gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
e088209c 22#include "displaced-stepping.h"
4100594e
SM
23#include "gdbsupport/common-defs.h"
24#include "gdbsupport/common-utils.h"
45741a9c 25#include "infrun.h"
c906108c
SS
26#include <ctype.h>
27#include "symtab.h"
28#include "frame.h"
29#include "inferior.h"
30#include "breakpoint.h"
c906108c
SS
31#include "gdbcore.h"
32#include "gdbcmd.h"
33#include "target.h"
2f4fcf00 34#include "target-connection.h"
c906108c
SS
35#include "gdbthread.h"
36#include "annotate.h"
1adeb98a 37#include "symfile.h"
7a292a7a 38#include "top.h"
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
e088209c 41#include "utils.h"
fd0407d6 42#include "value.h"
76727919 43#include "observable.h"
f636b87d 44#include "language.h"
a77053c2 45#include "solib.h"
f17517ea 46#include "main.h"
186c406b 47#include "block.h"
034dad6f 48#include "mi/mi-common.h"
4f8d22e3 49#include "event-top.h"
96429cc8 50#include "record.h"
d02ed0bb 51#include "record-full.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
1bfeeb0f 55#include "skip.h"
28106bc2
SDJ
56#include "probe.h"
57#include "objfiles.h"
de0bea00 58#include "completer.h"
9107fc8d 59#include "target-descriptions.h"
f15cb84a 60#include "target-dcache.h"
d83ad864 61#include "terminal.h"
ff862be4 62#include "solist.h"
400b5eca 63#include "gdbsupport/event-loop.h"
243a9253 64#include "thread-fsm.h"
268a13a5 65#include "gdbsupport/enum-flags.h"
5ed8105e 66#include "progspace-and-thread.h"
268a13a5 67#include "gdbsupport/gdb_optional.h"
46a62268 68#include "arch-utils.h"
268a13a5
TT
69#include "gdbsupport/scope-exit.h"
70#include "gdbsupport/forward-scope-exit.h"
06cc9596 71#include "gdbsupport/gdb_select.h"
5b6d1e4f 72#include <unordered_map>
93b54c8e 73#include "async-event.h"
c906108c
SS
74
75/* Prototypes for local functions */
76
2ea28649 77static void sig_print_info (enum gdb_signal);
c906108c 78
96baa820 79static void sig_print_header (void);
c906108c 80
d83ad864
DB
81static void follow_inferior_reset_breakpoints (void);
82
a289b8f6
JK
83static int currently_stepping (struct thread_info *tp);
84
2c03e5be 85static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
86
87static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
2484c66b
UW
89static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
8550d3b3
YQ
91static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
aff4e175
AB
93static void resume (gdb_signal sig);
94
5b6d1e4f
PA
95static void wait_for_inferior (inferior *inf);
96
372316f1
PA
97/* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99static struct async_event_handler *infrun_async_inferior_event_token;
100
101/* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103static int infrun_is_async = -1;
104
4100594e
SM
105#define infrun_log_debug(fmt, args...) \
106 infrun_log_debug_1 (__LINE__, __func__, fmt, ##args)
107
108static void ATTRIBUTE_PRINTF(3, 4)
109infrun_log_debug_1 (int line, const char *func,
110 const char *fmt, ...)
111{
112 if (debug_infrun)
113 {
114 va_list args;
115 va_start (args, fmt);
116 std::string msg = string_vprintf (fmt, args);
117 va_end (args);
118
119 fprintf_unfiltered (gdb_stdout, "infrun: %s: %s\n", func, msg.c_str ());
120 }
121}
122
372316f1
PA
123/* See infrun.h. */
124
125void
126infrun_async (int enable)
127{
128 if (infrun_is_async != enable)
129 {
130 infrun_is_async = enable;
131
4100594e 132 infrun_log_debug ("enable=%d", enable);
372316f1
PA
133
134 if (enable)
135 mark_async_event_handler (infrun_async_inferior_event_token);
136 else
137 clear_async_event_handler (infrun_async_inferior_event_token);
138 }
139}
140
0b333c5e
PA
141/* See infrun.h. */
142
143void
144mark_infrun_async_event_handler (void)
145{
146 mark_async_event_handler (infrun_async_inferior_event_token);
147}
148
5fbbeb29
CF
149/* When set, stop the 'step' command if we enter a function which has
150 no line number information. The normal behavior is that we step
151 over such function. */
491144b5 152bool step_stop_if_no_debug = false;
920d2a44
AC
153static void
154show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
157 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
158}
5fbbeb29 159
b9f437de
PA
160/* proceed and normal_stop use this to notify the user when the
161 inferior stopped in a different thread than it had been running
162 in. */
96baa820 163
39f77062 164static ptid_t previous_inferior_ptid;
7a292a7a 165
07107ca6
LM
166/* If set (default for legacy reasons), when following a fork, GDB
167 will detach from one of the fork branches, child or parent.
168 Exactly which branch is detached depends on 'set follow-fork-mode'
169 setting. */
170
491144b5 171static bool detach_fork = true;
6c95b8df 172
491144b5 173bool debug_displaced = false;
237fc4c9
PA
174static void
175show_debug_displaced (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177{
178 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
179}
180
ccce17b0 181unsigned int debug_infrun = 0;
920d2a44
AC
182static void
183show_debug_infrun (struct ui_file *file, int from_tty,
184 struct cmd_list_element *c, const char *value)
185{
186 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
187}
527159b7 188
03583c20
UW
189
190/* Support for disabling address space randomization. */
191
491144b5 192bool disable_randomization = true;
03583c20
UW
193
194static void
195show_disable_randomization (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197{
198 if (target_supports_disable_randomization ())
199 fprintf_filtered (file,
200 _("Disabling randomization of debuggee's "
201 "virtual address space is %s.\n"),
202 value);
203 else
204 fputs_filtered (_("Disabling randomization of debuggee's "
205 "virtual address space is unsupported on\n"
206 "this platform.\n"), file);
207}
208
209static void
eb4c3f4a 210set_disable_randomization (const char *args, int from_tty,
03583c20
UW
211 struct cmd_list_element *c)
212{
213 if (!target_supports_disable_randomization ())
214 error (_("Disabling randomization of debuggee's "
215 "virtual address space is unsupported on\n"
216 "this platform."));
217}
218
d32dc48e
PA
219/* User interface for non-stop mode. */
220
491144b5
CB
221bool non_stop = false;
222static bool non_stop_1 = false;
d32dc48e
PA
223
224static void
eb4c3f4a 225set_non_stop (const char *args, int from_tty,
d32dc48e
PA
226 struct cmd_list_element *c)
227{
228 if (target_has_execution)
229 {
230 non_stop_1 = non_stop;
231 error (_("Cannot change this setting while the inferior is running."));
232 }
233
234 non_stop = non_stop_1;
235}
236
237static void
238show_non_stop (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240{
241 fprintf_filtered (file,
242 _("Controlling the inferior in non-stop mode is %s.\n"),
243 value);
244}
245
d914c394
SS
246/* "Observer mode" is somewhat like a more extreme version of
247 non-stop, in which all GDB operations that might affect the
248 target's execution have been disabled. */
249
491144b5
CB
250bool observer_mode = false;
251static bool observer_mode_1 = false;
d914c394
SS
252
253static void
eb4c3f4a 254set_observer_mode (const char *args, int from_tty,
d914c394
SS
255 struct cmd_list_element *c)
256{
d914c394
SS
257 if (target_has_execution)
258 {
259 observer_mode_1 = observer_mode;
260 error (_("Cannot change this setting while the inferior is running."));
261 }
262
263 observer_mode = observer_mode_1;
264
265 may_write_registers = !observer_mode;
266 may_write_memory = !observer_mode;
267 may_insert_breakpoints = !observer_mode;
268 may_insert_tracepoints = !observer_mode;
269 /* We can insert fast tracepoints in or out of observer mode,
270 but enable them if we're going into this mode. */
271 if (observer_mode)
491144b5 272 may_insert_fast_tracepoints = true;
d914c394
SS
273 may_stop = !observer_mode;
274 update_target_permissions ();
275
276 /* Going *into* observer mode we must force non-stop, then
277 going out we leave it that way. */
278 if (observer_mode)
279 {
d914c394 280 pagination_enabled = 0;
491144b5 281 non_stop = non_stop_1 = true;
d914c394
SS
282 }
283
284 if (from_tty)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (observer_mode ? "on" : "off"));
287}
288
289static void
290show_observer_mode (struct ui_file *file, int from_tty,
291 struct cmd_list_element *c, const char *value)
292{
293 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
294}
295
296/* This updates the value of observer mode based on changes in
297 permissions. Note that we are deliberately ignoring the values of
298 may-write-registers and may-write-memory, since the user may have
299 reason to enable these during a session, for instance to turn on a
300 debugging-related global. */
301
302void
303update_observer_mode (void)
304{
491144b5
CB
305 bool newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
d914c394
SS
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317}
c2c6d25f 318
c906108c
SS
319/* Tables of how to react to signals; the user sets them. */
320
adc6a863
PA
321static unsigned char signal_stop[GDB_SIGNAL_LAST];
322static unsigned char signal_print[GDB_SIGNAL_LAST];
323static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 324
ab04a2af
TT
325/* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
327 signal" command. */
328static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 329
2455069d
UW
330/* Table of signals that the target may silently handle.
331 This is automatically determined from the flags above,
332 and simply cached here. */
adc6a863 333static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 334
c906108c
SS
335#define SET_SIGS(nsigs,sigs,flags) \
336 do { \
337 int signum = (nsigs); \
338 while (signum-- > 0) \
339 if ((sigs)[signum]) \
340 (flags)[signum] = 1; \
341 } while (0)
342
343#define UNSET_SIGS(nsigs,sigs,flags) \
344 do { \
345 int signum = (nsigs); \
346 while (signum-- > 0) \
347 if ((sigs)[signum]) \
348 (flags)[signum] = 0; \
349 } while (0)
350
9b224c5e
PA
351/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
352 this function is to avoid exporting `signal_program'. */
353
354void
355update_signals_program_target (void)
356{
adc6a863 357 target_program_signals (signal_program);
9b224c5e
PA
358}
359
1777feb0 360/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 361
edb3359d 362#define RESUME_ALL minus_one_ptid
c906108c
SS
363
364/* Command list pointer for the "stop" placeholder. */
365
366static struct cmd_list_element *stop_command;
367
c906108c
SS
368/* Nonzero if we want to give control to the user when we're notified
369 of shared library events by the dynamic linker. */
628fe4e4 370int stop_on_solib_events;
f9e14852
GB
371
372/* Enable or disable optional shared library event breakpoints
373 as appropriate when the above flag is changed. */
374
375static void
eb4c3f4a
TT
376set_stop_on_solib_events (const char *args,
377 int from_tty, struct cmd_list_element *c)
f9e14852
GB
378{
379 update_solib_breakpoints ();
380}
381
920d2a44
AC
382static void
383show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385{
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388}
c906108c 389
c906108c
SS
390/* Nonzero after stop if current stack frame should be printed. */
391
392static int stop_print_frame;
393
5b6d1e4f
PA
394/* This is a cached copy of the target/ptid/waitstatus of the last
395 event returned by target_wait()/deprecated_target_wait_hook().
396 This information is returned by get_last_target_status(). */
397static process_stratum_target *target_last_proc_target;
39f77062 398static ptid_t target_last_wait_ptid;
e02bc4cc
DS
399static struct target_waitstatus target_last_waitstatus;
400
4e1c45ea 401void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 402
53904c9e
AC
403static const char follow_fork_mode_child[] = "child";
404static const char follow_fork_mode_parent[] = "parent";
405
40478521 406static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
407 follow_fork_mode_child,
408 follow_fork_mode_parent,
409 NULL
ef346e04 410};
c906108c 411
53904c9e 412static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
413static void
414show_follow_fork_mode_string (struct ui_file *file, int from_tty,
415 struct cmd_list_element *c, const char *value)
416{
3e43a32a
MS
417 fprintf_filtered (file,
418 _("Debugger response to a program "
419 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
420 value);
421}
c906108c
SS
422\f
423
d83ad864
DB
424/* Handle changes to the inferior list based on the type of fork,
425 which process is being followed, and whether the other process
426 should be detached. On entry inferior_ptid must be the ptid of
427 the fork parent. At return inferior_ptid is the ptid of the
428 followed inferior. */
429
5ab2fbf1
SM
430static bool
431follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
432{
433 int has_vforked;
79639e11 434 ptid_t parent_ptid, child_ptid;
d83ad864
DB
435
436 has_vforked = (inferior_thread ()->pending_follow.kind
437 == TARGET_WAITKIND_VFORKED);
79639e11
PA
438 parent_ptid = inferior_ptid;
439 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
440
441 if (has_vforked
442 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 443 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
444 && !(follow_child || detach_fork || sched_multi))
445 {
446 /* The parent stays blocked inside the vfork syscall until the
447 child execs or exits. If we don't let the child run, then
448 the parent stays blocked. If we're telling the parent to run
449 in the foreground, the user will not be able to ctrl-c to get
450 back the terminal, effectively hanging the debug session. */
451 fprintf_filtered (gdb_stderr, _("\
452Can not resume the parent process over vfork in the foreground while\n\
453holding the child stopped. Try \"set detach-on-fork\" or \
454\"set schedule-multiple\".\n"));
d83ad864
DB
455 return 1;
456 }
457
458 if (!follow_child)
459 {
460 /* Detach new forked process? */
461 if (detach_fork)
462 {
d83ad864
DB
463 /* Before detaching from the child, remove all breakpoints
464 from it. If we forked, then this has already been taken
465 care of by infrun.c. If we vforked however, any
466 breakpoint inserted in the parent is visible in the
467 child, even those added while stopped in a vfork
468 catchpoint. This will remove the breakpoints from the
469 parent also, but they'll be reinserted below. */
470 if (has_vforked)
471 {
472 /* Keep breakpoints list in sync. */
00431a78 473 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
474 }
475
f67c0c91 476 if (print_inferior_events)
d83ad864 477 {
8dd06f7a 478 /* Ensure that we have a process ptid. */
e99b03dc 479 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 480
223ffa71 481 target_terminal::ours_for_output ();
d83ad864 482 fprintf_filtered (gdb_stdlog,
f67c0c91 483 _("[Detaching after %s from child %s]\n"),
6f259a23 484 has_vforked ? "vfork" : "fork",
a068643d 485 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
486 }
487 }
488 else
489 {
490 struct inferior *parent_inf, *child_inf;
d83ad864
DB
491
492 /* Add process to GDB's tables. */
e99b03dc 493 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
5ed8105e 501 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 502
2a00d7ce 503 set_current_inferior (child_inf);
5b6d1e4f 504 switch_to_no_thread ();
d83ad864 505 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f
PA
506 push_target (parent_inf->process_target ());
507 add_thread_silent (child_inf->process_target (), child_ptid);
508 inferior_ptid = child_ptid;
d83ad864
DB
509
510 /* If this is a vfork child, then the address-space is
511 shared with the parent. */
512 if (has_vforked)
513 {
514 child_inf->pspace = parent_inf->pspace;
515 child_inf->aspace = parent_inf->aspace;
516
5b6d1e4f
PA
517 exec_on_vfork ();
518
d83ad864
DB
519 /* The parent will be frozen until the child is done
520 with the shared region. Keep track of the
521 parent. */
522 child_inf->vfork_parent = parent_inf;
523 child_inf->pending_detach = 0;
524 parent_inf->vfork_child = child_inf;
525 parent_inf->pending_detach = 0;
526 }
527 else
528 {
529 child_inf->aspace = new_address_space ();
564b1e3f 530 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
531 child_inf->removable = 1;
532 set_current_program_space (child_inf->pspace);
533 clone_program_space (child_inf->pspace, parent_inf->pspace);
534
535 /* Let the shared library layer (e.g., solib-svr4) learn
536 about this new process, relocate the cloned exec, pull
537 in shared libraries, and install the solib event
538 breakpoint. If a "cloned-VM" event was propagated
539 better throughout the core, this wouldn't be
540 required. */
541 solib_create_inferior_hook (0);
542 }
d83ad864
DB
543 }
544
545 if (has_vforked)
546 {
547 struct inferior *parent_inf;
548
549 parent_inf = current_inferior ();
550
551 /* If we detached from the child, then we have to be careful
552 to not insert breakpoints in the parent until the child
553 is done with the shared memory region. However, if we're
554 staying attached to the child, then we can and should
555 insert breakpoints, so that we can debug it. A
556 subsequent child exec or exit is enough to know when does
557 the child stops using the parent's address space. */
558 parent_inf->waiting_for_vfork_done = detach_fork;
559 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
560 }
561 }
562 else
563 {
564 /* Follow the child. */
565 struct inferior *parent_inf, *child_inf;
566 struct program_space *parent_pspace;
567
f67c0c91 568 if (print_inferior_events)
d83ad864 569 {
f67c0c91
SDJ
570 std::string parent_pid = target_pid_to_str (parent_ptid);
571 std::string child_pid = target_pid_to_str (child_ptid);
572
223ffa71 573 target_terminal::ours_for_output ();
6f259a23 574 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
575 _("[Attaching after %s %s to child %s]\n"),
576 parent_pid.c_str (),
6f259a23 577 has_vforked ? "vfork" : "fork",
f67c0c91 578 child_pid.c_str ());
d83ad864
DB
579 }
580
581 /* Add the new inferior first, so that the target_detach below
582 doesn't unpush the target. */
583
e99b03dc 584 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
585
586 parent_inf = current_inferior ();
587 child_inf->attach_flag = parent_inf->attach_flag;
588 copy_terminal_info (child_inf, parent_inf);
589 child_inf->gdbarch = parent_inf->gdbarch;
590 copy_inferior_target_desc_info (child_inf, parent_inf);
591
592 parent_pspace = parent_inf->pspace;
593
5b6d1e4f 594 process_stratum_target *target = parent_inf->process_target ();
d83ad864 595
5b6d1e4f
PA
596 {
597 /* Hold a strong reference to the target while (maybe)
598 detaching the parent. Otherwise detaching could close the
599 target. */
600 auto target_ref = target_ops_ref::new_reference (target);
601
602 /* If we're vforking, we want to hold on to the parent until
603 the child exits or execs. At child exec or exit time we
604 can remove the old breakpoints from the parent and detach
605 or resume debugging it. Otherwise, detach the parent now;
606 we'll want to reuse it's program/address spaces, but we
607 can't set them to the child before removing breakpoints
608 from the parent, otherwise, the breakpoints module could
609 decide to remove breakpoints from the wrong process (since
610 they'd be assigned to the same address space). */
611
612 if (has_vforked)
613 {
614 gdb_assert (child_inf->vfork_parent == NULL);
615 gdb_assert (parent_inf->vfork_child == NULL);
616 child_inf->vfork_parent = parent_inf;
617 child_inf->pending_detach = 0;
618 parent_inf->vfork_child = child_inf;
619 parent_inf->pending_detach = detach_fork;
620 parent_inf->waiting_for_vfork_done = 0;
621 }
622 else if (detach_fork)
623 {
624 if (print_inferior_events)
625 {
626 /* Ensure that we have a process ptid. */
627 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
628
629 target_terminal::ours_for_output ();
630 fprintf_filtered (gdb_stdlog,
631 _("[Detaching after fork from "
632 "parent %s]\n"),
633 target_pid_to_str (process_ptid).c_str ());
634 }
8dd06f7a 635
5b6d1e4f
PA
636 target_detach (parent_inf, 0);
637 parent_inf = NULL;
638 }
6f259a23 639
5b6d1e4f 640 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 641
5b6d1e4f
PA
642 /* Add the child thread to the appropriate lists, and switch
643 to this new thread, before cloning the program space, and
644 informing the solib layer about this new process. */
d83ad864 645
5b6d1e4f
PA
646 set_current_inferior (child_inf);
647 push_target (target);
648 }
d83ad864 649
5b6d1e4f 650 add_thread_silent (target, child_ptid);
79639e11 651 inferior_ptid = child_ptid;
d83ad864
DB
652
653 /* If this is a vfork child, then the address-space is shared
654 with the parent. If we detached from the parent, then we can
655 reuse the parent's program/address spaces. */
656 if (has_vforked || detach_fork)
657 {
658 child_inf->pspace = parent_pspace;
659 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
660
661 exec_on_vfork ();
d83ad864
DB
662 }
663 else
664 {
665 child_inf->aspace = new_address_space ();
564b1e3f 666 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
667 child_inf->removable = 1;
668 child_inf->symfile_flags = SYMFILE_NO_READ;
669 set_current_program_space (child_inf->pspace);
670 clone_program_space (child_inf->pspace, parent_pspace);
671
672 /* Let the shared library layer (e.g., solib-svr4) learn
673 about this new process, relocate the cloned exec, pull in
674 shared libraries, and install the solib event breakpoint.
675 If a "cloned-VM" event was propagated better throughout
676 the core, this wouldn't be required. */
677 solib_create_inferior_hook (0);
678 }
679 }
680
681 return target_follow_fork (follow_child, detach_fork);
682}
683
e58b0e63
PA
684/* Tell the target to follow the fork we're stopped at. Returns true
685 if the inferior should be resumed; false, if the target for some
686 reason decided it's best not to resume. */
687
5ab2fbf1
SM
688static bool
689follow_fork ()
c906108c 690{
5ab2fbf1
SM
691 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
692 bool should_resume = true;
e58b0e63
PA
693 struct thread_info *tp;
694
695 /* Copy user stepping state to the new inferior thread. FIXME: the
696 followed fork child thread should have a copy of most of the
4e3990f4
DE
697 parent thread structure's run control related fields, not just these.
698 Initialized to avoid "may be used uninitialized" warnings from gcc. */
699 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 700 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
701 CORE_ADDR step_range_start = 0;
702 CORE_ADDR step_range_end = 0;
bf4cb9be
TV
703 int current_line = 0;
704 symtab *current_symtab = NULL;
4e3990f4 705 struct frame_id step_frame_id = { 0 };
8980e177 706 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
707
708 if (!non_stop)
709 {
5b6d1e4f 710 process_stratum_target *wait_target;
e58b0e63
PA
711 ptid_t wait_ptid;
712 struct target_waitstatus wait_status;
713
714 /* Get the last target status returned by target_wait(). */
5b6d1e4f 715 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
716
717 /* If not stopped at a fork event, then there's nothing else to
718 do. */
719 if (wait_status.kind != TARGET_WAITKIND_FORKED
720 && wait_status.kind != TARGET_WAITKIND_VFORKED)
721 return 1;
722
723 /* Check if we switched over from WAIT_PTID, since the event was
724 reported. */
00431a78 725 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
726 && (current_inferior ()->process_target () != wait_target
727 || inferior_ptid != wait_ptid))
e58b0e63
PA
728 {
729 /* We did. Switch back to WAIT_PTID thread, to tell the
730 target to follow it (in either direction). We'll
731 afterwards refuse to resume, and inform the user what
732 happened. */
5b6d1e4f 733 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 734 switch_to_thread (wait_thread);
5ab2fbf1 735 should_resume = false;
e58b0e63
PA
736 }
737 }
738
739 tp = inferior_thread ();
740
741 /* If there were any forks/vforks that were caught and are now to be
742 followed, then do so now. */
743 switch (tp->pending_follow.kind)
744 {
745 case TARGET_WAITKIND_FORKED:
746 case TARGET_WAITKIND_VFORKED:
747 {
748 ptid_t parent, child;
749
750 /* If the user did a next/step, etc, over a fork call,
751 preserve the stepping state in the fork child. */
752 if (follow_child && should_resume)
753 {
8358c15c
JK
754 step_resume_breakpoint = clone_momentary_breakpoint
755 (tp->control.step_resume_breakpoint);
16c381f0
JK
756 step_range_start = tp->control.step_range_start;
757 step_range_end = tp->control.step_range_end;
bf4cb9be
TV
758 current_line = tp->current_line;
759 current_symtab = tp->current_symtab;
16c381f0 760 step_frame_id = tp->control.step_frame_id;
186c406b
TT
761 exception_resume_breakpoint
762 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 763 thread_fsm = tp->thread_fsm;
e58b0e63
PA
764
765 /* For now, delete the parent's sr breakpoint, otherwise,
766 parent/child sr breakpoints are considered duplicates,
767 and the child version will not be installed. Remove
768 this when the breakpoints module becomes aware of
769 inferiors and address spaces. */
770 delete_step_resume_breakpoint (tp);
16c381f0
JK
771 tp->control.step_range_start = 0;
772 tp->control.step_range_end = 0;
773 tp->control.step_frame_id = null_frame_id;
186c406b 774 delete_exception_resume_breakpoint (tp);
8980e177 775 tp->thread_fsm = NULL;
e58b0e63
PA
776 }
777
778 parent = inferior_ptid;
779 child = tp->pending_follow.value.related_pid;
780
5b6d1e4f 781 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
782 /* Set up inferior(s) as specified by the caller, and tell the
783 target to do whatever is necessary to follow either parent
784 or child. */
785 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
786 {
787 /* Target refused to follow, or there's some other reason
788 we shouldn't resume. */
789 should_resume = 0;
790 }
791 else
792 {
793 /* This pending follow fork event is now handled, one way
794 or another. The previous selected thread may be gone
795 from the lists by now, but if it is still around, need
796 to clear the pending follow request. */
5b6d1e4f 797 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
798 if (tp)
799 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
800
801 /* This makes sure we don't try to apply the "Switched
802 over from WAIT_PID" logic above. */
803 nullify_last_target_wait_ptid ();
804
1777feb0 805 /* If we followed the child, switch to it... */
e58b0e63
PA
806 if (follow_child)
807 {
5b6d1e4f 808 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 809 switch_to_thread (child_thr);
e58b0e63
PA
810
811 /* ... and preserve the stepping state, in case the
812 user was stepping over the fork call. */
813 if (should_resume)
814 {
815 tp = inferior_thread ();
8358c15c
JK
816 tp->control.step_resume_breakpoint
817 = step_resume_breakpoint;
16c381f0
JK
818 tp->control.step_range_start = step_range_start;
819 tp->control.step_range_end = step_range_end;
bf4cb9be
TV
820 tp->current_line = current_line;
821 tp->current_symtab = current_symtab;
16c381f0 822 tp->control.step_frame_id = step_frame_id;
186c406b
TT
823 tp->control.exception_resume_breakpoint
824 = exception_resume_breakpoint;
8980e177 825 tp->thread_fsm = thread_fsm;
e58b0e63
PA
826 }
827 else
828 {
829 /* If we get here, it was because we're trying to
830 resume from a fork catchpoint, but, the user
831 has switched threads away from the thread that
832 forked. In that case, the resume command
833 issued is most likely not applicable to the
834 child, so just warn, and refuse to resume. */
3e43a32a 835 warning (_("Not resuming: switched threads "
fd7dcb94 836 "before following fork child."));
e58b0e63
PA
837 }
838
839 /* Reset breakpoints in the child as appropriate. */
840 follow_inferior_reset_breakpoints ();
841 }
e58b0e63
PA
842 }
843 }
844 break;
845 case TARGET_WAITKIND_SPURIOUS:
846 /* Nothing to follow. */
847 break;
848 default:
849 internal_error (__FILE__, __LINE__,
850 "Unexpected pending_follow.kind %d\n",
851 tp->pending_follow.kind);
852 break;
853 }
c906108c 854
e58b0e63 855 return should_resume;
c906108c
SS
856}
857
d83ad864 858static void
6604731b 859follow_inferior_reset_breakpoints (void)
c906108c 860{
4e1c45ea
PA
861 struct thread_info *tp = inferior_thread ();
862
6604731b
DJ
863 /* Was there a step_resume breakpoint? (There was if the user
864 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
865 thread number. Cloned step_resume breakpoints are disabled on
866 creation, so enable it here now that it is associated with the
867 correct thread.
6604731b
DJ
868
869 step_resumes are a form of bp that are made to be per-thread.
870 Since we created the step_resume bp when the parent process
871 was being debugged, and now are switching to the child process,
872 from the breakpoint package's viewpoint, that's a switch of
873 "threads". We must update the bp's notion of which thread
874 it is for, or it'll be ignored when it triggers. */
875
8358c15c 876 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
877 {
878 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
879 tp->control.step_resume_breakpoint->loc->enabled = 1;
880 }
6604731b 881
a1aa2221 882 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 883 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
884 {
885 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
886 tp->control.exception_resume_breakpoint->loc->enabled = 1;
887 }
186c406b 888
6604731b
DJ
889 /* Reinsert all breakpoints in the child. The user may have set
890 breakpoints after catching the fork, in which case those
891 were never set in the child, but only in the parent. This makes
892 sure the inserted breakpoints match the breakpoint list. */
893
894 breakpoint_re_set ();
895 insert_breakpoints ();
c906108c 896}
c906108c 897
6c95b8df
PA
898/* The child has exited or execed: resume threads of the parent the
899 user wanted to be executing. */
900
901static int
902proceed_after_vfork_done (struct thread_info *thread,
903 void *arg)
904{
905 int pid = * (int *) arg;
906
00431a78
PA
907 if (thread->ptid.pid () == pid
908 && thread->state == THREAD_RUNNING
909 && !thread->executing
6c95b8df 910 && !thread->stop_requested
a493e3e2 911 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df 912 {
4100594e
SM
913 infrun_log_debug ("resuming vfork parent thread %s",
914 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 915
00431a78 916 switch_to_thread (thread);
70509625 917 clear_proceed_status (0);
64ce06e4 918 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
919 }
920
921 return 0;
922}
923
5ed8105e
PA
924/* Save/restore inferior_ptid, current program space and current
925 inferior. Only use this if the current context points at an exited
926 inferior (and therefore there's no current thread to save). */
927class scoped_restore_exited_inferior
928{
929public:
930 scoped_restore_exited_inferior ()
931 : m_saved_ptid (&inferior_ptid)
932 {}
933
934private:
935 scoped_restore_tmpl<ptid_t> m_saved_ptid;
936 scoped_restore_current_program_space m_pspace;
937 scoped_restore_current_inferior m_inferior;
938};
939
6c95b8df
PA
940/* Called whenever we notice an exec or exit event, to handle
941 detaching or resuming a vfork parent. */
942
943static void
944handle_vfork_child_exec_or_exit (int exec)
945{
946 struct inferior *inf = current_inferior ();
947
948 if (inf->vfork_parent)
949 {
950 int resume_parent = -1;
951
952 /* This exec or exit marks the end of the shared memory region
b73715df
TV
953 between the parent and the child. Break the bonds. */
954 inferior *vfork_parent = inf->vfork_parent;
955 inf->vfork_parent->vfork_child = NULL;
956 inf->vfork_parent = NULL;
6c95b8df 957
b73715df
TV
958 /* If the user wanted to detach from the parent, now is the
959 time. */
960 if (vfork_parent->pending_detach)
6c95b8df
PA
961 {
962 struct thread_info *tp;
6c95b8df
PA
963 struct program_space *pspace;
964 struct address_space *aspace;
965
1777feb0 966 /* follow-fork child, detach-on-fork on. */
6c95b8df 967
b73715df 968 vfork_parent->pending_detach = 0;
68c9da30 969
5ed8105e
PA
970 gdb::optional<scoped_restore_exited_inferior>
971 maybe_restore_inferior;
972 gdb::optional<scoped_restore_current_pspace_and_thread>
973 maybe_restore_thread;
974
975 /* If we're handling a child exit, then inferior_ptid points
976 at the inferior's pid, not to a thread. */
f50f4e56 977 if (!exec)
5ed8105e 978 maybe_restore_inferior.emplace ();
f50f4e56 979 else
5ed8105e 980 maybe_restore_thread.emplace ();
6c95b8df
PA
981
982 /* We're letting loose of the parent. */
b73715df 983 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 984 switch_to_thread (tp);
6c95b8df
PA
985
986 /* We're about to detach from the parent, which implicitly
987 removes breakpoints from its address space. There's a
988 catch here: we want to reuse the spaces for the child,
989 but, parent/child are still sharing the pspace at this
990 point, although the exec in reality makes the kernel give
991 the child a fresh set of new pages. The problem here is
992 that the breakpoints module being unaware of this, would
993 likely chose the child process to write to the parent
994 address space. Swapping the child temporarily away from
995 the spaces has the desired effect. Yes, this is "sort
996 of" a hack. */
997
998 pspace = inf->pspace;
999 aspace = inf->aspace;
1000 inf->aspace = NULL;
1001 inf->pspace = NULL;
1002
f67c0c91 1003 if (print_inferior_events)
6c95b8df 1004 {
a068643d 1005 std::string pidstr
b73715df 1006 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 1007
223ffa71 1008 target_terminal::ours_for_output ();
6c95b8df
PA
1009
1010 if (exec)
6f259a23
DB
1011 {
1012 fprintf_filtered (gdb_stdlog,
f67c0c91 1013 _("[Detaching vfork parent %s "
a068643d 1014 "after child exec]\n"), pidstr.c_str ());
6f259a23 1015 }
6c95b8df 1016 else
6f259a23
DB
1017 {
1018 fprintf_filtered (gdb_stdlog,
f67c0c91 1019 _("[Detaching vfork parent %s "
a068643d 1020 "after child exit]\n"), pidstr.c_str ());
6f259a23 1021 }
6c95b8df
PA
1022 }
1023
b73715df 1024 target_detach (vfork_parent, 0);
6c95b8df
PA
1025
1026 /* Put it back. */
1027 inf->pspace = pspace;
1028 inf->aspace = aspace;
6c95b8df
PA
1029 }
1030 else if (exec)
1031 {
1032 /* We're staying attached to the parent, so, really give the
1033 child a new address space. */
564b1e3f 1034 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1035 inf->aspace = inf->pspace->aspace;
1036 inf->removable = 1;
1037 set_current_program_space (inf->pspace);
1038
b73715df 1039 resume_parent = vfork_parent->pid;
6c95b8df
PA
1040 }
1041 else
1042 {
6c95b8df
PA
1043 /* If this is a vfork child exiting, then the pspace and
1044 aspaces were shared with the parent. Since we're
1045 reporting the process exit, we'll be mourning all that is
1046 found in the address space, and switching to null_ptid,
1047 preparing to start a new inferior. But, since we don't
1048 want to clobber the parent's address/program spaces, we
1049 go ahead and create a new one for this exiting
1050 inferior. */
1051
5ed8105e
PA
1052 /* Switch to null_ptid while running clone_program_space, so
1053 that clone_program_space doesn't want to read the
1054 selected frame of a dead process. */
1055 scoped_restore restore_ptid
1056 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df 1057
53af73bf
PA
1058 inf->pspace = new program_space (maybe_new_address_space ());
1059 inf->aspace = inf->pspace->aspace;
1060 set_current_program_space (inf->pspace);
6c95b8df 1061 inf->removable = 1;
7dcd53a0 1062 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1063 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1064
b73715df 1065 resume_parent = vfork_parent->pid;
6c95b8df
PA
1066 }
1067
6c95b8df
PA
1068 gdb_assert (current_program_space == inf->pspace);
1069
1070 if (non_stop && resume_parent != -1)
1071 {
1072 /* If the user wanted the parent to be running, let it go
1073 free now. */
5ed8105e 1074 scoped_restore_current_thread restore_thread;
6c95b8df 1075
4100594e
SM
1076 infrun_log_debug ("resuming vfork parent process %d",
1077 resume_parent);
6c95b8df
PA
1078
1079 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1080 }
1081 }
1082}
1083
eb6c553b 1084/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1085
1086static const char follow_exec_mode_new[] = "new";
1087static const char follow_exec_mode_same[] = "same";
40478521 1088static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1089{
1090 follow_exec_mode_new,
1091 follow_exec_mode_same,
1092 NULL,
1093};
1094
1095static const char *follow_exec_mode_string = follow_exec_mode_same;
1096static void
1097show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1098 struct cmd_list_element *c, const char *value)
1099{
1100 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1101}
1102
ecf45d2c 1103/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1104
c906108c 1105static void
4ca51187 1106follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1107{
6c95b8df 1108 struct inferior *inf = current_inferior ();
e99b03dc 1109 int pid = ptid.pid ();
94585166 1110 ptid_t process_ptid;
7a292a7a 1111
65d2b333
PW
1112 /* Switch terminal for any messages produced e.g. by
1113 breakpoint_re_set. */
1114 target_terminal::ours_for_output ();
1115
c906108c
SS
1116 /* This is an exec event that we actually wish to pay attention to.
1117 Refresh our symbol table to the newly exec'd program, remove any
1118 momentary bp's, etc.
1119
1120 If there are breakpoints, they aren't really inserted now,
1121 since the exec() transformed our inferior into a fresh set
1122 of instructions.
1123
1124 We want to preserve symbolic breakpoints on the list, since
1125 we have hopes that they can be reset after the new a.out's
1126 symbol table is read.
1127
1128 However, any "raw" breakpoints must be removed from the list
1129 (e.g., the solib bp's), since their address is probably invalid
1130 now.
1131
1132 And, we DON'T want to call delete_breakpoints() here, since
1133 that may write the bp's "shadow contents" (the instruction
85102364 1134 value that was overwritten with a TRAP instruction). Since
1777feb0 1135 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1136
1137 mark_breakpoints_out ();
1138
95e50b27
PA
1139 /* The target reports the exec event to the main thread, even if
1140 some other thread does the exec, and even if the main thread was
1141 stopped or already gone. We may still have non-leader threads of
1142 the process on our list. E.g., on targets that don't have thread
1143 exit events (like remote); or on native Linux in non-stop mode if
1144 there were only two threads in the inferior and the non-leader
1145 one is the one that execs (and nothing forces an update of the
1146 thread list up to here). When debugging remotely, it's best to
1147 avoid extra traffic, when possible, so avoid syncing the thread
1148 list with the target, and instead go ahead and delete all threads
1149 of the process but one that reported the event. Note this must
1150 be done before calling update_breakpoints_after_exec, as
1151 otherwise clearing the threads' resources would reference stale
1152 thread breakpoints -- it may have been one of these threads that
1153 stepped across the exec. We could just clear their stepping
1154 states, but as long as we're iterating, might as well delete
1155 them. Deleting them now rather than at the next user-visible
1156 stop provides a nicer sequence of events for user and MI
1157 notifications. */
08036331 1158 for (thread_info *th : all_threads_safe ())
d7e15655 1159 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1160 delete_thread (th);
95e50b27
PA
1161
1162 /* We also need to clear any left over stale state for the
1163 leader/event thread. E.g., if there was any step-resume
1164 breakpoint or similar, it's gone now. We cannot truly
1165 step-to-next statement through an exec(). */
08036331 1166 thread_info *th = inferior_thread ();
8358c15c 1167 th->control.step_resume_breakpoint = NULL;
186c406b 1168 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1169 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1170 th->control.step_range_start = 0;
1171 th->control.step_range_end = 0;
c906108c 1172
95e50b27
PA
1173 /* The user may have had the main thread held stopped in the
1174 previous image (e.g., schedlock on, or non-stop). Release
1175 it now. */
a75724bc
PA
1176 th->stop_requested = 0;
1177
95e50b27
PA
1178 update_breakpoints_after_exec ();
1179
1777feb0 1180 /* What is this a.out's name? */
f2907e49 1181 process_ptid = ptid_t (pid);
6c95b8df 1182 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1183 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1184 exec_file_target);
c906108c
SS
1185
1186 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1187 inferior has essentially been killed & reborn. */
7a292a7a 1188
6ca15a4b 1189 breakpoint_init_inferior (inf_execd);
e85a822c 1190
797bc1cb
TT
1191 gdb::unique_xmalloc_ptr<char> exec_file_host
1192 = exec_file_find (exec_file_target, NULL);
ff862be4 1193
ecf45d2c
SL
1194 /* If we were unable to map the executable target pathname onto a host
1195 pathname, tell the user that. Otherwise GDB's subsequent behavior
1196 is confusing. Maybe it would even be better to stop at this point
1197 so that the user can specify a file manually before continuing. */
1198 if (exec_file_host == NULL)
1199 warning (_("Could not load symbols for executable %s.\n"
1200 "Do you need \"set sysroot\"?"),
1201 exec_file_target);
c906108c 1202
cce9b6bf
PA
1203 /* Reset the shared library package. This ensures that we get a
1204 shlib event when the child reaches "_start", at which point the
1205 dld will have had a chance to initialize the child. */
1206 /* Also, loading a symbol file below may trigger symbol lookups, and
1207 we don't want those to be satisfied by the libraries of the
1208 previous incarnation of this process. */
1209 no_shared_libraries (NULL, 0);
1210
6c95b8df
PA
1211 if (follow_exec_mode_string == follow_exec_mode_new)
1212 {
6c95b8df
PA
1213 /* The user wants to keep the old inferior and program spaces
1214 around. Create a new fresh one, and switch to it. */
1215
35ed81d4
SM
1216 /* Do exit processing for the original inferior before setting the new
1217 inferior's pid. Having two inferiors with the same pid would confuse
1218 find_inferior_p(t)id. Transfer the terminal state and info from the
1219 old to the new inferior. */
1220 inf = add_inferior_with_spaces ();
1221 swap_terminal_info (inf, current_inferior ());
057302ce 1222 exit_inferior_silent (current_inferior ());
17d8546e 1223
94585166 1224 inf->pid = pid;
ecf45d2c 1225 target_follow_exec (inf, exec_file_target);
6c95b8df 1226
5b6d1e4f
PA
1227 inferior *org_inferior = current_inferior ();
1228 switch_to_inferior_no_thread (inf);
1229 push_target (org_inferior->process_target ());
1230 thread_info *thr = add_thread (inf->process_target (), ptid);
1231 switch_to_thread (thr);
6c95b8df 1232 }
9107fc8d
PA
1233 else
1234 {
1235 /* The old description may no longer be fit for the new image.
