x86: refine when to trigger optimizations
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
b3adc24a 2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
79dec6b7
JB
101/* This matches the C -> StaticRounding alias in the opcode table. */
102#define commutative staticrounding
103
6305a203
L
104/*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111typedef struct
112{
d3ce72d0
NC
113 const insn_template *start;
114 const insn_template *end;
6305a203
L
115}
116templates;
117
118/* 386 operand encoding bytes: see 386 book for details of this. */
119typedef struct
120{
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124}
125modrm_byte;
126
127/* x86-64 extension prefix. */
128typedef int rex_byte;
129
6305a203
L
130/* 386 opcode byte to code indirect addressing. */
131typedef struct
132{
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136}
137sib_byte;
138
6305a203
L
139/* x86 arch names, types and features */
140typedef struct
141{
142 const char *name; /* arch name */
8a2c8fef 143 unsigned int len; /* arch string length */
6305a203
L
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 146 unsigned int skip; /* show_arch should skip this. */
6305a203
L
147}
148arch_entry;
149
293f5f65
L
150/* Used to turn off indicated flags. */
151typedef struct
152{
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156}
157noarch_entry;
158
78f12dd3 159static void update_code_flag (int, int);
e3bb37b5
L
160static void set_code_flag (int);
161static void set_16bit_gcc_code_flag (int);
162static void set_intel_syntax (int);
1efbbeb4 163static void set_intel_mnemonic (int);
db51cc60 164static void set_allow_index_reg (int);
7bab8ab5 165static void set_check (int);
e3bb37b5 166static void set_cpu_arch (int);
6482c264 167#ifdef TE_PE
e3bb37b5 168static void pe_directive_secrel (int);
6482c264 169#endif
e3bb37b5
L
170static void signed_cons (int);
171static char *output_invalid (int c);
ee86248c
JB
172static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
a7619375 176static int i386_att_operand (char *);
e3bb37b5 177static int i386_intel_operand (char *, int);
ee86248c
JB
178static int i386_intel_simplify (expressionS *);
179static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
180static const reg_entry *parse_register (char *, char **);
181static char *parse_insn (char *, char *);
182static char *parse_operands (char *, const char *);
183static void swap_operands (void);
4d456e3d 184static void swap_2_operands (int, int);
48bcea9f 185static enum flag_code i386_addressing_mode (void);
e3bb37b5
L
186static void optimize_imm (void);
187static void optimize_disp (void);
83b16ac6 188static const insn_template *match_template (char);
e3bb37b5
L
189static int check_string (void);
190static int process_suffix (void);
191static int check_byte_reg (void);
192static int check_long_reg (void);
193static int check_qword_reg (void);
194static int check_word_reg (void);
195static int finalize_imm (void);
196static int process_operands (void);
197static const seg_entry *build_modrm_byte (void);
198static void output_insn (void);
199static void output_imm (fragS *, offsetT);
200static void output_disp (fragS *, offsetT);
29b0f896 201#ifndef I386COFF
e3bb37b5 202static void s_bss (int);
252b5132 203#endif
17d4e2a2
L
204#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
205static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
206
207/* GNU_PROPERTY_X86_ISA_1_USED. */
208static unsigned int x86_isa_1_used;
209/* GNU_PROPERTY_X86_FEATURE_2_USED. */
210static unsigned int x86_feature_2_used;
211/* Generate x86 used ISA and feature properties. */
212static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 213#endif
252b5132 214
a847613f 215static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 216
43234a1e
L
217/* This struct describes rounding control and SAE in the instruction. */
218struct RC_Operation
219{
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229};
230
231static struct RC_Operation rc_op;
232
233/* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236struct Mask_Operation
237{
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242};
243
244static struct Mask_Operation mask_op;
245
246/* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248struct Broadcast_Operation
249{
8e6e0792 250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
4a1b91ea
L
255
256 /* Number of bytes to broadcast. */
257 int bytes;
43234a1e
L
258};
259
260static struct Broadcast_Operation broadcast_op;
261
c0f3af97
L
262/* VEX prefix. */
263typedef struct
264{
43234a1e
L
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
c0f3af97
L
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270} vex_prefix;
271
252b5132 272/* 'md_assemble ()' gathers together information and puts it into a
47926f60 273 i386_insn. */
252b5132 274
520dc8e8
AM
275union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
a65babc9
L
282enum i386_error
283 {
86e026a4 284 operand_size_mismatch,
a65babc9
L
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
a65babc9
L
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
6c30d220
L
292 unsupported,
293 invalid_vsib_address,
7bab8ab5 294 invalid_vector_register_set,
43234a1e
L
295 unsupported_vector_index_register,
296 unsupported_broadcast,
43234a1e
L
297 broadcast_needed,
298 unsupported_masking,
299 mask_not_on_destination,
300 no_default_mask,
301 unsupported_rc_sae,
302 rc_sae_operand_not_last_imm,
303 invalid_register_operand,
a65babc9
L
304 };
305
252b5132
RH
306struct _i386_insn
307 {
47926f60 308 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 309 insn_template tm;
252b5132 310
7d5e4556
L
311 /* SUFFIX holds the instruction size suffix for byte, word, dword
312 or qword, if given. */
252b5132
RH
313 char suffix;
314
47926f60 315 /* OPERANDS gives the number of given operands. */
252b5132
RH
316 unsigned int operands;
317
318 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
319 of given register, displacement, memory operands and immediate
47926f60 320 operands. */
252b5132
RH
321 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
322
323 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 324 use OP[i] for the corresponding operand. */
40fb9820 325 i386_operand_type types[MAX_OPERANDS];
252b5132 326
520dc8e8
AM
327 /* Displacement expression, immediate expression, or register for each
328 operand. */
329 union i386_op op[MAX_OPERANDS];
252b5132 330
3e73aa7c
JH
331 /* Flags for operands. */
332 unsigned int flags[MAX_OPERANDS];
333#define Operand_PCrel 1
c48dadc9 334#define Operand_Mem 2
3e73aa7c 335
252b5132 336 /* Relocation type for operand */
f86103b7 337 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 338
252b5132
RH
339 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
340 the base index byte below. */
341 const reg_entry *base_reg;
342 const reg_entry *index_reg;
343 unsigned int log2_scale_factor;
344
345 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 346 explicit segment overrides are given. */
ce8a8b2f 347 const seg_entry *seg[2];
252b5132 348
8325cc63
JB
349 /* Copied first memory operand string, for re-checking. */
350 char *memop1_string;
351
252b5132
RH
352 /* PREFIX holds all the given prefix opcodes (usually null).
353 PREFIXES is the number of prefix opcodes. */
354 unsigned int prefixes;
355 unsigned char prefix[MAX_PREFIXES];
356
6f2f06be
JB
357 /* The operand to a branch insn indicates an absolute branch. */
358 bfd_boolean jumpabsolute;
359
b4a3a7b4
L
360 /* Has MMX register operands. */
361 bfd_boolean has_regmmx;
362
363 /* Has XMM register operands. */
364 bfd_boolean has_regxmm;
365
366 /* Has YMM register operands. */
367 bfd_boolean has_regymm;
368
369 /* Has ZMM register operands. */
370 bfd_boolean has_regzmm;
371
e379e5f3
L
372 /* Has GOTPC or TLS relocation. */
373 bfd_boolean has_gotpc_tls_reloc;
374
252b5132 375 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 376 addressing modes of this insn are encoded. */
252b5132 377 modrm_byte rm;
3e73aa7c 378 rex_byte rex;
43234a1e 379 rex_byte vrex;
252b5132 380 sib_byte sib;
c0f3af97 381 vex_prefix vex;
b6169b20 382
43234a1e
L
383 /* Masking attributes. */
384 struct Mask_Operation *mask;
385
386 /* Rounding control and SAE attributes. */
387 struct RC_Operation *rounding;
388
389 /* Broadcasting attributes. */
390 struct Broadcast_Operation *broadcast;
391
392 /* Compressed disp8*N attribute. */
393 unsigned int memshift;
394
86fa6981
L
395 /* Prefer load or store in encoding. */
396 enum
397 {
398 dir_encoding_default = 0,
399 dir_encoding_load,
64c49ab3
JB
400 dir_encoding_store,
401 dir_encoding_swap
86fa6981 402 } dir_encoding;
891edac4 403
a501d77e
L
404 /* Prefer 8bit or 32bit displacement in encoding. */
405 enum
406 {
407 disp_encoding_default = 0,
408 disp_encoding_8bit,
409 disp_encoding_32bit
410 } disp_encoding;
f8a5c266 411
6b6b6807
L
412 /* Prefer the REX byte in encoding. */
413 bfd_boolean rex_encoding;
414
b6f8c7c4
L
415 /* Disable instruction size optimization. */
416 bfd_boolean no_optimize;
417
86fa6981
L
418 /* How to encode vector instructions. */
419 enum
420 {
421 vex_encoding_default = 0,
422 vex_encoding_vex2,
423 vex_encoding_vex3,
424 vex_encoding_evex
425 } vec_encoding;
426
d5de92cf
L
427 /* REP prefix. */
428 const char *rep_prefix;
429
165de32a
L
430 /* HLE prefix. */
431 const char *hle_prefix;
42164a71 432
7e8b059b
L
433 /* Have BND prefix. */
434 const char *bnd_prefix;
435
04ef582a
L
436 /* Have NOTRACK prefix. */
437 const char *notrack_prefix;
438
891edac4 439 /* Error message. */
a65babc9 440 enum i386_error error;
252b5132
RH
441 };
442
443typedef struct _i386_insn i386_insn;
444
43234a1e
L
445/* Link RC type with corresponding string, that'll be looked for in
446 asm. */
447struct RC_name
448{
449 enum rc_type type;
450 const char *name;
451 unsigned int len;
452};
453
454static const struct RC_name RC_NamesTable[] =
455{
456 { rne, STRING_COMMA_LEN ("rn-sae") },
457 { rd, STRING_COMMA_LEN ("rd-sae") },
458 { ru, STRING_COMMA_LEN ("ru-sae") },
459 { rz, STRING_COMMA_LEN ("rz-sae") },
460 { saeonly, STRING_COMMA_LEN ("sae") },
461};
462
252b5132
RH
463/* List of chars besides those in app.c:symbol_chars that can start an
464 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 465const char extra_symbol_chars[] = "*%-([{}"
252b5132 466#ifdef LEX_AT
32137342
NC
467 "@"
468#endif
469#ifdef LEX_QM
470 "?"
252b5132 471#endif
32137342 472 ;
252b5132 473
29b0f896
AM
474#if (defined (TE_I386AIX) \
475 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 476 && !defined (TE_GNU) \
29b0f896 477 && !defined (TE_LINUX) \
8d63c93e 478 && !defined (TE_NACL) \
29b0f896 479 && !defined (TE_FreeBSD) \
5b806d27 480 && !defined (TE_DragonFly) \
29b0f896 481 && !defined (TE_NetBSD)))
252b5132 482/* This array holds the chars that always start a comment. If the
b3b91714
AM
483 pre-processor is disabled, these aren't very useful. The option
484 --divide will remove '/' from this list. */
485const char *i386_comment_chars = "#/";
486#define SVR4_COMMENT_CHARS 1
252b5132 487#define PREFIX_SEPARATOR '\\'
252b5132 488
b3b91714
AM
489#else
490const char *i386_comment_chars = "#";
491#define PREFIX_SEPARATOR '/'
492#endif
493
252b5132
RH
494/* This array holds the chars that only start a comment at the beginning of
495 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
496 .line and .file directives will appear in the pre-processed output.
497 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 498 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
499 #NO_APP at the beginning of its output.
500 Also note that comments started like this one will always work if
252b5132 501 '/' isn't otherwise defined. */
b3b91714 502const char line_comment_chars[] = "#/";
252b5132 503
63a0b638 504const char line_separator_chars[] = ";";
252b5132 505
ce8a8b2f
AM
506/* Chars that can be used to separate mant from exp in floating point
507 nums. */
252b5132
RH
508const char EXP_CHARS[] = "eE";
509
ce8a8b2f
AM
510/* Chars that mean this number is a floating point constant
511 As in 0f12.456
512 or 0d1.2345e12. */
252b5132
RH
513const char FLT_CHARS[] = "fFdDxX";
514
ce8a8b2f 515/* Tables for lexical analysis. */
252b5132
RH
516static char mnemonic_chars[256];
517static char register_chars[256];
518static char operand_chars[256];
519static char identifier_chars[256];
520static char digit_chars[256];
521
ce8a8b2f 522/* Lexical macros. */
252b5132
RH
523#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
524#define is_operand_char(x) (operand_chars[(unsigned char) x])
525#define is_register_char(x) (register_chars[(unsigned char) x])
526#define is_space_char(x) ((x) == ' ')
527#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
528#define is_digit_char(x) (digit_chars[(unsigned char) x])
529
0234cb7c 530/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
531static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
532
533/* md_assemble() always leaves the strings it's passed unaltered. To
534 effect this we maintain a stack of saved characters that we've smashed
535 with '\0's (indicating end of strings for various sub-fields of the
47926f60 536 assembler instruction). */
252b5132 537static char save_stack[32];
ce8a8b2f 538static char *save_stack_p;
252b5132
RH
539#define END_STRING_AND_SAVE(s) \
540 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
541#define RESTORE_END_STRING(s) \
542 do { *(s) = *--save_stack_p; } while (0)
543
47926f60 544/* The instruction we're assembling. */
252b5132
RH
545static i386_insn i;
546
547/* Possible templates for current insn. */
548static const templates *current_templates;
549
31b2323c
L
550/* Per instruction expressionS buffers: max displacements & immediates. */
551static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
552static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 553
47926f60 554/* Current operand we are working on. */
ee86248c 555static int this_operand = -1;
252b5132 556
3e73aa7c
JH
557/* We support four different modes. FLAG_CODE variable is used to distinguish
558 these. */
559
560enum flag_code {
561 CODE_32BIT,
562 CODE_16BIT,
563 CODE_64BIT };
564
565static enum flag_code flag_code;
4fa24527 566static unsigned int object_64bit;
862be3fb 567static unsigned int disallow_64bit_reloc;
3e73aa7c 568static int use_rela_relocations = 0;
e379e5f3
L
569/* __tls_get_addr/___tls_get_addr symbol for TLS. */
570static const char *tls_get_addr;
3e73aa7c 571
7af8ed2d
NC
572#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
573 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
574 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
575
351f65ca
L
576/* The ELF ABI to use. */
577enum x86_elf_abi
578{
579 I386_ABI,
7f56bc95
L
580 X86_64_ABI,
581 X86_64_X32_ABI
351f65ca
L
582};
583
584static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 585#endif
351f65ca 586
167ad85b
TG
587#if defined (TE_PE) || defined (TE_PEP)
588/* Use big object file format. */
589static int use_big_obj = 0;
590#endif
591
8dcea932
L
592#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
593/* 1 if generating code for a shared library. */
594static int shared = 0;
595#endif
596
47926f60
KH
597/* 1 for intel syntax,
598 0 if att syntax. */
599static int intel_syntax = 0;
252b5132 600
e89c5eaa
L
601/* 1 for Intel64 ISA,
602 0 if AMD64 ISA. */
603static int intel64;
604
1efbbeb4
L
605/* 1 for intel mnemonic,
606 0 if att mnemonic. */
607static int intel_mnemonic = !SYSV386_COMPAT;
608
a60de03c
JB
609/* 1 if pseudo registers are permitted. */
610static int allow_pseudo_reg = 0;
611
47926f60
KH
612/* 1 if register prefix % not required. */
613static int allow_naked_reg = 0;
252b5132 614
33eaf5de 615/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
616 instructions supporting it, even if this prefix wasn't specified
617 explicitly. */
618static int add_bnd_prefix = 0;
619
ba104c83 620/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
621static int allow_index_reg = 0;
622
d022bddd
IT
623/* 1 if the assembler should ignore LOCK prefix, even if it was
624 specified explicitly. */
625static int omit_lock_prefix = 0;
626
e4e00185
AS
627/* 1 if the assembler should encode lfence, mfence, and sfence as
628 "lock addl $0, (%{re}sp)". */
629static int avoid_fence = 0;
630
e379e5f3
L
631/* Type of the previous instruction. */
632static struct
633 {
634 segT seg;
635 const char *file;
636 const char *name;
637 unsigned int line;
638 enum last_insn_kind
639 {
640 last_insn_other = 0,
641 last_insn_directive,
642 last_insn_prefix
643 } kind;
644 } last_insn;
645
0cb4071e
L
646/* 1 if the assembler should generate relax relocations. */
647
648static int generate_relax_relocations
649 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
650
7bab8ab5 651static enum check_kind
daf50ae7 652 {
7bab8ab5
JB
653 check_none = 0,
654 check_warning,
655 check_error
daf50ae7 656 }
7bab8ab5 657sse_check, operand_check = check_warning;
daf50ae7 658
e379e5f3
L
659/* Non-zero if branches should be aligned within power of 2 boundary. */
660static int align_branch_power = 0;
661
662/* Types of branches to align. */
663enum align_branch_kind
664 {
665 align_branch_none = 0,
666 align_branch_jcc = 1,
667 align_branch_fused = 2,
668 align_branch_jmp = 3,
669 align_branch_call = 4,
670 align_branch_indirect = 5,
671 align_branch_ret = 6
672 };
673
674/* Type bits of branches to align. */
675enum align_branch_bit
676 {
677 align_branch_jcc_bit = 1 << align_branch_jcc,
678 align_branch_fused_bit = 1 << align_branch_fused,
679 align_branch_jmp_bit = 1 << align_branch_jmp,
680 align_branch_call_bit = 1 << align_branch_call,
681 align_branch_indirect_bit = 1 << align_branch_indirect,
682 align_branch_ret_bit = 1 << align_branch_ret
683 };
684
685static unsigned int align_branch = (align_branch_jcc_bit
686 | align_branch_fused_bit
687 | align_branch_jmp_bit);
688
689/* The maximum padding size for fused jcc. CMP like instruction can
690 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
691 prefixes. */
692#define MAX_FUSED_JCC_PADDING_SIZE 20
693
694/* The maximum number of prefixes added for an instruction. */
695static unsigned int align_branch_prefix_size = 5;
696
b6f8c7c4
L
697/* Optimization:
698 1. Clear the REX_W bit with register operand if possible.
699 2. Above plus use 128bit vector instruction to clear the full vector
700 register.
701 */
702static int optimize = 0;
703
704/* Optimization:
705 1. Clear the REX_W bit with register operand if possible.
706 2. Above plus use 128bit vector instruction to clear the full vector
707 register.
708 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
709 "testb $imm7,%r8".
710 */
711static int optimize_for_space = 0;
712
2ca3ace5
L
713/* Register prefix used for error message. */
714static const char *register_prefix = "%";
715
47926f60
KH
716/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
717 leave, push, and pop instructions so that gcc has the same stack
718 frame as in 32 bit mode. */
719static char stackop_size = '\0';
eecb386c 720
12b55ccc
L
721/* Non-zero to optimize code alignment. */
722int optimize_align_code = 1;
723
47926f60
KH
724/* Non-zero to quieten some warnings. */
725static int quiet_warnings = 0;
a38cf1db 726
47926f60
KH
727/* CPU name. */
728static const char *cpu_arch_name = NULL;
6305a203 729static char *cpu_sub_arch_name = NULL;
a38cf1db 730
47926f60 731/* CPU feature flags. */
40fb9820
L
732static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
733
ccc9c027
L
734/* If we have selected a cpu we are generating instructions for. */
735static int cpu_arch_tune_set = 0;
736
9103f4f4 737/* Cpu we are generating instructions for. */
fbf3f584 738enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
739
740/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 741static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 742
ccc9c027 743/* CPU instruction set architecture used. */
fbf3f584 744enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 745
9103f4f4 746/* CPU feature flags of instruction set architecture used. */
fbf3f584 747i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 748
fddf5b5b
AM
749/* If set, conditional jumps are not automatically promoted to handle
750 larger than a byte offset. */
751static unsigned int no_cond_jump_promotion = 0;
752
c0f3af97
L
753/* Encode SSE instructions with VEX prefix. */
754static unsigned int sse2avx;
755
539f890d
L
756/* Encode scalar AVX instructions with specific vector length. */
757static enum
758 {
759 vex128 = 0,
760 vex256
761 } avxscalar;
762
03751133
L
763/* Encode VEX WIG instructions with specific vex.w. */
764static enum
765 {
766 vexw0 = 0,
767 vexw1
768 } vexwig;
769
43234a1e
L
770/* Encode scalar EVEX LIG instructions with specific vector length. */
771static enum
772 {
773 evexl128 = 0,
774 evexl256,
775 evexl512
776 } evexlig;
777
778/* Encode EVEX WIG instructions with specific evex.w. */
779static enum
780 {
781 evexw0 = 0,
782 evexw1
783 } evexwig;
784
d3d3c6db
IT
785/* Value to encode in EVEX RC bits, for SAE-only instructions. */
786static enum rc_type evexrcig = rne;
787
29b0f896 788/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 789static symbolS *GOT_symbol;
29b0f896 790
a4447b93
RH
791/* The dwarf2 return column, adjusted for 32 or 64 bit. */
792unsigned int x86_dwarf2_return_column;
793
794/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
795int x86_cie_data_alignment;
796
252b5132 797/* Interface to relax_segment.
fddf5b5b
AM
798 There are 3 major relax states for 386 jump insns because the
799 different types of jumps add different sizes to frags when we're
e379e5f3
L
800 figuring out what sort of jump to choose to reach a given label.
801
802 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
803 branches which are handled by md_estimate_size_before_relax() and
804 i386_generic_table_relax_frag(). */
252b5132 805
47926f60 806/* Types. */
93c2a809
AM
807#define UNCOND_JUMP 0
808#define COND_JUMP 1
809#define COND_JUMP86 2
e379e5f3
L
810#define BRANCH_PADDING 3
811#define BRANCH_PREFIX 4
812#define FUSED_JCC_PADDING 5
fddf5b5b 813
47926f60 814/* Sizes. */
252b5132
RH
815#define CODE16 1
816#define SMALL 0
29b0f896 817#define SMALL16 (SMALL | CODE16)
252b5132 818#define BIG 2
29b0f896 819#define BIG16 (BIG | CODE16)
252b5132
RH
820
821#ifndef INLINE
822#ifdef __GNUC__
823#define INLINE __inline__
824#else
825#define INLINE
826#endif
827#endif
828
fddf5b5b
AM
829#define ENCODE_RELAX_STATE(type, size) \
830 ((relax_substateT) (((type) << 2) | (size)))
831#define TYPE_FROM_RELAX_STATE(s) \
832 ((s) >> 2)
833#define DISP_SIZE_FROM_RELAX_STATE(s) \
834 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
835
836/* This table is used by relax_frag to promote short jumps to long
837 ones where necessary. SMALL (short) jumps may be promoted to BIG
838 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
839 don't allow a short jump in a 32 bit code segment to be promoted to
840 a 16 bit offset jump because it's slower (requires data size
841 prefix), and doesn't work, unless the destination is in the bottom
842 64k of the code segment (The top 16 bits of eip are zeroed). */
843
844const relax_typeS md_relax_table[] =
845{
24eab124
AM
846 /* The fields are:
847 1) most positive reach of this state,
848 2) most negative reach of this state,
93c2a809 849 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 850 4) which index into the table to try if we can't fit into this one. */
252b5132 851
fddf5b5b 852 /* UNCOND_JUMP states. */
93c2a809
AM
853 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
855 /* dword jmp adds 4 bytes to frag:
856 0 extra opcode bytes, 4 displacement bytes. */
252b5132 857 {0, 0, 4, 0},
93c2a809
AM
858 /* word jmp adds 2 byte2 to frag:
859 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
860 {0, 0, 2, 0},
861
93c2a809
AM
862 /* COND_JUMP states. */
863 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
865 /* dword conditionals adds 5 bytes to frag:
866 1 extra opcode byte, 4 displacement bytes. */
867 {0, 0, 5, 0},
fddf5b5b 868 /* word conditionals add 3 bytes to frag:
93c2a809
AM
869 1 extra opcode byte, 2 displacement bytes. */
870 {0, 0, 3, 0},
871
872 /* COND_JUMP86 states. */
873 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
875 /* dword conditionals adds 5 bytes to frag:
876 1 extra opcode byte, 4 displacement bytes. */
877 {0, 0, 5, 0},
878 /* word conditionals add 4 bytes to frag:
879 1 displacement byte and a 3 byte long branch insn. */
880 {0, 0, 4, 0}
252b5132
RH
881};
882
9103f4f4
L
883static const arch_entry cpu_arch[] =
884{
89507696
JB
885 /* Do not replace the first two entries - i386_target_format()
886 relies on them being there in this order. */
8a2c8fef 887 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 888 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 889 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 890 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 891 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 892 CPU_NONE_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_I186_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_I286_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 898 CPU_I386_FLAGS, 0 },
8a2c8fef 899 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 900 CPU_I486_FLAGS, 0 },
8a2c8fef 901 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 902 CPU_I586_FLAGS, 0 },
8a2c8fef 903 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 904 CPU_I686_FLAGS, 0 },
8a2c8fef 905 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 906 CPU_I586_FLAGS, 0 },
8a2c8fef 907 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 908 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 909 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 910 CPU_P2_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 912 CPU_P3_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 914 CPU_P4_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 916 CPU_CORE_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 918 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 920 CPU_CORE_FLAGS, 1 },
8a2c8fef 921 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 922 CPU_CORE_FLAGS, 0 },
8a2c8fef 923 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 924 CPU_CORE2_FLAGS, 1 },
8a2c8fef 925 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 926 CPU_CORE2_FLAGS, 0 },
8a2c8fef 927 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 928 CPU_COREI7_FLAGS, 0 },
8a2c8fef 929 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 930 CPU_L1OM_FLAGS, 0 },
7a9068fe 931 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 932 CPU_K1OM_FLAGS, 0 },
81486035 933 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 934 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 935 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 936 CPU_K6_FLAGS, 0 },
8a2c8fef 937 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 938 CPU_K6_2_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 940 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 941 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 942 CPU_K8_FLAGS, 1 },
8a2c8fef 943 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 944 CPU_K8_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 946 CPU_K8_FLAGS, 0 },
8a2c8fef 947 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 948 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 949 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 950 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 951 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 952 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 953 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 954 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 955 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 956 CPU_BDVER4_FLAGS, 0 },
029f3522 957 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 958 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
959 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
960 CPU_ZNVER2_FLAGS, 0 },
7b458c12 961 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 962 CPU_BTVER1_FLAGS, 0 },
7b458c12 963 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 964 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 965 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_8087_FLAGS, 0 },
8a2c8fef 967 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_287_FLAGS, 0 },
8a2c8fef 969 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_387_FLAGS, 0 },
1848e567
L
971 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
972 CPU_687_FLAGS, 0 },
d871f3f4
L
973 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
974 CPU_CMOV_FLAGS, 0 },
975 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
976 CPU_FXSR_FLAGS, 0 },
8a2c8fef 977 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_MMX_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_SSE_FLAGS, 0 },
8a2c8fef 981 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_SSE2_FLAGS, 0 },
8a2c8fef 983 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_SSE3_FLAGS, 0 },
8a2c8fef 985 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 987 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 989 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 991 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 993 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_AVX_FLAGS, 0 },
6c30d220 995 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_AVX2_FLAGS, 0 },
43234a1e 997 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_AVX512F_FLAGS, 0 },
43234a1e 999 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_AVX512CD_FLAGS, 0 },
43234a1e 1001 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_AVX512ER_FLAGS, 0 },
43234a1e 1003 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 1005 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 1007 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 1009 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 1011 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_VMX_FLAGS, 0 },
8729a6f6 1013 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 1015 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_SMX_FLAGS, 0 },
8a2c8fef 1017 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 1019 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 1021 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 1022 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 1023 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 1025 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_AES_FLAGS, 0 },
8a2c8fef 1027 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 1029 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 1030 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 1031 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 1032 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 1033 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 1035 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_F16C_FLAGS, 0 },
6c30d220 1037 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_BMI2_FLAGS, 0 },
8a2c8fef 1039 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 1040 CPU_FMA_FLAGS, 0 },
8a2c8fef 1041 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 1042 CPU_FMA4_FLAGS, 0 },
8a2c8fef 1043 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 1044 CPU_XOP_FLAGS, 0 },
8a2c8fef 1045 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 1046 CPU_LWP_FLAGS, 0 },
8a2c8fef 1047 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 1048 CPU_MOVBE_FLAGS, 0 },
60aa667e 1049 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 1050 CPU_CX16_FLAGS, 0 },
8a2c8fef 1051 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 1052 CPU_EPT_FLAGS, 0 },
6c30d220 1053 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 1054 CPU_LZCNT_FLAGS, 0 },
42164a71 1055 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 1056 CPU_HLE_FLAGS, 0 },
42164a71 1057 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_RTM_FLAGS, 0 },
6c30d220 1059 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 1060 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 1061 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 1062 CPU_CLFLUSH_FLAGS, 0 },
22109423 1063 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 1064 CPU_NOP_FLAGS, 0 },
8a2c8fef 1065 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 1066 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 1067 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 1068 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1069 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1070 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1071 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1072 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1073 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1074 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1075 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1076 CPU_SVME_FLAGS, 1 },
8a2c8fef 1077 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1078 CPU_SVME_FLAGS, 0 },
8a2c8fef 1079 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1080 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1081 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1082 CPU_ABM_FLAGS, 0 },
87973e9f 1083 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1084 CPU_BMI_FLAGS, 0 },
2a2a0f38 1085 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1086 CPU_TBM_FLAGS, 0 },
e2e1fcde 1087 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1088 CPU_ADX_FLAGS, 0 },
e2e1fcde 1089 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1090 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1091 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1092 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1093 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1094 CPU_SMAP_FLAGS, 0 },
7e8b059b 1095 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1096 CPU_MPX_FLAGS, 0 },
a0046408 1097 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1098 CPU_SHA_FLAGS, 0 },
963f3586 1099 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1100 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1101 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1102 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1103 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1104 CPU_SE1_FLAGS, 0 },
c5e7287a 1105 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1106 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1107 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1108 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1109 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1110 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1111 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1112 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1113 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1114 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1115 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1116 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1117 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1118 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1119 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1120 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1121 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1122 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1123 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1124 CPU_CLZERO_FLAGS, 0 },
9916071f 1125 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1126 CPU_MWAITX_FLAGS, 0 },
8eab4136 1127 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1128 CPU_OSPKE_FLAGS, 0 },
8bc52696 1129 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1130 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1131 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1132 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1133 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1134 CPU_IBT_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1136 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1137 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1138 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1139 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1140 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1141 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1142 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1143 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1144 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1145 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1146 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1147 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1148 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1149 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1150 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1151 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1152 CPU_MOVDIRI_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1154 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1155 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1156 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1157 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1158 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1159 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1160 CPU_ENQCMD_FLAGS, 0 },
142861df
JB
1161 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1162 CPU_RDPRU_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1164 CPU_MCOMMIT_FLAGS, 0 },
293f5f65
L
1165};
1166
1167static const noarch_entry cpu_noarch[] =
1168{
1169 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1170 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1171 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1172 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1173 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1174 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1175 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1176 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1177 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1178 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1179 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1180 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1181 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1183 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1184 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1185 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1186 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1194 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1195 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1196 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1197 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1198 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1199 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1200 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1201 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1202 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1203 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1204 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1205 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1206 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1207};
1208
704209c0 1209#ifdef I386COFF
a6c24e68
NC
1210/* Like s_lcomm_internal in gas/read.c but the alignment string
1211 is allowed to be optional. */
1212
1213static symbolS *
1214pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1215{
1216 addressT align = 0;
1217
1218 SKIP_WHITESPACE ();
1219
7ab9ffdd 1220 if (needs_align
a6c24e68
NC
1221 && *input_line_pointer == ',')
1222 {
1223 align = parse_align (needs_align - 1);
7ab9ffdd 1224
a6c24e68
NC
1225 if (align == (addressT) -1)
1226 return NULL;
1227 }
1228 else
1229 {
1230 if (size >= 8)
1231 align = 3;
1232 else if (size >= 4)
1233 align = 2;
1234 else if (size >= 2)
1235 align = 1;
1236 else
1237 align = 0;
1238 }
1239
1240 bss_alloc (symbolP, size, align);
1241 return symbolP;
1242}
1243
704209c0 1244static void
a6c24e68
NC
1245pe_lcomm (int needs_align)
1246{
1247 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1248}
704209c0 1249#endif
a6c24e68 1250
29b0f896
AM
1251const pseudo_typeS md_pseudo_table[] =
1252{
1253#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1254 {"align", s_align_bytes, 0},
1255#else
1256 {"align", s_align_ptwo, 0},
1257#endif
1258 {"arch", set_cpu_arch, 0},
1259#ifndef I386COFF
1260 {"bss", s_bss, 0},
a6c24e68
NC
1261#else
1262 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1263#endif
1264 {"ffloat", float_cons, 'f'},
1265 {"dfloat", float_cons, 'd'},
1266 {"tfloat", float_cons, 'x'},
1267 {"value", cons, 2},
d182319b 1268 {"slong", signed_cons, 4},
29b0f896
AM
1269 {"noopt", s_ignore, 0},
1270 {"optim", s_ignore, 0},
1271 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1272 {"code16", set_code_flag, CODE_16BIT},
1273 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1274#ifdef BFD64
29b0f896 1275 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1276#endif
29b0f896
AM
1277 {"intel_syntax", set_intel_syntax, 1},
1278 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1279 {"intel_mnemonic", set_intel_mnemonic, 1},
1280 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1281 {"allow_index_reg", set_allow_index_reg, 1},
1282 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1283 {"sse_check", set_check, 0},
1284 {"operand_check", set_check, 1},
3b22753a
L
1285#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1286 {"largecomm", handle_large_common, 0},
07a53e5c 1287#else
68d20676 1288 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1289 {"loc", dwarf2_directive_loc, 0},
1290 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1291#endif
6482c264
NC
1292#ifdef TE_PE
1293 {"secrel32", pe_directive_secrel, 0},
1294#endif
29b0f896
AM
1295 {0, 0, 0}
1296};
1297
1298/* For interface with expression (). */
1299extern char *input_line_pointer;
1300
1301/* Hash table for instruction mnemonic lookup. */
1302static struct hash_control *op_hash;
1303
1304/* Hash table for register lookup. */
1305static struct hash_control *reg_hash;
1306\f
ce8a8b2f
AM
1307 /* Various efficient no-op patterns for aligning code labels.
1308 Note: Don't try to assemble the instructions in the comments.
1309 0L and 0w are not legal. */
62a02d25
L
1310static const unsigned char f32_1[] =
1311 {0x90}; /* nop */
1312static const unsigned char f32_2[] =
1313 {0x66,0x90}; /* xchg %ax,%ax */
1314static const unsigned char f32_3[] =
1315 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1316static const unsigned char f32_4[] =
1317 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1318static const unsigned char f32_6[] =
1319 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1320static const unsigned char f32_7[] =
1321 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1322static const unsigned char f16_3[] =
3ae729d5 1323 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1324static const unsigned char f16_4[] =
3ae729d5
L
1325 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1326static const unsigned char jump_disp8[] =
1327 {0xeb}; /* jmp disp8 */
1328static const unsigned char jump32_disp32[] =
1329 {0xe9}; /* jmp disp32 */
1330static const unsigned char jump16_disp32[] =
1331 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1332/* 32-bit NOPs patterns. */
1333static const unsigned char *const f32_patt[] = {
3ae729d5 1334 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1335};
1336/* 16-bit NOPs patterns. */
1337static const unsigned char *const f16_patt[] = {
3ae729d5 1338 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1339};
1340/* nopl (%[re]ax) */
1341static const unsigned char alt_3[] =
1342 {0x0f,0x1f,0x00};
1343/* nopl 0(%[re]ax) */
1344static const unsigned char alt_4[] =
1345 {0x0f,0x1f,0x40,0x00};
1346/* nopl 0(%[re]ax,%[re]ax,1) */
1347static const unsigned char alt_5[] =
1348 {0x0f,0x1f,0x44,0x00,0x00};
1349/* nopw 0(%[re]ax,%[re]ax,1) */
1350static const unsigned char alt_6[] =
1351 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1352/* nopl 0L(%[re]ax) */
1353static const unsigned char alt_7[] =
1354 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1355/* nopl 0L(%[re]ax,%[re]ax,1) */
1356static const unsigned char alt_8[] =
1357 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1358/* nopw 0L(%[re]ax,%[re]ax,1) */
1359static const unsigned char alt_9[] =
1360 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1361/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1362static const unsigned char alt_10[] =
1363 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1364/* data16 nopw %cs:0L(%eax,%eax,1) */
1365static const unsigned char alt_11[] =
1366 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1367/* 32-bit and 64-bit NOPs patterns. */
1368static const unsigned char *const alt_patt[] = {
1369 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1370 alt_9, alt_10, alt_11
62a02d25
L
1371};
1372
1373/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1374 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1375
1376static void
1377i386_output_nops (char *where, const unsigned char *const *patt,
1378 int count, int max_single_nop_size)
1379
1380{
3ae729d5
L
1381 /* Place the longer NOP first. */
1382 int last;
1383 int offset;
3076e594
NC
1384 const unsigned char *nops;
1385
1386 if (max_single_nop_size < 1)
1387 {
1388 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1389 max_single_nop_size);
1390 return;
1391 }
1392
1393 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1394
1395 /* Use the smaller one if the requsted one isn't available. */
1396 if (nops == NULL)
62a02d25 1397 {
3ae729d5
L
1398 max_single_nop_size--;
1399 nops = patt[max_single_nop_size - 1];
62a02d25
L
1400 }
1401
3ae729d5
L
1402 last = count % max_single_nop_size;
1403
1404 count -= last;
1405 for (offset = 0; offset < count; offset += max_single_nop_size)
1406 memcpy (where + offset, nops, max_single_nop_size);
1407
1408 if (last)
1409 {
1410 nops = patt[last - 1];
1411 if (nops == NULL)
1412 {
1413 /* Use the smaller one plus one-byte NOP if the needed one
1414 isn't available. */
1415 last--;
1416 nops = patt[last - 1];
1417 memcpy (where + offset, nops, last);
1418 where[offset + last] = *patt[0];
1419 }
1420 else
1421 memcpy (where + offset, nops, last);
1422 }
62a02d25
L
1423}
1424
3ae729d5
L
1425static INLINE int
1426fits_in_imm7 (offsetT num)
1427{
1428 return (num & 0x7f) == num;
1429}
1430
1431static INLINE int
1432fits_in_imm31 (offsetT num)
1433{
1434 return (num & 0x7fffffff) == num;
1435}
62a02d25
L
1436
1437/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1438 single NOP instruction LIMIT. */
1439
1440void
3ae729d5 1441i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1442{
3ae729d5 1443 const unsigned char *const *patt = NULL;
62a02d25 1444 int max_single_nop_size;
3ae729d5
L
1445 /* Maximum number of NOPs before switching to jump over NOPs. */
1446 int max_number_of_nops;
62a02d25 1447
3ae729d5 1448 switch (fragP->fr_type)
62a02d25 1449 {
3ae729d5
L
1450 case rs_fill_nop:
1451 case rs_align_code:
1452 break;
e379e5f3
L
1453 case rs_machine_dependent:
1454 /* Allow NOP padding for jumps and calls. */
1455 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1456 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1457 break;
1458 /* Fall through. */
3ae729d5 1459 default:
62a02d25
L
1460 return;
1461 }
1462
ccc9c027
L
1463 /* We need to decide which NOP sequence to use for 32bit and
1464 64bit. When -mtune= is used:
4eed87de 1465
76bc74dc
L
1466 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1467 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1468 2. For the rest, alt_patt will be used.
1469
1470 When -mtune= isn't used, alt_patt will be used if
22109423 1471 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1472 be used.
ccc9c027
L
1473
1474 When -march= or .arch is used, we can't use anything beyond
1475 cpu_arch_isa_flags. */
1476
1477 if (flag_code == CODE_16BIT)
1478 {
3ae729d5
L
1479 patt = f16_patt;
1480 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1481 /* Limit number of NOPs to 2 in 16-bit mode. */
1482 max_number_of_nops = 2;
252b5132 1483 }
33fef721 1484 else
ccc9c027 1485 {
fbf3f584 1486 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1487 {
1488 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1489 switch (cpu_arch_tune)
1490 {
1491 case PROCESSOR_UNKNOWN:
1492 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1493 optimize with nops. */
1494 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1495 patt = alt_patt;
ccc9c027
L
1496 else
1497 patt = f32_patt;
1498 break;
ccc9c027
L
1499 case PROCESSOR_PENTIUM4:
1500 case PROCESSOR_NOCONA:
ef05d495 1501 case PROCESSOR_CORE:
76bc74dc 1502 case PROCESSOR_CORE2:
bd5295b2 1503 case PROCESSOR_COREI7:
3632d14b 1504 case PROCESSOR_L1OM:
7a9068fe 1505 case PROCESSOR_K1OM:
76bc74dc 1506 case PROCESSOR_GENERIC64:
ccc9c027
L
1507 case PROCESSOR_K6:
1508 case PROCESSOR_ATHLON:
1509 case PROCESSOR_K8:
4eed87de 1510 case PROCESSOR_AMDFAM10:
8aedb9fe 1511 case PROCESSOR_BD:
029f3522 1512 case PROCESSOR_ZNVER:
7b458c12 1513 case PROCESSOR_BT:
80b8656c 1514 patt = alt_patt;
ccc9c027 1515 break;
76bc74dc 1516 case PROCESSOR_I386:
ccc9c027
L
1517 case PROCESSOR_I486:
1518 case PROCESSOR_PENTIUM:
2dde1948 1519 case PROCESSOR_PENTIUMPRO:
81486035 1520 case PROCESSOR_IAMCU:
ccc9c027
L
1521 case PROCESSOR_GENERIC32:
1522 patt = f32_patt;
1523 break;
4eed87de 1524 }
ccc9c027
L
1525 }
1526 else
1527 {
fbf3f584 1528 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1529 {
1530 case PROCESSOR_UNKNOWN:
e6a14101 1531 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1532 PROCESSOR_UNKNOWN. */
1533 abort ();
1534 break;
1535
76bc74dc 1536 case PROCESSOR_I386:
ccc9c027
L
1537 case PROCESSOR_I486:
1538 case PROCESSOR_PENTIUM:
81486035 1539 case PROCESSOR_IAMCU:
ccc9c027
L
1540 case PROCESSOR_K6:
1541 case PROCESSOR_ATHLON:
1542 case PROCESSOR_K8:
4eed87de 1543 case PROCESSOR_AMDFAM10:
8aedb9fe 1544 case PROCESSOR_BD:
029f3522 1545 case PROCESSOR_ZNVER:
7b458c12 1546 case PROCESSOR_BT:
ccc9c027
L
1547 case PROCESSOR_GENERIC32:
1548 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1549 with nops. */
1550 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1551 patt = alt_patt;
ccc9c027
L
1552 else
1553 patt = f32_patt;
1554 break;
76bc74dc
L
1555 case PROCESSOR_PENTIUMPRO:
1556 case PROCESSOR_PENTIUM4:
1557 case PROCESSOR_NOCONA:
1558 case PROCESSOR_CORE:
ef05d495 1559 case PROCESSOR_CORE2:
bd5295b2 1560 case PROCESSOR_COREI7:
3632d14b 1561 case PROCESSOR_L1OM:
7a9068fe 1562 case PROCESSOR_K1OM:
22109423 1563 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1564 patt = alt_patt;
ccc9c027
L
1565 else
1566 patt = f32_patt;
1567 break;
1568 case PROCESSOR_GENERIC64:
80b8656c 1569 patt = alt_patt;
ccc9c027 1570 break;
4eed87de 1571 }
ccc9c027
L
1572 }
1573
76bc74dc
L
1574 if (patt == f32_patt)
1575 {
3ae729d5
L
1576 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1577 /* Limit number of NOPs to 2 for older processors. */
1578 max_number_of_nops = 2;
76bc74dc
L
1579 }
1580 else
1581 {
3ae729d5
L
1582 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1583 /* Limit number of NOPs to 7 for newer processors. */
1584 max_number_of_nops = 7;
1585 }
1586 }
1587
1588 if (limit == 0)
1589 limit = max_single_nop_size;
1590
1591 if (fragP->fr_type == rs_fill_nop)
1592 {
1593 /* Output NOPs for .nop directive. */
1594 if (limit > max_single_nop_size)
1595 {
1596 as_bad_where (fragP->fr_file, fragP->fr_line,
1597 _("invalid single nop size: %d "
1598 "(expect within [0, %d])"),
1599 limit, max_single_nop_size);
1600 return;
1601 }
1602 }
e379e5f3 1603 else if (fragP->fr_type != rs_machine_dependent)
3ae729d5
L
1604 fragP->fr_var = count;
1605
1606 if ((count / max_single_nop_size) > max_number_of_nops)
1607 {
1608 /* Generate jump over NOPs. */
1609 offsetT disp = count - 2;
1610 if (fits_in_imm7 (disp))
1611 {
1612 /* Use "jmp disp8" if possible. */
1613 count = disp;
1614 where[0] = jump_disp8[0];
1615 where[1] = count;
1616 where += 2;
1617 }
1618 else
1619 {
1620 unsigned int size_of_jump;
1621
1622 if (flag_code == CODE_16BIT)
1623 {
1624 where[0] = jump16_disp32[0];
1625 where[1] = jump16_disp32[1];
1626 size_of_jump = 2;
1627 }
1628 else
1629 {
1630 where[0] = jump32_disp32[0];
1631 size_of_jump = 1;
1632 }
1633
1634 count -= size_of_jump + 4;
1635 if (!fits_in_imm31 (count))
1636 {
1637 as_bad_where (fragP->fr_file, fragP->fr_line,
1638 _("jump over nop padding out of range"));
1639 return;
1640 }
1641
1642 md_number_to_chars (where + size_of_jump, count, 4);
1643 where += size_of_jump + 4;
76bc74dc 1644 }
ccc9c027 1645 }
3ae729d5
L
1646
1647 /* Generate multiple NOPs. */
1648 i386_output_nops (where, patt, count, limit);
252b5132
RH
1649}
1650
c6fb90c8 1651static INLINE int
0dfbf9d7 1652operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1653{
0dfbf9d7 1654 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1655 {
1656 case 3:
0dfbf9d7 1657 if (x->array[2])
c6fb90c8 1658 return 0;
1a0670f3 1659 /* Fall through. */
c6fb90c8 1660 case 2:
0dfbf9d7 1661 if (x->array[1])
c6fb90c8 1662 return 0;
1a0670f3 1663 /* Fall through. */
c6fb90c8 1664 case 1:
0dfbf9d7 1665 return !x->array[0];
c6fb90c8
L
1666 default:
1667 abort ();
1668 }
40fb9820
L
1669}
1670
c6fb90c8 1671static INLINE void
0dfbf9d7 1672operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1673{
0dfbf9d7 1674 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1675 {
1676 case 3:
0dfbf9d7 1677 x->array[2] = v;
1a0670f3 1678 /* Fall through. */
c6fb90c8 1679 case 2:
0dfbf9d7 1680 x->array[1] = v;
1a0670f3 1681 /* Fall through. */
c6fb90c8 1682 case 1:
0dfbf9d7 1683 x->array[0] = v;
1a0670f3 1684 /* Fall through. */
c6fb90c8
L
1685 break;
1686 default:
1687 abort ();
1688 }
bab6aec1
JB
1689
1690 x->bitfield.class = ClassNone;
75e5731b 1691 x->bitfield.instance = InstanceNone;
c6fb90c8 1692}
40fb9820 1693
c6fb90c8 1694static INLINE int
0dfbf9d7
L
1695operand_type_equal (const union i386_operand_type *x,
1696 const union i386_operand_type *y)
c6fb90c8 1697{
0dfbf9d7 1698 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1699 {
1700 case 3:
0dfbf9d7 1701 if (x->array[2] != y->array[2])
c6fb90c8 1702 return 0;
1a0670f3 1703 /* Fall through. */
c6fb90c8 1704 case 2:
0dfbf9d7 1705 if (x->array[1] != y->array[1])
c6fb90c8 1706 return 0;
1a0670f3 1707 /* Fall through. */
c6fb90c8 1708 case 1:
0dfbf9d7 1709 return x->array[0] == y->array[0];
c6fb90c8
L
1710 break;
1711 default:
1712 abort ();
1713 }
1714}
40fb9820 1715
0dfbf9d7
L
1716static INLINE int
1717cpu_flags_all_zero (const union i386_cpu_flags *x)
1718{
1719 switch (ARRAY_SIZE(x->array))
1720 {
53467f57
IT
1721 case 4:
1722 if (x->array[3])
1723 return 0;
1724 /* Fall through. */
0dfbf9d7
L
1725 case 3:
1726 if (x->array[2])
1727 return 0;
1a0670f3 1728 /* Fall through. */
0dfbf9d7
L
1729 case 2:
1730 if (x->array[1])
1731 return 0;
1a0670f3 1732 /* Fall through. */
0dfbf9d7
L
1733 case 1:
1734 return !x->array[0];
1735 default:
1736 abort ();
1737 }
1738}
1739
0dfbf9d7
L
1740static INLINE int
1741cpu_flags_equal (const union i386_cpu_flags *x,
1742 const union i386_cpu_flags *y)
1743{
1744 switch (ARRAY_SIZE(x->array))
1745 {
53467f57
IT
1746 case 4:
1747 if (x->array[3] != y->array[3])
1748 return 0;
1749 /* Fall through. */
0dfbf9d7
L
1750 case 3:
1751 if (x->array[2] != y->array[2])
1752 return 0;
1a0670f3 1753 /* Fall through. */
0dfbf9d7
L
1754 case 2:
1755 if (x->array[1] != y->array[1])
1756 return 0;
1a0670f3 1757 /* Fall through. */
0dfbf9d7
L
1758 case 1:
1759 return x->array[0] == y->array[0];
1760 break;
1761 default:
1762 abort ();
1763 }
1764}
c6fb90c8
L
1765
1766static INLINE int
1767cpu_flags_check_cpu64 (i386_cpu_flags f)
1768{
1769 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1770 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1771}
1772
c6fb90c8
L
1773static INLINE i386_cpu_flags
1774cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1775{
c6fb90c8
L
1776 switch (ARRAY_SIZE (x.array))
1777 {
53467f57
IT
1778 case 4:
1779 x.array [3] &= y.array [3];
1780 /* Fall through. */
c6fb90c8
L
1781 case 3:
1782 x.array [2] &= y.array [2];
1a0670f3 1783 /* Fall through. */
c6fb90c8
L
1784 case 2:
1785 x.array [1] &= y.array [1];
1a0670f3 1786 /* Fall through. */
c6fb90c8
L
1787 case 1:
1788 x.array [0] &= y.array [0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793 return x;
1794}
40fb9820 1795
c6fb90c8
L
1796static INLINE i386_cpu_flags
1797cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1798{
c6fb90c8 1799 switch (ARRAY_SIZE (x.array))
40fb9820 1800 {
53467f57
IT
1801 case 4:
1802 x.array [3] |= y.array [3];
1803 /* Fall through. */
c6fb90c8
L
1804 case 3:
1805 x.array [2] |= y.array [2];
1a0670f3 1806 /* Fall through. */
c6fb90c8
L
1807 case 2:
1808 x.array [1] |= y.array [1];
1a0670f3 1809 /* Fall through. */
c6fb90c8
L
1810 case 1:
1811 x.array [0] |= y.array [0];
40fb9820
L
1812 break;
1813 default:
1814 abort ();
1815 }
40fb9820
L
1816 return x;
1817}
1818
309d3373
JB
1819static INLINE i386_cpu_flags
1820cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1821{
1822 switch (ARRAY_SIZE (x.array))
1823 {
53467f57
IT
1824 case 4:
1825 x.array [3] &= ~y.array [3];
1826 /* Fall through. */
309d3373
JB
1827 case 3:
1828 x.array [2] &= ~y.array [2];
1a0670f3 1829 /* Fall through. */
309d3373
JB
1830 case 2:
1831 x.array [1] &= ~y.array [1];
1a0670f3 1832 /* Fall through. */
309d3373
JB
1833 case 1:
1834 x.array [0] &= ~y.array [0];
1835 break;
1836 default:
1837 abort ();
1838 }
1839 return x;
1840}
1841
c0f3af97
L
1842#define CPU_FLAGS_ARCH_MATCH 0x1
1843#define CPU_FLAGS_64BIT_MATCH 0x2
1844
c0f3af97 1845#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1846 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1847
1848/* Return CPU flags match bits. */
3629bb00 1849
40fb9820 1850static int
d3ce72d0 1851cpu_flags_match (const insn_template *t)
40fb9820 1852{
c0f3af97
L
1853 i386_cpu_flags x = t->cpu_flags;
1854 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1855
1856 x.bitfield.cpu64 = 0;
1857 x.bitfield.cpuno64 = 0;
1858
0dfbf9d7 1859 if (cpu_flags_all_zero (&x))
c0f3af97
L
1860 {
1861 /* This instruction is available on all archs. */
db12e14e 1862 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1863 }
3629bb00
L
1864 else
1865 {
c0f3af97 1866 /* This instruction is available only on some archs. */
3629bb00
L
1867 i386_cpu_flags cpu = cpu_arch_flags;
1868
ab592e75
JB
1869 /* AVX512VL is no standalone feature - match it and then strip it. */
1870 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1871 return match;
1872 x.bitfield.cpuavx512vl = 0;
1873
3629bb00 1874 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1875 if (!cpu_flags_all_zero (&cpu))
1876 {
a5ff0eb2
L
1877 if (x.bitfield.cpuavx)
1878 {
929f69fa 1879 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1880 if (cpu.bitfield.cpuavx
1881 && (!t->opcode_modifier.sse2avx || sse2avx)
1882 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1883 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1884 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1885 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1886 }
929f69fa
JB
1887 else if (x.bitfield.cpuavx512f)
1888 {
1889 /* We need to check a few extra flags with AVX512F. */
1890 if (cpu.bitfield.cpuavx512f
1891 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1892 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1893 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1894 match |= CPU_FLAGS_ARCH_MATCH;
1895 }
a5ff0eb2 1896 else
db12e14e 1897 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1898 }
3629bb00 1899 }
c0f3af97 1900 return match;
40fb9820
L
1901}
1902
c6fb90c8
L
1903static INLINE i386_operand_type
1904operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1905{
bab6aec1
JB
1906 if (x.bitfield.class != y.bitfield.class)
1907 x.bitfield.class = ClassNone;
75e5731b
JB
1908 if (x.bitfield.instance != y.bitfield.instance)
1909 x.bitfield.instance = InstanceNone;
bab6aec1 1910
c6fb90c8
L
1911 switch (ARRAY_SIZE (x.array))
1912 {
1913 case 3:
1914 x.array [2] &= y.array [2];
1a0670f3 1915 /* Fall through. */
c6fb90c8
L
1916 case 2:
1917 x.array [1] &= y.array [1];
1a0670f3 1918 /* Fall through. */
c6fb90c8
L
1919 case 1:
1920 x.array [0] &= y.array [0];
1921 break;
1922 default:
1923 abort ();
1924 }
1925 return x;
40fb9820
L
1926}
1927
73053c1f
JB
1928static INLINE i386_operand_type
1929operand_type_and_not (i386_operand_type x, i386_operand_type y)
1930{
bab6aec1 1931 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1932 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1933
73053c1f
JB
1934 switch (ARRAY_SIZE (x.array))
1935 {
1936 case 3:
1937 x.array [2] &= ~y.array [2];
1938 /* Fall through. */
1939 case 2:
1940 x.array [1] &= ~y.array [1];
1941 /* Fall through. */
1942 case 1:
1943 x.array [0] &= ~y.array [0];
1944 break;
1945 default:
1946 abort ();
1947 }
1948 return x;
1949}
1950
c6fb90c8
L
1951static INLINE i386_operand_type
1952operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1953{
bab6aec1
JB
1954 gas_assert (x.bitfield.class == ClassNone ||
1955 y.bitfield.class == ClassNone ||
1956 x.bitfield.class == y.bitfield.class);
75e5731b
JB
1957 gas_assert (x.bitfield.instance == InstanceNone ||
1958 y.bitfield.instance == InstanceNone ||
1959 x.bitfield.instance == y.bitfield.instance);
bab6aec1 1960
c6fb90c8 1961 switch (ARRAY_SIZE (x.array))
40fb9820 1962 {
c6fb90c8
L
1963 case 3:
1964 x.array [2] |= y.array [2];
1a0670f3 1965 /* Fall through. */
c6fb90c8
L
1966 case 2:
1967 x.array [1] |= y.array [1];
1a0670f3 1968 /* Fall through. */
c6fb90c8
L
1969 case 1:
1970 x.array [0] |= y.array [0];
40fb9820
L
1971 break;
1972 default:
1973 abort ();
1974 }
c6fb90c8
L
1975 return x;
1976}
40fb9820 1977
c6fb90c8
L
1978static INLINE i386_operand_type
1979operand_type_xor (i386_operand_type x, i386_operand_type y)
1980{
bab6aec1 1981 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1982 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1983
c6fb90c8
L
1984 switch (ARRAY_SIZE (x.array))
1985 {
1986 case 3:
1987 x.array [2] ^= y.array [2];
1a0670f3 1988 /* Fall through. */
c6fb90c8
L
1989 case 2:
1990 x.array [1] ^= y.array [1];
1a0670f3 1991 /* Fall through. */
c6fb90c8
L
1992 case 1:
1993 x.array [0] ^= y.array [0];
1994 break;
1995 default:
1996 abort ();
1997 }
40fb9820
L
1998 return x;
1999}
2000
40fb9820
L
2001static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2002static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2003static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2004static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
bab6aec1
JB
2005static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2006static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
40fb9820 2007static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 2008static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
2009static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2010static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2011static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2012static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2013static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2014static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2015static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2016static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2017static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2018
2019enum operand_type
2020{
2021 reg,
40fb9820
L
2022 imm,
2023 disp,
2024 anymem
2025};
2026
c6fb90c8 2027static INLINE int
40fb9820
L
2028operand_type_check (i386_operand_type t, enum operand_type c)
2029{
2030 switch (c)
2031 {
2032 case reg:
bab6aec1 2033 return t.bitfield.class == Reg;
40fb9820 2034
40fb9820
L
2035 case imm:
2036 return (t.bitfield.imm8
2037 || t.bitfield.imm8s
2038 || t.bitfield.imm16
2039 || t.bitfield.imm32
2040 || t.bitfield.imm32s
2041 || t.bitfield.imm64);
2042
2043 case disp:
2044 return (t.bitfield.disp8
2045 || t.bitfield.disp16
2046 || t.bitfield.disp32
2047 || t.bitfield.disp32s
2048 || t.bitfield.disp64);
2049
2050 case anymem:
2051 return (t.bitfield.disp8
2052 || t.bitfield.disp16
2053 || t.bitfield.disp32
2054 || t.bitfield.disp32s
2055 || t.bitfield.disp64
2056 || t.bitfield.baseindex);
2057
2058 default:
2059 abort ();
2060 }
2cfe26b6
AM
2061
2062 return 0;
40fb9820
L
2063}
2064
7a54636a
L
2065/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2066 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
2067
2068static INLINE int
7a54636a
L
2069match_operand_size (const insn_template *t, unsigned int wanted,
2070 unsigned int given)
5c07affc 2071{
3ac21baa
JB
2072 return !((i.types[given].bitfield.byte
2073 && !t->operand_types[wanted].bitfield.byte)
2074 || (i.types[given].bitfield.word
2075 && !t->operand_types[wanted].bitfield.word)
2076 || (i.types[given].bitfield.dword
2077 && !t->operand_types[wanted].bitfield.dword)
2078 || (i.types[given].bitfield.qword
2079 && !t->operand_types[wanted].bitfield.qword)
2080 || (i.types[given].bitfield.tbyte
2081 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
2082}
2083
dd40ce22
L
2084/* Return 1 if there is no conflict in SIMD register between operand
2085 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2086
2087static INLINE int
dd40ce22
L
2088match_simd_size (const insn_template *t, unsigned int wanted,
2089 unsigned int given)
1b54b8d7 2090{
3ac21baa
JB
2091 return !((i.types[given].bitfield.xmmword
2092 && !t->operand_types[wanted].bitfield.xmmword)
2093 || (i.types[given].bitfield.ymmword
2094 && !t->operand_types[wanted].bitfield.ymmword)
2095 || (i.types[given].bitfield.zmmword
2096 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
2097}
2098
7a54636a
L
2099/* Return 1 if there is no conflict in any size between operand GIVEN
2100 and opeand WANTED for instruction template T. */
5c07affc
L
2101
2102static INLINE int
dd40ce22
L
2103match_mem_size (const insn_template *t, unsigned int wanted,
2104 unsigned int given)
5c07affc 2105{
7a54636a 2106 return (match_operand_size (t, wanted, given)
3ac21baa 2107 && !((i.types[given].bitfield.unspecified
af508cb9 2108 && !i.broadcast
3ac21baa
JB
2109 && !t->operand_types[wanted].bitfield.unspecified)
2110 || (i.types[given].bitfield.fword
2111 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2112 /* For scalar opcode templates to allow register and memory
2113 operands at the same time, some special casing is needed
d6793fa1
JB
2114 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2115 down-conversion vpmov*. */
3528c362 2116 || ((t->operand_types[wanted].bitfield.class == RegSIMD
1b54b8d7 2117 && !t->opcode_modifier.broadcast
3ac21baa
JB
2118 && (t->operand_types[wanted].bitfield.byte
2119 || t->operand_types[wanted].bitfield.word
2120 || t->operand_types[wanted].bitfield.dword
2121 || t->operand_types[wanted].bitfield.qword))
2122 ? (i.types[given].bitfield.xmmword
2123 || i.types[given].bitfield.ymmword
2124 || i.types[given].bitfield.zmmword)
2125 : !match_simd_size(t, wanted, given))));
5c07affc
L
2126}
2127
3ac21baa
JB
2128/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2129 operands for instruction template T, and it has MATCH_REVERSE set if there
2130 is no size conflict on any operands for the template with operands reversed
2131 (and the template allows for reversing in the first place). */
5c07affc 2132
3ac21baa
JB
2133#define MATCH_STRAIGHT 1
2134#define MATCH_REVERSE 2
2135
2136static INLINE unsigned int
d3ce72d0 2137operand_size_match (const insn_template *t)
5c07affc 2138{
3ac21baa 2139 unsigned int j, match = MATCH_STRAIGHT;
5c07affc 2140
0cfa3eb3 2141 /* Don't check non-absolute jump instructions. */
5c07affc 2142 if (t->opcode_modifier.jump
0cfa3eb3 2143 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5c07affc
L
2144 return match;
2145
2146 /* Check memory and accumulator operand size. */
2147 for (j = 0; j < i.operands; j++)
2148 {
3528c362
JB
2149 if (i.types[j].bitfield.class != Reg
2150 && i.types[j].bitfield.class != RegSIMD
601e8564 2151 && t->opcode_modifier.anysize)
5c07affc
L
2152 continue;
2153
bab6aec1 2154 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2155 && !match_operand_size (t, j, j))
5c07affc
L
2156 {
2157 match = 0;
2158 break;
2159 }
2160
3528c362 2161 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2162 && !match_simd_size (t, j, j))
1b54b8d7
JB
2163 {
2164 match = 0;
2165 break;
2166 }
2167
75e5731b 2168 if (t->operand_types[j].bitfield.instance == Accum
7a54636a 2169 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2170 {
2171 match = 0;
2172 break;
2173 }
2174
c48dadc9 2175 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2176 {
2177 match = 0;
2178 break;
2179 }
2180 }
2181
3ac21baa 2182 if (!t->opcode_modifier.d)
891edac4
L
2183 {
2184mismatch:
3ac21baa
JB
2185 if (!match)
2186 i.error = operand_size_mismatch;
2187 return match;
891edac4 2188 }
5c07affc
L
2189
2190 /* Check reverse. */
f5eb1d70 2191 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2192
f5eb1d70 2193 for (j = 0; j < i.operands; j++)
5c07affc 2194 {
f5eb1d70
JB
2195 unsigned int given = i.operands - j - 1;
2196
bab6aec1 2197 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2198 && !match_operand_size (t, j, given))
891edac4 2199 goto mismatch;
5c07affc 2200
3528c362 2201 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2202 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2203 goto mismatch;
2204
75e5731b 2205 if (t->operand_types[j].bitfield.instance == Accum
f5eb1d70
JB
2206 && (!match_operand_size (t, j, given)
2207 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2208 goto mismatch;
2209
f5eb1d70 2210 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2211 goto mismatch;
5c07affc
L
2212 }
2213
3ac21baa 2214 return match | MATCH_REVERSE;
5c07affc
L
2215}
2216
c6fb90c8 2217static INLINE int
40fb9820
L
2218operand_type_match (i386_operand_type overlap,
2219 i386_operand_type given)
2220{
2221 i386_operand_type temp = overlap;
2222
7d5e4556 2223 temp.bitfield.unspecified = 0;
5c07affc
L
2224 temp.bitfield.byte = 0;
2225 temp.bitfield.word = 0;
2226 temp.bitfield.dword = 0;
2227 temp.bitfield.fword = 0;
2228 temp.bitfield.qword = 0;
2229 temp.bitfield.tbyte = 0;
2230 temp.bitfield.xmmword = 0;
c0f3af97 2231 temp.bitfield.ymmword = 0;
43234a1e 2232 temp.bitfield.zmmword = 0;
0dfbf9d7 2233 if (operand_type_all_zero (&temp))
891edac4 2234 goto mismatch;
40fb9820 2235
6f2f06be 2236 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
891edac4
L
2237 return 1;
2238
2239mismatch:
a65babc9 2240 i.error = operand_type_mismatch;
891edac4 2241 return 0;
40fb9820
L
2242}
2243
7d5e4556 2244/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2245 unless the expected operand type register overlap is null.
