mm/Kconfig: remove redundant arch depend for memory hotplug
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
1da177e4 252
2c85f51d
JB
253static unsigned long __meminitdata nr_kernel_pages;
254static unsigned long __meminitdata nr_all_pages;
a3142c8e 255static unsigned long __meminitdata dma_reserve;
1da177e4 256
0ee332c1
TH
257#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
258static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
259static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __initdata required_kernelcore;
261static unsigned long __initdata required_movablecore;
262static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 263static bool mirrored_kernelcore;
0ee332c1
TH
264
265/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
266int movable_zone;
267EXPORT_SYMBOL(movable_zone);
268#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 269
418508c1
MS
270#if MAX_NUMNODES > 1
271int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 272int nr_online_nodes __read_mostly = 1;
418508c1 273EXPORT_SYMBOL(nr_node_ids);
62bc62a8 274EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
275#endif
276
9ef9acb0
MG
277int page_group_by_mobility_disabled __read_mostly;
278
3a80a7fa
MG
279#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
280static inline void reset_deferred_meminit(pg_data_t *pgdat)
281{
282 pgdat->first_deferred_pfn = ULONG_MAX;
283}
284
285/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 286static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 287{
ae026b2a 288 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
289 return true;
290
291 return false;
292}
293
7e18adb4
MG
294static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
295{
296 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
297 return true;
298
299 return false;
300}
301
3a80a7fa
MG
302/*
303 * Returns false when the remaining initialisation should be deferred until
304 * later in the boot cycle when it can be parallelised.
305 */
306static inline bool update_defer_init(pg_data_t *pgdat,
307 unsigned long pfn, unsigned long zone_end,
308 unsigned long *nr_initialised)
309{
310 /* Always populate low zones for address-contrained allocations */
311 if (zone_end < pgdat_end_pfn(pgdat))
312 return true;
313
314 /* Initialise at least 2G of the highest zone */
315 (*nr_initialised)++;
316 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
317 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
318 pgdat->first_deferred_pfn = pfn;
319 return false;
320 }
321
322 return true;
323}
324#else
325static inline void reset_deferred_meminit(pg_data_t *pgdat)
326{
327}
328
329static inline bool early_page_uninitialised(unsigned long pfn)
330{
331 return false;
332}
333
7e18adb4
MG
334static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
335{
336 return false;
337}
338
3a80a7fa
MG
339static inline bool update_defer_init(pg_data_t *pgdat,
340 unsigned long pfn, unsigned long zone_end,
341 unsigned long *nr_initialised)
342{
343 return true;
344}
345#endif
346
347
ee6f509c 348void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 349{
5d0f3f72
KM
350 if (unlikely(page_group_by_mobility_disabled &&
351 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
352 migratetype = MIGRATE_UNMOVABLE;
353
b2a0ac88
MG
354 set_pageblock_flags_group(page, (unsigned long)migratetype,
355 PB_migrate, PB_migrate_end);
356}
357
13e7444b 358#ifdef CONFIG_DEBUG_VM
c6a57e19 359static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 360{
bdc8cb98
DH
361 int ret = 0;
362 unsigned seq;
363 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 364 unsigned long sp, start_pfn;
c6a57e19 365
bdc8cb98
DH
366 do {
367 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
368 start_pfn = zone->zone_start_pfn;
369 sp = zone->spanned_pages;
108bcc96 370 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
371 ret = 1;
372 } while (zone_span_seqretry(zone, seq));
373
b5e6a5a2 374 if (ret)
613813e8
DH
375 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
376 pfn, zone_to_nid(zone), zone->name,
377 start_pfn, start_pfn + sp);
b5e6a5a2 378
bdc8cb98 379 return ret;
c6a57e19
DH
380}
381
382static int page_is_consistent(struct zone *zone, struct page *page)
383{
14e07298 384 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 385 return 0;
1da177e4 386 if (zone != page_zone(page))
c6a57e19
DH
387 return 0;
388
389 return 1;
390}
391/*
392 * Temporary debugging check for pages not lying within a given zone.
393 */
394static int bad_range(struct zone *zone, struct page *page)
395{
396 if (page_outside_zone_boundaries(zone, page))
1da177e4 397 return 1;
c6a57e19
DH
398 if (!page_is_consistent(zone, page))
399 return 1;
400
1da177e4
LT
401 return 0;
402}
13e7444b
NP
403#else
404static inline int bad_range(struct zone *zone, struct page *page)
405{
406 return 0;
407}
408#endif
409
d230dec1
KS
410static void bad_page(struct page *page, const char *reason,
411 unsigned long bad_flags)
1da177e4 412{
d936cf9b
HD
413 static unsigned long resume;
414 static unsigned long nr_shown;
415 static unsigned long nr_unshown;
416
2a7684a2
WF
417 /* Don't complain about poisoned pages */
418 if (PageHWPoison(page)) {
22b751c3 419 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
420 return;
421 }
422
d936cf9b
HD
423 /*
424 * Allow a burst of 60 reports, then keep quiet for that minute;
425 * or allow a steady drip of one report per second.
426 */
427 if (nr_shown == 60) {
428 if (time_before(jiffies, resume)) {
429 nr_unshown++;
430 goto out;
431 }
432 if (nr_unshown) {
ff8e8116 433 pr_alert(
1e9e6365 434 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
435 nr_unshown);
436 nr_unshown = 0;
437 }
438 nr_shown = 0;
439 }
440 if (nr_shown++ == 0)
441 resume = jiffies + 60 * HZ;
442
ff8e8116 443 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 444 current->comm, page_to_pfn(page));
ff8e8116
VB
445 __dump_page(page, reason);
446 bad_flags &= page->flags;
447 if (bad_flags)
448 pr_alert("bad because of flags: %#lx(%pGp)\n",
449 bad_flags, &bad_flags);
4e462112 450 dump_page_owner(page);
3dc14741 451
4f31888c 452 print_modules();
1da177e4 453 dump_stack();
d936cf9b 454out:
8cc3b392 455 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 456 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 457 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
458}
459
1da177e4
LT
460/*
461 * Higher-order pages are called "compound pages". They are structured thusly:
462 *
1d798ca3 463 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 464 *
1d798ca3
KS
465 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
466 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 467 *
1d798ca3
KS
468 * The first tail page's ->compound_dtor holds the offset in array of compound
469 * page destructors. See compound_page_dtors.
1da177e4 470 *
1d798ca3 471 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 472 * This usage means that zero-order pages may not be compound.
1da177e4 473 */
d98c7a09 474
9a982250 475void free_compound_page(struct page *page)
d98c7a09 476{
d85f3385 477 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
478}
479
d00181b9 480void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
481{
482 int i;
483 int nr_pages = 1 << order;
484
f1e61557 485 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
486 set_compound_order(page, order);
487 __SetPageHead(page);
488 for (i = 1; i < nr_pages; i++) {
489 struct page *p = page + i;
58a84aa9 490 set_page_count(p, 0);
1c290f64 491 p->mapping = TAIL_MAPPING;
1d798ca3 492 set_compound_head(p, page);
18229df5 493 }
53f9263b 494 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
495}
496
c0a32fc5
SG
497#ifdef CONFIG_DEBUG_PAGEALLOC
498unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
499bool _debug_pagealloc_enabled __read_mostly
500 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 501EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
502bool _debug_guardpage_enabled __read_mostly;
503
031bc574
JK
504static int __init early_debug_pagealloc(char *buf)
505{
506 if (!buf)
507 return -EINVAL;
508
509 if (strcmp(buf, "on") == 0)
510 _debug_pagealloc_enabled = true;
511
ea6eabb0
CB
512 if (strcmp(buf, "off") == 0)
513 _debug_pagealloc_enabled = false;
514
031bc574
JK
515 return 0;
516}
517early_param("debug_pagealloc", early_debug_pagealloc);
518
e30825f1
JK
519static bool need_debug_guardpage(void)
520{
031bc574
JK
521 /* If we don't use debug_pagealloc, we don't need guard page */
522 if (!debug_pagealloc_enabled())
523 return false;
524
e30825f1
JK
525 return true;
526}
527
528static void init_debug_guardpage(void)
529{
031bc574
JK
530 if (!debug_pagealloc_enabled())
531 return;
532
e30825f1
JK
533 _debug_guardpage_enabled = true;
534}
535
536struct page_ext_operations debug_guardpage_ops = {
537 .need = need_debug_guardpage,
538 .init = init_debug_guardpage,
539};
c0a32fc5
SG
540
541static int __init debug_guardpage_minorder_setup(char *buf)
542{
543 unsigned long res;
544
545 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
546 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
547 return 0;
548 }
549 _debug_guardpage_minorder = res;
550 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
551 return 0;
552}
553__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
554
2847cf95
JK
555static inline void set_page_guard(struct zone *zone, struct page *page,
556 unsigned int order, int migratetype)
c0a32fc5 557{
e30825f1
JK
558 struct page_ext *page_ext;
559
560 if (!debug_guardpage_enabled())
561 return;
562
563 page_ext = lookup_page_ext(page);
564 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
565
2847cf95
JK
566 INIT_LIST_HEAD(&page->lru);
567 set_page_private(page, order);
568 /* Guard pages are not available for any usage */
569 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
570}
571
2847cf95
JK
572static inline void clear_page_guard(struct zone *zone, struct page *page,
573 unsigned int order, int migratetype)
c0a32fc5 574{
e30825f1
JK
575 struct page_ext *page_ext;
576
577 if (!debug_guardpage_enabled())
578 return;
579
580 page_ext = lookup_page_ext(page);
581 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
582
2847cf95
JK
583 set_page_private(page, 0);
584 if (!is_migrate_isolate(migratetype))
585 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
586}
587#else
e30825f1 588struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
589static inline void set_page_guard(struct zone *zone, struct page *page,
590 unsigned int order, int migratetype) {}
591static inline void clear_page_guard(struct zone *zone, struct page *page,
592 unsigned int order, int migratetype) {}
c0a32fc5
SG
593#endif
594
7aeb09f9 595static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 596{
4c21e2f2 597 set_page_private(page, order);
676165a8 598 __SetPageBuddy(page);
1da177e4
LT
599}
600
601static inline void rmv_page_order(struct page *page)
602{
676165a8 603 __ClearPageBuddy(page);
4c21e2f2 604 set_page_private(page, 0);
1da177e4
LT
605}
606
1da177e4
LT
607/*
608 * This function checks whether a page is free && is the buddy
609 * we can do coalesce a page and its buddy if
13e7444b 610 * (a) the buddy is not in a hole &&
676165a8 611 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
612 * (c) a page and its buddy have the same order &&
613 * (d) a page and its buddy are in the same zone.
676165a8 614 *
cf6fe945
WSH
615 * For recording whether a page is in the buddy system, we set ->_mapcount
616 * PAGE_BUDDY_MAPCOUNT_VALUE.
617 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
618 * serialized by zone->lock.
1da177e4 619 *
676165a8 620 * For recording page's order, we use page_private(page).
1da177e4 621 */
cb2b95e1 622static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 623 unsigned int order)
1da177e4 624{
14e07298 625 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 626 return 0;
13e7444b 627
c0a32fc5 628 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
629 if (page_zone_id(page) != page_zone_id(buddy))
630 return 0;
631
4c5018ce
WY
632 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
633
c0a32fc5
SG
634 return 1;
635 }
636
cb2b95e1 637 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
638 /*
639 * zone check is done late to avoid uselessly
640 * calculating zone/node ids for pages that could
641 * never merge.
642 */
643 if (page_zone_id(page) != page_zone_id(buddy))
644 return 0;
645
4c5018ce
WY
646 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
647
6aa3001b 648 return 1;
676165a8 649 }
6aa3001b 650 return 0;
1da177e4
LT
651}
652
653/*
654 * Freeing function for a buddy system allocator.
655 *
656 * The concept of a buddy system is to maintain direct-mapped table
657 * (containing bit values) for memory blocks of various "orders".
658 * The bottom level table contains the map for the smallest allocatable
659 * units of memory (here, pages), and each level above it describes
660 * pairs of units from the levels below, hence, "buddies".
661 * At a high level, all that happens here is marking the table entry
662 * at the bottom level available, and propagating the changes upward
663 * as necessary, plus some accounting needed to play nicely with other
664 * parts of the VM system.
665 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
666 * free pages of length of (1 << order) and marked with _mapcount
667 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
668 * field.
1da177e4 669 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
670 * other. That is, if we allocate a small block, and both were
671 * free, the remainder of the region must be split into blocks.
1da177e4 672 * If a block is freed, and its buddy is also free, then this
5f63b720 673 * triggers coalescing into a block of larger size.
1da177e4 674 *
6d49e352 675 * -- nyc
1da177e4
LT
676 */
677
48db57f8 678static inline void __free_one_page(struct page *page,
dc4b0caf 679 unsigned long pfn,
ed0ae21d
MG
680 struct zone *zone, unsigned int order,
681 int migratetype)
1da177e4
LT
682{
683 unsigned long page_idx;
6dda9d55 684 unsigned long combined_idx;
43506fad 685 unsigned long uninitialized_var(buddy_idx);
6dda9d55 686 struct page *buddy;
d00181b9 687 unsigned int max_order = MAX_ORDER;
1da177e4 688
d29bb978 689 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 690 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 691
ed0ae21d 692 VM_BUG_ON(migratetype == -1);
3c605096
JK
693 if (is_migrate_isolate(migratetype)) {
694 /*
695 * We restrict max order of merging to prevent merge
696 * between freepages on isolate pageblock and normal
697 * pageblock. Without this, pageblock isolation
698 * could cause incorrect freepage accounting.
699 */
d00181b9 700 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
3c605096 701 } else {
8f82b55d 702 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 703 }
ed0ae21d 704
3c605096 705 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 706
309381fe
SL
707 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
708 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 709
3c605096 710 while (order < max_order - 1) {
43506fad
KC
711 buddy_idx = __find_buddy_index(page_idx, order);
712 buddy = page + (buddy_idx - page_idx);
cb2b95e1 713 if (!page_is_buddy(page, buddy, order))
3c82d0ce 714 break;
c0a32fc5
SG
715 /*
716 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
717 * merge with it and move up one order.
718 */
719 if (page_is_guard(buddy)) {
2847cf95 720 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
721 } else {
722 list_del(&buddy->lru);
723 zone->free_area[order].nr_free--;
724 rmv_page_order(buddy);
725 }
43506fad 726 combined_idx = buddy_idx & page_idx;
1da177e4
LT
727 page = page + (combined_idx - page_idx);
728 page_idx = combined_idx;
729 order++;
730 }
731 set_page_order(page, order);
6dda9d55
CZ
732
733 /*
734 * If this is not the largest possible page, check if the buddy
735 * of the next-highest order is free. If it is, it's possible
736 * that pages are being freed that will coalesce soon. In case,
737 * that is happening, add the free page to the tail of the list
738 * so it's less likely to be used soon and more likely to be merged
739 * as a higher order page
740 */
b7f50cfa 741 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 742 struct page *higher_page, *higher_buddy;
43506fad
KC
743 combined_idx = buddy_idx & page_idx;
744 higher_page = page + (combined_idx - page_idx);
745 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 746 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
747 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
748 list_add_tail(&page->lru,
749 &zone->free_area[order].free_list[migratetype]);
750 goto out;
751 }
752 }
753
754 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
755out:
1da177e4
LT
756 zone->free_area[order].nr_free++;
757}
758
224abf92 759static inline int free_pages_check(struct page *page)
1da177e4 760{
d230dec1 761 const char *bad_reason = NULL;
f0b791a3
DH
762 unsigned long bad_flags = 0;
763
53f9263b 764 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
765 bad_reason = "nonzero mapcount";
766 if (unlikely(page->mapping != NULL))
767 bad_reason = "non-NULL mapping";
768 if (unlikely(atomic_read(&page->_count) != 0))
769 bad_reason = "nonzero _count";
770 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
771 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
772 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
773 }
9edad6ea
JW
774#ifdef CONFIG_MEMCG
775 if (unlikely(page->mem_cgroup))
776 bad_reason = "page still charged to cgroup";
777#endif
f0b791a3
DH
778 if (unlikely(bad_reason)) {
779 bad_page(page, bad_reason, bad_flags);
79f4b7bf 780 return 1;
8cc3b392 781 }
90572890 782 page_cpupid_reset_last(page);
79f4b7bf
HD
783 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
784 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
785 return 0;
1da177e4
LT
786}
787
788/*
5f8dcc21 789 * Frees a number of pages from the PCP lists
1da177e4 790 * Assumes all pages on list are in same zone, and of same order.
207f36ee 791 * count is the number of pages to free.
1da177e4
LT
792 *
793 * If the zone was previously in an "all pages pinned" state then look to
794 * see if this freeing clears that state.
795 *
796 * And clear the zone's pages_scanned counter, to hold off the "all pages are
797 * pinned" detection logic.
798 */
5f8dcc21
MG
799static void free_pcppages_bulk(struct zone *zone, int count,
800 struct per_cpu_pages *pcp)
1da177e4 801{
5f8dcc21 802 int migratetype = 0;
a6f9edd6 803 int batch_free = 0;
72853e29 804 int to_free = count;
0d5d823a 805 unsigned long nr_scanned;
5f8dcc21 806
c54ad30c 807 spin_lock(&zone->lock);
0d5d823a
MG
808 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
809 if (nr_scanned)
810 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 811
72853e29 812 while (to_free) {
48db57f8 813 struct page *page;
5f8dcc21
MG
814 struct list_head *list;
815
816 /*
a6f9edd6
MG
817 * Remove pages from lists in a round-robin fashion. A
818 * batch_free count is maintained that is incremented when an
819 * empty list is encountered. This is so more pages are freed
820 * off fuller lists instead of spinning excessively around empty
821 * lists
5f8dcc21
MG
822 */
823 do {
a6f9edd6 824 batch_free++;
5f8dcc21
MG
825 if (++migratetype == MIGRATE_PCPTYPES)
826 migratetype = 0;
827 list = &pcp->lists[migratetype];
828 } while (list_empty(list));
48db57f8 829
1d16871d
NK
830 /* This is the only non-empty list. Free them all. */
831 if (batch_free == MIGRATE_PCPTYPES)
832 batch_free = to_free;
833
a6f9edd6 834 do {
770c8aaa
BZ
835 int mt; /* migratetype of the to-be-freed page */
836
a16601c5 837 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
838 /* must delete as __free_one_page list manipulates */
839 list_del(&page->lru);
aa016d14 840
bb14c2c7 841 mt = get_pcppage_migratetype(page);
aa016d14
VB
842 /* MIGRATE_ISOLATE page should not go to pcplists */
843 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
844 /* Pageblock could have been isolated meanwhile */
8f82b55d 845 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 846 mt = get_pageblock_migratetype(page);
51bb1a40 847
dc4b0caf 848 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 849 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 850 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 851 }
c54ad30c 852 spin_unlock(&zone->lock);
1da177e4
LT
853}
854
dc4b0caf
MG
855static void free_one_page(struct zone *zone,
856 struct page *page, unsigned long pfn,
7aeb09f9 857 unsigned int order,
ed0ae21d 858 int migratetype)
1da177e4 859{
0d5d823a 860 unsigned long nr_scanned;
006d22d9 861 spin_lock(&zone->lock);
0d5d823a
MG
862 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
863 if (nr_scanned)
864 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 865
ad53f92e
JK
866 if (unlikely(has_isolate_pageblock(zone) ||
867 is_migrate_isolate(migratetype))) {
868 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 869 }
dc4b0caf 870 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 871 spin_unlock(&zone->lock);
48db57f8
NP
872}
873
81422f29
KS
874static int free_tail_pages_check(struct page *head_page, struct page *page)
875{
1d798ca3
KS
876 int ret = 1;
877
878 /*
879 * We rely page->lru.next never has bit 0 set, unless the page
880 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
881 */
882 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
883
884 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
885 ret = 0;
886 goto out;
887 }
9a982250
KS
888 switch (page - head_page) {
889 case 1:
890 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
891 if (unlikely(compound_mapcount(page))) {
892 bad_page(page, "nonzero compound_mapcount", 0);
893 goto out;
894 }
9a982250
KS
895 break;
896 case 2:
897 /*
898 * the second tail page: ->mapping is
899 * page_deferred_list().next -- ignore value.
900 */
901 break;
902 default:
903 if (page->mapping != TAIL_MAPPING) {
904 bad_page(page, "corrupted mapping in tail page", 0);
905 goto out;
906 }
907 break;
1c290f64 908 }
81422f29
KS
909 if (unlikely(!PageTail(page))) {
910 bad_page(page, "PageTail not set", 0);
1d798ca3 911 goto out;
81422f29 912 }
1d798ca3
KS
913 if (unlikely(compound_head(page) != head_page)) {
914 bad_page(page, "compound_head not consistent", 0);
915 goto out;
81422f29 916 }
1d798ca3
KS
917 ret = 0;
918out:
1c290f64 919 page->mapping = NULL;
1d798ca3
KS
920 clear_compound_head(page);
921 return ret;
81422f29
KS
922}
923
1e8ce83c
RH
924static void __meminit __init_single_page(struct page *page, unsigned long pfn,
925 unsigned long zone, int nid)
926{
1e8ce83c 927 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
928 init_page_count(page);
929 page_mapcount_reset(page);
930 page_cpupid_reset_last(page);
1e8ce83c 931
1e8ce83c
RH
932 INIT_LIST_HEAD(&page->lru);
933#ifdef WANT_PAGE_VIRTUAL
934 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
935 if (!is_highmem_idx(zone))
936 set_page_address(page, __va(pfn << PAGE_SHIFT));
937#endif
938}
939
940static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
941 int nid)
942{
943 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
944}
945
7e18adb4
MG
946#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
947static void init_reserved_page(unsigned long pfn)
948{
949 pg_data_t *pgdat;
950 int nid, zid;
951
952 if (!early_page_uninitialised(pfn))
953 return;
954
955 nid = early_pfn_to_nid(pfn);
956 pgdat = NODE_DATA(nid);
957
958 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
959 struct zone *zone = &pgdat->node_zones[zid];
960
961 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
962 break;
963 }
964 __init_single_pfn(pfn, zid, nid);
965}
966#else
967static inline void init_reserved_page(unsigned long pfn)
968{
969}
970#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
971
92923ca3
NZ
972/*
973 * Initialised pages do not have PageReserved set. This function is
974 * called for each range allocated by the bootmem allocator and
975 * marks the pages PageReserved. The remaining valid pages are later
976 * sent to the buddy page allocator.
977 */
7e18adb4 978void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
979{
980 unsigned long start_pfn = PFN_DOWN(start);
981 unsigned long end_pfn = PFN_UP(end);
982
7e18adb4
MG
983 for (; start_pfn < end_pfn; start_pfn++) {
984 if (pfn_valid(start_pfn)) {
985 struct page *page = pfn_to_page(start_pfn);
986
987 init_reserved_page(start_pfn);
1d798ca3
KS
988
989 /* Avoid false-positive PageTail() */
990 INIT_LIST_HEAD(&page->lru);
991
7e18adb4
MG
992 SetPageReserved(page);
993 }
994 }
92923ca3
NZ
995}
996
ec95f53a 997static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 998{
81422f29
KS
999 bool compound = PageCompound(page);
1000 int i, bad = 0;
1da177e4 1001
ab1f306f 1002 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 1003 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 1004
b413d48a 1005 trace_mm_page_free(page, order);
b1eeab67 1006 kmemcheck_free_shadow(page, order);
b8c73fc2 1007 kasan_free_pages(page, order);
b1eeab67 1008
8dd60a3a
AA
1009 if (PageAnon(page))
1010 page->mapping = NULL;
81422f29
KS
1011 bad += free_pages_check(page);
1012 for (i = 1; i < (1 << order); i++) {
1013 if (compound)
1014 bad += free_tail_pages_check(page, page + i);
8dd60a3a 1015 bad += free_pages_check(page + i);
81422f29 1016 }
8cc3b392 1017 if (bad)
ec95f53a 1018 return false;
689bcebf 1019
48c96a36
JK
1020 reset_page_owner(page, order);
1021
3ac7fe5a 1022 if (!PageHighMem(page)) {
b8af2941
PK
1023 debug_check_no_locks_freed(page_address(page),
1024 PAGE_SIZE << order);
3ac7fe5a
TG
1025 debug_check_no_obj_freed(page_address(page),
1026 PAGE_SIZE << order);
1027 }
dafb1367 1028 arch_free_page(page, order);
8823b1db 1029 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1030 kernel_map_pages(page, 1 << order, 0);
dafb1367 1031
ec95f53a
KM
1032 return true;
1033}
1034
1035static void __free_pages_ok(struct page *page, unsigned int order)
1036{
1037 unsigned long flags;
95e34412 1038 int migratetype;
dc4b0caf 1039 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1040
1041 if (!free_pages_prepare(page, order))
1042 return;
1043
cfc47a28 1044 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1045 local_irq_save(flags);
f8891e5e 1046 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1047 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1048 local_irq_restore(flags);
1da177e4
LT
1049}
1050
0e1cc95b 1051static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 1052 unsigned long pfn, unsigned int order)
a226f6c8 1053{
c3993076 1054 unsigned int nr_pages = 1 << order;
e2d0bd2b 1055 struct page *p = page;
c3993076 1056 unsigned int loop;
a226f6c8 1057
e2d0bd2b
YL
1058 prefetchw(p);
1059 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1060 prefetchw(p + 1);
c3993076
JW
1061 __ClearPageReserved(p);
1062 set_page_count(p, 0);
a226f6c8 1063 }
e2d0bd2b
YL
1064 __ClearPageReserved(p);
1065 set_page_count(p, 0);
c3993076 1066
e2d0bd2b 1067 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1068 set_page_refcounted(page);
1069 __free_pages(page, order);
a226f6c8
DH
1070}
1071
75a592a4
MG
1072#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1073 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1074
75a592a4
MG
1075static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1076
1077int __meminit early_pfn_to_nid(unsigned long pfn)
1078{
7ace9917 1079 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1080 int nid;
1081
7ace9917 1082 spin_lock(&early_pfn_lock);
75a592a4 1083 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1084 if (nid < 0)
1085 nid = 0;
1086 spin_unlock(&early_pfn_lock);
1087
1088 return nid;
75a592a4
MG
1089}
1090#endif
1091
1092#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1093static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1094 struct mminit_pfnnid_cache *state)
1095{
1096 int nid;
1097
1098 nid = __early_pfn_to_nid(pfn, state);
1099 if (nid >= 0 && nid != node)
1100 return false;
1101 return true;
1102}
1103
1104/* Only safe to use early in boot when initialisation is single-threaded */
1105static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1106{
1107 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1108}
1109
1110#else
1111
1112static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1113{
1114 return true;
1115}
1116static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1117 struct mminit_pfnnid_cache *state)
1118{
1119 return true;
1120}
1121#endif
1122
1123
0e1cc95b 1124void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1125 unsigned int order)
1126{
1127 if (early_page_uninitialised(pfn))
1128 return;
1129 return __free_pages_boot_core(page, pfn, order);
1130}
1131
7cf91a98
JK
1132/*
1133 * Check that the whole (or subset of) a pageblock given by the interval of
1134 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1135 * with the migration of free compaction scanner. The scanners then need to
1136 * use only pfn_valid_within() check for arches that allow holes within
1137 * pageblocks.
1138 *
1139 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1140 *
1141 * It's possible on some configurations to have a setup like node0 node1 node0
1142 * i.e. it's possible that all pages within a zones range of pages do not
1143 * belong to a single zone. We assume that a border between node0 and node1
1144 * can occur within a single pageblock, but not a node0 node1 node0
1145 * interleaving within a single pageblock. It is therefore sufficient to check
1146 * the first and last page of a pageblock and avoid checking each individual
1147 * page in a pageblock.
