gdb: defer commit resume until all available events are consumed
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
9844051a 22#include "displaced-stepping.h"
edbcda09
SM
23#include "gdbsupport/common-defs.h"
24#include "gdbsupport/common-utils.h"
45741a9c 25#include "infrun.h"
c906108c
SS
26#include <ctype.h>
27#include "symtab.h"
28#include "frame.h"
29#include "inferior.h"
30#include "breakpoint.h"
c906108c
SS
31#include "gdbcore.h"
32#include "gdbcmd.h"
33#include "target.h"
2f4fcf00 34#include "target-connection.h"
c906108c
SS
35#include "gdbthread.h"
36#include "annotate.h"
1adeb98a 37#include "symfile.h"
7a292a7a 38#include "top.h"
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
9844051a 41#include "utils.h"
fd0407d6 42#include "value.h"
76727919 43#include "observable.h"
f636b87d 44#include "language.h"
a77053c2 45#include "solib.h"
f17517ea 46#include "main.h"
186c406b 47#include "block.h"
034dad6f 48#include "mi/mi-common.h"
4f8d22e3 49#include "event-top.h"
96429cc8 50#include "record.h"
d02ed0bb 51#include "record-full.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
1bfeeb0f 55#include "skip.h"
28106bc2
SDJ
56#include "probe.h"
57#include "objfiles.h"
de0bea00 58#include "completer.h"
9107fc8d 59#include "target-descriptions.h"
f15cb84a 60#include "target-dcache.h"
d83ad864 61#include "terminal.h"
ff862be4 62#include "solist.h"
400b5eca 63#include "gdbsupport/event-loop.h"
243a9253 64#include "thread-fsm.h"
268a13a5 65#include "gdbsupport/enum-flags.h"
5ed8105e 66#include "progspace-and-thread.h"
268a13a5 67#include "gdbsupport/gdb_optional.h"
46a62268 68#include "arch-utils.h"
268a13a5
TT
69#include "gdbsupport/scope-exit.h"
70#include "gdbsupport/forward-scope-exit.h"
06cc9596 71#include "gdbsupport/gdb_select.h"
5b6d1e4f 72#include <unordered_map>
93b54c8e 73#include "async-event.h"
c906108c
SS
74
75/* Prototypes for local functions */
76
2ea28649 77static void sig_print_info (enum gdb_signal);
c906108c 78
96baa820 79static void sig_print_header (void);
c906108c 80
d83ad864
DB
81static void follow_inferior_reset_breakpoints (void);
82
a289b8f6
JK
83static int currently_stepping (struct thread_info *tp);
84
2c03e5be 85static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
86
87static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
2484c66b
UW
89static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
8550d3b3
YQ
91static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
aff4e175
AB
93static void resume (gdb_signal sig);
94
5b6d1e4f
PA
95static void wait_for_inferior (inferior *inf);
96
372316f1
PA
97/* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99static struct async_event_handler *infrun_async_inferior_event_token;
100
101/* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103static int infrun_is_async = -1;
104
edbcda09
SM
105#define infrun_log_debug(fmt, args...) \
106 infrun_log_debug_1 (__LINE__, __func__, fmt, ##args)
107
108static void ATTRIBUTE_PRINTF(3, 4)
109infrun_log_debug_1 (int line, const char *func,
110 const char *fmt, ...)
111{
112 if (debug_infrun)
113 {
114 va_list args;
115 va_start (args, fmt);
116 std::string msg = string_vprintf (fmt, args);
117 va_end (args);
118
119 fprintf_unfiltered (gdb_stdout, "infrun: %s: %s\n", func, msg.c_str ());
120 }
121}
122
372316f1
PA
123/* See infrun.h. */
124
125void
126infrun_async (int enable)
127{
128 if (infrun_is_async != enable)
129 {
130 infrun_is_async = enable;
131
edbcda09 132 infrun_log_debug ("enable=%d", enable);
372316f1
PA
133
134 if (enable)
135 mark_async_event_handler (infrun_async_inferior_event_token);
136 else
137 clear_async_event_handler (infrun_async_inferior_event_token);
138 }
139}
140
0b333c5e
PA
141/* See infrun.h. */
142
143void
144mark_infrun_async_event_handler (void)
145{
146 mark_async_event_handler (infrun_async_inferior_event_token);
147}
148
5fbbeb29
CF
149/* When set, stop the 'step' command if we enter a function which has
150 no line number information. The normal behavior is that we step
151 over such function. */
491144b5 152bool step_stop_if_no_debug = false;
920d2a44
AC
153static void
154show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
157 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
158}
5fbbeb29 159
b9f437de
PA
160/* proceed and normal_stop use this to notify the user when the
161 inferior stopped in a different thread than it had been running
162 in. */
96baa820 163
39f77062 164static ptid_t previous_inferior_ptid;
7a292a7a 165
07107ca6
LM
166/* If set (default for legacy reasons), when following a fork, GDB
167 will detach from one of the fork branches, child or parent.
168 Exactly which branch is detached depends on 'set follow-fork-mode'
169 setting. */
170
491144b5 171static bool detach_fork = true;
6c95b8df 172
491144b5 173bool debug_displaced = false;
237fc4c9
PA
174static void
175show_debug_displaced (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177{
178 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
179}
180
ccce17b0 181unsigned int debug_infrun = 0;
920d2a44
AC
182static void
183show_debug_infrun (struct ui_file *file, int from_tty,
184 struct cmd_list_element *c, const char *value)
185{
186 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
187}
527159b7 188
03583c20
UW
189
190/* Support for disabling address space randomization. */
191
491144b5 192bool disable_randomization = true;
03583c20
UW
193
194static void
195show_disable_randomization (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197{
198 if (target_supports_disable_randomization ())
199 fprintf_filtered (file,
200 _("Disabling randomization of debuggee's "
201 "virtual address space is %s.\n"),
202 value);
203 else
204 fputs_filtered (_("Disabling randomization of debuggee's "
205 "virtual address space is unsupported on\n"
206 "this platform.\n"), file);
207}
208
209static void
eb4c3f4a 210set_disable_randomization (const char *args, int from_tty,
03583c20
UW
211 struct cmd_list_element *c)
212{
213 if (!target_supports_disable_randomization ())
214 error (_("Disabling randomization of debuggee's "
215 "virtual address space is unsupported on\n"
216 "this platform."));
217}
218
d32dc48e
PA
219/* User interface for non-stop mode. */
220
491144b5
CB
221bool non_stop = false;
222static bool non_stop_1 = false;
d32dc48e
PA
223
224static void
eb4c3f4a 225set_non_stop (const char *args, int from_tty,
d32dc48e
PA
226 struct cmd_list_element *c)
227{
228 if (target_has_execution)
229 {
230 non_stop_1 = non_stop;
231 error (_("Cannot change this setting while the inferior is running."));
232 }
233
234 non_stop = non_stop_1;
235}
236
237static void
238show_non_stop (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240{
241 fprintf_filtered (file,
242 _("Controlling the inferior in non-stop mode is %s.\n"),
243 value);
244}
245
d914c394
SS
246/* "Observer mode" is somewhat like a more extreme version of
247 non-stop, in which all GDB operations that might affect the
248 target's execution have been disabled. */
249
491144b5
CB
250bool observer_mode = false;
251static bool observer_mode_1 = false;
d914c394
SS
252
253static void
eb4c3f4a 254set_observer_mode (const char *args, int from_tty,
d914c394
SS
255 struct cmd_list_element *c)
256{
d914c394
SS
257 if (target_has_execution)
258 {
259 observer_mode_1 = observer_mode;
260 error (_("Cannot change this setting while the inferior is running."));
261 }
262
263 observer_mode = observer_mode_1;
264
265 may_write_registers = !observer_mode;
266 may_write_memory = !observer_mode;
267 may_insert_breakpoints = !observer_mode;
268 may_insert_tracepoints = !observer_mode;
269 /* We can insert fast tracepoints in or out of observer mode,
270 but enable them if we're going into this mode. */
271 if (observer_mode)
491144b5 272 may_insert_fast_tracepoints = true;
d914c394
SS
273 may_stop = !observer_mode;
274 update_target_permissions ();
275
276 /* Going *into* observer mode we must force non-stop, then
277 going out we leave it that way. */
278 if (observer_mode)
279 {
d914c394 280 pagination_enabled = 0;
491144b5 281 non_stop = non_stop_1 = true;
d914c394
SS
282 }
283
284 if (from_tty)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (observer_mode ? "on" : "off"));
287}
288
289static void
290show_observer_mode (struct ui_file *file, int from_tty,
291 struct cmd_list_element *c, const char *value)
292{
293 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
294}
295
296/* This updates the value of observer mode based on changes in
297 permissions. Note that we are deliberately ignoring the values of
298 may-write-registers and may-write-memory, since the user may have
299 reason to enable these during a session, for instance to turn on a
300 debugging-related global. */
301
302void
303update_observer_mode (void)
304{
491144b5
CB
305 bool newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
d914c394
SS
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317}
c2c6d25f 318
c906108c
SS
319/* Tables of how to react to signals; the user sets them. */
320
adc6a863
PA
321static unsigned char signal_stop[GDB_SIGNAL_LAST];
322static unsigned char signal_print[GDB_SIGNAL_LAST];
323static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 324
ab04a2af
TT
325/* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
327 signal" command. */
328static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 329
2455069d
UW
330/* Table of signals that the target may silently handle.
331 This is automatically determined from the flags above,
332 and simply cached here. */
adc6a863 333static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 334
c906108c
SS
335#define SET_SIGS(nsigs,sigs,flags) \
336 do { \
337 int signum = (nsigs); \
338 while (signum-- > 0) \
339 if ((sigs)[signum]) \
340 (flags)[signum] = 1; \
341 } while (0)
342
343#define UNSET_SIGS(nsigs,sigs,flags) \
344 do { \
345 int signum = (nsigs); \
346 while (signum-- > 0) \
347 if ((sigs)[signum]) \
348 (flags)[signum] = 0; \
349 } while (0)
350
9b224c5e
PA
351/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
352 this function is to avoid exporting `signal_program'. */
353
354void
355update_signals_program_target (void)
356{
adc6a863 357 target_program_signals (signal_program);
9b224c5e
PA
358}
359
1777feb0 360/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 361
edb3359d 362#define RESUME_ALL minus_one_ptid
c906108c
SS
363
364/* Command list pointer for the "stop" placeholder. */
365
366static struct cmd_list_element *stop_command;
367
c906108c
SS
368/* Nonzero if we want to give control to the user when we're notified
369 of shared library events by the dynamic linker. */
628fe4e4 370int stop_on_solib_events;
f9e14852
GB
371
372/* Enable or disable optional shared library event breakpoints
373 as appropriate when the above flag is changed. */
374
375static void
eb4c3f4a
TT
376set_stop_on_solib_events (const char *args,
377 int from_tty, struct cmd_list_element *c)
f9e14852
GB
378{
379 update_solib_breakpoints ();
380}
381
920d2a44
AC
382static void
383show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385{
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388}
c906108c 389
c906108c
SS
390/* Nonzero after stop if current stack frame should be printed. */
391
392static int stop_print_frame;
393
5b6d1e4f
PA
394/* This is a cached copy of the target/ptid/waitstatus of the last
395 event returned by target_wait()/deprecated_target_wait_hook().
396 This information is returned by get_last_target_status(). */
397static process_stratum_target *target_last_proc_target;
39f77062 398static ptid_t target_last_wait_ptid;
e02bc4cc
DS
399static struct target_waitstatus target_last_waitstatus;
400
4e1c45ea 401void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 402
53904c9e
AC
403static const char follow_fork_mode_child[] = "child";
404static const char follow_fork_mode_parent[] = "parent";
405
40478521 406static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
407 follow_fork_mode_child,
408 follow_fork_mode_parent,
409 NULL
ef346e04 410};
c906108c 411
53904c9e 412static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
413static void
414show_follow_fork_mode_string (struct ui_file *file, int from_tty,
415 struct cmd_list_element *c, const char *value)
416{
3e43a32a
MS
417 fprintf_filtered (file,
418 _("Debugger response to a program "
419 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
420 value);
421}
c906108c
SS
422\f
423
d83ad864
DB
424/* Handle changes to the inferior list based on the type of fork,
425 which process is being followed, and whether the other process
426 should be detached. On entry inferior_ptid must be the ptid of
427 the fork parent. At return inferior_ptid is the ptid of the
428 followed inferior. */
429
5ab2fbf1
SM
430static bool
431follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
432{
433 int has_vforked;
79639e11 434 ptid_t parent_ptid, child_ptid;
d83ad864
DB
435
436 has_vforked = (inferior_thread ()->pending_follow.kind
437 == TARGET_WAITKIND_VFORKED);
79639e11
PA
438 parent_ptid = inferior_ptid;
439 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
440
441 if (has_vforked
442 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 443 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
444 && !(follow_child || detach_fork || sched_multi))
445 {
446 /* The parent stays blocked inside the vfork syscall until the
447 child execs or exits. If we don't let the child run, then
448 the parent stays blocked. If we're telling the parent to run
449 in the foreground, the user will not be able to ctrl-c to get
450 back the terminal, effectively hanging the debug session. */
451 fprintf_filtered (gdb_stderr, _("\
452Can not resume the parent process over vfork in the foreground while\n\
453holding the child stopped. Try \"set detach-on-fork\" or \
454\"set schedule-multiple\".\n"));
d83ad864
DB
455 return 1;
456 }
457
458 if (!follow_child)
459 {
460 /* Detach new forked process? */
461 if (detach_fork)
462 {
d83ad864
DB
463 /* Before detaching from the child, remove all breakpoints
464 from it. If we forked, then this has already been taken
465 care of by infrun.c. If we vforked however, any
466 breakpoint inserted in the parent is visible in the
467 child, even those added while stopped in a vfork
468 catchpoint. This will remove the breakpoints from the
469 parent also, but they'll be reinserted below. */
470 if (has_vforked)
471 {
472 /* Keep breakpoints list in sync. */
00431a78 473 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
474 }
475
f67c0c91 476 if (print_inferior_events)
d83ad864 477 {
8dd06f7a 478 /* Ensure that we have a process ptid. */
e99b03dc 479 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 480
223ffa71 481 target_terminal::ours_for_output ();
d83ad864 482 fprintf_filtered (gdb_stdlog,
f67c0c91 483 _("[Detaching after %s from child %s]\n"),
6f259a23 484 has_vforked ? "vfork" : "fork",
a068643d 485 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
486 }
487 }
488 else
489 {
490 struct inferior *parent_inf, *child_inf;
d83ad864
DB
491
492 /* Add process to GDB's tables. */
e99b03dc 493 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
5ed8105e 501 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 502
2a00d7ce 503 set_current_inferior (child_inf);
5b6d1e4f 504 switch_to_no_thread ();
d83ad864 505 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f 506 push_target (parent_inf->process_target ());
18493a00
PA
507 thread_info *child_thr
508 = add_thread_silent (child_inf->process_target (), child_ptid);
d83ad864
DB
509
510 /* If this is a vfork child, then the address-space is
511 shared with the parent. */
512 if (has_vforked)
513 {
514 child_inf->pspace = parent_inf->pspace;
515 child_inf->aspace = parent_inf->aspace;
516
5b6d1e4f
PA
517 exec_on_vfork ();
518
d83ad864
DB
519 /* The parent will be frozen until the child is done
520 with the shared region. Keep track of the
521 parent. */
522 child_inf->vfork_parent = parent_inf;
523 child_inf->pending_detach = 0;
524 parent_inf->vfork_child = child_inf;
525 parent_inf->pending_detach = 0;
18493a00
PA
526
527 /* Now that the inferiors and program spaces are all
528 wired up, we can switch to the child thread (which
529 switches inferior and program space too). */
530 switch_to_thread (child_thr);
d83ad864
DB
531 }
532 else
533 {
534 child_inf->aspace = new_address_space ();
564b1e3f 535 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
536 child_inf->removable = 1;
537 set_current_program_space (child_inf->pspace);
538 clone_program_space (child_inf->pspace, parent_inf->pspace);
539
18493a00
PA
540 /* solib_create_inferior_hook relies on the current
541 thread. */
542 switch_to_thread (child_thr);
543
d83ad864
DB
544 /* Let the shared library layer (e.g., solib-svr4) learn
545 about this new process, relocate the cloned exec, pull
546 in shared libraries, and install the solib event
547 breakpoint. If a "cloned-VM" event was propagated
548 better throughout the core, this wouldn't be
549 required. */
550 solib_create_inferior_hook (0);
551 }
d83ad864
DB
552 }
553
554 if (has_vforked)
555 {
556 struct inferior *parent_inf;
557
558 parent_inf = current_inferior ();
559
560 /* If we detached from the child, then we have to be careful
561 to not insert breakpoints in the parent until the child
562 is done with the shared memory region. However, if we're
563 staying attached to the child, then we can and should
564 insert breakpoints, so that we can debug it. A
565 subsequent child exec or exit is enough to know when does
566 the child stops using the parent's address space. */
567 parent_inf->waiting_for_vfork_done = detach_fork;
568 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
569 }
570 }
571 else
572 {
573 /* Follow the child. */
574 struct inferior *parent_inf, *child_inf;
575 struct program_space *parent_pspace;
576
f67c0c91 577 if (print_inferior_events)
d83ad864 578 {
f67c0c91
SDJ
579 std::string parent_pid = target_pid_to_str (parent_ptid);
580 std::string child_pid = target_pid_to_str (child_ptid);
581
223ffa71 582 target_terminal::ours_for_output ();
6f259a23 583 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
584 _("[Attaching after %s %s to child %s]\n"),
585 parent_pid.c_str (),
6f259a23 586 has_vforked ? "vfork" : "fork",
f67c0c91 587 child_pid.c_str ());
d83ad864
DB
588 }
589
590 /* Add the new inferior first, so that the target_detach below
591 doesn't unpush the target. */
592
e99b03dc 593 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
594
595 parent_inf = current_inferior ();
596 child_inf->attach_flag = parent_inf->attach_flag;
597 copy_terminal_info (child_inf, parent_inf);
598 child_inf->gdbarch = parent_inf->gdbarch;
599 copy_inferior_target_desc_info (child_inf, parent_inf);
600
601 parent_pspace = parent_inf->pspace;
602
5b6d1e4f 603 process_stratum_target *target = parent_inf->process_target ();
d83ad864 604
5b6d1e4f
PA
605 {
606 /* Hold a strong reference to the target while (maybe)
607 detaching the parent. Otherwise detaching could close the
608 target. */
609 auto target_ref = target_ops_ref::new_reference (target);
610
611 /* If we're vforking, we want to hold on to the parent until
612 the child exits or execs. At child exec or exit time we
613 can remove the old breakpoints from the parent and detach
614 or resume debugging it. Otherwise, detach the parent now;
615 we'll want to reuse it's program/address spaces, but we
616 can't set them to the child before removing breakpoints
617 from the parent, otherwise, the breakpoints module could
618 decide to remove breakpoints from the wrong process (since
619 they'd be assigned to the same address space). */
620
621 if (has_vforked)
622 {
623 gdb_assert (child_inf->vfork_parent == NULL);
624 gdb_assert (parent_inf->vfork_child == NULL);
625 child_inf->vfork_parent = parent_inf;
626 child_inf->pending_detach = 0;
627 parent_inf->vfork_child = child_inf;
628 parent_inf->pending_detach = detach_fork;
629 parent_inf->waiting_for_vfork_done = 0;
630 }
631 else if (detach_fork)
632 {
633 if (print_inferior_events)
634 {
635 /* Ensure that we have a process ptid. */
636 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
637
638 target_terminal::ours_for_output ();
639 fprintf_filtered (gdb_stdlog,
640 _("[Detaching after fork from "
641 "parent %s]\n"),
642 target_pid_to_str (process_ptid).c_str ());
643 }
8dd06f7a 644
5b6d1e4f
PA
645 target_detach (parent_inf, 0);
646 parent_inf = NULL;
647 }
6f259a23 648
5b6d1e4f 649 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 650
5b6d1e4f
PA
651 /* Add the child thread to the appropriate lists, and switch
652 to this new thread, before cloning the program space, and
653 informing the solib layer about this new process. */
d83ad864 654
5b6d1e4f
PA
655 set_current_inferior (child_inf);
656 push_target (target);
657 }
d83ad864 658
18493a00 659 thread_info *child_thr = add_thread_silent (target, child_ptid);
d83ad864
DB
660
661 /* If this is a vfork child, then the address-space is shared
662 with the parent. If we detached from the parent, then we can
663 reuse the parent's program/address spaces. */
664 if (has_vforked || detach_fork)
665 {
666 child_inf->pspace = parent_pspace;
667 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
668
669 exec_on_vfork ();
d83ad864
DB
670 }
671 else
672 {
673 child_inf->aspace = new_address_space ();
564b1e3f 674 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
675 child_inf->removable = 1;
676 child_inf->symfile_flags = SYMFILE_NO_READ;
677 set_current_program_space (child_inf->pspace);
678 clone_program_space (child_inf->pspace, parent_pspace);
679
680 /* Let the shared library layer (e.g., solib-svr4) learn
681 about this new process, relocate the cloned exec, pull in
682 shared libraries, and install the solib event breakpoint.
683 If a "cloned-VM" event was propagated better throughout
684 the core, this wouldn't be required. */
685 solib_create_inferior_hook (0);
686 }
18493a00
PA
687
688 switch_to_thread (child_thr);
d83ad864
DB
689 }
690
691 return target_follow_fork (follow_child, detach_fork);
692}
693
e58b0e63
PA
694/* Tell the target to follow the fork we're stopped at. Returns true
695 if the inferior should be resumed; false, if the target for some
696 reason decided it's best not to resume. */
697
5ab2fbf1
SM
698static bool
699follow_fork ()
c906108c 700{
5ab2fbf1
SM
701 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
702 bool should_resume = true;
e58b0e63
PA
703 struct thread_info *tp;
704
705 /* Copy user stepping state to the new inferior thread. FIXME: the
706 followed fork child thread should have a copy of most of the
4e3990f4
DE
707 parent thread structure's run control related fields, not just these.
708 Initialized to avoid "may be used uninitialized" warnings from gcc. */
709 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 710 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
711 CORE_ADDR step_range_start = 0;
712 CORE_ADDR step_range_end = 0;
bf4cb9be
TV
713 int current_line = 0;
714 symtab *current_symtab = NULL;
4e3990f4 715 struct frame_id step_frame_id = { 0 };
8980e177 716 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
717
718 if (!non_stop)
719 {
5b6d1e4f 720 process_stratum_target *wait_target;
e58b0e63
PA
721 ptid_t wait_ptid;
722 struct target_waitstatus wait_status;
723
724 /* Get the last target status returned by target_wait(). */
5b6d1e4f 725 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
726
727 /* If not stopped at a fork event, then there's nothing else to
728 do. */
729 if (wait_status.kind != TARGET_WAITKIND_FORKED
730 && wait_status.kind != TARGET_WAITKIND_VFORKED)
731 return 1;
732
733 /* Check if we switched over from WAIT_PTID, since the event was
734 reported. */
00431a78 735 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
736 && (current_inferior ()->process_target () != wait_target
737 || inferior_ptid != wait_ptid))
e58b0e63
PA
738 {
739 /* We did. Switch back to WAIT_PTID thread, to tell the
740 target to follow it (in either direction). We'll
741 afterwards refuse to resume, and inform the user what
742 happened. */
5b6d1e4f 743 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 744 switch_to_thread (wait_thread);
5ab2fbf1 745 should_resume = false;
e58b0e63
PA
746 }
747 }
748
749 tp = inferior_thread ();
750
751 /* If there were any forks/vforks that were caught and are now to be
752 followed, then do so now. */
753 switch (tp->pending_follow.kind)
754 {
755 case TARGET_WAITKIND_FORKED:
756 case TARGET_WAITKIND_VFORKED:
757 {
758 ptid_t parent, child;
759
760 /* If the user did a next/step, etc, over a fork call,
761 preserve the stepping state in the fork child. */
762 if (follow_child && should_resume)
763 {
8358c15c
JK
764 step_resume_breakpoint = clone_momentary_breakpoint
765 (tp->control.step_resume_breakpoint);
16c381f0
JK
766 step_range_start = tp->control.step_range_start;
767 step_range_end = tp->control.step_range_end;
bf4cb9be
TV
768 current_line = tp->current_line;
769 current_symtab = tp->current_symtab;
16c381f0 770 step_frame_id = tp->control.step_frame_id;
186c406b
TT
771 exception_resume_breakpoint
772 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 773 thread_fsm = tp->thread_fsm;
e58b0e63
PA
774
775 /* For now, delete the parent's sr breakpoint, otherwise,
776 parent/child sr breakpoints are considered duplicates,
777 and the child version will not be installed. Remove
778 this when the breakpoints module becomes aware of
779 inferiors and address spaces. */
780 delete_step_resume_breakpoint (tp);
16c381f0
JK
781 tp->control.step_range_start = 0;
782 tp->control.step_range_end = 0;
783 tp->control.step_frame_id = null_frame_id;
186c406b 784 delete_exception_resume_breakpoint (tp);
8980e177 785 tp->thread_fsm = NULL;
e58b0e63
PA
786 }
787
788 parent = inferior_ptid;
789 child = tp->pending_follow.value.related_pid;
790
5b6d1e4f 791 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
792 /* Set up inferior(s) as specified by the caller, and tell the
793 target to do whatever is necessary to follow either parent
794 or child. */
795 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
796 {
797 /* Target refused to follow, or there's some other reason
798 we shouldn't resume. */
799 should_resume = 0;
800 }
801 else
802 {
803 /* This pending follow fork event is now handled, one way
804 or another. The previous selected thread may be gone
805 from the lists by now, but if it is still around, need
806 to clear the pending follow request. */
5b6d1e4f 807 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
808 if (tp)
809 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
810
811 /* This makes sure we don't try to apply the "Switched
812 over from WAIT_PID" logic above. */
813 nullify_last_target_wait_ptid ();
814
1777feb0 815 /* If we followed the child, switch to it... */
e58b0e63
PA
816 if (follow_child)
817 {
5b6d1e4f 818 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 819 switch_to_thread (child_thr);
e58b0e63
PA
820
821 /* ... and preserve the stepping state, in case the
822 user was stepping over the fork call. */
823 if (should_resume)
824 {
825 tp = inferior_thread ();
8358c15c
JK
826 tp->control.step_resume_breakpoint
827 = step_resume_breakpoint;
16c381f0
JK
828 tp->control.step_range_start = step_range_start;
829 tp->control.step_range_end = step_range_end;
bf4cb9be
TV
830 tp->current_line = current_line;
831 tp->current_symtab = current_symtab;
16c381f0 832 tp->control.step_frame_id = step_frame_id;
186c406b
TT
833 tp->control.exception_resume_breakpoint
834 = exception_resume_breakpoint;
8980e177 835 tp->thread_fsm = thread_fsm;
e58b0e63
PA
836 }
837 else
838 {
839 /* If we get here, it was because we're trying to
840 resume from a fork catchpoint, but, the user
841 has switched threads away from the thread that
842 forked. In that case, the resume command
843 issued is most likely not applicable to the
844 child, so just warn, and refuse to resume. */
3e43a32a 845 warning (_("Not resuming: switched threads "
fd7dcb94 846 "before following fork child."));
e58b0e63
PA
847 }
848
849 /* Reset breakpoints in the child as appropriate. */
850 follow_inferior_reset_breakpoints ();
851 }
e58b0e63
PA
852 }
853 }
854 break;
855 case TARGET_WAITKIND_SPURIOUS:
856 /* Nothing to follow. */
857 break;
858 default:
859 internal_error (__FILE__, __LINE__,
860 "Unexpected pending_follow.kind %d\n",
861 tp->pending_follow.kind);
862 break;
863 }
c906108c 864
e58b0e63 865 return should_resume;
c906108c
SS
866}
867
d83ad864 868static void
6604731b 869follow_inferior_reset_breakpoints (void)
c906108c 870{
4e1c45ea
PA
871 struct thread_info *tp = inferior_thread ();
872
6604731b
DJ
873 /* Was there a step_resume breakpoint? (There was if the user
874 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
875 thread number. Cloned step_resume breakpoints are disabled on
876 creation, so enable it here now that it is associated with the
877 correct thread.
6604731b
DJ
878
879 step_resumes are a form of bp that are made to be per-thread.
880 Since we created the step_resume bp when the parent process
881 was being debugged, and now are switching to the child process,
882 from the breakpoint package's viewpoint, that's a switch of
883 "threads". We must update the bp's notion of which thread
884 it is for, or it'll be ignored when it triggers. */
885
8358c15c 886 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
887 {
888 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
889 tp->control.step_resume_breakpoint->loc->enabled = 1;
890 }
6604731b 891
a1aa2221 892 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 893 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
894 {
895 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
896 tp->control.exception_resume_breakpoint->loc->enabled = 1;
897 }
186c406b 898
6604731b
DJ
899 /* Reinsert all breakpoints in the child. The user may have set
900 breakpoints after catching the fork, in which case those
901 were never set in the child, but only in the parent. This makes
902 sure the inserted breakpoints match the breakpoint list. */
903
904 breakpoint_re_set ();
905 insert_breakpoints ();
c906108c 906}
c906108c 907
6c95b8df
PA
908/* The child has exited or execed: resume threads of the parent the
909 user wanted to be executing. */
910
911static int
912proceed_after_vfork_done (struct thread_info *thread,
913 void *arg)
914{
915 int pid = * (int *) arg;
916
00431a78
PA
917 if (thread->ptid.pid () == pid
918 && thread->state == THREAD_RUNNING
919 && !thread->executing
6c95b8df 920 && !thread->stop_requested
a493e3e2 921 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df 922 {
edbcda09
SM
923 infrun_log_debug ("resuming vfork parent thread %s",
924 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 925
00431a78 926 switch_to_thread (thread);
70509625 927 clear_proceed_status (0);
64ce06e4 928 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
929 }
930
931 return 0;
932}
933
934/* Called whenever we notice an exec or exit event, to handle
935 detaching or resuming a vfork parent. */
936
937static void
938handle_vfork_child_exec_or_exit (int exec)
939{
940 struct inferior *inf = current_inferior ();
941
942 if (inf->vfork_parent)
943 {
944 int resume_parent = -1;
945
946 /* This exec or exit marks the end of the shared memory region
b73715df
TV
947 between the parent and the child. Break the bonds. */
948 inferior *vfork_parent = inf->vfork_parent;
949 inf->vfork_parent->vfork_child = NULL;
950 inf->vfork_parent = NULL;
6c95b8df 951
b73715df
TV
952 /* If the user wanted to detach from the parent, now is the
953 time. */
954 if (vfork_parent->pending_detach)
6c95b8df 955 {
6c95b8df
PA
956 struct program_space *pspace;
957 struct address_space *aspace;
958
1777feb0 959 /* follow-fork child, detach-on-fork on. */
6c95b8df 960
b73715df 961 vfork_parent->pending_detach = 0;
68c9da30 962
18493a00 963 scoped_restore_current_pspace_and_thread restore_thread;
6c95b8df
PA
964
965 /* We're letting loose of the parent. */
18493a00 966 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
00431a78 967 switch_to_thread (tp);
6c95b8df
PA
968
969 /* We're about to detach from the parent, which implicitly
970 removes breakpoints from its address space. There's a
971 catch here: we want to reuse the spaces for the child,
972 but, parent/child are still sharing the pspace at this
973 point, although the exec in reality makes the kernel give
974 the child a fresh set of new pages. The problem here is
975 that the breakpoints module being unaware of this, would
976 likely chose the child process to write to the parent
977 address space. Swapping the child temporarily away from
978 the spaces has the desired effect. Yes, this is "sort
979 of" a hack. */
980
981 pspace = inf->pspace;
982 aspace = inf->aspace;
983 inf->aspace = NULL;
984 inf->pspace = NULL;
985
f67c0c91 986 if (print_inferior_events)
6c95b8df 987 {
a068643d 988 std::string pidstr
b73715df 989 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 990
223ffa71 991 target_terminal::ours_for_output ();
6c95b8df
PA
992
993 if (exec)
6f259a23
DB
994 {
995 fprintf_filtered (gdb_stdlog,
f67c0c91 996 _("[Detaching vfork parent %s "
a068643d 997 "after child exec]\n"), pidstr.c_str ());
6f259a23 998 }
6c95b8df 999 else
6f259a23
DB
1000 {
1001 fprintf_filtered (gdb_stdlog,
f67c0c91 1002 _("[Detaching vfork parent %s "
a068643d 1003 "after child exit]\n"), pidstr.c_str ());
6f259a23 1004 }
6c95b8df
PA
1005 }
1006
b73715df 1007 target_detach (vfork_parent, 0);
6c95b8df
PA
1008
1009 /* Put it back. */
1010 inf->pspace = pspace;
1011 inf->aspace = aspace;
6c95b8df
PA
1012 }
1013 else if (exec)
1014 {
1015 /* We're staying attached to the parent, so, really give the
1016 child a new address space. */
564b1e3f 1017 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1018 inf->aspace = inf->pspace->aspace;
1019 inf->removable = 1;
1020 set_current_program_space (inf->pspace);
1021
b73715df 1022 resume_parent = vfork_parent->pid;
6c95b8df
PA
1023 }
1024 else
1025 {
6c95b8df
PA
1026 /* If this is a vfork child exiting, then the pspace and
1027 aspaces were shared with the parent. Since we're
1028 reporting the process exit, we'll be mourning all that is
1029 found in the address space, and switching to null_ptid,
1030 preparing to start a new inferior. But, since we don't
1031 want to clobber the parent's address/program spaces, we
1032 go ahead and create a new one for this exiting
1033 inferior. */
1034
18493a00 1035 /* Switch to no-thread while running clone_program_space, so
5ed8105e
PA
1036 that clone_program_space doesn't want to read the
1037 selected frame of a dead process. */
18493a00
PA
1038 scoped_restore_current_thread restore_thread;
1039 switch_to_no_thread ();
6c95b8df 1040
53af73bf
PA
1041 inf->pspace = new program_space (maybe_new_address_space ());
1042 inf->aspace = inf->pspace->aspace;
1043 set_current_program_space (inf->pspace);
6c95b8df 1044 inf->removable = 1;
7dcd53a0 1045 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1046 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1047
b73715df 1048 resume_parent = vfork_parent->pid;
6c95b8df
PA
1049 }
1050
6c95b8df
PA
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
5ed8105e 1057 scoped_restore_current_thread restore_thread;
6c95b8df 1058
edbcda09
SM
1059 infrun_log_debug ("resuming vfork parent process %d",
1060 resume_parent);
6c95b8df
PA
1061
1062 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1063 }
1064 }
1065}
1066
eb6c553b 1067/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1068
1069static const char follow_exec_mode_new[] = "new";
1070static const char follow_exec_mode_same[] = "same";
40478521 1071static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1072{
1073 follow_exec_mode_new,
1074 follow_exec_mode_same,
1075 NULL,
1076};
1077
1078static const char *follow_exec_mode_string = follow_exec_mode_same;
1079static void
1080show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c, const char *value)
1082{
1083 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1084}
1085
ecf45d2c 1086/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1087
c906108c 1088static void
4ca51187 1089follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1090{
6c95b8df 1091 struct inferior *inf = current_inferior ();
e99b03dc 1092 int pid = ptid.pid ();
94585166 1093 ptid_t process_ptid;
7a292a7a 1094
65d2b333
PW
1095 /* Switch terminal for any messages produced e.g. by
1096 breakpoint_re_set. */
1097 target_terminal::ours_for_output ();
1098
c906108c
SS
1099 /* This is an exec event that we actually wish to pay attention to.
1100 Refresh our symbol table to the newly exec'd program, remove any
1101 momentary bp's, etc.
1102
1103 If there are breakpoints, they aren't really inserted now,
1104 since the exec() transformed our inferior into a fresh set
1105 of instructions.
1106
1107 We want to preserve symbolic breakpoints on the list, since
1108 we have hopes that they can be reset after the new a.out's
1109 symbol table is read.
1110
1111 However, any "raw" breakpoints must be removed from the list
1112 (e.g., the solib bp's), since their address is probably invalid
1113 now.
1114
1115 And, we DON'T want to call delete_breakpoints() here, since
1116 that may write the bp's "shadow contents" (the instruction
85102364 1117 value that was overwritten with a TRAP instruction). Since
1777feb0 1118 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1119
1120 mark_breakpoints_out ();
1121
95e50b27
PA
1122 /* The target reports the exec event to the main thread, even if
1123 some other thread does the exec, and even if the main thread was
1124 stopped or already gone. We may still have non-leader threads of
1125 the process on our list. E.g., on targets that don't have thread
1126 exit events (like remote); or on native Linux in non-stop mode if
1127 there were only two threads in the inferior and the non-leader
1128 one is the one that execs (and nothing forces an update of the
1129 thread list up to here). When debugging remotely, it's best to
1130 avoid extra traffic, when possible, so avoid syncing the thread
1131 list with the target, and instead go ahead and delete all threads
1132 of the process but one that reported the event. Note this must
1133 be done before calling update_breakpoints_after_exec, as
1134 otherwise clearing the threads' resources would reference stale
1135 thread breakpoints -- it may have been one of these threads that
1136 stepped across the exec. We could just clear their stepping
1137 states, but as long as we're iterating, might as well delete
1138 them. Deleting them now rather than at the next user-visible
1139 stop provides a nicer sequence of events for user and MI
1140 notifications. */
08036331 1141 for (thread_info *th : all_threads_safe ())
d7e15655 1142 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1143 delete_thread (th);
95e50b27
PA
1144
1145 /* We also need to clear any left over stale state for the
1146 leader/event thread. E.g., if there was any step-resume
1147 breakpoint or similar, it's gone now. We cannot truly
1148 step-to-next statement through an exec(). */
08036331 1149 thread_info *th = inferior_thread ();
8358c15c 1150 th->control.step_resume_breakpoint = NULL;
186c406b 1151 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1152 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1153 th->control.step_range_start = 0;
1154 th->control.step_range_end = 0;
c906108c 1155
95e50b27
PA
1156 /* The user may have had the main thread held stopped in the
1157 previous image (e.g., schedlock on, or non-stop). Release
1158 it now. */
a75724bc
PA
1159 th->stop_requested = 0;
1160
95e50b27
PA
1161 update_breakpoints_after_exec ();
1162
1777feb0 1163 /* What is this a.out's name? */
f2907e49 1164 process_ptid = ptid_t (pid);
6c95b8df 1165 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1166 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1167 exec_file_target);
c906108c
SS
1168
1169 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1170 inferior has essentially been killed & reborn. */
7a292a7a 1171
6ca15a4b 1172 breakpoint_init_inferior (inf_execd);
e85a822c 1173
797bc1cb
TT
1174 gdb::unique_xmalloc_ptr<char> exec_file_host
1175 = exec_file_find (exec_file_target, NULL);
ff862be4 1176
ecf45d2c
SL
1177 /* If we were unable to map the executable target pathname onto a host
1178 pathname, tell the user that. Otherwise GDB's subsequent behavior
1179 is confusing. Maybe it would even be better to stop at this point
1180 so that the user can specify a file manually before continuing. */
1181 if (exec_file_host == NULL)
1182 warning (_("Could not load symbols for executable %s.\n"
1183 "Do you need \"set sysroot\"?"),
1184 exec_file_target);
c906108c 1185
cce9b6bf
PA
1186 /* Reset the shared library package. This ensures that we get a
1187 shlib event when the child reaches "_start", at which point the
1188 dld will have had a chance to initialize the child. */
1189 /* Also, loading a symbol file below may trigger symbol lookups, and
1190 we don't want those to be satisfied by the libraries of the
1191 previous incarnation of this process. */
1192 no_shared_libraries (NULL, 0);
1193
6c95b8df
PA
1194 if (follow_exec_mode_string == follow_exec_mode_new)
1195 {
6c95b8df
PA
1196 /* The user wants to keep the old inferior and program spaces
1197 around. Create a new fresh one, and switch to it. */
1198
35ed81d4
SM
1199 /* Do exit processing for the original inferior before setting the new
1200 inferior's pid. Having two inferiors with the same pid would confuse
1201 find_inferior_p(t)id. Transfer the terminal state and info from the
1202 old to the new inferior. */
1203 inf = add_inferior_with_spaces ();
1204 swap_terminal_info (inf, current_inferior ());
057302ce 1205 exit_inferior_silent (current_inferior ());
17d8546e 1206
94585166 1207 inf->pid = pid;
ecf45d2c 1208 target_follow_exec (inf, exec_file_target);
6c95b8df 1209
5b6d1e4f
PA
1210 inferior *org_inferior = current_inferior ();
1211 switch_to_inferior_no_thread (inf);
1212 push_target (org_inferior->process_target ());
1213 thread_info *thr = add_thread (inf->process_target (), ptid);
1214 switch_to_thread (thr);
6c95b8df 1215 }
9107fc8d
PA
1216 else
1217 {
1218 /* The old description may no longer be fit for the new image.