2246 Memory operand size of certain SIMD instructions is also being checked
2247 here. */
40fb9820 2248
c6fb90c8 2249static INLINE int
dc821c5f 2250operand_type_register_match (i386_operand_type g0,
40fb9820 2251 i386_operand_type t0,
40fb9820
L
2252 i386_operand_type g1,
2253 i386_operand_type t1)
2254{
bab6aec1 2255 if (g0.bitfield.class != Reg
3528c362 2256 && g0.bitfield.class != RegSIMD
10c17abd
JB
2257 && (!operand_type_check (g0, anymem)
2258 || g0.bitfield.unspecified
3528c362 2259 || t0.bitfield.class != RegSIMD))
40fb9820
L
2260 return 1;
2261
bab6aec1 2262 if (g1.bitfield.class != Reg
3528c362 2263 && g1.bitfield.class != RegSIMD
10c17abd
JB
2264 && (!operand_type_check (g1, anymem)
2265 || g1.bitfield.unspecified
3528c362 2266 || t1.bitfield.class != RegSIMD))
40fb9820
L
2267 return 1;
2268
dc821c5f
JB
2269 if (g0.bitfield.byte == g1.bitfield.byte
2270 && g0.bitfield.word == g1.bitfield.word
2271 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2272 && g0.bitfield.qword == g1.bitfield.qword
2273 && g0.bitfield.xmmword == g1.bitfield.xmmword
2274 && g0.bitfield.ymmword == g1.bitfield.ymmword
2275 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2276 return 1;
2277
dc821c5f
JB
2278 if (!(t0.bitfield.byte & t1.bitfield.byte)
2279 && !(t0.bitfield.word & t1.bitfield.word)
2280 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2281 && !(t0.bitfield.qword & t1.bitfield.qword)
2282 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2283 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2284 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2285 return 1;
2286
a65babc9 2287 i.error = register_type_mismatch;
891edac4
L
2288
2289 return 0;
40fb9820
L
2290}
2291
4c692bc7
JB
2292static INLINE unsigned int
2293register_number (const reg_entry *r)
2294{
2295 unsigned int nr = r->reg_num;
2296
2297 if (r->reg_flags & RegRex)
2298 nr += 8;
2299
200cbe0f
L
2300 if (r->reg_flags & RegVRex)
2301 nr += 16;
2302
4c692bc7
JB
2303 return nr;
2304}
2305
252b5132 2306static INLINE unsigned int
40fb9820 2307mode_from_disp_size (i386_operand_type t)
252b5132 2308{
b5014f7a 2309 if (t.bitfield.disp8)
40fb9820
L
2310 return 1;
2311 else if (t.bitfield.disp16
2312 || t.bitfield.disp32
2313 || t.bitfield.disp32s)
2314 return 2;
2315 else
2316 return 0;
252b5132
RH
2317}
2318
2319static INLINE int
65879393 2320fits_in_signed_byte (addressT num)
252b5132 2321{
65879393 2322 return num + 0x80 <= 0xff;
47926f60 2323}
252b5132
RH
2324
2325static INLINE int
65879393 2326fits_in_unsigned_byte (addressT num)
252b5132 2327{
65879393 2328 return num <= 0xff;
47926f60 2329}
252b5132
RH
2330
2331static INLINE int
65879393 2332fits_in_unsigned_word (addressT num)
252b5132 2333{
65879393 2334 return num <= 0xffff;
47926f60 2335}
252b5132
RH
2336
2337static INLINE int
65879393 2338fits_in_signed_word (addressT num)
252b5132 2339{
65879393 2340 return num + 0x8000 <= 0xffff;
47926f60 2341}
2a962e6d 2342
3e73aa7c 2343static INLINE int
65879393 2344fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2345{
2346#ifndef BFD64
2347 return 1;
2348#else
65879393 2349 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2350#endif
2351} /* fits_in_signed_long() */
2a962e6d 2352
3e73aa7c 2353static INLINE int
65879393 2354fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2355{
2356#ifndef BFD64
2357 return 1;
2358#else
65879393 2359 return num <= 0xffffffff;
3e73aa7c
JH
2360#endif
2361} /* fits_in_unsigned_long() */
252b5132 2362
43234a1e 2363static INLINE int
b5014f7a 2364fits_in_disp8 (offsetT num)
43234a1e
L
2365{
2366 int shift = i.memshift;
2367 unsigned int mask;
2368
2369 if (shift == -1)
2370 abort ();
2371
2372 mask = (1 << shift) - 1;
2373
2374 /* Return 0 if NUM isn't properly aligned. */
2375 if ((num & mask))
2376 return 0;
2377
2378 /* Check if NUM will fit in 8bit after shift. */
2379 return fits_in_signed_byte (num >> shift);
2380}
2381
a683cc34
SP
2382static INLINE int
2383fits_in_imm4 (offsetT num)
2384{
2385 return (num & 0xf) == num;
2386}
2387
40fb9820 2388static i386_operand_type
e3bb37b5 2389smallest_imm_type (offsetT num)
252b5132 2390{
40fb9820 2391 i386_operand_type t;
7ab9ffdd 2392
0dfbf9d7 2393 operand_type_set (&t, 0);
40fb9820
L
2394 t.bitfield.imm64 = 1;
2395
2396 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2397 {
2398 /* This code is disabled on the 486 because all the Imm1 forms
2399 in the opcode table are slower on the i486. They're the
2400 versions with the implicitly specified single-position
2401 displacement, which has another syntax if you really want to
2402 use that form. */
40fb9820
L
2403 t.bitfield.imm1 = 1;
2404 t.bitfield.imm8 = 1;
2405 t.bitfield.imm8s = 1;
2406 t.bitfield.imm16 = 1;
2407 t.bitfield.imm32 = 1;
2408 t.bitfield.imm32s = 1;
2409 }
2410 else if (fits_in_signed_byte (num))
2411 {
2412 t.bitfield.imm8 = 1;
2413 t.bitfield.imm8s = 1;
2414 t.bitfield.imm16 = 1;
2415 t.bitfield.imm32 = 1;
2416 t.bitfield.imm32s = 1;
2417 }
2418 else if (fits_in_unsigned_byte (num))
2419 {
2420 t.bitfield.imm8 = 1;
2421 t.bitfield.imm16 = 1;
2422 t.bitfield.imm32 = 1;
2423 t.bitfield.imm32s = 1;
2424 }
2425 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2426 {
2427 t.bitfield.imm16 = 1;
2428 t.bitfield.imm32 = 1;
2429 t.bitfield.imm32s = 1;
2430 }
2431 else if (fits_in_signed_long (num))
2432 {
2433 t.bitfield.imm32 = 1;
2434 t.bitfield.imm32s = 1;
2435 }
2436 else if (fits_in_unsigned_long (num))
2437 t.bitfield.imm32 = 1;
2438
2439 return t;
47926f60 2440}
252b5132 2441
847f7ad4 2442static offsetT
e3bb37b5 2443offset_in_range (offsetT val, int size)
847f7ad4 2444{
508866be 2445 addressT mask;
ba2adb93 2446
847f7ad4
AM
2447 switch (size)
2448 {
508866be
L
2449 case 1: mask = ((addressT) 1 << 8) - 1; break;
2450 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2451 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2452#ifdef BFD64
2453 case 8: mask = ((addressT) 2 << 63) - 1; break;
2454#endif
47926f60 2455 default: abort ();
847f7ad4
AM
2456 }
2457
9de868bf
L
2458#ifdef BFD64
2459 /* If BFD64, sign extend val for 32bit address mode. */
2460 if (flag_code != CODE_64BIT
2461 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2462 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2463 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2464#endif
ba2adb93 2465
47926f60 2466 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2467 {
2468 char buf1[40], buf2[40];
2469
2470 sprint_value (buf1, val);
2471 sprint_value (buf2, val & mask);
2472 as_warn (_("%s shortened to %s"), buf1, buf2);
2473 }
2474 return val & mask;
2475}
2476
c32fa91d
L
2477enum PREFIX_GROUP
2478{
2479 PREFIX_EXIST = 0,
2480 PREFIX_LOCK,
2481 PREFIX_REP,
04ef582a 2482 PREFIX_DS,
c32fa91d
L
2483 PREFIX_OTHER
2484};
2485
2486/* Returns
2487 a. PREFIX_EXIST if attempting to add a prefix where one from the
2488 same class already exists.
2489 b. PREFIX_LOCK if lock prefix is added.
2490 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2491 d. PREFIX_DS if ds prefix is added.
2492 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2493 */
2494
2495static enum PREFIX_GROUP
e3bb37b5 2496add_prefix (unsigned int prefix)
252b5132 2497{
c32fa91d 2498 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2499 unsigned int q;
252b5132 2500
29b0f896
AM
2501 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2502 && flag_code == CODE_64BIT)
b1905489 2503 {
161a04f6 2504 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2505 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2506 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2507 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2508 ret = PREFIX_EXIST;
b1905489
JB
2509 q = REX_PREFIX;
2510 }
3e73aa7c 2511 else
b1905489
JB
2512 {
2513 switch (prefix)
2514 {
2515 default:
2516 abort ();
2517
b1905489 2518 case DS_PREFIX_OPCODE:
04ef582a
L
2519 ret = PREFIX_DS;
2520 /* Fall through. */
2521 case CS_PREFIX_OPCODE:
b1905489
JB
2522 case ES_PREFIX_OPCODE:
2523 case FS_PREFIX_OPCODE:
2524 case GS_PREFIX_OPCODE:
2525 case SS_PREFIX_OPCODE:
2526 q = SEG_PREFIX;
2527 break;
2528
2529 case REPNE_PREFIX_OPCODE:
2530 case REPE_PREFIX_OPCODE:
c32fa91d
L
2531 q = REP_PREFIX;
2532 ret = PREFIX_REP;
2533 break;
2534
b1905489 2535 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2536 q = LOCK_PREFIX;
2537 ret = PREFIX_LOCK;
b1905489
JB
2538 break;
2539
2540 case FWAIT_OPCODE:
2541 q = WAIT_PREFIX;
2542 break;
2543
2544 case ADDR_PREFIX_OPCODE:
2545 q = ADDR_PREFIX;
2546 break;
2547
2548 case DATA_PREFIX_OPCODE:
2549 q = DATA_PREFIX;
2550 break;
2551 }
2552 if (i.prefix[q] != 0)
c32fa91d 2553 ret = PREFIX_EXIST;
b1905489 2554 }
252b5132 2555
b1905489 2556 if (ret)
252b5132 2557 {
b1905489
JB
2558 if (!i.prefix[q])
2559 ++i.prefixes;
2560 i.prefix[q] |= prefix;
252b5132 2561 }
b1905489
JB
2562 else
2563 as_bad (_("same type of prefix used twice"));
252b5132 2564
252b5132
RH
2565 return ret;
2566}
2567
2568static void
78f12dd3 2569update_code_flag (int value, int check)
eecb386c 2570{
78f12dd3
L
2571 PRINTF_LIKE ((*as_error));
2572
1e9cc1c2 2573 flag_code = (enum flag_code) value;
40fb9820
L
2574 if (flag_code == CODE_64BIT)
2575 {
2576 cpu_arch_flags.bitfield.cpu64 = 1;
2577 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2578 }
2579 else
2580 {
2581 cpu_arch_flags.bitfield.cpu64 = 0;
2582 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2583 }
2584 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2585 {
78f12dd3
L
2586 if (check)
2587 as_error = as_fatal;
2588 else
2589 as_error = as_bad;
2590 (*as_error) (_("64bit mode not supported on `%s'."),
2591 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2592 }
40fb9820 2593 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2594 {
78f12dd3
L
2595 if (check)
2596 as_error = as_fatal;
2597 else
2598 as_error = as_bad;
2599 (*as_error) (_("32bit mode not supported on `%s'."),
2600 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2601 }
eecb386c
AM
2602 stackop_size = '\0';
2603}
2604
78f12dd3
L
2605static void
2606set_code_flag (int value)
2607{
2608 update_code_flag (value, 0);
2609}
2610
eecb386c 2611static void
e3bb37b5 2612set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2613{
1e9cc1c2 2614 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2615 if (flag_code != CODE_16BIT)
2616 abort ();
2617 cpu_arch_flags.bitfield.cpu64 = 0;
2618 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2619 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2620}
2621
2622static void
e3bb37b5 2623set_intel_syntax (int syntax_flag)
252b5132
RH
2624{
2625 /* Find out if register prefixing is specified. */
2626 int ask_naked_reg = 0;
2627
2628 SKIP_WHITESPACE ();
29b0f896 2629 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2630 {
d02603dc
NC
2631 char *string;
2632 int e = get_symbol_name (&string);
252b5132 2633
47926f60 2634 if (strcmp (string, "prefix") == 0)
252b5132 2635 ask_naked_reg = 1;
47926f60 2636 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2637 ask_naked_reg = -1;
2638 else
d0b47220 2639 as_bad (_("bad argument to syntax directive."));
d02603dc 2640 (void) restore_line_pointer (e);
252b5132
RH
2641 }
2642 demand_empty_rest_of_line ();
c3332e24 2643
252b5132
RH
2644 intel_syntax = syntax_flag;
2645
2646 if (ask_naked_reg == 0)
f86103b7
AM
2647 allow_naked_reg = (intel_syntax
2648 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2649 else
2650 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2651
ee86248c 2652 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2653
e4a3b5a4 2654 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2655 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2656 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2657}
2658
1efbbeb4
L
2659static void
2660set_intel_mnemonic (int mnemonic_flag)
2661{
e1d4d893 2662 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2663}
2664
db51cc60
L
2665static void
2666set_allow_index_reg (int flag)
2667{
2668 allow_index_reg = flag;
2669}
2670
cb19c032 2671static void
7bab8ab5 2672set_check (int what)
cb19c032 2673{
7bab8ab5
JB
2674 enum check_kind *kind;
2675 const char *str;
2676
2677 if (what)
2678 {
2679 kind = &operand_check;
2680 str = "operand";
2681 }
2682 else
2683 {
2684 kind = &sse_check;
2685 str = "sse";
2686 }
2687
cb19c032
L
2688 SKIP_WHITESPACE ();
2689
2690 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2691 {
d02603dc
NC
2692 char *string;
2693 int e = get_symbol_name (&string);
cb19c032
L
2694
2695 if (strcmp (string, "none") == 0)
7bab8ab5 2696 *kind = check_none;
cb19c032 2697 else if (strcmp (string, "warning") == 0)
7bab8ab5 2698 *kind = check_warning;
cb19c032 2699 else if (strcmp (string, "error") == 0)
7bab8ab5 2700 *kind = check_error;
cb19c032 2701 else
7bab8ab5 2702 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2703 (void) restore_line_pointer (e);
cb19c032
L
2704 }
2705 else
7bab8ab5 2706 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2707
2708 demand_empty_rest_of_line ();
2709}
2710
8a9036a4
L
2711static void
2712check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2713 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2714{
2715#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2716 static const char *arch;
2717
2718 /* Intel LIOM is only supported on ELF. */
2719 if (!IS_ELF)
2720 return;
2721
2722 if (!arch)
2723 {
2724 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2725 use default_arch. */
2726 arch = cpu_arch_name;
2727 if (!arch)
2728 arch = default_arch;
2729 }
2730
81486035
L
2731 /* If we are targeting Intel MCU, we must enable it. */
2732 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2733 || new_flag.bitfield.cpuiamcu)
2734 return;
2735
3632d14b 2736 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2737 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2738 || new_flag.bitfield.cpul1om)
8a9036a4 2739 return;
76ba9986 2740
7a9068fe
L
2741 /* If we are targeting Intel K1OM, we must enable it. */
2742 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2743 || new_flag.bitfield.cpuk1om)
2744 return;
2745
8a9036a4
L
2746 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2747#endif
2748}
2749
e413e4e9 2750static void
e3bb37b5 2751set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2752{
47926f60 2753 SKIP_WHITESPACE ();
e413e4e9 2754
29b0f896 2755 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2756 {
d02603dc
NC
2757 char *string;
2758 int e = get_symbol_name (&string);
91d6fa6a 2759 unsigned int j;
40fb9820 2760 i386_cpu_flags flags;
e413e4e9 2761
91d6fa6a 2762 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2763 {
91d6fa6a 2764 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2765 {
91d6fa6a 2766 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2767
5c6af06e
JB
2768 if (*string != '.')
2769 {
91d6fa6a 2770 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2771 cpu_sub_arch_name = NULL;
91d6fa6a 2772 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2773 if (flag_code == CODE_64BIT)
2774 {
2775 cpu_arch_flags.bitfield.cpu64 = 1;
2776 cpu_arch_flags.bitfield.cpuno64 = 0;
2777 }
2778 else
2779 {
2780 cpu_arch_flags.bitfield.cpu64 = 0;
2781 cpu_arch_flags.bitfield.cpuno64 = 1;
2782 }
91d6fa6a
NC
2783 cpu_arch_isa = cpu_arch[j].type;
2784 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2785 if (!cpu_arch_tune_set)
2786 {
2787 cpu_arch_tune = cpu_arch_isa;
2788 cpu_arch_tune_flags = cpu_arch_isa_flags;
2789 }
5c6af06e
JB
2790 break;
2791 }
40fb9820 2792
293f5f65
L
2793 flags = cpu_flags_or (cpu_arch_flags,
2794 cpu_arch[j].flags);
81486035 2795
5b64d091 2796 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2797 {
6305a203
L
2798 if (cpu_sub_arch_name)
2799 {
2800 char *name = cpu_sub_arch_name;
2801 cpu_sub_arch_name = concat (name,
91d6fa6a 2802 cpu_arch[j].name,
1bf57e9f 2803 (const char *) NULL);
6305a203
L
2804 free (name);
2805 }
2806 else
91d6fa6a 2807 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2808 cpu_arch_flags = flags;
a586129e 2809 cpu_arch_isa_flags = flags;
5c6af06e 2810 }
0089dace
L
2811 else
2812 cpu_arch_isa_flags
2813 = cpu_flags_or (cpu_arch_isa_flags,
2814 cpu_arch[j].flags);
d02603dc 2815 (void) restore_line_pointer (e);
5c6af06e
JB
2816 demand_empty_rest_of_line ();
2817 return;
e413e4e9
AM
2818 }
2819 }
293f5f65
L
2820
2821 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2822 {
33eaf5de 2823 /* Disable an ISA extension. */
293f5f65
L
2824 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2825 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2826 {
2827 flags = cpu_flags_and_not (cpu_arch_flags,
2828 cpu_noarch[j].flags);
2829 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2830 {
2831 if (cpu_sub_arch_name)
2832 {
2833 char *name = cpu_sub_arch_name;
2834 cpu_sub_arch_name = concat (name, string,
2835 (const char *) NULL);
2836 free (name);
2837 }
2838 else
2839 cpu_sub_arch_name = xstrdup (string);
2840 cpu_arch_flags = flags;
2841 cpu_arch_isa_flags = flags;
2842 }
2843 (void) restore_line_pointer (e);
2844 demand_empty_rest_of_line ();
2845 return;
2846 }
2847
2848 j = ARRAY_SIZE (cpu_arch);
2849 }
2850
91d6fa6a 2851 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2852 as_bad (_("no such architecture: `%s'"), string);
2853
2854 *input_line_pointer = e;
2855 }
2856 else
2857 as_bad (_("missing cpu architecture"));
2858
fddf5b5b
AM
2859 no_cond_jump_promotion = 0;
2860 if (*input_line_pointer == ','
29b0f896 2861 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2862 {
d02603dc
NC
2863 char *string;
2864 char e;
2865
2866 ++input_line_pointer;
2867 e = get_symbol_name (&string);
fddf5b5b
AM
2868
2869 if (strcmp (string, "nojumps") == 0)
2870 no_cond_jump_promotion = 1;
2871 else if (strcmp (string, "jumps") == 0)
2872 ;
2873 else
2874 as_bad (_("no such architecture modifier: `%s'"), string);
2875
d02603dc 2876 (void) restore_line_pointer (e);
fddf5b5b
AM
2877 }
2878
e413e4e9
AM
2879 demand_empty_rest_of_line ();
2880}
2881
8a9036a4
L
2882enum bfd_architecture
2883i386_arch (void)
2884{
3632d14b 2885 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2886 {
2887 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2888 || flag_code != CODE_64BIT)
2889 as_fatal (_("Intel L1OM is 64bit ELF only"));
2890 return bfd_arch_l1om;
2891 }
7a9068fe
L
2892 else if (cpu_arch_isa == PROCESSOR_K1OM)
2893 {
2894 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2895 || flag_code != CODE_64BIT)
2896 as_fatal (_("Intel K1OM is 64bit ELF only"));
2897 return bfd_arch_k1om;
2898 }
81486035
L
2899 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2900 {
2901 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2902 || flag_code == CODE_64BIT)
2903 as_fatal (_("Intel MCU is 32bit ELF only"));
2904 return bfd_arch_iamcu;
2905 }
8a9036a4
L
2906 else
2907 return bfd_arch_i386;
2908}
2909
b9d79e03 2910unsigned long
7016a5d5 2911i386_mach (void)
b9d79e03 2912{
351f65ca 2913 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2914 {
3632d14b 2915 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2916 {
351f65ca
L
2917 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2918 || default_arch[6] != '\0')
8a9036a4
L
2919 as_fatal (_("Intel L1OM is 64bit ELF only"));
2920 return bfd_mach_l1om;
2921 }
7a9068fe
L
2922 else if (cpu_arch_isa == PROCESSOR_K1OM)
2923 {
2924 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2925 || default_arch[6] != '\0')
2926 as_fatal (_("Intel K1OM is 64bit ELF only"));
2927 return bfd_mach_k1om;
2928 }
351f65ca 2929 else if (default_arch[6] == '\0')
8a9036a4 2930 return bfd_mach_x86_64;
351f65ca
L
2931 else
2932 return bfd_mach_x64_32;
8a9036a4 2933 }
5197d474
L
2934 else if (!strcmp (default_arch, "i386")
2935 || !strcmp (default_arch, "iamcu"))
81486035
L
2936 {
2937 if (cpu_arch_isa == PROCESSOR_IAMCU)
2938 {
2939 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2940 as_fatal (_("Intel MCU is 32bit ELF only"));
2941 return bfd_mach_i386_iamcu;
2942 }
2943 else
2944 return bfd_mach_i386_i386;
2945 }
b9d79e03 2946 else
2b5d6a91 2947 as_fatal (_("unknown architecture"));
b9d79e03 2948}
b9d79e03 2949\f
252b5132 2950void
7016a5d5 2951md_begin (void)
252b5132
RH
2952{
2953 const char *hash_err;
2954
86fa6981
L
2955 /* Support pseudo prefixes like {disp32}. */
2956 lex_type ['{'] = LEX_BEGIN_NAME;
2957
47926f60 2958 /* Initialize op_hash hash table. */
252b5132
RH
2959 op_hash = hash_new ();
2960
2961 {
d3ce72d0 2962 const insn_template *optab;
29b0f896 2963 templates *core_optab;
252b5132 2964
47926f60
KH
2965 /* Setup for loop. */
2966 optab = i386_optab;
add39d23 2967 core_optab = XNEW (templates);
252b5132
RH
2968 core_optab->start = optab;
2969
2970 while (1)
2971 {
2972 ++optab;
2973 if (optab->name == NULL
2974 || strcmp (optab->name, (optab - 1)->name) != 0)
2975 {
2976 /* different name --> ship out current template list;
47926f60 2977 add to hash table; & begin anew. */
252b5132
RH
2978 core_optab->end = optab;
2979 hash_err = hash_insert (op_hash,
2980 (optab - 1)->name,
5a49b8ac 2981 (void *) core_optab);
252b5132
RH
2982 if (hash_err)
2983 {
b37df7c4 2984 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2985 (optab - 1)->name,
2986 hash_err);
2987 }
2988 if (optab->name == NULL)
2989 break;
add39d23 2990 core_optab = XNEW (templates);
252b5132
RH
2991 core_optab->start = optab;
2992 }
2993 }
2994 }
2995
47926f60 2996 /* Initialize reg_hash hash table. */
252b5132
RH
2997 reg_hash = hash_new ();
2998 {
29b0f896 2999 const reg_entry *regtab;
c3fe08fa 3000 unsigned int regtab_size = i386_regtab_size;
252b5132 3001
c3fe08fa 3002 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 3003 {
5a49b8ac 3004 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 3005 if (hash_err)
b37df7c4 3006 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
3007 regtab->reg_name,
3008 hash_err);
252b5132
RH
3009 }
3010 }
3011
47926f60 3012 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 3013 {
29b0f896
AM
3014 int c;
3015 char *p;
252b5132
RH
3016
3017 for (c = 0; c < 256; c++)
3018 {
3882b010 3019 if (ISDIGIT (c))
252b5132
RH
3020 {
3021 digit_chars[c] = c;
3022 mnemonic_chars[c] = c;
3023 register_chars[c] = c;
3024 operand_chars[c] = c;
3025 }
3882b010 3026 else if (ISLOWER (c))
252b5132
RH
3027 {
3028 mnemonic_chars[c] = c;
3029 register_chars[c] = c;
3030 operand_chars[c] = c;
3031 }
3882b010 3032 else if (ISUPPER (c))
252b5132 3033 {
3882b010 3034 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
3035 register_chars[c] = mnemonic_chars[c];
3036 operand_chars[c] = c;
3037 }
43234a1e 3038 else if (c == '{' || c == '}')
86fa6981
L
3039 {
3040 mnemonic_chars[c] = c;
3041 operand_chars[c] = c;
3042 }
252b5132 3043
3882b010 3044 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
3045 identifier_chars[c] = c;
3046 else if (c >= 128)
3047 {
3048 identifier_chars[c] = c;
3049 operand_chars[c] = c;
3050 }
3051 }
3052
3053#ifdef LEX_AT
3054 identifier_chars['@'] = '@';
32137342
NC
3055#endif
3056#ifdef LEX_QM
3057 identifier_chars['?'] = '?';
3058 operand_chars['?'] = '?';
252b5132 3059#endif
252b5132 3060 digit_chars['-'] = '-';
c0f3af97 3061 mnemonic_chars['_'] = '_';
791fe849 3062 mnemonic_chars['-'] = '-';
0003779b 3063 mnemonic_chars['.'] = '.';
252b5132
RH
3064 identifier_chars['_'] = '_';
3065 identifier_chars['.'] = '.';
3066
3067 for (p = operand_special_chars; *p != '\0'; p++)
3068 operand_chars[(unsigned char) *p] = *p;
3069 }
3070
a4447b93
RH
3071 if (flag_code == CODE_64BIT)
3072 {
ca19b261
KT
3073#if defined (OBJ_COFF) && defined (TE_PE)
3074 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3075 ? 32 : 16);
3076#else
a4447b93 3077 x86_dwarf2_return_column = 16;
ca19b261 3078#endif
61ff971f 3079 x86_cie_data_alignment = -8;
a4447b93
RH
3080 }
3081 else
3082 {
3083 x86_dwarf2_return_column = 8;
3084 x86_cie_data_alignment = -4;
3085 }
e379e5f3
L
3086
3087 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3088 can be turned into BRANCH_PREFIX frag. */
3089 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3090 abort ();
252b5132
RH
3091}
3092
3093void
e3bb37b5 3094i386_print_statistics (FILE *file)
252b5132
RH
3095{
3096 hash_print_statistics (file, "i386 opcode", op_hash);
3097 hash_print_statistics (file, "i386 register", reg_hash);
3098}
3099\f
252b5132
RH
3100#ifdef DEBUG386
3101
ce8a8b2f 3102/* Debugging routines for md_assemble. */
d3ce72d0 3103static void pte (insn_template *);
40fb9820 3104static void pt (i386_operand_type);
e3bb37b5
L
3105static void pe (expressionS *);
3106static void ps (symbolS *);
252b5132
RH
3107
3108static void
2c703856 3109pi (const char *line, i386_insn *x)
252b5132 3110{
09137c09 3111 unsigned int j;
252b5132
RH
3112
3113 fprintf (stdout, "%s: template ", line);
3114 pte (&x->tm);
09f131f2
JH
3115 fprintf (stdout, " address: base %s index %s scale %x\n",
3116 x->base_reg ? x->base_reg->reg_name : "none",
3117 x->index_reg ? x->index_reg->reg_name : "none",
3118 x->log2_scale_factor);
3119 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3120 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3121 fprintf (stdout, " sib: base %x index %x scale %x\n",
3122 x->sib.base, x->sib.index, x->sib.scale);
3123 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3124 (x->rex & REX_W) != 0,
3125 (x->rex & REX_R) != 0,
3126 (x->rex & REX_X) != 0,
3127 (x->rex & REX_B) != 0);
09137c09 3128 for (j = 0; j < x->operands; j++)
252b5132 3129 {
09137c09
SP
3130 fprintf (stdout, " #%d: ", j + 1);
3131 pt (x->types[j]);
252b5132 3132 fprintf (stdout, "\n");
bab6aec1 3133 if (x->types[j].bitfield.class == Reg
3528c362
JB
3134 || x->types[j].bitfield.class == RegMMX
3135 || x->types[j].bitfield.class == RegSIMD
00cee14f 3136 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3137 || x->types[j].bitfield.class == RegCR
3138 || x->types[j].bitfield.class == RegDR
3139 || x->types[j].bitfield.class == RegTR)
09137c09
SP
3140 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3141 if (operand_type_check (x->types[j], imm))
3142 pe (x->op[j].imms);
3143 if (operand_type_check (x->types[j], disp))
3144 pe (x->op[j].disps);
252b5132
RH
3145 }
3146}
3147
3148static void
d3ce72d0 3149pte (insn_template *t)
252b5132 3150{
09137c09 3151 unsigned int j;
252b5132 3152 fprintf (stdout, " %d operands ", t->operands);
47926f60 3153 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3154 if (t->extension_opcode != None)
3155 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3156 if (t->opcode_modifier.d)
252b5132 3157 fprintf (stdout, "D");
40fb9820 3158 if (t->opcode_modifier.w)
252b5132
RH
3159 fprintf (stdout, "W");
3160 fprintf (stdout, "\n");
09137c09 3161 for (j = 0; j < t->operands; j++)
252b5132 3162 {
09137c09
SP
3163 fprintf (stdout, " #%d type ", j + 1);
3164 pt (t->operand_types[j]);
252b5132
RH
3165 fprintf (stdout, "\n");
3166 }
3167}
3168
3169static void
e3bb37b5 3170pe (expressionS *e)
252b5132 3171{
24eab124 3172 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3173 fprintf (stdout, " add_number %ld (%lx)\n",
3174 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3175 if (e->X_add_symbol)
3176 {
3177 fprintf (stdout, " add_symbol ");
3178 ps (e->X_add_symbol);
3179 fprintf (stdout, "\n");
3180 }
3181 if (e->X_op_symbol)
3182 {
3183 fprintf (stdout, " op_symbol ");
3184 ps (e->X_op_symbol);
3185 fprintf (stdout, "\n");
3186 }
3187}
3188
3189static void
e3bb37b5 3190ps (symbolS *s)
252b5132
RH
3191{
3192 fprintf (stdout, "%s type %s%s",
3193 S_GET_NAME (s),
3194 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3195 segment_name (S_GET_SEGMENT (s)));
3196}
3197
7b81dfbb 3198static struct type_name
252b5132 3199 {
40fb9820
L
3200 i386_operand_type mask;
3201 const char *name;
252b5132 3202 }
7b81dfbb 3203const type_names[] =
252b5132 3204{
40fb9820
L
3205 { OPERAND_TYPE_REG8, "r8" },
3206 { OPERAND_TYPE_REG16, "r16" },
3207 { OPERAND_TYPE_REG32, "r32" },
3208 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3209 { OPERAND_TYPE_ACC8, "acc8" },
3210 { OPERAND_TYPE_ACC16, "acc16" },
3211 { OPERAND_TYPE_ACC32, "acc32" },
3212 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3213 { OPERAND_TYPE_IMM8, "i8" },
3214 { OPERAND_TYPE_IMM8, "i8s" },
3215 { OPERAND_TYPE_IMM16, "i16" },
3216 { OPERAND_TYPE_IMM32, "i32" },
3217 { OPERAND_TYPE_IMM32S, "i32s" },
3218 { OPERAND_TYPE_IMM64, "i64" },
3219 { OPERAND_TYPE_IMM1, "i1" },
3220 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3221 { OPERAND_TYPE_DISP8, "d8" },
3222 { OPERAND_TYPE_DISP16, "d16" },
3223 { OPERAND_TYPE_DISP32, "d32" },
3224 { OPERAND_TYPE_DISP32S, "d32s" },
3225 { OPERAND_TYPE_DISP64, "d64" },
3226 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3227 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3228 { OPERAND_TYPE_CONTROL, "control reg" },
3229 { OPERAND_TYPE_TEST, "test reg" },
3230 { OPERAND_TYPE_DEBUG, "debug reg" },
3231 { OPERAND_TYPE_FLOATREG, "FReg" },
3232 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3233 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3234 { OPERAND_TYPE_REGMMX, "rMMX" },
3235 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3236 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3237 { OPERAND_TYPE_REGZMM, "rZMM" },
3238 { OPERAND_TYPE_REGMASK, "Mask reg" },
252b5132
RH
3239};
3240
3241static void
40fb9820 3242pt (i386_operand_type t)
252b5132 3243{
40fb9820 3244 unsigned int j;
c6fb90c8 3245 i386_operand_type a;
252b5132 3246
40fb9820 3247 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3248 {
3249 a = operand_type_and (t, type_names[j].mask);
2c703856 3250 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3251 fprintf (stdout, "%s, ", type_names[j].name);
3252 }
252b5132
RH
3253 fflush (stdout);
3254}
3255
3256#endif /* DEBUG386 */
3257\f
252b5132 3258static bfd_reloc_code_real_type
3956db08 3259reloc (unsigned int size,
64e74474
AM
3260 int pcrel,
3261 int sign,
3262 bfd_reloc_code_real_type other)
252b5132 3263{
47926f60 3264 if (other != NO_RELOC)
3956db08 3265 {
91d6fa6a 3266 reloc_howto_type *rel;
3956db08
JB
3267
3268 if (size == 8)
3269 switch (other)
3270 {
64e74474
AM
3271 case BFD_RELOC_X86_64_GOT32:
3272 return BFD_RELOC_X86_64_GOT64;
3273 break;
553d1284
L
3274 case BFD_RELOC_X86_64_GOTPLT64:
3275 return BFD_RELOC_X86_64_GOTPLT64;
3276 break;
64e74474
AM
3277 case BFD_RELOC_X86_64_PLTOFF64:
3278 return BFD_RELOC_X86_64_PLTOFF64;
3279 break;
3280 case BFD_RELOC_X86_64_GOTPC32:
3281 other = BFD_RELOC_X86_64_GOTPC64;
3282 break;
3283 case BFD_RELOC_X86_64_GOTPCREL:
3284 other = BFD_RELOC_X86_64_GOTPCREL64;
3285 break;
3286 case BFD_RELOC_X86_64_TPOFF32:
3287 other = BFD_RELOC_X86_64_TPOFF64;
3288 break;
3289 case BFD_RELOC_X86_64_DTPOFF32:
3290 other = BFD_RELOC_X86_64_DTPOFF64;
3291 break;
3292 default:
3293 break;
3956db08 3294 }
e05278af 3295
8ce3d284 3296#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3297 if (other == BFD_RELOC_SIZE32)
3298 {
3299 if (size == 8)
1ab668bf 3300 other = BFD_RELOC_SIZE64;
8fd4256d 3301 if (pcrel)
1ab668bf
AM
3302 {
3303 as_bad (_("there are no pc-relative size relocations"));
3304 return NO_RELOC;
3305 }
8fd4256d 3306 }
8ce3d284 3307#endif
8fd4256d 3308
e05278af 3309 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3310 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3311 sign = -1;
3312
91d6fa6a
NC
3313 rel = bfd_reloc_type_lookup (stdoutput, other);
3314 if (!rel)
3956db08 3315 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3316 else if (size != bfd_get_reloc_size (rel))
3956db08 3317 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3318 bfd_get_reloc_size (rel),
3956db08 3319 size);
91d6fa6a 3320 else if (pcrel && !rel->pc_relative)
3956db08 3321 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3322 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3323 && !sign)
91d6fa6a 3324 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3325 && sign > 0))
3956db08
JB
3326 as_bad (_("relocated field and relocation type differ in signedness"));
3327 else
3328 return other;
3329 return NO_RELOC;
3330 }
252b5132
RH
3331
3332 if (pcrel)
3333 {
3e73aa7c 3334 if (!sign)
3956db08 3335 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3336 switch (size)
3337 {
3338 case 1: return BFD_RELOC_8_PCREL;
3339 case 2: return BFD_RELOC_16_PCREL;
d258b828 3340 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3341 case 8: return BFD_RELOC_64_PCREL;
252b5132 3342 }
3956db08 3343 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3344 }
3345 else
3346 {
3956db08 3347 if (sign > 0)
e5cb08ac 3348 switch (size)
3e73aa7c
JH
3349 {
3350 case 4: return BFD_RELOC_X86_64_32S;
3351 }
3352 else
3353 switch (size)
3354 {
3355 case 1: return BFD_RELOC_8;
3356 case 2: return BFD_RELOC_16;
3357 case 4: return BFD_RELOC_32;
3358 case 8: return BFD_RELOC_64;
3359 }
3956db08
JB
3360 as_bad (_("cannot do %s %u byte relocation"),
3361 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3362 }
3363
0cc9e1d3 3364 return NO_RELOC;
252b5132
RH
3365}
3366
47926f60
KH
3367/* Here we decide which fixups can be adjusted to make them relative to
3368 the beginning of the section instead of the symbol. Basically we need
3369 to make sure that the dynamic relocations are done correctly, so in
3370 some cases we force the original symbol to be used. */
3371
252b5132 3372int
e3bb37b5 3373tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3374{
6d249963 3375#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3376 if (!IS_ELF)
31312f95
AM
3377 return 1;
3378
a161fe53
AM
3379 /* Don't adjust pc-relative references to merge sections in 64-bit
3380 mode. */
3381 if (use_rela_relocations
3382 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3383 && fixP->fx_pcrel)
252b5132 3384 return 0;
31312f95 3385
8d01d9a9
AJ
3386 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3387 and changed later by validate_fix. */
3388 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3389 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3390 return 0;
3391
8fd4256d
L
3392 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3393 for size relocations. */
3394 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3395 || fixP->fx_r_type == BFD_RELOC_SIZE64
3396 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3397 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3398 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3399 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3400 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3401 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3402 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3403 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3410 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3411 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3412 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3413 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3414 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3418 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3425 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3426 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3427 return 0;
31312f95 3428#endif
252b5132
RH
3429 return 1;
3430}
252b5132 3431
b4cac588 3432static int
e3bb37b5 3433intel_float_operand (const char *mnemonic)
252b5132 3434{
9306ca4a
JB
3435 /* Note that the value returned is meaningful only for opcodes with (memory)
3436 operands, hence the code here is free to improperly handle opcodes that
3437 have no operands (for better performance and smaller code). */
3438
3439 if (mnemonic[0] != 'f')
3440 return 0; /* non-math */
3441
3442 switch (mnemonic[1])
3443 {
3444 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3445 the fs segment override prefix not currently handled because no
3446 call path can make opcodes without operands get here */
3447 case 'i':
3448 return 2 /* integer op */;
3449 case 'l':
3450 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3451 return 3; /* fldcw/fldenv */
3452 break;
3453 case 'n':
3454 if (mnemonic[2] != 'o' /* fnop */)
3455 return 3; /* non-waiting control op */
3456 break;
3457 case 'r':
3458 if (mnemonic[2] == 's')
3459 return 3; /* frstor/frstpm */
3460 break;
3461 case 's':
3462 if (mnemonic[2] == 'a')
3463 return 3; /* fsave */
3464 if (mnemonic[2] == 't')
3465 {
3466 switch (mnemonic[3])
3467 {
3468 case 'c': /* fstcw */
3469 case 'd': /* fstdw */
3470 case 'e': /* fstenv */
3471 case 's': /* fsts[gw] */
3472 return 3;
3473 }
3474 }
3475 break;
3476 case 'x':
3477 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3478 return 0; /* fxsave/fxrstor are not really math ops */
3479 break;
3480 }
252b5132 3481
9306ca4a 3482 return 1;
252b5132
RH
3483}
3484
c0f3af97
L
3485/* Build the VEX prefix. */
3486
3487static void
d3ce72d0 3488build_vex_prefix (const insn_template *t)
c0f3af97
L
3489{
3490 unsigned int register_specifier;
3491 unsigned int implied_prefix;
3492 unsigned int vector_length;
03751133 3493 unsigned int w;
c0f3af97
L
3494
3495 /* Check register specifier. */
3496 if (i.vex.register_specifier)
43234a1e
L
3497 {
3498 register_specifier =
3499 ~register_number (i.vex.register_specifier) & 0xf;
3500 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3501 }
c0f3af97
L
3502 else
3503 register_specifier = 0xf;
3504
79f0fa25
L
3505 /* Use 2-byte VEX prefix by swapping destination and source operand
3506 if there are more than 1 register operand. */
3507 if (i.reg_operands > 1
3508 && i.vec_encoding != vex_encoding_vex3
86fa6981 3509 && i.dir_encoding == dir_encoding_default
fa99fab2 3510 && i.operands == i.reg_operands
dbbc8b7e 3511 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3512 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3513 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3514 && i.rex == REX_B)
3515 {
3516 unsigned int xchg = i.operands - 1;
3517 union i386_op temp_op;
3518 i386_operand_type temp_type;
3519
3520 temp_type = i.types[xchg];
3521 i.types[xchg] = i.types[0];
3522 i.types[0] = temp_type;
3523 temp_op = i.op[xchg];
3524 i.op[xchg] = i.op[0];
3525 i.op[0] = temp_op;
3526
9c2799c2 3527 gas_assert (i.rm.mode == 3);
fa99fab2
L
3528
3529 i.rex = REX_R;
3530 xchg = i.rm.regmem;
3531 i.rm.regmem = i.rm.reg;
3532 i.rm.reg = xchg;
3533
dbbc8b7e
JB
3534 if (i.tm.opcode_modifier.d)
3535 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3536 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3537 else /* Use the next insn. */
3538 i.tm = t[1];
fa99fab2
L
3539 }
3540
79dec6b7
JB
3541 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3542 are no memory operands and at least 3 register ones. */
3543 if (i.reg_operands >= 3
3544 && i.vec_encoding != vex_encoding_vex3
3545 && i.reg_operands == i.operands - i.imm_operands
3546 && i.tm.opcode_modifier.vex
3547 && i.tm.opcode_modifier.commutative
3548 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3549 && i.rex == REX_B
3550 && i.vex.register_specifier
3551 && !(i.vex.register_specifier->reg_flags & RegRex))
3552 {
3553 unsigned int xchg = i.operands - i.reg_operands;
3554 union i386_op temp_op;
3555 i386_operand_type temp_type;
3556
3557 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3558 gas_assert (!i.tm.opcode_modifier.sae);
3559 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3560 &i.types[i.operands - 3]));
3561 gas_assert (i.rm.mode == 3);
3562
3563 temp_type = i.types[xchg];
3564 i.types[xchg] = i.types[xchg + 1];
3565 i.types[xchg + 1] = temp_type;
3566 temp_op = i.op[xchg];
3567 i.op[xchg] = i.op[xchg + 1];
3568 i.op[xchg + 1] = temp_op;
3569
3570 i.rex = 0;
3571 xchg = i.rm.regmem | 8;
3572 i.rm.regmem = ~register_specifier & 0xf;
3573 gas_assert (!(i.rm.regmem & 8));
3574 i.vex.register_specifier += xchg - i.rm.regmem;
3575 register_specifier = ~xchg & 0xf;
3576 }
3577
539f890d
L
3578 if (i.tm.opcode_modifier.vex == VEXScalar)
3579 vector_length = avxscalar;
10c17abd
JB
3580 else if (i.tm.opcode_modifier.vex == VEX256)
3581 vector_length = 1;
539f890d 3582 else
10c17abd 3583 {
56522fc5 3584 unsigned int op;
10c17abd 3585
c7213af9
L
3586 /* Determine vector length from the last multi-length vector
3587 operand. */
10c17abd 3588 vector_length = 0;
56522fc5 3589 for (op = t->operands; op--;)
10c17abd
JB
3590 if (t->operand_types[op].bitfield.xmmword
3591 && t->operand_types[op].bitfield.ymmword
3592 && i.types[op].bitfield.ymmword)
3593 {
3594 vector_length = 1;
3595 break;
3596 }
3597 }
c0f3af97
L
3598
3599 switch ((i.tm.base_opcode >> 8) & 0xff)
3600 {
3601 case 0:
3602 implied_prefix = 0;
3603 break;
3604 case DATA_PREFIX_OPCODE:
3605 implied_prefix = 1;
3606 break;
3607 case REPE_PREFIX_OPCODE:
3608 implied_prefix = 2;
3609 break;
3610 case REPNE_PREFIX_OPCODE:
3611 implied_prefix = 3;
3612 break;
3613 default:
3614 abort ();
3615 }
3616
03751133
L
3617 /* Check the REX.W bit and VEXW. */
3618 if (i.tm.opcode_modifier.vexw == VEXWIG)
3619 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3620 else if (i.tm.opcode_modifier.vexw)
3621 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3622 else
931d03b7 3623 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3624
c0f3af97 3625 /* Use 2-byte VEX prefix if possible. */
03751133
L
3626 if (w == 0
3627 && i.vec_encoding != vex_encoding_vex3
86fa6981 3628 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3629 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3630 {
3631 /* 2-byte VEX prefix. */
3632 unsigned int r;
3633
3634 i.vex.length = 2;
3635 i.vex.bytes[0] = 0xc5;
3636
3637 /* Check the REX.R bit. */
3638 r = (i.rex & REX_R) ? 0 : 1;
3639 i.vex.bytes[1] = (r << 7
3640 | register_specifier << 3
3641 | vector_length << 2
3642 | implied_prefix);
3643 }
3644 else
3645 {
3646 /* 3-byte VEX prefix. */
03751133 3647 unsigned int m;
c0f3af97 3648
f88c9eb0 3649 i.vex.length = 3;
f88c9eb0 3650
7f399153 3651 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3652 {
7f399153
L
3653 case VEX0F:
3654 m = 0x1;
80de6e00 3655 i.vex.bytes[0] = 0xc4;
7f399153
L
3656 break;
3657 case VEX0F38:
3658 m = 0x2;
80de6e00 3659 i.vex.bytes[0] = 0xc4;
7f399153
L
3660 break;
3661 case VEX0F3A:
3662 m = 0x3;
80de6e00 3663 i.vex.bytes[0] = 0xc4;
7f399153
L
3664 break;
3665 case XOP08:
5dd85c99
SP
3666 m = 0x8;
3667 i.vex.bytes[0] = 0x8f;
7f399153
L
3668 break;
3669 case XOP09:
f88c9eb0
SP
3670 m = 0x9;
3671 i.vex.bytes[0] = 0x8f;
7f399153
L
3672 break;
3673 case XOP0A:
f88c9eb0
SP
3674 m = 0xa;
3675 i.vex.bytes[0] = 0x8f;
7f399153
L
3676 break;
3677 default:
3678 abort ();
f88c9eb0 3679 }
c0f3af97 3680
c0f3af97
L
3681 /* The high 3 bits of the second VEX byte are 1's compliment
3682 of RXB bits from REX. */
3683 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3684
c0f3af97
L
3685 i.vex.bytes[2] = (w << 7
3686 | register_specifier << 3
3687 | vector_length << 2
3688 | implied_prefix);
3689 }
3690}
3691
e771e7c9
JB
3692static INLINE bfd_boolean
3693is_evex_encoding (const insn_template *t)
3694{
7091c612 3695 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3696 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3697 || t->opcode_modifier.sae;
e771e7c9
JB
3698}
3699
7a8655d2
JB
3700static INLINE bfd_boolean
3701is_any_vex_encoding (const insn_template *t)
3702{
3703 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3704 || is_evex_encoding (t);
3705}
3706
43234a1e
L
3707/* Build the EVEX prefix. */
3708
3709static void
3710build_evex_prefix (void)
3711{
3712 unsigned int register_specifier;
3713 unsigned int implied_prefix;
3714 unsigned int m, w;
3715 rex_byte vrex_used = 0;
3716
3717 /* Check register specifier. */
3718 if (i.vex.register_specifier)
3719 {
3720 gas_assert ((i.vrex & REX_X) == 0);
3721
3722 register_specifier = i.vex.register_specifier->reg_num;
3723 if ((i.vex.register_specifier->reg_flags & RegRex))
3724 register_specifier += 8;
3725 /* The upper 16 registers are encoded in the fourth byte of the
3726 EVEX prefix. */
3727 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3728 i.vex.bytes[3] = 0x8;
3729 register_specifier = ~register_specifier & 0xf;
3730 }
3731 else
3732 {
3733 register_specifier = 0xf;
3734
3735 /* Encode upper 16 vector index register in the fourth byte of
3736 the EVEX prefix. */
3737 if (!(i.vrex & REX_X))
3738 i.vex.bytes[3] = 0x8;
3739 else
3740 vrex_used |= REX_X;
3741 }
3742
3743 switch ((i.tm.base_opcode >> 8) & 0xff)
3744 {
3745 case 0:
3746 implied_prefix = 0;
3747 break;
3748 case DATA_PREFIX_OPCODE:
3749 implied_prefix = 1;
3750 break;
3751 case REPE_PREFIX_OPCODE:
3752 implied_prefix = 2;
3753 break;
3754 case REPNE_PREFIX_OPCODE:
3755 implied_prefix = 3;
3756 break;
3757 default:
3758 abort ();
3759 }
3760
3761 /* 4 byte EVEX prefix. */
3762 i.vex.length = 4;
3763 i.vex.bytes[0] = 0x62;
3764
3765 /* mmmm bits. */
3766 switch (i.tm.opcode_modifier.vexopcode)
3767 {
3768 case VEX0F:
3769 m = 1;
3770 break;
3771 case VEX0F38:
3772 m = 2;
3773 break;
3774 case VEX0F3A:
3775 m = 3;
3776 break;
3777 default:
3778 abort ();
3779 break;
3780 }
3781
3782 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3783 bits from REX. */
3784 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3785
3786 /* The fifth bit of the second EVEX byte is 1's compliment of the
3787 REX_R bit in VREX. */
3788 if (!(i.vrex & REX_R))
3789 i.vex.bytes[1] |= 0x10;
3790 else
3791 vrex_used |= REX_R;
3792
3793 if ((i.reg_operands + i.imm_operands) == i.operands)
3794 {
3795 /* When all operands are registers, the REX_X bit in REX is not
3796 used. We reuse it to encode the upper 16 registers, which is
3797 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3798 as 1's compliment. */
3799 if ((i.vrex & REX_B))
3800 {
3801 vrex_used |= REX_B;
3802 i.vex.bytes[1] &= ~0x40;
3803 }
3804 }
3805
3806 /* EVEX instructions shouldn't need the REX prefix. */
3807 i.vrex &= ~vrex_used;
3808 gas_assert (i.vrex == 0);
3809
6865c043
L
3810 /* Check the REX.W bit and VEXW. */
3811 if (i.tm.opcode_modifier.vexw == VEXWIG)
3812 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3813 else if (i.tm.opcode_modifier.vexw)
3814 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3815 else
931d03b7 3816 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3817
3818 /* Encode the U bit. */
3819 implied_prefix |= 0x4;
3820
3821 /* The third byte of the EVEX prefix. */
3822 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3823
3824 /* The fourth byte of the EVEX prefix. */
3825 /* The zeroing-masking bit. */
3826 if (i.mask && i.mask->zeroing)
3827 i.vex.bytes[3] |= 0x80;
3828
3829 /* Don't always set the broadcast bit if there is no RC. */
3830 if (!i.rounding)
3831 {
3832 /* Encode the vector length. */
3833 unsigned int vec_length;
3834
e771e7c9
JB
3835 if (!i.tm.opcode_modifier.evex
3836 || i.tm.opcode_modifier.evex == EVEXDYN)
3837 {
56522fc5 3838 unsigned int op;
e771e7c9 3839
c7213af9
L
3840 /* Determine vector length from the last multi-length vector
3841 operand. */
e771e7c9 3842 vec_length = 0;
56522fc5 3843 for (op = i.operands; op--;)
e771e7c9
JB
3844 if (i.tm.operand_types[op].bitfield.xmmword
3845 + i.tm.operand_types[op].bitfield.ymmword
3846 + i.tm.operand_types[op].bitfield.zmmword > 1)
3847 {
3848 if (i.types[op].bitfield.zmmword)
c7213af9
L
3849 {
3850 i.tm.opcode_modifier.evex = EVEX512;
3851 break;
3852 }
e771e7c9 3853 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3854 {
3855 i.tm.opcode_modifier.evex = EVEX256;
3856 break;
3857 }
e771e7c9 3858 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3859 {
3860 i.tm.opcode_modifier.evex = EVEX128;
3861 break;
3862 }
625cbd7a
JB
3863 else if (i.broadcast && (int) op == i.broadcast->operand)
3864 {
4a1b91ea 3865 switch (i.broadcast->bytes)
625cbd7a
JB
3866 {
3867 case 64:
3868 i.tm.opcode_modifier.evex = EVEX512;
3869 break;
3870 case 32:
3871 i.tm.opcode_modifier.evex = EVEX256;
3872 break;
3873 case 16:
3874 i.tm.opcode_modifier.evex = EVEX128;
3875 break;
3876 default:
c7213af9 3877 abort ();
625cbd7a 3878 }
c7213af9 3879 break;
625cbd7a 3880 }
e771e7c9 3881 }
c7213af9 3882
56522fc5 3883 if (op >= MAX_OPERANDS)
c7213af9 3884 abort ();
e771e7c9
JB
3885 }
3886
43234a1e
L
3887 switch (i.tm.opcode_modifier.evex)
3888 {
3889 case EVEXLIG: /* LL' is ignored */
3890 vec_length = evexlig << 5;
3891 break;
3892 case EVEX128:
3893 vec_length = 0 << 5;
3894 break;
3895 case EVEX256:
3896 vec_length = 1 << 5;
3897 break;
3898 case EVEX512:
3899 vec_length = 2 << 5;
3900 break;
3901 default:
3902 abort ();
3903 break;
3904 }
3905 i.vex.bytes[3] |= vec_length;
3906 /* Encode the broadcast bit. */
3907 if (i.broadcast)
3908 i.vex.bytes[3] |= 0x10;
3909 }
3910 else
3911 {
3912 if (i.rounding->type != saeonly)
3913 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3914 else
d3d3c6db 3915 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3916 }
3917
3918 if (i.mask && i.mask->mask)
3919 i.vex.bytes[3] |= i.mask->mask->reg_num;
3920}
3921
65da13b5
L
3922static void
3923process_immext (void)
3924{
3925 expressionS *exp;
3926
c0f3af97 3927 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3928 which is coded in the same place as an 8-bit immediate field
3929 would be. Here we fake an 8-bit immediate operand from the
3930 opcode suffix stored in tm.extension_opcode.