1148 */
1149struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1150 unsigned long end_pfn, struct zone *zone)
1151{
1152 struct page *start_page;
1153 struct page *end_page;
1154
1155 /* end_pfn is one past the range we are checking */
1156 end_pfn--;
1157
1158 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1159 return NULL;
1160
1161 start_page = pfn_to_page(start_pfn);
1162
1163 if (page_zone(start_page) != zone)
1164 return NULL;
1165
1166 end_page = pfn_to_page(end_pfn);
1167
1168 /* This gives a shorter code than deriving page_zone(end_page) */
1169 if (page_zone_id(start_page) != page_zone_id(end_page))
1170 return NULL;
1171
1172 return start_page;
1173}
1174
1175void set_zone_contiguous(struct zone *zone)
1176{
1177 unsigned long block_start_pfn = zone->zone_start_pfn;
1178 unsigned long block_end_pfn;
1179
1180 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1181 for (; block_start_pfn < zone_end_pfn(zone);
1182 block_start_pfn = block_end_pfn,
1183 block_end_pfn += pageblock_nr_pages) {
1184
1185 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1186
1187 if (!__pageblock_pfn_to_page(block_start_pfn,
1188 block_end_pfn, zone))
1189 return;
1190 }
1191
1192 /* We confirm that there is no hole */
1193 zone->contiguous = true;
1194}
1195
1196void clear_zone_contiguous(struct zone *zone)
1197{
1198 zone->contiguous = false;
1199}
1200
7e18adb4 1201#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1202static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1203 unsigned long pfn, int nr_pages)
1204{
1205 int i;
1206
1207 if (!page)
1208 return;
1209
1210 /* Free a large naturally-aligned chunk if possible */
1211 if (nr_pages == MAX_ORDER_NR_PAGES &&
1212 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1213 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1214 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1215 return;
1216 }
1217
1218 for (i = 0; i < nr_pages; i++, page++, pfn++)
1219 __free_pages_boot_core(page, pfn, 0);
1220}
1221
d3cd131d
NS
1222/* Completion tracking for deferred_init_memmap() threads */
1223static atomic_t pgdat_init_n_undone __initdata;
1224static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1225
1226static inline void __init pgdat_init_report_one_done(void)
1227{
1228 if (atomic_dec_and_test(&pgdat_init_n_undone))
1229 complete(&pgdat_init_all_done_comp);
1230}
0e1cc95b 1231
7e18adb4 1232/* Initialise remaining memory on a node */
0e1cc95b 1233static int __init deferred_init_memmap(void *data)
7e18adb4 1234{
0e1cc95b
MG
1235 pg_data_t *pgdat = data;
1236 int nid = pgdat->node_id;
7e18adb4
MG
1237 struct mminit_pfnnid_cache nid_init_state = { };
1238 unsigned long start = jiffies;
1239 unsigned long nr_pages = 0;
1240 unsigned long walk_start, walk_end;
1241 int i, zid;
1242 struct zone *zone;
7e18adb4 1243 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1244 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1245
0e1cc95b 1246 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1247 pgdat_init_report_one_done();
0e1cc95b
MG
1248 return 0;
1249 }
1250
1251 /* Bind memory initialisation thread to a local node if possible */
1252 if (!cpumask_empty(cpumask))
1253 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1254
1255 /* Sanity check boundaries */
1256 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1257 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1258 pgdat->first_deferred_pfn = ULONG_MAX;
1259
1260 /* Only the highest zone is deferred so find it */
1261 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1262 zone = pgdat->node_zones + zid;
1263 if (first_init_pfn < zone_end_pfn(zone))
1264 break;
1265 }
1266
1267 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1268 unsigned long pfn, end_pfn;
54608c3f 1269 struct page *page = NULL;
a4de83dd
MG
1270 struct page *free_base_page = NULL;
1271 unsigned long free_base_pfn = 0;
1272 int nr_to_free = 0;
7e18adb4
MG
1273
1274 end_pfn = min(walk_end, zone_end_pfn(zone));
1275 pfn = first_init_pfn;
1276 if (pfn < walk_start)
1277 pfn = walk_start;
1278 if (pfn < zone->zone_start_pfn)
1279 pfn = zone->zone_start_pfn;
1280
1281 for (; pfn < end_pfn; pfn++) {
54608c3f 1282 if (!pfn_valid_within(pfn))
a4de83dd 1283 goto free_range;
7e18adb4 1284
54608c3f
MG
1285 /*
1286 * Ensure pfn_valid is checked every
1287 * MAX_ORDER_NR_PAGES for memory holes
1288 */
1289 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1290 if (!pfn_valid(pfn)) {
1291 page = NULL;
a4de83dd 1292 goto free_range;
54608c3f
MG
1293 }
1294 }
1295
1296 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1297 page = NULL;
a4de83dd 1298 goto free_range;
54608c3f
MG
1299 }
1300
1301 /* Minimise pfn page lookups and scheduler checks */
1302 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1303 page++;
1304 } else {
a4de83dd
MG
1305 nr_pages += nr_to_free;
1306 deferred_free_range(free_base_page,
1307 free_base_pfn, nr_to_free);
1308 free_base_page = NULL;
1309 free_base_pfn = nr_to_free = 0;
1310
54608c3f
MG
1311 page = pfn_to_page(pfn);
1312 cond_resched();
1313 }
7e18adb4
MG
1314
1315 if (page->flags) {
1316 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1317 goto free_range;
7e18adb4
MG
1318 }
1319
1320 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1321 if (!free_base_page) {
1322 free_base_page = page;
1323 free_base_pfn = pfn;
1324 nr_to_free = 0;
1325 }
1326 nr_to_free++;
1327
1328 /* Where possible, batch up pages for a single free */
1329 continue;
1330free_range:
1331 /* Free the current block of pages to allocator */
1332 nr_pages += nr_to_free;
1333 deferred_free_range(free_base_page, free_base_pfn,
1334 nr_to_free);
1335 free_base_page = NULL;
1336 free_base_pfn = nr_to_free = 0;
7e18adb4 1337 }
a4de83dd 1338
7e18adb4
MG
1339 first_init_pfn = max(end_pfn, first_init_pfn);
1340 }
1341
1342 /* Sanity check that the next zone really is unpopulated */
1343 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1344
0e1cc95b 1345 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1346 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1347
1348 pgdat_init_report_one_done();
0e1cc95b
MG
1349 return 0;
1350}
7cf91a98 1351#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1352
1353void __init page_alloc_init_late(void)
1354{
7cf91a98
JK
1355 struct zone *zone;
1356
1357#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1358 int nid;
1359
d3cd131d
NS
1360 /* There will be num_node_state(N_MEMORY) threads */
1361 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1362 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1363 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1364 }
1365
1366 /* Block until all are initialised */
d3cd131d 1367 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1368
1369 /* Reinit limits that are based on free pages after the kernel is up */
1370 files_maxfiles_init();
7cf91a98
JK
1371#endif
1372
1373 for_each_populated_zone(zone)
1374 set_zone_contiguous(zone);
7e18adb4 1375}
7e18adb4 1376
47118af0 1377#ifdef CONFIG_CMA
9cf510a5 1378/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1379void __init init_cma_reserved_pageblock(struct page *page)
1380{
1381 unsigned i = pageblock_nr_pages;
1382 struct page *p = page;
1383
1384 do {
1385 __ClearPageReserved(p);
1386 set_page_count(p, 0);
1387 } while (++p, --i);
1388
47118af0 1389 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1390
1391 if (pageblock_order >= MAX_ORDER) {
1392 i = pageblock_nr_pages;
1393 p = page;
1394 do {
1395 set_page_refcounted(p);
1396 __free_pages(p, MAX_ORDER - 1);
1397 p += MAX_ORDER_NR_PAGES;
1398 } while (i -= MAX_ORDER_NR_PAGES);
1399 } else {
1400 set_page_refcounted(page);
1401 __free_pages(page, pageblock_order);
1402 }
1403
3dcc0571 1404 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1405}
1406#endif
1da177e4
LT
1407
1408/*
1409 * The order of subdivision here is critical for the IO subsystem.
1410 * Please do not alter this order without good reasons and regression
1411 * testing. Specifically, as large blocks of memory are subdivided,
1412 * the order in which smaller blocks are delivered depends on the order
1413 * they're subdivided in this function. This is the primary factor
1414 * influencing the order in which pages are delivered to the IO
1415 * subsystem according to empirical testing, and this is also justified
1416 * by considering the behavior of a buddy system containing a single
1417 * large block of memory acted on by a series of small allocations.
1418 * This behavior is a critical factor in sglist merging's success.
1419 *
6d49e352 1420 * -- nyc
1da177e4 1421 */
085cc7d5 1422static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1423 int low, int high, struct free_area *area,
1424 int migratetype)
1da177e4
LT
1425{
1426 unsigned long size = 1 << high;
1427
1428 while (high > low) {
1429 area--;
1430 high--;
1431 size >>= 1;
309381fe 1432 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1433
2847cf95 1434 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1435 debug_guardpage_enabled() &&
2847cf95 1436 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1437 /*
1438 * Mark as guard pages (or page), that will allow to
1439 * merge back to allocator when buddy will be freed.
1440 * Corresponding page table entries will not be touched,
1441 * pages will stay not present in virtual address space
1442 */
2847cf95 1443 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1444 continue;
1445 }
b2a0ac88 1446 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1447 area->nr_free++;
1448 set_page_order(&page[size], high);
1449 }
1da177e4
LT
1450}
1451
1da177e4
LT
1452/*
1453 * This page is about to be returned from the page allocator
1454 */
2a7684a2 1455static inline int check_new_page(struct page *page)
1da177e4 1456{
d230dec1 1457 const char *bad_reason = NULL;
f0b791a3
DH
1458 unsigned long bad_flags = 0;
1459
53f9263b 1460 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1461 bad_reason = "nonzero mapcount";
1462 if (unlikely(page->mapping != NULL))
1463 bad_reason = "non-NULL mapping";
1464 if (unlikely(atomic_read(&page->_count) != 0))
1465 bad_reason = "nonzero _count";
f4c18e6f
NH
1466 if (unlikely(page->flags & __PG_HWPOISON)) {
1467 bad_reason = "HWPoisoned (hardware-corrupted)";
1468 bad_flags = __PG_HWPOISON;
1469 }
f0b791a3
DH
1470 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1471 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1472 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1473 }
9edad6ea
JW
1474#ifdef CONFIG_MEMCG
1475 if (unlikely(page->mem_cgroup))
1476 bad_reason = "page still charged to cgroup";
1477#endif
f0b791a3
DH
1478 if (unlikely(bad_reason)) {
1479 bad_page(page, bad_reason, bad_flags);
689bcebf 1480 return 1;
8cc3b392 1481 }
2a7684a2
WF
1482 return 0;
1483}
1484
1414c7f4
LA
1485static inline bool free_pages_prezeroed(bool poisoned)
1486{
1487 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1488 page_poisoning_enabled() && poisoned;
1489}
1490
75379191
VB
1491static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1492 int alloc_flags)
2a7684a2
WF
1493{
1494 int i;
1414c7f4 1495 bool poisoned = true;
2a7684a2
WF
1496
1497 for (i = 0; i < (1 << order); i++) {
1498 struct page *p = page + i;
1499 if (unlikely(check_new_page(p)))
1500 return 1;
1414c7f4
LA
1501 if (poisoned)
1502 poisoned &= page_is_poisoned(p);
2a7684a2 1503 }
689bcebf 1504
4c21e2f2 1505 set_page_private(page, 0);
7835e98b 1506 set_page_refcounted(page);
cc102509
NP
1507
1508 arch_alloc_page(page, order);
1da177e4 1509 kernel_map_pages(page, 1 << order, 1);
8823b1db 1510 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1511 kasan_alloc_pages(page, order);
17cf4406 1512
1414c7f4 1513 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1514 for (i = 0; i < (1 << order); i++)
1515 clear_highpage(page + i);
17cf4406
NP
1516
1517 if (order && (gfp_flags & __GFP_COMP))
1518 prep_compound_page(page, order);
1519
48c96a36
JK
1520 set_page_owner(page, order, gfp_flags);
1521
75379191 1522 /*
2f064f34 1523 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1524 * allocate the page. The expectation is that the caller is taking
1525 * steps that will free more memory. The caller should avoid the page
1526 * being used for !PFMEMALLOC purposes.
1527 */
2f064f34
MH
1528 if (alloc_flags & ALLOC_NO_WATERMARKS)
1529 set_page_pfmemalloc(page);
1530 else
1531 clear_page_pfmemalloc(page);
75379191 1532
689bcebf 1533 return 0;
1da177e4
LT
1534}
1535
56fd56b8
MG
1536/*
1537 * Go through the free lists for the given migratetype and remove
1538 * the smallest available page from the freelists
1539 */
728ec980
MG
1540static inline
1541struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1542 int migratetype)
1543{
1544 unsigned int current_order;
b8af2941 1545 struct free_area *area;
56fd56b8
MG
1546 struct page *page;
1547
1548 /* Find a page of the appropriate size in the preferred list */
1549 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1550 area = &(zone->free_area[current_order]);
a16601c5 1551 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1552 struct page, lru);
a16601c5
GT
1553 if (!page)
1554 continue;
56fd56b8
MG
1555 list_del(&page->lru);
1556 rmv_page_order(page);
1557 area->nr_free--;
56fd56b8 1558 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1559 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1560 return page;
1561 }
1562
1563 return NULL;
1564}
1565
1566
b2a0ac88
MG
1567/*
1568 * This array describes the order lists are fallen back to when
1569 * the free lists for the desirable migrate type are depleted
1570 */
47118af0 1571static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1572 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1573 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1574 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1575#ifdef CONFIG_CMA
974a786e 1576 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1577#endif
194159fb 1578#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1579 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1580#endif
b2a0ac88
MG
1581};
1582
dc67647b
JK
1583#ifdef CONFIG_CMA
1584static struct page *__rmqueue_cma_fallback(struct zone *zone,
1585 unsigned int order)
1586{
1587 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1588}
1589#else
1590static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1591 unsigned int order) { return NULL; }
1592#endif
1593
c361be55
MG
1594/*
1595 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1596 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1597 * boundary. If alignment is required, use move_freepages_block()
1598 */
435b405c 1599int move_freepages(struct zone *zone,
b69a7288
AB
1600 struct page *start_page, struct page *end_page,
1601 int migratetype)
c361be55
MG
1602{
1603 struct page *page;
d00181b9 1604 unsigned int order;
d100313f 1605 int pages_moved = 0;
c361be55
MG
1606
1607#ifndef CONFIG_HOLES_IN_ZONE
1608 /*
1609 * page_zone is not safe to call in this context when
1610 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1611 * anyway as we check zone boundaries in move_freepages_block().
1612 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1613 * grouping pages by mobility
c361be55 1614 */
97ee4ba7 1615 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1616#endif
1617
1618 for (page = start_page; page <= end_page;) {
344c790e 1619 /* Make sure we are not inadvertently changing nodes */
309381fe 1620 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1621
c361be55
MG
1622 if (!pfn_valid_within(page_to_pfn(page))) {
1623 page++;
1624 continue;
1625 }
1626
1627 if (!PageBuddy(page)) {
1628 page++;
1629 continue;
1630 }
1631
1632 order = page_order(page);
84be48d8
KS
1633 list_move(&page->lru,
1634 &zone->free_area[order].free_list[migratetype]);
c361be55 1635 page += 1 << order;
d100313f 1636 pages_moved += 1 << order;
c361be55
MG
1637 }
1638
d100313f 1639 return pages_moved;
c361be55
MG
1640}
1641
ee6f509c 1642int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1643 int migratetype)
c361be55
MG
1644{
1645 unsigned long start_pfn, end_pfn;
1646 struct page *start_page, *end_page;
1647
1648 start_pfn = page_to_pfn(page);
d9c23400 1649 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1650 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1651 end_page = start_page + pageblock_nr_pages - 1;
1652 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1653
1654 /* Do not cross zone boundaries */
108bcc96 1655 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1656 start_page = page;
108bcc96 1657 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1658 return 0;
1659
1660 return move_freepages(zone, start_page, end_page, migratetype);
1661}
1662
2f66a68f
MG
1663static void change_pageblock_range(struct page *pageblock_page,
1664 int start_order, int migratetype)
1665{
1666 int nr_pageblocks = 1 << (start_order - pageblock_order);
1667
1668 while (nr_pageblocks--) {
1669 set_pageblock_migratetype(pageblock_page, migratetype);
1670 pageblock_page += pageblock_nr_pages;
1671 }
1672}
1673
fef903ef 1674/*
9c0415eb
VB
1675 * When we are falling back to another migratetype during allocation, try to
1676 * steal extra free pages from the same pageblocks to satisfy further
1677 * allocations, instead of polluting multiple pageblocks.
1678 *
1679 * If we are stealing a relatively large buddy page, it is likely there will
1680 * be more free pages in the pageblock, so try to steal them all. For
1681 * reclaimable and unmovable allocations, we steal regardless of page size,
1682 * as fragmentation caused by those allocations polluting movable pageblocks
1683 * is worse than movable allocations stealing from unmovable and reclaimable
1684 * pageblocks.
fef903ef 1685 */
4eb7dce6
JK
1686static bool can_steal_fallback(unsigned int order, int start_mt)
1687{
1688 /*
1689 * Leaving this order check is intended, although there is
1690 * relaxed order check in next check. The reason is that
1691 * we can actually steal whole pageblock if this condition met,
1692 * but, below check doesn't guarantee it and that is just heuristic
1693 * so could be changed anytime.
1694 */
1695 if (order >= pageblock_order)
1696 return true;
1697
1698 if (order >= pageblock_order / 2 ||
1699 start_mt == MIGRATE_RECLAIMABLE ||
1700 start_mt == MIGRATE_UNMOVABLE ||
1701 page_group_by_mobility_disabled)
1702 return true;
1703
1704 return false;
1705}
1706
1707/*
1708 * This function implements actual steal behaviour. If order is large enough,
1709 * we can steal whole pageblock. If not, we first move freepages in this
1710 * pageblock and check whether half of pages are moved or not. If half of
1711 * pages are moved, we can change migratetype of pageblock and permanently
1712 * use it's pages as requested migratetype in the future.
1713 */
1714static void steal_suitable_fallback(struct zone *zone, struct page *page,
1715 int start_type)
fef903ef 1716{
d00181b9 1717 unsigned int current_order = page_order(page);
4eb7dce6 1718 int pages;
fef903ef 1719
fef903ef
SB
1720 /* Take ownership for orders >= pageblock_order */
1721 if (current_order >= pageblock_order) {
1722 change_pageblock_range(page, current_order, start_type);
3a1086fb 1723 return;
fef903ef
SB
1724 }
1725
4eb7dce6 1726 pages = move_freepages_block(zone, page, start_type);
fef903ef 1727
4eb7dce6
JK
1728 /* Claim the whole block if over half of it is free */
1729 if (pages >= (1 << (pageblock_order-1)) ||
1730 page_group_by_mobility_disabled)
1731 set_pageblock_migratetype(page, start_type);
1732}
1733
2149cdae
JK
1734/*
1735 * Check whether there is a suitable fallback freepage with requested order.
1736 * If only_stealable is true, this function returns fallback_mt only if
1737 * we can steal other freepages all together. This would help to reduce
1738 * fragmentation due to mixed migratetype pages in one pageblock.
1739 */
1740int find_suitable_fallback(struct free_area *area, unsigned int order,
1741 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1742{
1743 int i;
1744 int fallback_mt;
1745
1746 if (area->nr_free == 0)
1747 return -1;
1748
1749 *can_steal = false;
1750 for (i = 0;; i++) {
1751 fallback_mt = fallbacks[migratetype][i];
974a786e 1752 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1753 break;
1754
1755 if (list_empty(&area->free_list[fallback_mt]))
1756 continue;
fef903ef 1757
4eb7dce6
JK
1758 if (can_steal_fallback(order, migratetype))
1759 *can_steal = true;
1760
2149cdae
JK
1761 if (!only_stealable)
1762 return fallback_mt;
1763
1764 if (*can_steal)
1765 return fallback_mt;
fef903ef 1766 }
4eb7dce6
JK
1767
1768 return -1;
fef903ef
SB
1769}
1770
0aaa29a5
MG
1771/*
1772 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1773 * there are no empty page blocks that contain a page with a suitable order
1774 */
1775static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1776 unsigned int alloc_order)
1777{
1778 int mt;
1779 unsigned long max_managed, flags;
1780
1781 /*
1782 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1783 * Check is race-prone but harmless.
1784 */
1785 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1786 if (zone->nr_reserved_highatomic >= max_managed)
1787 return;
1788
1789 spin_lock_irqsave(&zone->lock, flags);
1790
1791 /* Recheck the nr_reserved_highatomic limit under the lock */
1792 if (zone->nr_reserved_highatomic >= max_managed)
1793 goto out_unlock;
1794
1795 /* Yoink! */
1796 mt = get_pageblock_migratetype(page);
1797 if (mt != MIGRATE_HIGHATOMIC &&
1798 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1799 zone->nr_reserved_highatomic += pageblock_nr_pages;
1800 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1801 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1802 }
1803
1804out_unlock:
1805 spin_unlock_irqrestore(&zone->lock, flags);
1806}
1807
1808/*
1809 * Used when an allocation is about to fail under memory pressure. This
1810 * potentially hurts the reliability of high-order allocations when under
1811 * intense memory pressure but failed atomic allocations should be easier
1812 * to recover from than an OOM.
1813 */
1814static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1815{
1816 struct zonelist *zonelist = ac->zonelist;
1817 unsigned long flags;
1818 struct zoneref *z;
1819 struct zone *zone;
1820 struct page *page;
1821 int order;
1822
1823 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1824 ac->nodemask) {
1825 /* Preserve at least one pageblock */
1826 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1827 continue;
1828
1829 spin_lock_irqsave(&zone->lock, flags);
1830 for (order = 0; order < MAX_ORDER; order++) {
1831 struct free_area *area = &(zone->free_area[order]);
1832
a16601c5
GT
1833 page = list_first_entry_or_null(
1834 &area->free_list[MIGRATE_HIGHATOMIC],
1835 struct page, lru);
1836 if (!page)
0aaa29a5
MG
1837 continue;
1838
0aaa29a5
MG
1839 /*
1840 * It should never happen but changes to locking could
1841 * inadvertently allow a per-cpu drain to add pages
1842 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1843 * and watch for underflows.
1844 */
1845 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1846 zone->nr_reserved_highatomic);
1847
1848 /*
1849 * Convert to ac->migratetype and avoid the normal
1850 * pageblock stealing heuristics. Minimally, the caller
1851 * is doing the work and needs the pages. More
1852 * importantly, if the block was always converted to
1853 * MIGRATE_UNMOVABLE or another type then the number
1854 * of pageblocks that cannot be completely freed
1855 * may increase.
1856 */
1857 set_pageblock_migratetype(page, ac->migratetype);
1858 move_freepages_block(zone, page, ac->migratetype);
1859 spin_unlock_irqrestore(&zone->lock, flags);
1860 return;
1861 }
1862 spin_unlock_irqrestore(&zone->lock, flags);
1863 }
1864}
1865
b2a0ac88 1866/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1867static inline struct page *
7aeb09f9 1868__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1869{
b8af2941 1870 struct free_area *area;
7aeb09f9 1871 unsigned int current_order;
b2a0ac88 1872 struct page *page;
4eb7dce6
JK
1873 int fallback_mt;
1874 bool can_steal;
b2a0ac88
MG
1875
1876 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1877 for (current_order = MAX_ORDER-1;
1878 current_order >= order && current_order <= MAX_ORDER-1;
1879 --current_order) {
4eb7dce6
JK
1880 area = &(zone->free_area[current_order]);
1881 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1882 start_migratetype, false, &can_steal);
4eb7dce6
JK
1883 if (fallback_mt == -1)
1884 continue;
b2a0ac88 1885
a16601c5 1886 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1887 struct page, lru);
1888 if (can_steal)
1889 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1890
4eb7dce6
JK
1891 /* Remove the page from the freelists */
1892 area->nr_free--;
1893 list_del(&page->lru);
1894 rmv_page_order(page);
3a1086fb 1895
4eb7dce6
JK
1896 expand(zone, page, order, current_order, area,
1897 start_migratetype);
1898 /*
bb14c2c7 1899 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1900 * migratetype depending on the decisions in
bb14c2c7
VB
1901 * find_suitable_fallback(). This is OK as long as it does not
1902 * differ for MIGRATE_CMA pageblocks. Those can be used as
1903 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1904 */
bb14c2c7 1905 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1906
4eb7dce6
JK
1907 trace_mm_page_alloc_extfrag(page, order, current_order,
1908 start_migratetype, fallback_mt);
e0fff1bd 1909
4eb7dce6 1910 return page;
b2a0ac88
MG
1911 }
1912
728ec980 1913 return NULL;
b2a0ac88
MG
1914}
1915
56fd56b8 1916/*
1da177e4
LT
1917 * Do the hard work of removing an element from the buddy allocator.
1918 * Call me with the zone->lock already held.
1919 */
b2a0ac88 1920static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1921 int migratetype)
1da177e4 1922{
1da177e4
LT
1923 struct page *page;
1924
56fd56b8 1925 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1926 if (unlikely(!page)) {
dc67647b
JK
1927 if (migratetype == MIGRATE_MOVABLE)
1928 page = __rmqueue_cma_fallback(zone, order);
1929
1930 if (!page)
1931 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1932 }
1933
0d3d062a 1934 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1935 return page;
1da177e4
LT
1936}
1937
5f63b720 1938/*
1da177e4
LT
1939 * Obtain a specified number of elements from the buddy allocator, all under
1940 * a single hold of the lock, for efficiency. Add them to the supplied list.
1941 * Returns the number of new pages which were placed at *list.
1942 */
5f63b720 1943static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1944 unsigned long count, struct list_head *list,
b745bc85 1945 int migratetype, bool cold)
1da177e4 1946{
5bcc9f86 1947 int i;
5f63b720 1948
c54ad30c 1949 spin_lock(&zone->lock);
1da177e4 1950 for (i = 0; i < count; ++i) {
6ac0206b 1951 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1952 if (unlikely(page == NULL))
1da177e4 1953 break;
81eabcbe
MG
1954
1955 /*
1956 * Split buddy pages returned by expand() are received here
1957 * in physical page order. The page is added to the callers and
1958 * list and the list head then moves forward. From the callers
1959 * perspective, the linked list is ordered by page number in
1960 * some conditions. This is useful for IO devices that can
1961 * merge IO requests if the physical pages are ordered
1962 * properly.
1963 */
b745bc85 1964 if (likely(!cold))
e084b2d9
MG
1965 list_add(&page->lru, list);
1966 else
1967 list_add_tail(&page->lru, list);
81eabcbe 1968 list = &page->lru;
bb14c2c7 1969 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1970 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1971 -(1 << order));
1da177e4 1972 }
f2260e6b 1973 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1974 spin_unlock(&zone->lock);
085cc7d5 1975 return i;
1da177e4
LT
1976}
1977
4ae7c039 1978#ifdef CONFIG_NUMA
8fce4d8e 1979/*
4037d452
CL
1980 * Called from the vmstat counter updater to drain pagesets of this
1981 * currently executing processor on remote nodes after they have
1982 * expired.
1983 *
879336c3
CL
1984 * Note that this function must be called with the thread pinned to
1985 * a single processor.
8fce4d8e 1986 */
4037d452 1987void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1988{
4ae7c039 1989 unsigned long flags;
7be12fc9 1990 int to_drain, batch;
4ae7c039 1991
4037d452 1992 local_irq_save(flags);
4db0c3c2 1993 batch = READ_ONCE(pcp->batch);
7be12fc9 1994 to_drain = min(pcp->count, batch);
2a13515c
KM
1995 if (to_drain > 0) {
1996 free_pcppages_bulk(zone, to_drain, pcp);
1997 pcp->count -= to_drain;
1998 }
4037d452 1999 local_irq_restore(flags);
4ae7c039
CL
2000}
2001#endif
2002
9f8f2172 2003/*
93481ff0 2004 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2005 *
2006 * The processor must either be the current processor and the
2007 * thread pinned to the current processor or a processor that
2008 * is not online.
