018 }
3019 else
3020 {
515630c5 3021 regcache_write_pc (regcache, addr);
c906108c
SS
3022 }
3023
70509625 3024 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 3025 cur_thr->suspend.stop_signal = siggnal;
70509625 3026
4d9d9d04
PA
3027 /* If an exception is thrown from this point on, make sure to
3028 propagate GDB's knowledge of the executing state to the
3029 frontend/user running state. */
5b6d1e4f 3030 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
3031
3032 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3033 threads (e.g., we might need to set threads stepping over
3034 breakpoints first), from the user/frontend's point of view, all
3035 threads in RESUME_PTID are now running. Unless we're calling an
3036 inferior function, as in that case we pretend the inferior
3037 doesn't run at all. */
08036331 3038 if (!cur_thr->control.in_infcall)
719546c4 3039 set_running (resume_target, resume_ptid, true);
17b2616c 3040
527159b7 3041 if (debug_infrun)
8a9de0e4 3042 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3043 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3044 paddress (gdbarch, addr),
64ce06e4 3045 gdb_signal_to_symbol_string (siggnal));
527159b7 3046
4d9d9d04
PA
3047 annotate_starting ();
3048
3049 /* Make sure that output from GDB appears before output from the
3050 inferior. */
3051 gdb_flush (gdb_stdout);
3052
d930703d
PA
3053 /* Since we've marked the inferior running, give it the terminal. A
3054 QUIT/Ctrl-C from here on is forwarded to the target (which can
3055 still detect attempts to unblock a stuck connection with repeated
3056 Ctrl-C from within target_pass_ctrlc). */
3057 target_terminal::inferior ();
3058
4d9d9d04
PA
3059 /* In a multi-threaded task we may select another thread and
3060 then continue or step.
3061
3062 But if a thread that we're resuming had stopped at a breakpoint,
3063 it will immediately cause another breakpoint stop without any
3064 execution (i.e. it will report a breakpoint hit incorrectly). So
3065 we must step over it first.
3066
3067 Look for threads other than the current (TP) that reported a
3068 breakpoint hit and haven't been resumed yet since. */
3069
3070 /* If scheduler locking applies, we can avoid iterating over all
3071 threads. */
08036331 3072 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3073 {
5b6d1e4f
PA
3074 for (thread_info *tp : all_non_exited_threads (resume_target,
3075 resume_ptid))
08036331 3076 {
f3f8ece4
PA
3077 switch_to_thread_no_regs (tp);
3078
4d9d9d04
PA
3079 /* Ignore the current thread here. It's handled
3080 afterwards. */
08036331 3081 if (tp == cur_thr)
4d9d9d04 3082 continue;
c906108c 3083
4d9d9d04
PA
3084 if (!thread_still_needs_step_over (tp))
3085 continue;
3086
3087 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3088
99619bea
PA
3089 if (debug_infrun)
3090 fprintf_unfiltered (gdb_stdlog,
3091 "infrun: need to step-over [%s] first\n",
a068643d 3092 target_pid_to_str (tp->ptid).c_str ());
99619bea 3093
4d9d9d04 3094 thread_step_over_chain_enqueue (tp);
2adfaa28 3095 }
f3f8ece4
PA
3096
3097 switch_to_thread (cur_thr);
30852783
UW
3098 }
3099
4d9d9d04
PA
3100 /* Enqueue the current thread last, so that we move all other
3101 threads over their breakpoints first. */
08036331
PA
3102 if (cur_thr->stepping_over_breakpoint)
3103 thread_step_over_chain_enqueue (cur_thr);
30852783 3104
4d9d9d04
PA
3105 /* If the thread isn't started, we'll still need to set its prev_pc,
3106 so that switch_back_to_stepped_thread knows the thread hasn't
3107 advanced. Must do this before resuming any thread, as in
3108 all-stop/remote, once we resume we can't send any other packet
3109 until the target stops again. */
fc75c28b 3110 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
99619bea 3111
a9bc57b9
TT
3112 {
3113 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3114
a9bc57b9 3115 started = start_step_over ();
c906108c 3116
a9bc57b9
TT
3117 if (step_over_info_valid_p ())
3118 {
3119 /* Either this thread started a new in-line step over, or some
3120 other thread was already doing one. In either case, don't
3121 resume anything else until the step-over is finished. */
3122 }
3123 else if (started && !target_is_non_stop_p ())
3124 {
3125 /* A new displaced stepping sequence was started. In all-stop,
3126 we can't talk to the target anymore until it next stops. */
3127 }
3128 else if (!non_stop && target_is_non_stop_p ())
3129 {
3130 /* In all-stop, but the target is always in non-stop mode.
3131 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3132 for (thread_info *tp : all_non_exited_threads (resume_target,
3133 resume_ptid))
3134 {
3135 switch_to_thread_no_regs (tp);
3136
f9fac3c8
SM
3137 if (!tp->inf->has_execution ())
3138 {
3139 if (debug_infrun)
3140 fprintf_unfiltered (gdb_stdlog,
3141 "infrun: proceed: [%s] target has "
3142 "no execution\n",
3143 target_pid_to_str (tp->ptid).c_str ());
3144 continue;
3145 }
f3f8ece4 3146
f9fac3c8
SM
3147 if (tp->resumed)
3148 {
3149 if (debug_infrun)
3150 fprintf_unfiltered (gdb_stdlog,
3151 "infrun: proceed: [%s] resumed\n",
3152 target_pid_to_str (tp->ptid).c_str ());
3153 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3154 continue;
3155 }
fbea99ea 3156
f9fac3c8
SM
3157 if (thread_is_in_step_over_chain (tp))
3158 {
3159 if (debug_infrun)
3160 fprintf_unfiltered (gdb_stdlog,
3161 "infrun: proceed: [%s] needs step-over\n",
3162 target_pid_to_str (tp->ptid).c_str ());
3163 continue;
3164 }
fbea99ea 3165
f9fac3c8
SM
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "infrun: proceed: resuming %s\n",
3169 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3170
f9fac3c8
SM
3171 reset_ecs (ecs, tp);
3172 switch_to_thread (tp);
3173 keep_going_pass_signal (ecs);
3174 if (!ecs->wait_some_more)
3175 error (_("Command aborted."));
3176 }
a9bc57b9 3177 }
08036331 3178 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3179 {
3180 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3181 reset_ecs (ecs, cur_thr);
3182 switch_to_thread (cur_thr);
a9bc57b9
TT
3183 keep_going_pass_signal (ecs);
3184 if (!ecs->wait_some_more)
3185 error (_("Command aborted."));
3186 }
3187 }
c906108c 3188
5b6d1e4f 3189 commit_resume_all_targets ();
85ad3aaf 3190
731f534f 3191 finish_state.release ();
c906108c 3192
873657b9
PA
3193 /* If we've switched threads above, switch back to the previously
3194 current thread. We don't want the user to see a different
3195 selected thread. */
3196 switch_to_thread (cur_thr);
3197
0b333c5e
PA
3198 /* Tell the event loop to wait for it to stop. If the target
3199 supports asynchronous execution, it'll do this from within
3200 target_resume. */
362646f5 3201 if (!target_can_async_p ())
0b333c5e 3202 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3203}
c906108c
SS
3204\f
3205
3206/* Start remote-debugging of a machine over a serial link. */
96baa820 3207
c906108c 3208void
8621d6a9 3209start_remote (int from_tty)
c906108c 3210{
5b6d1e4f
PA
3211 inferior *inf = current_inferior ();
3212 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3213
1777feb0 3214 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3215 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3216 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3217 nothing is returned (instead of just blocking). Because of this,
3218 targets expecting an immediate response need to, internally, set
3219 things up so that the target_wait() is forced to eventually
1777feb0 3220 timeout. */
6426a772
JM
3221 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3222 differentiate to its caller what the state of the target is after
3223 the initial open has been performed. Here we're assuming that
3224 the target has stopped. It should be possible to eventually have
3225 target_open() return to the caller an indication that the target
3226 is currently running and GDB state should be set to the same as
1777feb0 3227 for an async run. */
5b6d1e4f 3228 wait_for_inferior (inf);
8621d6a9
DJ
3229
3230 /* Now that the inferior has stopped, do any bookkeeping like
3231 loading shared libraries. We want to do this before normal_stop,
3232 so that the displayed frame is up to date. */
8b88a78e 3233 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3234
6426a772 3235 normal_stop ();
c906108c
SS
3236}
3237
3238/* Initialize static vars when a new inferior begins. */
3239
3240void
96baa820 3241init_wait_for_inferior (void)
c906108c
SS
3242{
3243 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3244
c906108c
SS
3245 breakpoint_init_inferior (inf_starting);
3246
70509625 3247 clear_proceed_status (0);
9f976b41 3248
ab1ddbcf 3249 nullify_last_target_wait_ptid ();
237fc4c9 3250
842951eb 3251 previous_inferior_ptid = inferior_ptid;
c906108c 3252}
237fc4c9 3253
c906108c 3254\f
488f131b 3255
ec9499be 3256static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3257
568d6575
UW
3258static void handle_step_into_function (struct gdbarch *gdbarch,
3259 struct execution_control_state *ecs);
3260static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3261 struct execution_control_state *ecs);
4f5d7f63 3262static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3263static void check_exception_resume (struct execution_control_state *,
28106bc2 3264 struct frame_info *);
611c83ae 3265
bdc36728 3266static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3267static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3268static void keep_going (struct execution_control_state *ecs);
94c57d6a 3269static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3270static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3271
252fbfc8
PA
3272/* This function is attached as a "thread_stop_requested" observer.
3273 Cleanup local state that assumed the PTID was to be resumed, and
3274 report the stop to the frontend. */
3275
2c0b251b 3276static void
252fbfc8
PA
3277infrun_thread_stop_requested (ptid_t ptid)
3278{
5b6d1e4f
PA
3279 process_stratum_target *curr_target = current_inferior ()->process_target ();
3280
c65d6b55
PA
3281 /* PTID was requested to stop. If the thread was already stopped,
3282 but the user/frontend doesn't know about that yet (e.g., the
3283 thread had been temporarily paused for some step-over), set up
3284 for reporting the stop now. */
5b6d1e4f 3285 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3286 {
3287 if (tp->state != THREAD_RUNNING)
3288 continue;
3289 if (tp->executing)
3290 continue;
c65d6b55 3291
08036331
PA
3292 /* Remove matching threads from the step-over queue, so
3293 start_step_over doesn't try to resume them
3294 automatically. */
3295 if (thread_is_in_step_over_chain (tp))
3296 thread_step_over_chain_remove (tp);
c65d6b55 3297
08036331
PA
3298 /* If the thread is stopped, but the user/frontend doesn't
3299 know about that yet, queue a pending event, as if the
3300 thread had just stopped now. Unless the thread already had
3301 a pending event. */
3302 if (!tp->suspend.waitstatus_pending_p)
3303 {
3304 tp->suspend.waitstatus_pending_p = 1;
3305 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3306 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3307 }
c65d6b55 3308
08036331
PA
3309 /* Clear the inline-frame state, since we're re-processing the
3310 stop. */
5b6d1e4f 3311 clear_inline_frame_state (tp);
c65d6b55 3312
08036331
PA
3313 /* If this thread was paused because some other thread was
3314 doing an inline-step over, let that finish first. Once
3315 that happens, we'll restart all threads and consume pending
3316 stop events then. */
3317 if (step_over_info_valid_p ())
3318 continue;
3319
3320 /* Otherwise we can process the (new) pending event now. Set
3321 it so this pending event is considered by
3322 do_target_wait. */
719546c4 3323 tp->resumed = true;
08036331 3324 }
252fbfc8
PA
3325}
3326
a07daef3
PA
3327static void
3328infrun_thread_thread_exit (struct thread_info *tp, int silent)
3329{
5b6d1e4f
PA
3330 if (target_last_proc_target == tp->inf->process_target ()
3331 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3332 nullify_last_target_wait_ptid ();
3333}
3334
0cbcdb96
PA
3335/* Delete the step resume, single-step and longjmp/exception resume
3336 breakpoints of TP. */
4e1c45ea 3337
0cbcdb96
PA
3338static void
3339delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3340{
0cbcdb96
PA
3341 delete_step_resume_breakpoint (tp);
3342 delete_exception_resume_breakpoint (tp);
34b7e8a6 3343 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3344}
3345
0cbcdb96
PA
3346/* If the target still has execution, call FUNC for each thread that
3347 just stopped. In all-stop, that's all the non-exited threads; in
3348 non-stop, that's the current thread, only. */
3349
3350typedef void (*for_each_just_stopped_thread_callback_func)
3351 (struct thread_info *tp);
4e1c45ea
PA
3352
3353static void
0cbcdb96 3354for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3355{
d7e15655 3356 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3357 return;
3358
fbea99ea 3359 if (target_is_non_stop_p ())
4e1c45ea 3360 {
0cbcdb96
PA
3361 /* If in non-stop mode, only the current thread stopped. */
3362 func (inferior_thread ());
4e1c45ea
PA
3363 }
3364 else
0cbcdb96 3365 {
0cbcdb96 3366 /* In all-stop mode, all threads have stopped. */
08036331
PA
3367 for (thread_info *tp : all_non_exited_threads ())
3368 func (tp);
0cbcdb96
PA
3369 }
3370}
3371
3372/* Delete the step resume and longjmp/exception resume breakpoints of
3373 the threads that just stopped. */
3374
3375static void
3376delete_just_stopped_threads_infrun_breakpoints (void)
3377{
3378 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3379}
3380
3381/* Delete the single-step breakpoints of the threads that just
3382 stopped. */
7c16b83e 3383
34b7e8a6
PA
3384static void
3385delete_just_stopped_threads_single_step_breakpoints (void)
3386{
3387 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3388}
3389
221e1a37 3390/* See infrun.h. */
223698f8 3391
221e1a37 3392void
223698f8
DE
3393print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3394 const struct target_waitstatus *ws)
3395{
23fdd69e 3396 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3397 string_file stb;
223698f8
DE
3398
3399 /* The text is split over several lines because it was getting too long.
3400 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3401 output as a unit; we want only one timestamp printed if debug_timestamp
3402 is set. */
3403
d7e74731 3404 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3405 waiton_ptid.pid (),
e38504b3 3406 waiton_ptid.lwp (),
cc6bcb54 3407 waiton_ptid.tid ());
e99b03dc 3408 if (waiton_ptid.pid () != -1)
a068643d 3409 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3410 stb.printf (", status) =\n");
3411 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3412 result_ptid.pid (),
e38504b3 3413 result_ptid.lwp (),
cc6bcb54 3414 result_ptid.tid (),
a068643d 3415 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3416 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3417
3418 /* This uses %s in part to handle %'s in the text, but also to avoid
3419 a gcc error: the format attribute requires a string literal. */
d7e74731 3420 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3421}
3422
372316f1
PA
3423/* Select a thread at random, out of those which are resumed and have
3424 had events. */
3425
3426static struct thread_info *
5b6d1e4f 3427random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3428{
372316f1 3429 int num_events = 0;
08036331 3430
5b6d1e4f 3431 auto has_event = [&] (thread_info *tp)
08036331 3432 {
5b6d1e4f
PA
3433 return (tp->ptid.matches (waiton_ptid)
3434 && tp->resumed
08036331
PA
3435 && tp->suspend.waitstatus_pending_p);
3436 };
372316f1
PA
3437
3438 /* First see how many events we have. Count only resumed threads
3439 that have an event pending. */
5b6d1e4f 3440 for (thread_info *tp : inf->non_exited_threads ())
08036331 3441 if (has_event (tp))
372316f1
PA
3442 num_events++;
3443
3444 if (num_events == 0)
3445 return NULL;
3446
3447 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3448 int random_selector = (int) ((num_events * (double) rand ())
3449 / (RAND_MAX + 1.0));
372316f1
PA
3450
3451 if (debug_infrun && num_events > 1)
3452 fprintf_unfiltered (gdb_stdlog,
3453 "infrun: Found %d events, selecting #%d\n",
3454 num_events, random_selector);
3455
3456 /* Select the Nth thread that has had an event. */
5b6d1e4f 3457 for (thread_info *tp : inf->non_exited_threads ())
08036331 3458 if (has_event (tp))
372316f1 3459 if (random_selector-- == 0)
08036331 3460 return tp;
372316f1 3461
08036331 3462 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3463}
3464
3465/* Wrapper for target_wait that first checks whether threads have
3466 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3467 more events. INF is the inferior we're using to call target_wait
3468 on. */
372316f1
PA
3469
3470static ptid_t
5b6d1e4f
PA
3471do_target_wait_1 (inferior *inf, ptid_t ptid,
3472 target_waitstatus *status, int options)
372316f1
PA
3473{
3474 ptid_t event_ptid;
3475 struct thread_info *tp;
3476
24ed6739
AB
3477 /* We know that we are looking for an event in the target of inferior
3478 INF, but we don't know which thread the event might come from. As
3479 such we want to make sure that INFERIOR_PTID is reset so that none of
3480 the wait code relies on it - doing so is always a mistake. */
3481 switch_to_inferior_no_thread (inf);
3482
372316f1
PA
3483 /* First check if there is a resumed thread with a wait status
3484 pending. */
d7e15655 3485 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3486 {
5b6d1e4f 3487 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3488 }
3489 else
3490 {
3491 if (debug_infrun)
3492 fprintf_unfiltered (gdb_stdlog,
3493 "infrun: Waiting for specific thread %s.\n",
a068643d 3494 target_pid_to_str (ptid).c_str ());
372316f1
PA
3495
3496 /* We have a specific thread to check. */
5b6d1e4f 3497 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3498 gdb_assert (tp != NULL);
3499 if (!tp->suspend.waitstatus_pending_p)
3500 tp = NULL;
3501 }
3502
3503 if (tp != NULL
3504 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3505 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3506 {
00431a78 3507 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3508 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3509 CORE_ADDR pc;
3510 int discard = 0;
3511
3512 pc = regcache_read_pc (regcache);
3513
3514 if (pc != tp->suspend.stop_pc)
3515 {
3516 if (debug_infrun)
3517 fprintf_unfiltered (gdb_stdlog,
3518 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3519 target_pid_to_str (tp->ptid).c_str (),
defd2172 3520 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3521 paddress (gdbarch, pc));
3522 discard = 1;
3523 }
a01bda52 3524 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3525 {
3526 if (debug_infrun)
3527 fprintf_unfiltered (gdb_stdlog,
3528 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3529 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3530 paddress (gdbarch, pc));
3531
3532 discard = 1;
3533 }
3534
3535 if (discard)
3536 {
3537 if (debug_infrun)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "infrun: pending event of %s cancelled.\n",
a068643d 3540 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3541
3542 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3543 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3544 }
3545 }
3546
3547 if (tp != NULL)
3548 {
3549 if (debug_infrun)
3550 {
23fdd69e
SM
3551 std::string statstr
3552 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3553
372316f1
PA
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3556 statstr.c_str (),
a068643d 3557 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3558 }
3559
3560 /* Now that we've selected our final event LWP, un-adjust its PC
3561 if it was a software breakpoint (and the target doesn't
3562 always adjust the PC itself). */
3563 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3564 && !target_supports_stopped_by_sw_breakpoint ())
3565 {
3566 struct regcache *regcache;
3567 struct gdbarch *gdbarch;
3568 int decr_pc;
3569
00431a78 3570 regcache = get_thread_regcache (tp);
ac7936df 3571 gdbarch = regcache->arch ();
372316f1
PA
3572
3573 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3574 if (decr_pc != 0)
3575 {
3576 CORE_ADDR pc;
3577
3578 pc = regcache_read_pc (regcache);
3579 regcache_write_pc (regcache, pc + decr_pc);
3580 }
3581 }
3582
3583 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3584 *status = tp->suspend.waitstatus;
3585 tp->suspend.waitstatus_pending_p = 0;
3586
3587 /* Wake up the event loop again, until all pending events are
3588 processed. */
3589 if (target_is_async_p ())
3590 mark_async_event_handler (infrun_async_inferior_event_token);
3591 return tp->ptid;
3592 }
3593
3594 /* But if we don't find one, we'll have to wait. */
3595
3596 if (deprecated_target_wait_hook)
3597 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3598 else
3599 event_ptid = target_wait (ptid, status, options);
3600
3601 return event_ptid;
3602}
3603
5b6d1e4f
PA
3604/* Returns true if INF has any resumed thread with a status
3605 pending. */
3606
3607static bool
3608threads_are_resumed_pending_p (inferior *inf)
3609{
3610 for (thread_info *tp : inf->non_exited_threads ())
3611 if (tp->resumed
3612 && tp->suspend.waitstatus_pending_p)
3613 return true;
3614
3615 return false;
3616}
3617
3618/* Wrapper for target_wait that first checks whether threads have
3619 pending statuses to report before actually asking the target for
3620 more events. Polls for events from all inferiors/targets. */
3621
3622static bool
3623do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3624{
3625 int num_inferiors = 0;
3626 int random_selector;
3627
3628 /* For fairness, we pick the first inferior/target to poll at
3629 random, and then continue polling the rest of the inferior list
3630 starting from that one in a circular fashion until the whole list
3631 is polled once. */
3632
3633 auto inferior_matches = [&wait_ptid] (inferior *inf)
3634 {
3635 return (inf->process_target () != NULL
3636 && (threads_are_executing (inf->process_target ())
3637 || threads_are_resumed_pending_p (inf))
3638 && ptid_t (inf->pid).matches (wait_ptid));
3639 };
3640
3641 /* First see how many resumed inferiors we have. */
3642 for (inferior *inf : all_inferiors ())
3643 if (inferior_matches (inf))
3644 num_inferiors++;
3645
3646 if (num_inferiors == 0)
3647 {
3648 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3649 return false;
3650 }
3651
3652 /* Now randomly pick an inferior out of those that were resumed. */
3653 random_selector = (int)
3654 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3655
3656 if (debug_infrun && num_inferiors > 1)
3657 fprintf_unfiltered (gdb_stdlog,
3658 "infrun: Found %d inferiors, starting at #%d\n",
3659 num_inferiors, random_selector);
3660
3661 /* Select the Nth inferior that was resumed. */
3662
3663 inferior *selected = nullptr;
3664
3665 for (inferior *inf : all_inferiors ())
3666 if (inferior_matches (inf))
3667 if (random_selector-- == 0)
3668 {
3669 selected = inf;
3670 break;
3671 }
3672
3673 /* Now poll for events out of each of the resumed inferior's
3674 targets, starting from the selected one. */
3675
3676 auto do_wait = [&] (inferior *inf)
3677 {
5b6d1e4f
PA
3678 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3679 ecs->target = inf->process_target ();
3680 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3681 };
3682
3683 /* Needed in all-stop+target-non-stop mode, because we end up here
3684 spuriously after the target is all stopped and we've already
3685 reported the stop to the user, polling for events. */
3686 scoped_restore_current_thread restore_thread;
3687
3688 int inf_num = selected->num;
3689 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3690 if (inferior_matches (inf))
3691 if (do_wait (inf))
3692 return true;
3693
3694 for (inferior *inf = inferior_list;
3695 inf != NULL && inf->num < inf_num;
3696 inf = inf->next)
3697 if (inferior_matches (inf))
3698 if (do_wait (inf))
3699 return true;
3700
3701 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3702 return false;
3703}
3704
24291992
PA
3705/* Prepare and stabilize the inferior for detaching it. E.g.,
3706 detaching while a thread is displaced stepping is a recipe for
3707 crashing it, as nothing would readjust the PC out of the scratch
3708 pad. */
3709
3710void
3711prepare_for_detach (void)
3712{
3713 struct inferior *inf = current_inferior ();
f2907e49 3714 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3715
00431a78 3716 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3717
3718 /* Is any thread of this process displaced stepping? If not,
3719 there's nothing else to do. */
d20172fc 3720 if (displaced->step_thread == nullptr)
24291992
PA
3721 return;
3722
3723 if (debug_infrun)
3724 fprintf_unfiltered (gdb_stdlog,
3725 "displaced-stepping in-process while detaching");
3726
9bcb1f16 3727 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3728
00431a78 3729 while (displaced->step_thread != nullptr)
24291992 3730 {
24291992
PA
3731 struct execution_control_state ecss;
3732 struct execution_control_state *ecs;
3733
3734 ecs = &ecss;
3735 memset (ecs, 0, sizeof (*ecs));
3736
3737 overlay_cache_invalid = 1;
f15cb84a
YQ
3738 /* Flush target cache before starting to handle each event.
3739 Target was running and cache could be stale. This is just a
3740 heuristic. Running threads may modify target memory, but we
3741 don't get any event. */
3742 target_dcache_invalidate ();
24291992 3743
5b6d1e4f 3744 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3745
3746 if (debug_infrun)
3747 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3748
3749 /* If an error happens while handling the event, propagate GDB's
3750 knowledge of the executing state to the frontend/user running
3751 state. */
5b6d1e4f
PA
3752 scoped_finish_thread_state finish_state (inf->process_target (),
3753 minus_one_ptid);
24291992
PA
3754
3755 /* Now figure out what to do with the result of the result. */
3756 handle_inferior_event (ecs);
3757
3758 /* No error, don't finish the state yet. */
731f534f 3759 finish_state.release ();
24291992
PA
3760
3761 /* Breakpoints and watchpoints are not installed on the target
3762 at this point, and signals are passed directly to the
3763 inferior, so this must mean the process is gone. */
3764 if (!ecs->wait_some_more)
3765 {
9bcb1f16 3766 restore_detaching.release ();
24291992
PA
3767 error (_("Program exited while detaching"));
3768 }
3769 }
3770
9bcb1f16 3771 restore_detaching.release ();
24291992
PA
3772}
3773
cd0fc7c3 3774/* Wait for control to return from inferior to debugger.
ae123ec6 3775
cd0fc7c3
SS
3776 If inferior gets a signal, we may decide to start it up again
3777 instead of returning. That is why there is a loop in this function.
3778 When this function actually returns it means the inferior
3779 should be left stopped and GDB should read more commands. */
3780
5b6d1e4f
PA
3781static void
3782wait_for_inferior (inferior *inf)
cd0fc7c3 3783{
527159b7 3784 if (debug_infrun)
ae123ec6 3785 fprintf_unfiltered
e4c8541f 3786 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3787
4c41382a 3788 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3789
e6f5c25b
PA
3790 /* If an error happens while handling the event, propagate GDB's
3791 knowledge of the executing state to the frontend/user running
3792 state. */
5b6d1e4f
PA
3793 scoped_finish_thread_state finish_state
3794 (inf->process_target (), minus_one_ptid);
e6f5c25b 3795
c906108c
SS
3796 while (1)
3797 {
ae25568b
PA
3798 struct execution_control_state ecss;
3799 struct execution_control_state *ecs = &ecss;
29f49a6a 3800
ae25568b
PA
3801 memset (ecs, 0, sizeof (*ecs));
3802
ec9499be 3803 overlay_cache_invalid = 1;
ec9499be 3804
f15cb84a
YQ
3805 /* Flush target cache before starting to handle each event.