1236 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1237 old description; we'll read a new one below. No need to do
1238 this on "follow-exec-mode new", as the old inferior stays
1239 around (its description is later cleared/refetched on
1240 restart). */
1241 target_clear_description ();
1242 }
6c95b8df
PA
1243
1244 gdb_assert (current_program_space == inf->pspace);
1245
ecf45d2c
SL
1246 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1247 because the proper displacement for a PIE (Position Independent
1248 Executable) main symbol file will only be computed by
1249 solib_create_inferior_hook below. breakpoint_re_set would fail
1250 to insert the breakpoints with the zero displacement. */
797bc1cb 1251 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1252
9107fc8d
PA
1253 /* If the target can specify a description, read it. Must do this
1254 after flipping to the new executable (because the target supplied
1255 description must be compatible with the executable's
1256 architecture, and the old executable may e.g., be 32-bit, while
1257 the new one 64-bit), and before anything involving memory or
1258 registers. */
1259 target_find_description ();
1260
268a4a75 1261 solib_create_inferior_hook (0);
c906108c 1262
4efc6507
DE
1263 jit_inferior_created_hook ();
1264
c1e56572
JK
1265 breakpoint_re_set ();
1266
c906108c
SS
1267 /* Reinsert all breakpoints. (Those which were symbolic have
1268 been reset to the proper address in the new a.out, thanks
1777feb0 1269 to symbol_file_command...). */
c906108c
SS
1270 insert_breakpoints ();
1271
c0fdb45e
SM
1272 gdb::observers::inferior_execd.notify (inf);
1273
c906108c
SS
1274 /* The next resume of this inferior should bring it to the shlib
1275 startup breakpoints. (If the user had also set bp's on
1276 "main" from the old (parent) process, then they'll auto-
1777feb0 1277 matically get reset there in the new process.). */
c906108c
SS
1278}
1279
c2829269
PA
1280/* The queue of threads that need to do a step-over operation to get
1281 past e.g., a breakpoint. What technique is used to step over the
1282 breakpoint/watchpoint does not matter -- all threads end up in the
1283 same queue, to maintain rough temporal order of execution, in order
1284 to avoid starvation, otherwise, we could e.g., find ourselves
1285 constantly stepping the same couple threads past their breakpoints
1286 over and over, if the single-step finish fast enough. */
bb88694d 1287struct thread_info *global_thread_step_over_chain_head;
c2829269 1288
6c4cfb24
PA
1289/* Bit flags indicating what the thread needs to step over. */
1290
8d297bbf 1291enum step_over_what_flag
6c4cfb24
PA
1292 {
1293 /* Step over a breakpoint. */
1294 STEP_OVER_BREAKPOINT = 1,
1295
1296 /* Step past a non-continuable watchpoint, in order to let the
1297 instruction execute so we can evaluate the watchpoint
1298 expression. */
1299 STEP_OVER_WATCHPOINT = 2
1300 };
8d297bbf 1301DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1302
963f9c80 1303/* Info about an instruction that is being stepped over. */
31e77af2
PA
1304
1305struct step_over_info
1306{
963f9c80
PA
1307 /* If we're stepping past a breakpoint, this is the address space
1308 and address of the instruction the breakpoint is set at. We'll
1309 skip inserting all breakpoints here. Valid iff ASPACE is
1310 non-NULL. */
8b86c959 1311 const address_space *aspace;
31e77af2 1312 CORE_ADDR address;
963f9c80
PA
1313
1314 /* The instruction being stepped over triggers a nonsteppable
1315 watchpoint. If true, we'll skip inserting watchpoints. */
1316 int nonsteppable_watchpoint_p;
21edc42f
YQ
1317
1318 /* The thread's global number. */
1319 int thread;
31e77af2
PA
1320};
1321
1322/* The step-over info of the location that is being stepped over.
1323
1324 Note that with async/breakpoint always-inserted mode, a user might
1325 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1326 being stepped over. As setting a new breakpoint inserts all
1327 breakpoints, we need to make sure the breakpoint being stepped over
1328 isn't inserted then. We do that by only clearing the step-over
1329 info when the step-over is actually finished (or aborted).
1330
1331 Presently GDB can only step over one breakpoint at any given time.
1332 Given threads that can't run code in the same address space as the
1333 breakpoint's can't really miss the breakpoint, GDB could be taught
1334 to step-over at most one breakpoint per address space (so this info
1335 could move to the address space object if/when GDB is extended).
1336 The set of breakpoints being stepped over will normally be much
1337 smaller than the set of all breakpoints, so a flag in the
1338 breakpoint location structure would be wasteful. A separate list
1339 also saves complexity and run-time, as otherwise we'd have to go
1340 through all breakpoint locations clearing their flag whenever we
1341 start a new sequence. Similar considerations weigh against storing
1342 this info in the thread object. Plus, not all step overs actually
1343 have breakpoint locations -- e.g., stepping past a single-step
1344 breakpoint, or stepping to complete a non-continuable
1345 watchpoint. */
1346static struct step_over_info step_over_info;
1347
1348/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1349 stepping over.
1350 N.B. We record the aspace and address now, instead of say just the thread,
1351 because when we need the info later the thread may be running. */
31e77af2
PA
1352
1353static void
8b86c959 1354set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1355 int nonsteppable_watchpoint_p,
1356 int thread)
31e77af2
PA
1357{
1358 step_over_info.aspace = aspace;
1359 step_over_info.address = address;
963f9c80 1360 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1361 step_over_info.thread = thread;
31e77af2
PA
1362}
1363
1364/* Called when we're not longer stepping over a breakpoint / an
1365 instruction, so all breakpoints are free to be (re)inserted. */
1366
1367static void
1368clear_step_over_info (void)
1369{
4100594e 1370 infrun_log_debug ("clearing step over info");
31e77af2
PA
1371 step_over_info.aspace = NULL;
1372 step_over_info.address = 0;
963f9c80 1373 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1374 step_over_info.thread = -1;
31e77af2
PA
1375}
1376
7f89fd65 1377/* See infrun.h. */
31e77af2
PA
1378
1379int
1380stepping_past_instruction_at (struct address_space *aspace,
1381 CORE_ADDR address)
1382{
1383 return (step_over_info.aspace != NULL
1384 && breakpoint_address_match (aspace, address,
1385 step_over_info.aspace,
1386 step_over_info.address));
1387}
1388
963f9c80
PA
1389/* See infrun.h. */
1390
21edc42f
YQ
1391int
1392thread_is_stepping_over_breakpoint (int thread)
1393{
1394 return (step_over_info.thread != -1
1395 && thread == step_over_info.thread);
1396}
1397
1398/* See infrun.h. */
1399
963f9c80
PA
1400int
1401stepping_past_nonsteppable_watchpoint (void)
1402{
1403 return step_over_info.nonsteppable_watchpoint_p;
1404}
1405
6cc83d2a
PA
1406/* Returns true if step-over info is valid. */
1407
1408static int
1409step_over_info_valid_p (void)
1410{
963f9c80
PA
1411 return (step_over_info.aspace != NULL
1412 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1413}
1414
c906108c 1415\f
237fc4c9
PA
1416/* Displaced stepping. */
1417
1418/* In non-stop debugging mode, we must take special care to manage
1419 breakpoints properly; in particular, the traditional strategy for
1420 stepping a thread past a breakpoint it has hit is unsuitable.
1421 'Displaced stepping' is a tactic for stepping one thread past a
1422 breakpoint it has hit while ensuring that other threads running
1423 concurrently will hit the breakpoint as they should.
1424
1425 The traditional way to step a thread T off a breakpoint in a
1426 multi-threaded program in all-stop mode is as follows:
1427
1428 a0) Initially, all threads are stopped, and breakpoints are not
1429 inserted.
1430 a1) We single-step T, leaving breakpoints uninserted.
1431 a2) We insert breakpoints, and resume all threads.
1432
1433 In non-stop debugging, however, this strategy is unsuitable: we
1434 don't want to have to stop all threads in the system in order to
1435 continue or step T past a breakpoint. Instead, we use displaced
1436 stepping:
1437
1438 n0) Initially, T is stopped, other threads are running, and
1439 breakpoints are inserted.
1440 n1) We copy the instruction "under" the breakpoint to a separate
1441 location, outside the main code stream, making any adjustments
1442 to the instruction, register, and memory state as directed by
1443 T's architecture.
1444 n2) We single-step T over the instruction at its new location.
1445 n3) We adjust the resulting register and memory state as directed
1446 by T's architecture. This includes resetting T's PC to point
1447 back into the main instruction stream.
1448 n4) We resume T.
1449
1450 This approach depends on the following gdbarch methods:
1451
1452 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1453 indicate where to copy the instruction, and how much space must
1454 be reserved there. We use these in step n1.
1455
1456 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1457 address, and makes any necessary adjustments to the instruction,
1458 register contents, and memory. We use this in step n1.
1459
1460 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1461 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1462 same effect the instruction would have had if we had executed it
1463 at its original address. We use this in step n3.
1464
237fc4c9
PA
1465 The gdbarch_displaced_step_copy_insn and
1466 gdbarch_displaced_step_fixup functions must be written so that
1467 copying an instruction with gdbarch_displaced_step_copy_insn,
1468 single-stepping across the copied instruction, and then applying
1469 gdbarch_displaced_insn_fixup should have the same effects on the
1470 thread's memory and registers as stepping the instruction in place
1471 would have. Exactly which responsibilities fall to the copy and
1472 which fall to the fixup is up to the author of those functions.
1473
1474 See the comments in gdbarch.sh for details.
1475
1476 Note that displaced stepping and software single-step cannot
1477 currently be used in combination, although with some care I think
1478 they could be made to. Software single-step works by placing
1479 breakpoints on all possible subsequent instructions; if the
1480 displaced instruction is a PC-relative jump, those breakpoints
1481 could fall in very strange places --- on pages that aren't
1482 executable, or at addresses that are not proper instruction
1483 boundaries. (We do generally let other threads run while we wait
1484 to hit the software single-step breakpoint, and they might
1485 encounter such a corrupted instruction.) One way to work around
1486 this would be to have gdbarch_displaced_step_copy_insn fully
1487 simulate the effect of PC-relative instructions (and return NULL)
1488 on architectures that use software single-stepping.
1489
1490 In non-stop mode, we can have independent and simultaneous step
1491 requests, so more than one thread may need to simultaneously step
1492 over a breakpoint. The current implementation assumes there is
1493 only one scratch space per process. In this case, we have to
1494 serialize access to the scratch space. If thread A wants to step
1495 over a breakpoint, but we are currently waiting for some other
1496 thread to complete a displaced step, we leave thread A stopped and
1497 place it in the displaced_step_request_queue. Whenever a displaced
1498 step finishes, we pick the next thread in the queue and start a new
1499 displaced step operation on it. See displaced_step_prepare and
1500 displaced_step_fixup for details. */
1501
e088209c 1502/* Get the displaced stepping state of inferior INF. */
fc1cf338 1503
39a36629 1504static displaced_step_inferior_state *
00431a78 1505get_displaced_stepping_state (inferior *inf)
fc1cf338 1506{
d20172fc 1507 return &inf->displaced_step_state;
fc1cf338
PA
1508}
1509
e088209c 1510/* Get the displaced stepping state of thread THREAD. */
372316f1 1511
e088209c
SM
1512static displaced_step_thread_state *
1513get_displaced_stepping_state (thread_info *thread)
372316f1 1514{
e088209c 1515 return &thread->displaced_step_state;
372316f1
PA
1516}
1517
e088209c 1518/* Return true if the given thread is doing a displaced step. */
c0987663 1519
e088209c
SM
1520static bool
1521displaced_step_in_progress (thread_info *thread)
c0987663 1522{
00431a78 1523 gdb_assert (thread != NULL);
c0987663 1524
e088209c 1525 return get_displaced_stepping_state (thread)->in_progress ();
c0987663
YQ
1526}
1527
e088209c 1528/* Return true if any thread of this inferior is doing a displaced step. */
8f572e5c 1529
e088209c 1530static bool
00431a78 1531displaced_step_in_progress (inferior *inf)
8f572e5c 1532{
e088209c
SM
1533 for (thread_info *thread : inf->non_exited_threads ())
1534 {
1535 if (displaced_step_in_progress (thread))
1536 return true;
1537 }
1538
1539 return false;
1540}
1541
1542/* Return true if any thread is doing a displaced step. */
1543
1544static bool
1545displaced_step_in_progress_any_thread ()
1546{
1547 for (thread_info *thread : all_non_exited_threads ())
1548 {
1549 if (displaced_step_in_progress (thread))
1550 return true;
1551 }
1552
1553 return false;
fc1cf338
PA
1554}
1555
a42244db 1556/* If inferior is in displaced stepping, and ADDR equals to starting address
588de28a 1557 of copy area, return corresponding displaced_step_copy_insn_closure. Otherwise,
a42244db
YQ
1558 return NULL. */
1559
588de28a
SM
1560struct displaced_step_copy_insn_closure *
1561get_displaced_step_copy_insn_closure_by_addr (CORE_ADDR addr)
a42244db 1562{
e088209c
SM
1563// FIXME: implement me (only needed on ARM).
1564// displaced_step_inferior_state *displaced
1565// = get_displaced_stepping_state (current_inferior ());
1566//
1567// /* If checking the mode of displaced instruction in copy area. */
1568// if (displaced->step_thread != nullptr
1569// && displaced->step_copy == addr)
1570// return displaced->step_closure.get ();
1571//
a42244db
YQ
1572 return NULL;
1573}
1574
fc1cf338
PA
1575static void
1576infrun_inferior_exit (struct inferior *inf)
1577{
d20172fc 1578 inf->displaced_step_state.reset ();
fc1cf338 1579}
237fc4c9 1580
fff08868
HZ
1581/* If ON, and the architecture supports it, GDB will use displaced
1582 stepping to step over breakpoints. If OFF, or if the architecture
1583 doesn't support it, GDB will instead use the traditional
1584 hold-and-step approach. If AUTO (which is the default), GDB will
1585 decide which technique to use to step over breakpoints depending on
9822cb57 1586 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1587
72d0e2c5 1588static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1589
237fc4c9
PA
1590static void
1591show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1592 struct cmd_list_element *c,
1593 const char *value)
1594{
72d0e2c5 1595 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1596 fprintf_filtered (file,
1597 _("Debugger's willingness to use displaced stepping "
1598 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1599 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1600 else
3e43a32a
MS
1601 fprintf_filtered (file,
1602 _("Debugger's willingness to use displaced stepping "
1603 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1604}
1605
65a7e4d6 1606/* Return true if the target behing THREAD supports displaced stepping. */
9822cb57
SM
1607
1608static bool
65a7e4d6 1609target_supports_displaced_stepping (thread_info *thread)
9822cb57 1610{
65a7e4d6
SM
1611 inferior *inf = thread->inf;
1612 target_ops *target = inf->top_target ();
1613
1614 return target->supports_displaced_step (thread);
9822cb57
SM
1615}
1616
fff08868 1617/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1618 over breakpoints of thread TP. */
fff08868 1619
9822cb57
SM
1620static bool
1621use_displaced_stepping (thread_info *tp)
237fc4c9 1622{
9822cb57
SM
1623 /* If the user disabled it explicitly, don't use displaced stepping. */
1624 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1625 return false;
1626
1627 /* If "auto", only use displaced stepping if the target operates in a non-stop
1628 way. */
1629 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1630 && !target_is_non_stop_p ())
1631 return false;
1632
65a7e4d6
SM
1633 /* If the target doesn't support displaced stepping, don't use it. */
1634 if (!target_supports_displaced_stepping (tp))
9822cb57
SM
1635 return false;
1636
1637 /* If recording, don't use displaced stepping. */
1638 if (find_record_target () != nullptr)
1639 return false;
1640
d20172fc
SM
1641 displaced_step_inferior_state *displaced_state
1642 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1643
9822cb57
SM
1644 /* If displaced stepping failed before for this inferior, don't bother trying
1645 again. */
1646 if (displaced_state->failed_before)
1647 return false;
1648
1649 return true;
237fc4c9
PA
1650}
1651
e088209c 1652/* Simple function wrapper around displaced_step_thread_state::reset. */
d8d83535 1653
237fc4c9 1654static void
e088209c 1655displaced_step_reset (displaced_step_thread_state *displaced)
237fc4c9 1656{
d8d83535 1657 displaced->reset ();
237fc4c9
PA
1658}
1659
d8d83535
SM
1660/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1661 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1662
1663using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9
PA
1664
1665/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1666void
1667displaced_step_dump_bytes (struct ui_file *file,
1668 const gdb_byte *buf,
1669 size_t len)
1670{
1671 int i;
1672
1673 for (i = 0; i < len; i++)
1674 fprintf_unfiltered (file, "%02x ", buf[i]);
1675 fputs_unfiltered ("\n", file);
1676}
1677
1678/* Prepare to single-step, using displaced stepping.
1679
1680 Note that we cannot use displaced stepping when we have a signal to
1681 deliver. If we have a signal to deliver and an instruction to step
1682 over, then after the step, there will be no indication from the
1683 target whether the thread entered a signal handler or ignored the
1684 signal and stepped over the instruction successfully --- both cases
1685 result in a simple SIGTRAP. In the first case we mustn't do a
1686 fixup, and in the second case we must --- but we can't tell which.
1687 Comments in the code for 'random signals' in handle_inferior_event
1688 explain how we handle this case instead.
1689
1690 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1691 stepped now; 0 if displaced stepping this thread got queued; or -1
1692 if this instruction can't be displaced stepped. */
1693
e088209c 1694static displaced_step_prepare_status
00431a78 1695displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1696{
00431a78 1697 regcache *regcache = get_thread_regcache (tp);
ac7936df 1698 struct gdbarch *gdbarch = regcache->arch ();
e088209c
SM
1699 displaced_step_thread_state *thread_disp_step_state
1700 = get_displaced_stepping_state (tp);
237fc4c9 1701
65a7e4d6 1702 /* We should never reach this function if the target does not
237fc4c9 1703 support displaced stepping. */
65a7e4d6 1704 gdb_assert (target_supports_displaced_stepping (tp));
237fc4c9 1705
c2829269
PA
1706 /* Nor if the thread isn't meant to step over a breakpoint. */
1707 gdb_assert (tp->control.trap_expected);
1708
c1e36e3e
PA
1709 /* Disable range stepping while executing in the scratch pad. We
1710 want a single-step even if executing the displaced instruction in
1711 the scratch buffer lands within the stepping range (e.g., a
1712 jump/branch). */
1713 tp->control.may_range_step = 0;
1714
e088209c
SM
1715 /* We are about to start a displaced step for this thread, if one is already
1716 in progress, we goofed up somewhere. */
1717 gdb_assert (!thread_disp_step_state->in_progress ());
237fc4c9 1718
e088209c 1719 scoped_restore_current_thread restore_thread;
fc1cf338 1720
e088209c
SM
1721 switch_to_thread (tp);
1722
1723 CORE_ADDR original_pc = regcache_read_pc (regcache);
237fc4c9 1724
e088209c 1725 displaced_step_prepare_status status =
348a832d 1726 tp->inf->top_target ()->displaced_step_prepare (tp);
e088209c
SM
1727
1728 if (status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
1729 {
237fc4c9
PA
1730 if (debug_displaced)
1731 fprintf_unfiltered (gdb_stdlog,
e088209c 1732 "displaced: failed to prepare (%s)",
a068643d 1733 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1734
e088209c 1735 return DISPLACED_STEP_PREPARE_STATUS_ERROR;
237fc4c9 1736 }
e088209c 1737 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
237fc4c9 1738 {
e088209c
SM
1739 /* Not enough displaced stepping resources available, defer this
1740 request by placing it the queue. */
1741
237fc4c9
PA
1742 if (debug_displaced)
1743 fprintf_unfiltered (gdb_stdlog,
e088209c
SM
1744 "displaced: not enough resources available, "
1745 "deferring step of %s\n",
a068643d 1746 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1747
e088209c 1748 global_thread_step_over_chain_enqueue (tp);
d6864985 1749 tp->inf->displaced_step_state.unavailable = true;
d35ae833 1750
e088209c 1751 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
d35ae833
PA
1752 }
1753
e088209c
SM
1754 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1755
1756// FIXME: Should probably replicated in the arch implementation now.
1757//
1758// if (breakpoint_in_range_p (aspace, copy, len))
1759// {
1760// /* There's a breakpoint set in the scratch pad location range
1761// (which is usually around the entry point). We'd either
1762// install it before resuming, which would overwrite/corrupt the
1763// scratch pad, or if it was already inserted, this displaced
1764// step would overwrite it. The latter is OK in the sense that
1765// we already assume that no thread is going to execute the code
1766// in the scratch pad range (after initial startup) anyway, but
1767// the former is unacceptable. Simply punt and fallback to
1768// stepping over this breakpoint in-line. */
1769// if (debug_displaced)
1770// {
1771// fprintf_unfiltered (gdb_stdlog,
1772// "displaced: breakpoint set in scratch pad. "
1773// "Stepping over breakpoint in-line instead.\n");
1774// }
1775//
1776// gdb_assert (false);
1777// gdbarch_displaced_step_release_location (gdbarch, copy);
1778//
1779// return -1;
1780// }
237fc4c9 1781
9f5a595d
UW
1782 /* Save the information we need to fix things up if the step
1783 succeeds. */
e088209c 1784 thread_disp_step_state->set (gdbarch);
237fc4c9 1785
e088209c
SM
1786 // FIXME: get it from _prepare?
1787 CORE_ADDR displaced_pc = 0;
ad53cd71 1788
237fc4c9 1789 if (debug_displaced)
e088209c
SM
1790 fprintf_unfiltered (gdb_stdlog,
1791 "displaced: prepared successfully thread=%s, "
1792 "original_pc=%s, displaced_pc=%s\n",
1793 target_pid_to_str (tp->ptid).c_str (),
1794 paddress (gdbarch, original_pc),
1795 paddress (gdbarch, displaced_pc));
1796
1797 return DISPLACED_STEP_PREPARE_STATUS_OK;
237fc4c9
PA
1798}
1799
3fc8eb30
PA
1800/* Wrapper for displaced_step_prepare_throw that disabled further
1801 attempts at displaced stepping if we get a memory error. */
1802
e088209c 1803static displaced_step_prepare_status
00431a78 1804displaced_step_prepare (thread_info *thread)
3fc8eb30 1805{
e088209c
SM
1806 displaced_step_prepare_status status
1807 = DISPLACED_STEP_PREPARE_STATUS_ERROR;
3fc8eb30 1808
a70b8144 1809 try
3fc8eb30 1810 {
e088209c 1811 status = displaced_step_prepare_throw (thread);
3fc8eb30 1812 }
230d2906 1813 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1814 {
1815 struct displaced_step_inferior_state *displaced_state;
1816
16b41842
PA
1817 if (ex.error != MEMORY_ERROR
1818 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1819 throw;
3fc8eb30 1820
4100594e
SM
1821 infrun_log_debug ("caught exception, disabling displaced stepping: %s",
1822 ex.what ());
3fc8eb30
PA
1823
1824 /* Be verbose if "set displaced-stepping" is "on", silent if
1825 "auto". */
1826 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1827 {
fd7dcb94 1828 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1829 ex.what ());
3fc8eb30
PA
1830 }
1831
1832 /* Disable further displaced stepping attempts. */
1833 displaced_state
00431a78 1834 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1835 displaced_state->failed_before = 1;
1836 }
3fc8eb30 1837
e088209c 1838 return status;
e2d96639
YQ
1839}
1840
372316f1
PA
1841/* If we displaced stepped an instruction successfully, adjust
1842 registers and memory to yield the same effect the instruction would
1843 have had if we had executed it at its original address, and return
1844 1. If the instruction didn't complete, relocate the PC and return
1845 -1. If the thread wasn't displaced stepping, return 0. */
1846
1847static int
e088209c 1848displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1849{
e088209c
SM
1850 displaced_step_thread_state *displaced
1851 = get_displaced_stepping_state (event_thread);
fc1cf338 1852
e088209c
SM
1853 /* Was this thread performing a displaced step? */
1854 if (!displaced->in_progress ())
372316f1 1855 return 0;
237fc4c9 1856
e088209c
SM
1857 displaced_step_reset_cleanup cleanup (displaced);
1858
cb71640d
PA
1859 /* Fixup may need to read memory/registers. Switch to the thread
1860 that we're fixing up. Also, target_stopped_by_watchpoint checks
d43b7a2d
TBA
1861 the current thread, and displaced_step_restore performs ptid-dependent
1862 memory accesses using current_inferior() and current_top_target(). */
00431a78 1863 switch_to_thread (event_thread);
cb71640d 1864
e088209c
SM
1865 /* Do the fixup, and release the resources acquired to do the displaced
1866 step. */
1867 displaced_step_finish_status finish_status =
348a832d
SM
1868 event_thread->inf->top_target ()->displaced_step_finish (event_thread,
1869 signal);
d43b7a2d 1870
e088209c
SM
1871 if (finish_status == DISPLACED_STEP_FINISH_STATUS_OK)
1872 return 1;
237fc4c9 1873 else
e088209c 1874 return -1;
c2829269 1875}
1c5cfe86 1876
4d9d9d04
PA
1877/* Data to be passed around while handling an event. This data is
1878 discarded between events. */
1879struct execution_control_state
1880{
5b6d1e4f 1881 process_stratum_target *target;
4d9d9d04
PA
1882 ptid_t ptid;
1883 /* The thread that got the event, if this was a thread event; NULL
1884 otherwise. */
1885 struct thread_info *event_thread;
1886
1887 struct target_waitstatus ws;
1888 int stop_func_filled_in;
1889 CORE_ADDR stop_func_start;
1890 CORE_ADDR stop_func_end;
1891 const char *stop_func_name;
1892 int wait_some_more;
1893
1894 /* True if the event thread hit the single-step breakpoint of
1895 another thread. Thus the event doesn't cause a stop, the thread
1896 needs to be single-stepped past the single-step breakpoint before
1897 we can switch back to the original stepping thread. */
1898 int hit_singlestep_breakpoint;
1899};
1900
1901/* Clear ECS and set it to point at TP. */
c2829269
PA
1902
1903static void
4d9d9d04
PA
1904reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1905{
1906 memset (ecs, 0, sizeof (*ecs));
1907 ecs->event_thread = tp;
1908 ecs->ptid = tp->ptid;
1909}
1910
1911static void keep_going_pass_signal (struct execution_control_state *ecs);
1912static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1913static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1914static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1915
1916/* Are there any pending step-over requests? If so, run all we can
1917 now and return true. Otherwise, return false. */
1918
1919static int
c2829269
PA
1920start_step_over (void)
1921{
1922 struct thread_info *tp, *next;
e088209c 1923 int started = 0;
c2829269 1924
372316f1
PA
1925 /* Don't start a new step-over if we already have an in-line
1926 step-over operation ongoing. */
1927 if (step_over_info_valid_p ())
e088209c
SM
1928 return started;
1929
1930 /* Steal the global thread step over chain. */
1931 thread_info *threads_to_step = global_thread_step_over_chain_head;
1932 global_thread_step_over_chain_head = NULL;
1933
1934 if (debug_infrun)
1935 fprintf_unfiltered (gdb_stdlog,
1936 "infrun: stealing list of %d threads to step from global queue\n",
1937 thread_step_over_chain_length (threads_to_step));
372316f1 1938
d6864985
SM
1939 for (inferior *inf : all_inferiors ())
1940 inf->displaced_step_state.unavailable = false;
1941
e088209c 1942 for (tp = threads_to_step; tp != NULL; tp = next)
237fc4c9 1943 {
4d9d9d04
PA
1944 struct execution_control_state ecss;
1945 struct execution_control_state *ecs = &ecss;
8d297bbf 1946 step_over_what step_what;
372316f1 1947 int must_be_in_line;
c2829269 1948
c65d6b55
PA
1949 gdb_assert (!tp->stop_requested);
1950
e088209c 1951 next = thread_step_over_chain_next (threads_to_step, tp);
c2829269 1952
372316f1
PA
1953 step_what = thread_still_needs_step_over (tp);
1954 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1955 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1956 && !use_displaced_stepping (tp)));
372316f1
PA
1957
1958 /* We currently stop all threads of all processes to step-over
1959 in-line. If we need to start a new in-line step-over, let
1960 any pending displaced steps finish first. */
e088209c
SM
1961 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1962 continue;
c2829269 1963
e088209c 1964 thread_step_over_chain_remove (&threads_to_step, tp);
c2829269 1965
372316f1
PA
1966 if (tp->control.trap_expected
1967 || tp->resumed
1968 || tp->executing)
ad53cd71 1969 {
4d9d9d04
PA
1970 internal_error (__FILE__, __LINE__,
1971 "[%s] has inconsistent state: "
372316f1 1972 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1973 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1974 tp->control.trap_expected,
372316f1 1975 tp->resumed,
4d9d9d04 1976 tp->executing);
ad53cd71 1977 }
1c5cfe86 1978
4100594e
SM
1979 infrun_log_debug ("resuming [%s] for step-over",
1980 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1981
1982 /* keep_going_pass_signal skips the step-over if the breakpoint
1983 is no longer inserted. In all-stop, we want to keep looking
1984 for a thread that needs a step-over instead of resuming TP,
1985 because we wouldn't be able to resume anything else until the
1986 target stops again. In non-stop, the resume always resumes
1987 only TP, so it's OK to let the thread resume freely. */
fbea99ea 1988 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 1989 continue;
8550d3b3 1990
d6864985
SM
1991 if (tp->inf->displaced_step_state.unavailable)
1992 {
1993 global_thread_step_over_chain_enqueue (tp);
1994 continue;
1995 }
1996
00431a78 1997 switch_to_thread (tp);
4d9d9d04
PA
1998 reset_ecs (ecs, tp);
1999 keep_going_pass_signal (ecs);
1c5cfe86 2000
4d9d9d04
PA
2001 if (!ecs->wait_some_more)
2002 error (_("Command aborted."));
1c5cfe86 2003
e088209c
SM
2004 /* If the thread's step over could not be initiated, it was re-added
2005 to the global step over chain. */
2006 if (tp->resumed)
2007 {
2008 infrun_log_debug ("start_step_over: [%s] was resumed.\n",
2009 target_pid_to_str (tp->ptid).c_str ());
2010 gdb_assert (!thread_is_in_step_over_chain (tp));
2011 }
2012 else
2013 {
2014 infrun_log_debug ("infrun: start_step_over: [%s] was NOT resumed.\n",
2015 target_pid_to_str (tp->ptid).c_str ());
2016 gdb_assert (thread_is_in_step_over_chain (tp));
2017
2018 }
372316f1
PA
2019
2020 /* If we started a new in-line step-over, we're done. */
2021 if (step_over_info_valid_p ())
2022 {
2023 gdb_assert (tp->control.trap_expected);
e088209c
SM
2024 started = 1;
2025 break;
372316f1
PA
2026 }
2027
fbea99ea 2028 if (!target_is_non_stop_p ())
4d9d9d04
PA
2029 {
2030 /* On all-stop, shouldn't have resumed unless we needed a
2031 step over. */
2032 gdb_assert (tp->control.trap_expected
2033 || tp->step_after_step_resume_breakpoint);
2034
2035 /* With remote targets (at least), in all-stop, we can't
2036 issue any further remote commands until the program stops
2037 again. */
e088209c
SM
2038 started = 1;
2039 break;
1c5cfe86 2040 }
c2829269 2041
4d9d9d04
PA
2042 /* Either the thread no longer needed a step-over, or a new
2043 displaced stepping sequence started. Even in the latter
2044 case, continue looking. Maybe we can also start another
2045 displaced step on a thread of other process. */
237fc4c9 2046 }
4d9d9d04 2047
e088209c
SM
2048 /* If there are threads left in the THREADS_TO_STEP list, but we have
2049 detected that we can't start anything more, put back these threads
2050 in the global list. */
2051 if (threads_to_step == NULL)
2052 {
2053 if (debug_infrun)
2054 fprintf_unfiltered (gdb_stdlog,
2055 "infrun: step-over queue now empty\n");
2056 }
2057 else
2058 {
2059 if (debug_infrun)
2060 fprintf_unfiltered (gdb_stdlog,
2061 "infrun: putting back %d threads to step in global queue\n",
2062 thread_step_over_chain_length (threads_to_step));
2063 while (threads_to_step != nullptr)
2064 {
2065 thread_info *thread = threads_to_step;
2066
2067 /* Remove from that list. */
2068 thread_step_over_chain_remove (&threads_to_step, thread);
2069
2070 /* Add to global list. */
2071 global_thread_step_over_chain_enqueue (thread);
2072
2073 }
2074 }
2075
2076 return started;
237fc4c9
PA
2077}
2078
5231c1fd
PA
2079/* Update global variables holding ptids to hold NEW_PTID if they were
2080 holding OLD_PTID. */
2081static void
2082infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2083{
d7e15655 2084 if (inferior_ptid == old_ptid)
5231c1fd 2085 inferior_ptid = new_ptid;
5231c1fd
PA
2086}
2087
237fc4c9 2088\f
c906108c 2089
53904c9e
AC
2090static const char schedlock_off[] = "off";
2091static const char schedlock_on[] = "on";
2092static const char schedlock_step[] = "step";
f2665db5 2093static const char schedlock_replay[] = "replay";
40478521 2094static const char *const scheduler_enums[] = {
ef346e04
AC
2095 schedlock_off,
2096 schedlock_on,
2097 schedlock_step,
f2665db5 2098 schedlock_replay,
ef346e04
AC
2099 NULL
2100};
f2665db5 2101static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2102static void
2103show_scheduler_mode (struct ui_file *file, int from_tty,
2104 struct cmd_list_element *c, const char *value)
2105{
3e43a32a
MS
2106 fprintf_filtered (file,
2107 _("Mode for locking scheduler "
2108 "during execution is \"%s\".\n"),
920d2a44
AC
2109 value);
2110}
c906108c
SS
2111
2112static void
eb4c3f4a 2113set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2114{
eefe576e
AC
2115 if (!target_can_lock_scheduler)
2116 {
2117 scheduler_mode = schedlock_off;
2118 error (_("Target '%s' cannot support this command."), target_shortname);
2119 }
c906108c
SS
2120}
2121
d4db2f36
PA
2122/* True if execution commands resume all threads of all processes by
2123 default; otherwise, resume only threads of the current inferior
2124 process. */
491144b5 2125bool sched_multi = false;
d4db2f36 2126
2facfe5c
DD
2127/* Try to setup for software single stepping over the specified location.
2128 Return 1 if target_resume() should use hardware single step.
2129
2130 GDBARCH the current gdbarch.
2131 PC the location to step over. */
2132
2133static int
2134maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2135{
2136 int hw_step = 1;
2137
f02253f1 2138 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2139 && gdbarch_software_single_step_p (gdbarch))
2140 hw_step = !insert_single_step_breakpoints (gdbarch);
2141
2facfe5c
DD
2142 return hw_step;
2143}
c906108c 2144
f3263aa4
PA
2145/* See infrun.h. */
2146
09cee04b
PA
2147ptid_t
2148user_visible_resume_ptid (int step)
2149{
f3263aa4 2150 ptid_t resume_ptid;
09cee04b 2151
09cee04b
PA
2152 if (non_stop)
2153 {
2154 /* With non-stop mode on, threads are always handled
2155 individually. */
2156 resume_ptid = inferior_ptid;
2157 }
2158 else if ((scheduler_mode == schedlock_on)
03d46957 2159 || (scheduler_mode == schedlock_step && step))
09cee04b 2160 {
f3263aa4
PA
2161 /* User-settable 'scheduler' mode requires solo thread
2162 resume. */
09cee04b
PA
2163 resume_ptid = inferior_ptid;
2164 }
f2665db5
MM
2165 else if ((scheduler_mode == schedlock_replay)
2166 && target_record_will_replay (minus_one_ptid, execution_direction))
2167 {
2168 /* User-settable 'scheduler' mode requires solo thread resume in replay
2169 mode. */
2170 resume_ptid = inferior_ptid;
2171 }
f3263aa4
PA
2172 else if (!sched_multi && target_supports_multi_process ())
2173 {
2174 /* Resume all threads of the current process (and none of other
2175 processes). */
e99b03dc 2176 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2177 }
2178 else
2179 {
2180 /* Resume all threads of all processes. */
2181 resume_ptid = RESUME_ALL;
2182 }
09cee04b
PA
2183
2184 return resume_ptid;
2185}
2186
5b6d1e4f
PA
2187/* See infrun.h. */
2188
2189process_stratum_target *
2190user_visible_resume_target (ptid_t resume_ptid)
2191{
2192 return (resume_ptid == minus_one_ptid && sched_multi
2193 ? NULL
2194 : current_inferior ()->process_target ());
2195}
2196
fbea99ea
PA
2197/* Return a ptid representing the set of threads that we will resume,
2198 in the perspective of the target, assuming run control handling
2199 does not require leaving some threads stopped (e.g., stepping past
2200 breakpoint). USER_STEP indicates whether we're about to start the
2201 target for a stepping command. */
2202
2203static ptid_t
2204internal_resume_ptid (int user_step)
2205{
2206 /* In non-stop, we always control threads individually. Note that
2207 the target may always work in non-stop mode even with "set
2208 non-stop off", in which case user_visible_resume_ptid could
2209 return a wildcard ptid. */
2210 if (target_is_non_stop_p ())
2211 return inferior_ptid;
2212 else
2213 return user_visible_resume_ptid (user_step);
2214}
2215
64ce06e4
PA
2216/* Wrapper for target_resume, that handles infrun-specific
2217 bookkeeping. */
2218
2219static void
2220do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2221{
2222 struct thread_info *tp = inferior_thread ();
2223
c65d6b55
PA
2224 gdb_assert (!tp->stop_requested);
2225
64ce06e4 2226 /* Install inferior's terminal modes. */
223ffa71 2227 target_terminal::inferior ();
64ce06e4
PA
2228
2229 /* Avoid confusing the next resume, if the next stop/resume
2230 happens to apply to another thread. */
2231 tp->suspend.stop_signal = GDB_SIGNAL_0;
2232
8f572e5c
PA
2233 /* Advise target which signals may be handled silently.
2234
2235 If we have removed breakpoints because we are stepping over one
2236 in-line (in any thread), we need to receive all signals to avoid
2237 accidentally skipping a breakpoint during execution of a signal
2238 handler.
2239
2240 Likewise if we're displaced stepping, otherwise a trap for a
2241 breakpoint in a signal handler might be confused with the
2242 displaced step finishing. We don't make the displaced_step_fixup
2243 step distinguish the cases instead, because:
2244
2245 - a backtrace while stopped in the signal handler would show the
2246 scratch pad as frame older than the signal handler, instead of
2247 the real mainline code.
2248
2249 - when the thread is later resumed, the signal handler would
2250 return to the scratch pad area, which would no longer be
2251 valid. */
2252 if (step_over_info_valid_p ()
00431a78 2253 || displaced_step_in_progress (tp->inf))
adc6a863 2254 target_pass_signals ({});
64ce06e4 2255 else
adc6a863 2256 target_pass_signals (signal_pass);
64ce06e4
PA
2257
2258 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2259
2260 target_commit_resume ();
5b6d1e4f
PA
2261
2262 if (target_can_async_p ())
2263 target_async (1);
64ce06e4
PA
2264}
2265
d930703d 2266/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2267 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2268 call 'resume', which handles exceptions. */
c906108c 2269
71d378ae
PA
2270static void
2271resume_1 (enum gdb_signal sig)
c906108c 2272{
515630c5 2273 struct regcache *regcache = get_current_regcache ();
ac7936df 2274 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2275 struct thread_info *tp = inferior_thread ();
8b86c959 2276 const address_space *aspace = regcache->aspace ();
b0f16a3e 2277 ptid_t resume_ptid;
856e7dd6
PA
2278 /* This represents the user's step vs continue request. When
2279 deciding whether "set scheduler-locking step" applies, it's the
2280 user's intention that counts. */
2281 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2282 /* This represents what we'll actually request the target to do.
2283 This can decay from a step to a continue, if e.g., we need to
2284 implement single-stepping with breakpoints (software
2285 single-step). */
6b403daa 2286 int step;
c7e8a53c 2287
c65d6b55 2288 gdb_assert (!tp->stop_requested);
c2829269
PA
2289 gdb_assert (!thread_is_in_step_over_chain (tp));
2290
372316f1
PA
2291 if (tp->suspend.waitstatus_pending_p)
2292 {
4100594e
SM
2293 infrun_log_debug
2294 ("thread %s has pending wait "
2295 "status %s (currently_stepping=%d).",
2296 target_pid_to_str (tp->ptid).c_str (),
2297 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2298 currently_stepping (tp));
372316f1 2299
5b6d1e4f 2300 tp->inf->process_target ()->threads_executing = true;
719546c4 2301 tp->resumed = true;
372316f1
PA
2302
2303 /* FIXME: What should we do if we are supposed to resume this
2304 thread with a signal? Maybe we should maintain a queue of
2305 pending signals to deliver. */
2306 if (sig != GDB_SIGNAL_0)
2307 {
fd7dcb94 2308 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2309 gdb_signal_to_name (sig),
2310 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2311 }
2312
2313 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2314
2315 if (target_can_async_p ())
9516f85a
AB
2316 {
2317 target_async (1);
2318 /* Tell the event loop we have an event to process. */
2319 mark_async_event_handler (infrun_async_inferior_event_token);
2320 }
372316f1
PA
2321 return;
2322 }
2323
2324 tp->stepped_breakpoint = 0;
2325
6b403daa
PA
2326 /* Depends on stepped_breakpoint. */
2327 step = currently_stepping (tp);
2328
74609e71
YQ
2329 if (current_inferior ()->waiting_for_vfork_done)
2330 {
48f9886d
PA
2331 /* Don't try to single-step a vfork parent that is waiting for
2332 the child to get out of the shared memory region (by exec'ing
2333 or exiting). This is particularly important on software
2334 single-step archs, as the child process would trip on the
2335 software single step breakpoint inserted for the parent
2336 process. Since the parent will not actually execute any
2337 instruction until the child is out of the shared region (such
2338 are vfork's semantics), it is safe to simply continue it.