2009 */
93481ff0 2010static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2011{
c54ad30c 2012 unsigned long flags;
93481ff0
VB
2013 struct per_cpu_pageset *pset;
2014 struct per_cpu_pages *pcp;
1da177e4 2015
93481ff0
VB
2016 local_irq_save(flags);
2017 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2018
93481ff0
VB
2019 pcp = &pset->pcp;
2020 if (pcp->count) {
2021 free_pcppages_bulk(zone, pcp->count, pcp);
2022 pcp->count = 0;
2023 }
2024 local_irq_restore(flags);
2025}
3dfa5721 2026
93481ff0
VB
2027/*
2028 * Drain pcplists of all zones on the indicated processor.
2029 *
2030 * The processor must either be the current processor and the
2031 * thread pinned to the current processor or a processor that
2032 * is not online.
2033 */
2034static void drain_pages(unsigned int cpu)
2035{
2036 struct zone *zone;
2037
2038 for_each_populated_zone(zone) {
2039 drain_pages_zone(cpu, zone);
1da177e4
LT
2040 }
2041}
1da177e4 2042
9f8f2172
CL
2043/*
2044 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2045 *
2046 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2047 * the single zone's pages.
9f8f2172 2048 */
93481ff0 2049void drain_local_pages(struct zone *zone)
9f8f2172 2050{
93481ff0
VB
2051 int cpu = smp_processor_id();
2052
2053 if (zone)
2054 drain_pages_zone(cpu, zone);
2055 else
2056 drain_pages(cpu);
9f8f2172
CL
2057}
2058
2059/*
74046494
GBY
2060 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2061 *
93481ff0
VB
2062 * When zone parameter is non-NULL, spill just the single zone's pages.
2063 *
74046494
GBY
2064 * Note that this code is protected against sending an IPI to an offline
2065 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2066 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2067 * nothing keeps CPUs from showing up after we populated the cpumask and
2068 * before the call to on_each_cpu_mask().
9f8f2172 2069 */
93481ff0 2070void drain_all_pages(struct zone *zone)
9f8f2172 2071{
74046494 2072 int cpu;
74046494
GBY
2073
2074 /*
2075 * Allocate in the BSS so we wont require allocation in
2076 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2077 */
2078 static cpumask_t cpus_with_pcps;
2079
2080 /*
2081 * We don't care about racing with CPU hotplug event
2082 * as offline notification will cause the notified
2083 * cpu to drain that CPU pcps and on_each_cpu_mask
2084 * disables preemption as part of its processing
2085 */
2086 for_each_online_cpu(cpu) {
93481ff0
VB
2087 struct per_cpu_pageset *pcp;
2088 struct zone *z;
74046494 2089 bool has_pcps = false;
93481ff0
VB
2090
2091 if (zone) {
74046494 2092 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2093 if (pcp->pcp.count)
74046494 2094 has_pcps = true;
93481ff0
VB
2095 } else {
2096 for_each_populated_zone(z) {
2097 pcp = per_cpu_ptr(z->pageset, cpu);
2098 if (pcp->pcp.count) {
2099 has_pcps = true;
2100 break;
2101 }
74046494
GBY
2102 }
2103 }
93481ff0 2104
74046494
GBY
2105 if (has_pcps)
2106 cpumask_set_cpu(cpu, &cpus_with_pcps);
2107 else
2108 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2109 }
93481ff0
VB
2110 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2111 zone, 1);
9f8f2172
CL
2112}
2113
296699de 2114#ifdef CONFIG_HIBERNATION
1da177e4
LT
2115
2116void mark_free_pages(struct zone *zone)
2117{
f623f0db
RW
2118 unsigned long pfn, max_zone_pfn;
2119 unsigned long flags;
7aeb09f9 2120 unsigned int order, t;
86760a2c 2121 struct page *page;
1da177e4 2122
8080fc03 2123 if (zone_is_empty(zone))
1da177e4
LT
2124 return;
2125
2126 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2127
108bcc96 2128 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2129 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2130 if (pfn_valid(pfn)) {
86760a2c 2131 page = pfn_to_page(pfn);
7be98234
RW
2132 if (!swsusp_page_is_forbidden(page))
2133 swsusp_unset_page_free(page);
f623f0db 2134 }
1da177e4 2135
b2a0ac88 2136 for_each_migratetype_order(order, t) {
86760a2c
GT
2137 list_for_each_entry(page,
2138 &zone->free_area[order].free_list[t], lru) {
f623f0db 2139 unsigned long i;
1da177e4 2140
86760a2c 2141 pfn = page_to_pfn(page);
f623f0db 2142 for (i = 0; i < (1UL << order); i++)
7be98234 2143 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2144 }
b2a0ac88 2145 }
1da177e4
LT
2146 spin_unlock_irqrestore(&zone->lock, flags);
2147}
e2c55dc8 2148#endif /* CONFIG_PM */
1da177e4 2149
1da177e4
LT
2150/*
2151 * Free a 0-order page
b745bc85 2152 * cold == true ? free a cold page : free a hot page
1da177e4 2153 */
b745bc85 2154void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2155{
2156 struct zone *zone = page_zone(page);
2157 struct per_cpu_pages *pcp;
2158 unsigned long flags;
dc4b0caf 2159 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2160 int migratetype;
1da177e4 2161
ec95f53a 2162 if (!free_pages_prepare(page, 0))
689bcebf
HD
2163 return;
2164
dc4b0caf 2165 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2166 set_pcppage_migratetype(page, migratetype);
1da177e4 2167 local_irq_save(flags);
f8891e5e 2168 __count_vm_event(PGFREE);
da456f14 2169
5f8dcc21
MG
2170 /*
2171 * We only track unmovable, reclaimable and movable on pcp lists.
2172 * Free ISOLATE pages back to the allocator because they are being
2173 * offlined but treat RESERVE as movable pages so we can get those
2174 * areas back if necessary. Otherwise, we may have to free
2175 * excessively into the page allocator
2176 */
2177 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2178 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2179 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2180 goto out;
2181 }
2182 migratetype = MIGRATE_MOVABLE;
2183 }
2184
99dcc3e5 2185 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2186 if (!cold)
5f8dcc21 2187 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2188 else
2189 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2190 pcp->count++;
48db57f8 2191 if (pcp->count >= pcp->high) {
4db0c3c2 2192 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2193 free_pcppages_bulk(zone, batch, pcp);
2194 pcp->count -= batch;
48db57f8 2195 }
5f8dcc21
MG
2196
2197out:
1da177e4 2198 local_irq_restore(flags);
1da177e4
LT
2199}
2200
cc59850e
KK
2201/*
2202 * Free a list of 0-order pages
2203 */
b745bc85 2204void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2205{
2206 struct page *page, *next;
2207
2208 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2209 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2210 free_hot_cold_page(page, cold);
2211 }
2212}
2213
8dfcc9ba
NP
2214/*
2215 * split_page takes a non-compound higher-order page, and splits it into
2216 * n (1<<order) sub-pages: page[0..n]
2217 * Each sub-page must be freed individually.
2218 *
2219 * Note: this is probably too low level an operation for use in drivers.
2220 * Please consult with lkml before using this in your driver.
2221 */
2222void split_page(struct page *page, unsigned int order)
2223{
2224 int i;
e2cfc911 2225 gfp_t gfp_mask;
8dfcc9ba 2226
309381fe
SL
2227 VM_BUG_ON_PAGE(PageCompound(page), page);
2228 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2229
2230#ifdef CONFIG_KMEMCHECK
2231 /*
2232 * Split shadow pages too, because free(page[0]) would
2233 * otherwise free the whole shadow.
2234 */
2235 if (kmemcheck_page_is_tracked(page))
2236 split_page(virt_to_page(page[0].shadow), order);
2237#endif
2238
e2cfc911
JK
2239 gfp_mask = get_page_owner_gfp(page);
2240 set_page_owner(page, 0, gfp_mask);
48c96a36 2241 for (i = 1; i < (1 << order); i++) {
7835e98b 2242 set_page_refcounted(page + i);
e2cfc911 2243 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2244 }
8dfcc9ba 2245}
5853ff23 2246EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2247
3c605096 2248int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2249{
748446bb
MG
2250 unsigned long watermark;
2251 struct zone *zone;
2139cbe6 2252 int mt;
748446bb
MG
2253
2254 BUG_ON(!PageBuddy(page));
2255
2256 zone = page_zone(page);
2e30abd1 2257 mt = get_pageblock_migratetype(page);
748446bb 2258
194159fb 2259 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2260 /* Obey watermarks as if the page was being allocated */
2261 watermark = low_wmark_pages(zone) + (1 << order);
2262 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2263 return 0;
2264
8fb74b9f 2265 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2266 }
748446bb
MG
2267
2268 /* Remove page from free list */
2269 list_del(&page->lru);
2270 zone->free_area[order].nr_free--;
2271 rmv_page_order(page);
2139cbe6 2272
e2cfc911 2273 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2274
8fb74b9f 2275 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2276 if (order >= pageblock_order - 1) {
2277 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2278 for (; page < endpage; page += pageblock_nr_pages) {
2279 int mt = get_pageblock_migratetype(page);
194159fb 2280 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2281 set_pageblock_migratetype(page,
2282 MIGRATE_MOVABLE);
2283 }
748446bb
MG
2284 }
2285
f3a14ced 2286
8fb74b9f 2287 return 1UL << order;
1fb3f8ca
MG
2288}
2289
2290/*
2291 * Similar to split_page except the page is already free. As this is only
2292 * being used for migration, the migratetype of the block also changes.
2293 * As this is called with interrupts disabled, the caller is responsible
2294 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2295 * are enabled.
2296 *
2297 * Note: this is probably too low level an operation for use in drivers.
2298 * Please consult with lkml before using this in your driver.
2299 */
2300int split_free_page(struct page *page)
2301{
2302 unsigned int order;
2303 int nr_pages;
2304
1fb3f8ca
MG
2305 order = page_order(page);
2306
8fb74b9f 2307 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2308 if (!nr_pages)
2309 return 0;
2310
2311 /* Split into individual pages */
2312 set_page_refcounted(page);
2313 split_page(page, order);
2314 return nr_pages;
748446bb
MG
2315}
2316
1da177e4 2317/*
75379191 2318 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2319 */
0a15c3e9
MG
2320static inline
2321struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2322 struct zone *zone, unsigned int order,
0aaa29a5 2323 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2324{
2325 unsigned long flags;
689bcebf 2326 struct page *page;
b745bc85 2327 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2328
48db57f8 2329 if (likely(order == 0)) {
1da177e4 2330 struct per_cpu_pages *pcp;
5f8dcc21 2331 struct list_head *list;
1da177e4 2332
1da177e4 2333 local_irq_save(flags);
99dcc3e5
CL
2334 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2335 list = &pcp->lists[migratetype];
5f8dcc21 2336 if (list_empty(list)) {
535131e6 2337 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2338 pcp->batch, list,
e084b2d9 2339 migratetype, cold);
5f8dcc21 2340 if (unlikely(list_empty(list)))
6fb332fa 2341 goto failed;
535131e6 2342 }
b92a6edd 2343
5f8dcc21 2344 if (cold)
a16601c5 2345 page = list_last_entry(list, struct page, lru);
5f8dcc21 2346 else
a16601c5 2347 page = list_first_entry(list, struct page, lru);
5f8dcc21 2348
b92a6edd
MG
2349 list_del(&page->lru);
2350 pcp->count--;
7fb1d9fc 2351 } else {
dab48dab
AM
2352 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2353 /*
2354 * __GFP_NOFAIL is not to be used in new code.
2355 *
2356 * All __GFP_NOFAIL callers should be fixed so that they
2357 * properly detect and handle allocation failures.
2358 *
2359 * We most definitely don't want callers attempting to
4923abf9 2360 * allocate greater than order-1 page units with
dab48dab
AM
2361 * __GFP_NOFAIL.
2362 */
4923abf9 2363 WARN_ON_ONCE(order > 1);
dab48dab 2364 }
1da177e4 2365 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2366
2367 page = NULL;
2368 if (alloc_flags & ALLOC_HARDER) {
2369 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2370 if (page)
2371 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2372 }
2373 if (!page)
6ac0206b 2374 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2375 spin_unlock(&zone->lock);
2376 if (!page)
2377 goto failed;
d1ce749a 2378 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2379 get_pcppage_migratetype(page));
1da177e4
LT
2380 }
2381
3a025760 2382 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2383 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2384 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2385 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2386
f8891e5e 2387 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2388 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2389 local_irq_restore(flags);
1da177e4 2390
309381fe 2391 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2392 return page;
a74609fa
NP
2393
2394failed:
2395 local_irq_restore(flags);
a74609fa 2396 return NULL;
1da177e4
LT
2397}
2398
933e312e
AM
2399#ifdef CONFIG_FAIL_PAGE_ALLOC
2400
b2588c4b 2401static struct {
933e312e
AM
2402 struct fault_attr attr;
2403
621a5f7a 2404 bool ignore_gfp_highmem;
71baba4b 2405 bool ignore_gfp_reclaim;
54114994 2406 u32 min_order;
933e312e
AM
2407} fail_page_alloc = {
2408 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2409 .ignore_gfp_reclaim = true,
621a5f7a 2410 .ignore_gfp_highmem = true,
54114994 2411 .min_order = 1,
933e312e
AM
2412};
2413
2414static int __init setup_fail_page_alloc(char *str)
2415{
2416 return setup_fault_attr(&fail_page_alloc.attr, str);
2417}
2418__setup("fail_page_alloc=", setup_fail_page_alloc);
2419
deaf386e 2420static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2421{
54114994 2422 if (order < fail_page_alloc.min_order)
deaf386e 2423 return false;
933e312e 2424 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2425 return false;
933e312e 2426 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2427 return false;
71baba4b
MG
2428 if (fail_page_alloc.ignore_gfp_reclaim &&
2429 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2430 return false;
933e312e
AM
2431
2432 return should_fail(&fail_page_alloc.attr, 1 << order);
2433}
2434
2435#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2436
2437static int __init fail_page_alloc_debugfs(void)
2438{
f4ae40a6 2439 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2440 struct dentry *dir;
933e312e 2441
dd48c085
AM
2442 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2443 &fail_page_alloc.attr);
2444 if (IS_ERR(dir))
2445 return PTR_ERR(dir);
933e312e 2446
b2588c4b 2447 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2448 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2449 goto fail;
2450 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2451 &fail_page_alloc.ignore_gfp_highmem))
2452 goto fail;
2453 if (!debugfs_create_u32("min-order", mode, dir,
2454 &fail_page_alloc.min_order))
2455 goto fail;
2456
2457 return 0;
2458fail:
dd48c085 2459 debugfs_remove_recursive(dir);
933e312e 2460
b2588c4b 2461 return -ENOMEM;
933e312e
AM
2462}
2463
2464late_initcall(fail_page_alloc_debugfs);
2465
2466#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2467
2468#else /* CONFIG_FAIL_PAGE_ALLOC */
2469
deaf386e 2470static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2471{
deaf386e 2472 return false;
933e312e
AM
2473}
2474
2475#endif /* CONFIG_FAIL_PAGE_ALLOC */
2476
1da177e4 2477/*
97a16fc8
MG
2478 * Return true if free base pages are above 'mark'. For high-order checks it
2479 * will return true of the order-0 watermark is reached and there is at least
2480 * one free page of a suitable size. Checking now avoids taking the zone lock
2481 * to check in the allocation paths if no pages are free.
1da177e4 2482 */
7aeb09f9
MG
2483static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2484 unsigned long mark, int classzone_idx, int alloc_flags,
2485 long free_pages)
1da177e4 2486{
d23ad423 2487 long min = mark;
1da177e4 2488 int o;
97a16fc8 2489 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2490
0aaa29a5 2491 /* free_pages may go negative - that's OK */
df0a6daa 2492 free_pages -= (1 << order) - 1;
0aaa29a5 2493
7fb1d9fc 2494 if (alloc_flags & ALLOC_HIGH)
1da177e4 2495 min -= min / 2;
0aaa29a5
MG
2496
2497 /*
2498 * If the caller does not have rights to ALLOC_HARDER then subtract
2499 * the high-atomic reserves. This will over-estimate the size of the
2500 * atomic reserve but it avoids a search.
2501 */
97a16fc8 2502 if (likely(!alloc_harder))
0aaa29a5
MG
2503 free_pages -= z->nr_reserved_highatomic;
2504 else
1da177e4 2505 min -= min / 4;
e2b19197 2506
d95ea5d1
BZ
2507#ifdef CONFIG_CMA
2508 /* If allocation can't use CMA areas don't use free CMA pages */
2509 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2510 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2511#endif
026b0814 2512
97a16fc8
MG
2513 /*
2514 * Check watermarks for an order-0 allocation request. If these
2515 * are not met, then a high-order request also cannot go ahead
2516 * even if a suitable page happened to be free.
2517 */
2518 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2519 return false;
1da177e4 2520
97a16fc8
MG
2521 /* If this is an order-0 request then the watermark is fine */
2522 if (!order)
2523 return true;
2524
2525 /* For a high-order request, check at least one suitable page is free */
2526 for (o = order; o < MAX_ORDER; o++) {
2527 struct free_area *area = &z->free_area[o];
2528 int mt;
2529
2530 if (!area->nr_free)
2531 continue;
2532
2533 if (alloc_harder)
2534 return true;
1da177e4 2535
97a16fc8
MG
2536 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2537 if (!list_empty(&area->free_list[mt]))
2538 return true;
2539 }
2540
2541#ifdef CONFIG_CMA
2542 if ((alloc_flags & ALLOC_CMA) &&
2543 !list_empty(&area->free_list[MIGRATE_CMA])) {
2544 return true;
2545 }
2546#endif
1da177e4 2547 }
97a16fc8 2548 return false;
88f5acf8
MG
2549}
2550
7aeb09f9 2551bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2552 int classzone_idx, int alloc_flags)
2553{
2554 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2555 zone_page_state(z, NR_FREE_PAGES));
2556}
2557
7aeb09f9 2558bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2559 unsigned long mark, int classzone_idx)
88f5acf8
MG
2560{
2561 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2562
2563 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2564 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2565
e2b19197 2566 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2567 free_pages);
1da177e4
LT
2568}
2569
9276b1bc 2570#ifdef CONFIG_NUMA
81c0a2bb
JW
2571static bool zone_local(struct zone *local_zone, struct zone *zone)
2572{
fff4068c 2573 return local_zone->node == zone->node;
81c0a2bb
JW
2574}
2575
957f822a
DR
2576static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2577{
5f7a75ac
MG
2578 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2579 RECLAIM_DISTANCE;
957f822a 2580}
9276b1bc 2581#else /* CONFIG_NUMA */
81c0a2bb
JW
2582static bool zone_local(struct zone *local_zone, struct zone *zone)
2583{
2584 return true;
2585}
2586
957f822a
DR
2587static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2588{
2589 return true;
2590}
9276b1bc
PJ
2591#endif /* CONFIG_NUMA */
2592
4ffeaf35
MG
2593static void reset_alloc_batches(struct zone *preferred_zone)
2594{
2595 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2596
2597 do {
2598 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2599 high_wmark_pages(zone) - low_wmark_pages(zone) -
2600 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2601 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2602 } while (zone++ != preferred_zone);
2603}
2604
7fb1d9fc 2605/*
0798e519 2606 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2607 * a page.
2608 */
2609static struct page *
a9263751
VB
2610get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2611 const struct alloc_context *ac)
753ee728 2612{
a9263751 2613 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2614 struct zoneref *z;
7fb1d9fc 2615 struct page *page = NULL;
5117f45d 2616 struct zone *zone;
4ffeaf35
MG
2617 int nr_fair_skipped = 0;
2618 bool zonelist_rescan;
54a6eb5c 2619
9276b1bc 2620zonelist_scan:
4ffeaf35
MG
2621 zonelist_rescan = false;
2622
7fb1d9fc 2623 /*
9276b1bc 2624 * Scan zonelist, looking for a zone with enough free.
344736f2 2625 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2626 */
a9263751
VB
2627 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2628 ac->nodemask) {
e085dbc5
JW
2629 unsigned long mark;
2630
664eedde
MG
2631 if (cpusets_enabled() &&
2632 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2633 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2634 continue;
81c0a2bb
JW
2635 /*
2636 * Distribute pages in proportion to the individual
2637 * zone size to ensure fair page aging. The zone a
2638 * page was allocated in should have no effect on the
2639 * time the page has in memory before being reclaimed.
81c0a2bb 2640 */
3a025760 2641 if (alloc_flags & ALLOC_FAIR) {
a9263751 2642 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2643 break;
57054651 2644 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2645 nr_fair_skipped++;
3a025760 2646 continue;
4ffeaf35 2647 }
81c0a2bb 2648 }
a756cf59
JW
2649 /*
2650 * When allocating a page cache page for writing, we
2651 * want to get it from a zone that is within its dirty
2652 * limit, such that no single zone holds more than its
2653 * proportional share of globally allowed dirty pages.
2654 * The dirty limits take into account the zone's
2655 * lowmem reserves and high watermark so that kswapd
2656 * should be able to balance it without having to
2657 * write pages from its LRU list.
2658 *
2659 * This may look like it could increase pressure on
2660 * lower zones by failing allocations in higher zones
2661 * before they are full. But the pages that do spill
2662 * over are limited as the lower zones are protected
2663 * by this very same mechanism. It should not become
2664 * a practical burden to them.
2665 *
2666 * XXX: For now, allow allocations to potentially
2667 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2668 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2669 * which is important when on a NUMA setup the allowed
2670 * zones are together not big enough to reach the
2671 * global limit. The proper fix for these situations
2672 * will require awareness of zones in the
2673 * dirty-throttling and the flusher threads.
2674 */
c9ab0c4f 2675 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2676 continue;
7fb1d9fc 2677
e085dbc5
JW
2678 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2679 if (!zone_watermark_ok(zone, order, mark,
a9263751 2680 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2681 int ret;
2682
5dab2911
MG
2683 /* Checked here to keep the fast path fast */
2684 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2685 if (alloc_flags & ALLOC_NO_WATERMARKS)
2686 goto try_this_zone;
2687
957f822a 2688 if (zone_reclaim_mode == 0 ||
a9263751 2689 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2690 continue;
2691
fa5e084e
MG
2692 ret = zone_reclaim(zone, gfp_mask, order);
2693 switch (ret) {
2694 case ZONE_RECLAIM_NOSCAN:
2695 /* did not scan */
cd38b115 2696 continue;
fa5e084e
MG
2697 case ZONE_RECLAIM_FULL:
2698 /* scanned but unreclaimable */
cd38b115 2699 continue;
fa5e084e
MG
2700 default:
2701 /* did we reclaim enough */
fed2719e 2702 if (zone_watermark_ok(zone, order, mark,
a9263751 2703 ac->classzone_idx, alloc_flags))
fed2719e
MG
2704 goto try_this_zone;
2705
fed2719e 2706 continue;
0798e519 2707 }
7fb1d9fc
RS
2708 }
2709
fa5e084e 2710try_this_zone:
a9263751 2711 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2712 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2713 if (page) {
2714 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2715 goto try_this_zone;
0aaa29a5
MG
2716
2717 /*
2718 * If this is a high-order atomic allocation then check
2719 * if the pageblock should be reserved for the future
2720 */
2721 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2722 reserve_highatomic_pageblock(page, zone, order);
2723
75379191
VB
2724 return page;
2725 }
54a6eb5c 2726 }
9276b1bc 2727
4ffeaf35
MG
2728 /*
2729 * The first pass makes sure allocations are spread fairly within the
2730 * local node. However, the local node might have free pages left
2731 * after the fairness batches are exhausted, and remote zones haven't
2732 * even been considered yet. Try once more without fairness, and
2733 * include remote zones now, before entering the slowpath and waking
2734 * kswapd: prefer spilling to a remote zone over swapping locally.
2735 */
2736 if (alloc_flags & ALLOC_FAIR) {
2737 alloc_flags &= ~ALLOC_FAIR;
2738 if (nr_fair_skipped) {
2739 zonelist_rescan = true;
a9263751 2740 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2741 }
2742 if (nr_online_nodes > 1)
2743 zonelist_rescan = true;
2744 }
2745
4ffeaf35
MG
2746 if (zonelist_rescan)
2747 goto zonelist_scan;
2748
2749 return NULL;
753ee728
MH
2750}
2751
29423e77
DR
2752/*
2753 * Large machines with many possible nodes should not always dump per-node
2754 * meminfo in irq context.
2755 */
2756static inline bool should_suppress_show_mem(void)
2757{
2758 bool ret = false;
2759
2760#if NODES_SHIFT > 8
2761 ret = in_interrupt();
2762#endif
2763 return ret;
2764}
2765
a238ab5b
DH
2766static DEFINE_RATELIMIT_STATE(nopage_rs,
2767 DEFAULT_RATELIMIT_INTERVAL,
2768 DEFAULT_RATELIMIT_BURST);
2769
d00181b9 2770void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2771{
a238ab5b
DH
2772 unsigned int filter = SHOW_MEM_FILTER_NODES;
2773
c0a32fc5
SG
2774 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2775 debug_guardpage_minorder() > 0)
a238ab5b
DH
2776 return;
2777
2778 /*
2779 * This documents exceptions given to allocations in certain
2780 * contexts that are allowed to allocate outside current's set
2781 * of allowed nodes.
2782 */
2783 if (!(gfp_mask & __GFP_NOMEMALLOC))
2784 if (test_thread_flag(TIF_MEMDIE) ||
2785 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2786 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2787 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2788 filter &= ~SHOW_MEM_FILTER_NODES;
2789
2790 if (fmt) {
3ee9a4f0
JP
2791 struct va_format vaf;
2792 va_list args;
2793
a238ab5b 2794 va_start(args, fmt);
3ee9a4f0
JP
2795
2796 vaf.fmt = fmt;
2797 vaf.va = &args;
2798
2799 pr_warn("%pV", &vaf);
2800
a238ab5b
DH
2801 va_end(args);
2802 }
2803
c5c990e8
VB
2804 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2805 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2806 dump_stack();
2807 if (!should_suppress_show_mem())
2808 show_mem(filter);
2809}
2810
11e33f6a
MG
2811static inline struct page *
2812__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2813 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2814{
6e0fc46d
DR
2815 struct oom_control oc = {
2816 .zonelist = ac->zonelist,
2817 .nodemask = ac->nodemask,
2818 .gfp_mask = gfp_mask,
2819 .order = order,
6e0fc46d 2820 };
11e33f6a
MG
2821 struct page *page;
2822
9879de73
JW
2823 *did_some_progress = 0;
2824
9879de73 2825 /*
dc56401f
JW
2826 * Acquire the oom lock. If that fails, somebody else is
2827 * making progress for us.
9879de73 2828 */
dc56401f 2829 if (!mutex_trylock(&oom_lock)) {
9879de73 2830 *did_some_progress = 1;
11e33f6a 2831 schedule_timeout_uninterruptible(1);
1da177e4
LT
2832 return NULL;
2833 }
6b1de916 2834
11e33f6a
MG
2835 /*
2836 * Go through the zonelist yet one more time, keep very high watermark
2837 * here, this is only to catch a parallel oom killing, we must fail if
2838 * we're still under heavy pressure.
