mm: introduce find_dev_pagemap()
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
1da177e4 65
7ee3d4e8 66#include <asm/sections.h>
1da177e4 67#include <asm/tlbflush.h>
ac924c60 68#include <asm/div64.h>
1da177e4
LT
69#include "internal.h"
70
c8e251fa
CS
71/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 73#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 74
72812019
LS
75#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76DEFINE_PER_CPU(int, numa_node);
77EXPORT_PER_CPU_SYMBOL(numa_node);
78#endif
79
7aac7898
LS
80#ifdef CONFIG_HAVE_MEMORYLESS_NODES
81/*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 89int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
90#endif
91
1da177e4 92/*
13808910 93 * Array of node states.
1da177e4 94 */
13808910
CL
95nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98#ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100#ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
102#endif
103#ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
105#endif
106 [N_CPU] = { { [0] = 1UL } },
107#endif /* NUMA */
108};
109EXPORT_SYMBOL(node_states);
110
c3d5f5f0
JL
111/* Protect totalram_pages and zone->managed_pages */
112static DEFINE_SPINLOCK(managed_page_count_lock);
113
6c231b7b 114unsigned long totalram_pages __read_mostly;
cb45b0e9 115unsigned long totalreserve_pages __read_mostly;
e48322ab 116unsigned long totalcma_pages __read_mostly;
ab8fabd4 117
1b76b02f 118int percpu_pagelist_fraction;
dcce284a 119gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 120
bb14c2c7
VB
121/*
122 * A cached value of the page's pageblock's migratetype, used when the page is
123 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
124 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
125 * Also the migratetype set in the page does not necessarily match the pcplist
126 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
127 * other index - this ensures that it will be put on the correct CMA freelist.
128 */
129static inline int get_pcppage_migratetype(struct page *page)
130{
131 return page->index;
132}
133
134static inline void set_pcppage_migratetype(struct page *page, int migratetype)
135{
136 page->index = migratetype;
137}
138
452aa699
RW
139#ifdef CONFIG_PM_SLEEP
140/*
141 * The following functions are used by the suspend/hibernate code to temporarily
142 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
143 * while devices are suspended. To avoid races with the suspend/hibernate code,
144 * they should always be called with pm_mutex held (gfp_allowed_mask also should
145 * only be modified with pm_mutex held, unless the suspend/hibernate code is
146 * guaranteed not to run in parallel with that modification).
147 */
c9e664f1
RW
148
149static gfp_t saved_gfp_mask;
150
151void pm_restore_gfp_mask(void)
452aa699
RW
152{
153 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
154 if (saved_gfp_mask) {
155 gfp_allowed_mask = saved_gfp_mask;
156 saved_gfp_mask = 0;
157 }
452aa699
RW
158}
159
c9e664f1 160void pm_restrict_gfp_mask(void)
452aa699 161{
452aa699 162 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
163 WARN_ON(saved_gfp_mask);
164 saved_gfp_mask = gfp_allowed_mask;
d0164adc 165 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 166}
f90ac398
MG
167
168bool pm_suspended_storage(void)
169{
d0164adc 170 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
171 return false;
172 return true;
173}
452aa699
RW
174#endif /* CONFIG_PM_SLEEP */
175
d9c23400 176#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 177unsigned int pageblock_order __read_mostly;
d9c23400
MG
178#endif
179
d98c7a09 180static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 181
1da177e4
LT
182/*
183 * results with 256, 32 in the lowmem_reserve sysctl:
184 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
185 * 1G machine -> (16M dma, 784M normal, 224M high)
186 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
187 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 188 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
189 *
190 * TBD: should special case ZONE_DMA32 machines here - in those we normally
191 * don't need any ZONE_NORMAL reservation
1da177e4 192 */
2f1b6248 193int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 256,
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 256,
fb0e7942 199#endif
e53ef38d 200#ifdef CONFIG_HIGHMEM
2a1e274a 201 32,
e53ef38d 202#endif
2a1e274a 203 32,
2f1b6248 204};
1da177e4
LT
205
206EXPORT_SYMBOL(totalram_pages);
1da177e4 207
15ad7cdc 208static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 209#ifdef CONFIG_ZONE_DMA
2f1b6248 210 "DMA",
4b51d669 211#endif
fb0e7942 212#ifdef CONFIG_ZONE_DMA32
2f1b6248 213 "DMA32",
fb0e7942 214#endif
2f1b6248 215 "Normal",
e53ef38d 216#ifdef CONFIG_HIGHMEM
2a1e274a 217 "HighMem",
e53ef38d 218#endif
2a1e274a 219 "Movable",
033fbae9
DW
220#ifdef CONFIG_ZONE_DEVICE
221 "Device",
222#endif
2f1b6248
CL
223};
224
f1e61557
KS
225compound_page_dtor * const compound_page_dtors[] = {
226 NULL,
227 free_compound_page,
228#ifdef CONFIG_HUGETLB_PAGE
229 free_huge_page,
230#endif
9a982250
KS
231#ifdef CONFIG_TRANSPARENT_HUGEPAGE
232 free_transhuge_page,
233#endif
f1e61557
KS
234};
235
1da177e4 236int min_free_kbytes = 1024;
42aa83cb 237int user_min_free_kbytes = -1;
1da177e4 238
2c85f51d
JB
239static unsigned long __meminitdata nr_kernel_pages;
240static unsigned long __meminitdata nr_all_pages;
a3142c8e 241static unsigned long __meminitdata dma_reserve;
1da177e4 242
0ee332c1
TH
243#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
244static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
245static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
246static unsigned long __initdata required_kernelcore;
247static unsigned long __initdata required_movablecore;
248static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
249
250/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
251int movable_zone;
252EXPORT_SYMBOL(movable_zone);
253#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 254
418508c1
MS
255#if MAX_NUMNODES > 1
256int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 257int nr_online_nodes __read_mostly = 1;
418508c1 258EXPORT_SYMBOL(nr_node_ids);
62bc62a8 259EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
260#endif
261
9ef9acb0
MG
262int page_group_by_mobility_disabled __read_mostly;
263
3a80a7fa
MG
264#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
265static inline void reset_deferred_meminit(pg_data_t *pgdat)
266{
267 pgdat->first_deferred_pfn = ULONG_MAX;
268}
269
270/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 271static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 272{
ae026b2a 273 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
274 return true;
275
276 return false;
277}
278
7e18adb4
MG
279static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
280{
281 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
282 return true;
283
284 return false;
285}
286
3a80a7fa
MG
287/*
288 * Returns false when the remaining initialisation should be deferred until
289 * later in the boot cycle when it can be parallelised.
290 */
291static inline bool update_defer_init(pg_data_t *pgdat,
292 unsigned long pfn, unsigned long zone_end,
293 unsigned long *nr_initialised)
294{
295 /* Always populate low zones for address-contrained allocations */
296 if (zone_end < pgdat_end_pfn(pgdat))
297 return true;
298
299 /* Initialise at least 2G of the highest zone */
300 (*nr_initialised)++;
301 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
302 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
303 pgdat->first_deferred_pfn = pfn;
304 return false;
305 }
306
307 return true;
308}
309#else
310static inline void reset_deferred_meminit(pg_data_t *pgdat)
311{
312}
313
314static inline bool early_page_uninitialised(unsigned long pfn)
315{
316 return false;
317}
318
7e18adb4
MG
319static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
320{
321 return false;
322}
323
3a80a7fa
MG
324static inline bool update_defer_init(pg_data_t *pgdat,
325 unsigned long pfn, unsigned long zone_end,
326 unsigned long *nr_initialised)
327{
328 return true;
329}
330#endif
331
332
ee6f509c 333void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 334{
5d0f3f72
KM
335 if (unlikely(page_group_by_mobility_disabled &&
336 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
337 migratetype = MIGRATE_UNMOVABLE;
338
b2a0ac88
MG
339 set_pageblock_flags_group(page, (unsigned long)migratetype,
340 PB_migrate, PB_migrate_end);
341}
342
13e7444b 343#ifdef CONFIG_DEBUG_VM
c6a57e19 344static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 345{
bdc8cb98
DH
346 int ret = 0;
347 unsigned seq;
348 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 349 unsigned long sp, start_pfn;
c6a57e19 350
bdc8cb98
DH
351 do {
352 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
353 start_pfn = zone->zone_start_pfn;
354 sp = zone->spanned_pages;
108bcc96 355 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
356 ret = 1;
357 } while (zone_span_seqretry(zone, seq));
358
b5e6a5a2 359 if (ret)
613813e8
DH
360 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
361 pfn, zone_to_nid(zone), zone->name,
362 start_pfn, start_pfn + sp);
b5e6a5a2 363
bdc8cb98 364 return ret;
c6a57e19
DH
365}
366
367static int page_is_consistent(struct zone *zone, struct page *page)
368{
14e07298 369 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 370 return 0;
1da177e4 371 if (zone != page_zone(page))
c6a57e19
DH
372 return 0;
373
374 return 1;
375}
376/*
377 * Temporary debugging check for pages not lying within a given zone.
378 */
379static int bad_range(struct zone *zone, struct page *page)
380{
381 if (page_outside_zone_boundaries(zone, page))
1da177e4 382 return 1;
c6a57e19
DH
383 if (!page_is_consistent(zone, page))
384 return 1;
385
1da177e4
LT
386 return 0;
387}
13e7444b
NP
388#else
389static inline int bad_range(struct zone *zone, struct page *page)
390{
391 return 0;
392}
393#endif
394
d230dec1
KS
395static void bad_page(struct page *page, const char *reason,
396 unsigned long bad_flags)
1da177e4 397{
d936cf9b
HD
398 static unsigned long resume;
399 static unsigned long nr_shown;
400 static unsigned long nr_unshown;
401
2a7684a2
WF
402 /* Don't complain about poisoned pages */
403 if (PageHWPoison(page)) {
22b751c3 404 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
405 return;
406 }
407
d936cf9b
HD
408 /*
409 * Allow a burst of 60 reports, then keep quiet for that minute;
410 * or allow a steady drip of one report per second.
411 */
412 if (nr_shown == 60) {
413 if (time_before(jiffies, resume)) {
414 nr_unshown++;
415 goto out;
416 }
417 if (nr_unshown) {
1e9e6365
HD
418 printk(KERN_ALERT
419 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
420 nr_unshown);
421 nr_unshown = 0;
422 }
423 nr_shown = 0;
424 }
425 if (nr_shown++ == 0)
426 resume = jiffies + 60 * HZ;
427
1e9e6365 428 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 429 current->comm, page_to_pfn(page));
f0b791a3 430 dump_page_badflags(page, reason, bad_flags);
3dc14741 431
4f31888c 432 print_modules();
1da177e4 433 dump_stack();
d936cf9b 434out:
8cc3b392 435 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 436 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 437 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
438}
439
1da177e4
LT
440/*
441 * Higher-order pages are called "compound pages". They are structured thusly:
442 *
1d798ca3 443 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 444 *
1d798ca3
KS
445 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
446 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 447 *
1d798ca3
KS
448 * The first tail page's ->compound_dtor holds the offset in array of compound
449 * page destructors. See compound_page_dtors.
1da177e4 450 *
1d798ca3 451 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 452 * This usage means that zero-order pages may not be compound.
1da177e4 453 */
d98c7a09 454
9a982250 455void free_compound_page(struct page *page)
d98c7a09 456{
d85f3385 457 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
458}
459
d00181b9 460void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
461{
462 int i;
463 int nr_pages = 1 << order;
464
f1e61557 465 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
466 set_compound_order(page, order);
467 __SetPageHead(page);
468 for (i = 1; i < nr_pages; i++) {
469 struct page *p = page + i;
58a84aa9 470 set_page_count(p, 0);
1c290f64 471 p->mapping = TAIL_MAPPING;
1d798ca3 472 set_compound_head(p, page);
18229df5 473 }
53f9263b 474 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
475}
476
c0a32fc5
SG
477#ifdef CONFIG_DEBUG_PAGEALLOC
478unsigned int _debug_guardpage_minorder;
031bc574 479bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
480bool _debug_guardpage_enabled __read_mostly;
481
031bc574
JK
482static int __init early_debug_pagealloc(char *buf)
483{
484 if (!buf)
485 return -EINVAL;
486
487 if (strcmp(buf, "on") == 0)
488 _debug_pagealloc_enabled = true;
489
490 return 0;
491}
492early_param("debug_pagealloc", early_debug_pagealloc);
493
e30825f1
JK
494static bool need_debug_guardpage(void)
495{
031bc574
JK
496 /* If we don't use debug_pagealloc, we don't need guard page */
497 if (!debug_pagealloc_enabled())
498 return false;
499
e30825f1
JK
500 return true;
501}
502
503static void init_debug_guardpage(void)
504{
031bc574
JK
505 if (!debug_pagealloc_enabled())
506 return;
507
e30825f1
JK
508 _debug_guardpage_enabled = true;
509}
510
511struct page_ext_operations debug_guardpage_ops = {
512 .need = need_debug_guardpage,
513 .init = init_debug_guardpage,
514};
c0a32fc5
SG
515
516static int __init debug_guardpage_minorder_setup(char *buf)
517{
518 unsigned long res;
519
520 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
521 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
522 return 0;
523 }
524 _debug_guardpage_minorder = res;
525 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
526 return 0;
527}
528__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
529
2847cf95
JK
530static inline void set_page_guard(struct zone *zone, struct page *page,
531 unsigned int order, int migratetype)
c0a32fc5 532{
e30825f1
JK
533 struct page_ext *page_ext;
534
535 if (!debug_guardpage_enabled())
536 return;
537
538 page_ext = lookup_page_ext(page);
539 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
540
2847cf95
JK
541 INIT_LIST_HEAD(&page->lru);
542 set_page_private(page, order);
543 /* Guard pages are not available for any usage */
544 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
545}
546
2847cf95
JK
547static inline void clear_page_guard(struct zone *zone, struct page *page,
548 unsigned int order, int migratetype)
c0a32fc5 549{
e30825f1
JK
550 struct page_ext *page_ext;
551
552 if (!debug_guardpage_enabled())
553 return;
554
555 page_ext = lookup_page_ext(page);
556 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
557
2847cf95
JK
558 set_page_private(page, 0);
559 if (!is_migrate_isolate(migratetype))
560 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
561}
562#else
e30825f1 563struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
564static inline void set_page_guard(struct zone *zone, struct page *page,
565 unsigned int order, int migratetype) {}
566static inline void clear_page_guard(struct zone *zone, struct page *page,
567 unsigned int order, int migratetype) {}
c0a32fc5
SG
568#endif
569
7aeb09f9 570static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 571{
4c21e2f2 572 set_page_private(page, order);
676165a8 573 __SetPageBuddy(page);
1da177e4
LT
574}
575
576static inline void rmv_page_order(struct page *page)
577{
676165a8 578 __ClearPageBuddy(page);
4c21e2f2 579 set_page_private(page, 0);
1da177e4
LT
580}
581
1da177e4
LT
582/*
583 * This function checks whether a page is free && is the buddy
584 * we can do coalesce a page and its buddy if
13e7444b 585 * (a) the buddy is not in a hole &&
676165a8 586 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
587 * (c) a page and its buddy have the same order &&
588 * (d) a page and its buddy are in the same zone.
676165a8 589 *
cf6fe945
WSH
590 * For recording whether a page is in the buddy system, we set ->_mapcount
591 * PAGE_BUDDY_MAPCOUNT_VALUE.
592 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
593 * serialized by zone->lock.
1da177e4 594 *
676165a8 595 * For recording page's order, we use page_private(page).
1da177e4 596 */
cb2b95e1 597static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 598 unsigned int order)
1da177e4 599{
14e07298 600 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 601 return 0;
13e7444b 602
c0a32fc5 603 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
604 if (page_zone_id(page) != page_zone_id(buddy))
605 return 0;
606
4c5018ce
WY
607 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
608
c0a32fc5
SG
609 return 1;
610 }
611
cb2b95e1 612 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
613 /*
614 * zone check is done late to avoid uselessly
615 * calculating zone/node ids for pages that could
616 * never merge.
617 */
618 if (page_zone_id(page) != page_zone_id(buddy))
619 return 0;
620
4c5018ce
WY
621 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
622
6aa3001b 623 return 1;
676165a8 624 }
6aa3001b 625 return 0;
1da177e4
LT
626}
627
628/*
629 * Freeing function for a buddy system allocator.
630 *
631 * The concept of a buddy system is to maintain direct-mapped table
632 * (containing bit values) for memory blocks of various "orders".
633 * The bottom level table contains the map for the smallest allocatable
634 * units of memory (here, pages), and each level above it describes
635 * pairs of units from the levels below, hence, "buddies".
636 * At a high level, all that happens here is marking the table entry
637 * at the bottom level available, and propagating the changes upward
638 * as necessary, plus some accounting needed to play nicely with other
639 * parts of the VM system.
640 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
641 * free pages of length of (1 << order) and marked with _mapcount
642 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
643 * field.
1da177e4 644 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
645 * other. That is, if we allocate a small block, and both were
646 * free, the remainder of the region must be split into blocks.
1da177e4 647 * If a block is freed, and its buddy is also free, then this
5f63b720 648 * triggers coalescing into a block of larger size.
1da177e4 649 *
6d49e352 650 * -- nyc
1da177e4
LT
651 */
652
48db57f8 653static inline void __free_one_page(struct page *page,
dc4b0caf 654 unsigned long pfn,
ed0ae21d
MG
655 struct zone *zone, unsigned int order,
656 int migratetype)
1da177e4
LT
657{
658 unsigned long page_idx;
6dda9d55 659 unsigned long combined_idx;
43506fad 660 unsigned long uninitialized_var(buddy_idx);
6dda9d55 661 struct page *buddy;
d00181b9 662 unsigned int max_order = MAX_ORDER;
1da177e4 663
d29bb978 664 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 665 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 666
ed0ae21d 667 VM_BUG_ON(migratetype == -1);
3c605096
JK
668 if (is_migrate_isolate(migratetype)) {
669 /*
670 * We restrict max order of merging to prevent merge
671 * between freepages on isolate pageblock and normal
672 * pageblock. Without this, pageblock isolation
673 * could cause incorrect freepage accounting.
674 */
d00181b9 675 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
3c605096 676 } else {
8f82b55d 677 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 678 }
ed0ae21d 679
3c605096 680 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 681
309381fe
SL
682 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
683 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 684
3c605096 685 while (order < max_order - 1) {
43506fad
KC
686 buddy_idx = __find_buddy_index(page_idx, order);
687 buddy = page + (buddy_idx - page_idx);
cb2b95e1 688 if (!page_is_buddy(page, buddy, order))
3c82d0ce 689 break;
c0a32fc5
SG
690 /*
691 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
692 * merge with it and move up one order.
693 */
694 if (page_is_guard(buddy)) {
2847cf95 695 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
696 } else {
697 list_del(&buddy->lru);
698 zone->free_area[order].nr_free--;
699 rmv_page_order(buddy);
700 }
43506fad 701 combined_idx = buddy_idx & page_idx;
1da177e4
LT
702 page = page + (combined_idx - page_idx);
703 page_idx = combined_idx;
704 order++;
705 }
706 set_page_order(page, order);
6dda9d55
CZ
707
708 /*
709 * If this is not the largest possible page, check if the buddy
710 * of the next-highest order is free. If it is, it's possible
711 * that pages are being freed that will coalesce soon. In case,
712 * that is happening, add the free page to the tail of the list
713 * so it's less likely to be used soon and more likely to be merged
714 * as a higher order page
715 */
b7f50cfa 716 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 717 struct page *higher_page, *higher_buddy;
43506fad
KC
718 combined_idx = buddy_idx & page_idx;
719 higher_page = page + (combined_idx - page_idx);
720 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 721 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
722 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
723 list_add_tail(&page->lru,
724 &zone->free_area[order].free_list[migratetype]);
725 goto out;
726 }
727 }
728
729 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
730out:
1da177e4
LT
731 zone->free_area[order].nr_free++;
732}
733
224abf92 734static inline int free_pages_check(struct page *page)
1da177e4 735{
d230dec1 736 const char *bad_reason = NULL;
f0b791a3
DH
737 unsigned long bad_flags = 0;
738
53f9263b 739 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
740 bad_reason = "nonzero mapcount";
741 if (unlikely(page->mapping != NULL))
742 bad_reason = "non-NULL mapping";
743 if (unlikely(atomic_read(&page->_count) != 0))
744 bad_reason = "nonzero _count";
745 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
746 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
747 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
748 }
9edad6ea
JW
749#ifdef CONFIG_MEMCG
750 if (unlikely(page->mem_cgroup))
751 bad_reason = "page still charged to cgroup";
752#endif
f0b791a3
DH
753 if (unlikely(bad_reason)) {
754 bad_page(page, bad_reason, bad_flags);
79f4b7bf 755 return 1;
8cc3b392 756 }
90572890 757 page_cpupid_reset_last(page);
79f4b7bf
HD
758 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
759 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
760 return 0;
1da177e4
LT
761}
762
763/*
5f8dcc21 764 * Frees a number of pages from the PCP lists
1da177e4 765 * Assumes all pages on list are in same zone, and of same order.
207f36ee 766 * count is the number of pages to free.
1da177e4
LT
767 *
768 * If the zone was previously in an "all pages pinned" state then look to
769 * see if this freeing clears that state.
770 *
771 * And clear the zone's pages_scanned counter, to hold off the "all pages are
772 * pinned" detection logic.
773 */
5f8dcc21
MG
774static void free_pcppages_bulk(struct zone *zone, int count,
775 struct per_cpu_pages *pcp)
1da177e4 776{
5f8dcc21 777 int migratetype = 0;
a6f9edd6 778 int batch_free = 0;
72853e29 779 int to_free = count;
0d5d823a 780 unsigned long nr_scanned;
5f8dcc21 781
c54ad30c 782 spin_lock(&zone->lock);
0d5d823a
MG
783 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
784 if (nr_scanned)
785 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 786
72853e29 787 while (to_free) {
48db57f8 788 struct page *page;
5f8dcc21
MG
789 struct list_head *list;
790
791 /*
a6f9edd6
MG
792 * Remove pages from lists in a round-robin fashion. A
793 * batch_free count is maintained that is incremented when an
794 * empty list is encountered. This is so more pages are freed
795 * off fuller lists instead of spinning excessively around empty
796 * lists
5f8dcc21
MG
797 */
798 do {
a6f9edd6 799 batch_free++;
5f8dcc21
MG
800 if (++migratetype == MIGRATE_PCPTYPES)
801 migratetype = 0;
802 list = &pcp->lists[migratetype];
803 } while (list_empty(list));
48db57f8 804
1d16871d
NK
805 /* This is the only non-empty list. Free them all. */
806 if (batch_free == MIGRATE_PCPTYPES)
807 batch_free = to_free;
808
a6f9edd6 809 do {
770c8aaa
BZ
810 int mt; /* migratetype of the to-be-freed page */
811
a16601c5 812 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
813 /* must delete as __free_one_page list manipulates */
814 list_del(&page->lru);
aa016d14 815
bb14c2c7 816 mt = get_pcppage_migratetype(page);
aa016d14
VB
817 /* MIGRATE_ISOLATE page should not go to pcplists */
818 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
819 /* Pageblock could have been isolated meanwhile */
8f82b55d 820 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 821 mt = get_pageblock_migratetype(page);
51bb1a40 822
dc4b0caf 823 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 824 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 825 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 826 }
c54ad30c 827 spin_unlock(&zone->lock);
1da177e4
LT
828}
829
dc4b0caf
MG
830static void free_one_page(struct zone *zone,
831 struct page *page, unsigned long pfn,
7aeb09f9 832 unsigned int order,
ed0ae21d 833 int migratetype)
1da177e4 834{
0d5d823a 835 unsigned long nr_scanned;
006d22d9 836 spin_lock(&zone->lock);
0d5d823a
MG
837 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
838 if (nr_scanned)
839 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 840
ad53f92e
JK
841 if (unlikely(has_isolate_pageblock(zone) ||
842 is_migrate_isolate(migratetype))) {
843 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 844 }
dc4b0caf 845 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 846 spin_unlock(&zone->lock);
48db57f8
NP
847}
848
81422f29
KS
849static int free_tail_pages_check(struct page *head_page, struct page *page)
850{
1d798ca3
KS
851 int ret = 1;
852
853 /*
854 * We rely page->lru.next never has bit 0 set, unless the page
855 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
856 */
857 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
858
859 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
860 ret = 0;
861 goto out;
862 }
9a982250
KS
863 switch (page - head_page) {
864 case 1:
865 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
866 if (unlikely(compound_mapcount(page))) {
867 bad_page(page, "nonzero compound_mapcount", 0);
868 goto out;
869 }
9a982250
KS
870 break;
871 case 2:
872 /*
873 * the second tail page: ->mapping is
874 * page_deferred_list().next -- ignore value.
875 */
876 break;
877 default:
878 if (page->mapping != TAIL_MAPPING) {
879 bad_page(page, "corrupted mapping in tail page", 0);
880 goto out;
881 }
882 break;
1c290f64 883 }
81422f29
KS
884 if (unlikely(!PageTail(page))) {
885 bad_page(page, "PageTail not set", 0);
1d798ca3 886 goto out;
81422f29 887 }
1d798ca3
KS
888 if (unlikely(compound_head(page) != head_page)) {
889 bad_page(page, "compound_head not consistent", 0);
890 goto out;
81422f29 891 }
1d798ca3
KS
892 ret = 0;
893out:
1c290f64 894 page->mapping = NULL;
1d798ca3
KS
895 clear_compound_head(page);
896 return ret;
81422f29
KS
897}
898
1e8ce83c
RH
899static void __meminit __init_single_page(struct page *page, unsigned long pfn,
900 unsigned long zone, int nid)
901{
1e8ce83c 902 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
903 init_page_count(page);
904 page_mapcount_reset(page);
905 page_cpupid_reset_last(page);
1e8ce83c 906
1e8ce83c
RH
907 INIT_LIST_HEAD(&page->lru);
908#ifdef WANT_PAGE_VIRTUAL
909 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
910 if (!is_highmem_idx(zone))
911 set_page_address(page, __va(pfn << PAGE_SHIFT));
912#endif
913}
914
915static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
916 int nid)
917{
918 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
919}
920
7e18adb4
MG
921#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
922static void init_reserved_page(unsigned long pfn)
923{
924 pg_data_t *pgdat;
925 int nid, zid;
926
927 if (!early_page_uninitialised(pfn))
928 return;
929
930 nid = early_pfn_to_nid(pfn);
931 pgdat = NODE_DATA(nid);
932
933 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
934 struct zone *zone = &pgdat->node_zones[zid];
935
936 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
937 break;
938 }
939 __init_single_pfn(pfn, zid, nid);
940}
941#else
942static inline void init_reserved_page(unsigned long pfn)
943{
944}
945#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
946
92923ca3
NZ
947/*
948 * Initialised pages do not have PageReserved set. This function is
949 * called for each range allocated by the bootmem allocator and
950 * marks the pages PageReserved. The remaining valid pages are later
951 * sent to the buddy page allocator.