3806 Target was running and cache could be stale. This is just a
3807 heuristic. Running threads may modify target memory, but we
3808 don't get any event. */
3809 target_dcache_invalidate ();
3810
5b6d1e4f
PA
3811 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3812 ecs->target = inf->process_target ();
c906108c 3813
f00150c9 3814 if (debug_infrun)
5b6d1e4f 3815 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3816
cd0fc7c3
SS
3817 /* Now figure out what to do with the result of the result. */
3818 handle_inferior_event (ecs);
c906108c 3819
cd0fc7c3
SS
3820 if (!ecs->wait_some_more)
3821 break;
3822 }
4e1c45ea 3823
e6f5c25b 3824 /* No error, don't finish the state yet. */
731f534f 3825 finish_state.release ();
cd0fc7c3 3826}
c906108c 3827
d3d4baed
PA
3828/* Cleanup that reinstalls the readline callback handler, if the
3829 target is running in the background. If while handling the target
3830 event something triggered a secondary prompt, like e.g., a
3831 pagination prompt, we'll have removed the callback handler (see
3832 gdb_readline_wrapper_line). Need to do this as we go back to the
3833 event loop, ready to process further input. Note this has no
3834 effect if the handler hasn't actually been removed, because calling
3835 rl_callback_handler_install resets the line buffer, thus losing
3836 input. */
3837
3838static void
d238133d 3839reinstall_readline_callback_handler_cleanup ()
d3d4baed 3840{
3b12939d
PA
3841 struct ui *ui = current_ui;
3842
3843 if (!ui->async)
6c400b59
PA
3844 {
3845 /* We're not going back to the top level event loop yet. Don't
3846 install the readline callback, as it'd prep the terminal,
3847 readline-style (raw, noecho) (e.g., --batch). We'll install
3848 it the next time the prompt is displayed, when we're ready
3849 for input. */
3850 return;
3851 }
3852
3b12939d 3853 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3854 gdb_rl_callback_handler_reinstall ();
3855}
3856
243a9253
PA
3857/* Clean up the FSMs of threads that are now stopped. In non-stop,
3858 that's just the event thread. In all-stop, that's all threads. */
3859
3860static void
3861clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3862{
08036331
PA
3863 if (ecs->event_thread != NULL
3864 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3865 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3866
3867 if (!non_stop)
3868 {
08036331 3869 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3870 {
3871 if (thr->thread_fsm == NULL)
3872 continue;
3873 if (thr == ecs->event_thread)
3874 continue;
3875
00431a78 3876 switch_to_thread (thr);
46e3ed7f 3877 thr->thread_fsm->clean_up (thr);
243a9253
PA
3878 }
3879
3880 if (ecs->event_thread != NULL)
00431a78 3881 switch_to_thread (ecs->event_thread);
243a9253
PA
3882 }
3883}
3884
3b12939d
PA
3885/* Helper for all_uis_check_sync_execution_done that works on the
3886 current UI. */
3887
3888static void
3889check_curr_ui_sync_execution_done (void)
3890{
3891 struct ui *ui = current_ui;
3892
3893 if (ui->prompt_state == PROMPT_NEEDED
3894 && ui->async
3895 && !gdb_in_secondary_prompt_p (ui))
3896 {
223ffa71 3897 target_terminal::ours ();
76727919 3898 gdb::observers::sync_execution_done.notify ();
3eb7562a 3899 ui_register_input_event_handler (ui);
3b12939d
PA
3900 }
3901}
3902
3903/* See infrun.h. */
3904
3905void
3906all_uis_check_sync_execution_done (void)
3907{
0e454242 3908 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3909 {
3910 check_curr_ui_sync_execution_done ();
3911 }
3912}
3913
a8836c93
PA
3914/* See infrun.h. */
3915
3916void
3917all_uis_on_sync_execution_starting (void)
3918{
0e454242 3919 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3920 {
3921 if (current_ui->prompt_state == PROMPT_NEEDED)
3922 async_disable_stdin ();
3923 }
3924}
3925
1777feb0 3926/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3927 event loop whenever a change of state is detected on the file
1777feb0
MS
3928 descriptor corresponding to the target. It can be called more than
3929 once to complete a single execution command. In such cases we need
3930 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3931 that this function is called for a single execution command, then
3932 report to the user that the inferior has stopped, and do the
1777feb0 3933 necessary cleanups. */
43ff13b4
JM
3934
3935void
fba45db2 3936fetch_inferior_event (void *client_data)
43ff13b4 3937{
0d1e5fa7 3938 struct execution_control_state ecss;
a474d7c2 3939 struct execution_control_state *ecs = &ecss;
0f641c01 3940 int cmd_done = 0;
43ff13b4 3941
0d1e5fa7
PA
3942 memset (ecs, 0, sizeof (*ecs));
3943
c61db772
PA
3944 /* Events are always processed with the main UI as current UI. This
3945 way, warnings, debug output, etc. are always consistently sent to
3946 the main console. */
4b6749b9 3947 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3948
d3d4baed 3949 /* End up with readline processing input, if necessary. */
d238133d
TT
3950 {
3951 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3952
3953 /* We're handling a live event, so make sure we're doing live
3954 debugging. If we're looking at traceframes while the target is
3955 running, we're going to need to get back to that mode after
3956 handling the event. */
3957 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3958 if (non_stop)
3959 {
3960 maybe_restore_traceframe.emplace ();
3961 set_current_traceframe (-1);
3962 }
43ff13b4 3963
873657b9
PA
3964 /* The user/frontend should not notice a thread switch due to
3965 internal events. Make sure we revert to the user selected
3966 thread and frame after handling the event and running any
3967 breakpoint commands. */
3968 scoped_restore_current_thread restore_thread;
d238133d
TT
3969
3970 overlay_cache_invalid = 1;
3971 /* Flush target cache before starting to handle each event. Target
3972 was running and cache could be stale. This is just a heuristic.
3973 Running threads may modify target memory, but we don't get any
3974 event. */
3975 target_dcache_invalidate ();
3976
3977 scoped_restore save_exec_dir
3978 = make_scoped_restore (&execution_direction,
3979 target_execution_direction ());
3980
5b6d1e4f
PA
3981 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3982 return;
3983
3984 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3985
3986 /* Switch to the target that generated the event, so we can do
3987 target calls. Any inferior bound to the target will do, so we
3988 just switch to the first we find. */
3989 for (inferior *inf : all_inferiors (ecs->target))
3990 {
3991 switch_to_inferior_no_thread (inf);
3992 break;
3993 }
d238133d
TT
3994
3995 if (debug_infrun)
5b6d1e4f 3996 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
3997
3998 /* If an error happens while handling the event, propagate GDB's
3999 knowledge of the executing state to the frontend/user running
4000 state. */
4001 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 4002 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 4003
979a0d13 4004 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
4005 still for the thread which has thrown the exception. */
4006 auto defer_bpstat_clear
4007 = make_scope_exit (bpstat_clear_actions);
4008 auto defer_delete_threads
4009 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4010
4011 /* Now figure out what to do with the result of the result. */
4012 handle_inferior_event (ecs);
4013
4014 if (!ecs->wait_some_more)
4015 {
5b6d1e4f 4016 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
d238133d
TT
4017 int should_stop = 1;
4018 struct thread_info *thr = ecs->event_thread;
d6b48e9c 4019
d238133d 4020 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 4021
d238133d
TT
4022 if (thr != NULL)
4023 {
4024 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 4025
d238133d 4026 if (thread_fsm != NULL)
46e3ed7f 4027 should_stop = thread_fsm->should_stop (thr);
d238133d 4028 }
243a9253 4029
d238133d
TT
4030 if (!should_stop)
4031 {
4032 keep_going (ecs);
4033 }
4034 else
4035 {
46e3ed7f 4036 bool should_notify_stop = true;
d238133d 4037 int proceeded = 0;
1840d81a 4038
d238133d 4039 clean_up_just_stopped_threads_fsms (ecs);
243a9253 4040
d238133d 4041 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 4042 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 4043
d238133d
TT
4044 if (should_notify_stop)
4045 {
4046 /* We may not find an inferior if this was a process exit. */
4047 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4048 proceeded = normal_stop ();
4049 }
243a9253 4050
d238133d
TT
4051 if (!proceeded)
4052 {
4053 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4054 cmd_done = 1;
4055 }
873657b9
PA
4056
4057 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4058 previously selected thread is gone. We have two
4059 choices - switch to no thread selected, or restore the
4060 previously selected thread (now exited). We chose the
4061 later, just because that's what GDB used to do. After
4062 this, "info threads" says "The current thread <Thread
4063 ID 2> has terminated." instead of "No thread
4064 selected.". */
4065 if (!non_stop
4066 && cmd_done
4067 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4068 restore_thread.dont_restore ();
d238133d
TT
4069 }
4070 }
4f8d22e3 4071
d238133d
TT
4072 defer_delete_threads.release ();
4073 defer_bpstat_clear.release ();
29f49a6a 4074
d238133d
TT
4075 /* No error, don't finish the thread states yet. */
4076 finish_state.release ();
731f534f 4077
d238133d
TT
4078 /* This scope is used to ensure that readline callbacks are
4079 reinstalled here. */
4080 }
4f8d22e3 4081
3b12939d
PA
4082 /* If a UI was in sync execution mode, and now isn't, restore its
4083 prompt (a synchronous execution command has finished, and we're
4084 ready for input). */
4085 all_uis_check_sync_execution_done ();
0f641c01
PA
4086
4087 if (cmd_done
0f641c01 4088 && exec_done_display_p
00431a78
PA
4089 && (inferior_ptid == null_ptid
4090 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4091 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4092}
4093
29734269
SM
4094/* See infrun.h. */
4095
edb3359d 4096void
29734269
SM
4097set_step_info (thread_info *tp, struct frame_info *frame,
4098 struct symtab_and_line sal)
edb3359d 4099{
29734269
SM
4100 /* This can be removed once this function no longer implicitly relies on the
4101 inferior_ptid value. */
4102 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4103
16c381f0
JK
4104 tp->control.step_frame_id = get_frame_id (frame);
4105 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4106
4107 tp->current_symtab = sal.symtab;
4108 tp->current_line = sal.line;
4109}
4110
0d1e5fa7
PA
4111/* Clear context switchable stepping state. */
4112
4113void
4e1c45ea 4114init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4115{
7f5ef605 4116 tss->stepped_breakpoint = 0;
0d1e5fa7 4117 tss->stepping_over_breakpoint = 0;
963f9c80 4118 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4119 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4120}
4121
ab1ddbcf 4122/* See infrun.h. */
c32c64b7 4123
6efcd9a8 4124void
5b6d1e4f
PA
4125set_last_target_status (process_stratum_target *target, ptid_t ptid,
4126 target_waitstatus status)
c32c64b7 4127{
5b6d1e4f 4128 target_last_proc_target = target;
c32c64b7
DE
4129 target_last_wait_ptid = ptid;
4130 target_last_waitstatus = status;
4131}
4132
ab1ddbcf 4133/* See infrun.h. */
e02bc4cc
DS
4134
4135void
5b6d1e4f
PA
4136get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4137 target_waitstatus *status)
e02bc4cc 4138{
5b6d1e4f
PA
4139 if (target != nullptr)
4140 *target = target_last_proc_target;
ab1ddbcf
PA
4141 if (ptid != nullptr)
4142 *ptid = target_last_wait_ptid;
4143 if (status != nullptr)
4144 *status = target_last_waitstatus;
e02bc4cc
DS
4145}
4146
ab1ddbcf
PA
4147/* See infrun.h. */
4148
ac264b3b
MS
4149void
4150nullify_last_target_wait_ptid (void)
4151{
5b6d1e4f 4152 target_last_proc_target = nullptr;
ac264b3b 4153 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4154 target_last_waitstatus = {};
ac264b3b
MS
4155}
4156
dcf4fbde 4157/* Switch thread contexts. */
dd80620e
MS
4158
4159static void
00431a78 4160context_switch (execution_control_state *ecs)
dd80620e 4161{
00431a78
PA
4162 if (debug_infrun
4163 && ecs->ptid != inferior_ptid
5b6d1e4f
PA
4164 && (inferior_ptid == null_ptid
4165 || ecs->event_thread != inferior_thread ()))
fd48f117
DJ
4166 {
4167 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 4168 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 4169 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 4170 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4171 }
4172
00431a78 4173 switch_to_thread (ecs->event_thread);
dd80620e
MS
4174}
4175
d8dd4d5f
PA
4176/* If the target can't tell whether we've hit breakpoints
4177 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4178 check whether that could have been caused by a breakpoint. If so,
4179 adjust the PC, per gdbarch_decr_pc_after_break. */
4180
4fa8626c 4181static void
d8dd4d5f
PA
4182adjust_pc_after_break (struct thread_info *thread,
4183 struct target_waitstatus *ws)
4fa8626c 4184{
24a73cce
UW
4185 struct regcache *regcache;
4186 struct gdbarch *gdbarch;
118e6252 4187 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4188
4fa8626c
DJ
4189 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4190 we aren't, just return.
9709f61c
DJ
4191
4192 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4193 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4194 implemented by software breakpoints should be handled through the normal
4195 breakpoint layer.
8fb3e588 4196
4fa8626c
DJ
4197 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4198 different signals (SIGILL or SIGEMT for instance), but it is less
4199 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4200 gdbarch_decr_pc_after_break. I don't know any specific target that
4201 generates these signals at breakpoints (the code has been in GDB since at
4202 least 1992) so I can not guess how to handle them here.
8fb3e588 4203
e6cf7916
UW
4204 In earlier versions of GDB, a target with
4205 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4206 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4207 target with both of these set in GDB history, and it seems unlikely to be
4208 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4209
d8dd4d5f 4210 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4211 return;
4212
d8dd4d5f 4213 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4214 return;
4215
4058b839
PA
4216 /* In reverse execution, when a breakpoint is hit, the instruction
4217 under it has already been de-executed. The reported PC always
4218 points at the breakpoint address, so adjusting it further would
4219 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4220 architecture:
4221
4222 B1 0x08000000 : INSN1
4223 B2 0x08000001 : INSN2
4224 0x08000002 : INSN3
4225 PC -> 0x08000003 : INSN4
4226
4227 Say you're stopped at 0x08000003 as above. Reverse continuing
4228 from that point should hit B2 as below. Reading the PC when the
4229 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4230 been de-executed already.
4231
4232 B1 0x08000000 : INSN1
4233 B2 PC -> 0x08000001 : INSN2
4234 0x08000002 : INSN3
4235 0x08000003 : INSN4
4236
4237 We can't apply the same logic as for forward execution, because
4238 we would wrongly adjust the PC to 0x08000000, since there's a
4239 breakpoint at PC - 1. We'd then report a hit on B1, although
4240 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4241 behaviour. */
4242 if (execution_direction == EXEC_REVERSE)
4243 return;
4244
1cf4d951
PA
4245 /* If the target can tell whether the thread hit a SW breakpoint,
4246 trust it. Targets that can tell also adjust the PC
4247 themselves. */
4248 if (target_supports_stopped_by_sw_breakpoint ())
4249 return;
4250
4251 /* Note that relying on whether a breakpoint is planted in memory to
4252 determine this can fail. E.g,. the breakpoint could have been
4253 removed since. Or the thread could have been told to step an
4254 instruction the size of a breakpoint instruction, and only
4255 _after_ was a breakpoint inserted at its address. */
4256
24a73cce
UW
4257 /* If this target does not decrement the PC after breakpoints, then
4258 we have nothing to do. */
00431a78 4259 regcache = get_thread_regcache (thread);
ac7936df 4260 gdbarch = regcache->arch ();
118e6252 4261
527a273a 4262 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4263 if (decr_pc == 0)
24a73cce
UW
4264 return;
4265
8b86c959 4266 const address_space *aspace = regcache->aspace ();
6c95b8df 4267
8aad930b
AC
4268 /* Find the location where (if we've hit a breakpoint) the
4269 breakpoint would be. */
118e6252 4270 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4271
1cf4d951
PA
4272 /* If the target can't tell whether a software breakpoint triggered,
4273 fallback to figuring it out based on breakpoints we think were
4274 inserted in the target, and on whether the thread was stepped or
4275 continued. */
4276
1c5cfe86
PA
4277 /* Check whether there actually is a software breakpoint inserted at
4278 that location.
4279
4280 If in non-stop mode, a race condition is possible where we've
4281 removed a breakpoint, but stop events for that breakpoint were
4282 already queued and arrive later. To suppress those spurious
4283 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4284 and retire them after a number of stop events are reported. Note
4285 this is an heuristic and can thus get confused. The real fix is
4286 to get the "stopped by SW BP and needs adjustment" info out of
4287 the target/kernel (and thus never reach here; see above). */
6c95b8df 4288 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4289 || (target_is_non_stop_p ()
4290 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4291 {
07036511 4292 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4293
8213266a 4294 if (record_full_is_used ())
07036511
TT
4295 restore_operation_disable.emplace
4296 (record_full_gdb_operation_disable_set ());
96429cc8 4297
1c0fdd0e
UW
4298 /* When using hardware single-step, a SIGTRAP is reported for both
4299 a completed single-step and a software breakpoint. Need to
4300 differentiate between the two, as the latter needs adjusting
4301 but the former does not.
4302
4303 The SIGTRAP can be due to a completed hardware single-step only if
4304 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4305 - this thread is currently being stepped
4306
4307 If any of these events did not occur, we must have stopped due
4308 to hitting a software breakpoint, and have to back up to the
4309 breakpoint address.
4310
4311 As a special case, we could have hardware single-stepped a
4312 software breakpoint. In this case (prev_pc == breakpoint_pc),
4313 we also need to back up to the breakpoint address. */
4314
d8dd4d5f
PA
4315 if (thread_has_single_step_breakpoints_set (thread)
4316 || !currently_stepping (thread)
4317 || (thread->stepped_breakpoint
4318 && thread->prev_pc == breakpoint_pc))
515630c5 4319 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4320 }
4fa8626c
DJ
4321}
4322
edb3359d
DJ
4323static int
4324stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4325{
4326 for (frame = get_prev_frame (frame);
4327 frame != NULL;
4328 frame = get_prev_frame (frame))
4329 {
4330 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4331 return 1;
4332 if (get_frame_type (frame) != INLINE_FRAME)
4333 break;
4334 }
4335
4336 return 0;
4337}
4338
4a4c04f1
BE
4339/* Look for an inline frame that is marked for skip.
4340 If PREV_FRAME is TRUE start at the previous frame,
4341 otherwise start at the current frame. Stop at the
4342 first non-inline frame, or at the frame where the
4343 step started. */
4344
4345static bool
4346inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4347{
4348 struct frame_info *frame = get_current_frame ();
4349
4350 if (prev_frame)
4351 frame = get_prev_frame (frame);
4352
4353 for (; frame != NULL; frame = get_prev_frame (frame))
4354 {
4355 const char *fn = NULL;
4356 symtab_and_line sal;
4357 struct symbol *sym;
4358
4359 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4360 break;
4361 if (get_frame_type (frame) != INLINE_FRAME)
4362 break;
4363
4364 sal = find_frame_sal (frame);
4365 sym = get_frame_function (frame);
4366
4367 if (sym != NULL)
4368 fn = sym->print_name ();
4369
4370 if (sal.line != 0
4371 && function_name_is_marked_for_skip (fn, sal))
4372 return true;
4373 }
4374
4375 return false;
4376}
4377
c65d6b55
PA
4378/* If the event thread has the stop requested flag set, pretend it
4379 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4380 target_stop). */
4381
4382static bool
4383handle_stop_requested (struct execution_control_state *ecs)
4384{
4385 if (ecs->event_thread->stop_requested)
4386 {
4387 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4388 ecs->ws.value.sig = GDB_SIGNAL_0;
4389 handle_signal_stop (ecs);
4390 return true;
4391 }
4392 return false;
4393}
4394
a96d9b2e
SDJ
4395/* Auxiliary function that handles syscall entry/return events.
4396 It returns 1 if the inferior should keep going (and GDB
4397 should ignore the event), or 0 if the event deserves to be
4398 processed. */
ca2163eb 4399
a96d9b2e 4400static int
ca2163eb 4401handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4402{
ca2163eb 4403 struct regcache *regcache;
ca2163eb
PA
4404 int syscall_number;
4405
00431a78 4406 context_switch (ecs);
ca2163eb 4407
00431a78 4408 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4409 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4410 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4411
a96d9b2e
SDJ
4412 if (catch_syscall_enabled () > 0
4413 && catching_syscall_number (syscall_number) > 0)
4414 {
4415 if (debug_infrun)
4416 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4417 syscall_number);
a96d9b2e 4418
16c381f0 4419 ecs->event_thread->control.stop_bpstat
a01bda52 4420 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4421 ecs->event_thread->suspend.stop_pc,
4422 ecs->event_thread, &ecs->ws);
ab04a2af 4423
c65d6b55
PA
4424 if (handle_stop_requested (ecs))
4425 return 0;
4426
ce12b012 4427 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4428 {
4429 /* Catchpoint hit. */
ca2163eb
PA
4430 return 0;
4431 }
a96d9b2e 4432 }
ca2163eb 4433
c65d6b55
PA
4434 if (handle_stop_requested (ecs))
4435 return 0;
4436
ca2163eb 4437 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4438 keep_going (ecs);
4439 return 1;
a96d9b2e
SDJ
4440}
4441
7e324e48
GB
4442/* Lazily fill in the execution_control_state's stop_func_* fields. */
4443
4444static void
4445fill_in_stop_func (struct gdbarch *gdbarch,
4446 struct execution_control_state *ecs)
4447{
4448 if (!ecs->stop_func_filled_in)
4449 {
98a617f8
KB
4450 const block *block;
4451
7e324e48
GB
4452 /* Don't care about return value; stop_func_start and stop_func_name
4453 will both be 0 if it doesn't work. */
98a617f8
KB
4454 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4455 &ecs->stop_func_name,
4456 &ecs->stop_func_start,
4457 &ecs->stop_func_end,
4458 &block);
4459
4460 /* The call to find_pc_partial_function, above, will set
4461 stop_func_start and stop_func_end to the start and end
4462 of the range containing the stop pc. If this range
4463 contains the entry pc for the block (which is always the
4464 case for contiguous blocks), advance stop_func_start past
4465 the function's start offset and entrypoint. Note that
4466 stop_func_start is NOT advanced when in a range of a
4467 non-contiguous block that does not contain the entry pc. */
4468 if (block != nullptr
4469 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4470 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4471 {
4472 ecs->stop_func_start
4473 += gdbarch_deprecated_function_start_offset (gdbarch);
4474
4475 if (gdbarch_skip_entrypoint_p (gdbarch))
4476 ecs->stop_func_start
4477 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4478 }
591a12a1 4479
7e324e48
GB
4480 ecs->stop_func_filled_in = 1;
4481 }
4482}
4483
4f5d7f63 4484
00431a78 4485/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4486
4487static enum stop_kind
00431a78 4488get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4489{
5b6d1e4f 4490 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4491
4492 gdb_assert (inf != NULL);
4493 return inf->control.stop_soon;
4494}
4495
5b6d1e4f
PA
4496/* Poll for one event out of the current target. Store the resulting
4497 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4498
4499static ptid_t
5b6d1e4f 4500poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4501{
4502 ptid_t event_ptid;
372316f1
PA
4503
4504 overlay_cache_invalid = 1;
4505
4506 /* Flush target cache before starting to handle each event.
4507 Target was running and cache could be stale. This is just a
4508 heuristic. Running threads may modify target memory, but we
4509 don't get any event. */
4510 target_dcache_invalidate ();
4511
4512 if (deprecated_target_wait_hook)
5b6d1e4f 4513 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4514 else
5b6d1e4f 4515 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4516
4517 if (debug_infrun)
5b6d1e4f 4518 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4519
4520 return event_ptid;
4521}
4522
5b6d1e4f
PA
4523/* An event reported by wait_one. */
4524
4525struct wait_one_event
4526{
4527 /* The target the event came out of. */
4528 process_stratum_target *target;
4529
4530 /* The PTID the event was for. */
4531 ptid_t ptid;
4532
4533 /* The waitstatus. */
4534 target_waitstatus ws;
4535};
4536
4537/* Wait for one event out of any target. */
4538
4539static wait_one_event
4540wait_one ()
4541{
4542 while (1)
4543 {
4544 for (inferior *inf : all_inferiors ())
4545 {
4546 process_stratum_target *target = inf->process_target ();
4547 if (target == NULL
4548 || !target->is_async_p ()
4549 || !target->threads_executing)
4550 continue;
4551
4552 switch_to_inferior_no_thread (inf);
4553
4554 wait_one_event event;
4555 event.target = target;
4556 event.ptid = poll_one_curr_target (&event.ws);
4557
4558 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4559 {
4560 /* If nothing is resumed, remove the target from the
4561 event loop. */
4562 target_async (0);
4563 }
4564 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4565 return event;
4566 }
4567
4568 /* Block waiting for some event. */
4569
4570 fd_set readfds;
4571 int nfds = 0;
4572
4573 FD_ZERO (&readfds);
4574
4575 for (inferior *inf : all_inferiors ())
4576 {
4577 process_stratum_target *target = inf->process_target ();
4578 if (target == NULL
4579 || !target->is_async_p ()
4580 || !target->threads_executing)
4581 continue;
4582
4583 int fd = target->async_wait_fd ();
4584 FD_SET (fd, &readfds);
4585 if (nfds <= fd)
4586 nfds = fd + 1;
4587 }
4588
4589 if (nfds == 0)
4590 {
4591 /* No waitable targets left. All must be stopped. */
4592 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4593 }
4594
4595 QUIT;
4596
4597 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4598 if (numfds < 0)
4599 {
4600 if (errno == EINTR)
4601 continue;
4602 else
4603 perror_with_name ("interruptible_select");
4604 }
4605 }
4606}
4607
372316f1
PA
4608/* Save the thread's event and stop reason to process it later. */
4609
4610static void
5b6d1e4f 4611save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4612{
372316f1
PA
4613 if (debug_infrun)
4614 {
23fdd69e 4615 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4616
372316f1
PA
4617 fprintf_unfiltered (gdb_stdlog,
4618 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4619 statstr.c_str (),
e99b03dc 4620 tp->ptid.pid (),
e38504b3 4621 tp->ptid.lwp (),
cc6bcb54 4622 tp->ptid.tid ());
372316f1
PA
4623 }
4624
4625 /* Record for later. */
4626 tp->suspend.waitstatus = *ws;
4627 tp->suspend.waitstatus_pending_p = 1;
4628
00431a78 4629 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4630 const address_space *aspace = regcache->aspace ();
372316f1
PA
4631
4632 if (ws->kind == TARGET_WAITKIND_STOPPED
4633 && ws->value.sig == GDB_SIGNAL_TRAP)
4634 {
4635 CORE_ADDR pc = regcache_read_pc (regcache);
4636
4637 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4638
18493a00
PA
4639 scoped_restore_current_thread restore_thread;
4640 switch_to_thread (tp);
4641
4642 if (target_stopped_by_watchpoint ())
372316f1
PA
4643 {
4644 tp->suspend.stop_reason
4645 = TARGET_STOPPED_BY_WATCHPOINT;
4646 }
4647 else if (target_supports_stopped_by_sw_breakpoint ()
18493a00 4648 && target_stopped_by_sw_breakpoint ())
372316f1
PA
4649 {
4650 tp->suspend.stop_reason
4651 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4652 }
4653 else if (target_supports_stopped_by_hw_breakpoint ()
18493a00 4654 && target_stopped_by_hw_breakpoint ())
372316f1
PA
4655 {
4656 tp->suspend.stop_reason
4657 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4658 }
4659 else if (!target_supports_stopped_by_hw_breakpoint ()
4660 && hardware_breakpoint_inserted_here_p (aspace,
4661 pc))
4662 {
4663 tp->suspend.stop_reason
4664 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4665 }
4666 else if (!target_supports_stopped_by_sw_breakpoint ()
4667 && software_breakpoint_inserted_here_p (aspace,
4668 pc))
4669 {
4670 tp->suspend.stop_reason
4671 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4672 }
4673 else if (!thread_has_single_step_breakpoints_set (tp)
4674 && currently_stepping (tp))
4675 {
4676 tp->suspend.stop_reason
4677 = TARGET_STOPPED_BY_SINGLE_STEP;
4678 }
4679 }
4680}
4681
293b3ebc
TBA
4682/* Mark the non-executing threads accordingly. In all-stop, all
4683 threads of all processes are stopped when we get any event
4684 reported. In non-stop mode, only the event thread stops. */
4685
4686static void
4687mark_non_executing_threads (process_stratum_target *target,
4688 ptid_t event_ptid,
4689 struct target_waitstatus ws)
4690{
4691 ptid_t mark_ptid;
4692
4693 if (!target_is_non_stop_p ())
4694 mark_ptid = minus_one_ptid;
4695 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4696 || ws.kind == TARGET_WAITKIND_EXITED)
4697 {
4698 /* If we're handling a process exit in non-stop mode, even
4699 though threads haven't been deleted yet, one would think
4700 that there is nothing to do, as threads of the dead process
4701 will be soon deleted, and threads of any other process were
4702 left running. However, on some targets, threads survive a
4703 process exit event. E.g., for the "checkpoint" command,
4704 when the current checkpoint/fork exits, linux-fork.c
4705 automatically switches to another fork from within
4706 target_mourn_inferior, by associating the same
4707 inferior/thread to another fork. We haven't mourned yet at
4708 this point, but we must mark any threads left in the
4709 process as not-executing so that finish_thread_state marks
4710 them stopped (in the user's perspective) if/when we present
4711 the stop to the user. */
4712 mark_ptid = ptid_t (event_ptid.pid ());
4713 }
4714 else
4715 mark_ptid = event_ptid;
4716
4717 set_executing (target, mark_ptid, false);
4718
4719 /* Likewise the resumed flag. */
4720 set_resumed (target, mark_ptid, false);
4721}
4722
6efcd9a8 4723/* See infrun.h. */
372316f1 4724
6efcd9a8 4725void
372316f1
PA
4726stop_all_threads (void)
4727{
4728 /* We may need multiple passes to discover all threads. */
4729 int pass;
4730 int iterations = 0;
372316f1 4731
53cccef1 4732 gdb_assert (exists_non_stop_target ());
372316f1
PA
4733
4734 if (debug_infrun)
4735 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4736
00431a78 4737 scoped_restore_current_thread restore_thread;
372316f1 4738
6ad82919
TBA
4739 /* Enable thread events of all targets. */
4740 for (auto *target : all_non_exited_process_targets ())
4741 {
4742 switch_to_target_no_thread (target);
4743 target_thread_events (true);
4744 }
4745
4746 SCOPE_EXIT
4747 {
4748 /* Disable thread events of all targets. */
4749 for (auto *target : all_non_exited_process_targets ())
4750 {
4751 switch_to_target_no_thread (target);
4752 target_thread_events (false);
4753 }
4754
4755 if (debug_infrun)
4756 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4757 };
65706a29 4758
372316f1
PA
4759 /* Request threads to stop, and then wait for the stops. Because
4760 threads we already know about can spawn more threads while we're
4761 trying to stop them, and we only learn about new threads when we
4762 update the thread list, do this in a loop, and keep iterating
4763 until two passes find no threads that need to be stopped. */
4764 for (pass = 0; pass < 2; pass++, iterations++)
4765 {
4766 if (debug_infrun)
4767 fprintf_unfiltered (gdb_stdlog,
4768 "infrun: stop_all_threads, pass=%d, "
4769 "iterations=%d\n", pass, iterations);
4770 while (1)
4771 {
29d6859f 4772 int waits_needed = 0;
372316f1 4773
a05575d3
TBA
4774 for (auto *target : all_non_exited_process_targets ())
4775 {
4776 switch_to_target_no_thread (target);
4777 update_thread_list ();
4778 }
372316f1
PA
4779
4780 /* Go through all threads looking for threads that we need
4781 to tell the target to stop. */
08036331 4782 for (thread_info *t : all_non_exited_threads ())
372316f1 4783 {
53cccef1
TBA
4784 /* For a single-target setting with an all-stop target,
4785 we would not even arrive here. For a multi-target
4786 setting, until GDB is able to handle a mixture of
4787 all-stop and non-stop targets, simply skip all-stop
4788 targets' threads. This should be fine due to the
4789 protection of 'check_multi_target_resumption'. */
4790
4791 switch_to_thread_no_regs (t);
4792 if (!target_is_non_stop_p ())
4793 continue;
4794
372316f1
PA
4795 if (t->executing)
4796 {
4797 /* If already stopping, don't request a stop again.
