KVM: dont clear TMR on EOI
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
6aa8b732
AK
93#define PT_FIRST_AVAIL_BITS_SHIFT 9
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
1403283a
IE
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149
135f8c2b
AK
150#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
151
220f773a
TY
152/* make pte_list_desc fit well in cache line */
153#define PTE_LIST_EXT 3
154
53c07b18
XG
155struct pte_list_desc {
156 u64 *sptes[PTE_LIST_EXT];
157 struct pte_list_desc *more;
cd4a4e53
AK
158};
159
2d11123a
AK
160struct kvm_shadow_walk_iterator {
161 u64 addr;
162 hpa_t shadow_addr;
2d11123a 163 u64 *sptep;
dd3bfd59 164 int level;
2d11123a
AK
165 unsigned index;
166};
167
168#define for_each_shadow_entry(_vcpu, _addr, _walker) \
169 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
170 shadow_walk_okay(&(_walker)); \
171 shadow_walk_next(&(_walker)))
172
c2a2ac2b
XG
173#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
175 shadow_walk_okay(&(_walker)) && \
176 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
177 __shadow_walk_next(&(_walker), spte))
178
53c07b18 179static struct kmem_cache *pte_list_desc_cache;
d3d25b04 180static struct kmem_cache *mmu_page_header_cache;
45221ab6 181static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 182
7b52345e
SY
183static u64 __read_mostly shadow_nx_mask;
184static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
185static u64 __read_mostly shadow_user_mask;
186static u64 __read_mostly shadow_accessed_mask;
187static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
188static u64 __read_mostly shadow_mmio_mask;
189
190static void mmu_spte_set(u64 *sptep, u64 spte);
191
192void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
193{
194 shadow_mmio_mask = mmio_mask;
195}
196EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
197
198static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
199{
200 access &= ACC_WRITE_MASK | ACC_USER_MASK;
201
4f022648 202 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
203 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
204}
205
206static bool is_mmio_spte(u64 spte)
207{
208 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
209}
210
211static gfn_t get_mmio_spte_gfn(u64 spte)
212{
213 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
214}
215
216static unsigned get_mmio_spte_access(u64 spte)
217{
218 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
219}
220
221static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
222{
223 if (unlikely(is_noslot_pfn(pfn))) {
224 mark_mmio_spte(sptep, gfn, access);
225 return true;
226 }
227
228 return false;
229}
c7addb90 230
82725b20
DE
231static inline u64 rsvd_bits(int s, int e)
232{
233 return ((1ULL << (e - s + 1)) - 1) << s;
234}
235
7b52345e 236void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 237 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
238{
239 shadow_user_mask = user_mask;
240 shadow_accessed_mask = accessed_mask;
241 shadow_dirty_mask = dirty_mask;
242 shadow_nx_mask = nx_mask;
243 shadow_x_mask = x_mask;
244}
245EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
246
6aa8b732
AK
247static int is_cpuid_PSE36(void)
248{
249 return 1;
250}
251
73b1087e
AK
252static int is_nx(struct kvm_vcpu *vcpu)
253{
f6801dff 254 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
255}
256
c7addb90
AK
257static int is_shadow_present_pte(u64 pte)
258{
ce88decf 259 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
260}
261
05da4558
MT
262static int is_large_pte(u64 pte)
263{
264 return pte & PT_PAGE_SIZE_MASK;
265}
266
43a3795a 267static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 268{
439e218a 269 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
270}
271
43a3795a 272static int is_rmap_spte(u64 pte)
cd4a4e53 273{
4b1a80fa 274 return is_shadow_present_pte(pte);
cd4a4e53
AK
275}
276
776e6633
MT
277static int is_last_spte(u64 pte, int level)
278{
279 if (level == PT_PAGE_TABLE_LEVEL)
280 return 1;
852e3c19 281 if (is_large_pte(pte))
776e6633
MT
282 return 1;
283 return 0;
284}
285
35149e21 286static pfn_t spte_to_pfn(u64 pte)
0b49ea86 287{
35149e21 288 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
289}
290
da928521
AK
291static gfn_t pse36_gfn_delta(u32 gpte)
292{
293 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
294
295 return (gpte & PT32_DIR_PSE36_MASK) << shift;
296}
297
603e0651 298#ifdef CONFIG_X86_64
d555c333 299static void __set_spte(u64 *sptep, u64 spte)
e663ee64 300{
603e0651 301 *sptep = spte;
e663ee64
AK
302}
303
603e0651 304static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 305{
603e0651
XG
306 *sptep = spte;
307}
308
309static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
310{
311 return xchg(sptep, spte);
312}
c2a2ac2b
XG
313
314static u64 __get_spte_lockless(u64 *sptep)
315{
316 return ACCESS_ONCE(*sptep);
317}
ce88decf
XG
318
319static bool __check_direct_spte_mmio_pf(u64 spte)
320{
321 /* It is valid if the spte is zapped. */
322 return spte == 0ull;
323}
a9221dd5 324#else
603e0651
XG
325union split_spte {
326 struct {
327 u32 spte_low;
328 u32 spte_high;
329 };
330 u64 spte;
331};
a9221dd5 332
c2a2ac2b
XG
333static void count_spte_clear(u64 *sptep, u64 spte)
334{
335 struct kvm_mmu_page *sp = page_header(__pa(sptep));
336
337 if (is_shadow_present_pte(spte))
338 return;
339
340 /* Ensure the spte is completely set before we increase the count */
341 smp_wmb();
342 sp->clear_spte_count++;
343}
344
603e0651
XG
345static void __set_spte(u64 *sptep, u64 spte)
346{
347 union split_spte *ssptep, sspte;
a9221dd5 348
603e0651
XG
349 ssptep = (union split_spte *)sptep;
350 sspte = (union split_spte)spte;
351
352 ssptep->spte_high = sspte.spte_high;
353
354 /*
355 * If we map the spte from nonpresent to present, We should store
356 * the high bits firstly, then set present bit, so cpu can not
357 * fetch this spte while we are setting the spte.
358 */
359 smp_wmb();
360
361 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
362}
363
603e0651
XG
364static void __update_clear_spte_fast(u64 *sptep, u64 spte)
365{
366 union split_spte *ssptep, sspte;
367
368 ssptep = (union split_spte *)sptep;
369 sspte = (union split_spte)spte;
370
371 ssptep->spte_low = sspte.spte_low;
372
373 /*
374 * If we map the spte from present to nonpresent, we should clear
375 * present bit firstly to avoid vcpu fetch the old high bits.
376 */
377 smp_wmb();
378
379 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 380 count_spte_clear(sptep, spte);
603e0651
XG
381}
382
383static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
384{
385 union split_spte *ssptep, sspte, orig;
386
387 ssptep = (union split_spte *)sptep;
388 sspte = (union split_spte)spte;
389
390 /* xchg acts as a barrier before the setting of the high bits */
391 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
392 orig.spte_high = ssptep->spte_high;
393 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 394 count_spte_clear(sptep, spte);
603e0651
XG
395
396 return orig.spte;
397}
c2a2ac2b
XG
398
399/*
400 * The idea using the light way get the spte on x86_32 guest is from
401 * gup_get_pte(arch/x86/mm/gup.c).
402 * The difference is we can not catch the spte tlb flush if we leave
403 * guest mode, so we emulate it by increase clear_spte_count when spte
404 * is cleared.
405 */
406static u64 __get_spte_lockless(u64 *sptep)
407{
408 struct kvm_mmu_page *sp = page_header(__pa(sptep));
409 union split_spte spte, *orig = (union split_spte *)sptep;
410 int count;
411
412retry:
413 count = sp->clear_spte_count;
414 smp_rmb();
415
416 spte.spte_low = orig->spte_low;
417 smp_rmb();
418
419 spte.spte_high = orig->spte_high;
420 smp_rmb();
421
422 if (unlikely(spte.spte_low != orig->spte_low ||
423 count != sp->clear_spte_count))
424 goto retry;
425
426 return spte.spte;
427}
ce88decf
XG
428
429static bool __check_direct_spte_mmio_pf(u64 spte)
430{
431 union split_spte sspte = (union split_spte)spte;
432 u32 high_mmio_mask = shadow_mmio_mask >> 32;
433
434 /* It is valid if the spte is zapped. */
435 if (spte == 0ull)
436 return true;
437
438 /* It is valid if the spte is being zapped. */
439 if (sspte.spte_low == 0ull &&
440 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
441 return true;
442
443 return false;
444}
603e0651
XG
445#endif
446
8672b721
XG
447static bool spte_has_volatile_bits(u64 spte)
448{
449 if (!shadow_accessed_mask)
450 return false;
451
452 if (!is_shadow_present_pte(spte))
453 return false;
454
4132779b
XG
455 if ((spte & shadow_accessed_mask) &&
456 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
457 return false;
458
459 return true;
460}
461
4132779b
XG
462static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
463{
464 return (old_spte & bit_mask) && !(new_spte & bit_mask);
465}
466
1df9f2dc
XG
467/* Rules for using mmu_spte_set:
468 * Set the sptep from nonpresent to present.
469 * Note: the sptep being assigned *must* be either not present
470 * or in a state where the hardware will not attempt to update
471 * the spte.
472 */
473static void mmu_spte_set(u64 *sptep, u64 new_spte)
474{
475 WARN_ON(is_shadow_present_pte(*sptep));
476 __set_spte(sptep, new_spte);
477}
478
479/* Rules for using mmu_spte_update:
480 * Update the state bits, it means the mapped pfn is not changged.
481 */
482static void mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 483{
4132779b
XG
484 u64 mask, old_spte = *sptep;
485
486 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 487
1df9f2dc
XG
488 if (!is_shadow_present_pte(old_spte))
489 return mmu_spte_set(sptep, new_spte);
490
4132779b
XG
491 new_spte |= old_spte & shadow_dirty_mask;
492
493 mask = shadow_accessed_mask;
494 if (is_writable_pte(old_spte))
495 mask |= shadow_dirty_mask;
496
497 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
603e0651 498 __update_clear_spte_fast(sptep, new_spte);
4132779b 499 else
603e0651 500 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b
XG
501
502 if (!shadow_accessed_mask)
503 return;
504
505 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
506 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
507 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
508 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
b79b93f9
AK
509}
510
1df9f2dc
XG
511/*
512 * Rules for using mmu_spte_clear_track_bits:
513 * It sets the sptep from present to nonpresent, and track the
514 * state bits, it is used to clear the last level sptep.
515 */
516static int mmu_spte_clear_track_bits(u64 *sptep)
517{
518 pfn_t pfn;
519 u64 old_spte = *sptep;
520
521 if (!spte_has_volatile_bits(old_spte))
603e0651 522 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 523 else
603e0651 524 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
525
526 if (!is_rmap_spte(old_spte))
527 return 0;
528
529 pfn = spte_to_pfn(old_spte);
530 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
531 kvm_set_pfn_accessed(pfn);
532 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
533 kvm_set_pfn_dirty(pfn);
534 return 1;
535}
536
537/*
538 * Rules for using mmu_spte_clear_no_track:
539 * Directly clear spte without caring the state bits of sptep,
540 * it is used to set the upper level spte.
541 */
542static void mmu_spte_clear_no_track(u64 *sptep)
543{
603e0651 544 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
545}
546
c2a2ac2b
XG
547static u64 mmu_spte_get_lockless(u64 *sptep)
548{
549 return __get_spte_lockless(sptep);
550}
551
552static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
553{
554 rcu_read_lock();
555 atomic_inc(&vcpu->kvm->arch.reader_counter);
556
557 /* Increase the counter before walking shadow page table */
558 smp_mb__after_atomic_inc();
559}
560
561static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
562{
563 /* Decrease the counter after walking shadow page table finished */
564 smp_mb__before_atomic_dec();
565 atomic_dec(&vcpu->kvm->arch.reader_counter);
566 rcu_read_unlock();
567}
568
e2dec939 569static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 570 struct kmem_cache *base_cache, int min)
714b93da
AK
571{
572 void *obj;
573
574 if (cache->nobjs >= min)
e2dec939 575 return 0;
714b93da 576 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 577 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 578 if (!obj)
e2dec939 579 return -ENOMEM;
714b93da
AK
580 cache->objects[cache->nobjs++] = obj;
581 }
e2dec939 582 return 0;
714b93da
AK
583}
584
f759e2b4
XG
585static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
586{
587 return cache->nobjs;
588}
589
e8ad9a70
XG
590static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
591 struct kmem_cache *cache)
714b93da
AK
592{
593 while (mc->nobjs)
e8ad9a70 594 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
595}
596
c1158e63 597static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 598 int min)
c1158e63 599{
842f22ed 600 void *page;
c1158e63
AK
601
602 if (cache->nobjs >= min)
603 return 0;
604 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 605 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
606 if (!page)
607 return -ENOMEM;
842f22ed 608 cache->objects[cache->nobjs++] = page;
c1158e63
AK
609 }
610 return 0;
611}
612
613static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
614{
615 while (mc->nobjs)
c4d198d5 616 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
617}
618
2e3e5882 619static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 620{
e2dec939
AK
621 int r;
622
53c07b18 623 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 624 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
625 if (r)
626 goto out;
ad312c7c 627 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
628 if (r)
629 goto out;
ad312c7c 630 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 631 mmu_page_header_cache, 4);
e2dec939
AK
632out:
633 return r;
714b93da
AK
634}
635
636static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
637{
53c07b18
XG
638 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
639 pte_list_desc_cache);
ad312c7c 640 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
641 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
642 mmu_page_header_cache);
714b93da
AK
643}
644
645static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
646 size_t size)
647{
648 void *p;
649
650 BUG_ON(!mc->nobjs);
651 p = mc->objects[--mc->nobjs];
714b93da
AK
652 return p;
653}
654
53c07b18 655static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 656{
53c07b18
XG
657 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
658 sizeof(struct pte_list_desc));
714b93da
AK
659}
660
53c07b18 661static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 662{
53c07b18 663 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
664}
665
2032a93d
LJ
666static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
667{
668 if (!sp->role.direct)
669 return sp->gfns[index];
670
671 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
672}
673
674static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
675{
676 if (sp->role.direct)
677 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
678 else
679 sp->gfns[index] = gfn;
680}
681
05da4558 682/*
d4dbf470
TY
683 * Return the pointer to the large page information for a given gfn,
684 * handling slots that are not large page aligned.