1219 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1220 old description; we'll read a new one below. No need to do
1221 this on "follow-exec-mode new", as the old inferior stays
1222 around (its description is later cleared/refetched on
1223 restart). */
1224 target_clear_description ();
1225 }
6c95b8df
PA
1226
1227 gdb_assert (current_program_space == inf->pspace);
1228
ecf45d2c
SL
1229 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1230 because the proper displacement for a PIE (Position Independent
1231 Executable) main symbol file will only be computed by
1232 solib_create_inferior_hook below. breakpoint_re_set would fail
1233 to insert the breakpoints with the zero displacement. */
797bc1cb 1234 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1235
9107fc8d
PA
1236 /* If the target can specify a description, read it. Must do this
1237 after flipping to the new executable (because the target supplied
1238 description must be compatible with the executable's
1239 architecture, and the old executable may e.g., be 32-bit, while
1240 the new one 64-bit), and before anything involving memory or
1241 registers. */
1242 target_find_description ();
1243
268a4a75 1244 solib_create_inferior_hook (0);
c906108c 1245
4efc6507
DE
1246 jit_inferior_created_hook ();
1247
c1e56572
JK
1248 breakpoint_re_set ();
1249
c906108c
SS
1250 /* Reinsert all breakpoints. (Those which were symbolic have
1251 been reset to the proper address in the new a.out, thanks
1777feb0 1252 to symbol_file_command...). */
c906108c
SS
1253 insert_breakpoints ();
1254
0dda35b4
SM
1255 gdb::observers::inferior_execd.notify (inf);
1256
c906108c
SS
1257 /* The next resume of this inferior should bring it to the shlib
1258 startup breakpoints. (If the user had also set bp's on
1259 "main" from the old (parent) process, then they'll auto-
1777feb0 1260 matically get reset there in the new process.). */
c906108c
SS
1261}
1262
c2829269
PA
1263/* The queue of threads that need to do a step-over operation to get
1264 past e.g., a breakpoint. What technique is used to step over the
1265 breakpoint/watchpoint does not matter -- all threads end up in the
1266 same queue, to maintain rough temporal order of execution, in order
1267 to avoid starvation, otherwise, we could e.g., find ourselves
1268 constantly stepping the same couple threads past their breakpoints
1269 over and over, if the single-step finish fast enough. */
7bd43605 1270struct thread_info *global_thread_step_over_chain_head;
c2829269 1271
6c4cfb24
PA
1272/* Bit flags indicating what the thread needs to step over. */
1273
8d297bbf 1274enum step_over_what_flag
6c4cfb24
PA
1275 {
1276 /* Step over a breakpoint. */
1277 STEP_OVER_BREAKPOINT = 1,
1278
1279 /* Step past a non-continuable watchpoint, in order to let the
1280 instruction execute so we can evaluate the watchpoint
1281 expression. */
1282 STEP_OVER_WATCHPOINT = 2
1283 };
8d297bbf 1284DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1285
963f9c80 1286/* Info about an instruction that is being stepped over. */
31e77af2
PA
1287
1288struct step_over_info
1289{
963f9c80
PA
1290 /* If we're stepping past a breakpoint, this is the address space
1291 and address of the instruction the breakpoint is set at. We'll
1292 skip inserting all breakpoints here. Valid iff ASPACE is
1293 non-NULL. */
8b86c959 1294 const address_space *aspace;
31e77af2 1295 CORE_ADDR address;
963f9c80
PA
1296
1297 /* The instruction being stepped over triggers a nonsteppable
1298 watchpoint. If true, we'll skip inserting watchpoints. */
1299 int nonsteppable_watchpoint_p;
21edc42f
YQ
1300
1301 /* The thread's global number. */
1302 int thread;
31e77af2
PA
1303};
1304
1305/* The step-over info of the location that is being stepped over.
1306
1307 Note that with async/breakpoint always-inserted mode, a user might
1308 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1309 being stepped over. As setting a new breakpoint inserts all
1310 breakpoints, we need to make sure the breakpoint being stepped over
1311 isn't inserted then. We do that by only clearing the step-over
1312 info when the step-over is actually finished (or aborted).
1313
1314 Presently GDB can only step over one breakpoint at any given time.
1315 Given threads that can't run code in the same address space as the
1316 breakpoint's can't really miss the breakpoint, GDB could be taught
1317 to step-over at most one breakpoint per address space (so this info
1318 could move to the address space object if/when GDB is extended).
1319 The set of breakpoints being stepped over will normally be much
1320 smaller than the set of all breakpoints, so a flag in the
1321 breakpoint location structure would be wasteful. A separate list
1322 also saves complexity and run-time, as otherwise we'd have to go
1323 through all breakpoint locations clearing their flag whenever we
1324 start a new sequence. Similar considerations weigh against storing
1325 this info in the thread object. Plus, not all step overs actually
1326 have breakpoint locations -- e.g., stepping past a single-step
1327 breakpoint, or stepping to complete a non-continuable
1328 watchpoint. */
1329static struct step_over_info step_over_info;
1330
1331/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1332 stepping over.
1333 N.B. We record the aspace and address now, instead of say just the thread,
1334 because when we need the info later the thread may be running. */
31e77af2
PA
1335
1336static void
8b86c959 1337set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1338 int nonsteppable_watchpoint_p,
1339 int thread)
31e77af2
PA
1340{
1341 step_over_info.aspace = aspace;
1342 step_over_info.address = address;
963f9c80 1343 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1344 step_over_info.thread = thread;
31e77af2
PA
1345}
1346
1347/* Called when we're not longer stepping over a breakpoint / an
1348 instruction, so all breakpoints are free to be (re)inserted. */
1349
1350static void
1351clear_step_over_info (void)
1352{
edbcda09 1353 infrun_log_debug ("clearing step over info");
31e77af2
PA
1354 step_over_info.aspace = NULL;
1355 step_over_info.address = 0;
963f9c80 1356 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1357 step_over_info.thread = -1;
31e77af2
PA
1358}
1359
7f89fd65 1360/* See infrun.h. */
31e77af2
PA
1361
1362int
1363stepping_past_instruction_at (struct address_space *aspace,
1364 CORE_ADDR address)
1365{
1366 return (step_over_info.aspace != NULL
1367 && breakpoint_address_match (aspace, address,
1368 step_over_info.aspace,
1369 step_over_info.address));
1370}
1371
963f9c80
PA
1372/* See infrun.h. */
1373
21edc42f
YQ
1374int
1375thread_is_stepping_over_breakpoint (int thread)
1376{
1377 return (step_over_info.thread != -1
1378 && thread == step_over_info.thread);
1379}
1380
1381/* See infrun.h. */
1382
963f9c80
PA
1383int
1384stepping_past_nonsteppable_watchpoint (void)
1385{
1386 return step_over_info.nonsteppable_watchpoint_p;
1387}
1388
6cc83d2a
PA
1389/* Returns true if step-over info is valid. */
1390
1391static int
1392step_over_info_valid_p (void)
1393{
963f9c80
PA
1394 return (step_over_info.aspace != NULL
1395 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1396}
1397
c906108c 1398\f
237fc4c9
PA
1399/* Displaced stepping. */
1400
1401/* In non-stop debugging mode, we must take special care to manage
1402 breakpoints properly; in particular, the traditional strategy for
1403 stepping a thread past a breakpoint it has hit is unsuitable.
1404 'Displaced stepping' is a tactic for stepping one thread past a
1405 breakpoint it has hit while ensuring that other threads running
1406 concurrently will hit the breakpoint as they should.
1407
1408 The traditional way to step a thread T off a breakpoint in a
1409 multi-threaded program in all-stop mode is as follows:
1410
1411 a0) Initially, all threads are stopped, and breakpoints are not
1412 inserted.
1413 a1) We single-step T, leaving breakpoints uninserted.
1414 a2) We insert breakpoints, and resume all threads.
1415
1416 In non-stop debugging, however, this strategy is unsuitable: we
1417 don't want to have to stop all threads in the system in order to
1418 continue or step T past a breakpoint. Instead, we use displaced
1419 stepping:
1420
1421 n0) Initially, T is stopped, other threads are running, and
1422 breakpoints are inserted.
1423 n1) We copy the instruction "under" the breakpoint to a separate
1424 location, outside the main code stream, making any adjustments
1425 to the instruction, register, and memory state as directed by
1426 T's architecture.
1427 n2) We single-step T over the instruction at its new location.
1428 n3) We adjust the resulting register and memory state as directed
1429 by T's architecture. This includes resetting T's PC to point
1430 back into the main instruction stream.
1431 n4) We resume T.
1432
1433 This approach depends on the following gdbarch methods:
1434
1435 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1436 indicate where to copy the instruction, and how much space must
1437 be reserved there. We use these in step n1.
1438
1439 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1440 address, and makes any necessary adjustments to the instruction,
1441 register contents, and memory. We use this in step n1.
1442
1443 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1444 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1445 same effect the instruction would have had if we had executed it
1446 at its original address. We use this in step n3.
1447
237fc4c9
PA
1448 The gdbarch_displaced_step_copy_insn and
1449 gdbarch_displaced_step_fixup functions must be written so that
1450 copying an instruction with gdbarch_displaced_step_copy_insn,
1451 single-stepping across the copied instruction, and then applying
1452 gdbarch_displaced_insn_fixup should have the same effects on the
1453 thread's memory and registers as stepping the instruction in place
1454 would have. Exactly which responsibilities fall to the copy and
1455 which fall to the fixup is up to the author of those functions.
1456
1457 See the comments in gdbarch.sh for details.
1458
1459 Note that displaced stepping and software single-step cannot
1460 currently be used in combination, although with some care I think
1461 they could be made to. Software single-step works by placing
1462 breakpoints on all possible subsequent instructions; if the
1463 displaced instruction is a PC-relative jump, those breakpoints
1464 could fall in very strange places --- on pages that aren't
1465 executable, or at addresses that are not proper instruction
1466 boundaries. (We do generally let other threads run while we wait
1467 to hit the software single-step breakpoint, and they might
1468 encounter such a corrupted instruction.) One way to work around
1469 this would be to have gdbarch_displaced_step_copy_insn fully
1470 simulate the effect of PC-relative instructions (and return NULL)
1471 on architectures that use software single-stepping.
1472
1473 In non-stop mode, we can have independent and simultaneous step
1474 requests, so more than one thread may need to simultaneously step
1475 over a breakpoint. The current implementation assumes there is
1476 only one scratch space per process. In this case, we have to
1477 serialize access to the scratch space. If thread A wants to step
1478 over a breakpoint, but we are currently waiting for some other
1479 thread to complete a displaced step, we leave thread A stopped and
1480 place it in the displaced_step_request_queue. Whenever a displaced
1481 step finishes, we pick the next thread in the queue and start a new
1482 displaced step operation on it. See displaced_step_prepare and
1483 displaced_step_fixup for details. */
1484
9844051a 1485/* Get the displaced stepping state of inferior INF. */
fc1cf338 1486
39a36629 1487static displaced_step_inferior_state *
00431a78 1488get_displaced_stepping_state (inferior *inf)
fc1cf338 1489{
d20172fc 1490 return &inf->displaced_step_state;
fc1cf338
PA
1491}
1492
9844051a 1493/* Get the displaced stepping state of thread THREAD. */
372316f1 1494
9844051a
SM
1495static displaced_step_thread_state *
1496get_displaced_stepping_state (thread_info *thread)
372316f1 1497{
9844051a 1498 return &thread->displaced_step_state;
372316f1
PA
1499}
1500
9844051a 1501/* Return true if the given thread is doing a displaced step. */
c0987663 1502
9844051a
SM
1503static bool
1504displaced_step_in_progress (thread_info *thread)
c0987663 1505{
00431a78 1506 gdb_assert (thread != NULL);
c0987663 1507
9844051a 1508 return get_displaced_stepping_state (thread)->in_progress ();
c0987663
YQ
1509}
1510
9844051a 1511/* Return true if any thread of this inferior is doing a displaced step. */
8f572e5c 1512
9844051a 1513static bool
00431a78 1514displaced_step_in_progress (inferior *inf)
8f572e5c 1515{
9844051a
SM
1516 for (thread_info *thread : inf->non_exited_threads ())
1517 {
1518 if (displaced_step_in_progress (thread))
1519 return true;
1520 }
1521
1522 return false;
1523}
1524
1525/* Return true if any thread is doing a displaced step. */
1526
1527static bool
1528displaced_step_in_progress_any_thread ()
1529{
1530 for (thread_info *thread : all_non_exited_threads ())
1531 {
1532 if (displaced_step_in_progress (thread))
1533 return true;
1534 }
1535
1536 return false;
fc1cf338
PA
1537}
1538
a42244db 1539/* If inferior is in displaced stepping, and ADDR equals to starting address
7ccba087 1540 of copy area, return corresponding displaced_step_copy_insn_closure. Otherwise,
a42244db
YQ
1541 return NULL. */
1542
7ccba087
SM
1543struct displaced_step_copy_insn_closure *
1544get_displaced_step_copy_insn_closure_by_addr (CORE_ADDR addr)
a42244db 1545{
9844051a
SM
1546// FIXME: implement me (only needed on ARM).
1547// displaced_step_inferior_state *displaced
1548// = get_displaced_stepping_state (current_inferior ());
1549//
1550// /* If checking the mode of displaced instruction in copy area. */
1551// if (displaced->step_thread != nullptr
1552// && displaced->step_copy == addr)
1553// return displaced->step_closure.get ();
1554//
a42244db
YQ
1555 return NULL;
1556}
1557
fc1cf338
PA
1558static void
1559infrun_inferior_exit (struct inferior *inf)
1560{
d20172fc 1561 inf->displaced_step_state.reset ();
fc1cf338 1562}
237fc4c9 1563
fff08868
HZ
1564/* If ON, and the architecture supports it, GDB will use displaced
1565 stepping to step over breakpoints. If OFF, or if the architecture
1566 doesn't support it, GDB will instead use the traditional
1567 hold-and-step approach. If AUTO (which is the default), GDB will
1568 decide which technique to use to step over breakpoints depending on
9822cb57 1569 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1570
72d0e2c5 1571static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1572
237fc4c9
PA
1573static void
1574show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1575 struct cmd_list_element *c,
1576 const char *value)
1577{
72d0e2c5 1578 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1579 fprintf_filtered (file,
1580 _("Debugger's willingness to use displaced stepping "
1581 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1582 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1583 else
3e43a32a
MS
1584 fprintf_filtered (file,
1585 _("Debugger's willingness to use displaced stepping "
1586 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1587}
1588
5f38b1b8 1589/* Return true if the target behing THREAD supports displaced stepping. */
9822cb57
SM
1590
1591static bool
5f38b1b8 1592target_supports_displaced_stepping (thread_info *thread)
9822cb57 1593{
5f38b1b8
SM
1594 inferior *inf = thread->inf;
1595 target_ops *target = inf->top_target ();
1596
1597 return target->supports_displaced_step (thread);
9822cb57
SM
1598}
1599
fff08868 1600/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1601 over breakpoints of thread TP. */
fff08868 1602
9822cb57
SM
1603static bool
1604use_displaced_stepping (thread_info *tp)
237fc4c9 1605{
9822cb57
SM
1606 /* If the user disabled it explicitly, don't use displaced stepping. */
1607 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1608 return false;
1609
1610 /* If "auto", only use displaced stepping if the target operates in a non-stop
1611 way. */
1612 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1613 && !target_is_non_stop_p ())
1614 return false;
1615
5f38b1b8
SM
1616 /* If the target doesn't support displaced stepping, don't use it. */
1617 if (!target_supports_displaced_stepping (tp))
9822cb57
SM
1618 return false;
1619
1620 /* If recording, don't use displaced stepping. */
1621 if (find_record_target () != nullptr)
1622 return false;
1623
d20172fc
SM
1624 displaced_step_inferior_state *displaced_state
1625 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1626
9822cb57
SM
1627 /* If displaced stepping failed before for this inferior, don't bother trying
1628 again. */
1629 if (displaced_state->failed_before)
1630 return false;
1631
1632 return true;
237fc4c9
PA
1633}
1634
9844051a 1635/* Simple function wrapper around displaced_step_thread_state::reset. */
d8d83535 1636
237fc4c9 1637static void
9844051a 1638displaced_step_reset (displaced_step_thread_state *displaced)
237fc4c9 1639{
d8d83535 1640 displaced->reset ();
237fc4c9
PA
1641}
1642
d8d83535
SM
1643/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1644 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1645
1646using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9
PA
1647
1648/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1649void
1650displaced_step_dump_bytes (struct ui_file *file,
1651 const gdb_byte *buf,
1652 size_t len)
1653{
1654 int i;
1655
1656 for (i = 0; i < len; i++)
1657 fprintf_unfiltered (file, "%02x ", buf[i]);
1658 fputs_unfiltered ("\n", file);
1659}
1660
1661/* Prepare to single-step, using displaced stepping.
1662
1663 Note that we cannot use displaced stepping when we have a signal to
1664 deliver. If we have a signal to deliver and an instruction to step
1665 over, then after the step, there will be no indication from the
1666 target whether the thread entered a signal handler or ignored the
1667 signal and stepped over the instruction successfully --- both cases
1668 result in a simple SIGTRAP. In the first case we mustn't do a
1669 fixup, and in the second case we must --- but we can't tell which.
1670 Comments in the code for 'random signals' in handle_inferior_event
1671 explain how we handle this case instead.
1672
1673 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1674 stepped now; 0 if displaced stepping this thread got queued; or -1
1675 if this instruction can't be displaced stepped. */
1676
9844051a 1677static displaced_step_prepare_status
00431a78 1678displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1679{
00431a78 1680 regcache *regcache = get_thread_regcache (tp);
ac7936df 1681 struct gdbarch *gdbarch = regcache->arch ();
9844051a
SM
1682 displaced_step_thread_state *thread_disp_step_state
1683 = get_displaced_stepping_state (tp);
237fc4c9 1684
5f38b1b8 1685 /* We should never reach this function if the target does not
237fc4c9 1686 support displaced stepping. */
5f38b1b8 1687 gdb_assert (target_supports_displaced_stepping (tp));
237fc4c9 1688
c2829269
PA
1689 /* Nor if the thread isn't meant to step over a breakpoint. */
1690 gdb_assert (tp->control.trap_expected);
1691
c1e36e3e
PA
1692 /* Disable range stepping while executing in the scratch pad. We
1693 want a single-step even if executing the displaced instruction in
1694 the scratch buffer lands within the stepping range (e.g., a
1695 jump/branch). */
1696 tp->control.may_range_step = 0;
1697
9844051a
SM
1698 /* We are about to start a displaced step for this thread, if one is already
1699 in progress, we goofed up somewhere. */
1700 gdb_assert (!thread_disp_step_state->in_progress ());
237fc4c9 1701
9844051a 1702 scoped_restore_current_thread restore_thread;
fc1cf338 1703
9844051a
SM
1704 switch_to_thread (tp);
1705
1706 CORE_ADDR original_pc = regcache_read_pc (regcache);
1707
1708 displaced_step_prepare_status status =
768e1fd2 1709 tp->inf->top_target ()->displaced_step_prepare (tp);
237fc4c9 1710
9844051a
SM
1711 if (status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
1712 {
237fc4c9
PA
1713 if (debug_displaced)
1714 fprintf_unfiltered (gdb_stdlog,
9844051a 1715 "displaced: failed to prepare (%s)",
a068643d 1716 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1717
9844051a 1718 return DISPLACED_STEP_PREPARE_STATUS_ERROR;
237fc4c9 1719 }
9844051a 1720 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
237fc4c9 1721 {
9844051a
SM
1722 /* Not enough displaced stepping resources available, defer this
1723 request by placing it the queue. */
1724
237fc4c9
PA
1725 if (debug_displaced)
1726 fprintf_unfiltered (gdb_stdlog,
9844051a
SM
1727 "displaced: not enough resources available, "
1728 "deferring step of %s\n",
a068643d 1729 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1730
9844051a 1731 global_thread_step_over_chain_enqueue (tp);
effb9843 1732 tp->inf->displaced_step_state.unavailable = true;
d35ae833 1733
9844051a 1734 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
d35ae833
PA
1735 }
1736
9844051a
SM
1737 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1738
1739// FIXME: Should probably replicated in the arch implementation now.
1740//
1741// if (breakpoint_in_range_p (aspace, copy, len))
1742// {
1743// /* There's a breakpoint set in the scratch pad location range
1744// (which is usually around the entry point). We'd either
1745// install it before resuming, which would overwrite/corrupt the
1746// scratch pad, or if it was already inserted, this displaced
1747// step would overwrite it. The latter is OK in the sense that
1748// we already assume that no thread is going to execute the code
1749// in the scratch pad range (after initial startup) anyway, but
1750// the former is unacceptable. Simply punt and fallback to
1751// stepping over this breakpoint in-line. */
1752// if (debug_displaced)
1753// {
1754// fprintf_unfiltered (gdb_stdlog,
1755// "displaced: breakpoint set in scratch pad. "
1756// "Stepping over breakpoint in-line instead.\n");
1757// }
1758//
1759// gdb_assert (false);
1760// gdbarch_displaced_step_release_location (gdbarch, copy);
1761//
1762// return -1;
1763// }
237fc4c9 1764
9f5a595d
UW
1765 /* Save the information we need to fix things up if the step
1766 succeeds. */
9844051a 1767 thread_disp_step_state->set (gdbarch);
9f5a595d 1768
9844051a
SM
1769 // FIXME: get it from _prepare?
1770 CORE_ADDR displaced_pc = 0;
ad53cd71 1771
237fc4c9 1772 if (debug_displaced)
9844051a
SM
1773 fprintf_unfiltered (gdb_stdlog,
1774 "displaced: prepared successfully thread=%s, "
1775 "original_pc=%s, displaced_pc=%s\n",
1776 target_pid_to_str (tp->ptid).c_str (),
1777 paddress (gdbarch, original_pc),
1778 paddress (gdbarch, displaced_pc));
1779
1780 return DISPLACED_STEP_PREPARE_STATUS_OK;
237fc4c9
PA
1781}
1782
3fc8eb30
PA
1783/* Wrapper for displaced_step_prepare_throw that disabled further
1784 attempts at displaced stepping if we get a memory error. */
1785
9844051a 1786static displaced_step_prepare_status
00431a78 1787displaced_step_prepare (thread_info *thread)
3fc8eb30 1788{
9844051a
SM
1789 displaced_step_prepare_status status
1790 = DISPLACED_STEP_PREPARE_STATUS_ERROR;
3fc8eb30 1791
a70b8144 1792 try
3fc8eb30 1793 {
9844051a 1794 status = displaced_step_prepare_throw (thread);
3fc8eb30 1795 }
230d2906 1796 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1797 {
1798 struct displaced_step_inferior_state *displaced_state;
1799
16b41842
PA
1800 if (ex.error != MEMORY_ERROR
1801 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1802 throw;
3fc8eb30 1803
edbcda09
SM
1804 infrun_log_debug ("caught exception, disabling displaced stepping: %s",
1805 ex.what ());
3fc8eb30
PA
1806
1807 /* Be verbose if "set displaced-stepping" is "on", silent if
1808 "auto". */
1809 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1810 {
fd7dcb94 1811 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1812 ex.what ());
3fc8eb30
PA
1813 }
1814
1815 /* Disable further displaced stepping attempts. */
1816 displaced_state
00431a78 1817 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1818 displaced_state->failed_before = 1;
1819 }
3fc8eb30 1820
9844051a 1821 return status;
e2d96639
YQ
1822}
1823
372316f1
PA
1824/* If we displaced stepped an instruction successfully, adjust
1825 registers and memory to yield the same effect the instruction would
1826 have had if we had executed it at its original address, and return
1827 1. If the instruction didn't complete, relocate the PC and return
1828 -1. If the thread wasn't displaced stepping, return 0. */
1829
1830static int
9844051a 1831displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1832{
9844051a
SM
1833 displaced_step_thread_state *displaced
1834 = get_displaced_stepping_state (event_thread);
fc1cf338 1835
9844051a
SM
1836 /* Was this thread performing a displaced step? */
1837 if (!displaced->in_progress ())
372316f1 1838 return 0;
237fc4c9 1839
9844051a
SM
1840 displaced_step_reset_cleanup cleanup (displaced);
1841
cb71640d
PA
1842 /* Fixup may need to read memory/registers. Switch to the thread
1843 that we're fixing up. Also, target_stopped_by_watchpoint checks
d43b7a2d
TBA
1844 the current thread, and displaced_step_restore performs ptid-dependent
1845 memory accesses using current_inferior() and current_top_target(). */
00431a78 1846 switch_to_thread (event_thread);
cb71640d 1847
9844051a
SM
1848 /* Do the fixup, and release the resources acquired to do the displaced
1849 step. */
1850 displaced_step_finish_status finish_status =
768e1fd2
SM
1851 event_thread->inf->top_target ()->displaced_step_finish (event_thread,
1852 signal);
d43b7a2d 1853
9844051a
SM
1854 if (finish_status == DISPLACED_STEP_FINISH_STATUS_OK)
1855 return 1;
237fc4c9 1856 else
9844051a 1857 return -1;
c2829269 1858}
1c5cfe86 1859
4d9d9d04
PA
1860/* Data to be passed around while handling an event. This data is
1861 discarded between events. */
1862struct execution_control_state
1863{
5b6d1e4f 1864 process_stratum_target *target;
4d9d9d04
PA
1865 ptid_t ptid;
1866 /* The thread that got the event, if this was a thread event; NULL
1867 otherwise. */
1868 struct thread_info *event_thread;
1869
1870 struct target_waitstatus ws;
1871 int stop_func_filled_in;
1872 CORE_ADDR stop_func_start;
1873 CORE_ADDR stop_func_end;
1874 const char *stop_func_name;
1875 int wait_some_more;
1876
1877 /* True if the event thread hit the single-step breakpoint of
1878 another thread. Thus the event doesn't cause a stop, the thread
1879 needs to be single-stepped past the single-step breakpoint before
1880 we can switch back to the original stepping thread. */
1881 int hit_singlestep_breakpoint;
1882};
1883
1884/* Clear ECS and set it to point at TP. */
c2829269
PA
1885
1886static void
4d9d9d04
PA
1887reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1888{
1889 memset (ecs, 0, sizeof (*ecs));
1890 ecs->event_thread = tp;
1891 ecs->ptid = tp->ptid;
1892}
1893
1894static void keep_going_pass_signal (struct execution_control_state *ecs);
1895static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1896static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1897static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1898
1899/* Are there any pending step-over requests? If so, run all we can
1900 now and return true. Otherwise, return false. */
1901
1902static int
c2829269
PA
1903start_step_over (void)
1904{
1905 struct thread_info *tp, *next;
9844051a 1906 int started = 0;
c2829269 1907
372316f1
PA
1908 /* Don't start a new step-over if we already have an in-line
1909 step-over operation ongoing. */
1910 if (step_over_info_valid_p ())
9844051a
SM
1911 return started;
1912
1913 /* Steal the global thread step over chain. */
1914 thread_info *threads_to_step = global_thread_step_over_chain_head;
1915 global_thread_step_over_chain_head = NULL;
1916
1917 if (debug_infrun)
1918 fprintf_unfiltered (gdb_stdlog,
1919 "infrun: stealing list of %d threads to step from global queue\n",
1920 thread_step_over_chain_length (threads_to_step));
372316f1 1921
effb9843
SM
1922 for (inferior *inf : all_inferiors ())
1923 inf->displaced_step_state.unavailable = false;
1924
9844051a 1925 for (tp = threads_to_step; tp != NULL; tp = next)
237fc4c9 1926 {
4d9d9d04
PA
1927 struct execution_control_state ecss;
1928 struct execution_control_state *ecs = &ecss;
8d297bbf 1929 step_over_what step_what;
372316f1 1930 int must_be_in_line;
c2829269 1931
c65d6b55
PA
1932 gdb_assert (!tp->stop_requested);
1933
9844051a 1934 next = thread_step_over_chain_next (threads_to_step, tp);
c2829269 1935
372316f1
PA
1936 step_what = thread_still_needs_step_over (tp);
1937 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1938 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1939 && !use_displaced_stepping (tp)));
372316f1
PA
1940
1941 /* We currently stop all threads of all processes to step-over
1942 in-line. If we need to start a new in-line step-over, let
1943 any pending displaced steps finish first. */
9844051a
SM
1944 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1945 continue;
c2829269 1946
9844051a 1947 thread_step_over_chain_remove (&threads_to_step, tp);
c2829269 1948
372316f1
PA
1949 if (tp->control.trap_expected
1950 || tp->resumed
1951 || tp->executing)
ad53cd71 1952 {
4d9d9d04
PA
1953 internal_error (__FILE__, __LINE__,
1954 "[%s] has inconsistent state: "
372316f1 1955 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1956 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1957 tp->control.trap_expected,
372316f1 1958 tp->resumed,
4d9d9d04 1959 tp->executing);
ad53cd71 1960 }
1c5cfe86 1961
edbcda09
SM
1962 infrun_log_debug ("resuming [%s] for step-over",
1963 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1964
1965 /* keep_going_pass_signal skips the step-over if the breakpoint
1966 is no longer inserted. In all-stop, we want to keep looking
1967 for a thread that needs a step-over instead of resuming TP,
1968 because we wouldn't be able to resume anything else until the
1969 target stops again. In non-stop, the resume always resumes
1970 only TP, so it's OK to let the thread resume freely. */
fbea99ea 1971 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 1972 continue;
8550d3b3 1973
effb9843
SM
1974 if (tp->inf->displaced_step_state.unavailable)
1975 {
1976 global_thread_step_over_chain_enqueue (tp);
1977 continue;
1978 }
1979
00431a78 1980 switch_to_thread (tp);
4d9d9d04
PA
1981 reset_ecs (ecs, tp);
1982 keep_going_pass_signal (ecs);
1c5cfe86 1983
4d9d9d04
PA
1984 if (!ecs->wait_some_more)
1985 error (_("Command aborted."));
1c5cfe86 1986
9844051a
SM
1987 /* If the thread's step over could not be initiated, it was re-added
1988 to the global step over chain. */
1989 if (tp->resumed)
1990 {
1991 infrun_log_debug ("start_step_over: [%s] was resumed.\n",
1992 target_pid_to_str (tp->ptid).c_str ());
1993 gdb_assert (!thread_is_in_step_over_chain (tp));
1994 }
1995 else
1996 {
1997 infrun_log_debug ("infrun: start_step_over: [%s] was NOT resumed.\n",
1998 target_pid_to_str (tp->ptid).c_str ());
1999 gdb_assert (thread_is_in_step_over_chain (tp));
2000
2001 }
372316f1
PA
2002
2003 /* If we started a new in-line step-over, we're done. */
2004 if (step_over_info_valid_p ())
2005 {
2006 gdb_assert (tp->control.trap_expected);
9844051a
SM
2007 started = 1;
2008 break;
372316f1
PA
2009 }
2010
fbea99ea 2011 if (!target_is_non_stop_p ())
4d9d9d04
PA
2012 {
2013 /* On all-stop, shouldn't have resumed unless we needed a
2014 step over. */
2015 gdb_assert (tp->control.trap_expected
2016 || tp->step_after_step_resume_breakpoint);
2017
2018 /* With remote targets (at least), in all-stop, we can't
2019 issue any further remote commands until the program stops
2020 again. */
9844051a
SM
2021 started = 1;
2022 break;
1c5cfe86 2023 }
c2829269 2024
4d9d9d04
PA
2025 /* Either the thread no longer needed a step-over, or a new
2026 displaced stepping sequence started. Even in the latter
2027 case, continue looking. Maybe we can also start another
2028 displaced step on a thread of other process. */
237fc4c9 2029 }
4d9d9d04 2030
9844051a
SM
2031 /* If there are threads left in the THREADS_TO_STEP list, but we have
2032 detected that we can't start anything more, put back these threads
2033 in the global list. */
2034 if (threads_to_step == NULL)
2035 {
2036 if (debug_infrun)
2037 fprintf_unfiltered (gdb_stdlog,
2038 "infrun: step-over queue now empty\n");
2039 }
2040 else
2041 {
2042 if (debug_infrun)
2043 fprintf_unfiltered (gdb_stdlog,
2044 "infrun: putting back %d threads to step in global queue\n",
2045 thread_step_over_chain_length (threads_to_step));
2046 while (threads_to_step != nullptr)
2047 {
2048 thread_info *thread = threads_to_step;
2049
2050 /* Remove from that list. */
2051 thread_step_over_chain_remove (&threads_to_step, thread);
2052
2053 /* Add to global list. */
2054 global_thread_step_over_chain_enqueue (thread);
2055
2056 }
2057 }
2058
2059 return started;
237fc4c9
PA
2060}
2061
5231c1fd
PA
2062/* Update global variables holding ptids to hold NEW_PTID if they were
2063 holding OLD_PTID. */
2064static void
2065infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2066{
d7e15655 2067 if (inferior_ptid == old_ptid)
5231c1fd 2068 inferior_ptid = new_ptid;
5231c1fd
PA
2069}
2070
237fc4c9 2071\f
c906108c 2072
53904c9e
AC
2073static const char schedlock_off[] = "off";
2074static const char schedlock_on[] = "on";
2075static const char schedlock_step[] = "step";
f2665db5 2076static const char schedlock_replay[] = "replay";
40478521 2077static const char *const scheduler_enums[] = {
ef346e04
AC
2078 schedlock_off,
2079 schedlock_on,
2080 schedlock_step,
f2665db5 2081 schedlock_replay,
ef346e04
AC
2082 NULL
2083};
f2665db5 2084static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2085static void
2086show_scheduler_mode (struct ui_file *file, int from_tty,
2087 struct cmd_list_element *c, const char *value)
2088{
3e43a32a
MS
2089 fprintf_filtered (file,
2090 _("Mode for locking scheduler "
2091 "during execution is \"%s\".\n"),
920d2a44
AC
2092 value);
2093}
c906108c
SS
2094
2095static void
eb4c3f4a 2096set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2097{
eefe576e
AC
2098 if (!target_can_lock_scheduler)
2099 {
2100 scheduler_mode = schedlock_off;
2101 error (_("Target '%s' cannot support this command."), target_shortname);
2102 }
c906108c
SS
2103}
2104
d4db2f36
PA
2105/* True if execution commands resume all threads of all processes by
2106 default; otherwise, resume only threads of the current inferior
2107 process. */
491144b5 2108bool sched_multi = false;
d4db2f36 2109
2facfe5c
DD
2110/* Try to setup for software single stepping over the specified location.
2111 Return 1 if target_resume() should use hardware single step.
2112
2113 GDBARCH the current gdbarch.
2114 PC the location to step over. */
2115
2116static int
2117maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2118{
2119 int hw_step = 1;
2120
f02253f1 2121 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2122 && gdbarch_software_single_step_p (gdbarch))
2123 hw_step = !insert_single_step_breakpoints (gdbarch);
2124
2facfe5c
DD
2125 return hw_step;
2126}
c906108c 2127
f3263aa4
PA
2128/* See infrun.h. */
2129
09cee04b
PA
2130ptid_t
2131user_visible_resume_ptid (int step)
2132{
f3263aa4 2133 ptid_t resume_ptid;
09cee04b 2134
09cee04b
PA
2135 if (non_stop)
2136 {
2137 /* With non-stop mode on, threads are always handled
2138 individually. */
2139 resume_ptid = inferior_ptid;
2140 }
2141 else if ((scheduler_mode == schedlock_on)
03d46957 2142 || (scheduler_mode == schedlock_step && step))
09cee04b 2143 {
f3263aa4
PA
2144 /* User-settable 'scheduler' mode requires solo thread
2145 resume. */
09cee04b
PA
2146 resume_ptid = inferior_ptid;
2147 }
f2665db5
MM
2148 else if ((scheduler_mode == schedlock_replay)
2149 && target_record_will_replay (minus_one_ptid, execution_direction))
2150 {
2151 /* User-settable 'scheduler' mode requires solo thread resume in replay
2152 mode. */
2153 resume_ptid = inferior_ptid;
2154 }
f3263aa4
PA
2155 else if (!sched_multi && target_supports_multi_process ())
2156 {
2157 /* Resume all threads of the current process (and none of other
2158 processes). */
e99b03dc 2159 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2160 }
2161 else
2162 {
2163 /* Resume all threads of all processes. */
2164 resume_ptid = RESUME_ALL;
2165 }
09cee04b
PA
2166
2167 return resume_ptid;
2168}
2169
5b6d1e4f
PA
2170/* See infrun.h. */
2171
2172process_stratum_target *
2173user_visible_resume_target (ptid_t resume_ptid)
2174{
2175 return (resume_ptid == minus_one_ptid && sched_multi
2176 ? NULL
2177 : current_inferior ()->process_target ());
2178}
2179
fbea99ea
PA
2180/* Return a ptid representing the set of threads that we will resume,
2181 in the perspective of the target, assuming run control handling
2182 does not require leaving some threads stopped (e.g., stepping past
2183 breakpoint). USER_STEP indicates whether we're about to start the
2184 target for a stepping command. */
2185
2186static ptid_t
2187internal_resume_ptid (int user_step)
2188{
2189 /* In non-stop, we always control threads individually. Note that
2190 the target may always work in non-stop mode even with "set
2191 non-stop off", in which case user_visible_resume_ptid could
2192 return a wildcard ptid. */
2193 if (target_is_non_stop_p ())
2194 return inferior_ptid;
2195 else
2196 return user_visible_resume_ptid (user_step);
2197}
2198
64ce06e4
PA
2199/* Wrapper for target_resume, that handles infrun-specific
2200 bookkeeping. */
2201
2202static void
2203do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2204{
2205 struct thread_info *tp = inferior_thread ();
2206
c65d6b55
PA
2207 gdb_assert (!tp->stop_requested);
2208
64ce06e4 2209 /* Install inferior's terminal modes. */
223ffa71 2210 target_terminal::inferior ();
64ce06e4
PA
2211
2212 /* Avoid confusing the next resume, if the next stop/resume
2213 happens to apply to another thread. */
2214 tp->suspend.stop_signal = GDB_SIGNAL_0;
2215
8f572e5c
PA
2216 /* Advise target which signals may be handled silently.
2217
2218 If we have removed breakpoints because we are stepping over one
2219 in-line (in any thread), we need to receive all signals to avoid
2220 accidentally skipping a breakpoint during execution of a signal
2221 handler.
2222
2223 Likewise if we're displaced stepping, otherwise a trap for a
2224 breakpoint in a signal handler might be confused with the
2225 displaced step finishing. We don't make the displaced_step_fixup
2226 step distinguish the cases instead, because:
2227
2228 - a backtrace while stopped in the signal handler would show the
2229 scratch pad as frame older than the signal handler, instead of
2230 the real mainline code.
2231
2232 - when the thread is later resumed, the signal handler would
2233 return to the scratch pad area, which would no longer be
2234 valid. */
2235 if (step_over_info_valid_p ()
00431a78 2236 || displaced_step_in_progress (tp->inf))
adc6a863 2237 target_pass_signals ({});
64ce06e4 2238 else
adc6a863 2239 target_pass_signals (signal_pass);
64ce06e4
PA
2240
2241 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2242
2243 target_commit_resume ();
5b6d1e4f
PA
2244
2245 if (target_can_async_p ())
2246 target_async (1);
64ce06e4
PA
2247}
2248
d930703d 2249/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2250 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2251 call 'resume', which handles exceptions. */
c906108c 2252
71d378ae
PA
2253static void
2254resume_1 (enum gdb_signal sig)
c906108c 2255{
515630c5 2256 struct regcache *regcache = get_current_regcache ();
ac7936df 2257 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2258 struct thread_info *tp = inferior_thread ();
8b86c959 2259 const address_space *aspace = regcache->aspace ();
b0f16a3e 2260 ptid_t resume_ptid;
856e7dd6
PA
2261 /* This represents the user's step vs continue request. When
2262 deciding whether "set scheduler-locking step" applies, it's the
2263 user's intention that counts. */
2264 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2265 /* This represents what we'll actually request the target to do.
2266 This can decay from a step to a continue, if e.g., we need to
2267 implement single-stepping with breakpoints (software
2268 single-step). */
6b403daa 2269 int step;
c7e8a53c 2270
c65d6b55 2271 gdb_assert (!tp->stop_requested);
c2829269
PA
2272 gdb_assert (!thread_is_in_step_over_chain (tp));
2273
372316f1
PA
2274 if (tp->suspend.waitstatus_pending_p)
2275 {
edbcda09
SM
2276 infrun_log_debug
2277 ("thread %s has pending wait "
2278 "status %s (currently_stepping=%d).",
2279 target_pid_to_str (tp->ptid).c_str (),
2280 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2281 currently_stepping (tp));
372316f1 2282
5b6d1e4f 2283 tp->inf->process_target ()->threads_executing = true;
719546c4 2284 tp->resumed = true;
372316f1
PA
2285
2286 /* FIXME: What should we do if we are supposed to resume this
2287 thread with a signal? Maybe we should maintain a queue of
2288 pending signals to deliver. */
2289 if (sig != GDB_SIGNAL_0)
2290 {
fd7dcb94 2291 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2292 gdb_signal_to_name (sig),
2293 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2294 }
2295
2296 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2297
2298 if (target_can_async_p ())
9516f85a
AB
2299 {
2300 target_async (1);
2301 /* Tell the event loop we have an event to process. */
2302 mark_async_event_handler (infrun_async_inferior_event_token);
2303 }
372316f1
PA
2304 return;
2305 }
2306
2307 tp->stepped_breakpoint = 0;
2308
6b403daa
PA
2309 /* Depends on stepped_breakpoint. */
2310 step = currently_stepping (tp);
2311
74609e71
YQ
2312 if (current_inferior ()->waiting_for_vfork_done)
2313 {
48f9886d
PA
2314 /* Don't try to single-step a vfork parent that is waiting for
2315 the child to get out of the shared memory region (by exec'ing
2316 or exiting). This is particularly important on software
2317 single-step archs, as the child process would trip on the
2318 software single step breakpoint inserted for the parent
2319 process. Since the parent will not actually execute any
2320 instruction until the child is out of the shared region (such
2321 are vfork's semantics), it is safe to simply continue it.
2322 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2323 the parent, and tell it to `keep_going', which automatically
2324 re-sets it stepping. */
edbcda09 2325 infrun_log_debug ("resume : clear step");
a09dd441 2326 step = 0;
74609e71
YQ
2327 }
2328
7ca9b62a
TBA
2329 CORE_ADDR pc = regcache_read_pc (regcache);
2330
edbcda09
SM
2331 infrun_log_debug ("step=%d, signal=%s, trap_expected=%d, "
2332 "current thread [%s] at %s",
2333 step, gdb_signal_to_symbol_string (sig),
2334 tp->control.trap_expected,
2335 target_pid_to_str (inferior_ptid).c_str (),
2336 paddress (gdbarch, pc));
c906108c 2337
c2c6d25f
JM
2338 /* Normally, by the time we reach `resume', the breakpoints are either
2339 removed or inserted, as appropriate. The exception is if we're sitting
2340 at a permanent breakpoint; we need to step over it, but permanent
2341 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2342 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2343 {
af48d08f
PA
2344 if (sig != GDB_SIGNAL_0)
2345 {
2346 /* We have a signal to pass to the inferior. The resume
2347 may, or may not take us to the signal handler. If this
2348 is a step, we'll need to stop in the signal handler, if
2349 there's one, (if the target supports stepping into
2350 handlers), or in the next mainline instruction, if
2351 there's no handler. If this is a continue, we need to be
2352 sure to run the handler with all breakpoints inserted.