2839 */
a9263751
VB
2840 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2841 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2842 if (page)
11e33f6a
MG
2843 goto out;
2844
4365a567 2845 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2846 /* Coredumps can quickly deplete all memory reserves */
2847 if (current->flags & PF_DUMPCORE)
2848 goto out;
4365a567
KH
2849 /* The OOM killer will not help higher order allocs */
2850 if (order > PAGE_ALLOC_COSTLY_ORDER)
2851 goto out;
03668b3c 2852 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2853 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2854 goto out;
9083905a 2855 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2856 if (!(gfp_mask & __GFP_FS)) {
2857 /*
2858 * XXX: Page reclaim didn't yield anything,
2859 * and the OOM killer can't be invoked, but
9083905a 2860 * keep looping as per tradition.
cc873177
JW
2861 */
2862 *did_some_progress = 1;
9879de73 2863 goto out;
cc873177 2864 }
9083905a
JW
2865 if (pm_suspended_storage())
2866 goto out;
4167e9b2 2867 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2868 if (gfp_mask & __GFP_THISNODE)
2869 goto out;
2870 }
11e33f6a 2871 /* Exhausted what can be done so it's blamo time */
5020e285 2872 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2873 *did_some_progress = 1;
5020e285
MH
2874
2875 if (gfp_mask & __GFP_NOFAIL) {
2876 page = get_page_from_freelist(gfp_mask, order,
2877 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2878 /*
2879 * fallback to ignore cpuset restriction if our nodes
2880 * are depleted
2881 */
2882 if (!page)
2883 page = get_page_from_freelist(gfp_mask, order,
2884 ALLOC_NO_WATERMARKS, ac);
2885 }
2886 }
11e33f6a 2887out:
dc56401f 2888 mutex_unlock(&oom_lock);
11e33f6a
MG
2889 return page;
2890}
2891
56de7263
MG
2892#ifdef CONFIG_COMPACTION
2893/* Try memory compaction for high-order allocations before reclaim */
2894static struct page *
2895__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2896 int alloc_flags, const struct alloc_context *ac,
2897 enum migrate_mode mode, int *contended_compaction,
2898 bool *deferred_compaction)
56de7263 2899{
53853e2d 2900 unsigned long compact_result;
98dd3b48 2901 struct page *page;
53853e2d
VB
2902
2903 if (!order)
66199712 2904 return NULL;
66199712 2905
c06b1fca 2906 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2907 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2908 mode, contended_compaction);
c06b1fca 2909 current->flags &= ~PF_MEMALLOC;
56de7263 2910
98dd3b48
VB
2911 switch (compact_result) {
2912 case COMPACT_DEFERRED:
53853e2d 2913 *deferred_compaction = true;
98dd3b48
VB
2914 /* fall-through */
2915 case COMPACT_SKIPPED:
2916 return NULL;
2917 default:
2918 break;
2919 }
53853e2d 2920
98dd3b48
VB
2921 /*
2922 * At least in one zone compaction wasn't deferred or skipped, so let's
2923 * count a compaction stall
2924 */
2925 count_vm_event(COMPACTSTALL);
8fb74b9f 2926
a9263751
VB
2927 page = get_page_from_freelist(gfp_mask, order,
2928 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2929
98dd3b48
VB
2930 if (page) {
2931 struct zone *zone = page_zone(page);
53853e2d 2932
98dd3b48
VB
2933 zone->compact_blockskip_flush = false;
2934 compaction_defer_reset(zone, order, true);
2935 count_vm_event(COMPACTSUCCESS);
2936 return page;
2937 }
56de7263 2938
98dd3b48
VB
2939 /*
2940 * It's bad if compaction run occurs and fails. The most likely reason
2941 * is that pages exist, but not enough to satisfy watermarks.
2942 */
2943 count_vm_event(COMPACTFAIL);
66199712 2944
98dd3b48 2945 cond_resched();
56de7263
MG
2946
2947 return NULL;
2948}
2949#else
2950static inline struct page *
2951__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2952 int alloc_flags, const struct alloc_context *ac,
2953 enum migrate_mode mode, int *contended_compaction,
2954 bool *deferred_compaction)
56de7263
MG
2955{
2956 return NULL;
2957}
2958#endif /* CONFIG_COMPACTION */
2959
bba90710
MS
2960/* Perform direct synchronous page reclaim */
2961static int
a9263751
VB
2962__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2963 const struct alloc_context *ac)
11e33f6a 2964{
11e33f6a 2965 struct reclaim_state reclaim_state;
bba90710 2966 int progress;
11e33f6a
MG
2967
2968 cond_resched();
2969
2970 /* We now go into synchronous reclaim */
2971 cpuset_memory_pressure_bump();
c06b1fca 2972 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2973 lockdep_set_current_reclaim_state(gfp_mask);
2974 reclaim_state.reclaimed_slab = 0;
c06b1fca 2975 current->reclaim_state = &reclaim_state;
11e33f6a 2976
a9263751
VB
2977 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2978 ac->nodemask);
11e33f6a 2979
c06b1fca 2980 current->reclaim_state = NULL;
11e33f6a 2981 lockdep_clear_current_reclaim_state();
c06b1fca 2982 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2983
2984 cond_resched();
2985
bba90710
MS
2986 return progress;
2987}
2988
2989/* The really slow allocator path where we enter direct reclaim */
2990static inline struct page *
2991__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2992 int alloc_flags, const struct alloc_context *ac,
2993 unsigned long *did_some_progress)
bba90710
MS
2994{
2995 struct page *page = NULL;
2996 bool drained = false;
2997
a9263751 2998 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2999 if (unlikely(!(*did_some_progress)))
3000 return NULL;
11e33f6a 3001
9ee493ce 3002retry:
a9263751
VB
3003 page = get_page_from_freelist(gfp_mask, order,
3004 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3005
3006 /*
3007 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3008 * pages are pinned on the per-cpu lists or in high alloc reserves.
3009 * Shrink them them and try again
9ee493ce
MG
3010 */
3011 if (!page && !drained) {
0aaa29a5 3012 unreserve_highatomic_pageblock(ac);
93481ff0 3013 drain_all_pages(NULL);
9ee493ce
MG
3014 drained = true;
3015 goto retry;
3016 }
3017
11e33f6a
MG
3018 return page;
3019}
3020
a9263751 3021static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3022{
3023 struct zoneref *z;
3024 struct zone *zone;
3025
a9263751
VB
3026 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3027 ac->high_zoneidx, ac->nodemask)
3028 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
3029}
3030
341ce06f
PZ
3031static inline int
3032gfp_to_alloc_flags(gfp_t gfp_mask)
3033{
341ce06f 3034 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3035
a56f57ff 3036 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3037 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3038
341ce06f
PZ
3039 /*
3040 * The caller may dip into page reserves a bit more if the caller
3041 * cannot run direct reclaim, or if the caller has realtime scheduling
3042 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3043 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3044 */
e6223a3b 3045 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3046
d0164adc 3047 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3048 /*
b104a35d
DR
3049 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3050 * if it can't schedule.
5c3240d9 3051 */
b104a35d 3052 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3053 alloc_flags |= ALLOC_HARDER;
523b9458 3054 /*
b104a35d 3055 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3056 * comment for __cpuset_node_allowed().
523b9458 3057 */
341ce06f 3058 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3059 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3060 alloc_flags |= ALLOC_HARDER;
3061
b37f1dd0
MG
3062 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3063 if (gfp_mask & __GFP_MEMALLOC)
3064 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3065 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3066 alloc_flags |= ALLOC_NO_WATERMARKS;
3067 else if (!in_interrupt() &&
3068 ((current->flags & PF_MEMALLOC) ||
3069 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3070 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3071 }
d95ea5d1 3072#ifdef CONFIG_CMA
43e7a34d 3073 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3074 alloc_flags |= ALLOC_CMA;
3075#endif
341ce06f
PZ
3076 return alloc_flags;
3077}
3078
072bb0aa
MG
3079bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3080{
b37f1dd0 3081 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3082}
3083
d0164adc
MG
3084static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3085{
3086 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3087}
3088
11e33f6a
MG
3089static inline struct page *
3090__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3091 struct alloc_context *ac)
11e33f6a 3092{
d0164adc 3093 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
3094 struct page *page = NULL;
3095 int alloc_flags;
3096 unsigned long pages_reclaimed = 0;
3097 unsigned long did_some_progress;
e0b9daeb 3098 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3099 bool deferred_compaction = false;
1f9efdef 3100 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3101
72807a74
MG
3102 /*
3103 * In the slowpath, we sanity check order to avoid ever trying to
3104 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3105 * be using allocators in order of preference for an area that is
3106 * too large.
3107 */
1fc28b70
MG
3108 if (order >= MAX_ORDER) {
3109 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3110 return NULL;
1fc28b70 3111 }
1da177e4 3112
d0164adc
MG
3113 /*
3114 * We also sanity check to catch abuse of atomic reserves being used by
3115 * callers that are not in atomic context.
3116 */
3117 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3118 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3119 gfp_mask &= ~__GFP_ATOMIC;
3120
952f3b51 3121 /*
4167e9b2
DR
3122 * If this allocation cannot block and it is for a specific node, then
3123 * fail early. There's no need to wakeup kswapd or retry for a
3124 * speculative node-specific allocation.
952f3b51 3125 */
d0164adc 3126 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
952f3b51
CL
3127 goto nopage;
3128
9879de73 3129retry:
d0164adc 3130 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3131 wake_all_kswapds(order, ac);
1da177e4 3132
9bf2229f 3133 /*
7fb1d9fc
RS
3134 * OK, we're below the kswapd watermark and have kicked background
3135 * reclaim. Now things get more complex, so set up alloc_flags according
3136 * to how we want to proceed.
9bf2229f 3137 */
341ce06f 3138 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3139
f33261d7
DR
3140 /*
3141 * Find the true preferred zone if the allocation is unconstrained by
3142 * cpusets.
3143 */
a9263751 3144 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3145 struct zoneref *preferred_zoneref;
a9263751
VB
3146 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3147 ac->high_zoneidx, NULL, &ac->preferred_zone);
3148 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3149 }
f33261d7 3150
341ce06f 3151 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3152 page = get_page_from_freelist(gfp_mask, order,
3153 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3154 if (page)
3155 goto got_pg;
1da177e4 3156
11e33f6a 3157 /* Allocate without watermarks if the context allows */
341ce06f 3158 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3159 /*
3160 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3161 * the allocation is high priority and these type of
3162 * allocations are system rather than user orientated
3163 */
a9263751 3164 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3165 page = get_page_from_freelist(gfp_mask, order,
3166 ALLOC_NO_WATERMARKS, ac);
3167 if (page)
3168 goto got_pg;
1da177e4
LT
3169 }
3170
d0164adc
MG
3171 /* Caller is not willing to reclaim, we can't balance anything */
3172 if (!can_direct_reclaim) {
aed0a0e3 3173 /*
33d53103
MH
3174 * All existing users of the __GFP_NOFAIL are blockable, so warn
3175 * of any new users that actually allow this type of allocation
3176 * to fail.
aed0a0e3
DR
3177 */
3178 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3179 goto nopage;
aed0a0e3 3180 }
1da177e4 3181
341ce06f 3182 /* Avoid recursion of direct reclaim */
33d53103
MH
3183 if (current->flags & PF_MEMALLOC) {
3184 /*
3185 * __GFP_NOFAIL request from this context is rather bizarre
3186 * because we cannot reclaim anything and only can loop waiting
3187 * for somebody to do a work for us.
3188 */
3189 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3190 cond_resched();
3191 goto retry;
3192 }
341ce06f 3193 goto nopage;
33d53103 3194 }
341ce06f 3195
6583bb64
DR
3196 /* Avoid allocations with no watermarks from looping endlessly */
3197 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3198 goto nopage;
3199
77f1fe6b
MG
3200 /*
3201 * Try direct compaction. The first pass is asynchronous. Subsequent
3202 * attempts after direct reclaim are synchronous
3203 */
a9263751
VB
3204 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3205 migration_mode,
3206 &contended_compaction,
53853e2d 3207 &deferred_compaction);
56de7263
MG
3208 if (page)
3209 goto got_pg;
75f30861 3210
1f9efdef 3211 /* Checks for THP-specific high-order allocations */
d0164adc 3212 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3213 /*
3214 * If compaction is deferred for high-order allocations, it is
3215 * because sync compaction recently failed. If this is the case
3216 * and the caller requested a THP allocation, we do not want
3217 * to heavily disrupt the system, so we fail the allocation
3218 * instead of entering direct reclaim.
3219 */
3220 if (deferred_compaction)
3221 goto nopage;
3222
3223 /*
3224 * In all zones where compaction was attempted (and not
3225 * deferred or skipped), lock contention has been detected.
3226 * For THP allocation we do not want to disrupt the others
3227 * so we fallback to base pages instead.
3228 */
3229 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3230 goto nopage;
3231
3232 /*
3233 * If compaction was aborted due to need_resched(), we do not
3234 * want to further increase allocation latency, unless it is
3235 * khugepaged trying to collapse.
3236 */
3237 if (contended_compaction == COMPACT_CONTENDED_SCHED
3238 && !(current->flags & PF_KTHREAD))
3239 goto nopage;
3240 }
66199712 3241
8fe78048
DR
3242 /*
3243 * It can become very expensive to allocate transparent hugepages at
3244 * fault, so use asynchronous memory compaction for THP unless it is
3245 * khugepaged trying to collapse.
3246 */
d0164adc 3247 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3248 migration_mode = MIGRATE_SYNC_LIGHT;
3249
11e33f6a 3250 /* Try direct reclaim and then allocating */
a9263751
VB
3251 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3252 &did_some_progress);
11e33f6a
MG
3253 if (page)
3254 goto got_pg;
1da177e4 3255
9083905a
JW
3256 /* Do not loop if specifically requested */
3257 if (gfp_mask & __GFP_NORETRY)
3258 goto noretry;
3259
3260 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3261 pages_reclaimed += did_some_progress;
9083905a
JW
3262 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3263 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3264 /* Wait for some write requests to complete then retry */
a9263751 3265 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3266 goto retry;
1da177e4
LT
3267 }
3268
9083905a
JW
3269 /* Reclaim has failed us, start killing things */
3270 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3271 if (page)
3272 goto got_pg;
3273
3274 /* Retry as long as the OOM killer is making progress */
3275 if (did_some_progress)
3276 goto retry;
3277
3278noretry:
3279 /*
3280 * High-order allocations do not necessarily loop after
3281 * direct reclaim and reclaim/compaction depends on compaction
3282 * being called after reclaim so call directly if necessary
3283 */
3284 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3285 ac, migration_mode,
3286 &contended_compaction,
3287 &deferred_compaction);
3288 if (page)
3289 goto got_pg;
1da177e4 3290nopage:
a238ab5b 3291 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3292got_pg:
072bb0aa 3293 return page;
1da177e4 3294}
11e33f6a
MG
3295
3296/*
3297 * This is the 'heart' of the zoned buddy allocator.
3298 */
3299struct page *
3300__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3301 struct zonelist *zonelist, nodemask_t *nodemask)
3302{
d8846374 3303 struct zoneref *preferred_zoneref;
cc9a6c87 3304 struct page *page = NULL;
cc9a6c87 3305 unsigned int cpuset_mems_cookie;
3a025760 3306 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3307 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3308 struct alloc_context ac = {
3309 .high_zoneidx = gfp_zone(gfp_mask),
3310 .nodemask = nodemask,
3311 .migratetype = gfpflags_to_migratetype(gfp_mask),
3312 };
11e33f6a 3313
dcce284a
BH
3314 gfp_mask &= gfp_allowed_mask;
3315
11e33f6a
MG
3316 lockdep_trace_alloc(gfp_mask);
3317
d0164adc 3318 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3319
3320 if (should_fail_alloc_page(gfp_mask, order))
3321 return NULL;
3322
3323 /*
3324 * Check the zones suitable for the gfp_mask contain at least one
3325 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3326 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3327 */
3328 if (unlikely(!zonelist->_zonerefs->zone))
3329 return NULL;
3330
a9263751 3331 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3332 alloc_flags |= ALLOC_CMA;
3333
cc9a6c87 3334retry_cpuset:
d26914d1 3335 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3336
a9263751
VB
3337 /* We set it here, as __alloc_pages_slowpath might have changed it */
3338 ac.zonelist = zonelist;
c9ab0c4f
MG
3339
3340 /* Dirty zone balancing only done in the fast path */
3341 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3342
5117f45d 3343 /* The preferred zone is used for statistics later */
a9263751
VB
3344 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3345 ac.nodemask ? : &cpuset_current_mems_allowed,
3346 &ac.preferred_zone);
3347 if (!ac.preferred_zone)
cc9a6c87 3348 goto out;
a9263751 3349 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3350
3351 /* First allocation attempt */
91fbdc0f 3352 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3353 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3354 if (unlikely(!page)) {
3355 /*
3356 * Runtime PM, block IO and its error handling path
3357 * can deadlock because I/O on the device might not
3358 * complete.
3359 */
91fbdc0f 3360 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3361 ac.spread_dirty_pages = false;
91fbdc0f 3362
a9263751 3363 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3364 }
11e33f6a 3365
23f086f9
XQ
3366 if (kmemcheck_enabled && page)
3367 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3368
a9263751 3369 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3370
3371out:
3372 /*
3373 * When updating a task's mems_allowed, it is possible to race with
3374 * parallel threads in such a way that an allocation can fail while
3375 * the mask is being updated. If a page allocation is about to fail,
3376 * check if the cpuset changed during allocation and if so, retry.
3377 */
d26914d1 3378 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3379 goto retry_cpuset;
3380
11e33f6a 3381 return page;
1da177e4 3382}
d239171e 3383EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3384
3385/*
3386 * Common helper functions.
3387 */
920c7a5d 3388unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3389{
945a1113
AM
3390 struct page *page;
3391
3392 /*
3393 * __get_free_pages() returns a 32-bit address, which cannot represent
3394 * a highmem page
3395 */
3396 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3397
1da177e4
LT
3398 page = alloc_pages(gfp_mask, order);
3399 if (!page)
3400 return 0;
3401 return (unsigned long) page_address(page);
3402}
1da177e4
LT
3403EXPORT_SYMBOL(__get_free_pages);
3404
920c7a5d 3405unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3406{
945a1113 3407 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3408}
1da177e4
LT
3409EXPORT_SYMBOL(get_zeroed_page);
3410
920c7a5d 3411void __free_pages(struct page *page, unsigned int order)
1da177e4 3412{
b5810039 3413 if (put_page_testzero(page)) {
1da177e4 3414 if (order == 0)
b745bc85 3415 free_hot_cold_page(page, false);
1da177e4
LT
3416 else
3417 __free_pages_ok(page, order);
3418 }
3419}
3420
3421EXPORT_SYMBOL(__free_pages);
3422
920c7a5d 3423void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3424{
3425 if (addr != 0) {
725d704e 3426 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3427 __free_pages(virt_to_page((void *)addr), order);
3428 }
3429}
3430
3431EXPORT_SYMBOL(free_pages);
3432
b63ae8ca
AD
3433/*
3434 * Page Fragment:
3435 * An arbitrary-length arbitrary-offset area of memory which resides
3436 * within a 0 or higher order page. Multiple fragments within that page
3437 * are individually refcounted, in the page's reference counter.
3438 *
3439 * The page_frag functions below provide a simple allocation framework for
3440 * page fragments. This is used by the network stack and network device
3441 * drivers to provide a backing region of memory for use as either an
3442 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3443 */
3444static struct page *__page_frag_refill(struct page_frag_cache *nc,
3445 gfp_t gfp_mask)
3446{
3447 struct page *page = NULL;
3448 gfp_t gfp = gfp_mask;
3449
3450#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3451 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3452 __GFP_NOMEMALLOC;
3453 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3454 PAGE_FRAG_CACHE_MAX_ORDER);
3455 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3456#endif
3457 if (unlikely(!page))
3458 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3459
3460 nc->va = page ? page_address(page) : NULL;
3461
3462 return page;
3463}
3464
3465void *__alloc_page_frag(struct page_frag_cache *nc,
3466 unsigned int fragsz, gfp_t gfp_mask)
3467{
3468 unsigned int size = PAGE_SIZE;
3469 struct page *page;
3470 int offset;
3471
3472 if (unlikely(!nc->va)) {
3473refill:
3474 page = __page_frag_refill(nc, gfp_mask);
3475 if (!page)
3476 return NULL;
3477
3478#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3479 /* if size can vary use size else just use PAGE_SIZE */
3480 size = nc->size;
3481#endif
3482 /* Even if we own the page, we do not use atomic_set().
3483 * This would break get_page_unless_zero() users.
3484 */
3485 atomic_add(size - 1, &page->_count);
3486
3487 /* reset page count bias and offset to start of new frag */
2f064f34 3488 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3489 nc->pagecnt_bias = size;
3490 nc->offset = size;
3491 }
3492
3493 offset = nc->offset - fragsz;
3494 if (unlikely(offset < 0)) {
3495 page = virt_to_page(nc->va);
3496
3497 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3498 goto refill;
3499
3500#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3501 /* if size can vary use size else just use PAGE_SIZE */
3502 size = nc->size;
3503#endif
3504 /* OK, page count is 0, we can safely set it */
3505 atomic_set(&page->_count, size);
3506
3507 /* reset page count bias and offset to start of new frag */
3508 nc->pagecnt_bias = size;
3509 offset = size - fragsz;
3510 }
3511
3512 nc->pagecnt_bias--;
3513 nc->offset = offset;
3514
3515 return nc->va + offset;
3516}
3517EXPORT_SYMBOL(__alloc_page_frag);
3518
3519/*
3520 * Frees a page fragment allocated out of either a compound or order 0 page.
3521 */
3522void __free_page_frag(void *addr)
3523{
3524 struct page *page = virt_to_head_page(addr);
3525
3526 if (unlikely(put_page_testzero(page)))
3527 __free_pages_ok(page, compound_order(page));
3528}
3529EXPORT_SYMBOL(__free_page_frag);
3530
6a1a0d3b 3531/*
52383431 3532 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3533 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3534 * equivalent to alloc_pages.
6a1a0d3b 3535 *
52383431
VD
3536 * It should be used when the caller would like to use kmalloc, but since the
3537 * allocation is large, it has to fall back to the page allocator.
3538 */
3539struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3540{
3541 struct page *page;
52383431 3542
52383431 3543 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3544 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3545 __free_pages(page, order);
3546 page = NULL;
3547 }
52383431
VD
3548 return page;
3549}
3550
3551struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3552{
3553 struct page *page;
52383431 3554
52383431 3555 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3556 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3557 __free_pages(page, order);
3558 page = NULL;
3559 }
52383431
VD
3560 return page;
3561}
3562
3563/*
3564 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3565 * alloc_kmem_pages.
6a1a0d3b 3566 */
52383431 3567void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3568{
d05e83a6 3569 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3570 __free_pages(page, order);
3571}
3572
52383431 3573void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3574{
3575 if (addr != 0) {
3576 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3577 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3578 }
3579}
3580
d00181b9
KS
3581static void *make_alloc_exact(unsigned long addr, unsigned int order,
3582 size_t size)
ee85c2e1
AK
3583{
3584 if (addr) {
3585 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3586 unsigned long used = addr + PAGE_ALIGN(size);
3587
3588 split_page(virt_to_page((void *)addr), order);
3589 while (used < alloc_end) {
3590 free_page(used);
3591 used += PAGE_SIZE;
3592 }
3593 }
3594 return (void *)addr;
3595}
3596
2be0ffe2
TT
3597/**
3598 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3599 * @size: the number of bytes to allocate
3600 * @gfp_mask: GFP flags for the allocation
3601 *
3602 * This function is similar to alloc_pages(), except that it allocates the
3603 * minimum number of pages to satisfy the request. alloc_pages() can only
3604 * allocate memory in power-of-two pages.
3605 *
3606 * This function is also limited by MAX_ORDER.
3607 *
3608 * Memory allocated by this function must be released by free_pages_exact().
3609 */
3610void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3611{
3612 unsigned int order = get_order(size);
3613 unsigned long addr;
3614
3615 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3616 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3617}
3618EXPORT_SYMBOL(alloc_pages_exact);
3619
ee85c2e1
AK
3620/**
3621 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3622 * pages on a node.
b5e6ab58 3623 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3624 * @size: the number of bytes to allocate
3625 * @gfp_mask: GFP flags for the allocation
3626 *
3627 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3628 * back.
ee85c2e1 3629 */
e1931811 3630void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3631{
d00181b9 3632 unsigned int order = get_order(size);
ee85c2e1
AK
3633 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3634 if (!p)
3635 return NULL;
3636 return make_alloc_exact((unsigned long)page_address(p), order, size);
3637}
ee85c2e1 3638
2be0ffe2
TT
3639/**
3640 * free_pages_exact - release memory allocated via alloc_pages_exact()
3641 * @virt: the value returned by alloc_pages_exact.
3642 * @size: size of allocation, same value as passed to alloc_pages_exact().
3643 *
3644 * Release the memory allocated by a previous call to alloc_pages_exact.
3645 */
3646void free_pages_exact(void *virt, size_t size)
3647{
3648 unsigned long addr = (unsigned long)virt;
3649 unsigned long end = addr + PAGE_ALIGN(size);
3650
3651 while (addr < end) {
3652 free_page(addr);
3653 addr += PAGE_SIZE;
3654 }
3655}
3656EXPORT_SYMBOL(free_pages_exact);
3657
e0fb5815
ZY
3658/**
3659 * nr_free_zone_pages - count number of pages beyond high watermark
3660 * @offset: The zone index of the highest zone
3661 *
3662 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3663 * high watermark within all zones at or below a given zone index. For each
3664 * zone, the number of pages is calculated as:
834405c3 3665 * managed_pages - high_pages
e0fb5815 3666 */
ebec3862 3667static unsigned long nr_free_zone_pages(int offset)
1da177e4 3668{
dd1a239f 3669 struct zoneref *z;
54a6eb5c
MG
3670 struct zone *zone;
3671
e310fd43 3672 /* Just pick one node, since fallback list is circular */
ebec3862 3673 unsigned long sum = 0;
1da177e4 3674
0e88460d 3675 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3676
54a6eb5c 3677 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3678 unsigned long size = zone->managed_pages;
41858966 3679 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3680 if (size > high)
3681 sum += size - high;
1da177e4
LT
3682 }
3683
3684 return sum;
3685}
3686
e0fb5815
ZY
3687/**
3688 * nr_free_buffer_pages - count number of pages beyond high watermark
3689 *
3690 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3691 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3692 */
ebec3862 3693unsigned long nr_free_buffer_pages(void)
1da177e4 3694{
af4ca457 3695 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3696}
c2f1a551 3697EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3698
e0fb5815
ZY
3699/**
3700 * nr_free_pagecache_pages - count number of pages beyond high watermark
3701 *
3702 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3703 * high watermark within all zones.