2339 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2340 the parent, and tell it to `keep_going', which automatically
2341 re-sets it stepping. */
4100594e 2342 infrun_log_debug ("resume : clear step");
a09dd441 2343 step = 0;
74609e71
YQ
2344 }
2345
7ca9b62a
TBA
2346 CORE_ADDR pc = regcache_read_pc (regcache);
2347
4100594e
SM
2348 infrun_log_debug ("step=%d, signal=%s, trap_expected=%d, "
2349 "current thread [%s] at %s",
2350 step, gdb_signal_to_symbol_string (sig),
2351 tp->control.trap_expected,
2352 target_pid_to_str (inferior_ptid).c_str (),
2353 paddress (gdbarch, pc));
c906108c 2354
c2c6d25f
JM
2355 /* Normally, by the time we reach `resume', the breakpoints are either
2356 removed or inserted, as appropriate. The exception is if we're sitting
2357 at a permanent breakpoint; we need to step over it, but permanent
2358 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2359 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2360 {
af48d08f
PA
2361 if (sig != GDB_SIGNAL_0)
2362 {
2363 /* We have a signal to pass to the inferior. The resume
2364 may, or may not take us to the signal handler. If this
2365 is a step, we'll need to stop in the signal handler, if
2366 there's one, (if the target supports stepping into
2367 handlers), or in the next mainline instruction, if
2368 there's no handler. If this is a continue, we need to be
2369 sure to run the handler with all breakpoints inserted.
2370 In all cases, set a breakpoint at the current address
2371 (where the handler returns to), and once that breakpoint
2372 is hit, resume skipping the permanent breakpoint. If
2373 that breakpoint isn't hit, then we've stepped into the
2374 signal handler (or hit some other event). We'll delete
2375 the step-resume breakpoint then. */
2376
4100594e
SM
2377 infrun_log_debug ("resume: skipping permanent breakpoint, "
2378 "deliver signal first");
af48d08f
PA
2379
2380 clear_step_over_info ();
2381 tp->control.trap_expected = 0;
2382
2383 if (tp->control.step_resume_breakpoint == NULL)
2384 {
2385 /* Set a "high-priority" step-resume, as we don't want
2386 user breakpoints at PC to trigger (again) when this
2387 hits. */
2388 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2389 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2390
2391 tp->step_after_step_resume_breakpoint = step;
2392 }
2393
2394 insert_breakpoints ();
2395 }
2396 else
2397 {
2398 /* There's no signal to pass, we can go ahead and skip the
2399 permanent breakpoint manually. */
4100594e 2400 infrun_log_debug ("skipping permanent breakpoint");
af48d08f
PA
2401 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2402 /* Update pc to reflect the new address from which we will
2403 execute instructions. */
2404 pc = regcache_read_pc (regcache);
2405
2406 if (step)
2407 {
2408 /* We've already advanced the PC, so the stepping part
2409 is done. Now we need to arrange for a trap to be
2410 reported to handle_inferior_event. Set a breakpoint
2411 at the current PC, and run to it. Don't update
2412 prev_pc, because if we end in
44a1ee51
PA
2413 switch_back_to_stepped_thread, we want the "expected
2414 thread advanced also" branch to be taken. IOW, we
2415 don't want this thread to step further from PC
af48d08f 2416 (overstep). */
1ac806b8 2417 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2418 insert_single_step_breakpoint (gdbarch, aspace, pc);
2419 insert_breakpoints ();
2420
fbea99ea 2421 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2422 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
719546c4 2423 tp->resumed = true;
af48d08f
PA
2424 return;
2425 }
2426 }
6d350bb5 2427 }
c2c6d25f 2428
c1e36e3e
PA
2429 /* If we have a breakpoint to step over, make sure to do a single
2430 step only. Same if we have software watchpoints. */
2431 if (tp->control.trap_expected || bpstat_should_step ())
2432 tp->control.may_range_step = 0;
2433
7da6a5b9
LM
2434 /* If displaced stepping is enabled, step over breakpoints by executing a
2435 copy of the instruction at a different address.
237fc4c9
PA
2436
2437 We can't use displaced stepping when we have a signal to deliver;
2438 the comments for displaced_step_prepare explain why. The
2439 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2440 signals' explain what we do instead.
2441
2442 We can't use displaced stepping when we are waiting for vfork_done
2443 event, displaced stepping breaks the vfork child similarly as single
2444 step software breakpoint. */
3fc8eb30
PA
2445 if (tp->control.trap_expected
2446 && use_displaced_stepping (tp)
cb71640d 2447 && !step_over_info_valid_p ()
a493e3e2 2448 && sig == GDB_SIGNAL_0
74609e71 2449 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2450 {
e088209c
SM
2451 displaced_step_prepare_status prepare_status
2452 = displaced_step_prepare (tp);
fc1cf338 2453
e088209c 2454 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
d56b7306 2455 {
4100594e 2456 infrun_log_debug ("Got placed in step-over queue");
4d9d9d04
PA
2457
2458 tp->control.trap_expected = 0;
d56b7306
VP
2459 return;
2460 }
e088209c 2461 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
3fc8eb30
PA
2462 {
2463 /* Fallback to stepping over the breakpoint in-line. */
2464
2465 if (target_is_non_stop_p ())
2466 stop_all_threads ();
2467
a01bda52 2468 set_step_over_info (regcache->aspace (),
21edc42f 2469 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2470
2471 step = maybe_software_singlestep (gdbarch, pc);
2472
2473 insert_breakpoints ();
2474 }
e088209c 2475 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
3fc8eb30 2476 {
e088209c 2477 step = gdbarch_displaced_step_hw_singlestep (gdbarch, NULL);
3fc8eb30 2478 }
e088209c
SM
2479 else
2480 gdb_assert_not_reached ("invalid displaced_step_prepare_status value");
237fc4c9
PA
2481 }
2482
2facfe5c 2483 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2484 else if (step)
2facfe5c 2485 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2486
30852783
UW
2487 /* Currently, our software single-step implementation leads to different
2488 results than hardware single-stepping in one situation: when stepping
2489 into delivering a signal which has an associated signal handler,
2490 hardware single-step will stop at the first instruction of the handler,
2491 while software single-step will simply skip execution of the handler.
2492
2493 For now, this difference in behavior is accepted since there is no
2494 easy way to actually implement single-stepping into a signal handler
2495 without kernel support.
2496
2497 However, there is one scenario where this difference leads to follow-on
2498 problems: if we're stepping off a breakpoint by removing all breakpoints
2499 and then single-stepping. In this case, the software single-step
2500 behavior means that even if there is a *breakpoint* in the signal
2501 handler, GDB still would not stop.
2502
2503 Fortunately, we can at least fix this particular issue. We detect
2504 here the case where we are about to deliver a signal while software
2505 single-stepping with breakpoints removed. In this situation, we
2506 revert the decisions to remove all breakpoints and insert single-
2507 step breakpoints, and instead we install a step-resume breakpoint
2508 at the current address, deliver the signal without stepping, and
2509 once we arrive back at the step-resume breakpoint, actually step
2510 over the breakpoint we originally wanted to step over. */
34b7e8a6 2511 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2512 && sig != GDB_SIGNAL_0
2513 && step_over_info_valid_p ())
30852783
UW
2514 {
2515 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2516 immediately after a handler returns, might already have
30852783
UW
2517 a step-resume breakpoint set on the earlier handler. We cannot
2518 set another step-resume breakpoint; just continue on until the
2519 original breakpoint is hit. */
2520 if (tp->control.step_resume_breakpoint == NULL)
2521 {
2c03e5be 2522 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2523 tp->step_after_step_resume_breakpoint = 1;
2524 }
2525
34b7e8a6 2526 delete_single_step_breakpoints (tp);
30852783 2527
31e77af2 2528 clear_step_over_info ();
30852783 2529 tp->control.trap_expected = 0;
31e77af2
PA
2530
2531 insert_breakpoints ();
30852783
UW
2532 }
2533
b0f16a3e
SM
2534 /* If STEP is set, it's a request to use hardware stepping
2535 facilities. But in that case, we should never
2536 use singlestep breakpoint. */
34b7e8a6 2537 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2538
fbea99ea 2539 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2540 if (tp->control.trap_expected)
b0f16a3e
SM
2541 {
2542 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2543 hit, either by single-stepping the thread with the breakpoint
2544 removed, or by displaced stepping, with the breakpoint inserted.
2545 In the former case, we need to single-step only this thread,
2546 and keep others stopped, as they can miss this breakpoint if
2547 allowed to run. That's not really a problem for displaced
2548 stepping, but, we still keep other threads stopped, in case
2549 another thread is also stopped for a breakpoint waiting for
2550 its turn in the displaced stepping queue. */
b0f16a3e
SM
2551 resume_ptid = inferior_ptid;
2552 }
fbea99ea
PA
2553 else
2554 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2555
7f5ef605
PA
2556 if (execution_direction != EXEC_REVERSE
2557 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2558 {
372316f1
PA
2559 /* There are two cases where we currently need to step a
2560 breakpoint instruction when we have a signal to deliver:
2561
2562 - See handle_signal_stop where we handle random signals that
2563 could take out us out of the stepping range. Normally, in
2564 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2565 signal handler with a breakpoint at PC, but there are cases
2566 where we should _always_ single-step, even if we have a
2567 step-resume breakpoint, like when a software watchpoint is
2568 set. Assuming single-stepping and delivering a signal at the
2569 same time would takes us to the signal handler, then we could
2570 have removed the breakpoint at PC to step over it. However,
2571 some hardware step targets (like e.g., Mac OS) can't step
2572 into signal handlers, and for those, we need to leave the
2573 breakpoint at PC inserted, as otherwise if the handler
2574 recurses and executes PC again, it'll miss the breakpoint.
2575 So we leave the breakpoint inserted anyway, but we need to
2576 record that we tried to step a breakpoint instruction, so
372316f1
PA
2577 that adjust_pc_after_break doesn't end up confused.
2578
2579 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2580 in one thread after another thread that was stepping had been
2581 momentarily paused for a step-over. When we re-resume the
2582 stepping thread, it may be resumed from that address with a
2583 breakpoint that hasn't trapped yet. Seen with
2584 gdb.threads/non-stop-fair-events.exp, on targets that don't
2585 do displaced stepping. */
2586
4100594e
SM
2587 infrun_log_debug ("resume: [%s] stepped breakpoint",
2588 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2589
2590 tp->stepped_breakpoint = 1;
2591
b0f16a3e
SM
2592 /* Most targets can step a breakpoint instruction, thus
2593 executing it normally. But if this one cannot, just
2594 continue and we will hit it anyway. */
7f5ef605 2595 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2596 step = 0;
2597 }
ef5cf84e 2598
b0f16a3e 2599 if (debug_displaced
cb71640d 2600 && tp->control.trap_expected
3fc8eb30 2601 && use_displaced_stepping (tp)
cb71640d 2602 && !step_over_info_valid_p ())
b0f16a3e 2603 {
00431a78 2604 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2605 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2606 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2607 gdb_byte buf[4];
2608
2609 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2610 paddress (resume_gdbarch, actual_pc));
2611 read_memory (actual_pc, buf, sizeof (buf));
2612 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2613 }
237fc4c9 2614
b0f16a3e
SM
2615 if (tp->control.may_range_step)
2616 {
2617 /* If we're resuming a thread with the PC out of the step
2618 range, then we're doing some nested/finer run control
2619 operation, like stepping the thread out of the dynamic
2620 linker or the displaced stepping scratch pad. We
2621 shouldn't have allowed a range step then. */
2622 gdb_assert (pc_in_thread_step_range (pc, tp));
2623 }
c1e36e3e 2624
64ce06e4 2625 do_target_resume (resume_ptid, step, sig);
719546c4 2626 tp->resumed = true;
c906108c 2627}
71d378ae
PA
2628
2629/* Resume the inferior. SIG is the signal to give the inferior
2630 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2631 rolls back state on error. */
2632
aff4e175 2633static void
71d378ae
PA
2634resume (gdb_signal sig)
2635{
a70b8144 2636 try
71d378ae
PA
2637 {
2638 resume_1 (sig);
2639 }
230d2906 2640 catch (const gdb_exception &ex)
71d378ae
PA
2641 {
2642 /* If resuming is being aborted for any reason, delete any
2643 single-step breakpoint resume_1 may have created, to avoid
2644 confusing the following resumption, and to avoid leaving
2645 single-step breakpoints perturbing other threads, in case
2646 we're running in non-stop mode. */
2647 if (inferior_ptid != null_ptid)
2648 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2649 throw;
71d378ae 2650 }
71d378ae
PA
2651}
2652
c906108c 2653\f
237fc4c9 2654/* Proceeding. */
c906108c 2655
4c2f2a79
PA
2656/* See infrun.h. */
2657
2658/* Counter that tracks number of user visible stops. This can be used
2659 to tell whether a command has proceeded the inferior past the
2660 current location. This allows e.g., inferior function calls in
2661 breakpoint commands to not interrupt the command list. When the
2662 call finishes successfully, the inferior is standing at the same
2663 breakpoint as if nothing happened (and so we don't call
2664 normal_stop). */
2665static ULONGEST current_stop_id;
2666
2667/* See infrun.h. */
2668
2669ULONGEST
2670get_stop_id (void)
2671{
2672 return current_stop_id;
2673}
2674
2675/* Called when we report a user visible stop. */
2676
2677static void
2678new_stop_id (void)
2679{
2680 current_stop_id++;
2681}
2682
c906108c
SS
2683/* Clear out all variables saying what to do when inferior is continued.
2684 First do this, then set the ones you want, then call `proceed'. */
2685
a7212384
UW
2686static void
2687clear_proceed_status_thread (struct thread_info *tp)
c906108c 2688{
4100594e 2689 infrun_log_debug ("%s", target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2690
372316f1
PA
2691 /* If we're starting a new sequence, then the previous finished
2692 single-step is no longer relevant. */
2693 if (tp->suspend.waitstatus_pending_p)
2694 {
2695 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2696 {
4100594e
SM
2697 infrun_log_debug ("pending event of %s was a finished step. "
2698 "Discarding.",
2699 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2700
2701 tp->suspend.waitstatus_pending_p = 0;
2702 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2703 }
4100594e 2704 else
372316f1 2705 {
4100594e
SM
2706 infrun_log_debug
2707 ("thread %s has pending wait status %s (currently_stepping=%d).",
2708 target_pid_to_str (tp->ptid).c_str (),
2709 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2710 currently_stepping (tp));
372316f1
PA
2711 }
2712 }
2713
70509625
PA
2714 /* If this signal should not be seen by program, give it zero.
2715 Used for debugging signals. */
2716 if (!signal_pass_state (tp->suspend.stop_signal))
2717 tp->suspend.stop_signal = GDB_SIGNAL_0;
2718
46e3ed7f 2719 delete tp->thread_fsm;
243a9253
PA
2720 tp->thread_fsm = NULL;
2721
16c381f0
JK
2722 tp->control.trap_expected = 0;
2723 tp->control.step_range_start = 0;
2724 tp->control.step_range_end = 0;
c1e36e3e 2725 tp->control.may_range_step = 0;
16c381f0
JK
2726 tp->control.step_frame_id = null_frame_id;
2727 tp->control.step_stack_frame_id = null_frame_id;
2728 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2729 tp->control.step_start_function = NULL;
a7212384 2730 tp->stop_requested = 0;
4e1c45ea 2731
16c381f0 2732 tp->control.stop_step = 0;
32400beb 2733
16c381f0 2734 tp->control.proceed_to_finish = 0;
414c69f7 2735
856e7dd6 2736 tp->control.stepping_command = 0;
17b2616c 2737
a7212384 2738 /* Discard any remaining commands or status from previous stop. */
16c381f0 2739 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2740}
32400beb 2741
a7212384 2742void
70509625 2743clear_proceed_status (int step)
a7212384 2744{
f2665db5
MM
2745 /* With scheduler-locking replay, stop replaying other threads if we're
2746 not replaying the user-visible resume ptid.
2747
2748 This is a convenience feature to not require the user to explicitly
2749 stop replaying the other threads. We're assuming that the user's
2750 intent is to resume tracing the recorded process. */
2751 if (!non_stop && scheduler_mode == schedlock_replay
2752 && target_record_is_replaying (minus_one_ptid)
2753 && !target_record_will_replay (user_visible_resume_ptid (step),
2754 execution_direction))
2755 target_record_stop_replaying ();
2756
08036331 2757 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2758 {
08036331 2759 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2760 process_stratum_target *resume_target
2761 = user_visible_resume_target (resume_ptid);
70509625
PA
2762
2763 /* In all-stop mode, delete the per-thread status of all threads
2764 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2765 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2766 clear_proceed_status_thread (tp);
6c95b8df
PA
2767 }
2768
d7e15655 2769 if (inferior_ptid != null_ptid)
a7212384
UW
2770 {
2771 struct inferior *inferior;
2772
2773 if (non_stop)
2774 {
6c95b8df
PA
2775 /* If in non-stop mode, only delete the per-thread status of
2776 the current thread. */
a7212384
UW
2777 clear_proceed_status_thread (inferior_thread ());
2778 }
6c95b8df 2779
d6b48e9c 2780 inferior = current_inferior ();
16c381f0 2781 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2782 }
2783
76727919 2784 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2785}
2786
99619bea
PA
2787/* Returns true if TP is still stopped at a breakpoint that needs
2788 stepping-over in order to make progress. If the breakpoint is gone
2789 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2790
2791static int
6c4cfb24 2792thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2793{
2794 if (tp->stepping_over_breakpoint)
2795 {
00431a78 2796 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2797
a01bda52 2798 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2799 regcache_read_pc (regcache))
2800 == ordinary_breakpoint_here)
99619bea
PA
2801 return 1;
2802
2803 tp->stepping_over_breakpoint = 0;
2804 }
2805
2806 return 0;
2807}
2808
6c4cfb24
PA
2809/* Check whether thread TP still needs to start a step-over in order
2810 to make progress when resumed. Returns an bitwise or of enum
2811 step_over_what bits, indicating what needs to be stepped over. */
2812
8d297bbf 2813static step_over_what
6c4cfb24
PA
2814thread_still_needs_step_over (struct thread_info *tp)
2815{
8d297bbf 2816 step_over_what what = 0;
6c4cfb24
PA
2817
2818 if (thread_still_needs_step_over_bp (tp))
2819 what |= STEP_OVER_BREAKPOINT;
2820
2821 if (tp->stepping_over_watchpoint
2822 && !target_have_steppable_watchpoint)
2823 what |= STEP_OVER_WATCHPOINT;
2824
2825 return what;
2826}
2827
483805cf
PA
2828/* Returns true if scheduler locking applies. STEP indicates whether
2829 we're about to do a step/next-like command to a thread. */
2830
2831static int
856e7dd6 2832schedlock_applies (struct thread_info *tp)
483805cf
PA
2833{
2834 return (scheduler_mode == schedlock_on
2835 || (scheduler_mode == schedlock_step
f2665db5
MM
2836 && tp->control.stepping_command)
2837 || (scheduler_mode == schedlock_replay
2838 && target_record_will_replay (minus_one_ptid,
2839 execution_direction)));
483805cf
PA
2840}
2841
5b6d1e4f
PA
2842/* Calls target_commit_resume on all targets. */
2843
2844static void
2845commit_resume_all_targets ()
2846{
2847 scoped_restore_current_thread restore_thread;
2848
2849 /* Map between process_target and a representative inferior. This
2850 is to avoid committing a resume in the same target more than
2851 once. Resumptions must be idempotent, so this is an
2852 optimization. */
2853 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2854
2855 for (inferior *inf : all_non_exited_inferiors ())
2856 if (inf->has_execution ())
2857 conn_inf[inf->process_target ()] = inf;
2858
2859 for (const auto &ci : conn_inf)
2860 {
2861 inferior *inf = ci.second;
2862 switch_to_inferior_no_thread (inf);
2863 target_commit_resume ();
2864 }
2865}
2866
2f4fcf00
PA
2867/* Check that all the targets we're about to resume are in non-stop
2868 mode. Ideally, we'd only care whether all targets support
2869 target-async, but we're not there yet. E.g., stop_all_threads
2870 doesn't know how to handle all-stop targets. Also, the remote
2871 protocol in all-stop mode is synchronous, irrespective of
2872 target-async, which means that things like a breakpoint re-set
2873 triggered by one target would try to read memory from all targets
2874 and fail. */
2875
2876static void
2877check_multi_target_resumption (process_stratum_target *resume_target)
2878{
2879 if (!non_stop && resume_target == nullptr)
2880 {
2881 scoped_restore_current_thread restore_thread;
2882
2883 /* This is used to track whether we're resuming more than one
2884 target. */
2885 process_stratum_target *first_connection = nullptr;
2886
2887 /* The first inferior we see with a target that does not work in
2888 always-non-stop mode. */
2889 inferior *first_not_non_stop = nullptr;
2890
2891 for (inferior *inf : all_non_exited_inferiors (resume_target))
2892 {
2893 switch_to_inferior_no_thread (inf);
2894
2895 if (!target_has_execution)
2896 continue;
2897
2898 process_stratum_target *proc_target
2899 = current_inferior ()->process_target();
2900
2901 if (!target_is_non_stop_p ())
2902 first_not_non_stop = inf;
2903
2904 if (first_connection == nullptr)
2905 first_connection = proc_target;
2906 else if (first_connection != proc_target
2907 && first_not_non_stop != nullptr)
2908 {
2909 switch_to_inferior_no_thread (first_not_non_stop);
2910
2911 proc_target = current_inferior ()->process_target();
2912
2913 error (_("Connection %d (%s) does not support "
2914 "multi-target resumption."),
2915 proc_target->connection_number,
2916 make_target_connection_string (proc_target).c_str ());
2917 }
2918 }
2919 }
2920}
2921
c906108c
SS
2922/* Basic routine for continuing the program in various fashions.
2923
2924 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2925 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2926 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2927
2928 You should call clear_proceed_status before calling proceed. */
2929
2930void
64ce06e4 2931proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2932{
e58b0e63
PA
2933 struct regcache *regcache;
2934 struct gdbarch *gdbarch;
e58b0e63 2935 CORE_ADDR pc;
4d9d9d04
PA
2936 struct execution_control_state ecss;
2937 struct execution_control_state *ecs = &ecss;
4d9d9d04 2938 int started;
c906108c 2939
e58b0e63
PA
2940 /* If we're stopped at a fork/vfork, follow the branch set by the
2941 "set follow-fork-mode" command; otherwise, we'll just proceed
2942 resuming the current thread. */
2943 if (!follow_fork ())
2944 {
2945 /* The target for some reason decided not to resume. */
2946 normal_stop ();
f148b27e
PA
2947 if (target_can_async_p ())
2948 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2949 return;
2950 }
2951
842951eb
PA
2952 /* We'll update this if & when we switch to a new thread. */
2953 previous_inferior_ptid = inferior_ptid;
2954
e58b0e63 2955 regcache = get_current_regcache ();
ac7936df 2956 gdbarch = regcache->arch ();
8b86c959
YQ
2957 const address_space *aspace = regcache->aspace ();
2958
fc75c28b
TBA
2959 pc = regcache_read_pc_protected (regcache);
2960
08036331 2961 thread_info *cur_thr = inferior_thread ();
e58b0e63 2962
99619bea 2963 /* Fill in with reasonable starting values. */
08036331 2964 init_thread_stepping_state (cur_thr);
99619bea 2965
08036331 2966 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2967
5b6d1e4f
PA
2968 ptid_t resume_ptid
2969 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2970 process_stratum_target *resume_target
2971 = user_visible_resume_target (resume_ptid);
2972
2f4fcf00
PA
2973 check_multi_target_resumption (resume_target);
2974
2acceee2 2975 if (addr == (CORE_ADDR) -1)
c906108c 2976 {
08036331 2977 if (pc == cur_thr->suspend.stop_pc
af48d08f 2978 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2979 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2980 /* There is a breakpoint at the address we will resume at,
2981 step one instruction before inserting breakpoints so that
2982 we do not stop right away (and report a second hit at this
b2175913
MS
2983 breakpoint).
2984
2985 Note, we don't do this in reverse, because we won't
2986 actually be executing the breakpoint insn anyway.
2987 We'll be (un-)executing the previous instruction. */
08036331 2988 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2989 else if (gdbarch_single_step_through_delay_p (gdbarch)
2990 && gdbarch_single_step_through_delay (gdbarch,
2991 get_current_frame ()))
3352ef37
AC
2992 /* We stepped onto an instruction that needs to be stepped
2993 again before re-inserting the breakpoint, do so. */
08036331 2994 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2995 }
2996 else
2997 {
515630c5 2998 regcache_write_pc (regcache, addr);
c906108c
SS
2999 }
3000
70509625 3001 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 3002 cur_thr->suspend.stop_signal = siggnal;
70509625 3003
4d9d9d04
PA
3004 /* If an exception is thrown from this point on, make sure to
3005 propagate GDB's knowledge of the executing state to the
3006 frontend/user running state. */
5b6d1e4f 3007 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
3008
3009 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3010 threads (e.g., we might need to set threads stepping over
3011 breakpoints first), from the user/frontend's point of view, all
3012 threads in RESUME_PTID are now running. Unless we're calling an
3013 inferior function, as in that case we pretend the inferior
3014 doesn't run at all. */
08036331 3015 if (!cur_thr->control.in_infcall)
719546c4 3016 set_running (resume_target, resume_ptid, true);
17b2616c 3017
4100594e
SM
3018 infrun_log_debug ("addr=%s, signal=%s", paddress (gdbarch, addr),
3019 gdb_signal_to_symbol_string (siggnal));
527159b7 3020
4d9d9d04
PA
3021 annotate_starting ();
3022
3023 /* Make sure that output from GDB appears before output from the
3024 inferior. */
3025 gdb_flush (gdb_stdout);
3026
d930703d
PA
3027 /* Since we've marked the inferior running, give it the terminal. A
3028 QUIT/Ctrl-C from here on is forwarded to the target (which can
3029 still detect attempts to unblock a stuck connection with repeated
3030 Ctrl-C from within target_pass_ctrlc). */
3031 target_terminal::inferior ();
3032
4d9d9d04
PA
3033 /* In a multi-threaded task we may select another thread and
3034 then continue or step.
3035
3036 But if a thread that we're resuming had stopped at a breakpoint,
3037 it will immediately cause another breakpoint stop without any
3038 execution (i.e. it will report a breakpoint hit incorrectly). So
3039 we must step over it first.
3040
3041 Look for threads other than the current (TP) that reported a
3042 breakpoint hit and haven't been resumed yet since. */
3043
3044 /* If scheduler locking applies, we can avoid iterating over all
3045 threads. */
08036331 3046 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3047 {
5b6d1e4f
PA
3048 for (thread_info *tp : all_non_exited_threads (resume_target,
3049 resume_ptid))
08036331 3050 {
f3f8ece4
PA
3051 switch_to_thread_no_regs (tp);
3052
4d9d9d04
PA
3053 /* Ignore the current thread here. It's handled
3054 afterwards. */
08036331 3055 if (tp == cur_thr)
4d9d9d04 3056 continue;
c906108c 3057
4d9d9d04
PA
3058 if (!thread_still_needs_step_over (tp))
3059 continue;
3060
3061 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3062
4100594e
SM
3063 infrun_log_debug ("need to step-over [%s] first",
3064 target_pid_to_str (tp->ptid).c_str ());
99619bea 3065
bb88694d 3066 global_thread_step_over_chain_enqueue (tp);
2adfaa28 3067 }
f3f8ece4
PA
3068
3069 switch_to_thread (cur_thr);
30852783
UW
3070 }
3071
4d9d9d04
PA
3072 /* Enqueue the current thread last, so that we move all other
3073 threads over their breakpoints first. */
08036331 3074 if (cur_thr->stepping_over_breakpoint)
bb88694d 3075 global_thread_step_over_chain_enqueue (cur_thr);
30852783 3076
4d9d9d04
PA
3077 /* If the thread isn't started, we'll still need to set its prev_pc,
3078 so that switch_back_to_stepped_thread knows the thread hasn't
3079 advanced. Must do this before resuming any thread, as in
3080 all-stop/remote, once we resume we can't send any other packet
3081 until the target stops again. */
fc75c28b 3082 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
99619bea 3083
a9bc57b9
TT
3084 {
3085 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3086
a9bc57b9 3087 started = start_step_over ();
c906108c 3088
a9bc57b9
TT
3089 if (step_over_info_valid_p ())
3090 {
3091 /* Either this thread started a new in-line step over, or some
3092 other thread was already doing one. In either case, don't
3093 resume anything else until the step-over is finished. */
3094 }
3095 else if (started && !target_is_non_stop_p ())
3096 {
3097 /* A new displaced stepping sequence was started. In all-stop,
3098 we can't talk to the target anymore until it next stops. */
3099 }
3100 else if (!non_stop && target_is_non_stop_p ())
3101 {
3102 /* In all-stop, but the target is always in non-stop mode.
3103 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3104 for (thread_info *tp : all_non_exited_threads (resume_target,
3105 resume_ptid))
3106 {
3107 switch_to_thread_no_regs (tp);
3108
f9fac3c8
SM
3109 if (!tp->inf->has_execution ())
3110 {
4100594e
SM
3111 infrun_log_debug ("[%s] target has no execution",
3112 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3113 continue;
3114 }
f3f8ece4 3115
f9fac3c8
SM
3116 if (tp->resumed)
3117 {
4100594e
SM
3118 infrun_log_debug ("[%s] resumed",
3119 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3120 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3121 continue;
3122 }
fbea99ea 3123
f9fac3c8
SM
3124 if (thread_is_in_step_over_chain (tp))
3125 {
4100594e
SM
3126 infrun_log_debug ("[%s] needs step-over",
3127 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3128 continue;
3129 }
fbea99ea 3130
4100594e
SM
3131 infrun_log_debug ("resuming %s",
3132 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3133
f9fac3c8
SM
3134 reset_ecs (ecs, tp);
3135 switch_to_thread (tp);
3136 keep_going_pass_signal (ecs);
3137 if (!ecs->wait_some_more)
3138 error (_("Command aborted."));
3139 }
a9bc57b9 3140 }
08036331 3141 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3142 {
3143 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3144 reset_ecs (ecs, cur_thr);
3145 switch_to_thread (cur_thr);
a9bc57b9
TT
3146 keep_going_pass_signal (ecs);
3147 if (!ecs->wait_some_more)
3148 error (_("Command aborted."));
3149 }
3150 }
c906108c 3151
5b6d1e4f 3152 commit_resume_all_targets ();
85ad3aaf 3153
731f534f 3154 finish_state.release ();
c906108c 3155
873657b9
PA
3156 /* If we've switched threads above, switch back to the previously
3157 current thread. We don't want the user to see a different
3158 selected thread. */
3159 switch_to_thread (cur_thr);
3160
0b333c5e
PA
3161 /* Tell the event loop to wait for it to stop. If the target
3162 supports asynchronous execution, it'll do this from within
3163 target_resume. */
362646f5 3164 if (!target_can_async_p ())
0b333c5e 3165 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3166}
c906108c
SS
3167\f
3168
3169/* Start remote-debugging of a machine over a serial link. */
96baa820 3170
c906108c 3171void
8621d6a9 3172start_remote (int from_tty)
c906108c 3173{
5b6d1e4f
PA
3174 inferior *inf = current_inferior ();
3175 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3176
1777feb0 3177 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3178 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3179 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3180 nothing is returned (instead of just blocking). Because of this,
3181 targets expecting an immediate response need to, internally, set
3182 things up so that the target_wait() is forced to eventually
1777feb0 3183 timeout. */
6426a772
JM
3184 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3185 differentiate to its caller what the state of the target is after
3186 the initial open has been performed. Here we're assuming that
3187 the target has stopped. It should be possible to eventually have
3188 target_open() return to the caller an indication that the target
3189 is currently running and GDB state should be set to the same as
1777feb0 3190 for an async run. */
5b6d1e4f 3191 wait_for_inferior (inf);
8621d6a9
DJ
3192
3193 /* Now that the inferior has stopped, do any bookkeeping like
3194 loading shared libraries. We want to do this before normal_stop,
3195 so that the displayed frame is up to date. */
8b88a78e 3196 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3197
6426a772 3198 normal_stop ();
c906108c
SS
3199}
3200
3201/* Initialize static vars when a new inferior begins. */
3202
3203void
96baa820 3204init_wait_for_inferior (void)
c906108c
SS
3205{
3206 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3207
c906108c
SS
3208 breakpoint_init_inferior (inf_starting);
3209
70509625 3210 clear_proceed_status (0);
9f976b41 3211
ab1ddbcf 3212 nullify_last_target_wait_ptid ();
237fc4c9 3213
842951eb 3214 previous_inferior_ptid = inferior_ptid;
c906108c 3215}
237fc4c9 3216
c906108c 3217\f
488f131b 3218
ec9499be 3219static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3220
568d6575
UW
3221static void handle_step_into_function (struct gdbarch *gdbarch,
3222 struct execution_control_state *ecs);
3223static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3224 struct execution_control_state *ecs);
4f5d7f63 3225static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3226static void check_exception_resume (struct execution_control_state *,
28106bc2 3227 struct frame_info *);
611c83ae 3228
bdc36728 3229static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3230static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3231static void keep_going (struct execution_control_state *ecs);
94c57d6a 3232static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3233static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3234
252fbfc8
PA
3235/* This function is attached as a "thread_stop_requested" observer.
3236 Cleanup local state that assumed the PTID was to be resumed, and
3237 report the stop to the frontend. */
3238
2c0b251b 3239static void
252fbfc8
PA
3240infrun_thread_stop_requested (ptid_t ptid)
3241{
5b6d1e4f
PA
3242 process_stratum_target *curr_target = current_inferior ()->process_target ();
3243
c65d6b55
PA
3244 /* PTID was requested to stop. If the thread was already stopped,
3245 but the user/frontend doesn't know about that yet (e.g., the
3246 thread had been temporarily paused for some step-over), set up
3247 for reporting the stop now. */
5b6d1e4f 3248 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3249 {
3250 if (tp->state != THREAD_RUNNING)
3251 continue;
3252 if (tp->executing)
3253 continue;
c65d6b55 3254
08036331
PA
3255 /* Remove matching threads from the step-over queue, so
3256 start_step_over doesn't try to resume them
3257 automatically. */
3258 if (thread_is_in_step_over_chain (tp))
bb88694d 3259 global_thread_step_over_chain_remove (tp);
c65d6b55 3260
08036331
PA
3261 /* If the thread is stopped, but the user/frontend doesn't
3262 know about that yet, queue a pending event, as if the
3263 thread had just stopped now. Unless the thread already had
3264 a pending event. */
3265 if (!tp->suspend.waitstatus_pending_p)
3266 {
3267 tp->suspend.waitstatus_pending_p = 1;
3268 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3269 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3270 }
c65d6b55 3271
08036331
PA
3272 /* Clear the inline-frame state, since we're re-processing the
3273 stop. */
5b6d1e4f 3274 clear_inline_frame_state (tp);
c65d6b55 3275
08036331
PA
3276 /* If this thread was paused because some other thread was
3277 doing an inline-step over, let that finish first. Once
3278 that happens, we'll restart all threads and consume pending
3279 stop events then. */
3280 if (step_over_info_valid_p ())
3281 continue;
3282
3283 /* Otherwise we can process the (new) pending event now. Set
3284 it so this pending event is considered by
3285 do_target_wait. */
719546c4 3286 tp->resumed = true;
08036331 3287 }
252fbfc8
PA
3288}
3289
a07daef3
PA
3290static void
3291infrun_thread_thread_exit (struct thread_info *tp, int silent)
3292{
5b6d1e4f
PA
3293 if (target_last_proc_target == tp->inf->process_target ()
3294 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3295 nullify_last_target_wait_ptid ();
3296}
3297
0cbcdb96
PA
3298/* Delete the step resume, single-step and longjmp/exception resume
3299 breakpoints of TP. */
4e1c45ea 3300
0cbcdb96
PA
3301static void
3302delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3303{
0cbcdb96
PA
3304 delete_step_resume_breakpoint (tp);
3305 delete_exception_resume_breakpoint (tp);
34b7e8a6 3306 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3307}
3308
0cbcdb96
PA
3309/* If the target still has execution, call FUNC for each thread that
3310 just stopped. In all-stop, that's all the non-exited threads; in
3311 non-stop, that's the current thread, only. */
3312
3313typedef void (*for_each_just_stopped_thread_callback_func)
3314 (struct thread_info *tp);
4e1c45ea
PA
3315
3316static void
0cbcdb96 3317for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3318{
d7e15655 3319 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3320 return;
3321
fbea99ea 3322 if (target_is_non_stop_p ())
4e1c45ea 3323 {
0cbcdb96
PA
3324 /* If in non-stop mode, only the current thread stopped. */
3325 func (inferior_thread ());
4e1c45ea
PA
3326 }
3327 else
0cbcdb96 3328 {
0cbcdb96 3329 /* In all-stop mode, all threads have stopped. */
08036331
PA
3330 for (thread_info *tp : all_non_exited_threads ())
3331 func (tp);
0cbcdb96
PA
3332 }
3333}
3334
3335/* Delete the step resume and longjmp/exception resume breakpoints of
3336 the threads that just stopped. */
3337
3338static void
3339delete_just_stopped_threads_infrun_breakpoints (void)
3340{
3341 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3342}
3343
3344/* Delete the single-step breakpoints of the threads that just
3345 stopped. */
7c16b83e 3346
34b7e8a6
PA
3347static void
3348delete_just_stopped_threads_single_step_breakpoints (void)
3349{
3350 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3351}
3352
221e1a37 3353/* See infrun.h. */
223698f8 3354
221e1a37 3355void
223698f8
DE
3356print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3357 const struct target_waitstatus *ws)
3358{
23fdd69e 3359 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3360 string_file stb;
223698f8
DE
3361
3362 /* The text is split over several lines because it was getting too long.