05da4558 685 */
d4dbf470
TY
686static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
687 struct kvm_memory_slot *slot,
688 int level)
05da4558
MT
689{
690 unsigned long idx;
691
fb03cb6f 692 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 693 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
694}
695
696static void account_shadowed(struct kvm *kvm, gfn_t gfn)
697{
d25797b2 698 struct kvm_memory_slot *slot;
d4dbf470 699 struct kvm_lpage_info *linfo;
d25797b2 700 int i;
05da4558 701
a1f4d395 702 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
703 for (i = PT_DIRECTORY_LEVEL;
704 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
705 linfo = lpage_info_slot(gfn, slot, i);
706 linfo->write_count += 1;
d25797b2 707 }
332b207d 708 kvm->arch.indirect_shadow_pages++;
05da4558
MT
709}
710
711static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
712{
d25797b2 713 struct kvm_memory_slot *slot;
d4dbf470 714 struct kvm_lpage_info *linfo;
d25797b2 715 int i;
05da4558 716
a1f4d395 717 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
718 for (i = PT_DIRECTORY_LEVEL;
719 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
720 linfo = lpage_info_slot(gfn, slot, i);
721 linfo->write_count -= 1;
722 WARN_ON(linfo->write_count < 0);
d25797b2 723 }
332b207d 724 kvm->arch.indirect_shadow_pages--;
05da4558
MT
725}
726
d25797b2
JR
727static int has_wrprotected_page(struct kvm *kvm,
728 gfn_t gfn,
729 int level)
05da4558 730{
2843099f 731 struct kvm_memory_slot *slot;
d4dbf470 732 struct kvm_lpage_info *linfo;
05da4558 733
a1f4d395 734 slot = gfn_to_memslot(kvm, gfn);
05da4558 735 if (slot) {
d4dbf470
TY
736 linfo = lpage_info_slot(gfn, slot, level);
737 return linfo->write_count;
05da4558
MT
738 }
739
740 return 1;
741}
742
d25797b2 743static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 744{
8f0b1ab6 745 unsigned long page_size;
d25797b2 746 int i, ret = 0;
05da4558 747
8f0b1ab6 748 page_size = kvm_host_page_size(kvm, gfn);
05da4558 749
d25797b2
JR
750 for (i = PT_PAGE_TABLE_LEVEL;
751 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
752 if (page_size >= KVM_HPAGE_SIZE(i))
753 ret = i;
754 else
755 break;
756 }
757
4c2155ce 758 return ret;
05da4558
MT
759}
760
5d163b1c
XG
761static struct kvm_memory_slot *
762gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
763 bool no_dirty_log)
05da4558
MT
764{
765 struct kvm_memory_slot *slot;
5d163b1c
XG
766
767 slot = gfn_to_memslot(vcpu->kvm, gfn);
768 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
769 (no_dirty_log && slot->dirty_bitmap))
770 slot = NULL;
771
772 return slot;
773}
774
775static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
776{
a0a8eaba 777 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
778}
779
780static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
781{
782 int host_level, level, max_level;
05da4558 783
d25797b2
JR
784 host_level = host_mapping_level(vcpu->kvm, large_gfn);
785
786 if (host_level == PT_PAGE_TABLE_LEVEL)
787 return host_level;
788
878403b7
SY
789 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
790 kvm_x86_ops->get_lpage_level() : host_level;
791
792 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
793 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
794 break;
d25797b2
JR
795
796 return level - 1;
05da4558
MT
797}
798
290fc38d 799/*
53c07b18 800 * Pte mapping structures:
cd4a4e53 801 *
53c07b18 802 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 803 *
53c07b18
XG
804 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
805 * pte_list_desc containing more mappings.
53a27b39 806 *
53c07b18 807 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
808 * the spte was not added.
809 *
cd4a4e53 810 */
53c07b18
XG
811static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
812 unsigned long *pte_list)
cd4a4e53 813{
53c07b18 814 struct pte_list_desc *desc;
53a27b39 815 int i, count = 0;
cd4a4e53 816
53c07b18
XG
817 if (!*pte_list) {
818 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
819 *pte_list = (unsigned long)spte;
820 } else if (!(*pte_list & 1)) {
821 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
822 desc = mmu_alloc_pte_list_desc(vcpu);
823 desc->sptes[0] = (u64 *)*pte_list;
d555c333 824 desc->sptes[1] = spte;
53c07b18 825 *pte_list = (unsigned long)desc | 1;
cb16a7b3 826 ++count;
cd4a4e53 827 } else {
53c07b18
XG
828 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
829 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
830 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 831 desc = desc->more;
53c07b18 832 count += PTE_LIST_EXT;
53a27b39 833 }
53c07b18
XG
834 if (desc->sptes[PTE_LIST_EXT-1]) {
835 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
836 desc = desc->more;
837 }
d555c333 838 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 839 ++count;
d555c333 840 desc->sptes[i] = spte;
cd4a4e53 841 }
53a27b39 842 return count;
cd4a4e53
AK
843}
844
53c07b18
XG
845static void
846pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
847 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
848{
849 int j;
850
53c07b18 851 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 852 ;
d555c333
AK
853 desc->sptes[i] = desc->sptes[j];
854 desc->sptes[j] = NULL;
cd4a4e53
AK
855 if (j != 0)
856 return;
857 if (!prev_desc && !desc->more)
53c07b18 858 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
859 else
860 if (prev_desc)
861 prev_desc->more = desc->more;
862 else
53c07b18
XG
863 *pte_list = (unsigned long)desc->more | 1;
864 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
865}
866
53c07b18 867static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 868{
53c07b18
XG
869 struct pte_list_desc *desc;
870 struct pte_list_desc *prev_desc;
cd4a4e53
AK
871 int i;
872
53c07b18
XG
873 if (!*pte_list) {
874 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 875 BUG();
53c07b18
XG
876 } else if (!(*pte_list & 1)) {
877 rmap_printk("pte_list_remove: %p 1->0\n", spte);
878 if ((u64 *)*pte_list != spte) {
879 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
880 BUG();
881 }
53c07b18 882 *pte_list = 0;
cd4a4e53 883 } else {
53c07b18
XG
884 rmap_printk("pte_list_remove: %p many->many\n", spte);
885 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
886 prev_desc = NULL;
887 while (desc) {
53c07b18 888 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 889 if (desc->sptes[i] == spte) {
53c07b18 890 pte_list_desc_remove_entry(pte_list,
714b93da 891 desc, i,
cd4a4e53
AK
892 prev_desc);
893 return;
894 }
895 prev_desc = desc;
896 desc = desc->more;
897 }
53c07b18 898 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
899 BUG();
900 }
901}
902
67052b35
XG
903typedef void (*pte_list_walk_fn) (u64 *spte);
904static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
905{
906 struct pte_list_desc *desc;
907 int i;
908
909 if (!*pte_list)
910 return;
911
912 if (!(*pte_list & 1))
913 return fn((u64 *)*pte_list);
914
915 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
916 while (desc) {
917 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
918 fn(desc->sptes[i]);
919 desc = desc->more;
920 }
921}
922
9373e2c0 923static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 924 struct kvm_memory_slot *slot)
53c07b18 925{
53c07b18
XG
926 struct kvm_lpage_info *linfo;
927
53c07b18
XG
928 if (likely(level == PT_PAGE_TABLE_LEVEL))
929 return &slot->rmap[gfn - slot->base_gfn];
930
931 linfo = lpage_info_slot(gfn, slot, level);
53c07b18
XG
932 return &linfo->rmap_pde;
933}
934
9b9b1492
TY
935/*
936 * Take gfn and return the reverse mapping to it.
937 */
938static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
939{
940 struct kvm_memory_slot *slot;
941
942 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 943 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
944}
945
f759e2b4
XG
946static bool rmap_can_add(struct kvm_vcpu *vcpu)
947{
948 struct kvm_mmu_memory_cache *cache;
949
950 cache = &vcpu->arch.mmu_pte_list_desc_cache;
951 return mmu_memory_cache_free_objects(cache);
952}
953
53c07b18
XG
954static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
955{
956 struct kvm_mmu_page *sp;
957 unsigned long *rmapp;
958
53c07b18
XG
959 sp = page_header(__pa(spte));
960 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
961 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
962 return pte_list_add(vcpu, spte, rmapp);
963}
964
53c07b18
XG
965static void rmap_remove(struct kvm *kvm, u64 *spte)
966{
967 struct kvm_mmu_page *sp;
968 gfn_t gfn;
969 unsigned long *rmapp;
970
971 sp = page_header(__pa(spte));
972 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
973 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
974 pte_list_remove(spte, rmapp);
975}
976
1e3f42f0
TY
977/*
978 * Used by the following functions to iterate through the sptes linked by a
979 * rmap. All fields are private and not assumed to be used outside.
980 */
981struct rmap_iterator {
982 /* private fields */
983 struct pte_list_desc *desc; /* holds the sptep if not NULL */
984 int pos; /* index of the sptep */
985};
986
987/*
988 * Iteration must be started by this function. This should also be used after
989 * removing/dropping sptes from the rmap link because in such cases the
990 * information in the itererator may not be valid.
991 *
992 * Returns sptep if found, NULL otherwise.
993 */
994static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
995{
996 if (!rmap)
997 return NULL;
998
999 if (!(rmap & 1)) {
1000 iter->desc = NULL;
1001 return (u64 *)rmap;
1002 }
1003
1004 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1005 iter->pos = 0;
1006 return iter->desc->sptes[iter->pos];
1007}
1008
1009/*
1010 * Must be used with a valid iterator: e.g. after rmap_get_first().
1011 *
1012 * Returns sptep if found, NULL otherwise.
1013 */
1014static u64 *rmap_get_next(struct rmap_iterator *iter)
1015{
1016 if (iter->desc) {
1017 if (iter->pos < PTE_LIST_EXT - 1) {
1018 u64 *sptep;
1019
1020 ++iter->pos;
1021 sptep = iter->desc->sptes[iter->pos];
1022 if (sptep)
1023 return sptep;
1024 }
1025
1026 iter->desc = iter->desc->more;
1027
1028 if (iter->desc) {
1029 iter->pos = 0;
1030 /* desc->sptes[0] cannot be NULL */
1031 return iter->desc->sptes[iter->pos];
1032 }
1033 }
1034
1035 return NULL;
1036}
1037
c3707958 1038static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1039{
1df9f2dc 1040 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1041 rmap_remove(kvm, sptep);
be38d276
AK
1042}
1043
a0ed4607 1044static int __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, int level)
98348e95 1045{
1e3f42f0
TY
1046 u64 *sptep;
1047 struct rmap_iterator iter;
a0ed4607 1048 int write_protected = 0;
374cbac0 1049
1e3f42f0
TY
1050 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1051 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1052 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
a0ed4607 1053
1e3f42f0
TY
1054 if (!is_writable_pte(*sptep)) {
1055 sptep = rmap_get_next(&iter);
a0ed4607 1056 continue;
1e3f42f0 1057 }
a0ed4607
TY
1058
1059 if (level == PT_PAGE_TABLE_LEVEL) {
1e3f42f0
TY
1060 mmu_spte_update(sptep, *sptep & ~PT_WRITABLE_MASK);
1061 sptep = rmap_get_next(&iter);
a0ed4607 1062 } else {
1e3f42f0
TY
1063 BUG_ON(!is_large_pte(*sptep));
1064 drop_spte(kvm, sptep);
a0ed4607 1065 --kvm->stat.lpages;
1e3f42f0 1066 sptep = rmap_get_first(*rmapp, &iter);
caa5b8a5 1067 }
a0ed4607
TY
1068
1069 write_protected = 1;
374cbac0 1070 }
855149aa 1071
a0ed4607
TY
1072 return write_protected;
1073}
1074
5dc99b23
TY
1075/**
1076 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1077 * @kvm: kvm instance
1078 * @slot: slot to protect
1079 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1080 * @mask: indicates which pages we should protect
1081 *
1082 * Used when we do not need to care about huge page mappings: e.g. during dirty
1083 * logging we do not have any such mappings.
1084 */
1085void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1086 struct kvm_memory_slot *slot,
1087 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1088{
1089 unsigned long *rmapp;
a0ed4607 1090
5dc99b23
TY
1091 while (mask) {
1092 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
1093 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL);
05da4558 1094
5dc99b23
TY
1095 /* clear the first set bit */
1096 mask &= mask - 1;
1097 }
374cbac0
AK
1098}
1099
95d4c16c
TY
1100static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1101{
1102 struct kvm_memory_slot *slot;
5dc99b23
TY
1103 unsigned long *rmapp;
1104 int i;
1105 int write_protected = 0;
95d4c16c
TY
1106
1107 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1108
1109 for (i = PT_PAGE_TABLE_LEVEL;
1110 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1111 rmapp = __gfn_to_rmap(gfn, i, slot);
1112 write_protected |= __rmap_write_protect(kvm, rmapp, i);
1113 }
1114
1115 return write_protected;
95d4c16c
TY
1116}
1117
8a8365c5
FD
1118static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1119 unsigned long data)
e930bffe 1120{
1e3f42f0
TY
1121 u64 *sptep;
1122 struct rmap_iterator iter;
e930bffe
AA
1123 int need_tlb_flush = 0;
1124
1e3f42f0
TY
1125 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1126 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1127 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1128
1129 drop_spte(kvm, sptep);
e930bffe
AA
1130 need_tlb_flush = 1;
1131 }
1e3f42f0 1132
e930bffe
AA
1133 return need_tlb_flush;
1134}
1135
8a8365c5
FD
1136static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1137 unsigned long data)
3da0dd43 1138{
1e3f42f0
TY
1139 u64 *sptep;
1140 struct rmap_iterator iter;
3da0dd43 1141 int need_flush = 0;
1e3f42f0 1142 u64 new_spte;
3da0dd43
IE
1143 pte_t *ptep = (pte_t *)data;
1144 pfn_t new_pfn;
1145
1146 WARN_ON(pte_huge(*ptep));
1147 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1148
1149 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1150 BUG_ON(!is_shadow_present_pte(*sptep));
1151 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1152
3da0dd43 1153 need_flush = 1;
1e3f42f0 1154
3da0dd43 1155 if (pte_write(*ptep)) {
1e3f42f0
TY
1156 drop_spte(kvm, sptep);
1157 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1158 } else {
1e3f42f0 1159 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1160 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1161
1162 new_spte &= ~PT_WRITABLE_MASK;
1163 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1164 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1165
1166 mmu_spte_clear_track_bits(sptep);
1167 mmu_spte_set(sptep, new_spte);
1168 sptep = rmap_get_next(&iter);
3da0dd43
IE
1169 }
1170 }
1e3f42f0 1171
3da0dd43
IE
1172 if (need_flush)
1173 kvm_flush_remote_tlbs(kvm);
1174
1175 return 0;
1176}
1177
8a8365c5
FD
1178static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1179 unsigned long data,
3da0dd43 1180 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
8a8365c5 1181 unsigned long data))
e930bffe 1182{
be6ba0f0 1183 int j;
90bb6fc5 1184 int ret;
e930bffe 1185 int retval = 0;
bc6678a3 1186 struct kvm_memslots *slots;
be6ba0f0 1187 struct kvm_memory_slot *memslot;
bc6678a3 1188
90d83dc3 1189 slots = kvm_memslots(kvm);
e930bffe 1190
be6ba0f0 1191 kvm_for_each_memslot(memslot, slots) {
e930bffe
AA
1192 unsigned long start = memslot->userspace_addr;
1193 unsigned long end;
1194
e930bffe
AA
1195 end = start + (memslot->npages << PAGE_SHIFT);
1196 if (hva >= start && hva < end) {
1197 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
d4dbf470 1198 gfn_t gfn = memslot->base_gfn + gfn_offset;
852e3c19 1199
90bb6fc5 1200 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
852e3c19
JR
1201
1202 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
d4dbf470
TY
1203 struct kvm_lpage_info *linfo;
1204
1205 linfo = lpage_info_slot(gfn, memslot,
1206 PT_DIRECTORY_LEVEL + j);
1207 ret |= handler(kvm, &linfo->rmap_pde, data);
852e3c19 1208 }
90bb6fc5
AK
1209 trace_kvm_age_page(hva, memslot, ret);
1210 retval |= ret;
e930bffe
AA
1211 }
1212 }
1213
1214 return retval;
1215}
1216
1217int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1218{
3da0dd43
IE
1219 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1220}
1221
1222void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1223{
8a8365c5 1224 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1225}
1226
8a8365c5
FD
1227static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1228 unsigned long data)
e930bffe 1229{
1e3f42f0
TY
1230 u64 *sptep;
1231 struct rmap_iterator iter;
e930bffe
AA
1232 int young = 0;
1233
6316e1c8
RR
1234 /*
1235 * Emulate the accessed bit for EPT, by checking if this page has
1236 * an EPT mapping, and clearing it if it does. On the next access,
1237 * a new EPT mapping will be established.