1da177e4 3704 */
ebec3862 3705unsigned long nr_free_pagecache_pages(void)
1da177e4 3706{
2a1e274a 3707 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3708}
08e0f6a9
CL
3709
3710static inline void show_node(struct zone *zone)
1da177e4 3711{
e5adfffc 3712 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3713 printk("Node %d ", zone_to_nid(zone));
1da177e4 3714}
1da177e4 3715
1da177e4
LT
3716void si_meminfo(struct sysinfo *val)
3717{
3718 val->totalram = totalram_pages;
cc7452b6 3719 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3720 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3721 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3722 val->totalhigh = totalhigh_pages;
3723 val->freehigh = nr_free_highpages();
1da177e4
LT
3724 val->mem_unit = PAGE_SIZE;
3725}
3726
3727EXPORT_SYMBOL(si_meminfo);
3728
3729#ifdef CONFIG_NUMA
3730void si_meminfo_node(struct sysinfo *val, int nid)
3731{
cdd91a77
JL
3732 int zone_type; /* needs to be signed */
3733 unsigned long managed_pages = 0;
1da177e4
LT
3734 pg_data_t *pgdat = NODE_DATA(nid);
3735
cdd91a77
JL
3736 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3737 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3738 val->totalram = managed_pages;
cc7452b6 3739 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3740 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3741#ifdef CONFIG_HIGHMEM
b40da049 3742 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3743 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3744 NR_FREE_PAGES);
98d2b0eb
CL
3745#else
3746 val->totalhigh = 0;
3747 val->freehigh = 0;
3748#endif
1da177e4
LT
3749 val->mem_unit = PAGE_SIZE;
3750}
3751#endif
3752
ddd588b5 3753/*
7bf02ea2
DR
3754 * Determine whether the node should be displayed or not, depending on whether
3755 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3756 */
7bf02ea2 3757bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3758{
3759 bool ret = false;
cc9a6c87 3760 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3761
3762 if (!(flags & SHOW_MEM_FILTER_NODES))
3763 goto out;
3764
cc9a6c87 3765 do {
d26914d1 3766 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3767 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3768 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3769out:
3770 return ret;
3771}
3772
1da177e4
LT
3773#define K(x) ((x) << (PAGE_SHIFT-10))
3774
377e4f16
RV
3775static void show_migration_types(unsigned char type)
3776{
3777 static const char types[MIGRATE_TYPES] = {
3778 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3779 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3780 [MIGRATE_RECLAIMABLE] = 'E',
3781 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3782#ifdef CONFIG_CMA
3783 [MIGRATE_CMA] = 'C',
3784#endif
194159fb 3785#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3786 [MIGRATE_ISOLATE] = 'I',
194159fb 3787#endif
377e4f16
RV
3788 };
3789 char tmp[MIGRATE_TYPES + 1];
3790 char *p = tmp;
3791 int i;
3792
3793 for (i = 0; i < MIGRATE_TYPES; i++) {
3794 if (type & (1 << i))
3795 *p++ = types[i];
3796 }
3797
3798 *p = '\0';
3799 printk("(%s) ", tmp);
3800}
3801
1da177e4
LT
3802/*
3803 * Show free area list (used inside shift_scroll-lock stuff)
3804 * We also calculate the percentage fragmentation. We do this by counting the
3805 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3806 *
3807 * Bits in @filter:
3808 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3809 * cpuset.
1da177e4 3810 */
7bf02ea2 3811void show_free_areas(unsigned int filter)
1da177e4 3812{
d1bfcdb8 3813 unsigned long free_pcp = 0;
c7241913 3814 int cpu;
1da177e4
LT
3815 struct zone *zone;
3816
ee99c71c 3817 for_each_populated_zone(zone) {
7bf02ea2 3818 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3819 continue;
d1bfcdb8 3820
761b0677
KK
3821 for_each_online_cpu(cpu)
3822 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3823 }
3824
a731286d
KM
3825 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3826 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3827 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3828 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3829 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3830 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3831 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3832 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3833 global_page_state(NR_ISOLATED_ANON),
3834 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3835 global_page_state(NR_INACTIVE_FILE),
a731286d 3836 global_page_state(NR_ISOLATED_FILE),
7b854121 3837 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3838 global_page_state(NR_FILE_DIRTY),
ce866b34 3839 global_page_state(NR_WRITEBACK),
fd39fc85 3840 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3841 global_page_state(NR_SLAB_RECLAIMABLE),
3842 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3843 global_page_state(NR_FILE_MAPPED),
4b02108a 3844 global_page_state(NR_SHMEM),
a25700a5 3845 global_page_state(NR_PAGETABLE),
d1ce749a 3846 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3847 global_page_state(NR_FREE_PAGES),
3848 free_pcp,
d1ce749a 3849 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3850
ee99c71c 3851 for_each_populated_zone(zone) {
1da177e4
LT
3852 int i;
3853
7bf02ea2 3854 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3855 continue;
d1bfcdb8
KK
3856
3857 free_pcp = 0;
3858 for_each_online_cpu(cpu)
3859 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3860
1da177e4
LT
3861 show_node(zone);
3862 printk("%s"
3863 " free:%lukB"
3864 " min:%lukB"
3865 " low:%lukB"
3866 " high:%lukB"
4f98a2fe
RR
3867 " active_anon:%lukB"
3868 " inactive_anon:%lukB"
3869 " active_file:%lukB"
3870 " inactive_file:%lukB"
7b854121 3871 " unevictable:%lukB"
a731286d
KM
3872 " isolated(anon):%lukB"
3873 " isolated(file):%lukB"
1da177e4 3874 " present:%lukB"
9feedc9d 3875 " managed:%lukB"
4a0aa73f
KM
3876 " mlocked:%lukB"
3877 " dirty:%lukB"
3878 " writeback:%lukB"
3879 " mapped:%lukB"
4b02108a 3880 " shmem:%lukB"
4a0aa73f
KM
3881 " slab_reclaimable:%lukB"
3882 " slab_unreclaimable:%lukB"
c6a7f572 3883 " kernel_stack:%lukB"
4a0aa73f
KM
3884 " pagetables:%lukB"
3885 " unstable:%lukB"
3886 " bounce:%lukB"
d1bfcdb8
KK
3887 " free_pcp:%lukB"
3888 " local_pcp:%ukB"
d1ce749a 3889 " free_cma:%lukB"
4a0aa73f 3890 " writeback_tmp:%lukB"
1da177e4
LT
3891 " pages_scanned:%lu"
3892 " all_unreclaimable? %s"
3893 "\n",
3894 zone->name,
88f5acf8 3895 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3896 K(min_wmark_pages(zone)),
3897 K(low_wmark_pages(zone)),
3898 K(high_wmark_pages(zone)),
4f98a2fe
RR
3899 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3900 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3901 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3902 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3903 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3904 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3905 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3906 K(zone->present_pages),
9feedc9d 3907 K(zone->managed_pages),
4a0aa73f
KM
3908 K(zone_page_state(zone, NR_MLOCK)),
3909 K(zone_page_state(zone, NR_FILE_DIRTY)),
3910 K(zone_page_state(zone, NR_WRITEBACK)),
3911 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3912 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3913 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3914 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3915 zone_page_state(zone, NR_KERNEL_STACK) *
3916 THREAD_SIZE / 1024,
4a0aa73f
KM
3917 K(zone_page_state(zone, NR_PAGETABLE)),
3918 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3919 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3920 K(free_pcp),
3921 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3922 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3923 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3924 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3925 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3926 );
3927 printk("lowmem_reserve[]:");
3928 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3929 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3930 printk("\n");
3931 }
3932
ee99c71c 3933 for_each_populated_zone(zone) {
d00181b9
KS
3934 unsigned int order;
3935 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 3936 unsigned char types[MAX_ORDER];
1da177e4 3937
7bf02ea2 3938 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3939 continue;
1da177e4
LT
3940 show_node(zone);
3941 printk("%s: ", zone->name);
1da177e4
LT
3942
3943 spin_lock_irqsave(&zone->lock, flags);
3944 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3945 struct free_area *area = &zone->free_area[order];
3946 int type;
3947
3948 nr[order] = area->nr_free;
8f9de51a 3949 total += nr[order] << order;
377e4f16
RV
3950
3951 types[order] = 0;
3952 for (type = 0; type < MIGRATE_TYPES; type++) {
3953 if (!list_empty(&area->free_list[type]))
3954 types[order] |= 1 << type;
3955 }
1da177e4
LT
3956 }
3957 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3958 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3959 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3960 if (nr[order])
3961 show_migration_types(types[order]);
3962 }
1da177e4
LT
3963 printk("= %lukB\n", K(total));
3964 }
3965
949f7ec5
DR
3966 hugetlb_show_meminfo();
3967
e6f3602d
LW
3968 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3969
1da177e4
LT
3970 show_swap_cache_info();
3971}
3972
19770b32
MG
3973static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3974{
3975 zoneref->zone = zone;
3976 zoneref->zone_idx = zone_idx(zone);
3977}
3978
1da177e4
LT
3979/*
3980 * Builds allocation fallback zone lists.
1a93205b
CL
3981 *
3982 * Add all populated zones of a node to the zonelist.
1da177e4 3983 */
f0c0b2b8 3984static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3985 int nr_zones)
1da177e4 3986{
1a93205b 3987 struct zone *zone;
bc732f1d 3988 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3989
3990 do {
2f6726e5 3991 zone_type--;
070f8032 3992 zone = pgdat->node_zones + zone_type;
1a93205b 3993 if (populated_zone(zone)) {
dd1a239f
MG
3994 zoneref_set_zone(zone,
3995 &zonelist->_zonerefs[nr_zones++]);
070f8032 3996 check_highest_zone(zone_type);
1da177e4 3997 }
2f6726e5 3998 } while (zone_type);
bc732f1d 3999
070f8032 4000 return nr_zones;
1da177e4
LT
4001}
4002
f0c0b2b8
KH
4003
4004/*
4005 * zonelist_order:
4006 * 0 = automatic detection of better ordering.
4007 * 1 = order by ([node] distance, -zonetype)
4008 * 2 = order by (-zonetype, [node] distance)
4009 *
4010 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4011 * the same zonelist. So only NUMA can configure this param.
4012 */
4013#define ZONELIST_ORDER_DEFAULT 0
4014#define ZONELIST_ORDER_NODE 1
4015#define ZONELIST_ORDER_ZONE 2
4016
4017/* zonelist order in the kernel.
4018 * set_zonelist_order() will set this to NODE or ZONE.
4019 */
4020static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4021static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4022
4023
1da177e4 4024#ifdef CONFIG_NUMA
f0c0b2b8
KH
4025/* The value user specified ....changed by config */
4026static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4027/* string for sysctl */
4028#define NUMA_ZONELIST_ORDER_LEN 16
4029char numa_zonelist_order[16] = "default";
4030
4031/*
4032 * interface for configure zonelist ordering.
4033 * command line option "numa_zonelist_order"
4034 * = "[dD]efault - default, automatic configuration.
4035 * = "[nN]ode - order by node locality, then by zone within node
4036 * = "[zZ]one - order by zone, then by locality within zone
4037 */
4038
4039static int __parse_numa_zonelist_order(char *s)
4040{
4041 if (*s == 'd' || *s == 'D') {
4042 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4043 } else if (*s == 'n' || *s == 'N') {
4044 user_zonelist_order = ZONELIST_ORDER_NODE;
4045 } else if (*s == 'z' || *s == 'Z') {
4046 user_zonelist_order = ZONELIST_ORDER_ZONE;
4047 } else {
4048 printk(KERN_WARNING
4049 "Ignoring invalid numa_zonelist_order value: "
4050 "%s\n", s);
4051 return -EINVAL;
4052 }
4053 return 0;
4054}
4055
4056static __init int setup_numa_zonelist_order(char *s)
4057{
ecb256f8
VL
4058 int ret;
4059
4060 if (!s)
4061 return 0;
4062
4063 ret = __parse_numa_zonelist_order(s);
4064 if (ret == 0)
4065 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4066
4067 return ret;
f0c0b2b8
KH
4068}
4069early_param("numa_zonelist_order", setup_numa_zonelist_order);
4070
4071/*
4072 * sysctl handler for numa_zonelist_order
4073 */
cccad5b9 4074int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4075 void __user *buffer, size_t *length,
f0c0b2b8
KH
4076 loff_t *ppos)
4077{
4078 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4079 int ret;
443c6f14 4080 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4081
443c6f14 4082 mutex_lock(&zl_order_mutex);
dacbde09
CG
4083 if (write) {
4084 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4085 ret = -EINVAL;
4086 goto out;
4087 }
4088 strcpy(saved_string, (char *)table->data);
4089 }
8d65af78 4090 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4091 if (ret)
443c6f14 4092 goto out;
f0c0b2b8
KH
4093 if (write) {
4094 int oldval = user_zonelist_order;
dacbde09
CG
4095
4096 ret = __parse_numa_zonelist_order((char *)table->data);
4097 if (ret) {
f0c0b2b8
KH
4098 /*
4099 * bogus value. restore saved string
4100 */
dacbde09 4101 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4102 NUMA_ZONELIST_ORDER_LEN);
4103 user_zonelist_order = oldval;
4eaf3f64
HL
4104 } else if (oldval != user_zonelist_order) {
4105 mutex_lock(&zonelists_mutex);
9adb62a5 4106 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4107 mutex_unlock(&zonelists_mutex);
4108 }
f0c0b2b8 4109 }
443c6f14
AK
4110out:
4111 mutex_unlock(&zl_order_mutex);
4112 return ret;
f0c0b2b8
KH
4113}
4114
4115
62bc62a8 4116#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4117static int node_load[MAX_NUMNODES];
4118
1da177e4 4119/**
4dc3b16b 4120 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4121 * @node: node whose fallback list we're appending
4122 * @used_node_mask: nodemask_t of already used nodes
4123 *
4124 * We use a number of factors to determine which is the next node that should
4125 * appear on a given node's fallback list. The node should not have appeared
4126 * already in @node's fallback list, and it should be the next closest node
4127 * according to the distance array (which contains arbitrary distance values
4128 * from each node to each node in the system), and should also prefer nodes
4129 * with no CPUs, since presumably they'll have very little allocation pressure
4130 * on them otherwise.
4131 * It returns -1 if no node is found.
4132 */
f0c0b2b8 4133static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4134{
4cf808eb 4135 int n, val;
1da177e4 4136 int min_val = INT_MAX;
00ef2d2f 4137 int best_node = NUMA_NO_NODE;
a70f7302 4138 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4139
4cf808eb
LT
4140 /* Use the local node if we haven't already */
4141 if (!node_isset(node, *used_node_mask)) {
4142 node_set(node, *used_node_mask);
4143 return node;
4144 }
1da177e4 4145
4b0ef1fe 4146 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4147
4148 /* Don't want a node to appear more than once */
4149 if (node_isset(n, *used_node_mask))
4150 continue;
4151
1da177e4
LT
4152 /* Use the distance array to find the distance */
4153 val = node_distance(node, n);
4154
4cf808eb
LT
4155 /* Penalize nodes under us ("prefer the next node") */
4156 val += (n < node);
4157
1da177e4 4158 /* Give preference to headless and unused nodes */
a70f7302
RR
4159 tmp = cpumask_of_node(n);
4160 if (!cpumask_empty(tmp))
1da177e4
LT
4161 val += PENALTY_FOR_NODE_WITH_CPUS;
4162
4163 /* Slight preference for less loaded node */
4164 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4165 val += node_load[n];
4166
4167 if (val < min_val) {
4168 min_val = val;
4169 best_node = n;
4170 }
4171 }
4172
4173 if (best_node >= 0)
4174 node_set(best_node, *used_node_mask);
4175
4176 return best_node;
4177}
4178
f0c0b2b8
KH
4179
4180/*
4181 * Build zonelists ordered by node and zones within node.
4182 * This results in maximum locality--normal zone overflows into local
4183 * DMA zone, if any--but risks exhausting DMA zone.
4184 */
4185static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4186{
f0c0b2b8 4187 int j;
1da177e4 4188 struct zonelist *zonelist;
f0c0b2b8 4189
54a6eb5c 4190 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4191 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4192 ;
bc732f1d 4193 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4194 zonelist->_zonerefs[j].zone = NULL;
4195 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4196}
4197
523b9458
CL
4198/*
4199 * Build gfp_thisnode zonelists
4200 */
4201static void build_thisnode_zonelists(pg_data_t *pgdat)
4202{
523b9458
CL
4203 int j;
4204 struct zonelist *zonelist;
4205
54a6eb5c 4206 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4207 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4208 zonelist->_zonerefs[j].zone = NULL;
4209 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4210}
4211
f0c0b2b8
KH
4212/*
4213 * Build zonelists ordered by zone and nodes within zones.
4214 * This results in conserving DMA zone[s] until all Normal memory is
4215 * exhausted, but results in overflowing to remote node while memory
4216 * may still exist in local DMA zone.
4217 */
4218static int node_order[MAX_NUMNODES];
4219
4220static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4221{
f0c0b2b8
KH
4222 int pos, j, node;
4223 int zone_type; /* needs to be signed */
4224 struct zone *z;
4225 struct zonelist *zonelist;
4226
54a6eb5c
MG
4227 zonelist = &pgdat->node_zonelists[0];
4228 pos = 0;
4229 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4230 for (j = 0; j < nr_nodes; j++) {
4231 node = node_order[j];
4232 z = &NODE_DATA(node)->node_zones[zone_type];
4233 if (populated_zone(z)) {
dd1a239f
MG
4234 zoneref_set_zone(z,
4235 &zonelist->_zonerefs[pos++]);
54a6eb5c 4236 check_highest_zone(zone_type);
f0c0b2b8
KH
4237 }
4238 }
f0c0b2b8 4239 }
dd1a239f
MG
4240 zonelist->_zonerefs[pos].zone = NULL;
4241 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4242}
4243
3193913c
MG
4244#if defined(CONFIG_64BIT)
4245/*
4246 * Devices that require DMA32/DMA are relatively rare and do not justify a
4247 * penalty to every machine in case the specialised case applies. Default
4248 * to Node-ordering on 64-bit NUMA machines
4249 */
4250static int default_zonelist_order(void)
4251{
4252 return ZONELIST_ORDER_NODE;
4253}
4254#else
4255/*
4256 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4257 * by the kernel. If processes running on node 0 deplete the low memory zone
4258 * then reclaim will occur more frequency increasing stalls and potentially
4259 * be easier to OOM if a large percentage of the zone is under writeback or
4260 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4261 * Hence, default to zone ordering on 32-bit.
4262 */
f0c0b2b8
KH
4263static int default_zonelist_order(void)
4264{
f0c0b2b8
KH
4265 return ZONELIST_ORDER_ZONE;
4266}
3193913c 4267#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4268
4269static void set_zonelist_order(void)
4270{
4271 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4272 current_zonelist_order = default_zonelist_order();
4273 else
4274 current_zonelist_order = user_zonelist_order;
4275}
4276
4277static void build_zonelists(pg_data_t *pgdat)
4278{
c00eb15a 4279 int i, node, load;
1da177e4 4280 nodemask_t used_mask;
f0c0b2b8
KH
4281 int local_node, prev_node;
4282 struct zonelist *zonelist;
d00181b9 4283 unsigned int order = current_zonelist_order;
1da177e4
LT
4284
4285 /* initialize zonelists */
523b9458 4286 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4287 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4288 zonelist->_zonerefs[0].zone = NULL;
4289 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4290 }
4291
4292 /* NUMA-aware ordering of nodes */
4293 local_node = pgdat->node_id;
62bc62a8 4294 load = nr_online_nodes;
1da177e4
LT
4295 prev_node = local_node;
4296 nodes_clear(used_mask);
f0c0b2b8 4297
f0c0b2b8 4298 memset(node_order, 0, sizeof(node_order));
c00eb15a 4299 i = 0;
f0c0b2b8 4300
1da177e4
LT
4301 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4302 /*
4303 * We don't want to pressure a particular node.
4304 * So adding penalty to the first node in same
4305 * distance group to make it round-robin.
4306 */
957f822a
DR
4307 if (node_distance(local_node, node) !=
4308 node_distance(local_node, prev_node))
f0c0b2b8
KH
4309 node_load[node] = load;
4310
1da177e4
LT
4311 prev_node = node;
4312 load--;
f0c0b2b8
KH
4313 if (order == ZONELIST_ORDER_NODE)
4314 build_zonelists_in_node_order(pgdat, node);
4315 else
c00eb15a 4316 node_order[i++] = node; /* remember order */
f0c0b2b8 4317 }
1da177e4 4318
f0c0b2b8
KH
4319 if (order == ZONELIST_ORDER_ZONE) {
4320 /* calculate node order -- i.e., DMA last! */
c00eb15a 4321 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4322 }
523b9458
CL
4323
4324 build_thisnode_zonelists(pgdat);
1da177e4
LT
4325}
4326
7aac7898
LS
4327#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4328/*
4329 * Return node id of node used for "local" allocations.
4330 * I.e., first node id of first zone in arg node's generic zonelist.
4331 * Used for initializing percpu 'numa_mem', which is used primarily
4332 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4333 */
4334int local_memory_node(int node)
4335{
4336 struct zone *zone;
4337
4338 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4339 gfp_zone(GFP_KERNEL),
4340 NULL,
4341 &zone);
4342 return zone->node;
4343}
4344#endif
f0c0b2b8 4345
1da177e4
LT
4346#else /* CONFIG_NUMA */
4347
f0c0b2b8
KH
4348static void set_zonelist_order(void)
4349{
4350 current_zonelist_order = ZONELIST_ORDER_ZONE;
4351}
4352
4353static void build_zonelists(pg_data_t *pgdat)
1da177e4 4354{
19655d34 4355 int node, local_node;
54a6eb5c
MG
4356 enum zone_type j;
4357 struct zonelist *zonelist;
1da177e4
LT
4358
4359 local_node = pgdat->node_id;
1da177e4 4360
54a6eb5c 4361 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4362 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4363
54a6eb5c
MG
4364 /*
4365 * Now we build the zonelist so that it contains the zones
4366 * of all the other nodes.
4367 * We don't want to pressure a particular node, so when
4368 * building the zones for node N, we make sure that the
4369 * zones coming right after the local ones are those from
4370 * node N+1 (modulo N)
4371 */
4372 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4373 if (!node_online(node))
4374 continue;
bc732f1d 4375 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4376 }
54a6eb5c
MG
4377 for (node = 0; node < local_node; node++) {
4378 if (!node_online(node))
4379 continue;
bc732f1d 4380 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4381 }
4382
dd1a239f
MG
4383 zonelist->_zonerefs[j].zone = NULL;
4384 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4385}
4386
4387#endif /* CONFIG_NUMA */
4388
99dcc3e5
CL
4389/*
4390 * Boot pageset table. One per cpu which is going to be used for all
4391 * zones and all nodes. The parameters will be set in such a way
4392 * that an item put on a list will immediately be handed over to
4393 * the buddy list. This is safe since pageset manipulation is done
4394 * with interrupts disabled.
4395 *
4396 * The boot_pagesets must be kept even after bootup is complete for
4397 * unused processors and/or zones. They do play a role for bootstrapping
4398 * hotplugged processors.
4399 *
4400 * zoneinfo_show() and maybe other functions do
4401 * not check if the processor is online before following the pageset pointer.
4402 * Other parts of the kernel may not check if the zone is available.
4403 */
4404static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4405static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4406static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4407
4eaf3f64
HL
4408/*
4409 * Global mutex to protect against size modification of zonelists
4410 * as well as to serialize pageset setup for the new populated zone.
4411 */
4412DEFINE_MUTEX(zonelists_mutex);
4413
9b1a4d38 4414/* return values int ....just for stop_machine() */
4ed7e022 4415static int __build_all_zonelists(void *data)
1da177e4 4416{
6811378e 4417 int nid;
99dcc3e5 4418 int cpu;
9adb62a5 4419 pg_data_t *self = data;
9276b1bc 4420
7f9cfb31
BL
4421#ifdef CONFIG_NUMA
4422 memset(node_load, 0, sizeof(node_load));
4423#endif
9adb62a5
JL
4424
4425 if (self && !node_online(self->node_id)) {
4426 build_zonelists(self);
9adb62a5
JL
4427 }
4428
9276b1bc 4429 for_each_online_node(nid) {
7ea1530a
CL
4430 pg_data_t *pgdat = NODE_DATA(nid);
4431
4432 build_zonelists(pgdat);
9276b1bc 4433 }
99dcc3e5
CL
4434
4435 /*
4436 * Initialize the boot_pagesets that are going to be used
4437 * for bootstrapping processors. The real pagesets for
4438 * each zone will be allocated later when the per cpu
4439 * allocator is available.
4440 *
4441 * boot_pagesets are used also for bootstrapping offline
4442 * cpus if the system is already booted because the pagesets
4443 * are needed to initialize allocators on a specific cpu too.
4444 * F.e. the percpu allocator needs the page allocator which
4445 * needs the percpu allocator in order to allocate its pagesets
4446 * (a chicken-egg dilemma).
4447 */
7aac7898 4448 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4449 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4450
7aac7898
LS
4451#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4452 /*
4453 * We now know the "local memory node" for each node--
4454 * i.e., the node of the first zone in the generic zonelist.
4455 * Set up numa_mem percpu variable for on-line cpus. During
4456 * boot, only the boot cpu should be on-line; we'll init the
4457 * secondary cpus' numa_mem as they come on-line. During
4458 * node/memory hotplug, we'll fixup all on-line cpus.
4459 */
4460 if (cpu_online(cpu))
4461 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4462#endif
4463 }
4464
6811378e
YG
4465 return 0;
4466}
4467
061f67bc
RV
4468static noinline void __init
4469build_all_zonelists_init(void)
4470{
4471 __build_all_zonelists(NULL);
4472 mminit_verify_zonelist();
4473 cpuset_init_current_mems_allowed();
4474}
4475
4eaf3f64
HL
4476/*
4477 * Called with zonelists_mutex held always
4478 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4479 *
4480 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4481 * [we're only called with non-NULL zone through __meminit paths] and
4482 * (2) call of __init annotated helper build_all_zonelists_init
4483 * [protected by SYSTEM_BOOTING].
4eaf3f64 4484 */
9adb62a5 4485void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4486{
f0c0b2b8
KH
4487 set_zonelist_order();
4488
6811378e 4489 if (system_state == SYSTEM_BOOTING) {
061f67bc 4490 build_all_zonelists_init();
6811378e 4491 } else {
e9959f0f 4492#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4493 if (zone)
4494 setup_zone_pageset(zone);
e9959f0f 4495#endif
dd1895e2
CS
4496 /* we have to stop all cpus to guarantee there is no user
4497 of zonelist */
9adb62a5 4498 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4499 /* cpuset refresh routine should be here */
4500 }
bd1e22b8 4501 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4502 /*
4503 * Disable grouping by mobility if the number of pages in the
4504 * system is too low to allow the mechanism to work. It would be
4505 * more accurate, but expensive to check per-zone. This check is
4506 * made on memory-hotadd so a system can start with mobility
4507 * disabled and enable it later
4508 */
d9c23400 4509 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4510 page_group_by_mobility_disabled = 1;
4511 else
4512 page_group_by_mobility_disabled = 0;
4513
f88dfff5 4514 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4515 "Total pages: %ld\n",
62bc62a8 4516 nr_online_nodes,
f0c0b2b8 4517 zonelist_order_name[current_zonelist_order],
9ef9acb0 4518 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4519 vm_total_pages);
4520#ifdef CONFIG_NUMA
f88dfff5 4521 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4522#endif
1da177e4
LT
4523}
4524
4525/*
4526 * Helper functions to size the waitqueue hash table.
4527 * Essentially these want to choose hash table sizes sufficiently
4528 * large so that collisions trying to wait on pages are rare.
4529 * But in fact, the number of active page waitqueues on typical
4530 * systems is ridiculously low, less than 200. So this is even
4531 * conservative, even though it seems large.
4532 *
4533 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4534 * waitqueues, i.e. the size of the waitq table given the number of pages.
4535 */
4536#define PAGES_PER_WAITQUEUE 256
4537
cca448fe 4538#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4539static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4540{
4541 unsigned long size = 1;
4542
4543 pages /= PAGES_PER_WAITQUEUE;
4544
4545 while (size < pages)
4546 size <<= 1;
4547
4548 /*
4549 * Once we have dozens or even hundreds of threads sleeping
4550 * on IO we've got bigger problems than wait queue collision.
4551 * Limit the size of the wait table to a reasonable size.
4552 */
4553 size = min(size, 4096UL);
4554
4555 return max(size, 4UL);
4556}
cca448fe
YG
4557#else
4558/*
4559 * A zone's size might be changed by hot-add, so it is not possible to determine
4560 * a suitable size for its wait_table. So we use the maximum size now.
4561 *
4562 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4563 *
4564 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4565 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4566 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4567 *
4568 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4569 * or more by the traditional way. (See above). It equals:
4570 *
4571 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4572 * ia64(16K page size) : = ( 8G + 4M)byte.
4573 * powerpc (64K page size) : = (32G +16M)byte.
4574 */
4575static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4576{
4577 return 4096UL;
4578}
4579#endif
1da177e4
LT
4580
4581/*
4582 * This is an integer logarithm so that shifts can be used later
4583 * to extract the more random high bits from the multiplicative
4584 * hash function before the remainder is taken.