952 */
7e18adb4 953void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
954{
955 unsigned long start_pfn = PFN_DOWN(start);
956 unsigned long end_pfn = PFN_UP(end);
957
7e18adb4
MG
958 for (; start_pfn < end_pfn; start_pfn++) {
959 if (pfn_valid(start_pfn)) {
960 struct page *page = pfn_to_page(start_pfn);
961
962 init_reserved_page(start_pfn);
1d798ca3
KS
963
964 /* Avoid false-positive PageTail() */
965 INIT_LIST_HEAD(&page->lru);
966
7e18adb4
MG
967 SetPageReserved(page);
968 }
969 }
92923ca3
NZ
970}
971
ec95f53a 972static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 973{
81422f29
KS
974 bool compound = PageCompound(page);
975 int i, bad = 0;
1da177e4 976
ab1f306f 977 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 978 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 979
b413d48a 980 trace_mm_page_free(page, order);
b1eeab67 981 kmemcheck_free_shadow(page, order);
b8c73fc2 982 kasan_free_pages(page, order);
b1eeab67 983
8dd60a3a
AA
984 if (PageAnon(page))
985 page->mapping = NULL;
81422f29
KS
986 bad += free_pages_check(page);
987 for (i = 1; i < (1 << order); i++) {
988 if (compound)
989 bad += free_tail_pages_check(page, page + i);
8dd60a3a 990 bad += free_pages_check(page + i);
81422f29 991 }
8cc3b392 992 if (bad)
ec95f53a 993 return false;
689bcebf 994
48c96a36
JK
995 reset_page_owner(page, order);
996
3ac7fe5a 997 if (!PageHighMem(page)) {
b8af2941
PK
998 debug_check_no_locks_freed(page_address(page),
999 PAGE_SIZE << order);
3ac7fe5a
TG
1000 debug_check_no_obj_freed(page_address(page),
1001 PAGE_SIZE << order);
1002 }
dafb1367 1003 arch_free_page(page, order);
48db57f8 1004 kernel_map_pages(page, 1 << order, 0);
dafb1367 1005
ec95f53a
KM
1006 return true;
1007}
1008
1009static void __free_pages_ok(struct page *page, unsigned int order)
1010{
1011 unsigned long flags;
95e34412 1012 int migratetype;
dc4b0caf 1013 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1014
1015 if (!free_pages_prepare(page, order))
1016 return;
1017
cfc47a28 1018 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1019 local_irq_save(flags);
f8891e5e 1020 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1021 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1022 local_irq_restore(flags);
1da177e4
LT
1023}
1024
0e1cc95b 1025static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 1026 unsigned long pfn, unsigned int order)
a226f6c8 1027{
c3993076 1028 unsigned int nr_pages = 1 << order;
e2d0bd2b 1029 struct page *p = page;
c3993076 1030 unsigned int loop;
a226f6c8 1031
e2d0bd2b
YL
1032 prefetchw(p);
1033 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1034 prefetchw(p + 1);
c3993076
JW
1035 __ClearPageReserved(p);
1036 set_page_count(p, 0);
a226f6c8 1037 }
e2d0bd2b
YL
1038 __ClearPageReserved(p);
1039 set_page_count(p, 0);
c3993076 1040
e2d0bd2b 1041 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1042 set_page_refcounted(page);
1043 __free_pages(page, order);
a226f6c8
DH
1044}
1045
75a592a4
MG
1046#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1047 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1048
75a592a4
MG
1049static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1050
1051int __meminit early_pfn_to_nid(unsigned long pfn)
1052{
7ace9917 1053 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1054 int nid;
1055
7ace9917 1056 spin_lock(&early_pfn_lock);
75a592a4 1057 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1058 if (nid < 0)
1059 nid = 0;
1060 spin_unlock(&early_pfn_lock);
1061
1062 return nid;
75a592a4
MG
1063}
1064#endif
1065
1066#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1067static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1068 struct mminit_pfnnid_cache *state)
1069{
1070 int nid;
1071
1072 nid = __early_pfn_to_nid(pfn, state);
1073 if (nid >= 0 && nid != node)
1074 return false;
1075 return true;
1076}
1077
1078/* Only safe to use early in boot when initialisation is single-threaded */
1079static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1080{
1081 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1082}
1083
1084#else
1085
1086static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1087{
1088 return true;
1089}
1090static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1091 struct mminit_pfnnid_cache *state)
1092{
1093 return true;
1094}
1095#endif
1096
1097
0e1cc95b 1098void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1099 unsigned int order)
1100{
1101 if (early_page_uninitialised(pfn))
1102 return;
1103 return __free_pages_boot_core(page, pfn, order);
1104}
1105
7e18adb4 1106#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1107static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1108 unsigned long pfn, int nr_pages)
1109{
1110 int i;
1111
1112 if (!page)
1113 return;
1114
1115 /* Free a large naturally-aligned chunk if possible */
1116 if (nr_pages == MAX_ORDER_NR_PAGES &&
1117 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1118 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1119 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1120 return;
1121 }
1122
1123 for (i = 0; i < nr_pages; i++, page++, pfn++)
1124 __free_pages_boot_core(page, pfn, 0);
1125}
1126
d3cd131d
NS
1127/* Completion tracking for deferred_init_memmap() threads */
1128static atomic_t pgdat_init_n_undone __initdata;
1129static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1130
1131static inline void __init pgdat_init_report_one_done(void)
1132{
1133 if (atomic_dec_and_test(&pgdat_init_n_undone))
1134 complete(&pgdat_init_all_done_comp);
1135}
0e1cc95b 1136
7e18adb4 1137/* Initialise remaining memory on a node */
0e1cc95b 1138static int __init deferred_init_memmap(void *data)
7e18adb4 1139{
0e1cc95b
MG
1140 pg_data_t *pgdat = data;
1141 int nid = pgdat->node_id;
7e18adb4
MG
1142 struct mminit_pfnnid_cache nid_init_state = { };
1143 unsigned long start = jiffies;
1144 unsigned long nr_pages = 0;
1145 unsigned long walk_start, walk_end;
1146 int i, zid;
1147 struct zone *zone;
7e18adb4 1148 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1149 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1150
0e1cc95b 1151 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1152 pgdat_init_report_one_done();
0e1cc95b
MG
1153 return 0;
1154 }
1155
1156 /* Bind memory initialisation thread to a local node if possible */
1157 if (!cpumask_empty(cpumask))
1158 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1159
1160 /* Sanity check boundaries */
1161 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1162 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1163 pgdat->first_deferred_pfn = ULONG_MAX;
1164
1165 /* Only the highest zone is deferred so find it */
1166 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1167 zone = pgdat->node_zones + zid;
1168 if (first_init_pfn < zone_end_pfn(zone))
1169 break;
1170 }
1171
1172 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1173 unsigned long pfn, end_pfn;
54608c3f 1174 struct page *page = NULL;
a4de83dd
MG
1175 struct page *free_base_page = NULL;
1176 unsigned long free_base_pfn = 0;
1177 int nr_to_free = 0;
7e18adb4
MG
1178
1179 end_pfn = min(walk_end, zone_end_pfn(zone));
1180 pfn = first_init_pfn;
1181 if (pfn < walk_start)
1182 pfn = walk_start;
1183 if (pfn < zone->zone_start_pfn)
1184 pfn = zone->zone_start_pfn;
1185
1186 for (; pfn < end_pfn; pfn++) {
54608c3f 1187 if (!pfn_valid_within(pfn))
a4de83dd 1188 goto free_range;
7e18adb4 1189
54608c3f
MG
1190 /*
1191 * Ensure pfn_valid is checked every
1192 * MAX_ORDER_NR_PAGES for memory holes
1193 */
1194 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1195 if (!pfn_valid(pfn)) {
1196 page = NULL;
a4de83dd 1197 goto free_range;
54608c3f
MG
1198 }
1199 }
1200
1201 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1202 page = NULL;
a4de83dd 1203 goto free_range;
54608c3f
MG
1204 }
1205
1206 /* Minimise pfn page lookups and scheduler checks */
1207 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1208 page++;
1209 } else {
a4de83dd
MG
1210 nr_pages += nr_to_free;
1211 deferred_free_range(free_base_page,
1212 free_base_pfn, nr_to_free);
1213 free_base_page = NULL;
1214 free_base_pfn = nr_to_free = 0;
1215
54608c3f
MG
1216 page = pfn_to_page(pfn);
1217 cond_resched();
1218 }
7e18adb4
MG
1219
1220 if (page->flags) {
1221 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1222 goto free_range;
7e18adb4
MG
1223 }
1224
1225 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1226 if (!free_base_page) {
1227 free_base_page = page;
1228 free_base_pfn = pfn;
1229 nr_to_free = 0;
1230 }
1231 nr_to_free++;
1232
1233 /* Where possible, batch up pages for a single free */
1234 continue;
1235free_range:
1236 /* Free the current block of pages to allocator */
1237 nr_pages += nr_to_free;
1238 deferred_free_range(free_base_page, free_base_pfn,
1239 nr_to_free);
1240 free_base_page = NULL;
1241 free_base_pfn = nr_to_free = 0;
7e18adb4 1242 }
a4de83dd 1243
7e18adb4
MG
1244 first_init_pfn = max(end_pfn, first_init_pfn);
1245 }
1246
1247 /* Sanity check that the next zone really is unpopulated */
1248 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1249
0e1cc95b 1250 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1251 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1252
1253 pgdat_init_report_one_done();
0e1cc95b
MG
1254 return 0;
1255}
1256
1257void __init page_alloc_init_late(void)
1258{
1259 int nid;
1260
d3cd131d
NS
1261 /* There will be num_node_state(N_MEMORY) threads */
1262 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1263 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1264 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1265 }
1266
1267 /* Block until all are initialised */
d3cd131d 1268 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1269
1270 /* Reinit limits that are based on free pages after the kernel is up */
1271 files_maxfiles_init();
7e18adb4
MG
1272}
1273#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1274
47118af0 1275#ifdef CONFIG_CMA
9cf510a5 1276/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1277void __init init_cma_reserved_pageblock(struct page *page)
1278{
1279 unsigned i = pageblock_nr_pages;
1280 struct page *p = page;
1281
1282 do {
1283 __ClearPageReserved(p);
1284 set_page_count(p, 0);
1285 } while (++p, --i);
1286
47118af0 1287 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1288
1289 if (pageblock_order >= MAX_ORDER) {
1290 i = pageblock_nr_pages;
1291 p = page;
1292 do {
1293 set_page_refcounted(p);
1294 __free_pages(p, MAX_ORDER - 1);
1295 p += MAX_ORDER_NR_PAGES;
1296 } while (i -= MAX_ORDER_NR_PAGES);
1297 } else {
1298 set_page_refcounted(page);
1299 __free_pages(page, pageblock_order);
1300 }
1301
3dcc0571 1302 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1303}
1304#endif
1da177e4
LT
1305
1306/*
1307 * The order of subdivision here is critical for the IO subsystem.
1308 * Please do not alter this order without good reasons and regression
1309 * testing. Specifically, as large blocks of memory are subdivided,
1310 * the order in which smaller blocks are delivered depends on the order
1311 * they're subdivided in this function. This is the primary factor
1312 * influencing the order in which pages are delivered to the IO
1313 * subsystem according to empirical testing, and this is also justified
1314 * by considering the behavior of a buddy system containing a single
1315 * large block of memory acted on by a series of small allocations.
1316 * This behavior is a critical factor in sglist merging's success.
1317 *
6d49e352 1318 * -- nyc
1da177e4 1319 */
085cc7d5 1320static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1321 int low, int high, struct free_area *area,
1322 int migratetype)
1da177e4
LT
1323{
1324 unsigned long size = 1 << high;
1325
1326 while (high > low) {
1327 area--;
1328 high--;
1329 size >>= 1;
309381fe 1330 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1331
2847cf95 1332 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1333 debug_guardpage_enabled() &&
2847cf95 1334 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1335 /*
1336 * Mark as guard pages (or page), that will allow to
1337 * merge back to allocator when buddy will be freed.
1338 * Corresponding page table entries will not be touched,
1339 * pages will stay not present in virtual address space
1340 */
2847cf95 1341 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1342 continue;
1343 }
b2a0ac88 1344 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1345 area->nr_free++;
1346 set_page_order(&page[size], high);
1347 }
1da177e4
LT
1348}
1349
1da177e4
LT
1350/*
1351 * This page is about to be returned from the page allocator
1352 */
2a7684a2 1353static inline int check_new_page(struct page *page)
1da177e4 1354{
d230dec1 1355 const char *bad_reason = NULL;
f0b791a3
DH
1356 unsigned long bad_flags = 0;
1357
53f9263b 1358 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1359 bad_reason = "nonzero mapcount";
1360 if (unlikely(page->mapping != NULL))
1361 bad_reason = "non-NULL mapping";
1362 if (unlikely(atomic_read(&page->_count) != 0))
1363 bad_reason = "nonzero _count";
f4c18e6f
NH
1364 if (unlikely(page->flags & __PG_HWPOISON)) {
1365 bad_reason = "HWPoisoned (hardware-corrupted)";
1366 bad_flags = __PG_HWPOISON;
1367 }
f0b791a3
DH
1368 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1369 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1370 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1371 }
9edad6ea
JW
1372#ifdef CONFIG_MEMCG
1373 if (unlikely(page->mem_cgroup))
1374 bad_reason = "page still charged to cgroup";
1375#endif
f0b791a3
DH
1376 if (unlikely(bad_reason)) {
1377 bad_page(page, bad_reason, bad_flags);
689bcebf 1378 return 1;
8cc3b392 1379 }
2a7684a2
WF
1380 return 0;
1381}
1382
75379191
VB
1383static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1384 int alloc_flags)
2a7684a2
WF
1385{
1386 int i;
1387
1388 for (i = 0; i < (1 << order); i++) {
1389 struct page *p = page + i;
1390 if (unlikely(check_new_page(p)))
1391 return 1;
1392 }
689bcebf 1393
4c21e2f2 1394 set_page_private(page, 0);
7835e98b 1395 set_page_refcounted(page);
cc102509
NP
1396
1397 arch_alloc_page(page, order);
1da177e4 1398 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1399 kasan_alloc_pages(page, order);
17cf4406
NP
1400
1401 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1402 for (i = 0; i < (1 << order); i++)
1403 clear_highpage(page + i);
17cf4406
NP
1404
1405 if (order && (gfp_flags & __GFP_COMP))
1406 prep_compound_page(page, order);
1407
48c96a36
JK
1408 set_page_owner(page, order, gfp_flags);
1409
75379191 1410 /*
2f064f34 1411 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1412 * allocate the page. The expectation is that the caller is taking
1413 * steps that will free more memory. The caller should avoid the page
1414 * being used for !PFMEMALLOC purposes.
1415 */
2f064f34
MH
1416 if (alloc_flags & ALLOC_NO_WATERMARKS)
1417 set_page_pfmemalloc(page);
1418 else
1419 clear_page_pfmemalloc(page);
75379191 1420
689bcebf 1421 return 0;
1da177e4
LT
1422}
1423
56fd56b8
MG
1424/*
1425 * Go through the free lists for the given migratetype and remove
1426 * the smallest available page from the freelists
1427 */
728ec980
MG
1428static inline
1429struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1430 int migratetype)
1431{
1432 unsigned int current_order;
b8af2941 1433 struct free_area *area;
56fd56b8
MG
1434 struct page *page;
1435
1436 /* Find a page of the appropriate size in the preferred list */
1437 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1438 area = &(zone->free_area[current_order]);
a16601c5 1439 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1440 struct page, lru);
a16601c5
GT
1441 if (!page)
1442 continue;
56fd56b8
MG
1443 list_del(&page->lru);
1444 rmv_page_order(page);
1445 area->nr_free--;
56fd56b8 1446 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1447 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1448 return page;
1449 }
1450
1451 return NULL;
1452}
1453
1454
b2a0ac88
MG
1455/*
1456 * This array describes the order lists are fallen back to when
1457 * the free lists for the desirable migrate type are depleted
1458 */
47118af0 1459static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1460 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1461 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1462 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1463#ifdef CONFIG_CMA
974a786e 1464 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1465#endif
194159fb 1466#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1467 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1468#endif
b2a0ac88
MG
1469};
1470
dc67647b
JK
1471#ifdef CONFIG_CMA
1472static struct page *__rmqueue_cma_fallback(struct zone *zone,
1473 unsigned int order)
1474{
1475 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1476}
1477#else
1478static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1479 unsigned int order) { return NULL; }
1480#endif
1481
c361be55
MG
1482/*
1483 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1484 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1485 * boundary. If alignment is required, use move_freepages_block()
1486 */
435b405c 1487int move_freepages(struct zone *zone,
b69a7288
AB
1488 struct page *start_page, struct page *end_page,
1489 int migratetype)
c361be55
MG
1490{
1491 struct page *page;
d00181b9 1492 unsigned int order;
d100313f 1493 int pages_moved = 0;
c361be55
MG
1494
1495#ifndef CONFIG_HOLES_IN_ZONE
1496 /*
1497 * page_zone is not safe to call in this context when
1498 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1499 * anyway as we check zone boundaries in move_freepages_block().
1500 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1501 * grouping pages by mobility
c361be55 1502 */
97ee4ba7 1503 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1504#endif
1505
1506 for (page = start_page; page <= end_page;) {
344c790e 1507 /* Make sure we are not inadvertently changing nodes */
309381fe 1508 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1509
c361be55
MG
1510 if (!pfn_valid_within(page_to_pfn(page))) {
1511 page++;
1512 continue;
1513 }
1514
1515 if (!PageBuddy(page)) {
1516 page++;
1517 continue;
1518 }
1519
1520 order = page_order(page);
84be48d8
KS
1521 list_move(&page->lru,
1522 &zone->free_area[order].free_list[migratetype]);
c361be55 1523 page += 1 << order;
d100313f 1524 pages_moved += 1 << order;
c361be55
MG
1525 }
1526
d100313f 1527 return pages_moved;
c361be55
MG
1528}
1529
ee6f509c 1530int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1531 int migratetype)
c361be55
MG
1532{
1533 unsigned long start_pfn, end_pfn;
1534 struct page *start_page, *end_page;
1535
1536 start_pfn = page_to_pfn(page);
d9c23400 1537 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1538 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1539 end_page = start_page + pageblock_nr_pages - 1;
1540 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1541
1542 /* Do not cross zone boundaries */
108bcc96 1543 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1544 start_page = page;
108bcc96 1545 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1546 return 0;
1547
1548 return move_freepages(zone, start_page, end_page, migratetype);
1549}
1550
2f66a68f
MG
1551static void change_pageblock_range(struct page *pageblock_page,
1552 int start_order, int migratetype)
1553{
1554 int nr_pageblocks = 1 << (start_order - pageblock_order);
1555
1556 while (nr_pageblocks--) {
1557 set_pageblock_migratetype(pageblock_page, migratetype);
1558 pageblock_page += pageblock_nr_pages;
1559 }
1560}
1561
fef903ef 1562/*
9c0415eb
VB
1563 * When we are falling back to another migratetype during allocation, try to
1564 * steal extra free pages from the same pageblocks to satisfy further
1565 * allocations, instead of polluting multiple pageblocks.
1566 *
1567 * If we are stealing a relatively large buddy page, it is likely there will
1568 * be more free pages in the pageblock, so try to steal them all. For
1569 * reclaimable and unmovable allocations, we steal regardless of page size,
1570 * as fragmentation caused by those allocations polluting movable pageblocks
1571 * is worse than movable allocations stealing from unmovable and reclaimable
1572 * pageblocks.
fef903ef 1573 */
4eb7dce6
JK
1574static bool can_steal_fallback(unsigned int order, int start_mt)
1575{
1576 /*
1577 * Leaving this order check is intended, although there is
1578 * relaxed order check in next check. The reason is that
1579 * we can actually steal whole pageblock if this condition met,
1580 * but, below check doesn't guarantee it and that is just heuristic
1581 * so could be changed anytime.
1582 */
1583 if (order >= pageblock_order)
1584 return true;
1585
1586 if (order >= pageblock_order / 2 ||
1587 start_mt == MIGRATE_RECLAIMABLE ||
1588 start_mt == MIGRATE_UNMOVABLE ||
1589 page_group_by_mobility_disabled)
1590 return true;
1591
1592 return false;
1593}
1594
1595/*
1596 * This function implements actual steal behaviour. If order is large enough,
1597 * we can steal whole pageblock. If not, we first move freepages in this
1598 * pageblock and check whether half of pages are moved or not. If half of
1599 * pages are moved, we can change migratetype of pageblock and permanently
1600 * use it's pages as requested migratetype in the future.
1601 */
1602static void steal_suitable_fallback(struct zone *zone, struct page *page,
1603 int start_type)
fef903ef 1604{
d00181b9 1605 unsigned int current_order = page_order(page);
4eb7dce6 1606 int pages;
fef903ef 1607
fef903ef
SB
1608 /* Take ownership for orders >= pageblock_order */
1609 if (current_order >= pageblock_order) {
1610 change_pageblock_range(page, current_order, start_type);
3a1086fb 1611 return;
fef903ef
SB
1612 }
1613
4eb7dce6 1614 pages = move_freepages_block(zone, page, start_type);
fef903ef 1615
4eb7dce6
JK
1616 /* Claim the whole block if over half of it is free */
1617 if (pages >= (1 << (pageblock_order-1)) ||
1618 page_group_by_mobility_disabled)
1619 set_pageblock_migratetype(page, start_type);
1620}
1621
2149cdae
JK
1622/*
1623 * Check whether there is a suitable fallback freepage with requested order.
1624 * If only_stealable is true, this function returns fallback_mt only if
1625 * we can steal other freepages all together. This would help to reduce
1626 * fragmentation due to mixed migratetype pages in one pageblock.
1627 */
1628int find_suitable_fallback(struct free_area *area, unsigned int order,
1629 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1630{
1631 int i;
1632 int fallback_mt;
1633
1634 if (area->nr_free == 0)
1635 return -1;
1636
1637 *can_steal = false;
1638 for (i = 0;; i++) {
1639 fallback_mt = fallbacks[migratetype][i];
974a786e 1640 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1641 break;
1642
1643 if (list_empty(&area->free_list[fallback_mt]))
1644 continue;
fef903ef 1645
4eb7dce6
JK
1646 if (can_steal_fallback(order, migratetype))
1647 *can_steal = true;
1648
2149cdae
JK
1649 if (!only_stealable)
1650 return fallback_mt;
1651
1652 if (*can_steal)
1653 return fallback_mt;
fef903ef 1654 }
4eb7dce6
JK
1655
1656 return -1;
fef903ef
SB
1657}
1658
0aaa29a5
MG
1659/*
1660 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1661 * there are no empty page blocks that contain a page with a suitable order
1662 */
1663static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1664 unsigned int alloc_order)
1665{
1666 int mt;
1667 unsigned long max_managed, flags;
1668
1669 /*
1670 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1671 * Check is race-prone but harmless.
1672 */
1673 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1674 if (zone->nr_reserved_highatomic >= max_managed)
1675 return;
1676
1677 spin_lock_irqsave(&zone->lock, flags);
1678
1679 /* Recheck the nr_reserved_highatomic limit under the lock */
1680 if (zone->nr_reserved_highatomic >= max_managed)
1681 goto out_unlock;
1682
1683 /* Yoink! */
1684 mt = get_pageblock_migratetype(page);
1685 if (mt != MIGRATE_HIGHATOMIC &&
1686 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1687 zone->nr_reserved_highatomic += pageblock_nr_pages;
1688 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1689 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1690 }
1691
1692out_unlock:
1693 spin_unlock_irqrestore(&zone->lock, flags);
1694}
1695
1696/*
1697 * Used when an allocation is about to fail under memory pressure. This
1698 * potentially hurts the reliability of high-order allocations when under
1699 * intense memory pressure but failed atomic allocations should be easier
1700 * to recover from than an OOM.
1701 */
1702static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1703{
1704 struct zonelist *zonelist = ac->zonelist;
1705 unsigned long flags;
1706 struct zoneref *z;
1707 struct zone *zone;
1708 struct page *page;
1709 int order;
1710
1711 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1712 ac->nodemask) {
1713 /* Preserve at least one pageblock */
1714 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1715 continue;
1716
1717 spin_lock_irqsave(&zone->lock, flags);
1718 for (order = 0; order < MAX_ORDER; order++) {
1719 struct free_area *area = &(zone->free_area[order]);
1720
a16601c5
GT
1721 page = list_first_entry_or_null(
1722 &area->free_list[MIGRATE_HIGHATOMIC],
1723 struct page, lru);
1724 if (!page)
0aaa29a5
MG
1725 continue;
1726
0aaa29a5
MG
1727 /*
1728 * It should never happen but changes to locking could
1729 * inadvertently allow a per-cpu drain to add pages
1730 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1731 * and watch for underflows.
1732 */
1733 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1734 zone->nr_reserved_highatomic);
1735
1736 /*
1737 * Convert to ac->migratetype and avoid the normal
1738 * pageblock stealing heuristics. Minimally, the caller
1739 * is doing the work and needs the pages. More
1740 * importantly, if the block was always converted to
1741 * MIGRATE_UNMOVABLE or another type then the number
1742 * of pageblocks that cannot be completely freed
1743 * may increase.
1744 */
1745 set_pageblock_migratetype(page, ac->migratetype);
1746 move_freepages_block(zone, page, ac->migratetype);
1747 spin_unlock_irqrestore(&zone->lock, flags);
1748 return;
1749 }
1750 spin_unlock_irqrestore(&zone->lock, flags);
1751 }
1752}
1753
b2a0ac88 1754/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1755static inline struct page *
7aeb09f9 1756__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1757{
b8af2941 1758 struct free_area *area;
7aeb09f9 1759 unsigned int current_order;
b2a0ac88 1760 struct page *page;
4eb7dce6
JK
1761 int fallback_mt;
1762 bool can_steal;
b2a0ac88
MG
1763
1764 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1765 for (current_order = MAX_ORDER-1;
1766 current_order >= order && current_order <= MAX_ORDER-1;
1767 --current_order) {
4eb7dce6
JK
1768 area = &(zone->free_area[current_order]);
1769 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1770 start_migratetype, false, &can_steal);
4eb7dce6
JK
1771 if (fallback_mt == -1)
1772 continue;
b2a0ac88 1773
a16601c5 1774 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1775 struct page, lru);
1776 if (can_steal)
1777 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1778
4eb7dce6
JK
1779 /* Remove the page from the freelists */
1780 area->nr_free--;
1781 list_del(&page->lru);
1782 rmv_page_order(page);
3a1086fb 1783
4eb7dce6
JK
1784 expand(zone, page, order, current_order, area,
1785 start_migratetype);
1786 /*
bb14c2c7 1787 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1788 * migratetype depending on the decisions in
bb14c2c7
VB
1789 * find_suitable_fallback(). This is OK as long as it does not
1790 * differ for MIGRATE_CMA pageblocks. Those can be used as
1791 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1792 */
bb14c2c7 1793 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1794
4eb7dce6
JK
1795 trace_mm_page_alloc_extfrag(page, order, current_order,
1796 start_migratetype, fallback_mt);
e0fff1bd 1797
4eb7dce6 1798 return page;
b2a0ac88
MG
1799 }
1800
728ec980 1801 return NULL;
b2a0ac88
MG
1802}
1803
56fd56b8 1804/*
1da177e4
LT
1805 * Do the hard work of removing an element from the buddy allocator.
1806 * Call me with the zone->lock already held.
1807 */
b2a0ac88 1808static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1809 int migratetype)
1da177e4 1810{
1da177e4
LT
1811 struct page *page;
1812
56fd56b8 1813 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1814 if (unlikely(!page)) {
dc67647b
JK
1815 if (migratetype == MIGRATE_MOVABLE)
1816 page = __rmqueue_cma_fallback(zone, order);
1817
1818 if (!page)
1819 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1820 }
1821
0d3d062a 1822 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1823 return page;
1da177e4
LT
1824}
1825
5f63b720 1826/*
1da177e4
LT
1827 * Obtain a specified number of elements from the buddy allocator, all under
1828 * a single hold of the lock, for efficiency. Add them to the supplied list.
1829 * Returns the number of new pages which were placed at *list.