1238 * This has some overhead, but not as much as the cost of swapping
1239 * out actively used pages or breaking up actively used hugepages.
1240 */
534e38b4 1241 if (!shadow_accessed_mask)
6316e1c8 1242 return kvm_unmap_rmapp(kvm, rmapp, data);
534e38b4 1243
1e3f42f0
TY
1244 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1245 sptep = rmap_get_next(&iter)) {
1246 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1247
1248 if (*sptep & PT_ACCESSED_MASK) {
e930bffe 1249 young = 1;
1e3f42f0 1250 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)sptep);
e930bffe 1251 }
e930bffe 1252 }
1e3f42f0 1253
e930bffe
AA
1254 return young;
1255}
1256
8ee53820
AA
1257static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1258 unsigned long data)
1259{
1e3f42f0
TY
1260 u64 *sptep;
1261 struct rmap_iterator iter;
8ee53820
AA
1262 int young = 0;
1263
1264 /*
1265 * If there's no access bit in the secondary pte set by the
1266 * hardware it's up to gup-fast/gup to set the access bit in
1267 * the primary pte or in the page structure.
1268 */
1269 if (!shadow_accessed_mask)
1270 goto out;
1271
1e3f42f0
TY
1272 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1273 sptep = rmap_get_next(&iter)) {
1274 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1275
1276 if (*sptep & PT_ACCESSED_MASK) {
8ee53820
AA
1277 young = 1;
1278 break;
1279 }
8ee53820
AA
1280 }
1281out:
1282 return young;
1283}
1284
53a27b39
MT
1285#define RMAP_RECYCLE_THRESHOLD 1000
1286
852e3c19 1287static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1288{
1289 unsigned long *rmapp;
852e3c19
JR
1290 struct kvm_mmu_page *sp;
1291
1292 sp = page_header(__pa(spte));
53a27b39 1293
852e3c19 1294 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1295
3da0dd43 1296 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
53a27b39
MT
1297 kvm_flush_remote_tlbs(vcpu->kvm);
1298}
1299
e930bffe
AA
1300int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1301{
3da0dd43 1302 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
e930bffe
AA
1303}
1304
8ee53820
AA
1305int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1306{
1307 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1308}
1309
d6c69ee9 1310#ifdef MMU_DEBUG
47ad8e68 1311static int is_empty_shadow_page(u64 *spt)
6aa8b732 1312{
139bdb2d
AK
1313 u64 *pos;
1314 u64 *end;
1315
47ad8e68 1316 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1317 if (is_shadow_present_pte(*pos)) {
b8688d51 1318 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1319 pos, *pos);
6aa8b732 1320 return 0;
139bdb2d 1321 }
6aa8b732
AK
1322 return 1;
1323}
d6c69ee9 1324#endif
6aa8b732 1325
45221ab6
DH
1326/*
1327 * This value is the sum of all of the kvm instances's
1328 * kvm->arch.n_used_mmu_pages values. We need a global,
1329 * aggregate version in order to make the slab shrinker
1330 * faster
1331 */
1332static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1333{
1334 kvm->arch.n_used_mmu_pages += nr;
1335 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1336}
1337
bd4c86ea
XG
1338/*
1339 * Remove the sp from shadow page cache, after call it,
1340 * we can not find this sp from the cache, and the shadow
1341 * page table is still valid.
1342 * It should be under the protection of mmu lock.
1343 */
1344static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1345{
4db35314 1346 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1347 hlist_del(&sp->hash_link);
2032a93d 1348 if (!sp->role.direct)
842f22ed 1349 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1350}
1351
1352/*
1353 * Free the shadow page table and the sp, we can do it
1354 * out of the protection of mmu lock.
1355 */
1356static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1357{
1358 list_del(&sp->link);
1359 free_page((unsigned long)sp->spt);
e8ad9a70 1360 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1361}
1362
cea0f0e7
AK
1363static unsigned kvm_page_table_hashfn(gfn_t gfn)
1364{
1ae0a13d 1365 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1366}
1367
714b93da 1368static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1369 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1370{
cea0f0e7
AK
1371 if (!parent_pte)
1372 return;
cea0f0e7 1373
67052b35 1374 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1375}
1376
4db35314 1377static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1378 u64 *parent_pte)
1379{
67052b35 1380 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1381}
1382
bcdd9a93
XG
1383static void drop_parent_pte(struct kvm_mmu_page *sp,
1384 u64 *parent_pte)
1385{
1386 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1387 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1388}
1389
67052b35
XG
1390static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1391 u64 *parent_pte, int direct)
ad8cfbe3 1392{
67052b35
XG
1393 struct kvm_mmu_page *sp;
1394 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1395 sizeof *sp);
1396 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1397 if (!direct)
1398 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1399 PAGE_SIZE);
1400 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1401 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
93a5cef0 1402 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
67052b35
XG
1403 sp->parent_ptes = 0;
1404 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1405 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1406 return sp;
ad8cfbe3
MT
1407}
1408
67052b35 1409static void mark_unsync(u64 *spte);
1047df1f 1410static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1411{
67052b35 1412 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1413}
1414
67052b35 1415static void mark_unsync(u64 *spte)
0074ff63 1416{
67052b35 1417 struct kvm_mmu_page *sp;
1047df1f 1418 unsigned int index;
0074ff63 1419
67052b35 1420 sp = page_header(__pa(spte));
1047df1f
XG
1421 index = spte - sp->spt;
1422 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1423 return;
1047df1f 1424 if (sp->unsync_children++)
0074ff63 1425 return;
1047df1f 1426 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1427}
1428
e8bc217a 1429static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1430 struct kvm_mmu_page *sp)
e8bc217a
MT
1431{
1432 return 1;
1433}
1434
a7052897
MT
1435static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1436{
1437}
1438
0f53b5b1
XG
1439static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1440 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1441 const void *pte)
0f53b5b1
XG
1442{
1443 WARN_ON(1);
1444}
1445
60c8aec6
MT
1446#define KVM_PAGE_ARRAY_NR 16
1447
1448struct kvm_mmu_pages {
1449 struct mmu_page_and_offset {
1450 struct kvm_mmu_page *sp;
1451 unsigned int idx;
1452 } page[KVM_PAGE_ARRAY_NR];
1453 unsigned int nr;
1454};
1455
cded19f3
HE
1456static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1457 int idx)
4731d4c7 1458{
60c8aec6 1459 int i;
4731d4c7 1460
60c8aec6
MT
1461 if (sp->unsync)
1462 for (i=0; i < pvec->nr; i++)
1463 if (pvec->page[i].sp == sp)
1464 return 0;
1465
1466 pvec->page[pvec->nr].sp = sp;
1467 pvec->page[pvec->nr].idx = idx;
1468 pvec->nr++;
1469 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1470}
1471
1472static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1473 struct kvm_mmu_pages *pvec)
1474{
1475 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1476
37178b8b 1477 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1478 struct kvm_mmu_page *child;
4731d4c7
MT
1479 u64 ent = sp->spt[i];
1480
7a8f1a74
XG
1481 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1482 goto clear_child_bitmap;
1483
1484 child = page_header(ent & PT64_BASE_ADDR_MASK);
1485
1486 if (child->unsync_children) {
1487 if (mmu_pages_add(pvec, child, i))
1488 return -ENOSPC;
1489
1490 ret = __mmu_unsync_walk(child, pvec);
1491 if (!ret)
1492 goto clear_child_bitmap;
1493 else if (ret > 0)
1494 nr_unsync_leaf += ret;
1495 else
1496 return ret;
1497 } else if (child->unsync) {
1498 nr_unsync_leaf++;
1499 if (mmu_pages_add(pvec, child, i))
1500 return -ENOSPC;
1501 } else
1502 goto clear_child_bitmap;
1503
1504 continue;
1505
1506clear_child_bitmap:
1507 __clear_bit(i, sp->unsync_child_bitmap);
1508 sp->unsync_children--;
1509 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1510 }
1511
4731d4c7 1512
60c8aec6
MT
1513 return nr_unsync_leaf;
1514}
1515
1516static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1517 struct kvm_mmu_pages *pvec)
1518{
1519 if (!sp->unsync_children)
1520 return 0;
1521
1522 mmu_pages_add(pvec, sp, 0);
1523 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1524}
1525
4731d4c7
MT
1526static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1527{
1528 WARN_ON(!sp->unsync);
5e1b3ddb 1529 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1530 sp->unsync = 0;
1531 --kvm->stat.mmu_unsync;
1532}
1533
7775834a
XG
1534static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1535 struct list_head *invalid_list);
1536static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1537 struct list_head *invalid_list);
4731d4c7 1538
f41d335a
XG
1539#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1540 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1541 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1542 if ((sp)->gfn != (gfn)) {} else
1543
f41d335a
XG
1544#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1545 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1546 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1547 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1548 (sp)->role.invalid) {} else
1549
f918b443 1550/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1551static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1552 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1553{
5b7e0102 1554 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1555 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1556 return 1;
1557 }
1558
f918b443 1559 if (clear_unsync)
1d9dc7e0 1560 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1561
a4a8e6f7 1562 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1563 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1564 return 1;
1565 }
1566
1567 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1568 return 0;
1569}
1570
1d9dc7e0
XG
1571static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1572 struct kvm_mmu_page *sp)
1573{
d98ba053 1574 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1575 int ret;
1576
d98ba053 1577 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1578 if (ret)
d98ba053
XG
1579 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1580
1d9dc7e0
XG
1581 return ret;
1582}
1583
e37fa785
XG
1584#ifdef CONFIG_KVM_MMU_AUDIT
1585#include "mmu_audit.c"
1586#else
1587static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1588static void mmu_audit_disable(void) { }
1589#endif
1590
d98ba053
XG
1591static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1592 struct list_head *invalid_list)
1d9dc7e0 1593{
d98ba053 1594 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1595}
1596
9f1a122f
XG
1597/* @gfn should be write-protected at the call site */
1598static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1599{
9f1a122f 1600 struct kvm_mmu_page *s;
f41d335a 1601 struct hlist_node *node;
d98ba053 1602 LIST_HEAD(invalid_list);
9f1a122f
XG
1603 bool flush = false;
1604
f41d335a 1605 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1606 if (!s->unsync)
9f1a122f
XG
1607 continue;
1608
1609 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1610 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1611 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1612 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1613 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1614 continue;
1615 }
9f1a122f
XG
1616 flush = true;
1617 }
1618
d98ba053 1619 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1620 if (flush)
1621 kvm_mmu_flush_tlb(vcpu);
1622}
1623
60c8aec6
MT
1624struct mmu_page_path {
1625 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1626 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1627};
1628
60c8aec6
MT
1629#define for_each_sp(pvec, sp, parents, i) \
1630 for (i = mmu_pages_next(&pvec, &parents, -1), \
1631 sp = pvec.page[i].sp; \
1632 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1633 i = mmu_pages_next(&pvec, &parents, i))
1634
cded19f3
HE
1635static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1636 struct mmu_page_path *parents,
1637 int i)
60c8aec6
MT
1638{
1639 int n;
1640
1641 for (n = i+1; n < pvec->nr; n++) {
1642 struct kvm_mmu_page *sp = pvec->page[n].sp;
1643
1644 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1645 parents->idx[0] = pvec->page[n].idx;
1646 return n;
1647 }
1648
1649 parents->parent[sp->role.level-2] = sp;
1650 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1651 }
1652
1653 return n;
1654}
1655
cded19f3 1656static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1657{
60c8aec6
MT
1658 struct kvm_mmu_page *sp;
1659 unsigned int level = 0;
1660
1661 do {
1662 unsigned int idx = parents->idx[level];
4731d4c7 1663
60c8aec6
MT
1664 sp = parents->parent[level];
1665 if (!sp)
1666 return;
1667
1668 --sp->unsync_children;
1669 WARN_ON((int)sp->unsync_children < 0);
1670 __clear_bit(idx, sp->unsync_child_bitmap);
1671 level++;
1672 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1673}
1674
60c8aec6
MT
1675static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1676 struct mmu_page_path *parents,
1677 struct kvm_mmu_pages *pvec)
4731d4c7 1678{
60c8aec6
MT
1679 parents->parent[parent->role.level-1] = NULL;
1680 pvec->nr = 0;
1681}
4731d4c7 1682
60c8aec6
MT
1683static void mmu_sync_children(struct kvm_vcpu *vcpu,
1684 struct kvm_mmu_page *parent)
1685{
1686 int i;
1687 struct kvm_mmu_page *sp;
1688 struct mmu_page_path parents;
1689 struct kvm_mmu_pages pages;
d98ba053 1690 LIST_HEAD(invalid_list);
60c8aec6
MT
1691
1692 kvm_mmu_pages_init(parent, &parents, &pages);
1693 while (mmu_unsync_walk(parent, &pages)) {
b1a36821
MT
1694 int protected = 0;
1695
1696 for_each_sp(pages, sp, parents, i)
1697 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1698
1699 if (protected)
1700 kvm_flush_remote_tlbs(vcpu->kvm);
1701
60c8aec6 1702 for_each_sp(pages, sp, parents, i) {