3931
c1e679ec 3932 AVX instructions also use this encoding, for some of
c0f3af97 3933 3 argument instructions. */
65da13b5 3934
43234a1e 3935 gas_assert (i.imm_operands <= 1
7ab9ffdd 3936 && (i.operands <= 2
7a8655d2 3937 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3938 && i.operands <= 4)));
65da13b5
L
3939
3940 exp = &im_expressions[i.imm_operands++];
3941 i.op[i.operands].imms = exp;
3942 i.types[i.operands] = imm8;
3943 i.operands++;
3944 exp->X_op = O_constant;
3945 exp->X_add_number = i.tm.extension_opcode;
3946 i.tm.extension_opcode = None;
3947}
3948
42164a71
L
3949
3950static int
3951check_hle (void)
3952{
3953 switch (i.tm.opcode_modifier.hleprefixok)
3954 {
3955 default:
3956 abort ();
82c2def5 3957 case HLEPrefixNone:
165de32a
L
3958 as_bad (_("invalid instruction `%s' after `%s'"),
3959 i.tm.name, i.hle_prefix);
42164a71 3960 return 0;
82c2def5 3961 case HLEPrefixLock:
42164a71
L
3962 if (i.prefix[LOCK_PREFIX])
3963 return 1;
165de32a 3964 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3965 return 0;
82c2def5 3966 case HLEPrefixAny:
42164a71 3967 return 1;
82c2def5 3968 case HLEPrefixRelease:
42164a71
L
3969 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3970 {
3971 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3972 i.tm.name);
3973 return 0;
3974 }
8dc0818e 3975 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
3976 {
3977 as_bad (_("memory destination needed for instruction `%s'"
3978 " after `xrelease'"), i.tm.name);
3979 return 0;
3980 }
3981 return 1;
3982 }
3983}
3984
b6f8c7c4
L
3985/* Try the shortest encoding by shortening operand size. */
3986
3987static void
3988optimize_encoding (void)
3989{
a0a1771e 3990 unsigned int j;
b6f8c7c4
L
3991
3992 if (optimize_for_space
72aea328 3993 && !is_any_vex_encoding (&i.tm)
b6f8c7c4
L
3994 && i.reg_operands == 1
3995 && i.imm_operands == 1
3996 && !i.types[1].bitfield.byte
3997 && i.op[0].imms->X_op == O_constant
3998 && fits_in_imm7 (i.op[0].imms->X_add_number)
72aea328 3999 && (i.tm.base_opcode == 0xa8
b6f8c7c4
L
4000 || (i.tm.base_opcode == 0xf6
4001 && i.tm.extension_opcode == 0x0)))
4002 {
4003 /* Optimize: -Os:
4004 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4005 */
4006 unsigned int base_regnum = i.op[1].regs->reg_num;
4007 if (flag_code == CODE_64BIT || base_regnum < 4)
4008 {
4009 i.types[1].bitfield.byte = 1;
4010 /* Ignore the suffix. */
4011 i.suffix = 0;
7697afb6
JB
4012 /* Convert to byte registers. */
4013 if (i.types[1].bitfield.word)
4014 j = 16;
4015 else if (i.types[1].bitfield.dword)
4016 j = 32;
4017 else
4018 j = 48;
4019 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4020 j += 8;
4021 i.op[1].regs -= j;
b6f8c7c4
L
4022 }
4023 }
4024 else if (flag_code == CODE_64BIT
72aea328 4025 && !is_any_vex_encoding (&i.tm)
d3d50934
L
4026 && ((i.types[1].bitfield.qword
4027 && i.reg_operands == 1
b6f8c7c4
L
4028 && i.imm_operands == 1
4029 && i.op[0].imms->X_op == O_constant
507916b8 4030 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
4031 && i.tm.extension_opcode == None
4032 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4033 || (fits_in_imm31 (i.op[0].imms->X_add_number)
72aea328
JB
4034 && ((i.tm.base_opcode == 0x24
4035 || i.tm.base_opcode == 0xa8)
b6f8c7c4
L
4036 || (i.tm.base_opcode == 0x80
4037 && i.tm.extension_opcode == 0x4)
4038 || ((i.tm.base_opcode == 0xf6
507916b8 4039 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
4040 && i.tm.extension_opcode == 0x0)))
4041 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4042 && i.tm.base_opcode == 0x83
4043 && i.tm.extension_opcode == 0x4)))
d3d50934
L
4044 || (i.types[0].bitfield.qword
4045 && ((i.reg_operands == 2
4046 && i.op[0].regs == i.op[1].regs
72aea328
JB
4047 && (i.tm.base_opcode == 0x30
4048 || i.tm.base_opcode == 0x28))
d3d50934
L
4049 || (i.reg_operands == 1
4050 && i.operands == 1
72aea328 4051 && i.tm.base_opcode == 0x30)))))
b6f8c7c4
L
4052 {
4053 /* Optimize: -O:
4054 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4055 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4056 testq $imm31, %r64 -> testl $imm31, %r32
4057 xorq %r64, %r64 -> xorl %r32, %r32
4058 subq %r64, %r64 -> subl %r32, %r32
4059 movq $imm31, %r64 -> movl $imm31, %r32
4060 movq $imm32, %r64 -> movl $imm32, %r32
4061 */
4062 i.tm.opcode_modifier.norex64 = 1;
507916b8 4063 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4064 {
4065 /* Handle
4066 movq $imm31, %r64 -> movl $imm31, %r32
4067 movq $imm32, %r64 -> movl $imm32, %r32
4068 */
4069 i.tm.operand_types[0].bitfield.imm32 = 1;
4070 i.tm.operand_types[0].bitfield.imm32s = 0;
4071 i.tm.operand_types[0].bitfield.imm64 = 0;
4072 i.types[0].bitfield.imm32 = 1;
4073 i.types[0].bitfield.imm32s = 0;
4074 i.types[0].bitfield.imm64 = 0;
4075 i.types[1].bitfield.dword = 1;
4076 i.types[1].bitfield.qword = 0;
507916b8 4077 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4078 {
4079 /* Handle
4080 movq $imm31, %r64 -> movl $imm31, %r32
4081 */
507916b8 4082 i.tm.base_opcode = 0xb8;
b6f8c7c4 4083 i.tm.extension_opcode = None;
507916b8 4084 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4085 i.tm.opcode_modifier.shortform = 1;
4086 i.tm.opcode_modifier.modrm = 0;
4087 }
4088 }
4089 }
5641ec01
JB
4090 else if (optimize > 1
4091 && !optimize_for_space
72aea328 4092 && !is_any_vex_encoding (&i.tm)
5641ec01
JB
4093 && i.reg_operands == 2
4094 && i.op[0].regs == i.op[1].regs
4095 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4096 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4097 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4098 {
4099 /* Optimize: -O2:
4100 andb %rN, %rN -> testb %rN, %rN
4101 andw %rN, %rN -> testw %rN, %rN
4102 andq %rN, %rN -> testq %rN, %rN
4103 orb %rN, %rN -> testb %rN, %rN
4104 orw %rN, %rN -> testw %rN, %rN
4105 orq %rN, %rN -> testq %rN, %rN
4106
4107 and outside of 64-bit mode
4108
4109 andl %rN, %rN -> testl %rN, %rN
4110 orl %rN, %rN -> testl %rN, %rN
4111 */
4112 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4113 }
99112332 4114 else if (i.reg_operands == 3
b6f8c7c4
L
4115 && i.op[0].regs == i.op[1].regs
4116 && !i.types[2].bitfield.xmmword
4117 && (i.tm.opcode_modifier.vex
7a69eac3 4118 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4119 && !i.rounding
e771e7c9 4120 && is_evex_encoding (&i.tm)
80c34c38 4121 && (i.vec_encoding != vex_encoding_evex
dd22218c 4122 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4123 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4124 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4125 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4126 && ((i.tm.base_opcode == 0x55
4127 || i.tm.base_opcode == 0x6655
4128 || i.tm.base_opcode == 0x66df
4129 || i.tm.base_opcode == 0x57
4130 || i.tm.base_opcode == 0x6657
8305403a
L
4131 || i.tm.base_opcode == 0x66ef
4132 || i.tm.base_opcode == 0x66f8
4133 || i.tm.base_opcode == 0x66f9
4134 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4135 || i.tm.base_opcode == 0x66fb
4136 || i.tm.base_opcode == 0x42
4137 || i.tm.base_opcode == 0x6642
4138 || i.tm.base_opcode == 0x47
4139 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4140 && i.tm.extension_opcode == None))
4141 {
99112332 4142 /* Optimize: -O1:
8305403a
L
4143 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4144 vpsubq and vpsubw:
b6f8c7c4
L
4145 EVEX VOP %zmmM, %zmmM, %zmmN
4146 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4147 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4148 EVEX VOP %ymmM, %ymmM, %ymmN
4149 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4150 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4151 VEX VOP %ymmM, %ymmM, %ymmN
4152 -> VEX VOP %xmmM, %xmmM, %xmmN
4153 VOP, one of vpandn and vpxor:
4154 VEX VOP %ymmM, %ymmM, %ymmN
4155 -> VEX VOP %xmmM, %xmmM, %xmmN
4156 VOP, one of vpandnd and vpandnq:
4157 EVEX VOP %zmmM, %zmmM, %zmmN
4158 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4159 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4160 EVEX VOP %ymmM, %ymmM, %ymmN
4161 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4162 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4163 VOP, one of vpxord and vpxorq:
4164 EVEX VOP %zmmM, %zmmM, %zmmN
4165 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4166 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4167 EVEX VOP %ymmM, %ymmM, %ymmN
4168 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4169 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4170 VOP, one of kxord and kxorq:
4171 VEX VOP %kM, %kM, %kN
4172 -> VEX kxorw %kM, %kM, %kN
4173 VOP, one of kandnd and kandnq:
4174 VEX VOP %kM, %kM, %kN
4175 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4176 */
e771e7c9 4177 if (is_evex_encoding (&i.tm))
b6f8c7c4 4178 {
7b1d7ca1 4179 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4180 {
4181 i.tm.opcode_modifier.vex = VEX128;
4182 i.tm.opcode_modifier.vexw = VEXW0;
4183 i.tm.opcode_modifier.evex = 0;
4184 }
7b1d7ca1 4185 else if (optimize > 1)
dd22218c
L
4186 i.tm.opcode_modifier.evex = EVEX128;
4187 else
4188 return;
b6f8c7c4 4189 }
f74a6307 4190 else if (i.tm.operand_types[0].bitfield.class == RegMask)
1424ad86
JB
4191 {
4192 i.tm.base_opcode &= 0xff;
4193 i.tm.opcode_modifier.vexw = VEXW0;
4194 }
b6f8c7c4
L
4195 else
4196 i.tm.opcode_modifier.vex = VEX128;
4197
4198 if (i.tm.opcode_modifier.vex)
4199 for (j = 0; j < 3; j++)
4200 {
4201 i.types[j].bitfield.xmmword = 1;
4202 i.types[j].bitfield.ymmword = 0;
4203 }
4204 }
392a5972 4205 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4206 && !i.types[0].bitfield.zmmword
392a5972 4207 && !i.types[1].bitfield.zmmword
97ed31ae 4208 && !i.mask
a0a1771e 4209 && !i.broadcast
97ed31ae 4210 && is_evex_encoding (&i.tm)
392a5972
L
4211 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4212 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4213 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4214 || (i.tm.base_opcode & ~4) == 0x66db
4215 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4216 && i.tm.extension_opcode == None)
4217 {
4218 /* Optimize: -O1:
4219 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4220 vmovdqu32 and vmovdqu64:
4221 EVEX VOP %xmmM, %xmmN
4222 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4223 EVEX VOP %ymmM, %ymmN
4224 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4225 EVEX VOP %xmmM, mem
4226 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4227 EVEX VOP %ymmM, mem
4228 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4229 EVEX VOP mem, %xmmN
4230 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4231 EVEX VOP mem, %ymmN
4232 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4233 VOP, one of vpand, vpandn, vpor, vpxor:
4234 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4235 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4236 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4237 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4238 EVEX VOP{d,q} mem, %xmmM, %xmmN
4239 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4240 EVEX VOP{d,q} mem, %ymmM, %ymmN
4241 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4242 */
a0a1771e 4243 for (j = 0; j < i.operands; j++)
392a5972
L
4244 if (operand_type_check (i.types[j], disp)
4245 && i.op[j].disps->X_op == O_constant)
4246 {
4247 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4248 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4249 bytes, we choose EVEX Disp8 over VEX Disp32. */
4250 int evex_disp8, vex_disp8;
4251 unsigned int memshift = i.memshift;
4252 offsetT n = i.op[j].disps->X_add_number;
4253
4254 evex_disp8 = fits_in_disp8 (n);
4255 i.memshift = 0;
4256 vex_disp8 = fits_in_disp8 (n);
4257 if (evex_disp8 != vex_disp8)
4258 {
4259 i.memshift = memshift;
4260 return;
4261 }
4262
4263 i.types[j].bitfield.disp8 = vex_disp8;
4264 break;
4265 }
4266 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4267 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4268 i.tm.opcode_modifier.vex
4269 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4270 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4271 /* VPAND, VPOR, and VPXOR are commutative. */
4272 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4273 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4274 i.tm.opcode_modifier.evex = 0;
4275 i.tm.opcode_modifier.masking = 0;
a0a1771e 4276 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4277 i.tm.opcode_modifier.disp8memshift = 0;
4278 i.memshift = 0;
a0a1771e
JB
4279 if (j < i.operands)
4280 i.types[j].bitfield.disp8
4281 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4282 }
b6f8c7c4
L
4283}
4284
252b5132
RH
4285/* This is the guts of the machine-dependent assembler. LINE points to a
4286 machine dependent instruction. This function is supposed to emit
4287 the frags/bytes it assembles to. */
4288
4289void
65da13b5 4290md_assemble (char *line)
252b5132 4291{
40fb9820 4292 unsigned int j;
83b16ac6 4293 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4294 const insn_template *t;
252b5132 4295
47926f60 4296 /* Initialize globals. */
252b5132
RH
4297 memset (&i, '\0', sizeof (i));
4298 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4299 i.reloc[j] = NO_RELOC;
252b5132
RH
4300 memset (disp_expressions, '\0', sizeof (disp_expressions));
4301 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4302 save_stack_p = save_stack;
252b5132
RH
4303
4304 /* First parse an instruction mnemonic & call i386_operand for the operands.
4305 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4306 start of a (possibly prefixed) mnemonic. */
252b5132 4307
29b0f896
AM
4308 line = parse_insn (line, mnemonic);
4309 if (line == NULL)
4310 return;
83b16ac6 4311 mnem_suffix = i.suffix;
252b5132 4312
29b0f896 4313 line = parse_operands (line, mnemonic);
ee86248c 4314 this_operand = -1;
8325cc63
JB
4315 xfree (i.memop1_string);
4316 i.memop1_string = NULL;
29b0f896
AM
4317 if (line == NULL)
4318 return;
252b5132 4319
29b0f896
AM
4320 /* Now we've parsed the mnemonic into a set of templates, and have the
4321 operands at hand. */
4322
4323 /* All intel opcodes have reversed operands except for "bound" and
4324 "enter". We also don't reverse intersegment "jmp" and "call"
4325 instructions with 2 immediate operands so that the immediate segment
050dfa73 4326 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4327 if (intel_syntax
4328 && i.operands > 1
29b0f896 4329 && (strcmp (mnemonic, "bound") != 0)
30123838 4330 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4331 && !(operand_type_check (i.types[0], imm)
4332 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4333 swap_operands ();
4334
ec56d5c0
JB
4335 /* The order of the immediates should be reversed
4336 for 2 immediates extrq and insertq instructions */
4337 if (i.imm_operands == 2
4338 && (strcmp (mnemonic, "extrq") == 0
4339 || strcmp (mnemonic, "insertq") == 0))
4340 swap_2_operands (0, 1);
4341
29b0f896
AM
4342 if (i.imm_operands)
4343 optimize_imm ();
4344
b300c311
L
4345 /* Don't optimize displacement for movabs since it only takes 64bit
4346 displacement. */
4347 if (i.disp_operands
a501d77e 4348 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4349 && (flag_code != CODE_64BIT
4350 || strcmp (mnemonic, "movabs") != 0))
4351 optimize_disp ();
29b0f896
AM
4352
4353 /* Next, we find a template that matches the given insn,
4354 making sure the overlap of the given operands types is consistent
4355 with the template operand types. */
252b5132 4356
83b16ac6 4357 if (!(t = match_template (mnem_suffix)))
29b0f896 4358 return;
252b5132 4359
7bab8ab5 4360 if (sse_check != check_none
81f8a913 4361 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4362 && !i.tm.cpu_flags.bitfield.cpuavx
569d50f1 4363 && !i.tm.cpu_flags.bitfield.cpuavx512f
daf50ae7
L
4364 && (i.tm.cpu_flags.bitfield.cpusse
4365 || i.tm.cpu_flags.bitfield.cpusse2
4366 || i.tm.cpu_flags.bitfield.cpusse3
4367 || i.tm.cpu_flags.bitfield.cpussse3
4368 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e 4369 || i.tm.cpu_flags.bitfield.cpusse4_2
569d50f1 4370 || i.tm.cpu_flags.bitfield.cpusse4a
6e3e5c9e
JB
4371 || i.tm.cpu_flags.bitfield.cpupclmul
4372 || i.tm.cpu_flags.bitfield.cpuaes
569d50f1 4373 || i.tm.cpu_flags.bitfield.cpusha
6e3e5c9e 4374 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4375 {
7bab8ab5 4376 (sse_check == check_warning
daf50ae7
L
4377 ? as_warn
4378 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4379 }
4380
321fd21e
L
4381 /* Zap movzx and movsx suffix. The suffix has been set from
4382 "word ptr" or "byte ptr" on the source operand in Intel syntax
4383 or extracted from mnemonic in AT&T syntax. But we'll use
4384 the destination register to choose the suffix for encoding. */
4385 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4386 {
321fd21e
L
4387 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4388 there is no suffix, the default will be byte extension. */
4389 if (i.reg_operands != 2
4390 && !i.suffix
7ab9ffdd 4391 && intel_syntax)
321fd21e
L
4392 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4393
4394 i.suffix = 0;
cd61ebfe 4395 }
24eab124 4396
40fb9820 4397 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4398 if (!add_prefix (FWAIT_OPCODE))
4399 return;
252b5132 4400
d5de92cf
L
4401 /* Check if REP prefix is OK. */
4402 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4403 {
4404 as_bad (_("invalid instruction `%s' after `%s'"),
4405 i.tm.name, i.rep_prefix);
4406 return;
4407 }
4408
c1ba0266
L
4409 /* Check for lock without a lockable instruction. Destination operand
4410 must be memory unless it is xchg (0x86). */
c32fa91d
L
4411 if (i.prefix[LOCK_PREFIX]
4412 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4413 || i.mem_operands == 0
4414 || (i.tm.base_opcode != 0x86
8dc0818e 4415 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4416 {
4417 as_bad (_("expecting lockable instruction after `lock'"));
4418 return;
4419 }
4420
7a8655d2
JB
4421 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4422 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4423 {
4424 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4425 return;
4426 }
4427
42164a71 4428 /* Check if HLE prefix is OK. */
165de32a 4429 if (i.hle_prefix && !check_hle ())
42164a71
L
4430 return;
4431
7e8b059b
L
4432 /* Check BND prefix. */
4433 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4434 as_bad (_("expecting valid branch instruction after `bnd'"));
4435
04ef582a 4436 /* Check NOTRACK prefix. */
9fef80d6
L
4437 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4438 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4439
327e8c42
JB
4440 if (i.tm.cpu_flags.bitfield.cpumpx)
4441 {
4442 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4443 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4444 else if (flag_code != CODE_16BIT
4445 ? i.prefix[ADDR_PREFIX]
4446 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4447 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4448 }
7e8b059b
L
4449
4450 /* Insert BND prefix. */
76d3a78a
JB
4451 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4452 {
4453 if (!i.prefix[BND_PREFIX])
4454 add_prefix (BND_PREFIX_OPCODE);
4455 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4456 {
4457 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4458 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4459 }
4460 }
7e8b059b 4461
29b0f896 4462 /* Check string instruction segment overrides. */
51c8edf6 4463 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
29b0f896 4464 {
51c8edf6 4465 gas_assert (i.mem_operands);
29b0f896 4466 if (!check_string ())
5dd0794d 4467 return;
fc0763e6 4468 i.disp_operands = 0;
29b0f896 4469 }
5dd0794d 4470
b6f8c7c4
L
4471 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4472 optimize_encoding ();
4473
29b0f896
AM
4474 if (!process_suffix ())
4475 return;
e413e4e9 4476
bc0844ae
L
4477 /* Update operand types. */
4478 for (j = 0; j < i.operands; j++)
4479 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4480
29b0f896
AM
4481 /* Make still unresolved immediate matches conform to size of immediate
4482 given in i.suffix. */
4483 if (!finalize_imm ())
4484 return;
252b5132 4485
40fb9820 4486 if (i.types[0].bitfield.imm1)
29b0f896 4487 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4488
9afe6eb8
L
4489 /* We only need to check those implicit registers for instructions
4490 with 3 operands or less. */
4491 if (i.operands <= 3)
4492 for (j = 0; j < i.operands; j++)
75e5731b
JB
4493 if (i.types[j].bitfield.instance != InstanceNone
4494 && !i.types[j].bitfield.xmmword)
9afe6eb8 4495 i.reg_operands--;
40fb9820 4496
c0f3af97
L
4497 /* ImmExt should be processed after SSE2AVX. */
4498 if (!i.tm.opcode_modifier.sse2avx
4499 && i.tm.opcode_modifier.immext)
65da13b5 4500 process_immext ();
252b5132 4501
29b0f896
AM
4502 /* For insns with operands there are more diddles to do to the opcode. */
4503 if (i.operands)
4504 {
4505 if (!process_operands ())
4506 return;
4507 }
40fb9820 4508 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4509 {
4510 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4511 as_warn (_("translating to `%sp'"), i.tm.name);
4512 }
252b5132 4513
7a8655d2 4514 if (is_any_vex_encoding (&i.tm))
9e5e5283 4515 {
c1dc7af5 4516 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4517 {
c1dc7af5 4518 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4519 i.tm.name);
4520 return;
4521 }
c0f3af97 4522
9e5e5283
L
4523 if (i.tm.opcode_modifier.vex)
4524 build_vex_prefix (t);
4525 else
4526 build_evex_prefix ();
4527 }
43234a1e 4528
5dd85c99
SP
4529 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4530 instructions may define INT_OPCODE as well, so avoid this corner
4531 case for those instructions that use MODRM. */
4532 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4533 && !i.tm.opcode_modifier.modrm
4534 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4535 {
4536 i.tm.base_opcode = INT3_OPCODE;
4537 i.imm_operands = 0;
4538 }
252b5132 4539
0cfa3eb3
JB
4540 if ((i.tm.opcode_modifier.jump == JUMP
4541 || i.tm.opcode_modifier.jump == JUMP_BYTE
4542 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896
AM
4543 && i.op[0].disps->X_op == O_constant)
4544 {
4545 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4546 the absolute address given by the constant. Since ix86 jumps and
4547 calls are pc relative, we need to generate a reloc. */
4548 i.op[0].disps->X_add_symbol = &abs_symbol;
4549 i.op[0].disps->X_op = O_symbol;
4550 }
252b5132 4551
40fb9820 4552 if (i.tm.opcode_modifier.rex64)
161a04f6 4553 i.rex |= REX_W;
252b5132 4554
29b0f896
AM
4555 /* For 8 bit registers we need an empty rex prefix. Also if the
4556 instruction already has a prefix, we need to convert old
4557 registers to new ones. */
773f551c 4558
bab6aec1 4559 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
29b0f896 4560 && (i.op[0].regs->reg_flags & RegRex64) != 0)
bab6aec1 4561 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
29b0f896 4562 && (i.op[1].regs->reg_flags & RegRex64) != 0)
bab6aec1
JB
4563 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4564 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
29b0f896
AM
4565 && i.rex != 0))
4566 {
4567 int x;
726c5dcd 4568
29b0f896
AM
4569 i.rex |= REX_OPCODE;
4570 for (x = 0; x < 2; x++)
4571 {
4572 /* Look for 8 bit operand that uses old registers. */
bab6aec1 4573 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
29b0f896 4574 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4575 {
3f93af61 4576 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
29b0f896
AM
4577 /* In case it is "hi" register, give up. */
4578 if (i.op[x].regs->reg_num > 3)
a540244d 4579 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4580 "instruction requiring REX prefix."),
a540244d 4581 register_prefix, i.op[x].regs->reg_name);
773f551c 4582
29b0f896
AM
4583 /* Otherwise it is equivalent to the extended register.
4584 Since the encoding doesn't change this is merely
4585 cosmetic cleanup for debug output. */
4586
4587 i.op[x].regs = i.op[x].regs + 8;
773f551c 4588 }
29b0f896
AM
4589 }
4590 }
773f551c 4591
6b6b6807
L
4592 if (i.rex == 0 && i.rex_encoding)
4593 {
4594 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
3f93af61 4595 that uses legacy register. If it is "hi" register, don't add
6b6b6807
L
4596 the REX_OPCODE byte. */
4597 int x;
4598 for (x = 0; x < 2; x++)
bab6aec1 4599 if (i.types[x].bitfield.class == Reg
6b6b6807
L
4600 && i.types[x].bitfield.byte
4601 && (i.op[x].regs->reg_flags & RegRex64) == 0
4602 && i.op[x].regs->reg_num > 3)
4603 {
3f93af61 4604 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
6b6b6807
L
4605 i.rex_encoding = FALSE;
4606 break;
4607 }
4608
4609 if (i.rex_encoding)
4610 i.rex = REX_OPCODE;
4611 }
4612
7ab9ffdd 4613 if (i.rex != 0)
29b0f896
AM
4614 add_prefix (REX_OPCODE | i.rex);
4615
4616 /* We are ready to output the insn. */
4617 output_insn ();
e379e5f3
L
4618
4619 last_insn.seg = now_seg;
4620
4621 if (i.tm.opcode_modifier.isprefix)
4622 {
4623 last_insn.kind = last_insn_prefix;
4624 last_insn.name = i.tm.name;
4625 last_insn.file = as_where (&last_insn.line);
4626 }
4627 else
4628 last_insn.kind = last_insn_other;
29b0f896
AM
4629}
4630
4631static char *
e3bb37b5 4632parse_insn (char *line, char *mnemonic)
29b0f896
AM
4633{
4634 char *l = line;
4635 char *token_start = l;
4636 char *mnem_p;
5c6af06e 4637 int supported;
d3ce72d0 4638 const insn_template *t;
b6169b20 4639 char *dot_p = NULL;
29b0f896 4640
29b0f896
AM
4641 while (1)
4642 {
4643 mnem_p = mnemonic;
4644 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4645 {
b6169b20
L
4646 if (*mnem_p == '.')
4647 dot_p = mnem_p;
29b0f896
AM
4648 mnem_p++;
4649 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4650 {
29b0f896
AM
4651 as_bad (_("no such instruction: `%s'"), token_start);
4652 return NULL;
4653 }
4654 l++;
4655 }
4656 if (!is_space_char (*l)
4657 && *l != END_OF_INSN
e44823cf
JB
4658 && (intel_syntax
4659 || (*l != PREFIX_SEPARATOR
4660 && *l != ',')))
29b0f896
AM
4661 {
4662 as_bad (_("invalid character %s in mnemonic"),
4663 output_invalid (*l));
4664 return NULL;
4665 }
4666 if (token_start == l)
4667 {
e44823cf 4668 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4669 as_bad (_("expecting prefix; got nothing"));
4670 else
4671 as_bad (_("expecting mnemonic; got nothing"));
4672 return NULL;
4673 }
45288df1 4674
29b0f896 4675 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4676 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4677
29b0f896
AM
4678 if (*l != END_OF_INSN
4679 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4680 && current_templates
40fb9820 4681 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4682 {
c6fb90c8 4683 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4684 {
4685 as_bad ((flag_code != CODE_64BIT
4686 ? _("`%s' is only supported in 64-bit mode")
4687 : _("`%s' is not supported in 64-bit mode")),
4688 current_templates->start->name);
4689 return NULL;
4690 }
29b0f896
AM
4691 /* If we are in 16-bit mode, do not allow addr16 or data16.
4692 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4693 if ((current_templates->start->opcode_modifier.size == SIZE16
4694 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4695 && flag_code != CODE_64BIT
673fe0f0 4696 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4697 ^ (flag_code == CODE_16BIT)))
4698 {
4699 as_bad (_("redundant %s prefix"),
4700 current_templates->start->name);
4701 return NULL;
45288df1 4702 }
86fa6981 4703 if (current_templates->start->opcode_length == 0)
29b0f896 4704 {
86fa6981
L
4705 /* Handle pseudo prefixes. */
4706 switch (current_templates->start->base_opcode)
4707 {
4708 case 0x0:
4709 /* {disp8} */
4710 i.disp_encoding = disp_encoding_8bit;
4711 break;
4712 case 0x1:
4713 /* {disp32} */
4714 i.disp_encoding = disp_encoding_32bit;
4715 break;
4716 case 0x2:
4717 /* {load} */
4718 i.dir_encoding = dir_encoding_load;
4719 break;
4720 case 0x3:
4721 /* {store} */
4722 i.dir_encoding = dir_encoding_store;
4723 break;
4724 case 0x4:
4725 /* {vex2} */
4726 i.vec_encoding = vex_encoding_vex2;
4727 break;
4728 case 0x5:
4729 /* {vex3} */
4730 i.vec_encoding = vex_encoding_vex3;
4731 break;
4732 case 0x6:
4733 /* {evex} */
4734 i.vec_encoding = vex_encoding_evex;
4735 break;
6b6b6807
L
4736 case 0x7:
4737 /* {rex} */
4738 i.rex_encoding = TRUE;
4739 break;
b6f8c7c4
L
4740 case 0x8:
4741 /* {nooptimize} */
4742 i.no_optimize = TRUE;
4743 break;
86fa6981
L
4744 default:
4745 abort ();
4746 }
4747 }
4748 else
4749 {
4750 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4751 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4752 {
4e9ac44a
L
4753 case PREFIX_EXIST:
4754 return NULL;
4755 case PREFIX_DS:
d777820b 4756 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4757 i.notrack_prefix = current_templates->start->name;
4758 break;
4759 case PREFIX_REP:
4760 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4761 i.hle_prefix = current_templates->start->name;
4762 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4763 i.bnd_prefix = current_templates->start->name;
4764 else
4765 i.rep_prefix = current_templates->start->name;
4766 break;
4767 default:
4768 break;
86fa6981 4769 }
29b0f896
AM
4770 }
4771 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4772 token_start = ++l;
4773 }
4774 else
4775 break;
4776 }
45288df1 4777
30a55f88 4778 if (!current_templates)
b6169b20 4779 {
07d5e953
JB
4780 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4781 Check if we should swap operand or force 32bit displacement in
f8a5c266 4782 encoding. */
30a55f88 4783 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4784 i.dir_encoding = dir_encoding_swap;
8d63c93e 4785 else if (mnem_p - 3 == dot_p
a501d77e
L
4786 && dot_p[1] == 'd'
4787 && dot_p[2] == '8')
4788 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4789 else if (mnem_p - 4 == dot_p
f8a5c266
L
4790 && dot_p[1] == 'd'
4791 && dot_p[2] == '3'
4792 && dot_p[3] == '2')
a501d77e 4793 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4794 else
4795 goto check_suffix;
4796 mnem_p = dot_p;
4797 *dot_p = '\0';
d3ce72d0 4798 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4799 }
4800
29b0f896
AM
4801 if (!current_templates)
4802 {
b6169b20 4803check_suffix:
1c529385 4804 if (mnem_p > mnemonic)
29b0f896 4805 {
1c529385
LH
4806 /* See if we can get a match by trimming off a suffix. */
4807 switch (mnem_p[-1])
29b0f896 4808 {
1c529385
LH
4809 case WORD_MNEM_SUFFIX:
4810 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4811 i.suffix = SHORT_MNEM_SUFFIX;
4812 else
1c529385
LH
4813 /* Fall through. */
4814 case BYTE_MNEM_SUFFIX:
4815 case QWORD_MNEM_SUFFIX:
4816 i.suffix = mnem_p[-1];
29b0f896 4817 mnem_p[-1] = '\0';
d3ce72d0 4818 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4819 mnemonic);
4820 break;
4821 case SHORT_MNEM_SUFFIX:
4822 case LONG_MNEM_SUFFIX:
4823 if (!intel_syntax)
4824 {
4825 i.suffix = mnem_p[-1];
4826 mnem_p[-1] = '\0';
4827 current_templates = (const templates *) hash_find (op_hash,
4828 mnemonic);
4829 }
4830 break;
4831
4832 /* Intel Syntax. */
4833 case 'd':
4834 if (intel_syntax)
4835 {
4836 if (intel_float_operand (mnemonic) == 1)
4837 i.suffix = SHORT_MNEM_SUFFIX;
4838 else
4839 i.suffix = LONG_MNEM_SUFFIX;
4840 mnem_p[-1] = '\0';
4841 current_templates = (const templates *) hash_find (op_hash,
4842 mnemonic);
4843 }
4844 break;
29b0f896 4845 }
29b0f896 4846 }
1c529385 4847
29b0f896
AM
4848 if (!current_templates)
4849 {
4850 as_bad (_("no such instruction: `%s'"), token_start);
4851 return NULL;
4852 }
4853 }
252b5132 4854
0cfa3eb3
JB
4855 if (current_templates->start->opcode_modifier.jump == JUMP
4856 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
4857 {
4858 /* Check for a branch hint. We allow ",pt" and ",pn" for
4859 predict taken and predict not taken respectively.
4860 I'm not sure that branch hints actually do anything on loop
4861 and jcxz insns (JumpByte) for current Pentium4 chips. They
4862 may work in the future and it doesn't hurt to accept them
4863 now. */
4864 if (l[0] == ',' && l[1] == 'p')
4865 {
4866 if (l[2] == 't')
4867 {
4868 if (!add_prefix (DS_PREFIX_OPCODE))
4869 return NULL;
4870 l += 3;
4871 }
4872 else if (l[2] == 'n')
4873 {
4874 if (!add_prefix (CS_PREFIX_OPCODE))
4875 return NULL;
4876 l += 3;
4877 }
4878 }
4879 }
4880 /* Any other comma loses. */
4881 if (*l == ',')
4882 {
4883 as_bad (_("invalid character %s in mnemonic"),
4884 output_invalid (*l));
4885 return NULL;
4886 }
252b5132 4887
29b0f896 4888 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4889 supported = 0;
4890 for (t = current_templates->start; t < current_templates->end; ++t)
4891 {
c0f3af97
L
4892 supported |= cpu_flags_match (t);
4893 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4894 {
4895 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4896 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4897
548d0ee6
JB
4898 return l;
4899 }
29b0f896 4900 }
3629bb00 4901
548d0ee6
JB
4902 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4903 as_bad (flag_code == CODE_64BIT
4904 ? _("`%s' is not supported in 64-bit mode")
4905 : _("`%s' is only supported in 64-bit mode"),
4906 current_templates->start->name);
4907 else
4908 as_bad (_("`%s' is not supported on `%s%s'"),
4909 current_templates->start->name,
4910 cpu_arch_name ? cpu_arch_name : default_arch,
4911 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4912
548d0ee6 4913 return NULL;
29b0f896 4914}
252b5132 4915
29b0f896 4916static char *
e3bb37b5 4917parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4918{
4919 char *token_start;
3138f287 4920
29b0f896
AM
4921 /* 1 if operand is pending after ','. */
4922 unsigned int expecting_operand = 0;
252b5132 4923
29b0f896
AM
4924 /* Non-zero if operand parens not balanced. */
4925 unsigned int paren_not_balanced;
4926
4927 while (*l != END_OF_INSN)
4928 {
4929 /* Skip optional white space before operand. */
4930 if (is_space_char (*l))
4931 ++l;
d02603dc 4932 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4933 {
4934 as_bad (_("invalid character %s before operand %d"),
4935 output_invalid (*l),
4936 i.operands + 1);
4937 return NULL;
4938 }
d02603dc 4939 token_start = l; /* After white space. */
29b0f896
AM
4940 paren_not_balanced = 0;
4941 while (paren_not_balanced || *l != ',')
4942 {
4943 if (*l == END_OF_INSN)
4944 {
4945 if (paren_not_balanced)
4946 {
4947 if (!intel_syntax)
4948 as_bad (_("unbalanced parenthesis in operand %d."),
4949 i.operands + 1);
4950 else
4951 as_bad (_("unbalanced brackets in operand %d."),
4952 i.operands + 1);
4953 return NULL;
4954 }
4955 else
4956 break; /* we are done */
4957 }
d02603dc 4958 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4959 {
4960 as_bad (_("invalid character %s in operand %d"),
4961 output_invalid (*l),
4962 i.operands + 1);
4963 return NULL;
4964 }
4965 if (!intel_syntax)
4966 {
4967 if (*l == '(')
4968 ++paren_not_balanced;
4969 if (*l == ')')
4970 --paren_not_balanced;
4971 }
4972 else
4973 {
4974 if (*l == '[')
4975 ++paren_not_balanced;
4976 if (*l == ']')
4977 --paren_not_balanced;
4978 }
4979 l++;
4980 }
4981 if (l != token_start)
4982 { /* Yes, we've read in another operand. */
4983 unsigned int operand_ok;
4984 this_operand = i.operands++;
4985 if (i.operands > MAX_OPERANDS)
4986 {
4987 as_bad (_("spurious operands; (%d operands/instruction max)"),
4988 MAX_OPERANDS);
4989 return NULL;
4990 }
9d46ce34 4991 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4992 /* Now parse operand adding info to 'i' as we go along. */
4993 END_STRING_AND_SAVE (l);
4994
1286ab78
L
4995 if (i.mem_operands > 1)
4996 {
4997 as_bad (_("too many memory references for `%s'"),
4998 mnemonic);
4999 return 0;
5000 }
5001
29b0f896
AM
5002 if (intel_syntax)
5003 operand_ok =
5004 i386_intel_operand (token_start,
5005 intel_float_operand (mnemonic));
5006 else
a7619375 5007 operand_ok = i386_att_operand (token_start);
29b0f896
AM
5008
5009 RESTORE_END_STRING (l);
5010 if (!operand_ok)
5011 return NULL;
5012 }
5013 else
5014 {
5015 if (expecting_operand)
5016 {
5017 expecting_operand_after_comma:
5018 as_bad (_("expecting operand after ','; got nothing"));
5019 return NULL;
5020 }
5021 if (*l == ',')
5022 {
5023 as_bad (_("expecting operand before ','; got nothing"));
5024 return NULL;
5025 }
5026 }
7f3f1ea2 5027
29b0f896
AM
5028 /* Now *l must be either ',' or END_OF_INSN. */
5029 if (*l == ',')
5030 {
5031 if (*++l == END_OF_INSN)
5032 {
5033 /* Just skip it, if it's \n complain. */
5034 goto expecting_operand_after_comma;
5035 }
5036 expecting_operand = 1;
5037 }
5038 }
5039 return l;
5040}
7f3f1ea2 5041
050dfa73 5042static void
4d456e3d 5043swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
5044{
5045 union i386_op temp_op;
40fb9820 5046 i386_operand_type temp_type;
c48dadc9 5047 unsigned int temp_flags;
050dfa73 5048 enum bfd_reloc_code_real temp_reloc;
4eed87de 5049
050dfa73
MM
5050 temp_type = i.types[xchg2];
5051 i.types[xchg2] = i.types[xchg1];
5052 i.types[xchg1] = temp_type;
c48dadc9
JB
5053
5054 temp_flags = i.flags[xchg2];
5055 i.flags[xchg2] = i.flags[xchg1];
5056 i.flags[xchg1] = temp_flags;
5057
050dfa73
MM
5058 temp_op = i.op[xchg2];
5059 i.op[xchg2] = i.op[xchg1];
5060 i.op[xchg1] = temp_op;
c48dadc9 5061
050dfa73
MM
5062 temp_reloc = i.reloc[xchg2];
5063 i.reloc[xchg2] = i.reloc[xchg1];
5064 i.reloc[xchg1] = temp_reloc;
43234a1e
L
5065
5066 if (i.mask)
5067 {
5068 if (i.mask->operand == xchg1)
5069 i.mask->operand = xchg2;
5070 else if (i.mask->operand == xchg2)
5071 i.mask->operand = xchg1;
5072 }
5073 if (i.broadcast)
5074 {
5075 if (i.broadcast->operand == xchg1)
5076 i.broadcast->operand = xchg2;
5077 else if (i.broadcast->operand == xchg2)
5078 i.broadcast->operand = xchg1;
5079 }
5080 if (i.rounding)
5081 {
5082 if (i.rounding->operand == xchg1)
5083 i.rounding->operand = xchg2;
5084 else if (i.rounding->operand == xchg2)
5085 i.rounding->operand = xchg1;
5086 }
050dfa73
MM
5087}
5088
29b0f896 5089static void
e3bb37b5 5090swap_operands (void)
29b0f896 5091{
b7c61d9a 5092 switch (i.operands)
050dfa73 5093 {
c0f3af97 5094 case 5:
b7c61d9a 5095 case 4:
4d456e3d 5096 swap_2_operands (1, i.operands - 2);
1a0670f3 5097 /* Fall through. */
b7c61d9a
L
5098 case 3:
5099 case 2:
4d456e3d 5100 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5101 break;
5102 default:
5103 abort ();
29b0f896 5104 }
29b0f896
AM
5105
5106 if (i.mem_operands == 2)
5107 {
5108 const seg_entry *temp_seg;
5109 temp_seg = i.seg[0];
5110 i.seg[0] = i.seg[1];
5111 i.seg[1] = temp_seg;
5112 }
5113}
252b5132 5114
29b0f896
AM
5115/* Try to ensure constant immediates are represented in the smallest
5116 opcode possible. */
5117static void
e3bb37b5 5118optimize_imm (void)
29b0f896
AM
5119{
5120 char guess_suffix = 0;
5121 int op;
252b5132 5122
29b0f896
AM
5123 if (i.suffix)
5124 guess_suffix = i.suffix;
5125 else if (i.reg_operands)
5126 {
5127 /* Figure out a suffix from the last register operand specified.
75e5731b
JB
5128 We can't do this properly yet, i.e. excluding special register
5129 instances, but the following works for instructions with
5130 immediates. In any case, we can't set i.suffix yet. */
29b0f896 5131 for (op = i.operands; --op >= 0;)
bab6aec1
JB
5132 if (i.types[op].bitfield.class != Reg)
5133 continue;
5134 else if (i.types[op].bitfield.byte)
7ab9ffdd 5135 {
40fb9820
L
5136 guess_suffix = BYTE_MNEM_SUFFIX;
5137 break;
5138 }
bab6aec1 5139 else if (i.types[op].bitfield.word)
252b5132 5140 {
40fb9820
L
5141 guess_suffix = WORD_MNEM_SUFFIX;
5142 break;
5143 }
bab6aec1 5144 else if (i.types[op].bitfield.dword)
40fb9820
L
5145 {
5146 guess_suffix = LONG_MNEM_SUFFIX;
5147 break;
5148 }
bab6aec1 5149 else if (i.types[op].bitfield.qword)
40fb9820
L
5150 {
5151 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5152 break;
252b5132 5153 }
29b0f896
AM
5154 }
5155 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5156 guess_suffix = WORD_MNEM_SUFFIX;
5157
5158 for (op = i.operands; --op >= 0;)
40fb9820 5159 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5160 {
5161 switch (i.op[op].imms->X_op)
252b5132 5162 {
29b0f896
AM
5163 case O_constant:
5164 /* If a suffix is given, this operand may be shortened. */
5165 switch (guess_suffix)
252b5132 5166 {
29b0f896 5167 case LONG_MNEM_SUFFIX:
40fb9820
L
5168 i.types[op].bitfield.imm32 = 1;
5169 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5170 break;
5171 case WORD_MNEM_SUFFIX:
40fb9820
L
5172 i.types[op].bitfield.imm16 = 1;
5173 i.types[op].bitfield.imm32 = 1;
5174 i.types[op].bitfield.imm32s = 1;
5175 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5176 break;
5177 case BYTE_MNEM_SUFFIX:
40fb9820
L
5178 i.types[op].bitfield.imm8 = 1;
5179 i.types[op].bitfield.imm8s = 1;
5180 i.types[op].bitfield.imm16 = 1;
5181 i.types[op].bitfield.imm32 = 1;
5182 i.types[op].bitfield.imm32s = 1;
5183 i.types[op].bitfield.imm64 = 1;
29b0f896 5184 break;
252b5132 5185 }
252b5132 5186
29b0f896
AM
5187 /* If this operand is at most 16 bits, convert it
5188 to a signed 16 bit number before trying to see
5189 whether it will fit in an even smaller size.