4798 We just haven't seen the notification yet. */
4799 if (!t->stop_requested)
4800 {
4801 if (debug_infrun)
4802 fprintf_unfiltered (gdb_stdlog,
4803 "infrun: %s executing, "
4804 "need stop\n",
a068643d 4805 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4806 target_stop (t->ptid);
4807 t->stop_requested = 1;
4808 }
4809 else
4810 {
4811 if (debug_infrun)
4812 fprintf_unfiltered (gdb_stdlog,
4813 "infrun: %s executing, "
4814 "already stopping\n",
a068643d 4815 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4816 }
4817
4818 if (t->stop_requested)
29d6859f 4819 waits_needed++;
372316f1
PA
4820 }
4821 else
4822 {
4823 if (debug_infrun)
4824 fprintf_unfiltered (gdb_stdlog,
4825 "infrun: %s not executing\n",
a068643d 4826 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4827
4828 /* The thread may be not executing, but still be
4829 resumed with a pending status to process. */
719546c4 4830 t->resumed = false;
372316f1
PA
4831 }
4832 }
4833
29d6859f 4834 if (waits_needed == 0)
372316f1
PA
4835 break;
4836
4837 /* If we find new threads on the second iteration, restart
4838 over. We want to see two iterations in a row with all
4839 threads stopped. */
4840 if (pass > 0)
4841 pass = -1;
4842
29d6859f 4843 for (int i = 0; i < waits_needed; i++)
c29705b7 4844 {
29d6859f 4845 wait_one_event event = wait_one ();
a05575d3 4846
29d6859f 4847 if (debug_infrun)
a05575d3 4848 {
29d6859f
LM
4849 fprintf_unfiltered (gdb_stdlog,
4850 "infrun: stop_all_threads %s %s\n",
4851 target_waitstatus_to_string (&event.ws).c_str (),
4852 target_pid_to_str (event.ptid).c_str ());
a05575d3
TBA
4853 }
4854
29d6859f 4855 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
a05575d3 4856 {
29d6859f
LM
4857 /* All resumed threads exited. */
4858 break;
a05575d3 4859 }
29d6859f
LM
4860 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4861 || event.ws.kind == TARGET_WAITKIND_EXITED
4862 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
6efcd9a8 4863 {
29d6859f 4864 /* One thread/process exited/signalled. */
6efcd9a8 4865
29d6859f 4866 thread_info *t = nullptr;
372316f1 4867
29d6859f
LM
4868 /* The target may have reported just a pid. If so, try
4869 the first non-exited thread. */
4870 if (event.ptid.is_pid ())
372316f1 4871 {
29d6859f
LM
4872 int pid = event.ptid.pid ();
4873 inferior *inf = find_inferior_pid (event.target, pid);
4874 for (thread_info *tp : inf->non_exited_threads ())
372316f1 4875 {
29d6859f
LM
4876 t = tp;
4877 break;
372316f1 4878 }
29d6859f
LM
4879
4880 /* If there is no available thread, the event would
4881 have to be appended to a per-inferior event list,
4882 which does not exist (and if it did, we'd have
4883 to adjust run control command to be able to
4884 resume such an inferior). We assert here instead
4885 of going into an infinite loop. */
4886 gdb_assert (t != nullptr);
4887
4888 if (debug_infrun)
4889 fprintf_unfiltered (gdb_stdlog,
4890 "infrun: stop_all_threads, using %s\n",
4891 target_pid_to_str (t->ptid).c_str ());
4892 }
4893 else
4894 {
4895 t = find_thread_ptid (event.target, event.ptid);
4896 /* Check if this is the first time we see this thread.
4897 Don't bother adding if it individually exited. */
4898 if (t == nullptr
4899 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4900 t = add_thread (event.target, event.ptid);
4901 }
4902
4903 if (t != nullptr)
4904 {
4905 /* Set the threads as non-executing to avoid
4906 another stop attempt on them. */
4907 switch_to_thread_no_regs (t);
4908 mark_non_executing_threads (event.target, event.ptid,
4909 event.ws);
4910 save_waitstatus (t, &event.ws);
4911 t->stop_requested = false;
372316f1
PA
4912 }
4913 }
4914 else
4915 {
29d6859f
LM
4916 thread_info *t = find_thread_ptid (event.target, event.ptid);
4917 if (t == NULL)
4918 t = add_thread (event.target, event.ptid);
372316f1 4919
29d6859f
LM
4920 t->stop_requested = 0;
4921 t->executing = 0;
4922 t->resumed = false;
4923 t->control.may_range_step = 0;
4924
4925 /* This may be the first time we see the inferior report
4926 a stop. */
4927 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4928 if (inf->needs_setup)
372316f1 4929 {
29d6859f
LM
4930 switch_to_thread_no_regs (t);
4931 setup_inferior (0);
372316f1
PA
4932 }
4933
29d6859f
LM
4934 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4935 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1 4936 {
29d6859f
LM
4937 /* We caught the event that we intended to catch, so
4938 there's no event pending. */
4939 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4940 t->suspend.waitstatus_pending_p = 0;
4941
4942 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4943 {
4944 /* Add it back to the step-over queue. */
4945 if (debug_infrun)
4946 {
4947 fprintf_unfiltered (gdb_stdlog,
4948 "infrun: displaced-step of %s "
4949 "canceled: adding back to the "
4950 "step-over queue\n",
4951 target_pid_to_str (t->ptid).c_str ());
4952 }
4953 t->control.trap_expected = 0;
4954 thread_step_over_chain_enqueue (t);
4955 }
372316f1 4956 }
29d6859f
LM
4957 else
4958 {
4959 enum gdb_signal sig;
4960 struct regcache *regcache;
372316f1 4961
29d6859f
LM
4962 if (debug_infrun)
4963 {
4964 std::string statstr = target_waitstatus_to_string (&event.ws);
372316f1 4965
29d6859f
LM
4966 fprintf_unfiltered (gdb_stdlog,
4967 "infrun: target_wait %s, saving "
4968 "status for %d.%ld.%ld\n",
4969 statstr.c_str (),
4970 t->ptid.pid (),
4971 t->ptid.lwp (),
4972 t->ptid.tid ());
4973 }
4974
4975 /* Record for later. */
4976 save_waitstatus (t, &event.ws);
4977
4978 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4979 ? event.ws.value.sig : GDB_SIGNAL_0);
4980
4981 if (displaced_step_fixup (t, sig) < 0)
4982 {
4983 /* Add it back to the step-over queue. */
4984 t->control.trap_expected = 0;
4985 thread_step_over_chain_enqueue (t);
4986 }
4987
4988 regcache = get_thread_regcache (t);
4989 t->suspend.stop_pc = regcache_read_pc (regcache);
4990
4991 if (debug_infrun)
4992 {
4993 fprintf_unfiltered (gdb_stdlog,
4994 "infrun: saved stop_pc=%s for %s "
4995 "(currently_stepping=%d)\n",
4996 paddress (target_gdbarch (),
4997 t->suspend.stop_pc),
4998 target_pid_to_str (t->ptid).c_str (),
4999 currently_stepping (t));
5000 }
372316f1
PA
5001 }
5002 }
5003 }
5004 }
5005 }
372316f1
PA
5006}
5007
f4836ba9
PA
5008/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
5009
5010static int
5011handle_no_resumed (struct execution_control_state *ecs)
5012{
3b12939d 5013 if (target_can_async_p ())
f4836ba9 5014 {
3b12939d 5015 int any_sync = 0;
f4836ba9 5016
2dab0c7b 5017 for (ui *ui : all_uis ())
3b12939d
PA
5018 {
5019 if (ui->prompt_state == PROMPT_BLOCKED)
5020 {
5021 any_sync = 1;
5022 break;
5023 }
5024 }
5025 if (!any_sync)
5026 {
5027 /* There were no unwaited-for children left in the target, but,
5028 we're not synchronously waiting for events either. Just
5029 ignore. */
5030
5031 if (debug_infrun)
5032 fprintf_unfiltered (gdb_stdlog,
5033 "infrun: TARGET_WAITKIND_NO_RESUMED "
5034 "(ignoring: bg)\n");
5035 prepare_to_wait (ecs);
5036 return 1;
5037 }
f4836ba9
PA
5038 }
5039
5040 /* Otherwise, if we were running a synchronous execution command, we
5041 may need to cancel it and give the user back the terminal.
5042
5043 In non-stop mode, the target can't tell whether we've already
5044 consumed previous stop events, so it can end up sending us a
5045 no-resumed event like so:
5046
5047 #0 - thread 1 is left stopped
5048
5049 #1 - thread 2 is resumed and hits breakpoint
5050 -> TARGET_WAITKIND_STOPPED
5051
5052 #2 - thread 3 is resumed and exits
5053 this is the last resumed thread, so
5054 -> TARGET_WAITKIND_NO_RESUMED
5055
5056 #3 - gdb processes stop for thread 2 and decides to re-resume
5057 it.
5058
5059 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
5060 thread 2 is now resumed, so the event should be ignored.
5061
5062 IOW, if the stop for thread 2 doesn't end a foreground command,
5063 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5064 event. But it could be that the event meant that thread 2 itself
5065 (or whatever other thread was the last resumed thread) exited.
5066
5067 To address this we refresh the thread list and check whether we
5068 have resumed threads _now_. In the example above, this removes
5069 thread 3 from the thread list. If thread 2 was re-resumed, we
5070 ignore this event. If we find no thread resumed, then we cancel
5071 the synchronous command show "no unwaited-for " to the user. */
5072 update_thread_list ();
5073
5b6d1e4f 5074 for (thread_info *thread : all_non_exited_threads (ecs->target))
f4836ba9
PA
5075 {
5076 if (thread->executing
5077 || thread->suspend.waitstatus_pending_p)
5078 {
5079 /* There were no unwaited-for children left in the target at
5080 some point, but there are now. Just ignore. */
5081 if (debug_infrun)
5082 fprintf_unfiltered (gdb_stdlog,
5083 "infrun: TARGET_WAITKIND_NO_RESUMED "
5084 "(ignoring: found resumed)\n");
5085 prepare_to_wait (ecs);
5086 return 1;
f4836ba9
PA
5087 }
5088 }
5089
5090 /* Go ahead and report the event. */
5091 return 0;
5092}
5093
05ba8510
PA
5094/* Given an execution control state that has been freshly filled in by
5095 an event from the inferior, figure out what it means and take
5096 appropriate action.
5097
5098 The alternatives are:
5099
22bcd14b 5100 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5101 debugger.
5102
5103 2) keep_going and return; to wait for the next event (set
5104 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5105 once). */
c906108c 5106
ec9499be 5107static void
595915c1 5108handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5109{
595915c1
TT
5110 /* Make sure that all temporary struct value objects that were
5111 created during the handling of the event get deleted at the
5112 end. */
5113 scoped_value_mark free_values;
5114
d6b48e9c
PA
5115 enum stop_kind stop_soon;
5116
c29705b7
PW
5117 if (debug_infrun)
5118 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5119 target_waitstatus_to_string (&ecs->ws).c_str ());
5120
28736962
PA
5121 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5122 {
5123 /* We had an event in the inferior, but we are not interested in
5124 handling it at this level. The lower layers have already
5125 done what needs to be done, if anything.
5126
5127 One of the possible circumstances for this is when the
5128 inferior produces output for the console. The inferior has
5129 not stopped, and we are ignoring the event. Another possible
5130 circumstance is any event which the lower level knows will be
5131 reported multiple times without an intervening resume. */
28736962
PA
5132 prepare_to_wait (ecs);
5133 return;
5134 }
5135
65706a29
PA
5136 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5137 {
65706a29
PA
5138 prepare_to_wait (ecs);
5139 return;
5140 }
5141
0e5bf2a8 5142 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5143 && handle_no_resumed (ecs))
5144 return;
0e5bf2a8 5145
5b6d1e4f
PA
5146 /* Cache the last target/ptid/waitstatus. */
5147 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5148
ca005067 5149 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5150 stop_stack_dummy = STOP_NONE;
ca005067 5151
0e5bf2a8
PA
5152 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5153 {
5154 /* No unwaited-for children left. IOW, all resumed children
5155 have exited. */
0e5bf2a8 5156 stop_print_frame = 0;
22bcd14b 5157 stop_waiting (ecs);
0e5bf2a8
PA
5158 return;
5159 }
5160
8c90c137 5161 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5162 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5163 {
5b6d1e4f 5164 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5165 /* If it's a new thread, add it to the thread database. */
5166 if (ecs->event_thread == NULL)
5b6d1e4f 5167 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5168
5169 /* Disable range stepping. If the next step request could use a
5170 range, this will be end up re-enabled then. */
5171 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5172 }
88ed393a
JK
5173
5174 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5175 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5176
5177 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5178 reinit_frame_cache ();
5179
28736962
PA
5180 breakpoint_retire_moribund ();
5181
2b009048
DJ
5182 /* First, distinguish signals caused by the debugger from signals
5183 that have to do with the program's own actions. Note that
5184 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5185 on the operating system version. Here we detect when a SIGILL or
5186 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5187 something similar for SIGSEGV, since a SIGSEGV will be generated
5188 when we're trying to execute a breakpoint instruction on a
5189 non-executable stack. This happens for call dummy breakpoints
5190 for architectures like SPARC that place call dummies on the
5191 stack. */
2b009048 5192 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5193 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5194 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5195 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5196 {
00431a78 5197 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5198
a01bda52 5199 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5200 regcache_read_pc (regcache)))
5201 {
5202 if (debug_infrun)
5203 fprintf_unfiltered (gdb_stdlog,
5204 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 5205 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5206 }
2b009048
DJ
5207 }
5208
293b3ebc 5209 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
8c90c137 5210
488f131b
JB
5211 switch (ecs->ws.kind)
5212 {
5213 case TARGET_WAITKIND_LOADED:
00431a78 5214 context_switch (ecs);
b0f4b84b
DJ
5215 /* Ignore gracefully during startup of the inferior, as it might
5216 be the shell which has just loaded some objects, otherwise
5217 add the symbols for the newly loaded objects. Also ignore at
5218 the beginning of an attach or remote session; we will query
5219 the full list of libraries once the connection is
5220 established. */
4f5d7f63 5221
00431a78 5222 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5223 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5224 {
edcc5120
TT
5225 struct regcache *regcache;
5226
00431a78 5227 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5228
5229 handle_solib_event ();
5230
5231 ecs->event_thread->control.stop_bpstat
a01bda52 5232 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5233 ecs->event_thread->suspend.stop_pc,
5234 ecs->event_thread, &ecs->ws);
ab04a2af 5235
c65d6b55
PA
5236 if (handle_stop_requested (ecs))
5237 return;
5238
ce12b012 5239 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5240 {
5241 /* A catchpoint triggered. */
94c57d6a
PA
5242 process_event_stop_test (ecs);
5243 return;
edcc5120 5244 }
488f131b 5245
b0f4b84b
DJ
5246 /* If requested, stop when the dynamic linker notifies
5247 gdb of events. This allows the user to get control
5248 and place breakpoints in initializer routines for
5249 dynamically loaded objects (among other things). */
a493e3e2 5250 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5251 if (stop_on_solib_events)
5252 {
55409f9d
DJ
5253 /* Make sure we print "Stopped due to solib-event" in
5254 normal_stop. */
5255 stop_print_frame = 1;
5256
22bcd14b 5257 stop_waiting (ecs);
b0f4b84b
DJ
5258 return;
5259 }
488f131b 5260 }
b0f4b84b
DJ
5261
5262 /* If we are skipping through a shell, or through shared library
5263 loading that we aren't interested in, resume the program. If
5c09a2c5 5264 we're running the program normally, also resume. */
b0f4b84b
DJ
5265 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5266 {
74960c60
VP
5267 /* Loading of shared libraries might have changed breakpoint
5268 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5269 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5270 insert_breakpoints ();
64ce06e4 5271 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5272 prepare_to_wait (ecs);
5273 return;
5274 }
5275
5c09a2c5
PA
5276 /* But stop if we're attaching or setting up a remote
5277 connection. */
5278 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5279 || stop_soon == STOP_QUIETLY_REMOTE)
5280 {
5281 if (debug_infrun)
5282 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5283 stop_waiting (ecs);
5c09a2c5
PA
5284 return;
5285 }
5286
5287 internal_error (__FILE__, __LINE__,
5288 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5289
488f131b 5290 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5291 if (handle_stop_requested (ecs))
5292 return;
00431a78 5293 context_switch (ecs);
64ce06e4 5294 resume (GDB_SIGNAL_0);
488f131b
JB
5295 prepare_to_wait (ecs);
5296 return;
c5aa993b 5297
65706a29 5298 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5299 if (handle_stop_requested (ecs))
5300 return;
00431a78 5301 context_switch (ecs);
65706a29
PA
5302 if (!switch_back_to_stepped_thread (ecs))
5303 keep_going (ecs);
5304 return;
5305
488f131b 5306 case TARGET_WAITKIND_EXITED:
940c3c06 5307 case TARGET_WAITKIND_SIGNALLED:
18493a00
PA
5308 {
5309 /* Depending on the system, ecs->ptid may point to a thread or
5310 to a process. On some targets, target_mourn_inferior may
5311 need to have access to the just-exited thread. That is the
5312 case of GNU/Linux's "checkpoint" support, for example.
5313 Call the switch_to_xxx routine as appropriate. */
5314 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5315 if (thr != nullptr)
5316 switch_to_thread (thr);
5317 else
5318 {
5319 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5320 switch_to_inferior_no_thread (inf);
5321 }
5322 }
6c95b8df 5323 handle_vfork_child_exec_or_exit (0);
223ffa71 5324 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5325
0c557179
SDJ
5326 /* Clearing any previous state of convenience variables. */
5327 clear_exit_convenience_vars ();
5328
940c3c06
PA
5329 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5330 {
5331 /* Record the exit code in the convenience variable $_exitcode, so
5332 that the user can inspect this again later. */
5333 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5334 (LONGEST) ecs->ws.value.integer);
5335
5336 /* Also record this in the inferior itself. */
5337 current_inferior ()->has_exit_code = 1;
5338 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5339
98eb56a4
PA
5340 /* Support the --return-child-result option. */
5341 return_child_result_value = ecs->ws.value.integer;
5342
76727919 5343 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5344 }
5345 else
0c557179 5346 {
00431a78 5347 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5348
5349 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5350 {
5351 /* Set the value of the internal variable $_exitsignal,
5352 which holds the signal uncaught by the inferior. */
5353 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5354 gdbarch_gdb_signal_to_target (gdbarch,
5355 ecs->ws.value.sig));
5356 }
5357 else
5358 {
5359 /* We don't have access to the target's method used for
5360 converting between signal numbers (GDB's internal
5361 representation <-> target's representation).
5362 Therefore, we cannot do a good job at displaying this
5363 information to the user. It's better to just warn
5364 her about it (if infrun debugging is enabled), and
5365 give up. */
5366 if (debug_infrun)
5367 fprintf_filtered (gdb_stdlog, _("\
5368Cannot fill $_exitsignal with the correct signal number.\n"));
5369 }
5370
76727919 5371 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5372 }
8cf64490 5373
488f131b 5374 gdb_flush (gdb_stdout);
bc1e6c81 5375 target_mourn_inferior (inferior_ptid);
488f131b 5376 stop_print_frame = 0;
22bcd14b 5377 stop_waiting (ecs);
488f131b 5378 return;
c5aa993b 5379
488f131b 5380 case TARGET_WAITKIND_FORKED:
deb3b17b 5381 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5382 /* Check whether the inferior is displaced stepping. */
5383 {
00431a78 5384 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5385 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5386
5387 /* If checking displaced stepping is supported, and thread
5388 ecs->ptid is displaced stepping. */
00431a78 5389 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
5390 {
5391 struct inferior *parent_inf
5b6d1e4f 5392 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5393 struct regcache *child_regcache;
5394 CORE_ADDR parent_pc;
5395
d8d83535
SM
5396 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5397 {
5398 struct displaced_step_inferior_state *displaced
5399 = get_displaced_stepping_state (parent_inf);
5400
5401 /* Restore scratch pad for child process. */
5402 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5403 }
5404
e2d96639
YQ
5405 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5406 indicating that the displaced stepping of syscall instruction
5407 has been done. Perform cleanup for parent process here. Note
5408 that this operation also cleans up the child process for vfork,
5409 because their pages are shared. */
00431a78 5410 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5411 /* Start a new step-over in another thread if there's one
5412 that needs it. */
5413 start_step_over ();
e2d96639 5414
e2d96639
YQ
5415 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5416 the child's PC is also within the scratchpad. Set the child's PC
5417 to the parent's PC value, which has already been fixed up.
5418 FIXME: we use the parent's aspace here, although we're touching
5419 the child, because the child hasn't been added to the inferior
5420 list yet at this point. */
5421
5422 child_regcache
5b6d1e4f
PA
5423 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5424 ecs->ws.value.related_pid,
e2d96639
YQ
5425 gdbarch,
5426 parent_inf->aspace);
5427 /* Read PC value of parent process. */
5428 parent_pc = regcache_read_pc (regcache);
5429
5430 if (debug_displaced)
5431 fprintf_unfiltered (gdb_stdlog,
5432 "displaced: write child pc from %s to %s\n",
5433 paddress (gdbarch,
5434 regcache_read_pc (child_regcache)),
5435 paddress (gdbarch, parent_pc));
5436
5437 regcache_write_pc (child_regcache, parent_pc);
5438 }
5439 }
5440
00431a78 5441 context_switch (ecs);
5a2901d9 5442
b242c3c2
PA
5443 /* Immediately detach breakpoints from the child before there's
5444 any chance of letting the user delete breakpoints from the
5445 breakpoint lists. If we don't do this early, it's easy to
5446 leave left over traps in the child, vis: "break foo; catch
5447 fork; c; <fork>; del; c; <child calls foo>". We only follow
5448 the fork on the last `continue', and by that time the
5449 breakpoint at "foo" is long gone from the breakpoint table.
5450 If we vforked, then we don't need to unpatch here, since both
5451 parent and child are sharing the same memory pages; we'll
5452 need to unpatch at follow/detach time instead to be certain
5453 that new breakpoints added between catchpoint hit time and
5454 vfork follow are detached. */
5455 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5456 {
b242c3c2
PA
5457 /* This won't actually modify the breakpoint list, but will
5458 physically remove the breakpoints from the child. */
d80ee84f 5459 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5460 }
5461
34b7e8a6 5462 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5463
e58b0e63
PA
5464 /* In case the event is caught by a catchpoint, remember that
5465 the event is to be followed at the next resume of the thread,
5466 and not immediately. */
5467 ecs->event_thread->pending_follow = ecs->ws;
5468
f2ffa92b
PA
5469 ecs->event_thread->suspend.stop_pc
5470 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5471
16c381f0 5472 ecs->event_thread->control.stop_bpstat
a01bda52 5473 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5474 ecs->event_thread->suspend.stop_pc,
5475 ecs->event_thread, &ecs->ws);
675bf4cb 5476
c65d6b55
PA
5477 if (handle_stop_requested (ecs))
5478 return;
5479
ce12b012
PA
5480 /* If no catchpoint triggered for this, then keep going. Note
5481 that we're interested in knowing the bpstat actually causes a
5482 stop, not just if it may explain the signal. Software
5483 watchpoints, for example, always appear in the bpstat. */
5484 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5485 {
5ab2fbf1 5486 bool follow_child
3e43a32a 5487 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5488
a493e3e2 5489 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5490
5b6d1e4f
PA
5491 process_stratum_target *targ
5492 = ecs->event_thread->inf->process_target ();
5493
5ab2fbf1 5494 bool should_resume = follow_fork ();
e58b0e63 5495
5b6d1e4f
PA
5496 /* Note that one of these may be an invalid pointer,
5497 depending on detach_fork. */
00431a78 5498 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5499 thread_info *child
5500 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5501
a2077e25
PA
5502 /* At this point, the parent is marked running, and the
5503 child is marked stopped. */
5504
5505 /* If not resuming the parent, mark it stopped. */
5506 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5507 parent->set_running (false);
a2077e25
PA
5508
5509 /* If resuming the child, mark it running. */
5510 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5511 child->set_running (true);
a2077e25 5512
6c95b8df 5513 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5514 if (!detach_fork && (non_stop
5515 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5516 {
5517 if (follow_child)
5518 switch_to_thread (parent);
5519 else
5520 switch_to_thread (child);
5521
5522 ecs->event_thread = inferior_thread ();
5523 ecs->ptid = inferior_ptid;
5524 keep_going (ecs);
5525 }
5526
5527 if (follow_child)
5528 switch_to_thread (child);
5529 else
5530 switch_to_thread (parent);
5531
e58b0e63
PA
5532 ecs->event_thread = inferior_thread ();
5533 ecs->ptid = inferior_ptid;
5534
5535 if (should_resume)
5536 keep_going (ecs);
5537 else
22bcd14b 5538 stop_waiting (ecs);
04e68871
DJ
5539 return;
5540 }
94c57d6a
PA
5541 process_event_stop_test (ecs);
5542 return;
488f131b 5543
6c95b8df
PA
5544 case TARGET_WAITKIND_VFORK_DONE:
5545 /* Done with the shared memory region. Re-insert breakpoints in
5546 the parent, and keep going. */
5547
00431a78 5548 context_switch (ecs);
6c95b8df
PA
5549
5550 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5551 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5552
5553 if (handle_stop_requested (ecs))
5554 return;
5555
6c95b8df
PA
5556 /* This also takes care of reinserting breakpoints in the
5557 previously locked inferior. */
5558 keep_going (ecs);
5559 return;
5560
488f131b 5561 case TARGET_WAITKIND_EXECD:
488f131b 5562
cbd2b4e3
PA
5563 /* Note we can't read registers yet (the stop_pc), because we
5564 don't yet know the inferior's post-exec architecture.
5565 'stop_pc' is explicitly read below instead. */
00431a78 5566 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5567
6c95b8df
PA
5568 /* Do whatever is necessary to the parent branch of the vfork. */
5569 handle_vfork_child_exec_or_exit (1);
5570
795e548f
PA
5571 /* This causes the eventpoints and symbol table to be reset.