4585 */
4586static inline unsigned long wait_table_bits(unsigned long size)
4587{
4588 return ffz(~size);
4589}
4590
1da177e4
LT
4591/*
4592 * Initially all pages are reserved - free ones are freed
4593 * up by free_all_bootmem() once the early boot process is
4594 * done. Non-atomic initialization, single-pass.
4595 */
c09b4240 4596void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4597 unsigned long start_pfn, enum memmap_context context)
1da177e4 4598{
4b94ffdc 4599 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4600 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4601 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4602 unsigned long pfn;
3a80a7fa 4603 unsigned long nr_initialised = 0;
342332e6
TI
4604#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4605 struct memblock_region *r = NULL, *tmp;
4606#endif
1da177e4 4607
22b31eec
HD
4608 if (highest_memmap_pfn < end_pfn - 1)
4609 highest_memmap_pfn = end_pfn - 1;
4610
4b94ffdc
DW
4611 /*
4612 * Honor reservation requested by the driver for this ZONE_DEVICE
4613 * memory
4614 */
4615 if (altmap && start_pfn == altmap->base_pfn)
4616 start_pfn += altmap->reserve;
4617
cbe8dd4a 4618 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4619 /*
b72d0ffb
AM
4620 * There can be holes in boot-time mem_map[]s handed to this
4621 * function. They do not exist on hotplugged memory.
a2f3aa02 4622 */
b72d0ffb
AM
4623 if (context != MEMMAP_EARLY)
4624 goto not_early;
4625
4626 if (!early_pfn_valid(pfn))
4627 continue;
4628 if (!early_pfn_in_nid(pfn, nid))
4629 continue;
4630 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4631 break;
342332e6
TI
4632
4633#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4634 /*
4635 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4636 * from zone_movable_pfn[nid] to end of each node should be
4637 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4638 */
4639 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4640 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4641 continue;
342332e6 4642
b72d0ffb
AM
4643 /*
4644 * Check given memblock attribute by firmware which can affect
4645 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4646 * mirrored, it's an overlapped memmap init. skip it.
4647 */
4648 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4649 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4650 for_each_memblock(memory, tmp)
4651 if (pfn < memblock_region_memory_end_pfn(tmp))
4652 break;
4653 r = tmp;
4654 }
4655 if (pfn >= memblock_region_memory_base_pfn(r) &&
4656 memblock_is_mirror(r)) {
4657 /* already initialized as NORMAL */
4658 pfn = memblock_region_memory_end_pfn(r);
4659 continue;
342332e6 4660 }
a2f3aa02 4661 }
b72d0ffb 4662#endif
ac5d2539 4663
b72d0ffb 4664not_early:
ac5d2539
MG
4665 /*
4666 * Mark the block movable so that blocks are reserved for
4667 * movable at startup. This will force kernel allocations
4668 * to reserve their blocks rather than leaking throughout
4669 * the address space during boot when many long-lived
974a786e 4670 * kernel allocations are made.
ac5d2539
MG
4671 *
4672 * bitmap is created for zone's valid pfn range. but memmap
4673 * can be created for invalid pages (for alignment)
4674 * check here not to call set_pageblock_migratetype() against
4675 * pfn out of zone.
4676 */
4677 if (!(pfn & (pageblock_nr_pages - 1))) {
4678 struct page *page = pfn_to_page(pfn);
4679
4680 __init_single_page(page, pfn, zone, nid);
4681 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4682 } else {
4683 __init_single_pfn(pfn, zone, nid);
4684 }
1da177e4
LT
4685 }
4686}
4687
1e548deb 4688static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4689{
7aeb09f9 4690 unsigned int order, t;
b2a0ac88
MG
4691 for_each_migratetype_order(order, t) {
4692 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4693 zone->free_area[order].nr_free = 0;
4694 }
4695}
4696
4697#ifndef __HAVE_ARCH_MEMMAP_INIT
4698#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4699 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4700#endif
4701
7cd2b0a3 4702static int zone_batchsize(struct zone *zone)
e7c8d5c9 4703{
3a6be87f 4704#ifdef CONFIG_MMU
e7c8d5c9
CL
4705 int batch;
4706
4707 /*
4708 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4709 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4710 *
4711 * OK, so we don't know how big the cache is. So guess.
4712 */
b40da049 4713 batch = zone->managed_pages / 1024;
ba56e91c
SR
4714 if (batch * PAGE_SIZE > 512 * 1024)
4715 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4716 batch /= 4; /* We effectively *= 4 below */
4717 if (batch < 1)
4718 batch = 1;
4719
4720 /*
0ceaacc9
NP
4721 * Clamp the batch to a 2^n - 1 value. Having a power
4722 * of 2 value was found to be more likely to have
4723 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4724 *
0ceaacc9
NP
4725 * For example if 2 tasks are alternately allocating
4726 * batches of pages, one task can end up with a lot
4727 * of pages of one half of the possible page colors
4728 * and the other with pages of the other colors.
e7c8d5c9 4729 */
9155203a 4730 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4731
e7c8d5c9 4732 return batch;
3a6be87f
DH
4733
4734#else
4735 /* The deferral and batching of frees should be suppressed under NOMMU
4736 * conditions.
4737 *
4738 * The problem is that NOMMU needs to be able to allocate large chunks
4739 * of contiguous memory as there's no hardware page translation to
4740 * assemble apparent contiguous memory from discontiguous pages.
4741 *
4742 * Queueing large contiguous runs of pages for batching, however,
4743 * causes the pages to actually be freed in smaller chunks. As there
4744 * can be a significant delay between the individual batches being
4745 * recycled, this leads to the once large chunks of space being
4746 * fragmented and becoming unavailable for high-order allocations.
4747 */
4748 return 0;
4749#endif
e7c8d5c9
CL
4750}
4751
8d7a8fa9
CS
4752/*
4753 * pcp->high and pcp->batch values are related and dependent on one another:
4754 * ->batch must never be higher then ->high.
4755 * The following function updates them in a safe manner without read side
4756 * locking.
4757 *
4758 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4759 * those fields changing asynchronously (acording the the above rule).
4760 *
4761 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4762 * outside of boot time (or some other assurance that no concurrent updaters
4763 * exist).
4764 */
4765static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4766 unsigned long batch)
4767{
4768 /* start with a fail safe value for batch */
4769 pcp->batch = 1;
4770 smp_wmb();
4771
4772 /* Update high, then batch, in order */
4773 pcp->high = high;
4774 smp_wmb();
4775
4776 pcp->batch = batch;
4777}
4778
3664033c 4779/* a companion to pageset_set_high() */
4008bab7
CS
4780static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4781{
8d7a8fa9 4782 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4783}
4784
88c90dbc 4785static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4786{
4787 struct per_cpu_pages *pcp;
5f8dcc21 4788 int migratetype;
2caaad41 4789
1c6fe946
MD
4790 memset(p, 0, sizeof(*p));
4791
3dfa5721 4792 pcp = &p->pcp;
2caaad41 4793 pcp->count = 0;
5f8dcc21
MG
4794 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4795 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4796}
4797
88c90dbc
CS
4798static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4799{
4800 pageset_init(p);
4801 pageset_set_batch(p, batch);
4802}
4803
8ad4b1fb 4804/*
3664033c 4805 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4806 * to the value high for the pageset p.
4807 */
3664033c 4808static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4809 unsigned long high)
4810{
8d7a8fa9
CS
4811 unsigned long batch = max(1UL, high / 4);
4812 if ((high / 4) > (PAGE_SHIFT * 8))
4813 batch = PAGE_SHIFT * 8;
8ad4b1fb 4814
8d7a8fa9 4815 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4816}
4817
7cd2b0a3
DR
4818static void pageset_set_high_and_batch(struct zone *zone,
4819 struct per_cpu_pageset *pcp)
56cef2b8 4820{
56cef2b8 4821 if (percpu_pagelist_fraction)
3664033c 4822 pageset_set_high(pcp,
56cef2b8
CS
4823 (zone->managed_pages /
4824 percpu_pagelist_fraction));
4825 else
4826 pageset_set_batch(pcp, zone_batchsize(zone));
4827}
4828
169f6c19
CS
4829static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4830{
4831 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4832
4833 pageset_init(pcp);
4834 pageset_set_high_and_batch(zone, pcp);
4835}
4836
4ed7e022 4837static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4838{
4839 int cpu;
319774e2 4840 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4841 for_each_possible_cpu(cpu)
4842 zone_pageset_init(zone, cpu);
319774e2
WF
4843}
4844
2caaad41 4845/*
99dcc3e5
CL
4846 * Allocate per cpu pagesets and initialize them.
4847 * Before this call only boot pagesets were available.
e7c8d5c9 4848 */
99dcc3e5 4849void __init setup_per_cpu_pageset(void)
e7c8d5c9 4850{
99dcc3e5 4851 struct zone *zone;
e7c8d5c9 4852
319774e2
WF
4853 for_each_populated_zone(zone)
4854 setup_zone_pageset(zone);
e7c8d5c9
CL
4855}
4856
577a32f6 4857static noinline __init_refok
cca448fe 4858int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4859{
4860 int i;
cca448fe 4861 size_t alloc_size;
ed8ece2e
DH
4862
4863 /*
4864 * The per-page waitqueue mechanism uses hashed waitqueues
4865 * per zone.
4866 */
02b694de
YG
4867 zone->wait_table_hash_nr_entries =
4868 wait_table_hash_nr_entries(zone_size_pages);
4869 zone->wait_table_bits =
4870 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4871 alloc_size = zone->wait_table_hash_nr_entries
4872 * sizeof(wait_queue_head_t);
4873
cd94b9db 4874 if (!slab_is_available()) {
cca448fe 4875 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4876 memblock_virt_alloc_node_nopanic(
4877 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4878 } else {
4879 /*
4880 * This case means that a zone whose size was 0 gets new memory
4881 * via memory hot-add.
4882 * But it may be the case that a new node was hot-added. In
4883 * this case vmalloc() will not be able to use this new node's
4884 * memory - this wait_table must be initialized to use this new
4885 * node itself as well.
4886 * To use this new node's memory, further consideration will be
4887 * necessary.
4888 */
8691f3a7 4889 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4890 }
4891 if (!zone->wait_table)
4892 return -ENOMEM;
ed8ece2e 4893
b8af2941 4894 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4895 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4896
4897 return 0;
ed8ece2e
DH
4898}
4899
c09b4240 4900static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4901{
99dcc3e5
CL
4902 /*
4903 * per cpu subsystem is not up at this point. The following code
4904 * relies on the ability of the linker to provide the
4905 * offset of a (static) per cpu variable into the per cpu area.
4906 */
4907 zone->pageset = &boot_pageset;
ed8ece2e 4908
b38a8725 4909 if (populated_zone(zone))
99dcc3e5
CL
4910 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4911 zone->name, zone->present_pages,
4912 zone_batchsize(zone));
ed8ece2e
DH
4913}
4914
4ed7e022 4915int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4916 unsigned long zone_start_pfn,
b171e409 4917 unsigned long size)
ed8ece2e
DH
4918{
4919 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4920 int ret;
4921 ret = zone_wait_table_init(zone, size);
4922 if (ret)
4923 return ret;
ed8ece2e
DH
4924 pgdat->nr_zones = zone_idx(zone) + 1;
4925
ed8ece2e
DH
4926 zone->zone_start_pfn = zone_start_pfn;
4927
708614e6
MG
4928 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4929 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4930 pgdat->node_id,
4931 (unsigned long)zone_idx(zone),
4932 zone_start_pfn, (zone_start_pfn + size));
4933
1e548deb 4934 zone_init_free_lists(zone);
718127cc
YG
4935
4936 return 0;
ed8ece2e
DH
4937}
4938
0ee332c1 4939#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4940#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4941
c713216d
MG
4942/*
4943 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4944 */
8a942fde
MG
4945int __meminit __early_pfn_to_nid(unsigned long pfn,
4946 struct mminit_pfnnid_cache *state)
c713216d 4947{
c13291a5 4948 unsigned long start_pfn, end_pfn;
e76b63f8 4949 int nid;
7c243c71 4950
8a942fde
MG
4951 if (state->last_start <= pfn && pfn < state->last_end)
4952 return state->last_nid;
c713216d 4953
e76b63f8
YL
4954 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4955 if (nid != -1) {
8a942fde
MG
4956 state->last_start = start_pfn;
4957 state->last_end = end_pfn;
4958 state->last_nid = nid;
e76b63f8
YL
4959 }
4960
4961 return nid;
c713216d
MG
4962}
4963#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4964
c713216d 4965/**
6782832e 4966 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4967 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4968 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4969 *
7d018176
ZZ
4970 * If an architecture guarantees that all ranges registered contain no holes
4971 * and may be freed, this this function may be used instead of calling
4972 * memblock_free_early_nid() manually.
c713216d 4973 */
c13291a5 4974void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4975{
c13291a5
TH
4976 unsigned long start_pfn, end_pfn;
4977 int i, this_nid;
edbe7d23 4978
c13291a5
TH
4979 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4980 start_pfn = min(start_pfn, max_low_pfn);
4981 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4982
c13291a5 4983 if (start_pfn < end_pfn)
6782832e
SS
4984 memblock_free_early_nid(PFN_PHYS(start_pfn),
4985 (end_pfn - start_pfn) << PAGE_SHIFT,
4986 this_nid);
edbe7d23 4987 }
edbe7d23 4988}
edbe7d23 4989
c713216d
MG
4990/**
4991 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4992 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4993 *
7d018176
ZZ
4994 * If an architecture guarantees that all ranges registered contain no holes and may
4995 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4996 */
4997void __init sparse_memory_present_with_active_regions(int nid)
4998{
c13291a5
TH
4999 unsigned long start_pfn, end_pfn;
5000 int i, this_nid;
c713216d 5001
c13291a5
TH
5002 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5003 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5004}
5005
5006/**
5007 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5008 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5009 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5010 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5011 *
5012 * It returns the start and end page frame of a node based on information
7d018176 5013 * provided by memblock_set_node(). If called for a node
c713216d 5014 * with no available memory, a warning is printed and the start and end
88ca3b94 5015 * PFNs will be 0.
c713216d 5016 */
a3142c8e 5017void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5018 unsigned long *start_pfn, unsigned long *end_pfn)
5019{
c13291a5 5020 unsigned long this_start_pfn, this_end_pfn;
c713216d 5021 int i;
c13291a5 5022
c713216d
MG
5023 *start_pfn = -1UL;
5024 *end_pfn = 0;
5025
c13291a5
TH
5026 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5027 *start_pfn = min(*start_pfn, this_start_pfn);
5028 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5029 }
5030
633c0666 5031 if (*start_pfn == -1UL)
c713216d 5032 *start_pfn = 0;
c713216d
MG
5033}
5034
2a1e274a
MG
5035/*
5036 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5037 * assumption is made that zones within a node are ordered in monotonic
5038 * increasing memory addresses so that the "highest" populated zone is used
5039 */
b69a7288 5040static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5041{
5042 int zone_index;
5043 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5044 if (zone_index == ZONE_MOVABLE)
5045 continue;
5046
5047 if (arch_zone_highest_possible_pfn[zone_index] >
5048 arch_zone_lowest_possible_pfn[zone_index])
5049 break;
5050 }
5051
5052 VM_BUG_ON(zone_index == -1);
5053 movable_zone = zone_index;
5054}
5055
5056/*
5057 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5058 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5059 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5060 * in each node depending on the size of each node and how evenly kernelcore
5061 * is distributed. This helper function adjusts the zone ranges
5062 * provided by the architecture for a given node by using the end of the
5063 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5064 * zones within a node are in order of monotonic increases memory addresses
5065 */
b69a7288 5066static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5067 unsigned long zone_type,
5068 unsigned long node_start_pfn,
5069 unsigned long node_end_pfn,
5070 unsigned long *zone_start_pfn,
5071 unsigned long *zone_end_pfn)
5072{
5073 /* Only adjust if ZONE_MOVABLE is on this node */
5074 if (zone_movable_pfn[nid]) {
5075 /* Size ZONE_MOVABLE */
5076 if (zone_type == ZONE_MOVABLE) {
5077 *zone_start_pfn = zone_movable_pfn[nid];
5078 *zone_end_pfn = min(node_end_pfn,
5079 arch_zone_highest_possible_pfn[movable_zone]);
5080
2a1e274a
MG
5081 /* Check if this whole range is within ZONE_MOVABLE */
5082 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5083 *zone_start_pfn = *zone_end_pfn;
5084 }
5085}
5086
c713216d
MG
5087/*
5088 * Return the number of pages a zone spans in a node, including holes
5089 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5090 */
6ea6e688 5091static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5092 unsigned long zone_type,
7960aedd
ZY
5093 unsigned long node_start_pfn,
5094 unsigned long node_end_pfn,
d91749c1
TI
5095 unsigned long *zone_start_pfn,
5096 unsigned long *zone_end_pfn,
c713216d
MG
5097 unsigned long *ignored)
5098{
b5685e92 5099 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5100 if (!node_start_pfn && !node_end_pfn)
5101 return 0;
5102
7960aedd 5103 /* Get the start and end of the zone */
d91749c1
TI
5104 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5105 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5106 adjust_zone_range_for_zone_movable(nid, zone_type,
5107 node_start_pfn, node_end_pfn,
d91749c1 5108 zone_start_pfn, zone_end_pfn);
c713216d
MG
5109
5110 /* Check that this node has pages within the zone's required range */
d91749c1 5111 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5112 return 0;
5113
5114 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5115 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5116 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5117
5118 /* Return the spanned pages */
d91749c1 5119 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5120}
5121
5122/*
5123 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5124 * then all holes in the requested range will be accounted for.
c713216d 5125 */
32996250 5126unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5127 unsigned long range_start_pfn,
5128 unsigned long range_end_pfn)
5129{
96e907d1
TH
5130 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5131 unsigned long start_pfn, end_pfn;
5132 int i;
c713216d 5133
96e907d1
TH
5134 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5135 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5136 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5137 nr_absent -= end_pfn - start_pfn;
c713216d 5138 }
96e907d1 5139 return nr_absent;
c713216d
MG
5140}
5141
5142/**
5143 * absent_pages_in_range - Return number of page frames in holes within a range
5144 * @start_pfn: The start PFN to start searching for holes
5145 * @end_pfn: The end PFN to stop searching for holes
5146 *
88ca3b94 5147 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5148 */
5149unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5150 unsigned long end_pfn)
5151{
5152 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5153}
5154
5155/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5156static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5157 unsigned long zone_type,
7960aedd
ZY
5158 unsigned long node_start_pfn,
5159 unsigned long node_end_pfn,
c713216d
MG
5160 unsigned long *ignored)
5161{
96e907d1
TH
5162 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5163 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5164 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5165 unsigned long nr_absent;
9c7cd687 5166
b5685e92 5167 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5168 if (!node_start_pfn && !node_end_pfn)
5169 return 0;
5170
96e907d1
TH
5171 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5172 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5173
2a1e274a
MG
5174 adjust_zone_range_for_zone_movable(nid, zone_type,
5175 node_start_pfn, node_end_pfn,
5176 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5177 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5178
5179 /*
5180 * ZONE_MOVABLE handling.
5181 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5182 * and vice versa.
5183 */
5184 if (zone_movable_pfn[nid]) {
5185 if (mirrored_kernelcore) {
5186 unsigned long start_pfn, end_pfn;
5187 struct memblock_region *r;
5188
5189 for_each_memblock(memory, r) {
5190 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5191 zone_start_pfn, zone_end_pfn);
5192 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5193 zone_start_pfn, zone_end_pfn);
5194
5195 if (zone_type == ZONE_MOVABLE &&
5196 memblock_is_mirror(r))
5197 nr_absent += end_pfn - start_pfn;
5198
5199 if (zone_type == ZONE_NORMAL &&
5200 !memblock_is_mirror(r))
5201 nr_absent += end_pfn - start_pfn;
5202 }
5203 } else {
5204 if (zone_type == ZONE_NORMAL)
5205 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5206 }
5207 }
5208
5209 return nr_absent;
c713216d 5210}
0e0b864e 5211
0ee332c1 5212#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5213static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5214 unsigned long zone_type,
7960aedd
ZY
5215 unsigned long node_start_pfn,
5216 unsigned long node_end_pfn,
d91749c1
TI
5217 unsigned long *zone_start_pfn,
5218 unsigned long *zone_end_pfn,
c713216d
MG
5219 unsigned long *zones_size)
5220{
d91749c1
TI
5221 unsigned int zone;
5222
5223 *zone_start_pfn = node_start_pfn;
5224 for (zone = 0; zone < zone_type; zone++)
5225 *zone_start_pfn += zones_size[zone];
5226
5227 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5228
c713216d
MG
5229 return zones_size[zone_type];
5230}
5231
6ea6e688 5232static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5233 unsigned long zone_type,
7960aedd
ZY
5234 unsigned long node_start_pfn,
5235 unsigned long node_end_pfn,
c713216d
MG
5236 unsigned long *zholes_size)
5237{
5238 if (!zholes_size)
5239 return 0;
5240
5241 return zholes_size[zone_type];
5242}
20e6926d 5243
0ee332c1 5244#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5245
a3142c8e 5246static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5247 unsigned long node_start_pfn,
5248 unsigned long node_end_pfn,
5249 unsigned long *zones_size,
5250 unsigned long *zholes_size)
c713216d 5251{
febd5949 5252 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5253 enum zone_type i;
5254
febd5949
GZ
5255 for (i = 0; i < MAX_NR_ZONES; i++) {
5256 struct zone *zone = pgdat->node_zones + i;
d91749c1 5257 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5258 unsigned long size, real_size;
c713216d 5259
febd5949
GZ
5260 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5261 node_start_pfn,
5262 node_end_pfn,
d91749c1
TI
5263 &zone_start_pfn,
5264 &zone_end_pfn,
febd5949
GZ
5265 zones_size);
5266 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5267 node_start_pfn, node_end_pfn,
5268 zholes_size);
d91749c1
TI
5269 if (size)
5270 zone->zone_start_pfn = zone_start_pfn;
5271 else
5272 zone->zone_start_pfn = 0;
febd5949
GZ
5273 zone->spanned_pages = size;
5274 zone->present_pages = real_size;
5275
5276 totalpages += size;
5277 realtotalpages += real_size;
5278 }
5279
5280 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5281 pgdat->node_present_pages = realtotalpages;
5282 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5283 realtotalpages);
5284}
5285
835c134e
MG
5286#ifndef CONFIG_SPARSEMEM
5287/*
5288 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5289 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5290 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5291 * round what is now in bits to nearest long in bits, then return it in
5292 * bytes.
5293 */
7c45512d 5294static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5295{
5296 unsigned long usemapsize;
5297
7c45512d 5298 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5299 usemapsize = roundup(zonesize, pageblock_nr_pages);
5300 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5301 usemapsize *= NR_PAGEBLOCK_BITS;
5302 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5303
5304 return usemapsize / 8;
5305}
5306
5307static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5308 struct zone *zone,
5309 unsigned long zone_start_pfn,
5310 unsigned long zonesize)
835c134e 5311{
7c45512d 5312 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5313 zone->pageblock_flags = NULL;
58a01a45 5314 if (usemapsize)
6782832e
SS
5315 zone->pageblock_flags =
5316 memblock_virt_alloc_node_nopanic(usemapsize,
5317 pgdat->node_id);
835c134e
MG
5318}
5319#else
7c45512d
LT
5320static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5321 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5322#endif /* CONFIG_SPARSEMEM */
5323
d9c23400 5324#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5325
d9c23400 5326/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5327void __paginginit set_pageblock_order(void)
d9c23400 5328{
955c1cd7
AM
5329 unsigned int order;
5330
d9c23400
MG
5331 /* Check that pageblock_nr_pages has not already been setup */
5332 if (pageblock_order)
5333 return;
5334
955c1cd7
AM
5335 if (HPAGE_SHIFT > PAGE_SHIFT)
5336 order = HUGETLB_PAGE_ORDER;
5337 else
5338 order = MAX_ORDER - 1;
5339
d9c23400
MG
5340 /*
5341 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5342 * This value may be variable depending on boot parameters on IA64 and
5343 * powerpc.
d9c23400
MG
5344 */
5345 pageblock_order = order;
5346}
5347#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5348
ba72cb8c
MG
5349/*
5350 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5351 * is unused as pageblock_order is set at compile-time. See
5352 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5353 * the kernel config
ba72cb8c 5354 */
15ca220e 5355void __paginginit set_pageblock_order(void)
ba72cb8c 5356{
ba72cb8c 5357}
d9c23400
MG
5358
5359#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5360
01cefaef
JL
5361static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5362 unsigned long present_pages)
5363{
5364 unsigned long pages = spanned_pages;
5365
5366 /*
5367 * Provide a more accurate estimation if there are holes within
5368 * the zone and SPARSEMEM is in use. If there are holes within the
5369 * zone, each populated memory region may cost us one or two extra
5370 * memmap pages due to alignment because memmap pages for each
5371 * populated regions may not naturally algined on page boundary.
5372 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5373 */
5374 if (spanned_pages > present_pages + (present_pages >> 4) &&
5375 IS_ENABLED(CONFIG_SPARSEMEM))
5376 pages = present_pages;
5377
5378 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5379}
5380
1da177e4
LT
5381/*
5382 * Set up the zone data structures:
5383 * - mark all pages reserved
5384 * - mark all memory queues empty
5385 * - clear the memory bitmaps
6527af5d
MK
5386 *
5387 * NOTE: pgdat should get zeroed by caller.
1da177e4 5388 */
7f3eb55b 5389static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5390{
2f1b6248 5391 enum zone_type j;
ed8ece2e 5392 int nid = pgdat->node_id;
718127cc 5393 int ret;
1da177e4 5394
208d54e5 5395 pgdat_resize_init(pgdat);
8177a420
AA
5396#ifdef CONFIG_NUMA_BALANCING
5397 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5398 pgdat->numabalancing_migrate_nr_pages = 0;
5399 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5400#endif
5401#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5402 spin_lock_init(&pgdat->split_queue_lock);
5403 INIT_LIST_HEAD(&pgdat->split_queue);
5404 pgdat->split_queue_len = 0;
8177a420 5405#endif
1da177e4 5406 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5407 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5408#ifdef CONFIG_COMPACTION
5409 init_waitqueue_head(&pgdat->kcompactd_wait);
5410#endif
eefa864b 5411 pgdat_page_ext_init(pgdat);
5f63b720 5412
1da177e4
LT
5413 for (j = 0; j < MAX_NR_ZONES; j++) {
5414 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5415 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5416 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5417
febd5949
GZ
5418 size = zone->spanned_pages;
5419 realsize = freesize = zone->present_pages;
1da177e4 5420
0e0b864e 5421 /*
9feedc9d 5422 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5423 * is used by this zone for memmap. This affects the watermark
5424 * and per-cpu initialisations
5425 */
01cefaef 5426 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5427 if (!is_highmem_idx(j)) {
5428 if (freesize >= memmap_pages) {
5429 freesize -= memmap_pages;
5430 if (memmap_pages)
5431 printk(KERN_DEBUG
5432 " %s zone: %lu pages used for memmap\n",
5433 zone_names[j], memmap_pages);
5434 } else
5435 printk(KERN_WARNING
5436 " %s zone: %lu pages exceeds freesize %lu\n",
5437 zone_names[j], memmap_pages, freesize);
5438 }
0e0b864e 5439
6267276f 5440 /* Account for reserved pages */
9feedc9d
JL
5441 if (j == 0 && freesize > dma_reserve) {
5442 freesize -= dma_reserve;
d903ef9f 5443 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5444 zone_names[0], dma_reserve);
0e0b864e
MG
5445 }
5446
98d2b0eb 5447 if (!is_highmem_idx(j))
9feedc9d 5448 nr_kernel_pages += freesize;
01cefaef
JL
5449 /* Charge for highmem memmap if there are enough kernel pages */
5450 else if (nr_kernel_pages > memmap_pages * 2)
5451 nr_kernel_pages -= memmap_pages;
9feedc9d 5452 nr_all_pages += freesize;
1da177e4 5453
9feedc9d
JL
5454 /*
5455 * Set an approximate value for lowmem here, it will be adjusted
5456 * when the bootmem allocator frees pages into the buddy system.