d98ba053 1703 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1704 mmu_pages_clear_parents(&parents);
1705 }
d98ba053 1706 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1707 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1708 kvm_mmu_pages_init(parent, &parents, &pages);
1709 }
4731d4c7
MT
1710}
1711
c3707958
XG
1712static void init_shadow_page_table(struct kvm_mmu_page *sp)
1713{
1714 int i;
1715
1716 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1717 sp->spt[i] = 0ull;
1718}
1719
a30f47cb
XG
1720static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1721{
1722 sp->write_flooding_count = 0;
1723}
1724
1725static void clear_sp_write_flooding_count(u64 *spte)
1726{
1727 struct kvm_mmu_page *sp = page_header(__pa(spte));
1728
1729 __clear_sp_write_flooding_count(sp);
1730}
1731
cea0f0e7
AK
1732static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1733 gfn_t gfn,
1734 gva_t gaddr,
1735 unsigned level,
f6e2c02b 1736 int direct,
41074d07 1737 unsigned access,
f7d9c7b7 1738 u64 *parent_pte)
cea0f0e7
AK
1739{
1740 union kvm_mmu_page_role role;
cea0f0e7 1741 unsigned quadrant;
9f1a122f 1742 struct kvm_mmu_page *sp;
f41d335a 1743 struct hlist_node *node;
9f1a122f 1744 bool need_sync = false;
cea0f0e7 1745
a770f6f2 1746 role = vcpu->arch.mmu.base_role;
cea0f0e7 1747 role.level = level;
f6e2c02b 1748 role.direct = direct;
84b0c8c6 1749 if (role.direct)
5b7e0102 1750 role.cr4_pae = 0;
41074d07 1751 role.access = access;
c5a78f2b
JR
1752 if (!vcpu->arch.mmu.direct_map
1753 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1754 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1755 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1756 role.quadrant = quadrant;
1757 }
f41d335a 1758 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1759 if (!need_sync && sp->unsync)
1760 need_sync = true;
4731d4c7 1761
7ae680eb
XG
1762 if (sp->role.word != role.word)
1763 continue;
4731d4c7 1764
7ae680eb
XG
1765 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1766 break;
e02aa901 1767
7ae680eb
XG
1768 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1769 if (sp->unsync_children) {
a8eeb04a 1770 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1771 kvm_mmu_mark_parents_unsync(sp);
1772 } else if (sp->unsync)
1773 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1774
a30f47cb 1775 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1776 trace_kvm_mmu_get_page(sp, false);
1777 return sp;
1778 }
dfc5aa00 1779 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1780 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1781 if (!sp)
1782 return sp;
4db35314
AK
1783 sp->gfn = gfn;
1784 sp->role = role;
7ae680eb
XG
1785 hlist_add_head(&sp->hash_link,
1786 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1787 if (!direct) {
b1a36821
MT
1788 if (rmap_write_protect(vcpu->kvm, gfn))
1789 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1790 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1791 kvm_sync_pages(vcpu, gfn);
1792
4731d4c7
MT
1793 account_shadowed(vcpu->kvm, gfn);
1794 }
c3707958 1795 init_shadow_page_table(sp);
f691fe1d 1796 trace_kvm_mmu_get_page(sp, true);
4db35314 1797 return sp;
cea0f0e7
AK
1798}
1799
2d11123a
AK
1800static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1801 struct kvm_vcpu *vcpu, u64 addr)
1802{
1803 iterator->addr = addr;
1804 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1805 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1806
1807 if (iterator->level == PT64_ROOT_LEVEL &&
1808 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1809 !vcpu->arch.mmu.direct_map)
1810 --iterator->level;
1811
2d11123a
AK
1812 if (iterator->level == PT32E_ROOT_LEVEL) {
1813 iterator->shadow_addr
1814 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1815 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1816 --iterator->level;
1817 if (!iterator->shadow_addr)
1818 iterator->level = 0;
1819 }
1820}
1821
1822static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1823{
1824 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1825 return false;
4d88954d 1826
2d11123a
AK
1827 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1828 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1829 return true;
1830}
1831
c2a2ac2b
XG
1832static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1833 u64 spte)
2d11123a 1834{
c2a2ac2b 1835 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1836 iterator->level = 0;
1837 return;
1838 }
1839
c2a2ac2b 1840 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1841 --iterator->level;
1842}
1843
c2a2ac2b
XG
1844static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1845{
1846 return __shadow_walk_next(iterator, *iterator->sptep);
1847}
1848
32ef26a3
AK
1849static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1850{
1851 u64 spte;
1852
1853 spte = __pa(sp->spt)
1854 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1855 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1856 mmu_spte_set(sptep, spte);
32ef26a3
AK
1857}
1858
a3aa51cf
AK
1859static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1860{
1861 if (is_large_pte(*sptep)) {
c3707958 1862 drop_spte(vcpu->kvm, sptep);
6addd1aa 1863 --vcpu->kvm->stat.lpages;
a3aa51cf
AK
1864 kvm_flush_remote_tlbs(vcpu->kvm);
1865 }
1866}
1867
a357bd22
AK
1868static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1869 unsigned direct_access)
1870{
1871 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1872 struct kvm_mmu_page *child;
1873
1874 /*
1875 * For the direct sp, if the guest pte's dirty bit
1876 * changed form clean to dirty, it will corrupt the
1877 * sp's access: allow writable in the read-only sp,
1878 * so we should update the spte at this point to get
1879 * a new sp with the correct access.
1880 */
1881 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1882 if (child->role.access == direct_access)
1883 return;
1884
bcdd9a93 1885 drop_parent_pte(child, sptep);
a357bd22
AK
1886 kvm_flush_remote_tlbs(vcpu->kvm);
1887 }
1888}
1889
505aef8f 1890static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1891 u64 *spte)
1892{
1893 u64 pte;
1894 struct kvm_mmu_page *child;
1895
1896 pte = *spte;
1897 if (is_shadow_present_pte(pte)) {
505aef8f 1898 if (is_last_spte(pte, sp->role.level)) {
c3707958 1899 drop_spte(kvm, spte);
505aef8f
XG
1900 if (is_large_pte(pte))
1901 --kvm->stat.lpages;
1902 } else {
38e3b2b2 1903 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1904 drop_parent_pte(child, spte);
38e3b2b2 1905 }
505aef8f
XG
1906 return true;
1907 }
1908
1909 if (is_mmio_spte(pte))
ce88decf 1910 mmu_spte_clear_no_track(spte);
c3707958 1911
505aef8f 1912 return false;
38e3b2b2
XG
1913}
1914
90cb0529 1915static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 1916 struct kvm_mmu_page *sp)
a436036b 1917{
697fe2e2 1918 unsigned i;
697fe2e2 1919
38e3b2b2
XG
1920 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1921 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
1922}
1923
4db35314 1924static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1925{
4db35314 1926 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
1927}
1928
31aa2b44 1929static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 1930{
1e3f42f0
TY
1931 u64 *sptep;
1932 struct rmap_iterator iter;
a436036b 1933
1e3f42f0
TY
1934 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
1935 drop_parent_pte(sp, sptep);
31aa2b44
AK
1936}
1937
60c8aec6 1938static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
1939 struct kvm_mmu_page *parent,
1940 struct list_head *invalid_list)
4731d4c7 1941{
60c8aec6
MT
1942 int i, zapped = 0;
1943 struct mmu_page_path parents;
1944 struct kvm_mmu_pages pages;
4731d4c7 1945
60c8aec6 1946 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 1947 return 0;
60c8aec6
MT
1948
1949 kvm_mmu_pages_init(parent, &parents, &pages);
1950 while (mmu_unsync_walk(parent, &pages)) {
1951 struct kvm_mmu_page *sp;
1952
1953 for_each_sp(pages, sp, parents, i) {
7775834a 1954 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 1955 mmu_pages_clear_parents(&parents);
77662e00 1956 zapped++;
60c8aec6 1957 }
60c8aec6
MT
1958 kvm_mmu_pages_init(parent, &parents, &pages);
1959 }
1960
1961 return zapped;
4731d4c7
MT
1962}
1963
7775834a
XG
1964static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1965 struct list_head *invalid_list)
31aa2b44 1966{
4731d4c7 1967 int ret;
f691fe1d 1968
7775834a 1969 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 1970 ++kvm->stat.mmu_shadow_zapped;
7775834a 1971 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 1972 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 1973 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 1974 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 1975 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
1976 if (sp->unsync)
1977 kvm_unlink_unsync_page(kvm, sp);
4db35314 1978 if (!sp->root_count) {
54a4f023
GJ
1979 /* Count self */
1980 ret++;
7775834a 1981 list_move(&sp->link, invalid_list);
aa6bd187 1982 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 1983 } else {
5b5c6a5a 1984 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
1985 kvm_reload_remote_mmus(kvm);
1986 }
7775834a
XG
1987
1988 sp->role.invalid = 1;
4731d4c7 1989 return ret;
a436036b
AK
1990}
1991
c2a2ac2b
XG
1992static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1993{
1994 struct kvm_mmu_page *sp;
1995
1996 list_for_each_entry(sp, invalid_list, link)
1997 kvm_mmu_isolate_page(sp);
1998}
1999
2000static void free_pages_rcu(struct rcu_head *head)
2001{
2002 struct kvm_mmu_page *next, *sp;
2003
2004 sp = container_of(head, struct kvm_mmu_page, rcu);
2005 while (sp) {
2006 if (!list_empty(&sp->link))
2007 next = list_first_entry(&sp->link,
2008 struct kvm_mmu_page, link);
2009 else
2010 next = NULL;
2011 kvm_mmu_free_page(sp);
2012 sp = next;
2013 }
2014}
2015
7775834a
XG
2016static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2017 struct list_head *invalid_list)
2018{
2019 struct kvm_mmu_page *sp;
2020
2021 if (list_empty(invalid_list))
2022 return;
2023
2024 kvm_flush_remote_tlbs(kvm);
2025
c2a2ac2b
XG
2026 if (atomic_read(&kvm->arch.reader_counter)) {
2027 kvm_mmu_isolate_pages(invalid_list);
2028 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2029 list_del_init(invalid_list);
4f022648
XG
2030
2031 trace_kvm_mmu_delay_free_pages(sp);
c2a2ac2b
XG
2032 call_rcu(&sp->rcu, free_pages_rcu);
2033 return;
2034 }
2035
7775834a
XG
2036 do {
2037 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2038 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 2039 kvm_mmu_isolate_page(sp);
aa6bd187 2040 kvm_mmu_free_page(sp);
7775834a
XG
2041 } while (!list_empty(invalid_list));
2042
2043}
2044
82ce2c96
IE
2045/*
2046 * Changing the number of mmu pages allocated to the vm
49d5ca26 2047 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2048 */
49d5ca26 2049void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2050{
d98ba053 2051 LIST_HEAD(invalid_list);
82ce2c96
IE
2052 /*
2053 * If we set the number of mmu pages to be smaller be than the
2054 * number of actived pages , we must to free some mmu pages before we
2055 * change the value
2056 */
2057
49d5ca26
DH
2058 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2059 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2060 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2061 struct kvm_mmu_page *page;
2062
f05e70ac 2063 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2064 struct kvm_mmu_page, link);
80b63faf 2065 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2066 }
aa6bd187 2067 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2068 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2069 }
82ce2c96 2070
49d5ca26 2071 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2072}
2073
1cb3f3ae 2074int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2075{
4db35314 2076 struct kvm_mmu_page *sp;
f41d335a 2077 struct hlist_node *node;
d98ba053 2078 LIST_HEAD(invalid_list);
a436036b
AK
2079 int r;
2080
9ad17b10 2081 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2082 r = 0;
1cb3f3ae 2083 spin_lock(&kvm->mmu_lock);
f41d335a 2084 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2085 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2086 sp->role.word);
2087 r = 1;
f41d335a 2088 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2089 }
d98ba053 2090 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2091 spin_unlock(&kvm->mmu_lock);
2092
a436036b 2093 return r;
cea0f0e7 2094}
1cb3f3ae 2095EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2096
38c335f1 2097static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2098{
bc6678a3 2099 int slot = memslot_id(kvm, gfn);
4db35314 2100 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2101
291f26bc 2102 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2103}
2104
74be52e3
SY
2105/*
2106 * The function is based on mtrr_type_lookup() in
2107 * arch/x86/kernel/cpu/mtrr/generic.c
2108 */
2109static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2110 u64 start, u64 end)
2111{
2112 int i;
2113 u64 base, mask;
2114 u8 prev_match, curr_match;
2115 int num_var_ranges = KVM_NR_VAR_MTRR;
2116
2117 if (!mtrr_state->enabled)
2118 return 0xFF;
2119
2120 /* Make end inclusive end, instead of exclusive */
2121 end--;
2122
2123 /* Look in fixed ranges. Just return the type as per start */
2124 if (mtrr_state->have_fixed && (start < 0x100000)) {
2125 int idx;
2126
2127 if (start < 0x80000) {
2128 idx = 0;
2129 idx += (start >> 16);
2130 return mtrr_state->fixed_ranges[idx];
2131 } else if (start < 0xC0000) {
2132 idx = 1 * 8;
2133 idx += ((start - 0x80000) >> 14);
2134 return mtrr_state->fixed_ranges[idx];
2135 } else if (start < 0x1000000) {
2136 idx = 3 * 8;
2137 idx += ((start - 0xC0000) >> 12);
2138 return mtrr_state->fixed_ranges[idx];
2139 }
2140 }
2141
2142 /*
2143 * Look in variable ranges
2144 * Look of multiple ranges matching this address and pick type
2145 * as per MTRR precedence
2146 */
2147 if (!(mtrr_state->enabled & 2))
2148 return mtrr_state->def_type;
2149
2150 prev_match = 0xFF;
2151 for (i = 0; i < num_var_ranges; ++i) {
2152 unsigned short start_state, end_state;
2153
2154 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2155 continue;
2156