1830 */
5f63b720 1831static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1832 unsigned long count, struct list_head *list,
b745bc85 1833 int migratetype, bool cold)
1da177e4 1834{
5bcc9f86 1835 int i;
5f63b720 1836
c54ad30c 1837 spin_lock(&zone->lock);
1da177e4 1838 for (i = 0; i < count; ++i) {
6ac0206b 1839 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1840 if (unlikely(page == NULL))
1da177e4 1841 break;
81eabcbe
MG
1842
1843 /*
1844 * Split buddy pages returned by expand() are received here
1845 * in physical page order. The page is added to the callers and
1846 * list and the list head then moves forward. From the callers
1847 * perspective, the linked list is ordered by page number in
1848 * some conditions. This is useful for IO devices that can
1849 * merge IO requests if the physical pages are ordered
1850 * properly.
1851 */
b745bc85 1852 if (likely(!cold))
e084b2d9
MG
1853 list_add(&page->lru, list);
1854 else
1855 list_add_tail(&page->lru, list);
81eabcbe 1856 list = &page->lru;
bb14c2c7 1857 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1858 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1859 -(1 << order));
1da177e4 1860 }
f2260e6b 1861 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1862 spin_unlock(&zone->lock);
085cc7d5 1863 return i;
1da177e4
LT
1864}
1865
4ae7c039 1866#ifdef CONFIG_NUMA
8fce4d8e 1867/*
4037d452
CL
1868 * Called from the vmstat counter updater to drain pagesets of this
1869 * currently executing processor on remote nodes after they have
1870 * expired.
1871 *
879336c3
CL
1872 * Note that this function must be called with the thread pinned to
1873 * a single processor.
8fce4d8e 1874 */
4037d452 1875void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1876{
4ae7c039 1877 unsigned long flags;
7be12fc9 1878 int to_drain, batch;
4ae7c039 1879
4037d452 1880 local_irq_save(flags);
4db0c3c2 1881 batch = READ_ONCE(pcp->batch);
7be12fc9 1882 to_drain = min(pcp->count, batch);
2a13515c
KM
1883 if (to_drain > 0) {
1884 free_pcppages_bulk(zone, to_drain, pcp);
1885 pcp->count -= to_drain;
1886 }
4037d452 1887 local_irq_restore(flags);
4ae7c039
CL
1888}
1889#endif
1890
9f8f2172 1891/*
93481ff0 1892 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1893 *
1894 * The processor must either be the current processor and the
1895 * thread pinned to the current processor or a processor that
1896 * is not online.
1897 */
93481ff0 1898static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1899{
c54ad30c 1900 unsigned long flags;
93481ff0
VB
1901 struct per_cpu_pageset *pset;
1902 struct per_cpu_pages *pcp;
1da177e4 1903
93481ff0
VB
1904 local_irq_save(flags);
1905 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1906
93481ff0
VB
1907 pcp = &pset->pcp;
1908 if (pcp->count) {
1909 free_pcppages_bulk(zone, pcp->count, pcp);
1910 pcp->count = 0;
1911 }
1912 local_irq_restore(flags);
1913}
3dfa5721 1914
93481ff0
VB
1915/*
1916 * Drain pcplists of all zones on the indicated processor.
1917 *
1918 * The processor must either be the current processor and the
1919 * thread pinned to the current processor or a processor that
1920 * is not online.
1921 */
1922static void drain_pages(unsigned int cpu)
1923{
1924 struct zone *zone;
1925
1926 for_each_populated_zone(zone) {
1927 drain_pages_zone(cpu, zone);
1da177e4
LT
1928 }
1929}
1da177e4 1930
9f8f2172
CL
1931/*
1932 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1933 *
1934 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1935 * the single zone's pages.
9f8f2172 1936 */
93481ff0 1937void drain_local_pages(struct zone *zone)
9f8f2172 1938{
93481ff0
VB
1939 int cpu = smp_processor_id();
1940
1941 if (zone)
1942 drain_pages_zone(cpu, zone);
1943 else
1944 drain_pages(cpu);
9f8f2172
CL
1945}
1946
1947/*
74046494
GBY
1948 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1949 *
93481ff0
VB
1950 * When zone parameter is non-NULL, spill just the single zone's pages.
1951 *
74046494
GBY
1952 * Note that this code is protected against sending an IPI to an offline
1953 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1954 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1955 * nothing keeps CPUs from showing up after we populated the cpumask and
1956 * before the call to on_each_cpu_mask().
9f8f2172 1957 */
93481ff0 1958void drain_all_pages(struct zone *zone)
9f8f2172 1959{
74046494 1960 int cpu;
74046494
GBY
1961
1962 /*
1963 * Allocate in the BSS so we wont require allocation in
1964 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1965 */
1966 static cpumask_t cpus_with_pcps;
1967
1968 /*
1969 * We don't care about racing with CPU hotplug event
1970 * as offline notification will cause the notified
1971 * cpu to drain that CPU pcps and on_each_cpu_mask
1972 * disables preemption as part of its processing
1973 */
1974 for_each_online_cpu(cpu) {
93481ff0
VB
1975 struct per_cpu_pageset *pcp;
1976 struct zone *z;
74046494 1977 bool has_pcps = false;
93481ff0
VB
1978
1979 if (zone) {
74046494 1980 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1981 if (pcp->pcp.count)
74046494 1982 has_pcps = true;
93481ff0
VB
1983 } else {
1984 for_each_populated_zone(z) {
1985 pcp = per_cpu_ptr(z->pageset, cpu);
1986 if (pcp->pcp.count) {
1987 has_pcps = true;
1988 break;
1989 }
74046494
GBY
1990 }
1991 }
93481ff0 1992
74046494
GBY
1993 if (has_pcps)
1994 cpumask_set_cpu(cpu, &cpus_with_pcps);
1995 else
1996 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1997 }
93481ff0
VB
1998 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1999 zone, 1);
9f8f2172
CL
2000}
2001
296699de 2002#ifdef CONFIG_HIBERNATION
1da177e4
LT
2003
2004void mark_free_pages(struct zone *zone)
2005{
f623f0db
RW
2006 unsigned long pfn, max_zone_pfn;
2007 unsigned long flags;
7aeb09f9 2008 unsigned int order, t;
86760a2c 2009 struct page *page;
1da177e4 2010
8080fc03 2011 if (zone_is_empty(zone))
1da177e4
LT
2012 return;
2013
2014 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2015
108bcc96 2016 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2017 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2018 if (pfn_valid(pfn)) {
86760a2c 2019 page = pfn_to_page(pfn);
7be98234
RW
2020 if (!swsusp_page_is_forbidden(page))
2021 swsusp_unset_page_free(page);
f623f0db 2022 }
1da177e4 2023
b2a0ac88 2024 for_each_migratetype_order(order, t) {
86760a2c
GT
2025 list_for_each_entry(page,
2026 &zone->free_area[order].free_list[t], lru) {
f623f0db 2027 unsigned long i;
1da177e4 2028
86760a2c 2029 pfn = page_to_pfn(page);
f623f0db 2030 for (i = 0; i < (1UL << order); i++)
7be98234 2031 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2032 }
b2a0ac88 2033 }
1da177e4
LT
2034 spin_unlock_irqrestore(&zone->lock, flags);
2035}
e2c55dc8 2036#endif /* CONFIG_PM */
1da177e4 2037
1da177e4
LT
2038/*
2039 * Free a 0-order page
b745bc85 2040 * cold == true ? free a cold page : free a hot page
1da177e4 2041 */
b745bc85 2042void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2043{
2044 struct zone *zone = page_zone(page);
2045 struct per_cpu_pages *pcp;
2046 unsigned long flags;
dc4b0caf 2047 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2048 int migratetype;
1da177e4 2049
ec95f53a 2050 if (!free_pages_prepare(page, 0))
689bcebf
HD
2051 return;
2052
dc4b0caf 2053 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2054 set_pcppage_migratetype(page, migratetype);
1da177e4 2055 local_irq_save(flags);
f8891e5e 2056 __count_vm_event(PGFREE);
da456f14 2057
5f8dcc21
MG
2058 /*
2059 * We only track unmovable, reclaimable and movable on pcp lists.
2060 * Free ISOLATE pages back to the allocator because they are being
2061 * offlined but treat RESERVE as movable pages so we can get those
2062 * areas back if necessary. Otherwise, we may have to free
2063 * excessively into the page allocator
2064 */
2065 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2066 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2067 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2068 goto out;
2069 }
2070 migratetype = MIGRATE_MOVABLE;
2071 }
2072
99dcc3e5 2073 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2074 if (!cold)
5f8dcc21 2075 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2076 else
2077 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2078 pcp->count++;
48db57f8 2079 if (pcp->count >= pcp->high) {
4db0c3c2 2080 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2081 free_pcppages_bulk(zone, batch, pcp);
2082 pcp->count -= batch;
48db57f8 2083 }
5f8dcc21
MG
2084
2085out:
1da177e4 2086 local_irq_restore(flags);
1da177e4
LT
2087}
2088
cc59850e
KK
2089/*
2090 * Free a list of 0-order pages
2091 */
b745bc85 2092void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2093{
2094 struct page *page, *next;
2095
2096 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2097 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2098 free_hot_cold_page(page, cold);
2099 }
2100}
2101
8dfcc9ba
NP
2102/*
2103 * split_page takes a non-compound higher-order page, and splits it into
2104 * n (1<<order) sub-pages: page[0..n]
2105 * Each sub-page must be freed individually.
2106 *
2107 * Note: this is probably too low level an operation for use in drivers.
2108 * Please consult with lkml before using this in your driver.
2109 */
2110void split_page(struct page *page, unsigned int order)
2111{
2112 int i;
e2cfc911 2113 gfp_t gfp_mask;
8dfcc9ba 2114
309381fe
SL
2115 VM_BUG_ON_PAGE(PageCompound(page), page);
2116 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2117
2118#ifdef CONFIG_KMEMCHECK
2119 /*
2120 * Split shadow pages too, because free(page[0]) would
2121 * otherwise free the whole shadow.
2122 */
2123 if (kmemcheck_page_is_tracked(page))
2124 split_page(virt_to_page(page[0].shadow), order);
2125#endif
2126
e2cfc911
JK
2127 gfp_mask = get_page_owner_gfp(page);
2128 set_page_owner(page, 0, gfp_mask);
48c96a36 2129 for (i = 1; i < (1 << order); i++) {
7835e98b 2130 set_page_refcounted(page + i);
e2cfc911 2131 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2132 }
8dfcc9ba 2133}
5853ff23 2134EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2135
3c605096 2136int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2137{
748446bb
MG
2138 unsigned long watermark;
2139 struct zone *zone;
2139cbe6 2140 int mt;
748446bb
MG
2141
2142 BUG_ON(!PageBuddy(page));
2143
2144 zone = page_zone(page);
2e30abd1 2145 mt = get_pageblock_migratetype(page);
748446bb 2146
194159fb 2147 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2148 /* Obey watermarks as if the page was being allocated */
2149 watermark = low_wmark_pages(zone) + (1 << order);
2150 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2151 return 0;
2152
8fb74b9f 2153 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2154 }
748446bb
MG
2155
2156 /* Remove page from free list */
2157 list_del(&page->lru);
2158 zone->free_area[order].nr_free--;
2159 rmv_page_order(page);
2139cbe6 2160
e2cfc911 2161 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2162
8fb74b9f 2163 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2164 if (order >= pageblock_order - 1) {
2165 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2166 for (; page < endpage; page += pageblock_nr_pages) {
2167 int mt = get_pageblock_migratetype(page);
194159fb 2168 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2169 set_pageblock_migratetype(page,
2170 MIGRATE_MOVABLE);
2171 }
748446bb
MG
2172 }
2173
f3a14ced 2174
8fb74b9f 2175 return 1UL << order;
1fb3f8ca
MG
2176}
2177
2178/*
2179 * Similar to split_page except the page is already free. As this is only
2180 * being used for migration, the migratetype of the block also changes.
2181 * As this is called with interrupts disabled, the caller is responsible
2182 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2183 * are enabled.
2184 *
2185 * Note: this is probably too low level an operation for use in drivers.
2186 * Please consult with lkml before using this in your driver.
2187 */
2188int split_free_page(struct page *page)
2189{
2190 unsigned int order;
2191 int nr_pages;
2192
1fb3f8ca
MG
2193 order = page_order(page);
2194
8fb74b9f 2195 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2196 if (!nr_pages)
2197 return 0;
2198
2199 /* Split into individual pages */
2200 set_page_refcounted(page);
2201 split_page(page, order);
2202 return nr_pages;
748446bb
MG
2203}
2204
1da177e4 2205/*
75379191 2206 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2207 */
0a15c3e9
MG
2208static inline
2209struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2210 struct zone *zone, unsigned int order,
0aaa29a5 2211 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2212{
2213 unsigned long flags;
689bcebf 2214 struct page *page;
b745bc85 2215 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2216
48db57f8 2217 if (likely(order == 0)) {
1da177e4 2218 struct per_cpu_pages *pcp;
5f8dcc21 2219 struct list_head *list;
1da177e4 2220
1da177e4 2221 local_irq_save(flags);
99dcc3e5
CL
2222 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2223 list = &pcp->lists[migratetype];
5f8dcc21 2224 if (list_empty(list)) {
535131e6 2225 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2226 pcp->batch, list,
e084b2d9 2227 migratetype, cold);
5f8dcc21 2228 if (unlikely(list_empty(list)))
6fb332fa 2229 goto failed;
535131e6 2230 }
b92a6edd 2231
5f8dcc21 2232 if (cold)
a16601c5 2233 page = list_last_entry(list, struct page, lru);
5f8dcc21 2234 else
a16601c5 2235 page = list_first_entry(list, struct page, lru);
5f8dcc21 2236
b92a6edd
MG
2237 list_del(&page->lru);
2238 pcp->count--;
7fb1d9fc 2239 } else {
dab48dab
AM
2240 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2241 /*
2242 * __GFP_NOFAIL is not to be used in new code.
2243 *
2244 * All __GFP_NOFAIL callers should be fixed so that they
2245 * properly detect and handle allocation failures.
2246 *
2247 * We most definitely don't want callers attempting to
4923abf9 2248 * allocate greater than order-1 page units with
dab48dab
AM
2249 * __GFP_NOFAIL.
2250 */
4923abf9 2251 WARN_ON_ONCE(order > 1);
dab48dab 2252 }
1da177e4 2253 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2254
2255 page = NULL;
2256 if (alloc_flags & ALLOC_HARDER) {
2257 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2258 if (page)
2259 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2260 }
2261 if (!page)
6ac0206b 2262 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2263 spin_unlock(&zone->lock);
2264 if (!page)
2265 goto failed;
d1ce749a 2266 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2267 get_pcppage_migratetype(page));
1da177e4
LT
2268 }
2269
3a025760 2270 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2271 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2272 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2273 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2274
f8891e5e 2275 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2276 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2277 local_irq_restore(flags);
1da177e4 2278
309381fe 2279 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2280 return page;
a74609fa
NP
2281
2282failed:
2283 local_irq_restore(flags);
a74609fa 2284 return NULL;
1da177e4
LT
2285}
2286
933e312e
AM
2287#ifdef CONFIG_FAIL_PAGE_ALLOC
2288
b2588c4b 2289static struct {
933e312e
AM
2290 struct fault_attr attr;
2291
621a5f7a 2292 bool ignore_gfp_highmem;
71baba4b 2293 bool ignore_gfp_reclaim;
54114994 2294 u32 min_order;
933e312e
AM
2295} fail_page_alloc = {
2296 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2297 .ignore_gfp_reclaim = true,
621a5f7a 2298 .ignore_gfp_highmem = true,
54114994 2299 .min_order = 1,
933e312e
AM
2300};
2301
2302static int __init setup_fail_page_alloc(char *str)
2303{
2304 return setup_fault_attr(&fail_page_alloc.attr, str);
2305}
2306__setup("fail_page_alloc=", setup_fail_page_alloc);
2307
deaf386e 2308static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2309{
54114994 2310 if (order < fail_page_alloc.min_order)
deaf386e 2311 return false;
933e312e 2312 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2313 return false;
933e312e 2314 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2315 return false;
71baba4b
MG
2316 if (fail_page_alloc.ignore_gfp_reclaim &&
2317 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2318 return false;
933e312e
AM
2319
2320 return should_fail(&fail_page_alloc.attr, 1 << order);
2321}
2322
2323#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2324
2325static int __init fail_page_alloc_debugfs(void)
2326{
f4ae40a6 2327 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2328 struct dentry *dir;
933e312e 2329
dd48c085
AM
2330 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2331 &fail_page_alloc.attr);
2332 if (IS_ERR(dir))
2333 return PTR_ERR(dir);
933e312e 2334
b2588c4b 2335 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2336 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2337 goto fail;
2338 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2339 &fail_page_alloc.ignore_gfp_highmem))
2340 goto fail;
2341 if (!debugfs_create_u32("min-order", mode, dir,
2342 &fail_page_alloc.min_order))
2343 goto fail;
2344
2345 return 0;
2346fail:
dd48c085 2347 debugfs_remove_recursive(dir);
933e312e 2348
b2588c4b 2349 return -ENOMEM;
933e312e
AM
2350}
2351
2352late_initcall(fail_page_alloc_debugfs);
2353
2354#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2355
2356#else /* CONFIG_FAIL_PAGE_ALLOC */
2357
deaf386e 2358static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2359{
deaf386e 2360 return false;
933e312e
AM
2361}
2362
2363#endif /* CONFIG_FAIL_PAGE_ALLOC */
2364
1da177e4 2365/*
97a16fc8
MG
2366 * Return true if free base pages are above 'mark'. For high-order checks it
2367 * will return true of the order-0 watermark is reached and there is at least
2368 * one free page of a suitable size. Checking now avoids taking the zone lock
2369 * to check in the allocation paths if no pages are free.
1da177e4 2370 */
7aeb09f9
MG
2371static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2372 unsigned long mark, int classzone_idx, int alloc_flags,
2373 long free_pages)
1da177e4 2374{
d23ad423 2375 long min = mark;
1da177e4 2376 int o;
97a16fc8 2377 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2378
0aaa29a5 2379 /* free_pages may go negative - that's OK */
df0a6daa 2380 free_pages -= (1 << order) - 1;
0aaa29a5 2381
7fb1d9fc 2382 if (alloc_flags & ALLOC_HIGH)
1da177e4 2383 min -= min / 2;
0aaa29a5
MG
2384
2385 /*
2386 * If the caller does not have rights to ALLOC_HARDER then subtract
2387 * the high-atomic reserves. This will over-estimate the size of the
2388 * atomic reserve but it avoids a search.
2389 */
97a16fc8 2390 if (likely(!alloc_harder))
0aaa29a5
MG
2391 free_pages -= z->nr_reserved_highatomic;
2392 else
1da177e4 2393 min -= min / 4;
e2b19197 2394
d95ea5d1
BZ
2395#ifdef CONFIG_CMA
2396 /* If allocation can't use CMA areas don't use free CMA pages */
2397 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2398 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2399#endif
026b0814 2400
97a16fc8
MG
2401 /*
2402 * Check watermarks for an order-0 allocation request. If these
2403 * are not met, then a high-order request also cannot go ahead
2404 * even if a suitable page happened to be free.
2405 */
2406 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2407 return false;
1da177e4 2408
97a16fc8
MG
2409 /* If this is an order-0 request then the watermark is fine */
2410 if (!order)
2411 return true;
2412
2413 /* For a high-order request, check at least one suitable page is free */
2414 for (o = order; o < MAX_ORDER; o++) {
2415 struct free_area *area = &z->free_area[o];
2416 int mt;
2417
2418 if (!area->nr_free)
2419 continue;
2420
2421 if (alloc_harder)
2422 return true;
1da177e4 2423
97a16fc8
MG
2424 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2425 if (!list_empty(&area->free_list[mt]))
2426 return true;
2427 }
2428
2429#ifdef CONFIG_CMA
2430 if ((alloc_flags & ALLOC_CMA) &&
2431 !list_empty(&area->free_list[MIGRATE_CMA])) {
2432 return true;
2433 }
2434#endif
1da177e4 2435 }
97a16fc8 2436 return false;
88f5acf8
MG
2437}
2438
7aeb09f9 2439bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2440 int classzone_idx, int alloc_flags)
2441{
2442 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2443 zone_page_state(z, NR_FREE_PAGES));
2444}
2445
7aeb09f9 2446bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2447 unsigned long mark, int classzone_idx)
88f5acf8
MG
2448{
2449 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2450
2451 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2452 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2453
e2b19197 2454 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2455 free_pages);
1da177e4
LT
2456}
2457
9276b1bc 2458#ifdef CONFIG_NUMA
81c0a2bb
JW
2459static bool zone_local(struct zone *local_zone, struct zone *zone)
2460{
fff4068c 2461 return local_zone->node == zone->node;
81c0a2bb
JW
2462}
2463
957f822a
DR
2464static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2465{
5f7a75ac
MG
2466 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2467 RECLAIM_DISTANCE;
957f822a 2468}
9276b1bc 2469#else /* CONFIG_NUMA */
81c0a2bb
JW
2470static bool zone_local(struct zone *local_zone, struct zone *zone)
2471{
2472 return true;
2473}
2474
957f822a
DR
2475static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2476{
2477 return true;
2478}
9276b1bc
PJ
2479#endif /* CONFIG_NUMA */
2480
4ffeaf35
MG
2481static void reset_alloc_batches(struct zone *preferred_zone)
2482{
2483 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2484
2485 do {
2486 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2487 high_wmark_pages(zone) - low_wmark_pages(zone) -
2488 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2489 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2490 } while (zone++ != preferred_zone);
2491}
2492
7fb1d9fc 2493/*
0798e519 2494 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2495 * a page.
2496 */
2497static struct page *
a9263751
VB
2498get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2499 const struct alloc_context *ac)
753ee728 2500{
a9263751 2501 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2502 struct zoneref *z;
7fb1d9fc 2503 struct page *page = NULL;
5117f45d 2504 struct zone *zone;
4ffeaf35
MG
2505 int nr_fair_skipped = 0;
2506 bool zonelist_rescan;
54a6eb5c 2507
9276b1bc 2508zonelist_scan:
4ffeaf35
MG
2509 zonelist_rescan = false;
2510
7fb1d9fc 2511 /*
9276b1bc 2512 * Scan zonelist, looking for a zone with enough free.
344736f2 2513 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2514 */
a9263751
VB
2515 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2516 ac->nodemask) {
e085dbc5
JW
2517 unsigned long mark;
2518
664eedde
MG
2519 if (cpusets_enabled() &&
2520 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2521 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2522 continue;
81c0a2bb
JW
2523 /*
2524 * Distribute pages in proportion to the individual
2525 * zone size to ensure fair page aging. The zone a
2526 * page was allocated in should have no effect on the
2527 * time the page has in memory before being reclaimed.
81c0a2bb 2528 */
3a025760 2529 if (alloc_flags & ALLOC_FAIR) {
a9263751 2530 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2531 break;
57054651 2532 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2533 nr_fair_skipped++;
3a025760 2534 continue;
4ffeaf35 2535 }
81c0a2bb 2536 }
a756cf59
JW
2537 /*
2538 * When allocating a page cache page for writing, we
2539 * want to get it from a zone that is within its dirty
2540 * limit, such that no single zone holds more than its
2541 * proportional share of globally allowed dirty pages.
2542 * The dirty limits take into account the zone's
2543 * lowmem reserves and high watermark so that kswapd
2544 * should be able to balance it without having to
2545 * write pages from its LRU list.
2546 *
2547 * This may look like it could increase pressure on
2548 * lower zones by failing allocations in higher zones
2549 * before they are full. But the pages that do spill
2550 * over are limited as the lower zones are protected
2551 * by this very same mechanism. It should not become
2552 * a practical burden to them.
2553 *
2554 * XXX: For now, allow allocations to potentially
2555 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2556 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2557 * which is important when on a NUMA setup the allowed
2558 * zones are together not big enough to reach the
2559 * global limit. The proper fix for these situations
2560 * will require awareness of zones in the
2561 * dirty-throttling and the flusher threads.
2562 */
c9ab0c4f 2563 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2564 continue;
7fb1d9fc 2565
e085dbc5
JW
2566 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2567 if (!zone_watermark_ok(zone, order, mark,
a9263751 2568 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2569 int ret;
2570
5dab2911
MG
2571 /* Checked here to keep the fast path fast */
2572 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2573 if (alloc_flags & ALLOC_NO_WATERMARKS)
2574 goto try_this_zone;
2575
957f822a 2576 if (zone_reclaim_mode == 0 ||
a9263751 2577 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2578 continue;
2579
fa5e084e
MG
2580 ret = zone_reclaim(zone, gfp_mask, order);
2581 switch (ret) {
2582 case ZONE_RECLAIM_NOSCAN:
2583 /* did not scan */
cd38b115 2584 continue;
fa5e084e
MG
2585 case ZONE_RECLAIM_FULL:
2586 /* scanned but unreclaimable */
cd38b115 2587 continue;
fa5e084e
MG
2588 default:
2589 /* did we reclaim enough */
fed2719e 2590 if (zone_watermark_ok(zone, order, mark,
a9263751 2591 ac->classzone_idx, alloc_flags))
fed2719e
MG
2592 goto try_this_zone;
2593
fed2719e 2594 continue;
0798e519 2595 }
7fb1d9fc
RS
2596 }
2597
fa5e084e 2598try_this_zone:
a9263751 2599 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2600 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2601 if (page) {
2602 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2603 goto try_this_zone;
0aaa29a5
MG
2604
2605 /*
2606 * If this is a high-order atomic allocation then check
2607 * if the pageblock should be reserved for the future
2608 */
2609 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2610 reserve_highatomic_pageblock(page, zone, order);
2611
75379191
VB
2612 return page;
2613 }
54a6eb5c 2614 }
9276b1bc 2615
4ffeaf35
MG
2616 /*
2617 * The first pass makes sure allocations are spread fairly within the
2618 * local node. However, the local node might have free pages left
2619 * after the fairness batches are exhausted, and remote zones haven't
2620 * even been considered yet. Try once more without fairness, and
2621 * include remote zones now, before entering the slowpath and waking
2622 * kswapd: prefer spilling to a remote zone over swapping locally.
2623 */
2624 if (alloc_flags & ALLOC_FAIR) {
2625 alloc_flags &= ~ALLOC_FAIR;
2626 if (nr_fair_skipped) {
2627 zonelist_rescan = true;
a9263751 2628 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2629 }
2630 if (nr_online_nodes > 1)
2631 zonelist_rescan = true;
2632 }
2633
4ffeaf35
MG
2634 if (zonelist_rescan)
2635 goto zonelist_scan;
2636
2637 return NULL;
753ee728
MH
2638}
2639
29423e77
DR
2640/*
2641 * Large machines with many possible nodes should not always dump per-node
2642 * meminfo in irq context.
2643 */
2644static inline bool should_suppress_show_mem(void)
2645{
2646 bool ret = false;
2647
2648#if NODES_SHIFT > 8
2649 ret = in_interrupt();
2650#endif
2651 return ret;
2652}
2653
a238ab5b
DH
2654static DEFINE_RATELIMIT_STATE(nopage_rs,
2655 DEFAULT_RATELIMIT_INTERVAL,
2656 DEFAULT_RATELIMIT_BURST);
2657
d00181b9 2658void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2659{
a238ab5b
DH
2660 unsigned int filter = SHOW_MEM_FILTER_NODES;
2661
c0a32fc5
SG
2662 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2663 debug_guardpage_minorder() > 0)
a238ab5b
DH
2664 return;
2665
2666 /*
2667 * This documents exceptions given to allocations in certain
2668 * contexts that are allowed to allocate outside current's set
2669 * of allowed nodes.