3363 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3364 output as a unit; we want only one timestamp printed if debug_timestamp
3365 is set. */
3366
d7e74731 3367 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3368 waiton_ptid.pid (),
e38504b3 3369 waiton_ptid.lwp (),
cc6bcb54 3370 waiton_ptid.tid ());
e99b03dc 3371 if (waiton_ptid.pid () != -1)
a068643d 3372 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3373 stb.printf (", status) =\n");
3374 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3375 result_ptid.pid (),
e38504b3 3376 result_ptid.lwp (),
cc6bcb54 3377 result_ptid.tid (),
a068643d 3378 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3379 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3380
3381 /* This uses %s in part to handle %'s in the text, but also to avoid
3382 a gcc error: the format attribute requires a string literal. */
d7e74731 3383 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3384}
3385
372316f1
PA
3386/* Select a thread at random, out of those which are resumed and have
3387 had events. */
3388
3389static struct thread_info *
5b6d1e4f 3390random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3391{
372316f1 3392 int num_events = 0;
08036331 3393
5b6d1e4f 3394 auto has_event = [&] (thread_info *tp)
08036331 3395 {
5b6d1e4f
PA
3396 return (tp->ptid.matches (waiton_ptid)
3397 && tp->resumed
08036331
PA
3398 && tp->suspend.waitstatus_pending_p);
3399 };
372316f1
PA
3400
3401 /* First see how many events we have. Count only resumed threads
3402 that have an event pending. */
5b6d1e4f 3403 for (thread_info *tp : inf->non_exited_threads ())
08036331 3404 if (has_event (tp))
372316f1
PA
3405 num_events++;
3406
3407 if (num_events == 0)
3408 return NULL;
3409
3410 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3411 int random_selector = (int) ((num_events * (double) rand ())
3412 / (RAND_MAX + 1.0));
372316f1 3413
4100594e
SM
3414 if (num_events > 1)
3415 infrun_log_debug ("Found %d events, selecting #%d",
3416 num_events, random_selector);
372316f1
PA
3417
3418 /* Select the Nth thread that has had an event. */
5b6d1e4f 3419 for (thread_info *tp : inf->non_exited_threads ())
08036331 3420 if (has_event (tp))
372316f1 3421 if (random_selector-- == 0)
08036331 3422 return tp;
372316f1 3423
08036331 3424 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3425}
3426
3427/* Wrapper for target_wait that first checks whether threads have
3428 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3429 more events. INF is the inferior we're using to call target_wait
3430 on. */
372316f1
PA
3431
3432static ptid_t
5b6d1e4f
PA
3433do_target_wait_1 (inferior *inf, ptid_t ptid,
3434 target_waitstatus *status, int options)
372316f1
PA
3435{
3436 ptid_t event_ptid;
3437 struct thread_info *tp;
3438
24ed6739
AB
3439 /* We know that we are looking for an event in the target of inferior
3440 INF, but we don't know which thread the event might come from. As
3441 such we want to make sure that INFERIOR_PTID is reset so that none of
3442 the wait code relies on it - doing so is always a mistake. */
3443 switch_to_inferior_no_thread (inf);
3444
372316f1
PA
3445 /* First check if there is a resumed thread with a wait status
3446 pending. */
d7e15655 3447 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3448 {
5b6d1e4f 3449 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3450 }
3451 else
3452 {
4100594e
SM
3453 infrun_log_debug ("Waiting for specific thread %s.",
3454 target_pid_to_str (ptid).c_str ());
372316f1
PA
3455
3456 /* We have a specific thread to check. */
5b6d1e4f 3457 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3458 gdb_assert (tp != NULL);
3459 if (!tp->suspend.waitstatus_pending_p)
3460 tp = NULL;
3461 }
3462
3463 if (tp != NULL
3464 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3465 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3466 {
00431a78 3467 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3468 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3469 CORE_ADDR pc;
3470 int discard = 0;
3471
3472 pc = regcache_read_pc (regcache);
3473
3474 if (pc != tp->suspend.stop_pc)
3475 {
4100594e
SM
3476 infrun_log_debug ("PC of %s changed. was=%s, now=%s",
3477 target_pid_to_str (tp->ptid).c_str (),
3478 paddress (gdbarch, tp->suspend.stop_pc),
3479 paddress (gdbarch, pc));
372316f1
PA
3480 discard = 1;
3481 }
a01bda52 3482 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1 3483 {
4100594e
SM
3484 infrun_log_debug ("previous breakpoint of %s, at %s gone",
3485 target_pid_to_str (tp->ptid).c_str (),
3486 paddress (gdbarch, pc));
372316f1
PA
3487
3488 discard = 1;
3489 }
3490
3491 if (discard)
3492 {
4100594e
SM
3493 infrun_log_debug ("pending event of %s cancelled.",
3494 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3495
3496 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3497 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3498 }
3499 }
3500
3501 if (tp != NULL)
3502 {
4100594e
SM
3503 infrun_log_debug ("Using pending wait status %s for %s.",
3504 target_waitstatus_to_string
3505 (&tp->suspend.waitstatus).c_str (),
3506 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3507
3508 /* Now that we've selected our final event LWP, un-adjust its PC
3509 if it was a software breakpoint (and the target doesn't
3510 always adjust the PC itself). */
3511 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3512 && !target_supports_stopped_by_sw_breakpoint ())
3513 {
3514 struct regcache *regcache;
3515 struct gdbarch *gdbarch;
3516 int decr_pc;
3517
00431a78 3518 regcache = get_thread_regcache (tp);
ac7936df 3519 gdbarch = regcache->arch ();
372316f1
PA
3520
3521 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3522 if (decr_pc != 0)
3523 {
3524 CORE_ADDR pc;
3525
3526 pc = regcache_read_pc (regcache);
3527 regcache_write_pc (regcache, pc + decr_pc);
3528 }
3529 }
3530
3531 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3532 *status = tp->suspend.waitstatus;
3533 tp->suspend.waitstatus_pending_p = 0;
3534
3535 /* Wake up the event loop again, until all pending events are
3536 processed. */
3537 if (target_is_async_p ())
3538 mark_async_event_handler (infrun_async_inferior_event_token);
3539 return tp->ptid;
3540 }
3541
3542 /* But if we don't find one, we'll have to wait. */
3543
3544 if (deprecated_target_wait_hook)
3545 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3546 else
3547 event_ptid = target_wait (ptid, status, options);
3548
3549 return event_ptid;
3550}
3551
5b6d1e4f
PA
3552/* Returns true if INF has any resumed thread with a status
3553 pending. */
3554
3555static bool
3556threads_are_resumed_pending_p (inferior *inf)
3557{
3558 for (thread_info *tp : inf->non_exited_threads ())
3559 if (tp->resumed
3560 && tp->suspend.waitstatus_pending_p)
3561 return true;
3562
3563 return false;
3564}
3565
3566/* Wrapper for target_wait that first checks whether threads have
3567 pending statuses to report before actually asking the target for
3568 more events. Polls for events from all inferiors/targets. */
3569
3570static bool
3571do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3572{
3573 int num_inferiors = 0;
3574 int random_selector;
3575
3576 /* For fairness, we pick the first inferior/target to poll at
3577 random, and then continue polling the rest of the inferior list
3578 starting from that one in a circular fashion until the whole list
3579 is polled once. */
3580
3581 auto inferior_matches = [&wait_ptid] (inferior *inf)
3582 {
3583 return (inf->process_target () != NULL
3584 && (threads_are_executing (inf->process_target ())
3585 || threads_are_resumed_pending_p (inf))
3586 && ptid_t (inf->pid).matches (wait_ptid));
3587 };
3588
3589 /* First see how many resumed inferiors we have. */
3590 for (inferior *inf : all_inferiors ())
3591 if (inferior_matches (inf))
3592 num_inferiors++;
3593
3594 if (num_inferiors == 0)
3595 {
3596 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3597 return false;
3598 }
3599
3600 /* Now randomly pick an inferior out of those that were resumed. */
3601 random_selector = (int)
3602 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3603
4100594e
SM
3604 if (num_inferiors > 1)
3605 infrun_log_debug ("Found %d inferiors, starting at #%d",
3606 num_inferiors, random_selector);
5b6d1e4f
PA
3607
3608 /* Select the Nth inferior that was resumed. */
3609
3610 inferior *selected = nullptr;
3611
3612 for (inferior *inf : all_inferiors ())
3613 if (inferior_matches (inf))
3614 if (random_selector-- == 0)
3615 {
3616 selected = inf;
3617 break;
3618 }
3619
3620 /* Now poll for events out of each of the resumed inferior's
3621 targets, starting from the selected one. */
3622
3623 auto do_wait = [&] (inferior *inf)
3624 {
5b6d1e4f
PA
3625 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3626 ecs->target = inf->process_target ();
3627 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3628 };
3629
3630 /* Needed in all-stop+target-non-stop mode, because we end up here
3631 spuriously after the target is all stopped and we've already
3632 reported the stop to the user, polling for events. */
3633 scoped_restore_current_thread restore_thread;
3634
3635 int inf_num = selected->num;
3636 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3637 if (inferior_matches (inf))
3638 if (do_wait (inf))
3639 return true;
3640
3641 for (inferior *inf = inferior_list;
3642 inf != NULL && inf->num < inf_num;
3643 inf = inf->next)
3644 if (inferior_matches (inf))
3645 if (do_wait (inf))
3646 return true;
3647
3648 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3649 return false;
3650}
3651
24291992
PA
3652/* Prepare and stabilize the inferior for detaching it. E.g.,
3653 detaching while a thread is displaced stepping is a recipe for
3654 crashing it, as nothing would readjust the PC out of the scratch
3655 pad. */
3656
3657void
3658prepare_for_detach (void)
3659{
3660 struct inferior *inf = current_inferior ();
f2907e49 3661 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3662
e088209c 3663 // displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3664
3665 /* Is any thread of this process displaced stepping? If not,
3666 there's nothing else to do. */
e088209c 3667 if (displaced_step_in_progress (inf))
24291992
PA
3668 return;
3669
4100594e 3670 infrun_log_debug ("displaced-stepping in-process while detaching");
24291992 3671
9bcb1f16 3672 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3673
e088209c
SM
3674 // FIXME
3675 while (false)
24291992 3676 {
24291992
PA
3677 struct execution_control_state ecss;
3678 struct execution_control_state *ecs;
3679
3680 ecs = &ecss;
3681 memset (ecs, 0, sizeof (*ecs));
3682
3683 overlay_cache_invalid = 1;
f15cb84a
YQ
3684 /* Flush target cache before starting to handle each event.
3685 Target was running and cache could be stale. This is just a
3686 heuristic. Running threads may modify target memory, but we
3687 don't get any event. */
3688 target_dcache_invalidate ();
24291992 3689
5b6d1e4f 3690 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3691
3692 if (debug_infrun)
3693 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3694
3695 /* If an error happens while handling the event, propagate GDB's
3696 knowledge of the executing state to the frontend/user running
3697 state. */
5b6d1e4f
PA
3698 scoped_finish_thread_state finish_state (inf->process_target (),
3699 minus_one_ptid);
24291992
PA
3700
3701 /* Now figure out what to do with the result of the result. */
3702 handle_inferior_event (ecs);
3703
3704 /* No error, don't finish the state yet. */
731f534f 3705 finish_state.release ();
24291992
PA
3706
3707 /* Breakpoints and watchpoints are not installed on the target
3708 at this point, and signals are passed directly to the
3709 inferior, so this must mean the process is gone. */
3710 if (!ecs->wait_some_more)
3711 {
9bcb1f16 3712 restore_detaching.release ();
24291992
PA
3713 error (_("Program exited while detaching"));
3714 }
3715 }
3716
9bcb1f16 3717 restore_detaching.release ();
24291992
PA
3718}
3719
cd0fc7c3 3720/* Wait for control to return from inferior to debugger.
ae123ec6 3721
cd0fc7c3
SS
3722 If inferior gets a signal, we may decide to start it up again
3723 instead of returning. That is why there is a loop in this function.
3724 When this function actually returns it means the inferior
3725 should be left stopped and GDB should read more commands. */
3726
5b6d1e4f
PA
3727static void
3728wait_for_inferior (inferior *inf)
cd0fc7c3 3729{
4100594e 3730 infrun_log_debug ("wait_for_inferior ()");
527159b7 3731
4c41382a 3732 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3733
e6f5c25b
PA
3734 /* If an error happens while handling the event, propagate GDB's
3735 knowledge of the executing state to the frontend/user running
3736 state. */
5b6d1e4f
PA
3737 scoped_finish_thread_state finish_state
3738 (inf->process_target (), minus_one_ptid);
e6f5c25b 3739
c906108c
SS
3740 while (1)
3741 {
ae25568b
PA
3742 struct execution_control_state ecss;
3743 struct execution_control_state *ecs = &ecss;
29f49a6a 3744
ae25568b
PA
3745 memset (ecs, 0, sizeof (*ecs));
3746
ec9499be 3747 overlay_cache_invalid = 1;
ec9499be 3748
f15cb84a
YQ
3749 /* Flush target cache before starting to handle each event.
3750 Target was running and cache could be stale. This is just a
3751 heuristic. Running threads may modify target memory, but we
3752 don't get any event. */
3753 target_dcache_invalidate ();
3754
5b6d1e4f
PA
3755 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3756 ecs->target = inf->process_target ();
c906108c 3757
f00150c9 3758 if (debug_infrun)
5b6d1e4f 3759 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3760
cd0fc7c3
SS
3761 /* Now figure out what to do with the result of the result. */
3762 handle_inferior_event (ecs);
c906108c 3763
cd0fc7c3
SS
3764 if (!ecs->wait_some_more)
3765 break;
3766 }
4e1c45ea 3767
e6f5c25b 3768 /* No error, don't finish the state yet. */
731f534f 3769 finish_state.release ();
cd0fc7c3 3770}
c906108c 3771
d3d4baed
PA
3772/* Cleanup that reinstalls the readline callback handler, if the
3773 target is running in the background. If while handling the target
3774 event something triggered a secondary prompt, like e.g., a
3775 pagination prompt, we'll have removed the callback handler (see
3776 gdb_readline_wrapper_line). Need to do this as we go back to the
3777 event loop, ready to process further input. Note this has no
3778 effect if the handler hasn't actually been removed, because calling
3779 rl_callback_handler_install resets the line buffer, thus losing
3780 input. */
3781
3782static void
d238133d 3783reinstall_readline_callback_handler_cleanup ()
d3d4baed 3784{
3b12939d
PA
3785 struct ui *ui = current_ui;
3786
3787 if (!ui->async)
6c400b59
PA
3788 {
3789 /* We're not going back to the top level event loop yet. Don't
3790 install the readline callback, as it'd prep the terminal,
3791 readline-style (raw, noecho) (e.g., --batch). We'll install
3792 it the next time the prompt is displayed, when we're ready
3793 for input. */
3794 return;
3795 }
3796
3b12939d 3797 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3798 gdb_rl_callback_handler_reinstall ();
3799}
3800
243a9253
PA
3801/* Clean up the FSMs of threads that are now stopped. In non-stop,
3802 that's just the event thread. In all-stop, that's all threads. */
3803
3804static void
3805clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3806{
08036331
PA
3807 if (ecs->event_thread != NULL
3808 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3809 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3810
3811 if (!non_stop)
3812 {
08036331 3813 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3814 {
3815 if (thr->thread_fsm == NULL)
3816 continue;
3817 if (thr == ecs->event_thread)
3818 continue;
3819
00431a78 3820 switch_to_thread (thr);
46e3ed7f 3821 thr->thread_fsm->clean_up (thr);
243a9253
PA
3822 }
3823
3824 if (ecs->event_thread != NULL)
00431a78 3825 switch_to_thread (ecs->event_thread);
243a9253
PA
3826 }
3827}
3828
3b12939d
PA
3829/* Helper for all_uis_check_sync_execution_done that works on the
3830 current UI. */
3831
3832static void
3833check_curr_ui_sync_execution_done (void)
3834{
3835 struct ui *ui = current_ui;
3836
3837 if (ui->prompt_state == PROMPT_NEEDED
3838 && ui->async
3839 && !gdb_in_secondary_prompt_p (ui))
3840 {
223ffa71 3841 target_terminal::ours ();
76727919 3842 gdb::observers::sync_execution_done.notify ();
3eb7562a 3843 ui_register_input_event_handler (ui);
3b12939d
PA
3844 }
3845}
3846
3847/* See infrun.h. */
3848
3849void
3850all_uis_check_sync_execution_done (void)
3851{
0e454242 3852 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3853 {
3854 check_curr_ui_sync_execution_done ();
3855 }
3856}
3857
a8836c93
PA
3858/* See infrun.h. */
3859
3860void
3861all_uis_on_sync_execution_starting (void)
3862{
0e454242 3863 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3864 {
3865 if (current_ui->prompt_state == PROMPT_NEEDED)
3866 async_disable_stdin ();
3867 }
3868}
3869
1777feb0 3870/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3871 event loop whenever a change of state is detected on the file
1777feb0
MS
3872 descriptor corresponding to the target. It can be called more than
3873 once to complete a single execution command. In such cases we need
3874 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3875 that this function is called for a single execution command, then
3876 report to the user that the inferior has stopped, and do the
1777feb0 3877 necessary cleanups. */
43ff13b4
JM
3878
3879void
fba45db2 3880fetch_inferior_event (void *client_data)
43ff13b4 3881{
0d1e5fa7 3882 struct execution_control_state ecss;
a474d7c2 3883 struct execution_control_state *ecs = &ecss;
0f641c01 3884 int cmd_done = 0;
43ff13b4 3885
0d1e5fa7
PA
3886 memset (ecs, 0, sizeof (*ecs));
3887
c61db772
PA
3888 /* Events are always processed with the main UI as current UI. This
3889 way, warnings, debug output, etc. are always consistently sent to
3890 the main console. */
4b6749b9 3891 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3892
d3d4baed 3893 /* End up with readline processing input, if necessary. */
d238133d
TT
3894 {
3895 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3896
3897 /* We're handling a live event, so make sure we're doing live
3898 debugging. If we're looking at traceframes while the target is
3899 running, we're going to need to get back to that mode after
3900 handling the event. */
3901 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3902 if (non_stop)
3903 {
3904 maybe_restore_traceframe.emplace ();
3905 set_current_traceframe (-1);
3906 }
43ff13b4 3907
873657b9
PA
3908 /* The user/frontend should not notice a thread switch due to
3909 internal events. Make sure we revert to the user selected
3910 thread and frame after handling the event and running any
3911 breakpoint commands. */
3912 scoped_restore_current_thread restore_thread;
d238133d
TT
3913
3914 overlay_cache_invalid = 1;
3915 /* Flush target cache before starting to handle each event. Target
3916 was running and cache could be stale. This is just a heuristic.
3917 Running threads may modify target memory, but we don't get any
3918 event. */
3919 target_dcache_invalidate ();
3920
3921 scoped_restore save_exec_dir
3922 = make_scoped_restore (&execution_direction,
3923 target_execution_direction ());
3924
5b6d1e4f
PA
3925 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3926 return;
3927
3928 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3929
3930 /* Switch to the target that generated the event, so we can do
3931 target calls. Any inferior bound to the target will do, so we
3932 just switch to the first we find. */
3933 for (inferior *inf : all_inferiors (ecs->target))
3934 {
3935 switch_to_inferior_no_thread (inf);
3936 break;
3937 }
d238133d
TT
3938
3939 if (debug_infrun)
5b6d1e4f 3940 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
3941
3942 /* If an error happens while handling the event, propagate GDB's
3943 knowledge of the executing state to the frontend/user running
3944 state. */
3945 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 3946 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 3947
979a0d13 3948 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3949 still for the thread which has thrown the exception. */
3950 auto defer_bpstat_clear
3951 = make_scope_exit (bpstat_clear_actions);
3952 auto defer_delete_threads
3953 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3954
3955 /* Now figure out what to do with the result of the result. */
3956 handle_inferior_event (ecs);
3957
3958 if (!ecs->wait_some_more)
3959 {
5b6d1e4f 3960 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
d238133d
TT
3961 int should_stop = 1;
3962 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3963
d238133d 3964 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3965
d238133d
TT
3966 if (thr != NULL)
3967 {
3968 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3969
d238133d 3970 if (thread_fsm != NULL)
46e3ed7f 3971 should_stop = thread_fsm->should_stop (thr);
d238133d 3972 }
243a9253 3973
d238133d
TT
3974 if (!should_stop)
3975 {
3976 keep_going (ecs);
3977 }
3978 else
3979 {
46e3ed7f 3980 bool should_notify_stop = true;
d238133d 3981 int proceeded = 0;
1840d81a 3982
d238133d 3983 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3984
d238133d 3985 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3986 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3987
d238133d
TT
3988 if (should_notify_stop)
3989 {
3990 /* We may not find an inferior if this was a process exit. */
3991 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3992 proceeded = normal_stop ();
3993 }
243a9253 3994
d238133d
TT
3995 if (!proceeded)
3996 {
3997 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3998 cmd_done = 1;
3999 }
873657b9
PA
4000
4001 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4002 previously selected thread is gone. We have two
4003 choices - switch to no thread selected, or restore the
4004 previously selected thread (now exited). We chose the
4005 later, just because that's what GDB used to do. After
4006 this, "info threads" says "The current thread <Thread
4007 ID 2> has terminated." instead of "No thread
4008 selected.". */
4009 if (!non_stop
4010 && cmd_done
4011 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4012 restore_thread.dont_restore ();
d238133d
TT
4013 }
4014 }
4f8d22e3 4015
d238133d
TT
4016 defer_delete_threads.release ();
4017 defer_bpstat_clear.release ();
29f49a6a 4018
d238133d
TT
4019 /* No error, don't finish the thread states yet. */
4020 finish_state.release ();
731f534f 4021
d238133d
TT
4022 /* This scope is used to ensure that readline callbacks are
4023 reinstalled here. */
4024 }
4f8d22e3 4025
3b12939d
PA
4026 /* If a UI was in sync execution mode, and now isn't, restore its
4027 prompt (a synchronous execution command has finished, and we're
4028 ready for input). */
4029 all_uis_check_sync_execution_done ();
0f641c01
PA
4030
4031 if (cmd_done
0f641c01 4032 && exec_done_display_p
00431a78
PA
4033 && (inferior_ptid == null_ptid
4034 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4035 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4036}
4037
29734269
SM
4038/* See infrun.h. */
4039
edb3359d 4040void
29734269
SM
4041set_step_info (thread_info *tp, struct frame_info *frame,
4042 struct symtab_and_line sal)
edb3359d 4043{
29734269
SM
4044 /* This can be removed once this function no longer implicitly relies on the
4045 inferior_ptid value. */
4046 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4047
16c381f0
JK
4048 tp->control.step_frame_id = get_frame_id (frame);
4049 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4050
4051 tp->current_symtab = sal.symtab;
4052 tp->current_line = sal.line;
4053}
4054
0d1e5fa7
PA
4055/* Clear context switchable stepping state. */
4056
4057void
4e1c45ea 4058init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4059{
7f5ef605 4060 tss->stepped_breakpoint = 0;
0d1e5fa7 4061 tss->stepping_over_breakpoint = 0;
963f9c80 4062 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4063 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4064}
4065
ab1ddbcf 4066/* See infrun.h. */
c32c64b7 4067
6efcd9a8 4068void
5b6d1e4f
PA
4069set_last_target_status (process_stratum_target *target, ptid_t ptid,
4070 target_waitstatus status)
c32c64b7 4071{
5b6d1e4f 4072 target_last_proc_target = target;
c32c64b7
DE
4073 target_last_wait_ptid = ptid;
4074 target_last_waitstatus = status;
4075}
4076
ab1ddbcf 4077/* See infrun.h. */
e02bc4cc
DS
4078
4079void
5b6d1e4f
PA
4080get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4081 target_waitstatus *status)
e02bc4cc 4082{
5b6d1e4f
PA
4083 if (target != nullptr)
4084 *target = target_last_proc_target;
ab1ddbcf
PA
4085 if (ptid != nullptr)
4086 *ptid = target_last_wait_ptid;
4087 if (status != nullptr)
4088 *status = target_last_waitstatus;
e02bc4cc
DS
4089}
4090
ab1ddbcf
PA
4091/* See infrun.h. */
4092
ac264b3b
MS
4093void
4094nullify_last_target_wait_ptid (void)
4095{
5b6d1e4f 4096 target_last_proc_target = nullptr;
ac264b3b 4097 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4098 target_last_waitstatus = {};
ac264b3b
MS
4099}
4100
dcf4fbde 4101/* Switch thread contexts. */
dd80620e
MS
4102
4103static void
00431a78 4104context_switch (execution_control_state *ecs)
dd80620e 4105{
4100594e 4106 if (ecs->ptid != inferior_ptid
5b6d1e4f
PA
4107 && (inferior_ptid == null_ptid
4108 || ecs->event_thread != inferior_thread ()))
fd48f117 4109 {
4100594e
SM
4110 infrun_log_debug ("Switching context from %s to %s",
4111 target_pid_to_str (inferior_ptid).c_str (),
4112 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4113 }
4114
00431a78 4115 switch_to_thread (ecs->event_thread);
dd80620e
MS
4116}
4117
d8dd4d5f
PA
4118/* If the target can't tell whether we've hit breakpoints
4119 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4120 check whether that could have been caused by a breakpoint. If so,
4121 adjust the PC, per gdbarch_decr_pc_after_break. */
4122
4fa8626c 4123static void
d8dd4d5f
PA
4124adjust_pc_after_break (struct thread_info *thread,
4125 struct target_waitstatus *ws)
4fa8626c 4126{
24a73cce
UW
4127 struct regcache *regcache;
4128 struct gdbarch *gdbarch;
118e6252 4129 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4130
4fa8626c
DJ
4131 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4132 we aren't, just return.
9709f61c
DJ
4133
4134 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4135 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4136 implemented by software breakpoints should be handled through the normal
4137 breakpoint layer.
8fb3e588 4138
4fa8626c
DJ
4139 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4140 different signals (SIGILL or SIGEMT for instance), but it is less
4141 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4142 gdbarch_decr_pc_after_break. I don't know any specific target that
4143 generates these signals at breakpoints (the code has been in GDB since at
4144 least 1992) so I can not guess how to handle them here.
8fb3e588 4145
e6cf7916
UW
4146 In earlier versions of GDB, a target with
4147 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4148 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4149 target with both of these set in GDB history, and it seems unlikely to be
4150 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4151
d8dd4d5f 4152 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4153 return;
4154
d8dd4d5f 4155 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4156 return;
4157
4058b839
PA
4158 /* In reverse execution, when a breakpoint is hit, the instruction
4159 under it has already been de-executed. The reported PC always
4160 points at the breakpoint address, so adjusting it further would
4161 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4162 architecture:
4163
4164 B1 0x08000000 : INSN1
4165 B2 0x08000001 : INSN2
4166 0x08000002 : INSN3
4167 PC -> 0x08000003 : INSN4
4168
4169 Say you're stopped at 0x08000003 as above. Reverse continuing
4170 from that point should hit B2 as below. Reading the PC when the
4171 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4172 been de-executed already.
4173
4174 B1 0x08000000 : INSN1
4175 B2 PC -> 0x08000001 : INSN2
4176 0x08000002 : INSN3
4177 0x08000003 : INSN4
4178
4179 We can't apply the same logic as for forward execution, because
4180 we would wrongly adjust the PC to 0x08000000, since there's a
4181 breakpoint at PC - 1. We'd then report a hit on B1, although
4182 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4183 behaviour. */
4184 if (execution_direction == EXEC_REVERSE)
4185 return;
4186
1cf4d951
PA
4187 /* If the target can tell whether the thread hit a SW breakpoint,
4188 trust it. Targets that can tell also adjust the PC
4189 themselves. */
4190 if (target_supports_stopped_by_sw_breakpoint ())
4191 return;
4192
4193 /* Note that relying on whether a breakpoint is planted in memory to
4194 determine this can fail. E.g,. the breakpoint could have been
4195 removed since. Or the thread could have been told to step an
4196 instruction the size of a breakpoint instruction, and only
4197 _after_ was a breakpoint inserted at its address. */
4198
24a73cce
UW
4199 /* If this target does not decrement the PC after breakpoints, then
4200 we have nothing to do. */
00431a78 4201 regcache = get_thread_regcache (thread);
ac7936df 4202 gdbarch = regcache->arch ();
118e6252 4203
527a273a 4204 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4205 if (decr_pc == 0)
24a73cce
UW
4206 return;
4207
8b86c959 4208 const address_space *aspace = regcache->aspace ();
6c95b8df 4209
8aad930b
AC
4210 /* Find the location where (if we've hit a breakpoint) the
4211 breakpoint would be. */
118e6252 4212 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4213
1cf4d951
PA
4214 /* If the target can't tell whether a software breakpoint triggered,
4215 fallback to figuring it out based on breakpoints we think were
4216 inserted in the target, and on whether the thread was stepped or
4217 continued. */
4218
1c5cfe86
PA
4219 /* Check whether there actually is a software breakpoint inserted at
4220 that location.
4221
4222 If in non-stop mode, a race condition is possible where we've
4223 removed a breakpoint, but stop events for that breakpoint were
4224 already queued and arrive later. To suppress those spurious
4225 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4226 and retire them after a number of stop events are reported. Note
4227 this is an heuristic and can thus get confused. The real fix is
4228 to get the "stopped by SW BP and needs adjustment" info out of
4229 the target/kernel (and thus never reach here; see above). */
6c95b8df 4230 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4231 || (target_is_non_stop_p ()
4232 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4233 {
07036511 4234 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4235
8213266a 4236 if (record_full_is_used ())
07036511
TT
4237 restore_operation_disable.emplace
4238 (record_full_gdb_operation_disable_set ());
96429cc8 4239
1c0fdd0e
UW
4240 /* When using hardware single-step, a SIGTRAP is reported for both
4241 a completed single-step and a software breakpoint. Need to
4242 differentiate between the two, as the latter needs adjusting
4243 but the former does not.
4244
4245 The SIGTRAP can be due to a completed hardware single-step only if
4246 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4247 - this thread is currently being stepped
4248
4249 If any of these events did not occur, we must have stopped due
4250 to hitting a software breakpoint, and have to back up to the
4251 breakpoint address.
4252
4253 As a special case, we could have hardware single-stepped a
4254 software breakpoint. In this case (prev_pc == breakpoint_pc),
4255 we also need to back up to the breakpoint address. */
4256
d8dd4d5f
PA
4257 if (thread_has_single_step_breakpoints_set (thread)
4258 || !currently_stepping (thread)
4259 || (thread->stepped_breakpoint
4260 && thread->prev_pc == breakpoint_pc))
515630c5 4261 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4262 }
4fa8626c
DJ
4263}
4264
edb3359d
DJ
4265static int
4266stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4267{
4268 for (frame = get_prev_frame (frame);
4269 frame != NULL;
4270 frame = get_prev_frame (frame))
4271 {
4272 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4273 return 1;
4274 if (get_frame_type (frame) != INLINE_FRAME)
4275 break;
4276 }
4277
4278 return 0;
4279}
4280
4a4c04f1
BE
4281/* Look for an inline frame that is marked for skip.
4282 If PREV_FRAME is TRUE start at the previous frame,
4283 otherwise start at the current frame. Stop at the
4284 first non-inline frame, or at the frame where the
4285 step started. */
4286
4287static bool
4288inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4289{
4290 struct frame_info *frame = get_current_frame ();
4291
4292 if (prev_frame)
4293 frame = get_prev_frame (frame);
4294
4295 for (; frame != NULL; frame = get_prev_frame (frame))
4296 {
4297 const char *fn = NULL;
4298 symtab_and_line sal;
4299 struct symbol *sym;
4300
4301 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4302 break;
4303 if (get_frame_type (frame) != INLINE_FRAME)
4304 break;
4305
4306 sal = find_frame_sal (frame);
4307 sym = get_frame_function (frame);
4308
4309 if (sym != NULL)
4310 fn = sym->print_name ();
4311
4312 if (sal.line != 0
4313 && function_name_is_marked_for_skip (fn, sal))
4314 return true;
4315 }
4316
4317 return false;
4318}
4319
c65d6b55
PA
4320/* If the event thread has the stop requested flag set, pretend it
4321 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4322 target_stop). */
4323
4324static bool
4325handle_stop_requested (struct execution_control_state *ecs)
4326{
4327 if (ecs->event_thread->stop_requested)
4328 {
4329 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4330 ecs->ws.value.sig = GDB_SIGNAL_0;
4331 handle_signal_stop (ecs);
4332 return true;
4333 }
4334 return false;
4335}
4336
a96d9b2e
SDJ
4337/* Auxiliary function that handles syscall entry/return events.
4338 It returns 1 if the inferior should keep going (and GDB
4339 should ignore the event), or 0 if the event deserves to be
4340 processed. */
ca2163eb 4341
a96d9b2e 4342static int
ca2163eb 4343handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4344{
ca2163eb 4345 struct regcache *regcache;
ca2163eb
PA
4346 int syscall_number;
4347
00431a78 4348 context_switch (ecs);
ca2163eb 4349
00431a78 4350 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4351 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4352 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4353
a96d9b2e
SDJ
4354 if (catch_syscall_enabled () > 0
4355 && catching_syscall_number (syscall_number) > 0)
4356 {
4100594e 4357 infrun_log_debug ("syscall number=%d", syscall_number);
a96d9b2e 4358
16c381f0 4359 ecs->event_thread->control.stop_bpstat
a01bda52 4360 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4361 ecs->event_thread->suspend.stop_pc,
4362 ecs->event_thread, &ecs->ws);
ab04a2af 4363
c65d6b55
PA
4364 if (handle_stop_requested (ecs))
4365 return 0;
4366
ce12b012 4367 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4368 {
4369 /* Catchpoint hit. */
ca2163eb
PA
4370 return 0;
4371 }
a96d9b2e 4372 }
ca2163eb 4373
c65d6b55
PA
4374 if (handle_stop_requested (ecs))
4375 return 0;
4376
ca2163eb 4377 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4378 keep_going (ecs);
4379 return 1;
a96d9b2e
SDJ
4380}
4381
7e324e48
GB
4382/* Lazily fill in the execution_control_state's stop_func_* fields. */
4383
4384static void
4385fill_in_stop_func (struct gdbarch *gdbarch,
4386 struct execution_control_state *ecs)
4387{
4388 if (!ecs->stop_func_filled_in)
4389 {
98a617f8
KB
4390 const block *block;
4391
7e324e48
GB
4392 /* Don't care about return value; stop_func_start and stop_func_name
4393 will both be 0 if it doesn't work. */
98a617f8
KB
4394 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4395 &ecs->stop_func_name,
4396 &ecs->stop_func_start,
4397 &ecs->stop_func_end,
4398 &block);
4399
4400 /* The call to find_pc_partial_function, above, will set
4401 stop_func_start and stop_func_end to the start and end
4402 of the range containing the stop pc. If this range
4403 contains the entry pc for the block (which is always the
4404 case for contiguous blocks), advance stop_func_start past
4405 the function's start offset and entrypoint. Note that
4406 stop_func_start is NOT advanced when in a range of a
4407 non-contiguous block that does not contain the entry pc. */
4408 if (block != nullptr
4409 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4410 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4411 {
4412 ecs->stop_func_start
4413 += gdbarch_deprecated_function_start_offset (gdbarch);
4414
4415 if (gdbarch_skip_entrypoint_p (gdbarch))
4416 ecs->stop_func_start
4417 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4418 }
591a12a1 4419
7e324e48
GB
4420 ecs->stop_func_filled_in = 1;
4421 }
4422}
4423
4f5d7f63 4424
00431a78 4425/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4426
4427static enum stop_kind
00431a78 4428get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4429{
5b6d1e4f 4430 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4431
4432 gdb_assert (inf != NULL);
4433 return inf->control.stop_soon;
4434}
4435
5b6d1e4f
PA
4436/* Poll for one event out of the current target. Store the resulting
4437 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4438
4439static ptid_t
5b6d1e4f 4440poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4441{
4442 ptid_t event_ptid;
372316f1
PA
4443
4444 overlay_cache_invalid = 1;
4445
4446 /* Flush target cache before starting to handle each event.
4447 Target was running and cache could be stale. This is just a
4448 heuristic. Running threads may modify target memory, but we
4449 don't get any event. */
4450 target_dcache_invalidate ();
4451
4452 if (deprecated_target_wait_hook)
5b6d1e4f 4453 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4454 else
5b6d1e4f 4455 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4456
4457 if (debug_infrun)
5b6d1e4f 4458 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4459
4460 return event_ptid;
4461}
4462
5b6d1e4f
PA
4463/* An event reported by wait_one. */
4464
4465struct wait_one_event
4466{
4467 /* The target the event came out of. */
4468 process_stratum_target *target;
4469
4470 /* The PTID the event was for. */
4471 ptid_t ptid;
4472
4473 /* The waitstatus. */
4474 target_waitstatus ws;
4475};
4476
4477/* Wait for one event out of any target. */
4478
4479static wait_one_event
4480wait_one ()
4481{
4482 while (1)
4483 {
4484 for (inferior *inf : all_inferiors ())
4485 {
4486 process_stratum_target *target = inf->process_target ();
4487 if (target == NULL
4488 || !target->is_async_p ()
4489 || !target->threads_executing)
4490 continue;
4491
4492 switch_to_inferior_no_thread (inf);
4493
4494 wait_one_event event;
4495 event.target = target;
4496 event.ptid = poll_one_curr_target (&event.ws);
4497
4498 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4499 {
4500 /* If nothing is resumed, remove the target from the
4501 event loop. */
4502 target_async (0);
4503 }
4504 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4505 return event;
4506 }
4507
4508 /* Block waiting for some event. */
4509
4510 fd_set readfds;
4511 int nfds = 0;
4512
4513 FD_ZERO (&readfds);
4514
4515 for (inferior *inf : all_inferiors ())
4516 {
4517 process_stratum_target *target = inf->process_target ();
4518 if (target == NULL
4519 || !target->is_async_p ()
4520 || !target->threads_executing)
4521 continue;
4522
4523 int fd = target->async_wait_fd ();
4524 FD_SET (fd, &readfds);
4525 if (nfds <= fd)
4526 nfds = fd + 1;
4527 }
4528
4529 if (nfds == 0)
4530 {
4531 /* No waitable targets left. All must be stopped. */
4532 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4533 }
4534
4535 QUIT;
4536
4537 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4538 if (numfds < 0)
4539 {
4540 if (errno == EINTR)
4541 continue;
4542 else
4543 perror_with_name ("interruptible_select");
4544 }
4545 }
4546}
4547
372316f1
PA
4548/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4549 instead of the current thread. */
4550#define THREAD_STOPPED_BY(REASON) \
4551static int \
4552thread_stopped_by_ ## REASON (ptid_t ptid) \
4553{ \
2989a365 4554 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4555 inferior_ptid = ptid; \
4556 \
2989a365 4557 return target_stopped_by_ ## REASON (); \
372316f1
PA
4558}
4559
4560/* Generate thread_stopped_by_watchpoint. */
4561THREAD_STOPPED_BY (watchpoint)
4562/* Generate thread_stopped_by_sw_breakpoint. */
4563THREAD_STOPPED_BY (sw_breakpoint)
4564/* Generate thread_stopped_by_hw_breakpoint. */
4565THREAD_STOPPED_BY (hw_breakpoint)
4566
372316f1
PA
4567/* Save the thread's event and stop reason to process it later. */
4568
4569static void
5b6d1e4f 4570save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4571{
4100594e
SM
4572 infrun_log_debug ("saving status %s for %d.%ld.%ld",
4573 target_waitstatus_to_string (ws).c_str (),
4574 tp->ptid.pid (),
4575 tp->ptid.lwp (),
4576 tp->ptid.tid ());
372316f1
PA
4577
4578 /* Record for later. */
4579 tp->suspend.waitstatus = *ws;
4580 tp->suspend.waitstatus_pending_p = 1;
4581
00431a78 4582 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4583 const address_space *aspace = regcache->aspace ();
372316f1
PA
4584
4585 if (ws->kind == TARGET_WAITKIND_STOPPED
4586 && ws->value.sig == GDB_SIGNAL_TRAP)
4587 {
4588 CORE_ADDR pc = regcache_read_pc (regcache);
4589
4590 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4591
4592 if (thread_stopped_by_watchpoint (tp->ptid))
4593 {
4594 tp->suspend.stop_reason
4595 = TARGET_STOPPED_BY_WATCHPOINT;
4596 }
4597 else if (target_supports_stopped_by_sw_breakpoint ()
4598 && thread_stopped_by_sw_breakpoint (tp->ptid))
4599 {
4600 tp->suspend.stop_reason
4601 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4602 }
4603 else if (target_supports_stopped_by_hw_breakpoint ()
4604 && thread_stopped_by_hw_breakpoint (tp->ptid))
4605 {
4606 tp->suspend.stop_reason
4607 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4608 }
4609 else if (!target_supports_stopped_by_hw_breakpoint ()
4610 && hardware_breakpoint_inserted_here_p (aspace,
4611 pc))
4612 {
4613 tp->suspend.stop_reason
4614 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4615 }
4616 else if (!target_supports_stopped_by_sw_breakpoint ()
4617 && software_breakpoint_inserted_here_p (aspace,
4618 pc))
4619 {
4620 tp->suspend.stop_reason
4621 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4622 }
4623 else if (!thread_has_single_step_breakpoints_set (tp)
4624 && currently_stepping (tp))
4625 {
4626 tp->suspend.stop_reason
4627 = TARGET_STOPPED_BY_SINGLE_STEP;
4628 }
4629 }
4630}
4631
293b3ebc
TBA
4632/* Mark the non-executing threads accordingly. In all-stop, all
4633 threads of all processes are stopped when we get any event
4634 reported. In non-stop mode, only the event thread stops. */
4635
4636static void
4637mark_non_executing_threads (process_stratum_target *target,
4638 ptid_t event_ptid,
4639 struct target_waitstatus ws)
4640{
4641 ptid_t mark_ptid;
4642
4643 if (!target_is_non_stop_p ())
4644 mark_ptid = minus_one_ptid;
4645 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4646 || ws.kind == TARGET_WAITKIND_EXITED)
4647 {
4648 /* If we're handling a process exit in non-stop mode, even
4649 though threads haven't been deleted yet, one would think
4650 that there is nothing to do, as threads of the dead process
4651 will be soon deleted, and threads of any other process were
4652 left running. However, on some targets, threads survive a
4653 process exit event. E.g., for the "checkpoint" command,
4654 when the current checkpoint/fork exits, linux-fork.c
4655 automatically switches to another fork from within
4656 target_mourn_inferior, by associating the same
4657 inferior/thread to another fork. We haven't mourned yet at
4658 this point, but we must mark any threads left in the
4659 process as not-executing so that finish_thread_state marks
4660 them stopped (in the user's perspective) if/when we present
4661 the stop to the user. */
4662 mark_ptid = ptid_t (event_ptid.pid ());
4663 }
4664 else
4665 mark_ptid = event_ptid;
4666
4667 set_executing (target, mark_ptid, false);
4668
4669 /* Likewise the resumed flag. */
4670 set_resumed (target, mark_ptid, false);
4671}
4672
6efcd9a8 4673/* See infrun.h. */
372316f1 4674
6efcd9a8 4675void
372316f1
PA
4676stop_all_threads (void)
4677{
4678 /* We may need multiple passes to discover all threads. */
4679 int pass;
4680 int iterations = 0;
372316f1 4681
53cccef1 4682 gdb_assert (exists_non_stop_target ());
372316f1 4683
4100594e 4684 infrun_log_debug ("stop_all_threads");
372316f1 4685
00431a78 4686 scoped_restore_current_thread restore_thread;
372316f1 4687
6ad82919
TBA
4688 /* Enable thread events of all targets. */
4689 for (auto *target : all_non_exited_process_targets ())
4690 {
4691 switch_to_target_no_thread (target);
4692 target_thread_events (true);
4693 }
4694
4695 SCOPE_EXIT
4696 {
4697 /* Disable thread events of all targets. */
4698 for (auto *target : all_non_exited_process_targets ())
4699 {
4700 switch_to_target_no_thread (target);
4701 target_thread_events (false);
4702 }
4703
4100594e
SM
4704
4705 infrun_log_debug ("stop_all_threads done");
6ad82919 4706 };
65706a29 4707
372316f1
PA
4708 /* Request threads to stop, and then wait for the stops. Because
4709 threads we already know about can spawn more threads while we're
4710 trying to stop them, and we only learn about new threads when we
4711 update the thread list, do this in a loop, and keep iterating
4712 until two passes find no threads that need to be stopped. */
4713 for (pass = 0; pass < 2; pass++, iterations++)
4714 {
4100594e
SM
4715 infrun_log_debug ("stop_all_threads, pass=%d, iterations=%d",
4716 pass, iterations);
372316f1
PA
4717 while (1)
4718 {
29d6859f 4719 int waits_needed = 0;
372316f1 4720
a05575d3
TBA
4721 for (auto *target : all_non_exited_process_targets ())
4722 {
4723 switch_to_target_no_thread (target);
4724 update_thread_list ();
4725 }
372316f1
PA
4726
4727 /* Go through all threads looking for threads that we need
4728 to tell the target to stop. */
08036331 4729 for (thread_info *t : all_non_exited_threads ())
372316f1 4730 {
53cccef1
TBA
4731 /* For a single-target setting with an all-stop target,
4732 we would not even arrive here. For a multi-target
4733 setting, until GDB is able to handle a mixture of
4734 all-stop and non-stop targets, simply skip all-stop
4735 targets' threads. This should be fine due to the
4736 protection of 'check_multi_target_resumption'. */
4737
4738 switch_to_thread_no_regs (t);
4739 if (!target_is_non_stop_p ())
4740 continue;
4741
372316f1
PA
4742 if (t->executing)
4743 {
4744 /* If already stopping, don't request a stop again.