2157 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2158 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2159 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2160 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2161
2162 start_state = ((start & mask) == (base & mask));
2163 end_state = ((end & mask) == (base & mask));
2164 if (start_state != end_state)
2165 return 0xFE;
2166
2167 if ((start & mask) != (base & mask))
2168 continue;
2169
2170 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2171 if (prev_match == 0xFF) {
2172 prev_match = curr_match;
2173 continue;
2174 }
2175
2176 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2177 curr_match == MTRR_TYPE_UNCACHABLE)
2178 return MTRR_TYPE_UNCACHABLE;
2179
2180 if ((prev_match == MTRR_TYPE_WRBACK &&
2181 curr_match == MTRR_TYPE_WRTHROUGH) ||
2182 (prev_match == MTRR_TYPE_WRTHROUGH &&
2183 curr_match == MTRR_TYPE_WRBACK)) {
2184 prev_match = MTRR_TYPE_WRTHROUGH;
2185 curr_match = MTRR_TYPE_WRTHROUGH;
2186 }
2187
2188 if (prev_match != curr_match)
2189 return MTRR_TYPE_UNCACHABLE;
2190 }
2191
2192 if (prev_match != 0xFF)
2193 return prev_match;
2194
2195 return mtrr_state->def_type;
2196}
2197
4b12f0de 2198u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2199{
2200 u8 mtrr;
2201
2202 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2203 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2204 if (mtrr == 0xfe || mtrr == 0xff)
2205 mtrr = MTRR_TYPE_WRBACK;
2206 return mtrr;
2207}
4b12f0de 2208EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2209
9cf5cf5a
XG
2210static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2211{
2212 trace_kvm_mmu_unsync_page(sp);
2213 ++vcpu->kvm->stat.mmu_unsync;
2214 sp->unsync = 1;
2215
2216 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2217}
2218
2219static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2220{
4731d4c7 2221 struct kvm_mmu_page *s;
f41d335a 2222 struct hlist_node *node;
9cf5cf5a 2223
f41d335a 2224 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2225 if (s->unsync)
4731d4c7 2226 continue;
9cf5cf5a
XG
2227 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2228 __kvm_unsync_page(vcpu, s);
4731d4c7 2229 }
4731d4c7
MT
2230}
2231
2232static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2233 bool can_unsync)
2234{
9cf5cf5a 2235 struct kvm_mmu_page *s;
f41d335a 2236 struct hlist_node *node;
9cf5cf5a
XG
2237 bool need_unsync = false;
2238
f41d335a 2239 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2240 if (!can_unsync)
2241 return 1;
2242
9cf5cf5a 2243 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2244 return 1;
9cf5cf5a
XG
2245
2246 if (!need_unsync && !s->unsync) {
9cf5cf5a
XG
2247 need_unsync = true;
2248 }
4731d4c7 2249 }
9cf5cf5a
XG
2250 if (need_unsync)
2251 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2252 return 0;
2253}
2254
d555c333 2255static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2256 unsigned pte_access, int user_fault,
640d9b0d 2257 int write_fault, int level,
c2d0ee46 2258 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2259 bool can_unsync, bool host_writable)
1c4f1fd6 2260{
b330aa0c 2261 u64 spte, entry = *sptep;
1e73f9dd 2262 int ret = 0;
64d4d521 2263
ce88decf
XG
2264 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2265 return 0;
2266
982c2565 2267 spte = PT_PRESENT_MASK;
947da538 2268 if (!speculative)
3201b5d9 2269 spte |= shadow_accessed_mask;
640d9b0d 2270
7b52345e
SY
2271 if (pte_access & ACC_EXEC_MASK)
2272 spte |= shadow_x_mask;
2273 else
2274 spte |= shadow_nx_mask;
1c4f1fd6 2275 if (pte_access & ACC_USER_MASK)
7b52345e 2276 spte |= shadow_user_mask;
852e3c19 2277 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2278 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2279 if (tdp_enabled)
4b12f0de
SY
2280 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2281 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2282
9bdbba13 2283 if (host_writable)
1403283a 2284 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2285 else
2286 pte_access &= ~ACC_WRITE_MASK;
1403283a 2287
35149e21 2288 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2289
2290 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2291 || (!vcpu->arch.mmu.direct_map && write_fault
2292 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2293
852e3c19
JR
2294 if (level > PT_PAGE_TABLE_LEVEL &&
2295 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2296 ret = 1;
c3707958 2297 drop_spte(vcpu->kvm, sptep);
be38d276 2298 goto done;
38187c83
MT
2299 }
2300
1c4f1fd6 2301 spte |= PT_WRITABLE_MASK;
1c4f1fd6 2302
c5a78f2b 2303 if (!vcpu->arch.mmu.direct_map
411c588d 2304 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2305 spte &= ~PT_USER_MASK;
411c588d
AK
2306 /*
2307 * If we converted a user page to a kernel page,
2308 * so that the kernel can write to it when cr0.wp=0,
2309 * then we should prevent the kernel from executing it
2310 * if SMEP is enabled.
2311 */
2312 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2313 spte |= PT64_NX_MASK;
2314 }
69325a12 2315
ecc5589f
MT
2316 /*
2317 * Optimization: for pte sync, if spte was writable the hash
2318 * lookup is unnecessary (and expensive). Write protection
2319 * is responsibility of mmu_get_page / kvm_sync_page.
2320 * Same reasoning can be applied to dirty page accounting.
2321 */
8dae4445 2322 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2323 goto set_pte;
2324
4731d4c7 2325 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2326 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2327 __func__, gfn);
1e73f9dd 2328 ret = 1;
1c4f1fd6 2329 pte_access &= ~ACC_WRITE_MASK;
8dae4445 2330 if (is_writable_pte(spte))
1c4f1fd6 2331 spte &= ~PT_WRITABLE_MASK;
1c4f1fd6
AK
2332 }
2333 }
2334
1c4f1fd6
AK
2335 if (pte_access & ACC_WRITE_MASK)
2336 mark_page_dirty(vcpu->kvm, gfn);
2337
38187c83 2338set_pte:
1df9f2dc 2339 mmu_spte_update(sptep, spte);
b330aa0c
XG
2340 /*
2341 * If we overwrite a writable spte with a read-only one we
2342 * should flush remote TLBs. Otherwise rmap_write_protect
2343 * will find a read-only spte, even though the writable spte
2344 * might be cached on a CPU's TLB.
2345 */
2346 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2347 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2348done:
1e73f9dd
MT
2349 return ret;
2350}
2351
d555c333 2352static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2353 unsigned pt_access, unsigned pte_access,
640d9b0d 2354 int user_fault, int write_fault,
b90a0e6c 2355 int *emulate, int level, gfn_t gfn,
1403283a 2356 pfn_t pfn, bool speculative,
9bdbba13 2357 bool host_writable)
1e73f9dd
MT
2358{
2359 int was_rmapped = 0;
53a27b39 2360 int rmap_count;
1e73f9dd
MT
2361
2362 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2363 " user_fault %d gfn %llx\n",
d555c333 2364 __func__, *sptep, pt_access,
1e73f9dd
MT
2365 write_fault, user_fault, gfn);
2366
d555c333 2367 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2368 /*
2369 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2370 * the parent of the now unreachable PTE.
2371 */
852e3c19
JR
2372 if (level > PT_PAGE_TABLE_LEVEL &&
2373 !is_large_pte(*sptep)) {
1e73f9dd 2374 struct kvm_mmu_page *child;
d555c333 2375 u64 pte = *sptep;
1e73f9dd
MT
2376
2377 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2378 drop_parent_pte(child, sptep);
3be2264b 2379 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2380 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2381 pgprintk("hfn old %llx new %llx\n",
d555c333 2382 spte_to_pfn(*sptep), pfn);
c3707958 2383 drop_spte(vcpu->kvm, sptep);
91546356 2384 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2385 } else
2386 was_rmapped = 1;
1e73f9dd 2387 }
852e3c19 2388
d555c333 2389 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2390 level, gfn, pfn, speculative, true,
9bdbba13 2391 host_writable)) {
1e73f9dd 2392 if (write_fault)
b90a0e6c 2393 *emulate = 1;
5304efde 2394 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2395 }
1e73f9dd 2396
ce88decf
XG
2397 if (unlikely(is_mmio_spte(*sptep) && emulate))
2398 *emulate = 1;
2399
d555c333 2400 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2401 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2402 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2403 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2404 *sptep, sptep);
d555c333 2405 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2406 ++vcpu->kvm->stat.lpages;
2407
ffb61bb3
XG
2408 if (is_shadow_present_pte(*sptep)) {
2409 page_header_update_slot(vcpu->kvm, sptep, gfn);
2410 if (!was_rmapped) {
2411 rmap_count = rmap_add(vcpu, sptep, gfn);
2412 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2413 rmap_recycle(vcpu, sptep, gfn);
2414 }
1c4f1fd6 2415 }
9ed5520d 2416 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2417}
2418
6aa8b732
AK
2419static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2420{
2421}
2422
957ed9ef
XG
2423static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2424 bool no_dirty_log)
2425{
2426 struct kvm_memory_slot *slot;
2427 unsigned long hva;
2428
5d163b1c 2429 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2430 if (!slot) {
fce92dce
XG
2431 get_page(fault_page);
2432 return page_to_pfn(fault_page);
957ed9ef
XG
2433 }
2434
2435 hva = gfn_to_hva_memslot(slot, gfn);
2436
2437 return hva_to_pfn_atomic(vcpu->kvm, hva);
2438}
2439
2440static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2441 struct kvm_mmu_page *sp,
2442 u64 *start, u64 *end)
2443{
2444 struct page *pages[PTE_PREFETCH_NUM];
2445 unsigned access = sp->role.access;
2446 int i, ret;
2447 gfn_t gfn;
2448
2449 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2450 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2451 return -1;
2452
2453 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2454 if (ret <= 0)
2455 return -1;
2456
2457 for (i = 0; i < ret; i++, gfn++, start++)
2458 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2459 access, 0, 0, NULL,
957ed9ef
XG
2460 sp->role.level, gfn,
2461 page_to_pfn(pages[i]), true, true);
2462
2463 return 0;
2464}
2465
2466static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2467 struct kvm_mmu_page *sp, u64 *sptep)
2468{
2469 u64 *spte, *start = NULL;
2470 int i;
2471
2472 WARN_ON(!sp->role.direct);
2473
2474 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2475 spte = sp->spt + i;
2476
2477 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2478 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2479 if (!start)
2480 continue;
2481 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2482 break;
2483 start = NULL;
2484 } else if (!start)
2485 start = spte;
2486 }
2487}
2488
2489static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2490{
2491 struct kvm_mmu_page *sp;
2492
2493 /*
2494 * Since it's no accessed bit on EPT, it's no way to
2495 * distinguish between actually accessed translations
2496 * and prefetched, so disable pte prefetch if EPT is
2497 * enabled.
2498 */
2499 if (!shadow_accessed_mask)
2500 return;
2501
2502 sp = page_header(__pa(sptep));
2503 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2504 return;
2505
2506 __direct_pte_prefetch(vcpu, sp, sptep);
2507}
2508
9f652d21 2509static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2510 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2511 bool prefault)
140754bc 2512{
9f652d21 2513 struct kvm_shadow_walk_iterator iterator;
140754bc 2514 struct kvm_mmu_page *sp;
b90a0e6c 2515 int emulate = 0;
140754bc 2516 gfn_t pseudo_gfn;
6aa8b732 2517
9f652d21 2518 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2519 if (iterator.level == level) {
612819c3
MT
2520 unsigned pte_access = ACC_ALL;
2521
612819c3 2522 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2523 0, write, &emulate,
2ec4739d 2524 level, gfn, pfn, prefault, map_writable);
957ed9ef 2525 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2526 ++vcpu->stat.pf_fixed;
2527 break;
6aa8b732
AK
2528 }
2529
c3707958 2530 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2531 u64 base_addr = iterator.addr;
2532
2533 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2534 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2535 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2536 iterator.level - 1,
2537 1, ACC_ALL, iterator.sptep);
2538 if (!sp) {
2539 pgprintk("nonpaging_map: ENOMEM\n");
2540 kvm_release_pfn_clean(pfn);
2541 return -ENOMEM;
2542 }
140754bc 2543
1df9f2dc
XG
2544 mmu_spte_set(iterator.sptep,
2545 __pa(sp->spt)
2546 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2547 | shadow_user_mask | shadow_x_mask
2548 | shadow_accessed_mask);
9f652d21
AK
2549 }
2550 }
b90a0e6c 2551 return emulate;
6aa8b732
AK
2552}
2553
77db5cbd 2554static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2555{
77db5cbd
HY
2556 siginfo_t info;
2557
2558 info.si_signo = SIGBUS;
2559 info.si_errno = 0;
2560 info.si_code = BUS_MCEERR_AR;
2561 info.si_addr = (void __user *)address;
2562 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2563
77db5cbd 2564 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2565}
2566
d7c55201 2567static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2568{
2569 kvm_release_pfn_clean(pfn);
2570 if (is_hwpoison_pfn(pfn)) {
bebb106a 2571 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2572 return 0;
d7c55201 2573 }
edba23e5 2574
d7c55201 2575 return -EFAULT;
bf998156
HY
2576}
2577
936a5fe6
AA
2578static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2579 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2580{
2581 pfn_t pfn = *pfnp;
2582 gfn_t gfn = *gfnp;
2583 int level = *levelp;
2584
2585 /*
2586 * Check if it's a transparent hugepage. If this would be an
2587 * hugetlbfs page, level wouldn't be set to
2588 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2589 * here.
2590 */
2591 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2592 level == PT_PAGE_TABLE_LEVEL &&
2593 PageTransCompound(pfn_to_page(pfn)) &&
2594 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2595 unsigned long mask;
2596 /*
2597 * mmu_notifier_retry was successful and we hold the
2598 * mmu_lock here, so the pmd can't become splitting
2599 * from under us, and in turn
2600 * __split_huge_page_refcount() can't run from under
2601 * us and we can safely transfer the refcount from
2602 * PG_tail to PG_head as we switch the pfn to tail to
2603 * head.