2670 */
2671 if (!(gfp_mask & __GFP_NOMEMALLOC))
2672 if (test_thread_flag(TIF_MEMDIE) ||
2673 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2674 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2675 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2676 filter &= ~SHOW_MEM_FILTER_NODES;
2677
2678 if (fmt) {
3ee9a4f0
JP
2679 struct va_format vaf;
2680 va_list args;
2681
a238ab5b 2682 va_start(args, fmt);
3ee9a4f0
JP
2683
2684 vaf.fmt = fmt;
2685 vaf.va = &args;
2686
2687 pr_warn("%pV", &vaf);
2688
a238ab5b
DH
2689 va_end(args);
2690 }
2691
d00181b9 2692 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
3ee9a4f0 2693 current->comm, order, gfp_mask);
a238ab5b
DH
2694
2695 dump_stack();
2696 if (!should_suppress_show_mem())
2697 show_mem(filter);
2698}
2699
11e33f6a
MG
2700static inline struct page *
2701__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2702 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2703{
6e0fc46d
DR
2704 struct oom_control oc = {
2705 .zonelist = ac->zonelist,
2706 .nodemask = ac->nodemask,
2707 .gfp_mask = gfp_mask,
2708 .order = order,
6e0fc46d 2709 };
11e33f6a
MG
2710 struct page *page;
2711
9879de73
JW
2712 *did_some_progress = 0;
2713
9879de73 2714 /*
dc56401f
JW
2715 * Acquire the oom lock. If that fails, somebody else is
2716 * making progress for us.
9879de73 2717 */
dc56401f 2718 if (!mutex_trylock(&oom_lock)) {
9879de73 2719 *did_some_progress = 1;
11e33f6a 2720 schedule_timeout_uninterruptible(1);
1da177e4
LT
2721 return NULL;
2722 }
6b1de916 2723
11e33f6a
MG
2724 /*
2725 * Go through the zonelist yet one more time, keep very high watermark
2726 * here, this is only to catch a parallel oom killing, we must fail if
2727 * we're still under heavy pressure.
2728 */
a9263751
VB
2729 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2730 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2731 if (page)
11e33f6a
MG
2732 goto out;
2733
4365a567 2734 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2735 /* Coredumps can quickly deplete all memory reserves */
2736 if (current->flags & PF_DUMPCORE)
2737 goto out;
4365a567
KH
2738 /* The OOM killer will not help higher order allocs */
2739 if (order > PAGE_ALLOC_COSTLY_ORDER)
2740 goto out;
03668b3c 2741 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2742 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2743 goto out;
9083905a 2744 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2745 if (!(gfp_mask & __GFP_FS)) {
2746 /*
2747 * XXX: Page reclaim didn't yield anything,
2748 * and the OOM killer can't be invoked, but
9083905a 2749 * keep looping as per tradition.
cc873177
JW
2750 */
2751 *did_some_progress = 1;
9879de73 2752 goto out;
cc873177 2753 }
9083905a
JW
2754 if (pm_suspended_storage())
2755 goto out;
4167e9b2 2756 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2757 if (gfp_mask & __GFP_THISNODE)
2758 goto out;
2759 }
11e33f6a 2760 /* Exhausted what can be done so it's blamo time */
5020e285 2761 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2762 *did_some_progress = 1;
5020e285
MH
2763
2764 if (gfp_mask & __GFP_NOFAIL) {
2765 page = get_page_from_freelist(gfp_mask, order,
2766 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2767 /*
2768 * fallback to ignore cpuset restriction if our nodes
2769 * are depleted
2770 */
2771 if (!page)
2772 page = get_page_from_freelist(gfp_mask, order,
2773 ALLOC_NO_WATERMARKS, ac);
2774 }
2775 }
11e33f6a 2776out:
dc56401f 2777 mutex_unlock(&oom_lock);
11e33f6a
MG
2778 return page;
2779}
2780
56de7263
MG
2781#ifdef CONFIG_COMPACTION
2782/* Try memory compaction for high-order allocations before reclaim */
2783static struct page *
2784__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2785 int alloc_flags, const struct alloc_context *ac,
2786 enum migrate_mode mode, int *contended_compaction,
2787 bool *deferred_compaction)
56de7263 2788{
53853e2d 2789 unsigned long compact_result;
98dd3b48 2790 struct page *page;
53853e2d
VB
2791
2792 if (!order)
66199712 2793 return NULL;
66199712 2794
c06b1fca 2795 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2796 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2797 mode, contended_compaction);
c06b1fca 2798 current->flags &= ~PF_MEMALLOC;
56de7263 2799
98dd3b48
VB
2800 switch (compact_result) {
2801 case COMPACT_DEFERRED:
53853e2d 2802 *deferred_compaction = true;
98dd3b48
VB
2803 /* fall-through */
2804 case COMPACT_SKIPPED:
2805 return NULL;
2806 default:
2807 break;
2808 }
53853e2d 2809
98dd3b48
VB
2810 /*
2811 * At least in one zone compaction wasn't deferred or skipped, so let's
2812 * count a compaction stall
2813 */
2814 count_vm_event(COMPACTSTALL);
8fb74b9f 2815
a9263751
VB
2816 page = get_page_from_freelist(gfp_mask, order,
2817 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2818
98dd3b48
VB
2819 if (page) {
2820 struct zone *zone = page_zone(page);
53853e2d 2821
98dd3b48
VB
2822 zone->compact_blockskip_flush = false;
2823 compaction_defer_reset(zone, order, true);
2824 count_vm_event(COMPACTSUCCESS);
2825 return page;
2826 }
56de7263 2827
98dd3b48
VB
2828 /*
2829 * It's bad if compaction run occurs and fails. The most likely reason
2830 * is that pages exist, but not enough to satisfy watermarks.
2831 */
2832 count_vm_event(COMPACTFAIL);
66199712 2833
98dd3b48 2834 cond_resched();
56de7263
MG
2835
2836 return NULL;
2837}
2838#else
2839static inline struct page *
2840__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2841 int alloc_flags, const struct alloc_context *ac,
2842 enum migrate_mode mode, int *contended_compaction,
2843 bool *deferred_compaction)
56de7263
MG
2844{
2845 return NULL;
2846}
2847#endif /* CONFIG_COMPACTION */
2848
bba90710
MS
2849/* Perform direct synchronous page reclaim */
2850static int
a9263751
VB
2851__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2852 const struct alloc_context *ac)
11e33f6a 2853{
11e33f6a 2854 struct reclaim_state reclaim_state;
bba90710 2855 int progress;
11e33f6a
MG
2856
2857 cond_resched();
2858
2859 /* We now go into synchronous reclaim */
2860 cpuset_memory_pressure_bump();
c06b1fca 2861 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2862 lockdep_set_current_reclaim_state(gfp_mask);
2863 reclaim_state.reclaimed_slab = 0;
c06b1fca 2864 current->reclaim_state = &reclaim_state;
11e33f6a 2865
a9263751
VB
2866 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2867 ac->nodemask);
11e33f6a 2868
c06b1fca 2869 current->reclaim_state = NULL;
11e33f6a 2870 lockdep_clear_current_reclaim_state();
c06b1fca 2871 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2872
2873 cond_resched();
2874
bba90710
MS
2875 return progress;
2876}
2877
2878/* The really slow allocator path where we enter direct reclaim */
2879static inline struct page *
2880__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2881 int alloc_flags, const struct alloc_context *ac,
2882 unsigned long *did_some_progress)
bba90710
MS
2883{
2884 struct page *page = NULL;
2885 bool drained = false;
2886
a9263751 2887 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2888 if (unlikely(!(*did_some_progress)))
2889 return NULL;
11e33f6a 2890
9ee493ce 2891retry:
a9263751
VB
2892 page = get_page_from_freelist(gfp_mask, order,
2893 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2894
2895 /*
2896 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
2897 * pages are pinned on the per-cpu lists or in high alloc reserves.
2898 * Shrink them them and try again
9ee493ce
MG
2899 */
2900 if (!page && !drained) {
0aaa29a5 2901 unreserve_highatomic_pageblock(ac);
93481ff0 2902 drain_all_pages(NULL);
9ee493ce
MG
2903 drained = true;
2904 goto retry;
2905 }
2906
11e33f6a
MG
2907 return page;
2908}
2909
a9263751 2910static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2911{
2912 struct zoneref *z;
2913 struct zone *zone;
2914
a9263751
VB
2915 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2916 ac->high_zoneidx, ac->nodemask)
2917 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2918}
2919
341ce06f
PZ
2920static inline int
2921gfp_to_alloc_flags(gfp_t gfp_mask)
2922{
341ce06f 2923 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 2924
a56f57ff 2925 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2926 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2927
341ce06f
PZ
2928 /*
2929 * The caller may dip into page reserves a bit more if the caller
2930 * cannot run direct reclaim, or if the caller has realtime scheduling
2931 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 2932 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2933 */
e6223a3b 2934 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2935
d0164adc 2936 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 2937 /*
b104a35d
DR
2938 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2939 * if it can't schedule.
5c3240d9 2940 */
b104a35d 2941 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2942 alloc_flags |= ALLOC_HARDER;
523b9458 2943 /*
b104a35d 2944 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2945 * comment for __cpuset_node_allowed().
523b9458 2946 */
341ce06f 2947 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2948 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2949 alloc_flags |= ALLOC_HARDER;
2950
b37f1dd0
MG
2951 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2952 if (gfp_mask & __GFP_MEMALLOC)
2953 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2954 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2955 alloc_flags |= ALLOC_NO_WATERMARKS;
2956 else if (!in_interrupt() &&
2957 ((current->flags & PF_MEMALLOC) ||
2958 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2959 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2960 }
d95ea5d1 2961#ifdef CONFIG_CMA
43e7a34d 2962 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2963 alloc_flags |= ALLOC_CMA;
2964#endif
341ce06f
PZ
2965 return alloc_flags;
2966}
2967
072bb0aa
MG
2968bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2969{
b37f1dd0 2970 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2971}
2972
d0164adc
MG
2973static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2974{
2975 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2976}
2977
11e33f6a
MG
2978static inline struct page *
2979__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2980 struct alloc_context *ac)
11e33f6a 2981{
d0164adc 2982 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
2983 struct page *page = NULL;
2984 int alloc_flags;
2985 unsigned long pages_reclaimed = 0;
2986 unsigned long did_some_progress;
e0b9daeb 2987 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2988 bool deferred_compaction = false;
1f9efdef 2989 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2990
72807a74
MG
2991 /*
2992 * In the slowpath, we sanity check order to avoid ever trying to
2993 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2994 * be using allocators in order of preference for an area that is
2995 * too large.
2996 */
1fc28b70
MG
2997 if (order >= MAX_ORDER) {
2998 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2999 return NULL;
1fc28b70 3000 }
1da177e4 3001
d0164adc
MG
3002 /*
3003 * We also sanity check to catch abuse of atomic reserves being used by
3004 * callers that are not in atomic context.
3005 */
3006 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3007 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3008 gfp_mask &= ~__GFP_ATOMIC;
3009
952f3b51 3010 /*
4167e9b2
DR
3011 * If this allocation cannot block and it is for a specific node, then
3012 * fail early. There's no need to wakeup kswapd or retry for a
3013 * speculative node-specific allocation.
952f3b51 3014 */
d0164adc 3015 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
952f3b51
CL
3016 goto nopage;
3017
9879de73 3018retry:
d0164adc 3019 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3020 wake_all_kswapds(order, ac);
1da177e4 3021
9bf2229f 3022 /*
7fb1d9fc
RS
3023 * OK, we're below the kswapd watermark and have kicked background
3024 * reclaim. Now things get more complex, so set up alloc_flags according
3025 * to how we want to proceed.
9bf2229f 3026 */
341ce06f 3027 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3028
f33261d7
DR
3029 /*
3030 * Find the true preferred zone if the allocation is unconstrained by
3031 * cpusets.
3032 */
a9263751 3033 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3034 struct zoneref *preferred_zoneref;
a9263751
VB
3035 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3036 ac->high_zoneidx, NULL, &ac->preferred_zone);
3037 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3038 }
f33261d7 3039
341ce06f 3040 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3041 page = get_page_from_freelist(gfp_mask, order,
3042 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3043 if (page)
3044 goto got_pg;
1da177e4 3045
11e33f6a 3046 /* Allocate without watermarks if the context allows */
341ce06f 3047 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3048 /*
3049 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3050 * the allocation is high priority and these type of
3051 * allocations are system rather than user orientated
3052 */
a9263751 3053 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3054 page = get_page_from_freelist(gfp_mask, order,
3055 ALLOC_NO_WATERMARKS, ac);
3056 if (page)
3057 goto got_pg;
1da177e4
LT
3058 }
3059
d0164adc
MG
3060 /* Caller is not willing to reclaim, we can't balance anything */
3061 if (!can_direct_reclaim) {
aed0a0e3 3062 /*
33d53103
MH
3063 * All existing users of the __GFP_NOFAIL are blockable, so warn
3064 * of any new users that actually allow this type of allocation
3065 * to fail.
aed0a0e3
DR
3066 */
3067 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3068 goto nopage;
aed0a0e3 3069 }
1da177e4 3070
341ce06f 3071 /* Avoid recursion of direct reclaim */
33d53103
MH
3072 if (current->flags & PF_MEMALLOC) {
3073 /*
3074 * __GFP_NOFAIL request from this context is rather bizarre
3075 * because we cannot reclaim anything and only can loop waiting
3076 * for somebody to do a work for us.
3077 */
3078 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3079 cond_resched();
3080 goto retry;
3081 }
341ce06f 3082 goto nopage;
33d53103 3083 }
341ce06f 3084
6583bb64
DR
3085 /* Avoid allocations with no watermarks from looping endlessly */
3086 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3087 goto nopage;
3088
77f1fe6b
MG
3089 /*
3090 * Try direct compaction. The first pass is asynchronous. Subsequent
3091 * attempts after direct reclaim are synchronous
3092 */
a9263751
VB
3093 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3094 migration_mode,
3095 &contended_compaction,
53853e2d 3096 &deferred_compaction);
56de7263
MG
3097 if (page)
3098 goto got_pg;
75f30861 3099
1f9efdef 3100 /* Checks for THP-specific high-order allocations */
d0164adc 3101 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3102 /*
3103 * If compaction is deferred for high-order allocations, it is
3104 * because sync compaction recently failed. If this is the case
3105 * and the caller requested a THP allocation, we do not want
3106 * to heavily disrupt the system, so we fail the allocation
3107 * instead of entering direct reclaim.
3108 */
3109 if (deferred_compaction)
3110 goto nopage;
3111
3112 /*
3113 * In all zones where compaction was attempted (and not
3114 * deferred or skipped), lock contention has been detected.
3115 * For THP allocation we do not want to disrupt the others
3116 * so we fallback to base pages instead.
3117 */
3118 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3119 goto nopage;
3120
3121 /*
3122 * If compaction was aborted due to need_resched(), we do not
3123 * want to further increase allocation latency, unless it is
3124 * khugepaged trying to collapse.
3125 */
3126 if (contended_compaction == COMPACT_CONTENDED_SCHED
3127 && !(current->flags & PF_KTHREAD))
3128 goto nopage;
3129 }
66199712 3130
8fe78048
DR
3131 /*
3132 * It can become very expensive to allocate transparent hugepages at
3133 * fault, so use asynchronous memory compaction for THP unless it is
3134 * khugepaged trying to collapse.
3135 */
d0164adc 3136 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3137 migration_mode = MIGRATE_SYNC_LIGHT;
3138
11e33f6a 3139 /* Try direct reclaim and then allocating */
a9263751
VB
3140 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3141 &did_some_progress);
11e33f6a
MG
3142 if (page)
3143 goto got_pg;
1da177e4 3144
9083905a
JW
3145 /* Do not loop if specifically requested */
3146 if (gfp_mask & __GFP_NORETRY)
3147 goto noretry;
3148
3149 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3150 pages_reclaimed += did_some_progress;
9083905a
JW
3151 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3152 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3153 /* Wait for some write requests to complete then retry */
a9263751 3154 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3155 goto retry;
1da177e4
LT
3156 }
3157
9083905a
JW
3158 /* Reclaim has failed us, start killing things */
3159 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3160 if (page)
3161 goto got_pg;
3162
3163 /* Retry as long as the OOM killer is making progress */
3164 if (did_some_progress)
3165 goto retry;
3166
3167noretry:
3168 /*
3169 * High-order allocations do not necessarily loop after
3170 * direct reclaim and reclaim/compaction depends on compaction
3171 * being called after reclaim so call directly if necessary
3172 */
3173 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3174 ac, migration_mode,
3175 &contended_compaction,
3176 &deferred_compaction);
3177 if (page)
3178 goto got_pg;
1da177e4 3179nopage:
a238ab5b 3180 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3181got_pg:
072bb0aa 3182 return page;
1da177e4 3183}
11e33f6a
MG
3184
3185/*
3186 * This is the 'heart' of the zoned buddy allocator.
3187 */
3188struct page *
3189__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3190 struct zonelist *zonelist, nodemask_t *nodemask)
3191{
d8846374 3192 struct zoneref *preferred_zoneref;
cc9a6c87 3193 struct page *page = NULL;
cc9a6c87 3194 unsigned int cpuset_mems_cookie;
3a025760 3195 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3196 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3197 struct alloc_context ac = {
3198 .high_zoneidx = gfp_zone(gfp_mask),
3199 .nodemask = nodemask,
3200 .migratetype = gfpflags_to_migratetype(gfp_mask),
3201 };
11e33f6a 3202
dcce284a
BH
3203 gfp_mask &= gfp_allowed_mask;
3204
11e33f6a
MG
3205 lockdep_trace_alloc(gfp_mask);
3206
d0164adc 3207 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3208
3209 if (should_fail_alloc_page(gfp_mask, order))
3210 return NULL;
3211
3212 /*
3213 * Check the zones suitable for the gfp_mask contain at least one
3214 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3215 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3216 */
3217 if (unlikely(!zonelist->_zonerefs->zone))
3218 return NULL;
3219
a9263751 3220 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3221 alloc_flags |= ALLOC_CMA;
3222
cc9a6c87 3223retry_cpuset:
d26914d1 3224 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3225
a9263751
VB
3226 /* We set it here, as __alloc_pages_slowpath might have changed it */
3227 ac.zonelist = zonelist;
c9ab0c4f
MG
3228
3229 /* Dirty zone balancing only done in the fast path */
3230 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3231
5117f45d 3232 /* The preferred zone is used for statistics later */
a9263751
VB
3233 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3234 ac.nodemask ? : &cpuset_current_mems_allowed,
3235 &ac.preferred_zone);
3236 if (!ac.preferred_zone)
cc9a6c87 3237 goto out;
a9263751 3238 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3239
3240 /* First allocation attempt */
91fbdc0f 3241 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3242 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3243 if (unlikely(!page)) {
3244 /*
3245 * Runtime PM, block IO and its error handling path
3246 * can deadlock because I/O on the device might not
3247 * complete.
3248 */
91fbdc0f 3249 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3250 ac.spread_dirty_pages = false;
91fbdc0f 3251
a9263751 3252 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3253 }
11e33f6a 3254
23f086f9
XQ
3255 if (kmemcheck_enabled && page)
3256 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3257
a9263751 3258 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3259
3260out:
3261 /*
3262 * When updating a task's mems_allowed, it is possible to race with
3263 * parallel threads in such a way that an allocation can fail while
3264 * the mask is being updated. If a page allocation is about to fail,
3265 * check if the cpuset changed during allocation and if so, retry.
3266 */
d26914d1 3267 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3268 goto retry_cpuset;
3269
11e33f6a 3270 return page;
1da177e4 3271}
d239171e 3272EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3273
3274/*
3275 * Common helper functions.
3276 */
920c7a5d 3277unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3278{
945a1113
AM
3279 struct page *page;
3280
3281 /*
3282 * __get_free_pages() returns a 32-bit address, which cannot represent
3283 * a highmem page
3284 */
3285 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3286
1da177e4
LT
3287 page = alloc_pages(gfp_mask, order);
3288 if (!page)
3289 return 0;
3290 return (unsigned long) page_address(page);
3291}
1da177e4
LT
3292EXPORT_SYMBOL(__get_free_pages);
3293
920c7a5d 3294unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3295{
945a1113 3296 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3297}
1da177e4
LT
3298EXPORT_SYMBOL(get_zeroed_page);
3299
920c7a5d 3300void __free_pages(struct page *page, unsigned int order)
1da177e4 3301{
b5810039 3302 if (put_page_testzero(page)) {
1da177e4 3303 if (order == 0)
b745bc85 3304 free_hot_cold_page(page, false);
1da177e4
LT
3305 else
3306 __free_pages_ok(page, order);
3307 }
3308}
3309
3310EXPORT_SYMBOL(__free_pages);
3311
920c7a5d 3312void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3313{
3314 if (addr != 0) {
725d704e 3315 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3316 __free_pages(virt_to_page((void *)addr), order);
3317 }
3318}
3319
3320EXPORT_SYMBOL(free_pages);
3321
b63ae8ca
AD
3322/*
3323 * Page Fragment:
3324 * An arbitrary-length arbitrary-offset area of memory which resides
3325 * within a 0 or higher order page. Multiple fragments within that page
3326 * are individually refcounted, in the page's reference counter.
3327 *
3328 * The page_frag functions below provide a simple allocation framework for
3329 * page fragments. This is used by the network stack and network device
3330 * drivers to provide a backing region of memory for use as either an
3331 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3332 */
3333static struct page *__page_frag_refill(struct page_frag_cache *nc,
3334 gfp_t gfp_mask)
3335{
3336 struct page *page = NULL;
3337 gfp_t gfp = gfp_mask;
3338
3339#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3340 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3341 __GFP_NOMEMALLOC;
3342 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3343 PAGE_FRAG_CACHE_MAX_ORDER);
3344 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3345#endif
3346 if (unlikely(!page))
3347 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3348
3349 nc->va = page ? page_address(page) : NULL;
3350
3351 return page;
3352}
3353
3354void *__alloc_page_frag(struct page_frag_cache *nc,
3355 unsigned int fragsz, gfp_t gfp_mask)
3356{
3357 unsigned int size = PAGE_SIZE;
3358 struct page *page;
3359 int offset;
3360
3361 if (unlikely(!nc->va)) {
3362refill:
3363 page = __page_frag_refill(nc, gfp_mask);
3364 if (!page)
3365 return NULL;
3366
3367#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3368 /* if size can vary use size else just use PAGE_SIZE */
3369 size = nc->size;
3370#endif
3371 /* Even if we own the page, we do not use atomic_set().
3372 * This would break get_page_unless_zero() users.
3373 */
3374 atomic_add(size - 1, &page->_count);
3375
3376 /* reset page count bias and offset to start of new frag */
2f064f34 3377 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3378 nc->pagecnt_bias = size;
3379 nc->offset = size;
3380 }
3381
3382 offset = nc->offset - fragsz;
3383 if (unlikely(offset < 0)) {
3384 page = virt_to_page(nc->va);
3385
3386 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3387 goto refill;
3388
3389#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3390 /* if size can vary use size else just use PAGE_SIZE */
3391 size = nc->size;
3392#endif
3393 /* OK, page count is 0, we can safely set it */
3394 atomic_set(&page->_count, size);
3395
3396 /* reset page count bias and offset to start of new frag */
3397 nc->pagecnt_bias = size;
3398 offset = size - fragsz;
3399 }
3400
3401 nc->pagecnt_bias--;
3402 nc->offset = offset;
3403
3404 return nc->va + offset;
3405}
3406EXPORT_SYMBOL(__alloc_page_frag);
3407
3408/*
3409 * Frees a page fragment allocated out of either a compound or order 0 page.
3410 */
3411void __free_page_frag(void *addr)
3412{
3413 struct page *page = virt_to_head_page(addr);
3414
3415 if (unlikely(put_page_testzero(page)))
3416 __free_pages_ok(page, compound_order(page));
3417}
3418EXPORT_SYMBOL(__free_page_frag);
3419
6a1a0d3b 3420/*
52383431 3421 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3422 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3423 * equivalent to alloc_pages.
6a1a0d3b 3424 *
52383431
VD
3425 * It should be used when the caller would like to use kmalloc, but since the
3426 * allocation is large, it has to fall back to the page allocator.
3427 */
3428struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3429{
3430 struct page *page;
52383431 3431
52383431 3432 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3433 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3434 __free_pages(page, order);
3435 page = NULL;
3436 }
52383431
VD
3437 return page;
3438}
3439
3440struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3441{
3442 struct page *page;
52383431 3443
52383431 3444 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3445 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3446 __free_pages(page, order);
3447 page = NULL;
3448 }
52383431
VD
3449 return page;
3450}
3451
3452/*
3453 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3454 * alloc_kmem_pages.
6a1a0d3b 3455 */
52383431 3456void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3457{
d05e83a6 3458 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3459 __free_pages(page, order);
3460}
3461
52383431 3462void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3463{
3464 if (addr != 0) {
3465 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3466 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3467 }
3468}
3469
d00181b9
KS
3470static void *make_alloc_exact(unsigned long addr, unsigned int order,
3471 size_t size)
ee85c2e1
AK
3472{
3473 if (addr) {
3474 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3475 unsigned long used = addr + PAGE_ALIGN(size);
3476
3477 split_page(virt_to_page((void *)addr), order);
3478 while (used < alloc_end) {
3479 free_page(used);
3480 used += PAGE_SIZE;
3481 }
3482 }
3483 return (void *)addr;
3484}
3485
2be0ffe2
TT
3486/**
3487 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3488 * @size: the number of bytes to allocate
3489 * @gfp_mask: GFP flags for the allocation
3490 *
3491 * This function is similar to alloc_pages(), except that it allocates the
3492 * minimum number of pages to satisfy the request. alloc_pages() can only
3493 * allocate memory in power-of-two pages.
3494 *
3495 * This function is also limited by MAX_ORDER.
3496 *
3497 * Memory allocated by this function must be released by free_pages_exact().
3498 */
3499void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3500{
3501 unsigned int order = get_order(size);
3502 unsigned long addr;
3503
3504 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3505 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3506}
3507EXPORT_SYMBOL(alloc_pages_exact);
3508
ee85c2e1
AK
3509/**
3510 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3511 * pages on a node.
b5e6ab58 3512 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3513 * @size: the number of bytes to allocate
3514 * @gfp_mask: GFP flags for the allocation
3515 *
3516 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3517 * back.
ee85c2e1 3518 */
e1931811 3519void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3520{
d00181b9 3521 unsigned int order = get_order(size);
ee85c2e1
AK
3522 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3523 if (!p)
3524 return NULL;
3525 return make_alloc_exact((unsigned long)page_address(p), order, size);
3526}
ee85c2e1 3527
2be0ffe2
TT
3528/**
3529 * free_pages_exact - release memory allocated via alloc_pages_exact()
3530 * @virt: the value returned by alloc_pages_exact.
3531 * @size: size of allocation, same value as passed to alloc_pages_exact().
3532 *
3533 * Release the memory allocated by a previous call to alloc_pages_exact.