5572 Must do this now, before trying to determine whether to
5573 stop. */
71b43ef8 5574 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5575
17d8546e
DB
5576 /* In follow_exec we may have deleted the original thread and
5577 created a new one. Make sure that the event thread is the
5578 execd thread for that case (this is a nop otherwise). */
5579 ecs->event_thread = inferior_thread ();
5580
f2ffa92b
PA
5581 ecs->event_thread->suspend.stop_pc
5582 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5583
16c381f0 5584 ecs->event_thread->control.stop_bpstat
a01bda52 5585 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5586 ecs->event_thread->suspend.stop_pc,
5587 ecs->event_thread, &ecs->ws);
795e548f 5588
71b43ef8
PA
5589 /* Note that this may be referenced from inside
5590 bpstat_stop_status above, through inferior_has_execd. */
5591 xfree (ecs->ws.value.execd_pathname);
5592 ecs->ws.value.execd_pathname = NULL;
5593
c65d6b55
PA
5594 if (handle_stop_requested (ecs))
5595 return;
5596
04e68871 5597 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5598 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5599 {
a493e3e2 5600 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5601 keep_going (ecs);
5602 return;
5603 }
94c57d6a
PA
5604 process_event_stop_test (ecs);
5605 return;
488f131b 5606
b4dc5ffa
MK
5607 /* Be careful not to try to gather much state about a thread
5608 that's in a syscall. It's frequently a losing proposition. */
488f131b 5609 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5610 /* Getting the current syscall number. */
94c57d6a
PA
5611 if (handle_syscall_event (ecs) == 0)
5612 process_event_stop_test (ecs);
5613 return;
c906108c 5614
488f131b
JB
5615 /* Before examining the threads further, step this thread to
5616 get it entirely out of the syscall. (We get notice of the
5617 event when the thread is just on the verge of exiting a
5618 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5619 into user code.) */
488f131b 5620 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5621 if (handle_syscall_event (ecs) == 0)
5622 process_event_stop_test (ecs);
5623 return;
c906108c 5624
488f131b 5625 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5626 handle_signal_stop (ecs);
5627 return;
c906108c 5628
b2175913
MS
5629 case TARGET_WAITKIND_NO_HISTORY:
5630 /* Reverse execution: target ran out of history info. */
eab402df 5631
d1988021 5632 /* Switch to the stopped thread. */
00431a78 5633 context_switch (ecs);
d1988021
MM
5634 if (debug_infrun)
5635 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5636
34b7e8a6 5637 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5638 ecs->event_thread->suspend.stop_pc
5639 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5640
5641 if (handle_stop_requested (ecs))
5642 return;
5643
76727919 5644 gdb::observers::no_history.notify ();
22bcd14b 5645 stop_waiting (ecs);
b2175913 5646 return;
488f131b 5647 }
4f5d7f63
PA
5648}
5649
372316f1
PA
5650/* Restart threads back to what they were trying to do back when we
5651 paused them for an in-line step-over. The EVENT_THREAD thread is
5652 ignored. */
4d9d9d04
PA
5653
5654static void
372316f1
PA
5655restart_threads (struct thread_info *event_thread)
5656{
372316f1
PA
5657 /* In case the instruction just stepped spawned a new thread. */
5658 update_thread_list ();
5659
08036331 5660 for (thread_info *tp : all_non_exited_threads ())
372316f1 5661 {
f3f8ece4
PA
5662 switch_to_thread_no_regs (tp);
5663
372316f1
PA
5664 if (tp == event_thread)
5665 {
5666 if (debug_infrun)
5667 fprintf_unfiltered (gdb_stdlog,
5668 "infrun: restart threads: "
5669 "[%s] is event thread\n",
a068643d 5670 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5671 continue;
5672 }
5673
5674 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5675 {
5676 if (debug_infrun)
5677 fprintf_unfiltered (gdb_stdlog,
5678 "infrun: restart threads: "
5679 "[%s] not meant to be running\n",
a068643d 5680 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5681 continue;
5682 }
5683
5684 if (tp->resumed)
5685 {
5686 if (debug_infrun)
5687 fprintf_unfiltered (gdb_stdlog,
5688 "infrun: restart threads: [%s] resumed\n",
a068643d 5689 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5690 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5691 continue;
5692 }
5693
5694 if (thread_is_in_step_over_chain (tp))
5695 {
5696 if (debug_infrun)
5697 fprintf_unfiltered (gdb_stdlog,
5698 "infrun: restart threads: "
5699 "[%s] needs step-over\n",
a068643d 5700 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5701 gdb_assert (!tp->resumed);
5702 continue;
5703 }
5704
5705
5706 if (tp->suspend.waitstatus_pending_p)
5707 {
5708 if (debug_infrun)
5709 fprintf_unfiltered (gdb_stdlog,
5710 "infrun: restart threads: "
5711 "[%s] has pending status\n",
a068643d 5712 target_pid_to_str (tp->ptid).c_str ());
719546c4 5713 tp->resumed = true;
372316f1
PA
5714 continue;
5715 }
5716
c65d6b55
PA
5717 gdb_assert (!tp->stop_requested);
5718
372316f1
PA
5719 /* If some thread needs to start a step-over at this point, it
5720 should still be in the step-over queue, and thus skipped
5721 above. */
5722 if (thread_still_needs_step_over (tp))
5723 {
5724 internal_error (__FILE__, __LINE__,
5725 "thread [%s] needs a step-over, but not in "
5726 "step-over queue\n",
a068643d 5727 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5728 }
5729
5730 if (currently_stepping (tp))
5731 {
5732 if (debug_infrun)
5733 fprintf_unfiltered (gdb_stdlog,
5734 "infrun: restart threads: [%s] was stepping\n",
a068643d 5735 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5736 keep_going_stepped_thread (tp);
5737 }
5738 else
5739 {
5740 struct execution_control_state ecss;
5741 struct execution_control_state *ecs = &ecss;
5742
5743 if (debug_infrun)
5744 fprintf_unfiltered (gdb_stdlog,
5745 "infrun: restart threads: [%s] continuing\n",
a068643d 5746 target_pid_to_str (tp->ptid).c_str ());
372316f1 5747 reset_ecs (ecs, tp);
00431a78 5748 switch_to_thread (tp);
372316f1
PA
5749 keep_going_pass_signal (ecs);
5750 }
5751 }
5752}
5753
5754/* Callback for iterate_over_threads. Find a resumed thread that has
5755 a pending waitstatus. */
5756
5757static int
5758resumed_thread_with_pending_status (struct thread_info *tp,
5759 void *arg)
5760{
5761 return (tp->resumed
5762 && tp->suspend.waitstatus_pending_p);
5763}
5764
5765/* Called when we get an event that may finish an in-line or
5766 out-of-line (displaced stepping) step-over started previously.
5767 Return true if the event is processed and we should go back to the
5768 event loop; false if the caller should continue processing the
5769 event. */
5770
5771static int
4d9d9d04
PA
5772finish_step_over (struct execution_control_state *ecs)
5773{
372316f1
PA
5774 int had_step_over_info;
5775
00431a78 5776 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5777 ecs->event_thread->suspend.stop_signal);
5778
372316f1
PA
5779 had_step_over_info = step_over_info_valid_p ();
5780
5781 if (had_step_over_info)
4d9d9d04
PA
5782 {
5783 /* If we're stepping over a breakpoint with all threads locked,
5784 then only the thread that was stepped should be reporting
5785 back an event. */
5786 gdb_assert (ecs->event_thread->control.trap_expected);
5787
c65d6b55 5788 clear_step_over_info ();
4d9d9d04
PA
5789 }
5790
fbea99ea 5791 if (!target_is_non_stop_p ())
372316f1 5792 return 0;
4d9d9d04
PA
5793
5794 /* Start a new step-over in another thread if there's one that
5795 needs it. */
5796 start_step_over ();
372316f1
PA
5797
5798 /* If we were stepping over a breakpoint before, and haven't started
5799 a new in-line step-over sequence, then restart all other threads
5800 (except the event thread). We can't do this in all-stop, as then
5801 e.g., we wouldn't be able to issue any other remote packet until
5802 these other threads stop. */
5803 if (had_step_over_info && !step_over_info_valid_p ())
5804 {
5805 struct thread_info *pending;
5806
5807 /* If we only have threads with pending statuses, the restart
5808 below won't restart any thread and so nothing re-inserts the
5809 breakpoint we just stepped over. But we need it inserted
5810 when we later process the pending events, otherwise if
5811 another thread has a pending event for this breakpoint too,
5812 we'd discard its event (because the breakpoint that
5813 originally caused the event was no longer inserted). */
00431a78 5814 context_switch (ecs);
372316f1
PA
5815 insert_breakpoints ();
5816
5817 restart_threads (ecs->event_thread);
5818
5819 /* If we have events pending, go through handle_inferior_event
5820 again, picking up a pending event at random. This avoids
5821 thread starvation. */
5822
5823 /* But not if we just stepped over a watchpoint in order to let
5824 the instruction execute so we can evaluate its expression.
5825 The set of watchpoints that triggered is recorded in the
5826 breakpoint objects themselves (see bp->watchpoint_triggered).
5827 If we processed another event first, that other event could
5828 clobber this info. */
5829 if (ecs->event_thread->stepping_over_watchpoint)
5830 return 0;
5831
5832 pending = iterate_over_threads (resumed_thread_with_pending_status,
5833 NULL);
5834 if (pending != NULL)
5835 {
5836 struct thread_info *tp = ecs->event_thread;
5837 struct regcache *regcache;
5838
5839 if (debug_infrun)
5840 {
5841 fprintf_unfiltered (gdb_stdlog,
5842 "infrun: found resumed threads with "
5843 "pending events, saving status\n");
5844 }
5845
5846 gdb_assert (pending != tp);
5847
5848 /* Record the event thread's event for later. */
5849 save_waitstatus (tp, &ecs->ws);
5850 /* This was cleared early, by handle_inferior_event. Set it
5851 so this pending event is considered by
5852 do_target_wait. */
719546c4 5853 tp->resumed = true;
372316f1
PA
5854
5855 gdb_assert (!tp->executing);
5856
00431a78 5857 regcache = get_thread_regcache (tp);
372316f1
PA
5858 tp->suspend.stop_pc = regcache_read_pc (regcache);
5859
5860 if (debug_infrun)
5861 {
5862 fprintf_unfiltered (gdb_stdlog,
5863 "infrun: saved stop_pc=%s for %s "
5864 "(currently_stepping=%d)\n",
5865 paddress (target_gdbarch (),
5866 tp->suspend.stop_pc),
a068643d 5867 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5868 currently_stepping (tp));
5869 }
5870
5871 /* This in-line step-over finished; clear this so we won't
5872 start a new one. This is what handle_signal_stop would
5873 do, if we returned false. */
5874 tp->stepping_over_breakpoint = 0;
5875
5876 /* Wake up the event loop again. */
5877 mark_async_event_handler (infrun_async_inferior_event_token);
5878
5879 prepare_to_wait (ecs);
5880 return 1;
5881 }
5882 }
5883
5884 return 0;
4d9d9d04
PA
5885}
5886
4f5d7f63
PA
5887/* Come here when the program has stopped with a signal. */
5888
5889static void
5890handle_signal_stop (struct execution_control_state *ecs)
5891{
5892 struct frame_info *frame;
5893 struct gdbarch *gdbarch;
5894 int stopped_by_watchpoint;
5895 enum stop_kind stop_soon;
5896 int random_signal;
c906108c 5897
f0407826
DE
5898 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5899
c65d6b55
PA
5900 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5901
f0407826
DE
5902 /* Do we need to clean up the state of a thread that has
5903 completed a displaced single-step? (Doing so usually affects
5904 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5905 if (finish_step_over (ecs))
5906 return;
f0407826
DE
5907
5908 /* If we either finished a single-step or hit a breakpoint, but
5909 the user wanted this thread to be stopped, pretend we got a
5910 SIG0 (generic unsignaled stop). */
5911 if (ecs->event_thread->stop_requested
5912 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5913 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5914
f2ffa92b
PA
5915 ecs->event_thread->suspend.stop_pc
5916 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5917
527159b7 5918 if (debug_infrun)
237fc4c9 5919 {
00431a78 5920 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5921 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5922
f3f8ece4 5923 switch_to_thread (ecs->event_thread);
5af949e3
UW
5924
5925 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5926 paddress (reg_gdbarch,
f2ffa92b 5927 ecs->event_thread->suspend.stop_pc));
d92524f1 5928 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5929 {
5930 CORE_ADDR addr;
abbb1732 5931
237fc4c9
PA
5932 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5933
8b88a78e 5934 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5935 fprintf_unfiltered (gdb_stdlog,
5af949e3 5936 "infrun: stopped data address = %s\n",
b926417a 5937 paddress (reg_gdbarch, addr));
237fc4c9
PA
5938 else
5939 fprintf_unfiltered (gdb_stdlog,
5940 "infrun: (no data address available)\n");
5941 }
5942 }
527159b7 5943
36fa8042
PA
5944 /* This is originated from start_remote(), start_inferior() and
5945 shared libraries hook functions. */
00431a78 5946 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5947 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5948 {
00431a78 5949 context_switch (ecs);
36fa8042
PA
5950 if (debug_infrun)
5951 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5952 stop_print_frame = 1;
22bcd14b 5953 stop_waiting (ecs);
36fa8042
PA
5954 return;
5955 }
5956
36fa8042
PA
5957 /* This originates from attach_command(). We need to overwrite
5958 the stop_signal here, because some kernels don't ignore a
5959 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5960 See more comments in inferior.h. On the other hand, if we
5961 get a non-SIGSTOP, report it to the user - assume the backend
5962 will handle the SIGSTOP if it should show up later.
5963
5964 Also consider that the attach is complete when we see a
5965 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5966 target extended-remote report it instead of a SIGSTOP
5967 (e.g. gdbserver). We already rely on SIGTRAP being our
5968 signal, so this is no exception.
5969
5970 Also consider that the attach is complete when we see a
5971 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5972 the target to stop all threads of the inferior, in case the
5973 low level attach operation doesn't stop them implicitly. If
5974 they weren't stopped implicitly, then the stub will report a
5975 GDB_SIGNAL_0, meaning: stopped for no particular reason
5976 other than GDB's request. */
5977 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5978 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5979 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5980 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5981 {
5982 stop_print_frame = 1;
22bcd14b 5983 stop_waiting (ecs);
36fa8042
PA
5984 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5985 return;
5986 }
5987
488f131b 5988 /* See if something interesting happened to the non-current thread. If
b40c7d58 5989 so, then switch to that thread. */
d7e15655 5990 if (ecs->ptid != inferior_ptid)
488f131b 5991 {
527159b7 5992 if (debug_infrun)
8a9de0e4 5993 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5994
00431a78 5995 context_switch (ecs);
c5aa993b 5996
9a4105ab 5997 if (deprecated_context_hook)
00431a78 5998 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5999 }
c906108c 6000
568d6575
UW
6001 /* At this point, get hold of the now-current thread's frame. */
6002 frame = get_current_frame ();
6003 gdbarch = get_frame_arch (frame);
6004
2adfaa28 6005 /* Pull the single step breakpoints out of the target. */
af48d08f 6006 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 6007 {
af48d08f 6008 struct regcache *regcache;
af48d08f 6009 CORE_ADDR pc;
2adfaa28 6010
00431a78 6011 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
6012 const address_space *aspace = regcache->aspace ();
6013
af48d08f 6014 pc = regcache_read_pc (regcache);
34b7e8a6 6015
af48d08f
PA
6016 /* However, before doing so, if this single-step breakpoint was
6017 actually for another thread, set this thread up for moving
6018 past it. */
6019 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6020 aspace, pc))
6021 {
6022 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
6023 {
6024 if (debug_infrun)
6025 {
6026 fprintf_unfiltered (gdb_stdlog,
af48d08f 6027 "infrun: [%s] hit another thread's "
34b7e8a6 6028 "single-step breakpoint\n",
a068643d 6029 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 6030 }
af48d08f
PA
6031 ecs->hit_singlestep_breakpoint = 1;
6032 }
6033 }
6034 else
6035 {
6036 if (debug_infrun)
6037 {
6038 fprintf_unfiltered (gdb_stdlog,
6039 "infrun: [%s] hit its "
6040 "single-step breakpoint\n",
a068643d 6041 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
6042 }
6043 }
488f131b 6044 }
af48d08f 6045 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 6046
963f9c80
PA
6047 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6048 && ecs->event_thread->control.trap_expected
6049 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
6050 stopped_by_watchpoint = 0;
6051 else
6052 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6053
6054 /* If necessary, step over this watchpoint. We'll be back to display
6055 it in a moment. */
6056 if (stopped_by_watchpoint
d92524f1 6057 && (target_have_steppable_watchpoint
568d6575 6058 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 6059 {
488f131b
JB
6060 /* At this point, we are stopped at an instruction which has
6061 attempted to write to a piece of memory under control of
6062 a watchpoint. The instruction hasn't actually executed
6063 yet. If we were to evaluate the watchpoint expression
6064 now, we would get the old value, and therefore no change
6065 would seem to have occurred.
6066
6067 In order to make watchpoints work `right', we really need
6068 to complete the memory write, and then evaluate the
d983da9c
DJ
6069 watchpoint expression. We do this by single-stepping the
6070 target.
6071
7f89fd65 6072 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
6073 it. For example, the PA can (with some kernel cooperation)
6074 single step over a watchpoint without disabling the watchpoint.
6075
6076 It is far more common to need to disable a watchpoint to step
6077 the inferior over it. If we have non-steppable watchpoints,
6078 we must disable the current watchpoint; it's simplest to
963f9c80
PA
6079 disable all watchpoints.
6080
6081 Any breakpoint at PC must also be stepped over -- if there's
6082 one, it will have already triggered before the watchpoint
6083 triggered, and we either already reported it to the user, or
6084 it didn't cause a stop and we called keep_going. In either
6085 case, if there was a breakpoint at PC, we must be trying to
6086 step past it. */
6087 ecs->event_thread->stepping_over_watchpoint = 1;
6088 keep_going (ecs);
488f131b
JB
6089 return;
6090 }
6091
4e1c45ea 6092 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 6093 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
6094 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6095 ecs->event_thread->control.stop_step = 0;
488f131b 6096 stop_print_frame = 1;
488f131b 6097 stopped_by_random_signal = 0;
ddfe970e 6098 bpstat stop_chain = NULL;
488f131b 6099
edb3359d
DJ
6100 /* Hide inlined functions starting here, unless we just performed stepi or
6101 nexti. After stepi and nexti, always show the innermost frame (not any
6102 inline function call sites). */
16c381f0 6103 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 6104 {
00431a78
PA
6105 const address_space *aspace
6106 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
6107
6108 /* skip_inline_frames is expensive, so we avoid it if we can
6109 determine that the address is one where functions cannot have
6110 been inlined. This improves performance with inferiors that
6111 load a lot of shared libraries, because the solib event
6112 breakpoint is defined as the address of a function (i.e. not
6113 inline). Note that we have to check the previous PC as well
6114 as the current one to catch cases when we have just
6115 single-stepped off a breakpoint prior to reinstating it.
6116 Note that we're assuming that the code we single-step to is
6117 not inline, but that's not definitive: there's nothing
6118 preventing the event breakpoint function from containing
6119 inlined code, and the single-step ending up there. If the
6120 user had set a breakpoint on that inlined code, the missing
6121 skip_inline_frames call would break things. Fortunately
6122 that's an extremely unlikely scenario. */
f2ffa92b
PA
6123 if (!pc_at_non_inline_function (aspace,
6124 ecs->event_thread->suspend.stop_pc,
6125 &ecs->ws)
a210c238
MR
6126 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6127 && ecs->event_thread->control.trap_expected
6128 && pc_at_non_inline_function (aspace,
6129 ecs->event_thread->prev_pc,
09ac7c10 6130 &ecs->ws)))
1c5a993e 6131 {
f2ffa92b
PA
6132 stop_chain = build_bpstat_chain (aspace,
6133 ecs->event_thread->suspend.stop_pc,
6134 &ecs->ws);
00431a78 6135 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6136
6137 /* Re-fetch current thread's frame in case that invalidated
6138 the frame cache. */
6139 frame = get_current_frame ();
6140 gdbarch = get_frame_arch (frame);
6141 }
0574c78f 6142 }
edb3359d 6143
a493e3e2 6144 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6145 && ecs->event_thread->control.trap_expected
568d6575 6146 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6147 && currently_stepping (ecs->event_thread))
3352ef37 6148 {
b50d7442 6149 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6150 also on an instruction that needs to be stepped multiple
1777feb0 6151 times before it's been fully executing. E.g., architectures
3352ef37
AC
6152 with a delay slot. It needs to be stepped twice, once for
6153 the instruction and once for the delay slot. */
6154 int step_through_delay
568d6575 6155 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6156
527159b7 6157 if (debug_infrun && step_through_delay)
8a9de0e4 6158 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
6159 if (ecs->event_thread->control.step_range_end == 0
6160 && step_through_delay)
3352ef37
AC
6161 {
6162 /* The user issued a continue when stopped at a breakpoint.
6163 Set up for another trap and get out of here. */
4e1c45ea 6164 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6165 keep_going (ecs);
6166 return;
6167 }
6168 else if (step_through_delay)
6169 {
6170 /* The user issued a step when stopped at a breakpoint.
6171 Maybe we should stop, maybe we should not - the delay
6172 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6173 case, don't decide that here, just set
6174 ecs->stepping_over_breakpoint, making sure we
6175 single-step again before breakpoints are re-inserted. */
4e1c45ea 6176 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6177 }
6178 }
6179
ab04a2af
TT
6180 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6181 handles this event. */
6182 ecs->event_thread->control.stop_bpstat
a01bda52 6183 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6184 ecs->event_thread->suspend.stop_pc,
6185 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6186
ab04a2af
TT
6187 /* Following in case break condition called a
6188 function. */
6189 stop_print_frame = 1;
73dd234f 6190
ab04a2af
TT
6191 /* This is where we handle "moribund" watchpoints. Unlike
6192 software breakpoints traps, hardware watchpoint traps are
6193 always distinguishable from random traps. If no high-level
6194 watchpoint is associated with the reported stop data address
6195 anymore, then the bpstat does not explain the signal ---
6196 simply make sure to ignore it if `stopped_by_watchpoint' is
6197 set. */
6198
6199 if (debug_infrun
6200 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6201 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6202 GDB_SIGNAL_TRAP)
ab04a2af
TT
6203 && stopped_by_watchpoint)
6204 fprintf_unfiltered (gdb_stdlog,
6205 "infrun: no user watchpoint explains "
6206 "watchpoint SIGTRAP, ignoring\n");
73dd234f 6207
bac7d97b 6208 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6209 at one stage in the past included checks for an inferior
6210 function call's call dummy's return breakpoint. The original
6211 comment, that went with the test, read:
03cebad2 6212
ab04a2af
TT
6213 ``End of a stack dummy. Some systems (e.g. Sony news) give
6214 another signal besides SIGTRAP, so check here as well as
6215 above.''
73dd234f 6216
ab04a2af
TT
6217 If someone ever tries to get call dummys on a
6218 non-executable stack to work (where the target would stop
6219 with something like a SIGSEGV), then those tests might need
6220 to be re-instated. Given, however, that the tests were only
6221 enabled when momentary breakpoints were not being used, I
6222 suspect that it won't be the case.
488f131b 6223
ab04a2af
TT
6224 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6225 be necessary for call dummies on a non-executable stack on
6226 SPARC. */
488f131b 6227
bac7d97b 6228 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6229 random_signal
6230 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6231 ecs->event_thread->suspend.stop_signal);
bac7d97b 6232
1cf4d951
PA
6233 /* Maybe this was a trap for a software breakpoint that has since
6234 been removed. */
6235 if (random_signal && target_stopped_by_sw_breakpoint ())
6236 {
5133a315
LM
6237 if (gdbarch_program_breakpoint_here_p (gdbarch,
6238 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6239 {
6240 struct regcache *regcache;
6241 int decr_pc;
6242
6243 /* Re-adjust PC to what the program would see if GDB was not
6244 debugging it. */
00431a78 6245 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6246 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6247 if (decr_pc != 0)
6248 {
07036511
TT
6249 gdb::optional<scoped_restore_tmpl<int>>
6250 restore_operation_disable;
1cf4d951
PA
6251
6252 if (record_full_is_used ())
07036511
TT
6253 restore_operation_disable.emplace
6254 (record_full_gdb_operation_disable_set ());
1cf4d951 6255
f2ffa92b
PA
6256 regcache_write_pc (regcache,
6257 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6258 }
6259 }
6260 else
6261 {
6262 /* A delayed software breakpoint event. Ignore the trap. */
6263 if (debug_infrun)
6264 fprintf_unfiltered (gdb_stdlog,
6265 "infrun: delayed software breakpoint "
6266 "trap, ignoring\n");
6267 random_signal = 0;
6268 }
6269 }
6270
6271 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6272 has since been removed. */
6273 if (random_signal && target_stopped_by_hw_breakpoint ())
6274 {
6275 /* A delayed hardware breakpoint event. Ignore the trap. */
6276 if (debug_infrun)
6277 fprintf_unfiltered (gdb_stdlog,
6278 "infrun: delayed hardware breakpoint/watchpoint "
6279 "trap, ignoring\n");
6280 random_signal = 0;
6281 }
6282
bac7d97b
PA
6283 /* If not, perhaps stepping/nexting can. */
6284 if (random_signal)
6285 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6286 && currently_stepping (ecs->event_thread));
ab04a2af 6287
2adfaa28
PA
6288 /* Perhaps the thread hit a single-step breakpoint of _another_
6289 thread. Single-step breakpoints are transparent to the
6290 breakpoints module. */
6291 if (random_signal)
6292 random_signal = !ecs->hit_singlestep_breakpoint;
6293
bac7d97b
PA
6294 /* No? Perhaps we got a moribund watchpoint. */
6295 if (random_signal)
6296 random_signal = !stopped_by_watchpoint;
ab04a2af 6297
c65d6b55
PA
6298 /* Always stop if the user explicitly requested this thread to
6299 remain stopped. */
6300 if (ecs->event_thread->stop_requested)
6301 {
6302 random_signal = 1;
6303 if (debug_infrun)
6304 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6305 }
6306
488f131b
JB
6307 /* For the program's own signals, act according to
6308 the signal handling tables. */
6309
ce12b012 6310 if (random_signal)
488f131b
JB
6311 {
6312 /* Signal not for debugging purposes. */
5b6d1e4f 6313 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6314 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6315
527159b7 6316 if (debug_infrun)
c9737c08
PA
6317 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6318 gdb_signal_to_symbol_string (stop_signal));
527159b7 6319
488f131b
JB
6320 stopped_by_random_signal = 1;
6321
252fbfc8
PA
6322 /* Always stop on signals if we're either just gaining control
6323 of the program, or the user explicitly requested this thread
6324 to remain stopped. */
d6b48e9c 6325 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6326 || ecs->event_thread->stop_requested
24291992 6327 || (!inf->detaching
16c381f0 6328 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6329 {
22bcd14b 6330 stop_waiting (ecs);
488f131b
JB
6331 return;
6332 }
b57bacec
PA
6333
6334 /* Notify observers the signal has "handle print" set. Note we
6335 returned early above if stopping; normal_stop handles the
6336 printing in that case. */
6337 if (signal_print[ecs->event_thread->suspend.stop_signal])
6338 {
6339 /* The signal table tells us to print about this signal. */
223ffa71 6340 target_terminal::ours_for_output ();
76727919 6341 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6342 target_terminal::inferior ();
b57bacec 6343 }
488f131b
JB
6344
6345 /* Clear the signal if it should not be passed. */
16c381f0 6346 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6347 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6348
f2ffa92b 6349 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6350 && ecs->event_thread->control.trap_expected
8358c15c 6351 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6352 {
6353 /* We were just starting a new sequence, attempting to
6354 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6355 Instead this signal arrives. This signal will take us out
68f53502
AC
6356 of the stepping range so GDB needs to remember to, when
6357 the signal handler returns, resume stepping off that
6358 breakpoint. */
6359 /* To simplify things, "continue" is forced to use the same
6360 code paths as single-step - set a breakpoint at the
6361 signal return address and then, once hit, step off that
6362 breakpoint. */
237fc4c9
PA
6363 if (debug_infrun)
6364 fprintf_unfiltered (gdb_stdlog,
6365 "infrun: signal arrived while stepping over "
6366 "breakpoint\n");
d3169d93 6367
2c03e5be 6368 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6369 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6370 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6371 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6372
6373 /* If we were nexting/stepping some other thread, switch to
6374 it, so that we don't continue it, losing control. */
6375 if (!switch_back_to_stepped_thread (ecs))
6376 keep_going (ecs);
9d799f85 6377 return;
68f53502 6378 }
9d799f85 6379
e5f8a7cc 6380 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6381 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6382 ecs->event_thread)
e5f8a7cc 6383 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6384 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6385 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6386 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6387 {
6388 /* The inferior is about to take a signal that will take it
6389 out of the single step range. Set a breakpoint at the
6390 current PC (which is presumably where the signal handler
6391 will eventually return) and then allow the inferior to
6392 run free.
6393
6394 Note that this is only needed for a signal delivered
6395 while in the single-step range. Nested signals aren't a
6396 problem as they eventually all return. */
237fc4c9
PA
6397 if (debug_infrun)
6398 fprintf_unfiltered (gdb_stdlog,
6399 "infrun: signal may take us out of "
6400 "single-step range\n");
6401
372316f1 6402 clear_step_over_info ();
2c03e5be 6403 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6404 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6405 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6406 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6407 keep_going (ecs);
6408 return;
d303a6c7 6409 }
9d799f85 6410
85102364 6411 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6412 when either there's a nested signal, or when there's a
6413 pending signal enabled just as the signal handler returns
6414 (leaving the inferior at the step-resume-breakpoint without
6415 actually executing it). Either way continue until the
6416 breakpoint is really hit. */
c447ac0b
PA
6417
6418 if (!switch_back_to_stepped_thread (ecs))
6419 {
6420 if (debug_infrun)
6421 fprintf_unfiltered (gdb_stdlog,
6422 "infrun: random signal, keep going\n");
6423
6424 keep_going (ecs);
6425 }
6426 return;
488f131b 6427 }
94c57d6a
PA
6428
6429 process_event_stop_test (ecs);
6430}
6431
6432/* Come here when we've got some debug event / signal we can explain
6433 (IOW, not a random signal), and test whether it should cause a
6434 stop, or whether we should resume the inferior (transparently).