2604 */
2605 *levelp = level = PT_DIRECTORY_LEVEL;
2606 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2607 VM_BUG_ON((gfn & mask) != (pfn & mask));
2608 if (pfn & mask) {
2609 gfn &= ~mask;
2610 *gfnp = gfn;
2611 kvm_release_pfn_clean(pfn);
2612 pfn &= ~mask;
2613 if (!get_page_unless_zero(pfn_to_page(pfn)))
2614 BUG();
2615 *pfnp = pfn;
2616 }
2617 }
2618}
2619
d7c55201
XG
2620static bool mmu_invalid_pfn(pfn_t pfn)
2621{
ce88decf 2622 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2623}
2624
2625static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2626 pfn_t pfn, unsigned access, int *ret_val)
2627{
2628 bool ret = true;
2629
2630 /* The pfn is invalid, report the error! */
2631 if (unlikely(is_invalid_pfn(pfn))) {
2632 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2633 goto exit;
2634 }
2635
ce88decf 2636 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2637 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2638
2639 ret = false;
2640exit:
2641 return ret;
2642}
2643
78b2c54a 2644static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2645 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2646
2647static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
78b2c54a 2648 bool prefault)
10589a46
MT
2649{
2650 int r;
852e3c19 2651 int level;
936a5fe6 2652 int force_pt_level;
35149e21 2653 pfn_t pfn;
e930bffe 2654 unsigned long mmu_seq;
612819c3 2655 bool map_writable;
aaee2c94 2656
936a5fe6
AA
2657 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2658 if (likely(!force_pt_level)) {
2659 level = mapping_level(vcpu, gfn);
2660 /*
2661 * This path builds a PAE pagetable - so we can map
2662 * 2mb pages at maximum. Therefore check if the level
2663 * is larger than that.
2664 */
2665 if (level > PT_DIRECTORY_LEVEL)
2666 level = PT_DIRECTORY_LEVEL;
852e3c19 2667
936a5fe6
AA
2668 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2669 } else
2670 level = PT_PAGE_TABLE_LEVEL;
05da4558 2671
e930bffe 2672 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2673 smp_rmb();
060c2abe 2674
78b2c54a 2675 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2676 return 0;
aaee2c94 2677
d7c55201
XG
2678 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2679 return r;
d196e343 2680
aaee2c94 2681 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2682 if (mmu_notifier_retry(vcpu, mmu_seq))
2683 goto out_unlock;
eb787d10 2684 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2685 if (likely(!force_pt_level))
2686 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2687 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2688 prefault);
aaee2c94
MT
2689 spin_unlock(&vcpu->kvm->mmu_lock);
2690
aaee2c94 2691
10589a46 2692 return r;
e930bffe
AA
2693
2694out_unlock:
2695 spin_unlock(&vcpu->kvm->mmu_lock);
2696 kvm_release_pfn_clean(pfn);
2697 return 0;
10589a46
MT
2698}
2699
2700
17ac10ad
AK
2701static void mmu_free_roots(struct kvm_vcpu *vcpu)
2702{
2703 int i;
4db35314 2704 struct kvm_mmu_page *sp;
d98ba053 2705 LIST_HEAD(invalid_list);
17ac10ad 2706
ad312c7c 2707 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2708 return;
aaee2c94 2709 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2710 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2711 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2712 vcpu->arch.mmu.direct_map)) {
ad312c7c 2713 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2714
4db35314
AK
2715 sp = page_header(root);
2716 --sp->root_count;
d98ba053
XG
2717 if (!sp->root_count && sp->role.invalid) {
2718 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2719 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2720 }
ad312c7c 2721 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2722 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2723 return;
2724 }
17ac10ad 2725 for (i = 0; i < 4; ++i) {
ad312c7c 2726 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2727
417726a3 2728 if (root) {
417726a3 2729 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2730 sp = page_header(root);
2731 --sp->root_count;
2e53d63a 2732 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2733 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2734 &invalid_list);
417726a3 2735 }
ad312c7c 2736 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2737 }
d98ba053 2738 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2739 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2740 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2741}
2742
8986ecc0
MT
2743static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2744{
2745 int ret = 0;
2746
2747 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2748 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2749 ret = 1;
2750 }
2751
2752 return ret;
2753}
2754
651dd37a
JR
2755static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2756{
2757 struct kvm_mmu_page *sp;
7ebaf15e 2758 unsigned i;
651dd37a
JR
2759
2760 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2761 spin_lock(&vcpu->kvm->mmu_lock);
2762 kvm_mmu_free_some_pages(vcpu);
2763 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2764 1, ACC_ALL, NULL);
2765 ++sp->root_count;
2766 spin_unlock(&vcpu->kvm->mmu_lock);
2767 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2768 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2769 for (i = 0; i < 4; ++i) {
2770 hpa_t root = vcpu->arch.mmu.pae_root[i];
2771
2772 ASSERT(!VALID_PAGE(root));
2773 spin_lock(&vcpu->kvm->mmu_lock);
2774 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2775 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2776 i << 30,
651dd37a
JR
2777 PT32_ROOT_LEVEL, 1, ACC_ALL,
2778 NULL);
2779 root = __pa(sp->spt);
2780 ++sp->root_count;
2781 spin_unlock(&vcpu->kvm->mmu_lock);
2782 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2783 }
6292757f 2784 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2785 } else
2786 BUG();
2787
2788 return 0;
2789}
2790
2791static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2792{
4db35314 2793 struct kvm_mmu_page *sp;
81407ca5
JR
2794 u64 pdptr, pm_mask;
2795 gfn_t root_gfn;
2796 int i;
3bb65a22 2797
5777ed34 2798 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2799
651dd37a
JR
2800 if (mmu_check_root(vcpu, root_gfn))
2801 return 1;
2802
2803 /*
2804 * Do we shadow a long mode page table? If so we need to
2805 * write-protect the guests page table root.
2806 */
2807 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2808 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2809
2810 ASSERT(!VALID_PAGE(root));
651dd37a 2811
8facbbff 2812 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2813 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2814 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2815 0, ACC_ALL, NULL);
4db35314
AK
2816 root = __pa(sp->spt);
2817 ++sp->root_count;
8facbbff 2818 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2819 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2820 return 0;
17ac10ad 2821 }
f87f9288 2822
651dd37a
JR
2823 /*
2824 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2825 * or a PAE 3-level page table. In either case we need to be aware that
2826 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2827 */
81407ca5
JR
2828 pm_mask = PT_PRESENT_MASK;
2829 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2830 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2831
17ac10ad 2832 for (i = 0; i < 4; ++i) {
ad312c7c 2833 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2834
2835 ASSERT(!VALID_PAGE(root));
ad312c7c 2836 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2837 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2838 if (!is_present_gpte(pdptr)) {
ad312c7c 2839 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2840 continue;
2841 }
6de4f3ad 2842 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
2843 if (mmu_check_root(vcpu, root_gfn))
2844 return 1;
5a7388c2 2845 }
8facbbff 2846 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2847 kvm_mmu_free_some_pages(vcpu);
4db35314 2848 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 2849 PT32_ROOT_LEVEL, 0,
f7d9c7b7 2850 ACC_ALL, NULL);
4db35314
AK
2851 root = __pa(sp->spt);
2852 ++sp->root_count;
8facbbff
AK
2853 spin_unlock(&vcpu->kvm->mmu_lock);
2854
81407ca5 2855 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 2856 }
6292757f 2857 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
2858
2859 /*
2860 * If we shadow a 32 bit page table with a long mode page
2861 * table we enter this path.
2862 */
2863 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2864 if (vcpu->arch.mmu.lm_root == NULL) {
2865 /*
2866 * The additional page necessary for this is only
2867 * allocated on demand.
2868 */
2869
2870 u64 *lm_root;
2871
2872 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2873 if (lm_root == NULL)
2874 return 1;
2875
2876 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2877
2878 vcpu->arch.mmu.lm_root = lm_root;
2879 }
2880
2881 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2882 }
2883
8986ecc0 2884 return 0;
17ac10ad
AK
2885}
2886
651dd37a
JR
2887static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2888{
2889 if (vcpu->arch.mmu.direct_map)
2890 return mmu_alloc_direct_roots(vcpu);
2891 else
2892 return mmu_alloc_shadow_roots(vcpu);
2893}
2894
0ba73cda
MT
2895static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2896{
2897 int i;
2898 struct kvm_mmu_page *sp;
2899
81407ca5
JR
2900 if (vcpu->arch.mmu.direct_map)
2901 return;
2902
0ba73cda
MT
2903 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2904 return;
6903074c 2905
bebb106a 2906 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 2907 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 2908 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
2909 hpa_t root = vcpu->arch.mmu.root_hpa;
2910 sp = page_header(root);
2911 mmu_sync_children(vcpu, sp);
0375f7fa 2912 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2913 return;
2914 }
2915 for (i = 0; i < 4; ++i) {
2916 hpa_t root = vcpu->arch.mmu.pae_root[i];
2917
8986ecc0 2918 if (root && VALID_PAGE(root)) {
0ba73cda
MT
2919 root &= PT64_BASE_ADDR_MASK;
2920 sp = page_header(root);
2921 mmu_sync_children(vcpu, sp);
2922 }
2923 }
0375f7fa 2924 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2925}
2926
2927void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2928{
2929 spin_lock(&vcpu->kvm->mmu_lock);
2930 mmu_sync_roots(vcpu);
6cffe8ca 2931 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
2932}
2933
1871c602 2934static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 2935 u32 access, struct x86_exception *exception)
6aa8b732 2936{
ab9ae313
AK
2937 if (exception)
2938 exception->error_code = 0;
6aa8b732
AK
2939 return vaddr;
2940}
2941
6539e738 2942static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
2943 u32 access,
2944 struct x86_exception *exception)
6539e738 2945{
ab9ae313
AK
2946 if (exception)
2947 exception->error_code = 0;
6539e738
JR
2948 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2949}
2950
ce88decf
XG
2951static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2952{
2953 if (direct)
2954 return vcpu_match_mmio_gpa(vcpu, addr);
2955
2956 return vcpu_match_mmio_gva(vcpu, addr);
2957}
2958
2959
2960/*
2961 * On direct hosts, the last spte is only allows two states
2962 * for mmio page fault:
2963 * - It is the mmio spte
2964 * - It is zapped or it is being zapped.
2965 *
2966 * This function completely checks the spte when the last spte
2967 * is not the mmio spte.
2968 */
2969static bool check_direct_spte_mmio_pf(u64 spte)
2970{
2971 return __check_direct_spte_mmio_pf(spte);
2972}
2973
2974static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2975{
2976 struct kvm_shadow_walk_iterator iterator;
2977 u64 spte = 0ull;
2978
2979 walk_shadow_page_lockless_begin(vcpu);
2980 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2981 if (!is_shadow_present_pte(spte))
2982 break;
2983 walk_shadow_page_lockless_end(vcpu);
2984
2985 return spte;
2986}
2987
2988/*
2989 * If it is a real mmio page fault, return 1 and emulat the instruction
2990 * directly, return 0 to let CPU fault again on the address, -1 is
2991 * returned if bug is detected.
2992 */
2993int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2994{
2995 u64 spte;
2996
2997 if (quickly_check_mmio_pf(vcpu, addr, direct))
2998 return 1;
2999
3000 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3001
3002 if (is_mmio_spte(spte)) {
3003 gfn_t gfn = get_mmio_spte_gfn(spte);
3004 unsigned access = get_mmio_spte_access(spte);
3005
3006 if (direct)
3007 addr = 0;
4f022648
XG
3008
3009 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3010 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3011 return 1;
3012 }
3013
3014 /*
3015 * It's ok if the gva is remapped by other cpus on shadow guest,
3016 * it's a BUG if the gfn is not a mmio page.
3017 */
3018 if (direct && !check_direct_spte_mmio_pf(spte))
3019 return -1;
3020
3021 /*
3022 * If the page table is zapped by other cpus, let CPU fault again on
3023 * the address.