3534 */
3535void free_pages_exact(void *virt, size_t size)
3536{
3537 unsigned long addr = (unsigned long)virt;
3538 unsigned long end = addr + PAGE_ALIGN(size);
3539
3540 while (addr < end) {
3541 free_page(addr);
3542 addr += PAGE_SIZE;
3543 }
3544}
3545EXPORT_SYMBOL(free_pages_exact);
3546
e0fb5815
ZY
3547/**
3548 * nr_free_zone_pages - count number of pages beyond high watermark
3549 * @offset: The zone index of the highest zone
3550 *
3551 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3552 * high watermark within all zones at or below a given zone index. For each
3553 * zone, the number of pages is calculated as:
834405c3 3554 * managed_pages - high_pages
e0fb5815 3555 */
ebec3862 3556static unsigned long nr_free_zone_pages(int offset)
1da177e4 3557{
dd1a239f 3558 struct zoneref *z;
54a6eb5c
MG
3559 struct zone *zone;
3560
e310fd43 3561 /* Just pick one node, since fallback list is circular */
ebec3862 3562 unsigned long sum = 0;
1da177e4 3563
0e88460d 3564 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3565
54a6eb5c 3566 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3567 unsigned long size = zone->managed_pages;
41858966 3568 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3569 if (size > high)
3570 sum += size - high;
1da177e4
LT
3571 }
3572
3573 return sum;
3574}
3575
e0fb5815
ZY
3576/**
3577 * nr_free_buffer_pages - count number of pages beyond high watermark
3578 *
3579 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3580 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3581 */
ebec3862 3582unsigned long nr_free_buffer_pages(void)
1da177e4 3583{
af4ca457 3584 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3585}
c2f1a551 3586EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3587
e0fb5815
ZY
3588/**
3589 * nr_free_pagecache_pages - count number of pages beyond high watermark
3590 *
3591 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3592 * high watermark within all zones.
1da177e4 3593 */
ebec3862 3594unsigned long nr_free_pagecache_pages(void)
1da177e4 3595{
2a1e274a 3596 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3597}
08e0f6a9
CL
3598
3599static inline void show_node(struct zone *zone)
1da177e4 3600{
e5adfffc 3601 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3602 printk("Node %d ", zone_to_nid(zone));
1da177e4 3603}
1da177e4 3604
1da177e4
LT
3605void si_meminfo(struct sysinfo *val)
3606{
3607 val->totalram = totalram_pages;
cc7452b6 3608 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3609 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3610 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3611 val->totalhigh = totalhigh_pages;
3612 val->freehigh = nr_free_highpages();
1da177e4
LT
3613 val->mem_unit = PAGE_SIZE;
3614}
3615
3616EXPORT_SYMBOL(si_meminfo);
3617
3618#ifdef CONFIG_NUMA
3619void si_meminfo_node(struct sysinfo *val, int nid)
3620{
cdd91a77
JL
3621 int zone_type; /* needs to be signed */
3622 unsigned long managed_pages = 0;
1da177e4
LT
3623 pg_data_t *pgdat = NODE_DATA(nid);
3624
cdd91a77
JL
3625 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3626 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3627 val->totalram = managed_pages;
cc7452b6 3628 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3629 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3630#ifdef CONFIG_HIGHMEM
b40da049 3631 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3632 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3633 NR_FREE_PAGES);
98d2b0eb
CL
3634#else
3635 val->totalhigh = 0;
3636 val->freehigh = 0;
3637#endif
1da177e4
LT
3638 val->mem_unit = PAGE_SIZE;
3639}
3640#endif
3641
ddd588b5 3642/*
7bf02ea2
DR
3643 * Determine whether the node should be displayed or not, depending on whether
3644 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3645 */
7bf02ea2 3646bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3647{
3648 bool ret = false;
cc9a6c87 3649 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3650
3651 if (!(flags & SHOW_MEM_FILTER_NODES))
3652 goto out;
3653
cc9a6c87 3654 do {
d26914d1 3655 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3656 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3657 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3658out:
3659 return ret;
3660}
3661
1da177e4
LT
3662#define K(x) ((x) << (PAGE_SHIFT-10))
3663
377e4f16
RV
3664static void show_migration_types(unsigned char type)
3665{
3666 static const char types[MIGRATE_TYPES] = {
3667 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3668 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3669 [MIGRATE_RECLAIMABLE] = 'E',
3670 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3671#ifdef CONFIG_CMA
3672 [MIGRATE_CMA] = 'C',
3673#endif
194159fb 3674#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3675 [MIGRATE_ISOLATE] = 'I',
194159fb 3676#endif
377e4f16
RV
3677 };
3678 char tmp[MIGRATE_TYPES + 1];
3679 char *p = tmp;
3680 int i;
3681
3682 for (i = 0; i < MIGRATE_TYPES; i++) {
3683 if (type & (1 << i))
3684 *p++ = types[i];
3685 }
3686
3687 *p = '\0';
3688 printk("(%s) ", tmp);
3689}
3690
1da177e4
LT
3691/*
3692 * Show free area list (used inside shift_scroll-lock stuff)
3693 * We also calculate the percentage fragmentation. We do this by counting the
3694 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3695 *
3696 * Bits in @filter:
3697 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3698 * cpuset.
1da177e4 3699 */
7bf02ea2 3700void show_free_areas(unsigned int filter)
1da177e4 3701{
d1bfcdb8 3702 unsigned long free_pcp = 0;
c7241913 3703 int cpu;
1da177e4
LT
3704 struct zone *zone;
3705
ee99c71c 3706 for_each_populated_zone(zone) {
7bf02ea2 3707 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3708 continue;
d1bfcdb8 3709
761b0677
KK
3710 for_each_online_cpu(cpu)
3711 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3712 }
3713
a731286d
KM
3714 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3715 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3716 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3717 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3718 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3719 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3720 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3721 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3722 global_page_state(NR_ISOLATED_ANON),
3723 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3724 global_page_state(NR_INACTIVE_FILE),
a731286d 3725 global_page_state(NR_ISOLATED_FILE),
7b854121 3726 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3727 global_page_state(NR_FILE_DIRTY),
ce866b34 3728 global_page_state(NR_WRITEBACK),
fd39fc85 3729 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3730 global_page_state(NR_SLAB_RECLAIMABLE),
3731 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3732 global_page_state(NR_FILE_MAPPED),
4b02108a 3733 global_page_state(NR_SHMEM),
a25700a5 3734 global_page_state(NR_PAGETABLE),
d1ce749a 3735 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3736 global_page_state(NR_FREE_PAGES),
3737 free_pcp,
d1ce749a 3738 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3739
ee99c71c 3740 for_each_populated_zone(zone) {
1da177e4
LT
3741 int i;
3742
7bf02ea2 3743 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3744 continue;
d1bfcdb8
KK
3745
3746 free_pcp = 0;
3747 for_each_online_cpu(cpu)
3748 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3749
1da177e4
LT
3750 show_node(zone);
3751 printk("%s"
3752 " free:%lukB"
3753 " min:%lukB"
3754 " low:%lukB"
3755 " high:%lukB"
4f98a2fe
RR
3756 " active_anon:%lukB"
3757 " inactive_anon:%lukB"
3758 " active_file:%lukB"
3759 " inactive_file:%lukB"
7b854121 3760 " unevictable:%lukB"
a731286d
KM
3761 " isolated(anon):%lukB"
3762 " isolated(file):%lukB"
1da177e4 3763 " present:%lukB"
9feedc9d 3764 " managed:%lukB"
4a0aa73f
KM
3765 " mlocked:%lukB"
3766 " dirty:%lukB"
3767 " writeback:%lukB"
3768 " mapped:%lukB"
4b02108a 3769 " shmem:%lukB"
4a0aa73f
KM
3770 " slab_reclaimable:%lukB"
3771 " slab_unreclaimable:%lukB"
c6a7f572 3772 " kernel_stack:%lukB"
4a0aa73f
KM
3773 " pagetables:%lukB"
3774 " unstable:%lukB"
3775 " bounce:%lukB"
d1bfcdb8
KK
3776 " free_pcp:%lukB"
3777 " local_pcp:%ukB"
d1ce749a 3778 " free_cma:%lukB"
4a0aa73f 3779 " writeback_tmp:%lukB"
1da177e4
LT
3780 " pages_scanned:%lu"
3781 " all_unreclaimable? %s"
3782 "\n",
3783 zone->name,
88f5acf8 3784 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3785 K(min_wmark_pages(zone)),
3786 K(low_wmark_pages(zone)),
3787 K(high_wmark_pages(zone)),
4f98a2fe
RR
3788 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3789 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3790 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3791 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3792 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3793 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3794 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3795 K(zone->present_pages),
9feedc9d 3796 K(zone->managed_pages),
4a0aa73f
KM
3797 K(zone_page_state(zone, NR_MLOCK)),
3798 K(zone_page_state(zone, NR_FILE_DIRTY)),
3799 K(zone_page_state(zone, NR_WRITEBACK)),
3800 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3801 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3802 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3803 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3804 zone_page_state(zone, NR_KERNEL_STACK) *
3805 THREAD_SIZE / 1024,
4a0aa73f
KM
3806 K(zone_page_state(zone, NR_PAGETABLE)),
3807 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3808 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3809 K(free_pcp),
3810 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3811 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3812 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3813 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3814 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3815 );
3816 printk("lowmem_reserve[]:");
3817 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3818 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3819 printk("\n");
3820 }
3821
ee99c71c 3822 for_each_populated_zone(zone) {
d00181b9
KS
3823 unsigned int order;
3824 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 3825 unsigned char types[MAX_ORDER];
1da177e4 3826
7bf02ea2 3827 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3828 continue;
1da177e4
LT
3829 show_node(zone);
3830 printk("%s: ", zone->name);
1da177e4
LT
3831
3832 spin_lock_irqsave(&zone->lock, flags);
3833 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3834 struct free_area *area = &zone->free_area[order];
3835 int type;
3836
3837 nr[order] = area->nr_free;
8f9de51a 3838 total += nr[order] << order;
377e4f16
RV
3839
3840 types[order] = 0;
3841 for (type = 0; type < MIGRATE_TYPES; type++) {
3842 if (!list_empty(&area->free_list[type]))
3843 types[order] |= 1 << type;
3844 }
1da177e4
LT
3845 }
3846 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3847 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3848 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3849 if (nr[order])
3850 show_migration_types(types[order]);
3851 }
1da177e4
LT
3852 printk("= %lukB\n", K(total));
3853 }
3854
949f7ec5
DR
3855 hugetlb_show_meminfo();
3856
e6f3602d
LW
3857 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3858
1da177e4
LT
3859 show_swap_cache_info();
3860}
3861
19770b32
MG
3862static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3863{
3864 zoneref->zone = zone;
3865 zoneref->zone_idx = zone_idx(zone);
3866}
3867
1da177e4
LT
3868/*
3869 * Builds allocation fallback zone lists.
1a93205b
CL
3870 *
3871 * Add all populated zones of a node to the zonelist.
1da177e4 3872 */
f0c0b2b8 3873static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3874 int nr_zones)
1da177e4 3875{
1a93205b 3876 struct zone *zone;
bc732f1d 3877 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3878
3879 do {
2f6726e5 3880 zone_type--;
070f8032 3881 zone = pgdat->node_zones + zone_type;
1a93205b 3882 if (populated_zone(zone)) {
dd1a239f
MG
3883 zoneref_set_zone(zone,
3884 &zonelist->_zonerefs[nr_zones++]);
070f8032 3885 check_highest_zone(zone_type);
1da177e4 3886 }
2f6726e5 3887 } while (zone_type);
bc732f1d 3888
070f8032 3889 return nr_zones;
1da177e4
LT
3890}
3891
f0c0b2b8
KH
3892
3893/*
3894 * zonelist_order:
3895 * 0 = automatic detection of better ordering.
3896 * 1 = order by ([node] distance, -zonetype)
3897 * 2 = order by (-zonetype, [node] distance)
3898 *
3899 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3900 * the same zonelist. So only NUMA can configure this param.
3901 */
3902#define ZONELIST_ORDER_DEFAULT 0
3903#define ZONELIST_ORDER_NODE 1
3904#define ZONELIST_ORDER_ZONE 2
3905
3906/* zonelist order in the kernel.
3907 * set_zonelist_order() will set this to NODE or ZONE.
3908 */
3909static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3910static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3911
3912
1da177e4 3913#ifdef CONFIG_NUMA
f0c0b2b8
KH
3914/* The value user specified ....changed by config */
3915static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3916/* string for sysctl */
3917#define NUMA_ZONELIST_ORDER_LEN 16
3918char numa_zonelist_order[16] = "default";
3919
3920/*
3921 * interface for configure zonelist ordering.
3922 * command line option "numa_zonelist_order"
3923 * = "[dD]efault - default, automatic configuration.
3924 * = "[nN]ode - order by node locality, then by zone within node
3925 * = "[zZ]one - order by zone, then by locality within zone
3926 */
3927
3928static int __parse_numa_zonelist_order(char *s)
3929{
3930 if (*s == 'd' || *s == 'D') {
3931 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3932 } else if (*s == 'n' || *s == 'N') {
3933 user_zonelist_order = ZONELIST_ORDER_NODE;
3934 } else if (*s == 'z' || *s == 'Z') {
3935 user_zonelist_order = ZONELIST_ORDER_ZONE;
3936 } else {
3937 printk(KERN_WARNING
3938 "Ignoring invalid numa_zonelist_order value: "
3939 "%s\n", s);
3940 return -EINVAL;
3941 }
3942 return 0;
3943}
3944
3945static __init int setup_numa_zonelist_order(char *s)
3946{
ecb256f8
VL
3947 int ret;
3948
3949 if (!s)
3950 return 0;
3951
3952 ret = __parse_numa_zonelist_order(s);
3953 if (ret == 0)
3954 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3955
3956 return ret;
f0c0b2b8
KH
3957}
3958early_param("numa_zonelist_order", setup_numa_zonelist_order);
3959
3960/*
3961 * sysctl handler for numa_zonelist_order
3962 */
cccad5b9 3963int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3964 void __user *buffer, size_t *length,
f0c0b2b8
KH
3965 loff_t *ppos)
3966{
3967 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3968 int ret;
443c6f14 3969 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3970
443c6f14 3971 mutex_lock(&zl_order_mutex);
dacbde09
CG
3972 if (write) {
3973 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3974 ret = -EINVAL;
3975 goto out;
3976 }
3977 strcpy(saved_string, (char *)table->data);
3978 }
8d65af78 3979 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3980 if (ret)
443c6f14 3981 goto out;
f0c0b2b8
KH
3982 if (write) {
3983 int oldval = user_zonelist_order;
dacbde09
CG
3984
3985 ret = __parse_numa_zonelist_order((char *)table->data);
3986 if (ret) {
f0c0b2b8
KH
3987 /*
3988 * bogus value. restore saved string
3989 */
dacbde09 3990 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3991 NUMA_ZONELIST_ORDER_LEN);
3992 user_zonelist_order = oldval;
4eaf3f64
HL
3993 } else if (oldval != user_zonelist_order) {
3994 mutex_lock(&zonelists_mutex);
9adb62a5 3995 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3996 mutex_unlock(&zonelists_mutex);
3997 }
f0c0b2b8 3998 }
443c6f14
AK
3999out:
4000 mutex_unlock(&zl_order_mutex);
4001 return ret;
f0c0b2b8
KH
4002}
4003
4004
62bc62a8 4005#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4006static int node_load[MAX_NUMNODES];
4007
1da177e4 4008/**
4dc3b16b 4009 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4010 * @node: node whose fallback list we're appending
4011 * @used_node_mask: nodemask_t of already used nodes
4012 *
4013 * We use a number of factors to determine which is the next node that should
4014 * appear on a given node's fallback list. The node should not have appeared
4015 * already in @node's fallback list, and it should be the next closest node
4016 * according to the distance array (which contains arbitrary distance values
4017 * from each node to each node in the system), and should also prefer nodes
4018 * with no CPUs, since presumably they'll have very little allocation pressure
4019 * on them otherwise.
4020 * It returns -1 if no node is found.
4021 */
f0c0b2b8 4022static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4023{
4cf808eb 4024 int n, val;
1da177e4 4025 int min_val = INT_MAX;
00ef2d2f 4026 int best_node = NUMA_NO_NODE;
a70f7302 4027 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4028
4cf808eb
LT
4029 /* Use the local node if we haven't already */
4030 if (!node_isset(node, *used_node_mask)) {
4031 node_set(node, *used_node_mask);
4032 return node;
4033 }
1da177e4 4034
4b0ef1fe 4035 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4036
4037 /* Don't want a node to appear more than once */
4038 if (node_isset(n, *used_node_mask))
4039 continue;
4040
1da177e4
LT
4041 /* Use the distance array to find the distance */
4042 val = node_distance(node, n);
4043
4cf808eb
LT
4044 /* Penalize nodes under us ("prefer the next node") */
4045 val += (n < node);
4046
1da177e4 4047 /* Give preference to headless and unused nodes */
a70f7302
RR
4048 tmp = cpumask_of_node(n);
4049 if (!cpumask_empty(tmp))
1da177e4
LT
4050 val += PENALTY_FOR_NODE_WITH_CPUS;
4051
4052 /* Slight preference for less loaded node */
4053 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4054 val += node_load[n];
4055
4056 if (val < min_val) {
4057 min_val = val;
4058 best_node = n;
4059 }
4060 }
4061
4062 if (best_node >= 0)
4063 node_set(best_node, *used_node_mask);
4064
4065 return best_node;
4066}
4067
f0c0b2b8
KH
4068
4069/*
4070 * Build zonelists ordered by node and zones within node.
4071 * This results in maximum locality--normal zone overflows into local
4072 * DMA zone, if any--but risks exhausting DMA zone.
4073 */
4074static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4075{
f0c0b2b8 4076 int j;
1da177e4 4077 struct zonelist *zonelist;
f0c0b2b8 4078
54a6eb5c 4079 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4080 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4081 ;
bc732f1d 4082 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4083 zonelist->_zonerefs[j].zone = NULL;
4084 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4085}
4086
523b9458
CL
4087/*
4088 * Build gfp_thisnode zonelists
4089 */
4090static void build_thisnode_zonelists(pg_data_t *pgdat)
4091{
523b9458
CL
4092 int j;
4093 struct zonelist *zonelist;
4094
54a6eb5c 4095 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4096 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4097 zonelist->_zonerefs[j].zone = NULL;
4098 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4099}
4100
f0c0b2b8
KH
4101/*
4102 * Build zonelists ordered by zone and nodes within zones.
4103 * This results in conserving DMA zone[s] until all Normal memory is
4104 * exhausted, but results in overflowing to remote node while memory
4105 * may still exist in local DMA zone.
4106 */
4107static int node_order[MAX_NUMNODES];
4108
4109static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4110{
f0c0b2b8
KH
4111 int pos, j, node;
4112 int zone_type; /* needs to be signed */
4113 struct zone *z;
4114 struct zonelist *zonelist;
4115
54a6eb5c
MG
4116 zonelist = &pgdat->node_zonelists[0];
4117 pos = 0;
4118 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4119 for (j = 0; j < nr_nodes; j++) {
4120 node = node_order[j];
4121 z = &NODE_DATA(node)->node_zones[zone_type];
4122 if (populated_zone(z)) {
dd1a239f
MG
4123 zoneref_set_zone(z,
4124 &zonelist->_zonerefs[pos++]);
54a6eb5c 4125 check_highest_zone(zone_type);
f0c0b2b8
KH
4126 }
4127 }
f0c0b2b8 4128 }
dd1a239f
MG
4129 zonelist->_zonerefs[pos].zone = NULL;
4130 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4131}
4132
3193913c
MG
4133#if defined(CONFIG_64BIT)
4134/*
4135 * Devices that require DMA32/DMA are relatively rare and do not justify a
4136 * penalty to every machine in case the specialised case applies. Default
4137 * to Node-ordering on 64-bit NUMA machines
4138 */
4139static int default_zonelist_order(void)
4140{
4141 return ZONELIST_ORDER_NODE;
4142}
4143#else
4144/*
4145 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4146 * by the kernel. If processes running on node 0 deplete the low memory zone
4147 * then reclaim will occur more frequency increasing stalls and potentially
4148 * be easier to OOM if a large percentage of the zone is under writeback or
4149 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4150 * Hence, default to zone ordering on 32-bit.
4151 */
f0c0b2b8
KH
4152static int default_zonelist_order(void)
4153{
f0c0b2b8
KH
4154 return ZONELIST_ORDER_ZONE;
4155}
3193913c 4156#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4157
4158static void set_zonelist_order(void)
4159{
4160 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4161 current_zonelist_order = default_zonelist_order();
4162 else
4163 current_zonelist_order = user_zonelist_order;
4164}
4165
4166static void build_zonelists(pg_data_t *pgdat)
4167{
c00eb15a 4168 int i, node, load;
1da177e4 4169 nodemask_t used_mask;
f0c0b2b8
KH
4170 int local_node, prev_node;
4171 struct zonelist *zonelist;
d00181b9 4172 unsigned int order = current_zonelist_order;
1da177e4
LT
4173
4174 /* initialize zonelists */
523b9458 4175 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4176 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4177 zonelist->_zonerefs[0].zone = NULL;
4178 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4179 }
4180
4181 /* NUMA-aware ordering of nodes */
4182 local_node = pgdat->node_id;
62bc62a8 4183 load = nr_online_nodes;
1da177e4
LT
4184 prev_node = local_node;
4185 nodes_clear(used_mask);
f0c0b2b8 4186
f0c0b2b8 4187 memset(node_order, 0, sizeof(node_order));
c00eb15a 4188 i = 0;
f0c0b2b8 4189
1da177e4
LT
4190 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4191 /*
4192 * We don't want to pressure a particular node.
4193 * So adding penalty to the first node in same
4194 * distance group to make it round-robin.
4195 */
957f822a
DR
4196 if (node_distance(local_node, node) !=
4197 node_distance(local_node, prev_node))
f0c0b2b8
KH
4198 node_load[node] = load;
4199
1da177e4
LT
4200 prev_node = node;
4201 load--;
f0c0b2b8
KH
4202 if (order == ZONELIST_ORDER_NODE)
4203 build_zonelists_in_node_order(pgdat, node);
4204 else
c00eb15a 4205 node_order[i++] = node; /* remember order */
f0c0b2b8 4206 }
1da177e4 4207
f0c0b2b8
KH
4208 if (order == ZONELIST_ORDER_ZONE) {
4209 /* calculate node order -- i.e., DMA last! */
c00eb15a 4210 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4211 }
523b9458
CL
4212
4213 build_thisnode_zonelists(pgdat);
1da177e4
LT
4214}
4215
7aac7898
LS
4216#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4217/*
4218 * Return node id of node used for "local" allocations.
4219 * I.e., first node id of first zone in arg node's generic zonelist.
4220 * Used for initializing percpu 'numa_mem', which is used primarily
4221 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4222 */
4223int local_memory_node(int node)
4224{
4225 struct zone *zone;
4226
4227 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4228 gfp_zone(GFP_KERNEL),
4229 NULL,
4230 &zone);
4231 return zone->node;
4232}
4233#endif
f0c0b2b8 4234
1da177e4
LT
4235#else /* CONFIG_NUMA */
4236
f0c0b2b8
KH
4237static void set_zonelist_order(void)
4238{
4239 current_zonelist_order = ZONELIST_ORDER_ZONE;
4240}
4241
4242static void build_zonelists(pg_data_t *pgdat)
1da177e4 4243{
19655d34 4244 int node, local_node;
54a6eb5c
MG
4245 enum zone_type j;
4246 struct zonelist *zonelist;
1da177e4
LT
4247
4248 local_node = pgdat->node_id;
1da177e4 4249
54a6eb5c 4250 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4251 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4252
54a6eb5c
MG
4253 /*
4254 * Now we build the zonelist so that it contains the zones
4255 * of all the other nodes.
4256 * We don't want to pressure a particular node, so when
4257 * building the zones for node N, we make sure that the
4258 * zones coming right after the local ones are those from
4259 * node N+1 (modulo N)
4260 */
4261 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4262 if (!node_online(node))
4263 continue;
bc732f1d 4264 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4265 }
54a6eb5c
MG
4266 for (node = 0; node < local_node; node++) {
4267 if (!node_online(node))
4268 continue;
bc732f1d 4269 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4270 }
4271
dd1a239f
MG
4272 zonelist->_zonerefs[j].zone = NULL;
4273 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4274}
4275
4276#endif /* CONFIG_NUMA */
4277
99dcc3e5
CL
4278/*
4279 * Boot pageset table. One per cpu which is going to be used for all
4280 * zones and all nodes. The parameters will be set in such a way
4281 * that an item put on a list will immediately be handed over to
4282 * the buddy list. This is safe since pageset manipulation is done
4283 * with interrupts disabled.
4284 *
4285 * The boot_pagesets must be kept even after bootup is complete for
4286 * unused processors and/or zones. They do play a role for bootstrapping
4287 * hotplugged processors.
4288 *
4289 * zoneinfo_show() and maybe other functions do
4290 * not check if the processor is online before following the pageset pointer.
4291 * Other parts of the kernel may not check if the zone is available.
4292 */
4293static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4294static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4295static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4296
4eaf3f64
HL
4297/*
4298 * Global mutex to protect against size modification of zonelists
4299 * as well as to serialize pageset setup for the new populated zone.
4300 */
4301DEFINE_MUTEX(zonelists_mutex);
4302
9b1a4d38 4303/* return values int ....just for stop_machine() */
4ed7e022 4304static int __build_all_zonelists(void *data)
1da177e4 4305{
6811378e 4306 int nid;
99dcc3e5 4307 int cpu;
9adb62a5 4308 pg_data_t *self = data;
9276b1bc 4309
7f9cfb31
BL
4310#ifdef CONFIG_NUMA
4311 memset(node_load, 0, sizeof(node_load));
4312#endif
9adb62a5
JL
4313
4314 if (self && !node_online(self->node_id)) {
4315 build_zonelists(self);
9adb62a5
JL
4316 }
4317
9276b1bc 4318 for_each_online_node(nid) {
7ea1530a
CL
4319 pg_data_t *pgdat = NODE_DATA(nid);
4320
4321 build_zonelists(pgdat);
9276b1bc 4322 }
99dcc3e5
CL
4323
4324 /*
4325 * Initialize the boot_pagesets that are going to be used
4326 * for bootstrapping processors. The real pagesets for
4327 * each zone will be allocated later when the per cpu
4328 * allocator is available.
4329 *
4330 * boot_pagesets are used also for bootstrapping offline
4331 * cpus if the system is already booted because the pagesets
4332 * are needed to initialize allocators on a specific cpu too.
4333 * F.e. the percpu allocator needs the page allocator which
4334 * needs the percpu allocator in order to allocate its pagesets
4335 * (a chicken-egg dilemma).
4336 */
7aac7898 4337 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4338 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4339
7aac7898
LS
4340#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4341 /*
4342 * We now know the "local memory node" for each node--
4343 * i.e., the node of the first zone in the generic zonelist.
4344 * Set up numa_mem percpu variable for on-line cpus. During
4345 * boot, only the boot cpu should be on-line; we'll init the
4346 * secondary cpus' numa_mem as they come on-line. During
4347 * node/memory hotplug, we'll fixup all on-line cpus.
4348 */
4349 if (cpu_online(cpu))
4350 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4351#endif
4352 }
4353
6811378e
YG
4354 return 0;
4355}
4356
061f67bc
RV
4357static noinline void __init
4358build_all_zonelists_init(void)
4359{
4360 __build_all_zonelists(NULL);
4361 mminit_verify_zonelist();
4362 cpuset_init_current_mems_allowed();
4363}
4364
4eaf3f64
HL
4365/*
4366 * Called with zonelists_mutex held always
4367 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4368 *
4369 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4370 * [we're only called with non-NULL zone through __meminit paths] and
4371 * (2) call of __init annotated helper build_all_zonelists_init
4372 * [protected by SYSTEM_BOOTING].