2353 In all cases, set a breakpoint at the current address
2354 (where the handler returns to), and once that breakpoint
2355 is hit, resume skipping the permanent breakpoint. If
2356 that breakpoint isn't hit, then we've stepped into the
2357 signal handler (or hit some other event). We'll delete
2358 the step-resume breakpoint then. */
2359
edbcda09
SM
2360 infrun_log_debug ("resume: skipping permanent breakpoint, "
2361 "deliver signal first");
af48d08f
PA
2362
2363 clear_step_over_info ();
2364 tp->control.trap_expected = 0;
2365
2366 if (tp->control.step_resume_breakpoint == NULL)
2367 {
2368 /* Set a "high-priority" step-resume, as we don't want
2369 user breakpoints at PC to trigger (again) when this
2370 hits. */
2371 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2372 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2373
2374 tp->step_after_step_resume_breakpoint = step;
2375 }
2376
2377 insert_breakpoints ();
2378 }
2379 else
2380 {
2381 /* There's no signal to pass, we can go ahead and skip the
2382 permanent breakpoint manually. */
edbcda09 2383 infrun_log_debug ("skipping permanent breakpoint");
af48d08f
PA
2384 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2385 /* Update pc to reflect the new address from which we will
2386 execute instructions. */
2387 pc = regcache_read_pc (regcache);
2388
2389 if (step)
2390 {
2391 /* We've already advanced the PC, so the stepping part
2392 is done. Now we need to arrange for a trap to be
2393 reported to handle_inferior_event. Set a breakpoint
2394 at the current PC, and run to it. Don't update
2395 prev_pc, because if we end in
44a1ee51
PA
2396 switch_back_to_stepped_thread, we want the "expected
2397 thread advanced also" branch to be taken. IOW, we
2398 don't want this thread to step further from PC
af48d08f 2399 (overstep). */
1ac806b8 2400 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2401 insert_single_step_breakpoint (gdbarch, aspace, pc);
2402 insert_breakpoints ();
2403
fbea99ea 2404 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2405 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
719546c4 2406 tp->resumed = true;
af48d08f
PA
2407 return;
2408 }
2409 }
6d350bb5 2410 }
c2c6d25f 2411
c1e36e3e
PA
2412 /* If we have a breakpoint to step over, make sure to do a single
2413 step only. Same if we have software watchpoints. */
2414 if (tp->control.trap_expected || bpstat_should_step ())
2415 tp->control.may_range_step = 0;
2416
7da6a5b9
LM
2417 /* If displaced stepping is enabled, step over breakpoints by executing a
2418 copy of the instruction at a different address.
237fc4c9
PA
2419
2420 We can't use displaced stepping when we have a signal to deliver;
2421 the comments for displaced_step_prepare explain why. The
2422 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2423 signals' explain what we do instead.
2424
2425 We can't use displaced stepping when we are waiting for vfork_done
2426 event, displaced stepping breaks the vfork child similarly as single
2427 step software breakpoint. */
3fc8eb30
PA
2428 if (tp->control.trap_expected
2429 && use_displaced_stepping (tp)
cb71640d 2430 && !step_over_info_valid_p ()
a493e3e2 2431 && sig == GDB_SIGNAL_0
74609e71 2432 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2433 {
9844051a
SM
2434 displaced_step_prepare_status prepare_status
2435 = displaced_step_prepare (tp);
fc1cf338 2436
9844051a 2437 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
d56b7306 2438 {
edbcda09 2439 infrun_log_debug ("Got placed in step-over queue");
4d9d9d04
PA
2440
2441 tp->control.trap_expected = 0;
d56b7306
VP
2442 return;
2443 }
9844051a 2444 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
3fc8eb30
PA
2445 {
2446 /* Fallback to stepping over the breakpoint in-line. */
2447
2448 if (target_is_non_stop_p ())
2449 stop_all_threads ();
2450
a01bda52 2451 set_step_over_info (regcache->aspace (),
21edc42f 2452 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2453
2454 step = maybe_software_singlestep (gdbarch, pc);
2455
2456 insert_breakpoints ();
2457 }
9844051a 2458 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
3fc8eb30 2459 {
9844051a 2460 step = gdbarch_displaced_step_hw_singlestep (gdbarch, NULL);
3fc8eb30 2461 }
9844051a
SM
2462 else
2463 gdb_assert_not_reached ("invalid displaced_step_prepare_status value");
237fc4c9
PA
2464 }
2465
2facfe5c 2466 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2467 else if (step)
2facfe5c 2468 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2469
30852783
UW
2470 /* Currently, our software single-step implementation leads to different
2471 results than hardware single-stepping in one situation: when stepping
2472 into delivering a signal which has an associated signal handler,
2473 hardware single-step will stop at the first instruction of the handler,
2474 while software single-step will simply skip execution of the handler.
2475
2476 For now, this difference in behavior is accepted since there is no
2477 easy way to actually implement single-stepping into a signal handler
2478 without kernel support.
2479
2480 However, there is one scenario where this difference leads to follow-on
2481 problems: if we're stepping off a breakpoint by removing all breakpoints
2482 and then single-stepping. In this case, the software single-step
2483 behavior means that even if there is a *breakpoint* in the signal
2484 handler, GDB still would not stop.
2485
2486 Fortunately, we can at least fix this particular issue. We detect
2487 here the case where we are about to deliver a signal while software
2488 single-stepping with breakpoints removed. In this situation, we
2489 revert the decisions to remove all breakpoints and insert single-
2490 step breakpoints, and instead we install a step-resume breakpoint
2491 at the current address, deliver the signal without stepping, and
2492 once we arrive back at the step-resume breakpoint, actually step
2493 over the breakpoint we originally wanted to step over. */
34b7e8a6 2494 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2495 && sig != GDB_SIGNAL_0
2496 && step_over_info_valid_p ())
30852783
UW
2497 {
2498 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2499 immediately after a handler returns, might already have
30852783
UW
2500 a step-resume breakpoint set on the earlier handler. We cannot
2501 set another step-resume breakpoint; just continue on until the
2502 original breakpoint is hit. */
2503 if (tp->control.step_resume_breakpoint == NULL)
2504 {
2c03e5be 2505 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2506 tp->step_after_step_resume_breakpoint = 1;
2507 }
2508
34b7e8a6 2509 delete_single_step_breakpoints (tp);
30852783 2510
31e77af2 2511 clear_step_over_info ();
30852783 2512 tp->control.trap_expected = 0;
31e77af2
PA
2513
2514 insert_breakpoints ();
30852783
UW
2515 }
2516
b0f16a3e
SM
2517 /* If STEP is set, it's a request to use hardware stepping
2518 facilities. But in that case, we should never
2519 use singlestep breakpoint. */
34b7e8a6 2520 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2521
fbea99ea 2522 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2523 if (tp->control.trap_expected)
b0f16a3e
SM
2524 {
2525 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2526 hit, either by single-stepping the thread with the breakpoint
2527 removed, or by displaced stepping, with the breakpoint inserted.
2528 In the former case, we need to single-step only this thread,
2529 and keep others stopped, as they can miss this breakpoint if
2530 allowed to run. That's not really a problem for displaced
2531 stepping, but, we still keep other threads stopped, in case
2532 another thread is also stopped for a breakpoint waiting for
2533 its turn in the displaced stepping queue. */
b0f16a3e
SM
2534 resume_ptid = inferior_ptid;
2535 }
fbea99ea
PA
2536 else
2537 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2538
7f5ef605
PA
2539 if (execution_direction != EXEC_REVERSE
2540 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2541 {
372316f1
PA
2542 /* There are two cases where we currently need to step a
2543 breakpoint instruction when we have a signal to deliver:
2544
2545 - See handle_signal_stop where we handle random signals that
2546 could take out us out of the stepping range. Normally, in
2547 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2548 signal handler with a breakpoint at PC, but there are cases
2549 where we should _always_ single-step, even if we have a
2550 step-resume breakpoint, like when a software watchpoint is
2551 set. Assuming single-stepping and delivering a signal at the
2552 same time would takes us to the signal handler, then we could
2553 have removed the breakpoint at PC to step over it. However,
2554 some hardware step targets (like e.g., Mac OS) can't step
2555 into signal handlers, and for those, we need to leave the
2556 breakpoint at PC inserted, as otherwise if the handler
2557 recurses and executes PC again, it'll miss the breakpoint.
2558 So we leave the breakpoint inserted anyway, but we need to
2559 record that we tried to step a breakpoint instruction, so
372316f1
PA
2560 that adjust_pc_after_break doesn't end up confused.
2561
2562 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2563 in one thread after another thread that was stepping had been
2564 momentarily paused for a step-over. When we re-resume the
2565 stepping thread, it may be resumed from that address with a
2566 breakpoint that hasn't trapped yet. Seen with
2567 gdb.threads/non-stop-fair-events.exp, on targets that don't
2568 do displaced stepping. */
2569
edbcda09
SM
2570 infrun_log_debug ("resume: [%s] stepped breakpoint",
2571 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2572
2573 tp->stepped_breakpoint = 1;
2574
b0f16a3e
SM
2575 /* Most targets can step a breakpoint instruction, thus
2576 executing it normally. But if this one cannot, just
2577 continue and we will hit it anyway. */
7f5ef605 2578 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2579 step = 0;
2580 }
ef5cf84e 2581
b0f16a3e 2582 if (debug_displaced
cb71640d 2583 && tp->control.trap_expected
3fc8eb30 2584 && use_displaced_stepping (tp)
cb71640d 2585 && !step_over_info_valid_p ())
b0f16a3e 2586 {
00431a78 2587 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2588 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2589 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2590 gdb_byte buf[4];
2591
2592 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2593 paddress (resume_gdbarch, actual_pc));
2594 read_memory (actual_pc, buf, sizeof (buf));
2595 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2596 }
237fc4c9 2597
b0f16a3e
SM
2598 if (tp->control.may_range_step)
2599 {
2600 /* If we're resuming a thread with the PC out of the step
2601 range, then we're doing some nested/finer run control
2602 operation, like stepping the thread out of the dynamic
2603 linker or the displaced stepping scratch pad. We
2604 shouldn't have allowed a range step then. */
2605 gdb_assert (pc_in_thread_step_range (pc, tp));
2606 }
c1e36e3e 2607
64ce06e4 2608 do_target_resume (resume_ptid, step, sig);
719546c4 2609 tp->resumed = true;
c906108c 2610}
71d378ae
PA
2611
2612/* Resume the inferior. SIG is the signal to give the inferior
2613 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2614 rolls back state on error. */
2615
aff4e175 2616static void
71d378ae
PA
2617resume (gdb_signal sig)
2618{
a70b8144 2619 try
71d378ae
PA
2620 {
2621 resume_1 (sig);
2622 }
230d2906 2623 catch (const gdb_exception &ex)
71d378ae
PA
2624 {
2625 /* If resuming is being aborted for any reason, delete any
2626 single-step breakpoint resume_1 may have created, to avoid
2627 confusing the following resumption, and to avoid leaving
2628 single-step breakpoints perturbing other threads, in case
2629 we're running in non-stop mode. */
2630 if (inferior_ptid != null_ptid)
2631 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2632 throw;
71d378ae 2633 }
71d378ae
PA
2634}
2635
c906108c 2636\f
237fc4c9 2637/* Proceeding. */
c906108c 2638
4c2f2a79
PA
2639/* See infrun.h. */
2640
2641/* Counter that tracks number of user visible stops. This can be used
2642 to tell whether a command has proceeded the inferior past the
2643 current location. This allows e.g., inferior function calls in
2644 breakpoint commands to not interrupt the command list. When the
2645 call finishes successfully, the inferior is standing at the same
2646 breakpoint as if nothing happened (and so we don't call
2647 normal_stop). */
2648static ULONGEST current_stop_id;
2649
2650/* See infrun.h. */
2651
2652ULONGEST
2653get_stop_id (void)
2654{
2655 return current_stop_id;
2656}
2657
2658/* Called when we report a user visible stop. */
2659
2660static void
2661new_stop_id (void)
2662{
2663 current_stop_id++;
2664}
2665
c906108c
SS
2666/* Clear out all variables saying what to do when inferior is continued.
2667 First do this, then set the ones you want, then call `proceed'. */
2668
a7212384
UW
2669static void
2670clear_proceed_status_thread (struct thread_info *tp)
c906108c 2671{
edbcda09 2672 infrun_log_debug ("%s", target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2673
372316f1
PA
2674 /* If we're starting a new sequence, then the previous finished
2675 single-step is no longer relevant. */
2676 if (tp->suspend.waitstatus_pending_p)
2677 {
2678 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2679 {
edbcda09
SM
2680 infrun_log_debug ("pending event of %s was a finished step. "
2681 "Discarding.",
2682 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2683
2684 tp->suspend.waitstatus_pending_p = 0;
2685 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2686 }
edbcda09 2687 else
372316f1 2688 {
edbcda09
SM
2689 infrun_log_debug
2690 ("thread %s has pending wait status %s (currently_stepping=%d).",
2691 target_pid_to_str (tp->ptid).c_str (),
2692 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2693 currently_stepping (tp));
372316f1
PA
2694 }
2695 }
2696
70509625
PA
2697 /* If this signal should not be seen by program, give it zero.
2698 Used for debugging signals. */
2699 if (!signal_pass_state (tp->suspend.stop_signal))
2700 tp->suspend.stop_signal = GDB_SIGNAL_0;
2701
46e3ed7f 2702 delete tp->thread_fsm;
243a9253
PA
2703 tp->thread_fsm = NULL;
2704
16c381f0
JK
2705 tp->control.trap_expected = 0;
2706 tp->control.step_range_start = 0;
2707 tp->control.step_range_end = 0;
c1e36e3e 2708 tp->control.may_range_step = 0;
16c381f0
JK
2709 tp->control.step_frame_id = null_frame_id;
2710 tp->control.step_stack_frame_id = null_frame_id;
2711 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2712 tp->control.step_start_function = NULL;
a7212384 2713 tp->stop_requested = 0;
4e1c45ea 2714
16c381f0 2715 tp->control.stop_step = 0;
32400beb 2716
16c381f0 2717 tp->control.proceed_to_finish = 0;
414c69f7 2718
856e7dd6 2719 tp->control.stepping_command = 0;
17b2616c 2720
a7212384 2721 /* Discard any remaining commands or status from previous stop. */
16c381f0 2722 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2723}
32400beb 2724
a7212384 2725void
70509625 2726clear_proceed_status (int step)
a7212384 2727{
f2665db5
MM
2728 /* With scheduler-locking replay, stop replaying other threads if we're
2729 not replaying the user-visible resume ptid.
2730
2731 This is a convenience feature to not require the user to explicitly
2732 stop replaying the other threads. We're assuming that the user's
2733 intent is to resume tracing the recorded process. */
2734 if (!non_stop && scheduler_mode == schedlock_replay
2735 && target_record_is_replaying (minus_one_ptid)
2736 && !target_record_will_replay (user_visible_resume_ptid (step),
2737 execution_direction))
2738 target_record_stop_replaying ();
2739
08036331 2740 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2741 {
08036331 2742 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2743 process_stratum_target *resume_target
2744 = user_visible_resume_target (resume_ptid);
70509625
PA
2745
2746 /* In all-stop mode, delete the per-thread status of all threads
2747 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2748 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2749 clear_proceed_status_thread (tp);
6c95b8df
PA
2750 }
2751
d7e15655 2752 if (inferior_ptid != null_ptid)
a7212384
UW
2753 {
2754 struct inferior *inferior;
2755
2756 if (non_stop)
2757 {
6c95b8df
PA
2758 /* If in non-stop mode, only delete the per-thread status of
2759 the current thread. */
a7212384
UW
2760 clear_proceed_status_thread (inferior_thread ());
2761 }
6c95b8df 2762
d6b48e9c 2763 inferior = current_inferior ();
16c381f0 2764 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2765 }
2766
76727919 2767 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2768}
2769
99619bea
PA
2770/* Returns true if TP is still stopped at a breakpoint that needs
2771 stepping-over in order to make progress. If the breakpoint is gone
2772 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2773
2774static int
6c4cfb24 2775thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2776{
2777 if (tp->stepping_over_breakpoint)
2778 {
00431a78 2779 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2780
a01bda52 2781 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2782 regcache_read_pc (regcache))
2783 == ordinary_breakpoint_here)
99619bea
PA
2784 return 1;
2785
2786 tp->stepping_over_breakpoint = 0;
2787 }
2788
2789 return 0;
2790}
2791
6c4cfb24
PA
2792/* Check whether thread TP still needs to start a step-over in order
2793 to make progress when resumed. Returns an bitwise or of enum
2794 step_over_what bits, indicating what needs to be stepped over. */
2795
8d297bbf 2796static step_over_what
6c4cfb24
PA
2797thread_still_needs_step_over (struct thread_info *tp)
2798{
8d297bbf 2799 step_over_what what = 0;
6c4cfb24
PA
2800
2801 if (thread_still_needs_step_over_bp (tp))
2802 what |= STEP_OVER_BREAKPOINT;
2803
2804 if (tp->stepping_over_watchpoint
2805 && !target_have_steppable_watchpoint)
2806 what |= STEP_OVER_WATCHPOINT;
2807
2808 return what;
2809}
2810
483805cf
PA
2811/* Returns true if scheduler locking applies. STEP indicates whether
2812 we're about to do a step/next-like command to a thread. */
2813
2814static int
856e7dd6 2815schedlock_applies (struct thread_info *tp)
483805cf
PA
2816{
2817 return (scheduler_mode == schedlock_on
2818 || (scheduler_mode == schedlock_step
f2665db5
MM
2819 && tp->control.stepping_command)
2820 || (scheduler_mode == schedlock_replay
2821 && target_record_will_replay (minus_one_ptid,
2822 execution_direction)));
483805cf
PA
2823}
2824
5b6d1e4f
PA
2825/* Calls target_commit_resume on all targets. */
2826
2827static void
2828commit_resume_all_targets ()
2829{
2830 scoped_restore_current_thread restore_thread;
2831
2832 /* Map between process_target and a representative inferior. This
2833 is to avoid committing a resume in the same target more than
2834 once. Resumptions must be idempotent, so this is an
2835 optimization. */
2836 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2837
2838 for (inferior *inf : all_non_exited_inferiors ())
2839 if (inf->has_execution ())
2840 conn_inf[inf->process_target ()] = inf;
2841
2842 for (const auto &ci : conn_inf)
2843 {
2844 inferior *inf = ci.second;
2845 switch_to_inferior_no_thread (inf);
2846 target_commit_resume ();
2847 }
2848}
2849
2f4fcf00
PA
2850/* Check that all the targets we're about to resume are in non-stop
2851 mode. Ideally, we'd only care whether all targets support
2852 target-async, but we're not there yet. E.g., stop_all_threads
2853 doesn't know how to handle all-stop targets. Also, the remote
2854 protocol in all-stop mode is synchronous, irrespective of
2855 target-async, which means that things like a breakpoint re-set
2856 triggered by one target would try to read memory from all targets
2857 and fail. */
2858
2859static void
2860check_multi_target_resumption (process_stratum_target *resume_target)
2861{
2862 if (!non_stop && resume_target == nullptr)
2863 {
2864 scoped_restore_current_thread restore_thread;
2865
2866 /* This is used to track whether we're resuming more than one
2867 target. */
2868 process_stratum_target *first_connection = nullptr;
2869
2870 /* The first inferior we see with a target that does not work in
2871 always-non-stop mode. */
2872 inferior *first_not_non_stop = nullptr;
2873
2874 for (inferior *inf : all_non_exited_inferiors (resume_target))
2875 {
2876 switch_to_inferior_no_thread (inf);
2877
2878 if (!target_has_execution)
2879 continue;
2880
2881 process_stratum_target *proc_target
2882 = current_inferior ()->process_target();
2883
2884 if (!target_is_non_stop_p ())
2885 first_not_non_stop = inf;
2886
2887 if (first_connection == nullptr)
2888 first_connection = proc_target;
2889 else if (first_connection != proc_target
2890 && first_not_non_stop != nullptr)
2891 {
2892 switch_to_inferior_no_thread (first_not_non_stop);
2893
2894 proc_target = current_inferior ()->process_target();
2895
2896 error (_("Connection %d (%s) does not support "
2897 "multi-target resumption."),
2898 proc_target->connection_number,
2899 make_target_connection_string (proc_target).c_str ());
2900 }
2901 }
2902 }
2903}
2904
c906108c
SS
2905/* Basic routine for continuing the program in various fashions.
2906
2907 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2908 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2909 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2910
2911 You should call clear_proceed_status before calling proceed. */
2912
2913void
64ce06e4 2914proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2915{
e58b0e63
PA
2916 struct regcache *regcache;
2917 struct gdbarch *gdbarch;
e58b0e63 2918 CORE_ADDR pc;
4d9d9d04
PA
2919 struct execution_control_state ecss;
2920 struct execution_control_state *ecs = &ecss;
4d9d9d04 2921 int started;
c906108c 2922
e58b0e63
PA
2923 /* If we're stopped at a fork/vfork, follow the branch set by the
2924 "set follow-fork-mode" command; otherwise, we'll just proceed
2925 resuming the current thread. */
2926 if (!follow_fork ())
2927 {
2928 /* The target for some reason decided not to resume. */
2929 normal_stop ();
f148b27e 2930 if (target_can_async_p ())
b1a35af2 2931 inferior_event_handler (INF_EXEC_COMPLETE);
e58b0e63
PA
2932 return;
2933 }
2934
842951eb
PA
2935 /* We'll update this if & when we switch to a new thread. */
2936 previous_inferior_ptid = inferior_ptid;
2937
e58b0e63 2938 regcache = get_current_regcache ();
ac7936df 2939 gdbarch = regcache->arch ();
8b86c959
YQ
2940 const address_space *aspace = regcache->aspace ();
2941
fc75c28b
TBA
2942 pc = regcache_read_pc_protected (regcache);
2943
08036331 2944 thread_info *cur_thr = inferior_thread ();
e58b0e63 2945
99619bea 2946 /* Fill in with reasonable starting values. */
08036331 2947 init_thread_stepping_state (cur_thr);
99619bea 2948
08036331 2949 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2950
5b6d1e4f
PA
2951 ptid_t resume_ptid
2952 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2953 process_stratum_target *resume_target
2954 = user_visible_resume_target (resume_ptid);
2955
2f4fcf00
PA
2956 check_multi_target_resumption (resume_target);
2957
2acceee2 2958 if (addr == (CORE_ADDR) -1)
c906108c 2959 {
08036331 2960 if (pc == cur_thr->suspend.stop_pc
af48d08f 2961 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2962 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2963 /* There is a breakpoint at the address we will resume at,
2964 step one instruction before inserting breakpoints so that
2965 we do not stop right away (and report a second hit at this
b2175913
MS
2966 breakpoint).
2967
2968 Note, we don't do this in reverse, because we won't
2969 actually be executing the breakpoint insn anyway.
2970 We'll be (un-)executing the previous instruction. */
08036331 2971 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2972 else if (gdbarch_single_step_through_delay_p (gdbarch)
2973 && gdbarch_single_step_through_delay (gdbarch,
2974 get_current_frame ()))
3352ef37
AC
2975 /* We stepped onto an instruction that needs to be stepped
2976 again before re-inserting the breakpoint, do so. */
08036331 2977 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2978 }
2979 else
2980 {
515630c5 2981 regcache_write_pc (regcache, addr);
c906108c
SS
2982 }
2983
70509625 2984 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2985 cur_thr->suspend.stop_signal = siggnal;
70509625 2986
4d9d9d04
PA
2987 /* If an exception is thrown from this point on, make sure to
2988 propagate GDB's knowledge of the executing state to the
2989 frontend/user running state. */
5b6d1e4f 2990 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
2991
2992 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2993 threads (e.g., we might need to set threads stepping over
2994 breakpoints first), from the user/frontend's point of view, all
2995 threads in RESUME_PTID are now running. Unless we're calling an
2996 inferior function, as in that case we pretend the inferior
2997 doesn't run at all. */
08036331 2998 if (!cur_thr->control.in_infcall)
719546c4 2999 set_running (resume_target, resume_ptid, true);
17b2616c 3000
edbcda09
SM
3001 infrun_log_debug ("addr=%s, signal=%s", paddress (gdbarch, addr),
3002 gdb_signal_to_symbol_string (siggnal));
527159b7 3003
4d9d9d04
PA
3004 annotate_starting ();
3005
3006 /* Make sure that output from GDB appears before output from the
3007 inferior. */
3008 gdb_flush (gdb_stdout);
3009
d930703d
PA
3010 /* Since we've marked the inferior running, give it the terminal. A
3011 QUIT/Ctrl-C from here on is forwarded to the target (which can
3012 still detect attempts to unblock a stuck connection with repeated
3013 Ctrl-C from within target_pass_ctrlc). */
3014 target_terminal::inferior ();
3015
4d9d9d04
PA
3016 /* In a multi-threaded task we may select another thread and
3017 then continue or step.
3018
3019 But if a thread that we're resuming had stopped at a breakpoint,
3020 it will immediately cause another breakpoint stop without any
3021 execution (i.e. it will report a breakpoint hit incorrectly). So
3022 we must step over it first.
3023
3024 Look for threads other than the current (TP) that reported a
3025 breakpoint hit and haven't been resumed yet since. */
3026
3027 /* If scheduler locking applies, we can avoid iterating over all
3028 threads. */
08036331 3029 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3030 {
5b6d1e4f
PA
3031 for (thread_info *tp : all_non_exited_threads (resume_target,
3032 resume_ptid))
08036331 3033 {
f3f8ece4
PA
3034 switch_to_thread_no_regs (tp);
3035
4d9d9d04
PA
3036 /* Ignore the current thread here. It's handled
3037 afterwards. */
08036331 3038 if (tp == cur_thr)
4d9d9d04 3039 continue;
c906108c 3040
4d9d9d04
PA
3041 if (!thread_still_needs_step_over (tp))
3042 continue;
3043
3044 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3045
edbcda09
SM
3046 infrun_log_debug ("need to step-over [%s] first",
3047 target_pid_to_str (tp->ptid).c_str ());
99619bea 3048
7bd43605 3049 global_thread_step_over_chain_enqueue (tp);
2adfaa28 3050 }
f3f8ece4
PA
3051
3052 switch_to_thread (cur_thr);
30852783
UW
3053 }
3054
4d9d9d04
PA
3055 /* Enqueue the current thread last, so that we move all other
3056 threads over their breakpoints first. */
08036331 3057 if (cur_thr->stepping_over_breakpoint)
7bd43605 3058 global_thread_step_over_chain_enqueue (cur_thr);
30852783 3059
4d9d9d04
PA
3060 /* If the thread isn't started, we'll still need to set its prev_pc,
3061 so that switch_back_to_stepped_thread knows the thread hasn't
3062 advanced. Must do this before resuming any thread, as in
3063 all-stop/remote, once we resume we can't send any other packet
3064 until the target stops again. */
fc75c28b 3065 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
99619bea 3066
a9bc57b9
TT
3067 {
3068 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3069
a9bc57b9 3070 started = start_step_over ();
c906108c 3071
a9bc57b9
TT
3072 if (step_over_info_valid_p ())
3073 {
3074 /* Either this thread started a new in-line step over, or some
3075 other thread was already doing one. In either case, don't
3076 resume anything else until the step-over is finished. */
3077 }
3078 else if (started && !target_is_non_stop_p ())
3079 {
3080 /* A new displaced stepping sequence was started. In all-stop,
3081 we can't talk to the target anymore until it next stops. */
3082 }
3083 else if (!non_stop && target_is_non_stop_p ())
3084 {
3085 /* In all-stop, but the target is always in non-stop mode.
3086 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3087 for (thread_info *tp : all_non_exited_threads (resume_target,
3088 resume_ptid))
3089 {
3090 switch_to_thread_no_regs (tp);
3091
f9fac3c8
SM
3092 if (!tp->inf->has_execution ())
3093 {
edbcda09
SM
3094 infrun_log_debug ("[%s] target has no execution",
3095 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3096 continue;
3097 }
f3f8ece4 3098
f9fac3c8
SM
3099 if (tp->resumed)
3100 {
edbcda09
SM
3101 infrun_log_debug ("[%s] resumed",
3102 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3103 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3104 continue;
3105 }
fbea99ea 3106
f9fac3c8
SM
3107 if (thread_is_in_step_over_chain (tp))
3108 {
edbcda09
SM
3109 infrun_log_debug ("[%s] needs step-over",
3110 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3111 continue;
3112 }
fbea99ea 3113
edbcda09
SM
3114 infrun_log_debug ("resuming %s",
3115 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3116
f9fac3c8
SM
3117 reset_ecs (ecs, tp);
3118 switch_to_thread (tp);
3119 keep_going_pass_signal (ecs);
3120 if (!ecs->wait_some_more)
3121 error (_("Command aborted."));
3122 }
a9bc57b9 3123 }
08036331 3124 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3125 {
3126 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3127 reset_ecs (ecs, cur_thr);
3128 switch_to_thread (cur_thr);
a9bc57b9
TT
3129 keep_going_pass_signal (ecs);
3130 if (!ecs->wait_some_more)
3131 error (_("Command aborted."));
3132 }
3133 }
c906108c 3134
5b6d1e4f 3135 commit_resume_all_targets ();
85ad3aaf 3136
731f534f 3137 finish_state.release ();
c906108c 3138
873657b9
PA
3139 /* If we've switched threads above, switch back to the previously
3140 current thread. We don't want the user to see a different
3141 selected thread. */
3142 switch_to_thread (cur_thr);
3143
0b333c5e
PA
3144 /* Tell the event loop to wait for it to stop. If the target
3145 supports asynchronous execution, it'll do this from within
3146 target_resume. */
362646f5 3147 if (!target_can_async_p ())
0b333c5e 3148 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3149}
c906108c
SS
3150\f
3151
3152/* Start remote-debugging of a machine over a serial link. */
96baa820 3153
c906108c 3154void
8621d6a9 3155start_remote (int from_tty)
c906108c 3156{
5b6d1e4f
PA
3157 inferior *inf = current_inferior ();
3158 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3159
1777feb0 3160 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3161 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3162 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3163 nothing is returned (instead of just blocking). Because of this,
3164 targets expecting an immediate response need to, internally, set
3165 things up so that the target_wait() is forced to eventually
1777feb0 3166 timeout. */
6426a772
JM
3167 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3168 differentiate to its caller what the state of the target is after
3169 the initial open has been performed. Here we're assuming that
3170 the target has stopped. It should be possible to eventually have
3171 target_open() return to the caller an indication that the target
3172 is currently running and GDB state should be set to the same as
1777feb0 3173 for an async run. */
5b6d1e4f 3174 wait_for_inferior (inf);
8621d6a9
DJ
3175
3176 /* Now that the inferior has stopped, do any bookkeeping like
3177 loading shared libraries. We want to do this before normal_stop,
3178 so that the displayed frame is up to date. */
8b88a78e 3179 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3180
6426a772 3181 normal_stop ();
c906108c
SS
3182}
3183
3184/* Initialize static vars when a new inferior begins. */
3185
3186void
96baa820 3187init_wait_for_inferior (void)
c906108c
SS
3188{
3189 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3190
c906108c
SS
3191 breakpoint_init_inferior (inf_starting);
3192
70509625 3193 clear_proceed_status (0);
9f976b41 3194
ab1ddbcf 3195 nullify_last_target_wait_ptid ();
237fc4c9 3196
842951eb 3197 previous_inferior_ptid = inferior_ptid;
c906108c 3198}
237fc4c9 3199
c906108c 3200\f
488f131b 3201
ec9499be 3202static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3203
568d6575
UW
3204static void handle_step_into_function (struct gdbarch *gdbarch,
3205 struct execution_control_state *ecs);
3206static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3207 struct execution_control_state *ecs);
4f5d7f63 3208static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3209static void check_exception_resume (struct execution_control_state *,
28106bc2 3210 struct frame_info *);
611c83ae 3211
bdc36728 3212static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3213static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3214static void keep_going (struct execution_control_state *ecs);
94c57d6a 3215static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3216static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3217
252fbfc8
PA
3218/* This function is attached as a "thread_stop_requested" observer.
3219 Cleanup local state that assumed the PTID was to be resumed, and
3220 report the stop to the frontend. */
3221
2c0b251b 3222static void
252fbfc8
PA
3223infrun_thread_stop_requested (ptid_t ptid)
3224{
5b6d1e4f
PA
3225 process_stratum_target *curr_target = current_inferior ()->process_target ();
3226
c65d6b55
PA
3227 /* PTID was requested to stop. If the thread was already stopped,
3228 but the user/frontend doesn't know about that yet (e.g., the
3229 thread had been temporarily paused for some step-over), set up
3230 for reporting the stop now. */
5b6d1e4f 3231 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3232 {
3233 if (tp->state != THREAD_RUNNING)
3234 continue;
3235 if (tp->executing)
3236 continue;
c65d6b55 3237
08036331
PA
3238 /* Remove matching threads from the step-over queue, so
3239 start_step_over doesn't try to resume them
3240 automatically. */
3241 if (thread_is_in_step_over_chain (tp))
7bd43605 3242 global_thread_step_over_chain_remove (tp);
c65d6b55 3243
08036331
PA
3244 /* If the thread is stopped, but the user/frontend doesn't
3245 know about that yet, queue a pending event, as if the
3246 thread had just stopped now. Unless the thread already had
3247 a pending event. */
3248 if (!tp->suspend.waitstatus_pending_p)
3249 {
3250 tp->suspend.waitstatus_pending_p = 1;
3251 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3252 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3253 }
c65d6b55 3254
08036331
PA
3255 /* Clear the inline-frame state, since we're re-processing the
3256 stop. */
5b6d1e4f 3257 clear_inline_frame_state (tp);
c65d6b55 3258
08036331
PA
3259 /* If this thread was paused because some other thread was
3260 doing an inline-step over, let that finish first. Once
3261 that happens, we'll restart all threads and consume pending
3262 stop events then. */
3263 if (step_over_info_valid_p ())
3264 continue;
3265
3266 /* Otherwise we can process the (new) pending event now. Set
3267 it so this pending event is considered by
3268 do_target_wait. */
719546c4 3269 tp->resumed = true;
08036331 3270 }
252fbfc8
PA
3271}
3272
a07daef3
PA
3273static void
3274infrun_thread_thread_exit (struct thread_info *tp, int silent)
3275{
5b6d1e4f
PA
3276 if (target_last_proc_target == tp->inf->process_target ()
3277 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3278 nullify_last_target_wait_ptid ();
3279}
3280
0cbcdb96
PA
3281/* Delete the step resume, single-step and longjmp/exception resume
3282 breakpoints of TP. */
4e1c45ea 3283
0cbcdb96
PA
3284static void
3285delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3286{
0cbcdb96
PA
3287 delete_step_resume_breakpoint (tp);
3288 delete_exception_resume_breakpoint (tp);
34b7e8a6 3289 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3290}
3291
0cbcdb96
PA
3292/* If the target still has execution, call FUNC for each thread that
3293 just stopped. In all-stop, that's all the non-exited threads; in
3294 non-stop, that's the current thread, only. */
3295
3296typedef void (*for_each_just_stopped_thread_callback_func)
3297 (struct thread_info *tp);
4e1c45ea
PA
3298
3299static void
0cbcdb96 3300for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3301{
d7e15655 3302 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3303 return;
3304
fbea99ea 3305 if (target_is_non_stop_p ())
4e1c45ea 3306 {
0cbcdb96
PA
3307 /* If in non-stop mode, only the current thread stopped. */
3308 func (inferior_thread ());
4e1c45ea
PA
3309 }
3310 else
0cbcdb96 3311 {
0cbcdb96 3312 /* In all-stop mode, all threads have stopped. */
08036331
PA
3313 for (thread_info *tp : all_non_exited_threads ())
3314 func (tp);
0cbcdb96
PA
3315 }
3316}
3317
3318/* Delete the step resume and longjmp/exception resume breakpoints of
3319 the threads that just stopped. */
3320
3321static void
3322delete_just_stopped_threads_infrun_breakpoints (void)
3323{
3324 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3325}
3326
3327/* Delete the single-step breakpoints of the threads that just
3328 stopped. */
7c16b83e 3329
34b7e8a6
PA
3330static void
3331delete_just_stopped_threads_single_step_breakpoints (void)
3332{
3333 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3334}
3335
221e1a37 3336/* See infrun.h. */
223698f8 3337
221e1a37 3338void
223698f8
DE
3339print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3340 const struct target_waitstatus *ws)
3341{
23fdd69e 3342 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3343 string_file stb;
223698f8
DE
3344
3345 /* The text is split over several lines because it was getting too long.
3346 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3347 output as a unit; we want only one timestamp printed if debug_timestamp
3348 is set. */
3349
d7e74731 3350 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3351 waiton_ptid.pid (),
e38504b3 3352 waiton_ptid.lwp (),
cc6bcb54 3353 waiton_ptid.tid ());
e99b03dc 3354 if (waiton_ptid.pid () != -1)
a068643d 3355 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3356 stb.printf (", status) =\n");
3357 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3358 result_ptid.pid (),
e38504b3 3359 result_ptid.lwp (),
cc6bcb54 3360 result_ptid.tid (),
a068643d 3361 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3362 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3363
3364 /* This uses %s in part to handle %'s in the text, but also to avoid
3365 a gcc error: the format attribute requires a string literal. */
d7e74731 3366 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3367}
3368
372316f1
PA
3369/* Select a thread at random, out of those which are resumed and have
3370 had events. */
3371
3372static struct thread_info *
5b6d1e4f 3373random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3374{
372316f1 3375 int num_events = 0;
08036331 3376
5b6d1e4f 3377 auto has_event = [&] (thread_info *tp)
08036331 3378 {
5b6d1e4f
PA
3379 return (tp->ptid.matches (waiton_ptid)
3380 && tp->resumed
08036331
PA
3381 && tp->suspend.waitstatus_pending_p);
3382 };
372316f1
PA
3383
3384 /* First see how many events we have. Count only resumed threads
3385 that have an event pending. */
5b6d1e4f 3386 for (thread_info *tp : inf->non_exited_threads ())
08036331 3387 if (has_event (tp))
372316f1
PA
3388 num_events++;
3389
3390 if (num_events == 0)
3391 return NULL;
3392
3393 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3394 int random_selector = (int) ((num_events * (double) rand ())
3395 / (RAND_MAX + 1.0));
372316f1 3396
edbcda09
SM
3397 if (num_events > 1)
3398 infrun_log_debug ("Found %d events, selecting #%d",
3399 num_events, random_selector);
372316f1
PA
3400
3401 /* Select the Nth thread that has had an event. */
5b6d1e4f 3402 for (thread_info *tp : inf->non_exited_threads ())
08036331 3403 if (has_event (tp))
372316f1 3404 if (random_selector-- == 0)
08036331 3405 return tp;
372316f1 3406
08036331 3407 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3408}
3409
3410/* Wrapper for target_wait that first checks whether threads have
3411 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3412 more events. INF is the inferior we're using to call target_wait
3413 on. */
372316f1
PA
3414
3415static ptid_t
5b6d1e4f
PA
3416do_target_wait_1 (inferior *inf, ptid_t ptid,
3417 target_waitstatus *status, int options)
372316f1
PA
3418{
3419 ptid_t event_ptid;
3420 struct thread_info *tp;
3421
24ed6739
AB
3422 /* We know that we are looking for an event in the target of inferior
3423 INF, but we don't know which thread the event might come from. As
3424 such we want to make sure that INFERIOR_PTID is reset so that none of
3425 the wait code relies on it - doing so is always a mistake. */
3426 switch_to_inferior_no_thread (inf);
3427
372316f1
PA
3428 /* First check if there is a resumed thread with a wait status
3429 pending. */
d7e15655 3430 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3431 {
5b6d1e4f 3432 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3433 }
3434 else
3435 {
edbcda09
SM
3436 infrun_log_debug ("Waiting for specific thread %s.",
3437 target_pid_to_str (ptid).c_str ());
372316f1
PA
3438
3439 /* We have a specific thread to check. */
5b6d1e4f 3440 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3441 gdb_assert (tp != NULL);
3442 if (!tp->suspend.waitstatus_pending_p)
3443 tp = NULL;
3444 }
3445
3446 if (tp != NULL
3447 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3448 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3449 {
00431a78 3450 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3451 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3452 CORE_ADDR pc;
3453 int discard = 0;
3454
3455 pc = regcache_read_pc (regcache);
3456
3457 if (pc != tp->suspend.stop_pc)
3458 {
edbcda09
SM
3459 infrun_log_debug ("PC of %s changed. was=%s, now=%s",
3460 target_pid_to_str (tp->ptid).c_str (),
3461 paddress (gdbarch, tp->suspend.stop_pc),
3462 paddress (gdbarch, pc));
372316f1
PA
3463 discard = 1;
3464 }
a01bda52 3465 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1 3466 {
edbcda09
SM
3467 infrun_log_debug ("previous breakpoint of %s, at %s gone",
3468 target_pid_to_str (tp->ptid).c_str (),
3469 paddress (gdbarch, pc));
372316f1
PA
3470
3471 discard = 1;
3472 }
3473
3474 if (discard)
3475 {
edbcda09
SM
3476 infrun_log_debug ("pending event of %s cancelled.",
3477 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3478
3479 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3480 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3481 }
3482 }
3483
3484 if (tp != NULL)
3485 {
edbcda09
SM
3486 infrun_log_debug ("Using pending wait status %s for %s.",
3487 target_waitstatus_to_string
3488 (&tp->suspend.waitstatus).c_str (),
3489 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3490
3491 /* Now that we've selected our final event LWP, un-adjust its PC
3492 if it was a software breakpoint (and the target doesn't
3493 always adjust the PC itself). */
3494 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3495 && !target_supports_stopped_by_sw_breakpoint ())
3496 {
3497 struct regcache *regcache;
3498 struct gdbarch *gdbarch;
3499 int decr_pc;
3500
00431a78 3501 regcache = get_thread_regcache (tp);
ac7936df 3502 gdbarch = regcache->arch ();
372316f1
PA
3503
3504 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3505 if (decr_pc != 0)
3506 {
3507 CORE_ADDR pc;
3508
3509 pc = regcache_read_pc (regcache);
3510 regcache_write_pc (regcache, pc + decr_pc);
3511 }
3512 }
3513
3514 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3515 *status = tp->suspend.waitstatus;
3516 tp->suspend.waitstatus_pending_p = 0;
3517
3518 /* Wake up the event loop again, until all pending events are
3519 processed. */
3520 if (target_is_async_p ())
3521 mark_async_event_handler (infrun_async_inferior_event_token);
3522 return tp->ptid;
3523 }
3524
3525 /* But if we don't find one, we'll have to wait. */
3526
3527 if (deprecated_target_wait_hook)
3528 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3529 else
3530 event_ptid = target_wait (ptid, status, options);
3531
3532 return event_ptid;
3533}
3534
5b6d1e4f
PA
3535/* Wrapper for target_wait that first checks whether threads have
3536 pending statuses to report before actually asking the target for
cad90433 3537 more events. Polls for events from all inferiors/targets. */
5b6d1e4f
PA
3538
3539static bool
3540do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3541{
3542 int num_inferiors = 0;
3543 int random_selector;
3544
cad90433
SM
3545 /* For fairness, we pick the first inferior/target to poll at random
3546 out of all inferiors that may report events, and then continue
3547 polling the rest of the inferior list starting from that one in a
3548 circular fashion until the whole list is polled once. */
5b6d1e4f
PA
3549
3550 auto inferior_matches = [&wait_ptid] (inferior *inf)
3551 {
3552 return (inf->process_target () != NULL
5b6d1e4f
PA
3553 && ptid_t (inf->pid).matches (wait_ptid));
3554 };
3555
cad90433 3556 /* First see how many matching inferiors we have. */
5b6d1e4f
PA
3557 for (inferior *inf : all_inferiors ())
3558 if (inferior_matches (inf))
3559 num_inferiors++;
3560
3561 if (num_inferiors == 0)
3562 {
3563 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3564 return false;
3565 }
3566
cad90433 3567 /* Now randomly pick an inferior out of those that matched. */
5b6d1e4f
PA
3568 random_selector = (int)
3569 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3570
edbcda09
SM
3571 if (num_inferiors > 1)
3572 infrun_log_debug ("Found %d inferiors, starting at #%d",
3573 num_inferiors, random_selector);
5b6d1e4f 3574
cad90433 3575 /* Select the Nth inferior that matched. */
5b6d1e4f
PA
3576
3577 inferior *selected = nullptr;
3578
3579 for (inferior *inf : all_inferiors ())
3580 if (inferior_matches (inf))
3581 if (random_selector-- == 0)
3582 {
3583 selected = inf;
3584 break;
3585 }
3586
cad90433 3587 /* Now poll for events out of each of the matching inferior's
5b6d1e4f
PA
3588 targets, starting from the selected one. */
3589
3590 auto do_wait = [&] (inferior *inf)
3591 {
5b6d1e4f
PA
3592 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3593 ecs->target = inf->process_target ();
3594 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3595 };
3596
cad90433
SM
3597 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3598 here spuriously after the target is all stopped and we've already
5b6d1e4f
PA
3599 reported the stop to the user, polling for events. */
3600 scoped_restore_current_thread restore_thread;
3601
3602 int inf_num = selected->num;
3603 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3604 if (inferior_matches (inf))
3605 if (do_wait (inf))
3606 return true;
3607
3608 for (inferior *inf = inferior_list;
3609 inf != NULL && inf->num < inf_num;
3610 inf = inf->next)
3611 if (inferior_matches (inf))
3612 if (do_wait (inf))
3613 return true;
3614
3615 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3616 return false;
3617}
3618
24291992
PA
3619/* Prepare and stabilize the inferior for detaching it. E.g.,
3620 detaching while a thread is displaced stepping is a recipe for
3621 crashing it, as nothing would readjust the PC out of the scratch
3622 pad. */
3623
3624void
3625prepare_for_detach (void)
3626{
3627 struct inferior *inf = current_inferior ();
f2907e49 3628 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3629
9844051a 3630 // displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3631
3632 /* Is any thread of this process displaced stepping? If not,
3633 there's nothing else to do. */
9844051a 3634 if (displaced_step_in_progress (inf))
24291992
PA
3635 return;
3636
edbcda09 3637 infrun_log_debug ("displaced-stepping in-process while detaching");
24291992 3638
9bcb1f16 3639 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3640
9844051a
SM
3641 // FIXME
3642 while (false)
24291992 3643 {
24291992
PA
3644 struct execution_control_state ecss;
3645 struct execution_control_state *ecs;
3646
3647 ecs = &ecss;
3648 memset (ecs, 0, sizeof (*ecs));
3649
3650 overlay_cache_invalid = 1;
f15cb84a
YQ
3651 /* Flush target cache before starting to handle each event.