5190 This allows a 16-bit operand such as $0xffe0 to
5191 be recognised as within Imm8S range. */
40fb9820 5192 if ((i.types[op].bitfield.imm16)
29b0f896 5193 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5194 {
29b0f896
AM
5195 i.op[op].imms->X_add_number =
5196 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5197 }
a28def75
L
5198#ifdef BFD64
5199 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5200 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5201 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5202 == 0))
5203 {
5204 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5205 ^ ((offsetT) 1 << 31))
5206 - ((offsetT) 1 << 31));
5207 }
a28def75 5208#endif
40fb9820 5209 i.types[op]
c6fb90c8
L
5210 = operand_type_or (i.types[op],
5211 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5212
29b0f896
AM
5213 /* We must avoid matching of Imm32 templates when 64bit
5214 only immediate is available. */
5215 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5216 i.types[op].bitfield.imm32 = 0;
29b0f896 5217 break;
252b5132 5218
29b0f896
AM
5219 case O_absent:
5220 case O_register:
5221 abort ();
5222
5223 /* Symbols and expressions. */
5224 default:
9cd96992
JB
5225 /* Convert symbolic operand to proper sizes for matching, but don't
5226 prevent matching a set of insns that only supports sizes other
5227 than those matching the insn suffix. */
5228 {
40fb9820 5229 i386_operand_type mask, allowed;
d3ce72d0 5230 const insn_template *t;
9cd96992 5231
0dfbf9d7
L
5232 operand_type_set (&mask, 0);
5233 operand_type_set (&allowed, 0);
40fb9820 5234
4eed87de
AM
5235 for (t = current_templates->start;
5236 t < current_templates->end;
5237 ++t)
bab6aec1
JB
5238 {
5239 allowed = operand_type_or (allowed, t->operand_types[op]);
5240 allowed = operand_type_and (allowed, anyimm);
5241 }
9cd96992
JB
5242 switch (guess_suffix)
5243 {
5244 case QWORD_MNEM_SUFFIX:
40fb9820
L
5245 mask.bitfield.imm64 = 1;
5246 mask.bitfield.imm32s = 1;
9cd96992
JB
5247 break;
5248 case LONG_MNEM_SUFFIX:
40fb9820 5249 mask.bitfield.imm32 = 1;
9cd96992
JB
5250 break;
5251 case WORD_MNEM_SUFFIX:
40fb9820 5252 mask.bitfield.imm16 = 1;
9cd96992
JB
5253 break;
5254 case BYTE_MNEM_SUFFIX:
40fb9820 5255 mask.bitfield.imm8 = 1;
9cd96992
JB
5256 break;
5257 default:
9cd96992
JB
5258 break;
5259 }
c6fb90c8 5260 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5261 if (!operand_type_all_zero (&allowed))
c6fb90c8 5262 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5263 }
29b0f896 5264 break;
252b5132 5265 }
29b0f896
AM
5266 }
5267}
47926f60 5268
29b0f896
AM
5269/* Try to use the smallest displacement type too. */
5270static void
e3bb37b5 5271optimize_disp (void)
29b0f896
AM
5272{
5273 int op;
3e73aa7c 5274
29b0f896 5275 for (op = i.operands; --op >= 0;)
40fb9820 5276 if (operand_type_check (i.types[op], disp))
252b5132 5277 {
b300c311 5278 if (i.op[op].disps->X_op == O_constant)
252b5132 5279 {
91d6fa6a 5280 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5281
40fb9820 5282 if (i.types[op].bitfield.disp16
91d6fa6a 5283 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5284 {
5285 /* If this operand is at most 16 bits, convert
5286 to a signed 16 bit number and don't use 64bit
5287 displacement. */
91d6fa6a 5288 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5289 i.types[op].bitfield.disp64 = 0;
b300c311 5290 }
a28def75
L
5291#ifdef BFD64
5292 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5293 if (i.types[op].bitfield.disp32
91d6fa6a 5294 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5295 {
5296 /* If this operand is at most 32 bits, convert
5297 to a signed 32 bit number and don't use 64bit
5298 displacement. */
91d6fa6a
NC
5299 op_disp &= (((offsetT) 2 << 31) - 1);
5300 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5301 i.types[op].bitfield.disp64 = 0;
b300c311 5302 }
a28def75 5303#endif
91d6fa6a 5304 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5305 {
40fb9820
L
5306 i.types[op].bitfield.disp8 = 0;
5307 i.types[op].bitfield.disp16 = 0;
5308 i.types[op].bitfield.disp32 = 0;
5309 i.types[op].bitfield.disp32s = 0;
5310 i.types[op].bitfield.disp64 = 0;
b300c311
L
5311 i.op[op].disps = 0;
5312 i.disp_operands--;
5313 }
5314 else if (flag_code == CODE_64BIT)
5315 {
91d6fa6a 5316 if (fits_in_signed_long (op_disp))
28a9d8f5 5317 {
40fb9820
L
5318 i.types[op].bitfield.disp64 = 0;
5319 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5320 }
0e1147d9 5321 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5322 && fits_in_unsigned_long (op_disp))
40fb9820 5323 i.types[op].bitfield.disp32 = 1;
b300c311 5324 }
40fb9820
L
5325 if ((i.types[op].bitfield.disp32
5326 || i.types[op].bitfield.disp32s
5327 || i.types[op].bitfield.disp16)
b5014f7a 5328 && fits_in_disp8 (op_disp))
40fb9820 5329 i.types[op].bitfield.disp8 = 1;
252b5132 5330 }
67a4f2b7
AO
5331 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5332 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5333 {
5334 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5335 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5336 i.types[op].bitfield.disp8 = 0;
5337 i.types[op].bitfield.disp16 = 0;
5338 i.types[op].bitfield.disp32 = 0;
5339 i.types[op].bitfield.disp32s = 0;
5340 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5341 }
5342 else
b300c311 5343 /* We only support 64bit displacement on constants. */
40fb9820 5344 i.types[op].bitfield.disp64 = 0;
252b5132 5345 }
29b0f896
AM
5346}
5347
4a1b91ea
L
5348/* Return 1 if there is a match in broadcast bytes between operand
5349 GIVEN and instruction template T. */
5350
5351static INLINE int
5352match_broadcast_size (const insn_template *t, unsigned int given)
5353{
5354 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5355 && i.types[given].bitfield.byte)
5356 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5357 && i.types[given].bitfield.word)
5358 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5359 && i.types[given].bitfield.dword)
5360 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5361 && i.types[given].bitfield.qword));
5362}
5363
6c30d220
L
5364/* Check if operands are valid for the instruction. */
5365
5366static int
5367check_VecOperands (const insn_template *t)
5368{
43234a1e 5369 unsigned int op;
e2195274
JB
5370 i386_cpu_flags cpu;
5371 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5372
5373 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5374 any one operand are implicity requiring AVX512VL support if the actual
5375 operand size is YMMword or XMMword. Since this function runs after
5376 template matching, there's no need to check for YMMword/XMMword in
5377 the template. */
5378 cpu = cpu_flags_and (t->cpu_flags, avx512);
5379 if (!cpu_flags_all_zero (&cpu)
5380 && !t->cpu_flags.bitfield.cpuavx512vl
5381 && !cpu_arch_flags.bitfield.cpuavx512vl)
5382 {
5383 for (op = 0; op < t->operands; ++op)
5384 {
5385 if (t->operand_types[op].bitfield.zmmword
5386 && (i.types[op].bitfield.ymmword
5387 || i.types[op].bitfield.xmmword))
5388 {
5389 i.error = unsupported;
5390 return 1;
5391 }
5392 }
5393 }
43234a1e 5394
6c30d220
L
5395 /* Without VSIB byte, we can't have a vector register for index. */
5396 if (!t->opcode_modifier.vecsib
5397 && i.index_reg
1b54b8d7
JB
5398 && (i.index_reg->reg_type.bitfield.xmmword
5399 || i.index_reg->reg_type.bitfield.ymmword
5400 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5401 {
5402 i.error = unsupported_vector_index_register;
5403 return 1;
5404 }
5405
ad8ecc81
MZ
5406 /* Check if default mask is allowed. */
5407 if (t->opcode_modifier.nodefmask
5408 && (!i.mask || i.mask->mask->reg_num == 0))
5409 {
5410 i.error = no_default_mask;
5411 return 1;
5412 }
5413
7bab8ab5
JB
5414 /* For VSIB byte, we need a vector register for index, and all vector
5415 registers must be distinct. */
5416 if (t->opcode_modifier.vecsib)
5417 {
5418 if (!i.index_reg
6c30d220 5419 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5420 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5421 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5422 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5423 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5424 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5425 {
5426 i.error = invalid_vsib_address;
5427 return 1;
5428 }
5429
43234a1e
L
5430 gas_assert (i.reg_operands == 2 || i.mask);
5431 if (i.reg_operands == 2 && !i.mask)
5432 {
3528c362 5433 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
5434 gas_assert (i.types[0].bitfield.xmmword
5435 || i.types[0].bitfield.ymmword);
3528c362 5436 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
5437 gas_assert (i.types[2].bitfield.xmmword
5438 || i.types[2].bitfield.ymmword);
43234a1e
L
5439 if (operand_check == check_none)
5440 return 0;
5441 if (register_number (i.op[0].regs)
5442 != register_number (i.index_reg)
5443 && register_number (i.op[2].regs)
5444 != register_number (i.index_reg)
5445 && register_number (i.op[0].regs)
5446 != register_number (i.op[2].regs))
5447 return 0;
5448 if (operand_check == check_error)
5449 {
5450 i.error = invalid_vector_register_set;
5451 return 1;
5452 }
5453 as_warn (_("mask, index, and destination registers should be distinct"));
5454 }
8444f82a
MZ
5455 else if (i.reg_operands == 1 && i.mask)
5456 {
3528c362 5457 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
5458 && (i.types[1].bitfield.xmmword
5459 || i.types[1].bitfield.ymmword
5460 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5461 && (register_number (i.op[1].regs)
5462 == register_number (i.index_reg)))
5463 {
5464 if (operand_check == check_error)
5465 {
5466 i.error = invalid_vector_register_set;
5467 return 1;
5468 }
5469 if (operand_check != check_none)
5470 as_warn (_("index and destination registers should be distinct"));
5471 }
5472 }
43234a1e 5473 }
7bab8ab5 5474
43234a1e
L
5475 /* Check if broadcast is supported by the instruction and is applied
5476 to the memory operand. */
5477 if (i.broadcast)
5478 {
8e6e0792 5479 i386_operand_type type, overlap;
43234a1e
L
5480
5481 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5482 and its broadcast bytes match the memory operand. */
32546502 5483 op = i.broadcast->operand;
8e6e0792 5484 if (!t->opcode_modifier.broadcast
c48dadc9 5485 || !(i.flags[op] & Operand_Mem)
c39e5b26 5486 || (!i.types[op].bitfield.unspecified
4a1b91ea 5487 && !match_broadcast_size (t, op)))
43234a1e
L
5488 {
5489 bad_broadcast:
5490 i.error = unsupported_broadcast;
5491 return 1;
5492 }
8e6e0792 5493
4a1b91ea
L
5494 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5495 * i.broadcast->type);
8e6e0792 5496 operand_type_set (&type, 0);
4a1b91ea 5497 switch (i.broadcast->bytes)
8e6e0792 5498 {
4a1b91ea
L
5499 case 2:
5500 type.bitfield.word = 1;
5501 break;
5502 case 4:
5503 type.bitfield.dword = 1;
5504 break;
8e6e0792
JB
5505 case 8:
5506 type.bitfield.qword = 1;
5507 break;
5508 case 16:
5509 type.bitfield.xmmword = 1;
5510 break;
5511 case 32:
5512 type.bitfield.ymmword = 1;
5513 break;
5514 case 64:
5515 type.bitfield.zmmword = 1;
5516 break;
5517 default:
5518 goto bad_broadcast;
5519 }
5520
5521 overlap = operand_type_and (type, t->operand_types[op]);
5522 if (operand_type_all_zero (&overlap))
5523 goto bad_broadcast;
5524
5525 if (t->opcode_modifier.checkregsize)
5526 {
5527 unsigned int j;
5528
e2195274 5529 type.bitfield.baseindex = 1;
8e6e0792
JB
5530 for (j = 0; j < i.operands; ++j)
5531 {
5532 if (j != op
5533 && !operand_type_register_match(i.types[j],
5534 t->operand_types[j],
5535 type,
5536 t->operand_types[op]))
5537 goto bad_broadcast;
5538 }
5539 }
43234a1e
L
5540 }
5541 /* If broadcast is supported in this instruction, we need to check if
5542 operand of one-element size isn't specified without broadcast. */
5543 else if (t->opcode_modifier.broadcast && i.mem_operands)
5544 {
5545 /* Find memory operand. */
5546 for (op = 0; op < i.operands; op++)
8dc0818e 5547 if (i.flags[op] & Operand_Mem)
43234a1e
L
5548 break;
5549 gas_assert (op < i.operands);
5550 /* Check size of the memory operand. */
4a1b91ea 5551 if (match_broadcast_size (t, op))
43234a1e
L
5552 {
5553 i.error = broadcast_needed;
5554 return 1;
5555 }
5556 }
c39e5b26
JB
5557 else
5558 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5559
5560 /* Check if requested masking is supported. */
ae2387fe 5561 if (i.mask)
43234a1e 5562 {
ae2387fe
JB
5563 switch (t->opcode_modifier.masking)
5564 {
5565 case BOTH_MASKING:
5566 break;
5567 case MERGING_MASKING:
5568 if (i.mask->zeroing)
5569 {
5570 case 0:
5571 i.error = unsupported_masking;
5572 return 1;
5573 }
5574 break;
5575 case DYNAMIC_MASKING:
5576 /* Memory destinations allow only merging masking. */
5577 if (i.mask->zeroing && i.mem_operands)
5578 {
5579 /* Find memory operand. */
5580 for (op = 0; op < i.operands; op++)
c48dadc9 5581 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5582 break;
5583 gas_assert (op < i.operands);
5584 if (op == i.operands - 1)
5585 {
5586 i.error = unsupported_masking;
5587 return 1;
5588 }
5589 }
5590 break;
5591 default:
5592 abort ();
5593 }
43234a1e
L
5594 }
5595
5596 /* Check if masking is applied to dest operand. */
5597 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5598 {
5599 i.error = mask_not_on_destination;
5600 return 1;
5601 }
5602
43234a1e
L
5603 /* Check RC/SAE. */
5604 if (i.rounding)
5605 {
a80195f1
JB
5606 if (!t->opcode_modifier.sae
5607 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5608 {
5609 i.error = unsupported_rc_sae;
5610 return 1;
5611 }
5612 /* If the instruction has several immediate operands and one of
5613 them is rounding, the rounding operand should be the last
5614 immediate operand. */
5615 if (i.imm_operands > 1
5616 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5617 {
43234a1e 5618 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5619 return 1;
5620 }
6c30d220
L
5621 }
5622
43234a1e 5623 /* Check vector Disp8 operand. */
b5014f7a
JB
5624 if (t->opcode_modifier.disp8memshift
5625 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5626 {
5627 if (i.broadcast)
4a1b91ea 5628 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5629 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5630 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5631 else
5632 {
5633 const i386_operand_type *type = NULL;
5634
5635 i.memshift = 0;
5636 for (op = 0; op < i.operands; op++)
8dc0818e 5637 if (i.flags[op] & Operand_Mem)
7091c612 5638 {
4174bfff
JB
5639 if (t->opcode_modifier.evex == EVEXLIG)
5640 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5641 else if (t->operand_types[op].bitfield.xmmword
5642 + t->operand_types[op].bitfield.ymmword
5643 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5644 type = &t->operand_types[op];
5645 else if (!i.types[op].bitfield.unspecified)
5646 type = &i.types[op];
5647 }
3528c362 5648 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 5649 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5650 {
5651 if (i.types[op].bitfield.zmmword)
5652 i.memshift = 6;
5653 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5654 i.memshift = 5;
5655 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5656 i.memshift = 4;
5657 }
5658
5659 if (type)
5660 {
5661 if (type->bitfield.zmmword)
5662 i.memshift = 6;
5663 else if (type->bitfield.ymmword)
5664 i.memshift = 5;
5665 else if (type->bitfield.xmmword)
5666 i.memshift = 4;
5667 }
5668
5669 /* For the check in fits_in_disp8(). */
5670 if (i.memshift == 0)
5671 i.memshift = -1;
5672 }
43234a1e
L
5673
5674 for (op = 0; op < i.operands; op++)
5675 if (operand_type_check (i.types[op], disp)
5676 && i.op[op].disps->X_op == O_constant)
5677 {
b5014f7a 5678 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5679 {
b5014f7a
JB
5680 i.types[op].bitfield.disp8 = 1;
5681 return 0;
43234a1e 5682 }
b5014f7a 5683 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5684 }
5685 }
b5014f7a
JB
5686
5687 i.memshift = 0;
43234a1e 5688
6c30d220
L
5689 return 0;
5690}
5691
43f3e2ee 5692/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5693 operand types. */
5694
5695static int
5696VEX_check_operands (const insn_template *t)
5697{
86fa6981 5698 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5699 {
86fa6981 5700 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5701 if (!is_evex_encoding (t))
86fa6981
L
5702 {
5703 i.error = unsupported;
5704 return 1;
5705 }
5706 return 0;
43234a1e
L
5707 }
5708
a683cc34 5709 if (!t->opcode_modifier.vex)
86fa6981
L
5710 {
5711 /* This instruction template doesn't have VEX prefix. */
5712 if (i.vec_encoding != vex_encoding_default)
5713 {
5714 i.error = unsupported;
5715 return 1;
5716 }
5717 return 0;
5718 }
a683cc34 5719
9d3bf266
JB
5720 /* Check the special Imm4 cases; must be the first operand. */
5721 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5722 {
5723 if (i.op[0].imms->X_op != O_constant
5724 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5725 {
a65babc9 5726 i.error = bad_imm4;
891edac4
L
5727 return 1;
5728 }
a683cc34 5729
9d3bf266
JB
5730 /* Turn off Imm<N> so that update_imm won't complain. */
5731 operand_type_set (&i.types[0], 0);
a683cc34
SP
5732 }
5733
5734 return 0;
5735}
5736
d3ce72d0 5737static const insn_template *
83b16ac6 5738match_template (char mnem_suffix)
29b0f896
AM
5739{
5740 /* Points to template once we've found it. */
d3ce72d0 5741 const insn_template *t;
40fb9820 5742 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5743 i386_operand_type overlap4;
29b0f896 5744 unsigned int found_reverse_match;
dc2be329 5745 i386_opcode_modifier suffix_check;
40fb9820 5746 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5747 int addr_prefix_disp;
a5c311ca 5748 unsigned int j;
3ac21baa 5749 unsigned int found_cpu_match, size_match;
45664ddb 5750 unsigned int check_register;
5614d22c 5751 enum i386_error specific_error = 0;
29b0f896 5752
c0f3af97
L
5753#if MAX_OPERANDS != 5
5754# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5755#endif
5756
29b0f896 5757 found_reverse_match = 0;
539e75ad 5758 addr_prefix_disp = -1;
40fb9820 5759
dc2be329 5760 /* Prepare for mnemonic suffix check. */
40fb9820 5761 memset (&suffix_check, 0, sizeof (suffix_check));
dc2be329
L
5762 switch (mnem_suffix)
5763 {
5764 case BYTE_MNEM_SUFFIX:
5765 suffix_check.no_bsuf = 1;
5766 break;
5767 case WORD_MNEM_SUFFIX:
5768 suffix_check.no_wsuf = 1;
5769 break;
5770 case SHORT_MNEM_SUFFIX:
5771 suffix_check.no_ssuf = 1;
5772 break;
5773 case LONG_MNEM_SUFFIX:
5774 suffix_check.no_lsuf = 1;
5775 break;
5776 case QWORD_MNEM_SUFFIX:
5777 suffix_check.no_qsuf = 1;
5778 break;
5779 default:
5780 /* NB: In Intel syntax, normally we can check for memory operand
5781 size when there is no mnemonic suffix. But jmp and call have
5782 2 different encodings with Dword memory operand size, one with
5783 No_ldSuf and the other without. i.suffix is set to
5784 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5785 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5786 suffix_check.no_ldsuf = 1;
83b16ac6
JB
5787 }
5788
01559ecc
L
5789 /* Must have right number of operands. */
5790 i.error = number_of_operands_mismatch;
5791
45aa61fe 5792 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5793 {
539e75ad 5794 addr_prefix_disp = -1;
dbbc8b7e 5795 found_reverse_match = 0;
539e75ad 5796
29b0f896
AM
5797 if (i.operands != t->operands)
5798 continue;
5799
50aecf8c 5800 /* Check processor support. */
a65babc9 5801 i.error = unsupported;
c0f3af97
L
5802 found_cpu_match = (cpu_flags_match (t)
5803 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5804 if (!found_cpu_match)
5805 continue;
5806
e1d4d893 5807 /* Check AT&T mnemonic. */
a65babc9 5808 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5809 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5810 continue;
5811
e92bae62 5812 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5813 i.error = unsupported_syntax;
5c07affc 5814 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5815 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5816 || (intel64 && t->opcode_modifier.amd64)
5817 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5818 continue;
5819
dc2be329 5820 /* Check the suffix. */
a65babc9 5821 i.error = invalid_instruction_suffix;
dc2be329
L
5822 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5823 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5824 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5825 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5826 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5827 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
83b16ac6 5828 continue;
29b0f896 5829
3ac21baa
JB
5830 size_match = operand_size_match (t);
5831 if (!size_match)
7d5e4556 5832 continue;
539e75ad 5833
6f2f06be
JB
5834 /* This is intentionally not
5835
0cfa3eb3 5836 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6f2f06be
JB
5837
5838 as the case of a missing * on the operand is accepted (perhaps with
5839 a warning, issued further down). */
0cfa3eb3 5840 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6f2f06be
JB
5841 {
5842 i.error = operand_type_mismatch;
5843 continue;
5844 }
5845
5c07affc
L
5846 for (j = 0; j < MAX_OPERANDS; j++)
5847 operand_types[j] = t->operand_types[j];
5848
45aa61fe
AM
5849 /* In general, don't allow 64-bit operands in 32-bit mode. */
5850 if (i.suffix == QWORD_MNEM_SUFFIX
5851 && flag_code != CODE_64BIT
5852 && (intel_syntax
40fb9820 5853 ? (!t->opcode_modifier.ignoresize
625cbd7a 5854 && !t->opcode_modifier.broadcast
45aa61fe
AM
5855 && !intel_float_operand (t->name))
5856 : intel_float_operand (t->name) != 2)
3528c362
JB
5857 && ((operand_types[0].bitfield.class != RegMMX
5858 && operand_types[0].bitfield.class != RegSIMD)
5859 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5860 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
45aa61fe
AM
5861 && (t->base_opcode != 0x0fc7
5862 || t->extension_opcode != 1 /* cmpxchg8b */))
5863 continue;
5864
192dc9c6
JB
5865 /* In general, don't allow 32-bit operands on pre-386. */
5866 else if (i.suffix == LONG_MNEM_SUFFIX
5867 && !cpu_arch_flags.bitfield.cpui386
5868 && (intel_syntax
5869 ? (!t->opcode_modifier.ignoresize
5870 && !intel_float_operand (t->name))
5871 : intel_float_operand (t->name) != 2)
3528c362
JB
5872 && ((operand_types[0].bitfield.class != RegMMX
5873 && operand_types[0].bitfield.class != RegSIMD)
5874 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5875 && operand_types[t->operands > 1].bitfield.class
5876 != RegSIMD)))
192dc9c6
JB
5877 continue;
5878
29b0f896 5879 /* Do not verify operands when there are none. */
50aecf8c 5880 else
29b0f896 5881 {
c6fb90c8 5882 if (!t->operands)
2dbab7d5
L
5883 /* We've found a match; break out of loop. */
5884 break;
29b0f896 5885 }
252b5132 5886
48bcea9f
JB
5887 if (!t->opcode_modifier.jump
5888 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5889 {
5890 /* There should be only one Disp operand. */
5891 for (j = 0; j < MAX_OPERANDS; j++)
5892 if (operand_type_check (operand_types[j], disp))
539e75ad 5893 break;
48bcea9f
JB
5894 if (j < MAX_OPERANDS)
5895 {
5896 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5897
5898 addr_prefix_disp = j;
5899
5900 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5901 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5902 switch (flag_code)
40fb9820 5903 {
48bcea9f
JB
5904 case CODE_16BIT:
5905 override = !override;
5906 /* Fall through. */
5907 case CODE_32BIT:
5908 if (operand_types[j].bitfield.disp32
5909 && operand_types[j].bitfield.disp16)
40fb9820 5910 {
48bcea9f
JB
5911 operand_types[j].bitfield.disp16 = override;
5912 operand_types[j].bitfield.disp32 = !override;
40fb9820 5913 }
48bcea9f
JB
5914 operand_types[j].bitfield.disp32s = 0;
5915 operand_types[j].bitfield.disp64 = 0;
5916 break;
5917
5918 case CODE_64BIT:
5919 if (operand_types[j].bitfield.disp32s
5920 || operand_types[j].bitfield.disp64)
40fb9820 5921 {
48bcea9f
JB
5922 operand_types[j].bitfield.disp64 &= !override;
5923 operand_types[j].bitfield.disp32s &= !override;
5924 operand_types[j].bitfield.disp32 = override;
40fb9820 5925 }
48bcea9f
JB
5926 operand_types[j].bitfield.disp16 = 0;
5927 break;
40fb9820 5928 }
539e75ad 5929 }
48bcea9f 5930 }
539e75ad 5931
02a86693
L
5932 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5933 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5934 continue;
5935
56ffb741 5936 /* We check register size if needed. */
e2195274
JB
5937 if (t->opcode_modifier.checkregsize)
5938 {
5939 check_register = (1 << t->operands) - 1;
5940 if (i.broadcast)
5941 check_register &= ~(1 << i.broadcast->operand);
5942 }
5943 else
5944 check_register = 0;
5945
c6fb90c8 5946 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5947 switch (t->operands)
5948 {
5949 case 1:
40fb9820 5950 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5951 continue;
5952 break;
5953 case 2:
33eaf5de 5954 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5955 only in 32bit mode and we can use opcode 0x90. In 64bit
5956 mode, we can't use 0x90 for xchg %eax, %eax since it should
5957 zero-extend %eax to %rax. */
5958 if (flag_code == CODE_64BIT
5959 && t->base_opcode == 0x90
75e5731b
JB
5960 && i.types[0].bitfield.instance == Accum
5961 && i.types[0].bitfield.dword
5962 && i.types[1].bitfield.instance == Accum
5963 && i.types[1].bitfield.dword)
8b38ad71 5964 continue;
1212781b
JB
5965 /* xrelease mov %eax, <disp> is another special case. It must not
5966 match the accumulator-only encoding of mov. */
5967 if (flag_code != CODE_64BIT
5968 && i.hle_prefix
5969 && t->base_opcode == 0xa0
75e5731b 5970 && i.types[0].bitfield.instance == Accum
8dc0818e 5971 && (i.flags[1] & Operand_Mem))
1212781b 5972 continue;
f5eb1d70
JB
5973 /* Fall through. */
5974
5975 case 3:
3ac21baa
JB
5976 if (!(size_match & MATCH_STRAIGHT))
5977 goto check_reverse;
64c49ab3
JB
5978 /* Reverse direction of operands if swapping is possible in the first
5979 place (operands need to be symmetric) and
5980 - the load form is requested, and the template is a store form,
5981 - the store form is requested, and the template is a load form,
5982 - the non-default (swapped) form is requested. */
5983 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5984 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5985 && !operand_type_all_zero (&overlap1))
5986 switch (i.dir_encoding)
5987 {
5988 case dir_encoding_load:
5989 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5990 || t->opcode_modifier.regmem)
64c49ab3
JB
5991 goto check_reverse;
5992 break;
5993
5994 case dir_encoding_store:
5995 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5996 && !t->opcode_modifier.regmem)
64c49ab3
JB
5997 goto check_reverse;
5998 break;
5999
6000 case dir_encoding_swap:
6001 goto check_reverse;
6002
6003 case dir_encoding_default:
6004 break;
6005 }
86fa6981 6006 /* If we want store form, we skip the current load. */
64c49ab3
JB
6007 if ((i.dir_encoding == dir_encoding_store
6008 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
6009 && i.mem_operands == 0
6010 && t->opcode_modifier.load)
fa99fab2 6011 continue;
1a0670f3 6012 /* Fall through. */
f48ff2ae 6013 case 4:
c0f3af97 6014 case 5:
c6fb90c8 6015 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
6016 if (!operand_type_match (overlap0, i.types[0])
6017 || !operand_type_match (overlap1, i.types[1])
e2195274 6018 || ((check_register & 3) == 3
dc821c5f 6019 && !operand_type_register_match (i.types[0],
40fb9820 6020 operand_types[0],
dc821c5f 6021 i.types[1],
40fb9820 6022 operand_types[1])))
29b0f896
AM
6023 {
6024 /* Check if other direction is valid ... */
38e314eb 6025 if (!t->opcode_modifier.d)
29b0f896
AM
6026 continue;
6027
b6169b20 6028check_reverse:
3ac21baa
JB
6029 if (!(size_match & MATCH_REVERSE))
6030 continue;
29b0f896 6031 /* Try reversing direction of operands. */
f5eb1d70
JB
6032 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6033 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 6034 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 6035 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 6036 || (check_register
dc821c5f 6037 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
6038 operand_types[i.operands - 1],
6039 i.types[i.operands - 1],
45664ddb 6040 operand_types[0])))
29b0f896
AM
6041 {
6042 /* Does not match either direction. */
6043 continue;
6044 }
38e314eb 6045 /* found_reverse_match holds which of D or FloatR
29b0f896 6046 we've found. */
38e314eb
JB
6047 if (!t->opcode_modifier.d)
6048 found_reverse_match = 0;
6049 else if (operand_types[0].bitfield.tbyte)
8a2ed489 6050 found_reverse_match = Opcode_FloatD;
dbbc8b7e 6051 else if (operand_types[0].bitfield.xmmword
f5eb1d70 6052 || operand_types[i.operands - 1].bitfield.xmmword
3528c362
JB
6053 || operand_types[0].bitfield.class == RegMMX
6054 || operand_types[i.operands - 1].bitfield.class == RegMMX
dbbc8b7e
JB
6055 || is_any_vex_encoding(t))
6056 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6057 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 6058 else
38e314eb 6059 found_reverse_match = Opcode_D;
40fb9820 6060 if (t->opcode_modifier.floatr)
8a2ed489 6061 found_reverse_match |= Opcode_FloatR;
29b0f896 6062 }
f48ff2ae 6063 else
29b0f896 6064 {
f48ff2ae 6065 /* Found a forward 2 operand match here. */
d1cbb4db
L
6066 switch (t->operands)
6067 {
c0f3af97
L
6068 case 5:
6069 overlap4 = operand_type_and (i.types[4],
6070 operand_types[4]);
1a0670f3 6071 /* Fall through. */
d1cbb4db 6072 case 4:
c6fb90c8
L
6073 overlap3 = operand_type_and (i.types[3],
6074 operand_types[3]);
1a0670f3 6075 /* Fall through. */
d1cbb4db 6076 case 3:
c6fb90c8
L
6077 overlap2 = operand_type_and (i.types[2],
6078 operand_types[2]);
d1cbb4db
L
6079 break;
6080 }
29b0f896 6081
f48ff2ae
L
6082 switch (t->operands)
6083 {
c0f3af97
L
6084 case 5:
6085 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6086 || !operand_type_register_match (i.types[3],
c0f3af97 6087 operand_types[3],
c0f3af97
L
6088 i.types[4],
6089 operand_types[4]))
6090 continue;
1a0670f3 6091 /* Fall through. */
f48ff2ae 6092 case 4:
40fb9820 6093 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6094 || ((check_register & 0xa) == 0xa
6095 && !operand_type_register_match (i.types[1],
f7768225
JB
6096 operand_types[1],
6097 i.types[3],
e2195274
JB
6098 operand_types[3]))
6099 || ((check_register & 0xc) == 0xc
6100 && !operand_type_register_match (i.types[2],
6101 operand_types[2],
6102 i.types[3],
6103 operand_types[3])))
f48ff2ae 6104 continue;
1a0670f3 6105 /* Fall through. */
f48ff2ae
L
6106 case 3:
6107 /* Here we make use of the fact that there are no
23e42951 6108 reverse match 3 operand instructions. */
40fb9820 6109 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6110 || ((check_register & 5) == 5
6111 && !operand_type_register_match (i.types[0],
23e42951
JB
6112 operand_types[0],
6113 i.types[2],
e2195274
JB
6114 operand_types[2]))
6115 || ((check_register & 6) == 6
6116 && !operand_type_register_match (i.types[1],
6117 operand_types[1],
6118 i.types[2],
6119 operand_types[2])))
f48ff2ae
L
6120 continue;
6121 break;
6122 }
29b0f896 6123 }
f48ff2ae 6124 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6125 slip through to break. */
6126 }
3629bb00 6127 if (!found_cpu_match)
dbbc8b7e 6128 continue;
c0f3af97 6129
5614d22c
JB
6130 /* Check if vector and VEX operands are valid. */
6131 if (check_VecOperands (t) || VEX_check_operands (t))
6132 {
6133 specific_error = i.error;
6134 continue;
6135 }
a683cc34 6136
29b0f896
AM
6137 /* We've found a match; break out of loop. */
6138 break;
6139 }
6140
6141 if (t == current_templates->end)
6142 {
6143 /* We found no match. */
a65babc9 6144 const char *err_msg;
5614d22c 6145 switch (specific_error ? specific_error : i.error)
a65babc9
L
6146 {
6147 default:
6148 abort ();
86e026a4 6149 case operand_size_mismatch:
a65babc9
L
6150 err_msg = _("operand size mismatch");
6151 break;
6152 case operand_type_mismatch:
6153 err_msg = _("operand type mismatch");
6154 break;
6155 case register_type_mismatch:
6156 err_msg = _("register type mismatch");
6157 break;
6158 case number_of_operands_mismatch:
6159 err_msg = _("number of operands mismatch");
6160 break;
6161 case invalid_instruction_suffix:
6162 err_msg = _("invalid instruction suffix");
6163 break;
6164 case bad_imm4:
4a2608e3 6165 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6166 break;
a65babc9
L
6167 case unsupported_with_intel_mnemonic:
6168 err_msg = _("unsupported with Intel mnemonic");
6169 break;
6170 case unsupported_syntax:
6171 err_msg = _("unsupported syntax");
6172 break;
6173 case unsupported:
35262a23 6174 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6175 current_templates->start->name);
6176 return NULL;
6c30d220
L
6177 case invalid_vsib_address:
6178 err_msg = _("invalid VSIB address");
6179 break;
7bab8ab5
JB
6180 case invalid_vector_register_set:
6181 err_msg = _("mask, index, and destination registers must be distinct");
6182 break;
6c30d220
L
6183 case unsupported_vector_index_register:
6184 err_msg = _("unsupported vector index register");
6185 break;
43234a1e
L
6186 case unsupported_broadcast:
6187 err_msg = _("unsupported broadcast");
6188 break;
43234a1e
L
6189 case broadcast_needed:
6190 err_msg = _("broadcast is needed for operand of such type");
6191 break;
6192 case unsupported_masking:
6193 err_msg = _("unsupported masking");
6194 break;
6195 case mask_not_on_destination:
6196 err_msg = _("mask not on destination operand");
6197 break;
6198 case no_default_mask:
6199 err_msg = _("default mask isn't allowed");
6200 break;
6201 case unsupported_rc_sae:
6202 err_msg = _("unsupported static rounding/sae");
6203 break;
6204 case rc_sae_operand_not_last_imm:
6205 if (intel_syntax)
6206 err_msg = _("RC/SAE operand must precede immediate operands");
6207 else
6208 err_msg = _("RC/SAE operand must follow immediate operands");
6209 break;
6210 case invalid_register_operand:
6211 err_msg = _("invalid register operand");
6212 break;
a65babc9
L
6213 }
6214 as_bad (_("%s for `%s'"), err_msg,
891edac4 6215 current_templates->start->name);
fa99fab2 6216 return NULL;
29b0f896 6217 }
252b5132 6218
29b0f896
AM
6219 if (!quiet_warnings)
6220 {
6221 if (!intel_syntax
0cfa3eb3 6222 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6f2f06be 6223 as_warn (_("indirect %s without `*'"), t->name);
29b0f896 6224
40fb9820
L
6225 if (t->opcode_modifier.isprefix
6226 && t->opcode_modifier.ignoresize)
29b0f896
AM
6227 {
6228 /* Warn them that a data or address size prefix doesn't
6229 affect assembly of the next line of code. */
6230 as_warn (_("stand-alone `%s' prefix"), t->name);
6231 }
6232 }
6233
6234 /* Copy the template we found. */
6235 i.tm = *t;
539e75ad
L
6236
6237 if (addr_prefix_disp != -1)
6238 i.tm.operand_types[addr_prefix_disp]
6239 = operand_types[addr_prefix_disp];
6240
29b0f896
AM
6241 if (found_reverse_match)
6242 {
dfd69174
JB
6243 /* If we found a reverse match we must alter the opcode direction
6244 bit and clear/flip the regmem modifier one. found_reverse_match
6245 holds bits to change (different for int & float insns). */
29b0f896
AM
6246
6247 i.tm.base_opcode ^= found_reverse_match;
6248
f5eb1d70
JB
6249 i.tm.operand_types[0] = operand_types[i.operands - 1];
6250 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6251
6252 /* Certain SIMD insns have their load forms specified in the opcode
6253 table, and hence we need to _set_ RegMem instead of clearing it.
6254 We need to avoid setting the bit though on insns like KMOVW. */
6255 i.tm.opcode_modifier.regmem
6256 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6257 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6258 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6259 }
6260
fa99fab2 6261 return t;
29b0f896
AM
6262}
6263
6264static int
e3bb37b5 6265check_string (void)
29b0f896 6266{
51c8edf6
JB
6267 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6268 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
8dc0818e 6269
51c8edf6 6270 if (i.seg[op] != NULL && i.seg[op] != &es)
29b0f896 6271 {
51c8edf6
JB
6272 as_bad (_("`%s' operand %u must use `%ses' segment"),
6273 i.tm.name,
6274 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6275 register_prefix);
6276 return 0;
29b0f896 6277 }
51c8edf6
JB
6278
6279 /* There's only ever one segment override allowed per instruction.
6280 This instruction possibly has a legal segment override on the
6281 second operand, so copy the segment to where non-string
6282 instructions store it, allowing common code. */
6283 i.seg[op] = i.seg[1];
6284
29b0f896
AM
6285 return 1;
6286}
6287
6288static int
543613e9 6289process_suffix (void)
29b0f896
AM
6290{
6291 /* If matched instruction specifies an explicit instruction mnemonic
6292 suffix, use it. */
673fe0f0 6293 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6294 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6295 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6296 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6297 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6298 i.suffix = QWORD_MNEM_SUFFIX;
13e600d0
JB
6299 else if (i.reg_operands
6300 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
29b0f896
AM
6301 {
6302 /* If there's no instruction mnemonic suffix we try to invent one
13e600d0 6303 based on GPR operands. */
29b0f896
AM
6304 if (!i.suffix)
6305 {
6306 /* We take i.suffix from the last register operand specified,
6307 Destination register type is more significant than source
381d071f
L
6308 register type. crc32 in SSE4.2 prefers source register
6309 type. */
bab6aec1
JB
6310 if (i.tm.base_opcode == 0xf20f38f0
6311 && i.types[0].bitfield.class == Reg)
381d071f 6312 {
556059dd
JB
6313 if (i.types[0].bitfield.byte)
6314 i.suffix = BYTE_MNEM_SUFFIX;
6315 else if (i.types[0].bitfield.word)
40fb9820 6316 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6317 else if (i.types[0].bitfield.dword)
40fb9820 6318 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6319 else if (i.types[0].bitfield.qword)
40fb9820 6320 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6321 }
6322
6323 if (!i.suffix)
6324 {
6325 int op;
6326
556059dd 6327 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6328 {
6329 /* We have to know the operand size for crc32. */
6330 as_bad (_("ambiguous memory operand size for `%s`"),
6331 i.tm.name);
6332 return 0;
6333 }
6334
381d071f 6335 for (op = i.operands; --op >= 0;)
75e5731b
JB
6336 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6337 || i.tm.operand_types[op].bitfield.instance == Accum)
381d071f 6338 {
bab6aec1 6339 if (i.types[op].bitfield.class != Reg)
8819ada6
JB
6340 continue;
6341 if (i.types[op].bitfield.byte)
6342 i.suffix = BYTE_MNEM_SUFFIX;
6343 else if (i.types[op].bitfield.word)
6344 i.suffix = WORD_MNEM_SUFFIX;
6345 else if (i.types[op].bitfield.dword)
6346 i.suffix = LONG_MNEM_SUFFIX;
6347 else if (i.types[op].bitfield.qword)
6348 i.suffix = QWORD_MNEM_SUFFIX;
6349 else
6350 continue;
6351 break;
381d071f
L
6352 }
6353 }
29b0f896
AM
6354 }
6355 else if (i.suffix == BYTE_MNEM_SUFFIX)
6356 {
2eb952a4
L
6357 if (intel_syntax
6358 && i.tm.opcode_modifier.ignoresize
6359 && i.tm.opcode_modifier.no_bsuf)
6360 i.suffix = 0;
6361 else if (!check_byte_reg ())
29b0f896
AM
6362 return 0;
6363 }
6364 else if (i.suffix == LONG_MNEM_SUFFIX)
6365 {
2eb952a4
L
6366 if (intel_syntax
6367 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6368 && i.tm.opcode_modifier.no_lsuf
6369 && !i.tm.opcode_modifier.todword
6370 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6371 i.suffix = 0;
6372 else if (!check_long_reg ())
29b0f896
AM
6373 return 0;
6374 }
6375 else if (i.suffix == QWORD_MNEM_SUFFIX)
6376 {
955e1e6a
L
6377 if (intel_syntax
6378 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6379 && i.tm.opcode_modifier.no_qsuf
6380 && !i.tm.opcode_modifier.todword
6381 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6382 i.suffix = 0;
6383 else if (!check_qword_reg ())
29b0f896
AM
6384 return 0;
6385 }
6386 else if (i.suffix == WORD_MNEM_SUFFIX)
6387 {
2eb952a4
L
6388 if (intel_syntax
6389 && i.tm.opcode_modifier.ignoresize
6390 && i.tm.opcode_modifier.no_wsuf)
6391 i.suffix = 0;
6392 else if (!check_word_reg ())
29b0f896
AM
6393 return 0;
6394 }
40fb9820 6395 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6396 /* Do nothing if the instruction is going to ignore the prefix. */
6397 ;
6398 else
6399 abort ();
6400 }
40fb9820 6401 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6402 && !i.suffix
6403 /* exclude fldenv/frstor/fsave/fstenv */
3036c899
JB
6404 && i.tm.opcode_modifier.no_ssuf
6405 /* exclude sysret */
6406 && i.tm.base_opcode != 0x0f07)
29b0f896 6407 {
13e600d0
JB
6408 i.suffix = stackop_size;
6409 if (stackop_size == LONG_MNEM_SUFFIX)
06f74c5c
L
6410 {
6411 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6412 .code16gcc directive to support 16-bit mode with
6413 32-bit address. For IRET without a suffix, generate
6414 16-bit IRET (opcode 0xcf) to return from an interrupt
6415 handler. */
13e600d0
JB
6416 if (i.tm.base_opcode == 0xcf)
6417 {
6418 i.suffix = WORD_MNEM_SUFFIX;
6419 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6420 }
6421 /* Warn about changed behavior for segment register push/pop. */
6422 else if ((i.tm.base_opcode | 1) == 0x07)
6423 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6424 i.tm.name);
06f74c5c 6425 }
29b0f896 6426 }
9306ca4a
JB
6427 else if (intel_syntax
6428 && !i.suffix
0cfa3eb3
JB
6429 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6430 || i.tm.opcode_modifier.jump == JUMP_BYTE
6431 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
64e74474
AM
6432 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6433 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6434 {
6435 switch (flag_code)
6436 {
6437 case CODE_64BIT:
40fb9820 6438 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6439 {
6440 i.suffix = QWORD_MNEM_SUFFIX;
6441 break;
6442 }
1a0670f3 6443 /* Fall through. */
9306ca4a 6444 case CODE_32BIT:
40fb9820 6445 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6446 i.suffix = LONG_MNEM_SUFFIX;
6447 break;
6448 case CODE_16BIT:
40fb9820 6449 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6450 i.suffix = WORD_MNEM_SUFFIX;
6451 break;
6452 }
6453 }
252b5132 6454
9306ca4a 6455 if (!i.suffix)
29b0f896 6456 {
9306ca4a
JB
6457 if (!intel_syntax)
6458 {
40fb9820 6459 if (i.tm.opcode_modifier.w)
9306ca4a 6460 {
4eed87de
AM
6461 as_bad (_("no instruction mnemonic suffix given and "
6462 "no register operands; can't size instruction"));
9306ca4a
JB
6463 return 0;
6464 }
6465 }
6466 else
6467 {
40fb9820 6468 unsigned int suffixes;
7ab9ffdd 6469
40fb9820
L
6470 suffixes = !i.tm.opcode_modifier.no_bsuf;
6471 if (!i.tm.opcode_modifier.no_wsuf)
6472 suffixes |= 1 << 1;
6473 if (!i.tm.opcode_modifier.no_lsuf)
6474 suffixes |= 1 << 2;
fc4adea1 6475 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6476 suffixes |= 1 << 3;
6477 if (!i.tm.opcode_modifier.no_ssuf)
6478 suffixes |= 1 << 4;
c2b9da16 6479 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6480 suffixes |= 1 << 5;
6481
6482 /* There are more than suffix matches. */
6483 if (i.tm.opcode_modifier.w
9306ca4a 6484 || ((suffixes & (suffixes - 1))
40fb9820
L
6485 && !i.tm.opcode_modifier.defaultsize
6486 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6487 {
6488 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6489 return 0;
6490 }
6491 }
29b0f896 6492 }
252b5132 6493
d2224064
JB
6494 /* Change the opcode based on the operand size given by i.suffix. */
6495 switch (i.suffix)
29b0f896 6496 {
d2224064
JB
6497 /* Size floating point instruction. */
6498 case LONG_MNEM_SUFFIX:
6499 if (i.tm.opcode_modifier.floatmf)
6500 {
6501 i.tm.base_opcode ^= 4;
6502 break;
6503 }
6504 /* fall through */
6505 case WORD_MNEM_SUFFIX:
6506 case QWORD_MNEM_SUFFIX:
29b0f896 6507 /* It's not a byte, select word/dword operation. */
40fb9820 6508 if (i.tm.opcode_modifier.w)
29b0f896 6509 {
40fb9820 6510 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6511 i.tm.base_opcode |= 8;
6512 else
6513 i.tm.base_opcode |= 1;
6514 }
d2224064
JB
6515 /* fall through */
6516 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6517 /* Now select between word & dword operations via the operand
6518 size prefix, except for instructions that will ignore this
6519 prefix anyway. */
75c0a438 6520 if (i.reg_operands > 0
bab6aec1 6521 && i.types[0].bitfield.class == Reg
75c0a438 6522 && i.tm.opcode_modifier.addrprefixopreg
474da251 6523 && (i.tm.operand_types[0].bitfield.instance == Accum
75c0a438 6524 || i.operands == 1))
cb712a9e 6525 {
ca61edf2
L
6526 /* The address size override prefix changes the size of the
6527 first operand. */
40fb9820 6528 if ((flag_code == CODE_32BIT
75c0a438 6529 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6530 || (flag_code != CODE_32BIT
75c0a438 6531 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6532 if (!add_prefix (ADDR_PREFIX_OPCODE))
6533 return 0;
6534 }
6535 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6536 && !i.tm.opcode_modifier.ignoresize
6537 && !i.tm.opcode_modifier.floatmf
a38d7118 6538 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6539 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6540 || (flag_code == CODE_64BIT
0cfa3eb3 6541 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
24eab124
AM
6542 {
6543 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6544
0cfa3eb3 6545 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
29b0f896 6546 prefix = ADDR_PREFIX_OPCODE;
252b5132 6547
29b0f896
AM
6548 if (!add_prefix (prefix))
6549 return 0;
24eab124 6550 }
252b5132 6551
29b0f896
AM
6552 /* Set mode64 for an operand. */
6553 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6554 && flag_code == CODE_64BIT
d2224064 6555 && !i.tm.opcode_modifier.norex64
46e883c5 6556 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6557 need rex64. */
6558 && ! (i.operands == 2
6559 && i.tm.base_opcode == 0x90
6560 && i.tm.extension_opcode == None
75e5731b
JB
6561 && i.types[0].bitfield.instance == Accum
6562 && i.types[0].bitfield.qword
6563 && i.types[1].bitfield.instance == Accum
6564 && i.types[1].bitfield.qword))
d2224064 6565 i.rex |= REX_W;
3e73aa7c 6566
d2224064 6567 break;
29b0f896 6568 }
7ecd2f8b 6569
c0a30a9f
L
6570 if (i.reg_operands != 0
6571 && i.operands > 1
6572 && i.tm.opcode_modifier.addrprefixopreg
474da251 6573 && i.tm.operand_types[0].bitfield.instance != Accum)
c0a30a9f
L
6574 {
6575 /* Check invalid register operand when the address size override
6576 prefix changes the size of register operands. */
6577 unsigned int op;
6578 enum { need_word, need_dword, need_qword } need;
6579
6580 if (flag_code == CODE_32BIT)
6581 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6582 else
6583 {
6584 if (i.prefix[ADDR_PREFIX])
6585 need = need_dword;
6586 else
6587 need = flag_code == CODE_64BIT ? need_qword : need_word;
6588 }
6589
6590 for (op = 0; op < i.operands; op++)
bab6aec1 6591 if (i.types[op].bitfield.class == Reg
c0a30a9f
L
6592 && ((need == need_word
6593 && !i.op[op].regs->reg_type.bitfield.word)
6594 || (need == need_dword
6595 && !i.op[op].regs->reg_type.bitfield.dword)
6596 || (need == need_qword
6597 && !i.op[op].regs->reg_type.bitfield.qword)))
6598 {
6599 as_bad (_("invalid register operand size for `%s'"),
6600 i.tm.name);
6601 return 0;
6602 }
6603 }
6604
29b0f896
AM
6605 return 1;
6606}
3e73aa7c 6607
29b0f896 6608static int
543613e9 6609check_byte_reg (void)
29b0f896
AM
6610{
6611 int op;
543613e9 6612
29b0f896
AM
6613 for (op = i.operands; --op >= 0;)
6614 {
dc821c5f 6615 /* Skip non-register operands. */
bab6aec1 6616 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
6617 continue;
6618
29b0f896
AM
6619 /* If this is an eight bit register, it's OK. If it's the 16 or
6620 32 bit version of an eight bit register, we will just use the
6621 low portion, and that's OK too. */
dc821c5f 6622 if (i.types[op].bitfield.byte)
29b0f896
AM
6623 continue;
6624
5a819eb9 6625 /* I/O port address operands are OK too. */
75e5731b
JB
6626 if (i.tm.operand_types[op].bitfield.instance == RegD
6627 && i.tm.operand_types[op].bitfield.word)
5a819eb9
JB
6628 continue;
6629
9344ff29
L
6630 /* crc32 doesn't generate this warning. */
6631 if (i.tm.base_opcode == 0xf20f38f0)
6632 continue;
6633
dc821c5f
JB
6634 if ((i.types[op].bitfield.word
6635 || i.types[op].bitfield.dword
6636 || i.types[op].bitfield.qword)
5a819eb9
JB
6637 && i.op[op].regs->reg_num < 4
6638 /* Prohibit these changes in 64bit mode, since the lowering
6639 would be more complicated. */
6640 && flag_code != CODE_64BIT)
29b0f896 6641 {
29b0f896 6642#if REGISTER_WARNINGS
5a819eb9 6643 if (!quiet_warnings)
a540244d
L
6644 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6645 register_prefix,
dc821c5f 6646 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6647 ? REGNAM_AL - REGNAM_AX
6648 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6649 register_prefix,
29b0f896
AM
6650 i.op[op].regs->reg_name,
6651 i.suffix);
6652#endif
6653 continue;
6654 }
6655 /* Any other register is bad. */
bab6aec1 6656 if (i.types[op].bitfield.class == Reg
3528c362
JB
6657 || i.types[op].bitfield.class == RegMMX
6658 || i.types[op].bitfield.class == RegSIMD
00cee14f 6659 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
6660 || i.types[op].bitfield.class == RegCR
6661 || i.types[op].bitfield.class == RegDR
6662 || i.types[op].bitfield.class == RegTR)
29b0f896 6663 {
a540244d
L
6664 as_bad (_("`%s%s' not allowed with `%s%c'"),
6665 register_prefix,
29b0f896
AM
6666 i.op[op].regs->reg_name,
6667 i.tm.name,
6668 i.suffix);
6669 return 0;
6670 }
6671 }
6672 return 1;
6673}
6674
6675static int
e3bb37b5 6676check_long_reg (void)
29b0f896
AM
6677{
6678 int op;
6679
6680 for (op = i.operands; --op >= 0;)
dc821c5f 6681 /* Skip non-register operands. */
bab6aec1 6682 if (i.types[op].bitfield.class != Reg)
dc821c5f 6683 continue;
29b0f896
AM
6684 /* Reject eight bit registers, except where the template requires
6685 them. (eg. movzb) */
dc821c5f 6686 else if (i.types[op].bitfield.byte
bab6aec1 6687 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6688 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6689 && (i.tm.operand_types[op].bitfield.word
6690 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6691 {
a540244d
L
6692 as_bad (_("`%s%s' not allowed with `%s%c'"),
6693 register_prefix,
29b0f896
AM
6694 i.op[op].regs->reg_name,
6695 i.tm.name,
6696 i.suffix);
6697 return 0;
6698 }
e4630f71 6699 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6700 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f 6701 && i.types[op].bitfield.word
bab6aec1 6702 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6703 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6704 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6705 {
6706 /* Prohibit these changes in the 64bit mode, since the
6707 lowering is more complicated. */
6708 if (flag_code == CODE_64BIT)
252b5132 6709 {
2b5d6a91 6710 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6711 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6712 i.suffix);
6713 return 0;
252b5132 6714 }
29b0f896 6715#if REGISTER_WARNINGS
cecf1424
JB
6716 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6717 register_prefix,
6718 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6719 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6720#endif
252b5132 6721 }
e4630f71 6722 /* Warn if the r prefix on a general reg is present. */
dc821c5f 6723 else if (i.types[op].bitfield.qword
bab6aec1 6724 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6725 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6726 && i.tm.operand_types[op].bitfield.dword)
252b5132 6727 {
34828aad 6728 if (intel_syntax
ca61edf2 6729 && i.tm.opcode_modifier.toqword
3528c362 6730 && i.types[0].bitfield.class != RegSIMD)
34828aad 6731 {
ca61edf2 6732 /* Convert to QWORD. We want REX byte. */
34828aad
L
6733 i.suffix = QWORD_MNEM_SUFFIX;
6734 }
6735 else
6736 {
2b5d6a91 6737 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6738 register_prefix, i.op[op].regs->reg_name,
6739 i.suffix);
6740 return 0;
6741 }
29b0f896
AM
6742 }
6743 return 1;
6744}
252b5132 6745
29b0f896 6746static int
e3bb37b5 6747check_qword_reg (void)
29b0f896
AM
6748{
6749 int op;
252b5132 6750
29b0f896 6751 for (op = i.operands; --op >= 0; )
dc821c5f 6752 /* Skip non-register operands. */
bab6aec1 6753 if (i.types[op].bitfield.class != Reg)
dc821c5f 6754 continue;
29b0f896
AM
6755 /* Reject eight bit registers, except where the template requires
6756 them. (eg. movzb) */
dc821c5f 6757 else if (i.types[op].bitfield.byte
bab6aec1 6758 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6759 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6760 && (i.tm.operand_types[op].bitfield.word
6761 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6762 {
a540244d
L
6763 as_bad (_("`%s%s' not allowed with `%s%c'"),
6764 register_prefix,
29b0f896
AM
6765 i.op[op].regs->reg_name,
6766 i.tm.name,
6767 i.suffix);
6768 return 0;
6769 }
e4630f71 6770 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6771 else if ((i.types[op].bitfield.word
6772 || i.types[op].bitfield.dword)
bab6aec1 6773 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6774 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6775 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6776 {
6777 /* Prohibit these changes in the 64bit mode, since the
6778 lowering is more complicated. */
34828aad 6779 if (intel_syntax
ca61edf2 6780 && i.tm.opcode_modifier.todword
3528c362 6781 && i.types[0].bitfield.class != RegSIMD)
34828aad 6782 {
ca61edf2 6783 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6784 i.suffix = LONG_MNEM_SUFFIX;
6785 }
6786 else
6787 {
2b5d6a91 6788 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6789 register_prefix, i.op[op].regs->reg_name,
6790 i.suffix);
6791 return 0;
6792 }
252b5132 6793 }
29b0f896
AM
6794 return 1;
6795}
252b5132 6796
29b0f896 6797static int
e3bb37b5 6798check_word_reg (void)
29b0f896
AM
6799{
6800 int op;
6801 for (op = i.operands; --op >= 0;)
dc821c5f 6802 /* Skip non-register operands. */
bab6aec1 6803 if (i.types[op].bitfield.class != Reg)
dc821c5f 6804 continue;
29b0f896
AM
6805 /* Reject eight bit registers, except where the template requires
6806 them. (eg. movzb) */
dc821c5f 6807 else if (i.types[op].bitfield.byte
bab6aec1 6808 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6809 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6810 && (i.tm.operand_types[op].bitfield.word
6811 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6812 {
a540244d
L
6813 as_bad (_("`%s%s' not allowed with `%s%c'"),
6814 register_prefix,
29b0f896
AM
6815 i.op[op].regs->reg_name,
6816 i.tm.name,
6817 i.suffix);
6818 return 0;
6819 }
e4630f71 6820 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6821 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6822 && (i.types[op].bitfield.dword
6823 || i.types[op].bitfield.qword)
bab6aec1 6824 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6825 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6826 && i.tm.operand_types[op].bitfield.word)
252b5132 6827 {
29b0f896
AM
6828 /* Prohibit these changes in the 64bit mode, since the
6829 lowering is more complicated. */
6830 if (flag_code == CODE_64BIT)
252b5132 6831 {
2b5d6a91 6832 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6833 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6834 i.suffix);
6835 return 0;
252b5132 6836 }
29b0f896 6837#if REGISTER_WARNINGS
cecf1424
JB
6838 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6839 register_prefix,
6840 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6841 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6842#endif
6843 }
6844 return 1;
6845}
252b5132 6846
29b0f896 6847static int
40fb9820 6848update_imm (unsigned int j)
29b0f896 6849{
bc0844ae 6850 i386_operand_type overlap = i.types[j];
40fb9820
L
6851 if ((overlap.bitfield.imm8
6852 || overlap.bitfield.imm8s
6853 || overlap.bitfield.imm16
6854 || overlap.bitfield.imm32
6855 || overlap.bitfield.imm32s
6856 || overlap.bitfield.imm64)
0dfbf9d7
L
6857 && !operand_type_equal (&overlap, &imm8)
6858 && !operand_type_equal (&overlap, &imm8s)
6859 && !operand_type_equal (&overlap, &imm16)
6860 && !operand_type_equal (&overlap, &imm32)
6861 && !operand_type_equal (&overlap, &imm32s)
6862 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6863 {
6864 if (i.suffix)
6865 {
40fb9820
L
6866 i386_operand_type temp;
6867
0dfbf9d7 6868 operand_type_set (&temp, 0);
7ab9ffdd 6869 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6870 {
6871 temp.bitfield.imm8 = overlap.bitfield.imm8;
6872 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6873 }
6874 else if (i.suffix == WORD_MNEM_SUFFIX)
6875 temp.bitfield.imm16 = overlap.bitfield.imm16;
6876 else if (i.suffix == QWORD_MNEM_SUFFIX)
6877 {
6878 temp.bitfield.imm64 = overlap.bitfield.imm64;
6879 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6880 }
6881 else
6882 temp.bitfield.imm32 = overlap.bitfield.imm32;
6883 overlap = temp;
29b0f896 6884 }
0dfbf9d7
L
6885 else if (operand_type_equal (&overlap, &imm16_32_32s)
6886 || operand_type_equal (&overlap, &imm16_32)
6887 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6888 {
40fb9820 6889 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6890 overlap = imm16;
40fb9820 6891 else
65da13b5 6892 overlap = imm32s;
29b0f896 6893 }
0dfbf9d7
L
6894 if (!operand_type_equal (&overlap, &imm8)
6895 && !operand_type_equal (&overlap, &imm8s)
6896 && !operand_type_equal (&overlap, &imm16)
6897 && !operand_type_equal (&overlap, &imm32)
6898 && !operand_type_equal (&overlap, &imm32s)
6899 && !operand_type_equal (&overlap, &imm64))
29b0f896 6900 {
4eed87de
AM
6901 as_bad (_("no instruction mnemonic suffix given; "
6902 "can't determine immediate size"));
29b0f896
AM
6903 return 0;
6904 }
6905 }
40fb9820 6906 i.types[j] = overlap;
29b0f896 6907
40fb9820
L
6908 return 1;
6909}
6910
6911static int
6912finalize_imm (void)
6913{
bc0844ae 6914 unsigned int j, n;
29b0f896 6915
bc0844ae
L
6916 /* Update the first 2 immediate operands. */
6917 n = i.operands > 2 ? 2 : i.operands;
6918 if (n)
6919 {
6920 for (j = 0; j < n; j++)
6921 if (update_imm (j) == 0)
6922 return 0;
40fb9820 6923
bc0844ae
L
6924 /* The 3rd operand can't be immediate operand. */
6925 gas_assert (operand_type_check (i.types[2], imm) == 0);
6926 }
29b0f896
AM
6927
6928 return 1;
6929}
6930
6931static int
e3bb37b5 6932process_operands (void)
29b0f896
AM
6933{
6934 /* Default segment register this instruction will use for memory
6935 accesses. 0 means unknown. This is only for optimizing out
6936 unnecessary segment overrides. */
6937 const seg_entry *default_seg = 0;
6938
2426c15f 6939 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6940 {
91d6fa6a
NC
6941 unsigned int dupl = i.operands;
6942 unsigned int dest = dupl - 1;
9fcfb3d7
L
6943 unsigned int j;
6944
c0f3af97 6945 /* The destination must be an xmm register. */
9c2799c2 6946 gas_assert (i.reg_operands
91d6fa6a 6947 && MAX_OPERANDS > dupl
7ab9ffdd 6948 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6949
75e5731b 6950 if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 6951 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6952 {
8cd7925b 6953 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6954 {
6955 /* Keep xmm0 for instructions with VEX prefix and 3
6956 sources. */
75e5731b 6957 i.tm.operand_types[0].bitfield.instance = InstanceNone;
3528c362 6958 i.tm.operand_types[0].bitfield.class = RegSIMD;
c0f3af97
L
6959 goto duplicate;
6960 }
e2ec9d29 6961 else
c0f3af97
L
6962 {
6963 /* We remove the first xmm0 and keep the number of
6964 operands unchanged, which in fact duplicates the
6965 destination. */
6966 for (j = 1; j < i.operands; j++)
6967 {
6968 i.op[j - 1] = i.op[j];
6969 i.types[j - 1] = i.types[j];
6970 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 6971 i.flags[j - 1] = i.flags[j];
c0f3af97
L
6972 }
6973 }
6974 }
6975 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6976 {
91d6fa6a 6977 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6978 && (i.tm.opcode_modifier.vexsources
6979 == VEX3SOURCES));
c0f3af97
L
6980
6981 /* Add the implicit xmm0 for instructions with VEX prefix
6982 and 3 sources. */
6983 for (j = i.operands; j > 0; j--)
6984 {
6985 i.op[j] = i.op[j - 1];
6986 i.types[j] = i.types[j - 1];
6987 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 6988 i.flags[j] = i.flags[j - 1];
c0f3af97
L
6989 }
6990 i.op[0].regs
6991 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6992 i.types[0] = regxmm;
c0f3af97
L
6993 i.tm.operand_types[0] = regxmm;
6994
6995 i.operands += 2;
6996 i.reg_operands += 2;
6997 i.tm.operands += 2;
6998
91d6fa6a 6999 dupl++;
c0f3af97 7000 dest++;
91d6fa6a
NC
7001 i.op[dupl] = i.op[dest];
7002 i.types[dupl] = i.types[dest];
7003 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7004 i.flags[dupl] = i.flags[dest];
e2ec9d29 7005 }
c0f3af97
L
7006 else
7007 {
7008duplicate:
7009 i.operands++;
7010 i.reg_operands++;
7011 i.tm.operands++;
7012
91d6fa6a
NC
7013 i.op[dupl] = i.op[dest];
7014 i.types[dupl] = i.types[dest];
7015 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7016 i.flags[dupl] = i.flags[dest];
c0f3af97
L
7017 }
7018
7019 if (i.tm.opcode_modifier.immext)
7020 process_immext ();
7021 }
75e5731b 7022 else if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 7023 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
7024 {
7025 unsigned int j;
7026
9fcfb3d7
L
7027 for (j = 1; j < i.operands; j++)
7028 {
7029 i.op[j - 1] = i.op[j];
7030 i.types[j - 1] = i.types[j];
7031
7032 /* We need to adjust fields in i.tm since they are used by
7033 build_modrm_byte. */
7034 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
7035
7036 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
7037 }
7038
e2ec9d29
L
7039 i.operands--;
7040 i.reg_operands--;
e2ec9d29
L
7041 i.tm.operands--;
7042 }
920d2ddc
IT
7043 else if (i.tm.opcode_modifier.implicitquadgroup)
7044 {
a477a8c4
JB
7045 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7046
920d2ddc 7047 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 7048 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
7049 regnum = register_number (i.op[1].regs);
7050 first_reg_in_group = regnum & ~3;
7051 last_reg_in_group = first_reg_in_group + 3;
7052 if (regnum != first_reg_in_group)
7053 as_warn (_("source register `%s%s' implicitly denotes"
7054 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7055 register_prefix, i.op[1].regs->reg_name,
7056 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7057 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7058 i.tm.name);
7059 }
e2ec9d29
L
7060 else if (i.tm.opcode_modifier.regkludge)
7061 {
7062 /* The imul $imm, %reg instruction is converted into
7063 imul $imm, %reg, %reg, and the clr %reg instruction
7064 is converted into xor %reg, %reg. */
7065
7066 unsigned int first_reg_op;
7067
7068 if (operand_type_check (i.types[0], reg))
7069 first_reg_op = 0;
7070 else
7071 first_reg_op = 1;
7072 /* Pretend we saw the extra register operand. */
9c2799c2 7073 gas_assert (i.reg_operands == 1
7ab9ffdd 7074 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
7075 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7076 i.types[first_reg_op + 1] = i.types[first_reg_op];
7077 i.operands++;
7078 i.reg_operands++;
29b0f896
AM
7079 }
7080
85b80b0f 7081 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7082 {
7083 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7084 must be put into the modrm byte). Now, we make the modrm and
7085 index base bytes based on all the info we've collected. */
29b0f896
AM
7086
7087 default_seg = build_modrm_byte ();
7088 }
00cee14f 7089 else if (i.types[0].bitfield.class == SReg)
85b80b0f
JB
7090 {
7091 if (flag_code != CODE_64BIT
7092 ? i.tm.base_opcode == POP_SEG_SHORT
7093 && i.op[0].regs->reg_num == 1
7094 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7095 && i.op[0].regs->reg_num < 4)
7096 {
7097 as_bad (_("you can't `%s %s%s'"),
7098 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7099 return 0;
7100 }
7101 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7102 {
7103 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7104 i.tm.opcode_length = 2;
7105 }
7106 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7107 }
8a2ed489 7108 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7109 {
7110 default_seg = &ds;
7111 }
40fb9820 7112 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7113 {
7114 /* For the string instructions that allow a segment override
7115 on one of their operands, the default segment is ds. */
7116 default_seg = &ds;
7117 }
85b80b0f
JB
7118 else if (i.tm.opcode_modifier.shortform)
7119 {
7120 /* The register or float register operand is in operand
7121 0 or 1. */
bab6aec1 7122 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
85b80b0f
JB
7123
7124 /* Register goes in low 3 bits of opcode. */
7125 i.tm.base_opcode |= i.op[op].regs->reg_num;
7126 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7127 i.rex |= REX_B;
7128 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7129 {
7130 /* Warn about some common errors, but press on regardless.