4745 We just haven't seen the notification yet. */
4746 if (!t->stop_requested)
4747 {
4100594e
SM
4748 infrun_log_debug (" %s executing, need stop",
4749 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4750 target_stop (t->ptid);
4751 t->stop_requested = 1;
4752 }
4753 else
4754 {
4100594e
SM
4755 infrun_log_debug (" %s executing, already stopping",
4756 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4757 }
4758
4759 if (t->stop_requested)
29d6859f 4760 waits_needed++;
372316f1
PA
4761 }
4762 else
4763 {
4100594e
SM
4764 infrun_log_debug (" %s not executing",
4765 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4766
4767 /* The thread may be not executing, but still be
4768 resumed with a pending status to process. */
719546c4 4769 t->resumed = false;
372316f1
PA
4770 }
4771 }
4772
29d6859f 4773 if (waits_needed == 0)
372316f1
PA
4774 break;
4775
4776 /* If we find new threads on the second iteration, restart
4777 over. We want to see two iterations in a row with all
4778 threads stopped. */
4779 if (pass > 0)
4780 pass = -1;
4781
29d6859f 4782 for (int i = 0; i < waits_needed; i++)
c29705b7 4783 {
29d6859f 4784 wait_one_event event = wait_one ();
a05575d3 4785
4100594e
SM
4786 infrun_log_debug ("%s %s\n",
4787 target_waitstatus_to_string (&event.ws).c_str (),
4788 target_pid_to_str (event.ptid).c_str ());
a05575d3 4789
29d6859f 4790 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
a05575d3 4791 {
29d6859f
LM
4792 /* All resumed threads exited. */
4793 break;
a05575d3 4794 }
29d6859f
LM
4795 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4796 || event.ws.kind == TARGET_WAITKIND_EXITED
4797 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
6efcd9a8 4798 {
29d6859f 4799 /* One thread/process exited/signalled. */
6efcd9a8 4800
29d6859f 4801 thread_info *t = nullptr;
372316f1 4802
29d6859f
LM
4803 /* The target may have reported just a pid. If so, try
4804 the first non-exited thread. */
4805 if (event.ptid.is_pid ())
372316f1 4806 {
29d6859f
LM
4807 int pid = event.ptid.pid ();
4808 inferior *inf = find_inferior_pid (event.target, pid);
4809 for (thread_info *tp : inf->non_exited_threads ())
372316f1 4810 {
29d6859f
LM
4811 t = tp;
4812 break;
372316f1 4813 }
29d6859f
LM
4814
4815 /* If there is no available thread, the event would
4816 have to be appended to a per-inferior event list,
4817 which does not exist (and if it did, we'd have
4818 to adjust run control command to be able to
4819 resume such an inferior). We assert here instead
4820 of going into an infinite loop. */
4821 gdb_assert (t != nullptr);
4822
4100594e
SM
4823 infrun_log_debug ("using %s\n",
4824 target_pid_to_str (t->ptid).c_str ());
29d6859f
LM
4825 }
4826 else
4827 {
4828 t = find_thread_ptid (event.target, event.ptid);
4829 /* Check if this is the first time we see this thread.
4830 Don't bother adding if it individually exited. */
4831 if (t == nullptr
4832 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4833 t = add_thread (event.target, event.ptid);
4834 }
4835
4836 if (t != nullptr)
4837 {
4838 /* Set the threads as non-executing to avoid
4839 another stop attempt on them. */
4840 switch_to_thread_no_regs (t);
4841 mark_non_executing_threads (event.target, event.ptid,
4842 event.ws);
4843 save_waitstatus (t, &event.ws);
4844 t->stop_requested = false;
372316f1
PA
4845 }
4846 }
4847 else
4848 {
29d6859f
LM
4849 thread_info *t = find_thread_ptid (event.target, event.ptid);
4850 if (t == NULL)
4851 t = add_thread (event.target, event.ptid);
372316f1 4852
29d6859f
LM
4853 t->stop_requested = 0;
4854 t->executing = 0;
4855 t->resumed = false;
4856 t->control.may_range_step = 0;
4857
4858 /* This may be the first time we see the inferior report
4859 a stop. */
4860 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4861 if (inf->needs_setup)
372316f1 4862 {
29d6859f
LM
4863 switch_to_thread_no_regs (t);
4864 setup_inferior (0);
372316f1
PA
4865 }
4866
29d6859f
LM
4867 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4868 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1 4869 {
29d6859f
LM
4870 /* We caught the event that we intended to catch, so
4871 there's no event pending. */
4872 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4873 t->suspend.waitstatus_pending_p = 0;
4874
e088209c 4875 if (displaced_step_finish (t, GDB_SIGNAL_0) < 0)
29d6859f
LM
4876 {
4877 /* Add it back to the step-over queue. */
4100594e
SM
4878 infrun_log_debug ("displaced-step of %s "
4879 "canceled: adding back to the "
4880 "step-over queue\n",
4881 target_pid_to_str (t->ptid).c_str ());
4882
29d6859f 4883 t->control.trap_expected = 0;
bb88694d 4884 global_thread_step_over_chain_enqueue (t);
29d6859f 4885 }
372316f1 4886 }
29d6859f
LM
4887 else
4888 {
4889 enum gdb_signal sig;
4890 struct regcache *regcache;
372316f1 4891
29d6859f
LM
4892 if (debug_infrun)
4893 {
4894 std::string statstr = target_waitstatus_to_string (&event.ws);
372316f1 4895
4100594e
SM
4896 infrun_log_debug ("target_wait %s, saving "
4897 "status for %d.%ld.%ld\n",
4898 statstr.c_str (),
4899 t->ptid.pid (),
4900 t->ptid.lwp (),
4901 t->ptid.tid ());
29d6859f
LM
4902 }
4903
4904 /* Record for later. */
4905 save_waitstatus (t, &event.ws);
4906
4907 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4908 ? event.ws.value.sig : GDB_SIGNAL_0);
4909
e088209c 4910 if (displaced_step_finish (t, sig) < 0)
29d6859f
LM
4911 {
4912 /* Add it back to the step-over queue. */
4913 t->control.trap_expected = 0;
bb88694d 4914 global_thread_step_over_chain_enqueue (t);
29d6859f
LM
4915 }
4916
4917 regcache = get_thread_regcache (t);
4918 t->suspend.stop_pc = regcache_read_pc (regcache);
4919
4100594e
SM
4920 infrun_log_debug ("saved stop_pc=%s for %s "
4921 "(currently_stepping=%d)\n",
4922 paddress (target_gdbarch (),
4923 t->suspend.stop_pc),
4924 target_pid_to_str (t->ptid).c_str (),
4925 currently_stepping (t));
372316f1
PA
4926 }
4927 }
4928 }
4929 }
4930 }
372316f1
PA
4931}
4932
f4836ba9
PA
4933/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4934
4935static int
4936handle_no_resumed (struct execution_control_state *ecs)
4937{
3b12939d 4938 if (target_can_async_p ())
f4836ba9 4939 {
3b12939d 4940 int any_sync = 0;
f4836ba9 4941
2dab0c7b 4942 for (ui *ui : all_uis ())
3b12939d
PA
4943 {
4944 if (ui->prompt_state == PROMPT_BLOCKED)
4945 {
4946 any_sync = 1;
4947 break;
4948 }
4949 }
4950 if (!any_sync)
4951 {
4952 /* There were no unwaited-for children left in the target, but,
4953 we're not synchronously waiting for events either. Just
4954 ignore. */
4955
4100594e 4956 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
3b12939d
PA
4957 prepare_to_wait (ecs);
4958 return 1;
4959 }
f4836ba9
PA
4960 }
4961
4962 /* Otherwise, if we were running a synchronous execution command, we
4963 may need to cancel it and give the user back the terminal.
4964
4965 In non-stop mode, the target can't tell whether we've already
4966 consumed previous stop events, so it can end up sending us a
4967 no-resumed event like so:
4968
4969 #0 - thread 1 is left stopped
4970
4971 #1 - thread 2 is resumed and hits breakpoint
4972 -> TARGET_WAITKIND_STOPPED
4973
4974 #2 - thread 3 is resumed and exits
4975 this is the last resumed thread, so
4976 -> TARGET_WAITKIND_NO_RESUMED
4977
4978 #3 - gdb processes stop for thread 2 and decides to re-resume
4979 it.
4980
4981 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4982 thread 2 is now resumed, so the event should be ignored.
4983
4984 IOW, if the stop for thread 2 doesn't end a foreground command,
4985 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4986 event. But it could be that the event meant that thread 2 itself
4987 (or whatever other thread was the last resumed thread) exited.
4988
4989 To address this we refresh the thread list and check whether we
4990 have resumed threads _now_. In the example above, this removes
4991 thread 3 from the thread list. If thread 2 was re-resumed, we
4992 ignore this event. If we find no thread resumed, then we cancel
4993 the synchronous command show "no unwaited-for " to the user. */
4994 update_thread_list ();
4995
5b6d1e4f 4996 for (thread_info *thread : all_non_exited_threads (ecs->target))
f4836ba9
PA
4997 {
4998 if (thread->executing
4999 || thread->suspend.waitstatus_pending_p)
5000 {
5001 /* There were no unwaited-for children left in the target at
5002 some point, but there are now. Just ignore. */
4100594e
SM
5003 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED "
5004 "(ignoring: found resumed)");
f4836ba9
PA
5005 prepare_to_wait (ecs);
5006 return 1;
f4836ba9
PA
5007 }
5008 }
5009
5010 /* Go ahead and report the event. */
5011 return 0;
5012}
5013
05ba8510
PA
5014/* Given an execution control state that has been freshly filled in by
5015 an event from the inferior, figure out what it means and take
5016 appropriate action.
5017
5018 The alternatives are:
5019
22bcd14b 5020 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5021 debugger.
5022
5023 2) keep_going and return; to wait for the next event (set
5024 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5025 once). */
c906108c 5026
ec9499be 5027static void
595915c1 5028handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5029{
595915c1
TT
5030 /* Make sure that all temporary struct value objects that were
5031 created during the handling of the event get deleted at the
5032 end. */
5033 scoped_value_mark free_values;
5034
d6b48e9c
PA
5035 enum stop_kind stop_soon;
5036
4100594e 5037 infrun_log_debug ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
c29705b7 5038
28736962
PA
5039 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5040 {
5041 /* We had an event in the inferior, but we are not interested in
5042 handling it at this level. The lower layers have already
5043 done what needs to be done, if anything.
5044
5045 One of the possible circumstances for this is when the
5046 inferior produces output for the console. The inferior has
5047 not stopped, and we are ignoring the event. Another possible
5048 circumstance is any event which the lower level knows will be
5049 reported multiple times without an intervening resume. */
28736962
PA
5050 prepare_to_wait (ecs);
5051 return;
5052 }
5053
65706a29
PA
5054 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5055 {
65706a29
PA
5056 prepare_to_wait (ecs);
5057 return;
5058 }
5059
0e5bf2a8 5060 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5061 && handle_no_resumed (ecs))
5062 return;
0e5bf2a8 5063
5b6d1e4f
PA
5064 /* Cache the last target/ptid/waitstatus. */
5065 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5066
ca005067 5067 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5068 stop_stack_dummy = STOP_NONE;
ca005067 5069
0e5bf2a8
PA
5070 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5071 {
5072 /* No unwaited-for children left. IOW, all resumed children
5073 have exited. */
0e5bf2a8 5074 stop_print_frame = 0;
22bcd14b 5075 stop_waiting (ecs);
0e5bf2a8
PA
5076 return;
5077 }
5078
8c90c137 5079 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5080 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5081 {
5b6d1e4f 5082 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5083 /* If it's a new thread, add it to the thread database. */
5084 if (ecs->event_thread == NULL)
5b6d1e4f 5085 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5086
5087 /* Disable range stepping. If the next step request could use a
5088 range, this will be end up re-enabled then. */
5089 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5090 }
88ed393a
JK
5091
5092 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5093 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5094
5095 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5096 reinit_frame_cache ();
5097
28736962
PA
5098 breakpoint_retire_moribund ();
5099
2b009048
DJ
5100 /* First, distinguish signals caused by the debugger from signals
5101 that have to do with the program's own actions. Note that
5102 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5103 on the operating system version. Here we detect when a SIGILL or
5104 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5105 something similar for SIGSEGV, since a SIGSEGV will be generated
5106 when we're trying to execute a breakpoint instruction on a
5107 non-executable stack. This happens for call dummy breakpoints
5108 for architectures like SPARC that place call dummies on the
5109 stack. */
2b009048 5110 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5111 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5112 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5113 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5114 {
00431a78 5115 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5116
a01bda52 5117 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5118 regcache_read_pc (regcache)))
5119 {
4100594e 5120 infrun_log_debug ("Treating signal as SIGTRAP");
a493e3e2 5121 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5122 }
2b009048
DJ
5123 }
5124
293b3ebc 5125 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
8c90c137 5126
488f131b
JB
5127 switch (ecs->ws.kind)
5128 {
5129 case TARGET_WAITKIND_LOADED:
00431a78 5130 context_switch (ecs);
b0f4b84b
DJ
5131 /* Ignore gracefully during startup of the inferior, as it might
5132 be the shell which has just loaded some objects, otherwise
5133 add the symbols for the newly loaded objects. Also ignore at
5134 the beginning of an attach or remote session; we will query
5135 the full list of libraries once the connection is
5136 established. */
4f5d7f63 5137
00431a78 5138 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5139 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5140 {
edcc5120
TT
5141 struct regcache *regcache;
5142
00431a78 5143 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5144
5145 handle_solib_event ();
5146
5147 ecs->event_thread->control.stop_bpstat
a01bda52 5148 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5149 ecs->event_thread->suspend.stop_pc,
5150 ecs->event_thread, &ecs->ws);
ab04a2af 5151
c65d6b55
PA
5152 if (handle_stop_requested (ecs))
5153 return;
5154
ce12b012 5155 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5156 {
5157 /* A catchpoint triggered. */
94c57d6a
PA
5158 process_event_stop_test (ecs);
5159 return;
edcc5120 5160 }
488f131b 5161
b0f4b84b
DJ
5162 /* If requested, stop when the dynamic linker notifies
5163 gdb of events. This allows the user to get control
5164 and place breakpoints in initializer routines for
5165 dynamically loaded objects (among other things). */
a493e3e2 5166 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5167 if (stop_on_solib_events)
5168 {
55409f9d
DJ
5169 /* Make sure we print "Stopped due to solib-event" in
5170 normal_stop. */
5171 stop_print_frame = 1;
5172
22bcd14b 5173 stop_waiting (ecs);
b0f4b84b
DJ
5174 return;
5175 }
488f131b 5176 }
b0f4b84b
DJ
5177
5178 /* If we are skipping through a shell, or through shared library
5179 loading that we aren't interested in, resume the program. If
5c09a2c5 5180 we're running the program normally, also resume. */
b0f4b84b
DJ
5181 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5182 {
74960c60
VP
5183 /* Loading of shared libraries might have changed breakpoint
5184 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5185 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5186 insert_breakpoints ();
64ce06e4 5187 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5188 prepare_to_wait (ecs);
5189 return;
5190 }
5191
5c09a2c5
PA
5192 /* But stop if we're attaching or setting up a remote
5193 connection. */
5194 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5195 || stop_soon == STOP_QUIETLY_REMOTE)
5196 {
4100594e 5197 infrun_log_debug ("quietly stopped");
22bcd14b 5198 stop_waiting (ecs);
5c09a2c5
PA
5199 return;
5200 }
5201
5202 internal_error (__FILE__, __LINE__,
5203 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5204
488f131b 5205 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5206 if (handle_stop_requested (ecs))
5207 return;
00431a78 5208 context_switch (ecs);
64ce06e4 5209 resume (GDB_SIGNAL_0);
488f131b
JB
5210 prepare_to_wait (ecs);
5211 return;
c5aa993b 5212
65706a29 5213 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5214 if (handle_stop_requested (ecs))
5215 return;
00431a78 5216 context_switch (ecs);
65706a29
PA
5217 if (!switch_back_to_stepped_thread (ecs))
5218 keep_going (ecs);
5219 return;
5220
488f131b 5221 case TARGET_WAITKIND_EXITED:
940c3c06 5222 case TARGET_WAITKIND_SIGNALLED:
fb66883a 5223 inferior_ptid = ecs->ptid;
5b6d1e4f 5224 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
6c95b8df
PA
5225 set_current_program_space (current_inferior ()->pspace);
5226 handle_vfork_child_exec_or_exit (0);
223ffa71 5227 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5228
0c557179
SDJ
5229 /* Clearing any previous state of convenience variables. */
5230 clear_exit_convenience_vars ();
5231
940c3c06
PA
5232 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5233 {
5234 /* Record the exit code in the convenience variable $_exitcode, so
5235 that the user can inspect this again later. */
5236 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5237 (LONGEST) ecs->ws.value.integer);
5238
5239 /* Also record this in the inferior itself. */
5240 current_inferior ()->has_exit_code = 1;
5241 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5242
98eb56a4
PA
5243 /* Support the --return-child-result option. */
5244 return_child_result_value = ecs->ws.value.integer;
5245
76727919 5246 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5247 }
5248 else
0c557179 5249 {
00431a78 5250 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5251
5252 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5253 {
5254 /* Set the value of the internal variable $_exitsignal,
5255 which holds the signal uncaught by the inferior. */
5256 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5257 gdbarch_gdb_signal_to_target (gdbarch,
5258 ecs->ws.value.sig));
5259 }
5260 else
5261 {
5262 /* We don't have access to the target's method used for
5263 converting between signal numbers (GDB's internal
5264 representation <-> target's representation).
5265 Therefore, we cannot do a good job at displaying this
5266 information to the user. It's better to just warn
5267 her about it (if infrun debugging is enabled), and
5268 give up. */
4100594e
SM
5269 infrun_log_debug ("Cannot fill $_exitsignal with the correct "
5270 "signal number.");
0c557179
SDJ
5271 }
5272
76727919 5273 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5274 }
8cf64490 5275
488f131b 5276 gdb_flush (gdb_stdout);
bc1e6c81 5277 target_mourn_inferior (inferior_ptid);
488f131b 5278 stop_print_frame = 0;
22bcd14b 5279 stop_waiting (ecs);
488f131b 5280 return;
c5aa993b 5281
488f131b 5282 case TARGET_WAITKIND_FORKED:
deb3b17b 5283 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5284 /* Check whether the inferior is displaced stepping. */
5285 {
00431a78 5286 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5287 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5288
5289 /* If checking displaced stepping is supported, and thread
5290 ecs->ptid is displaced stepping. */
e088209c 5291 if (displaced_step_in_progress (ecs->event_thread))
e2d96639
YQ
5292 {
5293 struct inferior *parent_inf
5b6d1e4f 5294 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5295 struct regcache *child_regcache;
5296 CORE_ADDR parent_pc;
5297
d8d83535
SM
5298 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5299 {
e088209c
SM
5300 // struct displaced_step_inferior_state *displaced
5301 // = get_displaced_stepping_state (parent_inf);
d8d83535
SM
5302
5303 /* Restore scratch pad for child process. */
e088209c
SM
5304 //displaced_step_restore (displaced, ecs->ws.value.related_pid);
5305 // FIXME: we should restore all the buffers that were currently in use
d8d83535
SM
5306 }
5307
e2d96639
YQ
5308 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5309 indicating that the displaced stepping of syscall instruction
5310 has been done. Perform cleanup for parent process here. Note
5311 that this operation also cleans up the child process for vfork,
5312 because their pages are shared. */
e088209c 5313 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5314 /* Start a new step-over in another thread if there's one
5315 that needs it. */
5316 start_step_over ();
e2d96639 5317
e2d96639
YQ
5318 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5319 the child's PC is also within the scratchpad. Set the child's PC
5320 to the parent's PC value, which has already been fixed up.
5321 FIXME: we use the parent's aspace here, although we're touching
5322 the child, because the child hasn't been added to the inferior
5323 list yet at this point. */
5324
5325 child_regcache
5b6d1e4f
PA
5326 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5327 ecs->ws.value.related_pid,
e2d96639
YQ
5328 gdbarch,
5329 parent_inf->aspace);
5330 /* Read PC value of parent process. */
5331 parent_pc = regcache_read_pc (regcache);
5332
5333 if (debug_displaced)
5334 fprintf_unfiltered (gdb_stdlog,
5335 "displaced: write child pc from %s to %s\n",
5336 paddress (gdbarch,
5337 regcache_read_pc (child_regcache)),
5338 paddress (gdbarch, parent_pc));
5339
5340 regcache_write_pc (child_regcache, parent_pc);
5341 }
5342 }
5343
00431a78 5344 context_switch (ecs);
5a2901d9 5345
b242c3c2
PA
5346 /* Immediately detach breakpoints from the child before there's
5347 any chance of letting the user delete breakpoints from the
5348 breakpoint lists. If we don't do this early, it's easy to
5349 leave left over traps in the child, vis: "break foo; catch
5350 fork; c; <fork>; del; c; <child calls foo>". We only follow
5351 the fork on the last `continue', and by that time the
5352 breakpoint at "foo" is long gone from the breakpoint table.
5353 If we vforked, then we don't need to unpatch here, since both
5354 parent and child are sharing the same memory pages; we'll
5355 need to unpatch at follow/detach time instead to be certain
5356 that new breakpoints added between catchpoint hit time and
5357 vfork follow are detached. */
5358 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5359 {
b242c3c2
PA
5360 /* This won't actually modify the breakpoint list, but will
5361 physically remove the breakpoints from the child. */
d80ee84f 5362 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5363 }
5364
34b7e8a6 5365 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5366
e58b0e63
PA
5367 /* In case the event is caught by a catchpoint, remember that
5368 the event is to be followed at the next resume of the thread,
5369 and not immediately. */
5370 ecs->event_thread->pending_follow = ecs->ws;
5371
f2ffa92b
PA
5372 ecs->event_thread->suspend.stop_pc
5373 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5374
16c381f0 5375 ecs->event_thread->control.stop_bpstat
a01bda52 5376 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5377 ecs->event_thread->suspend.stop_pc,
5378 ecs->event_thread, &ecs->ws);
675bf4cb 5379
c65d6b55
PA
5380 if (handle_stop_requested (ecs))
5381 return;
5382
ce12b012
PA
5383 /* If no catchpoint triggered for this, then keep going. Note
5384 that we're interested in knowing the bpstat actually causes a
5385 stop, not just if it may explain the signal. Software
5386 watchpoints, for example, always appear in the bpstat. */
5387 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5388 {
5ab2fbf1 5389 bool follow_child
3e43a32a 5390 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5391
a493e3e2 5392 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5393
5b6d1e4f
PA
5394 process_stratum_target *targ
5395 = ecs->event_thread->inf->process_target ();
5396
5ab2fbf1 5397 bool should_resume = follow_fork ();
e58b0e63 5398
5b6d1e4f
PA
5399 /* Note that one of these may be an invalid pointer,
5400 depending on detach_fork. */
00431a78 5401 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5402 thread_info *child
5403 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5404
a2077e25
PA
5405 /* At this point, the parent is marked running, and the
5406 child is marked stopped. */
5407
5408 /* If not resuming the parent, mark it stopped. */
5409 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5410 parent->set_running (false);
a2077e25
PA
5411
5412 /* If resuming the child, mark it running. */
5413 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5414 child->set_running (true);
a2077e25 5415
6c95b8df 5416 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5417 if (!detach_fork && (non_stop
5418 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5419 {
5420 if (follow_child)
5421 switch_to_thread (parent);
5422 else
5423 switch_to_thread (child);
5424
5425 ecs->event_thread = inferior_thread ();
5426 ecs->ptid = inferior_ptid;
5427 keep_going (ecs);
5428 }
5429
5430 if (follow_child)
5431 switch_to_thread (child);
5432 else
5433 switch_to_thread (parent);
5434
e58b0e63
PA
5435 ecs->event_thread = inferior_thread ();
5436 ecs->ptid = inferior_ptid;
5437
5438 if (should_resume)
5439 keep_going (ecs);
5440 else
22bcd14b 5441 stop_waiting (ecs);
04e68871
DJ
5442 return;
5443 }
94c57d6a
PA
5444 process_event_stop_test (ecs);
5445 return;
488f131b 5446
6c95b8df
PA
5447 case TARGET_WAITKIND_VFORK_DONE:
5448 /* Done with the shared memory region. Re-insert breakpoints in
5449 the parent, and keep going. */
5450
00431a78 5451 context_switch (ecs);
6c95b8df
PA
5452
5453 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5454 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5455
5456 if (handle_stop_requested (ecs))
5457 return;
5458
6c95b8df
PA
5459 /* This also takes care of reinserting breakpoints in the
5460 previously locked inferior. */
5461 keep_going (ecs);
5462 return;
5463
488f131b 5464 case TARGET_WAITKIND_EXECD:
488f131b 5465
cbd2b4e3
PA
5466 /* Note we can't read registers yet (the stop_pc), because we
5467 don't yet know the inferior's post-exec architecture.
5468 'stop_pc' is explicitly read below instead. */
00431a78 5469 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5470
6c95b8df
PA
5471 /* Do whatever is necessary to the parent branch of the vfork. */
5472 handle_vfork_child_exec_or_exit (1);
5473
795e548f
PA
5474 /* This causes the eventpoints and symbol table to be reset.
5475 Must do this now, before trying to determine whether to
5476 stop. */
71b43ef8 5477 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5478
17d8546e
DB
5479 /* In follow_exec we may have deleted the original thread and
5480 created a new one. Make sure that the event thread is the
5481 execd thread for that case (this is a nop otherwise). */
5482 ecs->event_thread = inferior_thread ();
5483
f2ffa92b
PA
5484 ecs->event_thread->suspend.stop_pc
5485 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5486
16c381f0 5487 ecs->event_thread->control.stop_bpstat
a01bda52 5488 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5489 ecs->event_thread->suspend.stop_pc,
5490 ecs->event_thread, &ecs->ws);
795e548f 5491
71b43ef8
PA
5492 /* Note that this may be referenced from inside
5493 bpstat_stop_status above, through inferior_has_execd. */
5494 xfree (ecs->ws.value.execd_pathname);
5495 ecs->ws.value.execd_pathname = NULL;
5496
c65d6b55
PA
5497 if (handle_stop_requested (ecs))
5498 return;
5499
04e68871 5500 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5501 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5502 {
a493e3e2 5503 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5504 keep_going (ecs);
5505 return;
5506 }
94c57d6a
PA
5507 process_event_stop_test (ecs);
5508 return;
488f131b 5509
b4dc5ffa
MK
5510 /* Be careful not to try to gather much state about a thread
5511 that's in a syscall. It's frequently a losing proposition. */
488f131b 5512 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5513 /* Getting the current syscall number. */
94c57d6a
PA
5514 if (handle_syscall_event (ecs) == 0)
5515 process_event_stop_test (ecs);
5516 return;
c906108c 5517
488f131b
JB
5518 /* Before examining the threads further, step this thread to
5519 get it entirely out of the syscall. (We get notice of the
5520 event when the thread is just on the verge of exiting a
5521 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5522 into user code.) */
488f131b 5523 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5524 if (handle_syscall_event (ecs) == 0)
5525 process_event_stop_test (ecs);
5526 return;
c906108c 5527
488f131b 5528 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5529 handle_signal_stop (ecs);
5530 return;
c906108c 5531
b2175913
MS
5532 case TARGET_WAITKIND_NO_HISTORY:
5533 /* Reverse execution: target ran out of history info. */
eab402df 5534
d1988021 5535 /* Switch to the stopped thread. */
00431a78 5536 context_switch (ecs);
4100594e 5537 infrun_log_debug ("stopped");
d1988021 5538
34b7e8a6 5539 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5540 ecs->event_thread->suspend.stop_pc
5541 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5542
5543 if (handle_stop_requested (ecs))
5544 return;
5545
76727919 5546 gdb::observers::no_history.notify ();
22bcd14b 5547 stop_waiting (ecs);
b2175913 5548 return;
488f131b 5549 }
4f5d7f63
PA
5550}
5551
372316f1
PA
5552/* Restart threads back to what they were trying to do back when we
5553 paused them for an in-line step-over. The EVENT_THREAD thread is
5554 ignored. */
4d9d9d04
PA
5555
5556static void
372316f1
PA
5557restart_threads (struct thread_info *event_thread)
5558{
372316f1
PA
5559 /* In case the instruction just stepped spawned a new thread. */
5560 update_thread_list ();
5561
08036331 5562 for (thread_info *tp : all_non_exited_threads ())
372316f1 5563 {
f3f8ece4
PA
5564 switch_to_thread_no_regs (tp);
5565
372316f1
PA
5566 if (tp == event_thread)
5567 {
4100594e
SM
5568 infrun_log_debug ("restart threads: [%s] is event thread",
5569 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5570 continue;
5571 }
5572
5573 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5574 {
4100594e
SM
5575 infrun_log_debug ("restart threads: [%s] not meant to be running",
5576 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5577 continue;
5578 }
5579
5580 if (tp->resumed)
5581 {
4100594e
SM
5582 infrun_log_debug ("restart threads: [%s] resumed",
5583 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5584 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5585 continue;
5586 }
5587
5588 if (thread_is_in_step_over_chain (tp))
5589 {
4100594e
SM
5590 infrun_log_debug ("restart threads: [%s] needs step-over",
5591 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5592 gdb_assert (!tp->resumed);
5593 continue;
5594 }
5595
5596
5597 if (tp->suspend.waitstatus_pending_p)
5598 {
4100594e
SM
5599 infrun_log_debug ("restart threads: [%s] has pending status",
5600 target_pid_to_str (tp->ptid).c_str ());
719546c4 5601 tp->resumed = true;
372316f1
PA
5602 continue;
5603 }
5604
c65d6b55
PA
5605 gdb_assert (!tp->stop_requested);
5606
372316f1
PA
5607 /* If some thread needs to start a step-over at this point, it
5608 should still be in the step-over queue, and thus skipped
5609 above. */
5610 if (thread_still_needs_step_over (tp))
5611 {
5612 internal_error (__FILE__, __LINE__,
5613 "thread [%s] needs a step-over, but not in "
5614 "step-over queue\n",
a068643d 5615 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5616 }
5617
5618 if (currently_stepping (tp))
5619 {
4100594e
SM
5620 infrun_log_debug ("restart threads: [%s] was stepping",
5621 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5622 keep_going_stepped_thread (tp);
5623 }
5624 else
5625 {
5626 struct execution_control_state ecss;
5627 struct execution_control_state *ecs = &ecss;
5628
4100594e
SM
5629 infrun_log_debug ("restart threads: [%s] continuing",
5630 target_pid_to_str (tp->ptid).c_str ());
372316f1 5631 reset_ecs (ecs, tp);
00431a78 5632 switch_to_thread (tp);
372316f1
PA
5633 keep_going_pass_signal (ecs);
5634 }
5635 }
5636}
5637
5638/* Callback for iterate_over_threads. Find a resumed thread that has
5639 a pending waitstatus. */
5640
5641static int
5642resumed_thread_with_pending_status (struct thread_info *tp,
5643 void *arg)
5644{
5645 return (tp->resumed
5646 && tp->suspend.waitstatus_pending_p);
5647}
5648
5649/* Called when we get an event that may finish an in-line or
5650 out-of-line (displaced stepping) step-over started previously.
5651 Return true if the event is processed and we should go back to the
5652 event loop; false if the caller should continue processing the
5653 event. */
5654
5655static int
4d9d9d04
PA
5656finish_step_over (struct execution_control_state *ecs)
5657{
372316f1
PA
5658 int had_step_over_info;
5659
e088209c
SM
5660 displaced_step_finish (ecs->event_thread,
5661 ecs->event_thread->suspend.stop_signal);
4d9d9d04 5662
372316f1
PA
5663 had_step_over_info = step_over_info_valid_p ();
5664
5665 if (had_step_over_info)
4d9d9d04
PA
5666 {
5667 /* If we're stepping over a breakpoint with all threads locked,
5668 then only the thread that was stepped should be reporting
5669 back an event. */
5670 gdb_assert (ecs->event_thread->control.trap_expected);
5671
c65d6b55 5672 clear_step_over_info ();
4d9d9d04
PA
5673 }
5674
fbea99ea 5675 if (!target_is_non_stop_p ())
372316f1 5676 return 0;
4d9d9d04
PA
5677
5678 /* Start a new step-over in another thread if there's one that
5679 needs it. */
5680 start_step_over ();
372316f1
PA
5681
5682 /* If we were stepping over a breakpoint before, and haven't started
5683 a new in-line step-over sequence, then restart all other threads
5684 (except the event thread). We can't do this in all-stop, as then
5685 e.g., we wouldn't be able to issue any other remote packet until
5686 these other threads stop. */
5687 if (had_step_over_info && !step_over_info_valid_p ())
5688 {
5689 struct thread_info *pending;
5690
5691 /* If we only have threads with pending statuses, the restart
5692 below won't restart any thread and so nothing re-inserts the
5693 breakpoint we just stepped over. But we need it inserted
5694 when we later process the pending events, otherwise if
5695 another thread has a pending event for this breakpoint too,
5696 we'd discard its event (because the breakpoint that
5697 originally caused the event was no longer inserted). */
00431a78 5698 context_switch (ecs);
372316f1
PA
5699 insert_breakpoints ();
5700
5701 restart_threads (ecs->event_thread);
5702
5703 /* If we have events pending, go through handle_inferior_event
5704 again, picking up a pending event at random. This avoids
5705 thread starvation. */
5706
5707 /* But not if we just stepped over a watchpoint in order to let
5708 the instruction execute so we can evaluate its expression.
5709 The set of watchpoints that triggered is recorded in the
5710 breakpoint objects themselves (see bp->watchpoint_triggered).
5711 If we processed another event first, that other event could
5712 clobber this info. */
5713 if (ecs->event_thread->stepping_over_watchpoint)
5714 return 0;
5715
5716 pending = iterate_over_threads (resumed_thread_with_pending_status,
5717 NULL);
5718 if (pending != NULL)
5719 {
5720 struct thread_info *tp = ecs->event_thread;
5721 struct regcache *regcache;
5722
4100594e
SM
5723 infrun_log_debug ("found resumed threads with "
5724 "pending events, saving status");
372316f1
PA
5725
5726 gdb_assert (pending != tp);
5727
5728 /* Record the event thread's event for later. */
5729 save_waitstatus (tp, &ecs->ws);
5730 /* This was cleared early, by handle_inferior_event. Set it
5731 so this pending event is considered by
5732 do_target_wait. */
719546c4 5733 tp->resumed = true;
372316f1
PA
5734
5735 gdb_assert (!tp->executing);
5736
00431a78 5737 regcache = get_thread_regcache (tp);
372316f1
PA
5738 tp->suspend.stop_pc = regcache_read_pc (regcache);
5739
4100594e
SM
5740 infrun_log_debug ("saved stop_pc=%s for %s "
5741 "(currently_stepping=%d)\n",
5742 paddress (target_gdbarch (),
5743 tp->suspend.stop_pc),
5744 target_pid_to_str (tp->ptid).c_str (),
5745 currently_stepping (tp));
372316f1
PA
5746
5747 /* This in-line step-over finished; clear this so we won't
5748 start a new one. This is what handle_signal_stop would
5749 do, if we returned false. */
5750 tp->stepping_over_breakpoint = 0;
5751
5752 /* Wake up the event loop again. */
5753 mark_async_event_handler (infrun_async_inferior_event_token);
5754
5755 prepare_to_wait (ecs);
5756 return 1;
5757 }
5758 }
5759
5760 return 0;
4d9d9d04
PA
5761}
5762
4f5d7f63
PA
5763/* Come here when the program has stopped with a signal. */
5764
5765static void
5766handle_signal_stop (struct execution_control_state *ecs)
5767{
5768 struct frame_info *frame;
5769 struct gdbarch *gdbarch;
5770 int stopped_by_watchpoint;
5771 enum stop_kind stop_soon;
5772 int random_signal;
c906108c 5773
f0407826
DE
5774 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5775
c65d6b55
PA
5776 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5777
f0407826
DE
5778 /* Do we need to clean up the state of a thread that has
5779 completed a displaced single-step? (Doing so usually affects
5780 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5781 if (finish_step_over (ecs))
5782 return;
f0407826
DE
5783
5784 /* If we either finished a single-step or hit a breakpoint, but
5785 the user wanted this thread to be stopped, pretend we got a
5786 SIG0 (generic unsignaled stop). */
5787 if (ecs->event_thread->stop_requested
5788 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5789 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5790
f2ffa92b
PA
5791 ecs->event_thread->suspend.stop_pc
5792 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5793
527159b7 5794 if (debug_infrun)
237fc4c9 5795 {
00431a78 5796 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5797 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5798
f3f8ece4 5799 switch_to_thread (ecs->event_thread);
5af949e3 5800
4100594e
SM
5801 infrun_log_debug ("stop_pc=%s",
5802 paddress (reg_gdbarch,
5803 ecs->event_thread->suspend.stop_pc));
d92524f1 5804 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5805 {
5806 CORE_ADDR addr;
abbb1732 5807
4100594e 5808 infrun_log_debug ("stopped by watchpoint");
237fc4c9 5809
8b88a78e 5810 if (target_stopped_data_address (current_top_target (), &addr))
4100594e
SM
5811 infrun_log_debug ("stopped data address=%s",
5812 paddress (reg_gdbarch, addr));
237fc4c9 5813 else
4100594e 5814 infrun_log_debug ("(no data address available)");
237fc4c9
PA
5815 }
5816 }
527159b7 5817
36fa8042
PA
5818 /* This is originated from start_remote(), start_inferior() and
5819 shared libraries hook functions. */
00431a78 5820 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5821 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5822 {
00431a78 5823 context_switch (ecs);
4100594e 5824 infrun_log_debug ("quietly stopped");
36fa8042 5825 stop_print_frame = 1;
22bcd14b 5826 stop_waiting (ecs);
36fa8042
PA
5827 return;
5828 }
5829
36fa8042
PA
5830 /* This originates from attach_command(). We need to overwrite
5831 the stop_signal here, because some kernels don't ignore a
5832 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5833 See more comments in inferior.h. On the other hand, if we
5834 get a non-SIGSTOP, report it to the user - assume the backend
5835 will handle the SIGSTOP if it should show up later.
5836
5837 Also consider that the attach is complete when we see a
5838 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5839 target extended-remote report it instead of a SIGSTOP
5840 (e.g. gdbserver). We already rely on SIGTRAP being our
5841 signal, so this is no exception.
5842
5843 Also consider that the attach is complete when we see a
5844 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5845 the target to stop all threads of the inferior, in case the
5846 low level attach operation doesn't stop them implicitly. If
5847 they weren't stopped implicitly, then the stub will report a
5848 GDB_SIGNAL_0, meaning: stopped for no particular reason
5849 other than GDB's request. */
5850 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5851 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5852 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5853 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5854 {
5855 stop_print_frame = 1;
22bcd14b 5856 stop_waiting (ecs);
36fa8042
PA
5857 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5858 return;
5859 }
5860
488f131b 5861 /* See if something interesting happened to the non-current thread. If
b40c7d58 5862 so, then switch to that thread. */
d7e15655 5863 if (ecs->ptid != inferior_ptid)
488f131b 5864 {
4100594e 5865 infrun_log_debug ("context switch");
527159b7 5866
00431a78 5867 context_switch (ecs);
c5aa993b 5868
9a4105ab 5869 if (deprecated_context_hook)
00431a78 5870 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5871 }
c906108c 5872
568d6575
UW
5873 /* At this point, get hold of the now-current thread's frame. */
5874 frame = get_current_frame ();
5875 gdbarch = get_frame_arch (frame);
5876
2adfaa28 5877 /* Pull the single step breakpoints out of the target. */
af48d08f 5878 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5879 {
af48d08f 5880 struct regcache *regcache;
af48d08f 5881 CORE_ADDR pc;
2adfaa28 5882
00431a78 5883 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5884 const address_space *aspace = regcache->aspace ();
5885
af48d08f 5886 pc = regcache_read_pc (regcache);
34b7e8a6 5887
af48d08f
PA
5888 /* However, before doing so, if this single-step breakpoint was
5889 actually for another thread, set this thread up for moving
5890 past it. */
5891 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5892 aspace, pc))
5893 {
5894 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28 5895 {
4100594e
SM
5896 infrun_log_debug ("[%s] hit another thread's single-step "
5897 "breakpoint",
5898 target_pid_to_str (ecs->ptid).c_str ());
af48d08f
PA
5899 ecs->hit_singlestep_breakpoint = 1;
5900 }
5901 }
5902 else
5903 {
4100594e
SM
5904 infrun_log_debug ("[%s] hit its single-step breakpoint",
5905 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5906 }
488f131b 5907 }
af48d08f 5908 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5909
963f9c80
PA
5910 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5911 && ecs->event_thread->control.trap_expected
5912 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5913 stopped_by_watchpoint = 0;
5914 else
5915 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5916
5917 /* If necessary, step over this watchpoint. We'll be back to display
5918 it in a moment. */
5919 if (stopped_by_watchpoint
d92524f1 5920 && (target_have_steppable_watchpoint
568d6575 5921 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5922 {
488f131b
JB
5923 /* At this point, we are stopped at an instruction which has
5924 attempted to write to a piece of memory under control of
5925 a watchpoint. The instruction hasn't actually executed
5926 yet. If we were to evaluate the watchpoint expression
5927 now, we would get the old value, and therefore no change
5928 would seem to have occurred.
5929
5930 In order to make watchpoints work `right', we really need
5931 to complete the memory write, and then evaluate the
d983da9c
DJ
5932 watchpoint expression. We do this by single-stepping the
5933 target.
5934
7f89fd65 5935 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5936 it. For example, the PA can (with some kernel cooperation)
5937 single step over a watchpoint without disabling the watchpoint.