3652 Target was running and cache could be stale. This is just a
3653 heuristic. Running threads may modify target memory, but we
3654 don't get any event. */
3655 target_dcache_invalidate ();
24291992 3656
5b6d1e4f 3657 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3658
3659 if (debug_infrun)
3660 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3661
3662 /* If an error happens while handling the event, propagate GDB's
3663 knowledge of the executing state to the frontend/user running
3664 state. */
5b6d1e4f
PA
3665 scoped_finish_thread_state finish_state (inf->process_target (),
3666 minus_one_ptid);
24291992
PA
3667
3668 /* Now figure out what to do with the result of the result. */
3669 handle_inferior_event (ecs);
3670
3671 /* No error, don't finish the state yet. */
731f534f 3672 finish_state.release ();
24291992
PA
3673
3674 /* Breakpoints and watchpoints are not installed on the target
3675 at this point, and signals are passed directly to the
3676 inferior, so this must mean the process is gone. */
3677 if (!ecs->wait_some_more)
3678 {
9bcb1f16 3679 restore_detaching.release ();
24291992
PA
3680 error (_("Program exited while detaching"));
3681 }
3682 }
3683
9bcb1f16 3684 restore_detaching.release ();
24291992
PA
3685}
3686
cd0fc7c3 3687/* Wait for control to return from inferior to debugger.
ae123ec6 3688
cd0fc7c3
SS
3689 If inferior gets a signal, we may decide to start it up again
3690 instead of returning. That is why there is a loop in this function.
3691 When this function actually returns it means the inferior
3692 should be left stopped and GDB should read more commands. */
3693
5b6d1e4f
PA
3694static void
3695wait_for_inferior (inferior *inf)
cd0fc7c3 3696{
edbcda09 3697 infrun_log_debug ("wait_for_inferior ()");
527159b7 3698
4c41382a 3699 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3700
e6f5c25b
PA
3701 /* If an error happens while handling the event, propagate GDB's
3702 knowledge of the executing state to the frontend/user running
3703 state. */
5b6d1e4f
PA
3704 scoped_finish_thread_state finish_state
3705 (inf->process_target (), minus_one_ptid);
e6f5c25b 3706
c906108c
SS
3707 while (1)
3708 {
ae25568b
PA
3709 struct execution_control_state ecss;
3710 struct execution_control_state *ecs = &ecss;
29f49a6a 3711
ae25568b
PA
3712 memset (ecs, 0, sizeof (*ecs));
3713
ec9499be 3714 overlay_cache_invalid = 1;
ec9499be 3715
f15cb84a
YQ
3716 /* Flush target cache before starting to handle each event.
3717 Target was running and cache could be stale. This is just a
3718 heuristic. Running threads may modify target memory, but we
3719 don't get any event. */
3720 target_dcache_invalidate ();
3721
5b6d1e4f
PA
3722 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3723 ecs->target = inf->process_target ();
c906108c 3724
f00150c9 3725 if (debug_infrun)
5b6d1e4f 3726 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3727
cd0fc7c3
SS
3728 /* Now figure out what to do with the result of the result. */
3729 handle_inferior_event (ecs);
c906108c 3730
cd0fc7c3
SS
3731 if (!ecs->wait_some_more)
3732 break;
3733 }
4e1c45ea 3734
e6f5c25b 3735 /* No error, don't finish the state yet. */
731f534f 3736 finish_state.release ();
cd0fc7c3 3737}
c906108c 3738
d3d4baed
PA
3739/* Cleanup that reinstalls the readline callback handler, if the
3740 target is running in the background. If while handling the target
3741 event something triggered a secondary prompt, like e.g., a
3742 pagination prompt, we'll have removed the callback handler (see
3743 gdb_readline_wrapper_line). Need to do this as we go back to the
3744 event loop, ready to process further input. Note this has no
3745 effect if the handler hasn't actually been removed, because calling
3746 rl_callback_handler_install resets the line buffer, thus losing
3747 input. */
3748
3749static void
d238133d 3750reinstall_readline_callback_handler_cleanup ()
d3d4baed 3751{
3b12939d
PA
3752 struct ui *ui = current_ui;
3753
3754 if (!ui->async)
6c400b59
PA
3755 {
3756 /* We're not going back to the top level event loop yet. Don't
3757 install the readline callback, as it'd prep the terminal,
3758 readline-style (raw, noecho) (e.g., --batch). We'll install
3759 it the next time the prompt is displayed, when we're ready
3760 for input. */
3761 return;
3762 }
3763
3b12939d 3764 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3765 gdb_rl_callback_handler_reinstall ();
3766}
3767
243a9253
PA
3768/* Clean up the FSMs of threads that are now stopped. In non-stop,
3769 that's just the event thread. In all-stop, that's all threads. */
3770
3771static void
3772clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3773{
08036331
PA
3774 if (ecs->event_thread != NULL
3775 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3776 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3777
3778 if (!non_stop)
3779 {
08036331 3780 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3781 {
3782 if (thr->thread_fsm == NULL)
3783 continue;
3784 if (thr == ecs->event_thread)
3785 continue;
3786
00431a78 3787 switch_to_thread (thr);
46e3ed7f 3788 thr->thread_fsm->clean_up (thr);
243a9253
PA
3789 }
3790
3791 if (ecs->event_thread != NULL)
00431a78 3792 switch_to_thread (ecs->event_thread);
243a9253
PA
3793 }
3794}
3795
3b12939d
PA
3796/* Helper for all_uis_check_sync_execution_done that works on the
3797 current UI. */
3798
3799static void
3800check_curr_ui_sync_execution_done (void)
3801{
3802 struct ui *ui = current_ui;
3803
3804 if (ui->prompt_state == PROMPT_NEEDED
3805 && ui->async
3806 && !gdb_in_secondary_prompt_p (ui))
3807 {
223ffa71 3808 target_terminal::ours ();
76727919 3809 gdb::observers::sync_execution_done.notify ();
3eb7562a 3810 ui_register_input_event_handler (ui);
3b12939d
PA
3811 }
3812}
3813
3814/* See infrun.h. */
3815
3816void
3817all_uis_check_sync_execution_done (void)
3818{
0e454242 3819 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3820 {
3821 check_curr_ui_sync_execution_done ();
3822 }
3823}
3824
a8836c93
PA
3825/* See infrun.h. */
3826
3827void
3828all_uis_on_sync_execution_starting (void)
3829{
0e454242 3830 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3831 {
3832 if (current_ui->prompt_state == PROMPT_NEEDED)
3833 async_disable_stdin ();
3834 }
3835}
3836
1777feb0 3837/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3838 event loop whenever a change of state is detected on the file
1777feb0
MS
3839 descriptor corresponding to the target. It can be called more than
3840 once to complete a single execution command. In such cases we need
3841 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3842 that this function is called for a single execution command, then
3843 report to the user that the inferior has stopped, and do the
1777feb0 3844 necessary cleanups. */
43ff13b4
JM
3845
3846void
b1a35af2 3847fetch_inferior_event ()
43ff13b4 3848{
0d1e5fa7 3849 struct execution_control_state ecss;
a474d7c2 3850 struct execution_control_state *ecs = &ecss;
0f641c01 3851 int cmd_done = 0;
43ff13b4 3852
0d1e5fa7
PA
3853 memset (ecs, 0, sizeof (*ecs));
3854
c61db772
PA
3855 /* Events are always processed with the main UI as current UI. This
3856 way, warnings, debug output, etc. are always consistently sent to
3857 the main console. */
4b6749b9 3858 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3859
d3d4baed 3860 /* End up with readline processing input, if necessary. */
d238133d
TT
3861 {
3862 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3863
3864 /* We're handling a live event, so make sure we're doing live
3865 debugging. If we're looking at traceframes while the target is
3866 running, we're going to need to get back to that mode after
3867 handling the event. */
3868 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3869 if (non_stop)
3870 {
3871 maybe_restore_traceframe.emplace ();
3872 set_current_traceframe (-1);
3873 }
43ff13b4 3874
873657b9
PA
3875 /* The user/frontend should not notice a thread switch due to
3876 internal events. Make sure we revert to the user selected
3877 thread and frame after handling the event and running any
3878 breakpoint commands. */
3879 scoped_restore_current_thread restore_thread;
d238133d
TT
3880
3881 overlay_cache_invalid = 1;
3882 /* Flush target cache before starting to handle each event. Target
3883 was running and cache could be stale. This is just a heuristic.
3884 Running threads may modify target memory, but we don't get any
3885 event. */
3886 target_dcache_invalidate ();
3887
3888 scoped_restore save_exec_dir
3889 = make_scoped_restore (&execution_direction,
3890 target_execution_direction ());
3891
a33d4569
SM
3892 /* Hold the resume commands until we are done consuming all immediately
3893 available target events. */
3894 static gdb::optional<scoped_restore_tmpl<int>> restore_defer_commit_resume;
3895 if (!restore_defer_commit_resume.has_value ())
3896 restore_defer_commit_resume.emplace (make_scoped_defer_target_commit_resume ());
3897
5b6d1e4f 3898 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
0e342892
SM
3899 {
3900 infrun_log_debug ("do_target_wait returned false");
a33d4569
SM
3901
3902 /* No more events to process, let the resume commands free. */
3903 restore_defer_commit_resume.reset ();
3904 commit_resume_all_targets();
0e342892
SM
3905 return;
3906 }
3907
3908 infrun_log_debug ("do_target_wait returned true");
5b6d1e4f
PA
3909
3910 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3911
3912 /* Switch to the target that generated the event, so we can do
3913 target calls. Any inferior bound to the target will do, so we
3914 just switch to the first we find. */
3915 for (inferior *inf : all_inferiors (ecs->target))
3916 {
3917 switch_to_inferior_no_thread (inf);
3918 break;
3919 }
d238133d
TT
3920
3921 if (debug_infrun)
5b6d1e4f 3922 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
3923
3924 /* If an error happens while handling the event, propagate GDB's
3925 knowledge of the executing state to the frontend/user running
3926 state. */
3927 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 3928 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 3929
979a0d13 3930 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3931 still for the thread which has thrown the exception. */
3932 auto defer_bpstat_clear
3933 = make_scope_exit (bpstat_clear_actions);
3934 auto defer_delete_threads
3935 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3936
3937 /* Now figure out what to do with the result of the result. */
3938 handle_inferior_event (ecs);
3939
3940 if (!ecs->wait_some_more)
3941 {
5b6d1e4f 3942 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
d238133d
TT
3943 int should_stop = 1;
3944 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3945
d238133d 3946 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3947
d238133d
TT
3948 if (thr != NULL)
3949 {
3950 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3951
d238133d 3952 if (thread_fsm != NULL)
46e3ed7f 3953 should_stop = thread_fsm->should_stop (thr);
d238133d 3954 }
243a9253 3955
d238133d
TT
3956 if (!should_stop)
3957 {
3958 keep_going (ecs);
3959 }
3960 else
3961 {
46e3ed7f 3962 bool should_notify_stop = true;
d238133d 3963 int proceeded = 0;
1840d81a 3964
d238133d 3965 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3966
d238133d 3967 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3968 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3969
d238133d
TT
3970 if (should_notify_stop)
3971 {
3972 /* We may not find an inferior if this was a process exit. */
3973 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3974 proceeded = normal_stop ();
3975 }
243a9253 3976
d238133d
TT
3977 if (!proceeded)
3978 {
b1a35af2 3979 inferior_event_handler (INF_EXEC_COMPLETE);
d238133d
TT
3980 cmd_done = 1;
3981 }
873657b9
PA
3982
3983 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3984 previously selected thread is gone. We have two
3985 choices - switch to no thread selected, or restore the
3986 previously selected thread (now exited). We chose the
3987 later, just because that's what GDB used to do. After
3988 this, "info threads" says "The current thread <Thread
3989 ID 2> has terminated." instead of "No thread
3990 selected.". */
3991 if (!non_stop
3992 && cmd_done
3993 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3994 restore_thread.dont_restore ();
d238133d
TT
3995 }
3996 }
4f8d22e3 3997
d238133d
TT
3998 defer_delete_threads.release ();
3999 defer_bpstat_clear.release ();
29f49a6a 4000
d238133d
TT
4001 /* No error, don't finish the thread states yet. */
4002 finish_state.release ();
731f534f 4003
a33d4569
SM
4004 mark_infrun_async_event_handler ();
4005
d238133d
TT
4006 /* This scope is used to ensure that readline callbacks are
4007 reinstalled here. */
4008 }
4f8d22e3 4009
3b12939d
PA
4010 /* If a UI was in sync execution mode, and now isn't, restore its
4011 prompt (a synchronous execution command has finished, and we're
4012 ready for input). */
4013 all_uis_check_sync_execution_done ();
0f641c01
PA
4014
4015 if (cmd_done
0f641c01 4016 && exec_done_display_p
00431a78
PA
4017 && (inferior_ptid == null_ptid
4018 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4019 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4020}
4021
29734269
SM
4022/* See infrun.h. */
4023
edb3359d 4024void
29734269
SM
4025set_step_info (thread_info *tp, struct frame_info *frame,
4026 struct symtab_and_line sal)
edb3359d 4027{
29734269
SM
4028 /* This can be removed once this function no longer implicitly relies on the
4029 inferior_ptid value. */
4030 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4031
16c381f0
JK
4032 tp->control.step_frame_id = get_frame_id (frame);
4033 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4034
4035 tp->current_symtab = sal.symtab;
4036 tp->current_line = sal.line;
4037}
4038
0d1e5fa7
PA
4039/* Clear context switchable stepping state. */
4040
4041void
4e1c45ea 4042init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4043{
7f5ef605 4044 tss->stepped_breakpoint = 0;
0d1e5fa7 4045 tss->stepping_over_breakpoint = 0;
963f9c80 4046 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4047 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4048}
4049
ab1ddbcf 4050/* See infrun.h. */
c32c64b7 4051
6efcd9a8 4052void
5b6d1e4f
PA
4053set_last_target_status (process_stratum_target *target, ptid_t ptid,
4054 target_waitstatus status)
c32c64b7 4055{
5b6d1e4f 4056 target_last_proc_target = target;
c32c64b7
DE
4057 target_last_wait_ptid = ptid;
4058 target_last_waitstatus = status;
4059}
4060
ab1ddbcf 4061/* See infrun.h. */
e02bc4cc
DS
4062
4063void
5b6d1e4f
PA
4064get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4065 target_waitstatus *status)
e02bc4cc 4066{
5b6d1e4f
PA
4067 if (target != nullptr)
4068 *target = target_last_proc_target;
ab1ddbcf
PA
4069 if (ptid != nullptr)
4070 *ptid = target_last_wait_ptid;
4071 if (status != nullptr)
4072 *status = target_last_waitstatus;
e02bc4cc
DS
4073}
4074
ab1ddbcf
PA
4075/* See infrun.h. */
4076
ac264b3b
MS
4077void
4078nullify_last_target_wait_ptid (void)
4079{
5b6d1e4f 4080 target_last_proc_target = nullptr;
ac264b3b 4081 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4082 target_last_waitstatus = {};
ac264b3b
MS
4083}
4084
dcf4fbde 4085/* Switch thread contexts. */
dd80620e
MS
4086
4087static void
00431a78 4088context_switch (execution_control_state *ecs)
dd80620e 4089{
edbcda09 4090 if (ecs->ptid != inferior_ptid
5b6d1e4f
PA
4091 && (inferior_ptid == null_ptid
4092 || ecs->event_thread != inferior_thread ()))
fd48f117 4093 {
edbcda09
SM
4094 infrun_log_debug ("Switching context from %s to %s",
4095 target_pid_to_str (inferior_ptid).c_str (),
4096 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4097 }
4098
00431a78 4099 switch_to_thread (ecs->event_thread);
dd80620e
MS
4100}
4101
d8dd4d5f
PA
4102/* If the target can't tell whether we've hit breakpoints
4103 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4104 check whether that could have been caused by a breakpoint. If so,
4105 adjust the PC, per gdbarch_decr_pc_after_break. */
4106
4fa8626c 4107static void
d8dd4d5f
PA
4108adjust_pc_after_break (struct thread_info *thread,
4109 struct target_waitstatus *ws)
4fa8626c 4110{
24a73cce
UW
4111 struct regcache *regcache;
4112 struct gdbarch *gdbarch;
118e6252 4113 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4114
4fa8626c
DJ
4115 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4116 we aren't, just return.
9709f61c
DJ
4117
4118 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4119 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4120 implemented by software breakpoints should be handled through the normal
4121 breakpoint layer.
8fb3e588 4122
4fa8626c
DJ
4123 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4124 different signals (SIGILL or SIGEMT for instance), but it is less
4125 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4126 gdbarch_decr_pc_after_break. I don't know any specific target that
4127 generates these signals at breakpoints (the code has been in GDB since at
4128 least 1992) so I can not guess how to handle them here.
8fb3e588 4129
e6cf7916
UW
4130 In earlier versions of GDB, a target with
4131 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4132 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4133 target with both of these set in GDB history, and it seems unlikely to be
4134 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4135
d8dd4d5f 4136 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4137 return;
4138
d8dd4d5f 4139 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4140 return;
4141
4058b839
PA
4142 /* In reverse execution, when a breakpoint is hit, the instruction
4143 under it has already been de-executed. The reported PC always
4144 points at the breakpoint address, so adjusting it further would
4145 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4146 architecture:
4147
4148 B1 0x08000000 : INSN1
4149 B2 0x08000001 : INSN2
4150 0x08000002 : INSN3
4151 PC -> 0x08000003 : INSN4
4152
4153 Say you're stopped at 0x08000003 as above. Reverse continuing
4154 from that point should hit B2 as below. Reading the PC when the
4155 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4156 been de-executed already.
4157
4158 B1 0x08000000 : INSN1
4159 B2 PC -> 0x08000001 : INSN2
4160 0x08000002 : INSN3
4161 0x08000003 : INSN4
4162
4163 We can't apply the same logic as for forward execution, because
4164 we would wrongly adjust the PC to 0x08000000, since there's a
4165 breakpoint at PC - 1. We'd then report a hit on B1, although
4166 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4167 behaviour. */
4168 if (execution_direction == EXEC_REVERSE)
4169 return;
4170
1cf4d951
PA
4171 /* If the target can tell whether the thread hit a SW breakpoint,
4172 trust it. Targets that can tell also adjust the PC
4173 themselves. */
4174 if (target_supports_stopped_by_sw_breakpoint ())
4175 return;
4176
4177 /* Note that relying on whether a breakpoint is planted in memory to
4178 determine this can fail. E.g,. the breakpoint could have been
4179 removed since. Or the thread could have been told to step an
4180 instruction the size of a breakpoint instruction, and only
4181 _after_ was a breakpoint inserted at its address. */
4182
24a73cce
UW
4183 /* If this target does not decrement the PC after breakpoints, then
4184 we have nothing to do. */
00431a78 4185 regcache = get_thread_regcache (thread);
ac7936df 4186 gdbarch = regcache->arch ();
118e6252 4187
527a273a 4188 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4189 if (decr_pc == 0)
24a73cce
UW
4190 return;
4191
8b86c959 4192 const address_space *aspace = regcache->aspace ();
6c95b8df 4193
8aad930b
AC
4194 /* Find the location where (if we've hit a breakpoint) the
4195 breakpoint would be. */
118e6252 4196 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4197
1cf4d951
PA
4198 /* If the target can't tell whether a software breakpoint triggered,
4199 fallback to figuring it out based on breakpoints we think were
4200 inserted in the target, and on whether the thread was stepped or
4201 continued. */
4202
1c5cfe86
PA
4203 /* Check whether there actually is a software breakpoint inserted at
4204 that location.
4205
4206 If in non-stop mode, a race condition is possible where we've
4207 removed a breakpoint, but stop events for that breakpoint were
4208 already queued and arrive later. To suppress those spurious
4209 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4210 and retire them after a number of stop events are reported. Note
4211 this is an heuristic and can thus get confused. The real fix is
4212 to get the "stopped by SW BP and needs adjustment" info out of
4213 the target/kernel (and thus never reach here; see above). */
6c95b8df 4214 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4215 || (target_is_non_stop_p ()
4216 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4217 {
07036511 4218 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4219
8213266a 4220 if (record_full_is_used ())
07036511
TT
4221 restore_operation_disable.emplace
4222 (record_full_gdb_operation_disable_set ());
96429cc8 4223
1c0fdd0e
UW
4224 /* When using hardware single-step, a SIGTRAP is reported for both
4225 a completed single-step and a software breakpoint. Need to
4226 differentiate between the two, as the latter needs adjusting
4227 but the former does not.
4228
4229 The SIGTRAP can be due to a completed hardware single-step only if
4230 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4231 - this thread is currently being stepped
4232
4233 If any of these events did not occur, we must have stopped due
4234 to hitting a software breakpoint, and have to back up to the
4235 breakpoint address.
4236
4237 As a special case, we could have hardware single-stepped a
4238 software breakpoint. In this case (prev_pc == breakpoint_pc),
4239 we also need to back up to the breakpoint address. */
4240
d8dd4d5f
PA
4241 if (thread_has_single_step_breakpoints_set (thread)
4242 || !currently_stepping (thread)
4243 || (thread->stepped_breakpoint
4244 && thread->prev_pc == breakpoint_pc))
515630c5 4245 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4246 }
4fa8626c
DJ
4247}
4248
edb3359d
DJ
4249static int
4250stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4251{
4252 for (frame = get_prev_frame (frame);
4253 frame != NULL;
4254 frame = get_prev_frame (frame))
4255 {
4256 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4257 return 1;
4258 if (get_frame_type (frame) != INLINE_FRAME)
4259 break;
4260 }
4261
4262 return 0;
4263}
4264
4a4c04f1
BE
4265/* Look for an inline frame that is marked for skip.
4266 If PREV_FRAME is TRUE start at the previous frame,
4267 otherwise start at the current frame. Stop at the
4268 first non-inline frame, or at the frame where the
4269 step started. */
4270
4271static bool
4272inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4273{
4274 struct frame_info *frame = get_current_frame ();
4275
4276 if (prev_frame)
4277 frame = get_prev_frame (frame);
4278
4279 for (; frame != NULL; frame = get_prev_frame (frame))
4280 {
4281 const char *fn = NULL;
4282 symtab_and_line sal;
4283 struct symbol *sym;
4284
4285 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4286 break;
4287 if (get_frame_type (frame) != INLINE_FRAME)
4288 break;
4289
4290 sal = find_frame_sal (frame);
4291 sym = get_frame_function (frame);
4292
4293 if (sym != NULL)
4294 fn = sym->print_name ();
4295
4296 if (sal.line != 0
4297 && function_name_is_marked_for_skip (fn, sal))
4298 return true;
4299 }
4300
4301 return false;
4302}
4303
c65d6b55
PA
4304/* If the event thread has the stop requested flag set, pretend it
4305 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4306 target_stop). */
4307
4308static bool
4309handle_stop_requested (struct execution_control_state *ecs)
4310{
4311 if (ecs->event_thread->stop_requested)
4312 {
4313 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4314 ecs->ws.value.sig = GDB_SIGNAL_0;
4315 handle_signal_stop (ecs);
4316 return true;
4317 }
4318 return false;
4319}
4320
a96d9b2e
SDJ
4321/* Auxiliary function that handles syscall entry/return events.
4322 It returns 1 if the inferior should keep going (and GDB
4323 should ignore the event), or 0 if the event deserves to be
4324 processed. */
ca2163eb 4325
a96d9b2e 4326static int
ca2163eb 4327handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4328{
ca2163eb 4329 struct regcache *regcache;
ca2163eb
PA
4330 int syscall_number;
4331
00431a78 4332 context_switch (ecs);
ca2163eb 4333
00431a78 4334 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4335 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4336 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4337
a96d9b2e
SDJ
4338 if (catch_syscall_enabled () > 0
4339 && catching_syscall_number (syscall_number) > 0)
4340 {
edbcda09 4341 infrun_log_debug ("syscall number=%d", syscall_number);
a96d9b2e 4342
16c381f0 4343 ecs->event_thread->control.stop_bpstat
a01bda52 4344 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4345 ecs->event_thread->suspend.stop_pc,
4346 ecs->event_thread, &ecs->ws);
ab04a2af 4347
c65d6b55
PA
4348 if (handle_stop_requested (ecs))
4349 return 0;
4350
ce12b012 4351 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4352 {
4353 /* Catchpoint hit. */
ca2163eb
PA
4354 return 0;
4355 }
a96d9b2e 4356 }
ca2163eb 4357
c65d6b55
PA
4358 if (handle_stop_requested (ecs))
4359 return 0;
4360
ca2163eb 4361 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4362 keep_going (ecs);
4363 return 1;
a96d9b2e
SDJ
4364}
4365
7e324e48
GB
4366/* Lazily fill in the execution_control_state's stop_func_* fields. */
4367
4368static void
4369fill_in_stop_func (struct gdbarch *gdbarch,
4370 struct execution_control_state *ecs)
4371{
4372 if (!ecs->stop_func_filled_in)
4373 {
98a617f8
KB
4374 const block *block;
4375
7e324e48
GB
4376 /* Don't care about return value; stop_func_start and stop_func_name
4377 will both be 0 if it doesn't work. */
98a617f8
KB
4378 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4379 &ecs->stop_func_name,
4380 &ecs->stop_func_start,
4381 &ecs->stop_func_end,
4382 &block);
4383
4384 /* The call to find_pc_partial_function, above, will set
4385 stop_func_start and stop_func_end to the start and end
4386 of the range containing the stop pc. If this range
4387 contains the entry pc for the block (which is always the
4388 case for contiguous blocks), advance stop_func_start past
4389 the function's start offset and entrypoint. Note that
4390 stop_func_start is NOT advanced when in a range of a
4391 non-contiguous block that does not contain the entry pc. */
4392 if (block != nullptr
4393 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4394 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4395 {
4396 ecs->stop_func_start
4397 += gdbarch_deprecated_function_start_offset (gdbarch);
4398
4399 if (gdbarch_skip_entrypoint_p (gdbarch))
4400 ecs->stop_func_start
4401 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4402 }
591a12a1 4403
7e324e48
GB
4404 ecs->stop_func_filled_in = 1;
4405 }
4406}
4407
4f5d7f63 4408
00431a78 4409/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4410
4411static enum stop_kind
00431a78 4412get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4413{
5b6d1e4f 4414 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4415
4416 gdb_assert (inf != NULL);
4417 return inf->control.stop_soon;
4418}
4419
5b6d1e4f
PA
4420/* Poll for one event out of the current target. Store the resulting
4421 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4422
4423static ptid_t
5b6d1e4f 4424poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4425{
4426 ptid_t event_ptid;
372316f1
PA
4427
4428 overlay_cache_invalid = 1;
4429
4430 /* Flush target cache before starting to handle each event.
4431 Target was running and cache could be stale. This is just a
4432 heuristic. Running threads may modify target memory, but we
4433 don't get any event. */
4434 target_dcache_invalidate ();
4435
4436 if (deprecated_target_wait_hook)
5b6d1e4f 4437 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4438 else
5b6d1e4f 4439 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4440
4441 if (debug_infrun)
5b6d1e4f 4442 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4443
4444 return event_ptid;
4445}
4446
5b6d1e4f
PA
4447/* An event reported by wait_one. */
4448
4449struct wait_one_event
4450{
4451 /* The target the event came out of. */
4452 process_stratum_target *target;
4453
4454 /* The PTID the event was for. */
4455 ptid_t ptid;
4456
4457 /* The waitstatus. */
4458 target_waitstatus ws;
4459};
4460
4461/* Wait for one event out of any target. */
4462
4463static wait_one_event
4464wait_one ()
4465{
4466 while (1)
4467 {
4468 for (inferior *inf : all_inferiors ())
4469 {
4470 process_stratum_target *target = inf->process_target ();
4471 if (target == NULL
4472 || !target->is_async_p ()
4473 || !target->threads_executing)
4474 continue;
4475
4476 switch_to_inferior_no_thread (inf);
4477
4478 wait_one_event event;
4479 event.target = target;
4480 event.ptid = poll_one_curr_target (&event.ws);
4481
4482 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4483 {
4484 /* If nothing is resumed, remove the target from the
4485 event loop. */
4486 target_async (0);
4487 }
4488 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4489 return event;
4490 }
4491
4492 /* Block waiting for some event. */
4493
4494 fd_set readfds;
4495 int nfds = 0;
4496
4497 FD_ZERO (&readfds);
4498
4499 for (inferior *inf : all_inferiors ())
4500 {
4501 process_stratum_target *target = inf->process_target ();
4502 if (target == NULL
4503 || !target->is_async_p ()
4504 || !target->threads_executing)
4505 continue;
4506
4507 int fd = target->async_wait_fd ();
4508 FD_SET (fd, &readfds);
4509 if (nfds <= fd)
4510 nfds = fd + 1;
4511 }
4512
4513 if (nfds == 0)
4514 {
4515 /* No waitable targets left. All must be stopped. */
4516 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4517 }
4518
4519 QUIT;
4520
4521 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4522 if (numfds < 0)
4523 {
4524 if (errno == EINTR)
4525 continue;
4526 else
4527 perror_with_name ("interruptible_select");
4528 }
4529 }
4530}
4531
372316f1
PA
4532/* Save the thread's event and stop reason to process it later. */
4533
4534static void
5b6d1e4f 4535save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4536{
edbcda09
SM
4537 infrun_log_debug ("saving status %s for %d.%ld.%ld",
4538 target_waitstatus_to_string (ws).c_str (),
4539 tp->ptid.pid (),
4540 tp->ptid.lwp (),
4541 tp->ptid.tid ());
372316f1
PA
4542
4543 /* Record for later. */
4544 tp->suspend.waitstatus = *ws;
4545 tp->suspend.waitstatus_pending_p = 1;
4546
00431a78 4547 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4548 const address_space *aspace = regcache->aspace ();
372316f1
PA
4549
4550 if (ws->kind == TARGET_WAITKIND_STOPPED
4551 && ws->value.sig == GDB_SIGNAL_TRAP)
4552 {
4553 CORE_ADDR pc = regcache_read_pc (regcache);
4554
4555 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4556
18493a00
PA
4557 scoped_restore_current_thread restore_thread;
4558 switch_to_thread (tp);
4559
4560 if (target_stopped_by_watchpoint ())
372316f1
PA
4561 {
4562 tp->suspend.stop_reason
4563 = TARGET_STOPPED_BY_WATCHPOINT;
4564 }
4565 else if (target_supports_stopped_by_sw_breakpoint ()
18493a00 4566 && target_stopped_by_sw_breakpoint ())
372316f1
PA
4567 {
4568 tp->suspend.stop_reason
4569 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4570 }
4571 else if (target_supports_stopped_by_hw_breakpoint ()
18493a00 4572 && target_stopped_by_hw_breakpoint ())
372316f1
PA
4573 {
4574 tp->suspend.stop_reason
4575 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4576 }
4577 else if (!target_supports_stopped_by_hw_breakpoint ()
4578 && hardware_breakpoint_inserted_here_p (aspace,
4579 pc))
4580 {
4581 tp->suspend.stop_reason
4582 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4583 }
4584 else if (!target_supports_stopped_by_sw_breakpoint ()
4585 && software_breakpoint_inserted_here_p (aspace,
4586 pc))
4587 {
4588 tp->suspend.stop_reason
4589 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4590 }
4591 else if (!thread_has_single_step_breakpoints_set (tp)
4592 && currently_stepping (tp))
4593 {
4594 tp->suspend.stop_reason
4595 = TARGET_STOPPED_BY_SINGLE_STEP;
4596 }
4597 }
4598}
4599
293b3ebc
TBA
4600/* Mark the non-executing threads accordingly. In all-stop, all
4601 threads of all processes are stopped when we get any event
4602 reported. In non-stop mode, only the event thread stops. */
4603
4604static void
4605mark_non_executing_threads (process_stratum_target *target,
4606 ptid_t event_ptid,
4607 struct target_waitstatus ws)
4608{
4609 ptid_t mark_ptid;
4610
4611 if (!target_is_non_stop_p ())
4612 mark_ptid = minus_one_ptid;
4613 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4614 || ws.kind == TARGET_WAITKIND_EXITED)
4615 {
4616 /* If we're handling a process exit in non-stop mode, even
4617 though threads haven't been deleted yet, one would think
4618 that there is nothing to do, as threads of the dead process
4619 will be soon deleted, and threads of any other process were
4620 left running. However, on some targets, threads survive a
4621 process exit event. E.g., for the "checkpoint" command,
4622 when the current checkpoint/fork exits, linux-fork.c
4623 automatically switches to another fork from within
4624 target_mourn_inferior, by associating the same
4625 inferior/thread to another fork. We haven't mourned yet at
4626 this point, but we must mark any threads left in the
4627 process as not-executing so that finish_thread_state marks
4628 them stopped (in the user's perspective) if/when we present
4629 the stop to the user. */
4630 mark_ptid = ptid_t (event_ptid.pid ());
4631 }
4632 else
4633 mark_ptid = event_ptid;
4634
4635 set_executing (target, mark_ptid, false);
4636
4637 /* Likewise the resumed flag. */
4638 set_resumed (target, mark_ptid, false);
4639}
4640
6efcd9a8 4641/* See infrun.h. */
372316f1 4642
6efcd9a8 4643void
372316f1
PA
4644stop_all_threads (void)
4645{
4646 /* We may need multiple passes to discover all threads. */
4647 int pass;
4648 int iterations = 0;
372316f1 4649
53cccef1 4650 gdb_assert (exists_non_stop_target ());
372316f1 4651
edbcda09 4652 infrun_log_debug ("stop_all_threads");
372316f1 4653
00431a78 4654 scoped_restore_current_thread restore_thread;
372316f1 4655
6ad82919
TBA
4656 /* Enable thread events of all targets. */
4657 for (auto *target : all_non_exited_process_targets ())
4658 {
4659 switch_to_target_no_thread (target);
4660 target_thread_events (true);
4661 }
4662
4663 SCOPE_EXIT
4664 {
4665 /* Disable thread events of all targets. */
4666 for (auto *target : all_non_exited_process_targets ())
4667 {
4668 switch_to_target_no_thread (target);
4669 target_thread_events (false);
4670 }
4671
edbcda09
SM
4672
4673 infrun_log_debug ("stop_all_threads done");
6ad82919 4674 };
65706a29 4675
372316f1
PA
4676 /* Request threads to stop, and then wait for the stops. Because
4677 threads we already know about can spawn more threads while we're
4678 trying to stop them, and we only learn about new threads when we
4679 update the thread list, do this in a loop, and keep iterating
4680 until two passes find no threads that need to be stopped. */
4681 for (pass = 0; pass < 2; pass++, iterations++)
4682 {
edbcda09
SM
4683 infrun_log_debug ("stop_all_threads, pass=%d, iterations=%d",
4684 pass, iterations);
372316f1
PA
4685 while (1)
4686 {
29d6859f 4687 int waits_needed = 0;
372316f1 4688
a05575d3
TBA
4689 for (auto *target : all_non_exited_process_targets ())
4690 {
4691 switch_to_target_no_thread (target);
4692 update_thread_list ();
4693 }
372316f1
PA
4694
4695 /* Go through all threads looking for threads that we need
4696 to tell the target to stop. */
08036331 4697 for (thread_info *t : all_non_exited_threads ())
372316f1 4698 {
53cccef1
TBA
4699 /* For a single-target setting with an all-stop target,
4700 we would not even arrive here. For a multi-target
4701 setting, until GDB is able to handle a mixture of
4702 all-stop and non-stop targets, simply skip all-stop
4703 targets' threads. This should be fine due to the
4704 protection of 'check_multi_target_resumption'. */
4705
4706 switch_to_thread_no_regs (t);
4707 if (!target_is_non_stop_p ())
4708 continue;
4709
372316f1
PA
4710 if (t->executing)
4711 {
4712 /* If already stopping, don't request a stop again.