6435 E.g., could be a breakpoint whose condition evaluates false; we
6436 could be still stepping within the line; etc. */
6437
6438static void
6439process_event_stop_test (struct execution_control_state *ecs)
6440{
6441 struct symtab_and_line stop_pc_sal;
6442 struct frame_info *frame;
6443 struct gdbarch *gdbarch;
cdaa5b73
PA
6444 CORE_ADDR jmp_buf_pc;
6445 struct bpstat_what what;
94c57d6a 6446
cdaa5b73 6447 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6448
cdaa5b73
PA
6449 frame = get_current_frame ();
6450 gdbarch = get_frame_arch (frame);
fcf3daef 6451
cdaa5b73 6452 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6453
cdaa5b73
PA
6454 if (what.call_dummy)
6455 {
6456 stop_stack_dummy = what.call_dummy;
6457 }
186c406b 6458
243a9253
PA
6459 /* A few breakpoint types have callbacks associated (e.g.,
6460 bp_jit_event). Run them now. */
6461 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6462
cdaa5b73
PA
6463 /* If we hit an internal event that triggers symbol changes, the
6464 current frame will be invalidated within bpstat_what (e.g., if we
6465 hit an internal solib event). Re-fetch it. */
6466 frame = get_current_frame ();
6467 gdbarch = get_frame_arch (frame);
e2e4d78b 6468
cdaa5b73
PA
6469 switch (what.main_action)
6470 {
6471 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6472 /* If we hit the breakpoint at longjmp while stepping, we
6473 install a momentary breakpoint at the target of the
6474 jmp_buf. */
186c406b 6475
cdaa5b73
PA
6476 if (debug_infrun)
6477 fprintf_unfiltered (gdb_stdlog,
6478 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6479
cdaa5b73 6480 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6481
cdaa5b73
PA
6482 if (what.is_longjmp)
6483 {
6484 struct value *arg_value;
6485
6486 /* If we set the longjmp breakpoint via a SystemTap probe,
6487 then use it to extract the arguments. The destination PC
6488 is the third argument to the probe. */
6489 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6490 if (arg_value)
8fa0c4f8
AA
6491 {
6492 jmp_buf_pc = value_as_address (arg_value);
6493 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6494 }
cdaa5b73
PA
6495 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6496 || !gdbarch_get_longjmp_target (gdbarch,
6497 frame, &jmp_buf_pc))
e2e4d78b 6498 {
cdaa5b73
PA
6499 if (debug_infrun)
6500 fprintf_unfiltered (gdb_stdlog,
6501 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6502 "(!gdbarch_get_longjmp_target)\n");
6503 keep_going (ecs);
6504 return;
e2e4d78b 6505 }
e2e4d78b 6506
cdaa5b73
PA
6507 /* Insert a breakpoint at resume address. */
6508 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6509 }
6510 else
6511 check_exception_resume (ecs, frame);
6512 keep_going (ecs);
6513 return;
e81a37f7 6514
cdaa5b73
PA
6515 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6516 {
6517 struct frame_info *init_frame;
e81a37f7 6518
cdaa5b73 6519 /* There are several cases to consider.
c906108c 6520
cdaa5b73
PA
6521 1. The initiating frame no longer exists. In this case we
6522 must stop, because the exception or longjmp has gone too
6523 far.
2c03e5be 6524
cdaa5b73
PA
6525 2. The initiating frame exists, and is the same as the
6526 current frame. We stop, because the exception or longjmp
6527 has been caught.
2c03e5be 6528
cdaa5b73
PA
6529 3. The initiating frame exists and is different from the
6530 current frame. This means the exception or longjmp has
6531 been caught beneath the initiating frame, so keep going.
c906108c 6532
cdaa5b73
PA
6533 4. longjmp breakpoint has been placed just to protect
6534 against stale dummy frames and user is not interested in
6535 stopping around longjmps. */
c5aa993b 6536
cdaa5b73
PA
6537 if (debug_infrun)
6538 fprintf_unfiltered (gdb_stdlog,
6539 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6540
cdaa5b73
PA
6541 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6542 != NULL);
6543 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6544
cdaa5b73
PA
6545 if (what.is_longjmp)
6546 {
b67a2c6f 6547 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6548
cdaa5b73 6549 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6550 {
cdaa5b73
PA
6551 /* Case 4. */
6552 keep_going (ecs);
6553 return;
e5ef252a 6554 }
cdaa5b73 6555 }
c5aa993b 6556
cdaa5b73 6557 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6558
cdaa5b73
PA
6559 if (init_frame)
6560 {
6561 struct frame_id current_id
6562 = get_frame_id (get_current_frame ());
6563 if (frame_id_eq (current_id,
6564 ecs->event_thread->initiating_frame))
6565 {
6566 /* Case 2. Fall through. */
6567 }
6568 else
6569 {
6570 /* Case 3. */
6571 keep_going (ecs);
6572 return;
6573 }
68f53502 6574 }
488f131b 6575
cdaa5b73
PA
6576 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6577 exists. */
6578 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6579
bdc36728 6580 end_stepping_range (ecs);
cdaa5b73
PA
6581 }
6582 return;
e5ef252a 6583
cdaa5b73
PA
6584 case BPSTAT_WHAT_SINGLE:
6585 if (debug_infrun)
6586 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6587 ecs->event_thread->stepping_over_breakpoint = 1;
6588 /* Still need to check other stuff, at least the case where we
6589 are stepping and step out of the right range. */
6590 break;
e5ef252a 6591
cdaa5b73
PA
6592 case BPSTAT_WHAT_STEP_RESUME:
6593 if (debug_infrun)
6594 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6595
cdaa5b73
PA
6596 delete_step_resume_breakpoint (ecs->event_thread);
6597 if (ecs->event_thread->control.proceed_to_finish
6598 && execution_direction == EXEC_REVERSE)
6599 {
6600 struct thread_info *tp = ecs->event_thread;
6601
6602 /* We are finishing a function in reverse, and just hit the
6603 step-resume breakpoint at the start address of the
6604 function, and we're almost there -- just need to back up
6605 by one more single-step, which should take us back to the
6606 function call. */
6607 tp->control.step_range_start = tp->control.step_range_end = 1;
6608 keep_going (ecs);
e5ef252a 6609 return;
cdaa5b73
PA
6610 }
6611 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6612 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6613 && execution_direction == EXEC_REVERSE)
6614 {
6615 /* We are stepping over a function call in reverse, and just
6616 hit the step-resume breakpoint at the start address of
6617 the function. Go back to single-stepping, which should
6618 take us back to the function call. */
6619 ecs->event_thread->stepping_over_breakpoint = 1;
6620 keep_going (ecs);
6621 return;
6622 }
6623 break;
e5ef252a 6624
cdaa5b73
PA
6625 case BPSTAT_WHAT_STOP_NOISY:
6626 if (debug_infrun)
6627 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6628 stop_print_frame = 1;
e5ef252a 6629
99619bea
PA
6630 /* Assume the thread stopped for a breapoint. We'll still check
6631 whether a/the breakpoint is there when the thread is next
6632 resumed. */
6633 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6634
22bcd14b 6635 stop_waiting (ecs);
cdaa5b73 6636 return;
e5ef252a 6637
cdaa5b73
PA
6638 case BPSTAT_WHAT_STOP_SILENT:
6639 if (debug_infrun)
6640 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6641 stop_print_frame = 0;
e5ef252a 6642
99619bea
PA
6643 /* Assume the thread stopped for a breapoint. We'll still check
6644 whether a/the breakpoint is there when the thread is next
6645 resumed. */
6646 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6647 stop_waiting (ecs);
cdaa5b73
PA
6648 return;
6649
6650 case BPSTAT_WHAT_HP_STEP_RESUME:
6651 if (debug_infrun)
6652 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6653
6654 delete_step_resume_breakpoint (ecs->event_thread);
6655 if (ecs->event_thread->step_after_step_resume_breakpoint)
6656 {
6657 /* Back when the step-resume breakpoint was inserted, we
6658 were trying to single-step off a breakpoint. Go back to
6659 doing that. */
6660 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6661 ecs->event_thread->stepping_over_breakpoint = 1;
6662 keep_going (ecs);
6663 return;
e5ef252a 6664 }
cdaa5b73
PA
6665 break;
6666
6667 case BPSTAT_WHAT_KEEP_CHECKING:
6668 break;
e5ef252a 6669 }
c906108c 6670
af48d08f
PA
6671 /* If we stepped a permanent breakpoint and we had a high priority
6672 step-resume breakpoint for the address we stepped, but we didn't
6673 hit it, then we must have stepped into the signal handler. The
6674 step-resume was only necessary to catch the case of _not_
6675 stepping into the handler, so delete it, and fall through to
6676 checking whether the step finished. */
6677 if (ecs->event_thread->stepped_breakpoint)
6678 {
6679 struct breakpoint *sr_bp
6680 = ecs->event_thread->control.step_resume_breakpoint;
6681
8d707a12
PA
6682 if (sr_bp != NULL
6683 && sr_bp->loc->permanent
af48d08f
PA
6684 && sr_bp->type == bp_hp_step_resume
6685 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6686 {
6687 if (debug_infrun)
6688 fprintf_unfiltered (gdb_stdlog,
6689 "infrun: stepped permanent breakpoint, stopped in "
6690 "handler\n");
6691 delete_step_resume_breakpoint (ecs->event_thread);
6692 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6693 }
6694 }
6695
cdaa5b73
PA
6696 /* We come here if we hit a breakpoint but should not stop for it.
6697 Possibly we also were stepping and should stop for that. So fall
6698 through and test for stepping. But, if not stepping, do not
6699 stop. */
c906108c 6700
a7212384
UW
6701 /* In all-stop mode, if we're currently stepping but have stopped in
6702 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6703 if (switch_back_to_stepped_thread (ecs))
6704 return;
776f04fa 6705
8358c15c 6706 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6707 {
527159b7 6708 if (debug_infrun)
d3169d93
DJ
6709 fprintf_unfiltered (gdb_stdlog,
6710 "infrun: step-resume breakpoint is inserted\n");
527159b7 6711
488f131b
JB
6712 /* Having a step-resume breakpoint overrides anything
6713 else having to do with stepping commands until
6714 that breakpoint is reached. */
488f131b
JB
6715 keep_going (ecs);
6716 return;
6717 }
c5aa993b 6718
16c381f0 6719 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6720 {
527159b7 6721 if (debug_infrun)
8a9de0e4 6722 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6723 /* Likewise if we aren't even stepping. */
488f131b
JB
6724 keep_going (ecs);
6725 return;
6726 }
c5aa993b 6727
4b7703ad
JB
6728 /* Re-fetch current thread's frame in case the code above caused
6729 the frame cache to be re-initialized, making our FRAME variable
6730 a dangling pointer. */
6731 frame = get_current_frame ();
628fe4e4 6732 gdbarch = get_frame_arch (frame);
7e324e48 6733 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6734
488f131b 6735 /* If stepping through a line, keep going if still within it.
c906108c 6736
488f131b
JB
6737 Note that step_range_end is the address of the first instruction
6738 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6739 within it!
6740
6741 Note also that during reverse execution, we may be stepping
6742 through a function epilogue and therefore must detect when
6743 the current-frame changes in the middle of a line. */
6744
f2ffa92b
PA
6745 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6746 ecs->event_thread)
31410e84 6747 && (execution_direction != EXEC_REVERSE
388a8562 6748 || frame_id_eq (get_frame_id (frame),
16c381f0 6749 ecs->event_thread->control.step_frame_id)))
488f131b 6750 {
527159b7 6751 if (debug_infrun)
5af949e3
UW
6752 fprintf_unfiltered
6753 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6754 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6755 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6756
c1e36e3e
PA
6757 /* Tentatively re-enable range stepping; `resume' disables it if
6758 necessary (e.g., if we're stepping over a breakpoint or we
6759 have software watchpoints). */
6760 ecs->event_thread->control.may_range_step = 1;
6761
b2175913
MS
6762 /* When stepping backward, stop at beginning of line range
6763 (unless it's the function entry point, in which case
6764 keep going back to the call point). */
f2ffa92b 6765 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6766 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6767 && stop_pc != ecs->stop_func_start
6768 && execution_direction == EXEC_REVERSE)
bdc36728 6769 end_stepping_range (ecs);
b2175913
MS
6770 else
6771 keep_going (ecs);
6772
488f131b
JB
6773 return;
6774 }
c5aa993b 6775
488f131b 6776 /* We stepped out of the stepping range. */
c906108c 6777
488f131b 6778 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6779 loader dynamic symbol resolution code...
6780
6781 EXEC_FORWARD: we keep on single stepping until we exit the run
6782 time loader code and reach the callee's address.
6783
6784 EXEC_REVERSE: we've already executed the callee (backward), and
6785 the runtime loader code is handled just like any other
6786 undebuggable function call. Now we need only keep stepping
6787 backward through the trampoline code, and that's handled further
6788 down, so there is nothing for us to do here. */
6789
6790 if (execution_direction != EXEC_REVERSE
16c381f0 6791 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6792 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6793 {
4c8c40e6 6794 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6795 gdbarch_skip_solib_resolver (gdbarch,
6796 ecs->event_thread->suspend.stop_pc);
c906108c 6797
527159b7 6798 if (debug_infrun)
3e43a32a
MS
6799 fprintf_unfiltered (gdb_stdlog,
6800 "infrun: stepped into dynsym resolve code\n");
527159b7 6801
488f131b
JB
6802 if (pc_after_resolver)
6803 {
6804 /* Set up a step-resume breakpoint at the address
6805 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6806 symtab_and_line sr_sal;
488f131b 6807 sr_sal.pc = pc_after_resolver;
6c95b8df 6808 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6809
a6d9a66e
UW
6810 insert_step_resume_breakpoint_at_sal (gdbarch,
6811 sr_sal, null_frame_id);
c5aa993b 6812 }
c906108c 6813
488f131b
JB
6814 keep_going (ecs);
6815 return;
6816 }
c906108c 6817
1d509aa6
MM
6818 /* Step through an indirect branch thunk. */
6819 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6820 && gdbarch_in_indirect_branch_thunk (gdbarch,
6821 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6822 {
6823 if (debug_infrun)
6824 fprintf_unfiltered (gdb_stdlog,
6825 "infrun: stepped into indirect branch thunk\n");
6826 keep_going (ecs);
6827 return;
6828 }
6829
16c381f0
JK
6830 if (ecs->event_thread->control.step_range_end != 1
6831 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6832 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6833 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6834 {
527159b7 6835 if (debug_infrun)
3e43a32a
MS
6836 fprintf_unfiltered (gdb_stdlog,
6837 "infrun: stepped into signal trampoline\n");
42edda50 6838 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6839 a signal trampoline (either by a signal being delivered or by
6840 the signal handler returning). Just single-step until the
6841 inferior leaves the trampoline (either by calling the handler
6842 or returning). */
488f131b
JB
6843 keep_going (ecs);
6844 return;
6845 }
c906108c 6846
14132e89
MR
6847 /* If we're in the return path from a shared library trampoline,
6848 we want to proceed through the trampoline when stepping. */
6849 /* macro/2012-04-25: This needs to come before the subroutine
6850 call check below as on some targets return trampolines look
6851 like subroutine calls (MIPS16 return thunks). */
6852 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6853 ecs->event_thread->suspend.stop_pc,
6854 ecs->stop_func_name)
14132e89
MR
6855 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6856 {
6857 /* Determine where this trampoline returns. */
f2ffa92b
PA
6858 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6859 CORE_ADDR real_stop_pc
6860 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6861
6862 if (debug_infrun)
6863 fprintf_unfiltered (gdb_stdlog,
6864 "infrun: stepped into solib return tramp\n");
6865
6866 /* Only proceed through if we know where it's going. */
6867 if (real_stop_pc)
6868 {
6869 /* And put the step-breakpoint there and go until there. */
51abb421 6870 symtab_and_line sr_sal;
14132e89
MR
6871 sr_sal.pc = real_stop_pc;
6872 sr_sal.section = find_pc_overlay (sr_sal.pc);
6873 sr_sal.pspace = get_frame_program_space (frame);
6874
6875 /* Do not specify what the fp should be when we stop since
6876 on some machines the prologue is where the new fp value
6877 is established. */
6878 insert_step_resume_breakpoint_at_sal (gdbarch,
6879 sr_sal, null_frame_id);
6880
6881 /* Restart without fiddling with the step ranges or
6882 other state. */
6883 keep_going (ecs);
6884 return;
6885 }
6886 }
6887
c17eaafe
DJ
6888 /* Check for subroutine calls. The check for the current frame
6889 equalling the step ID is not necessary - the check of the
6890 previous frame's ID is sufficient - but it is a common case and
6891 cheaper than checking the previous frame's ID.
14e60db5
DJ
6892
6893 NOTE: frame_id_eq will never report two invalid frame IDs as
6894 being equal, so to get into this block, both the current and
6895 previous frame must have valid frame IDs. */
005ca36a
JB
6896 /* The outer_frame_id check is a heuristic to detect stepping
6897 through startup code. If we step over an instruction which
6898 sets the stack pointer from an invalid value to a valid value,
6899 we may detect that as a subroutine call from the mythical
6900 "outermost" function. This could be fixed by marking
6901 outermost frames as !stack_p,code_p,special_p. Then the
6902 initial outermost frame, before sp was valid, would
ce6cca6d 6903 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6904 for more. */
edb3359d 6905 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6906 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6907 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6908 ecs->event_thread->control.step_stack_frame_id)
6909 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6910 outer_frame_id)
885eeb5b 6911 || (ecs->event_thread->control.step_start_function
f2ffa92b 6912 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6913 {
f2ffa92b 6914 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6915 CORE_ADDR real_stop_pc;
8fb3e588 6916
527159b7 6917 if (debug_infrun)
8a9de0e4 6918 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6919
b7a084be 6920 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6921 {
6922 /* I presume that step_over_calls is only 0 when we're
6923 supposed to be stepping at the assembly language level
6924 ("stepi"). Just stop. */
388a8562 6925 /* And this works the same backward as frontward. MVS */
bdc36728 6926 end_stepping_range (ecs);
95918acb
AC
6927 return;
6928 }
8fb3e588 6929
388a8562
MS
6930 /* Reverse stepping through solib trampolines. */
6931
6932 if (execution_direction == EXEC_REVERSE
16c381f0 6933 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6934 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6935 || (ecs->stop_func_start == 0
6936 && in_solib_dynsym_resolve_code (stop_pc))))
6937 {
6938 /* Any solib trampoline code can be handled in reverse
6939 by simply continuing to single-step. We have already
6940 executed the solib function (backwards), and a few
6941 steps will take us back through the trampoline to the
6942 caller. */
6943 keep_going (ecs);
6944 return;
6945 }
6946
16c381f0 6947 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6948 {
b2175913
MS
6949 /* We're doing a "next".
6950
6951 Normal (forward) execution: set a breakpoint at the
6952 callee's return address (the address at which the caller
6953 will resume).
6954
6955 Reverse (backward) execution. set the step-resume
6956 breakpoint at the start of the function that we just
6957 stepped into (backwards), and continue to there. When we
6130d0b7 6958 get there, we'll need to single-step back to the caller. */
b2175913
MS
6959
6960 if (execution_direction == EXEC_REVERSE)
6961 {
acf9414f
JK
6962 /* If we're already at the start of the function, we've either
6963 just stepped backward into a single instruction function,
6964 or stepped back out of a signal handler to the first instruction
6965 of the function. Just keep going, which will single-step back
6966 to the caller. */
58c48e72 6967 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6968 {
acf9414f 6969 /* Normal function call return (static or dynamic). */
51abb421 6970 symtab_and_line sr_sal;
acf9414f
JK
6971 sr_sal.pc = ecs->stop_func_start;
6972 sr_sal.pspace = get_frame_program_space (frame);
6973 insert_step_resume_breakpoint_at_sal (gdbarch,
6974 sr_sal, null_frame_id);
6975 }
b2175913
MS
6976 }
6977 else
568d6575 6978 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6979
8567c30f
AC
6980 keep_going (ecs);
6981 return;
6982 }
a53c66de 6983
95918acb 6984 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6985 calling routine and the real function), locate the real
6986 function. That's what tells us (a) whether we want to step
6987 into it at all, and (b) what prologue we want to run to the
6988 end of, if we do step into it. */
568d6575 6989 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6990 if (real_stop_pc == 0)
568d6575 6991 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6992 if (real_stop_pc != 0)
6993 ecs->stop_func_start = real_stop_pc;
8fb3e588 6994
db5f024e 6995 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6996 {
51abb421 6997 symtab_and_line sr_sal;
1b2bfbb9 6998 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6999 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 7000
a6d9a66e
UW
7001 insert_step_resume_breakpoint_at_sal (gdbarch,
7002 sr_sal, null_frame_id);
8fb3e588
AC
7003 keep_going (ecs);
7004 return;
1b2bfbb9
RC
7005 }
7006
95918acb 7007 /* If we have line number information for the function we are
1bfeeb0f
JL
7008 thinking of stepping into and the function isn't on the skip
7009 list, step into it.
95918acb 7010
8fb3e588
AC
7011 If there are several symtabs at that PC (e.g. with include
7012 files), just want to know whether *any* of them have line
7013 numbers. find_pc_line handles this. */
95918acb
AC
7014 {
7015 struct symtab_and_line tmp_sal;
8fb3e588 7016
95918acb 7017 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 7018 if (tmp_sal.line != 0
85817405 7019 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
7020 tmp_sal)
7021 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 7022 {
b2175913 7023 if (execution_direction == EXEC_REVERSE)
568d6575 7024 handle_step_into_function_backward (gdbarch, ecs);
b2175913 7025 else
568d6575 7026 handle_step_into_function (gdbarch, ecs);
95918acb
AC
7027 return;
7028 }
7029 }
7030
7031 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
7032 set, we stop the step so that the user has a chance to switch
7033 in assembly mode. */
16c381f0 7034 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 7035 && step_stop_if_no_debug)
95918acb 7036 {
bdc36728 7037 end_stepping_range (ecs);
95918acb
AC
7038 return;
7039 }
7040
b2175913
MS
7041 if (execution_direction == EXEC_REVERSE)
7042 {
acf9414f
JK
7043 /* If we're already at the start of the function, we've either just
7044 stepped backward into a single instruction function without line
7045 number info, or stepped back out of a signal handler to the first
7046 instruction of the function without line number info. Just keep
7047 going, which will single-step back to the caller. */
7048 if (ecs->stop_func_start != stop_pc)
7049 {
7050 /* Set a breakpoint at callee's start address.
7051 From there we can step once and be back in the caller. */
51abb421 7052 symtab_and_line sr_sal;
acf9414f
JK
7053 sr_sal.pc = ecs->stop_func_start;
7054 sr_sal.pspace = get_frame_program_space (frame);
7055 insert_step_resume_breakpoint_at_sal (gdbarch,
7056 sr_sal, null_frame_id);
7057 }
b2175913
MS
7058 }
7059 else
7060 /* Set a breakpoint at callee's return address (the address
7061 at which the caller will resume). */
568d6575 7062 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7063
95918acb 7064 keep_going (ecs);
488f131b 7065 return;
488f131b 7066 }
c906108c 7067
fdd654f3
MS
7068 /* Reverse stepping through solib trampolines. */
7069
7070 if (execution_direction == EXEC_REVERSE
16c381f0 7071 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 7072 {
f2ffa92b
PA
7073 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7074
fdd654f3
MS
7075 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7076 || (ecs->stop_func_start == 0
7077 && in_solib_dynsym_resolve_code (stop_pc)))
7078 {
7079 /* Any solib trampoline code can be handled in reverse
7080 by simply continuing to single-step. We have already
7081 executed the solib function (backwards), and a few
7082 steps will take us back through the trampoline to the
7083 caller. */
7084 keep_going (ecs);
7085 return;
7086 }
7087 else if (in_solib_dynsym_resolve_code (stop_pc))
7088 {
7089 /* Stepped backward into the solib dynsym resolver.
7090 Set a breakpoint at its start and continue, then
7091 one more step will take us out. */
51abb421 7092 symtab_and_line sr_sal;
fdd654f3 7093 sr_sal.pc = ecs->stop_func_start;
9d1807c3 7094 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
7095 insert_step_resume_breakpoint_at_sal (gdbarch,
7096 sr_sal, null_frame_id);
7097 keep_going (ecs);
7098 return;
7099 }
7100 }
7101
8c95582d
AB
7102 /* This always returns the sal for the inner-most frame when we are in a
7103 stack of inlined frames, even if GDB actually believes that it is in a
7104 more outer frame. This is checked for below by calls to
7105 inline_skipped_frames. */
f2ffa92b 7106 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 7107
1b2bfbb9
RC
7108 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7109 the trampoline processing logic, however, there are some trampolines
7110 that have no names, so we should do trampoline handling first. */
16c381f0 7111 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 7112 && ecs->stop_func_name == NULL
2afb61aa 7113 && stop_pc_sal.line == 0)
1b2bfbb9 7114 {
527159b7 7115 if (debug_infrun)
3e43a32a
MS
7116 fprintf_unfiltered (gdb_stdlog,
7117 "infrun: stepped into undebuggable function\n");
527159b7 7118
1b2bfbb9 7119 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
7120 undebuggable function (where there is no debugging information
7121 and no line number corresponding to the address where the
1b2bfbb9
RC
7122 inferior stopped). Since we want to skip this kind of code,
7123 we keep going until the inferior returns from this
14e60db5
DJ
7124 function - unless the user has asked us not to (via
7125 set step-mode) or we no longer know how to get back
7126 to the call site. */
7127 if (step_stop_if_no_debug
c7ce8faa 7128 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
7129 {
7130 /* If we have no line number and the step-stop-if-no-debug
7131 is set, we stop the step so that the user has a chance to
7132 switch in assembly mode. */
bdc36728 7133 end_stepping_range (ecs);
1b2bfbb9
RC
7134 return;
7135 }
7136 else
7137 {
7138 /* Set a breakpoint at callee's return address (the address
7139 at which the caller will resume). */
568d6575 7140 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
7141 keep_going (ecs);
7142 return;
7143 }
7144 }
7145
16c381f0 7146 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7147 {
7148 /* It is stepi or nexti. We always want to stop stepping after
7149 one instruction. */
527159b7 7150 if (debug_infrun)
8a9de0e4 7151 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 7152 end_stepping_range (ecs);
1b2bfbb9
RC
7153 return;
7154 }
7155
2afb61aa 7156 if (stop_pc_sal.line == 0)
488f131b
JB
7157 {
7158 /* We have no line number information. That means to stop
7159 stepping (does this always happen right after one instruction,
7160 when we do "s" in a function with no line numbers,
7161 or can this happen as a result of a return or longjmp?). */
527159b7 7162 if (debug_infrun)
8a9de0e4 7163 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 7164 end_stepping_range (ecs);
488f131b
JB
7165 return;
7166 }
c906108c 7167
edb3359d
DJ
7168 /* Look for "calls" to inlined functions, part one. If the inline
7169 frame machinery detected some skipped call sites, we have entered
7170 a new inline function. */
7171
7172 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7173 ecs->event_thread->control.step_frame_id)
00431a78 7174 && inline_skipped_frames (ecs->event_thread))
edb3359d 7175 {
edb3359d
DJ
7176 if (debug_infrun)
7177 fprintf_unfiltered (gdb_stdlog,
7178 "infrun: stepped into inlined function\n");
7179
51abb421 7180 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7181
16c381f0 7182 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7183 {
7184 /* For "step", we're going to stop. But if the call site
7185 for this inlined function is on the same source line as
7186 we were previously stepping, go down into the function
7187 first. Otherwise stop at the call site. */
7188
7189 if (call_sal.line == ecs->event_thread->current_line
7190 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7191 {
7192 step_into_inline_frame (ecs->event_thread);
7193 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7194 {
7195 keep_going (ecs);
7196 return;
7197 }
7198 }
edb3359d 7199
bdc36728 7200 end_stepping_range (ecs);
edb3359d
DJ
7201 return;
7202 }
7203 else
7204 {
7205 /* For "next", we should stop at the call site if it is on a
7206 different source line. Otherwise continue through the
7207 inlined function. */
7208 if (call_sal.line == ecs->event_thread->current_line
7209 && call_sal.symtab == ecs->event_thread->current_symtab)
7210 keep_going (ecs);
7211 else
bdc36728 7212 end_stepping_range (ecs);
edb3359d
DJ
7213 return;
7214 }
7215 }
7216
7217 /* Look for "calls" to inlined functions, part two. If we are still
7218 in the same real function we were stepping through, but we have
7219 to go further up to find the exact frame ID, we are stepping
7220 through a more inlined call beyond its call site. */
7221
7222 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7223 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7224 ecs->event_thread->control.step_frame_id)
edb3359d 7225 && stepped_in_from (get_current_frame (),
16c381f0 7226 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
7227 {
7228 if (debug_infrun)
7229 fprintf_unfiltered (gdb_stdlog,
7230 "infrun: stepping through inlined function\n");
7231
4a4c04f1
BE
7232 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7233 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7234 keep_going (ecs);
7235 else
bdc36728 7236 end_stepping_range (ecs);
edb3359d
DJ
7237 return;
7238 }
7239
8c95582d 7240 bool refresh_step_info = true;
f2ffa92b 7241 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7242 && (ecs->event_thread->current_line != stop_pc_sal.line
7243 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7244 {
8c95582d
AB
7245 if (stop_pc_sal.is_stmt)
7246 {
7247 /* We are at the start of a different line. So stop. Note that
7248 we don't stop if we step into the middle of a different line.