3024 */
3025 return 0;
3026}
3027EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3028
3029static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3030 u32 error_code, bool direct)
3031{
3032 int ret;
3033
3034 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3035 WARN_ON(ret < 0);
3036 return ret;
3037}
3038
6aa8b732 3039static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3040 u32 error_code, bool prefault)
6aa8b732 3041{
e833240f 3042 gfn_t gfn;
e2dec939 3043 int r;
6aa8b732 3044
b8688d51 3045 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3046
3047 if (unlikely(error_code & PFERR_RSVD_MASK))
3048 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3049
e2dec939
AK
3050 r = mmu_topup_memory_caches(vcpu);
3051 if (r)
3052 return r;
714b93da 3053
6aa8b732 3054 ASSERT(vcpu);
ad312c7c 3055 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3056
e833240f 3057 gfn = gva >> PAGE_SHIFT;
6aa8b732 3058
e833240f 3059 return nonpaging_map(vcpu, gva & PAGE_MASK,
78b2c54a 3060 error_code & PFERR_WRITE_MASK, gfn, prefault);
6aa8b732
AK
3061}
3062
7e1fbeac 3063static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3064{
3065 struct kvm_arch_async_pf arch;
fb67e14f 3066
7c90705b 3067 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3068 arch.gfn = gfn;
c4806acd 3069 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3070 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3071
3072 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3073}
3074
3075static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3076{
3077 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3078 kvm_event_needs_reinjection(vcpu)))
3079 return false;
3080
3081 return kvm_x86_ops->interrupt_allowed(vcpu);
3082}
3083
78b2c54a 3084static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3085 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3086{
3087 bool async;
3088
612819c3 3089 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3090
3091 if (!async)
3092 return false; /* *pfn has correct page already */
3093
3094 put_page(pfn_to_page(*pfn));
3095
78b2c54a 3096 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3097 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3098 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3099 trace_kvm_async_pf_doublefault(gva, gfn);
3100 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3101 return true;
3102 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3103 return true;
3104 }
3105
612819c3 3106 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3107
3108 return false;
3109}
3110
56028d08 3111static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3112 bool prefault)
fb72d167 3113{
35149e21 3114 pfn_t pfn;
fb72d167 3115 int r;
852e3c19 3116 int level;
936a5fe6 3117 int force_pt_level;
05da4558 3118 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3119 unsigned long mmu_seq;
612819c3
MT
3120 int write = error_code & PFERR_WRITE_MASK;
3121 bool map_writable;
fb72d167
JR
3122
3123 ASSERT(vcpu);
3124 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3125
ce88decf
XG
3126 if (unlikely(error_code & PFERR_RSVD_MASK))
3127 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3128
fb72d167
JR
3129 r = mmu_topup_memory_caches(vcpu);
3130 if (r)
3131 return r;
3132
936a5fe6
AA
3133 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3134 if (likely(!force_pt_level)) {
3135 level = mapping_level(vcpu, gfn);
3136 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3137 } else
3138 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3139
e930bffe 3140 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3141 smp_rmb();
af585b92 3142
78b2c54a 3143 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3144 return 0;
3145
d7c55201
XG
3146 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3147 return r;
3148
fb72d167 3149 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3150 if (mmu_notifier_retry(vcpu, mmu_seq))
3151 goto out_unlock;
fb72d167 3152 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3153 if (likely(!force_pt_level))
3154 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3155 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3156 level, gfn, pfn, prefault);
fb72d167 3157 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3158
3159 return r;
e930bffe
AA
3160
3161out_unlock:
3162 spin_unlock(&vcpu->kvm->mmu_lock);
3163 kvm_release_pfn_clean(pfn);
3164 return 0;
fb72d167
JR
3165}
3166
6aa8b732
AK
3167static void nonpaging_free(struct kvm_vcpu *vcpu)
3168{
17ac10ad 3169 mmu_free_roots(vcpu);
6aa8b732
AK
3170}
3171
52fde8df
JR
3172static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3173 struct kvm_mmu *context)
6aa8b732 3174{
6aa8b732
AK
3175 context->new_cr3 = nonpaging_new_cr3;
3176 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3177 context->gva_to_gpa = nonpaging_gva_to_gpa;
3178 context->free = nonpaging_free;
e8bc217a 3179 context->sync_page = nonpaging_sync_page;
a7052897 3180 context->invlpg = nonpaging_invlpg;
0f53b5b1 3181 context->update_pte = nonpaging_update_pte;
cea0f0e7 3182 context->root_level = 0;
6aa8b732 3183 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3184 context->root_hpa = INVALID_PAGE;
c5a78f2b 3185 context->direct_map = true;
2d48a985 3186 context->nx = false;
6aa8b732
AK
3187 return 0;
3188}
3189
d835dfec 3190void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3191{
1165f5fe 3192 ++vcpu->stat.tlb_flush;
a8eeb04a 3193 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3194}
3195
3196static void paging_new_cr3(struct kvm_vcpu *vcpu)
3197{
9f8fe504 3198 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3199 mmu_free_roots(vcpu);
6aa8b732
AK
3200}
3201
5777ed34
JR
3202static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3203{
9f8fe504 3204 return kvm_read_cr3(vcpu);
5777ed34
JR
3205}
3206
6389ee94
AK
3207static void inject_page_fault(struct kvm_vcpu *vcpu,
3208 struct x86_exception *fault)
6aa8b732 3209{
6389ee94 3210 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3211}
3212
6aa8b732
AK
3213static void paging_free(struct kvm_vcpu *vcpu)
3214{
3215 nonpaging_free(vcpu);
3216}
3217
3241f22d 3218static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3219{
3220 int bit7;
3221
3222 bit7 = (gpte >> 7) & 1;
3241f22d 3223 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3224}
3225
ce88decf
XG
3226static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3227 int *nr_present)
3228{
3229 if (unlikely(is_mmio_spte(*sptep))) {
3230 if (gfn != get_mmio_spte_gfn(*sptep)) {
3231 mmu_spte_clear_no_track(sptep);
3232 return true;
3233 }
3234
3235 (*nr_present)++;
3236 mark_mmio_spte(sptep, gfn, access);
3237 return true;
3238 }
3239
3240 return false;
3241}
3242
6aa8b732
AK
3243#define PTTYPE 64
3244#include "paging_tmpl.h"
3245#undef PTTYPE
3246
3247#define PTTYPE 32
3248#include "paging_tmpl.h"
3249#undef PTTYPE
3250
52fde8df 3251static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3252 struct kvm_mmu *context)
82725b20 3253{
82725b20
DE
3254 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3255 u64 exb_bit_rsvd = 0;
3256
2d48a985 3257 if (!context->nx)
82725b20 3258 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3259 switch (context->root_level) {
82725b20
DE
3260 case PT32_ROOT_LEVEL:
3261 /* no rsvd bits for 2 level 4K page table entries */
3262 context->rsvd_bits_mask[0][1] = 0;
3263 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3264 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3265
3266 if (!is_pse(vcpu)) {
3267 context->rsvd_bits_mask[1][1] = 0;
3268 break;
3269 }
3270
82725b20
DE
3271 if (is_cpuid_PSE36())
3272 /* 36bits PSE 4MB page */
3273 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3274 else
3275 /* 32 bits PSE 4MB page */
3276 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3277 break;
3278 case PT32E_ROOT_LEVEL:
20c466b5
DE
3279 context->rsvd_bits_mask[0][2] =
3280 rsvd_bits(maxphyaddr, 63) |
3281 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3282 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3283 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3284 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3285 rsvd_bits(maxphyaddr, 62); /* PTE */
3286 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3287 rsvd_bits(maxphyaddr, 62) |
3288 rsvd_bits(13, 20); /* large page */
f815bce8 3289 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3290 break;
3291 case PT64_ROOT_LEVEL:
3292 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3293 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3294 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3295 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3296 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3297 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3298 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3299 rsvd_bits(maxphyaddr, 51);
3300 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3301 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3302 rsvd_bits(maxphyaddr, 51) |
3303 rsvd_bits(13, 29);
82725b20 3304 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3305 rsvd_bits(maxphyaddr, 51) |
3306 rsvd_bits(13, 20); /* large page */
f815bce8 3307 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3308 break;
3309 }
3310}
3311
52fde8df
JR
3312static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3313 struct kvm_mmu *context,
3314 int level)
6aa8b732 3315{
2d48a985 3316 context->nx = is_nx(vcpu);
4d6931c3 3317 context->root_level = level;
2d48a985 3318
4d6931c3 3319 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3320
3321 ASSERT(is_pae(vcpu));
3322 context->new_cr3 = paging_new_cr3;
3323 context->page_fault = paging64_page_fault;
6aa8b732 3324 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3325 context->sync_page = paging64_sync_page;
a7052897 3326 context->invlpg = paging64_invlpg;
0f53b5b1 3327 context->update_pte = paging64_update_pte;
6aa8b732 3328 context->free = paging_free;
17ac10ad 3329 context->shadow_root_level = level;
17c3ba9d 3330 context->root_hpa = INVALID_PAGE;
c5a78f2b 3331 context->direct_map = false;
6aa8b732
AK
3332 return 0;
3333}
3334
52fde8df
JR
3335static int paging64_init_context(struct kvm_vcpu *vcpu,
3336 struct kvm_mmu *context)
17ac10ad 3337{
52fde8df 3338 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3339}
3340
52fde8df
JR
3341static int paging32_init_context(struct kvm_vcpu *vcpu,
3342 struct kvm_mmu *context)
6aa8b732 3343{
2d48a985 3344 context->nx = false;
4d6931c3 3345 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3346
4d6931c3 3347 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3348
3349 context->new_cr3 = paging_new_cr3;
3350 context->page_fault = paging32_page_fault;
6aa8b732
AK
3351 context->gva_to_gpa = paging32_gva_to_gpa;
3352 context->free = paging_free;
e8bc217a 3353 context->sync_page = paging32_sync_page;
a7052897 3354 context->invlpg = paging32_invlpg;
0f53b5b1 3355 context->update_pte = paging32_update_pte;
6aa8b732 3356 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3357 context->root_hpa = INVALID_PAGE;
c5a78f2b 3358 context->direct_map = false;
6aa8b732
AK
3359 return 0;
3360}
3361
52fde8df
JR
3362static int paging32E_init_context(struct kvm_vcpu *vcpu,
3363 struct kvm_mmu *context)
6aa8b732 3364{
52fde8df 3365 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3366}
3367
fb72d167
JR
3368static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3369{
14dfe855 3370 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3371
c445f8ef 3372 context->base_role.word = 0;
fb72d167
JR
3373 context->new_cr3 = nonpaging_new_cr3;
3374 context->page_fault = tdp_page_fault;
3375 context->free = nonpaging_free;
e8bc217a 3376 context->sync_page = nonpaging_sync_page;
a7052897 3377 context->invlpg = nonpaging_invlpg;
0f53b5b1 3378 context->update_pte = nonpaging_update_pte;
67253af5 3379 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3380 context->root_hpa = INVALID_PAGE;
c5a78f2b 3381 context->direct_map = true;
1c97f0a0 3382 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3383 context->get_cr3 = get_cr3;
e4e517b4 3384 context->get_pdptr = kvm_pdptr_read;
cb659db8 3385 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3386
3387 if (!is_paging(vcpu)) {
2d48a985 3388 context->nx = false;
fb72d167
JR
3389 context->gva_to_gpa = nonpaging_gva_to_gpa;
3390 context->root_level = 0;
3391 } else if (is_long_mode(vcpu)) {
2d48a985 3392 context->nx = is_nx(vcpu);
fb72d167 3393 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3394 reset_rsvds_bits_mask(vcpu, context);
3395 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3396 } else if (is_pae(vcpu)) {
2d48a985 3397 context->nx = is_nx(vcpu);
fb72d167 3398 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3399 reset_rsvds_bits_mask(vcpu, context);
3400 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3401 } else {
2d48a985 3402 context->nx = false;
fb72d167 3403 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3404 reset_rsvds_bits_mask(vcpu, context);
3405 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3406 }
3407
3408 return 0;
3409}
3410
52fde8df 3411int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3412{
a770f6f2 3413 int r;
411c588d 3414 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3415 ASSERT(vcpu);
ad312c7c 3416 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3417
3418 if (!is_paging(vcpu))
52fde8df 3419 r = nonpaging_init_context(vcpu, context);
a9058ecd 3420 else if (is_long_mode(vcpu))
52fde8df 3421 r = paging64_init_context(vcpu, context);
6aa8b732 3422 else if (is_pae(vcpu))
52fde8df 3423 r = paging32E_init_context(vcpu, context);
6aa8b732 3424 else
52fde8df 3425 r = paging32_init_context(vcpu, context);
a770f6f2 3426
5b7e0102 3427 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3428 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3429 vcpu->arch.mmu.base_role.smep_andnot_wp
3430 = smep && !is_write_protection(vcpu);
52fde8df
JR
3431
3432 return r;
3433}
3434EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3435
3436static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3437{
14dfe855 3438 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3439
14dfe855
JR
3440 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3441 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3442 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3443 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3444
3445 return r;
6aa8b732
AK
3446}
3447
02f59dc9
JR
3448static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3449{
3450 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3451
3452 g_context->get_cr3 = get_cr3;
e4e517b4 3453 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3454 g_context->inject_page_fault = kvm_inject_page_fault;
3455
3456 /*
3457 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3458 * translation of l2_gpa to l1_gpa addresses is done using the
3459 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3460 * functions between mmu and nested_mmu are swapped.
3461 */
3462 if (!is_paging(vcpu)) {
2d48a985 3463 g_context->nx = false;
02f59dc9
JR
3464 g_context->root_level = 0;
3465 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3466 } else if (is_long_mode(vcpu)) {
2d48a985 3467 g_context->nx = is_nx(vcpu);
02f59dc9 3468 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3469 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3470 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3471 } else if (is_pae(vcpu)) {
2d48a985 3472 g_context->nx = is_nx(vcpu);
02f59dc9 3473 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3474 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3475 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3476 } else {
2d48a985 3477 g_context->nx = false;
02f59dc9 3478 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3479 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3480 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3481 }
3482
3483 return 0;
3484}
3485
fb72d167
JR
3486static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3487{
02f59dc9
JR
3488 if (mmu_is_nested(vcpu))
3489 return init_kvm_nested_mmu(vcpu);
3490 else if (tdp_enabled)
fb72d167
JR
3491 return init_kvm_tdp_mmu(vcpu);
3492 else
3493 return init_kvm_softmmu(vcpu);
3494}
3495
6aa8b732
AK
3496static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3497{
3498 ASSERT(vcpu);
62ad0755
SY
3499 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3500 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3501 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3502}
3503
3504int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3505{
3506 destroy_kvm_mmu(vcpu);
f8f7e5ee 3507 return init_kvm_mmu(vcpu);
17c3ba9d 3508}
8668a3c4 3509EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3510
3511int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3512{
714b93da
AK
3513 int r;
3514
e2dec939 3515 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3516 if (r)
3517 goto out;
8986ecc0 3518 r = mmu_alloc_roots(vcpu);
8facbbff 3519 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3520 mmu_sync_roots(vcpu);
aaee2c94 3521 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3522 if (r)
3523 goto out;
3662cb1c 3524 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3525 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3526out:
3527 return r;
6aa8b732 3528}
17c3ba9d
AK
3529EXPORT_SYMBOL_GPL(kvm_mmu_load);
3530
3531void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3532{
3533 mmu_free_roots(vcpu);
3534}
4b16184c 3535EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3536
0028425f 3537static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3538 struct kvm_mmu_page *sp, u64 *spte,
3539 const void *new)
0028425f 3540{
30945387 3541 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3542 ++vcpu->kvm->stat.mmu_pde_zapped;
3543 return;
30945387 3544 }
0028425f 3545
4cee5764 3546 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3547 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3548}
3549
79539cec
AK
3550static bool need_remote_flush(u64 old, u64 new)
3551{
3552 if (!is_shadow_present_pte(old))
3553 return false;
3554 if (!is_shadow_present_pte(new))
3555 return true;
3556 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3557 return true;
3558 old ^= PT64_NX_MASK;
3559 new ^= PT64_NX_MASK;
3560 return (old & ~new & PT64_PERM_MASK) != 0;
3561}
3562
0671a8e7
XG
3563static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3564 bool remote_flush, bool local_flush)
79539cec 3565{
0671a8e7
XG
3566 if (zap_page)
3567 return;
3568
3569 if (remote_flush)
79539cec 3570 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3571 else if (local_flush)
79539cec
AK
3572 kvm_mmu_flush_tlb(vcpu);
3573}
3574
889e5cbc
XG
3575static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3576 const u8 *new, int *bytes)
da4a00f0 3577{
889e5cbc
XG
3578 u64 gentry;
3579 int r;
72016f3a 3580
72016f3a
AK
3581 /*
3582 * Assume that the pte write on a page table of the same type
49b26e26
XG
3583 * as the current vcpu paging mode since we update the sptes only
3584 * when they have the same mode.
72016f3a 3585 */
889e5cbc 3586 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3587 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3588 *gpa &= ~(gpa_t)7;
3589 *bytes = 8;
3590 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3591 if (r)
3592 gentry = 0;
08e850c6
AK
3593 new = (const u8 *)&gentry;
3594 }
3595
889e5cbc 3596 switch (*bytes) {
08e850c6
AK
3597 case 4:
3598 gentry = *(const u32 *)new;
3599 break;
3600 case 8:
3601 gentry = *(const u64 *)new;
3602 break;
3603 default:
3604 gentry = 0;
3605 break;
72016f3a
AK
3606 }
3607
889e5cbc
XG
3608 return gentry;
3609}
3610
3611/*
3612 * If we're seeing too many writes to a page, it may no longer be a page table,
3613 * or we may be forking, in which case it is better to unmap the page.