4713 We just haven't seen the notification yet. */
4714 if (!t->stop_requested)
4715 {
edbcda09
SM
4716 infrun_log_debug (" %s executing, need stop",
4717 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4718 target_stop (t->ptid);
4719 t->stop_requested = 1;
4720 }
4721 else
4722 {
edbcda09
SM
4723 infrun_log_debug (" %s executing, already stopping",
4724 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4725 }
4726
4727 if (t->stop_requested)
29d6859f 4728 waits_needed++;
372316f1
PA
4729 }
4730 else
4731 {
edbcda09
SM
4732 infrun_log_debug (" %s not executing",
4733 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4734
4735 /* The thread may be not executing, but still be
4736 resumed with a pending status to process. */
719546c4 4737 t->resumed = false;
372316f1
PA
4738 }
4739 }
4740
29d6859f 4741 if (waits_needed == 0)
372316f1
PA
4742 break;
4743
4744 /* If we find new threads on the second iteration, restart
4745 over. We want to see two iterations in a row with all
4746 threads stopped. */
4747 if (pass > 0)
4748 pass = -1;
4749
29d6859f 4750 for (int i = 0; i < waits_needed; i++)
c29705b7 4751 {
29d6859f 4752 wait_one_event event = wait_one ();
a05575d3 4753
edbcda09
SM
4754 infrun_log_debug ("%s %s\n",
4755 target_waitstatus_to_string (&event.ws).c_str (),
4756 target_pid_to_str (event.ptid).c_str ());
a05575d3 4757
29d6859f 4758 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
a05575d3 4759 {
29d6859f
LM
4760 /* All resumed threads exited. */
4761 break;
a05575d3 4762 }
29d6859f
LM
4763 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4764 || event.ws.kind == TARGET_WAITKIND_EXITED
4765 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
6efcd9a8 4766 {
29d6859f 4767 /* One thread/process exited/signalled. */
6efcd9a8 4768
29d6859f 4769 thread_info *t = nullptr;
372316f1 4770
29d6859f
LM
4771 /* The target may have reported just a pid. If so, try
4772 the first non-exited thread. */
4773 if (event.ptid.is_pid ())
372316f1 4774 {
29d6859f
LM
4775 int pid = event.ptid.pid ();
4776 inferior *inf = find_inferior_pid (event.target, pid);
4777 for (thread_info *tp : inf->non_exited_threads ())
372316f1 4778 {
29d6859f
LM
4779 t = tp;
4780 break;
372316f1 4781 }
29d6859f
LM
4782
4783 /* If there is no available thread, the event would
4784 have to be appended to a per-inferior event list,
4785 which does not exist (and if it did, we'd have
4786 to adjust run control command to be able to
4787 resume such an inferior). We assert here instead
4788 of going into an infinite loop. */
4789 gdb_assert (t != nullptr);
4790
edbcda09
SM
4791 infrun_log_debug ("using %s\n",
4792 target_pid_to_str (t->ptid).c_str ());
29d6859f
LM
4793 }
4794 else
4795 {
4796 t = find_thread_ptid (event.target, event.ptid);
4797 /* Check if this is the first time we see this thread.
4798 Don't bother adding if it individually exited. */
4799 if (t == nullptr
4800 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4801 t = add_thread (event.target, event.ptid);
4802 }
4803
4804 if (t != nullptr)
4805 {
4806 /* Set the threads as non-executing to avoid
4807 another stop attempt on them. */
4808 switch_to_thread_no_regs (t);
4809 mark_non_executing_threads (event.target, event.ptid,
4810 event.ws);
4811 save_waitstatus (t, &event.ws);
4812 t->stop_requested = false;
372316f1
PA
4813 }
4814 }
4815 else
4816 {
29d6859f
LM
4817 thread_info *t = find_thread_ptid (event.target, event.ptid);
4818 if (t == NULL)
4819 t = add_thread (event.target, event.ptid);
372316f1 4820
29d6859f
LM
4821 t->stop_requested = 0;
4822 t->executing = 0;
4823 t->resumed = false;
4824 t->control.may_range_step = 0;
4825
4826 /* This may be the first time we see the inferior report
4827 a stop. */
4828 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4829 if (inf->needs_setup)
372316f1 4830 {
29d6859f
LM
4831 switch_to_thread_no_regs (t);
4832 setup_inferior (0);
372316f1
PA
4833 }
4834
29d6859f
LM
4835 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4836 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1 4837 {
29d6859f
LM
4838 /* We caught the event that we intended to catch, so
4839 there's no event pending. */
4840 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4841 t->suspend.waitstatus_pending_p = 0;
4842
9844051a 4843 if (displaced_step_finish (t, GDB_SIGNAL_0) < 0)
29d6859f
LM
4844 {
4845 /* Add it back to the step-over queue. */
edbcda09
SM
4846 infrun_log_debug ("displaced-step of %s "
4847 "canceled: adding back to the "
4848 "step-over queue\n",
4849 target_pid_to_str (t->ptid).c_str ());
4850
29d6859f 4851 t->control.trap_expected = 0;
7bd43605 4852 global_thread_step_over_chain_enqueue (t);
29d6859f 4853 }
372316f1 4854 }
29d6859f
LM
4855 else
4856 {
4857 enum gdb_signal sig;
4858 struct regcache *regcache;
372316f1 4859
29d6859f
LM
4860 if (debug_infrun)
4861 {
4862 std::string statstr = target_waitstatus_to_string (&event.ws);
372316f1 4863
edbcda09
SM
4864 infrun_log_debug ("target_wait %s, saving "
4865 "status for %d.%ld.%ld\n",
4866 statstr.c_str (),
4867 t->ptid.pid (),
4868 t->ptid.lwp (),
4869 t->ptid.tid ());
29d6859f
LM
4870 }
4871
4872 /* Record for later. */
4873 save_waitstatus (t, &event.ws);
4874
4875 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4876 ? event.ws.value.sig : GDB_SIGNAL_0);
4877
9844051a 4878 if (displaced_step_finish (t, sig) < 0)
29d6859f
LM
4879 {
4880 /* Add it back to the step-over queue. */
4881 t->control.trap_expected = 0;
7bd43605 4882 global_thread_step_over_chain_enqueue (t);
29d6859f
LM
4883 }
4884
4885 regcache = get_thread_regcache (t);
4886 t->suspend.stop_pc = regcache_read_pc (regcache);
4887
edbcda09
SM
4888 infrun_log_debug ("saved stop_pc=%s for %s "
4889 "(currently_stepping=%d)\n",
4890 paddress (target_gdbarch (),
4891 t->suspend.stop_pc),
4892 target_pid_to_str (t->ptid).c_str (),
4893 currently_stepping (t));
372316f1
PA
4894 }
4895 }
4896 }
4897 }
4898 }
372316f1
PA
4899}
4900
f4836ba9
PA
4901/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4902
4903static int
4904handle_no_resumed (struct execution_control_state *ecs)
4905{
3b12939d 4906 if (target_can_async_p ())
f4836ba9 4907 {
3b12939d 4908 int any_sync = 0;
f4836ba9 4909
2dab0c7b 4910 for (ui *ui : all_uis ())
3b12939d
PA
4911 {
4912 if (ui->prompt_state == PROMPT_BLOCKED)
4913 {
4914 any_sync = 1;
4915 break;
4916 }
4917 }
4918 if (!any_sync)
4919 {
4920 /* There were no unwaited-for children left in the target, but,
4921 we're not synchronously waiting for events either. Just
4922 ignore. */
4923
edbcda09 4924 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
3b12939d
PA
4925 prepare_to_wait (ecs);
4926 return 1;
4927 }
f4836ba9
PA
4928 }
4929
4930 /* Otherwise, if we were running a synchronous execution command, we
4931 may need to cancel it and give the user back the terminal.
4932
4933 In non-stop mode, the target can't tell whether we've already
4934 consumed previous stop events, so it can end up sending us a
4935 no-resumed event like so:
4936
4937 #0 - thread 1 is left stopped
4938
4939 #1 - thread 2 is resumed and hits breakpoint
4940 -> TARGET_WAITKIND_STOPPED
4941
4942 #2 - thread 3 is resumed and exits
4943 this is the last resumed thread, so
4944 -> TARGET_WAITKIND_NO_RESUMED
4945
4946 #3 - gdb processes stop for thread 2 and decides to re-resume
4947 it.
4948
4949 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4950 thread 2 is now resumed, so the event should be ignored.
4951
4952 IOW, if the stop for thread 2 doesn't end a foreground command,
4953 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4954 event. But it could be that the event meant that thread 2 itself
4955 (or whatever other thread was the last resumed thread) exited.
4956
4957 To address this we refresh the thread list and check whether we
4958 have resumed threads _now_. In the example above, this removes
4959 thread 3 from the thread list. If thread 2 was re-resumed, we
4960 ignore this event. If we find no thread resumed, then we cancel
2ec0f7ff
PA
4961 the synchronous command and show "no unwaited-for " to the
4962 user. */
f4836ba9 4963
aecd6cb8 4964 inferior *curr_inf = current_inferior ();
2ec0f7ff 4965
aecd6cb8
PA
4966 scoped_restore_current_thread restore_thread;
4967
4968 for (auto *target : all_non_exited_process_targets ())
4969 {
4970 switch_to_target_no_thread (target);
4971 update_thread_list ();
4972 }
4973
4974 /* If:
4975
4976 - the current target has no thread executing, and
4977 - the current inferior is native, and
4978 - the current inferior is the one which has the terminal, and
4979 - we did nothing,
4980
4981 then a Ctrl-C from this point on would remain stuck in the
4982 kernel, until a thread resumes and dequeues it. That would
4983 result in the GDB CLI not reacting to Ctrl-C, not able to
4984 interrupt the program. To address this, if the current inferior
4985 no longer has any thread executing, we give the terminal to some
4986 other inferior that has at least one thread executing. */
4987 bool swap_terminal = true;
4988
4989 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4990 whether to report it to the user. */
4991 bool ignore_event = false;
2ec0f7ff
PA
4992
4993 for (thread_info *thread : all_non_exited_threads ())
f4836ba9 4994 {
aecd6cb8
PA
4995 if (swap_terminal && thread->executing)
4996 {
4997 if (thread->inf != curr_inf)
4998 {
4999 target_terminal::ours ();
5000
5001 switch_to_thread (thread);
5002 target_terminal::inferior ();
5003 }
5004 swap_terminal = false;
5005 }
5006
5007 if (!ignore_event
5008 && (thread->executing
5009 || thread->suspend.waitstatus_pending_p))
f4836ba9 5010 {
2ec0f7ff
PA
5011 /* Either there were no unwaited-for children left in the
5012 target at some point, but there are now, or some target
5013 other than the eventing one has unwaited-for children
5014 left. Just ignore. */
edbcda09
SM
5015 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED "
5016 "(ignoring: found resumed)\n");
aecd6cb8
PA
5017
5018 ignore_event = true;
f4836ba9 5019 }
aecd6cb8
PA
5020
5021 if (ignore_event && !swap_terminal)
5022 break;
5023 }
5024
5025 if (ignore_event)
5026 {
5027 switch_to_inferior_no_thread (curr_inf);
5028 prepare_to_wait (ecs);
5029 return 1;
f4836ba9
PA
5030 }
5031
5032 /* Go ahead and report the event. */
5033 return 0;
5034}
5035
05ba8510
PA
5036/* Given an execution control state that has been freshly filled in by
5037 an event from the inferior, figure out what it means and take
5038 appropriate action.
5039
5040 The alternatives are:
5041
22bcd14b 5042 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5043 debugger.
5044
5045 2) keep_going and return; to wait for the next event (set
5046 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5047 once). */
c906108c 5048
ec9499be 5049static void
595915c1 5050handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5051{
595915c1
TT
5052 /* Make sure that all temporary struct value objects that were
5053 created during the handling of the event get deleted at the
5054 end. */
5055 scoped_value_mark free_values;
5056
d6b48e9c
PA
5057 enum stop_kind stop_soon;
5058
edbcda09 5059 infrun_log_debug ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
c29705b7 5060
28736962
PA
5061 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5062 {
5063 /* We had an event in the inferior, but we are not interested in
5064 handling it at this level. The lower layers have already
5065 done what needs to be done, if anything.
5066
5067 One of the possible circumstances for this is when the
5068 inferior produces output for the console. The inferior has
5069 not stopped, and we are ignoring the event. Another possible
5070 circumstance is any event which the lower level knows will be
5071 reported multiple times without an intervening resume. */
28736962
PA
5072 prepare_to_wait (ecs);
5073 return;
5074 }
5075
65706a29
PA
5076 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5077 {
65706a29
PA
5078 prepare_to_wait (ecs);
5079 return;
5080 }
5081
0e5bf2a8 5082 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5083 && handle_no_resumed (ecs))
5084 return;
0e5bf2a8 5085
5b6d1e4f
PA
5086 /* Cache the last target/ptid/waitstatus. */
5087 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5088
ca005067 5089 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5090 stop_stack_dummy = STOP_NONE;
ca005067 5091
0e5bf2a8
PA
5092 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5093 {
5094 /* No unwaited-for children left. IOW, all resumed children
5095 have exited. */
0e5bf2a8 5096 stop_print_frame = 0;
22bcd14b 5097 stop_waiting (ecs);
0e5bf2a8
PA
5098 return;
5099 }
5100
8c90c137 5101 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5102 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5103 {
5b6d1e4f 5104 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5105 /* If it's a new thread, add it to the thread database. */
5106 if (ecs->event_thread == NULL)
5b6d1e4f 5107 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5108
5109 /* Disable range stepping. If the next step request could use a
5110 range, this will be end up re-enabled then. */
5111 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5112 }
88ed393a
JK
5113
5114 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5115 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5116
5117 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5118 reinit_frame_cache ();
5119
28736962
PA
5120 breakpoint_retire_moribund ();
5121
2b009048
DJ
5122 /* First, distinguish signals caused by the debugger from signals
5123 that have to do with the program's own actions. Note that
5124 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5125 on the operating system version. Here we detect when a SIGILL or
5126 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5127 something similar for SIGSEGV, since a SIGSEGV will be generated
5128 when we're trying to execute a breakpoint instruction on a
5129 non-executable stack. This happens for call dummy breakpoints
5130 for architectures like SPARC that place call dummies on the
5131 stack. */
2b009048 5132 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5133 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5134 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5135 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5136 {
00431a78 5137 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5138
a01bda52 5139 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5140 regcache_read_pc (regcache)))
5141 {
edbcda09 5142 infrun_log_debug ("Treating signal as SIGTRAP");
a493e3e2 5143 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5144 }
2b009048
DJ
5145 }
5146
293b3ebc 5147 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
8c90c137 5148
488f131b
JB
5149 switch (ecs->ws.kind)
5150 {
5151 case TARGET_WAITKIND_LOADED:
00431a78 5152 context_switch (ecs);
b0f4b84b
DJ
5153 /* Ignore gracefully during startup of the inferior, as it might
5154 be the shell which has just loaded some objects, otherwise
5155 add the symbols for the newly loaded objects. Also ignore at
5156 the beginning of an attach or remote session; we will query
5157 the full list of libraries once the connection is
5158 established. */
4f5d7f63 5159
00431a78 5160 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5161 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5162 {
edcc5120
TT
5163 struct regcache *regcache;
5164
00431a78 5165 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5166
5167 handle_solib_event ();
5168
5169 ecs->event_thread->control.stop_bpstat
a01bda52 5170 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5171 ecs->event_thread->suspend.stop_pc,
5172 ecs->event_thread, &ecs->ws);
ab04a2af 5173
c65d6b55
PA
5174 if (handle_stop_requested (ecs))
5175 return;
5176
ce12b012 5177 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5178 {
5179 /* A catchpoint triggered. */
94c57d6a
PA
5180 process_event_stop_test (ecs);
5181 return;
edcc5120 5182 }
488f131b 5183
b0f4b84b
DJ
5184 /* If requested, stop when the dynamic linker notifies
5185 gdb of events. This allows the user to get control
5186 and place breakpoints in initializer routines for
5187 dynamically loaded objects (among other things). */
a493e3e2 5188 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5189 if (stop_on_solib_events)
5190 {
55409f9d
DJ
5191 /* Make sure we print "Stopped due to solib-event" in
5192 normal_stop. */
5193 stop_print_frame = 1;
5194
22bcd14b 5195 stop_waiting (ecs);
b0f4b84b
DJ
5196 return;
5197 }
488f131b 5198 }
b0f4b84b
DJ
5199
5200 /* If we are skipping through a shell, or through shared library
5201 loading that we aren't interested in, resume the program. If
5c09a2c5 5202 we're running the program normally, also resume. */
b0f4b84b
DJ
5203 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5204 {
74960c60
VP
5205 /* Loading of shared libraries might have changed breakpoint
5206 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5207 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5208 insert_breakpoints ();
64ce06e4 5209 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5210 prepare_to_wait (ecs);
5211 return;
5212 }
5213
5c09a2c5
PA
5214 /* But stop if we're attaching or setting up a remote
5215 connection. */
5216 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5217 || stop_soon == STOP_QUIETLY_REMOTE)
5218 {
edbcda09 5219 infrun_log_debug ("quietly stopped");
22bcd14b 5220 stop_waiting (ecs);
5c09a2c5
PA
5221 return;
5222 }
5223
5224 internal_error (__FILE__, __LINE__,
5225 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5226
488f131b 5227 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5228 if (handle_stop_requested (ecs))
5229 return;
00431a78 5230 context_switch (ecs);
64ce06e4 5231 resume (GDB_SIGNAL_0);
488f131b
JB
5232 prepare_to_wait (ecs);
5233 return;
c5aa993b 5234
65706a29 5235 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5236 if (handle_stop_requested (ecs))
5237 return;
00431a78 5238 context_switch (ecs);
65706a29
PA
5239 if (!switch_back_to_stepped_thread (ecs))
5240 keep_going (ecs);
5241 return;
5242
488f131b 5243 case TARGET_WAITKIND_EXITED:
940c3c06 5244 case TARGET_WAITKIND_SIGNALLED:
18493a00
PA
5245 {
5246 /* Depending on the system, ecs->ptid may point to a thread or
5247 to a process. On some targets, target_mourn_inferior may
5248 need to have access to the just-exited thread. That is the
5249 case of GNU/Linux's "checkpoint" support, for example.
5250 Call the switch_to_xxx routine as appropriate. */
5251 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5252 if (thr != nullptr)
5253 switch_to_thread (thr);
5254 else
5255 {
5256 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5257 switch_to_inferior_no_thread (inf);
5258 }
5259 }
6c95b8df 5260 handle_vfork_child_exec_or_exit (0);
223ffa71 5261 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5262
0c557179
SDJ
5263 /* Clearing any previous state of convenience variables. */
5264 clear_exit_convenience_vars ();
5265
940c3c06
PA
5266 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5267 {
5268 /* Record the exit code in the convenience variable $_exitcode, so
5269 that the user can inspect this again later. */
5270 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5271 (LONGEST) ecs->ws.value.integer);
5272
5273 /* Also record this in the inferior itself. */
5274 current_inferior ()->has_exit_code = 1;
5275 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5276
98eb56a4
PA
5277 /* Support the --return-child-result option. */
5278 return_child_result_value = ecs->ws.value.integer;
5279
76727919 5280 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5281 }
5282 else
0c557179 5283 {
00431a78 5284 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5285
5286 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5287 {
5288 /* Set the value of the internal variable $_exitsignal,
5289 which holds the signal uncaught by the inferior. */
5290 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5291 gdbarch_gdb_signal_to_target (gdbarch,
5292 ecs->ws.value.sig));
5293 }
5294 else
5295 {
5296 /* We don't have access to the target's method used for
5297 converting between signal numbers (GDB's internal
5298 representation <-> target's representation).
5299 Therefore, we cannot do a good job at displaying this
5300 information to the user. It's better to just warn
5301 her about it (if infrun debugging is enabled), and
5302 give up. */
edbcda09
SM
5303 infrun_log_debug ("Cannot fill $_exitsignal with the correct "
5304 "signal number.");
0c557179
SDJ
5305 }
5306
76727919 5307 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5308 }
8cf64490 5309
488f131b 5310 gdb_flush (gdb_stdout);
bc1e6c81 5311 target_mourn_inferior (inferior_ptid);
488f131b 5312 stop_print_frame = 0;
22bcd14b 5313 stop_waiting (ecs);
488f131b 5314 return;
c5aa993b 5315
488f131b 5316 case TARGET_WAITKIND_FORKED:
deb3b17b 5317 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5318 /* Check whether the inferior is displaced stepping. */
5319 {
00431a78 5320 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5321 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5322
5323 /* If checking displaced stepping is supported, and thread
5324 ecs->ptid is displaced stepping. */
9844051a 5325 if (displaced_step_in_progress (ecs->event_thread))
e2d96639
YQ
5326 {
5327 struct inferior *parent_inf
5b6d1e4f 5328 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5329 struct regcache *child_regcache;
5330 CORE_ADDR parent_pc;
5331
d8d83535
SM
5332 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5333 {
9844051a
SM
5334 // struct displaced_step_inferior_state *displaced
5335 // = get_displaced_stepping_state (parent_inf);
d8d83535
SM
5336
5337 /* Restore scratch pad for child process. */
9844051a
SM
5338 //displaced_step_restore (displaced, ecs->ws.value.related_pid);
5339 // FIXME: we should restore all the buffers that were currently in use
d8d83535
SM
5340 }
5341
e2d96639
YQ
5342 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5343 indicating that the displaced stepping of syscall instruction
5344 has been done. Perform cleanup for parent process here. Note
5345 that this operation also cleans up the child process for vfork,
5346 because their pages are shared. */
9844051a 5347 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5348 /* Start a new step-over in another thread if there's one
5349 that needs it. */
5350 start_step_over ();
e2d96639 5351
e2d96639
YQ
5352 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5353 the child's PC is also within the scratchpad. Set the child's PC
5354 to the parent's PC value, which has already been fixed up.
5355 FIXME: we use the parent's aspace here, although we're touching
5356 the child, because the child hasn't been added to the inferior
5357 list yet at this point. */
5358
5359 child_regcache
5b6d1e4f
PA
5360 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5361 ecs->ws.value.related_pid,
e2d96639
YQ
5362 gdbarch,
5363 parent_inf->aspace);
5364 /* Read PC value of parent process. */
5365 parent_pc = regcache_read_pc (regcache);
5366
5367 if (debug_displaced)
5368 fprintf_unfiltered (gdb_stdlog,
5369 "displaced: write child pc from %s to %s\n",
5370 paddress (gdbarch,
5371 regcache_read_pc (child_regcache)),
5372 paddress (gdbarch, parent_pc));
5373
5374 regcache_write_pc (child_regcache, parent_pc);
5375 }
5376 }
5377
00431a78 5378 context_switch (ecs);
5a2901d9 5379
b242c3c2
PA
5380 /* Immediately detach breakpoints from the child before there's
5381 any chance of letting the user delete breakpoints from the
5382 breakpoint lists. If we don't do this early, it's easy to
5383 leave left over traps in the child, vis: "break foo; catch
5384 fork; c; <fork>; del; c; <child calls foo>". We only follow
5385 the fork on the last `continue', and by that time the
5386 breakpoint at "foo" is long gone from the breakpoint table.
5387 If we vforked, then we don't need to unpatch here, since both
5388 parent and child are sharing the same memory pages; we'll
5389 need to unpatch at follow/detach time instead to be certain
5390 that new breakpoints added between catchpoint hit time and
5391 vfork follow are detached. */
5392 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5393 {
b242c3c2
PA
5394 /* This won't actually modify the breakpoint list, but will
5395 physically remove the breakpoints from the child. */
d80ee84f 5396 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5397 }
5398
34b7e8a6 5399 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5400
e58b0e63
PA
5401 /* In case the event is caught by a catchpoint, remember that
5402 the event is to be followed at the next resume of the thread,
5403 and not immediately. */
5404 ecs->event_thread->pending_follow = ecs->ws;
5405
f2ffa92b
PA
5406 ecs->event_thread->suspend.stop_pc
5407 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5408
16c381f0 5409 ecs->event_thread->control.stop_bpstat
a01bda52 5410 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5411 ecs->event_thread->suspend.stop_pc,
5412 ecs->event_thread, &ecs->ws);
675bf4cb 5413
c65d6b55
PA
5414 if (handle_stop_requested (ecs))
5415 return;
5416
ce12b012
PA
5417 /* If no catchpoint triggered for this, then keep going. Note
5418 that we're interested in knowing the bpstat actually causes a
5419 stop, not just if it may explain the signal. Software
5420 watchpoints, for example, always appear in the bpstat. */
5421 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5422 {
5ab2fbf1 5423 bool follow_child
3e43a32a 5424 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5425
a493e3e2 5426 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5427
5b6d1e4f
PA
5428 process_stratum_target *targ
5429 = ecs->event_thread->inf->process_target ();
5430
5ab2fbf1 5431 bool should_resume = follow_fork ();
e58b0e63 5432
5b6d1e4f
PA
5433 /* Note that one of these may be an invalid pointer,
5434 depending on detach_fork. */
00431a78 5435 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5436 thread_info *child
5437 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5438
a2077e25
PA
5439 /* At this point, the parent is marked running, and the
5440 child is marked stopped. */
5441
5442 /* If not resuming the parent, mark it stopped. */
5443 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5444 parent->set_running (false);
a2077e25
PA
5445
5446 /* If resuming the child, mark it running. */
5447 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5448 child->set_running (true);
a2077e25 5449
6c95b8df 5450 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5451 if (!detach_fork && (non_stop
5452 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5453 {
5454 if (follow_child)
5455 switch_to_thread (parent);
5456 else
5457 switch_to_thread (child);
5458
5459 ecs->event_thread = inferior_thread ();
5460 ecs->ptid = inferior_ptid;
5461 keep_going (ecs);
5462 }
5463
5464 if (follow_child)
5465 switch_to_thread (child);
5466 else
5467 switch_to_thread (parent);
5468
e58b0e63
PA
5469 ecs->event_thread = inferior_thread ();
5470 ecs->ptid = inferior_ptid;
5471
5472 if (should_resume)
5473 keep_going (ecs);
5474 else
22bcd14b 5475 stop_waiting (ecs);
04e68871
DJ
5476 return;
5477 }
94c57d6a
PA
5478 process_event_stop_test (ecs);
5479 return;
488f131b 5480
6c95b8df
PA
5481 case TARGET_WAITKIND_VFORK_DONE:
5482 /* Done with the shared memory region. Re-insert breakpoints in
5483 the parent, and keep going. */
5484
00431a78 5485 context_switch (ecs);
6c95b8df
PA
5486
5487 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5488 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5489
5490 if (handle_stop_requested (ecs))
5491 return;
5492
6c95b8df
PA
5493 /* This also takes care of reinserting breakpoints in the
5494 previously locked inferior. */
5495 keep_going (ecs);
5496 return;
5497
488f131b 5498 case TARGET_WAITKIND_EXECD:
488f131b 5499
cbd2b4e3
PA
5500 /* Note we can't read registers yet (the stop_pc), because we
5501 don't yet know the inferior's post-exec architecture.
5502 'stop_pc' is explicitly read below instead. */
00431a78 5503 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5504
6c95b8df
PA
5505 /* Do whatever is necessary to the parent branch of the vfork. */
5506 handle_vfork_child_exec_or_exit (1);
5507
795e548f
PA
5508 /* This causes the eventpoints and symbol table to be reset.
5509 Must do this now, before trying to determine whether to
5510 stop. */
71b43ef8 5511 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5512
17d8546e
DB
5513 /* In follow_exec we may have deleted the original thread and
5514 created a new one. Make sure that the event thread is the
5515 execd thread for that case (this is a nop otherwise). */
5516 ecs->event_thread = inferior_thread ();
5517
f2ffa92b
PA
5518 ecs->event_thread->suspend.stop_pc
5519 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5520
16c381f0 5521 ecs->event_thread->control.stop_bpstat
a01bda52 5522 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5523 ecs->event_thread->suspend.stop_pc,
5524 ecs->event_thread, &ecs->ws);
795e548f 5525
71b43ef8
PA
5526 /* Note that this may be referenced from inside
5527 bpstat_stop_status above, through inferior_has_execd. */
5528 xfree (ecs->ws.value.execd_pathname);
5529 ecs->ws.value.execd_pathname = NULL;
5530
c65d6b55
PA
5531 if (handle_stop_requested (ecs))
5532 return;
5533
04e68871 5534 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5535 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5536 {
a493e3e2 5537 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5538 keep_going (ecs);
5539 return;
5540 }
94c57d6a
PA
5541 process_event_stop_test (ecs);
5542 return;
488f131b 5543
b4dc5ffa
MK
5544 /* Be careful not to try to gather much state about a thread
5545 that's in a syscall. It's frequently a losing proposition. */
488f131b 5546 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5547 /* Getting the current syscall number. */
94c57d6a
PA
5548 if (handle_syscall_event (ecs) == 0)
5549 process_event_stop_test (ecs);
5550 return;
c906108c 5551
488f131b
JB
5552 /* Before examining the threads further, step this thread to
5553 get it entirely out of the syscall. (We get notice of the
5554 event when the thread is just on the verge of exiting a
5555 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5556 into user code.) */
488f131b 5557 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5558 if (handle_syscall_event (ecs) == 0)
5559 process_event_stop_test (ecs);
5560 return;
c906108c 5561
488f131b 5562 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5563 handle_signal_stop (ecs);
5564 return;
c906108c 5565
b2175913
MS
5566 case TARGET_WAITKIND_NO_HISTORY:
5567 /* Reverse execution: target ran out of history info. */
eab402df 5568
d1988021 5569 /* Switch to the stopped thread. */
00431a78 5570 context_switch (ecs);
edbcda09 5571 infrun_log_debug ("stopped");
d1988021 5572
34b7e8a6 5573 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5574 ecs->event_thread->suspend.stop_pc
5575 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5576
5577 if (handle_stop_requested (ecs))
5578 return;
5579
76727919 5580 gdb::observers::no_history.notify ();
22bcd14b 5581 stop_waiting (ecs);
b2175913 5582 return;
488f131b 5583 }
4f5d7f63
PA
5584}
5585
372316f1
PA
5586/* Restart threads back to what they were trying to do back when we
5587 paused them for an in-line step-over. The EVENT_THREAD thread is
5588 ignored. */
4d9d9d04
PA
5589
5590static void
372316f1
PA
5591restart_threads (struct thread_info *event_thread)
5592{
372316f1
PA
5593 /* In case the instruction just stepped spawned a new thread. */
5594 update_thread_list ();
5595
08036331 5596 for (thread_info *tp : all_non_exited_threads ())
372316f1 5597 {
f3f8ece4
PA
5598 switch_to_thread_no_regs (tp);
5599
372316f1
PA
5600 if (tp == event_thread)
5601 {
edbcda09
SM
5602 infrun_log_debug ("restart threads: [%s] is event thread",
5603 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5604 continue;
5605 }
5606
5607 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5608 {
edbcda09
SM
5609 infrun_log_debug ("restart threads: [%s] not meant to be running",
5610 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5611 continue;
5612 }
5613
5614 if (tp->resumed)
5615 {
edbcda09
SM
5616 infrun_log_debug ("restart threads: [%s] resumed",
5617 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5618 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5619 continue;
5620 }
5621
5622 if (thread_is_in_step_over_chain (tp))
5623 {
edbcda09
SM
5624 infrun_log_debug ("restart threads: [%s] needs step-over",
5625 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5626 gdb_assert (!tp->resumed);
5627 continue;
5628 }
5629
5630
5631 if (tp->suspend.waitstatus_pending_p)
5632 {
edbcda09
SM
5633 infrun_log_debug ("restart threads: [%s] has pending status",
5634 target_pid_to_str (tp->ptid).c_str ());
719546c4 5635 tp->resumed = true;
372316f1
PA
5636 continue;
5637 }
5638
c65d6b55
PA
5639 gdb_assert (!tp->stop_requested);
5640
372316f1
PA
5641 /* If some thread needs to start a step-over at this point, it
5642 should still be in the step-over queue, and thus skipped
5643 above. */
5644 if (thread_still_needs_step_over (tp))
5645 {
5646 internal_error (__FILE__, __LINE__,
5647 "thread [%s] needs a step-over, but not in "
5648 "step-over queue\n",
a068643d 5649 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5650 }
5651
5652 if (currently_stepping (tp))
5653 {
edbcda09
SM
5654 infrun_log_debug ("restart threads: [%s] was stepping",
5655 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5656 keep_going_stepped_thread (tp);
5657 }
5658 else
5659 {
5660 struct execution_control_state ecss;
5661 struct execution_control_state *ecs = &ecss;
5662
edbcda09
SM
5663 infrun_log_debug ("restart threads: [%s] continuing",
5664 target_pid_to_str (tp->ptid).c_str ());
372316f1 5665 reset_ecs (ecs, tp);
00431a78 5666 switch_to_thread (tp);
372316f1
PA
5667 keep_going_pass_signal (ecs);
5668 }
5669 }
5670}
5671
5672/* Callback for iterate_over_threads. Find a resumed thread that has
5673 a pending waitstatus. */
5674
5675static int
5676resumed_thread_with_pending_status (struct thread_info *tp,
5677 void *arg)
5678{
5679 return (tp->resumed
5680 && tp->suspend.waitstatus_pending_p);
5681}
5682
5683/* Called when we get an event that may finish an in-line or
5684 out-of-line (displaced stepping) step-over started previously.
5685 Return true if the event is processed and we should go back to the
5686 event loop; false if the caller should continue processing the
5687 event. */
5688
5689static int
4d9d9d04
PA
5690finish_step_over (struct execution_control_state *ecs)
5691{
372316f1
PA
5692 int had_step_over_info;
5693
9844051a
SM
5694 displaced_step_finish (ecs->event_thread,
5695 ecs->event_thread->suspend.stop_signal);
4d9d9d04 5696
372316f1
PA
5697 had_step_over_info = step_over_info_valid_p ();
5698
5699 if (had_step_over_info)
4d9d9d04
PA
5700 {
5701 /* If we're stepping over a breakpoint with all threads locked,
5702 then only the thread that was stepped should be reporting
5703 back an event. */
5704 gdb_assert (ecs->event_thread->control.trap_expected);
5705
c65d6b55 5706 clear_step_over_info ();
4d9d9d04
PA
5707 }
5708
fbea99ea 5709 if (!target_is_non_stop_p ())
372316f1 5710 return 0;
4d9d9d04
PA
5711
5712 /* Start a new step-over in another thread if there's one that
5713 needs it. */
5714 start_step_over ();
372316f1
PA
5715
5716 /* If we were stepping over a breakpoint before, and haven't started
5717 a new in-line step-over sequence, then restart all other threads
5718 (except the event thread). We can't do this in all-stop, as then
5719 e.g., we wouldn't be able to issue any other remote packet until
5720 these other threads stop. */
5721 if (had_step_over_info && !step_over_info_valid_p ())
5722 {
5723 struct thread_info *pending;
5724
5725 /* If we only have threads with pending statuses, the restart
5726 below won't restart any thread and so nothing re-inserts the
5727 breakpoint we just stepped over. But we need it inserted
5728 when we later process the pending events, otherwise if
5729 another thread has a pending event for this breakpoint too,
5730 we'd discard its event (because the breakpoint that
5731 originally caused the event was no longer inserted). */
00431a78 5732 context_switch (ecs);
372316f1
PA
5733 insert_breakpoints ();
5734
5735 restart_threads (ecs->event_thread);
5736
5737 /* If we have events pending, go through handle_inferior_event
5738 again, picking up a pending event at random. This avoids
5739 thread starvation. */
5740
5741 /* But not if we just stepped over a watchpoint in order to let
5742 the instruction execute so we can evaluate its expression.
5743 The set of watchpoints that triggered is recorded in the
5744 breakpoint objects themselves (see bp->watchpoint_triggered).
5745 If we processed another event first, that other event could
5746 clobber this info. */
5747 if (ecs->event_thread->stepping_over_watchpoint)
5748 return 0;
5749
5750 pending = iterate_over_threads (resumed_thread_with_pending_status,
5751 NULL);
5752 if (pending != NULL)
5753 {
5754 struct thread_info *tp = ecs->event_thread;
5755 struct regcache *regcache;
5756
edbcda09
SM
5757 infrun_log_debug ("found resumed threads with "
5758 "pending events, saving status");
372316f1
PA
5759
5760 gdb_assert (pending != tp);
5761
5762 /* Record the event thread's event for later. */
5763 save_waitstatus (tp, &ecs->ws);
5764 /* This was cleared early, by handle_inferior_event. Set it
5765 so this pending event is considered by
5766 do_target_wait. */
719546c4 5767 tp->resumed = true;
372316f1
PA
5768
5769 gdb_assert (!tp->executing);
5770
00431a78 5771 regcache = get_thread_regcache (tp);
372316f1
PA
5772 tp->suspend.stop_pc = regcache_read_pc (regcache);
5773
edbcda09
SM
5774 infrun_log_debug ("saved stop_pc=%s for %s "
5775 "(currently_stepping=%d)\n",
5776 paddress (target_gdbarch (),
5777 tp->suspend.stop_pc),
5778 target_pid_to_str (tp->ptid).c_str (),
5779 currently_stepping (tp));
372316f1
PA
5780
5781 /* This in-line step-over finished; clear this so we won't
5782 start a new one. This is what handle_signal_stop would
5783 do, if we returned false. */
5784 tp->stepping_over_breakpoint = 0;
5785
5786 /* Wake up the event loop again. */
5787 mark_async_event_handler (infrun_async_inferior_event_token);
5788
5789 prepare_to_wait (ecs);
5790 return 1;
5791 }
5792 }
5793
5794 return 0;
4d9d9d04
PA
5795}
5796
4f5d7f63
PA
5797/* Come here when the program has stopped with a signal. */
5798
5799static void
5800handle_signal_stop (struct execution_control_state *ecs)
5801{
5802 struct frame_info *frame;
5803 struct gdbarch *gdbarch;
5804 int stopped_by_watchpoint;
5805 enum stop_kind stop_soon;
5806 int random_signal;
c906108c 5807
f0407826
DE
5808 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5809
c65d6b55
PA
5810 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5811
f0407826
DE
5812 /* Do we need to clean up the state of a thread that has
5813 completed a displaced single-step? (Doing so usually affects
5814 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5815 if (finish_step_over (ecs))
5816 return;
f0407826
DE
5817
5818 /* If we either finished a single-step or hit a breakpoint, but
5819 the user wanted this thread to be stopped, pretend we got a
5820 SIG0 (generic unsignaled stop). */
5821 if (ecs->event_thread->stop_requested
5822 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5823 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5824
f2ffa92b
PA
5825 ecs->event_thread->suspend.stop_pc
5826 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5827
527159b7 5828 if (debug_infrun)
237fc4c9 5829 {
00431a78 5830 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5831 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5832
f3f8ece4 5833 switch_to_thread (ecs->event_thread);
5af949e3 5834
edbcda09
SM
5835 infrun_log_debug ("stop_pc=%s",
5836 paddress (reg_gdbarch,
5837 ecs->event_thread->suspend.stop_pc));
d92524f1 5838 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5839 {
5840 CORE_ADDR addr;
abbb1732 5841
edbcda09 5842 infrun_log_debug ("stopped by watchpoint");
237fc4c9 5843
8b88a78e 5844 if (target_stopped_data_address (current_top_target (), &addr))
edbcda09
SM
5845 infrun_log_debug ("stopped data address=%s",
5846 paddress (reg_gdbarch, addr));
237fc4c9 5847 else
edbcda09 5848 infrun_log_debug ("(no data address available)");
237fc4c9
PA
5849 }
5850 }
527159b7 5851
36fa8042
PA
5852 /* This is originated from start_remote(), start_inferior() and
5853 shared libraries hook functions. */
00431a78 5854 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5855 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5856 {
00431a78 5857 context_switch (ecs);
edbcda09 5858 infrun_log_debug ("quietly stopped");
36fa8042 5859 stop_print_frame = 1;
22bcd14b 5860 stop_waiting (ecs);
36fa8042
PA
5861 return;
5862 }
5863
36fa8042
PA
5864 /* This originates from attach_command(). We need to overwrite
5865 the stop_signal here, because some kernels don't ignore a
5866 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5867 See more comments in inferior.h. On the other hand, if we
5868 get a non-SIGSTOP, report it to the user - assume the backend
5869 will handle the SIGSTOP if it should show up later.
5870
5871 Also consider that the attach is complete when we see a
5872 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5873 target extended-remote report it instead of a SIGSTOP
5874 (e.g. gdbserver). We already rely on SIGTRAP being our
5875 signal, so this is no exception.
5876
5877 Also consider that the attach is complete when we see a
5878 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5879 the target to stop all threads of the inferior, in case the
5880 low level attach operation doesn't stop them implicitly. If
5881 they weren't stopped implicitly, then the stub will report a
5882 GDB_SIGNAL_0, meaning: stopped for no particular reason
5883 other than GDB's request. */
5884 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5885 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5886 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5887 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5888 {
5889 stop_print_frame = 1;
22bcd14b 5890 stop_waiting (ecs);
36fa8042
PA
5891 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5892 return;
5893 }
5894
488f131b 5895 /* See if something interesting happened to the non-current thread. If
b40c7d58 5896 so, then switch to that thread. */
d7e15655 5897 if (ecs->ptid != inferior_ptid)
488f131b 5898 {
edbcda09 5899 infrun_log_debug ("context switch");
527159b7 5900
00431a78 5901 context_switch (ecs);
c5aa993b 5902
9a4105ab 5903 if (deprecated_context_hook)
00431a78 5904 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5905 }
c906108c 5906
568d6575
UW
5907 /* At this point, get hold of the now-current thread's frame. */
5908 frame = get_current_frame ();
5909 gdbarch = get_frame_arch (frame);
5910
2adfaa28 5911 /* Pull the single step breakpoints out of the target. */
af48d08f 5912 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5913 {
af48d08f 5914 struct regcache *regcache;
af48d08f 5915 CORE_ADDR pc;
2adfaa28 5916
00431a78 5917 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5918 const address_space *aspace = regcache->aspace ();
5919
af48d08f 5920 pc = regcache_read_pc (regcache);
34b7e8a6 5921
af48d08f
PA
5922 /* However, before doing so, if this single-step breakpoint was
5923 actually for another thread, set this thread up for moving
5924 past it. */
5925 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5926 aspace, pc))
5927 {
5928 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28 5929 {
edbcda09
SM
5930 infrun_log_debug ("[%s] hit another thread's single-step "
5931 "breakpoint",
5932 target_pid_to_str (ecs->ptid).c_str ());
af48d08f
PA
5933 ecs->hit_singlestep_breakpoint = 1;
5934 }
5935 }
5936 else
5937 {
edbcda09
SM
5938 infrun_log_debug ("[%s] hit its single-step breakpoint",
5939 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5940 }
488f131b 5941 }
af48d08f 5942 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5943
963f9c80
PA
5944 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5945 && ecs->event_thread->control.trap_expected
5946 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5947 stopped_by_watchpoint = 0;
5948 else
5949 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5950
5951 /* If necessary, step over this watchpoint. We'll be back to display
5952 it in a moment. */
5953 if (stopped_by_watchpoint
d92524f1 5954 && (target_have_steppable_watchpoint
568d6575 5955 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5956 {
488f131b
JB
5957 /* At this point, we are stopped at an instruction which has
5958 attempted to write to a piece of memory under control of
5959 a watchpoint. The instruction hasn't actually executed
5960 yet. If we were to evaluate the watchpoint expression
5961 now, we would get the old value, and therefore no change
5962 would seem to have occurred.