5938
5939 It is far more common to need to disable a watchpoint to step
5940 the inferior over it. If we have non-steppable watchpoints,
5941 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5942 disable all watchpoints.
5943
5944 Any breakpoint at PC must also be stepped over -- if there's
5945 one, it will have already triggered before the watchpoint
5946 triggered, and we either already reported it to the user, or
5947 it didn't cause a stop and we called keep_going. In either
5948 case, if there was a breakpoint at PC, we must be trying to
5949 step past it. */
5950 ecs->event_thread->stepping_over_watchpoint = 1;
5951 keep_going (ecs);
488f131b
JB
5952 return;
5953 }
5954
4e1c45ea 5955 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5956 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5957 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5958 ecs->event_thread->control.stop_step = 0;
488f131b 5959 stop_print_frame = 1;
488f131b 5960 stopped_by_random_signal = 0;
ddfe970e 5961 bpstat stop_chain = NULL;
488f131b 5962
edb3359d
DJ
5963 /* Hide inlined functions starting here, unless we just performed stepi or
5964 nexti. After stepi and nexti, always show the innermost frame (not any
5965 inline function call sites). */
16c381f0 5966 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5967 {
00431a78
PA
5968 const address_space *aspace
5969 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5970
5971 /* skip_inline_frames is expensive, so we avoid it if we can
5972 determine that the address is one where functions cannot have
5973 been inlined. This improves performance with inferiors that
5974 load a lot of shared libraries, because the solib event
5975 breakpoint is defined as the address of a function (i.e. not
5976 inline). Note that we have to check the previous PC as well
5977 as the current one to catch cases when we have just
5978 single-stepped off a breakpoint prior to reinstating it.
5979 Note that we're assuming that the code we single-step to is
5980 not inline, but that's not definitive: there's nothing
5981 preventing the event breakpoint function from containing
5982 inlined code, and the single-step ending up there. If the
5983 user had set a breakpoint on that inlined code, the missing
5984 skip_inline_frames call would break things. Fortunately
5985 that's an extremely unlikely scenario. */
f2ffa92b
PA
5986 if (!pc_at_non_inline_function (aspace,
5987 ecs->event_thread->suspend.stop_pc,
5988 &ecs->ws)
a210c238
MR
5989 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5990 && ecs->event_thread->control.trap_expected
5991 && pc_at_non_inline_function (aspace,
5992 ecs->event_thread->prev_pc,
09ac7c10 5993 &ecs->ws)))
1c5a993e 5994 {
f2ffa92b
PA
5995 stop_chain = build_bpstat_chain (aspace,
5996 ecs->event_thread->suspend.stop_pc,
5997 &ecs->ws);
00431a78 5998 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5999
6000 /* Re-fetch current thread's frame in case that invalidated
6001 the frame cache. */
6002 frame = get_current_frame ();
6003 gdbarch = get_frame_arch (frame);
6004 }
0574c78f 6005 }
edb3359d 6006
a493e3e2 6007 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6008 && ecs->event_thread->control.trap_expected
568d6575 6009 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6010 && currently_stepping (ecs->event_thread))
3352ef37 6011 {
b50d7442 6012 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6013 also on an instruction that needs to be stepped multiple
1777feb0 6014 times before it's been fully executing. E.g., architectures
3352ef37
AC
6015 with a delay slot. It needs to be stepped twice, once for
6016 the instruction and once for the delay slot. */
6017 int step_through_delay
568d6575 6018 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6019
4100594e
SM
6020 if (step_through_delay)
6021 infrun_log_debug ("step through delay");
6022
16c381f0
JK
6023 if (ecs->event_thread->control.step_range_end == 0
6024 && step_through_delay)
3352ef37
AC
6025 {
6026 /* The user issued a continue when stopped at a breakpoint.
6027 Set up for another trap and get out of here. */
4e1c45ea 6028 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6029 keep_going (ecs);
6030 return;
6031 }
6032 else if (step_through_delay)
6033 {
6034 /* The user issued a step when stopped at a breakpoint.
6035 Maybe we should stop, maybe we should not - the delay
6036 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6037 case, don't decide that here, just set
6038 ecs->stepping_over_breakpoint, making sure we
6039 single-step again before breakpoints are re-inserted. */
4e1c45ea 6040 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6041 }
6042 }
6043
ab04a2af
TT
6044 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6045 handles this event. */
6046 ecs->event_thread->control.stop_bpstat
a01bda52 6047 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6048 ecs->event_thread->suspend.stop_pc,
6049 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6050
ab04a2af
TT
6051 /* Following in case break condition called a
6052 function. */
6053 stop_print_frame = 1;
73dd234f 6054
ab04a2af
TT
6055 /* This is where we handle "moribund" watchpoints. Unlike
6056 software breakpoints traps, hardware watchpoint traps are
6057 always distinguishable from random traps. If no high-level
6058 watchpoint is associated with the reported stop data address
6059 anymore, then the bpstat does not explain the signal ---
6060 simply make sure to ignore it if `stopped_by_watchpoint' is
6061 set. */
6062
4100594e 6063 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6064 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6065 GDB_SIGNAL_TRAP)
ab04a2af 6066 && stopped_by_watchpoint)
4100594e
SM
6067 {
6068 infrun_log_debug ("no user watchpoint explains watchpoint SIGTRAP, "
6069 "ignoring");
6070 }
73dd234f 6071
bac7d97b 6072 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6073 at one stage in the past included checks for an inferior
6074 function call's call dummy's return breakpoint. The original
6075 comment, that went with the test, read:
03cebad2 6076
ab04a2af
TT
6077 ``End of a stack dummy. Some systems (e.g. Sony news) give
6078 another signal besides SIGTRAP, so check here as well as
6079 above.''
73dd234f 6080
ab04a2af
TT
6081 If someone ever tries to get call dummys on a
6082 non-executable stack to work (where the target would stop
6083 with something like a SIGSEGV), then those tests might need
6084 to be re-instated. Given, however, that the tests were only
6085 enabled when momentary breakpoints were not being used, I
6086 suspect that it won't be the case.
488f131b 6087
ab04a2af
TT
6088 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6089 be necessary for call dummies on a non-executable stack on
6090 SPARC. */
488f131b 6091
bac7d97b 6092 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6093 random_signal
6094 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6095 ecs->event_thread->suspend.stop_signal);
bac7d97b 6096
1cf4d951
PA
6097 /* Maybe this was a trap for a software breakpoint that has since
6098 been removed. */
6099 if (random_signal && target_stopped_by_sw_breakpoint ())
6100 {
5133a315
LM
6101 if (gdbarch_program_breakpoint_here_p (gdbarch,
6102 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6103 {
6104 struct regcache *regcache;
6105 int decr_pc;
6106
6107 /* Re-adjust PC to what the program would see if GDB was not
6108 debugging it. */
00431a78 6109 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6110 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6111 if (decr_pc != 0)
6112 {
07036511
TT
6113 gdb::optional<scoped_restore_tmpl<int>>
6114 restore_operation_disable;
1cf4d951
PA
6115
6116 if (record_full_is_used ())
07036511
TT
6117 restore_operation_disable.emplace
6118 (record_full_gdb_operation_disable_set ());
1cf4d951 6119
f2ffa92b
PA
6120 regcache_write_pc (regcache,
6121 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6122 }
6123 }
6124 else
6125 {
6126 /* A delayed software breakpoint event. Ignore the trap. */
4100594e 6127 infrun_log_debug ("delayed software breakpoint trap, ignoring");
1cf4d951
PA
6128 random_signal = 0;
6129 }
6130 }
6131
6132 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6133 has since been removed. */
6134 if (random_signal && target_stopped_by_hw_breakpoint ())
6135 {
6136 /* A delayed hardware breakpoint event. Ignore the trap. */
4100594e
SM
6137 infrun_log_debug ("delayed hardware breakpoint/watchpoint "
6138 "trap, ignoring");
1cf4d951
PA
6139 random_signal = 0;
6140 }
6141
bac7d97b
PA
6142 /* If not, perhaps stepping/nexting can. */
6143 if (random_signal)
6144 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6145 && currently_stepping (ecs->event_thread));
ab04a2af 6146
2adfaa28
PA
6147 /* Perhaps the thread hit a single-step breakpoint of _another_
6148 thread. Single-step breakpoints are transparent to the
6149 breakpoints module. */
6150 if (random_signal)
6151 random_signal = !ecs->hit_singlestep_breakpoint;
6152
bac7d97b
PA
6153 /* No? Perhaps we got a moribund watchpoint. */
6154 if (random_signal)
6155 random_signal = !stopped_by_watchpoint;
ab04a2af 6156
c65d6b55
PA
6157 /* Always stop if the user explicitly requested this thread to
6158 remain stopped. */
6159 if (ecs->event_thread->stop_requested)
6160 {
6161 random_signal = 1;
4100594e 6162 infrun_log_debug ("user-requested stop");
c65d6b55
PA
6163 }
6164
488f131b
JB
6165 /* For the program's own signals, act according to
6166 the signal handling tables. */
6167
ce12b012 6168 if (random_signal)
488f131b
JB
6169 {
6170 /* Signal not for debugging purposes. */
5b6d1e4f 6171 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6172 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6173
4100594e
SM
6174 infrun_log_debug ("random signal (%s)",
6175 gdb_signal_to_symbol_string (stop_signal));
527159b7 6176
488f131b
JB
6177 stopped_by_random_signal = 1;
6178
252fbfc8
PA
6179 /* Always stop on signals if we're either just gaining control
6180 of the program, or the user explicitly requested this thread
6181 to remain stopped. */
d6b48e9c 6182 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6183 || ecs->event_thread->stop_requested
24291992 6184 || (!inf->detaching
16c381f0 6185 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6186 {
22bcd14b 6187 stop_waiting (ecs);
488f131b
JB
6188 return;
6189 }
b57bacec
PA
6190
6191 /* Notify observers the signal has "handle print" set. Note we
6192 returned early above if stopping; normal_stop handles the
6193 printing in that case. */
6194 if (signal_print[ecs->event_thread->suspend.stop_signal])
6195 {
6196 /* The signal table tells us to print about this signal. */
223ffa71 6197 target_terminal::ours_for_output ();
76727919 6198 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6199 target_terminal::inferior ();
b57bacec 6200 }
488f131b
JB
6201
6202 /* Clear the signal if it should not be passed. */
16c381f0 6203 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6204 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6205
f2ffa92b 6206 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6207 && ecs->event_thread->control.trap_expected
8358c15c 6208 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6209 {
6210 /* We were just starting a new sequence, attempting to
6211 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6212 Instead this signal arrives. This signal will take us out
68f53502
AC
6213 of the stepping range so GDB needs to remember to, when
6214 the signal handler returns, resume stepping off that
6215 breakpoint. */
6216 /* To simplify things, "continue" is forced to use the same
6217 code paths as single-step - set a breakpoint at the
6218 signal return address and then, once hit, step off that
6219 breakpoint. */
4100594e 6220 infrun_log_debug ("signal arrived while stepping over breakpoint");
d3169d93 6221
2c03e5be 6222 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6223 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6224 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6225 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6226
6227 /* If we were nexting/stepping some other thread, switch to
6228 it, so that we don't continue it, losing control. */
6229 if (!switch_back_to_stepped_thread (ecs))
6230 keep_going (ecs);
9d799f85 6231 return;
68f53502 6232 }
9d799f85 6233
e5f8a7cc 6234 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6235 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6236 ecs->event_thread)
e5f8a7cc 6237 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6238 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6239 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6240 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6241 {
6242 /* The inferior is about to take a signal that will take it
6243 out of the single step range. Set a breakpoint at the
6244 current PC (which is presumably where the signal handler
6245 will eventually return) and then allow the inferior to
6246 run free.
6247
6248 Note that this is only needed for a signal delivered
6249 while in the single-step range. Nested signals aren't a
6250 problem as they eventually all return. */
4100594e 6251 infrun_log_debug ("signal may take us out of single-step range");
237fc4c9 6252
372316f1 6253 clear_step_over_info ();
2c03e5be 6254 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6255 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6256 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6257 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6258 keep_going (ecs);
6259 return;
d303a6c7 6260 }
9d799f85 6261
85102364 6262 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6263 when either there's a nested signal, or when there's a
6264 pending signal enabled just as the signal handler returns
6265 (leaving the inferior at the step-resume-breakpoint without
6266 actually executing it). Either way continue until the
6267 breakpoint is really hit. */
c447ac0b
PA
6268
6269 if (!switch_back_to_stepped_thread (ecs))
6270 {
4100594e 6271 infrun_log_debug ("random signal, keep going");
c447ac0b
PA
6272
6273 keep_going (ecs);
6274 }
6275 return;
488f131b 6276 }
94c57d6a
PA
6277
6278 process_event_stop_test (ecs);
6279}
6280
6281/* Come here when we've got some debug event / signal we can explain
6282 (IOW, not a random signal), and test whether it should cause a
6283 stop, or whether we should resume the inferior (transparently).
6284 E.g., could be a breakpoint whose condition evaluates false; we
6285 could be still stepping within the line; etc. */
6286
6287static void
6288process_event_stop_test (struct execution_control_state *ecs)
6289{
6290 struct symtab_and_line stop_pc_sal;
6291 struct frame_info *frame;
6292 struct gdbarch *gdbarch;
cdaa5b73
PA
6293 CORE_ADDR jmp_buf_pc;
6294 struct bpstat_what what;
94c57d6a 6295
cdaa5b73 6296 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6297
cdaa5b73
PA
6298 frame = get_current_frame ();
6299 gdbarch = get_frame_arch (frame);
fcf3daef 6300
cdaa5b73 6301 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6302
cdaa5b73
PA
6303 if (what.call_dummy)
6304 {
6305 stop_stack_dummy = what.call_dummy;
6306 }
186c406b 6307
243a9253
PA
6308 /* A few breakpoint types have callbacks associated (e.g.,
6309 bp_jit_event). Run them now. */
6310 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6311
cdaa5b73
PA
6312 /* If we hit an internal event that triggers symbol changes, the
6313 current frame will be invalidated within bpstat_what (e.g., if we
6314 hit an internal solib event). Re-fetch it. */
6315 frame = get_current_frame ();
6316 gdbarch = get_frame_arch (frame);
e2e4d78b 6317
cdaa5b73
PA
6318 switch (what.main_action)
6319 {
6320 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6321 /* If we hit the breakpoint at longjmp while stepping, we
6322 install a momentary breakpoint at the target of the
6323 jmp_buf. */
186c406b 6324
4100594e 6325 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
186c406b 6326
cdaa5b73 6327 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6328
cdaa5b73
PA
6329 if (what.is_longjmp)
6330 {
6331 struct value *arg_value;
6332
6333 /* If we set the longjmp breakpoint via a SystemTap probe,
6334 then use it to extract the arguments. The destination PC
6335 is the third argument to the probe. */
6336 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6337 if (arg_value)
8fa0c4f8
AA
6338 {
6339 jmp_buf_pc = value_as_address (arg_value);
6340 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6341 }
cdaa5b73
PA
6342 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6343 || !gdbarch_get_longjmp_target (gdbarch,
6344 frame, &jmp_buf_pc))
e2e4d78b 6345 {
4100594e
SM
6346 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6347 "(!gdbarch_get_longjmp_target)");
cdaa5b73
PA
6348 keep_going (ecs);
6349 return;
e2e4d78b 6350 }
e2e4d78b 6351
cdaa5b73
PA
6352 /* Insert a breakpoint at resume address. */
6353 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6354 }
6355 else
6356 check_exception_resume (ecs, frame);
6357 keep_going (ecs);
6358 return;
e81a37f7 6359
cdaa5b73
PA
6360 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6361 {
6362 struct frame_info *init_frame;
e81a37f7 6363
cdaa5b73 6364 /* There are several cases to consider.
c906108c 6365
cdaa5b73
PA
6366 1. The initiating frame no longer exists. In this case we
6367 must stop, because the exception or longjmp has gone too
6368 far.
2c03e5be 6369
cdaa5b73
PA
6370 2. The initiating frame exists, and is the same as the
6371 current frame. We stop, because the exception or longjmp
6372 has been caught.
2c03e5be 6373
cdaa5b73
PA
6374 3. The initiating frame exists and is different from the
6375 current frame. This means the exception or longjmp has
6376 been caught beneath the initiating frame, so keep going.
c906108c 6377
cdaa5b73
PA
6378 4. longjmp breakpoint has been placed just to protect
6379 against stale dummy frames and user is not interested in
6380 stopping around longjmps. */
c5aa993b 6381
4100594e 6382 infrun_log_debug ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
c5aa993b 6383
cdaa5b73
PA
6384 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6385 != NULL);
6386 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6387
cdaa5b73
PA
6388 if (what.is_longjmp)
6389 {
b67a2c6f 6390 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6391
cdaa5b73 6392 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6393 {
cdaa5b73
PA
6394 /* Case 4. */
6395 keep_going (ecs);
6396 return;
e5ef252a 6397 }
cdaa5b73 6398 }
c5aa993b 6399
cdaa5b73 6400 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6401
cdaa5b73
PA
6402 if (init_frame)
6403 {
6404 struct frame_id current_id
6405 = get_frame_id (get_current_frame ());
6406 if (frame_id_eq (current_id,
6407 ecs->event_thread->initiating_frame))
6408 {
6409 /* Case 2. Fall through. */
6410 }
6411 else
6412 {
6413 /* Case 3. */
6414 keep_going (ecs);
6415 return;
6416 }
68f53502 6417 }
488f131b 6418
cdaa5b73
PA
6419 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6420 exists. */
6421 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6422
bdc36728 6423 end_stepping_range (ecs);
cdaa5b73
PA
6424 }
6425 return;
e5ef252a 6426
cdaa5b73 6427 case BPSTAT_WHAT_SINGLE:
4100594e 6428 infrun_log_debug ("BPSTAT_WHAT_SINGLE");
cdaa5b73
PA
6429 ecs->event_thread->stepping_over_breakpoint = 1;
6430 /* Still need to check other stuff, at least the case where we
6431 are stepping and step out of the right range. */
6432 break;
e5ef252a 6433
cdaa5b73 6434 case BPSTAT_WHAT_STEP_RESUME:
4100594e 6435 infrun_log_debug ("BPSTAT_WHAT_STEP_RESUME");
e5ef252a 6436
cdaa5b73
PA
6437 delete_step_resume_breakpoint (ecs->event_thread);
6438 if (ecs->event_thread->control.proceed_to_finish
6439 && execution_direction == EXEC_REVERSE)
6440 {
6441 struct thread_info *tp = ecs->event_thread;
6442
6443 /* We are finishing a function in reverse, and just hit the
6444 step-resume breakpoint at the start address of the
6445 function, and we're almost there -- just need to back up
6446 by one more single-step, which should take us back to the
6447 function call. */
6448 tp->control.step_range_start = tp->control.step_range_end = 1;
6449 keep_going (ecs);
e5ef252a 6450 return;
cdaa5b73
PA
6451 }
6452 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6453 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6454 && execution_direction == EXEC_REVERSE)
6455 {
6456 /* We are stepping over a function call in reverse, and just
6457 hit the step-resume breakpoint at the start address of
6458 the function. Go back to single-stepping, which should
6459 take us back to the function call. */
6460 ecs->event_thread->stepping_over_breakpoint = 1;
6461 keep_going (ecs);
6462 return;
6463 }
6464 break;
e5ef252a 6465
cdaa5b73 6466 case BPSTAT_WHAT_STOP_NOISY:
4100594e 6467 infrun_log_debug ("BPSTAT_WHAT_STOP_NOISY");
cdaa5b73 6468 stop_print_frame = 1;
e5ef252a 6469
99619bea
PA
6470 /* Assume the thread stopped for a breapoint. We'll still check
6471 whether a/the breakpoint is there when the thread is next
6472 resumed. */
6473 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6474
22bcd14b 6475 stop_waiting (ecs);
cdaa5b73 6476 return;
e5ef252a 6477
cdaa5b73 6478 case BPSTAT_WHAT_STOP_SILENT:
4100594e 6479 infrun_log_debug ("BPSTAT_WHAT_STOP_SILENT");
cdaa5b73 6480 stop_print_frame = 0;
e5ef252a 6481
99619bea
PA
6482 /* Assume the thread stopped for a breapoint. We'll still check
6483 whether a/the breakpoint is there when the thread is next
6484 resumed. */
6485 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6486 stop_waiting (ecs);
cdaa5b73
PA
6487 return;
6488
6489 case BPSTAT_WHAT_HP_STEP_RESUME:
4100594e 6490 infrun_log_debug ("BPSTAT_WHAT_HP_STEP_RESUME");
cdaa5b73
PA
6491
6492 delete_step_resume_breakpoint (ecs->event_thread);
6493 if (ecs->event_thread->step_after_step_resume_breakpoint)
6494 {
6495 /* Back when the step-resume breakpoint was inserted, we
6496 were trying to single-step off a breakpoint. Go back to
6497 doing that. */
6498 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6499 ecs->event_thread->stepping_over_breakpoint = 1;
6500 keep_going (ecs);
6501 return;
e5ef252a 6502 }
cdaa5b73
PA
6503 break;
6504
6505 case BPSTAT_WHAT_KEEP_CHECKING:
6506 break;
e5ef252a 6507 }
c906108c 6508
af48d08f
PA
6509 /* If we stepped a permanent breakpoint and we had a high priority
6510 step-resume breakpoint for the address we stepped, but we didn't
6511 hit it, then we must have stepped into the signal handler. The
6512 step-resume was only necessary to catch the case of _not_
6513 stepping into the handler, so delete it, and fall through to
6514 checking whether the step finished. */
6515 if (ecs->event_thread->stepped_breakpoint)
6516 {
6517 struct breakpoint *sr_bp
6518 = ecs->event_thread->control.step_resume_breakpoint;
6519
8d707a12
PA
6520 if (sr_bp != NULL
6521 && sr_bp->loc->permanent
af48d08f
PA
6522 && sr_bp->type == bp_hp_step_resume
6523 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6524 {
4100594e 6525 infrun_log_debug ("stepped permanent breakpoint, stopped in handler");
af48d08f
PA
6526 delete_step_resume_breakpoint (ecs->event_thread);
6527 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6528 }
6529 }
6530
cdaa5b73
PA
6531 /* We come here if we hit a breakpoint but should not stop for it.
6532 Possibly we also were stepping and should stop for that. So fall
6533 through and test for stepping. But, if not stepping, do not
6534 stop. */
c906108c 6535
a7212384
UW
6536 /* In all-stop mode, if we're currently stepping but have stopped in
6537 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6538 if (switch_back_to_stepped_thread (ecs))
6539 return;
776f04fa 6540
8358c15c 6541 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6542 {
4100594e 6543 infrun_log_debug ("step-resume breakpoint is inserted");
527159b7 6544
488f131b
JB
6545 /* Having a step-resume breakpoint overrides anything
6546 else having to do with stepping commands until
6547 that breakpoint is reached. */
488f131b
JB
6548 keep_going (ecs);
6549 return;
6550 }
c5aa993b 6551
16c381f0 6552 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6553 {
4100594e 6554 infrun_log_debug ("no stepping, continue");
488f131b 6555 /* Likewise if we aren't even stepping. */
488f131b
JB
6556 keep_going (ecs);
6557 return;
6558 }
c5aa993b 6559
4b7703ad
JB
6560 /* Re-fetch current thread's frame in case the code above caused
6561 the frame cache to be re-initialized, making our FRAME variable
6562 a dangling pointer. */
6563 frame = get_current_frame ();
628fe4e4 6564 gdbarch = get_frame_arch (frame);
7e324e48 6565 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6566
488f131b 6567 /* If stepping through a line, keep going if still within it.
c906108c 6568
488f131b
JB
6569 Note that step_range_end is the address of the first instruction
6570 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6571 within it!
6572
6573 Note also that during reverse execution, we may be stepping
6574 through a function epilogue and therefore must detect when
6575 the current-frame changes in the middle of a line. */
6576
f2ffa92b
PA
6577 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6578 ecs->event_thread)
31410e84 6579 && (execution_direction != EXEC_REVERSE
388a8562 6580 || frame_id_eq (get_frame_id (frame),
16c381f0 6581 ecs->event_thread->control.step_frame_id)))
488f131b 6582 {
4100594e
SM
6583 infrun_log_debug
6584 ("stepping inside range [%s-%s]",
6585 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6586 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6587
c1e36e3e
PA
6588 /* Tentatively re-enable range stepping; `resume' disables it if
6589 necessary (e.g., if we're stepping over a breakpoint or we
6590 have software watchpoints). */
6591 ecs->event_thread->control.may_range_step = 1;
6592
b2175913
MS
6593 /* When stepping backward, stop at beginning of line range
6594 (unless it's the function entry point, in which case
6595 keep going back to the call point). */
f2ffa92b 6596 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6597 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6598 && stop_pc != ecs->stop_func_start
6599 && execution_direction == EXEC_REVERSE)
bdc36728 6600 end_stepping_range (ecs);
b2175913
MS
6601 else
6602 keep_going (ecs);
6603
488f131b
JB
6604 return;
6605 }
c5aa993b 6606
488f131b 6607 /* We stepped out of the stepping range. */
c906108c 6608
488f131b 6609 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6610 loader dynamic symbol resolution code...
6611
6612 EXEC_FORWARD: we keep on single stepping until we exit the run
6613 time loader code and reach the callee's address.
6614
6615 EXEC_REVERSE: we've already executed the callee (backward), and
6616 the runtime loader code is handled just like any other
6617 undebuggable function call. Now we need only keep stepping
6618 backward through the trampoline code, and that's handled further
6619 down, so there is nothing for us to do here. */
6620
6621 if (execution_direction != EXEC_REVERSE
16c381f0 6622 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6623 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6624 {
4c8c40e6 6625 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6626 gdbarch_skip_solib_resolver (gdbarch,
6627 ecs->event_thread->suspend.stop_pc);
c906108c 6628
4100594e 6629 infrun_log_debug ("stepped into dynsym resolve code");
527159b7 6630
488f131b
JB
6631 if (pc_after_resolver)
6632 {
6633 /* Set up a step-resume breakpoint at the address
6634 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6635 symtab_and_line sr_sal;
488f131b 6636 sr_sal.pc = pc_after_resolver;
6c95b8df 6637 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6638
a6d9a66e
UW
6639 insert_step_resume_breakpoint_at_sal (gdbarch,
6640 sr_sal, null_frame_id);
c5aa993b 6641 }
c906108c 6642
488f131b
JB
6643 keep_going (ecs);
6644 return;
6645 }
c906108c 6646
1d509aa6
MM
6647 /* Step through an indirect branch thunk. */
6648 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6649 && gdbarch_in_indirect_branch_thunk (gdbarch,
6650 ecs->event_thread->suspend.stop_pc))
1d509aa6 6651 {
4100594e 6652 infrun_log_debug ("stepped into indirect branch thunk");
1d509aa6
MM
6653 keep_going (ecs);
6654 return;
6655 }
6656
16c381f0
JK
6657 if (ecs->event_thread->control.step_range_end != 1
6658 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6659 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6660 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6661 {
4100594e 6662 infrun_log_debug ("stepped into signal trampoline");
42edda50 6663 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6664 a signal trampoline (either by a signal being delivered or by
6665 the signal handler returning). Just single-step until the
6666 inferior leaves the trampoline (either by calling the handler
6667 or returning). */
488f131b
JB
6668 keep_going (ecs);
6669 return;
6670 }
c906108c 6671
14132e89
MR
6672 /* If we're in the return path from a shared library trampoline,
6673 we want to proceed through the trampoline when stepping. */
6674 /* macro/2012-04-25: This needs to come before the subroutine
6675 call check below as on some targets return trampolines look
6676 like subroutine calls (MIPS16 return thunks). */
6677 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6678 ecs->event_thread->suspend.stop_pc,
6679 ecs->stop_func_name)
14132e89
MR
6680 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6681 {
6682 /* Determine where this trampoline returns. */
f2ffa92b
PA
6683 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6684 CORE_ADDR real_stop_pc
6685 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89 6686
4100594e 6687 infrun_log_debug ("stepped into solib return tramp");
14132e89
MR
6688
6689 /* Only proceed through if we know where it's going. */
6690 if (real_stop_pc)
6691 {
6692 /* And put the step-breakpoint there and go until there. */
51abb421 6693 symtab_and_line sr_sal;
14132e89
MR
6694 sr_sal.pc = real_stop_pc;
6695 sr_sal.section = find_pc_overlay (sr_sal.pc);
6696 sr_sal.pspace = get_frame_program_space (frame);
6697
6698 /* Do not specify what the fp should be when we stop since
6699 on some machines the prologue is where the new fp value
6700 is established. */
6701 insert_step_resume_breakpoint_at_sal (gdbarch,
6702 sr_sal, null_frame_id);
6703
6704 /* Restart without fiddling with the step ranges or
6705 other state. */
6706 keep_going (ecs);
6707 return;
6708 }
6709 }
6710
c17eaafe
DJ
6711 /* Check for subroutine calls. The check for the current frame
6712 equalling the step ID is not necessary - the check of the
6713 previous frame's ID is sufficient - but it is a common case and
6714 cheaper than checking the previous frame's ID.
14e60db5
DJ
6715
6716 NOTE: frame_id_eq will never report two invalid frame IDs as
6717 being equal, so to get into this block, both the current and
6718 previous frame must have valid frame IDs. */
005ca36a
JB
6719 /* The outer_frame_id check is a heuristic to detect stepping
6720 through startup code. If we step over an instruction which
6721 sets the stack pointer from an invalid value to a valid value,
6722 we may detect that as a subroutine call from the mythical
6723 "outermost" function. This could be fixed by marking
6724 outermost frames as !stack_p,code_p,special_p. Then the
6725 initial outermost frame, before sp was valid, would
ce6cca6d 6726 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6727 for more. */
edb3359d 6728 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6729 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6730 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6731 ecs->event_thread->control.step_stack_frame_id)
6732 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6733 outer_frame_id)
885eeb5b 6734 || (ecs->event_thread->control.step_start_function
f2ffa92b 6735 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6736 {
f2ffa92b 6737 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6738 CORE_ADDR real_stop_pc;
8fb3e588 6739
4100594e 6740 infrun_log_debug ("stepped into subroutine");
527159b7 6741
b7a084be 6742 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6743 {
6744 /* I presume that step_over_calls is only 0 when we're
6745 supposed to be stepping at the assembly language level
6746 ("stepi"). Just stop. */
388a8562 6747 /* And this works the same backward as frontward. MVS */
bdc36728 6748 end_stepping_range (ecs);
95918acb
AC
6749 return;
6750 }
8fb3e588 6751
388a8562
MS
6752 /* Reverse stepping through solib trampolines. */
6753
6754 if (execution_direction == EXEC_REVERSE
16c381f0 6755 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6756 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6757 || (ecs->stop_func_start == 0
6758 && in_solib_dynsym_resolve_code (stop_pc))))
6759 {
6760 /* Any solib trampoline code can be handled in reverse
6761 by simply continuing to single-step. We have already
6762 executed the solib function (backwards), and a few
6763 steps will take us back through the trampoline to the
6764 caller. */
6765 keep_going (ecs);
6766 return;
6767 }
6768
16c381f0 6769 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6770 {
b2175913
MS
6771 /* We're doing a "next".
6772
6773 Normal (forward) execution: set a breakpoint at the
6774 callee's return address (the address at which the caller
6775 will resume).
6776
6777 Reverse (backward) execution. set the step-resume
6778 breakpoint at the start of the function that we just
6779 stepped into (backwards), and continue to there. When we
6130d0b7 6780 get there, we'll need to single-step back to the caller. */
b2175913
MS
6781
6782 if (execution_direction == EXEC_REVERSE)
6783 {
acf9414f
JK
6784 /* If we're already at the start of the function, we've either
6785 just stepped backward into a single instruction function,
6786 or stepped back out of a signal handler to the first instruction
6787 of the function. Just keep going, which will single-step back
6788 to the caller. */
58c48e72 6789 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6790 {
acf9414f 6791 /* Normal function call return (static or dynamic). */
51abb421 6792 symtab_and_line sr_sal;
acf9414f
JK
6793 sr_sal.pc = ecs->stop_func_start;
6794 sr_sal.pspace = get_frame_program_space (frame);
6795 insert_step_resume_breakpoint_at_sal (gdbarch,
6796 sr_sal, null_frame_id);
6797 }
b2175913
MS
6798 }
6799 else
568d6575 6800 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6801
8567c30f
AC
6802 keep_going (ecs);
6803 return;
6804 }
a53c66de 6805
95918acb 6806 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6807 calling routine and the real function), locate the real
6808 function. That's what tells us (a) whether we want to step
6809 into it at all, and (b) what prologue we want to run to the
6810 end of, if we do step into it. */
568d6575 6811 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6812 if (real_stop_pc == 0)
568d6575 6813 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6814 if (real_stop_pc != 0)
6815 ecs->stop_func_start = real_stop_pc;
8fb3e588 6816
db5f024e 6817 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6818 {
51abb421 6819 symtab_and_line sr_sal;
1b2bfbb9 6820 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6821 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6822
a6d9a66e
UW
6823 insert_step_resume_breakpoint_at_sal (gdbarch,
6824 sr_sal, null_frame_id);
8fb3e588
AC
6825 keep_going (ecs);
6826 return;
1b2bfbb9
RC
6827 }
6828
95918acb 6829 /* If we have line number information for the function we are
1bfeeb0f
JL
6830 thinking of stepping into and the function isn't on the skip
6831 list, step into it.
95918acb 6832
8fb3e588
AC
6833 If there are several symtabs at that PC (e.g. with include
6834 files), just want to know whether *any* of them have line
6835 numbers. find_pc_line handles this. */
95918acb
AC
6836 {
6837 struct symtab_and_line tmp_sal;
8fb3e588 6838
95918acb 6839 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6840 if (tmp_sal.line != 0
85817405 6841 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6842 tmp_sal)
6843 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6844 {
b2175913 6845 if (execution_direction == EXEC_REVERSE)
568d6575 6846 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6847 else
568d6575 6848 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6849 return;
6850 }
6851 }
6852
6853 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6854 set, we stop the step so that the user has a chance to switch
6855 in assembly mode. */
16c381f0 6856 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6857 && step_stop_if_no_debug)
95918acb 6858 {
bdc36728 6859 end_stepping_range (ecs);
95918acb
AC
6860 return;
6861 }
6862
b2175913
MS
6863 if (execution_direction == EXEC_REVERSE)
6864 {
acf9414f
JK
6865 /* If we're already at the start of the function, we've either just
6866 stepped backward into a single instruction function without line
6867 number info, or stepped back out of a signal handler to the first
6868 instruction of the function without line number info. Just keep
6869 going, which will single-step back to the caller. */
6870 if (ecs->stop_func_start != stop_pc)
6871 {
6872 /* Set a breakpoint at callee's start address.
6873 From there we can step once and be back in the caller. */
51abb421 6874 symtab_and_line sr_sal;
acf9414f
JK
6875 sr_sal.pc = ecs->stop_func_start;
6876 sr_sal.pspace = get_frame_program_space (frame);
6877 insert_step_resume_breakpoint_at_sal (gdbarch,
6878 sr_sal, null_frame_id);
6879 }
b2175913
MS
6880 }
6881 else
6882 /* Set a breakpoint at callee's return address (the address
6883 at which the caller will resume). */
568d6575 6884 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6885
95918acb 6886 keep_going (ecs);
488f131b 6887 return;
488f131b 6888 }
c906108c 6889
fdd654f3
MS
6890 /* Reverse stepping through solib trampolines. */
6891
6892 if (execution_direction == EXEC_REVERSE
16c381f0 6893 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6894 {
f2ffa92b
PA
6895 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6896
fdd654f3
MS
6897 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6898 || (ecs->stop_func_start == 0
6899 && in_solib_dynsym_resolve_code (stop_pc)))
6900 {
6901 /* Any solib trampoline code can be handled in reverse
6902 by simply continuing to single-step. We have already
6903 executed the solib function (backwards), and a few
6904 steps will take us back through the trampoline to the
6905 caller. */
6906 keep_going (ecs);
6907 return;
6908 }
6909 else if (in_solib_dynsym_resolve_code (stop_pc))
6910 {
6911 /* Stepped backward into the solib dynsym resolver.
6912 Set a breakpoint at its start and continue, then
6913 one more step will take us out. */
51abb421 6914 symtab_and_line sr_sal;
fdd654f3 6915 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6916 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6917 insert_step_resume_breakpoint_at_sal (gdbarch,
6918 sr_sal, null_frame_id);
6919 keep_going (ecs);
6920 return;
6921 }
6922 }
6923
8c95582d
AB
6924 /* This always returns the sal for the inner-most frame when we are in a
6925 stack of inlined frames, even if GDB actually believes that it is in a
6926 more outer frame. This is checked for below by calls to
6927 inline_skipped_frames. */
f2ffa92b 6928 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6929
1b2bfbb9
RC
6930 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6931 the trampoline processing logic, however, there are some trampolines
6932 that have no names, so we should do trampoline handling first. */
16c381f0 6933 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6934 && ecs->stop_func_name == NULL
2afb61aa 6935 && stop_pc_sal.line == 0)
1b2bfbb9 6936 {
4100594e 6937 infrun_log_debug ("stepped into undebuggable function");
527159b7 6938
1b2bfbb9 6939 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6940 undebuggable function (where there is no debugging information
6941 and no line number corresponding to the address where the
1b2bfbb9
RC
6942 inferior stopped). Since we want to skip this kind of code,
6943 we keep going until the inferior returns from this
14e60db5
DJ
6944 function - unless the user has asked us not to (via
6945 set step-mode) or we no longer know how to get back
6946 to the call site. */
6947 if (step_stop_if_no_debug
c7ce8faa 6948 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6949 {
6950 /* If we have no line number and the step-stop-if-no-debug
6951 is set, we stop the step so that the user has a chance to
6952 switch in assembly mode. */
bdc36728 6953 end_stepping_range (ecs);
1b2bfbb9
RC
6954 return;
6955 }
6956 else
6957 {
6958 /* Set a breakpoint at callee's return address (the address
6959 at which the caller will resume). */
568d6575 6960 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6961 keep_going (ecs);
6962 return;
6963 }
6964 }
6965
16c381f0 6966 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6967 {
6968 /* It is stepi or nexti. We always want to stop stepping after
6969 one instruction. */
4100594e 6970 infrun_log_debug ("stepi/nexti");
bdc36728 6971 end_stepping_range (ecs);
1b2bfbb9
RC
6972 return;
6973 }
6974
2afb61aa 6975 if (stop_pc_sal.line == 0)
488f131b
JB
6976 {
6977 /* We have no line number information. That means to stop
6978 stepping (does this always happen right after one instruction,
6979 when we do "s" in a function with no line numbers,
6980 or can this happen as a result of a return or longjmp?). */
4100594e 6981 infrun_log_debug ("line number info");
bdc36728 6982 end_stepping_range (ecs);
488f131b
JB
6983 return;
6984 }
c906108c 6985
edb3359d
DJ
6986 /* Look for "calls" to inlined functions, part one. If the inline
6987 frame machinery detected some skipped call sites, we have entered
6988 a new inline function. */
6989
6990 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6991 ecs->event_thread->control.step_frame_id)
00431a78 6992 && inline_skipped_frames (ecs->event_thread))
edb3359d 6993 {
4100594e 6994 infrun_log_debug ("stepped into inlined function");
edb3359d 6995
51abb421 6996 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6997
16c381f0 6998 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6999 {
7000 /* For "step", we're going to stop. But if the call site
7001 for this inlined function is on the same source line as
7002 we were previously stepping, go down into the function
7003 first. Otherwise stop at the call site. */
7004
7005 if (call_sal.line == ecs->event_thread->current_line
7006 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7007 {
7008 step_into_inline_frame (ecs->event_thread);
7009 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7010 {
7011 keep_going (ecs);
7012 return;
7013 }
7014 }
edb3359d 7015
bdc36728 7016 end_stepping_range (ecs);
edb3359d
DJ
7017 return;
7018 }
7019 else
7020 {
7021 /* For "next", we should stop at the call site if it is on a
7022 different source line. Otherwise continue through the
7023 inlined function. */
7024 if (call_sal.line == ecs->event_thread->current_line
7025 && call_sal.symtab == ecs->event_thread->current_symtab)
7026 keep_going (ecs);
7027 else
bdc36728 7028 end_stepping_range (ecs);
edb3359d
DJ
7029 return;
7030 }
7031 }
7032
7033 /* Look for "calls" to inlined functions, part two. If we are still
7034 in the same real function we were stepping through, but we have
7035 to go further up to find the exact frame ID, we are stepping
7036 through a more inlined call beyond its call site. */
7037
7038 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7039 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7040 ecs->event_thread->control.step_frame_id)
edb3359d 7041 && stepped_in_from (get_current_frame (),
16c381f0 7042 ecs->event_thread->control.step_frame_id))
edb3359d 7043 {
4100594e 7044 infrun_log_debug ("stepping through inlined function");
edb3359d 7045
4a4c04f1
BE
7046 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7047 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7048 keep_going (ecs);
7049 else
bdc36728 7050 end_stepping_range (ecs);
edb3359d
DJ
7051 return;
7052 }
7053
8c95582d 7054 bool refresh_step_info = true;
f2ffa92b 7055 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7056 && (ecs->event_thread->current_line != stop_pc_sal.line
7057 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7058 {
8c95582d
AB
7059 if (stop_pc_sal.is_stmt)
7060 {
7061 /* We are at the start of a different line. So stop. Note that
7062 we don't stop if we step into the middle of a different line.