3614 */
a138fe75 3615static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3616{
a30f47cb
XG
3617 /*
3618 * Skip write-flooding detected for the sp whose level is 1, because
3619 * it can become unsync, then the guest page is not write-protected.
3620 */
3621 if (sp->role.level == 1)
3622 return false;
3246af0e 3623
a30f47cb 3624 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3625}
3626
3627/*
3628 * Misaligned accesses are too much trouble to fix up; also, they usually
3629 * indicate a page is not used as a page table.
3630 */
3631static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3632 int bytes)
3633{
3634 unsigned offset, pte_size, misaligned;
3635
3636 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3637 gpa, bytes, sp->role.word);
3638
3639 offset = offset_in_page(gpa);
3640 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3641
3642 /*
3643 * Sometimes, the OS only writes the last one bytes to update status
3644 * bits, for example, in linux, andb instruction is used in clear_bit().
3645 */
3646 if (!(offset & (pte_size - 1)) && bytes == 1)
3647 return false;
3648
889e5cbc
XG
3649 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3650 misaligned |= bytes < 4;
3651
3652 return misaligned;
3653}
3654
3655static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3656{
3657 unsigned page_offset, quadrant;
3658 u64 *spte;
3659 int level;
3660
3661 page_offset = offset_in_page(gpa);
3662 level = sp->role.level;
3663 *nspte = 1;
3664 if (!sp->role.cr4_pae) {
3665 page_offset <<= 1; /* 32->64 */
3666 /*
3667 * A 32-bit pde maps 4MB while the shadow pdes map
3668 * only 2MB. So we need to double the offset again
3669 * and zap two pdes instead of one.
3670 */
3671 if (level == PT32_ROOT_LEVEL) {
3672 page_offset &= ~7; /* kill rounding error */
3673 page_offset <<= 1;
3674 *nspte = 2;
3675 }
3676 quadrant = page_offset >> PAGE_SHIFT;
3677 page_offset &= ~PAGE_MASK;
3678 if (quadrant != sp->role.quadrant)
3679 return NULL;
3680 }
3681
3682 spte = &sp->spt[page_offset / sizeof(*spte)];
3683 return spte;
3684}
3685
3686void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3687 const u8 *new, int bytes)
3688{
3689 gfn_t gfn = gpa >> PAGE_SHIFT;
3690 union kvm_mmu_page_role mask = { .word = 0 };
3691 struct kvm_mmu_page *sp;
3692 struct hlist_node *node;
3693 LIST_HEAD(invalid_list);
3694 u64 entry, gentry, *spte;
3695 int npte;
a30f47cb 3696 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3697
3698 /*
3699 * If we don't have indirect shadow pages, it means no page is
3700 * write-protected, so we can exit simply.
3701 */
3702 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3703 return;
3704
3705 zap_page = remote_flush = local_flush = false;
3706
3707 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3708
3709 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3710
3711 /*
3712 * No need to care whether allocation memory is successful
3713 * or not since pte prefetch is skiped if it does not have
3714 * enough objects in the cache.
3715 */
3716 mmu_topup_memory_caches(vcpu);
3717
3718 spin_lock(&vcpu->kvm->mmu_lock);
3719 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3720 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3721
fa1de2bf 3722 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3723 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3724 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3725 detect_write_flooding(sp)) {
0671a8e7 3726 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3727 &invalid_list);
4cee5764 3728 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3729 continue;
3730 }
889e5cbc
XG
3731
3732 spte = get_written_sptes(sp, gpa, &npte);
3733 if (!spte)
3734 continue;
3735
0671a8e7 3736 local_flush = true;
ac1b714e 3737 while (npte--) {
79539cec 3738 entry = *spte;
38e3b2b2 3739 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3740 if (gentry &&
3741 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3742 & mask.word) && rmap_can_add(vcpu))
7c562522 3743 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3744 if (!remote_flush && need_remote_flush(entry, *spte))
3745 remote_flush = true;
ac1b714e 3746 ++spte;
9b7a0325 3747 }
9b7a0325 3748 }
0671a8e7 3749 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3750 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3751 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3752 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3753}
3754
a436036b
AK
3755int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3756{
10589a46
MT
3757 gpa_t gpa;
3758 int r;
a436036b 3759
c5a78f2b 3760 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3761 return 0;
3762
1871c602 3763 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3764
10589a46 3765 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 3766
10589a46 3767 return r;
a436036b 3768}
577bdc49 3769EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3770
22d95b12 3771void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3772{
d98ba053 3773 LIST_HEAD(invalid_list);
103ad25a 3774
e0df7b9f 3775 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3776 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3777 struct kvm_mmu_page *sp;
ebeace86 3778
f05e70ac 3779 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3780 struct kvm_mmu_page, link);
e0df7b9f 3781 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3782 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3783 }
aa6bd187 3784 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3785}
ebeace86 3786
1cb3f3ae
XG
3787static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3788{
3789 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3790 return vcpu_match_mmio_gpa(vcpu, addr);
3791
3792 return vcpu_match_mmio_gva(vcpu, addr);
3793}
3794
dc25e89e
AP
3795int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3796 void *insn, int insn_len)
3067714c 3797{
1cb3f3ae 3798 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
3799 enum emulation_result er;
3800
56028d08 3801 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3802 if (r < 0)
3803 goto out;
3804
3805 if (!r) {
3806 r = 1;
3807 goto out;
3808 }
3809
1cb3f3ae
XG
3810 if (is_mmio_page_fault(vcpu, cr2))
3811 emulation_type = 0;
3812
3813 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
3814
3815 switch (er) {
3816 case EMULATE_DONE:
3817 return 1;
3818 case EMULATE_DO_MMIO:
3819 ++vcpu->stat.mmio_exits;
6d77dbfc 3820 /* fall through */
3067714c 3821 case EMULATE_FAIL:
3f5d18a9 3822 return 0;
3067714c
AK
3823 default:
3824 BUG();
3825 }
3826out:
3067714c
AK
3827 return r;
3828}
3829EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3830
a7052897
MT
3831void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3832{
a7052897 3833 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
3834 kvm_mmu_flush_tlb(vcpu);
3835 ++vcpu->stat.invlpg;
3836}
3837EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3838
18552672
JR
3839void kvm_enable_tdp(void)
3840{
3841 tdp_enabled = true;
3842}
3843EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3844
5f4cb662
JR
3845void kvm_disable_tdp(void)
3846{
3847 tdp_enabled = false;
3848}
3849EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3850
6aa8b732
AK
3851static void free_mmu_pages(struct kvm_vcpu *vcpu)
3852{
ad312c7c 3853 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
3854 if (vcpu->arch.mmu.lm_root != NULL)
3855 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
3856}
3857
3858static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3859{
17ac10ad 3860 struct page *page;
6aa8b732
AK
3861 int i;
3862
3863 ASSERT(vcpu);
3864
17ac10ad
AK
3865 /*
3866 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3867 * Therefore we need to allocate shadow page tables in the first
3868 * 4GB of memory, which happens to fit the DMA32 zone.
3869 */
3870 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3871 if (!page)
d7fa6ab2
WY
3872 return -ENOMEM;
3873
ad312c7c 3874 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 3875 for (i = 0; i < 4; ++i)
ad312c7c 3876 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3877
6aa8b732 3878 return 0;
6aa8b732
AK
3879}
3880
8018c27b 3881int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 3882{
6aa8b732 3883 ASSERT(vcpu);
e459e322
XG
3884
3885 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3886 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3887 vcpu->arch.mmu.translate_gpa = translate_gpa;
3888 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 3889
8018c27b
IM
3890 return alloc_mmu_pages(vcpu);
3891}
6aa8b732 3892
8018c27b
IM
3893int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3894{
3895 ASSERT(vcpu);
ad312c7c 3896 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 3897
8018c27b 3898 return init_kvm_mmu(vcpu);
6aa8b732
AK
3899}
3900
90cb0529 3901void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 3902{
4db35314 3903 struct kvm_mmu_page *sp;
6aa8b732 3904
f05e70ac 3905 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
3906 int i;
3907 u64 *pt;
3908
291f26bc 3909 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
3910 continue;
3911
4db35314 3912 pt = sp->spt;
8234b22e 3913 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
3914 if (!is_shadow_present_pte(pt[i]) ||
3915 !is_last_spte(pt[i], sp->role.level))
3916 continue;
3917
3918 if (is_large_pte(pt[i])) {
c3707958 3919 drop_spte(kvm, &pt[i]);
8234b22e 3920 --kvm->stat.lpages;
da8dc75f 3921 continue;
8234b22e 3922 }
da8dc75f 3923
6aa8b732 3924 /* avoid RMW */
01c168ac 3925 if (is_writable_pte(pt[i]))
1df9f2dc
XG
3926 mmu_spte_update(&pt[i],
3927 pt[i] & ~PT_WRITABLE_MASK);
8234b22e 3928 }
6aa8b732 3929 }
171d595d 3930 kvm_flush_remote_tlbs(kvm);
6aa8b732 3931}
37a7d8b0 3932
90cb0529 3933void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 3934{
4db35314 3935 struct kvm_mmu_page *sp, *node;
d98ba053 3936 LIST_HEAD(invalid_list);
e0fa826f 3937
aaee2c94 3938 spin_lock(&kvm->mmu_lock);
3246af0e 3939restart:
f05e70ac 3940 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 3941 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
3942 goto restart;
3943
d98ba053 3944 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 3945 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
3946}
3947
3d56cbdf
JK
3948static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3949 struct list_head *invalid_list)
3ee16c81
IE
3950{
3951 struct kvm_mmu_page *page;
3952
3953 page = container_of(kvm->arch.active_mmu_pages.prev,
3954 struct kvm_mmu_page, link);
3d56cbdf 3955 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
3956}
3957
1495f230 3958static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
3959{
3960 struct kvm *kvm;
3961 struct kvm *kvm_freed = NULL;
1495f230 3962 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
3963
3964 if (nr_to_scan == 0)
3965 goto out;
3ee16c81 3966
e935b837 3967 raw_spin_lock(&kvm_lock);
3ee16c81
IE
3968
3969 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 3970 int idx;
d98ba053 3971 LIST_HEAD(invalid_list);
3ee16c81 3972
f656ce01 3973 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 3974 spin_lock(&kvm->mmu_lock);
45221ab6
DH
3975 if (!kvm_freed && nr_to_scan > 0 &&
3976 kvm->arch.n_used_mmu_pages > 0) {
3d56cbdf
JK
3977 kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3978 &invalid_list);
3ee16c81
IE
3979 kvm_freed = kvm;
3980 }
3981 nr_to_scan--;
3982
d98ba053 3983 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3ee16c81 3984 spin_unlock(&kvm->mmu_lock);
f656ce01 3985 srcu_read_unlock(&kvm->srcu, idx);
3ee16c81
IE
3986 }
3987 if (kvm_freed)
3988 list_move_tail(&kvm_freed->vm_list, &vm_list);
3989
e935b837 3990 raw_spin_unlock(&kvm_lock);
3ee16c81 3991
45221ab6
DH
3992out:
3993 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
3994}
3995
3996static struct shrinker mmu_shrinker = {
3997 .shrink = mmu_shrink,
3998 .seeks = DEFAULT_SEEKS * 10,
3999};
4000
2ddfd20e 4001static void mmu_destroy_caches(void)
b5a33a75 4002{
53c07b18
XG
4003 if (pte_list_desc_cache)
4004 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4005 if (mmu_page_header_cache)
4006 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4007}
4008
4009int kvm_mmu_module_init(void)
4010{
53c07b18
XG
4011 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4012 sizeof(struct pte_list_desc),
20c2df83 4013 0, 0, NULL);
53c07b18 4014 if (!pte_list_desc_cache)
b5a33a75
AK
4015 goto nomem;
4016
d3d25b04
AK
4017 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4018 sizeof(struct kvm_mmu_page),
20c2df83 4019 0, 0, NULL);
d3d25b04
AK
4020 if (!mmu_page_header_cache)
4021 goto nomem;
4022
45bf21a8
WY
4023 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4024 goto nomem;
4025
3ee16c81
IE
4026 register_shrinker(&mmu_shrinker);
4027
b5a33a75
AK
4028 return 0;
4029
4030nomem:
3ee16c81 4031 mmu_destroy_caches();
b5a33a75
AK
4032 return -ENOMEM;
4033}
4034
3ad82a7e
ZX
4035/*
4036 * Caculate mmu pages needed for kvm.
4037 */
4038unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4039{
3ad82a7e
ZX
4040 unsigned int nr_mmu_pages;
4041 unsigned int nr_pages = 0;
bc6678a3 4042 struct kvm_memslots *slots;
be6ba0f0 4043 struct kvm_memory_slot *memslot;
3ad82a7e 4044
90d83dc3
LJ
4045 slots = kvm_memslots(kvm);
4046
be6ba0f0
XG
4047 kvm_for_each_memslot(memslot, slots)
4048 nr_pages += memslot->npages;
3ad82a7e
ZX
4049
4050 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4051 nr_mmu_pages = max(nr_mmu_pages,
4052 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4053
4054 return nr_mmu_pages;
4055}
4056
94d8b056
MT
4057int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4058{
4059 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4060 u64 spte;
94d8b056
MT
4061 int nr_sptes = 0;
4062
c2a2ac2b
XG
4063 walk_shadow_page_lockless_begin(vcpu);
4064 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4065 sptes[iterator.level-1] = spte;
94d8b056 4066 nr_sptes++;
c2a2ac2b 4067 if (!is_shadow_present_pte(spte))
94d8b056
MT
4068 break;
4069 }
c2a2ac2b 4070 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4071
4072 return nr_sptes;
4073}
4074EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4075
c42fffe3
XG
4076void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4077{
4078 ASSERT(vcpu);
4079
4080 destroy_kvm_mmu(vcpu);
4081 free_mmu_pages(vcpu);
4082 mmu_free_memory_caches(vcpu);
b034cf01
XG
4083}
4084
b034cf01
XG
4085void kvm_mmu_module_exit(void)
4086{
4087 mmu_destroy_caches();
4088 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4089 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4090 mmu_audit_disable();
4091}
This page took 0.785453 seconds and 5 git commands to generate.