7131 The first case can be generated by gcc (<= 2.8.1). */
7132 if (i.operands == 2)
7133 {
7134 /* Reversed arguments on faddp, fsubp, etc. */
7135 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7136 register_prefix, i.op[!intel_syntax].regs->reg_name,
7137 register_prefix, i.op[intel_syntax].regs->reg_name);
7138 }
7139 else
7140 {
7141 /* Extraneous `l' suffix on fp insn. */
7142 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7143 register_prefix, i.op[0].regs->reg_name);
7144 }
7145 }
7146 }
29b0f896 7147
75178d9d
L
7148 if (i.tm.base_opcode == 0x8d /* lea */
7149 && i.seg[0]
7150 && !quiet_warnings)
30123838 7151 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7152
7153 /* If a segment was explicitly specified, and the specified segment
7154 is not the default, use an opcode prefix to select it. If we
7155 never figured out what the default segment is, then default_seg
7156 will be zero at this point, and the specified segment prefix will
7157 always be used. */
29b0f896
AM
7158 if ((i.seg[0]) && (i.seg[0] != default_seg))
7159 {
7160 if (!add_prefix (i.seg[0]->seg_prefix))
7161 return 0;
7162 }
7163 return 1;
7164}
7165
7166static const seg_entry *
e3bb37b5 7167build_modrm_byte (void)
29b0f896
AM
7168{
7169 const seg_entry *default_seg = 0;
c0f3af97 7170 unsigned int source, dest;
8cd7925b 7171 int vex_3_sources;
c0f3af97 7172
8cd7925b 7173 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7174 if (vex_3_sources)
7175 {
91d6fa6a 7176 unsigned int nds, reg_slot;
4c2c6516 7177 expressionS *exp;
c0f3af97 7178
6b8d3588 7179 dest = i.operands - 1;
c0f3af97 7180 nds = dest - 1;
922d8de8 7181
a683cc34 7182 /* There are 2 kinds of instructions:
bed3d976 7183 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7184 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7185 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7186 ZMM register.
bed3d976 7187 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7188 plus 1 memory operand, with VexXDS. */
922d8de8 7189 gas_assert ((i.reg_operands == 4
bed3d976
JB
7190 || (i.reg_operands == 3 && i.mem_operands == 1))
7191 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323 7192 && i.tm.opcode_modifier.vexw
3528c362 7193 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 7194
48db9223
JB
7195 /* If VexW1 is set, the first non-immediate operand is the source and
7196 the second non-immediate one is encoded in the immediate operand. */
7197 if (i.tm.opcode_modifier.vexw == VEXW1)
7198 {
7199 source = i.imm_operands;
7200 reg_slot = i.imm_operands + 1;
7201 }
7202 else
7203 {
7204 source = i.imm_operands + 1;
7205 reg_slot = i.imm_operands;
7206 }
7207
a683cc34 7208 if (i.imm_operands == 0)
bed3d976
JB
7209 {
7210 /* When there is no immediate operand, generate an 8bit
7211 immediate operand to encode the first operand. */
7212 exp = &im_expressions[i.imm_operands++];
7213 i.op[i.operands].imms = exp;
7214 i.types[i.operands] = imm8;
7215 i.operands++;
7216
3528c362 7217 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
bed3d976
JB
7218 exp->X_op = O_constant;
7219 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7220 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7221 }
922d8de8 7222 else
bed3d976 7223 {
9d3bf266
JB
7224 gas_assert (i.imm_operands == 1);
7225 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7226 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7227
9d3bf266
JB
7228 /* Turn on Imm8 again so that output_imm will generate it. */
7229 i.types[0].bitfield.imm8 = 1;
bed3d976 7230
3528c362 7231 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
9d3bf266 7232 i.op[0].imms->X_add_number
bed3d976 7233 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7234 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7235 }
a683cc34 7236
3528c362 7237 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
dae39acc 7238 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7239 }
7240 else
7241 source = dest = 0;
29b0f896
AM
7242
7243 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7244 implicit registers do not count. If there are 3 register
7245 operands, it must be a instruction with VexNDS. For a
7246 instruction with VexNDD, the destination register is encoded
7247 in VEX prefix. If there are 4 register operands, it must be
7248 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7249 if (i.mem_operands == 0
7250 && ((i.reg_operands == 2
2426c15f 7251 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7252 || (i.reg_operands == 3
2426c15f 7253 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7254 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7255 {
cab737b9
L
7256 switch (i.operands)
7257 {
7258 case 2:
7259 source = 0;
7260 break;
7261 case 3:
c81128dc
L
7262 /* When there are 3 operands, one of them may be immediate,
7263 which may be the first or the last operand. Otherwise,
c0f3af97
L
7264 the first operand must be shift count register (cl) or it
7265 is an instruction with VexNDS. */
9c2799c2 7266 gas_assert (i.imm_operands == 1
7ab9ffdd 7267 || (i.imm_operands == 0
2426c15f 7268 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
75e5731b
JB
7269 || (i.types[0].bitfield.instance == RegC
7270 && i.types[0].bitfield.byte))));
40fb9820 7271 if (operand_type_check (i.types[0], imm)
75e5731b
JB
7272 || (i.types[0].bitfield.instance == RegC
7273 && i.types[0].bitfield.byte))
40fb9820
L
7274 source = 1;
7275 else
7276 source = 0;
cab737b9
L
7277 break;
7278 case 4:
368d64cc
L
7279 /* When there are 4 operands, the first two must be 8bit
7280 immediate operands. The source operand will be the 3rd
c0f3af97
L
7281 one.
7282
7283 For instructions with VexNDS, if the first operand
7284 an imm8, the source operand is the 2nd one. If the last
7285 operand is imm8, the source operand is the first one. */
9c2799c2 7286 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7287 && i.types[0].bitfield.imm8
7288 && i.types[1].bitfield.imm8)
2426c15f 7289 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7290 && i.imm_operands == 1
7291 && (i.types[0].bitfield.imm8
43234a1e
L
7292 || i.types[i.operands - 1].bitfield.imm8
7293 || i.rounding)));
9f2670f2
L
7294 if (i.imm_operands == 2)
7295 source = 2;
7296 else
c0f3af97
L
7297 {
7298 if (i.types[0].bitfield.imm8)
7299 source = 1;
7300 else
7301 source = 0;
7302 }
c0f3af97
L
7303 break;
7304 case 5:
e771e7c9 7305 if (is_evex_encoding (&i.tm))
43234a1e
L
7306 {
7307 /* For EVEX instructions, when there are 5 operands, the
7308 first one must be immediate operand. If the second one
7309 is immediate operand, the source operand is the 3th
7310 one. If the last one is immediate operand, the source
7311 operand is the 2nd one. */
7312 gas_assert (i.imm_operands == 2
7313 && i.tm.opcode_modifier.sae
7314 && operand_type_check (i.types[0], imm));
7315 if (operand_type_check (i.types[1], imm))
7316 source = 2;
7317 else if (operand_type_check (i.types[4], imm))
7318 source = 1;
7319 else
7320 abort ();
7321 }
cab737b9
L
7322 break;
7323 default:
7324 abort ();
7325 }
7326
c0f3af97
L
7327 if (!vex_3_sources)
7328 {
7329 dest = source + 1;
7330
43234a1e
L
7331 /* RC/SAE operand could be between DEST and SRC. That happens
7332 when one operand is GPR and the other one is XMM/YMM/ZMM
7333 register. */
7334 if (i.rounding && i.rounding->operand == (int) dest)
7335 dest++;
7336
2426c15f 7337 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7338 {
43234a1e 7339 /* For instructions with VexNDS, the register-only source
c5d0745b 7340 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7341 register. It is encoded in VEX prefix. */
f12dc422
L
7342
7343 i386_operand_type op;
7344 unsigned int vvvv;
7345
7346 /* Check register-only source operand when two source
7347 operands are swapped. */
7348 if (!i.tm.operand_types[source].bitfield.baseindex
7349 && i.tm.operand_types[dest].bitfield.baseindex)
7350 {
7351 vvvv = source;
7352 source = dest;
7353 }
7354 else
7355 vvvv = dest;
7356
7357 op = i.tm.operand_types[vvvv];
c0f3af97 7358 if ((dest + 1) >= i.operands
bab6aec1 7359 || ((op.bitfield.class != Reg
dc821c5f 7360 || (!op.bitfield.dword && !op.bitfield.qword))
3528c362 7361 && op.bitfield.class != RegSIMD
43234a1e 7362 && !operand_type_equal (&op, &regmask)))
c0f3af97 7363 abort ();
f12dc422 7364 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7365 dest++;
7366 }
7367 }
29b0f896
AM
7368
7369 i.rm.mode = 3;
dfd69174
JB
7370 /* One of the register operands will be encoded in the i.rm.reg
7371 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7372 fields. If no form of this instruction supports a memory
7373 destination operand, then we assume the source operand may
7374 sometimes be a memory operand and so we need to store the
7375 destination in the i.rm.reg field. */
dfd69174 7376 if (!i.tm.opcode_modifier.regmem
40fb9820 7377 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7378 {
7379 i.rm.reg = i.op[dest].regs->reg_num;
7380 i.rm.regmem = i.op[source].regs->reg_num;
3528c362
JB
7381 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7382 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
b4a3a7b4 7383 i.has_regmmx = TRUE;
3528c362
JB
7384 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7385 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
b4a3a7b4
L
7386 {
7387 if (i.types[dest].bitfield.zmmword
7388 || i.types[source].bitfield.zmmword)
7389 i.has_regzmm = TRUE;
7390 else if (i.types[dest].bitfield.ymmword
7391 || i.types[source].bitfield.ymmword)
7392 i.has_regymm = TRUE;
7393 else
7394 i.has_regxmm = TRUE;
7395 }
29b0f896 7396 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7397 i.rex |= REX_R;
43234a1e
L
7398 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7399 i.vrex |= REX_R;
29b0f896 7400 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7401 i.rex |= REX_B;
43234a1e
L
7402 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7403 i.vrex |= REX_B;
29b0f896
AM
7404 }
7405 else
7406 {
7407 i.rm.reg = i.op[source].regs->reg_num;
7408 i.rm.regmem = i.op[dest].regs->reg_num;
7409 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7410 i.rex |= REX_B;
43234a1e
L
7411 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7412 i.vrex |= REX_B;
29b0f896 7413 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7414 i.rex |= REX_R;
43234a1e
L
7415 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7416 i.vrex |= REX_R;
29b0f896 7417 }
e0c7f900 7418 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7419 {
4a5c67ed 7420 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
c4a530c5 7421 abort ();
e0c7f900 7422 i.rex &= ~REX_R;
c4a530c5
JB
7423 add_prefix (LOCK_PREFIX_OPCODE);
7424 }
29b0f896
AM
7425 }
7426 else
7427 { /* If it's not 2 reg operands... */
c0f3af97
L
7428 unsigned int mem;
7429
29b0f896
AM
7430 if (i.mem_operands)
7431 {
7432 unsigned int fake_zero_displacement = 0;
99018f42 7433 unsigned int op;
4eed87de 7434
7ab9ffdd 7435 for (op = 0; op < i.operands; op++)
8dc0818e 7436 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7437 break;
7ab9ffdd 7438 gas_assert (op < i.operands);
29b0f896 7439
6c30d220
L
7440 if (i.tm.opcode_modifier.vecsib)
7441 {
e968fc9b 7442 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7443 abort ();
7444
7445 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7446 if (!i.base_reg)
7447 {
7448 i.sib.base = NO_BASE_REGISTER;
7449 i.sib.scale = i.log2_scale_factor;
7450 i.types[op].bitfield.disp8 = 0;
7451 i.types[op].bitfield.disp16 = 0;
7452 i.types[op].bitfield.disp64 = 0;
43083a50 7453 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7454 {
7455 /* Must be 32 bit */
7456 i.types[op].bitfield.disp32 = 1;
7457 i.types[op].bitfield.disp32s = 0;
7458 }
7459 else
7460 {
7461 i.types[op].bitfield.disp32 = 0;
7462 i.types[op].bitfield.disp32s = 1;
7463 }
7464 }
7465 i.sib.index = i.index_reg->reg_num;
7466 if ((i.index_reg->reg_flags & RegRex) != 0)
7467 i.rex |= REX_X;
43234a1e
L
7468 if ((i.index_reg->reg_flags & RegVRex) != 0)
7469 i.vrex |= REX_X;
6c30d220
L
7470 }
7471
29b0f896
AM
7472 default_seg = &ds;
7473
7474 if (i.base_reg == 0)
7475 {
7476 i.rm.mode = 0;
7477 if (!i.disp_operands)
9bb129e8 7478 fake_zero_displacement = 1;
29b0f896
AM
7479 if (i.index_reg == 0)
7480 {
73053c1f
JB
7481 i386_operand_type newdisp;
7482
6c30d220 7483 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7484 /* Operand is just <disp> */
20f0a1fc 7485 if (flag_code == CODE_64BIT)
29b0f896
AM
7486 {
7487 /* 64bit mode overwrites the 32bit absolute
7488 addressing by RIP relative addressing and
7489 absolute addressing is encoded by one of the
7490 redundant SIB forms. */
7491 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7492 i.sib.base = NO_BASE_REGISTER;
7493 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7494 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7495 }
fc225355
L
7496 else if ((flag_code == CODE_16BIT)
7497 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7498 {
7499 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7500 newdisp = disp16;
20f0a1fc
NC
7501 }
7502 else
7503 {
7504 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7505 newdisp = disp32;
29b0f896 7506 }
73053c1f
JB
7507 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7508 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7509 }
6c30d220 7510 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7511 {
6c30d220 7512 /* !i.base_reg && i.index_reg */
e968fc9b 7513 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7514 i.sib.index = NO_INDEX_REGISTER;
7515 else
7516 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7517 i.sib.base = NO_BASE_REGISTER;
7518 i.sib.scale = i.log2_scale_factor;
7519 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7520 i.types[op].bitfield.disp8 = 0;
7521 i.types[op].bitfield.disp16 = 0;
7522 i.types[op].bitfield.disp64 = 0;
43083a50 7523 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7524 {
7525 /* Must be 32 bit */
7526 i.types[op].bitfield.disp32 = 1;
7527 i.types[op].bitfield.disp32s = 0;
7528 }
29b0f896 7529 else
40fb9820
L
7530 {
7531 i.types[op].bitfield.disp32 = 0;
7532 i.types[op].bitfield.disp32s = 1;
7533 }
29b0f896 7534 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7535 i.rex |= REX_X;
29b0f896
AM
7536 }
7537 }
7538 /* RIP addressing for 64bit mode. */
e968fc9b 7539 else if (i.base_reg->reg_num == RegIP)
29b0f896 7540 {
6c30d220 7541 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7542 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7543 i.types[op].bitfield.disp8 = 0;
7544 i.types[op].bitfield.disp16 = 0;
7545 i.types[op].bitfield.disp32 = 0;
7546 i.types[op].bitfield.disp32s = 1;
7547 i.types[op].bitfield.disp64 = 0;
71903a11 7548 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7549 if (! i.disp_operands)
7550 fake_zero_displacement = 1;
29b0f896 7551 }
dc821c5f 7552 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7553 {
6c30d220 7554 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7555 switch (i.base_reg->reg_num)
7556 {
7557 case 3: /* (%bx) */
7558 if (i.index_reg == 0)
7559 i.rm.regmem = 7;
7560 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7561 i.rm.regmem = i.index_reg->reg_num - 6;
7562 break;
7563 case 5: /* (%bp) */
7564 default_seg = &ss;
7565 if (i.index_reg == 0)
7566 {
7567 i.rm.regmem = 6;
40fb9820 7568 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7569 {
7570 /* fake (%bp) into 0(%bp) */
b5014f7a 7571 i.types[op].bitfield.disp8 = 1;
252b5132 7572 fake_zero_displacement = 1;
29b0f896
AM
7573 }
7574 }
7575 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7576 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7577 break;
7578 default: /* (%si) -> 4 or (%di) -> 5 */
7579 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7580 }
7581 i.rm.mode = mode_from_disp_size (i.types[op]);
7582 }
7583 else /* i.base_reg and 32/64 bit mode */
7584 {
7585 if (flag_code == CODE_64BIT
40fb9820
L
7586 && operand_type_check (i.types[op], disp))
7587 {
73053c1f
JB
7588 i.types[op].bitfield.disp16 = 0;
7589 i.types[op].bitfield.disp64 = 0;
40fb9820 7590 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7591 {
7592 i.types[op].bitfield.disp32 = 0;
7593 i.types[op].bitfield.disp32s = 1;
7594 }
40fb9820 7595 else
73053c1f
JB
7596 {
7597 i.types[op].bitfield.disp32 = 1;
7598 i.types[op].bitfield.disp32s = 0;
7599 }
40fb9820 7600 }
20f0a1fc 7601
6c30d220
L
7602 if (!i.tm.opcode_modifier.vecsib)
7603 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7604 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7605 i.rex |= REX_B;
29b0f896
AM
7606 i.sib.base = i.base_reg->reg_num;
7607 /* x86-64 ignores REX prefix bit here to avoid decoder
7608 complications. */
848930b2
JB
7609 if (!(i.base_reg->reg_flags & RegRex)
7610 && (i.base_reg->reg_num == EBP_REG_NUM
7611 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7612 default_seg = &ss;
848930b2 7613 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7614 {
848930b2 7615 fake_zero_displacement = 1;
b5014f7a 7616 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7617 }
7618 i.sib.scale = i.log2_scale_factor;
7619 if (i.index_reg == 0)
7620 {
6c30d220 7621 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7622 /* <disp>(%esp) becomes two byte modrm with no index
7623 register. We've already stored the code for esp
7624 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7625 Any base register besides %esp will not use the
7626 extra modrm byte. */
7627 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7628 }
6c30d220 7629 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7630 {
e968fc9b 7631 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7632 i.sib.index = NO_INDEX_REGISTER;
7633 else
7634 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7635 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7636 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7637 i.rex |= REX_X;
29b0f896 7638 }
67a4f2b7
AO
7639
7640 if (i.disp_operands
7641 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7642 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7643 i.rm.mode = 0;
7644 else
a501d77e
L
7645 {
7646 if (!fake_zero_displacement
7647 && !i.disp_operands
7648 && i.disp_encoding)
7649 {
7650 fake_zero_displacement = 1;
7651 if (i.disp_encoding == disp_encoding_8bit)
7652 i.types[op].bitfield.disp8 = 1;
7653 else
7654 i.types[op].bitfield.disp32 = 1;
7655 }
7656 i.rm.mode = mode_from_disp_size (i.types[op]);
7657 }
29b0f896 7658 }
252b5132 7659
29b0f896
AM
7660 if (fake_zero_displacement)
7661 {
7662 /* Fakes a zero displacement assuming that i.types[op]
7663 holds the correct displacement size. */
7664 expressionS *exp;
7665
9c2799c2 7666 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7667 exp = &disp_expressions[i.disp_operands++];
7668 i.op[op].disps = exp;
7669 exp->X_op = O_constant;
7670 exp->X_add_number = 0;
7671 exp->X_add_symbol = (symbolS *) 0;
7672 exp->X_op_symbol = (symbolS *) 0;
7673 }
c0f3af97
L
7674
7675 mem = op;
29b0f896 7676 }
c0f3af97
L
7677 else
7678 mem = ~0;
252b5132 7679
8c43a48b 7680 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7681 {
7682 if (operand_type_check (i.types[0], imm))
7683 i.vex.register_specifier = NULL;
7684 else
7685 {
7686 /* VEX.vvvv encodes one of the sources when the first
7687 operand is not an immediate. */
1ef99a7b 7688 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7689 i.vex.register_specifier = i.op[0].regs;
7690 else
7691 i.vex.register_specifier = i.op[1].regs;
7692 }
7693
7694 /* Destination is a XMM register encoded in the ModRM.reg
7695 and VEX.R bit. */
7696 i.rm.reg = i.op[2].regs->reg_num;
7697 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7698 i.rex |= REX_R;
7699
7700 /* ModRM.rm and VEX.B encodes the other source. */
7701 if (!i.mem_operands)
7702 {
7703 i.rm.mode = 3;
7704
1ef99a7b 7705 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7706 i.rm.regmem = i.op[1].regs->reg_num;
7707 else
7708 i.rm.regmem = i.op[0].regs->reg_num;
7709
7710 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7711 i.rex |= REX_B;
7712 }
7713 }
2426c15f 7714 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7715 {
7716 i.vex.register_specifier = i.op[2].regs;
7717 if (!i.mem_operands)
7718 {
7719 i.rm.mode = 3;
7720 i.rm.regmem = i.op[1].regs->reg_num;
7721 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7722 i.rex |= REX_B;
7723 }
7724 }
29b0f896
AM
7725 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7726 (if any) based on i.tm.extension_opcode. Again, we must be
7727 careful to make sure that segment/control/debug/test/MMX
7728 registers are coded into the i.rm.reg field. */
f88c9eb0 7729 else if (i.reg_operands)
29b0f896 7730 {
99018f42 7731 unsigned int op;
7ab9ffdd
L
7732 unsigned int vex_reg = ~0;
7733
7734 for (op = 0; op < i.operands; op++)
b4a3a7b4 7735 {
bab6aec1 7736 if (i.types[op].bitfield.class == Reg
f74a6307
JB
7737 || i.types[op].bitfield.class == RegBND
7738 || i.types[op].bitfield.class == RegMask
00cee14f 7739 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
7740 || i.types[op].bitfield.class == RegCR
7741 || i.types[op].bitfield.class == RegDR
7742 || i.types[op].bitfield.class == RegTR)
b4a3a7b4 7743 break;
3528c362 7744 if (i.types[op].bitfield.class == RegSIMD)
b4a3a7b4
L
7745 {
7746 if (i.types[op].bitfield.zmmword)
7747 i.has_regzmm = TRUE;
7748 else if (i.types[op].bitfield.ymmword)
7749 i.has_regymm = TRUE;
7750 else
7751 i.has_regxmm = TRUE;
7752 break;
7753 }
3528c362 7754 if (i.types[op].bitfield.class == RegMMX)
b4a3a7b4
L
7755 {
7756 i.has_regmmx = TRUE;
7757 break;
7758 }
7759 }
c0209578 7760
7ab9ffdd
L
7761 if (vex_3_sources)
7762 op = dest;
2426c15f 7763 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7764 {
7765 /* For instructions with VexNDS, the register-only
7766 source operand is encoded in VEX prefix. */
7767 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7768
7ab9ffdd 7769 if (op > mem)
c0f3af97 7770 {
7ab9ffdd
L
7771 vex_reg = op++;
7772 gas_assert (op < i.operands);
c0f3af97
L
7773 }
7774 else
c0f3af97 7775 {
f12dc422
L
7776 /* Check register-only source operand when two source
7777 operands are swapped. */
7778 if (!i.tm.operand_types[op].bitfield.baseindex
7779 && i.tm.operand_types[op + 1].bitfield.baseindex)
7780 {
7781 vex_reg = op;
7782 op += 2;
7783 gas_assert (mem == (vex_reg + 1)
7784 && op < i.operands);
7785 }
7786 else
7787 {
7788 vex_reg = op + 1;
7789 gas_assert (vex_reg < i.operands);
7790 }
c0f3af97 7791 }
7ab9ffdd 7792 }
2426c15f 7793 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7794 {
f12dc422 7795 /* For instructions with VexNDD, the register destination
7ab9ffdd 7796 is encoded in VEX prefix. */
f12dc422
L
7797 if (i.mem_operands == 0)
7798 {
7799 /* There is no memory operand. */
7800 gas_assert ((op + 2) == i.operands);
7801 vex_reg = op + 1;
7802 }
7803 else
8d63c93e 7804 {
ed438a93
JB
7805 /* There are only 2 non-immediate operands. */
7806 gas_assert (op < i.imm_operands + 2
7807 && i.operands == i.imm_operands + 2);
7808 vex_reg = i.imm_operands + 1;
f12dc422 7809 }
7ab9ffdd
L
7810 }
7811 else
7812 gas_assert (op < i.operands);
99018f42 7813
7ab9ffdd
L
7814 if (vex_reg != (unsigned int) ~0)
7815 {
f12dc422 7816 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7817
bab6aec1 7818 if ((type->bitfield.class != Reg
dc821c5f 7819 || (!type->bitfield.dword && !type->bitfield.qword))
3528c362 7820 && type->bitfield.class != RegSIMD
43234a1e 7821 && !operand_type_equal (type, &regmask))
7ab9ffdd 7822 abort ();
f88c9eb0 7823
7ab9ffdd
L
7824 i.vex.register_specifier = i.op[vex_reg].regs;
7825 }
7826
1b9f0c97
L
7827 /* Don't set OP operand twice. */
7828 if (vex_reg != op)
7ab9ffdd 7829 {
1b9f0c97
L
7830 /* If there is an extension opcode to put here, the
7831 register number must be put into the regmem field. */
7832 if (i.tm.extension_opcode != None)
7833 {
7834 i.rm.regmem = i.op[op].regs->reg_num;
7835 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7836 i.rex |= REX_B;
43234a1e
L
7837 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7838 i.vrex |= REX_B;
1b9f0c97
L
7839 }
7840 else
7841 {
7842 i.rm.reg = i.op[op].regs->reg_num;
7843 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7844 i.rex |= REX_R;
43234a1e
L
7845 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7846 i.vrex |= REX_R;
1b9f0c97 7847 }
7ab9ffdd 7848 }
252b5132 7849
29b0f896
AM
7850 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7851 must set it to 3 to indicate this is a register operand
7852 in the regmem field. */
7853 if (!i.mem_operands)
7854 i.rm.mode = 3;
7855 }
252b5132 7856
29b0f896 7857 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7858 if (i.tm.extension_opcode != None)
29b0f896
AM
7859 i.rm.reg = i.tm.extension_opcode;
7860 }
7861 return default_seg;
7862}
252b5132 7863
376cd056
JB
7864static unsigned int
7865flip_code16 (unsigned int code16)
7866{
7867 gas_assert (i.tm.operands == 1);
7868
7869 return !(i.prefix[REX_PREFIX] & REX_W)
7870 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7871 || i.tm.operand_types[0].bitfield.disp32s
7872 : i.tm.operand_types[0].bitfield.disp16)
7873 ? CODE16 : 0;
7874}
7875
29b0f896 7876static void
e3bb37b5 7877output_branch (void)
29b0f896
AM
7878{
7879 char *p;
f8a5c266 7880 int size;
29b0f896
AM
7881 int code16;
7882 int prefix;
7883 relax_substateT subtype;
7884 symbolS *sym;
7885 offsetT off;
7886
f8a5c266 7887 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7888 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7889
7890 prefix = 0;
7891 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7892 {
29b0f896
AM
7893 prefix = 1;
7894 i.prefixes -= 1;
376cd056 7895 code16 ^= flip_code16(code16);
252b5132 7896 }
29b0f896
AM
7897 /* Pentium4 branch hints. */
7898 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7899 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7900 {
29b0f896
AM
7901 prefix++;
7902 i.prefixes--;
7903 }
7904 if (i.prefix[REX_PREFIX] != 0)
7905 {
7906 prefix++;
7907 i.prefixes--;
2f66722d
AM
7908 }
7909
7e8b059b
L
7910 /* BND prefixed jump. */
7911 if (i.prefix[BND_PREFIX] != 0)
7912 {
6cb0a70e
JB
7913 prefix++;
7914 i.prefixes--;
7e8b059b
L
7915 }
7916
f2810fe0
JB
7917 if (i.prefixes != 0)
7918 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
29b0f896
AM
7919
7920 /* It's always a symbol; End frag & setup for relax.
7921 Make sure there is enough room in this frag for the largest
7922 instruction we may generate in md_convert_frag. This is 2
7923 bytes for the opcode and room for the prefix and largest
7924 displacement. */
7925 frag_grow (prefix + 2 + 4);
7926 /* Prefix and 1 opcode byte go in fr_fix. */
7927 p = frag_more (prefix + 1);
7928 if (i.prefix[DATA_PREFIX] != 0)
7929 *p++ = DATA_PREFIX_OPCODE;
7930 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7931 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7932 *p++ = i.prefix[SEG_PREFIX];
6cb0a70e
JB
7933 if (i.prefix[BND_PREFIX] != 0)
7934 *p++ = BND_PREFIX_OPCODE;
29b0f896
AM
7935 if (i.prefix[REX_PREFIX] != 0)
7936 *p++ = i.prefix[REX_PREFIX];
7937 *p = i.tm.base_opcode;
7938
7939 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7940 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7941 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7942 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7943 else
f8a5c266 7944 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7945 subtype |= code16;
3e73aa7c 7946
29b0f896
AM
7947 sym = i.op[0].disps->X_add_symbol;
7948 off = i.op[0].disps->X_add_number;
3e73aa7c 7949
29b0f896
AM
7950 if (i.op[0].disps->X_op != O_constant
7951 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7952 {
29b0f896
AM
7953 /* Handle complex expressions. */
7954 sym = make_expr_symbol (i.op[0].disps);
7955 off = 0;
7956 }
3e73aa7c 7957
29b0f896
AM
7958 /* 1 possible extra opcode + 4 byte displacement go in var part.
7959 Pass reloc in fr_var. */
d258b828 7960 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7961}
3e73aa7c 7962
bd7ab16b
L
7963#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7964/* Return TRUE iff PLT32 relocation should be used for branching to
7965 symbol S. */
7966
7967static bfd_boolean
7968need_plt32_p (symbolS *s)
7969{
7970 /* PLT32 relocation is ELF only. */
7971 if (!IS_ELF)
7972 return FALSE;
7973
a5def729
RO
7974#ifdef TE_SOLARIS
7975 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7976 krtld support it. */
7977 return FALSE;
7978#endif
7979
bd7ab16b
L
7980 /* Since there is no need to prepare for PLT branch on x86-64, we
7981 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7982 be used as a marker for 32-bit PC-relative branches. */
7983 if (!object_64bit)
7984 return FALSE;
7985
7986 /* Weak or undefined symbol need PLT32 relocation. */
7987 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7988 return TRUE;
7989
7990 /* Non-global symbol doesn't need PLT32 relocation. */
7991 if (! S_IS_EXTERNAL (s))
7992 return FALSE;
7993
7994 /* Other global symbols need PLT32 relocation. NB: Symbol with
7995 non-default visibilities are treated as normal global symbol
7996 so that PLT32 relocation can be used as a marker for 32-bit
7997 PC-relative branches. It is useful for linker relaxation. */
7998 return TRUE;
7999}
8000#endif
8001
29b0f896 8002static void
e3bb37b5 8003output_jump (void)
29b0f896
AM
8004{
8005 char *p;
8006 int size;
3e02c1cc 8007 fixS *fixP;
bd7ab16b 8008 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 8009
0cfa3eb3 8010 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
8011 {
8012 /* This is a loop or jecxz type instruction. */
8013 size = 1;
8014 if (i.prefix[ADDR_PREFIX] != 0)
8015 {
8016 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8017 i.prefixes -= 1;
8018 }
8019 /* Pentium4 branch hints. */
8020 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8021 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8022 {
8023 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8024 i.prefixes--;
3e73aa7c
JH
8025 }
8026 }
29b0f896
AM
8027 else
8028 {
8029 int code16;
3e73aa7c 8030
29b0f896
AM
8031 code16 = 0;
8032 if (flag_code == CODE_16BIT)
8033 code16 = CODE16;
3e73aa7c 8034
29b0f896
AM
8035 if (i.prefix[DATA_PREFIX] != 0)
8036 {
8037 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8038 i.prefixes -= 1;
376cd056 8039 code16 ^= flip_code16(code16);
29b0f896 8040 }
252b5132 8041
29b0f896
AM
8042 size = 4;
8043 if (code16)
8044 size = 2;
8045 }
9fcc94b6 8046
6cb0a70e
JB
8047 /* BND prefixed jump. */
8048 if (i.prefix[BND_PREFIX] != 0)
29b0f896 8049 {
6cb0a70e 8050 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
29b0f896
AM
8051 i.prefixes -= 1;
8052 }
252b5132 8053
6cb0a70e 8054 if (i.prefix[REX_PREFIX] != 0)
7e8b059b 8055 {
6cb0a70e 8056 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7e8b059b
L
8057 i.prefixes -= 1;
8058 }
8059
f2810fe0
JB
8060 if (i.prefixes != 0)
8061 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
e0890092 8062
42164a71
L
8063 p = frag_more (i.tm.opcode_length + size);
8064 switch (i.tm.opcode_length)
8065 {
8066 case 2:
8067 *p++ = i.tm.base_opcode >> 8;
1a0670f3 8068 /* Fall through. */
42164a71
L
8069 case 1:
8070 *p++ = i.tm.base_opcode;
8071 break;
8072 default:
8073 abort ();
8074 }
e0890092 8075
bd7ab16b
L
8076#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8077 if (size == 4
8078 && jump_reloc == NO_RELOC
8079 && need_plt32_p (i.op[0].disps->X_add_symbol))
8080 jump_reloc = BFD_RELOC_X86_64_PLT32;
8081#endif
8082
8083 jump_reloc = reloc (size, 1, 1, jump_reloc);
8084
3e02c1cc 8085 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 8086 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
8087
8088 /* All jumps handled here are signed, but don't use a signed limit
8089 check for 32 and 16 bit jumps as we want to allow wrap around at
8090 4G and 64k respectively. */
8091 if (size == 1)
8092 fixP->fx_signed = 1;
29b0f896 8093}
e0890092 8094
29b0f896 8095static void
e3bb37b5 8096output_interseg_jump (void)
29b0f896
AM
8097{
8098 char *p;
8099 int size;
8100 int prefix;
8101 int code16;
252b5132 8102
29b0f896
AM
8103 code16 = 0;
8104 if (flag_code == CODE_16BIT)
8105 code16 = CODE16;
a217f122 8106
29b0f896
AM
8107 prefix = 0;
8108 if (i.prefix[DATA_PREFIX] != 0)
8109 {
8110 prefix = 1;
8111 i.prefixes -= 1;
8112 code16 ^= CODE16;
8113 }
6cb0a70e
JB
8114
8115 gas_assert (!i.prefix[REX_PREFIX]);
252b5132 8116
29b0f896
AM
8117 size = 4;
8118 if (code16)
8119 size = 2;
252b5132 8120
f2810fe0
JB
8121 if (i.prefixes != 0)
8122 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
252b5132 8123
29b0f896
AM
8124 /* 1 opcode; 2 segment; offset */
8125 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8126
29b0f896
AM
8127 if (i.prefix[DATA_PREFIX] != 0)
8128 *p++ = DATA_PREFIX_OPCODE;
252b5132 8129
29b0f896
AM
8130 if (i.prefix[REX_PREFIX] != 0)
8131 *p++ = i.prefix[REX_PREFIX];
252b5132 8132
29b0f896
AM
8133 *p++ = i.tm.base_opcode;
8134 if (i.op[1].imms->X_op == O_constant)
8135 {
8136 offsetT n = i.op[1].imms->X_add_number;
252b5132 8137
29b0f896
AM
8138 if (size == 2
8139 && !fits_in_unsigned_word (n)
8140 && !fits_in_signed_word (n))
8141 {
8142 as_bad (_("16-bit jump out of range"));
8143 return;
8144 }
8145 md_number_to_chars (p, n, size);
8146 }
8147 else
8148 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8149 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8150 if (i.op[0].imms->X_op != O_constant)
8151 as_bad (_("can't handle non absolute segment in `%s'"),
8152 i.tm.name);
8153 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8154}
a217f122 8155
b4a3a7b4
L
8156#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8157void
8158x86_cleanup (void)
8159{
8160 char *p;
8161 asection *seg = now_seg;
8162 subsegT subseg = now_subseg;
8163 asection *sec;
8164 unsigned int alignment, align_size_1;
8165 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8166 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8167 unsigned int padding;
8168
8169 if (!IS_ELF || !x86_used_note)
8170 return;
8171
b4a3a7b4
L
8172 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8173
8174 /* The .note.gnu.property section layout:
8175
8176 Field Length Contents
8177 ---- ---- ----
8178 n_namsz 4 4
8179 n_descsz 4 The note descriptor size
8180 n_type 4 NT_GNU_PROPERTY_TYPE_0
8181 n_name 4 "GNU"
8182 n_desc n_descsz The program property array
8183 .... .... ....