5963
5964 In order to make watchpoints work `right', we really need
5965 to complete the memory write, and then evaluate the
d983da9c
DJ
5966 watchpoint expression. We do this by single-stepping the
5967 target.
5968
7f89fd65 5969 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5970 it. For example, the PA can (with some kernel cooperation)
5971 single step over a watchpoint without disabling the watchpoint.
5972
5973 It is far more common to need to disable a watchpoint to step
5974 the inferior over it. If we have non-steppable watchpoints,
5975 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5976 disable all watchpoints.
5977
5978 Any breakpoint at PC must also be stepped over -- if there's
5979 one, it will have already triggered before the watchpoint
5980 triggered, and we either already reported it to the user, or
5981 it didn't cause a stop and we called keep_going. In either
5982 case, if there was a breakpoint at PC, we must be trying to
5983 step past it. */
5984 ecs->event_thread->stepping_over_watchpoint = 1;
5985 keep_going (ecs);
488f131b
JB
5986 return;
5987 }
5988
4e1c45ea 5989 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5990 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5991 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5992 ecs->event_thread->control.stop_step = 0;
488f131b 5993 stop_print_frame = 1;
488f131b 5994 stopped_by_random_signal = 0;
ddfe970e 5995 bpstat stop_chain = NULL;
488f131b 5996
edb3359d
DJ
5997 /* Hide inlined functions starting here, unless we just performed stepi or
5998 nexti. After stepi and nexti, always show the innermost frame (not any
5999 inline function call sites). */
16c381f0 6000 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 6001 {
00431a78
PA
6002 const address_space *aspace
6003 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
6004
6005 /* skip_inline_frames is expensive, so we avoid it if we can
6006 determine that the address is one where functions cannot have
6007 been inlined. This improves performance with inferiors that
6008 load a lot of shared libraries, because the solib event
6009 breakpoint is defined as the address of a function (i.e. not
6010 inline). Note that we have to check the previous PC as well
6011 as the current one to catch cases when we have just
6012 single-stepped off a breakpoint prior to reinstating it.
6013 Note that we're assuming that the code we single-step to is
6014 not inline, but that's not definitive: there's nothing
6015 preventing the event breakpoint function from containing
6016 inlined code, and the single-step ending up there. If the
6017 user had set a breakpoint on that inlined code, the missing
6018 skip_inline_frames call would break things. Fortunately
6019 that's an extremely unlikely scenario. */
f2ffa92b
PA
6020 if (!pc_at_non_inline_function (aspace,
6021 ecs->event_thread->suspend.stop_pc,
6022 &ecs->ws)
a210c238
MR
6023 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6024 && ecs->event_thread->control.trap_expected
6025 && pc_at_non_inline_function (aspace,
6026 ecs->event_thread->prev_pc,
09ac7c10 6027 &ecs->ws)))
1c5a993e 6028 {
f2ffa92b
PA
6029 stop_chain = build_bpstat_chain (aspace,
6030 ecs->event_thread->suspend.stop_pc,
6031 &ecs->ws);
00431a78 6032 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6033
6034 /* Re-fetch current thread's frame in case that invalidated
6035 the frame cache. */
6036 frame = get_current_frame ();
6037 gdbarch = get_frame_arch (frame);
6038 }
0574c78f 6039 }
edb3359d 6040
a493e3e2 6041 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6042 && ecs->event_thread->control.trap_expected
568d6575 6043 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6044 && currently_stepping (ecs->event_thread))
3352ef37 6045 {
b50d7442 6046 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6047 also on an instruction that needs to be stepped multiple
1777feb0 6048 times before it's been fully executing. E.g., architectures
3352ef37
AC
6049 with a delay slot. It needs to be stepped twice, once for
6050 the instruction and once for the delay slot. */
6051 int step_through_delay
568d6575 6052 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6053
edbcda09
SM
6054 if (step_through_delay)
6055 infrun_log_debug ("step through delay");
6056
16c381f0
JK
6057 if (ecs->event_thread->control.step_range_end == 0
6058 && step_through_delay)
3352ef37
AC
6059 {
6060 /* The user issued a continue when stopped at a breakpoint.
6061 Set up for another trap and get out of here. */
4e1c45ea 6062 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6063 keep_going (ecs);
6064 return;
6065 }
6066 else if (step_through_delay)
6067 {
6068 /* The user issued a step when stopped at a breakpoint.
6069 Maybe we should stop, maybe we should not - the delay
6070 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6071 case, don't decide that here, just set
6072 ecs->stepping_over_breakpoint, making sure we
6073 single-step again before breakpoints are re-inserted. */
4e1c45ea 6074 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6075 }
6076 }
6077
ab04a2af
TT
6078 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6079 handles this event. */
6080 ecs->event_thread->control.stop_bpstat
a01bda52 6081 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6082 ecs->event_thread->suspend.stop_pc,
6083 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6084
ab04a2af
TT
6085 /* Following in case break condition called a
6086 function. */
6087 stop_print_frame = 1;
73dd234f 6088
ab04a2af
TT
6089 /* This is where we handle "moribund" watchpoints. Unlike
6090 software breakpoints traps, hardware watchpoint traps are
6091 always distinguishable from random traps. If no high-level
6092 watchpoint is associated with the reported stop data address
6093 anymore, then the bpstat does not explain the signal ---
6094 simply make sure to ignore it if `stopped_by_watchpoint' is
6095 set. */
6096
edbcda09 6097 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6098 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6099 GDB_SIGNAL_TRAP)
ab04a2af 6100 && stopped_by_watchpoint)
edbcda09
SM
6101 {
6102 infrun_log_debug ("no user watchpoint explains watchpoint SIGTRAP, "
6103 "ignoring");
6104 }
73dd234f 6105
bac7d97b 6106 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6107 at one stage in the past included checks for an inferior
6108 function call's call dummy's return breakpoint. The original
6109 comment, that went with the test, read:
03cebad2 6110
ab04a2af
TT
6111 ``End of a stack dummy. Some systems (e.g. Sony news) give
6112 another signal besides SIGTRAP, so check here as well as
6113 above.''
73dd234f 6114
ab04a2af
TT
6115 If someone ever tries to get call dummys on a
6116 non-executable stack to work (where the target would stop
6117 with something like a SIGSEGV), then those tests might need
6118 to be re-instated. Given, however, that the tests were only
6119 enabled when momentary breakpoints were not being used, I
6120 suspect that it won't be the case.
488f131b 6121
ab04a2af
TT
6122 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6123 be necessary for call dummies on a non-executable stack on
6124 SPARC. */
488f131b 6125
bac7d97b 6126 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6127 random_signal
6128 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6129 ecs->event_thread->suspend.stop_signal);
bac7d97b 6130
1cf4d951
PA
6131 /* Maybe this was a trap for a software breakpoint that has since
6132 been removed. */
6133 if (random_signal && target_stopped_by_sw_breakpoint ())
6134 {
5133a315
LM
6135 if (gdbarch_program_breakpoint_here_p (gdbarch,
6136 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6137 {
6138 struct regcache *regcache;
6139 int decr_pc;
6140
6141 /* Re-adjust PC to what the program would see if GDB was not
6142 debugging it. */
00431a78 6143 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6144 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6145 if (decr_pc != 0)
6146 {
07036511
TT
6147 gdb::optional<scoped_restore_tmpl<int>>
6148 restore_operation_disable;
1cf4d951
PA
6149
6150 if (record_full_is_used ())
07036511
TT
6151 restore_operation_disable.emplace
6152 (record_full_gdb_operation_disable_set ());
1cf4d951 6153
f2ffa92b
PA
6154 regcache_write_pc (regcache,
6155 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6156 }
6157 }
6158 else
6159 {
6160 /* A delayed software breakpoint event. Ignore the trap. */
edbcda09 6161 infrun_log_debug ("delayed software breakpoint trap, ignoring");
1cf4d951
PA
6162 random_signal = 0;
6163 }
6164 }
6165
6166 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6167 has since been removed. */
6168 if (random_signal && target_stopped_by_hw_breakpoint ())
6169 {
6170 /* A delayed hardware breakpoint event. Ignore the trap. */
edbcda09
SM
6171 infrun_log_debug ("delayed hardware breakpoint/watchpoint "
6172 "trap, ignoring");
1cf4d951
PA
6173 random_signal = 0;
6174 }
6175
bac7d97b
PA
6176 /* If not, perhaps stepping/nexting can. */
6177 if (random_signal)
6178 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6179 && currently_stepping (ecs->event_thread));
ab04a2af 6180
2adfaa28
PA
6181 /* Perhaps the thread hit a single-step breakpoint of _another_
6182 thread. Single-step breakpoints are transparent to the
6183 breakpoints module. */
6184 if (random_signal)
6185 random_signal = !ecs->hit_singlestep_breakpoint;
6186
bac7d97b
PA
6187 /* No? Perhaps we got a moribund watchpoint. */
6188 if (random_signal)
6189 random_signal = !stopped_by_watchpoint;
ab04a2af 6190
c65d6b55
PA
6191 /* Always stop if the user explicitly requested this thread to
6192 remain stopped. */
6193 if (ecs->event_thread->stop_requested)
6194 {
6195 random_signal = 1;
edbcda09 6196 infrun_log_debug ("user-requested stop");
c65d6b55
PA
6197 }
6198
488f131b
JB
6199 /* For the program's own signals, act according to
6200 the signal handling tables. */
6201
ce12b012 6202 if (random_signal)
488f131b
JB
6203 {
6204 /* Signal not for debugging purposes. */
5b6d1e4f 6205 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6206 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6207
edbcda09
SM
6208 infrun_log_debug ("random signal (%s)",
6209 gdb_signal_to_symbol_string (stop_signal));
527159b7 6210
488f131b
JB
6211 stopped_by_random_signal = 1;
6212
252fbfc8
PA
6213 /* Always stop on signals if we're either just gaining control
6214 of the program, or the user explicitly requested this thread
6215 to remain stopped. */
d6b48e9c 6216 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6217 || ecs->event_thread->stop_requested
24291992 6218 || (!inf->detaching
16c381f0 6219 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6220 {
22bcd14b 6221 stop_waiting (ecs);
488f131b
JB
6222 return;
6223 }
b57bacec
PA
6224
6225 /* Notify observers the signal has "handle print" set. Note we
6226 returned early above if stopping; normal_stop handles the
6227 printing in that case. */
6228 if (signal_print[ecs->event_thread->suspend.stop_signal])
6229 {
6230 /* The signal table tells us to print about this signal. */
223ffa71 6231 target_terminal::ours_for_output ();
76727919 6232 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6233 target_terminal::inferior ();
b57bacec 6234 }
488f131b
JB
6235
6236 /* Clear the signal if it should not be passed. */
16c381f0 6237 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6238 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6239
f2ffa92b 6240 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6241 && ecs->event_thread->control.trap_expected
8358c15c 6242 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6243 {
6244 /* We were just starting a new sequence, attempting to
6245 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6246 Instead this signal arrives. This signal will take us out
68f53502
AC
6247 of the stepping range so GDB needs to remember to, when
6248 the signal handler returns, resume stepping off that
6249 breakpoint. */
6250 /* To simplify things, "continue" is forced to use the same
6251 code paths as single-step - set a breakpoint at the
6252 signal return address and then, once hit, step off that
6253 breakpoint. */
edbcda09 6254 infrun_log_debug ("signal arrived while stepping over breakpoint");
d3169d93 6255
2c03e5be 6256 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6257 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6258 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6259 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6260
6261 /* If we were nexting/stepping some other thread, switch to
6262 it, so that we don't continue it, losing control. */
6263 if (!switch_back_to_stepped_thread (ecs))
6264 keep_going (ecs);
9d799f85 6265 return;
68f53502 6266 }
9d799f85 6267
e5f8a7cc 6268 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6269 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6270 ecs->event_thread)
e5f8a7cc 6271 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6272 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6273 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6274 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6275 {
6276 /* The inferior is about to take a signal that will take it
6277 out of the single step range. Set a breakpoint at the
6278 current PC (which is presumably where the signal handler
6279 will eventually return) and then allow the inferior to
6280 run free.
6281
6282 Note that this is only needed for a signal delivered
6283 while in the single-step range. Nested signals aren't a
6284 problem as they eventually all return. */
edbcda09 6285 infrun_log_debug ("signal may take us out of single-step range");
237fc4c9 6286
372316f1 6287 clear_step_over_info ();
2c03e5be 6288 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6289 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6290 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6291 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6292 keep_going (ecs);
6293 return;
d303a6c7 6294 }
9d799f85 6295
85102364 6296 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6297 when either there's a nested signal, or when there's a
6298 pending signal enabled just as the signal handler returns
6299 (leaving the inferior at the step-resume-breakpoint without
6300 actually executing it). Either way continue until the
6301 breakpoint is really hit. */
c447ac0b
PA
6302
6303 if (!switch_back_to_stepped_thread (ecs))
6304 {
edbcda09 6305 infrun_log_debug ("random signal, keep going");
c447ac0b
PA
6306
6307 keep_going (ecs);
6308 }
6309 return;
488f131b 6310 }
94c57d6a
PA
6311
6312 process_event_stop_test (ecs);
6313}
6314
6315/* Come here when we've got some debug event / signal we can explain
6316 (IOW, not a random signal), and test whether it should cause a
6317 stop, or whether we should resume the inferior (transparently).
6318 E.g., could be a breakpoint whose condition evaluates false; we
6319 could be still stepping within the line; etc. */
6320
6321static void
6322process_event_stop_test (struct execution_control_state *ecs)
6323{
6324 struct symtab_and_line stop_pc_sal;
6325 struct frame_info *frame;
6326 struct gdbarch *gdbarch;
cdaa5b73
PA
6327 CORE_ADDR jmp_buf_pc;
6328 struct bpstat_what what;
94c57d6a 6329
cdaa5b73 6330 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6331
cdaa5b73
PA
6332 frame = get_current_frame ();
6333 gdbarch = get_frame_arch (frame);
fcf3daef 6334
cdaa5b73 6335 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6336
cdaa5b73
PA
6337 if (what.call_dummy)
6338 {
6339 stop_stack_dummy = what.call_dummy;
6340 }
186c406b 6341
243a9253
PA
6342 /* A few breakpoint types have callbacks associated (e.g.,
6343 bp_jit_event). Run them now. */
6344 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6345
cdaa5b73
PA
6346 /* If we hit an internal event that triggers symbol changes, the
6347 current frame will be invalidated within bpstat_what (e.g., if we
6348 hit an internal solib event). Re-fetch it. */
6349 frame = get_current_frame ();
6350 gdbarch = get_frame_arch (frame);
e2e4d78b 6351
cdaa5b73
PA
6352 switch (what.main_action)
6353 {
6354 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6355 /* If we hit the breakpoint at longjmp while stepping, we
6356 install a momentary breakpoint at the target of the
6357 jmp_buf. */
186c406b 6358
edbcda09 6359 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
186c406b 6360
cdaa5b73 6361 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6362
cdaa5b73
PA
6363 if (what.is_longjmp)
6364 {
6365 struct value *arg_value;
6366
6367 /* If we set the longjmp breakpoint via a SystemTap probe,
6368 then use it to extract the arguments. The destination PC
6369 is the third argument to the probe. */
6370 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6371 if (arg_value)
8fa0c4f8
AA
6372 {
6373 jmp_buf_pc = value_as_address (arg_value);
6374 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6375 }
cdaa5b73
PA
6376 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6377 || !gdbarch_get_longjmp_target (gdbarch,
6378 frame, &jmp_buf_pc))
e2e4d78b 6379 {
edbcda09
SM
6380 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6381 "(!gdbarch_get_longjmp_target)");
cdaa5b73
PA
6382 keep_going (ecs);
6383 return;
e2e4d78b 6384 }
e2e4d78b 6385
cdaa5b73
PA
6386 /* Insert a breakpoint at resume address. */
6387 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6388 }
6389 else
6390 check_exception_resume (ecs, frame);
6391 keep_going (ecs);
6392 return;
e81a37f7 6393
cdaa5b73
PA
6394 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6395 {
6396 struct frame_info *init_frame;
e81a37f7 6397
cdaa5b73 6398 /* There are several cases to consider.
c906108c 6399
cdaa5b73
PA
6400 1. The initiating frame no longer exists. In this case we
6401 must stop, because the exception or longjmp has gone too
6402 far.
2c03e5be 6403
cdaa5b73
PA
6404 2. The initiating frame exists, and is the same as the
6405 current frame. We stop, because the exception or longjmp
6406 has been caught.
2c03e5be 6407
cdaa5b73
PA
6408 3. The initiating frame exists and is different from the
6409 current frame. This means the exception or longjmp has
6410 been caught beneath the initiating frame, so keep going.
c906108c 6411
cdaa5b73
PA
6412 4. longjmp breakpoint has been placed just to protect
6413 against stale dummy frames and user is not interested in
6414 stopping around longjmps. */
c5aa993b 6415
edbcda09 6416 infrun_log_debug ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
c5aa993b 6417
cdaa5b73
PA
6418 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6419 != NULL);
6420 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6421
cdaa5b73
PA
6422 if (what.is_longjmp)
6423 {
b67a2c6f 6424 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6425
cdaa5b73 6426 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6427 {
cdaa5b73
PA
6428 /* Case 4. */
6429 keep_going (ecs);
6430 return;
e5ef252a 6431 }
cdaa5b73 6432 }
c5aa993b 6433
cdaa5b73 6434 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6435
cdaa5b73
PA
6436 if (init_frame)
6437 {
6438 struct frame_id current_id
6439 = get_frame_id (get_current_frame ());
6440 if (frame_id_eq (current_id,
6441 ecs->event_thread->initiating_frame))
6442 {
6443 /* Case 2. Fall through. */
6444 }
6445 else
6446 {
6447 /* Case 3. */
6448 keep_going (ecs);
6449 return;
6450 }
68f53502 6451 }
488f131b 6452
cdaa5b73
PA
6453 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6454 exists. */
6455 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6456
bdc36728 6457 end_stepping_range (ecs);
cdaa5b73
PA
6458 }
6459 return;
e5ef252a 6460
cdaa5b73 6461 case BPSTAT_WHAT_SINGLE:
edbcda09 6462 infrun_log_debug ("BPSTAT_WHAT_SINGLE");
cdaa5b73
PA
6463 ecs->event_thread->stepping_over_breakpoint = 1;
6464 /* Still need to check other stuff, at least the case where we
6465 are stepping and step out of the right range. */
6466 break;
e5ef252a 6467
cdaa5b73 6468 case BPSTAT_WHAT_STEP_RESUME:
edbcda09 6469 infrun_log_debug ("BPSTAT_WHAT_STEP_RESUME");
e5ef252a 6470
cdaa5b73
PA
6471 delete_step_resume_breakpoint (ecs->event_thread);
6472 if (ecs->event_thread->control.proceed_to_finish
6473 && execution_direction == EXEC_REVERSE)
6474 {
6475 struct thread_info *tp = ecs->event_thread;
6476
6477 /* We are finishing a function in reverse, and just hit the
6478 step-resume breakpoint at the start address of the
6479 function, and we're almost there -- just need to back up
6480 by one more single-step, which should take us back to the
6481 function call. */
6482 tp->control.step_range_start = tp->control.step_range_end = 1;
6483 keep_going (ecs);
e5ef252a 6484 return;
cdaa5b73
PA
6485 }
6486 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6487 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6488 && execution_direction == EXEC_REVERSE)
6489 {
6490 /* We are stepping over a function call in reverse, and just
6491 hit the step-resume breakpoint at the start address of
6492 the function. Go back to single-stepping, which should
6493 take us back to the function call. */
6494 ecs->event_thread->stepping_over_breakpoint = 1;
6495 keep_going (ecs);
6496 return;
6497 }
6498 break;
e5ef252a 6499
cdaa5b73 6500 case BPSTAT_WHAT_STOP_NOISY:
edbcda09 6501 infrun_log_debug ("BPSTAT_WHAT_STOP_NOISY");
cdaa5b73 6502 stop_print_frame = 1;
e5ef252a 6503
99619bea
PA
6504 /* Assume the thread stopped for a breapoint. We'll still check
6505 whether a/the breakpoint is there when the thread is next
6506 resumed. */
6507 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6508
22bcd14b 6509 stop_waiting (ecs);
cdaa5b73 6510 return;
e5ef252a 6511
cdaa5b73 6512 case BPSTAT_WHAT_STOP_SILENT:
edbcda09 6513 infrun_log_debug ("BPSTAT_WHAT_STOP_SILENT");
cdaa5b73 6514 stop_print_frame = 0;
e5ef252a 6515
99619bea
PA
6516 /* Assume the thread stopped for a breapoint. We'll still check
6517 whether a/the breakpoint is there when the thread is next
6518 resumed. */
6519 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6520 stop_waiting (ecs);
cdaa5b73
PA
6521 return;
6522
6523 case BPSTAT_WHAT_HP_STEP_RESUME:
edbcda09 6524 infrun_log_debug ("BPSTAT_WHAT_HP_STEP_RESUME");
cdaa5b73
PA
6525
6526 delete_step_resume_breakpoint (ecs->event_thread);
6527 if (ecs->event_thread->step_after_step_resume_breakpoint)
6528 {
6529 /* Back when the step-resume breakpoint was inserted, we
6530 were trying to single-step off a breakpoint. Go back to
6531 doing that. */
6532 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6533 ecs->event_thread->stepping_over_breakpoint = 1;
6534 keep_going (ecs);
6535 return;
e5ef252a 6536 }
cdaa5b73
PA
6537 break;
6538
6539 case BPSTAT_WHAT_KEEP_CHECKING:
6540 break;
e5ef252a 6541 }
c906108c 6542
af48d08f
PA
6543 /* If we stepped a permanent breakpoint and we had a high priority
6544 step-resume breakpoint for the address we stepped, but we didn't
6545 hit it, then we must have stepped into the signal handler. The
6546 step-resume was only necessary to catch the case of _not_
6547 stepping into the handler, so delete it, and fall through to
6548 checking whether the step finished. */
6549 if (ecs->event_thread->stepped_breakpoint)
6550 {
6551 struct breakpoint *sr_bp
6552 = ecs->event_thread->control.step_resume_breakpoint;
6553
8d707a12
PA
6554 if (sr_bp != NULL
6555 && sr_bp->loc->permanent
af48d08f
PA
6556 && sr_bp->type == bp_hp_step_resume
6557 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6558 {
edbcda09 6559 infrun_log_debug ("stepped permanent breakpoint, stopped in handler");
af48d08f
PA
6560 delete_step_resume_breakpoint (ecs->event_thread);
6561 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6562 }
6563 }
6564
cdaa5b73
PA
6565 /* We come here if we hit a breakpoint but should not stop for it.
6566 Possibly we also were stepping and should stop for that. So fall
6567 through and test for stepping. But, if not stepping, do not
6568 stop. */
c906108c 6569
a7212384
UW
6570 /* In all-stop mode, if we're currently stepping but have stopped in
6571 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6572 if (switch_back_to_stepped_thread (ecs))
6573 return;
776f04fa 6574
8358c15c 6575 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6576 {
edbcda09 6577 infrun_log_debug ("step-resume breakpoint is inserted");
527159b7 6578
488f131b
JB
6579 /* Having a step-resume breakpoint overrides anything
6580 else having to do with stepping commands until
6581 that breakpoint is reached. */
488f131b
JB
6582 keep_going (ecs);
6583 return;
6584 }
c5aa993b 6585
16c381f0 6586 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6587 {
edbcda09 6588 infrun_log_debug ("no stepping, continue");
488f131b 6589 /* Likewise if we aren't even stepping. */
488f131b
JB
6590 keep_going (ecs);
6591 return;
6592 }
c5aa993b 6593
4b7703ad
JB
6594 /* Re-fetch current thread's frame in case the code above caused
6595 the frame cache to be re-initialized, making our FRAME variable
6596 a dangling pointer. */
6597 frame = get_current_frame ();
628fe4e4 6598 gdbarch = get_frame_arch (frame);
7e324e48 6599 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6600
488f131b 6601 /* If stepping through a line, keep going if still within it.
c906108c 6602
488f131b
JB
6603 Note that step_range_end is the address of the first instruction
6604 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6605 within it!
6606
6607 Note also that during reverse execution, we may be stepping
6608 through a function epilogue and therefore must detect when
6609 the current-frame changes in the middle of a line. */
6610
f2ffa92b
PA
6611 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6612 ecs->event_thread)
31410e84 6613 && (execution_direction != EXEC_REVERSE
388a8562 6614 || frame_id_eq (get_frame_id (frame),
16c381f0 6615 ecs->event_thread->control.step_frame_id)))
488f131b 6616 {
edbcda09
SM
6617 infrun_log_debug
6618 ("stepping inside range [%s-%s]",
6619 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6620 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6621
c1e36e3e
PA
6622 /* Tentatively re-enable range stepping; `resume' disables it if
6623 necessary (e.g., if we're stepping over a breakpoint or we
6624 have software watchpoints). */
6625 ecs->event_thread->control.may_range_step = 1;
6626
b2175913
MS
6627 /* When stepping backward, stop at beginning of line range
6628 (unless it's the function entry point, in which case
6629 keep going back to the call point). */
f2ffa92b 6630 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6631 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6632 && stop_pc != ecs->stop_func_start
6633 && execution_direction == EXEC_REVERSE)
bdc36728 6634 end_stepping_range (ecs);
b2175913
MS
6635 else
6636 keep_going (ecs);
6637
488f131b
JB
6638 return;
6639 }
c5aa993b 6640
488f131b 6641 /* We stepped out of the stepping range. */
c906108c 6642
488f131b 6643 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6644 loader dynamic symbol resolution code...
6645
6646 EXEC_FORWARD: we keep on single stepping until we exit the run
6647 time loader code and reach the callee's address.
6648
6649 EXEC_REVERSE: we've already executed the callee (backward), and
6650 the runtime loader code is handled just like any other
6651 undebuggable function call. Now we need only keep stepping
6652 backward through the trampoline code, and that's handled further
6653 down, so there is nothing for us to do here. */
6654
6655 if (execution_direction != EXEC_REVERSE
16c381f0 6656 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6657 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6658 {
4c8c40e6 6659 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6660 gdbarch_skip_solib_resolver (gdbarch,
6661 ecs->event_thread->suspend.stop_pc);
c906108c 6662
edbcda09 6663 infrun_log_debug ("stepped into dynsym resolve code");
527159b7 6664
488f131b
JB
6665 if (pc_after_resolver)
6666 {
6667 /* Set up a step-resume breakpoint at the address
6668 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6669 symtab_and_line sr_sal;
488f131b 6670 sr_sal.pc = pc_after_resolver;
6c95b8df 6671 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6672
a6d9a66e
UW
6673 insert_step_resume_breakpoint_at_sal (gdbarch,
6674 sr_sal, null_frame_id);
c5aa993b 6675 }
c906108c 6676
488f131b
JB
6677 keep_going (ecs);
6678 return;
6679 }
c906108c 6680
1d509aa6
MM
6681 /* Step through an indirect branch thunk. */
6682 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6683 && gdbarch_in_indirect_branch_thunk (gdbarch,
6684 ecs->event_thread->suspend.stop_pc))
1d509aa6 6685 {
edbcda09 6686 infrun_log_debug ("stepped into indirect branch thunk");
1d509aa6
MM
6687 keep_going (ecs);
6688 return;
6689 }
6690
16c381f0
JK
6691 if (ecs->event_thread->control.step_range_end != 1
6692 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6693 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6694 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6695 {
edbcda09 6696 infrun_log_debug ("stepped into signal trampoline");
42edda50 6697 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6698 a signal trampoline (either by a signal being delivered or by
6699 the signal handler returning). Just single-step until the
6700 inferior leaves the trampoline (either by calling the handler
6701 or returning). */
488f131b
JB
6702 keep_going (ecs);
6703 return;
6704 }
c906108c 6705
14132e89
MR
6706 /* If we're in the return path from a shared library trampoline,
6707 we want to proceed through the trampoline when stepping. */
6708 /* macro/2012-04-25: This needs to come before the subroutine
6709 call check below as on some targets return trampolines look
6710 like subroutine calls (MIPS16 return thunks). */
6711 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6712 ecs->event_thread->suspend.stop_pc,
6713 ecs->stop_func_name)
14132e89
MR
6714 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6715 {
6716 /* Determine where this trampoline returns. */
f2ffa92b
PA
6717 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6718 CORE_ADDR real_stop_pc
6719 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89 6720
edbcda09 6721 infrun_log_debug ("stepped into solib return tramp");
14132e89
MR
6722
6723 /* Only proceed through if we know where it's going. */
6724 if (real_stop_pc)
6725 {
6726 /* And put the step-breakpoint there and go until there. */
51abb421 6727 symtab_and_line sr_sal;
14132e89
MR
6728 sr_sal.pc = real_stop_pc;
6729 sr_sal.section = find_pc_overlay (sr_sal.pc);
6730 sr_sal.pspace = get_frame_program_space (frame);
6731
6732 /* Do not specify what the fp should be when we stop since
6733 on some machines the prologue is where the new fp value
6734 is established. */
6735 insert_step_resume_breakpoint_at_sal (gdbarch,
6736 sr_sal, null_frame_id);
6737
6738 /* Restart without fiddling with the step ranges or
6739 other state. */
6740 keep_going (ecs);
6741 return;
6742 }
6743 }
6744
c17eaafe
DJ
6745 /* Check for subroutine calls. The check for the current frame
6746 equalling the step ID is not necessary - the check of the
6747 previous frame's ID is sufficient - but it is a common case and
6748 cheaper than checking the previous frame's ID.
14e60db5
DJ
6749
6750 NOTE: frame_id_eq will never report two invalid frame IDs as
6751 being equal, so to get into this block, both the current and
6752 previous frame must have valid frame IDs. */
005ca36a
JB
6753 /* The outer_frame_id check is a heuristic to detect stepping
6754 through startup code. If we step over an instruction which
6755 sets the stack pointer from an invalid value to a valid value,
6756 we may detect that as a subroutine call from the mythical
6757 "outermost" function. This could be fixed by marking
6758 outermost frames as !stack_p,code_p,special_p. Then the
6759 initial outermost frame, before sp was valid, would
ce6cca6d 6760 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6761 for more. */
edb3359d 6762 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6763 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6764 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6765 ecs->event_thread->control.step_stack_frame_id)
6766 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6767 outer_frame_id)
885eeb5b 6768 || (ecs->event_thread->control.step_start_function
f2ffa92b 6769 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6770 {
f2ffa92b 6771 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6772 CORE_ADDR real_stop_pc;
8fb3e588 6773
edbcda09 6774 infrun_log_debug ("stepped into subroutine");
527159b7 6775
b7a084be 6776 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6777 {
6778 /* I presume that step_over_calls is only 0 when we're
6779 supposed to be stepping at the assembly language level
6780 ("stepi"). Just stop. */
388a8562 6781 /* And this works the same backward as frontward. MVS */
bdc36728 6782 end_stepping_range (ecs);
95918acb
AC
6783 return;
6784 }
8fb3e588 6785
388a8562
MS
6786 /* Reverse stepping through solib trampolines. */
6787
6788 if (execution_direction == EXEC_REVERSE
16c381f0 6789 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6790 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6791 || (ecs->stop_func_start == 0
6792 && in_solib_dynsym_resolve_code (stop_pc))))
6793 {
6794 /* Any solib trampoline code can be handled in reverse
6795 by simply continuing to single-step. We have already
6796 executed the solib function (backwards), and a few
6797 steps will take us back through the trampoline to the
6798 caller. */
6799 keep_going (ecs);
6800 return;
6801 }
6802
16c381f0 6803 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6804 {
b2175913
MS
6805 /* We're doing a "next".
6806
6807 Normal (forward) execution: set a breakpoint at the
6808 callee's return address (the address at which the caller
6809 will resume).
6810
6811 Reverse (backward) execution. set the step-resume
6812 breakpoint at the start of the function that we just
6813 stepped into (backwards), and continue to there. When we
6130d0b7 6814 get there, we'll need to single-step back to the caller. */
b2175913
MS
6815
6816 if (execution_direction == EXEC_REVERSE)
6817 {
acf9414f
JK
6818 /* If we're already at the start of the function, we've either
6819 just stepped backward into a single instruction function,
6820 or stepped back out of a signal handler to the first instruction
6821 of the function. Just keep going, which will single-step back
6822 to the caller. */
58c48e72 6823 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6824 {
acf9414f 6825 /* Normal function call return (static or dynamic). */
51abb421 6826 symtab_and_line sr_sal;
acf9414f
JK
6827 sr_sal.pc = ecs->stop_func_start;
6828 sr_sal.pspace = get_frame_program_space (frame);
6829 insert_step_resume_breakpoint_at_sal (gdbarch,
6830 sr_sal, null_frame_id);
6831 }
b2175913
MS
6832 }
6833 else
568d6575 6834 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6835
8567c30f
AC
6836 keep_going (ecs);
6837 return;
6838 }
a53c66de 6839
95918acb 6840 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6841 calling routine and the real function), locate the real
6842 function. That's what tells us (a) whether we want to step
6843 into it at all, and (b) what prologue we want to run to the
6844 end of, if we do step into it. */
568d6575 6845 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6846 if (real_stop_pc == 0)
568d6575 6847 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6848 if (real_stop_pc != 0)
6849 ecs->stop_func_start = real_stop_pc;
8fb3e588 6850
db5f024e 6851 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6852 {
51abb421 6853 symtab_and_line sr_sal;
1b2bfbb9 6854 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6855 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6856
a6d9a66e
UW
6857 insert_step_resume_breakpoint_at_sal (gdbarch,
6858 sr_sal, null_frame_id);
8fb3e588
AC
6859 keep_going (ecs);
6860 return;
1b2bfbb9
RC
6861 }
6862
95918acb 6863 /* If we have line number information for the function we are
1bfeeb0f
JL
6864 thinking of stepping into and the function isn't on the skip
6865 list, step into it.
95918acb 6866
8fb3e588
AC
6867 If there are several symtabs at that PC (e.g. with include
6868 files), just want to know whether *any* of them have line
6869 numbers. find_pc_line handles this. */
95918acb
AC
6870 {
6871 struct symtab_and_line tmp_sal;
8fb3e588 6872
95918acb 6873 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6874 if (tmp_sal.line != 0
85817405 6875 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6876 tmp_sal)
6877 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6878 {
b2175913 6879 if (execution_direction == EXEC_REVERSE)
568d6575 6880 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6881 else
568d6575 6882 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6883 return;
6884 }
6885 }
6886
6887 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6888 set, we stop the step so that the user has a chance to switch
6889 in assembly mode. */
16c381f0 6890 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6891 && step_stop_if_no_debug)
95918acb 6892 {
bdc36728 6893 end_stepping_range (ecs);
95918acb
AC
6894 return;
6895 }
6896
b2175913
MS
6897 if (execution_direction == EXEC_REVERSE)
6898 {
acf9414f
JK
6899 /* If we're already at the start of the function, we've either just
6900 stepped backward into a single instruction function without line
6901 number info, or stepped back out of a signal handler to the first
6902 instruction of the function without line number info. Just keep
6903 going, which will single-step back to the caller. */
6904 if (ecs->stop_func_start != stop_pc)
6905 {
6906 /* Set a breakpoint at callee's start address.
6907 From there we can step once and be back in the caller. */
51abb421 6908 symtab_and_line sr_sal;
acf9414f
JK
6909 sr_sal.pc = ecs->stop_func_start;
6910 sr_sal.pspace = get_frame_program_space (frame);
6911 insert_step_resume_breakpoint_at_sal (gdbarch,
6912 sr_sal, null_frame_id);
6913 }
b2175913
MS
6914 }
6915 else
6916 /* Set a breakpoint at callee's return address (the address
6917 at which the caller will resume). */
568d6575 6918 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6919
95918acb 6920 keep_going (ecs);
488f131b 6921 return;
488f131b 6922 }
c906108c 6923
fdd654f3
MS
6924 /* Reverse stepping through solib trampolines. */
6925
6926 if (execution_direction == EXEC_REVERSE
16c381f0 6927 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6928 {
f2ffa92b
PA
6929 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6930
fdd654f3
MS
6931 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6932 || (ecs->stop_func_start == 0
6933 && in_solib_dynsym_resolve_code (stop_pc)))
6934 {
6935 /* Any solib trampoline code can be handled in reverse
6936 by simply continuing to single-step. We have already
6937 executed the solib function (backwards), and a few
6938 steps will take us back through the trampoline to the
6939 caller. */
6940 keep_going (ecs);
6941 return;
6942 }
6943 else if (in_solib_dynsym_resolve_code (stop_pc))
6944 {
6945 /* Stepped backward into the solib dynsym resolver.
6946 Set a breakpoint at its start and continue, then
6947 one more step will take us out. */
51abb421 6948 symtab_and_line sr_sal;
fdd654f3 6949 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6950 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6951 insert_step_resume_breakpoint_at_sal (gdbarch,
6952 sr_sal, null_frame_id);
6953 keep_going (ecs);
6954 return;
6955 }
6956 }
6957
8c95582d
AB
6958 /* This always returns the sal for the inner-most frame when we are in a
6959 stack of inlined frames, even if GDB actually believes that it is in a
6960 more outer frame. This is checked for below by calls to
6961 inline_skipped_frames. */
f2ffa92b 6962 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6963
1b2bfbb9
RC
6964 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6965 the trampoline processing logic, however, there are some trampolines
6966 that have no names, so we should do trampoline handling first. */
16c381f0 6967 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6968 && ecs->stop_func_name == NULL
2afb61aa 6969 && stop_pc_sal.line == 0)
1b2bfbb9 6970 {
edbcda09 6971 infrun_log_debug ("stepped into undebuggable function");
527159b7 6972
1b2bfbb9 6973 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6974 undebuggable function (where there is no debugging information
6975 and no line number corresponding to the address where the
1b2bfbb9
RC
6976 inferior stopped). Since we want to skip this kind of code,
6977 we keep going until the inferior returns from this
14e60db5
DJ
6978 function - unless the user has asked us not to (via
6979 set step-mode) or we no longer know how to get back
6980 to the call site. */
6981 if (step_stop_if_no_debug
c7ce8faa 6982 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6983 {
6984 /* If we have no line number and the step-stop-if-no-debug
6985 is set, we stop the step so that the user has a chance to
6986 switch in assembly mode. */
bdc36728 6987 end_stepping_range (ecs);
1b2bfbb9
RC
6988 return;
6989 }
6990 else
6991 {
6992 /* Set a breakpoint at callee's return address (the address
6993 at which the caller will resume). */
568d6575 6994 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6995 keep_going (ecs);
6996 return;
6997 }
6998 }
6999
16c381f0 7000 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7001 {
7002 /* It is stepi or nexti. We always want to stop stepping after
7003 one instruction. */
edbcda09 7004 infrun_log_debug ("stepi/nexti");
bdc36728 7005 end_stepping_range (ecs);
1b2bfbb9
RC
7006 return;
7007 }
7008
2afb61aa 7009 if (stop_pc_sal.line == 0)
488f131b
JB
7010 {
7011 /* We have no line number information. That means to stop
7012 stepping (does this always happen right after one instruction,
7013 when we do "s" in a function with no line numbers,
7014 or can this happen as a result of a return or longjmp?). */
edbcda09 7015 infrun_log_debug ("line number info");
bdc36728 7016 end_stepping_range (ecs);
488f131b
JB
7017 return;
7018 }
c906108c 7019
edb3359d
DJ
7020 /* Look for "calls" to inlined functions, part one. If the inline
7021 frame machinery detected some skipped call sites, we have entered
7022 a new inline function. */
7023
7024 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7025 ecs->event_thread->control.step_frame_id)
00431a78 7026 && inline_skipped_frames (ecs->event_thread))
edb3359d 7027 {
edbcda09 7028 infrun_log_debug ("stepped into inlined function");
edb3359d 7029
51abb421 7030 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7031
16c381f0 7032 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7033 {
7034 /* For "step", we're going to stop. But if the call site
7035 for this inlined function is on the same source line as
7036 we were previously stepping, go down into the function
7037 first. Otherwise stop at the call site. */
7038
7039 if (call_sal.line == ecs->event_thread->current_line
7040 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7041 {
7042 step_into_inline_frame (ecs->event_thread);
7043 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7044 {
7045 keep_going (ecs);
7046 return;
7047 }
7048 }
edb3359d 7049
bdc36728 7050 end_stepping_range (ecs);
edb3359d
DJ
7051 return;
7052 }
7053 else
7054 {
7055 /* For "next", we should stop at the call site if it is on a
7056 different source line. Otherwise continue through the
7057 inlined function. */
7058 if (call_sal.line == ecs->event_thread->current_line
7059 && call_sal.symtab == ecs->event_thread->current_symtab)
7060 keep_going (ecs);
7061 else
bdc36728 7062 end_stepping_range (ecs);
edb3359d
DJ
7063 return;
7064 }
7065 }
7066
7067 /* Look for "calls" to inlined functions, part two. If we are still
7068 in the same real function we were stepping through, but we have
7069 to go further up to find the exact frame ID, we are stepping
7070 through a more inlined call beyond its call site. */
7071
7072 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7073 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7074 ecs->event_thread->control.step_frame_id)
edb3359d 7075 && stepped_in_from (get_current_frame (),
16c381f0 7076 ecs->event_thread->control.step_frame_id))
edb3359d 7077 {
edbcda09 7078 infrun_log_debug ("stepping through inlined function");
edb3359d 7079
4a4c04f1
BE
7080 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7081 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7082 keep_going (ecs);
7083 else
bdc36728 7084 end_stepping_range (ecs);
edb3359d
DJ
7085 return;
7086 }
7087
8c95582d 7088 bool refresh_step_info = true;
f2ffa92b 7089 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7090 && (ecs->event_thread->current_line != stop_pc_sal.line
7091 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7092 {
8c95582d
AB
7093 if (stop_pc_sal.is_stmt)
7094 {
7095 /* We are at the start of a different line. So stop. Note that
7096 we don't stop if we step into the middle of a different line.