4eaf3f64 4373 */
9adb62a5 4374void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4375{
f0c0b2b8
KH
4376 set_zonelist_order();
4377
6811378e 4378 if (system_state == SYSTEM_BOOTING) {
061f67bc 4379 build_all_zonelists_init();
6811378e 4380 } else {
e9959f0f 4381#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4382 if (zone)
4383 setup_zone_pageset(zone);
e9959f0f 4384#endif
dd1895e2
CS
4385 /* we have to stop all cpus to guarantee there is no user
4386 of zonelist */
9adb62a5 4387 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4388 /* cpuset refresh routine should be here */
4389 }
bd1e22b8 4390 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4391 /*
4392 * Disable grouping by mobility if the number of pages in the
4393 * system is too low to allow the mechanism to work. It would be
4394 * more accurate, but expensive to check per-zone. This check is
4395 * made on memory-hotadd so a system can start with mobility
4396 * disabled and enable it later
4397 */
d9c23400 4398 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4399 page_group_by_mobility_disabled = 1;
4400 else
4401 page_group_by_mobility_disabled = 0;
4402
f88dfff5 4403 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4404 "Total pages: %ld\n",
62bc62a8 4405 nr_online_nodes,
f0c0b2b8 4406 zonelist_order_name[current_zonelist_order],
9ef9acb0 4407 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4408 vm_total_pages);
4409#ifdef CONFIG_NUMA
f88dfff5 4410 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4411#endif
1da177e4
LT
4412}
4413
4414/*
4415 * Helper functions to size the waitqueue hash table.
4416 * Essentially these want to choose hash table sizes sufficiently
4417 * large so that collisions trying to wait on pages are rare.
4418 * But in fact, the number of active page waitqueues on typical
4419 * systems is ridiculously low, less than 200. So this is even
4420 * conservative, even though it seems large.
4421 *
4422 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4423 * waitqueues, i.e. the size of the waitq table given the number of pages.
4424 */
4425#define PAGES_PER_WAITQUEUE 256
4426
cca448fe 4427#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4428static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4429{
4430 unsigned long size = 1;
4431
4432 pages /= PAGES_PER_WAITQUEUE;
4433
4434 while (size < pages)
4435 size <<= 1;
4436
4437 /*
4438 * Once we have dozens or even hundreds of threads sleeping
4439 * on IO we've got bigger problems than wait queue collision.
4440 * Limit the size of the wait table to a reasonable size.
4441 */
4442 size = min(size, 4096UL);
4443
4444 return max(size, 4UL);
4445}
cca448fe
YG
4446#else
4447/*
4448 * A zone's size might be changed by hot-add, so it is not possible to determine
4449 * a suitable size for its wait_table. So we use the maximum size now.
4450 *
4451 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4452 *
4453 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4454 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4455 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4456 *
4457 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4458 * or more by the traditional way. (See above). It equals:
4459 *
4460 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4461 * ia64(16K page size) : = ( 8G + 4M)byte.
4462 * powerpc (64K page size) : = (32G +16M)byte.
4463 */
4464static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4465{
4466 return 4096UL;
4467}
4468#endif
1da177e4
LT
4469
4470/*
4471 * This is an integer logarithm so that shifts can be used later
4472 * to extract the more random high bits from the multiplicative
4473 * hash function before the remainder is taken.
4474 */
4475static inline unsigned long wait_table_bits(unsigned long size)
4476{
4477 return ffz(~size);
4478}
4479
1da177e4
LT
4480/*
4481 * Initially all pages are reserved - free ones are freed
4482 * up by free_all_bootmem() once the early boot process is
4483 * done. Non-atomic initialization, single-pass.
4484 */
c09b4240 4485void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4486 unsigned long start_pfn, enum memmap_context context)
1da177e4 4487{
3a80a7fa 4488 pg_data_t *pgdat = NODE_DATA(nid);
29751f69
AW
4489 unsigned long end_pfn = start_pfn + size;
4490 unsigned long pfn;
86051ca5 4491 struct zone *z;
3a80a7fa 4492 unsigned long nr_initialised = 0;
1da177e4 4493
22b31eec
HD
4494 if (highest_memmap_pfn < end_pfn - 1)
4495 highest_memmap_pfn = end_pfn - 1;
4496
3a80a7fa 4497 z = &pgdat->node_zones[zone];
cbe8dd4a 4498 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4499 /*
4500 * There can be holes in boot-time mem_map[]s
4501 * handed to this function. They do not
4502 * exist on hotplugged memory.
4503 */
4504 if (context == MEMMAP_EARLY) {
4505 if (!early_pfn_valid(pfn))
4506 continue;
4507 if (!early_pfn_in_nid(pfn, nid))
4508 continue;
3a80a7fa
MG
4509 if (!update_defer_init(pgdat, pfn, end_pfn,
4510 &nr_initialised))
4511 break;
a2f3aa02 4512 }
ac5d2539
MG
4513
4514 /*
4515 * Mark the block movable so that blocks are reserved for
4516 * movable at startup. This will force kernel allocations
4517 * to reserve their blocks rather than leaking throughout
4518 * the address space during boot when many long-lived
974a786e 4519 * kernel allocations are made.
ac5d2539
MG
4520 *
4521 * bitmap is created for zone's valid pfn range. but memmap
4522 * can be created for invalid pages (for alignment)
4523 * check here not to call set_pageblock_migratetype() against
4524 * pfn out of zone.
4525 */
4526 if (!(pfn & (pageblock_nr_pages - 1))) {
4527 struct page *page = pfn_to_page(pfn);
4528
4529 __init_single_page(page, pfn, zone, nid);
4530 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4531 } else {
4532 __init_single_pfn(pfn, zone, nid);
4533 }
1da177e4
LT
4534 }
4535}
4536
1e548deb 4537static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4538{
7aeb09f9 4539 unsigned int order, t;
b2a0ac88
MG
4540 for_each_migratetype_order(order, t) {
4541 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4542 zone->free_area[order].nr_free = 0;
4543 }
4544}
4545
4546#ifndef __HAVE_ARCH_MEMMAP_INIT
4547#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4548 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4549#endif
4550
7cd2b0a3 4551static int zone_batchsize(struct zone *zone)
e7c8d5c9 4552{
3a6be87f 4553#ifdef CONFIG_MMU
e7c8d5c9
CL
4554 int batch;
4555
4556 /*
4557 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4558 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4559 *
4560 * OK, so we don't know how big the cache is. So guess.
4561 */
b40da049 4562 batch = zone->managed_pages / 1024;
ba56e91c
SR
4563 if (batch * PAGE_SIZE > 512 * 1024)
4564 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4565 batch /= 4; /* We effectively *= 4 below */
4566 if (batch < 1)
4567 batch = 1;
4568
4569 /*
0ceaacc9
NP
4570 * Clamp the batch to a 2^n - 1 value. Having a power
4571 * of 2 value was found to be more likely to have
4572 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4573 *
0ceaacc9
NP
4574 * For example if 2 tasks are alternately allocating
4575 * batches of pages, one task can end up with a lot
4576 * of pages of one half of the possible page colors
4577 * and the other with pages of the other colors.
e7c8d5c9 4578 */
9155203a 4579 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4580
e7c8d5c9 4581 return batch;
3a6be87f
DH
4582
4583#else
4584 /* The deferral and batching of frees should be suppressed under NOMMU
4585 * conditions.
4586 *
4587 * The problem is that NOMMU needs to be able to allocate large chunks
4588 * of contiguous memory as there's no hardware page translation to
4589 * assemble apparent contiguous memory from discontiguous pages.
4590 *
4591 * Queueing large contiguous runs of pages for batching, however,
4592 * causes the pages to actually be freed in smaller chunks. As there
4593 * can be a significant delay between the individual batches being
4594 * recycled, this leads to the once large chunks of space being
4595 * fragmented and becoming unavailable for high-order allocations.
4596 */
4597 return 0;
4598#endif
e7c8d5c9
CL
4599}
4600
8d7a8fa9
CS
4601/*
4602 * pcp->high and pcp->batch values are related and dependent on one another:
4603 * ->batch must never be higher then ->high.
4604 * The following function updates them in a safe manner without read side
4605 * locking.
4606 *
4607 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4608 * those fields changing asynchronously (acording the the above rule).
4609 *
4610 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4611 * outside of boot time (or some other assurance that no concurrent updaters
4612 * exist).
4613 */
4614static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4615 unsigned long batch)
4616{
4617 /* start with a fail safe value for batch */
4618 pcp->batch = 1;
4619 smp_wmb();
4620
4621 /* Update high, then batch, in order */
4622 pcp->high = high;
4623 smp_wmb();
4624
4625 pcp->batch = batch;
4626}
4627
3664033c 4628/* a companion to pageset_set_high() */
4008bab7
CS
4629static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4630{
8d7a8fa9 4631 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4632}
4633
88c90dbc 4634static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4635{
4636 struct per_cpu_pages *pcp;
5f8dcc21 4637 int migratetype;
2caaad41 4638
1c6fe946
MD
4639 memset(p, 0, sizeof(*p));
4640
3dfa5721 4641 pcp = &p->pcp;
2caaad41 4642 pcp->count = 0;
5f8dcc21
MG
4643 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4644 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4645}
4646
88c90dbc
CS
4647static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4648{
4649 pageset_init(p);
4650 pageset_set_batch(p, batch);
4651}
4652
8ad4b1fb 4653/*
3664033c 4654 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4655 * to the value high for the pageset p.
4656 */
3664033c 4657static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4658 unsigned long high)
4659{
8d7a8fa9
CS
4660 unsigned long batch = max(1UL, high / 4);
4661 if ((high / 4) > (PAGE_SHIFT * 8))
4662 batch = PAGE_SHIFT * 8;
8ad4b1fb 4663
8d7a8fa9 4664 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4665}
4666
7cd2b0a3
DR
4667static void pageset_set_high_and_batch(struct zone *zone,
4668 struct per_cpu_pageset *pcp)
56cef2b8 4669{
56cef2b8 4670 if (percpu_pagelist_fraction)
3664033c 4671 pageset_set_high(pcp,
56cef2b8
CS
4672 (zone->managed_pages /
4673 percpu_pagelist_fraction));
4674 else
4675 pageset_set_batch(pcp, zone_batchsize(zone));
4676}
4677
169f6c19
CS
4678static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4679{
4680 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4681
4682 pageset_init(pcp);
4683 pageset_set_high_and_batch(zone, pcp);
4684}
4685
4ed7e022 4686static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4687{
4688 int cpu;
319774e2 4689 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4690 for_each_possible_cpu(cpu)
4691 zone_pageset_init(zone, cpu);
319774e2
WF
4692}
4693
2caaad41 4694/*
99dcc3e5
CL
4695 * Allocate per cpu pagesets and initialize them.
4696 * Before this call only boot pagesets were available.
e7c8d5c9 4697 */
99dcc3e5 4698void __init setup_per_cpu_pageset(void)
e7c8d5c9 4699{
99dcc3e5 4700 struct zone *zone;
e7c8d5c9 4701
319774e2
WF
4702 for_each_populated_zone(zone)
4703 setup_zone_pageset(zone);
e7c8d5c9
CL
4704}
4705
577a32f6 4706static noinline __init_refok
cca448fe 4707int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4708{
4709 int i;
cca448fe 4710 size_t alloc_size;
ed8ece2e
DH
4711
4712 /*
4713 * The per-page waitqueue mechanism uses hashed waitqueues
4714 * per zone.
4715 */
02b694de
YG
4716 zone->wait_table_hash_nr_entries =
4717 wait_table_hash_nr_entries(zone_size_pages);
4718 zone->wait_table_bits =
4719 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4720 alloc_size = zone->wait_table_hash_nr_entries
4721 * sizeof(wait_queue_head_t);
4722
cd94b9db 4723 if (!slab_is_available()) {
cca448fe 4724 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4725 memblock_virt_alloc_node_nopanic(
4726 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4727 } else {
4728 /*
4729 * This case means that a zone whose size was 0 gets new memory
4730 * via memory hot-add.
4731 * But it may be the case that a new node was hot-added. In
4732 * this case vmalloc() will not be able to use this new node's
4733 * memory - this wait_table must be initialized to use this new
4734 * node itself as well.
4735 * To use this new node's memory, further consideration will be
4736 * necessary.
4737 */
8691f3a7 4738 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4739 }
4740 if (!zone->wait_table)
4741 return -ENOMEM;
ed8ece2e 4742
b8af2941 4743 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4744 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4745
4746 return 0;
ed8ece2e
DH
4747}
4748
c09b4240 4749static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4750{
99dcc3e5
CL
4751 /*
4752 * per cpu subsystem is not up at this point. The following code
4753 * relies on the ability of the linker to provide the
4754 * offset of a (static) per cpu variable into the per cpu area.
4755 */
4756 zone->pageset = &boot_pageset;
ed8ece2e 4757
b38a8725 4758 if (populated_zone(zone))
99dcc3e5
CL
4759 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4760 zone->name, zone->present_pages,
4761 zone_batchsize(zone));
ed8ece2e
DH
4762}
4763
4ed7e022 4764int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4765 unsigned long zone_start_pfn,
b171e409 4766 unsigned long size)
ed8ece2e
DH
4767{
4768 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4769 int ret;
4770 ret = zone_wait_table_init(zone, size);
4771 if (ret)
4772 return ret;
ed8ece2e
DH
4773 pgdat->nr_zones = zone_idx(zone) + 1;
4774
ed8ece2e
DH
4775 zone->zone_start_pfn = zone_start_pfn;
4776
708614e6
MG
4777 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4778 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4779 pgdat->node_id,
4780 (unsigned long)zone_idx(zone),
4781 zone_start_pfn, (zone_start_pfn + size));
4782
1e548deb 4783 zone_init_free_lists(zone);
718127cc
YG
4784
4785 return 0;
ed8ece2e
DH
4786}
4787
0ee332c1 4788#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4789#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4790
c713216d
MG
4791/*
4792 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4793 */
8a942fde
MG
4794int __meminit __early_pfn_to_nid(unsigned long pfn,
4795 struct mminit_pfnnid_cache *state)
c713216d 4796{
c13291a5 4797 unsigned long start_pfn, end_pfn;
e76b63f8 4798 int nid;
7c243c71 4799
8a942fde
MG
4800 if (state->last_start <= pfn && pfn < state->last_end)
4801 return state->last_nid;
c713216d 4802
e76b63f8
YL
4803 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4804 if (nid != -1) {
8a942fde
MG
4805 state->last_start = start_pfn;
4806 state->last_end = end_pfn;
4807 state->last_nid = nid;
e76b63f8
YL
4808 }
4809
4810 return nid;
c713216d
MG
4811}
4812#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4813
c713216d 4814/**
6782832e 4815 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4816 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4817 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4818 *
7d018176
ZZ
4819 * If an architecture guarantees that all ranges registered contain no holes
4820 * and may be freed, this this function may be used instead of calling
4821 * memblock_free_early_nid() manually.
c713216d 4822 */
c13291a5 4823void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4824{
c13291a5
TH
4825 unsigned long start_pfn, end_pfn;
4826 int i, this_nid;
edbe7d23 4827
c13291a5
TH
4828 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4829 start_pfn = min(start_pfn, max_low_pfn);
4830 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4831
c13291a5 4832 if (start_pfn < end_pfn)
6782832e
SS
4833 memblock_free_early_nid(PFN_PHYS(start_pfn),
4834 (end_pfn - start_pfn) << PAGE_SHIFT,
4835 this_nid);
edbe7d23 4836 }
edbe7d23 4837}
edbe7d23 4838
c713216d
MG
4839/**
4840 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4841 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4842 *
7d018176
ZZ
4843 * If an architecture guarantees that all ranges registered contain no holes and may
4844 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4845 */
4846void __init sparse_memory_present_with_active_regions(int nid)
4847{
c13291a5
TH
4848 unsigned long start_pfn, end_pfn;
4849 int i, this_nid;
c713216d 4850
c13291a5
TH
4851 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4852 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4853}
4854
4855/**
4856 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4857 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4858 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4859 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4860 *
4861 * It returns the start and end page frame of a node based on information
7d018176 4862 * provided by memblock_set_node(). If called for a node
c713216d 4863 * with no available memory, a warning is printed and the start and end
88ca3b94 4864 * PFNs will be 0.
c713216d 4865 */
a3142c8e 4866void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4867 unsigned long *start_pfn, unsigned long *end_pfn)
4868{
c13291a5 4869 unsigned long this_start_pfn, this_end_pfn;
c713216d 4870 int i;
c13291a5 4871
c713216d
MG
4872 *start_pfn = -1UL;
4873 *end_pfn = 0;
4874
c13291a5
TH
4875 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4876 *start_pfn = min(*start_pfn, this_start_pfn);
4877 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4878 }
4879
633c0666 4880 if (*start_pfn == -1UL)
c713216d 4881 *start_pfn = 0;
c713216d
MG
4882}
4883
2a1e274a
MG
4884/*
4885 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4886 * assumption is made that zones within a node are ordered in monotonic
4887 * increasing memory addresses so that the "highest" populated zone is used
4888 */
b69a7288 4889static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4890{
4891 int zone_index;
4892 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4893 if (zone_index == ZONE_MOVABLE)
4894 continue;
4895
4896 if (arch_zone_highest_possible_pfn[zone_index] >
4897 arch_zone_lowest_possible_pfn[zone_index])
4898 break;
4899 }
4900
4901 VM_BUG_ON(zone_index == -1);
4902 movable_zone = zone_index;
4903}
4904
4905/*
4906 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4907 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4908 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4909 * in each node depending on the size of each node and how evenly kernelcore
4910 * is distributed. This helper function adjusts the zone ranges
4911 * provided by the architecture for a given node by using the end of the
4912 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4913 * zones within a node are in order of monotonic increases memory addresses
4914 */
b69a7288 4915static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4916 unsigned long zone_type,
4917 unsigned long node_start_pfn,
4918 unsigned long node_end_pfn,
4919 unsigned long *zone_start_pfn,
4920 unsigned long *zone_end_pfn)
4921{
4922 /* Only adjust if ZONE_MOVABLE is on this node */
4923 if (zone_movable_pfn[nid]) {
4924 /* Size ZONE_MOVABLE */
4925 if (zone_type == ZONE_MOVABLE) {
4926 *zone_start_pfn = zone_movable_pfn[nid];
4927 *zone_end_pfn = min(node_end_pfn,
4928 arch_zone_highest_possible_pfn[movable_zone]);
4929
4930 /* Adjust for ZONE_MOVABLE starting within this range */
4931 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4932 *zone_end_pfn > zone_movable_pfn[nid]) {
4933 *zone_end_pfn = zone_movable_pfn[nid];
4934
4935 /* Check if this whole range is within ZONE_MOVABLE */
4936 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4937 *zone_start_pfn = *zone_end_pfn;
4938 }
4939}
4940
c713216d
MG
4941/*
4942 * Return the number of pages a zone spans in a node, including holes
4943 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4944 */
6ea6e688 4945static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4946 unsigned long zone_type,
7960aedd
ZY
4947 unsigned long node_start_pfn,
4948 unsigned long node_end_pfn,
c713216d
MG
4949 unsigned long *ignored)
4950{
c713216d
MG
4951 unsigned long zone_start_pfn, zone_end_pfn;
4952
b5685e92 4953 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
4954 if (!node_start_pfn && !node_end_pfn)
4955 return 0;
4956
7960aedd 4957 /* Get the start and end of the zone */
c713216d
MG
4958 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4959 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4960 adjust_zone_range_for_zone_movable(nid, zone_type,
4961 node_start_pfn, node_end_pfn,
4962 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4963
4964 /* Check that this node has pages within the zone's required range */
4965 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4966 return 0;
4967
4968 /* Move the zone boundaries inside the node if necessary */
4969 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4970 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4971
4972 /* Return the spanned pages */
4973 return zone_end_pfn - zone_start_pfn;
4974}
4975
4976/*
4977 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4978 * then all holes in the requested range will be accounted for.
c713216d 4979 */
32996250 4980unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4981 unsigned long range_start_pfn,
4982 unsigned long range_end_pfn)
4983{
96e907d1
TH
4984 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4985 unsigned long start_pfn, end_pfn;
4986 int i;
c713216d 4987
96e907d1
TH
4988 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4989 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4990 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4991 nr_absent -= end_pfn - start_pfn;
c713216d 4992 }
96e907d1 4993 return nr_absent;
c713216d
MG
4994}
4995
4996/**
4997 * absent_pages_in_range - Return number of page frames in holes within a range
4998 * @start_pfn: The start PFN to start searching for holes
4999 * @end_pfn: The end PFN to stop searching for holes
5000 *
88ca3b94 5001 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5002 */
5003unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5004 unsigned long end_pfn)
5005{
5006 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5007}
5008
5009/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5010static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5011 unsigned long zone_type,
7960aedd
ZY
5012 unsigned long node_start_pfn,
5013 unsigned long node_end_pfn,
c713216d
MG
5014 unsigned long *ignored)
5015{
96e907d1
TH
5016 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5017 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
5018 unsigned long zone_start_pfn, zone_end_pfn;
5019
b5685e92 5020 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5021 if (!node_start_pfn && !node_end_pfn)
5022 return 0;
5023
96e907d1
TH
5024 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5025 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5026
2a1e274a
MG
5027 adjust_zone_range_for_zone_movable(nid, zone_type,
5028 node_start_pfn, node_end_pfn,
5029 &zone_start_pfn, &zone_end_pfn);
9c7cd687 5030 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 5031}
0e0b864e 5032
0ee332c1 5033#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5034static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5035 unsigned long zone_type,
7960aedd
ZY
5036 unsigned long node_start_pfn,
5037 unsigned long node_end_pfn,
c713216d
MG
5038 unsigned long *zones_size)
5039{
5040 return zones_size[zone_type];
5041}
5042
6ea6e688 5043static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5044 unsigned long zone_type,
7960aedd
ZY
5045 unsigned long node_start_pfn,
5046 unsigned long node_end_pfn,
c713216d
MG
5047 unsigned long *zholes_size)
5048{
5049 if (!zholes_size)
5050 return 0;
5051
5052 return zholes_size[zone_type];
5053}
20e6926d 5054
0ee332c1 5055#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5056
a3142c8e 5057static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5058 unsigned long node_start_pfn,
5059 unsigned long node_end_pfn,
5060 unsigned long *zones_size,
5061 unsigned long *zholes_size)
c713216d 5062{
febd5949 5063 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5064 enum zone_type i;
5065
febd5949
GZ
5066 for (i = 0; i < MAX_NR_ZONES; i++) {
5067 struct zone *zone = pgdat->node_zones + i;
5068 unsigned long size, real_size;
c713216d 5069
febd5949
GZ
5070 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5071 node_start_pfn,
5072 node_end_pfn,
5073 zones_size);
5074 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5075 node_start_pfn, node_end_pfn,
5076 zholes_size);
febd5949
GZ
5077 zone->spanned_pages = size;
5078 zone->present_pages = real_size;
5079
5080 totalpages += size;
5081 realtotalpages += real_size;
5082 }
5083
5084 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5085 pgdat->node_present_pages = realtotalpages;
5086 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5087 realtotalpages);
5088}
5089
835c134e
MG
5090#ifndef CONFIG_SPARSEMEM
5091/*
5092 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5093 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5094 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5095 * round what is now in bits to nearest long in bits, then return it in
5096 * bytes.
5097 */
7c45512d 5098static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5099{
5100 unsigned long usemapsize;
5101
7c45512d 5102 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5103 usemapsize = roundup(zonesize, pageblock_nr_pages);
5104 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5105 usemapsize *= NR_PAGEBLOCK_BITS;
5106 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5107
5108 return usemapsize / 8;
5109}
5110
5111static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5112 struct zone *zone,
5113 unsigned long zone_start_pfn,
5114 unsigned long zonesize)
835c134e 5115{
7c45512d 5116 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5117 zone->pageblock_flags = NULL;
58a01a45 5118 if (usemapsize)
6782832e
SS
5119 zone->pageblock_flags =
5120 memblock_virt_alloc_node_nopanic(usemapsize,
5121 pgdat->node_id);
835c134e
MG
5122}
5123#else
7c45512d
LT
5124static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5125 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5126#endif /* CONFIG_SPARSEMEM */
5127
d9c23400 5128#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5129
d9c23400 5130/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5131void __paginginit set_pageblock_order(void)
d9c23400 5132{
955c1cd7
AM
5133 unsigned int order;
5134
d9c23400
MG
5135 /* Check that pageblock_nr_pages has not already been setup */
5136 if (pageblock_order)
5137 return;
5138
955c1cd7
AM
5139 if (HPAGE_SHIFT > PAGE_SHIFT)
5140 order = HUGETLB_PAGE_ORDER;
5141 else
5142 order = MAX_ORDER - 1;
5143
d9c23400
MG
5144 /*
5145 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5146 * This value may be variable depending on boot parameters on IA64 and
5147 * powerpc.
d9c23400
MG
5148 */
5149 pageblock_order = order;
5150}
5151#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5152
ba72cb8c
MG
5153/*
5154 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5155 * is unused as pageblock_order is set at compile-time. See
5156 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5157 * the kernel config
ba72cb8c 5158 */
15ca220e 5159void __paginginit set_pageblock_order(void)
ba72cb8c 5160{
ba72cb8c 5161}
d9c23400
MG
5162
5163#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5164
01cefaef
JL
5165static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5166 unsigned long present_pages)
5167{
5168 unsigned long pages = spanned_pages;
5169
5170 /*
5171 * Provide a more accurate estimation if there are holes within
5172 * the zone and SPARSEMEM is in use. If there are holes within the
5173 * zone, each populated memory region may cost us one or two extra
5174 * memmap pages due to alignment because memmap pages for each
5175 * populated regions may not naturally algined on page boundary.
5176 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5177 */
5178 if (spanned_pages > present_pages + (present_pages >> 4) &&
5179 IS_ENABLED(CONFIG_SPARSEMEM))
5180 pages = present_pages;
5181
5182 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5183}
5184
1da177e4
LT
5185/*
5186 * Set up the zone data structures:
5187 * - mark all pages reserved
5188 * - mark all memory queues empty
5189 * - clear the memory bitmaps
6527af5d
MK
5190 *
5191 * NOTE: pgdat should get zeroed by caller.
1da177e4 5192 */
7f3eb55b 5193static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5194{
2f1b6248 5195 enum zone_type j;
ed8ece2e 5196 int nid = pgdat->node_id;
1da177e4 5197 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 5198 int ret;
1da177e4 5199
208d54e5 5200 pgdat_resize_init(pgdat);
8177a420
AA
5201#ifdef CONFIG_NUMA_BALANCING
5202 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5203 pgdat->numabalancing_migrate_nr_pages = 0;
5204 pgdat->numabalancing_migrate_next_window = jiffies;
5205#endif
1da177e4 5206 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5207 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5208 pgdat_page_ext_init(pgdat);
5f63b720 5209
1da177e4
LT
5210 for (j = 0; j < MAX_NR_ZONES; j++) {
5211 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5212 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 5213
febd5949
GZ
5214 size = zone->spanned_pages;
5215 realsize = freesize = zone->present_pages;
1da177e4 5216
0e0b864e 5217 /*
9feedc9d 5218 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5219 * is used by this zone for memmap. This affects the watermark
5220 * and per-cpu initialisations
5221 */
01cefaef 5222 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5223 if (!is_highmem_idx(j)) {
5224 if (freesize >= memmap_pages) {
5225 freesize -= memmap_pages;
5226 if (memmap_pages)
5227 printk(KERN_DEBUG
5228 " %s zone: %lu pages used for memmap\n",
5229 zone_names[j], memmap_pages);
5230 } else
5231 printk(KERN_WARNING
5232 " %s zone: %lu pages exceeds freesize %lu\n",
5233 zone_names[j], memmap_pages, freesize);
5234 }
0e0b864e 5235
6267276f 5236 /* Account for reserved pages */
9feedc9d
JL
5237 if (j == 0 && freesize > dma_reserve) {
5238 freesize -= dma_reserve;
d903ef9f 5239 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5240 zone_names[0], dma_reserve);
0e0b864e
MG
5241 }
5242
98d2b0eb 5243 if (!is_highmem_idx(j))
9feedc9d 5244 nr_kernel_pages += freesize;
01cefaef
JL
5245 /* Charge for highmem memmap if there are enough kernel pages */
5246 else if (nr_kernel_pages > memmap_pages * 2)
5247 nr_kernel_pages -= memmap_pages;
9feedc9d 5248 nr_all_pages += freesize;
1da177e4 5249
9feedc9d
JL
5250 /*
5251 * Set an approximate value for lowmem here, it will be adjusted
5252 * when the bootmem allocator frees pages into the buddy system.