7063 That is said to make things like for (;;) statements work
7064 better. */
4100594e 7065 infrun_log_debug ("infrun: stepped to a different line\n");
8c95582d
AB
7066 end_stepping_range (ecs);
7067 return;
7068 }
7069 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7070 ecs->event_thread->control.step_frame_id))
7071 {
7072 /* We are at the start of a different line, however, this line is
7073 not marked as a statement, and we have not changed frame. We
7074 ignore this line table entry, and continue stepping forward,
7075 looking for a better place to stop. */
7076 refresh_step_info = false;
4100594e
SM
7077 infrun_log_debug ("infrun: stepped to a different line, but "
7078 "it's not the start of a statement\n");
8c95582d 7079 }
488f131b 7080 }
c906108c 7081
488f131b 7082 /* We aren't done stepping.
c906108c 7083
488f131b
JB
7084 Optimize by setting the stepping range to the line.
7085 (We might not be in the original line, but if we entered a
7086 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7087 things like for(;;) statements work better.)
7088
7089 If we entered a SAL that indicates a non-statement line table entry,
7090 then we update the stepping range, but we don't update the step info,
7091 which includes things like the line number we are stepping away from.
7092 This means we will stop when we find a line table entry that is marked
7093 as is-statement, even if it matches the non-statement one we just
7094 stepped into. */
c906108c 7095
16c381f0
JK
7096 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7097 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7098 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7099 if (refresh_step_info)
7100 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7101
4100594e 7102 infrun_log_debug ("keep going");
488f131b 7103 keep_going (ecs);
104c1213
JM
7104}
7105
c447ac0b
PA
7106/* In all-stop mode, if we're currently stepping but have stopped in
7107 some other thread, we may need to switch back to the stepped
7108 thread. Returns true we set the inferior running, false if we left
7109 it stopped (and the event needs further processing). */
7110
7111static int
7112switch_back_to_stepped_thread (struct execution_control_state *ecs)
7113{
fbea99ea 7114 if (!target_is_non_stop_p ())
c447ac0b 7115 {
99619bea
PA
7116 struct thread_info *stepping_thread;
7117
7118 /* If any thread is blocked on some internal breakpoint, and we
7119 simply need to step over that breakpoint to get it going
7120 again, do that first. */
7121
7122 /* However, if we see an event for the stepping thread, then we
7123 know all other threads have been moved past their breakpoints
7124 already. Let the caller check whether the step is finished,
7125 etc., before deciding to move it past a breakpoint. */
7126 if (ecs->event_thread->control.step_range_end != 0)
7127 return 0;
7128
7129 /* Check if the current thread is blocked on an incomplete
7130 step-over, interrupted by a random signal. */
7131 if (ecs->event_thread->control.trap_expected
7132 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7133 {
4100594e
SM
7134 infrun_log_debug ("need to finish step-over of [%s]",
7135 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
7136 keep_going (ecs);
7137 return 1;
7138 }
2adfaa28 7139
99619bea
PA
7140 /* Check if the current thread is blocked by a single-step
7141 breakpoint of another thread. */
7142 if (ecs->hit_singlestep_breakpoint)
7143 {
4100594e
SM
7144 infrun_log_debug ("need to step [%s] over single-step breakpoint",
7145 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
7146 keep_going (ecs);
7147 return 1;
7148 }
7149
4d9d9d04
PA
7150 /* If this thread needs yet another step-over (e.g., stepping
7151 through a delay slot), do it first before moving on to
7152 another thread. */
7153 if (thread_still_needs_step_over (ecs->event_thread))
7154 {
4100594e
SM
7155 infrun_log_debug
7156 ("thread [%s] still needs step-over",
7157 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
7158 keep_going (ecs);
7159 return 1;
7160 }
70509625 7161
483805cf
PA
7162 /* If scheduler locking applies even if not stepping, there's no
7163 need to walk over threads. Above we've checked whether the
7164 current thread is stepping. If some other thread not the
7165 event thread is stepping, then it must be that scheduler
7166 locking is not in effect. */
856e7dd6 7167 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7168 return 0;
7169
4d9d9d04
PA
7170 /* Otherwise, we no longer expect a trap in the current thread.
7171 Clear the trap_expected flag before switching back -- this is
7172 what keep_going does as well, if we call it. */
7173 ecs->event_thread->control.trap_expected = 0;
7174
7175 /* Likewise, clear the signal if it should not be passed. */
7176 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7177 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7178
7179 /* Do all pending step-overs before actually proceeding with
483805cf 7180 step/next/etc. */
4d9d9d04
PA
7181 if (start_step_over ())
7182 {
7183 prepare_to_wait (ecs);
7184 return 1;
7185 }
7186
7187 /* Look for the stepping/nexting thread. */
483805cf 7188 stepping_thread = NULL;
4d9d9d04 7189
08036331 7190 for (thread_info *tp : all_non_exited_threads ())
483805cf 7191 {
f3f8ece4
PA
7192 switch_to_thread_no_regs (tp);
7193
fbea99ea
PA
7194 /* Ignore threads of processes the caller is not
7195 resuming. */
483805cf 7196 if (!sched_multi
5b6d1e4f
PA
7197 && (tp->inf->process_target () != ecs->target
7198 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7199 continue;
7200
7201 /* When stepping over a breakpoint, we lock all threads
7202 except the one that needs to move past the breakpoint.
7203 If a non-event thread has this set, the "incomplete
7204 step-over" check above should have caught it earlier. */
372316f1
PA
7205 if (tp->control.trap_expected)
7206 {
7207 internal_error (__FILE__, __LINE__,
7208 "[%s] has inconsistent state: "
7209 "trap_expected=%d\n",
a068643d 7210 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7211 tp->control.trap_expected);
7212 }
483805cf
PA
7213
7214 /* Did we find the stepping thread? */
7215 if (tp->control.step_range_end)
7216 {
7217 /* Yep. There should only one though. */
7218 gdb_assert (stepping_thread == NULL);
7219
7220 /* The event thread is handled at the top, before we
7221 enter this loop. */
7222 gdb_assert (tp != ecs->event_thread);
7223
7224 /* If some thread other than the event thread is
7225 stepping, then scheduler locking can't be in effect,
7226 otherwise we wouldn't have resumed the current event
7227 thread in the first place. */
856e7dd6 7228 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7229
7230 stepping_thread = tp;
7231 }
99619bea
PA
7232 }
7233
483805cf 7234 if (stepping_thread != NULL)
99619bea 7235 {
4100594e 7236 infrun_log_debug ("switching back to stepped thread");
c447ac0b 7237
2ac7589c
PA
7238 if (keep_going_stepped_thread (stepping_thread))
7239 {
7240 prepare_to_wait (ecs);
7241 return 1;
7242 }
7243 }
f3f8ece4
PA
7244
7245 switch_to_thread (ecs->event_thread);
2ac7589c 7246 }
2adfaa28 7247
2ac7589c
PA
7248 return 0;
7249}
2adfaa28 7250
2ac7589c
PA
7251/* Set a previously stepped thread back to stepping. Returns true on
7252 success, false if the resume is not possible (e.g., the thread
7253 vanished). */
7254
7255static int
7256keep_going_stepped_thread (struct thread_info *tp)
7257{
7258 struct frame_info *frame;
2ac7589c
PA
7259 struct execution_control_state ecss;
7260 struct execution_control_state *ecs = &ecss;
2adfaa28 7261
2ac7589c
PA
7262 /* If the stepping thread exited, then don't try to switch back and
7263 resume it, which could fail in several different ways depending
7264 on the target. Instead, just keep going.
2adfaa28 7265
2ac7589c
PA
7266 We can find a stepping dead thread in the thread list in two
7267 cases:
2adfaa28 7268
2ac7589c
PA
7269 - The target supports thread exit events, and when the target
7270 tries to delete the thread from the thread list, inferior_ptid
7271 pointed at the exiting thread. In such case, calling
7272 delete_thread does not really remove the thread from the list;
7273 instead, the thread is left listed, with 'exited' state.
64ce06e4 7274
2ac7589c
PA
7275 - The target's debug interface does not support thread exit
7276 events, and so we have no idea whatsoever if the previously
7277 stepping thread is still alive. For that reason, we need to
7278 synchronously query the target now. */
2adfaa28 7279
00431a78 7280 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c 7281 {
4100594e
SM
7282 infrun_log_debug ("not resuming previously stepped thread, it has "
7283 "vanished");
2ac7589c 7284
00431a78 7285 delete_thread (tp);
2ac7589c 7286 return 0;
c447ac0b 7287 }
2ac7589c 7288
4100594e 7289 infrun_log_debug ("resuming previously stepped thread");
2ac7589c
PA
7290
7291 reset_ecs (ecs, tp);
00431a78 7292 switch_to_thread (tp);
2ac7589c 7293
f2ffa92b 7294 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7295 frame = get_current_frame ();
2ac7589c
PA
7296
7297 /* If the PC of the thread we were trying to single-step has
7298 changed, then that thread has trapped or been signaled, but the
7299 event has not been reported to GDB yet. Re-poll the target
7300 looking for this particular thread's event (i.e. temporarily
7301 enable schedlock) by:
7302
7303 - setting a break at the current PC
7304 - resuming that particular thread, only (by setting trap
7305 expected)
7306
7307 This prevents us continuously moving the single-step breakpoint
7308 forward, one instruction at a time, overstepping. */
7309
f2ffa92b 7310 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7311 {
7312 ptid_t resume_ptid;
7313
4100594e
SM
7314 infrun_log_debug ("expected thread advanced also (%s -> %s)",
7315 paddress (target_gdbarch (), tp->prev_pc),
7316 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7317
7318 /* Clear the info of the previous step-over, as it's no longer
7319 valid (if the thread was trying to step over a breakpoint, it
7320 has already succeeded). It's what keep_going would do too,
7321 if we called it. Do this before trying to insert the sss
7322 breakpoint, otherwise if we were previously trying to step
7323 over this exact address in another thread, the breakpoint is
7324 skipped. */
7325 clear_step_over_info ();
7326 tp->control.trap_expected = 0;
7327
7328 insert_single_step_breakpoint (get_frame_arch (frame),
7329 get_frame_address_space (frame),
f2ffa92b 7330 tp->suspend.stop_pc);
2ac7589c 7331
719546c4 7332 tp->resumed = true;
fbea99ea 7333 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7334 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7335 }
7336 else
7337 {
4100594e 7338 infrun_log_debug ("expected thread still hasn't advanced");
2ac7589c
PA
7339
7340 keep_going_pass_signal (ecs);
7341 }
7342 return 1;
c447ac0b
PA
7343}
7344
8b061563
PA
7345/* Is thread TP in the middle of (software or hardware)
7346 single-stepping? (Note the result of this function must never be
7347 passed directly as target_resume's STEP parameter.) */
104c1213 7348
a289b8f6 7349static int
b3444185 7350currently_stepping (struct thread_info *tp)
a7212384 7351{
8358c15c
JK
7352 return ((tp->control.step_range_end
7353 && tp->control.step_resume_breakpoint == NULL)
7354 || tp->control.trap_expected
af48d08f 7355 || tp->stepped_breakpoint
8358c15c 7356 || bpstat_should_step ());
a7212384
UW
7357}
7358
b2175913
MS
7359/* Inferior has stepped into a subroutine call with source code that
7360 we should not step over. Do step to the first line of code in
7361 it. */
c2c6d25f
JM
7362
7363static void
568d6575
UW
7364handle_step_into_function (struct gdbarch *gdbarch,
7365 struct execution_control_state *ecs)
c2c6d25f 7366{
7e324e48
GB
7367 fill_in_stop_func (gdbarch, ecs);
7368
f2ffa92b
PA
7369 compunit_symtab *cust
7370 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7371 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7372 ecs->stop_func_start
7373 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7374
51abb421 7375 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7376 /* Use the step_resume_break to step until the end of the prologue,
7377 even if that involves jumps (as it seems to on the vax under
7378 4.2). */
7379 /* If the prologue ends in the middle of a source line, continue to
7380 the end of that source line (if it is still within the function).
7381 Otherwise, just go to end of prologue. */
2afb61aa
PA
7382 if (stop_func_sal.end
7383 && stop_func_sal.pc != ecs->stop_func_start
7384 && stop_func_sal.end < ecs->stop_func_end)
7385 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7386
2dbd5e30
KB
7387 /* Architectures which require breakpoint adjustment might not be able
7388 to place a breakpoint at the computed address. If so, the test
7389 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7390 ecs->stop_func_start to an address at which a breakpoint may be
7391 legitimately placed.
8fb3e588 7392
2dbd5e30
KB
7393 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7394 made, GDB will enter an infinite loop when stepping through
7395 optimized code consisting of VLIW instructions which contain
7396 subinstructions corresponding to different source lines. On
7397 FR-V, it's not permitted to place a breakpoint on any but the
7398 first subinstruction of a VLIW instruction. When a breakpoint is
7399 set, GDB will adjust the breakpoint address to the beginning of
7400 the VLIW instruction. Thus, we need to make the corresponding
7401 adjustment here when computing the stop address. */
8fb3e588 7402
568d6575 7403 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7404 {
7405 ecs->stop_func_start
568d6575 7406 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7407 ecs->stop_func_start);
2dbd5e30
KB
7408 }
7409
f2ffa92b 7410 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7411 {
7412 /* We are already there: stop now. */
bdc36728 7413 end_stepping_range (ecs);
c2c6d25f
JM
7414 return;
7415 }
7416 else
7417 {
7418 /* Put the step-breakpoint there and go until there. */
51abb421 7419 symtab_and_line sr_sal;
c2c6d25f
JM
7420 sr_sal.pc = ecs->stop_func_start;
7421 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7422 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7423
c2c6d25f 7424 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7425 some machines the prologue is where the new fp value is
7426 established. */
a6d9a66e 7427 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7428
7429 /* And make sure stepping stops right away then. */
16c381f0
JK
7430 ecs->event_thread->control.step_range_end
7431 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7432 }
7433 keep_going (ecs);
7434}
d4f3574e 7435
b2175913
MS
7436/* Inferior has stepped backward into a subroutine call with source
7437 code that we should not step over. Do step to the beginning of the
7438 last line of code in it. */
7439
7440static void
568d6575
UW
7441handle_step_into_function_backward (struct gdbarch *gdbarch,
7442 struct execution_control_state *ecs)
b2175913 7443{
43f3e411 7444 struct compunit_symtab *cust;
167e4384 7445 struct symtab_and_line stop_func_sal;
b2175913 7446
7e324e48
GB
7447 fill_in_stop_func (gdbarch, ecs);
7448
f2ffa92b 7449 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7450 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7451 ecs->stop_func_start
7452 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7453
f2ffa92b 7454 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7455
7456 /* OK, we're just going to keep stepping here. */
f2ffa92b 7457 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7458 {
7459 /* We're there already. Just stop stepping now. */
bdc36728 7460 end_stepping_range (ecs);
b2175913
MS
7461 }
7462 else
7463 {
7464 /* Else just reset the step range and keep going.
7465 No step-resume breakpoint, they don't work for
7466 epilogues, which can have multiple entry paths. */
16c381f0
JK
7467 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7468 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7469 keep_going (ecs);
7470 }
7471 return;
7472}
7473
d3169d93 7474/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7475 This is used to both functions and to skip over code. */
7476
7477static void
2c03e5be
PA
7478insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7479 struct symtab_and_line sr_sal,
7480 struct frame_id sr_id,
7481 enum bptype sr_type)
44cbf7b5 7482{
611c83ae
PA
7483 /* There should never be more than one step-resume or longjmp-resume
7484 breakpoint per thread, so we should never be setting a new
44cbf7b5 7485 step_resume_breakpoint when one is already active. */
8358c15c 7486 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7487 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93 7488
4100594e
SM
7489 infrun_log_debug ("inserting step-resume breakpoint at %s",
7490 paddress (gdbarch, sr_sal.pc));
d3169d93 7491
8358c15c 7492 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7493 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7494}
7495
9da8c2a0 7496void
2c03e5be
PA
7497insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7498 struct symtab_and_line sr_sal,
7499 struct frame_id sr_id)
7500{
7501 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7502 sr_sal, sr_id,
7503 bp_step_resume);
44cbf7b5 7504}
7ce450bd 7505
2c03e5be
PA
7506/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7507 This is used to skip a potential signal handler.
7ce450bd 7508
14e60db5
DJ
7509 This is called with the interrupted function's frame. The signal
7510 handler, when it returns, will resume the interrupted function at
7511 RETURN_FRAME.pc. */
d303a6c7
AC
7512
7513static void
2c03e5be 7514insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7515{
f4c1edd8 7516 gdb_assert (return_frame != NULL);
d303a6c7 7517
51abb421
PA
7518 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7519
7520 symtab_and_line sr_sal;
568d6575 7521 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7522 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7523 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7524
2c03e5be
PA
7525 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7526 get_stack_frame_id (return_frame),
7527 bp_hp_step_resume);
d303a6c7
AC
7528}
7529
2c03e5be
PA
7530/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7531 is used to skip a function after stepping into it (for "next" or if
7532 the called function has no debugging information).
14e60db5
DJ
7533
7534 The current function has almost always been reached by single
7535 stepping a call or return instruction. NEXT_FRAME belongs to the
7536 current function, and the breakpoint will be set at the caller's
7537 resume address.
7538
7539 This is a separate function rather than reusing
2c03e5be 7540 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7541 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7542 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7543
7544static void
7545insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7546{
14e60db5
DJ
7547 /* We shouldn't have gotten here if we don't know where the call site
7548 is. */
c7ce8faa 7549 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7550
51abb421 7551 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7552
51abb421 7553 symtab_and_line sr_sal;
c7ce8faa
DJ
7554 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7555 frame_unwind_caller_pc (next_frame));
14e60db5 7556 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7557 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7558
a6d9a66e 7559 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7560 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7561}
7562
611c83ae
PA
7563/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7564 new breakpoint at the target of a jmp_buf. The handling of
7565 longjmp-resume uses the same mechanisms used for handling
7566 "step-resume" breakpoints. */
7567
7568static void
a6d9a66e 7569insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7570{
e81a37f7
TT
7571 /* There should never be more than one longjmp-resume breakpoint per
7572 thread, so we should never be setting a new
611c83ae 7573 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7574 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae 7575
4100594e
SM
7576 infrun_log_debug ("inserting longjmp-resume breakpoint at %s",
7577 paddress (gdbarch, pc));
611c83ae 7578
e81a37f7 7579 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7580 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7581}
7582
186c406b
TT
7583/* Insert an exception resume breakpoint. TP is the thread throwing
7584 the exception. The block B is the block of the unwinder debug hook
7585 function. FRAME is the frame corresponding to the call to this
7586 function. SYM is the symbol of the function argument holding the
7587 target PC of the exception. */
7588
7589static void
7590insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7591 const struct block *b,
186c406b
TT
7592 struct frame_info *frame,
7593 struct symbol *sym)
7594{
a70b8144 7595 try
186c406b 7596 {
63e43d3a 7597 struct block_symbol vsym;
186c406b
TT
7598 struct value *value;
7599 CORE_ADDR handler;
7600 struct breakpoint *bp;
7601
987012b8 7602 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7603 b, VAR_DOMAIN);
63e43d3a 7604 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7605 /* If the value was optimized out, revert to the old behavior. */
7606 if (! value_optimized_out (value))
7607 {
7608 handler = value_as_address (value);
7609
4100594e
SM
7610 infrun_log_debug ("exception resume at %lx",
7611 (unsigned long) handler);
186c406b
TT
7612
7613 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7614 handler,
7615 bp_exception_resume).release ();
c70a6932
JK
7616
7617 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7618 frame = NULL;
7619
5d5658a1 7620 bp->thread = tp->global_num;
186c406b
TT
7621 inferior_thread ()->control.exception_resume_breakpoint = bp;
7622 }
7623 }
230d2906 7624 catch (const gdb_exception_error &e)
492d29ea
PA
7625 {
7626 /* We want to ignore errors here. */
7627 }
186c406b
TT
7628}
7629
28106bc2
SDJ
7630/* A helper for check_exception_resume that sets an
7631 exception-breakpoint based on a SystemTap probe. */
7632
7633static void
7634insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7635 const struct bound_probe *probe,
28106bc2
SDJ
7636 struct frame_info *frame)
7637{
7638 struct value *arg_value;
7639 CORE_ADDR handler;
7640 struct breakpoint *bp;
7641
7642 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7643 if (!arg_value)
7644 return;
7645
7646 handler = value_as_address (arg_value);
7647
4100594e
SM
7648 infrun_log_debug ("exception resume at %s",
7649 paddress (probe->objfile->arch (), handler));
28106bc2
SDJ
7650
7651 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7652 handler, bp_exception_resume).release ();
5d5658a1 7653 bp->thread = tp->global_num;
28106bc2
SDJ
7654 inferior_thread ()->control.exception_resume_breakpoint = bp;
7655}
7656
186c406b
TT
7657/* This is called when an exception has been intercepted. Check to
7658 see whether the exception's destination is of interest, and if so,
7659 set an exception resume breakpoint there. */
7660
7661static void
7662check_exception_resume (struct execution_control_state *ecs,
28106bc2 7663 struct frame_info *frame)
186c406b 7664{
729662a5 7665 struct bound_probe probe;
28106bc2
SDJ
7666 struct symbol *func;
7667
7668 /* First see if this exception unwinding breakpoint was set via a
7669 SystemTap probe point. If so, the probe has two arguments: the
7670 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7671 set a breakpoint there. */
6bac7473 7672 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7673 if (probe.prob)
28106bc2 7674 {
729662a5 7675 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7676 return;
7677 }
7678
7679 func = get_frame_function (frame);
7680 if (!func)
7681 return;
186c406b 7682
a70b8144 7683 try
186c406b 7684 {
3977b71f 7685 const struct block *b;
8157b174 7686 struct block_iterator iter;
186c406b
TT
7687 struct symbol *sym;
7688 int argno = 0;
7689
7690 /* The exception breakpoint is a thread-specific breakpoint on
7691 the unwinder's debug hook, declared as:
7692
7693 void _Unwind_DebugHook (void *cfa, void *handler);
7694
7695 The CFA argument indicates the frame to which control is
7696 about to be transferred. HANDLER is the destination PC.
7697
7698 We ignore the CFA and set a temporary breakpoint at HANDLER.
7699 This is not extremely efficient but it avoids issues in gdb
7700 with computing the DWARF CFA, and it also works even in weird
7701 cases such as throwing an exception from inside a signal
7702 handler. */
7703
7704 b = SYMBOL_BLOCK_VALUE (func);
7705 ALL_BLOCK_SYMBOLS (b, iter, sym)
7706 {
7707 if (!SYMBOL_IS_ARGUMENT (sym))
7708 continue;
7709
7710 if (argno == 0)
7711 ++argno;
7712 else
7713 {
7714 insert_exception_resume_breakpoint (ecs->event_thread,
7715 b, frame, sym);
7716 break;
7717 }
7718 }
7719 }
230d2906 7720 catch (const gdb_exception_error &e)
492d29ea
PA
7721 {
7722 }
186c406b
TT
7723}
7724
104c1213 7725static void
22bcd14b 7726stop_waiting (struct execution_control_state *ecs)
104c1213 7727{
4100594e 7728 infrun_log_debug ("stop_waiting");
527159b7 7729
cd0fc7c3
SS
7730 /* Let callers know we don't want to wait for the inferior anymore. */
7731 ecs->wait_some_more = 0;
fbea99ea 7732
53cccef1 7733 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 7734 threads now that we're presenting the stop to the user. */
53cccef1 7735 if (!non_stop && exists_non_stop_target ())
fbea99ea 7736 stop_all_threads ();
cd0fc7c3
SS
7737}
7738
4d9d9d04
PA
7739/* Like keep_going, but passes the signal to the inferior, even if the
7740 signal is set to nopass. */
d4f3574e
SS
7741
7742static void
4d9d9d04 7743keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7744{
d7e15655 7745 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7746 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7747
d4f3574e 7748 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7749 ecs->event_thread->prev_pc
fc75c28b 7750 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
d4f3574e 7751
4d9d9d04 7752 if (ecs->event_thread->control.trap_expected)
d4f3574e 7753 {
4d9d9d04
PA
7754 struct thread_info *tp = ecs->event_thread;
7755
4100594e
SM
7756 infrun_log_debug ("%s has trap_expected set, "
7757 "resuming to collect trap",
7758 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7759
a9ba6bae
PA
7760 /* We haven't yet gotten our trap, and either: intercepted a
7761 non-signal event (e.g., a fork); or took a signal which we
7762 are supposed to pass through to the inferior. Simply
7763 continue. */
64ce06e4 7764 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7765 }
372316f1
PA
7766 else if (step_over_info_valid_p ())
7767 {
7768 /* Another thread is stepping over a breakpoint in-line. If
7769 this thread needs a step-over too, queue the request. In
7770 either case, this resume must be deferred for later. */
7771 struct thread_info *tp = ecs->event_thread;
7772
7773 if (ecs->hit_singlestep_breakpoint
7774 || thread_still_needs_step_over (tp))
7775 {
4100594e
SM
7776 infrun_log_debug ("step-over already in progress: "
7777 "step-over for %s deferred",
7778 target_pid_to_str (tp->ptid).c_str ());
bb88694d 7779 global_thread_step_over_chain_enqueue (tp);
372316f1
PA
7780 }
7781 else
7782 {
4100594e
SM
7783 infrun_log_debug ("step-over in progress: resume of %s deferred",
7784 target_pid_to_str (tp->ptid).c_str ());
372316f1 7785 }
372316f1 7786 }
d4f3574e
SS
7787 else
7788 {
31e77af2 7789 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7790 int remove_bp;
7791 int remove_wps;
8d297bbf 7792 step_over_what step_what;
31e77af2 7793
d4f3574e 7794 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7795 anyway (if we got a signal, the user asked it be passed to
7796 the child)
7797 -- or --
7798 We got our expected trap, but decided we should resume from
7799 it.
d4f3574e 7800
a9ba6bae 7801 We're going to run this baby now!
d4f3574e 7802
c36b740a
VP
7803 Note that insert_breakpoints won't try to re-insert
7804 already inserted breakpoints. Therefore, we don't
7805 care if breakpoints were already inserted, or not. */
a9ba6bae 7806
31e77af2
PA
7807 /* If we need to step over a breakpoint, and we're not using
7808 displaced stepping to do so, insert all breakpoints
7809 (watchpoints, etc.) but the one we're stepping over, step one
7810 instruction, and then re-insert the breakpoint when that step
7811 is finished. */
963f9c80 7812
6c4cfb24
PA
7813 step_what = thread_still_needs_step_over (ecs->event_thread);
7814
963f9c80 7815 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7816 || (step_what & STEP_OVER_BREAKPOINT));
7817 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7818
cb71640d
PA
7819 /* We can't use displaced stepping if we need to step past a
7820 watchpoint. The instruction copied to the scratch pad would
7821 still trigger the watchpoint. */
7822 if (remove_bp
3fc8eb30 7823 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7824 {
a01bda52 7825 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7826 regcache_read_pc (regcache), remove_wps,
7827 ecs->event_thread->global_num);
45e8c884 7828 }
963f9c80 7829 else if (remove_wps)
21edc42f 7830 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7831
7832 /* If we now need to do an in-line step-over, we need to stop
7833 all other threads. Note this must be done before
7834 insert_breakpoints below, because that removes the breakpoint
7835 we're about to step over, otherwise other threads could miss
7836 it. */
fbea99ea 7837 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7838 stop_all_threads ();
abbb1732 7839
31e77af2 7840 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7841 try
31e77af2
PA
7842 {
7843 insert_breakpoints ();
7844 }
230d2906 7845 catch (const gdb_exception_error &e)
31e77af2
PA
7846 {
7847 exception_print (gdb_stderr, e);
22bcd14b 7848 stop_waiting (ecs);
bdf2a94a 7849 clear_step_over_info ();
31e77af2 7850 return;
d4f3574e
SS
7851 }
7852
963f9c80 7853 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7854
64ce06e4 7855 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7856 }
7857
488f131b 7858 prepare_to_wait (ecs);
d4f3574e
SS
7859}
7860
4d9d9d04
PA
7861/* Called when we should continue running the inferior, because the
7862 current event doesn't cause a user visible stop. This does the
7863 resuming part; waiting for the next event is done elsewhere. */
7864
7865static void
7866keep_going (struct execution_control_state *ecs)
7867{
7868 if (ecs->event_thread->control.trap_expected
7869 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7870 ecs->event_thread->control.trap_expected = 0;
7871
7872 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7873 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7874 keep_going_pass_signal (ecs);
7875}
7876
104c1213
JM
7877/* This function normally comes after a resume, before
7878 handle_inferior_event exits. It takes care of any last bits of
7879 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7880
104c1213
JM
7881static void
7882prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7883{
4100594e 7884 infrun_log_debug ("prepare_to_wait");
104c1213 7885
104c1213 7886 ecs->wait_some_more = 1;
0b333c5e
PA
7887
7888 if (!target_is_async_p ())
7889 mark_infrun_async_event_handler ();
c906108c 7890}
11cf8741 7891
fd664c91 7892/* We are done with the step range of a step/next/si/ni command.
b57bacec 7893 Called once for each n of a "step n" operation. */
fd664c91
PA
7894
7895static void
bdc36728 7896end_stepping_range (struct execution_control_state *ecs)
fd664c91 7897{
bdc36728 7898 ecs->event_thread->control.stop_step = 1;
bdc36728 7899 stop_waiting (ecs);
fd664c91
PA
7900}
7901
33d62d64
JK
7902/* Several print_*_reason functions to print why the inferior has stopped.
7903 We always print something when the inferior exits, or receives a signal.
7904 The rest of the cases are dealt with later on in normal_stop and
7905 print_it_typical. Ideally there should be a call to one of these
7906 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7907 stop_waiting is called.
33d62d64 7908
fd664c91
PA
7909 Note that we don't call these directly, instead we delegate that to
7910 the interpreters, through observers. Interpreters then call these
7911 with whatever uiout is right. */
33d62d64 7912
fd664c91
PA
7913void
7914print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7915{
fd664c91 7916 /* For CLI-like interpreters, print nothing. */
33d62d64 7917
112e8700 7918 if (uiout->is_mi_like_p ())
fd664c91 7919 {
112e8700 7920 uiout->field_string ("reason",
fd664c91
PA
7921 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7922 }
7923}
33d62d64 7924
fd664c91
PA
7925void
7926print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7927{
33d62d64 7928 annotate_signalled ();
112e8700
SM
7929 if (uiout->is_mi_like_p ())
7930 uiout->field_string
7931 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7932 uiout->text ("\nProgram terminated with signal ");
33d62d64 7933 annotate_signal_name ();
112e8700 7934 uiout->field_string ("signal-name",
2ea28649 7935 gdb_signal_to_name (siggnal));
33d62d64 7936 annotate_signal_name_end ();
112e8700 7937 uiout->text (", ");
33d62d64 7938 annotate_signal_string ();
112e8700 7939 uiout->field_string ("signal-meaning",
2ea28649 7940 gdb_signal_to_string (siggnal));
33d62d64 7941 annotate_signal_string_end ();
112e8700
SM
7942 uiout->text (".\n");
7943 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7944}
7945
fd664c91
PA
7946void
7947print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7948{
fda326dd 7949 struct inferior *inf = current_inferior ();
a068643d 7950 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7951
33d62d64
JK
7952 annotate_exited (exitstatus);
7953 if (exitstatus)
7954 {
112e8700
SM
7955 if (uiout->is_mi_like_p ())
7956 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
7957 std::string exit_code_str
7958 = string_printf ("0%o", (unsigned int) exitstatus);
7959 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7960 plongest (inf->num), pidstr.c_str (),
7961 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
7962 }
7963 else
11cf8741 7964 {
112e8700
SM
7965 if (uiout->is_mi_like_p ())
7966 uiout->field_string
7967 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
7968 uiout->message ("[Inferior %s (%s) exited normally]\n",
7969 plongest (inf->num), pidstr.c_str ());
33d62d64 7970 }
33d62d64
JK
7971}
7972
012b3a21
WT
7973/* Some targets/architectures can do extra processing/display of
7974 segmentation faults. E.g., Intel MPX boundary faults.
7975 Call the architecture dependent function to handle the fault. */
7976
7977static void
7978handle_segmentation_fault (struct ui_out *uiout)
7979{
7980 struct regcache *regcache = get_current_regcache ();
ac7936df 7981 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7982
7983 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7984 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7985}
7986
fd664c91
PA
7987void
7988print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7989{
f303dbd6
PA
7990 struct thread_info *thr = inferior_thread ();
7991
33d62d64
JK
7992 annotate_signal ();
7993
112e8700 7994 if (uiout->is_mi_like_p ())
f303dbd6
PA
7995 ;
7996 else if (show_thread_that_caused_stop ())
33d62d64 7997 {
f303dbd6 7998 const char *name;
33d62d64 7999
112e8700 8000 uiout->text ("\nThread ");
33eca680 8001 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8002
8003 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8004 if (name != NULL)
8005 {
112e8700 8006 uiout->text (" \"");
33eca680 8007 uiout->field_string ("name", name);
112e8700 8008 uiout->text ("\"");
f303dbd6 8009 }
33d62d64 8010 }
f303dbd6 8011 else
112e8700 8012 uiout->text ("\nProgram");
f303dbd6 8013
112e8700
SM
8014 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8015 uiout->text (" stopped");
33d62d64
JK
8016 else
8017 {
112e8700 8018 uiout->text (" received signal ");
8b93c638 8019 annotate_signal_name ();
112e8700
SM
8020 if (uiout->is_mi_like_p ())
8021 uiout->field_string
8022 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8023 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8024 annotate_signal_name_end ();
112e8700 8025 uiout->text (", ");
8b93c638 8026 annotate_signal_string ();
112e8700 8027 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8028
8029 if (siggnal == GDB_SIGNAL_SEGV)
8030 handle_segmentation_fault (uiout);
8031
8b93c638 8032 annotate_signal_string_end ();
33d62d64 8033 }
112e8700 8034 uiout->text (".\n");
33d62d64 8035}
252fbfc8 8036
fd664c91
PA
8037void
8038print_no_history_reason (struct ui_out *uiout)
33d62d64 8039{
112e8700 8040 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8041}
43ff13b4 8042
0c7e1a46
PA
8043/* Print current location without a level number, if we have changed
8044 functions or hit a breakpoint. Print source line if we have one.
8045 bpstat_print contains the logic deciding in detail what to print,
8046 based on the event(s) that just occurred. */
8047
243a9253
PA
8048static void
8049print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8050{
8051 int bpstat_ret;
f486487f 8052 enum print_what source_flag;
0c7e1a46
PA
8053 int do_frame_printing = 1;
8054 struct thread_info *tp = inferior_thread ();
8055
8056 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8057 switch (bpstat_ret)
8058 {
8059 case PRINT_UNKNOWN:
8060 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8061 should) carry around the function and does (or should) use
8062 that when doing a frame comparison. */
8063 if (tp->control.stop_step
8064 && frame_id_eq (tp->control.step_frame_id,
8065 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8066 && (tp->control.step_start_function
8067 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8068 {
8069 /* Finished step, just print source line. */
8070 source_flag = SRC_LINE;
8071 }
8072 else
8073 {
8074 /* Print location and source line. */
8075 source_flag = SRC_AND_LOC;
8076 }
8077 break;
8078 case PRINT_SRC_AND_LOC:
8079 /* Print location and source line. */
8080 source_flag = SRC_AND_LOC;
8081 break;
8082 case PRINT_SRC_ONLY:
8083 source_flag = SRC_LINE;
8084 break;
8085 case PRINT_NOTHING:
8086 /* Something bogus. */
8087 source_flag = SRC_LINE;
8088 do_frame_printing = 0;
8089 break;
8090 default:
8091 internal_error (__FILE__, __LINE__, _("Unknown value."));
8092 }
8093
8094 /* The behavior of this routine with respect to the source
8095 flag is:
8096 SRC_LINE: Print only source line
8097 LOCATION: Print only location
8098 SRC_AND_LOC: Print location and source line. */
8099 if (do_frame_printing)
8100 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8101}
8102
243a9253
PA
8103/* See infrun.h. */
8104
8105void
4c7d57e7 8106print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8107{
243a9253 8108 struct target_waitstatus last;
243a9253
PA
8109 struct thread_info *tp;
8110
5b6d1e4f 8111 get_last_target_status (nullptr, nullptr, &last);
243a9253 8112
67ad9399
TT
8113 {
8114 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8115
67ad9399 8116 print_stop_location (&last);
243a9253 8117
67ad9399 8118 /* Display the auto-display expressions. */
4c7d57e7
TT
8119 if (displays)
8120 do_displays ();
67ad9399 8121 }
243a9253
PA
8122
8123 tp = inferior_thread ();
8124 if (tp->thread_fsm != NULL
46e3ed7f 8125 && tp->thread_fsm->finished_p ())
243a9253
PA
8126 {
8127 struct return_value_info *rv;
8128
46e3ed7f 8129 rv = tp->thread_fsm->return_value ();
243a9253
PA
8130 if (rv != NULL)
8131 print_return_value (uiout, rv);
8132 }
0c7e1a46
PA
8133}
8134
388a7084
PA
8135/* See infrun.h. */
8136
8137void
8138maybe_remove_breakpoints (void)
8139{
8140 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8141 {
8142 if (remove_breakpoints ())
8143 {
223ffa71 8144 target_terminal::ours_for_output ();
388a7084
PA
8145 printf_filtered (_("Cannot remove breakpoints because "
8146 "program is no longer writable.\nFurther "
8147 "execution is probably impossible.\n"));
8148 }
8149 }
8150}
8151
4c2f2a79
PA
8152/* The execution context that just caused a normal stop. */
8153
8154struct stop_context
8155{
2d844eaf
TT
8156 stop_context ();
8157 ~stop_context ();
8158
8159 DISABLE_COPY_AND_ASSIGN (stop_context);
8160
8161 bool changed () const;
8162
4c2f2a79
PA
8163 /* The stop ID. */
8164 ULONGEST stop_id;
c906108c 8165
4c2f2a79 8166 /* The event PTID. */
c906108c 8167
4c2f2a79
PA
8168 ptid_t ptid;
8169
8170 /* If stopp for a thread event, this is the thread that caused the
8171 stop. */
8172 struct thread_info *thread;
8173
8174 /* The inferior that caused the stop. */
8175 int inf_num;
8176};
8177
2d844eaf 8178/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8179 takes a strong reference to the thread. */
8180
2d844eaf 8181stop_context::stop_context ()
4c2f2a79 8182{
2d844eaf
TT
8183 stop_id = get_stop_id ();
8184 ptid = inferior_ptid;
8185 inf_num = current_inferior ()->num;
4c2f2a79 8186
d7e15655 8187 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8188 {
8189 /* Take a strong reference so that the thread can't be deleted
8190 yet. */
2d844eaf
TT
8191 thread = inferior_thread ();
8192 thread->incref ();
4c2f2a79
PA
8193 }
8194 else
2d844eaf 8195 thread = NULL;
4c2f2a79
PA
8196}
8197
8198/* Release a stop context previously created with save_stop_context.
8199 Releases the strong reference to the thread as well. */
8200
2d844eaf 8201stop_context::~stop_context ()
4c2f2a79 8202{
2d844eaf
TT
8203 if (thread != NULL)
8204 thread->decref ();
4c2f2a79
PA
8205}
8206
8207/* Return true if the current context no longer matches the saved stop
8208 context. */
8209
2d844eaf
TT
8210bool
8211stop_context::changed () const
8212{
8213 if (ptid != inferior_ptid)
8214 return true;
8215 if (inf_num != current_inferior ()->num)
8216 return true;
8217 if (thread != NULL && thread->state != THREAD_STOPPED)
8218 return true;
8219 if (get_stop_id () != stop_id)
8220 return true;
8221 return false;
4c2f2a79
PA
8222}
8223
8224/* See infrun.h. */
8225
8226int
96baa820 8227normal_stop (void)
c906108c 8228{
73b65bb0 8229 struct target_waitstatus last;
73b65bb0 8230
5b6d1e4f 8231 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8232
4c2f2a79
PA
8233 new_stop_id ();
8234
29f49a6a
PA
8235 /* If an exception is thrown from this point on, make sure to
8236 propagate GDB's knowledge of the executing state to the
8237 frontend/user running state. A QUIT is an easy exception to see
8238 here, so do this before any filtered output. */
731f534f 8239
5b6d1e4f 8240 ptid_t finish_ptid = null_ptid;
731f534f 8241
c35b1492 8242 if (!non_stop)
5b6d1e4f 8243 finish_ptid = minus_one_ptid;
e1316e60
PA
8244 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8245 || last.kind == TARGET_WAITKIND_EXITED)
8246 {
8247 /* On some targets, we may still have live threads in the
8248 inferior when we get a process exit event. E.g., for
8249 "checkpoint", when the current checkpoint/fork exits,
8250 linux-fork.c automatically switches to another fork from
8251 within target_mourn_inferior. */
731f534f 8252 if (inferior_ptid != null_ptid)
5b6d1e4f 8253 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8254 }
8255 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8256 finish_ptid = inferior_ptid;
8257
8258 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8259 if (finish_ptid != null_ptid)
8260 {
8261 maybe_finish_thread_state.emplace
8262 (user_visible_resume_target (finish_ptid), finish_ptid);
8263 }
29f49a6a 8264
b57bacec
PA
8265 /* As we're presenting a stop, and potentially removing breakpoints,
8266 update the thread list so we can tell whether there are threads
8267 running on the target. With target remote, for example, we can
8268 only learn about new threads when we explicitly update the thread
8269 list. Do this before notifying the interpreters about signal
8270 stops, end of stepping ranges, etc., so that the "new thread"
8271 output is emitted before e.g., "Program received signal FOO",
8272 instead of after. */
8273 update_thread_list ();
8274
8275 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8276 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8277
c906108c
SS
8278 /* As with the notification of thread events, we want to delay
8279 notifying the user that we've switched thread context until
8280 the inferior actually stops.
8281
73b65bb0
DJ
8282 There's no point in saying anything if the inferior has exited.
8283 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8284 "received a signal".