7097 That is said to make things like for (;;) statements work
7098 better. */
edbcda09 7099 infrun_log_debug ("infrun: stepped to a different line\n");
8c95582d
AB
7100 end_stepping_range (ecs);
7101 return;
7102 }
7103 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7104 ecs->event_thread->control.step_frame_id))
7105 {
7106 /* We are at the start of a different line, however, this line is
7107 not marked as a statement, and we have not changed frame. We
7108 ignore this line table entry, and continue stepping forward,
7109 looking for a better place to stop. */
7110 refresh_step_info = false;
edbcda09
SM
7111 infrun_log_debug ("infrun: stepped to a different line, but "
7112 "it's not the start of a statement\n");
8c95582d 7113 }
488f131b 7114 }
c906108c 7115
488f131b 7116 /* We aren't done stepping.
c906108c 7117
488f131b
JB
7118 Optimize by setting the stepping range to the line.
7119 (We might not be in the original line, but if we entered a
7120 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7121 things like for(;;) statements work better.)
7122
7123 If we entered a SAL that indicates a non-statement line table entry,
7124 then we update the stepping range, but we don't update the step info,
7125 which includes things like the line number we are stepping away from.
7126 This means we will stop when we find a line table entry that is marked
7127 as is-statement, even if it matches the non-statement one we just
7128 stepped into. */
c906108c 7129
16c381f0
JK
7130 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7131 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7132 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7133 if (refresh_step_info)
7134 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7135
edbcda09 7136 infrun_log_debug ("keep going");
488f131b 7137 keep_going (ecs);
104c1213
JM
7138}
7139
c447ac0b
PA
7140/* In all-stop mode, if we're currently stepping but have stopped in
7141 some other thread, we may need to switch back to the stepped
7142 thread. Returns true we set the inferior running, false if we left
7143 it stopped (and the event needs further processing). */
7144
7145static int
7146switch_back_to_stepped_thread (struct execution_control_state *ecs)
7147{
fbea99ea 7148 if (!target_is_non_stop_p ())
c447ac0b 7149 {
99619bea
PA
7150 struct thread_info *stepping_thread;
7151
7152 /* If any thread is blocked on some internal breakpoint, and we
7153 simply need to step over that breakpoint to get it going
7154 again, do that first. */
7155
7156 /* However, if we see an event for the stepping thread, then we
7157 know all other threads have been moved past their breakpoints
7158 already. Let the caller check whether the step is finished,
7159 etc., before deciding to move it past a breakpoint. */
7160 if (ecs->event_thread->control.step_range_end != 0)
7161 return 0;
7162
7163 /* Check if the current thread is blocked on an incomplete
7164 step-over, interrupted by a random signal. */
7165 if (ecs->event_thread->control.trap_expected
7166 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7167 {
edbcda09
SM
7168 infrun_log_debug ("need to finish step-over of [%s]",
7169 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
7170 keep_going (ecs);
7171 return 1;
7172 }
2adfaa28 7173
99619bea
PA
7174 /* Check if the current thread is blocked by a single-step
7175 breakpoint of another thread. */
7176 if (ecs->hit_singlestep_breakpoint)
7177 {
edbcda09
SM
7178 infrun_log_debug ("need to step [%s] over single-step breakpoint",
7179 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
7180 keep_going (ecs);
7181 return 1;
7182 }
7183
4d9d9d04
PA
7184 /* If this thread needs yet another step-over (e.g., stepping
7185 through a delay slot), do it first before moving on to
7186 another thread. */
7187 if (thread_still_needs_step_over (ecs->event_thread))
7188 {
edbcda09
SM
7189 infrun_log_debug
7190 ("thread [%s] still needs step-over",
7191 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
7192 keep_going (ecs);
7193 return 1;
7194 }
70509625 7195
483805cf
PA
7196 /* If scheduler locking applies even if not stepping, there's no
7197 need to walk over threads. Above we've checked whether the
7198 current thread is stepping. If some other thread not the
7199 event thread is stepping, then it must be that scheduler
7200 locking is not in effect. */
856e7dd6 7201 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7202 return 0;
7203
4d9d9d04
PA
7204 /* Otherwise, we no longer expect a trap in the current thread.
7205 Clear the trap_expected flag before switching back -- this is
7206 what keep_going does as well, if we call it. */
7207 ecs->event_thread->control.trap_expected = 0;
7208
7209 /* Likewise, clear the signal if it should not be passed. */
7210 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7211 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7212
7213 /* Do all pending step-overs before actually proceeding with
483805cf 7214 step/next/etc. */
4d9d9d04
PA
7215 if (start_step_over ())
7216 {
7217 prepare_to_wait (ecs);
7218 return 1;
7219 }
7220
7221 /* Look for the stepping/nexting thread. */
483805cf 7222 stepping_thread = NULL;
4d9d9d04 7223
08036331 7224 for (thread_info *tp : all_non_exited_threads ())
483805cf 7225 {
f3f8ece4
PA
7226 switch_to_thread_no_regs (tp);
7227
fbea99ea
PA
7228 /* Ignore threads of processes the caller is not
7229 resuming. */
483805cf 7230 if (!sched_multi
5b6d1e4f
PA
7231 && (tp->inf->process_target () != ecs->target
7232 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7233 continue;
7234
7235 /* When stepping over a breakpoint, we lock all threads
7236 except the one that needs to move past the breakpoint.
7237 If a non-event thread has this set, the "incomplete
7238 step-over" check above should have caught it earlier. */
372316f1
PA
7239 if (tp->control.trap_expected)
7240 {
7241 internal_error (__FILE__, __LINE__,
7242 "[%s] has inconsistent state: "
7243 "trap_expected=%d\n",
a068643d 7244 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7245 tp->control.trap_expected);
7246 }
483805cf
PA
7247
7248 /* Did we find the stepping thread? */
7249 if (tp->control.step_range_end)
7250 {
7251 /* Yep. There should only one though. */
7252 gdb_assert (stepping_thread == NULL);
7253
7254 /* The event thread is handled at the top, before we
7255 enter this loop. */
7256 gdb_assert (tp != ecs->event_thread);
7257
7258 /* If some thread other than the event thread is
7259 stepping, then scheduler locking can't be in effect,
7260 otherwise we wouldn't have resumed the current event
7261 thread in the first place. */
856e7dd6 7262 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7263
7264 stepping_thread = tp;
7265 }
99619bea
PA
7266 }
7267
483805cf 7268 if (stepping_thread != NULL)
99619bea 7269 {
edbcda09 7270 infrun_log_debug ("switching back to stepped thread");
c447ac0b 7271
2ac7589c
PA
7272 if (keep_going_stepped_thread (stepping_thread))
7273 {
7274 prepare_to_wait (ecs);
7275 return 1;
7276 }
7277 }
f3f8ece4
PA
7278
7279 switch_to_thread (ecs->event_thread);
2ac7589c 7280 }
2adfaa28 7281
2ac7589c
PA
7282 return 0;
7283}
2adfaa28 7284
2ac7589c
PA
7285/* Set a previously stepped thread back to stepping. Returns true on
7286 success, false if the resume is not possible (e.g., the thread
7287 vanished). */
7288
7289static int
7290keep_going_stepped_thread (struct thread_info *tp)
7291{
7292 struct frame_info *frame;
2ac7589c
PA
7293 struct execution_control_state ecss;
7294 struct execution_control_state *ecs = &ecss;
2adfaa28 7295
2ac7589c
PA
7296 /* If the stepping thread exited, then don't try to switch back and
7297 resume it, which could fail in several different ways depending
7298 on the target. Instead, just keep going.
2adfaa28 7299
2ac7589c
PA
7300 We can find a stepping dead thread in the thread list in two
7301 cases:
2adfaa28 7302
2ac7589c
PA
7303 - The target supports thread exit events, and when the target
7304 tries to delete the thread from the thread list, inferior_ptid
7305 pointed at the exiting thread. In such case, calling
7306 delete_thread does not really remove the thread from the list;
7307 instead, the thread is left listed, with 'exited' state.
64ce06e4 7308
2ac7589c
PA
7309 - The target's debug interface does not support thread exit
7310 events, and so we have no idea whatsoever if the previously
7311 stepping thread is still alive. For that reason, we need to
7312 synchronously query the target now. */
2adfaa28 7313
00431a78 7314 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c 7315 {
edbcda09
SM
7316 infrun_log_debug ("not resuming previously stepped thread, it has "
7317 "vanished");
2ac7589c 7318
00431a78 7319 delete_thread (tp);
2ac7589c 7320 return 0;
c447ac0b 7321 }
2ac7589c 7322
edbcda09 7323 infrun_log_debug ("resuming previously stepped thread");
2ac7589c
PA
7324
7325 reset_ecs (ecs, tp);
00431a78 7326 switch_to_thread (tp);
2ac7589c 7327
f2ffa92b 7328 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7329 frame = get_current_frame ();
2ac7589c
PA
7330
7331 /* If the PC of the thread we were trying to single-step has
7332 changed, then that thread has trapped or been signaled, but the
7333 event has not been reported to GDB yet. Re-poll the target
7334 looking for this particular thread's event (i.e. temporarily
7335 enable schedlock) by:
7336
7337 - setting a break at the current PC
7338 - resuming that particular thread, only (by setting trap
7339 expected)
7340
7341 This prevents us continuously moving the single-step breakpoint
7342 forward, one instruction at a time, overstepping. */
7343
f2ffa92b 7344 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7345 {
7346 ptid_t resume_ptid;
7347
edbcda09
SM
7348 infrun_log_debug ("expected thread advanced also (%s -> %s)",
7349 paddress (target_gdbarch (), tp->prev_pc),
7350 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7351
7352 /* Clear the info of the previous step-over, as it's no longer
7353 valid (if the thread was trying to step over a breakpoint, it
7354 has already succeeded). It's what keep_going would do too,
7355 if we called it. Do this before trying to insert the sss
7356 breakpoint, otherwise if we were previously trying to step
7357 over this exact address in another thread, the breakpoint is
7358 skipped. */
7359 clear_step_over_info ();
7360 tp->control.trap_expected = 0;
7361
7362 insert_single_step_breakpoint (get_frame_arch (frame),
7363 get_frame_address_space (frame),
f2ffa92b 7364 tp->suspend.stop_pc);
2ac7589c 7365
719546c4 7366 tp->resumed = true;
fbea99ea 7367 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7368 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7369 }
7370 else
7371 {
edbcda09 7372 infrun_log_debug ("expected thread still hasn't advanced");
2ac7589c
PA
7373
7374 keep_going_pass_signal (ecs);
7375 }
7376 return 1;
c447ac0b
PA
7377}
7378
8b061563
PA
7379/* Is thread TP in the middle of (software or hardware)
7380 single-stepping? (Note the result of this function must never be
7381 passed directly as target_resume's STEP parameter.) */
104c1213 7382
a289b8f6 7383static int
b3444185 7384currently_stepping (struct thread_info *tp)
a7212384 7385{
8358c15c
JK
7386 return ((tp->control.step_range_end
7387 && tp->control.step_resume_breakpoint == NULL)
7388 || tp->control.trap_expected
af48d08f 7389 || tp->stepped_breakpoint
8358c15c 7390 || bpstat_should_step ());
a7212384
UW
7391}
7392
b2175913
MS
7393/* Inferior has stepped into a subroutine call with source code that
7394 we should not step over. Do step to the first line of code in
7395 it. */
c2c6d25f
JM
7396
7397static void
568d6575
UW
7398handle_step_into_function (struct gdbarch *gdbarch,
7399 struct execution_control_state *ecs)
c2c6d25f 7400{
7e324e48
GB
7401 fill_in_stop_func (gdbarch, ecs);
7402
f2ffa92b
PA
7403 compunit_symtab *cust
7404 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7405 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7406 ecs->stop_func_start
7407 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7408
51abb421 7409 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7410 /* Use the step_resume_break to step until the end of the prologue,
7411 even if that involves jumps (as it seems to on the vax under
7412 4.2). */
7413 /* If the prologue ends in the middle of a source line, continue to
7414 the end of that source line (if it is still within the function).
7415 Otherwise, just go to end of prologue. */
2afb61aa
PA
7416 if (stop_func_sal.end
7417 && stop_func_sal.pc != ecs->stop_func_start
7418 && stop_func_sal.end < ecs->stop_func_end)
7419 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7420
2dbd5e30
KB
7421 /* Architectures which require breakpoint adjustment might not be able
7422 to place a breakpoint at the computed address. If so, the test
7423 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7424 ecs->stop_func_start to an address at which a breakpoint may be
7425 legitimately placed.
8fb3e588 7426
2dbd5e30
KB
7427 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7428 made, GDB will enter an infinite loop when stepping through
7429 optimized code consisting of VLIW instructions which contain
7430 subinstructions corresponding to different source lines. On
7431 FR-V, it's not permitted to place a breakpoint on any but the
7432 first subinstruction of a VLIW instruction. When a breakpoint is
7433 set, GDB will adjust the breakpoint address to the beginning of
7434 the VLIW instruction. Thus, we need to make the corresponding
7435 adjustment here when computing the stop address. */
8fb3e588 7436
568d6575 7437 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7438 {
7439 ecs->stop_func_start
568d6575 7440 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7441 ecs->stop_func_start);
2dbd5e30
KB
7442 }
7443
f2ffa92b 7444 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7445 {
7446 /* We are already there: stop now. */
bdc36728 7447 end_stepping_range (ecs);
c2c6d25f
JM
7448 return;
7449 }
7450 else
7451 {
7452 /* Put the step-breakpoint there and go until there. */
51abb421 7453 symtab_and_line sr_sal;
c2c6d25f
JM
7454 sr_sal.pc = ecs->stop_func_start;
7455 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7456 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7457
c2c6d25f 7458 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7459 some machines the prologue is where the new fp value is
7460 established. */
a6d9a66e 7461 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7462
7463 /* And make sure stepping stops right away then. */
16c381f0
JK
7464 ecs->event_thread->control.step_range_end
7465 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7466 }
7467 keep_going (ecs);
7468}
d4f3574e 7469
b2175913
MS
7470/* Inferior has stepped backward into a subroutine call with source
7471 code that we should not step over. Do step to the beginning of the
7472 last line of code in it. */
7473
7474static void
568d6575
UW
7475handle_step_into_function_backward (struct gdbarch *gdbarch,
7476 struct execution_control_state *ecs)
b2175913 7477{
43f3e411 7478 struct compunit_symtab *cust;
167e4384 7479 struct symtab_and_line stop_func_sal;
b2175913 7480
7e324e48
GB
7481 fill_in_stop_func (gdbarch, ecs);
7482
f2ffa92b 7483 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7484 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7485 ecs->stop_func_start
7486 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7487
f2ffa92b 7488 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7489
7490 /* OK, we're just going to keep stepping here. */
f2ffa92b 7491 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7492 {
7493 /* We're there already. Just stop stepping now. */
bdc36728 7494 end_stepping_range (ecs);
b2175913
MS
7495 }
7496 else
7497 {
7498 /* Else just reset the step range and keep going.
7499 No step-resume breakpoint, they don't work for
7500 epilogues, which can have multiple entry paths. */
16c381f0
JK
7501 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7502 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7503 keep_going (ecs);
7504 }
7505 return;
7506}
7507
d3169d93 7508/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7509 This is used to both functions and to skip over code. */
7510
7511static void
2c03e5be
PA
7512insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7513 struct symtab_and_line sr_sal,
7514 struct frame_id sr_id,
7515 enum bptype sr_type)
44cbf7b5 7516{
611c83ae
PA
7517 /* There should never be more than one step-resume or longjmp-resume
7518 breakpoint per thread, so we should never be setting a new
44cbf7b5 7519 step_resume_breakpoint when one is already active. */
8358c15c 7520 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7521 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93 7522
edbcda09
SM
7523 infrun_log_debug ("inserting step-resume breakpoint at %s",
7524 paddress (gdbarch, sr_sal.pc));
d3169d93 7525
8358c15c 7526 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7527 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7528}
7529
9da8c2a0 7530void
2c03e5be
PA
7531insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7532 struct symtab_and_line sr_sal,
7533 struct frame_id sr_id)
7534{
7535 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7536 sr_sal, sr_id,
7537 bp_step_resume);
44cbf7b5 7538}
7ce450bd 7539
2c03e5be
PA
7540/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7541 This is used to skip a potential signal handler.
7ce450bd 7542
14e60db5
DJ
7543 This is called with the interrupted function's frame. The signal
7544 handler, when it returns, will resume the interrupted function at
7545 RETURN_FRAME.pc. */
d303a6c7
AC
7546
7547static void
2c03e5be 7548insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7549{
f4c1edd8 7550 gdb_assert (return_frame != NULL);
d303a6c7 7551
51abb421
PA
7552 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7553
7554 symtab_and_line sr_sal;
568d6575 7555 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7556 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7557 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7558
2c03e5be
PA
7559 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7560 get_stack_frame_id (return_frame),
7561 bp_hp_step_resume);
d303a6c7
AC
7562}
7563
2c03e5be
PA
7564/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7565 is used to skip a function after stepping into it (for "next" or if
7566 the called function has no debugging information).
14e60db5
DJ
7567
7568 The current function has almost always been reached by single
7569 stepping a call or return instruction. NEXT_FRAME belongs to the
7570 current function, and the breakpoint will be set at the caller's
7571 resume address.
7572
7573 This is a separate function rather than reusing
2c03e5be 7574 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7575 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7576 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7577
7578static void
7579insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7580{
14e60db5
DJ
7581 /* We shouldn't have gotten here if we don't know where the call site
7582 is. */
c7ce8faa 7583 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7584
51abb421 7585 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7586
51abb421 7587 symtab_and_line sr_sal;
c7ce8faa
DJ
7588 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7589 frame_unwind_caller_pc (next_frame));
14e60db5 7590 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7591 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7592
a6d9a66e 7593 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7594 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7595}
7596
611c83ae
PA
7597/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7598 new breakpoint at the target of a jmp_buf. The handling of
7599 longjmp-resume uses the same mechanisms used for handling
7600 "step-resume" breakpoints. */
7601
7602static void
a6d9a66e 7603insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7604{
e81a37f7
TT
7605 /* There should never be more than one longjmp-resume breakpoint per
7606 thread, so we should never be setting a new
611c83ae 7607 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7608 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae 7609
edbcda09
SM
7610 infrun_log_debug ("inserting longjmp-resume breakpoint at %s",
7611 paddress (gdbarch, pc));
611c83ae 7612
e81a37f7 7613 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7614 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7615}
7616
186c406b
TT
7617/* Insert an exception resume breakpoint. TP is the thread throwing
7618 the exception. The block B is the block of the unwinder debug hook
7619 function. FRAME is the frame corresponding to the call to this
7620 function. SYM is the symbol of the function argument holding the
7621 target PC of the exception. */
7622
7623static void
7624insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7625 const struct block *b,
186c406b
TT
7626 struct frame_info *frame,
7627 struct symbol *sym)
7628{
a70b8144 7629 try
186c406b 7630 {
63e43d3a 7631 struct block_symbol vsym;
186c406b
TT
7632 struct value *value;
7633 CORE_ADDR handler;
7634 struct breakpoint *bp;
7635
987012b8 7636 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7637 b, VAR_DOMAIN);
63e43d3a 7638 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7639 /* If the value was optimized out, revert to the old behavior. */
7640 if (! value_optimized_out (value))
7641 {
7642 handler = value_as_address (value);
7643
edbcda09
SM
7644 infrun_log_debug ("exception resume at %lx",
7645 (unsigned long) handler);
186c406b
TT
7646
7647 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7648 handler,
7649 bp_exception_resume).release ();
c70a6932
JK
7650
7651 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7652 frame = NULL;
7653
5d5658a1 7654 bp->thread = tp->global_num;
186c406b
TT
7655 inferior_thread ()->control.exception_resume_breakpoint = bp;
7656 }
7657 }
230d2906 7658 catch (const gdb_exception_error &e)
492d29ea
PA
7659 {
7660 /* We want to ignore errors here. */
7661 }
186c406b
TT
7662}
7663
28106bc2
SDJ
7664/* A helper for check_exception_resume that sets an
7665 exception-breakpoint based on a SystemTap probe. */
7666
7667static void
7668insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7669 const struct bound_probe *probe,
28106bc2
SDJ
7670 struct frame_info *frame)
7671{
7672 struct value *arg_value;
7673 CORE_ADDR handler;
7674 struct breakpoint *bp;
7675
7676 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7677 if (!arg_value)
7678 return;
7679
7680 handler = value_as_address (arg_value);
7681
edbcda09
SM
7682 infrun_log_debug ("exception resume at %s",
7683 paddress (probe->objfile->arch (), handler));
28106bc2
SDJ
7684
7685 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7686 handler, bp_exception_resume).release ();
5d5658a1 7687 bp->thread = tp->global_num;
28106bc2
SDJ
7688 inferior_thread ()->control.exception_resume_breakpoint = bp;
7689}
7690
186c406b
TT
7691/* This is called when an exception has been intercepted. Check to
7692 see whether the exception's destination is of interest, and if so,
7693 set an exception resume breakpoint there. */
7694
7695static void
7696check_exception_resume (struct execution_control_state *ecs,
28106bc2 7697 struct frame_info *frame)
186c406b 7698{
729662a5 7699 struct bound_probe probe;
28106bc2
SDJ
7700 struct symbol *func;
7701
7702 /* First see if this exception unwinding breakpoint was set via a
7703 SystemTap probe point. If so, the probe has two arguments: the
7704 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7705 set a breakpoint there. */
6bac7473 7706 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7707 if (probe.prob)
28106bc2 7708 {
729662a5 7709 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7710 return;
7711 }
7712
7713 func = get_frame_function (frame);
7714 if (!func)
7715 return;
186c406b 7716
a70b8144 7717 try
186c406b 7718 {
3977b71f 7719 const struct block *b;
8157b174 7720 struct block_iterator iter;
186c406b
TT
7721 struct symbol *sym;
7722 int argno = 0;
7723
7724 /* The exception breakpoint is a thread-specific breakpoint on
7725 the unwinder's debug hook, declared as:
7726
7727 void _Unwind_DebugHook (void *cfa, void *handler);
7728
7729 The CFA argument indicates the frame to which control is
7730 about to be transferred. HANDLER is the destination PC.
7731
7732 We ignore the CFA and set a temporary breakpoint at HANDLER.
7733 This is not extremely efficient but it avoids issues in gdb
7734 with computing the DWARF CFA, and it also works even in weird
7735 cases such as throwing an exception from inside a signal
7736 handler. */
7737
7738 b = SYMBOL_BLOCK_VALUE (func);
7739 ALL_BLOCK_SYMBOLS (b, iter, sym)
7740 {
7741 if (!SYMBOL_IS_ARGUMENT (sym))
7742 continue;
7743
7744 if (argno == 0)
7745 ++argno;
7746 else
7747 {
7748 insert_exception_resume_breakpoint (ecs->event_thread,
7749 b, frame, sym);
7750 break;
7751 }
7752 }
7753 }
230d2906 7754 catch (const gdb_exception_error &e)
492d29ea
PA
7755 {
7756 }
186c406b
TT
7757}
7758
104c1213 7759static void
22bcd14b 7760stop_waiting (struct execution_control_state *ecs)
104c1213 7761{
edbcda09 7762 infrun_log_debug ("stop_waiting");
527159b7 7763
cd0fc7c3
SS
7764 /* Let callers know we don't want to wait for the inferior anymore. */
7765 ecs->wait_some_more = 0;
fbea99ea 7766
53cccef1 7767 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 7768 threads now that we're presenting the stop to the user. */
53cccef1 7769 if (!non_stop && exists_non_stop_target ())
fbea99ea 7770 stop_all_threads ();
cd0fc7c3
SS
7771}
7772
4d9d9d04
PA
7773/* Like keep_going, but passes the signal to the inferior, even if the
7774 signal is set to nopass. */
d4f3574e
SS
7775
7776static void
4d9d9d04 7777keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7778{
d7e15655 7779 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7780 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7781
d4f3574e 7782 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7783 ecs->event_thread->prev_pc
fc75c28b 7784 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
d4f3574e 7785
4d9d9d04 7786 if (ecs->event_thread->control.trap_expected)
d4f3574e 7787 {
4d9d9d04
PA
7788 struct thread_info *tp = ecs->event_thread;
7789
edbcda09
SM
7790 infrun_log_debug ("%s has trap_expected set, "
7791 "resuming to collect trap",
7792 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7793
a9ba6bae
PA
7794 /* We haven't yet gotten our trap, and either: intercepted a
7795 non-signal event (e.g., a fork); or took a signal which we
7796 are supposed to pass through to the inferior. Simply
7797 continue. */
64ce06e4 7798 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7799 }
372316f1
PA
7800 else if (step_over_info_valid_p ())
7801 {
7802 /* Another thread is stepping over a breakpoint in-line. If
7803 this thread needs a step-over too, queue the request. In
7804 either case, this resume must be deferred for later. */
7805 struct thread_info *tp = ecs->event_thread;
7806
7807 if (ecs->hit_singlestep_breakpoint
7808 || thread_still_needs_step_over (tp))
7809 {
edbcda09
SM
7810 infrun_log_debug ("step-over already in progress: "
7811 "step-over for %s deferred",
7812 target_pid_to_str (tp->ptid).c_str ());
7bd43605 7813 global_thread_step_over_chain_enqueue (tp);
372316f1
PA
7814 }
7815 else
7816 {
edbcda09
SM
7817 infrun_log_debug ("step-over in progress: resume of %s deferred",
7818 target_pid_to_str (tp->ptid).c_str ());
372316f1 7819 }
372316f1 7820 }
d4f3574e
SS
7821 else
7822 {
31e77af2 7823 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7824 int remove_bp;
7825 int remove_wps;
8d297bbf 7826 step_over_what step_what;
31e77af2 7827
d4f3574e 7828 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7829 anyway (if we got a signal, the user asked it be passed to
7830 the child)
7831 -- or --
7832 We got our expected trap, but decided we should resume from
7833 it.
d4f3574e 7834
a9ba6bae 7835 We're going to run this baby now!
d4f3574e 7836
c36b740a
VP
7837 Note that insert_breakpoints won't try to re-insert
7838 already inserted breakpoints. Therefore, we don't
7839 care if breakpoints were already inserted, or not. */
a9ba6bae 7840
31e77af2
PA
7841 /* If we need to step over a breakpoint, and we're not using
7842 displaced stepping to do so, insert all breakpoints
7843 (watchpoints, etc.) but the one we're stepping over, step one
7844 instruction, and then re-insert the breakpoint when that step
7845 is finished. */
963f9c80 7846
6c4cfb24
PA
7847 step_what = thread_still_needs_step_over (ecs->event_thread);
7848
963f9c80 7849 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7850 || (step_what & STEP_OVER_BREAKPOINT));
7851 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7852
cb71640d
PA
7853 /* We can't use displaced stepping if we need to step past a
7854 watchpoint. The instruction copied to the scratch pad would
7855 still trigger the watchpoint. */
7856 if (remove_bp
3fc8eb30 7857 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7858 {
a01bda52 7859 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7860 regcache_read_pc (regcache), remove_wps,
7861 ecs->event_thread->global_num);
45e8c884 7862 }
963f9c80 7863 else if (remove_wps)
21edc42f 7864 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7865
7866 /* If we now need to do an in-line step-over, we need to stop
7867 all other threads. Note this must be done before
7868 insert_breakpoints below, because that removes the breakpoint
7869 we're about to step over, otherwise other threads could miss
7870 it. */
fbea99ea 7871 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7872 stop_all_threads ();
abbb1732 7873
31e77af2 7874 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7875 try
31e77af2
PA
7876 {
7877 insert_breakpoints ();
7878 }
230d2906 7879 catch (const gdb_exception_error &e)
31e77af2
PA
7880 {
7881 exception_print (gdb_stderr, e);
22bcd14b 7882 stop_waiting (ecs);
bdf2a94a 7883 clear_step_over_info ();
31e77af2 7884 return;
d4f3574e
SS
7885 }
7886
963f9c80 7887 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7888
64ce06e4 7889 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7890 }
7891
488f131b 7892 prepare_to_wait (ecs);
d4f3574e
SS
7893}
7894
4d9d9d04
PA
7895/* Called when we should continue running the inferior, because the
7896 current event doesn't cause a user visible stop. This does the
7897 resuming part; waiting for the next event is done elsewhere. */
7898
7899static void
7900keep_going (struct execution_control_state *ecs)
7901{
7902 if (ecs->event_thread->control.trap_expected
7903 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7904 ecs->event_thread->control.trap_expected = 0;
7905
7906 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7907 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7908 keep_going_pass_signal (ecs);
7909}
7910
104c1213
JM
7911/* This function normally comes after a resume, before
7912 handle_inferior_event exits. It takes care of any last bits of
7913 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7914
104c1213
JM
7915static void
7916prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7917{
edbcda09 7918 infrun_log_debug ("prepare_to_wait");
104c1213 7919
104c1213 7920 ecs->wait_some_more = 1;
0b333c5e 7921
0e2dba2d
PA
7922 /* If the target can't async, emulate it by marking the infrun event
7923 handler such that as soon as we get back to the event-loop, we
7924 immediately end up in fetch_inferior_event again calling
7925 target_wait. */
7926 if (!target_can_async_p ())
0b333c5e 7927 mark_infrun_async_event_handler ();
c906108c 7928}
11cf8741 7929
fd664c91 7930/* We are done with the step range of a step/next/si/ni command.
b57bacec 7931 Called once for each n of a "step n" operation. */
fd664c91
PA
7932
7933static void
bdc36728 7934end_stepping_range (struct execution_control_state *ecs)
fd664c91 7935{
bdc36728 7936 ecs->event_thread->control.stop_step = 1;
bdc36728 7937 stop_waiting (ecs);
fd664c91
PA
7938}
7939
33d62d64
JK
7940/* Several print_*_reason functions to print why the inferior has stopped.
7941 We always print something when the inferior exits, or receives a signal.
7942 The rest of the cases are dealt with later on in normal_stop and
7943 print_it_typical. Ideally there should be a call to one of these
7944 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7945 stop_waiting is called.
33d62d64 7946
fd664c91
PA
7947 Note that we don't call these directly, instead we delegate that to
7948 the interpreters, through observers. Interpreters then call these
7949 with whatever uiout is right. */
33d62d64 7950
fd664c91
PA
7951void
7952print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7953{
fd664c91 7954 /* For CLI-like interpreters, print nothing. */
33d62d64 7955
112e8700 7956 if (uiout->is_mi_like_p ())
fd664c91 7957 {
112e8700 7958 uiout->field_string ("reason",
fd664c91
PA
7959 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7960 }
7961}
33d62d64 7962
fd664c91
PA
7963void
7964print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7965{
33d62d64 7966 annotate_signalled ();
112e8700
SM
7967 if (uiout->is_mi_like_p ())
7968 uiout->field_string
7969 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7970 uiout->text ("\nProgram terminated with signal ");
33d62d64 7971 annotate_signal_name ();
112e8700 7972 uiout->field_string ("signal-name",
2ea28649 7973 gdb_signal_to_name (siggnal));
33d62d64 7974 annotate_signal_name_end ();
112e8700 7975 uiout->text (", ");
33d62d64 7976 annotate_signal_string ();
112e8700 7977 uiout->field_string ("signal-meaning",
2ea28649 7978 gdb_signal_to_string (siggnal));
33d62d64 7979 annotate_signal_string_end ();
112e8700
SM
7980 uiout->text (".\n");
7981 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7982}
7983
fd664c91
PA
7984void
7985print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7986{
fda326dd 7987 struct inferior *inf = current_inferior ();
a068643d 7988 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7989
33d62d64
JK
7990 annotate_exited (exitstatus);
7991 if (exitstatus)
7992 {
112e8700
SM
7993 if (uiout->is_mi_like_p ())
7994 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
7995 std::string exit_code_str
7996 = string_printf ("0%o", (unsigned int) exitstatus);
7997 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7998 plongest (inf->num), pidstr.c_str (),
7999 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8000 }
8001 else
11cf8741 8002 {
112e8700
SM
8003 if (uiout->is_mi_like_p ())
8004 uiout->field_string
8005 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8006 uiout->message ("[Inferior %s (%s) exited normally]\n",
8007 plongest (inf->num), pidstr.c_str ());
33d62d64 8008 }
33d62d64
JK
8009}
8010
012b3a21
WT
8011/* Some targets/architectures can do extra processing/display of
8012 segmentation faults. E.g., Intel MPX boundary faults.
8013 Call the architecture dependent function to handle the fault. */
8014
8015static void
8016handle_segmentation_fault (struct ui_out *uiout)
8017{
8018 struct regcache *regcache = get_current_regcache ();
ac7936df 8019 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
8020
8021 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8022 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8023}
8024
fd664c91
PA
8025void
8026print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8027{
f303dbd6
PA
8028 struct thread_info *thr = inferior_thread ();
8029
33d62d64
JK
8030 annotate_signal ();
8031
112e8700 8032 if (uiout->is_mi_like_p ())
f303dbd6
PA
8033 ;
8034 else if (show_thread_that_caused_stop ())
33d62d64 8035 {
f303dbd6 8036 const char *name;
33d62d64 8037
112e8700 8038 uiout->text ("\nThread ");
33eca680 8039 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8040
8041 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8042 if (name != NULL)
8043 {
112e8700 8044 uiout->text (" \"");
33eca680 8045 uiout->field_string ("name", name);
112e8700 8046 uiout->text ("\"");
f303dbd6 8047 }
33d62d64 8048 }
f303dbd6 8049 else
112e8700 8050 uiout->text ("\nProgram");
f303dbd6 8051
112e8700
SM
8052 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8053 uiout->text (" stopped");
33d62d64
JK
8054 else
8055 {
112e8700 8056 uiout->text (" received signal ");
8b93c638 8057 annotate_signal_name ();
112e8700
SM
8058 if (uiout->is_mi_like_p ())
8059 uiout->field_string
8060 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8061 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8062 annotate_signal_name_end ();
112e8700 8063 uiout->text (", ");
8b93c638 8064 annotate_signal_string ();
112e8700 8065 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8066
8067 if (siggnal == GDB_SIGNAL_SEGV)
8068 handle_segmentation_fault (uiout);
8069
8b93c638 8070 annotate_signal_string_end ();
33d62d64 8071 }
112e8700 8072 uiout->text (".\n");
33d62d64 8073}
252fbfc8 8074
fd664c91
PA
8075void
8076print_no_history_reason (struct ui_out *uiout)
33d62d64 8077{
112e8700 8078 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8079}
43ff13b4 8080
0c7e1a46
PA
8081/* Print current location without a level number, if we have changed
8082 functions or hit a breakpoint. Print source line if we have one.
8083 bpstat_print contains the logic deciding in detail what to print,
8084 based on the event(s) that just occurred. */
8085
243a9253
PA
8086static void
8087print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8088{
8089 int bpstat_ret;
f486487f 8090 enum print_what source_flag;
0c7e1a46
PA
8091 int do_frame_printing = 1;
8092 struct thread_info *tp = inferior_thread ();
8093
8094 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8095 switch (bpstat_ret)
8096 {
8097 case PRINT_UNKNOWN:
8098 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8099 should) carry around the function and does (or should) use
8100 that when doing a frame comparison. */
8101 if (tp->control.stop_step
8102 && frame_id_eq (tp->control.step_frame_id,
8103 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8104 && (tp->control.step_start_function
8105 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8106 {
8107 /* Finished step, just print source line. */
8108 source_flag = SRC_LINE;
8109 }
8110 else
8111 {
8112 /* Print location and source line. */
8113 source_flag = SRC_AND_LOC;
8114 }
8115 break;
8116 case PRINT_SRC_AND_LOC:
8117 /* Print location and source line. */
8118 source_flag = SRC_AND_LOC;
8119 break;
8120 case PRINT_SRC_ONLY:
8121 source_flag = SRC_LINE;
8122 break;
8123 case PRINT_NOTHING:
8124 /* Something bogus. */
8125 source_flag = SRC_LINE;
8126 do_frame_printing = 0;
8127 break;
8128 default:
8129 internal_error (__FILE__, __LINE__, _("Unknown value."));
8130 }
8131
8132 /* The behavior of this routine with respect to the source
8133 flag is:
8134 SRC_LINE: Print only source line
8135 LOCATION: Print only location
8136 SRC_AND_LOC: Print location and source line. */
8137 if (do_frame_printing)
8138 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8139}
8140
243a9253
PA
8141/* See infrun.h. */
8142
8143void
4c7d57e7 8144print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8145{
243a9253 8146 struct target_waitstatus last;
243a9253
PA
8147 struct thread_info *tp;
8148
5b6d1e4f 8149 get_last_target_status (nullptr, nullptr, &last);
243a9253 8150
67ad9399
TT
8151 {
8152 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8153
67ad9399 8154 print_stop_location (&last);
243a9253 8155
67ad9399 8156 /* Display the auto-display expressions. */
4c7d57e7
TT
8157 if (displays)
8158 do_displays ();
67ad9399 8159 }
243a9253
PA
8160
8161 tp = inferior_thread ();
8162 if (tp->thread_fsm != NULL
46e3ed7f 8163 && tp->thread_fsm->finished_p ())
243a9253
PA
8164 {
8165 struct return_value_info *rv;
8166
46e3ed7f 8167 rv = tp->thread_fsm->return_value ();
243a9253
PA
8168 if (rv != NULL)
8169 print_return_value (uiout, rv);
8170 }
0c7e1a46
PA
8171}
8172
388a7084
PA
8173/* See infrun.h. */
8174
8175void
8176maybe_remove_breakpoints (void)
8177{
8178 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8179 {
8180 if (remove_breakpoints ())
8181 {
223ffa71 8182 target_terminal::ours_for_output ();
388a7084
PA
8183 printf_filtered (_("Cannot remove breakpoints because "
8184 "program is no longer writable.\nFurther "
8185 "execution is probably impossible.\n"));
8186 }
8187 }
8188}
8189
4c2f2a79
PA
8190/* The execution context that just caused a normal stop. */
8191
8192struct stop_context
8193{
2d844eaf
TT
8194 stop_context ();
8195 ~stop_context ();
8196
8197 DISABLE_COPY_AND_ASSIGN (stop_context);
8198
8199 bool changed () const;
8200
4c2f2a79
PA
8201 /* The stop ID. */
8202 ULONGEST stop_id;
c906108c 8203
4c2f2a79 8204 /* The event PTID. */
c906108c 8205
4c2f2a79
PA
8206 ptid_t ptid;
8207
8208 /* If stopp for a thread event, this is the thread that caused the
8209 stop. */
8210 struct thread_info *thread;
8211
8212 /* The inferior that caused the stop. */
8213 int inf_num;
8214};
8215
2d844eaf 8216/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8217 takes a strong reference to the thread. */
8218
2d844eaf 8219stop_context::stop_context ()
4c2f2a79 8220{
2d844eaf
TT
8221 stop_id = get_stop_id ();
8222 ptid = inferior_ptid;
8223 inf_num = current_inferior ()->num;
4c2f2a79 8224
d7e15655 8225 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8226 {
8227 /* Take a strong reference so that the thread can't be deleted
8228 yet. */
2d844eaf
TT
8229 thread = inferior_thread ();
8230 thread->incref ();
4c2f2a79
PA
8231 }
8232 else
2d844eaf 8233 thread = NULL;
4c2f2a79
PA
8234}
8235
8236/* Release a stop context previously created with save_stop_context.
8237 Releases the strong reference to the thread as well. */
8238
2d844eaf 8239stop_context::~stop_context ()
4c2f2a79 8240{
2d844eaf
TT
8241 if (thread != NULL)
8242 thread->decref ();
4c2f2a79
PA
8243}
8244
8245/* Return true if the current context no longer matches the saved stop
8246 context. */
8247
2d844eaf
TT
8248bool
8249stop_context::changed () const
8250{
8251 if (ptid != inferior_ptid)
8252 return true;
8253 if (inf_num != current_inferior ()->num)
8254 return true;
8255 if (thread != NULL && thread->state != THREAD_STOPPED)
8256 return true;
8257 if (get_stop_id () != stop_id)
8258 return true;
8259 return false;
4c2f2a79
PA
8260}
8261
8262/* See infrun.h. */
8263
8264int
96baa820 8265normal_stop (void)
c906108c 8266{
73b65bb0 8267 struct target_waitstatus last;
73b65bb0 8268
5b6d1e4f 8269 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8270
4c2f2a79
PA
8271 new_stop_id ();
8272
29f49a6a
PA
8273 /* If an exception is thrown from this point on, make sure to
8274 propagate GDB's knowledge of the executing state to the
8275 frontend/user running state. A QUIT is an easy exception to see
8276 here, so do this before any filtered output. */
731f534f 8277
5b6d1e4f 8278 ptid_t finish_ptid = null_ptid;
731f534f 8279
c35b1492 8280 if (!non_stop)
5b6d1e4f 8281 finish_ptid = minus_one_ptid;
e1316e60
PA
8282 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8283 || last.kind == TARGET_WAITKIND_EXITED)
8284 {
8285 /* On some targets, we may still have live threads in the
8286 inferior when we get a process exit event. E.g., for
8287 "checkpoint", when the current checkpoint/fork exits,
8288 linux-fork.c automatically switches to another fork from
8289 within target_mourn_inferior. */
731f534f 8290 if (inferior_ptid != null_ptid)
5b6d1e4f 8291 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8292 }
8293 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8294 finish_ptid = inferior_ptid;
8295
8296 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8297 if (finish_ptid != null_ptid)
8298 {
8299 maybe_finish_thread_state.emplace
8300 (user_visible_resume_target (finish_ptid), finish_ptid);
8301 }
29f49a6a 8302
b57bacec
PA
8303 /* As we're presenting a stop, and potentially removing breakpoints,
8304 update the thread list so we can tell whether there are threads
8305 running on the target. With target remote, for example, we can
8306 only learn about new threads when we explicitly update the thread
8307 list. Do this before notifying the interpreters about signal
8308 stops, end of stepping ranges, etc., so that the "new thread"
8309 output is emitted before e.g., "Program received signal FOO",
8310 instead of after. */
8311 update_thread_list ();
8312
8313 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8314 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8315
c906108c
SS
8316 /* As with the notification of thread events, we want to delay
8317 notifying the user that we've switched thread context until
8318 the inferior actually stops.