7249 That is said to make things like for (;;) statements work
7250 better. */
7251 if (debug_infrun)
7252 fprintf_unfiltered (gdb_stdlog,
7253 "infrun: stepped to a different line\n");
7254 end_stepping_range (ecs);
7255 return;
7256 }
7257 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7258 ecs->event_thread->control.step_frame_id))
7259 {
7260 /* We are at the start of a different line, however, this line is
7261 not marked as a statement, and we have not changed frame. We
7262 ignore this line table entry, and continue stepping forward,
7263 looking for a better place to stop. */
7264 refresh_step_info = false;
7265 if (debug_infrun)
7266 fprintf_unfiltered (gdb_stdlog,
7267 "infrun: stepped to a different line, but "
7268 "it's not the start of a statement\n");
7269 }
488f131b 7270 }
c906108c 7271
488f131b 7272 /* We aren't done stepping.
c906108c 7273
488f131b
JB
7274 Optimize by setting the stepping range to the line.
7275 (We might not be in the original line, but if we entered a
7276 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7277 things like for(;;) statements work better.)
7278
7279 If we entered a SAL that indicates a non-statement line table entry,
7280 then we update the stepping range, but we don't update the step info,
7281 which includes things like the line number we are stepping away from.
7282 This means we will stop when we find a line table entry that is marked
7283 as is-statement, even if it matches the non-statement one we just
7284 stepped into. */
c906108c 7285
16c381f0
JK
7286 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7287 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7288 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7289 if (refresh_step_info)
7290 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7291
527159b7 7292 if (debug_infrun)
8a9de0e4 7293 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7294 keep_going (ecs);
104c1213
JM
7295}
7296
c447ac0b
PA
7297/* In all-stop mode, if we're currently stepping but have stopped in
7298 some other thread, we may need to switch back to the stepped
7299 thread. Returns true we set the inferior running, false if we left
7300 it stopped (and the event needs further processing). */
7301
7302static int
7303switch_back_to_stepped_thread (struct execution_control_state *ecs)
7304{
fbea99ea 7305 if (!target_is_non_stop_p ())
c447ac0b 7306 {
99619bea
PA
7307 struct thread_info *stepping_thread;
7308
7309 /* If any thread is blocked on some internal breakpoint, and we
7310 simply need to step over that breakpoint to get it going
7311 again, do that first. */
7312
7313 /* However, if we see an event for the stepping thread, then we
7314 know all other threads have been moved past their breakpoints
7315 already. Let the caller check whether the step is finished,
7316 etc., before deciding to move it past a breakpoint. */
7317 if (ecs->event_thread->control.step_range_end != 0)
7318 return 0;
7319
7320 /* Check if the current thread is blocked on an incomplete
7321 step-over, interrupted by a random signal. */
7322 if (ecs->event_thread->control.trap_expected
7323 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7324 {
99619bea
PA
7325 if (debug_infrun)
7326 {
7327 fprintf_unfiltered (gdb_stdlog,
7328 "infrun: need to finish step-over of [%s]\n",
a068643d 7329 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
7330 }
7331 keep_going (ecs);
7332 return 1;
7333 }
2adfaa28 7334
99619bea
PA
7335 /* Check if the current thread is blocked by a single-step
7336 breakpoint of another thread. */
7337 if (ecs->hit_singlestep_breakpoint)
7338 {
7339 if (debug_infrun)
7340 {
7341 fprintf_unfiltered (gdb_stdlog,
7342 "infrun: need to step [%s] over single-step "
7343 "breakpoint\n",
a068643d 7344 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
7345 }
7346 keep_going (ecs);
7347 return 1;
7348 }
7349
4d9d9d04
PA
7350 /* If this thread needs yet another step-over (e.g., stepping
7351 through a delay slot), do it first before moving on to
7352 another thread. */
7353 if (thread_still_needs_step_over (ecs->event_thread))
7354 {
7355 if (debug_infrun)
7356 {
7357 fprintf_unfiltered (gdb_stdlog,
7358 "infrun: thread [%s] still needs step-over\n",
a068643d 7359 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
7360 }
7361 keep_going (ecs);
7362 return 1;
7363 }
70509625 7364
483805cf
PA
7365 /* If scheduler locking applies even if not stepping, there's no
7366 need to walk over threads. Above we've checked whether the
7367 current thread is stepping. If some other thread not the
7368 event thread is stepping, then it must be that scheduler
7369 locking is not in effect. */
856e7dd6 7370 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7371 return 0;
7372
4d9d9d04
PA
7373 /* Otherwise, we no longer expect a trap in the current thread.
7374 Clear the trap_expected flag before switching back -- this is
7375 what keep_going does as well, if we call it. */
7376 ecs->event_thread->control.trap_expected = 0;
7377
7378 /* Likewise, clear the signal if it should not be passed. */
7379 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7380 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7381
7382 /* Do all pending step-overs before actually proceeding with
483805cf 7383 step/next/etc. */
4d9d9d04
PA
7384 if (start_step_over ())
7385 {
7386 prepare_to_wait (ecs);
7387 return 1;
7388 }
7389
7390 /* Look for the stepping/nexting thread. */
483805cf 7391 stepping_thread = NULL;
4d9d9d04 7392
08036331 7393 for (thread_info *tp : all_non_exited_threads ())
483805cf 7394 {
f3f8ece4
PA
7395 switch_to_thread_no_regs (tp);
7396
fbea99ea
PA
7397 /* Ignore threads of processes the caller is not
7398 resuming. */
483805cf 7399 if (!sched_multi
5b6d1e4f
PA
7400 && (tp->inf->process_target () != ecs->target
7401 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7402 continue;
7403
7404 /* When stepping over a breakpoint, we lock all threads
7405 except the one that needs to move past the breakpoint.
7406 If a non-event thread has this set, the "incomplete
7407 step-over" check above should have caught it earlier. */
372316f1
PA
7408 if (tp->control.trap_expected)
7409 {
7410 internal_error (__FILE__, __LINE__,
7411 "[%s] has inconsistent state: "
7412 "trap_expected=%d\n",
a068643d 7413 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7414 tp->control.trap_expected);
7415 }
483805cf
PA
7416
7417 /* Did we find the stepping thread? */
7418 if (tp->control.step_range_end)
7419 {
7420 /* Yep. There should only one though. */
7421 gdb_assert (stepping_thread == NULL);
7422
7423 /* The event thread is handled at the top, before we
7424 enter this loop. */
7425 gdb_assert (tp != ecs->event_thread);
7426
7427 /* If some thread other than the event thread is
7428 stepping, then scheduler locking can't be in effect,
7429 otherwise we wouldn't have resumed the current event
7430 thread in the first place. */
856e7dd6 7431 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7432
7433 stepping_thread = tp;
7434 }
99619bea
PA
7435 }
7436
483805cf 7437 if (stepping_thread != NULL)
99619bea 7438 {
c447ac0b
PA
7439 if (debug_infrun)
7440 fprintf_unfiltered (gdb_stdlog,
7441 "infrun: switching back to stepped thread\n");
7442
2ac7589c
PA
7443 if (keep_going_stepped_thread (stepping_thread))
7444 {
7445 prepare_to_wait (ecs);
7446 return 1;
7447 }
7448 }
f3f8ece4
PA
7449
7450 switch_to_thread (ecs->event_thread);
2ac7589c 7451 }
2adfaa28 7452
2ac7589c
PA
7453 return 0;
7454}
2adfaa28 7455
2ac7589c
PA
7456/* Set a previously stepped thread back to stepping. Returns true on
7457 success, false if the resume is not possible (e.g., the thread
7458 vanished). */
7459
7460static int
7461keep_going_stepped_thread (struct thread_info *tp)
7462{
7463 struct frame_info *frame;
2ac7589c
PA
7464 struct execution_control_state ecss;
7465 struct execution_control_state *ecs = &ecss;
2adfaa28 7466
2ac7589c
PA
7467 /* If the stepping thread exited, then don't try to switch back and
7468 resume it, which could fail in several different ways depending
7469 on the target. Instead, just keep going.
2adfaa28 7470
2ac7589c
PA
7471 We can find a stepping dead thread in the thread list in two
7472 cases:
2adfaa28 7473
2ac7589c
PA
7474 - The target supports thread exit events, and when the target
7475 tries to delete the thread from the thread list, inferior_ptid
7476 pointed at the exiting thread. In such case, calling
7477 delete_thread does not really remove the thread from the list;
7478 instead, the thread is left listed, with 'exited' state.
64ce06e4 7479
2ac7589c
PA
7480 - The target's debug interface does not support thread exit
7481 events, and so we have no idea whatsoever if the previously
7482 stepping thread is still alive. For that reason, we need to
7483 synchronously query the target now. */
2adfaa28 7484
00431a78 7485 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7486 {
7487 if (debug_infrun)
7488 fprintf_unfiltered (gdb_stdlog,
7489 "infrun: not resuming previously "
7490 "stepped thread, it has vanished\n");
7491
00431a78 7492 delete_thread (tp);
2ac7589c 7493 return 0;
c447ac0b 7494 }
2ac7589c
PA
7495
7496 if (debug_infrun)
7497 fprintf_unfiltered (gdb_stdlog,
7498 "infrun: resuming previously stepped thread\n");
7499
7500 reset_ecs (ecs, tp);
00431a78 7501 switch_to_thread (tp);
2ac7589c 7502
f2ffa92b 7503 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7504 frame = get_current_frame ();
2ac7589c
PA
7505
7506 /* If the PC of the thread we were trying to single-step has
7507 changed, then that thread has trapped or been signaled, but the
7508 event has not been reported to GDB yet. Re-poll the target
7509 looking for this particular thread's event (i.e. temporarily
7510 enable schedlock) by:
7511
7512 - setting a break at the current PC
7513 - resuming that particular thread, only (by setting trap
7514 expected)
7515
7516 This prevents us continuously moving the single-step breakpoint
7517 forward, one instruction at a time, overstepping. */
7518
f2ffa92b 7519 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7520 {
7521 ptid_t resume_ptid;
7522
7523 if (debug_infrun)
7524 fprintf_unfiltered (gdb_stdlog,
7525 "infrun: expected thread advanced also (%s -> %s)\n",
7526 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7527 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7528
7529 /* Clear the info of the previous step-over, as it's no longer
7530 valid (if the thread was trying to step over a breakpoint, it
7531 has already succeeded). It's what keep_going would do too,
7532 if we called it. Do this before trying to insert the sss
7533 breakpoint, otherwise if we were previously trying to step
7534 over this exact address in another thread, the breakpoint is
7535 skipped. */
7536 clear_step_over_info ();
7537 tp->control.trap_expected = 0;
7538
7539 insert_single_step_breakpoint (get_frame_arch (frame),
7540 get_frame_address_space (frame),
f2ffa92b 7541 tp->suspend.stop_pc);
2ac7589c 7542
719546c4 7543 tp->resumed = true;
fbea99ea 7544 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7545 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7546 }
7547 else
7548 {
7549 if (debug_infrun)
7550 fprintf_unfiltered (gdb_stdlog,
7551 "infrun: expected thread still hasn't advanced\n");
7552
7553 keep_going_pass_signal (ecs);
7554 }
7555 return 1;
c447ac0b
PA
7556}
7557
8b061563
PA
7558/* Is thread TP in the middle of (software or hardware)
7559 single-stepping? (Note the result of this function must never be
7560 passed directly as target_resume's STEP parameter.) */
104c1213 7561
a289b8f6 7562static int
b3444185 7563currently_stepping (struct thread_info *tp)
a7212384 7564{
8358c15c
JK
7565 return ((tp->control.step_range_end
7566 && tp->control.step_resume_breakpoint == NULL)
7567 || tp->control.trap_expected
af48d08f 7568 || tp->stepped_breakpoint
8358c15c 7569 || bpstat_should_step ());
a7212384
UW
7570}
7571
b2175913
MS
7572/* Inferior has stepped into a subroutine call with source code that
7573 we should not step over. Do step to the first line of code in
7574 it. */
c2c6d25f
JM
7575
7576static void
568d6575
UW
7577handle_step_into_function (struct gdbarch *gdbarch,
7578 struct execution_control_state *ecs)
c2c6d25f 7579{
7e324e48
GB
7580 fill_in_stop_func (gdbarch, ecs);
7581
f2ffa92b
PA
7582 compunit_symtab *cust
7583 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7584 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7585 ecs->stop_func_start
7586 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7587
51abb421 7588 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7589 /* Use the step_resume_break to step until the end of the prologue,
7590 even if that involves jumps (as it seems to on the vax under
7591 4.2). */
7592 /* If the prologue ends in the middle of a source line, continue to
7593 the end of that source line (if it is still within the function).
7594 Otherwise, just go to end of prologue. */
2afb61aa
PA
7595 if (stop_func_sal.end
7596 && stop_func_sal.pc != ecs->stop_func_start
7597 && stop_func_sal.end < ecs->stop_func_end)
7598 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7599
2dbd5e30
KB
7600 /* Architectures which require breakpoint adjustment might not be able
7601 to place a breakpoint at the computed address. If so, the test
7602 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7603 ecs->stop_func_start to an address at which a breakpoint may be
7604 legitimately placed.
8fb3e588 7605
2dbd5e30
KB
7606 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7607 made, GDB will enter an infinite loop when stepping through
7608 optimized code consisting of VLIW instructions which contain
7609 subinstructions corresponding to different source lines. On
7610 FR-V, it's not permitted to place a breakpoint on any but the
7611 first subinstruction of a VLIW instruction. When a breakpoint is
7612 set, GDB will adjust the breakpoint address to the beginning of
7613 the VLIW instruction. Thus, we need to make the corresponding
7614 adjustment here when computing the stop address. */
8fb3e588 7615
568d6575 7616 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7617 {
7618 ecs->stop_func_start
568d6575 7619 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7620 ecs->stop_func_start);
2dbd5e30
KB
7621 }
7622
f2ffa92b 7623 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7624 {
7625 /* We are already there: stop now. */
bdc36728 7626 end_stepping_range (ecs);
c2c6d25f
JM
7627 return;
7628 }
7629 else
7630 {
7631 /* Put the step-breakpoint there and go until there. */
51abb421 7632 symtab_and_line sr_sal;
c2c6d25f
JM
7633 sr_sal.pc = ecs->stop_func_start;
7634 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7635 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7636
c2c6d25f 7637 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7638 some machines the prologue is where the new fp value is
7639 established. */
a6d9a66e 7640 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7641
7642 /* And make sure stepping stops right away then. */
16c381f0
JK
7643 ecs->event_thread->control.step_range_end
7644 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7645 }
7646 keep_going (ecs);
7647}
d4f3574e 7648
b2175913
MS
7649/* Inferior has stepped backward into a subroutine call with source
7650 code that we should not step over. Do step to the beginning of the
7651 last line of code in it. */
7652
7653static void
568d6575
UW
7654handle_step_into_function_backward (struct gdbarch *gdbarch,
7655 struct execution_control_state *ecs)
b2175913 7656{
43f3e411 7657 struct compunit_symtab *cust;
167e4384 7658 struct symtab_and_line stop_func_sal;
b2175913 7659
7e324e48
GB
7660 fill_in_stop_func (gdbarch, ecs);
7661
f2ffa92b 7662 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7663 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7664 ecs->stop_func_start
7665 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7666
f2ffa92b 7667 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7668
7669 /* OK, we're just going to keep stepping here. */
f2ffa92b 7670 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7671 {
7672 /* We're there already. Just stop stepping now. */
bdc36728 7673 end_stepping_range (ecs);
b2175913
MS
7674 }
7675 else
7676 {
7677 /* Else just reset the step range and keep going.
7678 No step-resume breakpoint, they don't work for
7679 epilogues, which can have multiple entry paths. */
16c381f0
JK
7680 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7681 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7682 keep_going (ecs);
7683 }
7684 return;
7685}
7686
d3169d93 7687/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7688 This is used to both functions and to skip over code. */
7689
7690static void
2c03e5be
PA
7691insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7692 struct symtab_and_line sr_sal,
7693 struct frame_id sr_id,
7694 enum bptype sr_type)
44cbf7b5 7695{
611c83ae
PA
7696 /* There should never be more than one step-resume or longjmp-resume
7697 breakpoint per thread, so we should never be setting a new
44cbf7b5 7698 step_resume_breakpoint when one is already active. */
8358c15c 7699 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7700 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7701
7702 if (debug_infrun)
7703 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7704 "infrun: inserting step-resume breakpoint at %s\n",
7705 paddress (gdbarch, sr_sal.pc));
d3169d93 7706
8358c15c 7707 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7708 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7709}
7710
9da8c2a0 7711void
2c03e5be
PA
7712insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7713 struct symtab_and_line sr_sal,
7714 struct frame_id sr_id)
7715{
7716 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7717 sr_sal, sr_id,
7718 bp_step_resume);
44cbf7b5 7719}
7ce450bd 7720
2c03e5be
PA
7721/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7722 This is used to skip a potential signal handler.
7ce450bd 7723
14e60db5
DJ
7724 This is called with the interrupted function's frame. The signal
7725 handler, when it returns, will resume the interrupted function at
7726 RETURN_FRAME.pc. */
d303a6c7
AC
7727
7728static void
2c03e5be 7729insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7730{
f4c1edd8 7731 gdb_assert (return_frame != NULL);
d303a6c7 7732
51abb421
PA
7733 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7734
7735 symtab_and_line sr_sal;
568d6575 7736 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7737 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7738 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7739
2c03e5be
PA
7740 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7741 get_stack_frame_id (return_frame),
7742 bp_hp_step_resume);
d303a6c7
AC
7743}
7744
2c03e5be
PA
7745/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7746 is used to skip a function after stepping into it (for "next" or if
7747 the called function has no debugging information).
14e60db5
DJ
7748
7749 The current function has almost always been reached by single
7750 stepping a call or return instruction. NEXT_FRAME belongs to the
7751 current function, and the breakpoint will be set at the caller's
7752 resume address.
7753
7754 This is a separate function rather than reusing
2c03e5be 7755 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7756 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7757 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7758
7759static void
7760insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7761{
14e60db5
DJ
7762 /* We shouldn't have gotten here if we don't know where the call site
7763 is. */
c7ce8faa 7764 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7765
51abb421 7766 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7767
51abb421 7768 symtab_and_line sr_sal;
c7ce8faa
DJ
7769 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7770 frame_unwind_caller_pc (next_frame));
14e60db5 7771 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7772 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7773
a6d9a66e 7774 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7775 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7776}
7777
611c83ae
PA
7778/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7779 new breakpoint at the target of a jmp_buf. The handling of
7780 longjmp-resume uses the same mechanisms used for handling
7781 "step-resume" breakpoints. */
7782
7783static void
a6d9a66e 7784insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7785{
e81a37f7
TT
7786 /* There should never be more than one longjmp-resume breakpoint per
7787 thread, so we should never be setting a new
611c83ae 7788 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7789 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7790
7791 if (debug_infrun)
7792 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7793 "infrun: inserting longjmp-resume breakpoint at %s\n",
7794 paddress (gdbarch, pc));
611c83ae 7795
e81a37f7 7796 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7797 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7798}
7799
186c406b
TT
7800/* Insert an exception resume breakpoint. TP is the thread throwing
7801 the exception. The block B is the block of the unwinder debug hook
7802 function. FRAME is the frame corresponding to the call to this
7803 function. SYM is the symbol of the function argument holding the
7804 target PC of the exception. */
7805
7806static void
7807insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7808 const struct block *b,
186c406b
TT
7809 struct frame_info *frame,
7810 struct symbol *sym)
7811{
a70b8144 7812 try
186c406b 7813 {
63e43d3a 7814 struct block_symbol vsym;
186c406b
TT
7815 struct value *value;
7816 CORE_ADDR handler;
7817 struct breakpoint *bp;
7818
987012b8 7819 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7820 b, VAR_DOMAIN);
63e43d3a 7821 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7822 /* If the value was optimized out, revert to the old behavior. */
7823 if (! value_optimized_out (value))
7824 {
7825 handler = value_as_address (value);
7826
7827 if (debug_infrun)
7828 fprintf_unfiltered (gdb_stdlog,
7829 "infrun: exception resume at %lx\n",
7830 (unsigned long) handler);
7831
7832 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7833 handler,
7834 bp_exception_resume).release ();
c70a6932
JK
7835
7836 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7837 frame = NULL;
7838
5d5658a1 7839 bp->thread = tp->global_num;
186c406b
TT
7840 inferior_thread ()->control.exception_resume_breakpoint = bp;
7841 }
7842 }
230d2906 7843 catch (const gdb_exception_error &e)
492d29ea
PA
7844 {
7845 /* We want to ignore errors here. */
7846 }
186c406b
TT
7847}
7848
28106bc2
SDJ
7849/* A helper for check_exception_resume that sets an
7850 exception-breakpoint based on a SystemTap probe. */
7851
7852static void
7853insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7854 const struct bound_probe *probe,
28106bc2
SDJ
7855 struct frame_info *frame)
7856{
7857 struct value *arg_value;
7858 CORE_ADDR handler;
7859 struct breakpoint *bp;
7860
7861 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7862 if (!arg_value)
7863 return;
7864
7865 handler = value_as_address (arg_value);
7866
7867 if (debug_infrun)
7868 fprintf_unfiltered (gdb_stdlog,
7869 "infrun: exception resume at %s\n",
08feed99 7870 paddress (probe->objfile->arch (),
28106bc2
SDJ
7871 handler));
7872
7873 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7874 handler, bp_exception_resume).release ();
5d5658a1 7875 bp->thread = tp->global_num;
28106bc2
SDJ
7876 inferior_thread ()->control.exception_resume_breakpoint = bp;
7877}
7878
186c406b
TT
7879/* This is called when an exception has been intercepted. Check to
7880 see whether the exception's destination is of interest, and if so,
7881 set an exception resume breakpoint there. */
7882
7883static void
7884check_exception_resume (struct execution_control_state *ecs,
28106bc2 7885 struct frame_info *frame)
186c406b 7886{
729662a5 7887 struct bound_probe probe;
28106bc2
SDJ
7888 struct symbol *func;
7889
7890 /* First see if this exception unwinding breakpoint was set via a
7891 SystemTap probe point. If so, the probe has two arguments: the
7892 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7893 set a breakpoint there. */
6bac7473 7894 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7895 if (probe.prob)
28106bc2 7896 {
729662a5 7897 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7898 return;
7899 }
7900
7901 func = get_frame_function (frame);
7902 if (!func)
7903 return;
186c406b 7904
a70b8144 7905 try
186c406b 7906 {
3977b71f 7907 const struct block *b;
8157b174 7908 struct block_iterator iter;
186c406b
TT
7909 struct symbol *sym;
7910 int argno = 0;
7911
7912 /* The exception breakpoint is a thread-specific breakpoint on
7913 the unwinder's debug hook, declared as:
7914
7915 void _Unwind_DebugHook (void *cfa, void *handler);
7916
7917 The CFA argument indicates the frame to which control is
7918 about to be transferred. HANDLER is the destination PC.
7919
7920 We ignore the CFA and set a temporary breakpoint at HANDLER.
7921 This is not extremely efficient but it avoids issues in gdb
7922 with computing the DWARF CFA, and it also works even in weird
7923 cases such as throwing an exception from inside a signal
7924 handler. */
7925
7926 b = SYMBOL_BLOCK_VALUE (func);
7927 ALL_BLOCK_SYMBOLS (b, iter, sym)
7928 {
7929 if (!SYMBOL_IS_ARGUMENT (sym))
7930 continue;
7931
7932 if (argno == 0)
7933 ++argno;
7934 else
7935 {
7936 insert_exception_resume_breakpoint (ecs->event_thread,
7937 b, frame, sym);
7938 break;
7939 }
7940 }
7941 }
230d2906 7942 catch (const gdb_exception_error &e)
492d29ea
PA
7943 {
7944 }
186c406b
TT
7945}
7946
104c1213 7947static void
22bcd14b 7948stop_waiting (struct execution_control_state *ecs)
104c1213 7949{
527159b7 7950 if (debug_infrun)
22bcd14b 7951 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7952
cd0fc7c3
SS
7953 /* Let callers know we don't want to wait for the inferior anymore. */
7954 ecs->wait_some_more = 0;
fbea99ea 7955
53cccef1 7956 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 7957 threads now that we're presenting the stop to the user. */
53cccef1 7958 if (!non_stop && exists_non_stop_target ())
fbea99ea 7959 stop_all_threads ();
cd0fc7c3
SS
7960}
7961
4d9d9d04
PA
7962/* Like keep_going, but passes the signal to the inferior, even if the
7963 signal is set to nopass. */
d4f3574e
SS
7964
7965static void
4d9d9d04 7966keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7967{
d7e15655 7968 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7969 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7970
d4f3574e 7971 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7972 ecs->event_thread->prev_pc
fc75c28b 7973 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
d4f3574e 7974
4d9d9d04 7975 if (ecs->event_thread->control.trap_expected)
d4f3574e 7976 {
4d9d9d04
PA
7977 struct thread_info *tp = ecs->event_thread;
7978
7979 if (debug_infrun)
7980 fprintf_unfiltered (gdb_stdlog,
7981 "infrun: %s has trap_expected set, "
7982 "resuming to collect trap\n",
a068643d 7983 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7984
a9ba6bae
PA
7985 /* We haven't yet gotten our trap, and either: intercepted a
7986 non-signal event (e.g., a fork); or took a signal which we
7987 are supposed to pass through to the inferior. Simply
7988 continue. */
64ce06e4 7989 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7990 }
372316f1
PA
7991 else if (step_over_info_valid_p ())
7992 {
7993 /* Another thread is stepping over a breakpoint in-line. If
7994 this thread needs a step-over too, queue the request. In
7995 either case, this resume must be deferred for later. */
7996 struct thread_info *tp = ecs->event_thread;
7997
7998 if (ecs->hit_singlestep_breakpoint
7999 || thread_still_needs_step_over (tp))
8000 {
8001 if (debug_infrun)
8002 fprintf_unfiltered (gdb_stdlog,
8003 "infrun: step-over already in progress: "
8004 "step-over for %s deferred\n",
a068643d 8005 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
8006 thread_step_over_chain_enqueue (tp);
8007 }
8008 else
8009 {
8010 if (debug_infrun)
8011 fprintf_unfiltered (gdb_stdlog,
8012 "infrun: step-over in progress: "
8013 "resume of %s deferred\n",
a068643d 8014 target_pid_to_str (tp->ptid).c_str ());
372316f1 8015 }
372316f1 8016 }
d4f3574e
SS
8017 else
8018 {
31e77af2 8019 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
8020 int remove_bp;
8021 int remove_wps;
8d297bbf 8022 step_over_what step_what;
31e77af2 8023
d4f3574e 8024 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
8025 anyway (if we got a signal, the user asked it be passed to
8026 the child)
8027 -- or --
8028 We got our expected trap, but decided we should resume from
8029 it.
d4f3574e 8030
a9ba6bae 8031 We're going to run this baby now!
d4f3574e 8032
c36b740a
VP
8033 Note that insert_breakpoints won't try to re-insert
8034 already inserted breakpoints. Therefore, we don't
8035 care if breakpoints were already inserted, or not. */
a9ba6bae 8036
31e77af2
PA
8037 /* If we need to step over a breakpoint, and we're not using
8038 displaced stepping to do so, insert all breakpoints
8039 (watchpoints, etc.) but the one we're stepping over, step one
8040 instruction, and then re-insert the breakpoint when that step
8041 is finished. */
963f9c80 8042
6c4cfb24
PA
8043 step_what = thread_still_needs_step_over (ecs->event_thread);
8044
963f9c80 8045 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
8046 || (step_what & STEP_OVER_BREAKPOINT));
8047 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 8048
cb71640d
PA
8049 /* We can't use displaced stepping if we need to step past a
8050 watchpoint. The instruction copied to the scratch pad would
8051 still trigger the watchpoint. */
8052 if (remove_bp
3fc8eb30 8053 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 8054 {
a01bda52 8055 set_step_over_info (regcache->aspace (),
21edc42f
YQ
8056 regcache_read_pc (regcache), remove_wps,
8057 ecs->event_thread->global_num);
45e8c884 8058 }
963f9c80 8059 else if (remove_wps)
21edc42f 8060 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
8061
8062 /* If we now need to do an in-line step-over, we need to stop
8063 all other threads. Note this must be done before
8064 insert_breakpoints below, because that removes the breakpoint
8065 we're about to step over, otherwise other threads could miss
8066 it. */
fbea99ea 8067 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 8068 stop_all_threads ();
abbb1732 8069
31e77af2 8070 /* Stop stepping if inserting breakpoints fails. */
a70b8144 8071 try
31e77af2
PA
8072 {
8073 insert_breakpoints ();
8074 }
230d2906 8075 catch (const gdb_exception_error &e)
31e77af2
PA
8076 {
8077 exception_print (gdb_stderr, e);
22bcd14b 8078 stop_waiting (ecs);
bdf2a94a 8079 clear_step_over_info ();
31e77af2 8080 return;
d4f3574e
SS
8081 }
8082
963f9c80 8083 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 8084
64ce06e4 8085 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
8086 }
8087
488f131b 8088 prepare_to_wait (ecs);
d4f3574e
SS
8089}
8090
4d9d9d04
PA
8091/* Called when we should continue running the inferior, because the
8092 current event doesn't cause a user visible stop. This does the
8093 resuming part; waiting for the next event is done elsewhere. */
8094
8095static void
8096keep_going (struct execution_control_state *ecs)
8097{
8098 if (ecs->event_thread->control.trap_expected
8099 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8100 ecs->event_thread->control.trap_expected = 0;
8101
8102 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8103 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8104 keep_going_pass_signal (ecs);
8105}
8106
104c1213
JM
8107/* This function normally comes after a resume, before
8108 handle_inferior_event exits. It takes care of any last bits of
8109 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 8110
104c1213
JM
8111static void
8112prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 8113{
527159b7 8114 if (debug_infrun)
8a9de0e4 8115 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 8116
104c1213 8117 ecs->wait_some_more = 1;
0b333c5e
PA
8118
8119 if (!target_is_async_p ())
8120 mark_infrun_async_event_handler ();
c906108c 8121}
11cf8741 8122
fd664c91 8123/* We are done with the step range of a step/next/si/ni command.
b57bacec 8124 Called once for each n of a "step n" operation. */
fd664c91
PA
8125
8126static void
bdc36728 8127end_stepping_range (struct execution_control_state *ecs)
fd664c91 8128{
bdc36728 8129 ecs->event_thread->control.stop_step = 1;
bdc36728 8130 stop_waiting (ecs);
fd664c91
PA
8131}
8132
33d62d64
JK
8133/* Several print_*_reason functions to print why the inferior has stopped.