8184 */
8185
8186 /* Create the .note.gnu.property section. */
8187 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8188 bfd_set_section_flags (sec,
b4a3a7b4
L
8189 (SEC_ALLOC
8190 | SEC_LOAD
8191 | SEC_DATA
8192 | SEC_HAS_CONTENTS
8193 | SEC_READONLY));
8194
8195 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8196 {
8197 align_size_1 = 7;
8198 alignment = 3;
8199 }
8200 else
8201 {
8202 align_size_1 = 3;
8203 alignment = 2;
8204 }
8205
fd361982 8206 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8207 elf_section_type (sec) = SHT_NOTE;
8208
8209 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8210 + 4-byte data */
8211 isa_1_descsz_raw = 4 + 4 + 4;
8212 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8213 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8214
8215 feature_2_descsz_raw = isa_1_descsz;
8216 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8217 + 4-byte data */
8218 feature_2_descsz_raw += 4 + 4 + 4;
8219 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8220 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8221 & ~align_size_1);
8222
8223 descsz = feature_2_descsz;
8224 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8225 p = frag_more (4 + 4 + 4 + 4 + descsz);
8226
8227 /* Write n_namsz. */
8228 md_number_to_chars (p, (valueT) 4, 4);
8229
8230 /* Write n_descsz. */
8231 md_number_to_chars (p + 4, (valueT) descsz, 4);
8232
8233 /* Write n_type. */
8234 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8235
8236 /* Write n_name. */
8237 memcpy (p + 4 * 3, "GNU", 4);
8238
8239 /* Write 4-byte type. */
8240 md_number_to_chars (p + 4 * 4,
8241 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8242
8243 /* Write 4-byte data size. */
8244 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8245
8246 /* Write 4-byte data. */
8247 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8248
8249 /* Zero out paddings. */
8250 padding = isa_1_descsz - isa_1_descsz_raw;
8251 if (padding)
8252 memset (p + 4 * 7, 0, padding);
8253
8254 /* Write 4-byte type. */
8255 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8256 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8257
8258 /* Write 4-byte data size. */
8259 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8260
8261 /* Write 4-byte data. */
8262 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8263 (valueT) x86_feature_2_used, 4);
8264
8265 /* Zero out paddings. */
8266 padding = feature_2_descsz - feature_2_descsz_raw;
8267 if (padding)
8268 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8269
8270 /* We probably can't restore the current segment, for there likely
8271 isn't one yet... */
8272 if (seg && subseg)
8273 subseg_set (seg, subseg);
8274}
8275#endif
8276
9c33702b
JB
8277static unsigned int
8278encoding_length (const fragS *start_frag, offsetT start_off,
8279 const char *frag_now_ptr)
8280{
8281 unsigned int len = 0;
8282
8283 if (start_frag != frag_now)
8284 {
8285 const fragS *fr = start_frag;
8286
8287 do {
8288 len += fr->fr_fix;
8289 fr = fr->fr_next;
8290 } while (fr && fr != frag_now);
8291 }
8292
8293 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8294}
8295
e379e5f3
L
8296/* Return 1 for test, and, cmp, add, sub, inc and dec which may
8297 be macro-fused with conditional jumps. */
8298
8299static int
8300maybe_fused_with_jcc_p (void)
8301{
8302 /* No RIP address. */
8303 if (i.base_reg && i.base_reg->reg_num == RegIP)
8304 return 0;
8305
8306 /* No VEX/EVEX encoding. */
8307 if (is_any_vex_encoding (&i.tm))
8308 return 0;
8309
8310 /* and, add, sub with destination register. */
8311 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8312 || i.tm.base_opcode <= 5
8313 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8314 || ((i.tm.base_opcode | 3) == 0x83
8315 && ((i.tm.extension_opcode | 1) == 0x5
8316 || i.tm.extension_opcode == 0x0)))
8317 return (i.types[1].bitfield.class == Reg
8318 || i.types[1].bitfield.instance == Accum);
8319
8320 /* test, cmp with any register. */
8321 if ((i.tm.base_opcode | 1) == 0x85
8322 || (i.tm.base_opcode | 1) == 0xa9
8323 || ((i.tm.base_opcode | 1) == 0xf7
8324 && i.tm.extension_opcode == 0)
8325 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8326 || ((i.tm.base_opcode | 3) == 0x83
8327 && (i.tm.extension_opcode == 0x7)))
8328 return (i.types[0].bitfield.class == Reg
8329 || i.types[0].bitfield.instance == Accum
8330 || i.types[1].bitfield.class == Reg
8331 || i.types[1].bitfield.instance == Accum);
8332
8333 /* inc, dec with any register. */
8334 if ((i.tm.cpu_flags.bitfield.cpuno64
8335 && (i.tm.base_opcode | 0xf) == 0x4f)
8336 || ((i.tm.base_opcode | 1) == 0xff
8337 && i.tm.extension_opcode <= 0x1))
8338 return (i.types[0].bitfield.class == Reg
8339 || i.types[0].bitfield.instance == Accum);
8340
8341 return 0;
8342}
8343
8344/* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8345
8346static int
8347add_fused_jcc_padding_frag_p (void)
8348{
8349 /* NB: Don't work with COND_JUMP86 without i386. */
8350 if (!align_branch_power
8351 || now_seg == absolute_section
8352 || !cpu_arch_flags.bitfield.cpui386
8353 || !(align_branch & align_branch_fused_bit))
8354 return 0;
8355
8356 if (maybe_fused_with_jcc_p ())
8357 {
8358 if (last_insn.kind == last_insn_other
8359 || last_insn.seg != now_seg)
8360 return 1;
8361 if (flag_debug)
8362 as_warn_where (last_insn.file, last_insn.line,
8363 _("`%s` skips -malign-branch-boundary on `%s`"),
8364 last_insn.name, i.tm.name);
8365 }
8366
8367 return 0;
8368}
8369
8370/* Return 1 if a BRANCH_PREFIX frag should be generated. */
8371
8372static int
8373add_branch_prefix_frag_p (void)
8374{
8375 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8376 to PadLock instructions since they include prefixes in opcode. */
8377 if (!align_branch_power
8378 || !align_branch_prefix_size
8379 || now_seg == absolute_section
8380 || i.tm.cpu_flags.bitfield.cpupadlock
8381 || !cpu_arch_flags.bitfield.cpui386)
8382 return 0;
8383
8384 /* Don't add prefix if it is a prefix or there is no operand in case
8385 that segment prefix is special. */
8386 if (!i.operands || i.tm.opcode_modifier.isprefix)
8387 return 0;
8388
8389 if (last_insn.kind == last_insn_other
8390 || last_insn.seg != now_seg)
8391 return 1;
8392
8393 if (flag_debug)
8394 as_warn_where (last_insn.file, last_insn.line,
8395 _("`%s` skips -malign-branch-boundary on `%s`"),
8396 last_insn.name, i.tm.name);
8397
8398 return 0;
8399}
8400
8401/* Return 1 if a BRANCH_PADDING frag should be generated. */
8402
8403static int
8404add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8405{
8406 int add_padding;
8407
8408 /* NB: Don't work with COND_JUMP86 without i386. */
8409 if (!align_branch_power
8410 || now_seg == absolute_section
8411 || !cpu_arch_flags.bitfield.cpui386)
8412 return 0;
8413
8414 add_padding = 0;
8415
8416 /* Check for jcc and direct jmp. */
8417 if (i.tm.opcode_modifier.jump == JUMP)
8418 {
8419 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8420 {
8421 *branch_p = align_branch_jmp;
8422 add_padding = align_branch & align_branch_jmp_bit;
8423 }
8424 else
8425 {
8426 *branch_p = align_branch_jcc;
8427 if ((align_branch & align_branch_jcc_bit))
8428 add_padding = 1;
8429 }
8430 }
8431 else if (is_any_vex_encoding (&i.tm))
8432 return 0;
8433 else if ((i.tm.base_opcode | 1) == 0xc3)
8434 {
8435 /* Near ret. */
8436 *branch_p = align_branch_ret;
8437 if ((align_branch & align_branch_ret_bit))
8438 add_padding = 1;
8439 }
8440 else
8441 {
8442 /* Check for indirect jmp, direct and indirect calls. */
8443 if (i.tm.base_opcode == 0xe8)
8444 {
8445 /* Direct call. */
8446 *branch_p = align_branch_call;
8447 if ((align_branch & align_branch_call_bit))
8448 add_padding = 1;
8449 }
8450 else if (i.tm.base_opcode == 0xff
8451 && (i.tm.extension_opcode == 2
8452 || i.tm.extension_opcode == 4))
8453 {
8454 /* Indirect call and jmp. */
8455 *branch_p = align_branch_indirect;
8456 if ((align_branch & align_branch_indirect_bit))
8457 add_padding = 1;
8458 }
8459
8460 if (add_padding
8461 && i.disp_operands
8462 && tls_get_addr
8463 && (i.op[0].disps->X_op == O_symbol
8464 || (i.op[0].disps->X_op == O_subtract
8465 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8466 {
8467 symbolS *s = i.op[0].disps->X_add_symbol;
8468 /* No padding to call to global or undefined tls_get_addr. */
8469 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8470 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8471 return 0;
8472 }
8473 }
8474
8475 if (add_padding
8476 && last_insn.kind != last_insn_other
8477 && last_insn.seg == now_seg)
8478 {
8479 if (flag_debug)
8480 as_warn_where (last_insn.file, last_insn.line,
8481 _("`%s` skips -malign-branch-boundary on `%s`"),
8482 last_insn.name, i.tm.name);
8483 return 0;
8484 }
8485
8486 return add_padding;
8487}
8488
29b0f896 8489static void
e3bb37b5 8490output_insn (void)
29b0f896 8491{
2bbd9c25
JJ
8492 fragS *insn_start_frag;
8493 offsetT insn_start_off;
e379e5f3
L
8494 fragS *fragP = NULL;
8495 enum align_branch_kind branch = align_branch_none;
2bbd9c25 8496
b4a3a7b4
L
8497#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8498 if (IS_ELF && x86_used_note)
8499 {
8500 if (i.tm.cpu_flags.bitfield.cpucmov)
8501 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8502 if (i.tm.cpu_flags.bitfield.cpusse)
8503 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8504 if (i.tm.cpu_flags.bitfield.cpusse2)
8505 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8506 if (i.tm.cpu_flags.bitfield.cpusse3)
8507 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8508 if (i.tm.cpu_flags.bitfield.cpussse3)
8509 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8510 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8511 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8512 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8513 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8514 if (i.tm.cpu_flags.bitfield.cpuavx)
8515 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8516 if (i.tm.cpu_flags.bitfield.cpuavx2)
8517 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8518 if (i.tm.cpu_flags.bitfield.cpufma)
8519 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8520 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8521 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8522 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8523 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8524 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8525 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8526 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8527 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8528 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8529 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8530 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8531 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8532 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8533 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8534 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8535 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8536 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8537 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8538 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8539 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8540 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8541 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8542 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8543 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8544 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8545 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8546 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8547 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8548 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8549 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8550
8551 if (i.tm.cpu_flags.bitfield.cpu8087
8552 || i.tm.cpu_flags.bitfield.cpu287
8553 || i.tm.cpu_flags.bitfield.cpu387
8554 || i.tm.cpu_flags.bitfield.cpu687
8555 || i.tm.cpu_flags.bitfield.cpufisttp)
8556 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
319ff62c
JB
8557 if (i.has_regmmx
8558 || i.tm.base_opcode == 0xf77 /* emms */
8559 || i.tm.base_opcode == 0xf0e /* femms */)
b4a3a7b4
L
8560 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8561 if (i.has_regxmm)
8562 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8563 if (i.has_regymm)
8564 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8565 if (i.has_regzmm)
8566 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8567 if (i.tm.cpu_flags.bitfield.cpufxsr)
8568 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8569 if (i.tm.cpu_flags.bitfield.cpuxsave)
8570 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8571 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8572 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8573 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8574 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8575 }
8576#endif
8577
29b0f896
AM
8578 /* Tie dwarf2 debug info to the address at the start of the insn.
8579 We can't do this after the insn has been output as the current
8580 frag may have been closed off. eg. by frag_var. */
8581 dwarf2_emit_insn (0);
8582
2bbd9c25
JJ
8583 insn_start_frag = frag_now;
8584 insn_start_off = frag_now_fix ();
8585
e379e5f3
L
8586 if (add_branch_padding_frag_p (&branch))
8587 {
8588 char *p;
8589 /* Branch can be 8 bytes. Leave some room for prefixes. */
8590 unsigned int max_branch_padding_size = 14;
8591
8592 /* Align section to boundary. */
8593 record_alignment (now_seg, align_branch_power);
8594
8595 /* Make room for padding. */
8596 frag_grow (max_branch_padding_size);
8597
8598 /* Start of the padding. */
8599 p = frag_more (0);
8600
8601 fragP = frag_now;
8602
8603 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8604 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8605 NULL, 0, p);
8606
8607 fragP->tc_frag_data.branch_type = branch;
8608 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8609 }
8610
29b0f896 8611 /* Output jumps. */
0cfa3eb3 8612 if (i.tm.opcode_modifier.jump == JUMP)
29b0f896 8613 output_branch ();
0cfa3eb3
JB
8614 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8615 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896 8616 output_jump ();
0cfa3eb3 8617 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
29b0f896
AM
8618 output_interseg_jump ();
8619 else
8620 {
8621 /* Output normal instructions here. */
8622 char *p;
8623 unsigned char *q;
47465058 8624 unsigned int j;
331d2d0d 8625 unsigned int prefix;
4dffcebc 8626
e4e00185 8627 if (avoid_fence
c3949f43
JB
8628 && (i.tm.base_opcode == 0xfaee8
8629 || i.tm.base_opcode == 0xfaef0
8630 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8631 {
8632 /* Encode lfence, mfence, and sfence as
8633 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8634 offsetT val = 0x240483f0ULL;
8635 p = frag_more (5);
8636 md_number_to_chars (p, val, 5);
8637 return;
8638 }
8639
d022bddd
IT
8640 /* Some processors fail on LOCK prefix. This options makes
8641 assembler ignore LOCK prefix and serves as a workaround. */
8642 if (omit_lock_prefix)
8643 {
8644 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8645 return;
8646 i.prefix[LOCK_PREFIX] = 0;
8647 }
8648
e379e5f3
L
8649 if (branch)
8650 /* Skip if this is a branch. */
8651 ;
8652 else if (add_fused_jcc_padding_frag_p ())
8653 {
8654 /* Make room for padding. */
8655 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8656 p = frag_more (0);
8657
8658 fragP = frag_now;
8659
8660 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8661 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8662 NULL, 0, p);
8663
8664 fragP->tc_frag_data.branch_type = align_branch_fused;
8665 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8666 }
8667 else if (add_branch_prefix_frag_p ())
8668 {
8669 unsigned int max_prefix_size = align_branch_prefix_size;
8670
8671 /* Make room for padding. */
8672 frag_grow (max_prefix_size);
8673 p = frag_more (0);
8674
8675 fragP = frag_now;
8676
8677 frag_var (rs_machine_dependent, max_prefix_size, 0,
8678 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8679 NULL, 0, p);
8680
8681 fragP->tc_frag_data.max_bytes = max_prefix_size;
8682 }
8683
43234a1e
L
8684 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8685 don't need the explicit prefix. */
8686 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8687 {
c0f3af97 8688 switch (i.tm.opcode_length)
bc4bd9ab 8689 {
c0f3af97
L
8690 case 3:
8691 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8692 {
c0f3af97 8693 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8694 if (!i.tm.cpu_flags.bitfield.cpupadlock
8695 || prefix != REPE_PREFIX_OPCODE
8696 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8697 add_prefix (prefix);
c0f3af97
L
8698 }
8699 break;
8700 case 2:
8701 if ((i.tm.base_opcode & 0xff0000) != 0)
8702 {
8703 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8704 add_prefix (prefix);
4dffcebc 8705 }
c0f3af97
L
8706 break;
8707 case 1:
8708 break;
390c91cf
L
8709 case 0:
8710 /* Check for pseudo prefixes. */
8711 as_bad_where (insn_start_frag->fr_file,
8712 insn_start_frag->fr_line,
8713 _("pseudo prefix without instruction"));
8714 return;
c0f3af97
L
8715 default:
8716 abort ();
bc4bd9ab 8717 }
c0f3af97 8718
6d19a37a 8719#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8720 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8721 R_X86_64_GOTTPOFF relocation so that linker can safely
8722 perform IE->LE optimization. */
8723 if (x86_elf_abi == X86_64_X32_ABI
8724 && i.operands == 2
8725 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8726 && i.prefix[REX_PREFIX] == 0)
8727 add_prefix (REX_OPCODE);
6d19a37a 8728#endif
cf61b747 8729
c0f3af97
L
8730 /* The prefix bytes. */
8731 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8732 if (*q)
8733 FRAG_APPEND_1_CHAR (*q);
0f10071e 8734 }
ae5c1c7b 8735 else
c0f3af97
L
8736 {
8737 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8738 if (*q)
8739 switch (j)
8740 {
8741 case REX_PREFIX:
8742 /* REX byte is encoded in VEX prefix. */
8743 break;
8744 case SEG_PREFIX:
8745 case ADDR_PREFIX:
8746 FRAG_APPEND_1_CHAR (*q);
8747 break;
8748 default:
8749 /* There should be no other prefixes for instructions
8750 with VEX prefix. */
8751 abort ();
8752 }
8753
43234a1e
L
8754 /* For EVEX instructions i.vrex should become 0 after
8755 build_evex_prefix. For VEX instructions upper 16 registers
8756 aren't available, so VREX should be 0. */
8757 if (i.vrex)
8758 abort ();
c0f3af97
L
8759 /* Now the VEX prefix. */
8760 p = frag_more (i.vex.length);
8761 for (j = 0; j < i.vex.length; j++)
8762 p[j] = i.vex.bytes[j];
8763 }
252b5132 8764
29b0f896 8765 /* Now the opcode; be careful about word order here! */
4dffcebc 8766 if (i.tm.opcode_length == 1)
29b0f896
AM
8767 {
8768 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8769 }
8770 else
8771 {
4dffcebc 8772 switch (i.tm.opcode_length)
331d2d0d 8773 {
43234a1e
L
8774 case 4:
8775 p = frag_more (4);
8776 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8777 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8778 break;
4dffcebc 8779 case 3:
331d2d0d
L
8780 p = frag_more (3);
8781 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8782 break;
8783 case 2:
8784 p = frag_more (2);
8785 break;
8786 default:
8787 abort ();
8788 break;
331d2d0d 8789 }
0f10071e 8790
29b0f896
AM
8791 /* Put out high byte first: can't use md_number_to_chars! */
8792 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8793 *p = i.tm.base_opcode & 0xff;
8794 }
3e73aa7c 8795
29b0f896 8796 /* Now the modrm byte and sib byte (if present). */
40fb9820 8797 if (i.tm.opcode_modifier.modrm)
29b0f896 8798 {
4a3523fa
L
8799 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8800 | i.rm.reg << 3
8801 | i.rm.mode << 6));
29b0f896
AM
8802 /* If i.rm.regmem == ESP (4)
8803 && i.rm.mode != (Register mode)
8804 && not 16 bit
8805 ==> need second modrm byte. */
8806 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8807 && i.rm.mode != 3
dc821c5f 8808 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8809 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8810 | i.sib.index << 3
8811 | i.sib.scale << 6));
29b0f896 8812 }
3e73aa7c 8813
29b0f896 8814 if (i.disp_operands)
2bbd9c25 8815 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8816
29b0f896 8817 if (i.imm_operands)
2bbd9c25 8818 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8819
8820 /*
8821 * frag_now_fix () returning plain abs_section_offset when we're in the
8822 * absolute section, and abs_section_offset not getting updated as data
8823 * gets added to the frag breaks the logic below.
8824 */
8825 if (now_seg != absolute_section)
8826 {
8827 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8828 if (j > 15)
8829 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8830 j);
e379e5f3
L
8831 else if (fragP)
8832 {
8833 /* NB: Don't add prefix with GOTPC relocation since
8834 output_disp() above depends on the fixed encoding
8835 length. Can't add prefix with TLS relocation since
8836 it breaks TLS linker optimization. */
8837 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8838 /* Prefix count on the current instruction. */
8839 unsigned int count = i.vex.length;
8840 unsigned int k;
8841 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8842 /* REX byte is encoded in VEX/EVEX prefix. */
8843 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8844 count++;
8845
8846 /* Count prefixes for extended opcode maps. */
8847 if (!i.vex.length)
8848 switch (i.tm.opcode_length)
8849 {
8850 case 3:
8851 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8852 {
8853 count++;
8854 switch ((i.tm.base_opcode >> 8) & 0xff)
8855 {
8856 case 0x38:
8857 case 0x3a:
8858 count++;
8859 break;
8860 default:
8861 break;
8862 }
8863 }
8864 break;
8865 case 2:
8866 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8867 count++;
8868 break;
8869 case 1:
8870 break;
8871 default:
8872 abort ();
8873 }
8874
8875 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8876 == BRANCH_PREFIX)
8877 {
8878 /* Set the maximum prefix size in BRANCH_PREFIX
8879 frag. */
8880 if (fragP->tc_frag_data.max_bytes > max)
8881 fragP->tc_frag_data.max_bytes = max;
8882 if (fragP->tc_frag_data.max_bytes > count)
8883 fragP->tc_frag_data.max_bytes -= count;
8884 else
8885 fragP->tc_frag_data.max_bytes = 0;
8886 }
8887 else
8888 {
8889 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8890 frag. */
8891 unsigned int max_prefix_size;
8892 if (align_branch_prefix_size > max)
8893 max_prefix_size = max;
8894 else
8895 max_prefix_size = align_branch_prefix_size;
8896 if (max_prefix_size > count)
8897 fragP->tc_frag_data.max_prefix_length
8898 = max_prefix_size - count;
8899 }
8900
8901 /* Use existing segment prefix if possible. Use CS
8902 segment prefix in 64-bit mode. In 32-bit mode, use SS
8903 segment prefix with ESP/EBP base register and use DS
8904 segment prefix without ESP/EBP base register. */
8905 if (i.prefix[SEG_PREFIX])
8906 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8907 else if (flag_code == CODE_64BIT)
8908 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8909 else if (i.base_reg
8910 && (i.base_reg->reg_num == 4
8911 || i.base_reg->reg_num == 5))
8912 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8913 else
8914 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8915 }
9c33702b 8916 }
29b0f896 8917 }
252b5132 8918
e379e5f3
L
8919 /* NB: Don't work with COND_JUMP86 without i386. */
8920 if (align_branch_power
8921 && now_seg != absolute_section
8922 && cpu_arch_flags.bitfield.cpui386)
8923 {
8924 /* Terminate each frag so that we can add prefix and check for
8925 fused jcc. */
8926 frag_wane (frag_now);
8927 frag_new (0);
8928 }
8929
29b0f896
AM
8930#ifdef DEBUG386
8931 if (flag_debug)
8932 {
7b81dfbb 8933 pi ("" /*line*/, &i);
29b0f896
AM
8934 }
8935#endif /* DEBUG386 */
8936}
252b5132 8937
e205caa7
L
8938/* Return the size of the displacement operand N. */
8939
8940static int
8941disp_size (unsigned int n)
8942{
8943 int size = 4;
43234a1e 8944
b5014f7a 8945 if (i.types[n].bitfield.disp64)
40fb9820
L
8946 size = 8;
8947 else if (i.types[n].bitfield.disp8)
8948 size = 1;
8949 else if (i.types[n].bitfield.disp16)
8950 size = 2;
e205caa7
L
8951 return size;
8952}
8953
8954/* Return the size of the immediate operand N. */
8955
8956static int
8957imm_size (unsigned int n)
8958{
8959 int size = 4;
40fb9820
L
8960 if (i.types[n].bitfield.imm64)
8961 size = 8;
8962 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8963 size = 1;
8964 else if (i.types[n].bitfield.imm16)
8965 size = 2;
e205caa7
L
8966 return size;
8967}
8968
29b0f896 8969static void
64e74474 8970output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8971{
8972 char *p;
8973 unsigned int n;
252b5132 8974
29b0f896
AM
8975 for (n = 0; n < i.operands; n++)
8976 {
b5014f7a 8977 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8978 {
8979 if (i.op[n].disps->X_op == O_constant)
8980 {
e205caa7 8981 int size = disp_size (n);
43234a1e 8982 offsetT val = i.op[n].disps->X_add_number;
252b5132 8983
629cfaf1
JB
8984 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8985 size);
29b0f896
AM
8986 p = frag_more (size);
8987 md_number_to_chars (p, val, size);
8988 }
8989 else
8990 {
f86103b7 8991 enum bfd_reloc_code_real reloc_type;
e205caa7 8992 int size = disp_size (n);
40fb9820 8993 int sign = i.types[n].bitfield.disp32s;
29b0f896 8994 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8995 fixS *fixP;
29b0f896 8996
e205caa7 8997 /* We can't have 8 bit displacement here. */
9c2799c2 8998 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8999
29b0f896
AM
9000 /* The PC relative address is computed relative
9001 to the instruction boundary, so in case immediate
9002 fields follows, we need to adjust the value. */
9003 if (pcrel && i.imm_operands)
9004 {
29b0f896 9005 unsigned int n1;
e205caa7 9006 int sz = 0;
252b5132 9007
29b0f896 9008 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 9009 if (operand_type_check (i.types[n1], imm))
252b5132 9010 {
e205caa7
L
9011 /* Only one immediate is allowed for PC
9012 relative address. */
9c2799c2 9013 gas_assert (sz == 0);
e205caa7
L
9014 sz = imm_size (n1);
9015 i.op[n].disps->X_add_number -= sz;
252b5132 9016 }
29b0f896 9017 /* We should find the immediate. */
9c2799c2 9018 gas_assert (sz != 0);
29b0f896 9019 }
520dc8e8 9020
29b0f896 9021 p = frag_more (size);
d258b828 9022 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 9023 if (GOT_symbol
2bbd9c25 9024 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 9025 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9026 || reloc_type == BFD_RELOC_X86_64_32S
9027 || (reloc_type == BFD_RELOC_64
9028 && object_64bit))
d6ab8113
JB
9029 && (i.op[n].disps->X_op == O_symbol
9030 || (i.op[n].disps->X_op == O_add
9031 && ((symbol_get_value_expression
9032 (i.op[n].disps->X_op_symbol)->X_op)
9033 == O_subtract))))
9034 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 9035 {
4fa24527 9036 if (!object_64bit)
7b81dfbb
AJ
9037 {
9038 reloc_type = BFD_RELOC_386_GOTPC;
e379e5f3 9039 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9040 i.op[n].imms->X_add_number +=
9041 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
9042 }
9043 else if (reloc_type == BFD_RELOC_64)
9044 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 9045 else
7b81dfbb
AJ
9046 /* Don't do the adjustment for x86-64, as there
9047 the pcrel addressing is relative to the _next_
9048 insn, and that is taken care of in other code. */
d6ab8113 9049 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 9050 }
e379e5f3
L
9051 else if (align_branch_power)
9052 {
9053 switch (reloc_type)
9054 {
9055 case BFD_RELOC_386_TLS_GD:
9056 case BFD_RELOC_386_TLS_LDM:
9057 case BFD_RELOC_386_TLS_IE:
9058 case BFD_RELOC_386_TLS_IE_32:
9059 case BFD_RELOC_386_TLS_GOTIE:
9060 case BFD_RELOC_386_TLS_GOTDESC:
9061 case BFD_RELOC_386_TLS_DESC_CALL:
9062 case BFD_RELOC_X86_64_TLSGD:
9063 case BFD_RELOC_X86_64_TLSLD:
9064 case BFD_RELOC_X86_64_GOTTPOFF:
9065 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9066 case BFD_RELOC_X86_64_TLSDESC_CALL:
9067 i.has_gotpc_tls_reloc = TRUE;
9068 default:
9069 break;
9070 }
9071 }
02a86693
L
9072 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9073 size, i.op[n].disps, pcrel,
9074 reloc_type);
9075 /* Check for "call/jmp *mem", "mov mem, %reg",
9076 "test %reg, mem" and "binop mem, %reg" where binop
9077 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
9078 instructions without data prefix. Always generate
9079 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9080 if (i.prefix[DATA_PREFIX] == 0
9081 && (generate_relax_relocations
9082 || (!object_64bit
9083 && i.rm.mode == 0
9084 && i.rm.regmem == 5))
0cb4071e
L
9085 && (i.rm.mode == 2
9086 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
9087 && ((i.operands == 1
9088 && i.tm.base_opcode == 0xff
9089 && (i.rm.reg == 2 || i.rm.reg == 4))
9090 || (i.operands == 2
9091 && (i.tm.base_opcode == 0x8b
9092 || i.tm.base_opcode == 0x85
9093 || (i.tm.base_opcode & 0xc7) == 0x03))))
9094 {
9095 if (object_64bit)
9096 {
9097 fixP->fx_tcbit = i.rex != 0;
9098 if (i.base_reg
e968fc9b 9099 && (i.base_reg->reg_num == RegIP))
02a86693
L
9100 fixP->fx_tcbit2 = 1;
9101 }
9102 else
9103 fixP->fx_tcbit2 = 1;
9104 }
29b0f896
AM
9105 }
9106 }
9107 }
9108}
252b5132 9109
29b0f896 9110static void
64e74474 9111output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9112{
9113 char *p;
9114 unsigned int n;
252b5132 9115
29b0f896
AM
9116 for (n = 0; n < i.operands; n++)
9117 {
43234a1e
L
9118 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9119 if (i.rounding && (int) n == i.rounding->operand)
9120 continue;
9121
40fb9820 9122 if (operand_type_check (i.types[n], imm))
29b0f896
AM
9123 {
9124 if (i.op[n].imms->X_op == O_constant)
9125 {
e205caa7 9126 int size = imm_size (n);
29b0f896 9127 offsetT val;
b4cac588 9128
29b0f896
AM
9129 val = offset_in_range (i.op[n].imms->X_add_number,
9130 size);
9131 p = frag_more (size);
9132 md_number_to_chars (p, val, size);
9133 }
9134 else
9135 {
9136 /* Not absolute_section.
9137 Need a 32-bit fixup (don't support 8bit
9138 non-absolute imms). Try to support other
9139 sizes ... */
f86103b7 9140 enum bfd_reloc_code_real reloc_type;
e205caa7
L
9141 int size = imm_size (n);
9142 int sign;
29b0f896 9143
40fb9820 9144 if (i.types[n].bitfield.imm32s
a7d61044 9145 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 9146 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 9147 sign = 1;
e205caa7
L
9148 else
9149 sign = 0;
520dc8e8 9150
29b0f896 9151 p = frag_more (size);
d258b828 9152 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 9153
2bbd9c25
JJ
9154 /* This is tough to explain. We end up with this one if we
9155 * have operands that look like
9156 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9157 * obtain the absolute address of the GOT, and it is strongly
9158 * preferable from a performance point of view to avoid using
9159 * a runtime relocation for this. The actual sequence of
9160 * instructions often look something like:
9161 *
9162 * call .L66
9163 * .L66:
9164 * popl %ebx
9165 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9166 *
9167 * The call and pop essentially return the absolute address
9168 * of the label .L66 and store it in %ebx. The linker itself
9169 * will ultimately change the first operand of the addl so
9170 * that %ebx points to the GOT, but to keep things simple, the
9171 * .o file must have this operand set so that it generates not
9172 * the absolute address of .L66, but the absolute address of
9173 * itself. This allows the linker itself simply treat a GOTPC
9174 * relocation as asking for a pcrel offset to the GOT to be
9175 * added in, and the addend of the relocation is stored in the
9176 * operand field for the instruction itself.
9177 *
9178 * Our job here is to fix the operand so that it would add
9179 * the correct offset so that %ebx would point to itself. The
9180 * thing that is tricky is that .-.L66 will point to the
9181 * beginning of the instruction, so we need to further modify
9182 * the operand so that it will point to itself. There are
9183 * other cases where you have something like:
9184 *
9185 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9186 *
9187 * and here no correction would be required. Internally in
9188 * the assembler we treat operands of this form as not being
9189 * pcrel since the '.' is explicitly mentioned, and I wonder
9190 * whether it would simplify matters to do it this way. Who
9191 * knows. In earlier versions of the PIC patches, the
9192 * pcrel_adjust field was used to store the correction, but
9193 * since the expression is not pcrel, I felt it would be
9194 * confusing to do it this way. */
9195
d6ab8113 9196 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9197 || reloc_type == BFD_RELOC_X86_64_32S
9198 || reloc_type == BFD_RELOC_64)
29b0f896
AM
9199 && GOT_symbol
9200 && GOT_symbol == i.op[n].imms->X_add_symbol
9201 && (i.op[n].imms->X_op == O_symbol
9202 || (i.op[n].imms->X_op == O_add
9203 && ((symbol_get_value_expression
9204 (i.op[n].imms->X_op_symbol)->X_op)
9205 == O_subtract))))
9206 {
4fa24527 9207 if (!object_64bit)
d6ab8113 9208 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 9209 else if (size == 4)
d6ab8113 9210 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
9211 else if (size == 8)
9212 reloc_type = BFD_RELOC_X86_64_GOTPC64;
e379e5f3 9213 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9214 i.op[n].imms->X_add_number +=
9215 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 9216 }
29b0f896
AM
9217 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9218 i.op[n].imms, 0, reloc_type);
9219 }
9220 }
9221 }
252b5132
RH
9222}
9223\f
d182319b
JB
9224/* x86_cons_fix_new is called via the expression parsing code when a
9225 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
9226static int cons_sign = -1;
9227
9228void
e3bb37b5 9229x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 9230 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 9231{
d258b828 9232 r = reloc (len, 0, cons_sign, r);
d182319b
JB
9233
9234#ifdef TE_PE
9235 if (exp->X_op == O_secrel)
9236 {
9237 exp->X_op = O_symbol;
9238 r = BFD_RELOC_32_SECREL;
9239 }
9240#endif
9241
9242 fix_new_exp (frag, off, len, exp, 0, r);
9243}
9244
357d1bd8
L
9245/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9246 purpose of the `.dc.a' internal pseudo-op. */
9247
9248int
9249x86_address_bytes (void)
9250{
9251 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9252 return 4;
9253 return stdoutput->arch_info->bits_per_address / 8;
9254}
9255
d382c579
TG
9256#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9257 || defined (LEX_AT)
d258b828 9258# define lex_got(reloc, adjust, types) NULL
718ddfc0 9259#else
f3c180ae
AM
9260/* Parse operands of the form
9261 <symbol>@GOTOFF+<nnn>
9262 and similar .plt or .got references.
9263
9264 If we find one, set up the correct relocation in RELOC and copy the
9265 input string, minus the `@GOTOFF' into a malloc'd buffer for
9266 parsing by the calling routine. Return this buffer, and if ADJUST
9267 is non-null set it to the length of the string we removed from the
9268 input line. Otherwise return NULL. */
9269static char *
91d6fa6a 9270lex_got (enum bfd_reloc_code_real *rel,
64e74474 9271 int *adjust,
d258b828 9272 i386_operand_type *types)
f3c180ae 9273{
7b81dfbb
AJ
9274 /* Some of the relocations depend on the size of what field is to
9275 be relocated. But in our callers i386_immediate and i386_displacement
9276 we don't yet know the operand size (this will be set by insn
9277 matching). Hence we record the word32 relocation here,
9278 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
9279 static const struct {
9280 const char *str;
cff8d58a 9281 int len;
4fa24527 9282 const enum bfd_reloc_code_real rel[2];
40fb9820 9283 const i386_operand_type types64;
f3c180ae 9284 } gotrel[] = {
8ce3d284 9285#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
9286 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9287 BFD_RELOC_SIZE32 },
9288 OPERAND_TYPE_IMM32_64 },
8ce3d284 9289#endif
cff8d58a
L
9290 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9291 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 9292 OPERAND_TYPE_IMM64 },
cff8d58a
L
9293 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9294 BFD_RELOC_X86_64_PLT32 },
40fb9820 9295 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9296 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9297 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 9298 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9299 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9300 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 9301 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9302 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9303 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 9304 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9305 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9306 BFD_RELOC_X86_64_TLSGD },
40fb9820 9307 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9308 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9309 _dummy_first_bfd_reloc_code_real },
40fb9820 9310 OPERAND_TYPE_NONE },
cff8d58a
L
9311 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9312 BFD_RELOC_X86_64_TLSLD },
40fb9820 9313 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9314 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9315 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 9316 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9317 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9318 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 9319 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9320 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9321 _dummy_first_bfd_reloc_code_real },
40fb9820 9322 OPERAND_TYPE_NONE },
cff8d58a
L
9323 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9324 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 9325 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9326 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9327 _dummy_first_bfd_reloc_code_real },
40fb9820 9328 OPERAND_TYPE_NONE },
cff8d58a
L
9329 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9330 _dummy_first_bfd_reloc_code_real },
40fb9820 9331 OPERAND_TYPE_NONE },
cff8d58a
L
9332 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9333 BFD_RELOC_X86_64_GOT32 },
40fb9820 9334 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
9335 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9336 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 9337 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9338 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9339 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 9340 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
9341 };
9342 char *cp;
9343 unsigned int j;
9344
d382c579 9345#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
9346 if (!IS_ELF)
9347 return NULL;
d382c579 9348#endif
718ddfc0 9349
f3c180ae 9350 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 9351 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
9352 return NULL;
9353
47465058 9354 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 9355 {
cff8d58a 9356 int len = gotrel[j].len;
28f81592 9357 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 9358 {
4fa24527 9359 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 9360 {
28f81592
AM
9361 int first, second;
9362 char *tmpbuf, *past_reloc;
f3c180ae 9363
91d6fa6a 9364 *rel = gotrel[j].rel[object_64bit];
f3c180ae 9365
3956db08
JB
9366 if (types)
9367 {
9368 if (flag_code != CODE_64BIT)
40fb9820
L
9369 {
9370 types->bitfield.imm32 = 1;
9371 types->bitfield.disp32 = 1;
9372 }
3956db08
JB
9373 else
9374 *types = gotrel[j].types64;
9375 }
9376
8fd4256d 9377 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
9378 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9379
28f81592 9380 /* The length of the first part of our input line. */
f3c180ae 9381 first = cp - input_line_pointer;
28f81592
AM
9382
9383 /* The second part goes from after the reloc token until
67c11a9b 9384 (and including) an end_of_line char or comma. */
28f81592 9385 past_reloc = cp + 1 + len;
67c11a9b
AM
9386 cp = past_reloc;
9387 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9388 ++cp;
9389 second = cp + 1 - past_reloc;
28f81592
AM
9390
9391 /* Allocate and copy string. The trailing NUL shouldn't
9392 be necessary, but be safe. */
add39d23 9393 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 9394 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
9395 if (second != 0 && *past_reloc != ' ')
9396 /* Replace the relocation token with ' ', so that
9397 errors like foo@GOTOFF1 will be detected. */
9398 tmpbuf[first++] = ' ';
af89796a
L
9399 else
9400 /* Increment length by 1 if the relocation token is
9401 removed. */
9402 len++;
9403 if (adjust)
9404 *adjust = len;
0787a12d
AM
9405 memcpy (tmpbuf + first, past_reloc, second);
9406 tmpbuf[first + second] = '\0';
f3c180ae
AM
9407 return tmpbuf;
9408 }
9409
4fa24527
JB
9410 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9411 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
9412 return NULL;
9413 }
9414 }
9415
9416 /* Might be a symbol version string. Don't as_bad here. */
9417 return NULL;
9418}
4e4f7c87 9419#endif
f3c180ae 9420
a988325c
NC
9421#ifdef TE_PE
9422#ifdef lex_got
9423#undef lex_got
9424#endif
9425/* Parse operands of the form
9426 <symbol>@SECREL32+<nnn>
9427
9428 If we find one, set up the correct relocation in RELOC and copy the
9429 input string, minus the `@SECREL32' into a malloc'd buffer for
9430 parsing by the calling routine. Return this buffer, and if ADJUST
9431 is non-null set it to the length of the string we removed from the
34bca508
L
9432 input line. Otherwise return NULL.
9433
a988325c
NC
9434 This function is copied from the ELF version above adjusted for PE targets. */
9435
9436static char *
9437lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9438 int *adjust ATTRIBUTE_UNUSED,
d258b828 9439 i386_operand_type *types)
a988325c
NC
9440{
9441 static const struct
9442 {
9443 const char *str;
9444 int len;
9445 const enum bfd_reloc_code_real rel[2];
9446 const i386_operand_type types64;
9447 }
9448 gotrel[] =
9449 {
9450 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9451 BFD_RELOC_32_SECREL },
9452 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9453 };
9454
9455 char *cp;
9456 unsigned j;
9457
9458 for (cp = input_line_pointer; *cp != '@'; cp++)
9459 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9460 return NULL;
9461
9462 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9463 {
9464 int len = gotrel[j].len;
9465
9466 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9467 {
9468 if (gotrel[j].rel[object_64bit] != 0)
9469 {
9470 int first, second;
9471 char *tmpbuf, *past_reloc;
9472
9473 *rel = gotrel[j].rel[object_64bit];
9474 if (adjust)
9475 *adjust = len;
9476
9477 if (types)
9478 {
9479 if (flag_code != CODE_64BIT)
9480 {
9481 types->bitfield.imm32 = 1;
9482 types->bitfield.disp32 = 1;
9483 }
9484 else
9485 *types = gotrel[j].types64;
9486 }
9487
9488 /* The length of the first part of our input line. */
9489 first = cp - input_line_pointer;
9490
9491 /* The second part goes from after the reloc token until
9492 (and including) an end_of_line char or comma. */
9493 past_reloc = cp + 1 + len;
9494 cp = past_reloc;
9495 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9496 ++cp;
9497 second = cp + 1 - past_reloc;
9498
9499 /* Allocate and copy string. The trailing NUL shouldn't
9500 be necessary, but be safe. */
add39d23 9501 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9502 memcpy (tmpbuf, input_line_pointer, first);
9503 if (second != 0 && *past_reloc != ' ')
9504 /* Replace the relocation token with ' ', so that
9505 errors like foo@SECLREL321 will be detected. */
9506 tmpbuf[first++] = ' ';
9507 memcpy (tmpbuf + first, past_reloc, second);
9508 tmpbuf[first + second] = '\0';
9509 return tmpbuf;
9510 }
9511
9512 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9513 gotrel[j].str, 1 << (5 + object_64bit));
9514 return NULL;
9515 }
9516 }
9517
9518 /* Might be a symbol version string. Don't as_bad here. */
9519 return NULL;
9520}
9521
9522#endif /* TE_PE */
9523
62ebcb5c 9524bfd_reloc_code_real_type
e3bb37b5 9525x86_cons (expressionS *exp, int size)
f3c180ae 9526{
62ebcb5c
AM
9527 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9528
ee86248c
JB
9529 intel_syntax = -intel_syntax;
9530
3c7b9c2c 9531 exp->X_md = 0;
4fa24527 9532 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9533 {
9534 /* Handle @GOTOFF and the like in an expression. */
9535 char *save;
9536 char *gotfree_input_line;
4a57f2cf 9537 int adjust = 0;
f3c180ae
AM
9538
9539 save = input_line_pointer;
d258b828 9540 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9541 if (gotfree_input_line)
9542 input_line_pointer = gotfree_input_line;
9543
9544 expression (exp);
9545
9546 if (gotfree_input_line)
9547 {
9548 /* expression () has merrily parsed up to the end of line,
9549 or a comma - in the wrong buffer. Transfer how far
9550 input_line_pointer has moved to the right buffer. */
9551 input_line_pointer = (save
9552 + (input_line_pointer - gotfree_input_line)
9553 + adjust);
9554 free (gotfree_input_line);
3992d3b7
AM
9555 if (exp->X_op == O_constant
9556 || exp->X_op == O_absent
9557 || exp->X_op == O_illegal
0398aac5 9558 || exp->X_op == O_register
3992d3b7
AM
9559 || exp->X_op == O_big)
9560 {
9561 char c = *input_line_pointer;
9562 *input_line_pointer = 0;
9563 as_bad (_("missing or invalid expression `%s'"), save);
9564 *input_line_pointer = c;
9565 }
b9519cfe
L
9566 else if ((got_reloc == BFD_RELOC_386_PLT32
9567 || got_reloc == BFD_RELOC_X86_64_PLT32)
9568 && exp->X_op != O_symbol)
9569 {
9570 char c = *input_line_pointer;
9571 *input_line_pointer = 0;
9572 as_bad (_("invalid PLT expression `%s'"), save);
9573 *input_line_pointer = c;
9574 }
f3c180ae
AM
9575 }
9576 }
9577 else
9578 expression (exp);
ee86248c
JB
9579
9580 intel_syntax = -intel_syntax;
9581
9582 if (intel_syntax)
9583 i386_intel_simplify (exp);
62ebcb5c
AM
9584
9585 return got_reloc;
f3c180ae 9586}
f3c180ae 9587
9f32dd5b
L
9588static void
9589signed_cons (int size)
6482c264 9590{
d182319b
JB
9591 if (flag_code == CODE_64BIT)
9592 cons_sign = 1;
9593 cons (size);
9594 cons_sign = -1;
6482c264
NC
9595}
9596
d182319b 9597#ifdef TE_PE
6482c264 9598static void
7016a5d5 9599pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9600{
9601 expressionS exp;
9602
9603 do
9604 {
9605 expression (&exp);
9606 if (exp.X_op == O_symbol)
9607 exp.X_op = O_secrel;
9608
9609 emit_expr (&exp, 4);
9610 }
9611 while (*input_line_pointer++ == ',');
9612
9613 input_line_pointer--;
9614 demand_empty_rest_of_line ();
9615}
6482c264
NC
9616#endif
9617
43234a1e
L
9618/* Handle Vector operations. */
9619
9620static char *
9621check_VecOperations (char *op_string, char *op_end)
9622{
9623 const reg_entry *mask;
9624 const char *saved;
9625 char *end_op;
9626
9627 while (*op_string
9628 && (op_end == NULL || op_string < op_end))
9629 {
9630 saved = op_string;
9631 if (*op_string == '{')
9632 {
9633 op_string++;
9634
9635 /* Check broadcasts. */
9636 if (strncmp (op_string, "1to", 3) == 0)
9637 {
9638 int bcst_type;
9639
9640 if (i.broadcast)
9641 goto duplicated_vec_op;
9642
9643 op_string += 3;
9644 if (*op_string == '8')
8e6e0792 9645 bcst_type = 8;
b28d1bda 9646 else if (*op_string == '4')
8e6e0792 9647 bcst_type = 4;
b28d1bda 9648 else if (*op_string == '2')
8e6e0792 9649 bcst_type = 2;
43234a1e
L
9650 else if (*op_string == '1'
9651 && *(op_string+1) == '6')
9652 {
8e6e0792 9653 bcst_type = 16;
43234a1e
L
9654 op_string++;
9655 }
9656 else
9657 {
9658 as_bad (_("Unsupported broadcast: `%s'"), saved);
9659 return NULL;
9660 }
9661 op_string++;
9662
9663 broadcast_op.type = bcst_type;
9664 broadcast_op.operand = this_operand;
1f75763a 9665 broadcast_op.bytes = 0;
43234a1e
L
9666 i.broadcast = &broadcast_op;
9667 }
9668 /* Check masking operation. */
9669 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9670 {
9671 /* k0 can't be used for write mask. */
f74a6307 9672 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
43234a1e 9673 {
6d2cd6b2
JB
9674 as_bad (_("`%s%s' can't be used for write mask"),
9675 register_prefix, mask->reg_name);
43234a1e
L
9676 return NULL;
9677 }
9678
9679 if (!i.mask)
9680 {
9681 mask_op.mask = mask;
9682 mask_op.zeroing = 0;
9683 mask_op.operand = this_operand;
9684 i.mask = &mask_op;
9685 }
9686 else
9687 {
9688 if (i.mask->mask)
9689 goto duplicated_vec_op;
9690
9691 i.mask->mask = mask;
9692
9693 /* Only "{z}" is allowed here. No need to check
9694 zeroing mask explicitly. */
9695 if (i.mask->operand != this_operand)
9696 {
9697 as_bad (_("invalid write mask `%s'"), saved);
9698 return NULL;
9699 }
9700 }
9701
9702 op_string = end_op;
9703 }
9704 /* Check zeroing-flag for masking operation. */
9705 else if (*op_string == 'z')
9706 {
9707 if (!i.mask)
9708 {
9709 mask_op.mask = NULL;
9710 mask_op.zeroing = 1;
9711 mask_op.operand = this_operand;
9712 i.mask = &mask_op;
9713 }
9714 else
9715 {
9716 if (i.mask->zeroing)
9717 {
9718 duplicated_vec_op:
9719 as_bad (_("duplicated `%s'"), saved);
9720 return NULL;
9721 }
9722
9723 i.mask->zeroing = 1;
9724
9725 /* Only "{%k}" is allowed here. No need to check mask
9726 register explicitly. */
9727 if (i.mask->operand != this_operand)
9728 {
9729 as_bad (_("invalid zeroing-masking `%s'"),
9730 saved);
9731 return NULL;
9732 }
9733 }
9734
9735 op_string++;
9736 }
9737 else
9738 goto unknown_vec_op;
9739
9740 if (*op_string != '}')
9741 {
9742 as_bad (_("missing `}' in `%s'"), saved);
9743 return NULL;
9744 }
9745 op_string++;
0ba3a731
L
9746
9747 /* Strip whitespace since the addition of pseudo prefixes
9748 changed how the scrubber treats '{'. */
9749 if (is_space_char (*op_string))
9750 ++op_string;
9751
43234a1e
L
9752 continue;
9753 }
9754 unknown_vec_op:
9755 /* We don't know this one. */
9756 as_bad (_("unknown vector operation: `%s'"), saved);
9757 return NULL;
9758 }
9759
6d2cd6b2
JB
9760 if (i.mask && i.mask->zeroing && !i.mask->mask)
9761 {
9762 as_bad (_("zeroing-masking only allowed with write mask"));
9763 return NULL;
9764 }
9765
43234a1e
L
9766 return op_string;
9767}
9768
252b5132 9769static int
70e41ade 9770i386_immediate (char *imm_start)
252b5132
RH
9771{
9772 char *save_input_line_pointer;
f3c180ae 9773 char *gotfree_input_line;
252b5132 9774 segT exp_seg = 0;
47926f60 9775 expressionS *exp;
40fb9820
L
9776 i386_operand_type types;
9777
0dfbf9d7 9778 operand_type_set (&types, ~0);
252b5132
RH
9779
9780 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9781 {
31b2323c
L
9782 as_bad (_("at most %d immediate operands are allowed"),
9783 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9784 return 0;
9785 }
9786
9787 exp = &im_expressions[i.imm_operands++];
520dc8e8 9788 i.op[this_operand].imms = exp;
252b5132
RH
9789
9790 if (is_space_char (*imm_start))
9791 ++imm_start;
9792
9793 save_input_line_pointer = input_line_pointer;
9794 input_line_pointer = imm_start;
9795
d258b828 9796 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9797 if (gotfree_input_line)
9798 input_line_pointer = gotfree_input_line;
252b5132
RH
9799
9800 exp_seg = expression (exp);
9801
83183c0c 9802 SKIP_WHITESPACE ();
43234a1e
L
9803
9804 /* Handle vector operations. */
9805 if (*input_line_pointer == '{')
9806 {
9807 input_line_pointer = check_VecOperations (input_line_pointer,
9808 NULL);
9809 if (input_line_pointer == NULL)
9810 return 0;
9811 }
9812
252b5132 9813 if (*input_line_pointer)
f3c180ae 9814 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9815
9816 input_line_pointer = save_input_line_pointer;
f3c180ae 9817 if (gotfree_input_line)
ee86248c
JB
9818 {
9819 free (gotfree_input_line);
9820
9821 if (exp->X_op == O_constant || exp->X_op == O_register)
9822 exp->X_op = O_illegal;
9823 }
9824
9825 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9826}
252b5132 9827
ee86248c
JB
9828static int
9829i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9830 i386_operand_type types, const char *imm_start)
9831{
9832 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9833 {
313c53d1
L
9834 if (imm_start)
9835 as_bad (_("missing or invalid immediate expression `%s'"),
9836 imm_start);
3992d3b7 9837 return 0;
252b5132 9838 }
3e73aa7c 9839 else if (exp->X_op == O_constant)
252b5132 9840 {
47926f60 9841 /* Size it properly later. */
40fb9820 9842 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9843 /* If not 64bit, sign extend val. */
9844 if (flag_code != CODE_64BIT
4eed87de
AM
9845 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9846 exp->X_add_number
9847 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9848 }
4c63da97 9849#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9850 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9851 && exp_seg != absolute_section
47926f60 9852 && exp_seg != text_section
24eab124
AM
9853 && exp_seg != data_section
9854 && exp_seg != bss_section
9855 && exp_seg != undefined_section
f86103b7 9856 && !bfd_is_com_section (exp_seg))
252b5132 9857 {
d0b47220 9858 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9859 return 0;
9860 }
9861#endif
a841bdf5 9862 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9863 {
313c53d1
L
9864 if (imm_start)
9865 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9866 return 0;
9867 }
252b5132
RH
9868 else
9869 {
9870 /* This is an address. The size of the address will be
24eab124 9871 determined later, depending on destination register,
3e73aa7c 9872 suffix, or the default for the section. */
40fb9820
L
9873 i.types[this_operand].bitfield.imm8 = 1;
9874 i.types[this_operand].bitfield.imm16 = 1;
9875 i.types[this_operand].bitfield.imm32 = 1;
9876 i.types[this_operand].bitfield.imm32s = 1;
9877 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9878 i.types[this_operand] = operand_type_and (i.types[this_operand],
9879 types);
252b5132
RH
9880 }
9881
9882 return 1;
9883}
9884
551c1ca1 9885static char *
e3bb37b5 9886i386_scale (char *scale)
252b5132 9887{
551c1ca1
AM
9888 offsetT val;
9889 char *save = input_line_pointer;
252b5132 9890
551c1ca1
AM
9891 input_line_pointer = scale;
9892 val = get_absolute_expression ();
9893
9894 switch (val)
252b5132 9895 {
551c1ca1 9896 case 1:
252b5132
RH
9897 i.log2_scale_factor = 0;
9898 break;
551c1ca1 9899 case 2:
252b5132
RH
9900 i.log2_scale_factor = 1;
9901 break;
551c1ca1 9902 case 4:
252b5132
RH
9903 i.log2_scale_factor = 2;
9904 break;
551c1ca1 9905 case 8:
252b5132
RH
9906 i.log2_scale_factor = 3;
9907 break;
9908 default:
a724f0f4
JB
9909 {
9910 char sep = *input_line_pointer;
9911
9912 *input_line_pointer = '\0';
9913 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9914 scale);
9915 *input_line_pointer = sep;
9916 input_line_pointer = save;
9917 return NULL;
9918 }
252b5132 9919 }
29b0f896 9920 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9921 {
9922 as_warn (_("scale factor of %d without an index register"),
24eab124 9923 1 << i.log2_scale_factor);
252b5132 9924 i.log2_scale_factor = 0;
252b5132 9925 }
551c1ca1
AM
9926 scale = input_line_pointer;
9927 input_line_pointer = save;
9928 return scale;
252b5132
RH
9929}
9930
252b5132 9931static int
e3bb37b5 9932i386_displacement (char *disp_start, char *disp_end)
252b5132 9933{
29b0f896 9934 expressionS *exp;
252b5132
RH
9935 segT exp_seg = 0;
9936 char *save_input_line_pointer;
f3c180ae 9937 char *gotfree_input_line;
40fb9820
L
9938 int override;
9939 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9940 int ret;
252b5132 9941
31b2323c
L
9942 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9943 {
9944 as_bad (_("at most %d displacement operands are allowed"),
9945 MAX_MEMORY_OPERANDS);
9946 return 0;
9947 }
9948
0dfbf9d7 9949 operand_type_set (&bigdisp, 0);
6f2f06be 9950 if (i.jumpabsolute
48bcea9f 9951 || i.types[this_operand].bitfield.baseindex
0cfa3eb3
JB
9952 || (current_templates->start->opcode_modifier.jump != JUMP
9953 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
e05278af 9954 {
48bcea9f 9955 i386_addressing_mode ();
e05278af 9956 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9957 if (flag_code == CODE_64BIT)
9958 {
9959 if (!override)
9960 {
9961 bigdisp.bitfield.disp32s = 1;
9962 bigdisp.bitfield.disp64 = 1;
9963 }
48bcea9f
JB
9964 else
9965 bigdisp.bitfield.disp32 = 1;
40fb9820
L
9966 }
9967 else if ((flag_code == CODE_16BIT) ^ override)
40fb9820 9968 bigdisp.bitfield.disp16 = 1;
48bcea9f
JB
9969 else
9970 bigdisp.bitfield.disp32 = 1;
e05278af
JB
9971 }
9972 else
9973 {
376cd056
JB
9974 /* For PC-relative branches, the width of the displacement may be
9975 dependent upon data size, but is never dependent upon address size.
9976 Also make sure to not unintentionally match against a non-PC-relative
9977 branch template. */
9978 static templates aux_templates;
9979 const insn_template *t = current_templates->start;
9980 bfd_boolean has_intel64 = FALSE;
9981
9982 aux_templates.start = t;
9983 while (++t < current_templates->end)
9984 {
9985 if (t->opcode_modifier.jump
9986 != current_templates->start->opcode_modifier.jump)
9987 break;
9988 if (t->opcode_modifier.intel64)
9989 has_intel64 = TRUE;
9990 }
9991 if (t < current_templates->end)
9992 {
9993 aux_templates.end = t;
9994 current_templates = &aux_templates;
9995 }
9996
e05278af 9997 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9998 if (flag_code == CODE_64BIT)
9999 {
376cd056
JB
10000 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10001 && (!intel64 || !has_intel64))
40fb9820
L
10002 bigdisp.bitfield.disp16 = 1;
10003 else
48bcea9f 10004 bigdisp.bitfield.disp32s = 1;
40fb9820
L
10005 }
10006 else
e05278af
JB
10007 {
10008 if (!override)
10009 override = (i.suffix == (flag_code != CODE_16BIT
10010 ? WORD_MNEM_SUFFIX
10011 : LONG_MNEM_SUFFIX));
40fb9820
L
10012 bigdisp.bitfield.disp32 = 1;
10013 if ((flag_code == CODE_16BIT) ^ override)
10014 {
10015 bigdisp.bitfield.disp32 = 0;
10016 bigdisp.bitfield.disp16 = 1;
10017 }
e05278af 10018 }
e05278af 10019 }
c6fb90c8
L
10020 i.types[this_operand] = operand_type_or (i.types[this_operand],
10021 bigdisp);
252b5132
RH
10022
10023 exp = &disp_expressions[i.disp_operands];
520dc8e8 10024 i.op[this_operand].disps = exp;
252b5132
RH
10025 i.disp_operands++;
10026 save_input_line_pointer = input_line_pointer;
10027 input_line_pointer = disp_start;
10028 END_STRING_AND_SAVE (disp_end);
10029
10030#ifndef GCC_ASM_O_HACK
10031#define GCC_ASM_O_HACK 0
10032#endif
10033#if GCC_ASM_O_HACK
10034 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 10035 if (i.types[this_operand].bitfield.baseIndex
24eab124 10036 && displacement_string_end[-1] == '+')
252b5132
RH
10037 {
10038 /* This hack is to avoid a warning when using the "o"
24eab124
AM
10039 constraint within gcc asm statements.