8319
73b65bb0
DJ
8320 There's no point in saying anything if the inferior has exited.
8321 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8322 "received a signal".
8323
8324 Also skip saying anything in non-stop mode. In that mode, as we
8325 don't want GDB to switch threads behind the user's back, to avoid
8326 races where the user is typing a command to apply to thread x,
8327 but GDB switches to thread y before the user finishes entering
8328 the command, fetch_inferior_event installs a cleanup to restore
8329 the current thread back to the thread the user had selected right
8330 after this event is handled, so we're not really switching, only
8331 informing of a stop. */
4f8d22e3 8332 if (!non_stop
731f534f 8333 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8334 && target_has_execution
8335 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8336 && last.kind != TARGET_WAITKIND_EXITED
8337 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8338 {
0e454242 8339 SWITCH_THRU_ALL_UIS ()
3b12939d 8340 {
223ffa71 8341 target_terminal::ours_for_output ();
3b12939d 8342 printf_filtered (_("[Switching to %s]\n"),
a068643d 8343 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8344 annotate_thread_changed ();
8345 }
39f77062 8346 previous_inferior_ptid = inferior_ptid;
c906108c 8347 }
c906108c 8348
0e5bf2a8
PA
8349 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8350 {
0e454242 8351 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8352 if (current_ui->prompt_state == PROMPT_BLOCKED)
8353 {
223ffa71 8354 target_terminal::ours_for_output ();
3b12939d
PA
8355 printf_filtered (_("No unwaited-for children left.\n"));
8356 }
0e5bf2a8
PA
8357 }
8358
b57bacec 8359 /* Note: this depends on the update_thread_list call above. */
388a7084 8360 maybe_remove_breakpoints ();
c906108c 8361
c906108c
SS
8362 /* If an auto-display called a function and that got a signal,
8363 delete that auto-display to avoid an infinite recursion. */
8364
8365 if (stopped_by_random_signal)
8366 disable_current_display ();
8367
0e454242 8368 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8369 {
8370 async_enable_stdin ();
8371 }
c906108c 8372
388a7084 8373 /* Let the user/frontend see the threads as stopped. */
731f534f 8374 maybe_finish_thread_state.reset ();
388a7084
PA
8375
8376 /* Select innermost stack frame - i.e., current frame is frame 0,
8377 and current location is based on that. Handle the case where the
8378 dummy call is returning after being stopped. E.g. the dummy call
8379 previously hit a breakpoint. (If the dummy call returns
8380 normally, we won't reach here.) Do this before the stop hook is
8381 run, so that it doesn't get to see the temporary dummy frame,
8382 which is not where we'll present the stop. */
8383 if (has_stack_frames ())
8384 {
8385 if (stop_stack_dummy == STOP_STACK_DUMMY)
8386 {
8387 /* Pop the empty frame that contains the stack dummy. This
8388 also restores inferior state prior to the call (struct
8389 infcall_suspend_state). */
8390 struct frame_info *frame = get_current_frame ();
8391
8392 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8393 frame_pop (frame);
8394 /* frame_pop calls reinit_frame_cache as the last thing it
8395 does which means there's now no selected frame. */
8396 }
8397
8398 select_frame (get_current_frame ());
8399
8400 /* Set the current source location. */
8401 set_current_sal_from_frame (get_current_frame ());
8402 }
dd7e2d2b
PA
8403
8404 /* Look up the hook_stop and run it (CLI internally handles problem
8405 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8406 if (stop_command != NULL)
8407 {
2d844eaf 8408 stop_context saved_context;
4c2f2a79 8409
a70b8144 8410 try
bf469271
PA
8411 {
8412 execute_cmd_pre_hook (stop_command);
8413 }
230d2906 8414 catch (const gdb_exception &ex)
bf469271
PA
8415 {
8416 exception_fprintf (gdb_stderr, ex,
8417 "Error while running hook_stop:\n");
8418 }
4c2f2a79
PA
8419
8420 /* If the stop hook resumes the target, then there's no point in
8421 trying to notify about the previous stop; its context is
8422 gone. Likewise if the command switches thread or inferior --
8423 the observers would print a stop for the wrong
8424 thread/inferior. */
2d844eaf
TT
8425 if (saved_context.changed ())
8426 return 1;
4c2f2a79 8427 }
dd7e2d2b 8428
388a7084
PA
8429 /* Notify observers about the stop. This is where the interpreters
8430 print the stop event. */
d7e15655 8431 if (inferior_ptid != null_ptid)
76727919 8432 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8433 stop_print_frame);
8434 else
76727919 8435 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8436
243a9253
PA
8437 annotate_stopped ();
8438
48844aa6
PA
8439 if (target_has_execution)
8440 {
8441 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8442 && last.kind != TARGET_WAITKIND_EXITED
8443 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8444 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8445 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8446 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8447 }
6c95b8df
PA
8448
8449 /* Try to get rid of automatically added inferiors that are no
8450 longer needed. Keeping those around slows down things linearly.
8451 Note that this never removes the current inferior. */
8452 prune_inferiors ();
4c2f2a79
PA
8453
8454 return 0;
c906108c 8455}
c906108c 8456\f
c5aa993b 8457int
96baa820 8458signal_stop_state (int signo)
c906108c 8459{
d6b48e9c 8460 return signal_stop[signo];
c906108c
SS
8461}
8462
c5aa993b 8463int
96baa820 8464signal_print_state (int signo)
c906108c
SS
8465{
8466 return signal_print[signo];
8467}
8468
c5aa993b 8469int
96baa820 8470signal_pass_state (int signo)
c906108c
SS
8471{
8472 return signal_program[signo];
8473}
8474
2455069d
UW
8475static void
8476signal_cache_update (int signo)
8477{
8478 if (signo == -1)
8479 {
a493e3e2 8480 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8481 signal_cache_update (signo);
8482
8483 return;
8484 }
8485
8486 signal_pass[signo] = (signal_stop[signo] == 0
8487 && signal_print[signo] == 0
ab04a2af
TT
8488 && signal_program[signo] == 1
8489 && signal_catch[signo] == 0);
2455069d
UW
8490}
8491
488f131b 8492int
7bda5e4a 8493signal_stop_update (int signo, int state)
d4f3574e
SS
8494{
8495 int ret = signal_stop[signo];
abbb1732 8496
d4f3574e 8497 signal_stop[signo] = state;
2455069d 8498 signal_cache_update (signo);
d4f3574e
SS
8499 return ret;
8500}
8501
488f131b 8502int
7bda5e4a 8503signal_print_update (int signo, int state)
d4f3574e
SS
8504{
8505 int ret = signal_print[signo];
abbb1732 8506
d4f3574e 8507 signal_print[signo] = state;
2455069d 8508 signal_cache_update (signo);
d4f3574e
SS
8509 return ret;
8510}
8511
488f131b 8512int
7bda5e4a 8513signal_pass_update (int signo, int state)
d4f3574e
SS
8514{
8515 int ret = signal_program[signo];
abbb1732 8516
d4f3574e 8517 signal_program[signo] = state;
2455069d 8518 signal_cache_update (signo);
d4f3574e
SS
8519 return ret;
8520}
8521
ab04a2af
TT
8522/* Update the global 'signal_catch' from INFO and notify the
8523 target. */
8524
8525void
8526signal_catch_update (const unsigned int *info)
8527{
8528 int i;
8529
8530 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8531 signal_catch[i] = info[i] > 0;
8532 signal_cache_update (-1);
adc6a863 8533 target_pass_signals (signal_pass);
ab04a2af
TT
8534}
8535
c906108c 8536static void
96baa820 8537sig_print_header (void)
c906108c 8538{
3e43a32a
MS
8539 printf_filtered (_("Signal Stop\tPrint\tPass "
8540 "to program\tDescription\n"));
c906108c
SS
8541}
8542
8543static void
2ea28649 8544sig_print_info (enum gdb_signal oursig)
c906108c 8545{
2ea28649 8546 const char *name = gdb_signal_to_name (oursig);
c906108c 8547 int name_padding = 13 - strlen (name);
96baa820 8548
c906108c
SS
8549 if (name_padding <= 0)
8550 name_padding = 0;
8551
8552 printf_filtered ("%s", name);
488f131b 8553 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8554 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8555 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8556 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8557 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8558}
8559
8560/* Specify how various signals in the inferior should be handled. */
8561
8562static void
0b39b52e 8563handle_command (const char *args, int from_tty)
c906108c 8564{
c906108c 8565 int digits, wordlen;
b926417a 8566 int sigfirst, siglast;
2ea28649 8567 enum gdb_signal oursig;
c906108c 8568 int allsigs;
c906108c
SS
8569
8570 if (args == NULL)
8571 {
e2e0b3e5 8572 error_no_arg (_("signal to handle"));
c906108c
SS
8573 }
8574
1777feb0 8575 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8576
adc6a863
PA
8577 const size_t nsigs = GDB_SIGNAL_LAST;
8578 unsigned char sigs[nsigs] {};
c906108c 8579
1777feb0 8580 /* Break the command line up into args. */
c906108c 8581
773a1edc 8582 gdb_argv built_argv (args);
c906108c
SS
8583
8584 /* Walk through the args, looking for signal oursigs, signal names, and
8585 actions. Signal numbers and signal names may be interspersed with
8586 actions, with the actions being performed for all signals cumulatively
1777feb0 8587 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8588
773a1edc 8589 for (char *arg : built_argv)
c906108c 8590 {
773a1edc
TT
8591 wordlen = strlen (arg);
8592 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8593 {;
8594 }
8595 allsigs = 0;
8596 sigfirst = siglast = -1;
8597
773a1edc 8598 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8599 {
8600 /* Apply action to all signals except those used by the
1777feb0 8601 debugger. Silently skip those. */
c906108c
SS
8602 allsigs = 1;
8603 sigfirst = 0;
8604 siglast = nsigs - 1;
8605 }
773a1edc 8606 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8607 {
8608 SET_SIGS (nsigs, sigs, signal_stop);
8609 SET_SIGS (nsigs, sigs, signal_print);
8610 }
773a1edc 8611 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8612 {
8613 UNSET_SIGS (nsigs, sigs, signal_program);
8614 }
773a1edc 8615 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8616 {
8617 SET_SIGS (nsigs, sigs, signal_print);
8618 }
773a1edc 8619 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8620 {
8621 SET_SIGS (nsigs, sigs, signal_program);
8622 }
773a1edc 8623 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8624 {
8625 UNSET_SIGS (nsigs, sigs, signal_stop);
8626 }
773a1edc 8627 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8628 {
8629 SET_SIGS (nsigs, sigs, signal_program);
8630 }
773a1edc 8631 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8632 {
8633 UNSET_SIGS (nsigs, sigs, signal_print);
8634 UNSET_SIGS (nsigs, sigs, signal_stop);
8635 }
773a1edc 8636 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8637 {
8638 UNSET_SIGS (nsigs, sigs, signal_program);
8639 }
8640 else if (digits > 0)
8641 {
8642 /* It is numeric. The numeric signal refers to our own
8643 internal signal numbering from target.h, not to host/target
8644 signal number. This is a feature; users really should be
8645 using symbolic names anyway, and the common ones like
8646 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8647
8648 sigfirst = siglast = (int)
773a1edc
TT
8649 gdb_signal_from_command (atoi (arg));
8650 if (arg[digits] == '-')
c906108c
SS
8651 {
8652 siglast = (int)
773a1edc 8653 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8654 }
8655 if (sigfirst > siglast)
8656 {
1777feb0 8657 /* Bet he didn't figure we'd think of this case... */
b926417a 8658 std::swap (sigfirst, siglast);
c906108c
SS
8659 }
8660 }
8661 else
8662 {
773a1edc 8663 oursig = gdb_signal_from_name (arg);
a493e3e2 8664 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8665 {
8666 sigfirst = siglast = (int) oursig;
8667 }
8668 else
8669 {
8670 /* Not a number and not a recognized flag word => complain. */
773a1edc 8671 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8672 }
8673 }
8674
8675 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8676 which signals to apply actions to. */
c906108c 8677
b926417a 8678 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8679 {
2ea28649 8680 switch ((enum gdb_signal) signum)
c906108c 8681 {
a493e3e2
PA
8682 case GDB_SIGNAL_TRAP:
8683 case GDB_SIGNAL_INT:
c906108c
SS
8684 if (!allsigs && !sigs[signum])
8685 {
9e2f0ad4 8686 if (query (_("%s is used by the debugger.\n\
3e43a32a 8687Are you sure you want to change it? "),
2ea28649 8688 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8689 {
8690 sigs[signum] = 1;
8691 }
8692 else
c119e040 8693 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8694 }
8695 break;
a493e3e2
PA
8696 case GDB_SIGNAL_0:
8697 case GDB_SIGNAL_DEFAULT:
8698 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8699 /* Make sure that "all" doesn't print these. */
8700 break;
8701 default:
8702 sigs[signum] = 1;
8703 break;
8704 }
8705 }
c906108c
SS
8706 }
8707
b926417a 8708 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8709 if (sigs[signum])
8710 {
2455069d 8711 signal_cache_update (-1);
adc6a863
PA
8712 target_pass_signals (signal_pass);
8713 target_program_signals (signal_program);
c906108c 8714
3a031f65
PA
8715 if (from_tty)
8716 {
8717 /* Show the results. */
8718 sig_print_header ();
8719 for (; signum < nsigs; signum++)
8720 if (sigs[signum])
aead7601 8721 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8722 }
8723
8724 break;
8725 }
c906108c
SS
8726}
8727
de0bea00
MF
8728/* Complete the "handle" command. */
8729
eb3ff9a5 8730static void
de0bea00 8731handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8732 completion_tracker &tracker,
6f937416 8733 const char *text, const char *word)
de0bea00 8734{
de0bea00
MF
8735 static const char * const keywords[] =
8736 {
8737 "all",
8738 "stop",
8739 "ignore",
8740 "print",
8741 "pass",
8742 "nostop",
8743 "noignore",
8744 "noprint",
8745 "nopass",
8746 NULL,
8747 };
8748
eb3ff9a5
PA
8749 signal_completer (ignore, tracker, text, word);
8750 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8751}
8752
2ea28649
PA
8753enum gdb_signal
8754gdb_signal_from_command (int num)
ed01b82c
PA
8755{
8756 if (num >= 1 && num <= 15)
2ea28649 8757 return (enum gdb_signal) num;
ed01b82c
PA
8758 error (_("Only signals 1-15 are valid as numeric signals.\n\
8759Use \"info signals\" for a list of symbolic signals."));
8760}
8761
c906108c
SS
8762/* Print current contents of the tables set by the handle command.
8763 It is possible we should just be printing signals actually used
8764 by the current target (but for things to work right when switching
8765 targets, all signals should be in the signal tables). */
8766
8767static void
1d12d88f 8768info_signals_command (const char *signum_exp, int from_tty)
c906108c 8769{
2ea28649 8770 enum gdb_signal oursig;
abbb1732 8771
c906108c
SS
8772 sig_print_header ();
8773
8774 if (signum_exp)
8775 {
8776 /* First see if this is a symbol name. */
2ea28649 8777 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8778 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8779 {
8780 /* No, try numeric. */
8781 oursig =
2ea28649 8782 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8783 }
8784 sig_print_info (oursig);
8785 return;
8786 }
8787
8788 printf_filtered ("\n");
8789 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8790 for (oursig = GDB_SIGNAL_FIRST;
8791 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8792 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8793 {
8794 QUIT;
8795
a493e3e2
PA
8796 if (oursig != GDB_SIGNAL_UNKNOWN
8797 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8798 sig_print_info (oursig);
8799 }
8800
3e43a32a
MS
8801 printf_filtered (_("\nUse the \"handle\" command "
8802 "to change these tables.\n"));
c906108c 8803}
4aa995e1
PA
8804
8805/* The $_siginfo convenience variable is a bit special. We don't know
8806 for sure the type of the value until we actually have a chance to
7a9dd1b2 8807 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8808 also dependent on which thread you have selected.
8809
8810 1. making $_siginfo be an internalvar that creates a new value on
8811 access.
8812
8813 2. making the value of $_siginfo be an lval_computed value. */
8814
8815/* This function implements the lval_computed support for reading a
8816 $_siginfo value. */
8817
8818static void
8819siginfo_value_read (struct value *v)
8820{
8821 LONGEST transferred;
8822
a911d87a
PA
8823 /* If we can access registers, so can we access $_siginfo. Likewise
8824 vice versa. */
8825 validate_registers_access ();
c709acd1 8826
4aa995e1 8827 transferred =
8b88a78e 8828 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8829 NULL,
8830 value_contents_all_raw (v),
8831 value_offset (v),
8832 TYPE_LENGTH (value_type (v)));
8833
8834 if (transferred != TYPE_LENGTH (value_type (v)))
8835 error (_("Unable to read siginfo"));
8836}
8837
8838/* This function implements the lval_computed support for writing a
8839 $_siginfo value. */
8840
8841static void
8842siginfo_value_write (struct value *v, struct value *fromval)
8843{
8844 LONGEST transferred;
8845
a911d87a
PA
8846 /* If we can access registers, so can we access $_siginfo. Likewise
8847 vice versa. */
8848 validate_registers_access ();
c709acd1 8849
8b88a78e 8850 transferred = target_write (current_top_target (),
4aa995e1
PA
8851 TARGET_OBJECT_SIGNAL_INFO,
8852 NULL,
8853 value_contents_all_raw (fromval),
8854 value_offset (v),
8855 TYPE_LENGTH (value_type (fromval)));
8856
8857 if (transferred != TYPE_LENGTH (value_type (fromval)))
8858 error (_("Unable to write siginfo"));
8859}
8860
c8f2448a 8861static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8862 {
8863 siginfo_value_read,
8864 siginfo_value_write
8865 };
8866
8867/* Return a new value with the correct type for the siginfo object of
78267919
UW
8868 the current thread using architecture GDBARCH. Return a void value
8869 if there's no object available. */
4aa995e1 8870
2c0b251b 8871static struct value *
22d2b532
SDJ
8872siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8873 void *ignore)
4aa995e1 8874{
4aa995e1 8875 if (target_has_stack
d7e15655 8876 && inferior_ptid != null_ptid
78267919 8877 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8878 {
78267919 8879 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8880
78267919 8881 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8882 }
8883
78267919 8884 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8885}
8886
c906108c 8887\f
16c381f0
JK
8888/* infcall_suspend_state contains state about the program itself like its
8889 registers and any signal it received when it last stopped.
8890 This state must be restored regardless of how the inferior function call
8891 ends (either successfully, or after it hits a breakpoint or signal)
8892 if the program is to properly continue where it left off. */
8893
6bf78e29 8894class infcall_suspend_state
7a292a7a 8895{
6bf78e29
AB
8896public:
8897 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8898 once the inferior function call has finished. */
8899 infcall_suspend_state (struct gdbarch *gdbarch,
8900 const struct thread_info *tp,
8901 struct regcache *regcache)
8902 : m_thread_suspend (tp->suspend),
8903 m_registers (new readonly_detached_regcache (*regcache))
8904 {
8905 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8906
8907 if (gdbarch_get_siginfo_type_p (gdbarch))
8908 {
8909 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8910 size_t len = TYPE_LENGTH (type);
8911
8912 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8913
8914 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8915 siginfo_data.get (), 0, len) != len)
8916 {
8917 /* Errors ignored. */
8918 siginfo_data.reset (nullptr);
8919 }
8920 }
8921
8922 if (siginfo_data)
8923 {
8924 m_siginfo_gdbarch = gdbarch;
8925 m_siginfo_data = std::move (siginfo_data);
8926 }
8927 }
8928
8929 /* Return a pointer to the stored register state. */
16c381f0 8930
6bf78e29
AB
8931 readonly_detached_regcache *registers () const
8932 {
8933 return m_registers.get ();
8934 }
8935
8936 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8937
8938 void restore (struct gdbarch *gdbarch,
8939 struct thread_info *tp,
8940 struct regcache *regcache) const
8941 {
8942 tp->suspend = m_thread_suspend;
8943
8944 if (m_siginfo_gdbarch == gdbarch)
8945 {
8946 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8947
8948 /* Errors ignored. */
8949 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8950 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8951 }
8952
8953 /* The inferior can be gone if the user types "print exit(0)"
8954 (and perhaps other times). */
8955 if (target_has_execution)
8956 /* NB: The register write goes through to the target. */
8957 regcache->restore (registers ());
8958 }
8959
8960private:
8961 /* How the current thread stopped before the inferior function call was
8962 executed. */
8963 struct thread_suspend_state m_thread_suspend;
8964
8965 /* The registers before the inferior function call was executed. */
8966 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8967
35515841 8968 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8969 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8970
8971 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8972 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8973 content would be invalid. */
6bf78e29 8974 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8975};
8976
cb524840
TT
8977infcall_suspend_state_up
8978save_infcall_suspend_state ()
b89667eb 8979{
b89667eb 8980 struct thread_info *tp = inferior_thread ();
1736ad11 8981 struct regcache *regcache = get_current_regcache ();
ac7936df 8982 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8983
6bf78e29
AB
8984 infcall_suspend_state_up inf_state
8985 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8986
6bf78e29
AB
8987 /* Having saved the current state, adjust the thread state, discarding
8988 any stop signal information. The stop signal is not useful when
8989 starting an inferior function call, and run_inferior_call will not use
8990 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8991 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8992
b89667eb
DE
8993 return inf_state;
8994}
8995
8996/* Restore inferior session state to INF_STATE. */
8997
8998void
16c381f0 8999restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9000{
9001 struct thread_info *tp = inferior_thread ();
1736ad11 9002 struct regcache *regcache = get_current_regcache ();
ac7936df 9003 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9004
6bf78e29 9005 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9006 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9007}
9008
b89667eb 9009void
16c381f0 9010discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9011{
dd848631 9012 delete inf_state;
b89667eb
DE
9013}
9014
daf6667d 9015readonly_detached_regcache *
16c381f0 9016get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9017{
6bf78e29 9018 return inf_state->registers ();
b89667eb
DE
9019}
9020
16c381f0
JK
9021/* infcall_control_state contains state regarding gdb's control of the
9022 inferior itself like stepping control. It also contains session state like
9023 the user's currently selected frame. */
b89667eb 9024
16c381f0 9025struct infcall_control_state
b89667eb 9026{
16c381f0
JK
9027 struct thread_control_state thread_control;
9028 struct inferior_control_state inferior_control;
d82142e2
JK
9029
9030 /* Other fields: */
ee841dd8
TT
9031 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9032 int stopped_by_random_signal = 0;
7a292a7a 9033
b89667eb 9034 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 9035 struct frame_id selected_frame_id {};
7a292a7a
SS
9036};
9037
c906108c 9038/* Save all of the information associated with the inferior<==>gdb
b89667eb 9039 connection. */
c906108c 9040
cb524840
TT
9041infcall_control_state_up
9042save_infcall_control_state ()
c906108c 9043{
cb524840 9044 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9045 struct thread_info *tp = inferior_thread ();
d6b48e9c 9046 struct inferior *inf = current_inferior ();
7a292a7a 9047
16c381f0
JK
9048 inf_status->thread_control = tp->control;
9049 inf_status->inferior_control = inf->control;
d82142e2 9050
8358c15c 9051 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9052 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9053
16c381f0
JK
9054 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9055 chain. If caller's caller is walking the chain, they'll be happier if we
9056 hand them back the original chain when restore_infcall_control_state is
9057 called. */
9058 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9059
9060 /* Other fields: */
9061 inf_status->stop_stack_dummy = stop_stack_dummy;
9062 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9063
206415a3 9064 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9065
7a292a7a 9066 return inf_status;
c906108c
SS
9067}
9068
bf469271
PA
9069static void
9070restore_selected_frame (const frame_id &fid)
c906108c 9071{
bf469271 9072 frame_info *frame = frame_find_by_id (fid);
c906108c 9073
aa0cd9c1
AC
9074 /* If inf_status->selected_frame_id is NULL, there was no previously
9075 selected frame. */
101dcfbe 9076 if (frame == NULL)
c906108c 9077 {
8a3fe4f8 9078 warning (_("Unable to restore previously selected frame."));
bf469271 9079 return;
c906108c
SS
9080 }
9081
0f7d239c 9082 select_frame (frame);
c906108c
SS
9083}
9084
b89667eb
DE
9085/* Restore inferior session state to INF_STATUS. */
9086
c906108c 9087void
16c381f0 9088restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9089{
4e1c45ea 9090 struct thread_info *tp = inferior_thread ();
d6b48e9c 9091 struct inferior *inf = current_inferior ();
4e1c45ea 9092
8358c15c
JK
9093 if (tp->control.step_resume_breakpoint)
9094 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9095
5b79abe7
TT
9096 if (tp->control.exception_resume_breakpoint)
9097 tp->control.exception_resume_breakpoint->disposition
9098 = disp_del_at_next_stop;
9099
d82142e2 9100 /* Handle the bpstat_copy of the chain. */
16c381f0 9101 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9102
16c381f0
JK
9103 tp->control = inf_status->thread_control;
9104 inf->control = inf_status->inferior_control;
d82142e2
JK
9105
9106 /* Other fields: */
9107 stop_stack_dummy = inf_status->stop_stack_dummy;
9108 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9109
b89667eb 9110 if (target_has_stack)
c906108c 9111 {
bf469271 9112 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9113 walking the stack might encounter a garbage pointer and
9114 error() trying to dereference it. */
a70b8144 9115 try
bf469271
PA
9116 {
9117 restore_selected_frame (inf_status->selected_frame_id);
9118 }
230d2906 9119 catch (const gdb_exception_error &ex)
bf469271
PA
9120 {
9121 exception_fprintf (gdb_stderr, ex,
9122 "Unable to restore previously selected frame:\n");
9123 /* Error in restoring the selected frame. Select the
9124 innermost frame. */
9125 select_frame (get_current_frame ());
9126 }
c906108c 9127 }
c906108c 9128
ee841dd8 9129 delete inf_status;
7a292a7a 9130}
c906108c
SS
9131
9132void
16c381f0 9133discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9134{
8358c15c
JK
9135 if (inf_status->thread_control.step_resume_breakpoint)
9136 inf_status->thread_control.step_resume_breakpoint->disposition
9137 = disp_del_at_next_stop;
9138
5b79abe7
TT
9139 if (inf_status->thread_control.exception_resume_breakpoint)
9140 inf_status->thread_control.exception_resume_breakpoint->disposition
9141 = disp_del_at_next_stop;
9142
1777feb0 9143 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9144 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9145
ee841dd8 9146 delete inf_status;
7a292a7a 9147}
b89667eb 9148\f
7f89fd65 9149/* See infrun.h. */
0c557179
SDJ
9150
9151void
9152clear_exit_convenience_vars (void)
9153{
9154 clear_internalvar (lookup_internalvar ("_exitsignal"));
9155 clear_internalvar (lookup_internalvar ("_exitcode"));
9156}
c5aa993b 9157\f
488f131b 9158
b2175913
MS
9159/* User interface for reverse debugging:
9160 Set exec-direction / show exec-direction commands
9161 (returns error unless target implements to_set_exec_direction method). */
9162
170742de 9163enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9164static const char exec_forward[] = "forward";
9165static const char exec_reverse[] = "reverse";
9166static const char *exec_direction = exec_forward;
40478521 9167static const char *const exec_direction_names[] = {
b2175913
MS
9168 exec_forward,
9169 exec_reverse,
9170 NULL
9171};
9172
9173static void
eb4c3f4a 9174set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9175 struct cmd_list_element *cmd)
9176{
9177 if (target_can_execute_reverse)
9178 {
9179 if (!strcmp (exec_direction, exec_forward))
9180 execution_direction = EXEC_FORWARD;
9181 else if (!strcmp (exec_direction, exec_reverse))
9182 execution_direction = EXEC_REVERSE;
9183 }
8bbed405
MS
9184 else
9185 {
9186 exec_direction = exec_forward;
9187 error (_("Target does not support this operation."));
9188 }
b2175913
MS
9189}
9190
9191static void
9192show_exec_direction_func (struct ui_file *out, int from_tty,
9193 struct cmd_list_element *cmd, const char *value)
9194{
9195 switch (execution_direction) {
9196 case EXEC_FORWARD:
9197 fprintf_filtered (out, _("Forward.\n"));
9198 break;
9199 case EXEC_REVERSE:
9200 fprintf_filtered (out, _("Reverse.\n"));
9201 break;
b2175913 9202 default:
d8b34453
PA
9203 internal_error (__FILE__, __LINE__,
9204 _("bogus execution_direction value: %d"),
9205 (int) execution_direction);
b2175913
MS
9206 }
9207}
9208
d4db2f36
PA
9209static void
9210show_schedule_multiple (struct ui_file *file, int from_tty,
9211 struct cmd_list_element *c, const char *value)
9212{
3e43a32a
MS
9213 fprintf_filtered (file, _("Resuming the execution of threads "
9214 "of all processes is %s.\n"), value);
d4db2f36 9215}
ad52ddc6 9216
22d2b532
SDJ
9217/* Implementation of `siginfo' variable. */
9218
9219static const struct internalvar_funcs siginfo_funcs =
9220{
9221 siginfo_make_value,
9222 NULL,
9223 NULL
9224};
9225
372316f1
PA
9226/* Callback for infrun's target events source. This is marked when a
9227 thread has a pending status to process. */
9228
9229static void
9230infrun_async_inferior_event_handler (gdb_client_data data)
9231{
b1a35af2 9232 inferior_event_handler (INF_REG_EVENT);
372316f1
PA
9233}
9234
6c265988 9235void _initialize_infrun ();
c906108c 9236void
6c265988 9237_initialize_infrun ()
c906108c 9238{
de0bea00 9239 struct cmd_list_element *c;
c906108c 9240
372316f1
PA
9241 /* Register extra event sources in the event loop. */
9242 infrun_async_inferior_event_token
9243 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9244
11db9430 9245 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9246What debugger does when program gets various signals.\n\
9247Specify a signal as argument to print info on that signal only."));
c906108c
SS
9248 add_info_alias ("handle", "signals", 0);
9249
de0bea00 9250 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9251Specify how to handle signals.\n\
486c7739 9252Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9253Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9254If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9255will be displayed instead.\n\
9256\n\
c906108c
SS
9257Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9258from 1-15 are allowed for compatibility with old versions of GDB.\n\
9259Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9260The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9261used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9262\n\
1bedd215 9263Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9264\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9265Stop means reenter debugger if this signal happens (implies print).\n\
9266Print means print a message if this signal happens.\n\
9267Pass means let program see this signal; otherwise program doesn't know.\n\
9268Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9269Pass and Stop may be combined.\n\
9270\n\
9271Multiple signals may be specified. Signal numbers and signal names\n\
9272may be interspersed with actions, with the actions being performed for\n\
9273all signals cumulatively specified."));
de0bea00 9274 set_cmd_completer (c, handle_completer);
486c7739 9275
c906108c 9276 if (!dbx_commands)
1a966eab
AC
9277 stop_command = add_cmd ("stop", class_obscure,
9278 not_just_help_class_command, _("\
9279There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9280This allows you to set a list of commands to be run each time execution\n\
1a966eab 9281of the program stops."), &cmdlist);
c906108c 9282
ccce17b0 9283 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9284Set inferior debugging."), _("\
9285Show inferior debugging."), _("\
9286When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9287 NULL,
9288 show_debug_infrun,
9289 &setdebuglist, &showdebuglist);
527159b7 9290
3e43a32a
MS
9291 add_setshow_boolean_cmd ("displaced", class_maintenance,
9292 &debug_displaced, _("\
237fc4c9
PA
9293Set displaced stepping debugging."), _("\
9294Show displaced stepping debugging."), _("\
9295When non-zero, displaced stepping specific debugging is enabled."),
9296 NULL,
9297 show_debug_displaced,
9298 &setdebuglist, &showdebuglist);
9299
ad52ddc6
PA
9300 add_setshow_boolean_cmd ("non-stop", no_class,
9301 &non_stop_1, _("\
9302Set whether gdb controls the inferior in non-stop mode."), _("\
9303Show whether gdb controls the inferior in non-stop mode."), _("\
9304When debugging a multi-threaded program and this setting is\n\
9305off (the default, also called all-stop mode), when one thread stops\n\
9306(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9307all other threads in the program while you interact with the thread of\n\
9308interest. When you continue or step a thread, you can allow the other\n\
9309threads to run, or have them remain stopped, but while you inspect any\n\
9310thread's state, all threads stop.\n\
9311\n\
9312In non-stop mode, when one thread stops, other threads can continue\n\
9313to run freely. You'll be able to step each thread independently,\n\
9314leave it stopped or free to run as needed."),
9315 set_non_stop,
9316 show_non_stop,
9317 &setlist,
9318 &showlist);
9319
adc6a863 9320 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9321 {
9322 signal_stop[i] = 1;
9323 signal_print[i] = 1;
9324 signal_program[i] = 1;
ab04a2af 9325 signal_catch[i] = 0;
c906108c
SS
9326 }
9327
4d9d9d04
PA
9328 /* Signals caused by debugger's own actions should not be given to
9329 the program afterwards.
9330
9331 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9332 explicitly specifies that it should be delivered to the target
9333 program. Typically, that would occur when a user is debugging a
9334 target monitor on a simulator: the target monitor sets a
9335 breakpoint; the simulator encounters this breakpoint and halts
9336 the simulation handing control to GDB; GDB, noting that the stop
9337 address doesn't map to any known breakpoint, returns control back
9338 to the simulator; the simulator then delivers the hardware
9339 equivalent of a GDB_SIGNAL_TRAP to the program being
9340 debugged. */
a493e3e2
PA
9341 signal_program[GDB_SIGNAL_TRAP] = 0;
9342 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9343
9344 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9345 signal_stop[GDB_SIGNAL_ALRM] = 0;
9346 signal_print[GDB_SIGNAL_ALRM] = 0;
9347 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9348 signal_print[GDB_SIGNAL_VTALRM] = 0;
9349 signal_stop[GDB_SIGNAL_PROF] = 0;
9350 signal_print[GDB_SIGNAL_PROF] = 0;
9351 signal_stop[GDB_SIGNAL_CHLD] = 0;
9352 signal_print[GDB_SIGNAL_CHLD] = 0;
9353 signal_stop[GDB_SIGNAL_IO] = 0;
9354 signal_print[GDB_SIGNAL_IO] = 0;
9355 signal_stop[GDB_SIGNAL_POLL] = 0;
9356 signal_print[GDB_SIGNAL_POLL] = 0;
9357 signal_stop[GDB_SIGNAL_URG] = 0;
9358 signal_print[GDB_SIGNAL_URG] = 0;
9359 signal_stop[GDB_SIGNAL_WINCH] = 0;
9360 signal_print[GDB_SIGNAL_WINCH] = 0;
9361 signal_stop[GDB_SIGNAL_PRIO] = 0;
9362 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9363
cd0fc7c3
SS
9364 /* These signals are used internally by user-level thread
9365 implementations. (See signal(5) on Solaris.) Like the above
9366 signals, a healthy program receives and handles them as part of
9367 its normal operation. */
a493e3e2
PA
9368 signal_stop[GDB_SIGNAL_LWP] = 0;
9369 signal_print[GDB_SIGNAL_LWP] = 0;
9370 signal_stop[GDB_SIGNAL_WAITING] = 0;
9371 signal_print[GDB_SIGNAL_WAITING] = 0;
9372 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9373 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9374 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9375 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9376
2455069d
UW
9377 /* Update cached state. */
9378 signal_cache_update (-1);
9379
85c07804
AC
9380 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9381 &stop_on_solib_events, _("\
9382Set stopping for shared library events."), _("\
9383Show stopping for shared library events."), _("\
c906108c
SS
9384If nonzero, gdb will give control to the user when the dynamic linker\n\
9385notifies gdb of shared library events. The most common event of interest\n\
85c07804 9386to the user would be loading/unloading of a new library."),
f9e14852 9387 set_stop_on_solib_events,
920d2a44 9388 show_stop_on_solib_events,
85c07804 9389 &setlist, &showlist);
c906108c 9390
7ab04401
AC
9391 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9392 follow_fork_mode_kind_names,
9393 &follow_fork_mode_string, _("\
9394Set debugger response to a program call of fork or vfork."), _("\
9395Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9396A fork or vfork creates a new process. follow-fork-mode can be:\n\
9397 parent - the original process is debugged after a fork\n\
9398 child - the new process is debugged after a fork\n\
ea1dd7bc 9399The unfollowed process will continue to run.\n\
7ab04401
AC
9400By default, the debugger will follow the parent process."),
9401 NULL,
920d2a44 9402 show_follow_fork_mode_string,
7ab04401
AC
9403 &setlist, &showlist);
9404
6c95b8df
PA
9405 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9406 follow_exec_mode_names,
9407 &follow_exec_mode_string, _("\
9408Set debugger response to a program call of exec."), _("\
9409Show debugger response to a program call of exec."), _("\
9410An exec call replaces the program image of a process.\n\
9411\n\
9412follow-exec-mode can be:\n\
9413\n\
cce7e648 9414 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9415to this new inferior. The program the process was running before\n\
9416the exec call can be restarted afterwards by restarting the original\n\
9417inferior.\n\
9418\n\
9419 same - the debugger keeps the process bound to the same inferior.\n\
9420The new executable image replaces the previous executable loaded in\n\
9421the inferior. Restarting the inferior after the exec call restarts\n\
9422the executable the process was running after the exec call.\n\
9423\n\
9424By default, the debugger will use the same inferior."),
9425 NULL,
9426 show_follow_exec_mode_string,
9427 &setlist, &showlist);
9428
7ab04401
AC
9429 add_setshow_enum_cmd ("scheduler-locking", class_run,
9430 scheduler_enums, &scheduler_mode, _("\
9431Set mode for locking scheduler during execution."), _("\
9432Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9433off == no locking (threads may preempt at any time)\n\
9434on == full locking (no thread except the current thread may run)\n\
9435 This applies to both normal execution and replay mode.\n\
9436step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9437 In this mode, other threads may run during other commands.\n\
9438 This applies to both normal execution and replay mode.\n\
9439replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9440 set_schedlock_func, /* traps on target vector */
920d2a44 9441 show_scheduler_mode,
7ab04401 9442 &setlist, &showlist);
5fbbeb29 9443
d4db2f36
PA
9444 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9445Set mode for resuming threads of all processes."), _("\
9446Show mode for resuming threads of all processes."), _("\
9447When on, execution commands (such as 'continue' or 'next') resume all\n\
9448threads of all processes. When off (which is the default), execution\n\
9449commands only resume the threads of the current process. The set of\n\
9450threads that are resumed is further refined by the scheduler-locking\n\
9451mode (see help set scheduler-locking)."),
9452 NULL,
9453 show_schedule_multiple,
9454 &setlist, &showlist);
9455
5bf193a2
AC
9456 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9457Set mode of the step operation."), _("\
9458Show mode of the step operation."), _("\
9459When set, doing a step over a function without debug line information\n\
9460will stop at the first instruction of that function. Otherwise, the\n\
9461function is skipped and the step command stops at a different source line."),
9462 NULL,
920d2a44 9463 show_step_stop_if_no_debug,
5bf193a2 9464 &setlist, &showlist);
ca6724c1 9465
72d0e2c5
YQ
9466 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9467 &can_use_displaced_stepping, _("\
237fc4c9
PA
9468Set debugger's willingness to use displaced stepping."), _("\
9469Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9470If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9471supported by the target architecture. If off, gdb will not use displaced\n\
9472stepping to step over breakpoints, even if such is supported by the target\n\
9473architecture. If auto (which is the default), gdb will use displaced stepping\n\
9474if the target architecture supports it and non-stop mode is active, but will not\n\
9475use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9476 NULL,
9477 show_can_use_displaced_stepping,
9478 &setlist, &showlist);
237fc4c9 9479
b2175913
MS
9480 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9481 &exec_direction, _("Set direction of execution.\n\
9482Options are 'forward' or 'reverse'."),
9483 _("Show direction of execution (forward/reverse)."),
9484 _("Tells gdb whether to execute forward or backward."),
9485 set_exec_direction_func, show_exec_direction_func,
9486 &setlist, &showlist);
9487
6c95b8df
PA
9488 /* Set/show detach-on-fork: user-settable mode. */
9489
9490 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9491Set whether gdb will detach the child of a fork."), _("\
9492Show whether gdb will detach the child of a fork."), _("\
9493Tells gdb whether to detach the child of a fork."),
9494 NULL, NULL, &setlist, &showlist);
9495
03583c20
UW
9496 /* Set/show disable address space randomization mode. */
9497
9498 add_setshow_boolean_cmd ("disable-randomization", class_support,
9499 &disable_randomization, _("\
9500Set disabling of debuggee's virtual address space randomization."), _("\
9501Show disabling of debuggee's virtual address space randomization."), _("\
9502When this mode is on (which is the default), randomization of the virtual\n\
9503address space is disabled. Standalone programs run with the randomization\n\
9504enabled by default on some platforms."),
9505 &set_disable_randomization,
9506 &show_disable_randomization,
9507 &setlist, &showlist);
9508
ca6724c1 9509 /* ptid initializations */
ca6724c1
KB
9510 inferior_ptid = null_ptid;
9511 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9512
76727919
TT
9513 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9514 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9515 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9516 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9517
9518 /* Explicitly create without lookup, since that tries to create a
9519 value with a void typed value, and when we get here, gdbarch
9520 isn't initialized yet. At this point, we're quite sure there
9521 isn't another convenience variable of the same name. */
22d2b532 9522 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9523
9524 add_setshow_boolean_cmd ("observer", no_class,
9525 &observer_mode_1, _("\
9526Set whether gdb controls the inferior in observer mode."), _("\
9527Show whether gdb controls the inferior in observer mode."), _("\
9528In observer mode, GDB can get data from the inferior, but not\n\
9529affect its execution. Registers and memory may not be changed,\n\
9530breakpoints may not be set, and the program cannot be interrupted\n\
9531or signalled."),
9532 set_observer_mode,
9533 show_observer_mode,
9534 &setlist,
9535 &showlist);
c906108c 9536}
This page took 2.703729 seconds and 4 git commands to generate.