5457 * And all highmem pages will be managed by the buddy system.
5458 */
5459 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5460#ifdef CONFIG_NUMA
d5f541ed 5461 zone->node = nid;
9feedc9d 5462 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5463 / 100;
9feedc9d 5464 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5465#endif
1da177e4
LT
5466 zone->name = zone_names[j];
5467 spin_lock_init(&zone->lock);
5468 spin_lock_init(&zone->lru_lock);
bdc8cb98 5469 zone_seqlock_init(zone);
1da177e4 5470 zone->zone_pgdat = pgdat;
ed8ece2e 5471 zone_pcp_init(zone);
81c0a2bb
JW
5472
5473 /* For bootup, initialized properly in watermark setup */
5474 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5475
bea8c150 5476 lruvec_init(&zone->lruvec);
1da177e4
LT
5477 if (!size)
5478 continue;
5479
955c1cd7 5480 set_pageblock_order();
7c45512d 5481 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5482 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5483 BUG_ON(ret);
76cdd58e 5484 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5485 }
5486}
5487
577a32f6 5488static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5489{
b0aeba74 5490 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5491 unsigned long __maybe_unused offset = 0;
5492
1da177e4
LT
5493 /* Skip empty nodes */
5494 if (!pgdat->node_spanned_pages)
5495 return;
5496
d41dee36 5497#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5498 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5499 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5500 /* ia64 gets its own node_mem_map, before this, without bootmem */
5501 if (!pgdat->node_mem_map) {
b0aeba74 5502 unsigned long size, end;
d41dee36
AW
5503 struct page *map;
5504
e984bb43
BP
5505 /*
5506 * The zone's endpoints aren't required to be MAX_ORDER
5507 * aligned but the node_mem_map endpoints must be in order
5508 * for the buddy allocator to function correctly.
5509 */
108bcc96 5510 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5511 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5512 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5513 map = alloc_remap(pgdat->node_id, size);
5514 if (!map)
6782832e
SS
5515 map = memblock_virt_alloc_node_nopanic(size,
5516 pgdat->node_id);
a1c34a3b 5517 pgdat->node_mem_map = map + offset;
1da177e4 5518 }
12d810c1 5519#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5520 /*
5521 * With no DISCONTIG, the global mem_map is just set as node 0's
5522 */
c713216d 5523 if (pgdat == NODE_DATA(0)) {
1da177e4 5524 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5525#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5526 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5527 mem_map -= offset;
0ee332c1 5528#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5529 }
1da177e4 5530#endif
d41dee36 5531#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5532}
5533
9109fb7b
JW
5534void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5535 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5536{
9109fb7b 5537 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5538 unsigned long start_pfn = 0;
5539 unsigned long end_pfn = 0;
9109fb7b 5540
88fdf75d 5541 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5542 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5543
3a80a7fa 5544 reset_deferred_meminit(pgdat);
1da177e4
LT
5545 pgdat->node_id = nid;
5546 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5547#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5548 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5549 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5550 (u64)start_pfn << PAGE_SHIFT,
5551 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5552#else
5553 start_pfn = node_start_pfn;
7960aedd
ZY
5554#endif
5555 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5556 zones_size, zholes_size);
1da177e4
LT
5557
5558 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5559#ifdef CONFIG_FLAT_NODE_MEM_MAP
5560 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5561 nid, (unsigned long)pgdat,
5562 (unsigned long)pgdat->node_mem_map);
5563#endif
1da177e4 5564
7f3eb55b 5565 free_area_init_core(pgdat);
1da177e4
LT
5566}
5567
0ee332c1 5568#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5569
5570#if MAX_NUMNODES > 1
5571/*
5572 * Figure out the number of possible node ids.
5573 */
f9872caf 5574void __init setup_nr_node_ids(void)
418508c1 5575{
904a9553 5576 unsigned int highest;
418508c1 5577
904a9553 5578 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5579 nr_node_ids = highest + 1;
5580}
418508c1
MS
5581#endif
5582
1e01979c
TH
5583/**
5584 * node_map_pfn_alignment - determine the maximum internode alignment
5585 *
5586 * This function should be called after node map is populated and sorted.
5587 * It calculates the maximum power of two alignment which can distinguish
5588 * all the nodes.
5589 *
5590 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5591 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5592 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5593 * shifted, 1GiB is enough and this function will indicate so.
5594 *
5595 * This is used to test whether pfn -> nid mapping of the chosen memory
5596 * model has fine enough granularity to avoid incorrect mapping for the
5597 * populated node map.
5598 *
5599 * Returns the determined alignment in pfn's. 0 if there is no alignment
5600 * requirement (single node).
5601 */
5602unsigned long __init node_map_pfn_alignment(void)
5603{
5604 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5605 unsigned long start, end, mask;
1e01979c 5606 int last_nid = -1;
c13291a5 5607 int i, nid;
1e01979c 5608
c13291a5 5609 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5610 if (!start || last_nid < 0 || last_nid == nid) {
5611 last_nid = nid;
5612 last_end = end;
5613 continue;
5614 }
5615
5616 /*
5617 * Start with a mask granular enough to pin-point to the
5618 * start pfn and tick off bits one-by-one until it becomes
5619 * too coarse to separate the current node from the last.
5620 */
5621 mask = ~((1 << __ffs(start)) - 1);
5622 while (mask && last_end <= (start & (mask << 1)))
5623 mask <<= 1;
5624
5625 /* accumulate all internode masks */
5626 accl_mask |= mask;
5627 }
5628
5629 /* convert mask to number of pages */
5630 return ~accl_mask + 1;
5631}
5632
a6af2bc3 5633/* Find the lowest pfn for a node */
b69a7288 5634static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5635{
a6af2bc3 5636 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5637 unsigned long start_pfn;
5638 int i;
1abbfb41 5639
c13291a5
TH
5640 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5641 min_pfn = min(min_pfn, start_pfn);
c713216d 5642
a6af2bc3
MG
5643 if (min_pfn == ULONG_MAX) {
5644 printk(KERN_WARNING
2bc0d261 5645 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5646 return 0;
5647 }
5648
5649 return min_pfn;
c713216d
MG
5650}
5651
5652/**
5653 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5654 *
5655 * It returns the minimum PFN based on information provided via
7d018176 5656 * memblock_set_node().
c713216d
MG
5657 */
5658unsigned long __init find_min_pfn_with_active_regions(void)
5659{
5660 return find_min_pfn_for_node(MAX_NUMNODES);
5661}
5662
37b07e41
LS
5663/*
5664 * early_calculate_totalpages()
5665 * Sum pages in active regions for movable zone.
4b0ef1fe 5666 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5667 */
484f51f8 5668static unsigned long __init early_calculate_totalpages(void)
7e63efef 5669{
7e63efef 5670 unsigned long totalpages = 0;
c13291a5
TH
5671 unsigned long start_pfn, end_pfn;
5672 int i, nid;
5673
5674 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5675 unsigned long pages = end_pfn - start_pfn;
7e63efef 5676
37b07e41
LS
5677 totalpages += pages;
5678 if (pages)
4b0ef1fe 5679 node_set_state(nid, N_MEMORY);
37b07e41 5680 }
b8af2941 5681 return totalpages;
7e63efef
MG
5682}
5683
2a1e274a
MG
5684/*
5685 * Find the PFN the Movable zone begins in each node. Kernel memory
5686 * is spread evenly between nodes as long as the nodes have enough
5687 * memory. When they don't, some nodes will have more kernelcore than
5688 * others
5689 */
b224ef85 5690static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5691{
5692 int i, nid;
5693 unsigned long usable_startpfn;
5694 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5695 /* save the state before borrow the nodemask */
4b0ef1fe 5696 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5697 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5698 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5699 struct memblock_region *r;
b2f3eebe
TC
5700
5701 /* Need to find movable_zone earlier when movable_node is specified. */
5702 find_usable_zone_for_movable();
5703
5704 /*
5705 * If movable_node is specified, ignore kernelcore and movablecore
5706 * options.
5707 */
5708 if (movable_node_is_enabled()) {
136199f0
EM
5709 for_each_memblock(memory, r) {
5710 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5711 continue;
5712
136199f0 5713 nid = r->nid;
b2f3eebe 5714
136199f0 5715 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5716 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5717 min(usable_startpfn, zone_movable_pfn[nid]) :
5718 usable_startpfn;
5719 }
5720
5721 goto out2;
5722 }
2a1e274a 5723
342332e6
TI
5724 /*
5725 * If kernelcore=mirror is specified, ignore movablecore option
5726 */
5727 if (mirrored_kernelcore) {
5728 bool mem_below_4gb_not_mirrored = false;
5729
5730 for_each_memblock(memory, r) {
5731 if (memblock_is_mirror(r))
5732 continue;
5733
5734 nid = r->nid;
5735
5736 usable_startpfn = memblock_region_memory_base_pfn(r);
5737
5738 if (usable_startpfn < 0x100000) {
5739 mem_below_4gb_not_mirrored = true;
5740 continue;
5741 }
5742
5743 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5744 min(usable_startpfn, zone_movable_pfn[nid]) :
5745 usable_startpfn;
5746 }
5747
5748 if (mem_below_4gb_not_mirrored)
5749 pr_warn("This configuration results in unmirrored kernel memory.");
5750
5751 goto out2;
5752 }
5753
7e63efef 5754 /*
b2f3eebe 5755 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5756 * kernelcore that corresponds so that memory usable for
5757 * any allocation type is evenly spread. If both kernelcore
5758 * and movablecore are specified, then the value of kernelcore
5759 * will be used for required_kernelcore if it's greater than
5760 * what movablecore would have allowed.
5761 */
5762 if (required_movablecore) {
7e63efef
MG
5763 unsigned long corepages;
5764
5765 /*
5766 * Round-up so that ZONE_MOVABLE is at least as large as what
5767 * was requested by the user
5768 */
5769 required_movablecore =
5770 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5771 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5772 corepages = totalpages - required_movablecore;
5773
5774 required_kernelcore = max(required_kernelcore, corepages);
5775 }
5776
bde304bd
XQ
5777 /*
5778 * If kernelcore was not specified or kernelcore size is larger
5779 * than totalpages, there is no ZONE_MOVABLE.
5780 */
5781 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5782 goto out;
2a1e274a
MG
5783
5784 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5785 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5786
5787restart:
5788 /* Spread kernelcore memory as evenly as possible throughout nodes */
5789 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5790 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5791 unsigned long start_pfn, end_pfn;
5792
2a1e274a
MG
5793 /*
5794 * Recalculate kernelcore_node if the division per node
5795 * now exceeds what is necessary to satisfy the requested
5796 * amount of memory for the kernel
5797 */
5798 if (required_kernelcore < kernelcore_node)
5799 kernelcore_node = required_kernelcore / usable_nodes;
5800
5801 /*
5802 * As the map is walked, we track how much memory is usable
5803 * by the kernel using kernelcore_remaining. When it is
5804 * 0, the rest of the node is usable by ZONE_MOVABLE
5805 */
5806 kernelcore_remaining = kernelcore_node;
5807
5808 /* Go through each range of PFNs within this node */
c13291a5 5809 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5810 unsigned long size_pages;
5811
c13291a5 5812 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5813 if (start_pfn >= end_pfn)
5814 continue;
5815
5816 /* Account for what is only usable for kernelcore */
5817 if (start_pfn < usable_startpfn) {
5818 unsigned long kernel_pages;
5819 kernel_pages = min(end_pfn, usable_startpfn)
5820 - start_pfn;
5821
5822 kernelcore_remaining -= min(kernel_pages,
5823 kernelcore_remaining);
5824 required_kernelcore -= min(kernel_pages,
5825 required_kernelcore);
5826
5827 /* Continue if range is now fully accounted */
5828 if (end_pfn <= usable_startpfn) {
5829
5830 /*
5831 * Push zone_movable_pfn to the end so
5832 * that if we have to rebalance
5833 * kernelcore across nodes, we will
5834 * not double account here
5835 */
5836 zone_movable_pfn[nid] = end_pfn;
5837 continue;
5838 }
5839 start_pfn = usable_startpfn;
5840 }
5841
5842 /*
5843 * The usable PFN range for ZONE_MOVABLE is from
5844 * start_pfn->end_pfn. Calculate size_pages as the
5845 * number of pages used as kernelcore
5846 */
5847 size_pages = end_pfn - start_pfn;
5848 if (size_pages > kernelcore_remaining)
5849 size_pages = kernelcore_remaining;
5850 zone_movable_pfn[nid] = start_pfn + size_pages;
5851
5852 /*
5853 * Some kernelcore has been met, update counts and
5854 * break if the kernelcore for this node has been
b8af2941 5855 * satisfied
2a1e274a
MG
5856 */
5857 required_kernelcore -= min(required_kernelcore,
5858 size_pages);
5859 kernelcore_remaining -= size_pages;
5860 if (!kernelcore_remaining)
5861 break;
5862 }
5863 }
5864
5865 /*
5866 * If there is still required_kernelcore, we do another pass with one
5867 * less node in the count. This will push zone_movable_pfn[nid] further
5868 * along on the nodes that still have memory until kernelcore is
b8af2941 5869 * satisfied
2a1e274a
MG
5870 */
5871 usable_nodes--;
5872 if (usable_nodes && required_kernelcore > usable_nodes)
5873 goto restart;
5874
b2f3eebe 5875out2:
2a1e274a
MG
5876 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5877 for (nid = 0; nid < MAX_NUMNODES; nid++)
5878 zone_movable_pfn[nid] =
5879 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5880
20e6926d 5881out:
66918dcd 5882 /* restore the node_state */
4b0ef1fe 5883 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5884}
5885
4b0ef1fe
LJ
5886/* Any regular or high memory on that node ? */
5887static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5888{
37b07e41
LS
5889 enum zone_type zone_type;
5890
4b0ef1fe
LJ
5891 if (N_MEMORY == N_NORMAL_MEMORY)
5892 return;
5893
5894 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5895 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5896 if (populated_zone(zone)) {
4b0ef1fe
LJ
5897 node_set_state(nid, N_HIGH_MEMORY);
5898 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5899 zone_type <= ZONE_NORMAL)
5900 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5901 break;
5902 }
37b07e41 5903 }
37b07e41
LS
5904}
5905
c713216d
MG
5906/**
5907 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5908 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5909 *
5910 * This will call free_area_init_node() for each active node in the system.
7d018176 5911 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5912 * zone in each node and their holes is calculated. If the maximum PFN
5913 * between two adjacent zones match, it is assumed that the zone is empty.
5914 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5915 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5916 * starts where the previous one ended. For example, ZONE_DMA32 starts
5917 * at arch_max_dma_pfn.
5918 */
5919void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5920{
c13291a5
TH
5921 unsigned long start_pfn, end_pfn;
5922 int i, nid;
a6af2bc3 5923
c713216d
MG
5924 /* Record where the zone boundaries are */
5925 memset(arch_zone_lowest_possible_pfn, 0,
5926 sizeof(arch_zone_lowest_possible_pfn));
5927 memset(arch_zone_highest_possible_pfn, 0,
5928 sizeof(arch_zone_highest_possible_pfn));
5929 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5930 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5931 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5932 if (i == ZONE_MOVABLE)
5933 continue;
c713216d
MG
5934 arch_zone_lowest_possible_pfn[i] =
5935 arch_zone_highest_possible_pfn[i-1];
5936 arch_zone_highest_possible_pfn[i] =
5937 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5938 }
2a1e274a
MG
5939 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5940 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5941
5942 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5943 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5944 find_zone_movable_pfns_for_nodes();
c713216d 5945
c713216d 5946 /* Print out the zone ranges */
f88dfff5 5947 pr_info("Zone ranges:\n");
2a1e274a
MG
5948 for (i = 0; i < MAX_NR_ZONES; i++) {
5949 if (i == ZONE_MOVABLE)
5950 continue;
f88dfff5 5951 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5952 if (arch_zone_lowest_possible_pfn[i] ==
5953 arch_zone_highest_possible_pfn[i])
f88dfff5 5954 pr_cont("empty\n");
72f0ba02 5955 else
8d29e18a
JG
5956 pr_cont("[mem %#018Lx-%#018Lx]\n",
5957 (u64)arch_zone_lowest_possible_pfn[i]
5958 << PAGE_SHIFT,
5959 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5960 << PAGE_SHIFT) - 1);
2a1e274a
MG
5961 }
5962
5963 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5964 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5965 for (i = 0; i < MAX_NUMNODES; i++) {
5966 if (zone_movable_pfn[i])
8d29e18a
JG
5967 pr_info(" Node %d: %#018Lx\n", i,
5968 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5969 }
c713216d 5970
f2d52fe5 5971 /* Print out the early node map */
f88dfff5 5972 pr_info("Early memory node ranges\n");
c13291a5 5973 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5974 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5975 (u64)start_pfn << PAGE_SHIFT,
5976 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5977
5978 /* Initialise every node */
708614e6 5979 mminit_verify_pageflags_layout();
8ef82866 5980 setup_nr_node_ids();
c713216d
MG
5981 for_each_online_node(nid) {
5982 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5983 free_area_init_node(nid, NULL,
c713216d 5984 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5985
5986 /* Any memory on that node */
5987 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5988 node_set_state(nid, N_MEMORY);
5989 check_for_memory(pgdat, nid);
c713216d
MG
5990 }
5991}
2a1e274a 5992
7e63efef 5993static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5994{
5995 unsigned long long coremem;
5996 if (!p)
5997 return -EINVAL;
5998
5999 coremem = memparse(p, &p);
7e63efef 6000 *core = coremem >> PAGE_SHIFT;
2a1e274a 6001
7e63efef 6002 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6003 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6004
6005 return 0;
6006}
ed7ed365 6007
7e63efef
MG
6008/*
6009 * kernelcore=size sets the amount of memory for use for allocations that
6010 * cannot be reclaimed or migrated.
6011 */
6012static int __init cmdline_parse_kernelcore(char *p)
6013{
342332e6
TI
6014 /* parse kernelcore=mirror */
6015 if (parse_option_str(p, "mirror")) {
6016 mirrored_kernelcore = true;
6017 return 0;
6018 }
6019
7e63efef
MG
6020 return cmdline_parse_core(p, &required_kernelcore);
6021}
6022
6023/*
6024 * movablecore=size sets the amount of memory for use for allocations that
6025 * can be reclaimed or migrated.
6026 */
6027static int __init cmdline_parse_movablecore(char *p)
6028{
6029 return cmdline_parse_core(p, &required_movablecore);
6030}
6031
ed7ed365 6032early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6033early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6034
0ee332c1 6035#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6036
c3d5f5f0
JL
6037void adjust_managed_page_count(struct page *page, long count)
6038{
6039 spin_lock(&managed_page_count_lock);
6040 page_zone(page)->managed_pages += count;
6041 totalram_pages += count;
3dcc0571
JL
6042#ifdef CONFIG_HIGHMEM
6043 if (PageHighMem(page))
6044 totalhigh_pages += count;
6045#endif
c3d5f5f0
JL
6046 spin_unlock(&managed_page_count_lock);
6047}
3dcc0571 6048EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6049
11199692 6050unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6051{
11199692
JL
6052 void *pos;
6053 unsigned long pages = 0;
69afade7 6054
11199692
JL
6055 start = (void *)PAGE_ALIGN((unsigned long)start);
6056 end = (void *)((unsigned long)end & PAGE_MASK);
6057 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6058 if ((unsigned int)poison <= 0xFF)
11199692
JL
6059 memset(pos, poison, PAGE_SIZE);
6060 free_reserved_page(virt_to_page(pos));
69afade7
JL
6061 }
6062
6063 if (pages && s)
11199692 6064 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6065 s, pages << (PAGE_SHIFT - 10), start, end);
6066
6067 return pages;
6068}
11199692 6069EXPORT_SYMBOL(free_reserved_area);
69afade7 6070
cfa11e08
JL
6071#ifdef CONFIG_HIGHMEM
6072void free_highmem_page(struct page *page)
6073{
6074 __free_reserved_page(page);
6075 totalram_pages++;
7b4b2a0d 6076 page_zone(page)->managed_pages++;
cfa11e08
JL
6077 totalhigh_pages++;
6078}
6079#endif
6080
7ee3d4e8
JL
6081
6082void __init mem_init_print_info(const char *str)
6083{
6084 unsigned long physpages, codesize, datasize, rosize, bss_size;
6085 unsigned long init_code_size, init_data_size;
6086
6087 physpages = get_num_physpages();
6088 codesize = _etext - _stext;
6089 datasize = _edata - _sdata;
6090 rosize = __end_rodata - __start_rodata;
6091 bss_size = __bss_stop - __bss_start;
6092 init_data_size = __init_end - __init_begin;
6093 init_code_size = _einittext - _sinittext;
6094
6095 /*
6096 * Detect special cases and adjust section sizes accordingly:
6097 * 1) .init.* may be embedded into .data sections
6098 * 2) .init.text.* may be out of [__init_begin, __init_end],
6099 * please refer to arch/tile/kernel/vmlinux.lds.S.
6100 * 3) .rodata.* may be embedded into .text or .data sections.
6101 */
6102#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6103 do { \
6104 if (start <= pos && pos < end && size > adj) \
6105 size -= adj; \
6106 } while (0)
7ee3d4e8
JL
6107
6108 adj_init_size(__init_begin, __init_end, init_data_size,
6109 _sinittext, init_code_size);
6110 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6111 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6112 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6113 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6114
6115#undef adj_init_size
6116
f88dfff5 6117 pr_info("Memory: %luK/%luK available "
7ee3d4e8 6118 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 6119 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
6120#ifdef CONFIG_HIGHMEM
6121 ", %luK highmem"
6122#endif
6123 "%s%s)\n",
6124 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
6125 codesize >> 10, datasize >> 10, rosize >> 10,
6126 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
6127 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
6128 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
6129#ifdef CONFIG_HIGHMEM
6130 totalhigh_pages << (PAGE_SHIFT-10),
6131#endif
6132 str ? ", " : "", str ? str : "");
6133}
6134
0e0b864e 6135/**
88ca3b94
RD
6136 * set_dma_reserve - set the specified number of pages reserved in the first zone
6137 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6138 *
013110a7 6139 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6140 * In the DMA zone, a significant percentage may be consumed by kernel image
6141 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6142 * function may optionally be used to account for unfreeable pages in the
6143 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6144 * smaller per-cpu batchsize.
0e0b864e
MG
6145 */
6146void __init set_dma_reserve(unsigned long new_dma_reserve)
6147{
6148 dma_reserve = new_dma_reserve;
6149}
6150
1da177e4
LT
6151void __init free_area_init(unsigned long *zones_size)
6152{
9109fb7b 6153 free_area_init_node(0, zones_size,
1da177e4
LT
6154 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6155}
1da177e4 6156
1da177e4
LT
6157static int page_alloc_cpu_notify(struct notifier_block *self,
6158 unsigned long action, void *hcpu)
6159{
6160 int cpu = (unsigned long)hcpu;
1da177e4 6161
8bb78442 6162 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6163 lru_add_drain_cpu(cpu);
9f8f2172
CL
6164 drain_pages(cpu);
6165
6166 /*
6167 * Spill the event counters of the dead processor
6168 * into the current processors event counters.
6169 * This artificially elevates the count of the current
6170 * processor.
6171 */
f8891e5e 6172 vm_events_fold_cpu(cpu);
9f8f2172
CL
6173
6174 /*
6175 * Zero the differential counters of the dead processor
6176 * so that the vm statistics are consistent.
6177 *
6178 * This is only okay since the processor is dead and cannot
6179 * race with what we are doing.
6180 */
2bb921e5 6181 cpu_vm_stats_fold(cpu);
1da177e4
LT
6182 }
6183 return NOTIFY_OK;
6184}
1da177e4
LT
6185
6186void __init page_alloc_init(void)
6187{
6188 hotcpu_notifier(page_alloc_cpu_notify, 0);
6189}
6190
cb45b0e9 6191/*
34b10060 6192 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6193 * or min_free_kbytes changes.
6194 */
6195static void calculate_totalreserve_pages(void)
6196{
6197 struct pglist_data *pgdat;
6198 unsigned long reserve_pages = 0;
2f6726e5 6199 enum zone_type i, j;
cb45b0e9
HA
6200
6201 for_each_online_pgdat(pgdat) {
6202 for (i = 0; i < MAX_NR_ZONES; i++) {
6203 struct zone *zone = pgdat->node_zones + i;
3484b2de 6204 long max = 0;
cb45b0e9
HA
6205
6206 /* Find valid and maximum lowmem_reserve in the zone */
6207 for (j = i; j < MAX_NR_ZONES; j++) {
6208 if (zone->lowmem_reserve[j] > max)
6209 max = zone->lowmem_reserve[j];
6210 }
6211
41858966
MG
6212 /* we treat the high watermark as reserved pages. */
6213 max += high_wmark_pages(zone);
cb45b0e9 6214
b40da049
JL
6215 if (max > zone->managed_pages)
6216 max = zone->managed_pages;
a8d01437
JW
6217
6218 zone->totalreserve_pages = max;
6219
cb45b0e9
HA
6220 reserve_pages += max;
6221 }
6222 }
6223 totalreserve_pages = reserve_pages;
6224}
6225
1da177e4
LT
6226/*
6227 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6228 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6229 * has a correct pages reserved value, so an adequate number of
6230 * pages are left in the zone after a successful __alloc_pages().
6231 */
6232static void setup_per_zone_lowmem_reserve(void)
6233{
6234 struct pglist_data *pgdat;
2f6726e5 6235 enum zone_type j, idx;
1da177e4 6236
ec936fc5 6237 for_each_online_pgdat(pgdat) {
1da177e4
LT
6238 for (j = 0; j < MAX_NR_ZONES; j++) {
6239 struct zone *zone = pgdat->node_zones + j;
b40da049 6240 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6241
6242 zone->lowmem_reserve[j] = 0;
6243
2f6726e5
CL
6244 idx = j;
6245 while (idx) {
1da177e4
LT
6246 struct zone *lower_zone;
6247
2f6726e5
CL
6248 idx--;
6249
1da177e4
LT
6250 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6251 sysctl_lowmem_reserve_ratio[idx] = 1;
6252
6253 lower_zone = pgdat->node_zones + idx;
b40da049 6254 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6255 sysctl_lowmem_reserve_ratio[idx];
b40da049 6256 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6257 }
6258 }
6259 }
cb45b0e9
HA
6260
6261 /* update totalreserve_pages */
6262 calculate_totalreserve_pages();
1da177e4
LT
6263}
6264
cfd3da1e 6265static void __setup_per_zone_wmarks(void)
1da177e4
LT
6266{
6267 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6268 unsigned long lowmem_pages = 0;
6269 struct zone *zone;
6270 unsigned long flags;
6271
6272 /* Calculate total number of !ZONE_HIGHMEM pages */
6273 for_each_zone(zone) {
6274 if (!is_highmem(zone))
b40da049 6275 lowmem_pages += zone->managed_pages;
1da177e4
LT
6276 }
6277
6278 for_each_zone(zone) {
ac924c60
AM
6279 u64 tmp;
6280
1125b4e3 6281 spin_lock_irqsave(&zone->lock, flags);
b40da049 6282 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6283 do_div(tmp, lowmem_pages);
1da177e4
LT
6284 if (is_highmem(zone)) {
6285 /*
669ed175
NP
6286 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6287 * need highmem pages, so cap pages_min to a small
6288 * value here.