8285
8286 Also skip saying anything in non-stop mode. In that mode, as we
8287 don't want GDB to switch threads behind the user's back, to avoid
8288 races where the user is typing a command to apply to thread x,
8289 but GDB switches to thread y before the user finishes entering
8290 the command, fetch_inferior_event installs a cleanup to restore
8291 the current thread back to the thread the user had selected right
8292 after this event is handled, so we're not really switching, only
8293 informing of a stop. */
4f8d22e3 8294 if (!non_stop
731f534f 8295 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8296 && target_has_execution
8297 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8298 && last.kind != TARGET_WAITKIND_EXITED
8299 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8300 {
0e454242 8301 SWITCH_THRU_ALL_UIS ()
3b12939d 8302 {
223ffa71 8303 target_terminal::ours_for_output ();
3b12939d 8304 printf_filtered (_("[Switching to %s]\n"),
a068643d 8305 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8306 annotate_thread_changed ();
8307 }
39f77062 8308 previous_inferior_ptid = inferior_ptid;
c906108c 8309 }
c906108c 8310
0e5bf2a8
PA
8311 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8312 {
0e454242 8313 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8314 if (current_ui->prompt_state == PROMPT_BLOCKED)
8315 {
223ffa71 8316 target_terminal::ours_for_output ();
3b12939d
PA
8317 printf_filtered (_("No unwaited-for children left.\n"));
8318 }
0e5bf2a8
PA
8319 }
8320
b57bacec 8321 /* Note: this depends on the update_thread_list call above. */
388a7084 8322 maybe_remove_breakpoints ();
c906108c 8323
c906108c
SS
8324 /* If an auto-display called a function and that got a signal,
8325 delete that auto-display to avoid an infinite recursion. */
8326
8327 if (stopped_by_random_signal)
8328 disable_current_display ();
8329
0e454242 8330 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8331 {
8332 async_enable_stdin ();
8333 }
c906108c 8334
388a7084 8335 /* Let the user/frontend see the threads as stopped. */
731f534f 8336 maybe_finish_thread_state.reset ();
388a7084
PA
8337
8338 /* Select innermost stack frame - i.e., current frame is frame 0,
8339 and current location is based on that. Handle the case where the
8340 dummy call is returning after being stopped. E.g. the dummy call
8341 previously hit a breakpoint. (If the dummy call returns
8342 normally, we won't reach here.) Do this before the stop hook is
8343 run, so that it doesn't get to see the temporary dummy frame,
8344 which is not where we'll present the stop. */
8345 if (has_stack_frames ())
8346 {
8347 if (stop_stack_dummy == STOP_STACK_DUMMY)
8348 {
8349 /* Pop the empty frame that contains the stack dummy. This
8350 also restores inferior state prior to the call (struct
8351 infcall_suspend_state). */
8352 struct frame_info *frame = get_current_frame ();
8353
8354 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8355 frame_pop (frame);
8356 /* frame_pop calls reinit_frame_cache as the last thing it
8357 does which means there's now no selected frame. */
8358 }
8359
8360 select_frame (get_current_frame ());
8361
8362 /* Set the current source location. */
8363 set_current_sal_from_frame (get_current_frame ());
8364 }
dd7e2d2b
PA
8365
8366 /* Look up the hook_stop and run it (CLI internally handles problem
8367 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8368 if (stop_command != NULL)
8369 {
2d844eaf 8370 stop_context saved_context;
4c2f2a79 8371
a70b8144 8372 try
bf469271
PA
8373 {
8374 execute_cmd_pre_hook (stop_command);
8375 }
230d2906 8376 catch (const gdb_exception &ex)
bf469271
PA
8377 {
8378 exception_fprintf (gdb_stderr, ex,
8379 "Error while running hook_stop:\n");
8380 }
4c2f2a79
PA
8381
8382 /* If the stop hook resumes the target, then there's no point in
8383 trying to notify about the previous stop; its context is
8384 gone. Likewise if the command switches thread or inferior --
8385 the observers would print a stop for the wrong
8386 thread/inferior. */
2d844eaf
TT
8387 if (saved_context.changed ())
8388 return 1;
4c2f2a79 8389 }
dd7e2d2b 8390
388a7084
PA
8391 /* Notify observers about the stop. This is where the interpreters
8392 print the stop event. */
d7e15655 8393 if (inferior_ptid != null_ptid)
76727919 8394 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8395 stop_print_frame);
8396 else
76727919 8397 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8398
243a9253
PA
8399 annotate_stopped ();
8400
48844aa6
PA
8401 if (target_has_execution)
8402 {
8403 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8404 && last.kind != TARGET_WAITKIND_EXITED
8405 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8406 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8407 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8408 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8409 }
6c95b8df
PA
8410
8411 /* Try to get rid of automatically added inferiors that are no
8412 longer needed. Keeping those around slows down things linearly.
8413 Note that this never removes the current inferior. */
8414 prune_inferiors ();
4c2f2a79
PA
8415
8416 return 0;
c906108c 8417}
c906108c 8418\f
c5aa993b 8419int
96baa820 8420signal_stop_state (int signo)
c906108c 8421{
d6b48e9c 8422 return signal_stop[signo];
c906108c
SS
8423}
8424
c5aa993b 8425int
96baa820 8426signal_print_state (int signo)
c906108c
SS
8427{
8428 return signal_print[signo];
8429}
8430
c5aa993b 8431int
96baa820 8432signal_pass_state (int signo)
c906108c
SS
8433{
8434 return signal_program[signo];
8435}
8436
2455069d
UW
8437static void
8438signal_cache_update (int signo)
8439{
8440 if (signo == -1)
8441 {
a493e3e2 8442 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8443 signal_cache_update (signo);
8444
8445 return;
8446 }
8447
8448 signal_pass[signo] = (signal_stop[signo] == 0
8449 && signal_print[signo] == 0
ab04a2af
TT
8450 && signal_program[signo] == 1
8451 && signal_catch[signo] == 0);
2455069d
UW
8452}
8453
488f131b 8454int
7bda5e4a 8455signal_stop_update (int signo, int state)
d4f3574e
SS
8456{
8457 int ret = signal_stop[signo];
abbb1732 8458
d4f3574e 8459 signal_stop[signo] = state;
2455069d 8460 signal_cache_update (signo);
d4f3574e
SS
8461 return ret;
8462}
8463
488f131b 8464int
7bda5e4a 8465signal_print_update (int signo, int state)
d4f3574e
SS
8466{
8467 int ret = signal_print[signo];
abbb1732 8468
d4f3574e 8469 signal_print[signo] = state;
2455069d 8470 signal_cache_update (signo);
d4f3574e
SS
8471 return ret;
8472}
8473
488f131b 8474int
7bda5e4a 8475signal_pass_update (int signo, int state)
d4f3574e
SS
8476{
8477 int ret = signal_program[signo];
abbb1732 8478
d4f3574e 8479 signal_program[signo] = state;
2455069d 8480 signal_cache_update (signo);
d4f3574e
SS
8481 return ret;
8482}
8483
ab04a2af
TT
8484/* Update the global 'signal_catch' from INFO and notify the
8485 target. */
8486
8487void
8488signal_catch_update (const unsigned int *info)
8489{
8490 int i;
8491
8492 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8493 signal_catch[i] = info[i] > 0;
8494 signal_cache_update (-1);
adc6a863 8495 target_pass_signals (signal_pass);
ab04a2af
TT
8496}
8497
c906108c 8498static void
96baa820 8499sig_print_header (void)
c906108c 8500{
3e43a32a
MS
8501 printf_filtered (_("Signal Stop\tPrint\tPass "
8502 "to program\tDescription\n"));
c906108c
SS
8503}
8504
8505static void
2ea28649 8506sig_print_info (enum gdb_signal oursig)
c906108c 8507{
2ea28649 8508 const char *name = gdb_signal_to_name (oursig);
c906108c 8509 int name_padding = 13 - strlen (name);
96baa820 8510
c906108c
SS
8511 if (name_padding <= 0)
8512 name_padding = 0;
8513
8514 printf_filtered ("%s", name);
488f131b 8515 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8516 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8517 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8518 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8519 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8520}
8521
8522/* Specify how various signals in the inferior should be handled. */
8523
8524static void
0b39b52e 8525handle_command (const char *args, int from_tty)
c906108c 8526{
c906108c 8527 int digits, wordlen;
b926417a 8528 int sigfirst, siglast;
2ea28649 8529 enum gdb_signal oursig;
c906108c 8530 int allsigs;
c906108c
SS
8531
8532 if (args == NULL)
8533 {
e2e0b3e5 8534 error_no_arg (_("signal to handle"));
c906108c
SS
8535 }
8536
1777feb0 8537 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8538
adc6a863
PA
8539 const size_t nsigs = GDB_SIGNAL_LAST;
8540 unsigned char sigs[nsigs] {};
c906108c 8541
1777feb0 8542 /* Break the command line up into args. */
c906108c 8543
773a1edc 8544 gdb_argv built_argv (args);
c906108c
SS
8545
8546 /* Walk through the args, looking for signal oursigs, signal names, and
8547 actions. Signal numbers and signal names may be interspersed with
8548 actions, with the actions being performed for all signals cumulatively
1777feb0 8549 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8550
773a1edc 8551 for (char *arg : built_argv)
c906108c 8552 {
773a1edc
TT
8553 wordlen = strlen (arg);
8554 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8555 {;
8556 }
8557 allsigs = 0;
8558 sigfirst = siglast = -1;
8559
773a1edc 8560 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8561 {
8562 /* Apply action to all signals except those used by the
1777feb0 8563 debugger. Silently skip those. */
c906108c
SS
8564 allsigs = 1;
8565 sigfirst = 0;
8566 siglast = nsigs - 1;
8567 }
773a1edc 8568 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8569 {
8570 SET_SIGS (nsigs, sigs, signal_stop);
8571 SET_SIGS (nsigs, sigs, signal_print);
8572 }
773a1edc 8573 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8574 {
8575 UNSET_SIGS (nsigs, sigs, signal_program);
8576 }
773a1edc 8577 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8578 {
8579 SET_SIGS (nsigs, sigs, signal_print);
8580 }
773a1edc 8581 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8582 {
8583 SET_SIGS (nsigs, sigs, signal_program);
8584 }
773a1edc 8585 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8586 {
8587 UNSET_SIGS (nsigs, sigs, signal_stop);
8588 }
773a1edc 8589 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8590 {
8591 SET_SIGS (nsigs, sigs, signal_program);
8592 }
773a1edc 8593 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8594 {
8595 UNSET_SIGS (nsigs, sigs, signal_print);
8596 UNSET_SIGS (nsigs, sigs, signal_stop);
8597 }
773a1edc 8598 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8599 {
8600 UNSET_SIGS (nsigs, sigs, signal_program);
8601 }
8602 else if (digits > 0)
8603 {
8604 /* It is numeric. The numeric signal refers to our own
8605 internal signal numbering from target.h, not to host/target
8606 signal number. This is a feature; users really should be
8607 using symbolic names anyway, and the common ones like
8608 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8609
8610 sigfirst = siglast = (int)
773a1edc
TT
8611 gdb_signal_from_command (atoi (arg));
8612 if (arg[digits] == '-')
c906108c
SS
8613 {
8614 siglast = (int)
773a1edc 8615 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8616 }
8617 if (sigfirst > siglast)
8618 {
1777feb0 8619 /* Bet he didn't figure we'd think of this case... */
b926417a 8620 std::swap (sigfirst, siglast);
c906108c
SS
8621 }
8622 }
8623 else
8624 {
773a1edc 8625 oursig = gdb_signal_from_name (arg);
a493e3e2 8626 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8627 {
8628 sigfirst = siglast = (int) oursig;
8629 }
8630 else
8631 {
8632 /* Not a number and not a recognized flag word => complain. */
773a1edc 8633 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8634 }
8635 }
8636
8637 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8638 which signals to apply actions to. */
c906108c 8639
b926417a 8640 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8641 {
2ea28649 8642 switch ((enum gdb_signal) signum)
c906108c 8643 {
a493e3e2
PA
8644 case GDB_SIGNAL_TRAP:
8645 case GDB_SIGNAL_INT:
c906108c
SS
8646 if (!allsigs && !sigs[signum])
8647 {
9e2f0ad4 8648 if (query (_("%s is used by the debugger.\n\
3e43a32a 8649Are you sure you want to change it? "),
2ea28649 8650 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8651 {
8652 sigs[signum] = 1;
8653 }
8654 else
c119e040 8655 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8656 }
8657 break;
a493e3e2
PA
8658 case GDB_SIGNAL_0:
8659 case GDB_SIGNAL_DEFAULT:
8660 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8661 /* Make sure that "all" doesn't print these. */
8662 break;
8663 default:
8664 sigs[signum] = 1;
8665 break;
8666 }
8667 }
c906108c
SS
8668 }
8669
b926417a 8670 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8671 if (sigs[signum])
8672 {
2455069d 8673 signal_cache_update (-1);
adc6a863
PA
8674 target_pass_signals (signal_pass);
8675 target_program_signals (signal_program);
c906108c 8676
3a031f65
PA
8677 if (from_tty)
8678 {
8679 /* Show the results. */
8680 sig_print_header ();
8681 for (; signum < nsigs; signum++)
8682 if (sigs[signum])
aead7601 8683 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8684 }
8685
8686 break;
8687 }
c906108c
SS
8688}
8689
de0bea00
MF
8690/* Complete the "handle" command. */
8691
eb3ff9a5 8692static void
de0bea00 8693handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8694 completion_tracker &tracker,
6f937416 8695 const char *text, const char *word)
de0bea00 8696{
de0bea00
MF
8697 static const char * const keywords[] =
8698 {
8699 "all",
8700 "stop",
8701 "ignore",
8702 "print",
8703 "pass",
8704 "nostop",
8705 "noignore",
8706 "noprint",
8707 "nopass",
8708 NULL,
8709 };
8710
eb3ff9a5
PA
8711 signal_completer (ignore, tracker, text, word);
8712 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8713}
8714
2ea28649
PA
8715enum gdb_signal
8716gdb_signal_from_command (int num)
ed01b82c
PA
8717{
8718 if (num >= 1 && num <= 15)
2ea28649 8719 return (enum gdb_signal) num;
ed01b82c
PA
8720 error (_("Only signals 1-15 are valid as numeric signals.\n\
8721Use \"info signals\" for a list of symbolic signals."));
8722}
8723
c906108c
SS
8724/* Print current contents of the tables set by the handle command.
8725 It is possible we should just be printing signals actually used
8726 by the current target (but for things to work right when switching
8727 targets, all signals should be in the signal tables). */
8728
8729static void
1d12d88f 8730info_signals_command (const char *signum_exp, int from_tty)
c906108c 8731{
2ea28649 8732 enum gdb_signal oursig;
abbb1732 8733
c906108c
SS
8734 sig_print_header ();
8735
8736 if (signum_exp)
8737 {
8738 /* First see if this is a symbol name. */
2ea28649 8739 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8740 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8741 {
8742 /* No, try numeric. */
8743 oursig =
2ea28649 8744 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8745 }
8746 sig_print_info (oursig);
8747 return;
8748 }
8749
8750 printf_filtered ("\n");
8751 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8752 for (oursig = GDB_SIGNAL_FIRST;
8753 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8754 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8755 {
8756 QUIT;
8757
a493e3e2
PA
8758 if (oursig != GDB_SIGNAL_UNKNOWN
8759 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8760 sig_print_info (oursig);
8761 }
8762
3e43a32a
MS
8763 printf_filtered (_("\nUse the \"handle\" command "
8764 "to change these tables.\n"));
c906108c 8765}
4aa995e1
PA
8766
8767/* The $_siginfo convenience variable is a bit special. We don't know
8768 for sure the type of the value until we actually have a chance to
7a9dd1b2 8769 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8770 also dependent on which thread you have selected.
8771
8772 1. making $_siginfo be an internalvar that creates a new value on
8773 access.
8774
8775 2. making the value of $_siginfo be an lval_computed value. */
8776
8777/* This function implements the lval_computed support for reading a
8778 $_siginfo value. */
8779
8780static void
8781siginfo_value_read (struct value *v)
8782{
8783 LONGEST transferred;
8784
a911d87a
PA
8785 /* If we can access registers, so can we access $_siginfo. Likewise
8786 vice versa. */
8787 validate_registers_access ();
c709acd1 8788
4aa995e1 8789 transferred =
8b88a78e 8790 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8791 NULL,
8792 value_contents_all_raw (v),
8793 value_offset (v),
8794 TYPE_LENGTH (value_type (v)));
8795
8796 if (transferred != TYPE_LENGTH (value_type (v)))
8797 error (_("Unable to read siginfo"));
8798}
8799
8800/* This function implements the lval_computed support for writing a
8801 $_siginfo value. */
8802
8803static void
8804siginfo_value_write (struct value *v, struct value *fromval)
8805{
8806 LONGEST transferred;
8807
a911d87a
PA
8808 /* If we can access registers, so can we access $_siginfo. Likewise
8809 vice versa. */
8810 validate_registers_access ();
c709acd1 8811
8b88a78e 8812 transferred = target_write (current_top_target (),
4aa995e1
PA
8813 TARGET_OBJECT_SIGNAL_INFO,
8814 NULL,
8815 value_contents_all_raw (fromval),
8816 value_offset (v),
8817 TYPE_LENGTH (value_type (fromval)));
8818
8819 if (transferred != TYPE_LENGTH (value_type (fromval)))
8820 error (_("Unable to write siginfo"));
8821}
8822
c8f2448a 8823static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8824 {
8825 siginfo_value_read,
8826 siginfo_value_write
8827 };
8828
8829/* Return a new value with the correct type for the siginfo object of
78267919
UW
8830 the current thread using architecture GDBARCH. Return a void value
8831 if there's no object available. */
4aa995e1 8832
2c0b251b 8833static struct value *
22d2b532
SDJ
8834siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8835 void *ignore)
4aa995e1 8836{
4aa995e1 8837 if (target_has_stack
d7e15655 8838 && inferior_ptid != null_ptid
78267919 8839 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8840 {
78267919 8841 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8842
78267919 8843 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8844 }
8845
78267919 8846 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8847}
8848
c906108c 8849\f
16c381f0
JK
8850/* infcall_suspend_state contains state about the program itself like its
8851 registers and any signal it received when it last stopped.
8852 This state must be restored regardless of how the inferior function call
8853 ends (either successfully, or after it hits a breakpoint or signal)
8854 if the program is to properly continue where it left off. */
8855
6bf78e29 8856class infcall_suspend_state
7a292a7a 8857{
6bf78e29
AB
8858public:
8859 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8860 once the inferior function call has finished. */
8861 infcall_suspend_state (struct gdbarch *gdbarch,
8862 const struct thread_info *tp,
8863 struct regcache *regcache)
8864 : m_thread_suspend (tp->suspend),
8865 m_registers (new readonly_detached_regcache (*regcache))
8866 {
8867 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8868
8869 if (gdbarch_get_siginfo_type_p (gdbarch))
8870 {
8871 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8872 size_t len = TYPE_LENGTH (type);
8873
8874 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8875
8876 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8877 siginfo_data.get (), 0, len) != len)
8878 {
8879 /* Errors ignored. */
8880 siginfo_data.reset (nullptr);
8881 }
8882 }
8883
8884 if (siginfo_data)
8885 {
8886 m_siginfo_gdbarch = gdbarch;
8887 m_siginfo_data = std::move (siginfo_data);
8888 }
8889 }
8890
8891 /* Return a pointer to the stored register state. */
16c381f0 8892
6bf78e29
AB
8893 readonly_detached_regcache *registers () const
8894 {
8895 return m_registers.get ();
8896 }
8897
8898 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8899
8900 void restore (struct gdbarch *gdbarch,
8901 struct thread_info *tp,
8902 struct regcache *regcache) const
8903 {
8904 tp->suspend = m_thread_suspend;
8905
8906 if (m_siginfo_gdbarch == gdbarch)
8907 {
8908 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8909
8910 /* Errors ignored. */
8911 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8912 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8913 }
8914
8915 /* The inferior can be gone if the user types "print exit(0)"
8916 (and perhaps other times). */
8917 if (target_has_execution)
8918 /* NB: The register write goes through to the target. */
8919 regcache->restore (registers ());
8920 }
8921
8922private:
8923 /* How the current thread stopped before the inferior function call was
8924 executed. */
8925 struct thread_suspend_state m_thread_suspend;
8926
8927 /* The registers before the inferior function call was executed. */
8928 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8929
35515841 8930 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8931 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8932
8933 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8934 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8935 content would be invalid. */
6bf78e29 8936 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8937};
8938
cb524840
TT
8939infcall_suspend_state_up
8940save_infcall_suspend_state ()
b89667eb 8941{
b89667eb 8942 struct thread_info *tp = inferior_thread ();
1736ad11 8943 struct regcache *regcache = get_current_regcache ();
ac7936df 8944 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8945
6bf78e29
AB
8946 infcall_suspend_state_up inf_state
8947 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8948
6bf78e29
AB
8949 /* Having saved the current state, adjust the thread state, discarding
8950 any stop signal information. The stop signal is not useful when
8951 starting an inferior function call, and run_inferior_call will not use
8952 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8953 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8954
b89667eb
DE
8955 return inf_state;
8956}
8957
8958/* Restore inferior session state to INF_STATE. */
8959
8960void
16c381f0 8961restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8962{
8963 struct thread_info *tp = inferior_thread ();
1736ad11 8964 struct regcache *regcache = get_current_regcache ();
ac7936df 8965 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8966
6bf78e29 8967 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8968 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8969}
8970
b89667eb 8971void
16c381f0 8972discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8973{
dd848631 8974 delete inf_state;
b89667eb
DE
8975}
8976
daf6667d 8977readonly_detached_regcache *
16c381f0 8978get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8979{
6bf78e29 8980 return inf_state->registers ();
b89667eb
DE
8981}
8982
16c381f0
JK
8983/* infcall_control_state contains state regarding gdb's control of the
8984 inferior itself like stepping control. It also contains session state like
8985 the user's currently selected frame. */
b89667eb 8986
16c381f0 8987struct infcall_control_state
b89667eb 8988{
16c381f0
JK
8989 struct thread_control_state thread_control;
8990 struct inferior_control_state inferior_control;
d82142e2
JK
8991
8992 /* Other fields: */
ee841dd8
TT
8993 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8994 int stopped_by_random_signal = 0;
7a292a7a 8995
b89667eb 8996 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8997 struct frame_id selected_frame_id {};
7a292a7a
SS
8998};
8999
c906108c 9000/* Save all of the information associated with the inferior<==>gdb
b89667eb 9001 connection. */
c906108c 9002
cb524840
TT
9003infcall_control_state_up
9004save_infcall_control_state ()
c906108c 9005{
cb524840 9006 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9007 struct thread_info *tp = inferior_thread ();
d6b48e9c 9008 struct inferior *inf = current_inferior ();
7a292a7a 9009
16c381f0
JK
9010 inf_status->thread_control = tp->control;
9011 inf_status->inferior_control = inf->control;
d82142e2 9012
8358c15c 9013 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9014 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9015
16c381f0
JK
9016 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9017 chain. If caller's caller is walking the chain, they'll be happier if we
9018 hand them back the original chain when restore_infcall_control_state is
9019 called. */
9020 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9021
9022 /* Other fields: */
9023 inf_status->stop_stack_dummy = stop_stack_dummy;
9024 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9025
206415a3 9026 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9027
7a292a7a 9028 return inf_status;
c906108c
SS
9029}
9030
bf469271
PA
9031static void
9032restore_selected_frame (const frame_id &fid)
c906108c 9033{
bf469271 9034 frame_info *frame = frame_find_by_id (fid);
c906108c 9035
aa0cd9c1
AC
9036 /* If inf_status->selected_frame_id is NULL, there was no previously
9037 selected frame. */
101dcfbe 9038 if (frame == NULL)
c906108c 9039 {
8a3fe4f8 9040 warning (_("Unable to restore previously selected frame."));
bf469271 9041 return;
c906108c
SS
9042 }
9043
0f7d239c 9044 select_frame (frame);
c906108c
SS
9045}
9046
b89667eb
DE
9047/* Restore inferior session state to INF_STATUS. */
9048
c906108c 9049void
16c381f0 9050restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9051{
4e1c45ea 9052 struct thread_info *tp = inferior_thread ();
d6b48e9c 9053 struct inferior *inf = current_inferior ();
4e1c45ea 9054
8358c15c
JK
9055 if (tp->control.step_resume_breakpoint)
9056 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9057
5b79abe7
TT
9058 if (tp->control.exception_resume_breakpoint)
9059 tp->control.exception_resume_breakpoint->disposition
9060 = disp_del_at_next_stop;
9061
d82142e2 9062 /* Handle the bpstat_copy of the chain. */
16c381f0 9063 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9064
16c381f0
JK
9065 tp->control = inf_status->thread_control;
9066 inf->control = inf_status->inferior_control;
d82142e2
JK
9067
9068 /* Other fields: */
9069 stop_stack_dummy = inf_status->stop_stack_dummy;
9070 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9071
b89667eb 9072 if (target_has_stack)
c906108c 9073 {
bf469271 9074 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9075 walking the stack might encounter a garbage pointer and
9076 error() trying to dereference it. */
a70b8144 9077 try
bf469271
PA
9078 {
9079 restore_selected_frame (inf_status->selected_frame_id);
9080 }
230d2906 9081 catch (const gdb_exception_error &ex)
bf469271
PA
9082 {
9083 exception_fprintf (gdb_stderr, ex,
9084 "Unable to restore previously selected frame:\n");
9085 /* Error in restoring the selected frame. Select the
9086 innermost frame. */
9087 select_frame (get_current_frame ());
9088 }
c906108c 9089 }
c906108c 9090
ee841dd8 9091 delete inf_status;
7a292a7a 9092}
c906108c
SS
9093
9094void
16c381f0 9095discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9096{
8358c15c
JK
9097 if (inf_status->thread_control.step_resume_breakpoint)
9098 inf_status->thread_control.step_resume_breakpoint->disposition
9099 = disp_del_at_next_stop;
9100
5b79abe7
TT
9101 if (inf_status->thread_control.exception_resume_breakpoint)
9102 inf_status->thread_control.exception_resume_breakpoint->disposition
9103 = disp_del_at_next_stop;
9104
1777feb0 9105 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9106 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9107
ee841dd8 9108 delete inf_status;
7a292a7a 9109}
b89667eb 9110\f
7f89fd65 9111/* See infrun.h. */
0c557179
SDJ
9112
9113void
9114clear_exit_convenience_vars (void)
9115{
9116 clear_internalvar (lookup_internalvar ("_exitsignal"));
9117 clear_internalvar (lookup_internalvar ("_exitcode"));
9118}
c5aa993b 9119\f
488f131b 9120
b2175913
MS
9121/* User interface for reverse debugging:
9122 Set exec-direction / show exec-direction commands
9123 (returns error unless target implements to_set_exec_direction method). */
9124
170742de 9125enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9126static const char exec_forward[] = "forward";
9127static const char exec_reverse[] = "reverse";
9128static const char *exec_direction = exec_forward;
40478521 9129static const char *const exec_direction_names[] = {
b2175913
MS
9130 exec_forward,
9131 exec_reverse,
9132 NULL
9133};
9134
9135static void
eb4c3f4a 9136set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9137 struct cmd_list_element *cmd)
9138{
9139 if (target_can_execute_reverse)
9140 {
9141 if (!strcmp (exec_direction, exec_forward))
9142 execution_direction = EXEC_FORWARD;
9143 else if (!strcmp (exec_direction, exec_reverse))
9144 execution_direction = EXEC_REVERSE;
9145 }
8bbed405
MS
9146 else
9147 {
9148 exec_direction = exec_forward;
9149 error (_("Target does not support this operation."));
9150 }
b2175913
MS
9151}
9152
9153static void
9154show_exec_direction_func (struct ui_file *out, int from_tty,
9155 struct cmd_list_element *cmd, const char *value)
9156{
9157 switch (execution_direction) {
9158 case EXEC_FORWARD:
9159 fprintf_filtered (out, _("Forward.\n"));
9160 break;
9161 case EXEC_REVERSE:
9162 fprintf_filtered (out, _("Reverse.\n"));
9163 break;
b2175913 9164 default:
d8b34453
PA
9165 internal_error (__FILE__, __LINE__,
9166 _("bogus execution_direction value: %d"),
9167 (int) execution_direction);
b2175913
MS
9168 }
9169}
9170
d4db2f36
PA
9171static void
9172show_schedule_multiple (struct ui_file *file, int from_tty,
9173 struct cmd_list_element *c, const char *value)
9174{
3e43a32a
MS
9175 fprintf_filtered (file, _("Resuming the execution of threads "
9176 "of all processes is %s.\n"), value);
d4db2f36 9177}
ad52ddc6 9178
22d2b532
SDJ
9179/* Implementation of `siginfo' variable. */
9180
9181static const struct internalvar_funcs siginfo_funcs =
9182{
9183 siginfo_make_value,
9184 NULL,
9185 NULL
9186};
9187
372316f1
PA
9188/* Callback for infrun's target events source. This is marked when a
9189 thread has a pending status to process. */
9190
9191static void
9192infrun_async_inferior_event_handler (gdb_client_data data)
9193{
372316f1
PA
9194 inferior_event_handler (INF_REG_EVENT, NULL);
9195}
9196
6c265988 9197void _initialize_infrun ();
c906108c 9198void
6c265988 9199_initialize_infrun ()
c906108c 9200{
de0bea00 9201 struct cmd_list_element *c;
c906108c 9202
372316f1
PA
9203 /* Register extra event sources in the event loop. */
9204 infrun_async_inferior_event_token
9205 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9206
11db9430 9207 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9208What debugger does when program gets various signals.\n\
9209Specify a signal as argument to print info on that signal only."));
c906108c
SS
9210 add_info_alias ("handle", "signals", 0);
9211
de0bea00 9212 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9213Specify how to handle signals.\n\
486c7739 9214Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9215Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9216If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9217will be displayed instead.\n\
9218\n\
c906108c
SS
9219Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9220from 1-15 are allowed for compatibility with old versions of GDB.\n\
9221Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9222The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9223used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9224\n\
1bedd215 9225Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9226\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9227Stop means reenter debugger if this signal happens (implies print).\n\
9228Print means print a message if this signal happens.\n\
9229Pass means let program see this signal; otherwise program doesn't know.\n\
9230Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9231Pass and Stop may be combined.\n\
9232\n\
9233Multiple signals may be specified. Signal numbers and signal names\n\
9234may be interspersed with actions, with the actions being performed for\n\
9235all signals cumulatively specified."));
de0bea00 9236 set_cmd_completer (c, handle_completer);
486c7739 9237
c906108c 9238 if (!dbx_commands)
1a966eab
AC
9239 stop_command = add_cmd ("stop", class_obscure,
9240 not_just_help_class_command, _("\
9241There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9242This allows you to set a list of commands to be run each time execution\n\
1a966eab 9243of the program stops."), &cmdlist);
c906108c 9244
ccce17b0 9245 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9246Set inferior debugging."), _("\
9247Show inferior debugging."), _("\
9248When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9249 NULL,
9250 show_debug_infrun,
9251 &setdebuglist, &showdebuglist);
527159b7 9252
3e43a32a
MS
9253 add_setshow_boolean_cmd ("displaced", class_maintenance,
9254 &debug_displaced, _("\
237fc4c9
PA
9255Set displaced stepping debugging."), _("\
9256Show displaced stepping debugging."), _("\
9257When non-zero, displaced stepping specific debugging is enabled."),
9258 NULL,
9259 show_debug_displaced,
9260 &setdebuglist, &showdebuglist);
9261
ad52ddc6
PA
9262 add_setshow_boolean_cmd ("non-stop", no_class,
9263 &non_stop_1, _("\
9264Set whether gdb controls the inferior in non-stop mode."), _("\
9265Show whether gdb controls the inferior in non-stop mode."), _("\
9266When debugging a multi-threaded program and this setting is\n\
9267off (the default, also called all-stop mode), when one thread stops\n\
9268(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9269all other threads in the program while you interact with the thread of\n\
9270interest. When you continue or step a thread, you can allow the other\n\
9271threads to run, or have them remain stopped, but while you inspect any\n\
9272thread's state, all threads stop.\n\
9273\n\
9274In non-stop mode, when one thread stops, other threads can continue\n\
9275to run freely. You'll be able to step each thread independently,\n\
9276leave it stopped or free to run as needed."),
9277 set_non_stop,
9278 show_non_stop,
9279 &setlist,
9280 &showlist);
9281
adc6a863 9282 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9283 {
9284 signal_stop[i] = 1;
9285 signal_print[i] = 1;
9286 signal_program[i] = 1;
ab04a2af 9287 signal_catch[i] = 0;
c906108c
SS
9288 }
9289
4d9d9d04
PA
9290 /* Signals caused by debugger's own actions should not be given to
9291 the program afterwards.
9292
9293 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9294 explicitly specifies that it should be delivered to the target
9295 program. Typically, that would occur when a user is debugging a
9296 target monitor on a simulator: the target monitor sets a
9297 breakpoint; the simulator encounters this breakpoint and halts
9298 the simulation handing control to GDB; GDB, noting that the stop
9299 address doesn't map to any known breakpoint, returns control back
9300 to the simulator; the simulator then delivers the hardware
9301 equivalent of a GDB_SIGNAL_TRAP to the program being
9302 debugged. */
a493e3e2
PA
9303 signal_program[GDB_SIGNAL_TRAP] = 0;
9304 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9305
9306 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9307 signal_stop[GDB_SIGNAL_ALRM] = 0;
9308 signal_print[GDB_SIGNAL_ALRM] = 0;
9309 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9310 signal_print[GDB_SIGNAL_VTALRM] = 0;
9311 signal_stop[GDB_SIGNAL_PROF] = 0;
9312 signal_print[GDB_SIGNAL_PROF] = 0;
9313 signal_stop[GDB_SIGNAL_CHLD] = 0;
9314 signal_print[GDB_SIGNAL_CHLD] = 0;
9315 signal_stop[GDB_SIGNAL_IO] = 0;
9316 signal_print[GDB_SIGNAL_IO] = 0;
9317 signal_stop[GDB_SIGNAL_POLL] = 0;
9318 signal_print[GDB_SIGNAL_POLL] = 0;
9319 signal_stop[GDB_SIGNAL_URG] = 0;
9320 signal_print[GDB_SIGNAL_URG] = 0;
9321 signal_stop[GDB_SIGNAL_WINCH] = 0;
9322 signal_print[GDB_SIGNAL_WINCH] = 0;
9323 signal_stop[GDB_SIGNAL_PRIO] = 0;
9324 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9325
cd0fc7c3
SS
9326 /* These signals are used internally by user-level thread
9327 implementations. (See signal(5) on Solaris.) Like the above
9328 signals, a healthy program receives and handles them as part of
9329 its normal operation. */
a493e3e2
PA
9330 signal_stop[GDB_SIGNAL_LWP] = 0;
9331 signal_print[GDB_SIGNAL_LWP] = 0;
9332 signal_stop[GDB_SIGNAL_WAITING] = 0;
9333 signal_print[GDB_SIGNAL_WAITING] = 0;
9334 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9335 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9336 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9337 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9338
2455069d
UW
9339 /* Update cached state. */
9340 signal_cache_update (-1);
9341
85c07804
AC
9342 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9343 &stop_on_solib_events, _("\
9344Set stopping for shared library events."), _("\
9345Show stopping for shared library events."), _("\
c906108c
SS
9346If nonzero, gdb will give control to the user when the dynamic linker\n\
9347notifies gdb of shared library events. The most common event of interest\n\
85c07804 9348to the user would be loading/unloading of a new library."),
f9e14852 9349 set_stop_on_solib_events,
920d2a44 9350 show_stop_on_solib_events,
85c07804 9351 &setlist, &showlist);
c906108c 9352
7ab04401
AC
9353 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9354 follow_fork_mode_kind_names,
9355 &follow_fork_mode_string, _("\
9356Set debugger response to a program call of fork or vfork."), _("\
9357Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9358A fork or vfork creates a new process. follow-fork-mode can be:\n\
9359 parent - the original process is debugged after a fork\n\
9360 child - the new process is debugged after a fork\n\
ea1dd7bc 9361The unfollowed process will continue to run.\n\
7ab04401
AC
9362By default, the debugger will follow the parent process."),
9363 NULL,
920d2a44 9364 show_follow_fork_mode_string,
7ab04401
AC
9365 &setlist, &showlist);
9366
6c95b8df
PA
9367 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9368 follow_exec_mode_names,
9369 &follow_exec_mode_string, _("\
9370Set debugger response to a program call of exec."), _("\
9371Show debugger response to a program call of exec."), _("\
9372An exec call replaces the program image of a process.\n\
9373\n\
9374follow-exec-mode can be:\n\
9375\n\
cce7e648 9376 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9377to this new inferior. The program the process was running before\n\
9378the exec call can be restarted afterwards by restarting the original\n\
9379inferior.\n\
9380\n\
9381 same - the debugger keeps the process bound to the same inferior.\n\
9382The new executable image replaces the previous executable loaded in\n\
9383the inferior. Restarting the inferior after the exec call restarts\n\
9384the executable the process was running after the exec call.\n\
9385\n\
9386By default, the debugger will use the same inferior."),
9387 NULL,
9388 show_follow_exec_mode_string,
9389 &setlist, &showlist);
9390
7ab04401
AC
9391 add_setshow_enum_cmd ("scheduler-locking", class_run,
9392 scheduler_enums, &scheduler_mode, _("\
9393Set mode for locking scheduler during execution."), _("\
9394Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9395off == no locking (threads may preempt at any time)\n\
9396on == full locking (no thread except the current thread may run)\n\
9397 This applies to both normal execution and replay mode.\n\
9398step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9399 In this mode, other threads may run during other commands.\n\
9400 This applies to both normal execution and replay mode.\n\
9401replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9402 set_schedlock_func, /* traps on target vector */
920d2a44 9403 show_scheduler_mode,
7ab04401 9404 &setlist, &showlist);
5fbbeb29 9405
d4db2f36
PA
9406 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9407Set mode for resuming threads of all processes."), _("\
9408Show mode for resuming threads of all processes."), _("\
9409When on, execution commands (such as 'continue' or 'next') resume all\n\
9410threads of all processes. When off (which is the default), execution\n\
9411commands only resume the threads of the current process. The set of\n\
9412threads that are resumed is further refined by the scheduler-locking\n\
9413mode (see help set scheduler-locking)."),
9414 NULL,
9415 show_schedule_multiple,
9416 &setlist, &showlist);
9417
5bf193a2
AC
9418 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9419Set mode of the step operation."), _("\
9420Show mode of the step operation."), _("\
9421When set, doing a step over a function without debug line information\n\
9422will stop at the first instruction of that function. Otherwise, the\n\
9423function is skipped and the step command stops at a different source line."),
9424 NULL,
920d2a44 9425 show_step_stop_if_no_debug,
5bf193a2 9426 &setlist, &showlist);
ca6724c1 9427
72d0e2c5
YQ
9428 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9429 &can_use_displaced_stepping, _("\
237fc4c9
PA
9430Set debugger's willingness to use displaced stepping."), _("\
9431Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9432If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9433supported by the target architecture. If off, gdb will not use displaced\n\
9434stepping to step over breakpoints, even if such is supported by the target\n\
9435architecture. If auto (which is the default), gdb will use displaced stepping\n\
9436if the target architecture supports it and non-stop mode is active, but will not\n\
9437use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9438 NULL,
9439 show_can_use_displaced_stepping,
9440 &setlist, &showlist);
237fc4c9 9441
b2175913
MS
9442 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9443 &exec_direction, _("Set direction of execution.\n\
9444Options are 'forward' or 'reverse'."),
9445 _("Show direction of execution (forward/reverse)."),
9446 _("Tells gdb whether to execute forward or backward."),
9447 set_exec_direction_func, show_exec_direction_func,
9448 &setlist, &showlist);
9449
6c95b8df
PA
9450 /* Set/show detach-on-fork: user-settable mode. */
9451
9452 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9453Set whether gdb will detach the child of a fork."), _("\
9454Show whether gdb will detach the child of a fork."), _("\
9455Tells gdb whether to detach the child of a fork."),
9456 NULL, NULL, &setlist, &showlist);
9457
03583c20
UW
9458 /* Set/show disable address space randomization mode. */
9459
9460 add_setshow_boolean_cmd ("disable-randomization", class_support,
9461 &disable_randomization, _("\
9462Set disabling of debuggee's virtual address space randomization."), _("\
9463Show disabling of debuggee's virtual address space randomization."), _("\
9464When this mode is on (which is the default), randomization of the virtual\n\
9465address space is disabled. Standalone programs run with the randomization\n\
9466enabled by default on some platforms."),
9467 &set_disable_randomization,
9468 &show_disable_randomization,
9469 &setlist, &showlist);
9470
ca6724c1 9471 /* ptid initializations */
ca6724c1
KB
9472 inferior_ptid = null_ptid;
9473 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9474
76727919
TT
9475 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9476 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9477 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9478 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9479
9480 /* Explicitly create without lookup, since that tries to create a
9481 value with a void typed value, and when we get here, gdbarch
9482 isn't initialized yet. At this point, we're quite sure there
9483 isn't another convenience variable of the same name. */
22d2b532 9484 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9485
9486 add_setshow_boolean_cmd ("observer", no_class,
9487 &observer_mode_1, _("\
9488Set whether gdb controls the inferior in observer mode."), _("\
9489Show whether gdb controls the inferior in observer mode."), _("\
9490In observer mode, GDB can get data from the inferior, but not\n\
9491affect its execution. Registers and memory may not be changed,\n\
9492breakpoints may not be set, and the program cannot be interrupted\n\
9493or signalled."),
9494 set_observer_mode,
9495 show_observer_mode,
9496 &setlist,
9497 &showlist);
c906108c 9498}
This page took 2.893948 seconds and 4 git commands to generate.