8134 We always print something when the inferior exits, or receives a signal.
8135 The rest of the cases are dealt with later on in normal_stop and
8136 print_it_typical. Ideally there should be a call to one of these
8137 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 8138 stop_waiting is called.
33d62d64 8139
fd664c91
PA
8140 Note that we don't call these directly, instead we delegate that to
8141 the interpreters, through observers. Interpreters then call these
8142 with whatever uiout is right. */
33d62d64 8143
fd664c91
PA
8144void
8145print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 8146{
fd664c91 8147 /* For CLI-like interpreters, print nothing. */
33d62d64 8148
112e8700 8149 if (uiout->is_mi_like_p ())
fd664c91 8150 {
112e8700 8151 uiout->field_string ("reason",
fd664c91
PA
8152 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8153 }
8154}
33d62d64 8155
fd664c91
PA
8156void
8157print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 8158{
33d62d64 8159 annotate_signalled ();
112e8700
SM
8160 if (uiout->is_mi_like_p ())
8161 uiout->field_string
8162 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8163 uiout->text ("\nProgram terminated with signal ");
33d62d64 8164 annotate_signal_name ();
112e8700 8165 uiout->field_string ("signal-name",
2ea28649 8166 gdb_signal_to_name (siggnal));
33d62d64 8167 annotate_signal_name_end ();
112e8700 8168 uiout->text (", ");
33d62d64 8169 annotate_signal_string ();
112e8700 8170 uiout->field_string ("signal-meaning",
2ea28649 8171 gdb_signal_to_string (siggnal));
33d62d64 8172 annotate_signal_string_end ();
112e8700
SM
8173 uiout->text (".\n");
8174 uiout->text ("The program no longer exists.\n");
33d62d64
JK
8175}
8176
fd664c91
PA
8177void
8178print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 8179{
fda326dd 8180 struct inferior *inf = current_inferior ();
a068643d 8181 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 8182
33d62d64
JK
8183 annotate_exited (exitstatus);
8184 if (exitstatus)
8185 {
112e8700
SM
8186 if (uiout->is_mi_like_p ())
8187 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
8188 std::string exit_code_str
8189 = string_printf ("0%o", (unsigned int) exitstatus);
8190 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8191 plongest (inf->num), pidstr.c_str (),
8192 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8193 }
8194 else
11cf8741 8195 {
112e8700
SM
8196 if (uiout->is_mi_like_p ())
8197 uiout->field_string
8198 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8199 uiout->message ("[Inferior %s (%s) exited normally]\n",
8200 plongest (inf->num), pidstr.c_str ());
33d62d64 8201 }
33d62d64
JK
8202}
8203
012b3a21
WT
8204/* Some targets/architectures can do extra processing/display of
8205 segmentation faults. E.g., Intel MPX boundary faults.
8206 Call the architecture dependent function to handle the fault. */
8207
8208static void
8209handle_segmentation_fault (struct ui_out *uiout)
8210{
8211 struct regcache *regcache = get_current_regcache ();
ac7936df 8212 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
8213
8214 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8215 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8216}
8217
fd664c91
PA
8218void
8219print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8220{
f303dbd6
PA
8221 struct thread_info *thr = inferior_thread ();
8222
33d62d64
JK
8223 annotate_signal ();
8224
112e8700 8225 if (uiout->is_mi_like_p ())
f303dbd6
PA
8226 ;
8227 else if (show_thread_that_caused_stop ())
33d62d64 8228 {
f303dbd6 8229 const char *name;
33d62d64 8230
112e8700 8231 uiout->text ("\nThread ");
33eca680 8232 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8233
8234 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8235 if (name != NULL)
8236 {
112e8700 8237 uiout->text (" \"");
33eca680 8238 uiout->field_string ("name", name);
112e8700 8239 uiout->text ("\"");
f303dbd6 8240 }
33d62d64 8241 }
f303dbd6 8242 else
112e8700 8243 uiout->text ("\nProgram");
f303dbd6 8244
112e8700
SM
8245 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8246 uiout->text (" stopped");
33d62d64
JK
8247 else
8248 {
112e8700 8249 uiout->text (" received signal ");
8b93c638 8250 annotate_signal_name ();
112e8700
SM
8251 if (uiout->is_mi_like_p ())
8252 uiout->field_string
8253 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8254 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8255 annotate_signal_name_end ();
112e8700 8256 uiout->text (", ");
8b93c638 8257 annotate_signal_string ();
112e8700 8258 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8259
8260 if (siggnal == GDB_SIGNAL_SEGV)
8261 handle_segmentation_fault (uiout);
8262
8b93c638 8263 annotate_signal_string_end ();
33d62d64 8264 }
112e8700 8265 uiout->text (".\n");
33d62d64 8266}
252fbfc8 8267
fd664c91
PA
8268void
8269print_no_history_reason (struct ui_out *uiout)
33d62d64 8270{
112e8700 8271 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8272}
43ff13b4 8273
0c7e1a46
PA
8274/* Print current location without a level number, if we have changed
8275 functions or hit a breakpoint. Print source line if we have one.
8276 bpstat_print contains the logic deciding in detail what to print,
8277 based on the event(s) that just occurred. */
8278
243a9253
PA
8279static void
8280print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8281{
8282 int bpstat_ret;
f486487f 8283 enum print_what source_flag;
0c7e1a46
PA
8284 int do_frame_printing = 1;
8285 struct thread_info *tp = inferior_thread ();
8286
8287 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8288 switch (bpstat_ret)
8289 {
8290 case PRINT_UNKNOWN:
8291 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8292 should) carry around the function and does (or should) use
8293 that when doing a frame comparison. */
8294 if (tp->control.stop_step
8295 && frame_id_eq (tp->control.step_frame_id,
8296 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8297 && (tp->control.step_start_function
8298 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8299 {
8300 /* Finished step, just print source line. */
8301 source_flag = SRC_LINE;
8302 }
8303 else
8304 {
8305 /* Print location and source line. */
8306 source_flag = SRC_AND_LOC;
8307 }
8308 break;
8309 case PRINT_SRC_AND_LOC:
8310 /* Print location and source line. */
8311 source_flag = SRC_AND_LOC;
8312 break;
8313 case PRINT_SRC_ONLY:
8314 source_flag = SRC_LINE;
8315 break;
8316 case PRINT_NOTHING:
8317 /* Something bogus. */
8318 source_flag = SRC_LINE;
8319 do_frame_printing = 0;
8320 break;
8321 default:
8322 internal_error (__FILE__, __LINE__, _("Unknown value."));
8323 }
8324
8325 /* The behavior of this routine with respect to the source
8326 flag is:
8327 SRC_LINE: Print only source line
8328 LOCATION: Print only location
8329 SRC_AND_LOC: Print location and source line. */
8330 if (do_frame_printing)
8331 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8332}
8333
243a9253
PA
8334/* See infrun.h. */
8335
8336void
4c7d57e7 8337print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8338{
243a9253 8339 struct target_waitstatus last;
243a9253
PA
8340 struct thread_info *tp;
8341
5b6d1e4f 8342 get_last_target_status (nullptr, nullptr, &last);
243a9253 8343
67ad9399
TT
8344 {
8345 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8346
67ad9399 8347 print_stop_location (&last);
243a9253 8348
67ad9399 8349 /* Display the auto-display expressions. */
4c7d57e7
TT
8350 if (displays)
8351 do_displays ();
67ad9399 8352 }
243a9253
PA
8353
8354 tp = inferior_thread ();
8355 if (tp->thread_fsm != NULL
46e3ed7f 8356 && tp->thread_fsm->finished_p ())
243a9253
PA
8357 {
8358 struct return_value_info *rv;
8359
46e3ed7f 8360 rv = tp->thread_fsm->return_value ();
243a9253
PA
8361 if (rv != NULL)
8362 print_return_value (uiout, rv);
8363 }
0c7e1a46
PA
8364}
8365
388a7084
PA
8366/* See infrun.h. */
8367
8368void
8369maybe_remove_breakpoints (void)
8370{
8371 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8372 {
8373 if (remove_breakpoints ())
8374 {
223ffa71 8375 target_terminal::ours_for_output ();
388a7084
PA
8376 printf_filtered (_("Cannot remove breakpoints because "
8377 "program is no longer writable.\nFurther "
8378 "execution is probably impossible.\n"));
8379 }
8380 }
8381}
8382
4c2f2a79
PA
8383/* The execution context that just caused a normal stop. */
8384
8385struct stop_context
8386{
2d844eaf
TT
8387 stop_context ();
8388 ~stop_context ();
8389
8390 DISABLE_COPY_AND_ASSIGN (stop_context);
8391
8392 bool changed () const;
8393
4c2f2a79
PA
8394 /* The stop ID. */
8395 ULONGEST stop_id;
c906108c 8396
4c2f2a79 8397 /* The event PTID. */
c906108c 8398
4c2f2a79
PA
8399 ptid_t ptid;
8400
8401 /* If stopp for a thread event, this is the thread that caused the
8402 stop. */
8403 struct thread_info *thread;
8404
8405 /* The inferior that caused the stop. */
8406 int inf_num;
8407};
8408
2d844eaf 8409/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8410 takes a strong reference to the thread. */
8411
2d844eaf 8412stop_context::stop_context ()
4c2f2a79 8413{
2d844eaf
TT
8414 stop_id = get_stop_id ();
8415 ptid = inferior_ptid;
8416 inf_num = current_inferior ()->num;
4c2f2a79 8417
d7e15655 8418 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8419 {
8420 /* Take a strong reference so that the thread can't be deleted
8421 yet. */
2d844eaf
TT
8422 thread = inferior_thread ();
8423 thread->incref ();
4c2f2a79
PA
8424 }
8425 else
2d844eaf 8426 thread = NULL;
4c2f2a79
PA
8427}
8428
8429/* Release a stop context previously created with save_stop_context.
8430 Releases the strong reference to the thread as well. */
8431
2d844eaf 8432stop_context::~stop_context ()
4c2f2a79 8433{
2d844eaf
TT
8434 if (thread != NULL)
8435 thread->decref ();
4c2f2a79
PA
8436}
8437
8438/* Return true if the current context no longer matches the saved stop
8439 context. */
8440
2d844eaf
TT
8441bool
8442stop_context::changed () const
8443{
8444 if (ptid != inferior_ptid)
8445 return true;
8446 if (inf_num != current_inferior ()->num)
8447 return true;
8448 if (thread != NULL && thread->state != THREAD_STOPPED)
8449 return true;
8450 if (get_stop_id () != stop_id)
8451 return true;
8452 return false;
4c2f2a79
PA
8453}
8454
8455/* See infrun.h. */
8456
8457int
96baa820 8458normal_stop (void)
c906108c 8459{
73b65bb0 8460 struct target_waitstatus last;
73b65bb0 8461
5b6d1e4f 8462 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8463
4c2f2a79
PA
8464 new_stop_id ();
8465
29f49a6a
PA
8466 /* If an exception is thrown from this point on, make sure to
8467 propagate GDB's knowledge of the executing state to the
8468 frontend/user running state. A QUIT is an easy exception to see
8469 here, so do this before any filtered output. */
731f534f 8470
5b6d1e4f 8471 ptid_t finish_ptid = null_ptid;
731f534f 8472
c35b1492 8473 if (!non_stop)
5b6d1e4f 8474 finish_ptid = minus_one_ptid;
e1316e60
PA
8475 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8476 || last.kind == TARGET_WAITKIND_EXITED)
8477 {
8478 /* On some targets, we may still have live threads in the
8479 inferior when we get a process exit event. E.g., for
8480 "checkpoint", when the current checkpoint/fork exits,
8481 linux-fork.c automatically switches to another fork from
8482 within target_mourn_inferior. */
731f534f 8483 if (inferior_ptid != null_ptid)
5b6d1e4f 8484 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8485 }
8486 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8487 finish_ptid = inferior_ptid;
8488
8489 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8490 if (finish_ptid != null_ptid)
8491 {
8492 maybe_finish_thread_state.emplace
8493 (user_visible_resume_target (finish_ptid), finish_ptid);
8494 }
29f49a6a 8495
b57bacec
PA
8496 /* As we're presenting a stop, and potentially removing breakpoints,
8497 update the thread list so we can tell whether there are threads
8498 running on the target. With target remote, for example, we can
8499 only learn about new threads when we explicitly update the thread
8500 list. Do this before notifying the interpreters about signal
8501 stops, end of stepping ranges, etc., so that the "new thread"
8502 output is emitted before e.g., "Program received signal FOO",
8503 instead of after. */
8504 update_thread_list ();
8505
8506 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8507 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8508
c906108c
SS
8509 /* As with the notification of thread events, we want to delay
8510 notifying the user that we've switched thread context until
8511 the inferior actually stops.
8512
73b65bb0
DJ
8513 There's no point in saying anything if the inferior has exited.
8514 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8515 "received a signal".
8516
8517 Also skip saying anything in non-stop mode. In that mode, as we
8518 don't want GDB to switch threads behind the user's back, to avoid
8519 races where the user is typing a command to apply to thread x,
8520 but GDB switches to thread y before the user finishes entering
8521 the command, fetch_inferior_event installs a cleanup to restore
8522 the current thread back to the thread the user had selected right
8523 after this event is handled, so we're not really switching, only
8524 informing of a stop. */
4f8d22e3 8525 if (!non_stop
731f534f 8526 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8527 && target_has_execution
8528 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8529 && last.kind != TARGET_WAITKIND_EXITED
8530 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8531 {
0e454242 8532 SWITCH_THRU_ALL_UIS ()
3b12939d 8533 {
223ffa71 8534 target_terminal::ours_for_output ();
3b12939d 8535 printf_filtered (_("[Switching to %s]\n"),
a068643d 8536 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8537 annotate_thread_changed ();
8538 }
39f77062 8539 previous_inferior_ptid = inferior_ptid;
c906108c 8540 }
c906108c 8541
0e5bf2a8
PA
8542 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8543 {
0e454242 8544 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8545 if (current_ui->prompt_state == PROMPT_BLOCKED)
8546 {
223ffa71 8547 target_terminal::ours_for_output ();
3b12939d
PA
8548 printf_filtered (_("No unwaited-for children left.\n"));
8549 }
0e5bf2a8
PA
8550 }
8551
b57bacec 8552 /* Note: this depends on the update_thread_list call above. */
388a7084 8553 maybe_remove_breakpoints ();
c906108c 8554
c906108c
SS
8555 /* If an auto-display called a function and that got a signal,
8556 delete that auto-display to avoid an infinite recursion. */
8557
8558 if (stopped_by_random_signal)
8559 disable_current_display ();
8560
0e454242 8561 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8562 {
8563 async_enable_stdin ();
8564 }
c906108c 8565
388a7084 8566 /* Let the user/frontend see the threads as stopped. */
731f534f 8567 maybe_finish_thread_state.reset ();
388a7084
PA
8568
8569 /* Select innermost stack frame - i.e., current frame is frame 0,
8570 and current location is based on that. Handle the case where the
8571 dummy call is returning after being stopped. E.g. the dummy call
8572 previously hit a breakpoint. (If the dummy call returns
8573 normally, we won't reach here.) Do this before the stop hook is
8574 run, so that it doesn't get to see the temporary dummy frame,
8575 which is not where we'll present the stop. */
8576 if (has_stack_frames ())
8577 {
8578 if (stop_stack_dummy == STOP_STACK_DUMMY)
8579 {
8580 /* Pop the empty frame that contains the stack dummy. This
8581 also restores inferior state prior to the call (struct
8582 infcall_suspend_state). */
8583 struct frame_info *frame = get_current_frame ();
8584
8585 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8586 frame_pop (frame);
8587 /* frame_pop calls reinit_frame_cache as the last thing it
8588 does which means there's now no selected frame. */
8589 }
8590
8591 select_frame (get_current_frame ());
8592
8593 /* Set the current source location. */
8594 set_current_sal_from_frame (get_current_frame ());
8595 }
dd7e2d2b
PA
8596
8597 /* Look up the hook_stop and run it (CLI internally handles problem
8598 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8599 if (stop_command != NULL)
8600 {
2d844eaf 8601 stop_context saved_context;
4c2f2a79 8602
a70b8144 8603 try
bf469271
PA
8604 {
8605 execute_cmd_pre_hook (stop_command);
8606 }
230d2906 8607 catch (const gdb_exception &ex)
bf469271
PA
8608 {
8609 exception_fprintf (gdb_stderr, ex,
8610 "Error while running hook_stop:\n");
8611 }
4c2f2a79
PA
8612
8613 /* If the stop hook resumes the target, then there's no point in
8614 trying to notify about the previous stop; its context is
8615 gone. Likewise if the command switches thread or inferior --
8616 the observers would print a stop for the wrong
8617 thread/inferior. */
2d844eaf
TT
8618 if (saved_context.changed ())
8619 return 1;
4c2f2a79 8620 }
dd7e2d2b 8621
388a7084
PA
8622 /* Notify observers about the stop. This is where the interpreters
8623 print the stop event. */
d7e15655 8624 if (inferior_ptid != null_ptid)
76727919 8625 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8626 stop_print_frame);
8627 else
76727919 8628 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8629
243a9253
PA
8630 annotate_stopped ();
8631
48844aa6
PA
8632 if (target_has_execution)
8633 {
8634 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8635 && last.kind != TARGET_WAITKIND_EXITED
8636 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8637 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8638 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8639 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8640 }
6c95b8df
PA
8641
8642 /* Try to get rid of automatically added inferiors that are no
8643 longer needed. Keeping those around slows down things linearly.
8644 Note that this never removes the current inferior. */
8645 prune_inferiors ();
4c2f2a79
PA
8646
8647 return 0;
c906108c 8648}
c906108c 8649\f
c5aa993b 8650int
96baa820 8651signal_stop_state (int signo)
c906108c 8652{
d6b48e9c 8653 return signal_stop[signo];
c906108c
SS
8654}
8655
c5aa993b 8656int
96baa820 8657signal_print_state (int signo)
c906108c
SS
8658{
8659 return signal_print[signo];
8660}
8661
c5aa993b 8662int
96baa820 8663signal_pass_state (int signo)
c906108c
SS
8664{
8665 return signal_program[signo];
8666}
8667
2455069d
UW
8668static void
8669signal_cache_update (int signo)
8670{
8671 if (signo == -1)
8672 {
a493e3e2 8673 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8674 signal_cache_update (signo);
8675
8676 return;
8677 }
8678
8679 signal_pass[signo] = (signal_stop[signo] == 0
8680 && signal_print[signo] == 0
ab04a2af
TT
8681 && signal_program[signo] == 1
8682 && signal_catch[signo] == 0);
2455069d
UW
8683}
8684
488f131b 8685int
7bda5e4a 8686signal_stop_update (int signo, int state)
d4f3574e
SS
8687{
8688 int ret = signal_stop[signo];
abbb1732 8689
d4f3574e 8690 signal_stop[signo] = state;
2455069d 8691 signal_cache_update (signo);
d4f3574e
SS
8692 return ret;
8693}
8694
488f131b 8695int
7bda5e4a 8696signal_print_update (int signo, int state)
d4f3574e
SS
8697{
8698 int ret = signal_print[signo];
abbb1732 8699
d4f3574e 8700 signal_print[signo] = state;
2455069d 8701 signal_cache_update (signo);
d4f3574e
SS
8702 return ret;
8703}
8704
488f131b 8705int
7bda5e4a 8706signal_pass_update (int signo, int state)
d4f3574e
SS
8707{
8708 int ret = signal_program[signo];
abbb1732 8709
d4f3574e 8710 signal_program[signo] = state;
2455069d 8711 signal_cache_update (signo);
d4f3574e
SS
8712 return ret;
8713}
8714
ab04a2af
TT
8715/* Update the global 'signal_catch' from INFO and notify the
8716 target. */
8717
8718void
8719signal_catch_update (const unsigned int *info)
8720{
8721 int i;
8722
8723 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8724 signal_catch[i] = info[i] > 0;
8725 signal_cache_update (-1);
adc6a863 8726 target_pass_signals (signal_pass);
ab04a2af
TT
8727}
8728
c906108c 8729static void
96baa820 8730sig_print_header (void)
c906108c 8731{
3e43a32a
MS
8732 printf_filtered (_("Signal Stop\tPrint\tPass "
8733 "to program\tDescription\n"));
c906108c
SS
8734}
8735
8736static void
2ea28649 8737sig_print_info (enum gdb_signal oursig)
c906108c 8738{
2ea28649 8739 const char *name = gdb_signal_to_name (oursig);
c906108c 8740 int name_padding = 13 - strlen (name);
96baa820 8741
c906108c
SS
8742 if (name_padding <= 0)
8743 name_padding = 0;
8744
8745 printf_filtered ("%s", name);
488f131b 8746 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8747 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8748 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8749 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8750 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8751}
8752
8753/* Specify how various signals in the inferior should be handled. */
8754
8755static void
0b39b52e 8756handle_command (const char *args, int from_tty)
c906108c 8757{
c906108c 8758 int digits, wordlen;
b926417a 8759 int sigfirst, siglast;
2ea28649 8760 enum gdb_signal oursig;
c906108c 8761 int allsigs;
c906108c
SS
8762
8763 if (args == NULL)
8764 {
e2e0b3e5 8765 error_no_arg (_("signal to handle"));
c906108c
SS
8766 }
8767
1777feb0 8768 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8769
adc6a863
PA
8770 const size_t nsigs = GDB_SIGNAL_LAST;
8771 unsigned char sigs[nsigs] {};
c906108c 8772
1777feb0 8773 /* Break the command line up into args. */
c906108c 8774
773a1edc 8775 gdb_argv built_argv (args);
c906108c
SS
8776
8777 /* Walk through the args, looking for signal oursigs, signal names, and
8778 actions. Signal numbers and signal names may be interspersed with
8779 actions, with the actions being performed for all signals cumulatively
1777feb0 8780 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8781
773a1edc 8782 for (char *arg : built_argv)
c906108c 8783 {
773a1edc
TT
8784 wordlen = strlen (arg);
8785 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8786 {;
8787 }
8788 allsigs = 0;
8789 sigfirst = siglast = -1;
8790
773a1edc 8791 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8792 {
8793 /* Apply action to all signals except those used by the
1777feb0 8794 debugger. Silently skip those. */
c906108c
SS
8795 allsigs = 1;
8796 sigfirst = 0;
8797 siglast = nsigs - 1;
8798 }
773a1edc 8799 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8800 {
8801 SET_SIGS (nsigs, sigs, signal_stop);
8802 SET_SIGS (nsigs, sigs, signal_print);
8803 }
773a1edc 8804 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8805 {
8806 UNSET_SIGS (nsigs, sigs, signal_program);
8807 }
773a1edc 8808 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8809 {
8810 SET_SIGS (nsigs, sigs, signal_print);
8811 }
773a1edc 8812 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8813 {
8814 SET_SIGS (nsigs, sigs, signal_program);
8815 }
773a1edc 8816 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8817 {
8818 UNSET_SIGS (nsigs, sigs, signal_stop);
8819 }
773a1edc 8820 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8821 {
8822 SET_SIGS (nsigs, sigs, signal_program);
8823 }
773a1edc 8824 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8825 {
8826 UNSET_SIGS (nsigs, sigs, signal_print);
8827 UNSET_SIGS (nsigs, sigs, signal_stop);
8828 }
773a1edc 8829 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8830 {
8831 UNSET_SIGS (nsigs, sigs, signal_program);
8832 }
8833 else if (digits > 0)
8834 {
8835 /* It is numeric. The numeric signal refers to our own
8836 internal signal numbering from target.h, not to host/target
8837 signal number. This is a feature; users really should be
8838 using symbolic names anyway, and the common ones like
8839 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8840
8841 sigfirst = siglast = (int)
773a1edc
TT
8842 gdb_signal_from_command (atoi (arg));
8843 if (arg[digits] == '-')
c906108c
SS
8844 {
8845 siglast = (int)
773a1edc 8846 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8847 }
8848 if (sigfirst > siglast)
8849 {
1777feb0 8850 /* Bet he didn't figure we'd think of this case... */
b926417a 8851 std::swap (sigfirst, siglast);
c906108c
SS
8852 }
8853 }
8854 else
8855 {
773a1edc 8856 oursig = gdb_signal_from_name (arg);
a493e3e2 8857 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8858 {
8859 sigfirst = siglast = (int) oursig;
8860 }
8861 else
8862 {
8863 /* Not a number and not a recognized flag word => complain. */
773a1edc 8864 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8865 }
8866 }
8867
8868 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8869 which signals to apply actions to. */
c906108c 8870
b926417a 8871 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8872 {
2ea28649 8873 switch ((enum gdb_signal) signum)
c906108c 8874 {
a493e3e2
PA
8875 case GDB_SIGNAL_TRAP:
8876 case GDB_SIGNAL_INT:
c906108c
SS
8877 if (!allsigs && !sigs[signum])
8878 {
9e2f0ad4 8879 if (query (_("%s is used by the debugger.\n\
3e43a32a 8880Are you sure you want to change it? "),
2ea28649 8881 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8882 {
8883 sigs[signum] = 1;
8884 }
8885 else
c119e040 8886 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8887 }
8888 break;
a493e3e2
PA
8889 case GDB_SIGNAL_0:
8890 case GDB_SIGNAL_DEFAULT:
8891 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8892 /* Make sure that "all" doesn't print these. */
8893 break;
8894 default:
8895 sigs[signum] = 1;
8896 break;
8897 }
8898 }
c906108c
SS
8899 }
8900
b926417a 8901 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8902 if (sigs[signum])
8903 {
2455069d 8904 signal_cache_update (-1);
adc6a863
PA
8905 target_pass_signals (signal_pass);
8906 target_program_signals (signal_program);
c906108c 8907
3a031f65
PA
8908 if (from_tty)
8909 {
8910 /* Show the results. */
8911 sig_print_header ();
8912 for (; signum < nsigs; signum++)
8913 if (sigs[signum])
aead7601 8914 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8915 }
8916
8917 break;
8918 }
c906108c
SS
8919}
8920
de0bea00
MF
8921/* Complete the "handle" command. */
8922
eb3ff9a5 8923static void
de0bea00 8924handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8925 completion_tracker &tracker,
6f937416 8926 const char *text, const char *word)
de0bea00 8927{
de0bea00
MF
8928 static const char * const keywords[] =
8929 {
8930 "all",
8931 "stop",
8932 "ignore",
8933 "print",
8934 "pass",
8935 "nostop",
8936 "noignore",
8937 "noprint",
8938 "nopass",
8939 NULL,
8940 };
8941
eb3ff9a5
PA
8942 signal_completer (ignore, tracker, text, word);
8943 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8944}
8945
2ea28649
PA
8946enum gdb_signal
8947gdb_signal_from_command (int num)
ed01b82c
PA
8948{
8949 if (num >= 1 && num <= 15)
2ea28649 8950 return (enum gdb_signal) num;
ed01b82c
PA
8951 error (_("Only signals 1-15 are valid as numeric signals.\n\
8952Use \"info signals\" for a list of symbolic signals."));
8953}
8954
c906108c
SS
8955/* Print current contents of the tables set by the handle command.