6289 *
41858966 6290 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6291 * deltas control asynch page reclaim, and so should
669ed175 6292 * not be capped for highmem.
1da177e4 6293 */
90ae8d67 6294 unsigned long min_pages;
1da177e4 6295
b40da049 6296 min_pages = zone->managed_pages / 1024;
90ae8d67 6297 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6298 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6299 } else {
669ed175
NP
6300 /*
6301 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6302 * proportionate to the zone's size.
6303 */
41858966 6304 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6305 }
6306
41858966
MG
6307 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6308 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6309
81c0a2bb 6310 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6311 high_wmark_pages(zone) - low_wmark_pages(zone) -
6312 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6313
1125b4e3 6314 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6315 }
cb45b0e9
HA
6316
6317 /* update totalreserve_pages */
6318 calculate_totalreserve_pages();
1da177e4
LT
6319}
6320
cfd3da1e
MG
6321/**
6322 * setup_per_zone_wmarks - called when min_free_kbytes changes
6323 * or when memory is hot-{added|removed}
6324 *
6325 * Ensures that the watermark[min,low,high] values for each zone are set
6326 * correctly with respect to min_free_kbytes.
6327 */
6328void setup_per_zone_wmarks(void)
6329{
6330 mutex_lock(&zonelists_mutex);
6331 __setup_per_zone_wmarks();
6332 mutex_unlock(&zonelists_mutex);
6333}
6334
55a4462a 6335/*
556adecb
RR
6336 * The inactive anon list should be small enough that the VM never has to
6337 * do too much work, but large enough that each inactive page has a chance
6338 * to be referenced again before it is swapped out.
6339 *
6340 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6341 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6342 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6343 * the anonymous pages are kept on the inactive list.
6344 *
6345 * total target max
6346 * memory ratio inactive anon
6347 * -------------------------------------
6348 * 10MB 1 5MB
6349 * 100MB 1 50MB
6350 * 1GB 3 250MB
6351 * 10GB 10 0.9GB
6352 * 100GB 31 3GB
6353 * 1TB 101 10GB
6354 * 10TB 320 32GB
6355 */
1b79acc9 6356static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6357{
96cb4df5 6358 unsigned int gb, ratio;
556adecb 6359
96cb4df5 6360 /* Zone size in gigabytes */
b40da049 6361 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6362 if (gb)
556adecb 6363 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6364 else
6365 ratio = 1;
556adecb 6366
96cb4df5
MK
6367 zone->inactive_ratio = ratio;
6368}
556adecb 6369
839a4fcc 6370static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6371{
6372 struct zone *zone;
6373
6374 for_each_zone(zone)
6375 calculate_zone_inactive_ratio(zone);
556adecb
RR
6376}
6377
1da177e4
LT
6378/*
6379 * Initialise min_free_kbytes.
6380 *
6381 * For small machines we want it small (128k min). For large machines
6382 * we want it large (64MB max). But it is not linear, because network
6383 * bandwidth does not increase linearly with machine size. We use
6384 *
b8af2941 6385 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6386 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6387 *
6388 * which yields
6389 *
6390 * 16MB: 512k
6391 * 32MB: 724k
6392 * 64MB: 1024k
6393 * 128MB: 1448k
6394 * 256MB: 2048k
6395 * 512MB: 2896k
6396 * 1024MB: 4096k
6397 * 2048MB: 5792k
6398 * 4096MB: 8192k
6399 * 8192MB: 11584k
6400 * 16384MB: 16384k
6401 */
1b79acc9 6402int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6403{
6404 unsigned long lowmem_kbytes;
5f12733e 6405 int new_min_free_kbytes;
1da177e4
LT
6406
6407 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6408 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6409
6410 if (new_min_free_kbytes > user_min_free_kbytes) {
6411 min_free_kbytes = new_min_free_kbytes;
6412 if (min_free_kbytes < 128)
6413 min_free_kbytes = 128;
6414 if (min_free_kbytes > 65536)
6415 min_free_kbytes = 65536;
6416 } else {
6417 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6418 new_min_free_kbytes, user_min_free_kbytes);
6419 }
bc75d33f 6420 setup_per_zone_wmarks();
a6cccdc3 6421 refresh_zone_stat_thresholds();
1da177e4 6422 setup_per_zone_lowmem_reserve();
556adecb 6423 setup_per_zone_inactive_ratio();
1da177e4
LT
6424 return 0;
6425}
bc75d33f 6426module_init(init_per_zone_wmark_min)
1da177e4
LT
6427
6428/*
b8af2941 6429 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6430 * that we can call two helper functions whenever min_free_kbytes
6431 * changes.
6432 */
cccad5b9 6433int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6434 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6435{
da8c757b
HP
6436 int rc;
6437
6438 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6439 if (rc)
6440 return rc;
6441
5f12733e
MH
6442 if (write) {
6443 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6444 setup_per_zone_wmarks();
5f12733e 6445 }
1da177e4
LT
6446 return 0;
6447}
6448
9614634f 6449#ifdef CONFIG_NUMA
cccad5b9 6450int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6451 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6452{
6453 struct zone *zone;
6454 int rc;
6455
8d65af78 6456 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6457 if (rc)
6458 return rc;
6459
6460 for_each_zone(zone)
b40da049 6461 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6462 sysctl_min_unmapped_ratio) / 100;
6463 return 0;
6464}
0ff38490 6465
cccad5b9 6466int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6467 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6468{
6469 struct zone *zone;
6470 int rc;
6471
8d65af78 6472 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6473 if (rc)
6474 return rc;
6475
6476 for_each_zone(zone)
b40da049 6477 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6478 sysctl_min_slab_ratio) / 100;
6479 return 0;
6480}
9614634f
CL
6481#endif
6482
1da177e4
LT
6483/*
6484 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6485 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6486 * whenever sysctl_lowmem_reserve_ratio changes.
6487 *
6488 * The reserve ratio obviously has absolutely no relation with the
41858966 6489 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6490 * if in function of the boot time zone sizes.
6491 */
cccad5b9 6492int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6493 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6494{
8d65af78 6495 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6496 setup_per_zone_lowmem_reserve();
6497 return 0;
6498}
6499
8ad4b1fb
RS
6500/*
6501 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6502 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6503 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6504 */
cccad5b9 6505int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6506 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6507{
6508 struct zone *zone;
7cd2b0a3 6509 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6510 int ret;
6511
7cd2b0a3
DR
6512 mutex_lock(&pcp_batch_high_lock);
6513 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6514
8d65af78 6515 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6516 if (!write || ret < 0)
6517 goto out;
6518
6519 /* Sanity checking to avoid pcp imbalance */
6520 if (percpu_pagelist_fraction &&
6521 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6522 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6523 ret = -EINVAL;
6524 goto out;
6525 }
6526
6527 /* No change? */
6528 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6529 goto out;
c8e251fa 6530
364df0eb 6531 for_each_populated_zone(zone) {
7cd2b0a3
DR
6532 unsigned int cpu;
6533
22a7f12b 6534 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6535 pageset_set_high_and_batch(zone,
6536 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6537 }
7cd2b0a3 6538out:
c8e251fa 6539 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6540 return ret;
8ad4b1fb
RS
6541}
6542
a9919c79 6543#ifdef CONFIG_NUMA
f034b5d4 6544int hashdist = HASHDIST_DEFAULT;
1da177e4 6545
1da177e4
LT
6546static int __init set_hashdist(char *str)
6547{
6548 if (!str)
6549 return 0;
6550 hashdist = simple_strtoul(str, &str, 0);
6551 return 1;
6552}
6553__setup("hashdist=", set_hashdist);
6554#endif
6555
6556/*
6557 * allocate a large system hash table from bootmem
6558 * - it is assumed that the hash table must contain an exact power-of-2
6559 * quantity of entries
6560 * - limit is the number of hash buckets, not the total allocation size
6561 */
6562void *__init alloc_large_system_hash(const char *tablename,
6563 unsigned long bucketsize,
6564 unsigned long numentries,
6565 int scale,
6566 int flags,
6567 unsigned int *_hash_shift,
6568 unsigned int *_hash_mask,
31fe62b9
TB
6569 unsigned long low_limit,
6570 unsigned long high_limit)
1da177e4 6571{
31fe62b9 6572 unsigned long long max = high_limit;
1da177e4
LT
6573 unsigned long log2qty, size;
6574 void *table = NULL;
6575
6576 /* allow the kernel cmdline to have a say */
6577 if (!numentries) {
6578 /* round applicable memory size up to nearest megabyte */
04903664 6579 numentries = nr_kernel_pages;
a7e83318
JZ
6580
6581 /* It isn't necessary when PAGE_SIZE >= 1MB */
6582 if (PAGE_SHIFT < 20)
6583 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6584
6585 /* limit to 1 bucket per 2^scale bytes of low memory */
6586 if (scale > PAGE_SHIFT)
6587 numentries >>= (scale - PAGE_SHIFT);
6588 else
6589 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6590
6591 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6592 if (unlikely(flags & HASH_SMALL)) {
6593 /* Makes no sense without HASH_EARLY */
6594 WARN_ON(!(flags & HASH_EARLY));
6595 if (!(numentries >> *_hash_shift)) {
6596 numentries = 1UL << *_hash_shift;
6597 BUG_ON(!numentries);
6598 }
6599 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6600 numentries = PAGE_SIZE / bucketsize;
1da177e4 6601 }
6e692ed3 6602 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6603
6604 /* limit allocation size to 1/16 total memory by default */
6605 if (max == 0) {
6606 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6607 do_div(max, bucketsize);
6608 }
074b8517 6609 max = min(max, 0x80000000ULL);
1da177e4 6610
31fe62b9
TB
6611 if (numentries < low_limit)
6612 numentries = low_limit;
1da177e4
LT
6613 if (numentries > max)
6614 numentries = max;
6615
f0d1b0b3 6616 log2qty = ilog2(numentries);
1da177e4
LT
6617
6618 do {
6619 size = bucketsize << log2qty;
6620 if (flags & HASH_EARLY)
6782832e 6621 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6622 else if (hashdist)
6623 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6624 else {
1037b83b
ED
6625 /*
6626 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6627 * some pages at the end of hash table which
6628 * alloc_pages_exact() automatically does
1037b83b 6629 */
264ef8a9 6630 if (get_order(size) < MAX_ORDER) {
a1dd268c 6631 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6632 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6633 }
1da177e4
LT
6634 }
6635 } while (!table && size > PAGE_SIZE && --log2qty);
6636
6637 if (!table)
6638 panic("Failed to allocate %s hash table\n", tablename);
6639
f241e660 6640 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6641 tablename,
f241e660 6642 (1UL << log2qty),
f0d1b0b3 6643 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6644 size);
6645
6646 if (_hash_shift)
6647 *_hash_shift = log2qty;
6648 if (_hash_mask)
6649 *_hash_mask = (1 << log2qty) - 1;
6650
6651 return table;
6652}
a117e66e 6653
835c134e
MG
6654/* Return a pointer to the bitmap storing bits affecting a block of pages */
6655static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6656 unsigned long pfn)
6657{
6658#ifdef CONFIG_SPARSEMEM
6659 return __pfn_to_section(pfn)->pageblock_flags;
6660#else
6661 return zone->pageblock_flags;
6662#endif /* CONFIG_SPARSEMEM */
6663}
6664
6665static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6666{
6667#ifdef CONFIG_SPARSEMEM
6668 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6669 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6670#else
c060f943 6671 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6672 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6673#endif /* CONFIG_SPARSEMEM */
6674}
6675
6676/**
1aab4d77 6677 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6678 * @page: The page within the block of interest
1aab4d77
RD
6679 * @pfn: The target page frame number
6680 * @end_bitidx: The last bit of interest to retrieve
6681 * @mask: mask of bits that the caller is interested in
6682 *
6683 * Return: pageblock_bits flags
835c134e 6684 */
dc4b0caf 6685unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6686 unsigned long end_bitidx,
6687 unsigned long mask)
835c134e
MG
6688{
6689 struct zone *zone;
6690 unsigned long *bitmap;
dc4b0caf 6691 unsigned long bitidx, word_bitidx;
e58469ba 6692 unsigned long word;
835c134e
MG
6693
6694 zone = page_zone(page);
835c134e
MG
6695 bitmap = get_pageblock_bitmap(zone, pfn);
6696 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6697 word_bitidx = bitidx / BITS_PER_LONG;
6698 bitidx &= (BITS_PER_LONG-1);
835c134e 6699
e58469ba
MG
6700 word = bitmap[word_bitidx];
6701 bitidx += end_bitidx;
6702 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6703}
6704
6705/**
dc4b0caf 6706 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6707 * @page: The page within the block of interest
835c134e 6708 * @flags: The flags to set
1aab4d77
RD
6709 * @pfn: The target page frame number
6710 * @end_bitidx: The last bit of interest
6711 * @mask: mask of bits that the caller is interested in
835c134e 6712 */
dc4b0caf
MG
6713void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6714 unsigned long pfn,
e58469ba
MG
6715 unsigned long end_bitidx,
6716 unsigned long mask)
835c134e
MG
6717{
6718 struct zone *zone;
6719 unsigned long *bitmap;
dc4b0caf 6720 unsigned long bitidx, word_bitidx;
e58469ba
MG
6721 unsigned long old_word, word;
6722
6723 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6724
6725 zone = page_zone(page);
835c134e
MG
6726 bitmap = get_pageblock_bitmap(zone, pfn);
6727 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6728 word_bitidx = bitidx / BITS_PER_LONG;
6729 bitidx &= (BITS_PER_LONG-1);
6730
309381fe 6731 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6732
e58469ba
MG
6733 bitidx += end_bitidx;
6734 mask <<= (BITS_PER_LONG - bitidx - 1);
6735 flags <<= (BITS_PER_LONG - bitidx - 1);
6736
4db0c3c2 6737 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6738 for (;;) {
6739 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6740 if (word == old_word)
6741 break;
6742 word = old_word;
6743 }
835c134e 6744}
a5d76b54
KH
6745
6746/*
80934513
MK
6747 * This function checks whether pageblock includes unmovable pages or not.
6748 * If @count is not zero, it is okay to include less @count unmovable pages
6749 *
b8af2941 6750 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6751 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6752 * expect this function should be exact.
a5d76b54 6753 */
b023f468
WC
6754bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6755 bool skip_hwpoisoned_pages)
49ac8255
KH
6756{
6757 unsigned long pfn, iter, found;
47118af0
MN
6758 int mt;
6759
49ac8255
KH
6760 /*
6761 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6762 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6763 */
6764 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6765 return false;
47118af0
MN
6766 mt = get_pageblock_migratetype(page);
6767 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6768 return false;
49ac8255
KH
6769
6770 pfn = page_to_pfn(page);
6771 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6772 unsigned long check = pfn + iter;
6773
29723fcc 6774 if (!pfn_valid_within(check))
49ac8255 6775 continue;
29723fcc 6776
49ac8255 6777 page = pfn_to_page(check);
c8721bbb
NH
6778
6779 /*
6780 * Hugepages are not in LRU lists, but they're movable.
6781 * We need not scan over tail pages bacause we don't
6782 * handle each tail page individually in migration.
6783 */
6784 if (PageHuge(page)) {
6785 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6786 continue;
6787 }
6788
97d255c8
MK
6789 /*
6790 * We can't use page_count without pin a page
6791 * because another CPU can free compound page.
6792 * This check already skips compound tails of THP
6793 * because their page->_count is zero at all time.
6794 */
6795 if (!atomic_read(&page->_count)) {
49ac8255
KH
6796 if (PageBuddy(page))
6797 iter += (1 << page_order(page)) - 1;
6798 continue;
6799 }
97d255c8 6800
b023f468
WC
6801 /*
6802 * The HWPoisoned page may be not in buddy system, and
6803 * page_count() is not 0.
6804 */
6805 if (skip_hwpoisoned_pages && PageHWPoison(page))
6806 continue;
6807
49ac8255
KH
6808 if (!PageLRU(page))
6809 found++;
6810 /*
6b4f7799
JW
6811 * If there are RECLAIMABLE pages, we need to check
6812 * it. But now, memory offline itself doesn't call
6813 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6814 */
6815 /*
6816 * If the page is not RAM, page_count()should be 0.
6817 * we don't need more check. This is an _used_ not-movable page.
6818 *
6819 * The problematic thing here is PG_reserved pages. PG_reserved
6820 * is set to both of a memory hole page and a _used_ kernel
6821 * page at boot.
6822 */
6823 if (found > count)
80934513 6824 return true;
49ac8255 6825 }
80934513 6826 return false;
49ac8255
KH
6827}
6828
6829bool is_pageblock_removable_nolock(struct page *page)
6830{
656a0706
MH
6831 struct zone *zone;
6832 unsigned long pfn;
687875fb
MH
6833
6834 /*
6835 * We have to be careful here because we are iterating over memory
6836 * sections which are not zone aware so we might end up outside of
6837 * the zone but still within the section.
656a0706
MH
6838 * We have to take care about the node as well. If the node is offline
6839 * its NODE_DATA will be NULL - see page_zone.
687875fb 6840 */
656a0706
MH
6841 if (!node_online(page_to_nid(page)))
6842 return false;
6843
6844 zone = page_zone(page);
6845 pfn = page_to_pfn(page);
108bcc96 6846 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6847 return false;
6848
b023f468 6849 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6850}
0c0e6195 6851
080fe206 6852#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6853
6854static unsigned long pfn_max_align_down(unsigned long pfn)
6855{
6856 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6857 pageblock_nr_pages) - 1);
6858}
6859
6860static unsigned long pfn_max_align_up(unsigned long pfn)
6861{
6862 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6863 pageblock_nr_pages));
6864}
6865
041d3a8c 6866/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6867static int __alloc_contig_migrate_range(struct compact_control *cc,
6868 unsigned long start, unsigned long end)
041d3a8c
MN
6869{
6870 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6871 unsigned long nr_reclaimed;
041d3a8c
MN
6872 unsigned long pfn = start;
6873 unsigned int tries = 0;
6874 int ret = 0;
6875
be49a6e1 6876 migrate_prep();
041d3a8c 6877
bb13ffeb 6878 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6879 if (fatal_signal_pending(current)) {
6880 ret = -EINTR;
6881 break;
6882 }
6883
bb13ffeb
MG
6884 if (list_empty(&cc->migratepages)) {
6885 cc->nr_migratepages = 0;
edc2ca61 6886 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6887 if (!pfn) {
6888 ret = -EINTR;
6889 break;
6890 }
6891 tries = 0;
6892 } else if (++tries == 5) {
6893 ret = ret < 0 ? ret : -EBUSY;
6894 break;
6895 }
6896
beb51eaa
MK
6897 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6898 &cc->migratepages);
6899 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6900
9c620e2b 6901 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6902 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6903 }
2a6f5124
SP
6904 if (ret < 0) {
6905 putback_movable_pages(&cc->migratepages);
6906 return ret;
6907 }
6908 return 0;
041d3a8c
MN
6909}
6910
6911/**
6912 * alloc_contig_range() -- tries to allocate given range of pages
6913 * @start: start PFN to allocate
6914 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6915 * @migratetype: migratetype of the underlaying pageblocks (either
6916 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6917 * in range must have the same migratetype and it must
6918 * be either of the two.
041d3a8c
MN
6919 *
6920 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6921 * aligned, however it's the caller's responsibility to guarantee that
6922 * we are the only thread that changes migrate type of pageblocks the
6923 * pages fall in.
6924 *
6925 * The PFN range must belong to a single zone.
6926 *
6927 * Returns zero on success or negative error code. On success all
6928 * pages which PFN is in [start, end) are allocated for the caller and
6929 * need to be freed with free_contig_range().
6930 */
0815f3d8
MN
6931int alloc_contig_range(unsigned long start, unsigned long end,
6932 unsigned migratetype)
041d3a8c 6933{
041d3a8c 6934 unsigned long outer_start, outer_end;
d00181b9
KS
6935 unsigned int order;
6936 int ret = 0;
041d3a8c 6937
bb13ffeb
MG
6938 struct compact_control cc = {
6939 .nr_migratepages = 0,
6940 .order = -1,
6941 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6942 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6943 .ignore_skip_hint = true,
6944 };
6945 INIT_LIST_HEAD(&cc.migratepages);
6946
041d3a8c
MN
6947 /*
6948 * What we do here is we mark all pageblocks in range as
6949 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6950 * have different sizes, and due to the way page allocator
6951 * work, we align the range to biggest of the two pages so
6952 * that page allocator won't try to merge buddies from
6953 * different pageblocks and change MIGRATE_ISOLATE to some
6954 * other migration type.
6955 *
6956 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6957 * migrate the pages from an unaligned range (ie. pages that
6958 * we are interested in). This will put all the pages in
6959 * range back to page allocator as MIGRATE_ISOLATE.
6960 *
6961 * When this is done, we take the pages in range from page
6962 * allocator removing them from the buddy system. This way
6963 * page allocator will never consider using them.
6964 *
6965 * This lets us mark the pageblocks back as
6966 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6967 * aligned range but not in the unaligned, original range are
6968 * put back to page allocator so that buddy can use them.
6969 */
6970
6971 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6972 pfn_max_align_up(end), migratetype,
6973 false);
041d3a8c 6974 if (ret)
86a595f9 6975 return ret;
041d3a8c 6976
8ef5849f
JK
6977 /*
6978 * In case of -EBUSY, we'd like to know which page causes problem.
6979 * So, just fall through. We will check it in test_pages_isolated().
6980 */
bb13ffeb 6981 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 6982 if (ret && ret != -EBUSY)
041d3a8c
MN
6983 goto done;
6984
6985 /*
6986 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6987 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6988 * more, all pages in [start, end) are free in page allocator.
6989 * What we are going to do is to allocate all pages from
6990 * [start, end) (that is remove them from page allocator).
6991 *
6992 * The only problem is that pages at the beginning and at the
6993 * end of interesting range may be not aligned with pages that
6994 * page allocator holds, ie. they can be part of higher order
6995 * pages. Because of this, we reserve the bigger range and
6996 * once this is done free the pages we are not interested in.
6997 *
6998 * We don't have to hold zone->lock here because the pages are
6999 * isolated thus they won't get removed from buddy.
7000 */
7001
7002 lru_add_drain_all();
510f5507 7003 drain_all_pages(cc.zone);
041d3a8c
MN
7004
7005 order = 0;
7006 outer_start = start;
7007 while (!PageBuddy(pfn_to_page(outer_start))) {
7008 if (++order >= MAX_ORDER) {
8ef5849f
JK
7009 outer_start = start;
7010 break;
041d3a8c
MN
7011 }
7012 outer_start &= ~0UL << order;
7013 }
7014
8ef5849f
JK
7015 if (outer_start != start) {
7016 order = page_order(pfn_to_page(outer_start));
7017
7018 /*
7019 * outer_start page could be small order buddy page and
7020 * it doesn't include start page. Adjust outer_start
7021 * in this case to report failed page properly
7022 * on tracepoint in test_pages_isolated()
7023 */
7024 if (outer_start + (1UL << order) <= start)
7025 outer_start = start;
7026 }
7027
041d3a8c 7028 /* Make sure the range is really isolated. */
b023f468 7029 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7030 pr_info("%s: [%lx, %lx) PFNs busy\n",
7031 __func__, outer_start, end);
041d3a8c
MN
7032 ret = -EBUSY;
7033 goto done;
7034 }
7035
49f223a9 7036 /* Grab isolated pages from freelists. */
bb13ffeb 7037 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7038 if (!outer_end) {
7039 ret = -EBUSY;
7040 goto done;
7041 }
7042
7043 /* Free head and tail (if any) */
7044 if (start != outer_start)
7045 free_contig_range(outer_start, start - outer_start);
7046 if (end != outer_end)
7047 free_contig_range(end, outer_end - end);
7048
7049done:
7050 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7051 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7052 return ret;
7053}
7054
7055void free_contig_range(unsigned long pfn, unsigned nr_pages)
7056{
bcc2b02f
MS
7057 unsigned int count = 0;
7058
7059 for (; nr_pages--; pfn++) {
7060 struct page *page = pfn_to_page(pfn);
7061
7062 count += page_count(page) != 1;
7063 __free_page(page);
7064 }
7065 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7066}
7067#endif
7068
4ed7e022 7069#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7070/*
7071 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7072 * page high values need to be recalulated.
7073 */
4ed7e022
JL
7074void __meminit zone_pcp_update(struct zone *zone)
7075{
0a647f38 7076 unsigned cpu;
c8e251fa 7077 mutex_lock(&pcp_batch_high_lock);
0a647f38 7078 for_each_possible_cpu(cpu)
169f6c19
CS
7079 pageset_set_high_and_batch(zone,
7080 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7081 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7082}
7083#endif
7084
340175b7
JL
7085void zone_pcp_reset(struct zone *zone)
7086{
7087 unsigned long flags;
5a883813
MK
7088 int cpu;
7089 struct per_cpu_pageset *pset;
340175b7
JL
7090
7091 /* avoid races with drain_pages() */
7092 local_irq_save(flags);
7093 if (zone->pageset != &boot_pageset) {
5a883813
MK
7094 for_each_online_cpu(cpu) {
7095 pset = per_cpu_ptr(zone->pageset, cpu);
7096 drain_zonestat(zone, pset);
7097 }
340175b7
JL
7098 free_percpu(zone->pageset);
7099 zone->pageset = &boot_pageset;
7100 }
7101 local_irq_restore(flags);
7102}
7103
6dcd73d7 7104#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
7105/*
7106 * All pages in the range must be isolated before calling this.
7107 */
7108void
7109__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7110{
7111 struct page *page;
7112 struct zone *zone;
7aeb09f9 7113 unsigned int order, i;
0c0e6195
KH
7114 unsigned long pfn;
7115 unsigned long flags;
7116 /* find the first valid pfn */
7117 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7118 if (pfn_valid(pfn))
7119 break;
7120 if (pfn == end_pfn)
7121 return;
7122 zone = page_zone(pfn_to_page(pfn));
7123 spin_lock_irqsave(&zone->lock, flags);
7124 pfn = start_pfn;
7125 while (pfn < end_pfn) {
7126 if (!pfn_valid(pfn)) {
7127 pfn++;
7128 continue;
7129 }
7130 page = pfn_to_page(pfn);
b023f468
WC
7131 /*
7132 * The HWPoisoned page may be not in buddy system, and
7133 * page_count() is not 0.
7134 */
7135 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7136 pfn++;
7137 SetPageReserved(page);
7138 continue;
7139 }
7140
0c0e6195
KH
7141 BUG_ON(page_count(page));
7142 BUG_ON(!PageBuddy(page));
7143 order = page_order(page);
7144#ifdef CONFIG_DEBUG_VM
7145 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7146 pfn, 1 << order, end_pfn);
7147#endif
7148 list_del(&page->lru);
7149 rmv_page_order(page);
7150 zone->free_area[order].nr_free--;
0c0e6195
KH
7151 for (i = 0; i < (1 << order); i++)
7152 SetPageReserved((page+i));
7153 pfn += (1 << order);
7154 }
7155 spin_unlock_irqrestore(&zone->lock, flags);
7156}
7157#endif
8d22ba1b 7158
8d22ba1b
WF
7159bool is_free_buddy_page(struct page *page)
7160{
7161 struct zone *zone = page_zone(page);
7162 unsigned long pfn = page_to_pfn(page);
7163 unsigned long flags;
7aeb09f9 7164 unsigned int order;
8d22ba1b
WF
7165
7166 spin_lock_irqsave(&zone->lock, flags);
7167 for (order = 0; order < MAX_ORDER; order++) {
7168 struct page *page_head = page - (pfn & ((1 << order) - 1));
7169
7170 if (PageBuddy(page_head) && page_order(page_head) >= order)
7171 break;
7172 }
7173 spin_unlock_irqrestore(&zone->lock, flags);
7174
7175 return order < MAX_ORDER;
7176}
This page took 1.694556 seconds and 5 git commands to generate.