5253 * And all highmem pages will be managed by the buddy system.
5254 */
5255 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5256#ifdef CONFIG_NUMA
d5f541ed 5257 zone->node = nid;
9feedc9d 5258 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5259 / 100;
9feedc9d 5260 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5261#endif
1da177e4
LT
5262 zone->name = zone_names[j];
5263 spin_lock_init(&zone->lock);
5264 spin_lock_init(&zone->lru_lock);
bdc8cb98 5265 zone_seqlock_init(zone);
1da177e4 5266 zone->zone_pgdat = pgdat;
ed8ece2e 5267 zone_pcp_init(zone);
81c0a2bb
JW
5268
5269 /* For bootup, initialized properly in watermark setup */
5270 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5271
bea8c150 5272 lruvec_init(&zone->lruvec);
1da177e4
LT
5273 if (!size)
5274 continue;
5275
955c1cd7 5276 set_pageblock_order();
7c45512d 5277 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5278 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5279 BUG_ON(ret);
76cdd58e 5280 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5281 zone_start_pfn += size;
1da177e4
LT
5282 }
5283}
5284
577a32f6 5285static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5286{
b0aeba74 5287 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5288 unsigned long __maybe_unused offset = 0;
5289
1da177e4
LT
5290 /* Skip empty nodes */
5291 if (!pgdat->node_spanned_pages)
5292 return;
5293
d41dee36 5294#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5295 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5296 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5297 /* ia64 gets its own node_mem_map, before this, without bootmem */
5298 if (!pgdat->node_mem_map) {
b0aeba74 5299 unsigned long size, end;
d41dee36
AW
5300 struct page *map;
5301
e984bb43
BP
5302 /*
5303 * The zone's endpoints aren't required to be MAX_ORDER
5304 * aligned but the node_mem_map endpoints must be in order
5305 * for the buddy allocator to function correctly.
5306 */
108bcc96 5307 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5308 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5309 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5310 map = alloc_remap(pgdat->node_id, size);
5311 if (!map)
6782832e
SS
5312 map = memblock_virt_alloc_node_nopanic(size,
5313 pgdat->node_id);
a1c34a3b 5314 pgdat->node_mem_map = map + offset;
1da177e4 5315 }
12d810c1 5316#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5317 /*
5318 * With no DISCONTIG, the global mem_map is just set as node 0's
5319 */
c713216d 5320 if (pgdat == NODE_DATA(0)) {
1da177e4 5321 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5322#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5323 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5324 mem_map -= offset;
0ee332c1 5325#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5326 }
1da177e4 5327#endif
d41dee36 5328#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5329}
5330
9109fb7b
JW
5331void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5332 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5333{
9109fb7b 5334 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5335 unsigned long start_pfn = 0;
5336 unsigned long end_pfn = 0;
9109fb7b 5337
88fdf75d 5338 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5339 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5340
3a80a7fa 5341 reset_deferred_meminit(pgdat);
1da177e4
LT
5342 pgdat->node_id = nid;
5343 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5344#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5345 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5346 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5347 (u64)start_pfn << PAGE_SHIFT,
5348 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7960aedd
ZY
5349#endif
5350 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5351 zones_size, zholes_size);
1da177e4
LT
5352
5353 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5354#ifdef CONFIG_FLAT_NODE_MEM_MAP
5355 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5356 nid, (unsigned long)pgdat,
5357 (unsigned long)pgdat->node_mem_map);
5358#endif
1da177e4 5359
7f3eb55b 5360 free_area_init_core(pgdat);
1da177e4
LT
5361}
5362
0ee332c1 5363#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5364
5365#if MAX_NUMNODES > 1
5366/*
5367 * Figure out the number of possible node ids.
5368 */
f9872caf 5369void __init setup_nr_node_ids(void)
418508c1 5370{
904a9553 5371 unsigned int highest;
418508c1 5372
904a9553 5373 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5374 nr_node_ids = highest + 1;
5375}
418508c1
MS
5376#endif
5377
1e01979c
TH
5378/**
5379 * node_map_pfn_alignment - determine the maximum internode alignment
5380 *
5381 * This function should be called after node map is populated and sorted.
5382 * It calculates the maximum power of two alignment which can distinguish
5383 * all the nodes.
5384 *
5385 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5386 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5387 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5388 * shifted, 1GiB is enough and this function will indicate so.
5389 *
5390 * This is used to test whether pfn -> nid mapping of the chosen memory
5391 * model has fine enough granularity to avoid incorrect mapping for the
5392 * populated node map.
5393 *
5394 * Returns the determined alignment in pfn's. 0 if there is no alignment
5395 * requirement (single node).
5396 */
5397unsigned long __init node_map_pfn_alignment(void)
5398{
5399 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5400 unsigned long start, end, mask;
1e01979c 5401 int last_nid = -1;
c13291a5 5402 int i, nid;
1e01979c 5403
c13291a5 5404 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5405 if (!start || last_nid < 0 || last_nid == nid) {
5406 last_nid = nid;
5407 last_end = end;
5408 continue;
5409 }
5410
5411 /*
5412 * Start with a mask granular enough to pin-point to the
5413 * start pfn and tick off bits one-by-one until it becomes
5414 * too coarse to separate the current node from the last.
5415 */
5416 mask = ~((1 << __ffs(start)) - 1);
5417 while (mask && last_end <= (start & (mask << 1)))
5418 mask <<= 1;
5419
5420 /* accumulate all internode masks */
5421 accl_mask |= mask;
5422 }
5423
5424 /* convert mask to number of pages */
5425 return ~accl_mask + 1;
5426}
5427
a6af2bc3 5428/* Find the lowest pfn for a node */
b69a7288 5429static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5430{
a6af2bc3 5431 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5432 unsigned long start_pfn;
5433 int i;
1abbfb41 5434
c13291a5
TH
5435 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5436 min_pfn = min(min_pfn, start_pfn);
c713216d 5437
a6af2bc3
MG
5438 if (min_pfn == ULONG_MAX) {
5439 printk(KERN_WARNING
2bc0d261 5440 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5441 return 0;
5442 }
5443
5444 return min_pfn;
c713216d
MG
5445}
5446
5447/**
5448 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5449 *
5450 * It returns the minimum PFN based on information provided via
7d018176 5451 * memblock_set_node().
c713216d
MG
5452 */
5453unsigned long __init find_min_pfn_with_active_regions(void)
5454{
5455 return find_min_pfn_for_node(MAX_NUMNODES);
5456}
5457
37b07e41
LS
5458/*
5459 * early_calculate_totalpages()
5460 * Sum pages in active regions for movable zone.
4b0ef1fe 5461 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5462 */
484f51f8 5463static unsigned long __init early_calculate_totalpages(void)
7e63efef 5464{
7e63efef 5465 unsigned long totalpages = 0;
c13291a5
TH
5466 unsigned long start_pfn, end_pfn;
5467 int i, nid;
5468
5469 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5470 unsigned long pages = end_pfn - start_pfn;
7e63efef 5471
37b07e41
LS
5472 totalpages += pages;
5473 if (pages)
4b0ef1fe 5474 node_set_state(nid, N_MEMORY);
37b07e41 5475 }
b8af2941 5476 return totalpages;
7e63efef
MG
5477}
5478
2a1e274a
MG
5479/*
5480 * Find the PFN the Movable zone begins in each node. Kernel memory
5481 * is spread evenly between nodes as long as the nodes have enough
5482 * memory. When they don't, some nodes will have more kernelcore than
5483 * others
5484 */
b224ef85 5485static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5486{
5487 int i, nid;
5488 unsigned long usable_startpfn;
5489 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5490 /* save the state before borrow the nodemask */
4b0ef1fe 5491 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5492 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5493 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5494 struct memblock_region *r;
b2f3eebe
TC
5495
5496 /* Need to find movable_zone earlier when movable_node is specified. */
5497 find_usable_zone_for_movable();
5498
5499 /*
5500 * If movable_node is specified, ignore kernelcore and movablecore
5501 * options.
5502 */
5503 if (movable_node_is_enabled()) {
136199f0
EM
5504 for_each_memblock(memory, r) {
5505 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5506 continue;
5507
136199f0 5508 nid = r->nid;
b2f3eebe 5509
136199f0 5510 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5511 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5512 min(usable_startpfn, zone_movable_pfn[nid]) :
5513 usable_startpfn;
5514 }
5515
5516 goto out2;
5517 }
2a1e274a 5518
7e63efef 5519 /*
b2f3eebe 5520 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5521 * kernelcore that corresponds so that memory usable for
5522 * any allocation type is evenly spread. If both kernelcore
5523 * and movablecore are specified, then the value of kernelcore
5524 * will be used for required_kernelcore if it's greater than
5525 * what movablecore would have allowed.
5526 */
5527 if (required_movablecore) {
7e63efef
MG
5528 unsigned long corepages;
5529
5530 /*
5531 * Round-up so that ZONE_MOVABLE is at least as large as what
5532 * was requested by the user
5533 */
5534 required_movablecore =
5535 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5536 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5537 corepages = totalpages - required_movablecore;
5538
5539 required_kernelcore = max(required_kernelcore, corepages);
5540 }
5541
bde304bd
XQ
5542 /*
5543 * If kernelcore was not specified or kernelcore size is larger
5544 * than totalpages, there is no ZONE_MOVABLE.
5545 */
5546 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5547 goto out;
2a1e274a
MG
5548
5549 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5550 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5551
5552restart:
5553 /* Spread kernelcore memory as evenly as possible throughout nodes */
5554 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5555 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5556 unsigned long start_pfn, end_pfn;
5557
2a1e274a
MG
5558 /*
5559 * Recalculate kernelcore_node if the division per node
5560 * now exceeds what is necessary to satisfy the requested
5561 * amount of memory for the kernel
5562 */
5563 if (required_kernelcore < kernelcore_node)
5564 kernelcore_node = required_kernelcore / usable_nodes;
5565
5566 /*
5567 * As the map is walked, we track how much memory is usable
5568 * by the kernel using kernelcore_remaining. When it is
5569 * 0, the rest of the node is usable by ZONE_MOVABLE
5570 */
5571 kernelcore_remaining = kernelcore_node;
5572
5573 /* Go through each range of PFNs within this node */
c13291a5 5574 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5575 unsigned long size_pages;
5576
c13291a5 5577 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5578 if (start_pfn >= end_pfn)
5579 continue;
5580
5581 /* Account for what is only usable for kernelcore */
5582 if (start_pfn < usable_startpfn) {
5583 unsigned long kernel_pages;
5584 kernel_pages = min(end_pfn, usable_startpfn)
5585 - start_pfn;
5586
5587 kernelcore_remaining -= min(kernel_pages,
5588 kernelcore_remaining);
5589 required_kernelcore -= min(kernel_pages,
5590 required_kernelcore);
5591
5592 /* Continue if range is now fully accounted */
5593 if (end_pfn <= usable_startpfn) {
5594
5595 /*
5596 * Push zone_movable_pfn to the end so
5597 * that if we have to rebalance
5598 * kernelcore across nodes, we will
5599 * not double account here
5600 */
5601 zone_movable_pfn[nid] = end_pfn;
5602 continue;
5603 }
5604 start_pfn = usable_startpfn;
5605 }
5606
5607 /*
5608 * The usable PFN range for ZONE_MOVABLE is from
5609 * start_pfn->end_pfn. Calculate size_pages as the
5610 * number of pages used as kernelcore
5611 */
5612 size_pages = end_pfn - start_pfn;
5613 if (size_pages > kernelcore_remaining)
5614 size_pages = kernelcore_remaining;
5615 zone_movable_pfn[nid] = start_pfn + size_pages;
5616
5617 /*
5618 * Some kernelcore has been met, update counts and
5619 * break if the kernelcore for this node has been
b8af2941 5620 * satisfied
2a1e274a
MG
5621 */
5622 required_kernelcore -= min(required_kernelcore,
5623 size_pages);
5624 kernelcore_remaining -= size_pages;
5625 if (!kernelcore_remaining)
5626 break;
5627 }
5628 }
5629
5630 /*
5631 * If there is still required_kernelcore, we do another pass with one
5632 * less node in the count. This will push zone_movable_pfn[nid] further
5633 * along on the nodes that still have memory until kernelcore is
b8af2941 5634 * satisfied
2a1e274a
MG
5635 */
5636 usable_nodes--;
5637 if (usable_nodes && required_kernelcore > usable_nodes)
5638 goto restart;
5639
b2f3eebe 5640out2:
2a1e274a
MG
5641 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5642 for (nid = 0; nid < MAX_NUMNODES; nid++)
5643 zone_movable_pfn[nid] =
5644 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5645
20e6926d 5646out:
66918dcd 5647 /* restore the node_state */
4b0ef1fe 5648 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5649}
5650
4b0ef1fe
LJ
5651/* Any regular or high memory on that node ? */
5652static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5653{
37b07e41
LS
5654 enum zone_type zone_type;
5655
4b0ef1fe
LJ
5656 if (N_MEMORY == N_NORMAL_MEMORY)
5657 return;
5658
5659 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5660 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5661 if (populated_zone(zone)) {
4b0ef1fe
LJ
5662 node_set_state(nid, N_HIGH_MEMORY);
5663 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5664 zone_type <= ZONE_NORMAL)
5665 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5666 break;
5667 }
37b07e41 5668 }
37b07e41
LS
5669}
5670
c713216d
MG
5671/**
5672 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5673 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5674 *
5675 * This will call free_area_init_node() for each active node in the system.
7d018176 5676 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5677 * zone in each node and their holes is calculated. If the maximum PFN
5678 * between two adjacent zones match, it is assumed that the zone is empty.
5679 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5680 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5681 * starts where the previous one ended. For example, ZONE_DMA32 starts
5682 * at arch_max_dma_pfn.
5683 */
5684void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5685{
c13291a5
TH
5686 unsigned long start_pfn, end_pfn;
5687 int i, nid;
a6af2bc3 5688
c713216d
MG
5689 /* Record where the zone boundaries are */
5690 memset(arch_zone_lowest_possible_pfn, 0,
5691 sizeof(arch_zone_lowest_possible_pfn));
5692 memset(arch_zone_highest_possible_pfn, 0,
5693 sizeof(arch_zone_highest_possible_pfn));
5694 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5695 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5696 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5697 if (i == ZONE_MOVABLE)
5698 continue;
c713216d
MG
5699 arch_zone_lowest_possible_pfn[i] =
5700 arch_zone_highest_possible_pfn[i-1];
5701 arch_zone_highest_possible_pfn[i] =
5702 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5703 }
2a1e274a
MG
5704 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5705 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5706
5707 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5708 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5709 find_zone_movable_pfns_for_nodes();
c713216d 5710
c713216d 5711 /* Print out the zone ranges */
f88dfff5 5712 pr_info("Zone ranges:\n");
2a1e274a
MG
5713 for (i = 0; i < MAX_NR_ZONES; i++) {
5714 if (i == ZONE_MOVABLE)
5715 continue;
f88dfff5 5716 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5717 if (arch_zone_lowest_possible_pfn[i] ==
5718 arch_zone_highest_possible_pfn[i])
f88dfff5 5719 pr_cont("empty\n");
72f0ba02 5720 else
8d29e18a
JG
5721 pr_cont("[mem %#018Lx-%#018Lx]\n",
5722 (u64)arch_zone_lowest_possible_pfn[i]
5723 << PAGE_SHIFT,
5724 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5725 << PAGE_SHIFT) - 1);
2a1e274a
MG
5726 }
5727
5728 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5729 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5730 for (i = 0; i < MAX_NUMNODES; i++) {
5731 if (zone_movable_pfn[i])
8d29e18a
JG
5732 pr_info(" Node %d: %#018Lx\n", i,
5733 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5734 }
c713216d 5735
f2d52fe5 5736 /* Print out the early node map */
f88dfff5 5737 pr_info("Early memory node ranges\n");
c13291a5 5738 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5739 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5740 (u64)start_pfn << PAGE_SHIFT,
5741 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5742
5743 /* Initialise every node */
708614e6 5744 mminit_verify_pageflags_layout();
8ef82866 5745 setup_nr_node_ids();
c713216d
MG
5746 for_each_online_node(nid) {
5747 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5748 free_area_init_node(nid, NULL,
c713216d 5749 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5750
5751 /* Any memory on that node */
5752 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5753 node_set_state(nid, N_MEMORY);
5754 check_for_memory(pgdat, nid);
c713216d
MG
5755 }
5756}
2a1e274a 5757
7e63efef 5758static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5759{
5760 unsigned long long coremem;
5761 if (!p)
5762 return -EINVAL;
5763
5764 coremem = memparse(p, &p);
7e63efef 5765 *core = coremem >> PAGE_SHIFT;
2a1e274a 5766
7e63efef 5767 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5768 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5769
5770 return 0;
5771}
ed7ed365 5772
7e63efef
MG
5773/*
5774 * kernelcore=size sets the amount of memory for use for allocations that
5775 * cannot be reclaimed or migrated.
5776 */
5777static int __init cmdline_parse_kernelcore(char *p)
5778{
5779 return cmdline_parse_core(p, &required_kernelcore);
5780}
5781
5782/*
5783 * movablecore=size sets the amount of memory for use for allocations that
5784 * can be reclaimed or migrated.
5785 */
5786static int __init cmdline_parse_movablecore(char *p)
5787{
5788 return cmdline_parse_core(p, &required_movablecore);
5789}
5790
ed7ed365 5791early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5792early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5793
0ee332c1 5794#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5795
c3d5f5f0
JL
5796void adjust_managed_page_count(struct page *page, long count)
5797{
5798 spin_lock(&managed_page_count_lock);
5799 page_zone(page)->managed_pages += count;
5800 totalram_pages += count;
3dcc0571
JL
5801#ifdef CONFIG_HIGHMEM
5802 if (PageHighMem(page))
5803 totalhigh_pages += count;
5804#endif
c3d5f5f0
JL
5805 spin_unlock(&managed_page_count_lock);
5806}
3dcc0571 5807EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5808
11199692 5809unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5810{
11199692
JL
5811 void *pos;
5812 unsigned long pages = 0;
69afade7 5813
11199692
JL
5814 start = (void *)PAGE_ALIGN((unsigned long)start);
5815 end = (void *)((unsigned long)end & PAGE_MASK);
5816 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5817 if ((unsigned int)poison <= 0xFF)
11199692
JL
5818 memset(pos, poison, PAGE_SIZE);
5819 free_reserved_page(virt_to_page(pos));
69afade7
JL
5820 }
5821
5822 if (pages && s)
11199692 5823 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5824 s, pages << (PAGE_SHIFT - 10), start, end);
5825
5826 return pages;
5827}
11199692 5828EXPORT_SYMBOL(free_reserved_area);
69afade7 5829
cfa11e08
JL
5830#ifdef CONFIG_HIGHMEM
5831void free_highmem_page(struct page *page)
5832{
5833 __free_reserved_page(page);
5834 totalram_pages++;
7b4b2a0d 5835 page_zone(page)->managed_pages++;
cfa11e08
JL
5836 totalhigh_pages++;
5837}
5838#endif
5839
7ee3d4e8
JL
5840
5841void __init mem_init_print_info(const char *str)
5842{
5843 unsigned long physpages, codesize, datasize, rosize, bss_size;
5844 unsigned long init_code_size, init_data_size;
5845
5846 physpages = get_num_physpages();
5847 codesize = _etext - _stext;
5848 datasize = _edata - _sdata;
5849 rosize = __end_rodata - __start_rodata;
5850 bss_size = __bss_stop - __bss_start;
5851 init_data_size = __init_end - __init_begin;
5852 init_code_size = _einittext - _sinittext;
5853
5854 /*
5855 * Detect special cases and adjust section sizes accordingly:
5856 * 1) .init.* may be embedded into .data sections
5857 * 2) .init.text.* may be out of [__init_begin, __init_end],
5858 * please refer to arch/tile/kernel/vmlinux.lds.S.
5859 * 3) .rodata.* may be embedded into .text or .data sections.
5860 */
5861#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5862 do { \
5863 if (start <= pos && pos < end && size > adj) \
5864 size -= adj; \
5865 } while (0)
7ee3d4e8
JL
5866
5867 adj_init_size(__init_begin, __init_end, init_data_size,
5868 _sinittext, init_code_size);
5869 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5870 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5871 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5872 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5873
5874#undef adj_init_size
5875
f88dfff5 5876 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5877 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5878 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5879#ifdef CONFIG_HIGHMEM
5880 ", %luK highmem"
5881#endif
5882 "%s%s)\n",
5883 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5884 codesize >> 10, datasize >> 10, rosize >> 10,
5885 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5886 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5887 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5888#ifdef CONFIG_HIGHMEM
5889 totalhigh_pages << (PAGE_SHIFT-10),
5890#endif
5891 str ? ", " : "", str ? str : "");
5892}
5893
0e0b864e 5894/**
88ca3b94
RD
5895 * set_dma_reserve - set the specified number of pages reserved in the first zone
5896 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 5897 *
013110a7 5898 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
5899 * In the DMA zone, a significant percentage may be consumed by kernel image
5900 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5901 * function may optionally be used to account for unfreeable pages in the
5902 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5903 * smaller per-cpu batchsize.
0e0b864e
MG
5904 */
5905void __init set_dma_reserve(unsigned long new_dma_reserve)
5906{
5907 dma_reserve = new_dma_reserve;
5908}
5909
1da177e4
LT
5910void __init free_area_init(unsigned long *zones_size)
5911{
9109fb7b 5912 free_area_init_node(0, zones_size,
1da177e4
LT
5913 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5914}
1da177e4 5915
1da177e4
LT
5916static int page_alloc_cpu_notify(struct notifier_block *self,
5917 unsigned long action, void *hcpu)
5918{
5919 int cpu = (unsigned long)hcpu;
1da177e4 5920
8bb78442 5921 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5922 lru_add_drain_cpu(cpu);
9f8f2172
CL
5923 drain_pages(cpu);
5924
5925 /*
5926 * Spill the event counters of the dead processor
5927 * into the current processors event counters.
5928 * This artificially elevates the count of the current
5929 * processor.
5930 */
f8891e5e 5931 vm_events_fold_cpu(cpu);
9f8f2172
CL
5932
5933 /*
5934 * Zero the differential counters of the dead processor
5935 * so that the vm statistics are consistent.
5936 *
5937 * This is only okay since the processor is dead and cannot
5938 * race with what we are doing.
5939 */
2bb921e5 5940 cpu_vm_stats_fold(cpu);
1da177e4
LT
5941 }
5942 return NOTIFY_OK;
5943}
1da177e4
LT
5944
5945void __init page_alloc_init(void)
5946{
5947 hotcpu_notifier(page_alloc_cpu_notify, 0);
5948}
5949
cb45b0e9 5950/*
34b10060 5951 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
5952 * or min_free_kbytes changes.
5953 */
5954static void calculate_totalreserve_pages(void)
5955{
5956 struct pglist_data *pgdat;
5957 unsigned long reserve_pages = 0;
2f6726e5 5958 enum zone_type i, j;
cb45b0e9
HA
5959
5960 for_each_online_pgdat(pgdat) {
5961 for (i = 0; i < MAX_NR_ZONES; i++) {
5962 struct zone *zone = pgdat->node_zones + i;
3484b2de 5963 long max = 0;
cb45b0e9
HA
5964
5965 /* Find valid and maximum lowmem_reserve in the zone */
5966 for (j = i; j < MAX_NR_ZONES; j++) {
5967 if (zone->lowmem_reserve[j] > max)
5968 max = zone->lowmem_reserve[j];
5969 }
5970
41858966
MG
5971 /* we treat the high watermark as reserved pages. */
5972 max += high_wmark_pages(zone);
cb45b0e9 5973
b40da049
JL
5974 if (max > zone->managed_pages)
5975 max = zone->managed_pages;
a8d01437
JW
5976
5977 zone->totalreserve_pages = max;
5978
cb45b0e9
HA
5979 reserve_pages += max;
5980 }
5981 }
5982 totalreserve_pages = reserve_pages;
5983}
5984
1da177e4
LT
5985/*
5986 * setup_per_zone_lowmem_reserve - called whenever
34b10060 5987 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
5988 * has a correct pages reserved value, so an adequate number of
5989 * pages are left in the zone after a successful __alloc_pages().
5990 */
5991static void setup_per_zone_lowmem_reserve(void)
5992{
5993 struct pglist_data *pgdat;
2f6726e5 5994 enum zone_type j, idx;
1da177e4 5995
ec936fc5 5996 for_each_online_pgdat(pgdat) {
1da177e4
LT
5997 for (j = 0; j < MAX_NR_ZONES; j++) {
5998 struct zone *zone = pgdat->node_zones + j;
b40da049 5999 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6000
6001 zone->lowmem_reserve[j] = 0;
6002
2f6726e5
CL
6003 idx = j;
6004 while (idx) {
1da177e4
LT
6005 struct zone *lower_zone;
6006
2f6726e5
CL
6007 idx--;
6008
1da177e4
LT
6009 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6010 sysctl_lowmem_reserve_ratio[idx] = 1;
6011
6012 lower_zone = pgdat->node_zones + idx;
b40da049 6013 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6014 sysctl_lowmem_reserve_ratio[idx];
b40da049 6015 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6016 }
6017 }
6018 }
cb45b0e9
HA
6019
6020 /* update totalreserve_pages */
6021 calculate_totalreserve_pages();
1da177e4
LT
6022}
6023
cfd3da1e 6024static void __setup_per_zone_wmarks(void)
1da177e4
LT
6025{
6026 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6027 unsigned long lowmem_pages = 0;
6028 struct zone *zone;
6029 unsigned long flags;
6030
6031 /* Calculate total number of !ZONE_HIGHMEM pages */
6032 for_each_zone(zone) {
6033 if (!is_highmem(zone))
b40da049 6034 lowmem_pages += zone->managed_pages;
1da177e4
LT
6035 }
6036
6037 for_each_zone(zone) {
ac924c60
AM
6038 u64 tmp;
6039
1125b4e3 6040 spin_lock_irqsave(&zone->lock, flags);
b40da049 6041 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6042 do_div(tmp, lowmem_pages);
1da177e4
LT
6043 if (is_highmem(zone)) {
6044 /*
669ed175
NP
6045 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6046 * need highmem pages, so cap pages_min to a small
6047 * value here.
6048 *
41858966 6049 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6050 * deltas control asynch page reclaim, and so should
669ed175 6051 * not be capped for highmem.
1da177e4 6052 */
90ae8d67 6053 unsigned long min_pages;
1da177e4 6054
b40da049 6055 min_pages = zone->managed_pages / 1024;
90ae8d67 6056 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6057 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6058 } else {
669ed175
NP
6059 /*
6060 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6061 * proportionate to the zone's size.