10040 For instance:
10041
10042 #define _set_tssldt_desc(n,addr,limit,type) \
10043 __asm__ __volatile__ ( \
10044 "movw %w2,%0\n\t" \
10045 "movw %w1,2+%0\n\t" \
10046 "rorl $16,%1\n\t" \
10047 "movb %b1,4+%0\n\t" \
10048 "movb %4,5+%0\n\t" \
10049 "movb $0,6+%0\n\t" \
10050 "movb %h1,7+%0\n\t" \
10051 "rorl $16,%1" \
10052 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10053
10054 This works great except that the output assembler ends
10055 up looking a bit weird if it turns out that there is
10056 no offset. You end up producing code that looks like:
10057
10058 #APP
10059 movw $235,(%eax)
10060 movw %dx,2+(%eax)
10061 rorl $16,%edx
10062 movb %dl,4+(%eax)
10063 movb $137,5+(%eax)
10064 movb $0,6+(%eax)
10065 movb %dh,7+(%eax)
10066 rorl $16,%edx
10067 #NO_APP
10068
47926f60 10069 So here we provide the missing zero. */
24eab124
AM
10070
10071 *displacement_string_end = '0';
252b5132
RH
10072 }
10073#endif
d258b828 10074 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
10075 if (gotfree_input_line)
10076 input_line_pointer = gotfree_input_line;
252b5132 10077
24eab124 10078 exp_seg = expression (exp);
252b5132 10079
636c26b0
AM
10080 SKIP_WHITESPACE ();
10081 if (*input_line_pointer)
10082 as_bad (_("junk `%s' after expression"), input_line_pointer);
10083#if GCC_ASM_O_HACK
10084 RESTORE_END_STRING (disp_end + 1);
10085#endif
636c26b0 10086 input_line_pointer = save_input_line_pointer;
636c26b0 10087 if (gotfree_input_line)
ee86248c
JB
10088 {
10089 free (gotfree_input_line);
10090
10091 if (exp->X_op == O_constant || exp->X_op == O_register)
10092 exp->X_op = O_illegal;
10093 }
10094
10095 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10096
10097 RESTORE_END_STRING (disp_end);
10098
10099 return ret;
10100}
10101
10102static int
10103i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10104 i386_operand_type types, const char *disp_start)
10105{
10106 i386_operand_type bigdisp;
10107 int ret = 1;
636c26b0 10108
24eab124
AM
10109 /* We do this to make sure that the section symbol is in
10110 the symbol table. We will ultimately change the relocation
47926f60 10111 to be relative to the beginning of the section. */
1ae12ab7 10112 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
10113 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10114 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 10115 {
636c26b0 10116 if (exp->X_op != O_symbol)
3992d3b7 10117 goto inv_disp;
636c26b0 10118
e5cb08ac 10119 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
10120 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10121 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 10122 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
10123 exp->X_op = O_subtract;
10124 exp->X_op_symbol = GOT_symbol;
1ae12ab7 10125 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 10126 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
10127 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10128 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 10129 else
29b0f896 10130 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 10131 }
252b5132 10132
3992d3b7
AM
10133 else if (exp->X_op == O_absent
10134 || exp->X_op == O_illegal
ee86248c 10135 || exp->X_op == O_big)
2daf4fd8 10136 {
3992d3b7
AM
10137 inv_disp:
10138 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 10139 disp_start);
3992d3b7 10140 ret = 0;
2daf4fd8
AM
10141 }
10142
0e1147d9
L
10143 else if (flag_code == CODE_64BIT
10144 && !i.prefix[ADDR_PREFIX]
10145 && exp->X_op == O_constant)
10146 {
10147 /* Since displacement is signed extended to 64bit, don't allow
10148 disp32 and turn off disp32s if they are out of range. */
10149 i.types[this_operand].bitfield.disp32 = 0;
10150 if (!fits_in_signed_long (exp->X_add_number))
10151 {
10152 i.types[this_operand].bitfield.disp32s = 0;
10153 if (i.types[this_operand].bitfield.baseindex)
10154 {
10155 as_bad (_("0x%lx out range of signed 32bit displacement"),
10156 (long) exp->X_add_number);
10157 ret = 0;
10158 }
10159 }
10160 }
10161
4c63da97 10162#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
10163 else if (exp->X_op != O_constant
10164 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10165 && exp_seg != absolute_section
10166 && exp_seg != text_section
10167 && exp_seg != data_section
10168 && exp_seg != bss_section
10169 && exp_seg != undefined_section
10170 && !bfd_is_com_section (exp_seg))
24eab124 10171 {
d0b47220 10172 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 10173 ret = 0;
24eab124 10174 }
252b5132 10175#endif
3956db08 10176
48bcea9f
JB
10177 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10178 /* Constants get taken care of by optimize_disp(). */
10179 && exp->X_op != O_constant)
10180 i.types[this_operand].bitfield.disp8 = 1;
10181
40fb9820
L
10182 /* Check if this is a displacement only operand. */
10183 bigdisp = i.types[this_operand];
10184 bigdisp.bitfield.disp8 = 0;
10185 bigdisp.bitfield.disp16 = 0;
10186 bigdisp.bitfield.disp32 = 0;
10187 bigdisp.bitfield.disp32s = 0;
10188 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 10189 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
10190 i.types[this_operand] = operand_type_and (i.types[this_operand],
10191 types);
3956db08 10192
3992d3b7 10193 return ret;
252b5132
RH
10194}
10195
2abc2bec
JB
10196/* Return the active addressing mode, taking address override and
10197 registers forming the address into consideration. Update the
10198 address override prefix if necessary. */
47926f60 10199
2abc2bec
JB
10200static enum flag_code
10201i386_addressing_mode (void)
252b5132 10202{
be05d201
L
10203 enum flag_code addr_mode;
10204
10205 if (i.prefix[ADDR_PREFIX])
10206 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10207 else
10208 {
10209 addr_mode = flag_code;
10210
24eab124 10211#if INFER_ADDR_PREFIX
be05d201
L
10212 if (i.mem_operands == 0)
10213 {
10214 /* Infer address prefix from the first memory operand. */
10215 const reg_entry *addr_reg = i.base_reg;
10216
10217 if (addr_reg == NULL)
10218 addr_reg = i.index_reg;
eecb386c 10219
be05d201
L
10220 if (addr_reg)
10221 {
e968fc9b 10222 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
10223 addr_mode = CODE_32BIT;
10224 else if (flag_code != CODE_64BIT
dc821c5f 10225 && addr_reg->reg_type.bitfield.word)
be05d201
L
10226 addr_mode = CODE_16BIT;
10227
10228 if (addr_mode != flag_code)
10229 {
10230 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10231 i.prefixes += 1;
10232 /* Change the size of any displacement too. At most one
10233 of Disp16 or Disp32 is set.
10234 FIXME. There doesn't seem to be any real need for
10235 separate Disp16 and Disp32 flags. The same goes for
10236 Imm16 and Imm32. Removing them would probably clean
10237 up the code quite a lot. */
10238 if (flag_code != CODE_64BIT
10239 && (i.types[this_operand].bitfield.disp16
10240 || i.types[this_operand].bitfield.disp32))
10241 i.types[this_operand]
10242 = operand_type_xor (i.types[this_operand], disp16_32);
10243 }
10244 }
10245 }
24eab124 10246#endif
be05d201
L
10247 }
10248
2abc2bec
JB
10249 return addr_mode;
10250}
10251
10252/* Make sure the memory operand we've been dealt is valid.
10253 Return 1 on success, 0 on a failure. */
10254
10255static int
10256i386_index_check (const char *operand_string)
10257{
10258 const char *kind = "base/index";
10259 enum flag_code addr_mode = i386_addressing_mode ();
10260
fc0763e6 10261 if (current_templates->start->opcode_modifier.isstring
c3949f43 10262 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
10263 && (current_templates->end[-1].opcode_modifier.isstring
10264 || i.mem_operands))
10265 {
10266 /* Memory operands of string insns are special in that they only allow
10267 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
10268 const reg_entry *expected_reg;
10269 static const char *di_si[][2] =
10270 {
10271 { "esi", "edi" },
10272 { "si", "di" },
10273 { "rsi", "rdi" }
10274 };
10275 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
10276
10277 kind = "string address";
10278
8325cc63 10279 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6 10280 {
51c8edf6
JB
10281 int es_op = current_templates->end[-1].opcode_modifier.isstring
10282 - IS_STRING_ES_OP0;
10283 int op = 0;
fc0763e6 10284
51c8edf6 10285 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
fc0763e6
JB
10286 || ((!i.mem_operands != !intel_syntax)
10287 && current_templates->end[-1].operand_types[1]
10288 .bitfield.baseindex))
51c8edf6
JB
10289 op = 1;
10290 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
fc0763e6
JB
10291 }
10292 else
be05d201 10293 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 10294
be05d201
L
10295 if (i.base_reg != expected_reg
10296 || i.index_reg
fc0763e6 10297 || operand_type_check (i.types[this_operand], disp))
fc0763e6 10298 {
be05d201
L
10299 /* The second memory operand must have the same size as
10300 the first one. */
10301 if (i.mem_operands
10302 && i.base_reg
10303 && !((addr_mode == CODE_64BIT
dc821c5f 10304 && i.base_reg->reg_type.bitfield.qword)
be05d201 10305 || (addr_mode == CODE_32BIT
dc821c5f
JB
10306 ? i.base_reg->reg_type.bitfield.dword
10307 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
10308 goto bad_address;
10309
fc0763e6
JB
10310 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10311 operand_string,
10312 intel_syntax ? '[' : '(',
10313 register_prefix,
be05d201 10314 expected_reg->reg_name,
fc0763e6 10315 intel_syntax ? ']' : ')');
be05d201 10316 return 1;
fc0763e6 10317 }
be05d201
L
10318 else
10319 return 1;
10320
10321bad_address:
10322 as_bad (_("`%s' is not a valid %s expression"),
10323 operand_string, kind);
10324 return 0;
3e73aa7c
JH
10325 }
10326 else
10327 {
be05d201
L
10328 if (addr_mode != CODE_16BIT)
10329 {
10330 /* 32-bit/64-bit checks. */
10331 if ((i.base_reg
e968fc9b
JB
10332 && ((addr_mode == CODE_64BIT
10333 ? !i.base_reg->reg_type.bitfield.qword
10334 : !i.base_reg->reg_type.bitfield.dword)
10335 || (i.index_reg && i.base_reg->reg_num == RegIP)
10336 || i.base_reg->reg_num == RegIZ))
be05d201 10337 || (i.index_reg
1b54b8d7
JB
10338 && !i.index_reg->reg_type.bitfield.xmmword
10339 && !i.index_reg->reg_type.bitfield.ymmword
10340 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 10341 && ((addr_mode == CODE_64BIT
e968fc9b
JB
10342 ? !i.index_reg->reg_type.bitfield.qword
10343 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
10344 || !i.index_reg->reg_type.bitfield.baseindex)))
10345 goto bad_address;
8178be5b
JB
10346
10347 /* bndmk, bndldx, and bndstx have special restrictions. */
10348 if (current_templates->start->base_opcode == 0xf30f1b
10349 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10350 {
10351 /* They cannot use RIP-relative addressing. */
e968fc9b 10352 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
10353 {
10354 as_bad (_("`%s' cannot be used here"), operand_string);
10355 return 0;
10356 }
10357
10358 /* bndldx and bndstx ignore their scale factor. */
10359 if (current_templates->start->base_opcode != 0xf30f1b
10360 && i.log2_scale_factor)
10361 as_warn (_("register scaling is being ignored here"));
10362 }
be05d201
L
10363 }
10364 else
3e73aa7c 10365 {
be05d201 10366 /* 16-bit checks. */
3e73aa7c 10367 if ((i.base_reg
dc821c5f 10368 && (!i.base_reg->reg_type.bitfield.word
40fb9820 10369 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 10370 || (i.index_reg
dc821c5f 10371 && (!i.index_reg->reg_type.bitfield.word
40fb9820 10372 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
10373 || !(i.base_reg
10374 && i.base_reg->reg_num < 6
10375 && i.index_reg->reg_num >= 6
10376 && i.log2_scale_factor == 0))))
be05d201 10377 goto bad_address;
3e73aa7c
JH
10378 }
10379 }
be05d201 10380 return 1;
24eab124 10381}
252b5132 10382
43234a1e
L
10383/* Handle vector immediates. */
10384
10385static int
10386RC_SAE_immediate (const char *imm_start)
10387{
10388 unsigned int match_found, j;
10389 const char *pstr = imm_start;
10390 expressionS *exp;
10391
10392 if (*pstr != '{')
10393 return 0;
10394
10395 pstr++;
10396 match_found = 0;
10397 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10398 {
10399 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10400 {
10401 if (!i.rounding)
10402 {
10403 rc_op.type = RC_NamesTable[j].type;
10404 rc_op.operand = this_operand;
10405 i.rounding = &rc_op;
10406 }
10407 else
10408 {
10409 as_bad (_("duplicated `%s'"), imm_start);
10410 return 0;
10411 }
10412 pstr += RC_NamesTable[j].len;
10413 match_found = 1;
10414 break;
10415 }
10416 }
10417 if (!match_found)
10418 return 0;
10419
10420 if (*pstr++ != '}')
10421 {
10422 as_bad (_("Missing '}': '%s'"), imm_start);
10423 return 0;
10424 }
10425 /* RC/SAE immediate string should contain nothing more. */;
10426 if (*pstr != 0)
10427 {
10428 as_bad (_("Junk after '}': '%s'"), imm_start);
10429 return 0;
10430 }
10431
10432 exp = &im_expressions[i.imm_operands++];
10433 i.op[this_operand].imms = exp;
10434
10435 exp->X_op = O_constant;
10436 exp->X_add_number = 0;
10437 exp->X_add_symbol = (symbolS *) 0;
10438 exp->X_op_symbol = (symbolS *) 0;
10439
10440 i.types[this_operand].bitfield.imm8 = 1;
10441 return 1;
10442}
10443
8325cc63
JB
10444/* Only string instructions can have a second memory operand, so
10445 reduce current_templates to just those if it contains any. */
10446static int
10447maybe_adjust_templates (void)
10448{
10449 const insn_template *t;
10450
10451 gas_assert (i.mem_operands == 1);
10452
10453 for (t = current_templates->start; t < current_templates->end; ++t)
10454 if (t->opcode_modifier.isstring)
10455 break;
10456
10457 if (t < current_templates->end)
10458 {
10459 static templates aux_templates;
10460 bfd_boolean recheck;
10461
10462 aux_templates.start = t;
10463 for (; t < current_templates->end; ++t)
10464 if (!t->opcode_modifier.isstring)
10465 break;
10466 aux_templates.end = t;
10467
10468 /* Determine whether to re-check the first memory operand. */
10469 recheck = (aux_templates.start != current_templates->start
10470 || t != current_templates->end);
10471
10472 current_templates = &aux_templates;
10473
10474 if (recheck)
10475 {
10476 i.mem_operands = 0;
10477 if (i.memop1_string != NULL
10478 && i386_index_check (i.memop1_string) == 0)
10479 return 0;
10480 i.mem_operands = 1;
10481 }
10482 }
10483
10484 return 1;
10485}
10486
fc0763e6 10487/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 10488 on error. */
252b5132 10489
252b5132 10490static int
a7619375 10491i386_att_operand (char *operand_string)
252b5132 10492{
af6bdddf
AM
10493 const reg_entry *r;
10494 char *end_op;
24eab124 10495 char *op_string = operand_string;
252b5132 10496
24eab124 10497 if (is_space_char (*op_string))
252b5132
RH
10498 ++op_string;
10499
24eab124 10500 /* We check for an absolute prefix (differentiating,
47926f60 10501 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10502 if (*op_string == ABSOLUTE_PREFIX)
10503 {
10504 ++op_string;
10505 if (is_space_char (*op_string))
10506 ++op_string;
6f2f06be 10507 i.jumpabsolute = TRUE;
24eab124 10508 }
252b5132 10509
47926f60 10510 /* Check if operand is a register. */
4d1bb795 10511 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10512 {
40fb9820
L
10513 i386_operand_type temp;
10514
24eab124
AM
10515 /* Check for a segment override by searching for ':' after a
10516 segment register. */
10517 op_string = end_op;
10518 if (is_space_char (*op_string))
10519 ++op_string;
00cee14f 10520 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124
AM
10521 {
10522 switch (r->reg_num)
10523 {
10524 case 0:
10525 i.seg[i.mem_operands] = &es;
10526 break;
10527 case 1:
10528 i.seg[i.mem_operands] = &cs;
10529 break;
10530 case 2:
10531 i.seg[i.mem_operands] = &ss;
10532 break;
10533 case 3:
10534 i.seg[i.mem_operands] = &ds;
10535 break;
10536 case 4:
10537 i.seg[i.mem_operands] = &fs;
10538 break;
10539 case 5:
10540 i.seg[i.mem_operands] = &gs;
10541 break;
10542 }
252b5132 10543
24eab124 10544 /* Skip the ':' and whitespace. */
252b5132
RH
10545 ++op_string;
10546 if (is_space_char (*op_string))
24eab124 10547 ++op_string;
252b5132 10548
24eab124
AM
10549 if (!is_digit_char (*op_string)
10550 && !is_identifier_char (*op_string)
10551 && *op_string != '('
10552 && *op_string != ABSOLUTE_PREFIX)
10553 {
10554 as_bad (_("bad memory operand `%s'"), op_string);
10555 return 0;
10556 }
47926f60 10557 /* Handle case of %es:*foo. */
24eab124
AM
10558 if (*op_string == ABSOLUTE_PREFIX)
10559 {
10560 ++op_string;
10561 if (is_space_char (*op_string))
10562 ++op_string;
6f2f06be 10563 i.jumpabsolute = TRUE;
24eab124
AM
10564 }
10565 goto do_memory_reference;
10566 }
43234a1e
L
10567
10568 /* Handle vector operations. */
10569 if (*op_string == '{')
10570 {
10571 op_string = check_VecOperations (op_string, NULL);
10572 if (op_string == NULL)
10573 return 0;
10574 }
10575
24eab124
AM
10576 if (*op_string)
10577 {
d0b47220 10578 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10579 return 0;
10580 }
40fb9820
L
10581 temp = r->reg_type;
10582 temp.bitfield.baseindex = 0;
c6fb90c8
L
10583 i.types[this_operand] = operand_type_or (i.types[this_operand],
10584 temp);
7d5e4556 10585 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10586 i.op[this_operand].regs = r;
24eab124
AM
10587 i.reg_operands++;
10588 }
af6bdddf
AM
10589 else if (*op_string == REGISTER_PREFIX)
10590 {
10591 as_bad (_("bad register name `%s'"), op_string);
10592 return 0;
10593 }
24eab124 10594 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10595 {
24eab124 10596 ++op_string;
6f2f06be 10597 if (i.jumpabsolute)
24eab124 10598 {
d0b47220 10599 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10600 return 0;
10601 }
10602 if (!i386_immediate (op_string))
10603 return 0;
10604 }
43234a1e
L
10605 else if (RC_SAE_immediate (operand_string))
10606 {
10607 /* If it is a RC or SAE immediate, do nothing. */
10608 ;
10609 }
24eab124
AM
10610 else if (is_digit_char (*op_string)
10611 || is_identifier_char (*op_string)
d02603dc 10612 || *op_string == '"'
e5cb08ac 10613 || *op_string == '(')
24eab124 10614 {
47926f60 10615 /* This is a memory reference of some sort. */
af6bdddf 10616 char *base_string;
252b5132 10617
47926f60 10618 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10619 char *displacement_string_start;
10620 char *displacement_string_end;
43234a1e 10621 char *vop_start;
252b5132 10622
24eab124 10623 do_memory_reference:
8325cc63
JB
10624 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10625 return 0;
24eab124 10626 if ((i.mem_operands == 1
40fb9820 10627 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10628 || i.mem_operands == 2)
10629 {
10630 as_bad (_("too many memory references for `%s'"),
10631 current_templates->start->name);
10632 return 0;
10633 }
252b5132 10634
24eab124
AM
10635 /* Check for base index form. We detect the base index form by
10636 looking for an ')' at the end of the operand, searching
10637 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10638 after the '('. */
af6bdddf 10639 base_string = op_string + strlen (op_string);
c3332e24 10640
43234a1e
L
10641 /* Handle vector operations. */
10642 vop_start = strchr (op_string, '{');
10643 if (vop_start && vop_start < base_string)
10644 {
10645 if (check_VecOperations (vop_start, base_string) == NULL)
10646 return 0;
10647 base_string = vop_start;
10648 }
10649
af6bdddf
AM
10650 --base_string;
10651 if (is_space_char (*base_string))
10652 --base_string;
252b5132 10653
47926f60 10654 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10655 displacement_string_start = op_string;
10656 displacement_string_end = base_string + 1;
252b5132 10657
24eab124
AM
10658 if (*base_string == ')')
10659 {
af6bdddf 10660 char *temp_string;
24eab124
AM
10661 unsigned int parens_balanced = 1;
10662 /* We've already checked that the number of left & right ()'s are
47926f60 10663 equal, so this loop will not be infinite. */
24eab124
AM
10664 do
10665 {
10666 base_string--;
10667 if (*base_string == ')')
10668 parens_balanced++;
10669 if (*base_string == '(')
10670 parens_balanced--;
10671 }
10672 while (parens_balanced);
c3332e24 10673
af6bdddf 10674 temp_string = base_string;
c3332e24 10675
24eab124 10676 /* Skip past '(' and whitespace. */
252b5132
RH
10677 ++base_string;
10678 if (is_space_char (*base_string))
24eab124 10679 ++base_string;
252b5132 10680
af6bdddf 10681 if (*base_string == ','
4eed87de
AM
10682 || ((i.base_reg = parse_register (base_string, &end_op))
10683 != NULL))
252b5132 10684 {
af6bdddf 10685 displacement_string_end = temp_string;
252b5132 10686
40fb9820 10687 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10688
af6bdddf 10689 if (i.base_reg)
24eab124 10690 {
24eab124
AM
10691 base_string = end_op;
10692 if (is_space_char (*base_string))
10693 ++base_string;
af6bdddf
AM
10694 }
10695
10696 /* There may be an index reg or scale factor here. */
10697 if (*base_string == ',')
10698 {
10699 ++base_string;
10700 if (is_space_char (*base_string))
10701 ++base_string;
10702
4eed87de
AM
10703 if ((i.index_reg = parse_register (base_string, &end_op))
10704 != NULL)
24eab124 10705 {
af6bdddf 10706 base_string = end_op;
24eab124
AM
10707 if (is_space_char (*base_string))
10708 ++base_string;
af6bdddf
AM
10709 if (*base_string == ',')
10710 {
10711 ++base_string;
10712 if (is_space_char (*base_string))
10713 ++base_string;
10714 }
e5cb08ac 10715 else if (*base_string != ')')
af6bdddf 10716 {
4eed87de
AM
10717 as_bad (_("expecting `,' or `)' "
10718 "after index register in `%s'"),
af6bdddf
AM
10719 operand_string);
10720 return 0;
10721 }
24eab124 10722 }
af6bdddf 10723 else if (*base_string == REGISTER_PREFIX)
24eab124 10724 {
f76bf5e0
L
10725 end_op = strchr (base_string, ',');
10726 if (end_op)
10727 *end_op = '\0';
af6bdddf 10728 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10729 return 0;
10730 }
252b5132 10731
47926f60 10732 /* Check for scale factor. */
551c1ca1 10733 if (*base_string != ')')
af6bdddf 10734 {
551c1ca1
AM
10735 char *end_scale = i386_scale (base_string);
10736
10737 if (!end_scale)
af6bdddf 10738 return 0;
24eab124 10739
551c1ca1 10740 base_string = end_scale;
af6bdddf
AM
10741 if (is_space_char (*base_string))
10742 ++base_string;
10743 if (*base_string != ')')
10744 {
4eed87de
AM
10745 as_bad (_("expecting `)' "
10746 "after scale factor in `%s'"),
af6bdddf
AM
10747 operand_string);
10748 return 0;
10749 }
10750 }
10751 else if (!i.index_reg)
24eab124 10752 {
4eed87de
AM
10753 as_bad (_("expecting index register or scale factor "
10754 "after `,'; got '%c'"),
af6bdddf 10755 *base_string);
24eab124
AM
10756 return 0;
10757 }
10758 }
af6bdddf 10759 else if (*base_string != ')')
24eab124 10760 {
4eed87de
AM
10761 as_bad (_("expecting `,' or `)' "
10762 "after base register in `%s'"),
af6bdddf 10763 operand_string);
24eab124
AM
10764 return 0;
10765 }
c3332e24 10766 }
af6bdddf 10767 else if (*base_string == REGISTER_PREFIX)
c3332e24 10768 {
f76bf5e0
L
10769 end_op = strchr (base_string, ',');
10770 if (end_op)
10771 *end_op = '\0';
af6bdddf 10772 as_bad (_("bad register name `%s'"), base_string);
24eab124 10773 return 0;
c3332e24 10774 }
24eab124
AM
10775 }
10776
10777 /* If there's an expression beginning the operand, parse it,
10778 assuming displacement_string_start and
10779 displacement_string_end are meaningful. */
10780 if (displacement_string_start != displacement_string_end)
10781 {
10782 if (!i386_displacement (displacement_string_start,
10783 displacement_string_end))
10784 return 0;
10785 }
10786
10787 /* Special case for (%dx) while doing input/output op. */
10788 if (i.base_reg
75e5731b
JB
10789 && i.base_reg->reg_type.bitfield.instance == RegD
10790 && i.base_reg->reg_type.bitfield.word
24eab124
AM
10791 && i.index_reg == 0
10792 && i.log2_scale_factor == 0
10793 && i.seg[i.mem_operands] == 0
40fb9820 10794 && !operand_type_check (i.types[this_operand], disp))
24eab124 10795 {
2fb5be8d 10796 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10797 return 1;
10798 }
10799
eecb386c
AM
10800 if (i386_index_check (operand_string) == 0)
10801 return 0;
c48dadc9 10802 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10803 if (i.mem_operands == 0)
10804 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10805 i.mem_operands++;
10806 }
10807 else
ce8a8b2f
AM
10808 {
10809 /* It's not a memory operand; argh! */
24eab124
AM
10810 as_bad (_("invalid char %s beginning operand %d `%s'"),
10811 output_invalid (*op_string),
10812 this_operand + 1,
10813 op_string);
10814 return 0;
10815 }
47926f60 10816 return 1; /* Normal return. */
252b5132
RH
10817}
10818\f
fa94de6b
RM
10819/* Calculate the maximum variable size (i.e., excluding fr_fix)
10820 that an rs_machine_dependent frag may reach. */
10821
10822unsigned int
10823i386_frag_max_var (fragS *frag)
10824{
10825 /* The only relaxable frags are for jumps.
10826 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10827 gas_assert (frag->fr_type == rs_machine_dependent);
10828 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10829}
10830
b084df0b
L
10831#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10832static int
8dcea932 10833elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10834{
10835 /* STT_GNU_IFUNC symbol must go through PLT. */
10836 if ((symbol_get_bfdsym (fr_symbol)->flags
10837 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10838 return 0;
10839
10840 if (!S_IS_EXTERNAL (fr_symbol))
10841 /* Symbol may be weak or local. */
10842 return !S_IS_WEAK (fr_symbol);
10843
8dcea932
L
10844 /* Global symbols with non-default visibility can't be preempted. */
10845 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10846 return 1;
10847
10848 if (fr_var != NO_RELOC)
10849 switch ((enum bfd_reloc_code_real) fr_var)
10850 {
10851 case BFD_RELOC_386_PLT32:
10852 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10853 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10854 return 0;
10855 default:
10856 abort ();
10857 }
10858
b084df0b
L
10859 /* Global symbols with default visibility in a shared library may be
10860 preempted by another definition. */
8dcea932 10861 return !shared;
b084df0b
L
10862}
10863#endif
10864
e379e5f3
L
10865/* Return the next non-empty frag. */
10866
10867static fragS *
10868i386_next_non_empty_frag (fragS *fragP)
10869{
10870 /* There may be a frag with a ".fill 0" when there is no room in
10871 the current frag for frag_grow in output_insn. */
10872 for (fragP = fragP->fr_next;
10873 (fragP != NULL
10874 && fragP->fr_type == rs_fill
10875 && fragP->fr_fix == 0);
10876 fragP = fragP->fr_next)
10877 ;
10878 return fragP;
10879}
10880
10881/* Return the next jcc frag after BRANCH_PADDING. */
10882
10883static fragS *
10884i386_next_jcc_frag (fragS *fragP)
10885{
10886 if (!fragP)
10887 return NULL;
10888
10889 if (fragP->fr_type == rs_machine_dependent
10890 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10891 == BRANCH_PADDING))
10892 {
10893 fragP = i386_next_non_empty_frag (fragP);
10894 if (fragP->fr_type != rs_machine_dependent)
10895 return NULL;
10896 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10897 return fragP;
10898 }
10899
10900 return NULL;
10901}
10902
10903/* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10904
10905static void
10906i386_classify_machine_dependent_frag (fragS *fragP)
10907{
10908 fragS *cmp_fragP;
10909 fragS *pad_fragP;
10910 fragS *branch_fragP;
10911 fragS *next_fragP;
10912 unsigned int max_prefix_length;
10913
10914 if (fragP->tc_frag_data.classified)
10915 return;
10916
10917 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10918 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10919 for (next_fragP = fragP;
10920 next_fragP != NULL;
10921 next_fragP = next_fragP->fr_next)
10922 {
10923 next_fragP->tc_frag_data.classified = 1;
10924 if (next_fragP->fr_type == rs_machine_dependent)
10925 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10926 {
10927 case BRANCH_PADDING:
10928 /* The BRANCH_PADDING frag must be followed by a branch
10929 frag. */
10930 branch_fragP = i386_next_non_empty_frag (next_fragP);
10931 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10932 break;
10933 case FUSED_JCC_PADDING:
10934 /* Check if this is a fused jcc:
10935 FUSED_JCC_PADDING
10936 CMP like instruction
10937 BRANCH_PADDING
10938 COND_JUMP
10939 */
10940 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10941 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10942 branch_fragP = i386_next_jcc_frag (pad_fragP);
10943 if (branch_fragP)
10944 {
10945 /* The BRANCH_PADDING frag is merged with the
10946 FUSED_JCC_PADDING frag. */
10947 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10948 /* CMP like instruction size. */
10949 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10950 frag_wane (pad_fragP);
10951 /* Skip to branch_fragP. */
10952 next_fragP = branch_fragP;
10953 }
10954 else if (next_fragP->tc_frag_data.max_prefix_length)
10955 {
10956 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10957 a fused jcc. */
10958 next_fragP->fr_subtype
10959 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10960 next_fragP->tc_frag_data.max_bytes
10961 = next_fragP->tc_frag_data.max_prefix_length;
10962 /* This will be updated in the BRANCH_PREFIX scan. */
10963 next_fragP->tc_frag_data.max_prefix_length = 0;
10964 }
10965 else
10966 frag_wane (next_fragP);
10967 break;
10968 }
10969 }
10970
10971 /* Stop if there is no BRANCH_PREFIX. */
10972 if (!align_branch_prefix_size)
10973 return;
10974
10975 /* Scan for BRANCH_PREFIX. */
10976 for (; fragP != NULL; fragP = fragP->fr_next)
10977 {
10978 if (fragP->fr_type != rs_machine_dependent
10979 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10980 != BRANCH_PREFIX))
10981 continue;
10982
10983 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
10984 COND_JUMP_PREFIX. */
10985 max_prefix_length = 0;
10986 for (next_fragP = fragP;
10987 next_fragP != NULL;
10988 next_fragP = next_fragP->fr_next)
10989 {
10990 if (next_fragP->fr_type == rs_fill)
10991 /* Skip rs_fill frags. */
10992 continue;
10993 else if (next_fragP->fr_type != rs_machine_dependent)
10994 /* Stop for all other frags. */
10995 break;
10996
10997 /* rs_machine_dependent frags. */
10998 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10999 == BRANCH_PREFIX)
11000 {
11001 /* Count BRANCH_PREFIX frags. */
11002 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11003 {
11004 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11005 frag_wane (next_fragP);
11006 }
11007 else
11008 max_prefix_length
11009 += next_fragP->tc_frag_data.max_bytes;
11010 }
11011 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11012 == BRANCH_PADDING)
11013 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11014 == FUSED_JCC_PADDING))
11015 {
11016 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11017 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11018 break;
11019 }
11020 else
11021 /* Stop for other rs_machine_dependent frags. */
11022 break;
11023 }
11024
11025 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11026
11027 /* Skip to the next frag. */
11028 fragP = next_fragP;
11029 }
11030}
11031
11032/* Compute padding size for
11033
11034 FUSED_JCC_PADDING
11035 CMP like instruction
11036 BRANCH_PADDING
11037 COND_JUMP/UNCOND_JUMP
11038
11039 or
11040
11041 BRANCH_PADDING
11042 COND_JUMP/UNCOND_JUMP
11043 */
11044
11045static int
11046i386_branch_padding_size (fragS *fragP, offsetT address)
11047{
11048 unsigned int offset, size, padding_size;
11049 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11050
11051 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11052 if (!address)
11053 address = fragP->fr_address;
11054 address += fragP->fr_fix;
11055
11056 /* CMP like instrunction size. */
11057 size = fragP->tc_frag_data.cmp_size;
11058
11059 /* The base size of the branch frag. */
11060 size += branch_fragP->fr_fix;
11061
11062 /* Add opcode and displacement bytes for the rs_machine_dependent
11063 branch frag. */
11064 if (branch_fragP->fr_type == rs_machine_dependent)
11065 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11066
11067 /* Check if branch is within boundary and doesn't end at the last
11068 byte. */
11069 offset = address & ((1U << align_branch_power) - 1);
11070 if ((offset + size) >= (1U << align_branch_power))
11071 /* Padding needed to avoid crossing boundary. */
11072 padding_size = (1U << align_branch_power) - offset;
11073 else
11074 /* No padding needed. */
11075 padding_size = 0;
11076
11077 /* The return value may be saved in tc_frag_data.length which is
11078 unsigned byte. */
11079 if (!fits_in_unsigned_byte (padding_size))
11080 abort ();
11081
11082 return padding_size;
11083}
11084
11085/* i386_generic_table_relax_frag()
11086
11087 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11088 grow/shrink padding to align branch frags. Hand others to
11089 relax_frag(). */
11090
11091long
11092i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11093{
11094 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11095 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11096 {
11097 long padding_size = i386_branch_padding_size (fragP, 0);
11098 long grow = padding_size - fragP->tc_frag_data.length;
11099
11100 /* When the BRANCH_PREFIX frag is used, the computed address
11101 must match the actual address and there should be no padding. */
11102 if (fragP->tc_frag_data.padding_address
11103 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11104 || padding_size))
11105 abort ();
11106
11107 /* Update the padding size. */
11108 if (grow)
11109 fragP->tc_frag_data.length = padding_size;
11110
11111 return grow;
11112 }
11113 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11114 {
11115 fragS *padding_fragP, *next_fragP;
11116 long padding_size, left_size, last_size;
11117
11118 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11119 if (!padding_fragP)
11120 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11121 return (fragP->tc_frag_data.length
11122 - fragP->tc_frag_data.last_length);
11123
11124 /* Compute the relative address of the padding frag in the very
11125 first time where the BRANCH_PREFIX frag sizes are zero. */
11126 if (!fragP->tc_frag_data.padding_address)
11127 fragP->tc_frag_data.padding_address
11128 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11129
11130 /* First update the last length from the previous interation. */
11131 left_size = fragP->tc_frag_data.prefix_length;
11132 for (next_fragP = fragP;
11133 next_fragP != padding_fragP;
11134 next_fragP = next_fragP->fr_next)
11135 if (next_fragP->fr_type == rs_machine_dependent
11136 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11137 == BRANCH_PREFIX))
11138 {
11139 if (left_size)
11140 {
11141 int max = next_fragP->tc_frag_data.max_bytes;
11142 if (max)
11143 {
11144 int size;
11145 if (max > left_size)
11146 size = left_size;
11147 else
11148 size = max;
11149 left_size -= size;
11150 next_fragP->tc_frag_data.last_length = size;
11151 }
11152 }
11153 else
11154 next_fragP->tc_frag_data.last_length = 0;
11155 }
11156
11157 /* Check the padding size for the padding frag. */
11158 padding_size = i386_branch_padding_size
11159 (padding_fragP, (fragP->fr_address
11160 + fragP->tc_frag_data.padding_address));
11161
11162 last_size = fragP->tc_frag_data.prefix_length;
11163 /* Check if there is change from the last interation. */
11164 if (padding_size == last_size)
11165 {
11166 /* Update the expected address of the padding frag. */
11167 padding_fragP->tc_frag_data.padding_address
11168 = (fragP->fr_address + padding_size
11169 + fragP->tc_frag_data.padding_address);
11170 return 0;
11171 }
11172
11173 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11174 {
11175 /* No padding if there is no sufficient room. Clear the
11176 expected address of the padding frag. */
11177 padding_fragP->tc_frag_data.padding_address = 0;
11178 padding_size = 0;
11179 }
11180 else
11181 /* Store the expected address of the padding frag. */
11182 padding_fragP->tc_frag_data.padding_address
11183 = (fragP->fr_address + padding_size
11184 + fragP->tc_frag_data.padding_address);
11185
11186 fragP->tc_frag_data.prefix_length = padding_size;
11187
11188 /* Update the length for the current interation. */
11189 left_size = padding_size;
11190 for (next_fragP = fragP;
11191 next_fragP != padding_fragP;
11192 next_fragP = next_fragP->fr_next)
11193 if (next_fragP->fr_type == rs_machine_dependent
11194 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11195 == BRANCH_PREFIX))
11196 {
11197 if (left_size)
11198 {
11199 int max = next_fragP->tc_frag_data.max_bytes;
11200 if (max)
11201 {
11202 int size;
11203 if (max > left_size)
11204 size = left_size;
11205 else
11206 size = max;
11207 left_size -= size;
11208 next_fragP->tc_frag_data.length = size;
11209 }
11210 }
11211 else
11212 next_fragP->tc_frag_data.length = 0;
11213 }
11214
11215 return (fragP->tc_frag_data.length
11216 - fragP->tc_frag_data.last_length);
11217 }
11218 return relax_frag (segment, fragP, stretch);
11219}
11220
ee7fcc42
AM
11221/* md_estimate_size_before_relax()
11222
11223 Called just before relax() for rs_machine_dependent frags. The x86
11224 assembler uses these frags to handle variable size jump
11225 instructions.
11226
11227 Any symbol that is now undefined will not become defined.
11228 Return the correct fr_subtype in the frag.
11229 Return the initial "guess for variable size of frag" to caller.
11230 The guess is actually the growth beyond the fixed part. Whatever
11231 we do to grow the fixed or variable part contributes to our
11232 returned value. */
11233
252b5132 11234int
7016a5d5 11235md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 11236{
e379e5f3
L
11237 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11238 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11239 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11240 {
11241 i386_classify_machine_dependent_frag (fragP);
11242 return fragP->tc_frag_data.length;
11243 }
11244
252b5132 11245 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
11246 check for un-relaxable symbols. On an ELF system, we can't relax
11247 an externally visible symbol, because it may be overridden by a
11248 shared library. */
11249 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 11250#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11251 || (IS_ELF
8dcea932
L
11252 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11253 fragP->fr_var))
fbeb56a4
DK
11254#endif
11255#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 11256 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 11257 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
11258#endif
11259 )
252b5132 11260 {
b98ef147
AM
11261 /* Symbol is undefined in this segment, or we need to keep a
11262 reloc so that weak symbols can be overridden. */
11263 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 11264 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
11265 unsigned char *opcode;
11266 int old_fr_fix;
f6af82bd 11267
ee7fcc42 11268 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 11269 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 11270 else if (size == 2)
f6af82bd 11271 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
11272#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11273 else if (need_plt32_p (fragP->fr_symbol))
11274 reloc_type = BFD_RELOC_X86_64_PLT32;
11275#endif
f6af82bd
AM
11276 else
11277 reloc_type = BFD_RELOC_32_PCREL;
252b5132 11278
ee7fcc42
AM
11279 old_fr_fix = fragP->fr_fix;
11280 opcode = (unsigned char *) fragP->fr_opcode;
11281
fddf5b5b 11282 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 11283 {
fddf5b5b
AM
11284 case UNCOND_JUMP:
11285 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 11286 opcode[0] = 0xe9;
252b5132 11287 fragP->fr_fix += size;
062cd5e7
AS
11288 fix_new (fragP, old_fr_fix, size,
11289 fragP->fr_symbol,
11290 fragP->fr_offset, 1,
11291 reloc_type);
252b5132
RH
11292 break;
11293
fddf5b5b 11294 case COND_JUMP86:
412167cb
AM
11295 if (size == 2
11296 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
11297 {
11298 /* Negate the condition, and branch past an
11299 unconditional jump. */
11300 opcode[0] ^= 1;
11301 opcode[1] = 3;
11302 /* Insert an unconditional jump. */
11303 opcode[2] = 0xe9;
11304 /* We added two extra opcode bytes, and have a two byte
11305 offset. */
11306 fragP->fr_fix += 2 + 2;
062cd5e7
AS
11307 fix_new (fragP, old_fr_fix + 2, 2,
11308 fragP->fr_symbol,
11309 fragP->fr_offset, 1,
11310 reloc_type);
fddf5b5b
AM
11311 break;
11312 }
11313 /* Fall through. */
11314
11315 case COND_JUMP:
412167cb
AM
11316 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11317 {
3e02c1cc
AM
11318 fixS *fixP;
11319
412167cb 11320 fragP->fr_fix += 1;
3e02c1cc
AM
11321 fixP = fix_new (fragP, old_fr_fix, 1,
11322 fragP->fr_symbol,
11323 fragP->fr_offset, 1,
11324 BFD_RELOC_8_PCREL);
11325 fixP->fx_signed = 1;
412167cb
AM
11326 break;
11327 }
93c2a809 11328
24eab124 11329 /* This changes the byte-displacement jump 0x7N
fddf5b5b 11330 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 11331 opcode[1] = opcode[0] + 0x10;
f6af82bd 11332 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
11333 /* We've added an opcode byte. */
11334 fragP->fr_fix += 1 + size;
062cd5e7
AS
11335 fix_new (fragP, old_fr_fix + 1, size,
11336 fragP->fr_symbol,
11337 fragP->fr_offset, 1,
11338 reloc_type);
252b5132 11339 break;
fddf5b5b
AM
11340
11341 default:
11342 BAD_CASE (fragP->fr_subtype);
11343 break;
252b5132
RH
11344 }
11345 frag_wane (fragP);
ee7fcc42 11346 return fragP->fr_fix - old_fr_fix;
252b5132 11347 }
93c2a809 11348
93c2a809
AM
11349 /* Guess size depending on current relax state. Initially the relax
11350 state will correspond to a short jump and we return 1, because
11351 the variable part of the frag (the branch offset) is one byte
11352 long. However, we can relax a section more than once and in that
11353 case we must either set fr_subtype back to the unrelaxed state,
11354 or return the value for the appropriate branch. */
11355 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
11356}
11357
47926f60
KH
11358/* Called after relax() is finished.
11359
11360 In: Address of frag.
11361 fr_type == rs_machine_dependent.
11362 fr_subtype is what the address relaxed to.
11363
11364 Out: Any fixSs and constants are set up.
11365 Caller will turn frag into a ".space 0". */
11366
252b5132 11367void
7016a5d5
TG
11368md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11369 fragS *fragP)
252b5132 11370{
29b0f896 11371 unsigned char *opcode;
252b5132 11372 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
11373 offsetT target_address;
11374 offsetT opcode_address;
252b5132 11375 unsigned int extension = 0;
847f7ad4 11376 offsetT displacement_from_opcode_start;
252b5132 11377
e379e5f3
L
11378 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11379 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11380 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11381 {
11382 /* Generate nop padding. */
11383 unsigned int size = fragP->tc_frag_data.length;
11384 if (size)
11385 {
11386 if (size > fragP->tc_frag_data.max_bytes)
11387 abort ();
11388
11389 if (flag_debug)
11390 {
11391 const char *msg;
11392 const char *branch = "branch";
11393 const char *prefix = "";
11394 fragS *padding_fragP;
11395 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11396 == BRANCH_PREFIX)
11397 {
11398 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11399 switch (fragP->tc_frag_data.default_prefix)
11400 {
11401 default:
11402 abort ();
11403 break;
11404 case CS_PREFIX_OPCODE:
11405 prefix = " cs";
11406 break;
11407 case DS_PREFIX_OPCODE:
11408 prefix = " ds";
11409 break;
11410 case ES_PREFIX_OPCODE:
11411 prefix = " es";
11412 break;
11413 case FS_PREFIX_OPCODE:
11414 prefix = " fs";
11415 break;
11416 case GS_PREFIX_OPCODE:
11417 prefix = " gs";
11418 break;
11419 case SS_PREFIX_OPCODE:
11420 prefix = " ss";
11421 break;
11422 }
11423 if (padding_fragP)
11424 msg = _("%s:%u: add %d%s at 0x%llx to align "
11425 "%s within %d-byte boundary\n");
11426 else
11427 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11428 "align %s within %d-byte boundary\n");
11429 }
11430 else
11431 {
11432 padding_fragP = fragP;
11433 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11434 "%s within %d-byte boundary\n");
11435 }
11436
11437 if (padding_fragP)
11438 switch (padding_fragP->tc_frag_data.branch_type)
11439 {
11440 case align_branch_jcc:
11441 branch = "jcc";
11442 break;
11443 case align_branch_fused:
11444 branch = "fused jcc";
11445 break;
11446 case align_branch_jmp:
11447 branch = "jmp";
11448 break;
11449 case align_branch_call:
11450 branch = "call";
11451 break;
11452 case align_branch_indirect:
11453 branch = "indiret branch";
11454 break;
11455 case align_branch_ret:
11456 branch = "ret";
11457 break;
11458 default:
11459 break;
11460 }
11461
11462 fprintf (stdout, msg,
11463 fragP->fr_file, fragP->fr_line, size, prefix,
11464 (long long) fragP->fr_address, branch,
11465 1 << align_branch_power);
11466 }
11467 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11468 memset (fragP->fr_opcode,
11469 fragP->tc_frag_data.default_prefix, size);
11470 else
11471 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11472 size, 0);
11473 fragP->fr_fix += size;
11474 }
11475 return;
11476 }
11477
252b5132
RH
11478 opcode = (unsigned char *) fragP->fr_opcode;
11479
47926f60 11480 /* Address we want to reach in file space. */
252b5132 11481 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 11482
47926f60 11483 /* Address opcode resides at in file space. */
252b5132
RH
11484 opcode_address = fragP->fr_address + fragP->fr_fix;
11485
47926f60 11486 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
11487 displacement_from_opcode_start = target_address - opcode_address;
11488
fddf5b5b 11489 if ((fragP->fr_subtype & BIG) == 0)
252b5132 11490 {
47926f60
KH
11491 /* Don't have to change opcode. */
11492 extension = 1; /* 1 opcode + 1 displacement */
252b5132 11493 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
11494 }
11495 else
11496 {
11497 if (no_cond_jump_promotion
11498 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
11499 as_warn_where (fragP->fr_file, fragP->fr_line,
11500 _("long jump required"));
252b5132 11501
fddf5b5b
AM
11502 switch (fragP->fr_subtype)
11503 {
11504 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11505 extension = 4; /* 1 opcode + 4 displacement */
11506 opcode[0] = 0xe9;
11507 where_to_put_displacement = &opcode[1];
11508 break;
252b5132 11509
fddf5b5b
AM
11510 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11511 extension = 2; /* 1 opcode + 2 displacement */
11512 opcode[0] = 0xe9;
11513 where_to_put_displacement = &opcode[1];
11514 break;
252b5132 11515
fddf5b5b
AM
11516 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11517 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11518 extension = 5; /* 2 opcode + 4 displacement */
11519 opcode[1] = opcode[0] + 0x10;
11520 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11521 where_to_put_displacement = &opcode[2];
11522 break;
252b5132 11523
fddf5b5b
AM
11524 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11525 extension = 3; /* 2 opcode + 2 displacement */
11526 opcode[1] = opcode[0] + 0x10;
11527 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11528 where_to_put_displacement = &opcode[2];
11529 break;
252b5132 11530
fddf5b5b
AM
11531 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11532 extension = 4;
11533 opcode[0] ^= 1;
11534 opcode[1] = 3;
11535 opcode[2] = 0xe9;
11536 where_to_put_displacement = &opcode[3];
11537 break;
11538
11539 default:
11540 BAD_CASE (fragP->fr_subtype);
11541 break;
11542 }
252b5132 11543 }
fddf5b5b 11544
7b81dfbb
AJ
11545 /* If size if less then four we are sure that the operand fits,
11546 but if it's 4, then it could be that the displacement is larger
11547 then -/+ 2GB. */
11548 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11549 && object_64bit
11550 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
11551 + ((addressT) 1 << 31))
11552 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
11553 {
11554 as_bad_where (fragP->fr_file, fragP->fr_line,
11555 _("jump target out of range"));
11556 /* Make us emit 0. */
11557 displacement_from_opcode_start = extension;
11558 }
47926f60 11559 /* Now put displacement after opcode. */
252b5132
RH
11560 md_number_to_chars ((char *) where_to_put_displacement,
11561 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 11562 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
11563 fragP->fr_fix += extension;
11564}
11565\f
7016a5d5 11566/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
11567 by our caller that we have all the info we need to fix it up.
11568
7016a5d5
TG
11569 Parameter valP is the pointer to the value of the bits.
11570
252b5132
RH
11571 On the 386, immediates, displacements, and data pointers are all in
11572 the same (little-endian) format, so we don't need to care about which
11573 we are handling. */
11574
94f592af 11575void
7016a5d5 11576md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 11577{
94f592af 11578 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 11579 valueT value = *valP;
252b5132 11580
f86103b7 11581#if !defined (TE_Mach)
93382f6d
AM
11582 if (fixP->fx_pcrel)
11583 {
11584 switch (fixP->fx_r_type)
11585 {
5865bb77
ILT
11586 default:
11587 break;
11588
d6ab8113
JB
11589 case BFD_RELOC_64:
11590 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11591 break;
93382f6d 11592 case BFD_RELOC_32:
ae8887b5 11593 case BFD_RELOC_X86_64_32S:
93382f6d
AM
11594 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11595 break;
11596 case BFD_RELOC_16:
11597 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11598 break;
11599 case BFD_RELOC_8:
11600 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11601 break;
11602 }
11603 }
252b5132 11604
a161fe53 11605 if (fixP->fx_addsy != NULL
31312f95 11606 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 11607 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 11608 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 11609 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 11610 && !use_rela_relocations)
252b5132 11611 {
31312f95
AM
11612 /* This is a hack. There should be a better way to handle this.
11613 This covers for the fact that bfd_install_relocation will
11614 subtract the current location (for partial_inplace, PC relative
11615 relocations); see more below. */
252b5132 11616#ifndef OBJ_AOUT
718ddfc0 11617 if (IS_ELF
252b5132
RH
11618#ifdef TE_PE
11619 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11620#endif
11621 )
11622 value += fixP->fx_where + fixP->fx_frag->fr_address;
11623#endif
11624#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11625 if (IS_ELF)
252b5132 11626 {
6539b54b 11627 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 11628
6539b54b 11629 if ((sym_seg == seg
2f66722d 11630 || (symbol_section_p (fixP->fx_addsy)
6539b54b 11631 && sym_seg != absolute_section))
af65af87 11632 && !generic_force_reloc (fixP))
2f66722d
AM
11633 {
11634 /* Yes, we add the values in twice. This is because
6539b54b
AM
11635 bfd_install_relocation subtracts them out again. I think
11636 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
11637 it. FIXME. */
11638 value += fixP->fx_where + fixP->fx_frag->fr_address;
11639 }
252b5132
RH
11640 }
11641#endif
11642#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
11643 /* For some reason, the PE format does not store a
11644 section address offset for a PC relative symbol. */
11645 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 11646 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
11647 value += md_pcrel_from (fixP);
11648#endif
11649 }
fbeb56a4 11650#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
11651 if (fixP->fx_addsy != NULL
11652 && S_IS_WEAK (fixP->fx_addsy)
11653 /* PR 16858: Do not modify weak function references. */
11654 && ! fixP->fx_pcrel)
fbeb56a4 11655 {
296a8689
NC
11656#if !defined (TE_PEP)
11657 /* For x86 PE weak function symbols are neither PC-relative
11658 nor do they set S_IS_FUNCTION. So the only reliable way
11659 to detect them is to check the flags of their containing
11660 section. */
11661 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11662 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11663 ;
11664 else
11665#endif
fbeb56a4
DK
11666 value -= S_GET_VALUE (fixP->fx_addsy);
11667 }
11668#endif
252b5132
RH
11669
11670 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 11671 and we must not disappoint it. */
252b5132 11672#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11673 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
11674 switch (fixP->fx_r_type)
11675 {
11676 case BFD_RELOC_386_PLT32:
3e73aa7c 11677 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
11678 /* Make the jump instruction point to the address of the operand.
11679 At runtime we merely add the offset to the actual PLT entry.
11680 NB: Subtract the offset size only for jump instructions. */
11681 if (fixP->fx_pcrel)
11682 value = -4;
47926f60 11683 break;
31312f95 11684
13ae64f3
JJ
11685 case BFD_RELOC_386_TLS_GD:
11686 case BFD_RELOC_386_TLS_LDM:
13ae64f3 11687 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11688 case BFD_RELOC_386_TLS_IE:
11689 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 11690 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
11691 case BFD_RELOC_X86_64_TLSGD:
11692 case BFD_RELOC_X86_64_TLSLD:
11693 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 11694 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
11695 value = 0; /* Fully resolved at runtime. No addend. */
11696 /* Fallthrough */
11697 case BFD_RELOC_386_TLS_LE:
11698 case BFD_RELOC_386_TLS_LDO_32:
11699 case BFD_RELOC_386_TLS_LE_32:
11700 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11701 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 11702 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 11703 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
11704 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11705 break;
11706
67a4f2b7
AO
11707 case BFD_RELOC_386_TLS_DESC_CALL:
11708 case BFD_RELOC_X86_64_TLSDESC_CALL:
11709 value = 0; /* Fully resolved at runtime. No addend. */
11710 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11711 fixP->fx_done = 0;
11712 return;
11713
47926f60
KH
11714 case BFD_RELOC_VTABLE_INHERIT:
11715 case BFD_RELOC_VTABLE_ENTRY:
11716 fixP->fx_done = 0;
94f592af 11717 return;
47926f60
KH
11718
11719 default:
11720 break;
11721 }
11722#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 11723 *valP = value;
f86103b7 11724#endif /* !defined (TE_Mach) */
3e73aa7c 11725
3e73aa7c 11726 /* Are we finished with this relocation now? */
c6682705 11727 if (fixP->fx_addsy == NULL)
3e73aa7c 11728 fixP->fx_done = 1;
fbeb56a4
DK
11729#if defined (OBJ_COFF) && defined (TE_PE)
11730 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11731 {
11732 fixP->fx_done = 0;
11733 /* Remember value for tc_gen_reloc. */
11734 fixP->fx_addnumber = value;
11735 /* Clear out the frag for now. */
11736 value = 0;
11737 }
11738#endif
3e73aa7c
JH
11739 else if (use_rela_relocations)
11740 {
11741 fixP->fx_no_overflow = 1;
062cd5e7
AS
11742 /* Remember value for tc_gen_reloc. */
11743 fixP->fx_addnumber = value;
3e73aa7c
JH
11744 value = 0;
11745 }
f86103b7 11746
94f592af 11747 md_number_to_chars (p, value, fixP->fx_size);
252b5132 11748}
252b5132 11749\f
6d4af3c2 11750const char *
499ac353 11751md_atof (int type, char *litP, int *sizeP)
252b5132 11752{
499ac353
NC
11753 /* This outputs the LITTLENUMs in REVERSE order;
11754 in accord with the bigendian 386. */
11755 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
11756}
11757\f
2d545b82 11758static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 11759
252b5132 11760static char *
e3bb37b5 11761output_invalid (int c)
252b5132 11762{
3882b010 11763 if (ISPRINT (c))
f9f21a03
L
11764 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11765 "'%c'", c);
252b5132 11766 else
f9f21a03 11767 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 11768 "(0x%x)", (unsigned char) c);
252b5132
RH
11769 return output_invalid_buf;
11770}
11771
af6bdddf 11772/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
11773
11774static const reg_entry *
4d1bb795 11775parse_real_register (char *reg_string, char **end_op)
252b5132 11776{
af6bdddf
AM
11777 char *s = reg_string;
11778 char *p;
252b5132
RH
11779 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11780 const reg_entry *r;
11781
11782 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11783 if (*s == REGISTER_PREFIX)
11784 ++s;
11785
11786 if (is_space_char (*s))
11787 ++s;
11788
11789 p = reg_name_given;
af6bdddf 11790 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
11791 {
11792 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
11793 return (const reg_entry *) NULL;
11794 s++;
252b5132
RH
11795 }
11796
6588847e
DN
11797 /* For naked regs, make sure that we are not dealing with an identifier.