8956 It is possible we should just be printing signals actually used
8957 by the current target (but for things to work right when switching
8958 targets, all signals should be in the signal tables). */
8959
8960static void
1d12d88f 8961info_signals_command (const char *signum_exp, int from_tty)
c906108c 8962{
2ea28649 8963 enum gdb_signal oursig;
abbb1732 8964
c906108c
SS
8965 sig_print_header ();
8966
8967 if (signum_exp)
8968 {
8969 /* First see if this is a symbol name. */
2ea28649 8970 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8971 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8972 {
8973 /* No, try numeric. */
8974 oursig =
2ea28649 8975 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8976 }
8977 sig_print_info (oursig);
8978 return;
8979 }
8980
8981 printf_filtered ("\n");
8982 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8983 for (oursig = GDB_SIGNAL_FIRST;
8984 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8985 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8986 {
8987 QUIT;
8988
a493e3e2
PA
8989 if (oursig != GDB_SIGNAL_UNKNOWN
8990 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8991 sig_print_info (oursig);
8992 }
8993
3e43a32a
MS
8994 printf_filtered (_("\nUse the \"handle\" command "
8995 "to change these tables.\n"));
c906108c 8996}
4aa995e1
PA
8997
8998/* The $_siginfo convenience variable is a bit special. We don't know
8999 for sure the type of the value until we actually have a chance to
7a9dd1b2 9000 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
9001 also dependent on which thread you have selected.
9002
9003 1. making $_siginfo be an internalvar that creates a new value on
9004 access.
9005
9006 2. making the value of $_siginfo be an lval_computed value. */
9007
9008/* This function implements the lval_computed support for reading a
9009 $_siginfo value. */
9010
9011static void
9012siginfo_value_read (struct value *v)
9013{
9014 LONGEST transferred;
9015
a911d87a
PA
9016 /* If we can access registers, so can we access $_siginfo. Likewise
9017 vice versa. */
9018 validate_registers_access ();
c709acd1 9019
4aa995e1 9020 transferred =
8b88a78e 9021 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
9022 NULL,
9023 value_contents_all_raw (v),
9024 value_offset (v),
9025 TYPE_LENGTH (value_type (v)));
9026
9027 if (transferred != TYPE_LENGTH (value_type (v)))
9028 error (_("Unable to read siginfo"));
9029}
9030
9031/* This function implements the lval_computed support for writing a
9032 $_siginfo value. */
9033
9034static void
9035siginfo_value_write (struct value *v, struct value *fromval)
9036{
9037 LONGEST transferred;
9038
a911d87a
PA
9039 /* If we can access registers, so can we access $_siginfo. Likewise
9040 vice versa. */
9041 validate_registers_access ();
c709acd1 9042
8b88a78e 9043 transferred = target_write (current_top_target (),
4aa995e1
PA
9044 TARGET_OBJECT_SIGNAL_INFO,
9045 NULL,
9046 value_contents_all_raw (fromval),
9047 value_offset (v),
9048 TYPE_LENGTH (value_type (fromval)));
9049
9050 if (transferred != TYPE_LENGTH (value_type (fromval)))
9051 error (_("Unable to write siginfo"));
9052}
9053
c8f2448a 9054static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
9055 {
9056 siginfo_value_read,
9057 siginfo_value_write
9058 };
9059
9060/* Return a new value with the correct type for the siginfo object of
78267919
UW
9061 the current thread using architecture GDBARCH. Return a void value
9062 if there's no object available. */
4aa995e1 9063
2c0b251b 9064static struct value *
22d2b532
SDJ
9065siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9066 void *ignore)
4aa995e1 9067{
4aa995e1 9068 if (target_has_stack
d7e15655 9069 && inferior_ptid != null_ptid
78267919 9070 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 9071 {
78267919 9072 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 9073
78267919 9074 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
9075 }
9076
78267919 9077 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
9078}
9079
c906108c 9080\f
16c381f0
JK
9081/* infcall_suspend_state contains state about the program itself like its
9082 registers and any signal it received when it last stopped.
9083 This state must be restored regardless of how the inferior function call
9084 ends (either successfully, or after it hits a breakpoint or signal)
9085 if the program is to properly continue where it left off. */
9086
6bf78e29 9087class infcall_suspend_state
7a292a7a 9088{
6bf78e29
AB
9089public:
9090 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9091 once the inferior function call has finished. */
9092 infcall_suspend_state (struct gdbarch *gdbarch,
9093 const struct thread_info *tp,
9094 struct regcache *regcache)
9095 : m_thread_suspend (tp->suspend),
9096 m_registers (new readonly_detached_regcache (*regcache))
9097 {
9098 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9099
9100 if (gdbarch_get_siginfo_type_p (gdbarch))
9101 {
9102 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9103 size_t len = TYPE_LENGTH (type);
9104
9105 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9106
9107 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9108 siginfo_data.get (), 0, len) != len)
9109 {
9110 /* Errors ignored. */
9111 siginfo_data.reset (nullptr);
9112 }
9113 }
9114
9115 if (siginfo_data)
9116 {
9117 m_siginfo_gdbarch = gdbarch;
9118 m_siginfo_data = std::move (siginfo_data);
9119 }
9120 }
9121
9122 /* Return a pointer to the stored register state. */
16c381f0 9123
6bf78e29
AB
9124 readonly_detached_regcache *registers () const
9125 {
9126 return m_registers.get ();
9127 }
9128
9129 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9130
9131 void restore (struct gdbarch *gdbarch,
9132 struct thread_info *tp,
9133 struct regcache *regcache) const
9134 {
9135 tp->suspend = m_thread_suspend;
9136
9137 if (m_siginfo_gdbarch == gdbarch)
9138 {
9139 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9140
9141 /* Errors ignored. */
9142 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9143 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9144 }
9145
9146 /* The inferior can be gone if the user types "print exit(0)"
9147 (and perhaps other times). */
9148 if (target_has_execution)
9149 /* NB: The register write goes through to the target. */
9150 regcache->restore (registers ());
9151 }
9152
9153private:
9154 /* How the current thread stopped before the inferior function call was
9155 executed. */
9156 struct thread_suspend_state m_thread_suspend;
9157
9158 /* The registers before the inferior function call was executed. */
9159 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 9160
35515841 9161 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 9162 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
9163
9164 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9165 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9166 content would be invalid. */
6bf78e29 9167 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
9168};
9169
cb524840
TT
9170infcall_suspend_state_up
9171save_infcall_suspend_state ()
b89667eb 9172{
b89667eb 9173 struct thread_info *tp = inferior_thread ();
1736ad11 9174 struct regcache *regcache = get_current_regcache ();
ac7936df 9175 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 9176
6bf78e29
AB
9177 infcall_suspend_state_up inf_state
9178 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 9179
6bf78e29
AB
9180 /* Having saved the current state, adjust the thread state, discarding
9181 any stop signal information. The stop signal is not useful when
9182 starting an inferior function call, and run_inferior_call will not use
9183 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 9184 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 9185
b89667eb
DE
9186 return inf_state;
9187}
9188
9189/* Restore inferior session state to INF_STATE. */
9190
9191void
16c381f0 9192restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9193{
9194 struct thread_info *tp = inferior_thread ();
1736ad11 9195 struct regcache *regcache = get_current_regcache ();
ac7936df 9196 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9197
6bf78e29 9198 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9199 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9200}
9201
b89667eb 9202void
16c381f0 9203discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9204{
dd848631 9205 delete inf_state;
b89667eb
DE
9206}
9207
daf6667d 9208readonly_detached_regcache *
16c381f0 9209get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9210{
6bf78e29 9211 return inf_state->registers ();
b89667eb
DE
9212}
9213
16c381f0
JK
9214/* infcall_control_state contains state regarding gdb's control of the
9215 inferior itself like stepping control. It also contains session state like
9216 the user's currently selected frame. */
b89667eb 9217
16c381f0 9218struct infcall_control_state
b89667eb 9219{
16c381f0
JK
9220 struct thread_control_state thread_control;
9221 struct inferior_control_state inferior_control;
d82142e2
JK
9222
9223 /* Other fields: */
ee841dd8
TT
9224 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9225 int stopped_by_random_signal = 0;
7a292a7a 9226
b89667eb 9227 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 9228 struct frame_id selected_frame_id {};
7a292a7a
SS
9229};
9230
c906108c 9231/* Save all of the information associated with the inferior<==>gdb
b89667eb 9232 connection. */
c906108c 9233
cb524840
TT
9234infcall_control_state_up
9235save_infcall_control_state ()
c906108c 9236{
cb524840 9237 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9238 struct thread_info *tp = inferior_thread ();
d6b48e9c 9239 struct inferior *inf = current_inferior ();
7a292a7a 9240
16c381f0
JK
9241 inf_status->thread_control = tp->control;
9242 inf_status->inferior_control = inf->control;
d82142e2 9243
8358c15c 9244 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9245 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9246
16c381f0
JK
9247 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9248 chain. If caller's caller is walking the chain, they'll be happier if we
9249 hand them back the original chain when restore_infcall_control_state is
9250 called. */
9251 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9252
9253 /* Other fields: */
9254 inf_status->stop_stack_dummy = stop_stack_dummy;
9255 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9256
206415a3 9257 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9258
7a292a7a 9259 return inf_status;
c906108c
SS
9260}
9261
bf469271
PA
9262static void
9263restore_selected_frame (const frame_id &fid)
c906108c 9264{
bf469271 9265 frame_info *frame = frame_find_by_id (fid);
c906108c 9266
aa0cd9c1
AC
9267 /* If inf_status->selected_frame_id is NULL, there was no previously
9268 selected frame. */
101dcfbe 9269 if (frame == NULL)
c906108c 9270 {
8a3fe4f8 9271 warning (_("Unable to restore previously selected frame."));
bf469271 9272 return;
c906108c
SS
9273 }
9274
0f7d239c 9275 select_frame (frame);
c906108c
SS
9276}
9277
b89667eb
DE
9278/* Restore inferior session state to INF_STATUS. */
9279
c906108c 9280void
16c381f0 9281restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9282{
4e1c45ea 9283 struct thread_info *tp = inferior_thread ();
d6b48e9c 9284 struct inferior *inf = current_inferior ();
4e1c45ea 9285
8358c15c
JK
9286 if (tp->control.step_resume_breakpoint)
9287 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9288
5b79abe7
TT
9289 if (tp->control.exception_resume_breakpoint)
9290 tp->control.exception_resume_breakpoint->disposition
9291 = disp_del_at_next_stop;
9292
d82142e2 9293 /* Handle the bpstat_copy of the chain. */
16c381f0 9294 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9295
16c381f0
JK
9296 tp->control = inf_status->thread_control;
9297 inf->control = inf_status->inferior_control;
d82142e2
JK
9298
9299 /* Other fields: */
9300 stop_stack_dummy = inf_status->stop_stack_dummy;
9301 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9302
b89667eb 9303 if (target_has_stack)
c906108c 9304 {
bf469271 9305 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9306 walking the stack might encounter a garbage pointer and
9307 error() trying to dereference it. */
a70b8144 9308 try
bf469271
PA
9309 {
9310 restore_selected_frame (inf_status->selected_frame_id);
9311 }
230d2906 9312 catch (const gdb_exception_error &ex)
bf469271
PA
9313 {
9314 exception_fprintf (gdb_stderr, ex,
9315 "Unable to restore previously selected frame:\n");
9316 /* Error in restoring the selected frame. Select the
9317 innermost frame. */
9318 select_frame (get_current_frame ());
9319 }
c906108c 9320 }
c906108c 9321
ee841dd8 9322 delete inf_status;
7a292a7a 9323}
c906108c
SS
9324
9325void
16c381f0 9326discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9327{
8358c15c
JK
9328 if (inf_status->thread_control.step_resume_breakpoint)
9329 inf_status->thread_control.step_resume_breakpoint->disposition
9330 = disp_del_at_next_stop;
9331
5b79abe7
TT
9332 if (inf_status->thread_control.exception_resume_breakpoint)
9333 inf_status->thread_control.exception_resume_breakpoint->disposition
9334 = disp_del_at_next_stop;
9335
1777feb0 9336 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9337 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9338
ee841dd8 9339 delete inf_status;
7a292a7a 9340}
b89667eb 9341\f
7f89fd65 9342/* See infrun.h. */
0c557179
SDJ
9343
9344void
9345clear_exit_convenience_vars (void)
9346{
9347 clear_internalvar (lookup_internalvar ("_exitsignal"));
9348 clear_internalvar (lookup_internalvar ("_exitcode"));
9349}
c5aa993b 9350\f
488f131b 9351
b2175913
MS
9352/* User interface for reverse debugging:
9353 Set exec-direction / show exec-direction commands
9354 (returns error unless target implements to_set_exec_direction method). */
9355
170742de 9356enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9357static const char exec_forward[] = "forward";
9358static const char exec_reverse[] = "reverse";
9359static const char *exec_direction = exec_forward;
40478521 9360static const char *const exec_direction_names[] = {
b2175913
MS
9361 exec_forward,
9362 exec_reverse,
9363 NULL
9364};
9365
9366static void
eb4c3f4a 9367set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9368 struct cmd_list_element *cmd)
9369{
9370 if (target_can_execute_reverse)
9371 {
9372 if (!strcmp (exec_direction, exec_forward))
9373 execution_direction = EXEC_FORWARD;
9374 else if (!strcmp (exec_direction, exec_reverse))
9375 execution_direction = EXEC_REVERSE;
9376 }
8bbed405
MS
9377 else
9378 {
9379 exec_direction = exec_forward;
9380 error (_("Target does not support this operation."));
9381 }
b2175913
MS
9382}
9383
9384static void
9385show_exec_direction_func (struct ui_file *out, int from_tty,
9386 struct cmd_list_element *cmd, const char *value)
9387{
9388 switch (execution_direction) {
9389 case EXEC_FORWARD:
9390 fprintf_filtered (out, _("Forward.\n"));
9391 break;
9392 case EXEC_REVERSE:
9393 fprintf_filtered (out, _("Reverse.\n"));
9394 break;
b2175913 9395 default:
d8b34453
PA
9396 internal_error (__FILE__, __LINE__,
9397 _("bogus execution_direction value: %d"),
9398 (int) execution_direction);
b2175913
MS
9399 }
9400}
9401
d4db2f36
PA
9402static void
9403show_schedule_multiple (struct ui_file *file, int from_tty,
9404 struct cmd_list_element *c, const char *value)
9405{
3e43a32a
MS
9406 fprintf_filtered (file, _("Resuming the execution of threads "
9407 "of all processes is %s.\n"), value);
d4db2f36 9408}
ad52ddc6 9409
22d2b532
SDJ
9410/* Implementation of `siginfo' variable. */
9411
9412static const struct internalvar_funcs siginfo_funcs =
9413{
9414 siginfo_make_value,
9415 NULL,
9416 NULL
9417};
9418
372316f1
PA
9419/* Callback for infrun's target events source. This is marked when a
9420 thread has a pending status to process. */
9421
9422static void
9423infrun_async_inferior_event_handler (gdb_client_data data)
9424{
372316f1
PA
9425 inferior_event_handler (INF_REG_EVENT, NULL);
9426}
9427
6c265988 9428void _initialize_infrun ();
c906108c 9429void
6c265988 9430_initialize_infrun ()
c906108c 9431{
de0bea00 9432 struct cmd_list_element *c;
c906108c 9433
372316f1
PA
9434 /* Register extra event sources in the event loop. */
9435 infrun_async_inferior_event_token
9436 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9437
11db9430 9438 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9439What debugger does when program gets various signals.\n\
9440Specify a signal as argument to print info on that signal only."));
c906108c
SS
9441 add_info_alias ("handle", "signals", 0);
9442
de0bea00 9443 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9444Specify how to handle signals.\n\
486c7739 9445Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9446Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9447If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9448will be displayed instead.\n\
9449\n\
c906108c
SS
9450Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9451from 1-15 are allowed for compatibility with old versions of GDB.\n\
9452Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9453The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9454used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9455\n\
1bedd215 9456Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9457\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9458Stop means reenter debugger if this signal happens (implies print).\n\
9459Print means print a message if this signal happens.\n\
9460Pass means let program see this signal; otherwise program doesn't know.\n\
9461Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9462Pass and Stop may be combined.\n\
9463\n\
9464Multiple signals may be specified. Signal numbers and signal names\n\
9465may be interspersed with actions, with the actions being performed for\n\
9466all signals cumulatively specified."));
de0bea00 9467 set_cmd_completer (c, handle_completer);
486c7739 9468
c906108c 9469 if (!dbx_commands)
1a966eab
AC
9470 stop_command = add_cmd ("stop", class_obscure,
9471 not_just_help_class_command, _("\
9472There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9473This allows you to set a list of commands to be run each time execution\n\
1a966eab 9474of the program stops."), &cmdlist);
c906108c 9475
ccce17b0 9476 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9477Set inferior debugging."), _("\
9478Show inferior debugging."), _("\
9479When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9480 NULL,
9481 show_debug_infrun,
9482 &setdebuglist, &showdebuglist);
527159b7 9483
3e43a32a
MS
9484 add_setshow_boolean_cmd ("displaced", class_maintenance,
9485 &debug_displaced, _("\
237fc4c9
PA
9486Set displaced stepping debugging."), _("\
9487Show displaced stepping debugging."), _("\
9488When non-zero, displaced stepping specific debugging is enabled."),
9489 NULL,
9490 show_debug_displaced,
9491 &setdebuglist, &showdebuglist);
9492
ad52ddc6
PA
9493 add_setshow_boolean_cmd ("non-stop", no_class,
9494 &non_stop_1, _("\
9495Set whether gdb controls the inferior in non-stop mode."), _("\
9496Show whether gdb controls the inferior in non-stop mode."), _("\
9497When debugging a multi-threaded program and this setting is\n\
9498off (the default, also called all-stop mode), when one thread stops\n\
9499(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9500all other threads in the program while you interact with the thread of\n\
9501interest. When you continue or step a thread, you can allow the other\n\
9502threads to run, or have them remain stopped, but while you inspect any\n\
9503thread's state, all threads stop.\n\
9504\n\
9505In non-stop mode, when one thread stops, other threads can continue\n\
9506to run freely. You'll be able to step each thread independently,\n\
9507leave it stopped or free to run as needed."),
9508 set_non_stop,
9509 show_non_stop,
9510 &setlist,
9511 &showlist);
9512
adc6a863 9513 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9514 {
9515 signal_stop[i] = 1;
9516 signal_print[i] = 1;
9517 signal_program[i] = 1;
ab04a2af 9518 signal_catch[i] = 0;
c906108c
SS
9519 }
9520
4d9d9d04
PA
9521 /* Signals caused by debugger's own actions should not be given to
9522 the program afterwards.
9523
9524 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9525 explicitly specifies that it should be delivered to the target
9526 program. Typically, that would occur when a user is debugging a
9527 target monitor on a simulator: the target monitor sets a
9528 breakpoint; the simulator encounters this breakpoint and halts
9529 the simulation handing control to GDB; GDB, noting that the stop
9530 address doesn't map to any known breakpoint, returns control back
9531 to the simulator; the simulator then delivers the hardware
9532 equivalent of a GDB_SIGNAL_TRAP to the program being
9533 debugged. */
a493e3e2
PA
9534 signal_program[GDB_SIGNAL_TRAP] = 0;
9535 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9536
9537 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9538 signal_stop[GDB_SIGNAL_ALRM] = 0;
9539 signal_print[GDB_SIGNAL_ALRM] = 0;
9540 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9541 signal_print[GDB_SIGNAL_VTALRM] = 0;
9542 signal_stop[GDB_SIGNAL_PROF] = 0;
9543 signal_print[GDB_SIGNAL_PROF] = 0;
9544 signal_stop[GDB_SIGNAL_CHLD] = 0;
9545 signal_print[GDB_SIGNAL_CHLD] = 0;
9546 signal_stop[GDB_SIGNAL_IO] = 0;
9547 signal_print[GDB_SIGNAL_IO] = 0;
9548 signal_stop[GDB_SIGNAL_POLL] = 0;
9549 signal_print[GDB_SIGNAL_POLL] = 0;
9550 signal_stop[GDB_SIGNAL_URG] = 0;
9551 signal_print[GDB_SIGNAL_URG] = 0;
9552 signal_stop[GDB_SIGNAL_WINCH] = 0;
9553 signal_print[GDB_SIGNAL_WINCH] = 0;
9554 signal_stop[GDB_SIGNAL_PRIO] = 0;
9555 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9556
cd0fc7c3
SS
9557 /* These signals are used internally by user-level thread
9558 implementations. (See signal(5) on Solaris.) Like the above
9559 signals, a healthy program receives and handles them as part of
9560 its normal operation. */
a493e3e2
PA
9561 signal_stop[GDB_SIGNAL_LWP] = 0;
9562 signal_print[GDB_SIGNAL_LWP] = 0;
9563 signal_stop[GDB_SIGNAL_WAITING] = 0;
9564 signal_print[GDB_SIGNAL_WAITING] = 0;
9565 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9566 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9567 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9568 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9569
2455069d
UW
9570 /* Update cached state. */
9571 signal_cache_update (-1);
9572
85c07804
AC
9573 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9574 &stop_on_solib_events, _("\
9575Set stopping for shared library events."), _("\
9576Show stopping for shared library events."), _("\
c906108c
SS
9577If nonzero, gdb will give control to the user when the dynamic linker\n\
9578notifies gdb of shared library events. The most common event of interest\n\
85c07804 9579to the user would be loading/unloading of a new library."),
f9e14852 9580 set_stop_on_solib_events,
920d2a44 9581 show_stop_on_solib_events,
85c07804 9582 &setlist, &showlist);
c906108c 9583
7ab04401
AC
9584 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9585 follow_fork_mode_kind_names,
9586 &follow_fork_mode_string, _("\
9587Set debugger response to a program call of fork or vfork."), _("\
9588Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9589A fork or vfork creates a new process. follow-fork-mode can be:\n\
9590 parent - the original process is debugged after a fork\n\
9591 child - the new process is debugged after a fork\n\
ea1dd7bc 9592The unfollowed process will continue to run.\n\
7ab04401
AC
9593By default, the debugger will follow the parent process."),
9594 NULL,
920d2a44 9595 show_follow_fork_mode_string,
7ab04401
AC
9596 &setlist, &showlist);
9597
6c95b8df
PA
9598 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9599 follow_exec_mode_names,
9600 &follow_exec_mode_string, _("\
9601Set debugger response to a program call of exec."), _("\
9602Show debugger response to a program call of exec."), _("\
9603An exec call replaces the program image of a process.\n\
9604\n\
9605follow-exec-mode can be:\n\
9606\n\
cce7e648 9607 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9608to this new inferior. The program the process was running before\n\
9609the exec call can be restarted afterwards by restarting the original\n\
9610inferior.\n\
9611\n\
9612 same - the debugger keeps the process bound to the same inferior.\n\
9613The new executable image replaces the previous executable loaded in\n\
9614the inferior. Restarting the inferior after the exec call restarts\n\
9615the executable the process was running after the exec call.\n\
9616\n\
9617By default, the debugger will use the same inferior."),
9618 NULL,
9619 show_follow_exec_mode_string,
9620 &setlist, &showlist);
9621
7ab04401
AC
9622 add_setshow_enum_cmd ("scheduler-locking", class_run,
9623 scheduler_enums, &scheduler_mode, _("\
9624Set mode for locking scheduler during execution."), _("\
9625Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9626off == no locking (threads may preempt at any time)\n\
9627on == full locking (no thread except the current thread may run)\n\
9628 This applies to both normal execution and replay mode.\n\
9629step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9630 In this mode, other threads may run during other commands.\n\
9631 This applies to both normal execution and replay mode.\n\
9632replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9633 set_schedlock_func, /* traps on target vector */
920d2a44 9634 show_scheduler_mode,
7ab04401 9635 &setlist, &showlist);
5fbbeb29 9636
d4db2f36
PA
9637 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9638Set mode for resuming threads of all processes."), _("\
9639Show mode for resuming threads of all processes."), _("\
9640When on, execution commands (such as 'continue' or 'next') resume all\n\
9641threads of all processes. When off (which is the default), execution\n\
9642commands only resume the threads of the current process. The set of\n\
9643threads that are resumed is further refined by the scheduler-locking\n\
9644mode (see help set scheduler-locking)."),
9645 NULL,
9646 show_schedule_multiple,
9647 &setlist, &showlist);
9648
5bf193a2
AC
9649 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9650Set mode of the step operation."), _("\
9651Show mode of the step operation."), _("\
9652When set, doing a step over a function without debug line information\n\
9653will stop at the first instruction of that function. Otherwise, the\n\
9654function is skipped and the step command stops at a different source line."),
9655 NULL,
920d2a44 9656 show_step_stop_if_no_debug,
5bf193a2 9657 &setlist, &showlist);
ca6724c1 9658
72d0e2c5
YQ
9659 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9660 &can_use_displaced_stepping, _("\
237fc4c9
PA
9661Set debugger's willingness to use displaced stepping."), _("\
9662Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9663If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9664supported by the target architecture. If off, gdb will not use displaced\n\
9665stepping to step over breakpoints, even if such is supported by the target\n\
9666architecture. If auto (which is the default), gdb will use displaced stepping\n\
9667if the target architecture supports it and non-stop mode is active, but will not\n\
9668use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9669 NULL,
9670 show_can_use_displaced_stepping,
9671 &setlist, &showlist);
237fc4c9 9672
b2175913
MS
9673 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9674 &exec_direction, _("Set direction of execution.\n\
9675Options are 'forward' or 'reverse'."),
9676 _("Show direction of execution (forward/reverse)."),
9677 _("Tells gdb whether to execute forward or backward."),
9678 set_exec_direction_func, show_exec_direction_func,
9679 &setlist, &showlist);
9680
6c95b8df
PA
9681 /* Set/show detach-on-fork: user-settable mode. */
9682
9683 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9684Set whether gdb will detach the child of a fork."), _("\
9685Show whether gdb will detach the child of a fork."), _("\
9686Tells gdb whether to detach the child of a fork."),
9687 NULL, NULL, &setlist, &showlist);
9688
03583c20
UW
9689 /* Set/show disable address space randomization mode. */
9690
9691 add_setshow_boolean_cmd ("disable-randomization", class_support,
9692 &disable_randomization, _("\
9693Set disabling of debuggee's virtual address space randomization."), _("\
9694Show disabling of debuggee's virtual address space randomization."), _("\
9695When this mode is on (which is the default), randomization of the virtual\n\
9696address space is disabled. Standalone programs run with the randomization\n\
9697enabled by default on some platforms."),
9698 &set_disable_randomization,
9699 &show_disable_randomization,
9700 &setlist, &showlist);
9701
ca6724c1 9702 /* ptid initializations */
ca6724c1
KB
9703 inferior_ptid = null_ptid;
9704 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9705
76727919
TT
9706 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9707 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9708 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9709 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9710
9711 /* Explicitly create without lookup, since that tries to create a
9712 value with a void typed value, and when we get here, gdbarch
9713 isn't initialized yet. At this point, we're quite sure there
9714 isn't another convenience variable of the same name. */
22d2b532 9715 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9716
9717 add_setshow_boolean_cmd ("observer", no_class,
9718 &observer_mode_1, _("\
9719Set whether gdb controls the inferior in observer mode."), _("\
9720Show whether gdb controls the inferior in observer mode."), _("\
9721In observer mode, GDB can get data from the inferior, but not\n\
9722affect its execution. Registers and memory may not be changed,\n\
9723breakpoints may not be set, and the program cannot be interrupted\n\
9724or signalled."),
9725 set_observer_mode,
9726 show_observer_mode,
9727 &setlist,
9728 &showlist);
c906108c 9729}
This page took 2.746244 seconds and 4 git commands to generate.