6062 */
41858966 6063 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6064 }
6065
41858966
MG
6066 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6067 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6068
81c0a2bb 6069 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6070 high_wmark_pages(zone) - low_wmark_pages(zone) -
6071 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6072
1125b4e3 6073 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6074 }
cb45b0e9
HA
6075
6076 /* update totalreserve_pages */
6077 calculate_totalreserve_pages();
1da177e4
LT
6078}
6079
cfd3da1e
MG
6080/**
6081 * setup_per_zone_wmarks - called when min_free_kbytes changes
6082 * or when memory is hot-{added|removed}
6083 *
6084 * Ensures that the watermark[min,low,high] values for each zone are set
6085 * correctly with respect to min_free_kbytes.
6086 */
6087void setup_per_zone_wmarks(void)
6088{
6089 mutex_lock(&zonelists_mutex);
6090 __setup_per_zone_wmarks();
6091 mutex_unlock(&zonelists_mutex);
6092}
6093
55a4462a 6094/*
556adecb
RR
6095 * The inactive anon list should be small enough that the VM never has to
6096 * do too much work, but large enough that each inactive page has a chance
6097 * to be referenced again before it is swapped out.
6098 *
6099 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6100 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6101 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6102 * the anonymous pages are kept on the inactive list.
6103 *
6104 * total target max
6105 * memory ratio inactive anon
6106 * -------------------------------------
6107 * 10MB 1 5MB
6108 * 100MB 1 50MB
6109 * 1GB 3 250MB
6110 * 10GB 10 0.9GB
6111 * 100GB 31 3GB
6112 * 1TB 101 10GB
6113 * 10TB 320 32GB
6114 */
1b79acc9 6115static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6116{
96cb4df5 6117 unsigned int gb, ratio;
556adecb 6118
96cb4df5 6119 /* Zone size in gigabytes */
b40da049 6120 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6121 if (gb)
556adecb 6122 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6123 else
6124 ratio = 1;
556adecb 6125
96cb4df5
MK
6126 zone->inactive_ratio = ratio;
6127}
556adecb 6128
839a4fcc 6129static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6130{
6131 struct zone *zone;
6132
6133 for_each_zone(zone)
6134 calculate_zone_inactive_ratio(zone);
556adecb
RR
6135}
6136
1da177e4
LT
6137/*
6138 * Initialise min_free_kbytes.
6139 *
6140 * For small machines we want it small (128k min). For large machines
6141 * we want it large (64MB max). But it is not linear, because network
6142 * bandwidth does not increase linearly with machine size. We use
6143 *
b8af2941 6144 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6145 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6146 *
6147 * which yields
6148 *
6149 * 16MB: 512k
6150 * 32MB: 724k
6151 * 64MB: 1024k
6152 * 128MB: 1448k
6153 * 256MB: 2048k
6154 * 512MB: 2896k
6155 * 1024MB: 4096k
6156 * 2048MB: 5792k
6157 * 4096MB: 8192k
6158 * 8192MB: 11584k
6159 * 16384MB: 16384k
6160 */
1b79acc9 6161int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6162{
6163 unsigned long lowmem_kbytes;
5f12733e 6164 int new_min_free_kbytes;
1da177e4
LT
6165
6166 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6167 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6168
6169 if (new_min_free_kbytes > user_min_free_kbytes) {
6170 min_free_kbytes = new_min_free_kbytes;
6171 if (min_free_kbytes < 128)
6172 min_free_kbytes = 128;
6173 if (min_free_kbytes > 65536)
6174 min_free_kbytes = 65536;
6175 } else {
6176 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6177 new_min_free_kbytes, user_min_free_kbytes);
6178 }
bc75d33f 6179 setup_per_zone_wmarks();
a6cccdc3 6180 refresh_zone_stat_thresholds();
1da177e4 6181 setup_per_zone_lowmem_reserve();
556adecb 6182 setup_per_zone_inactive_ratio();
1da177e4
LT
6183 return 0;
6184}
bc75d33f 6185module_init(init_per_zone_wmark_min)
1da177e4
LT
6186
6187/*
b8af2941 6188 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6189 * that we can call two helper functions whenever min_free_kbytes
6190 * changes.
6191 */
cccad5b9 6192int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6193 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6194{
da8c757b
HP
6195 int rc;
6196
6197 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6198 if (rc)
6199 return rc;
6200
5f12733e
MH
6201 if (write) {
6202 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6203 setup_per_zone_wmarks();
5f12733e 6204 }
1da177e4
LT
6205 return 0;
6206}
6207
9614634f 6208#ifdef CONFIG_NUMA
cccad5b9 6209int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6210 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6211{
6212 struct zone *zone;
6213 int rc;
6214
8d65af78 6215 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6216 if (rc)
6217 return rc;
6218
6219 for_each_zone(zone)
b40da049 6220 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6221 sysctl_min_unmapped_ratio) / 100;
6222 return 0;
6223}
0ff38490 6224
cccad5b9 6225int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6226 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6227{
6228 struct zone *zone;
6229 int rc;
6230
8d65af78 6231 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6232 if (rc)
6233 return rc;
6234
6235 for_each_zone(zone)
b40da049 6236 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6237 sysctl_min_slab_ratio) / 100;
6238 return 0;
6239}
9614634f
CL
6240#endif
6241
1da177e4
LT
6242/*
6243 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6244 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6245 * whenever sysctl_lowmem_reserve_ratio changes.
6246 *
6247 * The reserve ratio obviously has absolutely no relation with the
41858966 6248 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6249 * if in function of the boot time zone sizes.
6250 */
cccad5b9 6251int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6252 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6253{
8d65af78 6254 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6255 setup_per_zone_lowmem_reserve();
6256 return 0;
6257}
6258
8ad4b1fb
RS
6259/*
6260 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6261 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6262 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6263 */
cccad5b9 6264int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6265 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6266{
6267 struct zone *zone;
7cd2b0a3 6268 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6269 int ret;
6270
7cd2b0a3
DR
6271 mutex_lock(&pcp_batch_high_lock);
6272 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6273
8d65af78 6274 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6275 if (!write || ret < 0)
6276 goto out;
6277
6278 /* Sanity checking to avoid pcp imbalance */
6279 if (percpu_pagelist_fraction &&
6280 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6281 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6282 ret = -EINVAL;
6283 goto out;
6284 }
6285
6286 /* No change? */
6287 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6288 goto out;
c8e251fa 6289
364df0eb 6290 for_each_populated_zone(zone) {
7cd2b0a3
DR
6291 unsigned int cpu;
6292
22a7f12b 6293 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6294 pageset_set_high_and_batch(zone,
6295 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6296 }
7cd2b0a3 6297out:
c8e251fa 6298 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6299 return ret;
8ad4b1fb
RS
6300}
6301
a9919c79 6302#ifdef CONFIG_NUMA
f034b5d4 6303int hashdist = HASHDIST_DEFAULT;
1da177e4 6304
1da177e4
LT
6305static int __init set_hashdist(char *str)
6306{
6307 if (!str)
6308 return 0;
6309 hashdist = simple_strtoul(str, &str, 0);
6310 return 1;
6311}
6312__setup("hashdist=", set_hashdist);
6313#endif
6314
6315/*
6316 * allocate a large system hash table from bootmem
6317 * - it is assumed that the hash table must contain an exact power-of-2
6318 * quantity of entries
6319 * - limit is the number of hash buckets, not the total allocation size
6320 */
6321void *__init alloc_large_system_hash(const char *tablename,
6322 unsigned long bucketsize,
6323 unsigned long numentries,
6324 int scale,
6325 int flags,
6326 unsigned int *_hash_shift,
6327 unsigned int *_hash_mask,
31fe62b9
TB
6328 unsigned long low_limit,
6329 unsigned long high_limit)
1da177e4 6330{
31fe62b9 6331 unsigned long long max = high_limit;
1da177e4
LT
6332 unsigned long log2qty, size;
6333 void *table = NULL;
6334
6335 /* allow the kernel cmdline to have a say */
6336 if (!numentries) {
6337 /* round applicable memory size up to nearest megabyte */
04903664 6338 numentries = nr_kernel_pages;
a7e83318
JZ
6339
6340 /* It isn't necessary when PAGE_SIZE >= 1MB */
6341 if (PAGE_SHIFT < 20)
6342 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6343
6344 /* limit to 1 bucket per 2^scale bytes of low memory */
6345 if (scale > PAGE_SHIFT)
6346 numentries >>= (scale - PAGE_SHIFT);
6347 else
6348 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6349
6350 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6351 if (unlikely(flags & HASH_SMALL)) {
6352 /* Makes no sense without HASH_EARLY */
6353 WARN_ON(!(flags & HASH_EARLY));
6354 if (!(numentries >> *_hash_shift)) {
6355 numentries = 1UL << *_hash_shift;
6356 BUG_ON(!numentries);
6357 }
6358 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6359 numentries = PAGE_SIZE / bucketsize;
1da177e4 6360 }
6e692ed3 6361 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6362
6363 /* limit allocation size to 1/16 total memory by default */
6364 if (max == 0) {
6365 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6366 do_div(max, bucketsize);
6367 }
074b8517 6368 max = min(max, 0x80000000ULL);
1da177e4 6369
31fe62b9
TB
6370 if (numentries < low_limit)
6371 numentries = low_limit;
1da177e4
LT
6372 if (numentries > max)
6373 numentries = max;
6374
f0d1b0b3 6375 log2qty = ilog2(numentries);
1da177e4
LT
6376
6377 do {
6378 size = bucketsize << log2qty;
6379 if (flags & HASH_EARLY)
6782832e 6380 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6381 else if (hashdist)
6382 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6383 else {
1037b83b
ED
6384 /*
6385 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6386 * some pages at the end of hash table which
6387 * alloc_pages_exact() automatically does
1037b83b 6388 */
264ef8a9 6389 if (get_order(size) < MAX_ORDER) {
a1dd268c 6390 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6391 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6392 }
1da177e4
LT
6393 }
6394 } while (!table && size > PAGE_SIZE && --log2qty);
6395
6396 if (!table)
6397 panic("Failed to allocate %s hash table\n", tablename);
6398
f241e660 6399 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6400 tablename,
f241e660 6401 (1UL << log2qty),
f0d1b0b3 6402 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6403 size);
6404
6405 if (_hash_shift)
6406 *_hash_shift = log2qty;
6407 if (_hash_mask)
6408 *_hash_mask = (1 << log2qty) - 1;
6409
6410 return table;
6411}
a117e66e 6412
835c134e
MG
6413/* Return a pointer to the bitmap storing bits affecting a block of pages */
6414static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6415 unsigned long pfn)
6416{
6417#ifdef CONFIG_SPARSEMEM
6418 return __pfn_to_section(pfn)->pageblock_flags;
6419#else
6420 return zone->pageblock_flags;
6421#endif /* CONFIG_SPARSEMEM */
6422}
6423
6424static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6425{
6426#ifdef CONFIG_SPARSEMEM
6427 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6428 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6429#else
c060f943 6430 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6431 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6432#endif /* CONFIG_SPARSEMEM */
6433}
6434
6435/**
1aab4d77 6436 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6437 * @page: The page within the block of interest
1aab4d77
RD
6438 * @pfn: The target page frame number
6439 * @end_bitidx: The last bit of interest to retrieve
6440 * @mask: mask of bits that the caller is interested in
6441 *
6442 * Return: pageblock_bits flags
835c134e 6443 */
dc4b0caf 6444unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6445 unsigned long end_bitidx,
6446 unsigned long mask)
835c134e
MG
6447{
6448 struct zone *zone;
6449 unsigned long *bitmap;
dc4b0caf 6450 unsigned long bitidx, word_bitidx;
e58469ba 6451 unsigned long word;
835c134e
MG
6452
6453 zone = page_zone(page);
835c134e
MG
6454 bitmap = get_pageblock_bitmap(zone, pfn);
6455 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6456 word_bitidx = bitidx / BITS_PER_LONG;
6457 bitidx &= (BITS_PER_LONG-1);
835c134e 6458
e58469ba
MG
6459 word = bitmap[word_bitidx];
6460 bitidx += end_bitidx;
6461 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6462}
6463
6464/**
dc4b0caf 6465 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6466 * @page: The page within the block of interest
835c134e 6467 * @flags: The flags to set
1aab4d77
RD
6468 * @pfn: The target page frame number
6469 * @end_bitidx: The last bit of interest
6470 * @mask: mask of bits that the caller is interested in
835c134e 6471 */
dc4b0caf
MG
6472void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6473 unsigned long pfn,
e58469ba
MG
6474 unsigned long end_bitidx,
6475 unsigned long mask)
835c134e
MG
6476{
6477 struct zone *zone;
6478 unsigned long *bitmap;
dc4b0caf 6479 unsigned long bitidx, word_bitidx;
e58469ba
MG
6480 unsigned long old_word, word;
6481
6482 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6483
6484 zone = page_zone(page);
835c134e
MG
6485 bitmap = get_pageblock_bitmap(zone, pfn);
6486 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6487 word_bitidx = bitidx / BITS_PER_LONG;
6488 bitidx &= (BITS_PER_LONG-1);
6489
309381fe 6490 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6491
e58469ba
MG
6492 bitidx += end_bitidx;
6493 mask <<= (BITS_PER_LONG - bitidx - 1);
6494 flags <<= (BITS_PER_LONG - bitidx - 1);
6495
4db0c3c2 6496 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6497 for (;;) {
6498 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6499 if (word == old_word)
6500 break;
6501 word = old_word;
6502 }
835c134e 6503}
a5d76b54
KH
6504
6505/*
80934513
MK
6506 * This function checks whether pageblock includes unmovable pages or not.
6507 * If @count is not zero, it is okay to include less @count unmovable pages
6508 *
b8af2941 6509 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6510 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6511 * expect this function should be exact.
a5d76b54 6512 */
b023f468
WC
6513bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6514 bool skip_hwpoisoned_pages)
49ac8255
KH
6515{
6516 unsigned long pfn, iter, found;
47118af0
MN
6517 int mt;
6518
49ac8255
KH
6519 /*
6520 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6521 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6522 */
6523 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6524 return false;
47118af0
MN
6525 mt = get_pageblock_migratetype(page);
6526 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6527 return false;
49ac8255
KH
6528
6529 pfn = page_to_pfn(page);
6530 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6531 unsigned long check = pfn + iter;
6532
29723fcc 6533 if (!pfn_valid_within(check))
49ac8255 6534 continue;
29723fcc 6535
49ac8255 6536 page = pfn_to_page(check);
c8721bbb
NH
6537
6538 /*
6539 * Hugepages are not in LRU lists, but they're movable.
6540 * We need not scan over tail pages bacause we don't
6541 * handle each tail page individually in migration.
6542 */
6543 if (PageHuge(page)) {
6544 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6545 continue;
6546 }
6547
97d255c8
MK
6548 /*
6549 * We can't use page_count without pin a page
6550 * because another CPU can free compound page.
6551 * This check already skips compound tails of THP
6552 * because their page->_count is zero at all time.
6553 */
6554 if (!atomic_read(&page->_count)) {
49ac8255
KH
6555 if (PageBuddy(page))
6556 iter += (1 << page_order(page)) - 1;
6557 continue;
6558 }
97d255c8 6559
b023f468
WC
6560 /*
6561 * The HWPoisoned page may be not in buddy system, and
6562 * page_count() is not 0.
6563 */
6564 if (skip_hwpoisoned_pages && PageHWPoison(page))
6565 continue;
6566
49ac8255
KH
6567 if (!PageLRU(page))
6568 found++;
6569 /*
6b4f7799
JW
6570 * If there are RECLAIMABLE pages, we need to check
6571 * it. But now, memory offline itself doesn't call
6572 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6573 */
6574 /*
6575 * If the page is not RAM, page_count()should be 0.
6576 * we don't need more check. This is an _used_ not-movable page.
6577 *
6578 * The problematic thing here is PG_reserved pages. PG_reserved
6579 * is set to both of a memory hole page and a _used_ kernel
6580 * page at boot.
6581 */
6582 if (found > count)
80934513 6583 return true;
49ac8255 6584 }
80934513 6585 return false;
49ac8255
KH
6586}
6587
6588bool is_pageblock_removable_nolock(struct page *page)
6589{
656a0706
MH
6590 struct zone *zone;
6591 unsigned long pfn;
687875fb
MH
6592
6593 /*
6594 * We have to be careful here because we are iterating over memory
6595 * sections which are not zone aware so we might end up outside of
6596 * the zone but still within the section.
656a0706
MH
6597 * We have to take care about the node as well. If the node is offline
6598 * its NODE_DATA will be NULL - see page_zone.
687875fb 6599 */
656a0706
MH
6600 if (!node_online(page_to_nid(page)))
6601 return false;
6602
6603 zone = page_zone(page);
6604 pfn = page_to_pfn(page);
108bcc96 6605 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6606 return false;
6607
b023f468 6608 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6609}
0c0e6195 6610
041d3a8c
MN
6611#ifdef CONFIG_CMA
6612
6613static unsigned long pfn_max_align_down(unsigned long pfn)
6614{
6615 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6616 pageblock_nr_pages) - 1);
6617}
6618
6619static unsigned long pfn_max_align_up(unsigned long pfn)
6620{
6621 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6622 pageblock_nr_pages));
6623}
6624
041d3a8c 6625/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6626static int __alloc_contig_migrate_range(struct compact_control *cc,
6627 unsigned long start, unsigned long end)
041d3a8c
MN
6628{
6629 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6630 unsigned long nr_reclaimed;
041d3a8c
MN
6631 unsigned long pfn = start;
6632 unsigned int tries = 0;
6633 int ret = 0;
6634
be49a6e1 6635 migrate_prep();
041d3a8c 6636
bb13ffeb 6637 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6638 if (fatal_signal_pending(current)) {
6639 ret = -EINTR;
6640 break;
6641 }
6642
bb13ffeb
MG
6643 if (list_empty(&cc->migratepages)) {
6644 cc->nr_migratepages = 0;
edc2ca61 6645 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6646 if (!pfn) {
6647 ret = -EINTR;
6648 break;
6649 }
6650 tries = 0;
6651 } else if (++tries == 5) {
6652 ret = ret < 0 ? ret : -EBUSY;
6653 break;
6654 }
6655
beb51eaa
MK
6656 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6657 &cc->migratepages);
6658 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6659
9c620e2b 6660 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6661 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6662 }
2a6f5124
SP
6663 if (ret < 0) {
6664 putback_movable_pages(&cc->migratepages);
6665 return ret;
6666 }
6667 return 0;
041d3a8c
MN
6668}
6669
6670/**
6671 * alloc_contig_range() -- tries to allocate given range of pages
6672 * @start: start PFN to allocate
6673 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6674 * @migratetype: migratetype of the underlaying pageblocks (either
6675 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6676 * in range must have the same migratetype and it must
6677 * be either of the two.
041d3a8c
MN
6678 *
6679 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6680 * aligned, however it's the caller's responsibility to guarantee that
6681 * we are the only thread that changes migrate type of pageblocks the
6682 * pages fall in.
6683 *
6684 * The PFN range must belong to a single zone.
6685 *
6686 * Returns zero on success or negative error code. On success all
6687 * pages which PFN is in [start, end) are allocated for the caller and
6688 * need to be freed with free_contig_range().
6689 */
0815f3d8
MN
6690int alloc_contig_range(unsigned long start, unsigned long end,
6691 unsigned migratetype)
041d3a8c 6692{
041d3a8c 6693 unsigned long outer_start, outer_end;
d00181b9
KS
6694 unsigned int order;
6695 int ret = 0;
041d3a8c 6696
bb13ffeb
MG
6697 struct compact_control cc = {
6698 .nr_migratepages = 0,
6699 .order = -1,
6700 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6701 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6702 .ignore_skip_hint = true,
6703 };
6704 INIT_LIST_HEAD(&cc.migratepages);
6705
041d3a8c
MN
6706 /*
6707 * What we do here is we mark all pageblocks in range as
6708 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6709 * have different sizes, and due to the way page allocator
6710 * work, we align the range to biggest of the two pages so
6711 * that page allocator won't try to merge buddies from
6712 * different pageblocks and change MIGRATE_ISOLATE to some
6713 * other migration type.
6714 *
6715 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6716 * migrate the pages from an unaligned range (ie. pages that
6717 * we are interested in). This will put all the pages in
6718 * range back to page allocator as MIGRATE_ISOLATE.
6719 *
6720 * When this is done, we take the pages in range from page
6721 * allocator removing them from the buddy system. This way
6722 * page allocator will never consider using them.
6723 *
6724 * This lets us mark the pageblocks back as
6725 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6726 * aligned range but not in the unaligned, original range are
6727 * put back to page allocator so that buddy can use them.
6728 */
6729
6730 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6731 pfn_max_align_up(end), migratetype,
6732 false);
041d3a8c 6733 if (ret)
86a595f9 6734 return ret;
041d3a8c 6735
8ef5849f
JK
6736 /*
6737 * In case of -EBUSY, we'd like to know which page causes problem.
6738 * So, just fall through. We will check it in test_pages_isolated().
6739 */
bb13ffeb 6740 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 6741 if (ret && ret != -EBUSY)
041d3a8c
MN
6742 goto done;
6743
6744 /*
6745 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6746 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6747 * more, all pages in [start, end) are free in page allocator.
6748 * What we are going to do is to allocate all pages from
6749 * [start, end) (that is remove them from page allocator).
6750 *
6751 * The only problem is that pages at the beginning and at the
6752 * end of interesting range may be not aligned with pages that
6753 * page allocator holds, ie. they can be part of higher order
6754 * pages. Because of this, we reserve the bigger range and
6755 * once this is done free the pages we are not interested in.
6756 *
6757 * We don't have to hold zone->lock here because the pages are
6758 * isolated thus they won't get removed from buddy.
6759 */
6760
6761 lru_add_drain_all();
510f5507 6762 drain_all_pages(cc.zone);
041d3a8c
MN
6763
6764 order = 0;
6765 outer_start = start;
6766 while (!PageBuddy(pfn_to_page(outer_start))) {
6767 if (++order >= MAX_ORDER) {
8ef5849f
JK
6768 outer_start = start;
6769 break;
041d3a8c
MN
6770 }
6771 outer_start &= ~0UL << order;
6772 }
6773
8ef5849f
JK
6774 if (outer_start != start) {
6775 order = page_order(pfn_to_page(outer_start));
6776
6777 /*
6778 * outer_start page could be small order buddy page and
6779 * it doesn't include start page. Adjust outer_start
6780 * in this case to report failed page properly
6781 * on tracepoint in test_pages_isolated()
6782 */
6783 if (outer_start + (1UL << order) <= start)
6784 outer_start = start;
6785 }
6786
041d3a8c 6787 /* Make sure the range is really isolated. */
b023f468 6788 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6789 pr_info("%s: [%lx, %lx) PFNs busy\n",
6790 __func__, outer_start, end);
041d3a8c
MN
6791 ret = -EBUSY;
6792 goto done;
6793 }
6794
49f223a9 6795 /* Grab isolated pages from freelists. */
bb13ffeb 6796 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6797 if (!outer_end) {
6798 ret = -EBUSY;
6799 goto done;
6800 }
6801
6802 /* Free head and tail (if any) */
6803 if (start != outer_start)
6804 free_contig_range(outer_start, start - outer_start);
6805 if (end != outer_end)
6806 free_contig_range(end, outer_end - end);
6807
6808done:
6809 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6810 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6811 return ret;
6812}
6813
6814void free_contig_range(unsigned long pfn, unsigned nr_pages)
6815{
bcc2b02f
MS
6816 unsigned int count = 0;
6817
6818 for (; nr_pages--; pfn++) {
6819 struct page *page = pfn_to_page(pfn);
6820
6821 count += page_count(page) != 1;
6822 __free_page(page);
6823 }
6824 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6825}
6826#endif
6827
4ed7e022 6828#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6829/*
6830 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6831 * page high values need to be recalulated.
6832 */
4ed7e022
JL
6833void __meminit zone_pcp_update(struct zone *zone)
6834{
0a647f38 6835 unsigned cpu;
c8e251fa 6836 mutex_lock(&pcp_batch_high_lock);
0a647f38 6837 for_each_possible_cpu(cpu)
169f6c19
CS
6838 pageset_set_high_and_batch(zone,
6839 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6840 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6841}
6842#endif
6843
340175b7
JL
6844void zone_pcp_reset(struct zone *zone)
6845{
6846 unsigned long flags;
5a883813
MK
6847 int cpu;
6848 struct per_cpu_pageset *pset;
340175b7
JL
6849
6850 /* avoid races with drain_pages() */
6851 local_irq_save(flags);
6852 if (zone->pageset != &boot_pageset) {
5a883813
MK
6853 for_each_online_cpu(cpu) {
6854 pset = per_cpu_ptr(zone->pageset, cpu);
6855 drain_zonestat(zone, pset);
6856 }
340175b7
JL
6857 free_percpu(zone->pageset);
6858 zone->pageset = &boot_pageset;
6859 }
6860 local_irq_restore(flags);
6861}
6862
6dcd73d7 6863#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6864/*
6865 * All pages in the range must be isolated before calling this.
6866 */
6867void
6868__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6869{
6870 struct page *page;
6871 struct zone *zone;
7aeb09f9 6872 unsigned int order, i;
0c0e6195
KH
6873 unsigned long pfn;
6874 unsigned long flags;
6875 /* find the first valid pfn */
6876 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6877 if (pfn_valid(pfn))
6878 break;
6879 if (pfn == end_pfn)
6880 return;
6881 zone = page_zone(pfn_to_page(pfn));
6882 spin_lock_irqsave(&zone->lock, flags);
6883 pfn = start_pfn;
6884 while (pfn < end_pfn) {
6885 if (!pfn_valid(pfn)) {
6886 pfn++;
6887 continue;
6888 }
6889 page = pfn_to_page(pfn);
b023f468
WC
6890 /*
6891 * The HWPoisoned page may be not in buddy system, and
6892 * page_count() is not 0.
6893 */
6894 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6895 pfn++;
6896 SetPageReserved(page);
6897 continue;
6898 }
6899
0c0e6195
KH
6900 BUG_ON(page_count(page));
6901 BUG_ON(!PageBuddy(page));
6902 order = page_order(page);
6903#ifdef CONFIG_DEBUG_VM
6904 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6905 pfn, 1 << order, end_pfn);
6906#endif
6907 list_del(&page->lru);
6908 rmv_page_order(page);
6909 zone->free_area[order].nr_free--;
0c0e6195
KH
6910 for (i = 0; i < (1 << order); i++)
6911 SetPageReserved((page+i));
6912 pfn += (1 << order);
6913 }
6914 spin_unlock_irqrestore(&zone->lock, flags);
6915}
6916#endif
8d22ba1b
WF
6917
6918#ifdef CONFIG_MEMORY_FAILURE
6919bool is_free_buddy_page(struct page *page)
6920{
6921 struct zone *zone = page_zone(page);
6922 unsigned long pfn = page_to_pfn(page);
6923 unsigned long flags;
7aeb09f9 6924 unsigned int order;
8d22ba1b
WF
6925
6926 spin_lock_irqsave(&zone->lock, flags);
6927 for (order = 0; order < MAX_ORDER; order++) {
6928 struct page *page_head = page - (pfn & ((1 << order) - 1));
6929
6930 if (PageBuddy(page_head) && page_order(page_head) >= order)
6931 break;
6932 }
6933 spin_unlock_irqrestore(&zone->lock, flags);
6934
6935 return order < MAX_ORDER;
6936}
6937#endif
This page took 1.610564 seconds and 5 git commands to generate.