11798 This prevents confusing an identifier like `eax_var' with register
11799 `eax'. */
11800 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11801 return (const reg_entry *) NULL;
11802
af6bdddf 11803 *end_op = s;
252b5132
RH
11804
11805 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11806
5f47d35b 11807 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 11808 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 11809 {
0e0eea78
JB
11810 if (!cpu_arch_flags.bitfield.cpu8087
11811 && !cpu_arch_flags.bitfield.cpu287
11812 && !cpu_arch_flags.bitfield.cpu387)
11813 return (const reg_entry *) NULL;
11814
5f47d35b
AM
11815 if (is_space_char (*s))
11816 ++s;
11817 if (*s == '(')
11818 {
af6bdddf 11819 ++s;
5f47d35b
AM
11820 if (is_space_char (*s))
11821 ++s;
11822 if (*s >= '0' && *s <= '7')
11823 {
db557034 11824 int fpr = *s - '0';
af6bdddf 11825 ++s;
5f47d35b
AM
11826 if (is_space_char (*s))
11827 ++s;
11828 if (*s == ')')
11829 {
11830 *end_op = s + 1;
1e9cc1c2 11831 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
11832 know (r);
11833 return r + fpr;
5f47d35b 11834 }
5f47d35b 11835 }
47926f60 11836 /* We have "%st(" then garbage. */
5f47d35b
AM
11837 return (const reg_entry *) NULL;
11838 }
11839 }
11840
a60de03c
JB
11841 if (r == NULL || allow_pseudo_reg)
11842 return r;
11843
0dfbf9d7 11844 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
11845 return (const reg_entry *) NULL;
11846
dc821c5f 11847 if ((r->reg_type.bitfield.dword
00cee14f 11848 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
4a5c67ed
JB
11849 || r->reg_type.bitfield.class == RegCR
11850 || r->reg_type.bitfield.class == RegDR
11851 || r->reg_type.bitfield.class == RegTR)
192dc9c6
JB
11852 && !cpu_arch_flags.bitfield.cpui386)
11853 return (const reg_entry *) NULL;
11854
3528c362 11855 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
11856 return (const reg_entry *) NULL;
11857
6e041cf4
JB
11858 if (!cpu_arch_flags.bitfield.cpuavx512f)
11859 {
f74a6307
JB
11860 if (r->reg_type.bitfield.zmmword
11861 || r->reg_type.bitfield.class == RegMask)
6e041cf4 11862 return (const reg_entry *) NULL;
40f12533 11863
6e041cf4
JB
11864 if (!cpu_arch_flags.bitfield.cpuavx)
11865 {
11866 if (r->reg_type.bitfield.ymmword)
11867 return (const reg_entry *) NULL;
1848e567 11868
6e041cf4
JB
11869 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11870 return (const reg_entry *) NULL;
11871 }
11872 }
43234a1e 11873
f74a6307 11874 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
1adf7f56
JB
11875 return (const reg_entry *) NULL;
11876
db51cc60 11877 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 11878 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
11879 return (const reg_entry *) NULL;
11880
1d3f8286
JB
11881 /* Upper 16 vector registers are only available with VREX in 64bit
11882 mode, and require EVEX encoding. */
11883 if (r->reg_flags & RegVRex)
43234a1e 11884 {
e951d5ca 11885 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
11886 || flag_code != CODE_64BIT)
11887 return (const reg_entry *) NULL;
1d3f8286
JB
11888
11889 i.vec_encoding = vex_encoding_evex;
43234a1e
L
11890 }
11891
4787f4a5 11892 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
4a5c67ed 11893 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
1ae00879 11894 && flag_code != CODE_64BIT)
20f0a1fc 11895 return (const reg_entry *) NULL;
1ae00879 11896
00cee14f
JB
11897 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11898 && !intel_syntax)
b7240065
JB
11899 return (const reg_entry *) NULL;
11900
252b5132
RH
11901 return r;
11902}
4d1bb795
JB
11903
11904/* REG_STRING starts *before* REGISTER_PREFIX. */
11905
11906static const reg_entry *
11907parse_register (char *reg_string, char **end_op)
11908{
11909 const reg_entry *r;
11910
11911 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11912 r = parse_real_register (reg_string, end_op);
11913 else
11914 r = NULL;
11915 if (!r)
11916 {
11917 char *save = input_line_pointer;
11918 char c;
11919 symbolS *symbolP;
11920
11921 input_line_pointer = reg_string;
d02603dc 11922 c = get_symbol_name (&reg_string);
4d1bb795
JB
11923 symbolP = symbol_find (reg_string);
11924 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11925 {
11926 const expressionS *e = symbol_get_value_expression (symbolP);
11927
0398aac5 11928 know (e->X_op == O_register);
4eed87de 11929 know (e->X_add_number >= 0
c3fe08fa 11930 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 11931 r = i386_regtab + e->X_add_number;
d3bb6b49 11932 if ((r->reg_flags & RegVRex))
86fa6981 11933 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
11934 *end_op = input_line_pointer;
11935 }
11936 *input_line_pointer = c;
11937 input_line_pointer = save;
11938 }
11939 return r;
11940}
11941
11942int
11943i386_parse_name (char *name, expressionS *e, char *nextcharP)
11944{
11945 const reg_entry *r;
11946 char *end = input_line_pointer;
11947
11948 *end = *nextcharP;
11949 r = parse_register (name, &input_line_pointer);
11950 if (r && end <= input_line_pointer)
11951 {
11952 *nextcharP = *input_line_pointer;
11953 *input_line_pointer = 0;
11954 e->X_op = O_register;
11955 e->X_add_number = r - i386_regtab;
11956 return 1;
11957 }
11958 input_line_pointer = end;
11959 *end = 0;
ee86248c 11960 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
11961}
11962
11963void
11964md_operand (expressionS *e)
11965{
ee86248c
JB
11966 char *end;
11967 const reg_entry *r;
4d1bb795 11968
ee86248c
JB
11969 switch (*input_line_pointer)
11970 {
11971 case REGISTER_PREFIX:
11972 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11973 if (r)
11974 {
11975 e->X_op = O_register;
11976 e->X_add_number = r - i386_regtab;
11977 input_line_pointer = end;
11978 }
ee86248c
JB
11979 break;
11980
11981 case '[':
9c2799c2 11982 gas_assert (intel_syntax);
ee86248c
JB
11983 end = input_line_pointer++;
11984 expression (e);
11985 if (*input_line_pointer == ']')
11986 {
11987 ++input_line_pointer;
11988 e->X_op_symbol = make_expr_symbol (e);
11989 e->X_add_symbol = NULL;
11990 e->X_add_number = 0;
11991 e->X_op = O_index;
11992 }
11993 else
11994 {
11995 e->X_op = O_absent;
11996 input_line_pointer = end;
11997 }
11998 break;
4d1bb795
JB
11999 }
12000}
12001
252b5132 12002\f
4cc782b5 12003#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 12004const char *md_shortopts = "kVQ:sqnO::";
252b5132 12005#else
b6f8c7c4 12006const char *md_shortopts = "qnO::";
252b5132 12007#endif
6e0b89ee 12008
3e73aa7c 12009#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
12010#define OPTION_64 (OPTION_MD_BASE + 1)
12011#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
12012#define OPTION_MARCH (OPTION_MD_BASE + 3)
12013#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
12014#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12015#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12016#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12017#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 12018#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 12019#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 12020#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
12021#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12022#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12023#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 12024#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
12025#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12026#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 12027#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 12028#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 12029#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 12030#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
12031#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12032#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 12033#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 12034#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 12035#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
e379e5f3
L
12036#define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12037#define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12038#define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
76cf450b 12039#define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
b3b91714 12040
99ad8390
NC
12041struct option md_longopts[] =
12042{
3e73aa7c 12043 {"32", no_argument, NULL, OPTION_32},
321098a5 12044#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12045 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 12046 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
12047#endif
12048#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12049 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 12050 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 12051 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 12052#endif
b3b91714 12053 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
12054 {"march", required_argument, NULL, OPTION_MARCH},
12055 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
12056 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12057 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12058 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12059 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 12060 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 12061 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 12062 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 12063 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 12064 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 12065 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
12066 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12067 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
12068# if defined (TE_PE) || defined (TE_PEP)
12069 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12070#endif
d1982f93 12071 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 12072 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 12073 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 12074 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
e379e5f3
L
12075 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12076 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12077 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
76cf450b 12078 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
5db04b09
L
12079 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12080 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
12081 {NULL, no_argument, NULL, 0}
12082};
12083size_t md_longopts_size = sizeof (md_longopts);
12084
12085int
17b9d67d 12086md_parse_option (int c, const char *arg)
252b5132 12087{
91d6fa6a 12088 unsigned int j;
e379e5f3 12089 char *arch, *next, *saved, *type;
9103f4f4 12090
252b5132
RH
12091 switch (c)
12092 {
12b55ccc
L
12093 case 'n':
12094 optimize_align_code = 0;
12095 break;
12096
a38cf1db
AM
12097 case 'q':
12098 quiet_warnings = 1;
252b5132
RH
12099 break;
12100
12101#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
12102 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12103 should be emitted or not. FIXME: Not implemented. */
12104 case 'Q':
d4693039
JB
12105 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12106 return 0;
252b5132
RH
12107 break;
12108
12109 /* -V: SVR4 argument to print version ID. */
12110 case 'V':
12111 print_version_id ();
12112 break;
12113
a38cf1db
AM
12114 /* -k: Ignore for FreeBSD compatibility. */
12115 case 'k':
252b5132 12116 break;
4cc782b5
ILT
12117
12118 case 's':
12119 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 12120 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 12121 break;
8dcea932
L
12122
12123 case OPTION_MSHARED:
12124 shared = 1;
12125 break;
b4a3a7b4
L
12126
12127 case OPTION_X86_USED_NOTE:
12128 if (strcasecmp (arg, "yes") == 0)
12129 x86_used_note = 1;
12130 else if (strcasecmp (arg, "no") == 0)
12131 x86_used_note = 0;
12132 else
12133 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12134 break;
12135
12136
99ad8390 12137#endif
321098a5 12138#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12139 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
12140 case OPTION_64:
12141 {
12142 const char **list, **l;
12143
3e73aa7c
JH
12144 list = bfd_target_list ();
12145 for (l = list; *l != NULL; l++)
8620418b 12146 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
12147 || strcmp (*l, "coff-x86-64") == 0
12148 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
12149 || strcmp (*l, "pei-x86-64") == 0
12150 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
12151 {
12152 default_arch = "x86_64";
12153 break;
12154 }
3e73aa7c 12155 if (*l == NULL)
2b5d6a91 12156 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
12157 free (list);
12158 }
12159 break;
12160#endif
252b5132 12161
351f65ca 12162#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12163 case OPTION_X32:
351f65ca
L
12164 if (IS_ELF)
12165 {
12166 const char **list, **l;
12167
12168 list = bfd_target_list ();
12169 for (l = list; *l != NULL; l++)
12170 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12171 {
12172 default_arch = "x86_64:32";
12173 break;
12174 }
12175 if (*l == NULL)
2b5d6a91 12176 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
12177 free (list);
12178 }
12179 else
12180 as_fatal (_("32bit x86_64 is only supported for ELF"));
12181 break;
12182#endif
12183
6e0b89ee
AM
12184 case OPTION_32:
12185 default_arch = "i386";
12186 break;
12187
b3b91714
AM
12188 case OPTION_DIVIDE:
12189#ifdef SVR4_COMMENT_CHARS
12190 {
12191 char *n, *t;
12192 const char *s;
12193
add39d23 12194 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
12195 t = n;
12196 for (s = i386_comment_chars; *s != '\0'; s++)
12197 if (*s != '/')
12198 *t++ = *s;
12199 *t = '\0';
12200 i386_comment_chars = n;
12201 }
12202#endif
12203 break;
12204
9103f4f4 12205 case OPTION_MARCH:
293f5f65
L
12206 saved = xstrdup (arg);
12207 arch = saved;
12208 /* Allow -march=+nosse. */
12209 if (*arch == '+')
12210 arch++;
6305a203 12211 do
9103f4f4 12212 {
6305a203 12213 if (*arch == '.')
2b5d6a91 12214 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12215 next = strchr (arch, '+');
12216 if (next)
12217 *next++ = '\0';
91d6fa6a 12218 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12219 {
91d6fa6a 12220 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 12221 {
6305a203 12222 /* Processor. */
1ded5609
JB
12223 if (! cpu_arch[j].flags.bitfield.cpui386)
12224 continue;
12225
91d6fa6a 12226 cpu_arch_name = cpu_arch[j].name;
6305a203 12227 cpu_sub_arch_name = NULL;
91d6fa6a
NC
12228 cpu_arch_flags = cpu_arch[j].flags;
12229 cpu_arch_isa = cpu_arch[j].type;
12230 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
12231 if (!cpu_arch_tune_set)
12232 {
12233 cpu_arch_tune = cpu_arch_isa;
12234 cpu_arch_tune_flags = cpu_arch_isa_flags;
12235 }
12236 break;
12237 }
91d6fa6a
NC
12238 else if (*cpu_arch [j].name == '.'
12239 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 12240 {
33eaf5de 12241 /* ISA extension. */
6305a203 12242 i386_cpu_flags flags;
309d3373 12243
293f5f65
L
12244 flags = cpu_flags_or (cpu_arch_flags,
12245 cpu_arch[j].flags);
81486035 12246
5b64d091 12247 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
12248 {
12249 if (cpu_sub_arch_name)
12250 {
12251 char *name = cpu_sub_arch_name;
12252 cpu_sub_arch_name = concat (name,
91d6fa6a 12253 cpu_arch[j].name,
1bf57e9f 12254 (const char *) NULL);
6305a203
L
12255 free (name);
12256 }
12257 else
91d6fa6a 12258 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 12259 cpu_arch_flags = flags;
a586129e 12260 cpu_arch_isa_flags = flags;
6305a203 12261 }
0089dace
L
12262 else
12263 cpu_arch_isa_flags
12264 = cpu_flags_or (cpu_arch_isa_flags,
12265 cpu_arch[j].flags);
6305a203 12266 break;
ccc9c027 12267 }
9103f4f4 12268 }
6305a203 12269
293f5f65
L
12270 if (j >= ARRAY_SIZE (cpu_arch))
12271 {
33eaf5de 12272 /* Disable an ISA extension. */
293f5f65
L
12273 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12274 if (strcmp (arch, cpu_noarch [j].name) == 0)
12275 {
12276 i386_cpu_flags flags;
12277
12278 flags = cpu_flags_and_not (cpu_arch_flags,
12279 cpu_noarch[j].flags);
12280 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12281 {
12282 if (cpu_sub_arch_name)
12283 {
12284 char *name = cpu_sub_arch_name;
12285 cpu_sub_arch_name = concat (arch,
12286 (const char *) NULL);
12287 free (name);
12288 }
12289 else
12290 cpu_sub_arch_name = xstrdup (arch);
12291 cpu_arch_flags = flags;
12292 cpu_arch_isa_flags = flags;
12293 }
12294 break;
12295 }
12296
12297 if (j >= ARRAY_SIZE (cpu_noarch))
12298 j = ARRAY_SIZE (cpu_arch);
12299 }
12300
91d6fa6a 12301 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12302 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12303
12304 arch = next;
9103f4f4 12305 }
293f5f65
L
12306 while (next != NULL);
12307 free (saved);
9103f4f4
L
12308 break;
12309
12310 case OPTION_MTUNE:
12311 if (*arg == '.')
2b5d6a91 12312 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 12313 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12314 {
91d6fa6a 12315 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 12316 {
ccc9c027 12317 cpu_arch_tune_set = 1;
91d6fa6a
NC
12318 cpu_arch_tune = cpu_arch [j].type;
12319 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
12320 break;
12321 }
12322 }
91d6fa6a 12323 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12324 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
12325 break;
12326
1efbbeb4
L
12327 case OPTION_MMNEMONIC:
12328 if (strcasecmp (arg, "att") == 0)
12329 intel_mnemonic = 0;
12330 else if (strcasecmp (arg, "intel") == 0)
12331 intel_mnemonic = 1;
12332 else
2b5d6a91 12333 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
12334 break;
12335
12336 case OPTION_MSYNTAX:
12337 if (strcasecmp (arg, "att") == 0)
12338 intel_syntax = 0;
12339 else if (strcasecmp (arg, "intel") == 0)
12340 intel_syntax = 1;
12341 else
2b5d6a91 12342 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
12343 break;
12344
12345 case OPTION_MINDEX_REG:
12346 allow_index_reg = 1;
12347 break;
12348
12349 case OPTION_MNAKED_REG:
12350 allow_naked_reg = 1;
12351 break;
12352
c0f3af97
L
12353 case OPTION_MSSE2AVX:
12354 sse2avx = 1;
12355 break;
12356
daf50ae7
L
12357 case OPTION_MSSE_CHECK:
12358 if (strcasecmp (arg, "error") == 0)
7bab8ab5 12359 sse_check = check_error;
daf50ae7 12360 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 12361 sse_check = check_warning;
daf50ae7 12362 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 12363 sse_check = check_none;
daf50ae7 12364 else
2b5d6a91 12365 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
12366 break;
12367
7bab8ab5
JB
12368 case OPTION_MOPERAND_CHECK:
12369 if (strcasecmp (arg, "error") == 0)
12370 operand_check = check_error;
12371 else if (strcasecmp (arg, "warning") == 0)
12372 operand_check = check_warning;
12373 else if (strcasecmp (arg, "none") == 0)
12374 operand_check = check_none;
12375 else
12376 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12377 break;
12378
539f890d
L
12379 case OPTION_MAVXSCALAR:
12380 if (strcasecmp (arg, "128") == 0)
12381 avxscalar = vex128;
12382 else if (strcasecmp (arg, "256") == 0)
12383 avxscalar = vex256;
12384 else
2b5d6a91 12385 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
12386 break;
12387
03751133
L
12388 case OPTION_MVEXWIG:
12389 if (strcmp (arg, "0") == 0)
40c9c8de 12390 vexwig = vexw0;
03751133 12391 else if (strcmp (arg, "1") == 0)
40c9c8de 12392 vexwig = vexw1;
03751133
L
12393 else
12394 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12395 break;
12396
7e8b059b
L
12397 case OPTION_MADD_BND_PREFIX:
12398 add_bnd_prefix = 1;
12399 break;
12400
43234a1e
L
12401 case OPTION_MEVEXLIG:
12402 if (strcmp (arg, "128") == 0)
12403 evexlig = evexl128;
12404 else if (strcmp (arg, "256") == 0)
12405 evexlig = evexl256;
12406 else if (strcmp (arg, "512") == 0)
12407 evexlig = evexl512;
12408 else
12409 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12410 break;
12411
d3d3c6db
IT
12412 case OPTION_MEVEXRCIG:
12413 if (strcmp (arg, "rne") == 0)
12414 evexrcig = rne;
12415 else if (strcmp (arg, "rd") == 0)
12416 evexrcig = rd;
12417 else if (strcmp (arg, "ru") == 0)
12418 evexrcig = ru;
12419 else if (strcmp (arg, "rz") == 0)
12420 evexrcig = rz;
12421 else
12422 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12423 break;
12424
43234a1e
L
12425 case OPTION_MEVEXWIG:
12426 if (strcmp (arg, "0") == 0)
12427 evexwig = evexw0;
12428 else if (strcmp (arg, "1") == 0)
12429 evexwig = evexw1;
12430 else
12431 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12432 break;
12433
167ad85b
TG
12434# if defined (TE_PE) || defined (TE_PEP)
12435 case OPTION_MBIG_OBJ:
12436 use_big_obj = 1;
12437 break;
12438#endif
12439
d1982f93 12440 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
12441 if (strcasecmp (arg, "yes") == 0)
12442 omit_lock_prefix = 1;
12443 else if (strcasecmp (arg, "no") == 0)
12444 omit_lock_prefix = 0;
12445 else
12446 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12447 break;
12448
e4e00185
AS
12449 case OPTION_MFENCE_AS_LOCK_ADD:
12450 if (strcasecmp (arg, "yes") == 0)
12451 avoid_fence = 1;
12452 else if (strcasecmp (arg, "no") == 0)
12453 avoid_fence = 0;
12454 else
12455 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12456 break;
12457
0cb4071e
L
12458 case OPTION_MRELAX_RELOCATIONS:
12459 if (strcasecmp (arg, "yes") == 0)
12460 generate_relax_relocations = 1;
12461 else if (strcasecmp (arg, "no") == 0)
12462 generate_relax_relocations = 0;
12463 else
12464 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12465 break;
12466
e379e5f3
L
12467 case OPTION_MALIGN_BRANCH_BOUNDARY:
12468 {
12469 char *end;
12470 long int align = strtoul (arg, &end, 0);
12471 if (*end == '\0')
12472 {
12473 if (align == 0)
12474 {
12475 align_branch_power = 0;
12476 break;
12477 }
12478 else if (align >= 16)
12479 {
12480 int align_power;
12481 for (align_power = 0;
12482 (align & 1) == 0;
12483 align >>= 1, align_power++)
12484 continue;
12485 /* Limit alignment power to 31. */
12486 if (align == 1 && align_power < 32)
12487 {
12488 align_branch_power = align_power;
12489 break;
12490 }
12491 }
12492 }
12493 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12494 }
12495 break;
12496
12497 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12498 {
12499 char *end;
12500 int align = strtoul (arg, &end, 0);
12501 /* Some processors only support 5 prefixes. */
12502 if (*end == '\0' && align >= 0 && align < 6)
12503 {
12504 align_branch_prefix_size = align;
12505 break;
12506 }
12507 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12508 arg);
12509 }
12510 break;
12511
12512 case OPTION_MALIGN_BRANCH:
12513 align_branch = 0;
12514 saved = xstrdup (arg);
12515 type = saved;
12516 do
12517 {
12518 next = strchr (type, '+');
12519 if (next)
12520 *next++ = '\0';
12521 if (strcasecmp (type, "jcc") == 0)
12522 align_branch |= align_branch_jcc_bit;
12523 else if (strcasecmp (type, "fused") == 0)
12524 align_branch |= align_branch_fused_bit;
12525 else if (strcasecmp (type, "jmp") == 0)
12526 align_branch |= align_branch_jmp_bit;
12527 else if (strcasecmp (type, "call") == 0)
12528 align_branch |= align_branch_call_bit;
12529 else if (strcasecmp (type, "ret") == 0)
12530 align_branch |= align_branch_ret_bit;
12531 else if (strcasecmp (type, "indirect") == 0)
12532 align_branch |= align_branch_indirect_bit;
12533 else
12534 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12535 type = next;
12536 }
12537 while (next != NULL);
12538 free (saved);
12539 break;
12540
76cf450b
L
12541 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12542 align_branch_power = 5;
12543 align_branch_prefix_size = 5;
12544 align_branch = (align_branch_jcc_bit
12545 | align_branch_fused_bit
12546 | align_branch_jmp_bit);
12547 break;
12548
5db04b09 12549 case OPTION_MAMD64:
e89c5eaa 12550 intel64 = 0;
5db04b09
L
12551 break;
12552
12553 case OPTION_MINTEL64:
e89c5eaa 12554 intel64 = 1;
5db04b09
L
12555 break;
12556
b6f8c7c4
L
12557 case 'O':
12558 if (arg == NULL)
12559 {
12560 optimize = 1;
12561 /* Turn off -Os. */
12562 optimize_for_space = 0;
12563 }
12564 else if (*arg == 's')
12565 {
12566 optimize_for_space = 1;
12567 /* Turn on all encoding optimizations. */
41fd2579 12568 optimize = INT_MAX;
b6f8c7c4
L
12569 }
12570 else
12571 {
12572 optimize = atoi (arg);
12573 /* Turn off -Os. */
12574 optimize_for_space = 0;
12575 }
12576 break;
12577
252b5132
RH
12578 default:
12579 return 0;
12580 }
12581 return 1;
12582}
12583
8a2c8fef
L
12584#define MESSAGE_TEMPLATE \
12585" "
12586
293f5f65
L
12587static char *
12588output_message (FILE *stream, char *p, char *message, char *start,
12589 int *left_p, const char *name, int len)
12590{
12591 int size = sizeof (MESSAGE_TEMPLATE);
12592 int left = *left_p;
12593
12594 /* Reserve 2 spaces for ", " or ",\0" */
12595 left -= len + 2;
12596
12597 /* Check if there is any room. */
12598 if (left >= 0)
12599 {
12600 if (p != start)
12601 {
12602 *p++ = ',';
12603 *p++ = ' ';
12604 }
12605 p = mempcpy (p, name, len);
12606 }
12607 else
12608 {
12609 /* Output the current message now and start a new one. */
12610 *p++ = ',';
12611 *p = '\0';
12612 fprintf (stream, "%s\n", message);
12613 p = start;
12614 left = size - (start - message) - len - 2;
12615
12616 gas_assert (left >= 0);
12617
12618 p = mempcpy (p, name, len);
12619 }
12620
12621 *left_p = left;
12622 return p;
12623}
12624
8a2c8fef 12625static void
1ded5609 12626show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
12627{
12628 static char message[] = MESSAGE_TEMPLATE;
12629 char *start = message + 27;
12630 char *p;
12631 int size = sizeof (MESSAGE_TEMPLATE);
12632 int left;
12633 const char *name;
12634 int len;
12635 unsigned int j;
12636
12637 p = start;
12638 left = size - (start - message);
12639 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12640 {
12641 /* Should it be skipped? */
12642 if (cpu_arch [j].skip)
12643 continue;
12644
12645 name = cpu_arch [j].name;
12646 len = cpu_arch [j].len;
12647 if (*name == '.')
12648 {
12649 /* It is an extension. Skip if we aren't asked to show it. */
12650 if (ext)
12651 {
12652 name++;
12653 len--;
12654 }
12655 else
12656 continue;
12657 }
12658 else if (ext)
12659 {
12660 /* It is an processor. Skip if we show only extension. */
12661 continue;
12662 }
1ded5609
JB
12663 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12664 {
12665 /* It is an impossible processor - skip. */
12666 continue;
12667 }
8a2c8fef 12668
293f5f65 12669 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
12670 }
12671
293f5f65
L
12672 /* Display disabled extensions. */
12673 if (ext)
12674 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12675 {
12676 name = cpu_noarch [j].name;
12677 len = cpu_noarch [j].len;
12678 p = output_message (stream, p, message, start, &left, name,
12679 len);
12680 }
12681
8a2c8fef
L
12682 *p = '\0';
12683 fprintf (stream, "%s\n", message);
12684}
12685
252b5132 12686void
8a2c8fef 12687md_show_usage (FILE *stream)
252b5132 12688{
4cc782b5
ILT
12689#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12690 fprintf (stream, _("\
d4693039 12691 -Qy, -Qn ignored\n\
a38cf1db 12692 -V print assembler version number\n\
b3b91714
AM
12693 -k ignored\n"));
12694#endif
12695 fprintf (stream, _("\
12b55ccc 12696 -n Do not optimize code alignment\n\
b3b91714
AM
12697 -q quieten some warnings\n"));
12698#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12699 fprintf (stream, _("\
a38cf1db 12700 -s ignored\n"));
b3b91714 12701#endif
d7f449c0
L
12702#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12703 || defined (TE_PE) || defined (TE_PEP))
751d281c 12704 fprintf (stream, _("\
570561f7 12705 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 12706#endif
b3b91714
AM
12707#ifdef SVR4_COMMENT_CHARS
12708 fprintf (stream, _("\
12709 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
12710#else
12711 fprintf (stream, _("\
b3b91714 12712 --divide ignored\n"));
4cc782b5 12713#endif
9103f4f4 12714 fprintf (stream, _("\
6305a203 12715 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 12716 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 12717 show_arch (stream, 0, 1);
8a2c8fef
L
12718 fprintf (stream, _("\
12719 EXTENSION is combination of:\n"));
1ded5609 12720 show_arch (stream, 1, 0);
6305a203 12721 fprintf (stream, _("\
8a2c8fef 12722 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 12723 show_arch (stream, 0, 0);
ba104c83 12724 fprintf (stream, _("\
c0f3af97
L
12725 -msse2avx encode SSE instructions with VEX prefix\n"));
12726 fprintf (stream, _("\
7c5c05ef 12727 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
12728 check SSE instructions\n"));
12729 fprintf (stream, _("\
7c5c05ef 12730 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
12731 check operand combinations for validity\n"));
12732 fprintf (stream, _("\
7c5c05ef
L
12733 -mavxscalar=[128|256] (default: 128)\n\
12734 encode scalar AVX instructions with specific vector\n\
539f890d
L
12735 length\n"));
12736 fprintf (stream, _("\
03751133
L
12737 -mvexwig=[0|1] (default: 0)\n\
12738 encode VEX instructions with specific VEX.W value\n\
12739 for VEX.W bit ignored instructions\n"));
12740 fprintf (stream, _("\
7c5c05ef
L
12741 -mevexlig=[128|256|512] (default: 128)\n\
12742 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
12743 length\n"));
12744 fprintf (stream, _("\
7c5c05ef
L
12745 -mevexwig=[0|1] (default: 0)\n\
12746 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
12747 for EVEX.W bit ignored instructions\n"));
12748 fprintf (stream, _("\
7c5c05ef 12749 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
12750 encode EVEX instructions with specific EVEX.RC value\n\
12751 for SAE-only ignored instructions\n"));
12752 fprintf (stream, _("\
7c5c05ef
L
12753 -mmnemonic=[att|intel] "));
12754 if (SYSV386_COMPAT)
12755 fprintf (stream, _("(default: att)\n"));
12756 else
12757 fprintf (stream, _("(default: intel)\n"));
12758 fprintf (stream, _("\
12759 use AT&T/Intel mnemonic\n"));
ba104c83 12760 fprintf (stream, _("\
7c5c05ef
L
12761 -msyntax=[att|intel] (default: att)\n\
12762 use AT&T/Intel syntax\n"));
ba104c83
L
12763 fprintf (stream, _("\
12764 -mindex-reg support pseudo index registers\n"));
12765 fprintf (stream, _("\
12766 -mnaked-reg don't require `%%' prefix for registers\n"));
12767 fprintf (stream, _("\
7e8b059b 12768 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 12769#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
12770 fprintf (stream, _("\
12771 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
12772 fprintf (stream, _("\
12773 -mx86-used-note=[no|yes] "));
12774 if (DEFAULT_X86_USED_NOTE)
12775 fprintf (stream, _("(default: yes)\n"));
12776 else
12777 fprintf (stream, _("(default: no)\n"));
12778 fprintf (stream, _("\
12779 generate x86 used ISA and feature properties\n"));
12780#endif
12781#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
12782 fprintf (stream, _("\
12783 -mbig-obj generate big object files\n"));
12784#endif
d022bddd 12785 fprintf (stream, _("\
7c5c05ef 12786 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 12787 strip all lock prefixes\n"));
5db04b09 12788 fprintf (stream, _("\
7c5c05ef 12789 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
12790 encode lfence, mfence and sfence as\n\
12791 lock addl $0x0, (%%{re}sp)\n"));
12792 fprintf (stream, _("\
7c5c05ef
L
12793 -mrelax-relocations=[no|yes] "));
12794 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12795 fprintf (stream, _("(default: yes)\n"));
12796 else
12797 fprintf (stream, _("(default: no)\n"));
12798 fprintf (stream, _("\
0cb4071e
L
12799 generate relax relocations\n"));
12800 fprintf (stream, _("\
e379e5f3
L
12801 -malign-branch-boundary=NUM (default: 0)\n\
12802 align branches within NUM byte boundary\n"));
12803 fprintf (stream, _("\
12804 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12805 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12806 indirect\n\
12807 specify types of branches to align\n"));
12808 fprintf (stream, _("\
12809 -malign-branch-prefix-size=NUM (default: 5)\n\
12810 align branches with NUM prefixes per instruction\n"));
12811 fprintf (stream, _("\
76cf450b
L
12812 -mbranches-within-32B-boundaries\n\
12813 align branches within 32 byte boundary\n"));
12814 fprintf (stream, _("\
7c5c05ef 12815 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
12816 fprintf (stream, _("\
12817 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
12818}
12819
3e73aa7c 12820#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 12821 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 12822 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
12823
12824/* Pick the target format to use. */
12825
47926f60 12826const char *
e3bb37b5 12827i386_target_format (void)
252b5132 12828{
351f65ca
L
12829 if (!strncmp (default_arch, "x86_64", 6))
12830 {
12831 update_code_flag (CODE_64BIT, 1);
12832 if (default_arch[6] == '\0')
7f56bc95 12833 x86_elf_abi = X86_64_ABI;
351f65ca 12834 else
7f56bc95 12835 x86_elf_abi = X86_64_X32_ABI;
351f65ca 12836 }
3e73aa7c 12837 else if (!strcmp (default_arch, "i386"))
78f12dd3 12838 update_code_flag (CODE_32BIT, 1);
5197d474
L
12839 else if (!strcmp (default_arch, "iamcu"))
12840 {
12841 update_code_flag (CODE_32BIT, 1);
12842 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12843 {
12844 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12845 cpu_arch_name = "iamcu";
12846 cpu_sub_arch_name = NULL;
12847 cpu_arch_flags = iamcu_flags;
12848 cpu_arch_isa = PROCESSOR_IAMCU;
12849 cpu_arch_isa_flags = iamcu_flags;
12850 if (!cpu_arch_tune_set)
12851 {
12852 cpu_arch_tune = cpu_arch_isa;
12853 cpu_arch_tune_flags = cpu_arch_isa_flags;
12854 }
12855 }
8d471ec1 12856 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
12857 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12858 cpu_arch_name);
12859 }
3e73aa7c 12860 else
2b5d6a91 12861 as_fatal (_("unknown architecture"));
89507696
JB
12862
12863 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12864 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12865 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12866 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12867
252b5132
RH
12868 switch (OUTPUT_FLAVOR)
12869 {
9384f2ff 12870#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 12871 case bfd_target_aout_flavour:
47926f60 12872 return AOUT_TARGET_FORMAT;
4c63da97 12873#endif
9384f2ff
AM
12874#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12875# if defined (TE_PE) || defined (TE_PEP)
12876 case bfd_target_coff_flavour:
167ad85b
TG
12877 if (flag_code == CODE_64BIT)
12878 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12879 else
12880 return "pe-i386";
9384f2ff 12881# elif defined (TE_GO32)
0561d57c
JK
12882 case bfd_target_coff_flavour:
12883 return "coff-go32";
9384f2ff 12884# else
252b5132
RH
12885 case bfd_target_coff_flavour:
12886 return "coff-i386";
9384f2ff 12887# endif
4c63da97 12888#endif
3e73aa7c 12889#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 12890 case bfd_target_elf_flavour:
3e73aa7c 12891 {
351f65ca
L
12892 const char *format;
12893
12894 switch (x86_elf_abi)
4fa24527 12895 {
351f65ca
L
12896 default:
12897 format = ELF_TARGET_FORMAT;
e379e5f3
L
12898#ifndef TE_SOLARIS
12899 tls_get_addr = "___tls_get_addr";
12900#endif
351f65ca 12901 break;
7f56bc95 12902 case X86_64_ABI:
351f65ca 12903 use_rela_relocations = 1;
4fa24527 12904 object_64bit = 1;
e379e5f3
L
12905#ifndef TE_SOLARIS
12906 tls_get_addr = "__tls_get_addr";
12907#endif
351f65ca
L
12908 format = ELF_TARGET_FORMAT64;
12909 break;
7f56bc95 12910 case X86_64_X32_ABI:
4fa24527 12911 use_rela_relocations = 1;
351f65ca 12912 object_64bit = 1;
e379e5f3
L
12913#ifndef TE_SOLARIS
12914 tls_get_addr = "__tls_get_addr";
12915#endif
862be3fb 12916 disallow_64bit_reloc = 1;
351f65ca
L
12917 format = ELF_TARGET_FORMAT32;
12918 break;
4fa24527 12919 }
3632d14b 12920 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 12921 {
7f56bc95 12922 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
12923 as_fatal (_("Intel L1OM is 64bit only"));
12924 return ELF_TARGET_L1OM_FORMAT;
12925 }
b49f93f6 12926 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
12927 {
12928 if (x86_elf_abi != X86_64_ABI)
12929 as_fatal (_("Intel K1OM is 64bit only"));
12930 return ELF_TARGET_K1OM_FORMAT;
12931 }
81486035
L
12932 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12933 {
12934 if (x86_elf_abi != I386_ABI)
12935 as_fatal (_("Intel MCU is 32bit only"));
12936 return ELF_TARGET_IAMCU_FORMAT;
12937 }
8a9036a4 12938 else
351f65ca 12939 return format;
3e73aa7c 12940 }
e57f8c65
TG
12941#endif
12942#if defined (OBJ_MACH_O)
12943 case bfd_target_mach_o_flavour:
d382c579
TG
12944 if (flag_code == CODE_64BIT)
12945 {
12946 use_rela_relocations = 1;
12947 object_64bit = 1;
12948 return "mach-o-x86-64";
12949 }
12950 else
12951 return "mach-o-i386";
4c63da97 12952#endif
252b5132
RH
12953 default:
12954 abort ();
12955 return NULL;
12956 }
12957}
12958
47926f60 12959#endif /* OBJ_MAYBE_ more than one */
252b5132 12960\f
252b5132 12961symbolS *
7016a5d5 12962md_undefined_symbol (char *name)
252b5132 12963{
18dc2407
ILT
12964 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12965 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12966 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12967 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
12968 {
12969 if (!GOT_symbol)
12970 {
12971 if (symbol_find (name))
12972 as_bad (_("GOT already in symbol table"));
12973 GOT_symbol = symbol_new (name, undefined_section,
12974 (valueT) 0, &zero_address_frag);
12975 };
12976 return GOT_symbol;
12977 }
252b5132
RH
12978 return 0;
12979}
12980
12981/* Round up a section size to the appropriate boundary. */
47926f60 12982
252b5132 12983valueT
7016a5d5 12984md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 12985{
4c63da97
AM
12986#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
12987 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
12988 {
12989 /* For a.out, force the section size to be aligned. If we don't do
12990 this, BFD will align it for us, but it will not write out the
12991 final bytes of the section. This may be a bug in BFD, but it is
12992 easier to fix it here since that is how the other a.out targets
12993 work. */
12994 int align;
12995
fd361982 12996 align = bfd_section_alignment (segment);
8d3842cd 12997 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 12998 }
252b5132
RH
12999#endif
13000
13001 return size;
13002}
13003
13004/* On the i386, PC-relative offsets are relative to the start of the
13005 next instruction. That is, the address of the offset, plus its
13006 size, since the offset is always the last part of the insn. */
13007
13008long
e3bb37b5 13009md_pcrel_from (fixS *fixP)
252b5132
RH
13010{
13011 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13012}
13013
13014#ifndef I386COFF
13015
13016static void
e3bb37b5 13017s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 13018{
29b0f896 13019 int temp;
252b5132 13020
8a75718c
JB
13021#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13022 if (IS_ELF)
13023 obj_elf_section_change_hook ();
13024#endif
252b5132
RH
13025 temp = get_absolute_expression ();
13026 subseg_set (bss_section, (subsegT) temp);
13027 demand_empty_rest_of_line ();
13028}
13029
13030#endif
13031
e379e5f3
L
13032/* Remember constant directive. */
13033
13034void
13035i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13036{
13037 if (last_insn.kind != last_insn_directive
13038 && (bfd_section_flags (now_seg) & SEC_CODE))
13039 {
13040 last_insn.seg = now_seg;
13041 last_insn.kind = last_insn_directive;
13042 last_insn.name = "constant directive";
13043 last_insn.file = as_where (&last_insn.line);
13044 }
13045}
13046
252b5132 13047void
e3bb37b5 13048i386_validate_fix (fixS *fixp)
252b5132 13049{
02a86693 13050 if (fixp->fx_subsy)
252b5132 13051 {
02a86693 13052 if (fixp->fx_subsy == GOT_symbol)
23df1078 13053 {
02a86693
L
13054 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13055 {
13056 if (!object_64bit)
13057 abort ();
13058#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13059 if (fixp->fx_tcbit2)
56ceb5b5
L
13060 fixp->fx_r_type = (fixp->fx_tcbit
13061 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13062 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
13063 else
13064#endif
13065 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13066 }
d6ab8113 13067 else
02a86693
L
13068 {
13069 if (!object_64bit)
13070 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13071 else
13072 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13073 }
13074 fixp->fx_subsy = 0;
23df1078 13075 }
252b5132 13076 }
02a86693
L
13077#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13078 else if (!object_64bit)
13079 {
13080 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13081 && fixp->fx_tcbit2)
13082 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13083 }
13084#endif
252b5132
RH
13085}
13086
252b5132 13087arelent *
7016a5d5 13088tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
13089{
13090 arelent *rel;
13091 bfd_reloc_code_real_type code;
13092
13093 switch (fixp->fx_r_type)
13094 {
8ce3d284 13095#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
13096 case BFD_RELOC_SIZE32:
13097 case BFD_RELOC_SIZE64:
13098 if (S_IS_DEFINED (fixp->fx_addsy)
13099 && !S_IS_EXTERNAL (fixp->fx_addsy))
13100 {
13101 /* Resolve size relocation against local symbol to size of
13102 the symbol plus addend. */
13103 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13104 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13105 && !fits_in_unsigned_long (value))
13106 as_bad_where (fixp->fx_file, fixp->fx_line,
13107 _("symbol size computation overflow"));
13108 fixp->fx_addsy = NULL;
13109 fixp->fx_subsy = NULL;
13110 md_apply_fix (fixp, (valueT *) &value, NULL);
13111 return NULL;
13112 }
8ce3d284 13113#endif
1a0670f3 13114 /* Fall through. */
8fd4256d 13115
3e73aa7c
JH
13116 case BFD_RELOC_X86_64_PLT32:
13117 case BFD_RELOC_X86_64_GOT32:
13118 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13119 case BFD_RELOC_X86_64_GOTPCRELX:
13120 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
13121 case BFD_RELOC_386_PLT32:
13122 case BFD_RELOC_386_GOT32:
02a86693 13123 case BFD_RELOC_386_GOT32X:
252b5132
RH
13124 case BFD_RELOC_386_GOTOFF:
13125 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
13126 case BFD_RELOC_386_TLS_GD:
13127 case BFD_RELOC_386_TLS_LDM:
13128 case BFD_RELOC_386_TLS_LDO_32:
13129 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
13130 case BFD_RELOC_386_TLS_IE:
13131 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
13132 case BFD_RELOC_386_TLS_LE_32:
13133 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
13134 case BFD_RELOC_386_TLS_GOTDESC:
13135 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
13136 case BFD_RELOC_X86_64_TLSGD:
13137 case BFD_RELOC_X86_64_TLSLD:
13138 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 13139 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
13140 case BFD_RELOC_X86_64_GOTTPOFF:
13141 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
13142 case BFD_RELOC_X86_64_TPOFF64:
13143 case BFD_RELOC_X86_64_GOTOFF64:
13144 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
13145 case BFD_RELOC_X86_64_GOT64:
13146 case BFD_RELOC_X86_64_GOTPCREL64:
13147 case BFD_RELOC_X86_64_GOTPC64:
13148 case BFD_RELOC_X86_64_GOTPLT64:
13149 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
13150 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13151 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
13152 case BFD_RELOC_RVA:
13153 case BFD_RELOC_VTABLE_ENTRY:
13154 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
13155#ifdef TE_PE
13156 case BFD_RELOC_32_SECREL:
13157#endif
252b5132
RH
13158 code = fixp->fx_r_type;
13159 break;
dbbaec26
L
13160 case BFD_RELOC_X86_64_32S:
13161 if (!fixp->fx_pcrel)
13162 {
13163 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13164 code = fixp->fx_r_type;
13165 break;
13166 }
1a0670f3 13167 /* Fall through. */
252b5132 13168 default:
93382f6d 13169 if (fixp->fx_pcrel)
252b5132 13170 {
93382f6d
AM
13171 switch (fixp->fx_size)
13172 {
13173 default:
b091f402
AM
13174 as_bad_where (fixp->fx_file, fixp->fx_line,
13175 _("can not do %d byte pc-relative relocation"),
13176 fixp->fx_size);
93382f6d
AM
13177 code = BFD_RELOC_32_PCREL;
13178 break;
13179 case 1: code = BFD_RELOC_8_PCREL; break;
13180 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 13181 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
13182#ifdef BFD64
13183 case 8: code = BFD_RELOC_64_PCREL; break;
13184#endif
93382f6d
AM
13185 }
13186 }
13187 else
13188 {
13189 switch (fixp->fx_size)
13190 {
13191 default:
b091f402
AM
13192 as_bad_where (fixp->fx_file, fixp->fx_line,
13193 _("can not do %d byte relocation"),
13194 fixp->fx_size);
93382f6d
AM
13195 code = BFD_RELOC_32;
13196 break;
13197 case 1: code = BFD_RELOC_8; break;
13198 case 2: code = BFD_RELOC_16; break;
13199 case 4: code = BFD_RELOC_32; break;
937149dd 13200#ifdef BFD64
3e73aa7c 13201 case 8: code = BFD_RELOC_64; break;
937149dd 13202#endif
93382f6d 13203 }
252b5132
RH
13204 }
13205 break;
13206 }
252b5132 13207
d182319b
JB
13208 if ((code == BFD_RELOC_32
13209 || code == BFD_RELOC_32_PCREL
13210 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
13211 && GOT_symbol
13212 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 13213 {
4fa24527 13214 if (!object_64bit)
d6ab8113
JB
13215 code = BFD_RELOC_386_GOTPC;
13216 else
13217 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 13218 }
7b81dfbb
AJ
13219 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13220 && GOT_symbol
13221 && fixp->fx_addsy == GOT_symbol)
13222 {
13223 code = BFD_RELOC_X86_64_GOTPC64;
13224 }
252b5132 13225
add39d23
TS
13226 rel = XNEW (arelent);
13227 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 13228 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
13229
13230 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 13231
3e73aa7c
JH
13232 if (!use_rela_relocations)
13233 {
13234 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13235 vtable entry to be used in the relocation's section offset. */
13236 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13237 rel->address = fixp->fx_offset;
fbeb56a4
DK
13238#if defined (OBJ_COFF) && defined (TE_PE)
13239 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13240 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13241 else
13242#endif
c6682705 13243 rel->addend = 0;
3e73aa7c
JH
13244 }
13245 /* Use the rela in 64bit mode. */
252b5132 13246 else
3e73aa7c 13247 {
862be3fb
L
13248 if (disallow_64bit_reloc)
13249 switch (code)
13250 {
862be3fb
L
13251 case BFD_RELOC_X86_64_DTPOFF64:
13252 case BFD_RELOC_X86_64_TPOFF64:
13253 case BFD_RELOC_64_PCREL:
13254 case BFD_RELOC_X86_64_GOTOFF64:
13255 case BFD_RELOC_X86_64_GOT64:
13256 case BFD_RELOC_X86_64_GOTPCREL64:
13257 case BFD_RELOC_X86_64_GOTPC64:
13258 case BFD_RELOC_X86_64_GOTPLT64:
13259 case BFD_RELOC_X86_64_PLTOFF64:
13260 as_bad_where (fixp->fx_file, fixp->fx_line,
13261 _("cannot represent relocation type %s in x32 mode"),
13262 bfd_get_reloc_code_name (code));
13263 break;
13264 default:
13265 break;
13266 }
13267
062cd5e7
AS
13268 if (!fixp->fx_pcrel)
13269 rel->addend = fixp->fx_offset;
13270 else
13271 switch (code)
13272 {
13273 case BFD_RELOC_X86_64_PLT32:
13274 case BFD_RELOC_X86_64_GOT32:
13275 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13276 case BFD_RELOC_X86_64_GOTPCRELX:
13277 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
13278 case BFD_RELOC_X86_64_TLSGD:
13279 case BFD_RELOC_X86_64_TLSLD:
13280 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
13281 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13282 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
13283 rel->addend = fixp->fx_offset - fixp->fx_size;
13284 break;
13285 default:
13286 rel->addend = (section->vma
13287 - fixp->fx_size
13288 + fixp->fx_addnumber
13289 + md_pcrel_from (fixp));
13290 break;
13291 }
3e73aa7c
JH
13292 }
13293
252b5132
RH
13294 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13295 if (rel->howto == NULL)
13296 {
13297 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 13298 _("cannot represent relocation type %s"),
252b5132
RH
13299 bfd_get_reloc_code_name (code));
13300 /* Set howto to a garbage value so that we can keep going. */
13301 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 13302 gas_assert (rel->howto != NULL);
252b5132
RH
13303 }
13304
13305 return rel;
13306}
13307
ee86248c 13308#include "tc-i386-intel.c"
54cfded0 13309
a60de03c
JB
13310void
13311tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 13312{
a60de03c
JB
13313 int saved_naked_reg;
13314 char saved_register_dot;
54cfded0 13315
a60de03c
JB
13316 saved_naked_reg = allow_naked_reg;
13317 allow_naked_reg = 1;
13318 saved_register_dot = register_chars['.'];
13319 register_chars['.'] = '.';
13320 allow_pseudo_reg = 1;
13321 expression_and_evaluate (exp);
13322 allow_pseudo_reg = 0;
13323 register_chars['.'] = saved_register_dot;
13324 allow_naked_reg = saved_naked_reg;
13325
e96d56a1 13326 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 13327 {
a60de03c
JB
13328 if ((addressT) exp->X_add_number < i386_regtab_size)
13329 {
13330 exp->X_op = O_constant;
13331 exp->X_add_number = i386_regtab[exp->X_add_number]
13332 .dw2_regnum[flag_code >> 1];
13333 }
13334 else
13335 exp->X_op = O_illegal;
54cfded0 13336 }
54cfded0
AM
13337}
13338
13339void
13340tc_x86_frame_initial_instructions (void)
13341{
a60de03c
JB
13342 static unsigned int sp_regno[2];
13343
13344 if (!sp_regno[flag_code >> 1])
13345 {
13346 char *saved_input = input_line_pointer;
13347 char sp[][4] = {"esp", "rsp"};
13348 expressionS exp;
a4447b93 13349
a60de03c
JB
13350 input_line_pointer = sp[flag_code >> 1];
13351 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 13352 gas_assert (exp.X_op == O_constant);
a60de03c
JB
13353 sp_regno[flag_code >> 1] = exp.X_add_number;
13354 input_line_pointer = saved_input;
13355 }
a4447b93 13356
61ff971f
L
13357 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13358 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 13359}
d2b2c203 13360
d7921315
L
13361int
13362x86_dwarf2_addr_size (void)
13363{
13364#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13365 if (x86_elf_abi == X86_64_X32_ABI)
13366 return 4;
13367#endif
13368 return bfd_arch_bits_per_address (stdoutput) / 8;
13369}
13370
d2b2c203
DJ
13371int
13372i386_elf_section_type (const char *str, size_t len)
13373{
13374 if (flag_code == CODE_64BIT
13375 && len == sizeof ("unwind") - 1
13376 && strncmp (str, "unwind", 6) == 0)
13377 return SHT_X86_64_UNWIND;
13378
13379 return -1;
13380}
bb41ade5 13381
ad5fec3b
EB
13382#ifdef TE_SOLARIS
13383void
13384i386_solaris_fix_up_eh_frame (segT sec)
13385{
13386 if (flag_code == CODE_64BIT)
13387 elf_section_type (sec) = SHT_X86_64_UNWIND;
13388}
13389#endif
13390
bb41ade5
AM
13391#ifdef TE_PE
13392void
13393tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13394{
91d6fa6a 13395 expressionS exp;
bb41ade5 13396
91d6fa6a
NC
13397 exp.X_op = O_secrel;
13398 exp.X_add_symbol = symbol;
13399 exp.X_add_number = 0;
13400 emit_expr (&exp, size);
bb41ade5
AM
13401}
13402#endif
3b22753a
L
13403
13404#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13405/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13406
01e1a5bc 13407bfd_vma
6d4af3c2 13408x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
13409{
13410 if (flag_code == CODE_64BIT)
13411 {
13412 if (letter == 'l')
13413 return SHF_X86_64_LARGE;
13414
8f3bae45 13415 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 13416 }
3b22753a 13417 else
8f3bae45 13418 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
13419 return -1;
13420}
13421
01e1a5bc 13422bfd_vma
3b22753a
L
13423x86_64_section_word (char *str, size_t len)
13424{
8620418b 13425 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
13426 return SHF_X86_64_LARGE;
13427
13428 return -1;
13429}
13430
13431static void
13432handle_large_common (int small ATTRIBUTE_UNUSED)
13433{
13434 if (flag_code != CODE_64BIT)
13435 {
13436 s_comm_internal (0, elf_common_parse);
13437 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13438 }
13439 else
13440 {
13441 static segT lbss_section;
13442 asection *saved_com_section_ptr = elf_com_section_ptr;
13443 asection *saved_bss_section = bss_section;
13444
13445 if (lbss_section == NULL)
13446 {
13447 flagword applicable;
13448 segT seg = now_seg;
13449 subsegT subseg = now_subseg;
13450
13451 /* The .lbss section is for local .largecomm symbols. */
13452 lbss_section = subseg_new (".lbss", 0);
13453 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 13454 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
13455 seg_info (lbss_section)->bss = 1;
13456
13457 subseg_set (seg, subseg);
13458 }
13459
13460 elf_com_section_ptr = &_bfd_elf_large_com_section;
13461 bss_section = lbss_section;
13462
13463 s_comm_internal (0, elf_common_parse);
13464
13465 elf_com_section_ptr = saved_com_section_ptr;
13466 bss_section = saved_bss_section;
13467 }
13468}
13469#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.27247 seconds and 4 git commands to generate.